
REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1.  AGENCY USE ONLY (Leave blank) 2.   REPORT DATE 

ll.Oct.00 

3.  REPORT TYPE AND DATES COVERED 

THESIS 
4.  TITLE AND SUBTITLE 

HYPERSPECTRAL IMAGING FOR BOTTOM TYPE CLASSIFICATION AND 
WATER DEPTH DETERMINATION 

5.  FUNDING NUMBERS 

6.  AUTHOR(S) 

1ST LT WILSON NIKOLE L 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

ROCHESTER INSTITUTE OF TECHNOLOGY 
8. PERFORMING ORGANIZATION 

REPORT NUMBER 

CY00384 

9.   SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

THE DEPARTMENT OF THE AIR FORCE 
AFIT/CIA, BLDG 125 
2950 P STREET 
WPAFB OH 45433 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Unlimited distribution 
In Accordance With AFI 35-205/AFIT Sup 1 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

14. SUBJECT TERMS 15. NUMBER OF PAGES 

170 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

20. LIMITATION OF 
ABSTRACT 

Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHS/DIOR, Oct 94 



Hyperspectral Imaging for Bottom Type 
Classification and Water Depth 

Determination 

Nikole L. Wilson 

B.S., Engineering Mechanics, U.S. Air Force Academy 

(1996) 

A thesis submitted in partial fulfillment of the 
requirements for the degree of Masters of Science 

in the Chester F. Carlson Center for Imaging Science 
of the College of Science 

Rochester Institute of Technology 

August 2000 

Signature of the Author 

Accepted by _ 
3rdinator, MLS. Degree Program Date 



THESIS RELEASE PERMISSION 
ROCHESTER INSTITUTE OF TECHNOLOGY 

COLLEGE OF SCIENCE 

Hyperspectral Imaging for Bottom Type Classification and 
Water Depth Determination 

I, Nikole L. Wilson, hereby grant permission to the Wallace Memorial Library of RIT to 

reproduce my thesis in whole or in part. Any reproduction will not be for commercial 

use or profit. 

Signature of Author 

Nikole L. Wilson 

Date & S£P/?o 



CHESTER F. CARLSON 
CENTER FOR IMAGING SCIENCE 

COLLEGE OF SCIENCE 
ROCHESTER INSTITUTE OF TECHNOLOGY 

ROCHESTER, NEW YORK 

CERTIFICATE OF APPROVAL 

M.S. DEGREE THESIS 

The M.S. Degree of Nikole L. Wilson 

has been examined and approved by the thesis committee 

as satisfactory for the thesis requirement for the 

Master of Science degree in*<rmaging Science 

Mr. Rolando V. Raquej 

JsÖC 
Dr. Jbhn M. Waud 

AX S£fOO 
Date 



Abstract 

Many recreational, military, and commercial activities take place in shallow 

coastal waters; therefore, interest is high in characterizing these areas. A variety of 

methods have been employed to determine water depths and classify the bottom using 

remote sensing. This research proposes to apply Philpot's principal components 

algorithm for bathymetric mapping to a MISI hyperspectral image, whereas previously 

this approach has been used on synthetic data. A description of the principal components 

algorithm is presented along with an outline of how it was applied to airborne 

hyperspectral images. The algorithm takes advantage of the ability to implement a deep- 

water correction, and in this linearized space, perform an eigenvector analysis to 

determine maximum variance in the data, which is related to depth. Unsupervised 

classification was performed on the first two principal component scores, resulting in a 

qualitative depth map and bottom type map. 

An extensive water measurement campaign was conducted in Lake Ontario in 

order to characterize the optical properties of the water at the time the MISI images were 

taken. These properties were used as inputs to the HydroMod radiative transfer model in 

order to generate sensor-reaching radiance values for various depths and over different 

bottom types characteristic of a test site on the central New York shore of Lake Ontario. 

A principal components regression was performed using the algorithm-processed 

HydroMod model radiances and image data in an effort to determine the inputs to the 

image, i.e. depth and bottom type, without having a priori information. The limitations of 

the algorithm as well as the regression approach are discussed. 
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Chapter 1 

Introduction 

An advantage of remote sensing is that it provides a synoptic view and can help 

reduce the amount of time and money spent on sampling. A drawback is that the 

intervening atmosphere presents a challenge to the interpretation of remotely sensed 

images. Remote sensing over water is a particularly difficult task because the water is an 

additional attenuation source. Various components in the water act as absorbing and 

scattering centers for the radiation that penetrates into the water column. 

Much of the research that has been conducted on remote sensing over water has 

been concerned with the oceans. Remote sensing over shallow water adds one more 

complexity to the problem: reflection from the bottom. The radiance reaching the sensor 

over optically shallow water includes not only radiation reflected from the atmosphere, 

but also radiation reflected from the surface of the water, from the water column itself, 

and from the bottom. 

Understanding the properties of shallow water is important because many 

recreational and economic activities take place near shore. Remote sensing is a tool that 

can be used to understand these shallow water properties, such as bottom type variation 

and depth. For example, Monroe County is interested in the location and distribution of 

green algae on the bottom of Lake Ontario, particularly the Ontario Beach area near 



Rochester, NY. The Monroe County Environmental Health Laboratory's "1998 Ontario 

Beach Monitoring Report" states that decaying algal plant matter, specifically cladophora 

and spyrogyra, was responsible for 13% of the beach closures. These algae wash up on 

shore where they act as a substrate for bacterial growth and provide to the bacteria a 

shield from the harmful effects of ultraviolet light. In coastal waters there is a 

relationship between high levels of bacteria known as indicator bacteria, which are 

typically found in the presence of harmful bacteria, and the occurrences of swimming- 

related illnesses. The Health Lab is interested in knowing where the algae are growing in 

the water as part of their effort to manage the problem. A bottom type map, produced 

from remotely sensed data, would be useful in addressing such ongoing environmental 

problems. The algae grow on hard surfaces, such as the rock comprising parts of the lake 

floor near the Ontario Beach area. The rock and algae reflect light reaching the bottom of 

the lake differently than the surrounding sand, which is the reason bottom type mapping 

is capable of distinguishing between a rock bottom and a sand bottom. 

In addition to providing bottom type information for applications such as the one 

discussed above, remote sensing of shallow waters can also provide depth information. 

Photogrammetric analysis of the bottom of Tampa Bay provided information about 

circulation patterns in the bay which was extremely beneficial in the evaluation of plans 

for dredging the bay (Rosenshein et al. 1977). However, interpretation of aerial 

photographs using photogrammetry is limited because water depth variations are not 

easily distinguishable from bottom type differences. Remote sensing over shallow waters 



calls for a technique which will distinguish the variation in bottom type reflectance from 

the variation in the reflectance spectra due to absorption and scattering within the water 

column. This is the problem addressed in the current research. 

This research contributes in three ways to the study of using remotely sensed 

imagery to gain information about depth and bottom type in shallow, coastal water. First, 

the algorithm used here was implemented on a hyperspectral image taken by the Modular 

Imaging Spectrometer Instrument (MISI), rather than a synthetic data set. This involved 

identifying the challenges of using real data, working around them, and analyzing the 

algorithm's limitations. The algorithm was implemented to determine qualitative depth 

and bottom type information from images taken at the Ginna power plant and near 

Ontario Beach. Second, the research shows the usefulness of the bottom classification 

map to the County Health Lab in their management efforts to prevent beach closures due 

to algae washing up on the shore. The third contribution is taking Philpot's algorithm in 

a new direction by using principal components regression (PCR) to quantitatively 

determine the unknowns (depth, bottom type, water type) that combine to form an image 

over shallow water. This study illustrates how the radiative transfer model HydroMod 

can be used as a model to simulate the conditions under which the Lake Ontario MISI 

images were taken, calculating sensor-reaching radiances, which were then used to 

calibrate the PCR. 



Chapter 2 

Background-Literature Review 

2.1 Radiance Reaching the Sensor 

Remote sensing over shallow water is difficult because of the various components 

that contribute to the radiance that reaches the sensor. There are essentially two 

components that make up the sensor reaching radiance. The first is the upwelled radiance 

scattered from the atmosphere (blue arrow in Fig. 2.1). The second is the radiance 

reflected from the scene, composed of three different parts: (1) The radiance reflected 

from the surface of the water (green arrow in Fig 2.1), (2) water column reflected 

radiance (violet line in Fig 2.1), and (3) bottom-reflected (orange arrow in Fig 2.1). 

Figure 2.1 Components of Sensor-Reaching Radiance 



The radiative transfer model, Hydro Mod, can be used to understand the components 

shown in Fig. 2.1. HydroMod is a tool for calculating radiance distributions using 

realistic environmental conditions. It uses the Air Force Laboratory's MODTRAN (Berk 

1989), one of the most accurate radiative transfer computer models available, to calculate 

the atmospheric conditions through which photons travel on their path toward the water 

surface and again on their return to the sensor (Fairbanks 1999). 

The HydroMod program consists of four modules (Fairbanks 1999). The first 

module calculates the input radiance distribution using MODTRAN to calculate 

atmospheric conditions. The second module involves the transition through the water 

surface both into and out of the water. The third module handles the propagation and 

reflection underwater. This is accomplished using Dr. Mobley's Hydrolight code 

(Mobley 1995,1996) to solve the radiative transfer under the water. Finally, the light is 

propagated back through the atmosphere to the sensor using MODTRAN. 

2.1.1 Atmospheric Attenuation 

The radiance reaching the sensor over water first passes through the atmosphere 

where some of it is scattered and some of it is absorbed. Direct solar radiation is 

scattered and absorbed, but still proceeds from the general direction of the sun, as 

opposed to diffuse sky radiation, which results from scattering by aerosols and air 

molecules. Bukata, et al. (1995) define the atmospheric attenuation coefficient, cs(A), as 

the fraction of radiant energy removed per unit distance due to absorption and scattering 

as a beam of solar radiation travels through the atmosphere. cs(A) is expressed as a 



summation of the attenuation coefficients due to the various components that comprise 

the atmosphere. Attenuation by the atmosphere is a result of molecular (Rayleigh) 

scattering, aerosol scattering, and absorption by gases. 

The atmosphere interferes with the signal from the water, requiring that its effect be 

removed in order to analyze the scene. The algorithm implemented here on MISI images 

subtracts off the effect of the atmosphere, based on the assumption that the atmosphere is 

invariant over the scene, in a procedure termed the "deep-water correction". The 

radiative transfer model, HydroMod, was used to model the conditions under which the 

MISI images were taken, resulting in sensor-reaching radiance values. 

2.1.2  The Air-Water Interface 

Photons not scattered by the atmosphere interact with the water surface. At the 

surface, they are either reflected, refracted, or transmitted. 

Refraction of the light is governed by SnelPs Law, 

na sin 9a = nw sin 0W 

(2.1) 

in which a and w refer to air and water, respectively, and n is the index of refraction. The 

angle, 6, is the angle between the direction of the photon flux and the in-water normal. 

The reflected photon flux is given by Fresnel's reflectance formula. For 

perpendicular polarized light, the reflectance is 



_tan2(flf-gr) 
Pi~tan2(O,+0r) 

(2.2) 

For parallel polarized light, the reflectance is 

sin^fl-fl.) 
/?1_sin2(ö,+^) 

(2.3) 

And for randomly polarized light, 

5sin2ffl-^)+05tan^,-^) 

^ sin2(6>+0r) tan2(0,+0r) 

(2.4) 

Further information on the air-water interface, including the impact of waves, is given in 

Bukata (1995) and Mobley (1994). 

2.1.3  In The Water 

As discussed, the atmospheric and water surface interactions are accounted for in 

HydroMod (Fairbanks 1999). HydroMod also accounts for the in-water interactions, but 

the water properties are required. The ground truth gathered for this project allows the 

optical properties of the water to be determined and used as inputs to HydroMod. The 

following discussion focuses on the in-water interactions. 



Case 1 waters are those waters that have a high concentration of phytoplankton 

compared to colored dissolved organic matter and nonbiogenic particles or where the 

phytoplankton covary with the other components. Most coastal water is considered Case 

2 water because inorganic or colored dissolved organic matter from land drainage are 

important and may not covary with absorption by pigments, such as chlorophyll (Mobley 

1994). This research is concerned with these coastal waters. The concentrations of these 

components determine the optical properties of the water. 

There are two different categories of optical properties - apparent and inherent. 

According to Mobley (1994), apparent optical properties are those properties of the water 

that depend on both the medium and the structure of the light field, and that are regular 

enough to provide a good description of the water. Inherent optical properties are those 

properties that depend solely on the medium. 

2.1.3.1     Inherent Optical Properties 

The inherent optical properties of water include the absorption coefficient aß), 

the total attenuation coefficient cß), the scattering coefficient bß), the forwardscattering 

probability Fß), the backscattering probability Bß), the scattering albedo o)0ß), and the 

volume scattering function ß(9) (Bukata 1995). Definitions of these properties are taken 

from Mobley (1994). Figure 2.2 shows the geometry which will be important in defining 

optical properties. 
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Figure 2.2 Geometry used to define Inherent Optical Properties (Mobley's Fig 3.1) 

Mobley defines a small volume AFof water, of thickness Ar, which is illuminated 

by a narrow collimated beam of monochromatic light ®i(A.), W nm'1. Part of this incident 

power is absorbed by the water volume and is designated &a(A). Also, some part of this 

power is scattered out of the incident beam at angle y/, and is termed 0s(y^A). The power 

in the beam that has not been either scattered or absorbed is transmitted 0(A) through the 

volume of water. Assuming that no inelastic scattering occurs and the photons retain 

their original wavelengths, under the conservation of energy, 

0/(A) = Oa(A) + 0J(/l) + 0((A) 
(2.5) 

The spectral absorbance, A (A), is that fraction of incident power that is absorbed within 

the volume defined above. Likewise, the spectral scatterance, B(A), is that fraction which 

is scattered. Finally, the spectral transmittance, T(A), is the remainder of the incident 



power, which is transmitted through the volume. These three quantities are 

mathematically defined below: 

AW,^M.      *».%&      TW-^g: y '   o,(/i) <s>,W ®tW 
(2.6) (2.7) (2.8) 

The inherent optical properties are the spectral absorption coefficient and the 

spectral scattering coefficient, which are the absorptance and scatterance per unit 

distance. The spectral absorption coefficient is 

Ar-»0     far 

(2.9) 

The spectral scattering coefficient is defined as 

(2.10) 

The total beam attenuation coefficient is the summation of the absorption and scattering 

coefficients, 

c(Ä) = a(Ä) + b(Ä)   (//T1) 
(2.11) 

The above terms describe the attenuation of light propagating through water. The 

remaining inherent optical properties describe the directionality of the scattering 

interactions. Not only does the amount of power scattered need to be considered, but also 

10 



the angular distribution of this scatter: the angular scatterance per unit distance and unit 

solid angle, known as the spectral volume scattering function is given by 

«M) = fa lim ^^ = lta lim -££5*L   („-,-■) 
(2.12) 

where AQ is a given solid angle. The spectral power scattered into this given solid angle 

is equal to the spectral radiant intensity scattered into the direction indicated by \|/ times 

the given solid angle. Therefore, 

A^o£((2)AF 
(2.13) 

which gives rise to the definition that the spectral volume scattering function is the 

scattered intensity per unit incident irradiance per unit volume of water. Irradiance (E) is 

defined as the rate at which the radiant flux, or power, is delivered to a surface. The 

radiant intensity (/) describes the directional information about the flux (Schott 1997). 

The relationship between the spectral volume scattering function and the 

scattering coefficient is defined in the following formula where H represents the unit 

sphere. 

b(A) = \ß(y/\ X)dQ. = IK \ß(y/; X) sin y/dy/ 

(2.14) 

11 



The integration defined above is typically divided into forward scattering, over the angles 

0 < *F < TI/2 and backward scattering over the angles nil < i|/< n. The forwardscattering 

coefficient, bf, and the backscattering coefficient, bB, are defined as follows 

bF = 2/r f/?0)sin V^V 

öß = 2;r [ß{y/)smy/dy/ 
"/ 

(2.15)(2.16) 

Bukata (1995) explains that the photons scattered into either the forward or backward 

direction are spoken of in terms of probabilities, or the fractions of the total scattered flux 

directed into each hemisphere. The forwardscattering probability, F, is the ratio of flux 

scattered into the hemisphere ahead of the incident flux to the total scattered flux. 

Similarly, the backscattering probability, B, is the ratio of the flux scattered into the 

hemisphere behind the incident flux to the total scattered flux and these probabilities are 

defined in the following equations. 

b b 
(2.17) (2.18) 

The last IOP introduced here is the spectral single-scattering albedo, coo,which is 

the probability that a photon will be scattered rather than absorbed, and is defined as 
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(2.19) 

2.1.3.2     Bulk vs Specific Inherent Optical Properties 

Bulk inherent optical properties (IOPs) are those that are described in the previous 

section and are based on considering the water column as a whole rather than as various 

components that absorb and scatter. Specific inherent optical properties are those that are 

attributed to the individual components in the water that act as absorbing and scattering 

centers. These specific IOPs are the ones that must be determined when trying to use 

remote sensing to determine concentrations of the various components in the water. The 

bulk IOPs, previously defined, are simply summations of the individual specific IOPs. 

From Bukata et al. (1995), 

n 

(=1 

b(Ä) = fjx,biW 
1=1 

B(Ä)b(Ä) = ^xiBM)biW 
i=\ 

(2.20) (2.21) (2.22) 

where 
B(X)bß) = backscattering coefficient at wavelength X (product of 
backscattering probability and the scattering coefficient) 
xt= concentration of the z'th component of the water column 
üiß) = absorption coefficient at wavelength Ä for a unit concentration of 
aquatic component i 
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bi(A) = scattering coefficient at wavelength X for a unit concentration of 
aquatic component / 

The specific absorption coefficient and the specific scattering coefficient are 

frequently referred to as the absorption cross-section and scattering cross-section, 

respectively. Bukata et al. (1995) states that the governing principle behind the remote 

sensing of the organic and inorganic components of water is that the optical cross 

sections provide the link between the concentrations of the individual components in the 

water and the bulk inherent optical properties. If the concentrations of the individual 

components in the water can be determined, and the optical cross sections of the water 

are known, the total attenuation of the light due to absorption and scattering in the water 

column can be determined. 

Bukata et al. (1995) limit their optical model to four components, which are 

followed in this research. A comprehensive model, which considers the optical cross 

sections of every aquatic component in natural waters, is unattainable. Their rationale is 

that for the Great Lakes waters, only a small loss in generality occurs due to using this 

four-component model, as opposed to a model which includes a fifth component, non- 

living organics, to account for detrital matter. These non-living suspended organics 

rarely dominate the color of inland and coastal waters. The four-component model 

includes pure water (W), chlorophyll (Chi), dissolved organic carbon (DOC), and 

suspended minerals (SM). Therefore, the bulk IOPs may be defined as follows: 
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a(Ä) = aw (A) + xxachl (Ä) + x2aSM (Ä) + x^a^ (Z) 

b(Ä) = bw (Ä) + xxbCM (Ä) + x2bSM (Ä) 

B(Ä)b(Ä) = Bw (Ä)bw (Ä) + x}BCM (Ä)bchl (Ä) + x2BSM (Ä)bSM (Ä) 

(2.23) (2.24) (2.25) 

The coefficients xj, X2, and X3 are the concentrations of chlorophyll, suspended 

minerals and DOC, respectively. The absorption cross-section and scattering cross 

section for Lake Ontario (Bukata 1995) are shown in Figures 2.3 and 2.4. Bukata (1995) 

makes reference to suspended minerals, but this component will be referred to here as 

suspended matter because this research does not distinguish the mineral from the organic 

particles. 

tf£>        500        550       «A       660        TOO 

Figure 2.3 Pure water absorption coefficient and absorption cross-section spectra for 
chlorophyll, total suspended mineral, and dissolved organic carbon indigenous to Lake 
Ontario (Fig 5.5 of Bukata 1995) 
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Figure 2.4 Pure water scattering coefficient and scattering cross-section spectra for 
chlorophyll and total suspended minerals indigenous to Lake Ontario (Fig 5.6 of Bukata 
1995) 

In order to generate the sensor-reaching radiances, HydroMod requires the component 

concentrations for chlorophyll, suspended solids, and DOC. These component 

concentrations are multiplied by the optical cross-sections of the aquatic components 

included in the model. Updated optical cross-sections for these components in Lake 

Ontario, determined from processing and analysis of water samples, are included in the 

HydroMod model to generate radiance data, with the exception of pure water and 

chlorophyll. These updated cross-sections are presented in Section 2.2. 

2.1.3.3    Apparent Optical Properties 

As stated earlier, the apparent optical properties (AOP) depend not only on the 

medium, but also on the structure of the ambient light field, and they are used whenever a 
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radiometric quantity other than radiance is used. The first AOP that will be discussed 

here is the irradiance attenuation coefficient, K(A,z). Bukata et al. (1995) define the 

irradiance attenuation coefficient as the logarithmic depth derivative of the spectral 

irradiance at a depth of z. The actual definition of K(A, z) results from Beer's Law 

(Bukata 1995) and is derived below. A beam of light passing through a medium loses 

some of its initial radiance flux value, Oinc, due to absorption loss by an attenuating 

medium of thickness Ar, and only Otram remains of the original beam of light, according 

to the following form of Beer's law. 

O,     -®    = -a<J>   A/* ^ Irans mc mc'-^ 

(2.26) 

or        AO = -aO,„cAr 

(2.27) 

The constant of proportionality, a, is defined as the absorption coefficient. Then, in the 

limit as both Acßand Ar approach zero, the equation becomes 

— = -aar 
<£ 

(2.28) 
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which is Beer's Law. Integrating equation 2.28 from r = 0 to a distance r in the 

absorbing medium, and knowing that the beam coefficient is a function of wavelength 

yields the following equation: 

O(r,A)=O(0,A>-fl(A)'' 

(2.29) 

and consequently for a beam propagating vertically in water, 

E(A, Z) = E(A,0 -)cxp[-K{A, Z)Z] 

(2.30) 

where E(A,z) = the value of irradiance at depthz and E(A,0-) = the irradiance just below 

the air-water interface. Finally, Equation 2.31 defines the irradiance attenuation 

coefficient, resulting from Beer's Law being used to describe the attenuation of spectral 

irradiance with depth z (Eq. 2.30). 

K(A,z) = --^h: ^^-(m-1) 

(2.31) 

This AOP shows how the irradiance decreases exponentially with depth due to 

attenuation by the water. The irradiance attenuation coefficient divided into the 

1 
E(A,z) 

'8E(A,z)~ 
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downwelling irradiance attenuation coefficient Kd(A,z) and the upwelling irradiance 

attenuation coefficient Ku(A,z) is 

Kd(A,z) = - 
1 

Ed(A,z)l     dz 

8Ed(A,z) 

Ku{^) = - 
1 

Eu(A,z) 

dEu(A,z) 

dz 

m 

m 

-l 

(2.32) (2.33) 

where Ed and Eu refer to the downwelled and upwelled irradiances, respectively. For a 

review of these radio metric terms, refer to Schott (1997). 

2.2 Composition of Natural Water 

Natural waters are composed of a myriad of living, non-living, and once-living 

material. These components determine the optical properties of the water that were 

discussed in the previous section 

2.2.1 Pure Water 

Pure water implies that the water is free from the scattering and absorption effects 

of organic and inorganic matter. The attenuation due to pure water is due only to water 

molecules. Pure water typically absorbs weakly in the blue and green regions of the 

electromagnetic spectrum. As Kirk (1983) states, the absorption of pure water increases 

above 550 nm and is quite significant in the red. Figure 2.5 shows the absorption and 

scattering spectra of pure water as measured by Smith and Baker (1981), which are the 

water optical cross-sections used in HydroMod. 
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Fig. 2.5 Optical Properties of Pure Water (Smith and Baker 1981) 

Above 550 nm, the attenuation of light by pure water is dominated by absorption and the 

total attenuation coefficient due to pure water can be approximated as the absorption 

coefficient due to pure water. However, in the blue region, X = 400-520 nm, scattering 

by pure water plays a greater role in total attenuation (Bukata 1995). The strong 

absorption in the red and weak absorption, but strong scattering, in the blue-green region 

of the spectrum causes the blue appearance of water. 

2.2.2 Dissolved Salts and Gases 

Dissolved salts and gases are not included in the four-component model discussed 

earlier. Dissolved salts do affect absorption within the water column, with the most 

significant effect at ultraviolet wavelengths, X < 300 nm. Molecular scattering in mid- 

oceanic waters due to the pure water/dissolved salt combination is relatively insignificant 
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compared to the total attenuation. The specific directional scattering due to pure 

water/dissolved salts plays a more significant role in molecular scattering. However, for 

inland waters, the ability of dissolved salts to create a directional nature to ß(y/) is 

significantly reduced compared to mid-oceanic waters due to their much lower 

concentrations in fresh water (Bukata 1995). Dissolved gases, of which dissolved oxygen 

is the most significant, also do not produce significant changes to the bulk optical 

properties of the water, and therefore, are not included in the model. 

2.2.3    Dissolved Organic Matter 

Dissolved organic matter (DOM) does not have a significant impact on scattering 

as evidenced by the fact that it is not included in Eq. 2.24. DOM does, however, impact 

the absorption in natural waters and is often the dominant component in the optical 

absorption of coastal water (Vodacek et al. 1997). The optically active component of 

DOM is referred to as Colored Dissolved Organic Matter (CDOM). DOM is a result of 

excretion, secretion, or decomposition of plants and animals in the water, or of direct 

input of terrestrial material. Plant or animal materials are transformed into DOM through 

hydrolysis, photolysis, and bacterial decomposition of their cellular structure. The 

decomposition of plants and animals results in water soluble humic substances which are 

responsible for the yellow color observable in some inland and coastal waters. Although 

these pigments comprise only about 40% of the DOM, the yellow hue has given rise to 

the various terms given to DOM, such as colored dissolved organic matter (CDOM), 

yellow substance, gelbstoff, gilvin, etc. (Bukata 1995). 
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Lake Ontario displays DOM concentrations on the order of 2 g C/m3, which is 

fairly low compared to average lake water concentrations reported in the literature of 9 or 

10 g C/m3. (Bukata 1995) An absorption curve can be represented by the following 

relationship, which is valid over the wavelengths A = 350-700 nm, 

ag(A,) = ag(Xo) exp[-SO?^)] 

(Bricaud, et al 1981) (2.34) 

The subscript, g, stands for gelbstoff. The variable, S, is a slope parameter 

assumed to be independent of wavelength. The values for the parameter, S (nm"), 

typically range between 0.010 to 0.020, with a mean value of 0.014. The reference 

wavelength, Ao, is typically arbitrary, but usually in the UV or blue. Spectrophotometric 

analysis of a water sample, filtered to remove scattering particles, with the absorption of 

pure water, subtracted, becomes an estimate of ag(A). The study examined the 

wavelengths between A = 350-700 nm because that was the range of the 

spectrophotometer used. Below A = 350-700 nm, there were a few discontinuities in 

some of the samples measured, but the absorption between A = 350 nm and A = 700 nm 

reasonably followed the law shown in Eq.2.34. The normalized CDOM spectral 

absorption coefficient of Lake Ontario water (Fig. 2.6) used for this study in the 

HydroMod model was determined from samples collected on May 20, 1999. A spectral 

absorption coefficient normalized to one at 350 nm is used in the work instead of a cross- 

section, because DOC measurements were not available. Instead, the normalized 
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coefficient is multiplied by a scalar to arrive at an appropriate spectral absorption 

coefficient. The scalar used for Lake Ontario waters was 0.2. 
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Figure 2.6 CDOM normalized spectral absorption coefficient used in HydroMod 

2.2.4 Suspended Matter 

The term "suspended matter" includes both organic and inorganic matter. 

Suspended matter is derived from plankton, detritus from the decomposition of 

phytoplankton, Zooplankton, and macrophytic plants, as well as terrigenous suspended 

particles formed by erosion and discharge. A large portion of this suspended matter is 

suspended minerals, which according to Bukata (1981) have concentrations in Lake 

Ontario of 0.2-8.9 g/m3.   The HydroMod absorption and scattering cross-sections for 

suspended matter are shown in Fig. 2.7. The absorption cross-section was generated 

from a curve that represents the average of a set of curves measured from water samples 

collected on May 20, 1999. The scattering cross-section was taken from a backscattering 
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cross-section curve measured and modified by Dr. Vodacek to match Bukata's (1995) 

curve. 
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Figure 2.7 Suspended Matter Absorption and Scattering Cross-Sections in HydroMod 

In addition, there are various precipitates, a result of chemical activity, that can 

affect the absorption and scattering within a water body. For example, Landsat first 

viewed chemical precipitations of calcium carbonate, known as whitings, in the Great 

Lakes in 1973 (Strong, 1978). As surface waters become saturated with Ca++ ions in the 

summer time, a biological or physical mechanism initiates the whiting. 

Zooplankton feed on the algae, detritus, and bacteria, and therefore help to 

determine the status of the water. For example, a highly productive water body will have 

a higher concentration of Zooplankton, while the populations of Zooplankton in natural 

waters may be patchy because they are moved around by currents, reproductive cycles, 
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the availability of food, and other factors. The effect of Zooplankton on color is largely 

unknown, but assumed to be minor due to their small concentrations in comparison to 

phytoplankton and bacterioplankton. 

There are also bacterioplankton in the water, which do not contribute to the 

overall water color, although they probably have some effect on scattering. Planktonic 

fungi are colorless, chlorophyll-free lower plant forms consisting of cellular filaments 

containing spores. These planktonic fungi present in the water column are assumed to 

have negligible optical impact on the optical properties of the water due to their lack of 

color in addition to their low concentrations (Bukata 1995). 

2.2.5 Algal Pigments 

Phytoplankton cells contribute to water color, depending on their pigments. All 

phytoplankton contain chlorophyll and carotenoids, which are responsible for 

photosynthesis. All green algae contain chlorophyll a, and possibly b and/or c. As 

Bukata states (1995), the ratio of chl a to chl b is approximately 3:1, and therefore, as 

Bukata does in his model, the research here focuses on the presence of chl a. Chlorophyll 

absorption occurs in the blue and red regions of the spectrum (Fig. 2.8), and is more 

intense in the blue region for chl a. 
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Figure 2.8 Chlorophyll a Absorption and Scattering Cross-Sections in HydroMod 
(Bukata 1995) 

Decomposed chlorophyll, in the form of phaeophytin, must be accounted for 

because it causes a peak shift toward shorter wavelengths in the blue region and a peak 

shift toward longer wavelengths in the red region. The intensity of the absorption for this 

chlorophyll derivative is weak compared to the intensities of the absorption bands of 

chlorophyll, but an estimate of phaeophytin is essential to determining the portion of non- 

living phytoplankton in the water. 

Understanding these properties helps in derivation of algorithms for determining 

water depth and bottom type information. 
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2.3 Shallow Water Reflectance 

The irradiance just below the surface includes the flux scattered back by the water 

column itself (i.e., the photons that never reach the bottom) and the flux scattered back 

from the bottom: 

Eu(0) = [Eu(0)lc+[Eu(0)]B 

(2.35) 

where 

Eu(0) = the upwelling irradiance just below the surface 
[Eu(0)]c = upwelling irradiance just below the surface due to the water 
column 
[EU(0)]B = upwelling irradiance just below the surface due to the bottom 

The derivation of the following expression for shallow water reflectance is included in 

Maritorena et al. (1994), who use some simplifying assumptions in order to derive 

analytical formulas for shallow water reflectance. In order to estimate the irradiance due 

to the water column, they model an infinitely thin layer of thickness dz at depth z, where 

the downwelling irradiance at this point is Ed(z). The backscattering coefficient for this 

downwelling light is bbd- Then, the upwelling irradiance created by this infinitely thin 

layer of water is 

dEu(z) = bbdEd(z)dz 

(2.36) 

The irradiance at depth z can then be expressed as 

27 



Ed(z) = Ed(0)exip(-Kdz) 

(2.37) 

where Ed(0) is the downwelling irradiance at zero depth and Kd is the downwelling 

irradiance attenuation coefficient. The upwelling irradiance is also attenuated; this 

attenuation is expressed by (-KZ), where /eis the vertical attenuation coefficient of the 

flux scattered upward from the thin layer of water. According to Kirk (1989), this 

vertical diffuse attenuation coefficient is different from Kd because the angular 

distribution of upward-scattering photons biased toward small angles to the horizontal, 

where the photons get extinguished more quickly. This bias toward small angles is due to 

the shape of the volume scattering function. Many measurements of Kd exist, but /eis not 

directly measurable. In the middle of the euphotic zone, defined as the depth at which the 

downward irradiance is 10% ofthat penetrating the water surface, it is assumed K~2.5Kd. 

The contribution, then, of the infinitely thin layer to the upwelling irradiance just below 

the surface, dEu(z-»0), is 

dEu(z -> 0) = bbdEd(0)cxp[-(Kd + K)z]dz 

(2.38) 

One of the assumptions made in this model is that bbd, Kd, and /cdo not depend on 

depth. Maritorena et al. (1984) derive the reflectance, i?(0,H) below the surface of a 

homogeneous ocean with a reflecting bottom located at a depth of H, as 

R(0,H) = Rm + (A-RJexp[(-Kd +K)H] 
(2.39) 
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In Eq. 2.39, A = bottom albedo, Rao = reflectance of the infinitely deep ocean, Kj = 

vertical attenuation for downwelling irradiance, and K= vertical attenuation coefficient of 

the flux scattered upward from a thin layer of water.   This equation (2.39) is the same as 

Philpot's (1989) equation 4 in the paper in which he describes his principal components 

algorithm, implemented in this research. The above equation is simplified because as 

mentioned earlier, K is not directly measurable, and is specific for each situation. The 

following equation is considered by O'Neill and Miller (1989) as the most familiar form 

for shallow water reflectance. 

R(0, H) = RX+(A-RJ exp(-2KH) 

(2.40) 

However, as Maritorena et al. (1994) suggest, the use of2Kd results in an underestimate 

of the actual attenuation experienced by the albedo difference, (A-R^. 

Gordon and Brown (1974) discuss five factors that affect the diffuse reflectance, 

Rd, of a flat homogeneous ocean with a Lambertian bottom: scattering albedo {coo), 

bottom albedo (A), total attenuation coefficient (c), a parameter that relates to the 

scattering phase function, and the bottom depth ZB, in addition to the incident irradiance 

distribution. It is possible to determine water depths even out to depths of 20-30 m in 

good conditions (i.e. clear water) from Rd if the optical properties and the characteristics 
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of the bottom are known. They found that the bottom can have a large impact on the 

diffuse reflectance, especially at small optical depths, £ defined here as 

(2.41) 

where Kd— downwelling irradiance attenuation coefficient over the subsurface depth z 

The symbol, £ refers to optical depth in this section, as in Bukata's definition, whereas £" 

will be used as a constant in the derivation of the linear multi-band algorithm in Section 

2.4.3. According to Bukata (1995), if Kd is the average value of the irradiance 

attenuation coefficient over the depth interval, the following holds true: 

C(A,z) = Kdz 

(2.42) 

In very clear waters, which have a low value of Kd(i.e., low concentrations of both 

organic and inorganic materials, and the scattering and absorption is determined primarily 

by the water molecules themselves), optical depth can at times equal the actual physical 

aquatic depth. More turbid waters have a higher value for Kd and therefore, the optical 

depth will be different than the actual physical depth. In highly absorbing waters with a 

highly reflective bottom, the scattering due to the bottom will play a large role at small £ 

and a negligible role at large £ In highly scattering waters, the bottom scattering 

contributes greatly to the reflectance, even at larger optical depths. Therefore, not only 
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does the diffuse reflectance depend on the depth of the water and the turbidity, it depends 

on whether the turbidity is due to scattering or absorption. It is necessary to determine 

the optical properties of the water when quantitatively studying bathymetry using 

remotely sensed data. 

These models for shallow water reflectance will aid in developing methods for 

mapping bottom types and water depth using remotely sensed data. Some of these 

methods are discussed in the next section. 

2.4 Previous Efforts In Bottom Mapping and Bathymetry 

Previous efforts have been made to map the bottom of coastal areas and determine 

water depths using remotely sensed data. Some of the earliest techniques used 

photointerpretation and photogrammetry of black and white photos. A study of the 

bottom configuration in Tampa Bay was conducted in 1971 using photogrammetry 

(Rosenshein et al. 1977). Photogrammetry is a part of the quantitative analysis of 

remotely sensed data, and uses photographic images to measure height, size, and location 

of objects (Schott 1997). Photogrammetric analysis of water depths is difficult for a 

number of reasons. The apparent water depth must be multiplied by a factor that 

accounts for the refractive index at the air-water interface. Waves at the surface 

compound the refractive index problem. Also, the location of the cameras can have an 

impact on the accuracy of depth estimates (Tewinkel 1963). Some early work with 

pulsed laser technology from an airborne platform yielded accurate depths but was 
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limited by data recording rates and rate of coverage (Hickman and Hogg 1969). Recent 

efforts involve techniques which take advantage of multispectral images. Methods dating 

from the 1960s depended on the ability to find a relationship between water depth and 

reflected radiance, but these methods require that the properties of the water and the 

bottom reflectance be uniform (Lyzenga 1985). More often than not, the properties were 

not uniform and therefore, other techniques were developed. 

2.4.1    Single Band Reflectance Model 

A simple reflectance model (Jerlov 1976) for remotely sensed bathymetry from 

multispectral images is given by the following equation 

L, = Lix + c, ■ Rai • exp(-2fc, • z) 
(2.43) 

where Z,, is the radiance value in band i, Z;cois the average signal over deep water, c, is a 

constant that is a function of several optical parameters, Rat is the bottom reflectance in 

band / over bottom type a, and kt is the diffuse attenuation coefficient. In order to solve 

for water depth, this equation can be inverted to solve for z. The disadvantage of this 

method is that it assumes that the bottom reflectance is constant over the bottom type, the 

atmosphere and water surface conditions are invariant, and also that other background 

optical effects are either uniform or constant over the scene (Clark et al. 1987). 
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2.4.2 Ratio Method 

Using more than one spectral band is more accurate than using a single band in 

determining water depth, since the single band method does not account for variation in 

bottom type (Paredes and Spero 1983). The governing equation for determining water 

depth based on a reflectance model is similar to that of equation (2.43) above, with 

different notation, 

Li=Lsl+klrBlexp(-xlfz) 

(2.44) 
where 

Li = Radiance in band i at depth z 
Lsi = radiance over deep water 
kj = a function of the solar irradiance, the transmittance of the air and water surface, 
and the refraction at the water surface 

rßi = bottom reflectance at the location where the depth is z 
Kt = effective attenuation coefficient of the water 
/= accounts for the path length through the water 

If spectral bands exist such that the ratio of the bottom reflectance in the bands is constant 

throughout the scene, an equation independent of depth can be found 

fo,)C1fa2)
C2 ={rBlf

1(rB2f
2 =... = a 

(2.45) 
where Cl, C2, and a are chosen to make the equality of the bottom reflectance ratios 

true. A, B... in the above equation represent different bottom types. Assuming that a pair 

of bands exists such that the ratio of the bottom reflectances in the two bands is the same 
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for all of the bottom types in the scene, z is solved for as a function of light intensity, 

valid for all bottom types. Another way to write the assumption is 

rA2 rB2 

(2.46) 

Then, Eq 2.45 can be inverted and solved for depth, according to the following equation 

1 
z = ■ 

Oi -*i)f 
Hh-Hh 

where   R = (A-4:) 
(L2-Ls2) 

(2.47) 

The advantage of this technique is that the depth is not affected by a change in bottom 

type nor a change in water quality if (KI-IQ) stays constant. The limitations of this 

technique are that one must find the wavelengths that satisfy the criterion that the ratio of 

the bottom reflectances in the two bands is the same, and the criterion that the attenuation 

coefficient remains constant, which indicates that the depth is insensitive to changes in 

water quality. A pair of wavelengths may not exist which satisfy these assumptions; 

therefore, it may not be possible to determine the water depth using this technique 

(Lyzenga 1978). 

A similar ratio method can also be used to classify the bottom composition. This 

algorithm makes use of the existence of two bands for which the attenuation coefficients 
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(absorption coefficient plus scattering coefficient), a, are the same, which removes the 

depth dependence from the model in Eq. 2.44, reducing the ratio to 

\k2rB2) 

(2.48) 

Lyzenga (1985) cites higher spatial resolution as an advantage of this technique. The 

disadvantage of the technique is that it requires water depth calibration and is more 

sensitive to environmental parameters. Using this technique, Wezernak and Lyzenga 

(1975) mapped the distribution of algae (cladophora) in Lake Ontario in 1972. Equation 

2.49 describes the bottom-reflected signal received at the sensor, not including 

atmospheric effects. 

V = Vs+kQe-{sece+seat)*z 

(2.49) 
where 

V= voltage received 
Vs = surface reflectance 
K = constant which incorporates solar irradiance and scanner characteristics 
p = bottom reflectance 
0= viewing angle (from vertical) 
<f> = solar illumination angle (from vertical) 
a= volume attenuation coefficient (absorption coefficient plus scattering coefficient) 
z = water depth 

Lyzenga's approach involves using a ratio of two spectral bands that have similar 

attenuation coefficients (a). In order to do this, the following conditions must be met: 
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1) the attenuation coefficients in the two spectral bands must be equal or assumed so, and 

2) there must be significant contrast between the bottom reflectances of the cladophora 

and other bottom features in the spectral bands chosen. Therefore, cti = <X2, and the 

signals received in the two different channels are then proportional to the bottom 

reflectance, but independent of depth. Figure 2.9 shows an example of the ratio imagery 

produced by this method. The dark areas are those occupied by cladophora, as verified 

by ground truth collected in the nearshore region from 5 transects extending into the lake. 
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Fig. 2.9 Ratio Imagery, Site 5, North Hamlin Beach (Lyzenga and Wezernak 1975 
Figure 4) 

This technique is limited to bands for which the attenuation coefficients are equal, 

which is not true in every situation. There is also a limitation to the materials one can 

distinguish because the bottom reflectance ratios for the different materials must be 

different. For example, the method is unable to distinguish between sand and mud 

bottoms because they have similarly shaped reflectance spectra. Lyzenga (1978) makes a 

very important point when he indicates that the ratio method worked for the cladophora 

case because "the vegetation reflectance has distinctive features (due to chlorophyll 
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absorption) in the blue-green region of the spectrum where the water attenuation is at a 

minimum." 

Although more flexible than the single-band method, these band ratio methods are 

limited because they only take advantage of two bands. 

2.4.3   Other Multispectral Methods 

From multispectral data, Lyzenga (1981) derives bottom depth information, 

which depends on the relationship that the bottom-reflected radiance varies linearly with 

bottom reflectance and exponentially with depth, according to Equation 2.50 (Lyzenga 

1978), 

L, =Lsi+k,rBleKp(-xlß) 

(2.50) 

where 

Li = measured radiance in band i 
Lsi = deep water radiance 
kj= a constant which includes the solar irradiance, transmittance of the 
atmosphere and the water surface, and the reduction of the radiance due to 
refraction at the water surface 
rsi = bottom reflectance 
Kj= effective attenuation coefficient of the water 
/= a geometrical factor to account for the pathlength through the water 
z = water depth 

Lyzenga (1978) modifies Eq. 2.50 to include the effects of scattering in the water and 

internal reflection at the water surface; examination of the model indicates that the 

scattering term has the same depth dependence as the bottom-reflected radiance. 
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His algorithm defines a new variable, Xt, that varies linearly with depth, 

X,=ln(Z,-Z,) 

(2.51) 

The variables, X\s, that result from the above equation are approximately linear 

functions of depth and are related to each other linearly for the same bottom type. 

Therefore, if the X variables from two different bands, Xt and Xj, are plotted against one 

another, the points will fall along a straight line, with a slope of K,IKj where K is the 

irradiance attenuation coefficient, which was defined in Section 2.1.3.3. Analysis of the 

correlation between the variables yields the ratio of the attenuation coefficients in the two 

wavelength bands used. Figure 2.10 (Lyzenga's Figure lb) is an example of the 

linearized space where bands 5 and 7 are plotted against one another (Lyzenga 1981). 

X7 

3    x5    
4 

Figure 2.10 Scatter plot of X-values for aircraft bands C5 and C7 
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When the bottom reflectance changes, the data will fall along a parallel line which is 

displaced from the first line. Another variable, Y, can be defined which measures the 

amount of this displacement between the lines, given by 

(2.52) 

by geometric reasoning, where Kj is the irradiance attenuation coefficient of the water in 

band /'. Yf is independent of water depth and is related to the bottom reflectance as in Eq. 

2.53, assuming that the bottom-reflected radiance (£, - Lsi) is proportional to the bottom 

reflectance and varies exponentially with water depth according to 

Y = Y 
KMr.-KMr, 

#N^1 
(2.53) 

where A*/ is the bottom reflectance in band i and Yto is a constant for fixed illumination and 

atmospheric conditions. 

The variable Fthen acts as a depth-invariant index for the bottom type. This 

algorithm depends on having a priori knowledge of the attenuation coefficients. To use 

this technique, an area of uniform bottom type must be selected, which requires 

knowledge about the scene. One method for determining areas of uniform bottom type is 
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a clustering routine on scatter plots of the data; the higher the uniformity of the bottom, 

the higher the correlation is between the spectral bands in linearized space, as can be 

determined by an inspection of the scatter plots. Figure 2.7 is a scatter plot of data over a 

sand bottom, and shows high correlation between^ andXz, indicating high uniformity 

of the bottom type. The ratio of water attenuation coefficients can then be determined by 

regression. 

Lyzenga (1981) applied this algorithm to aircraft and Landsat data of North Cat 

Cay, Bahamas. His results for the aircraft data were reasonably accurate in mapping 

bottom reflectance variations without knowledge of the water depth. The Landsat results 

were not nearly as accurate because only one of the spectral bands could penetrate deep 

enough into the water, and Landsat has poorer spatial resolution, which makes it more 

difficult to select an area in which the bottom is uniform. 

Another technique for reducing depth dependence defines a variable Y, 

(2.54) 

which is obtained by rotating the coordinate system so the YN axis is parallel to the 

direction of changing depth (Lyzenga 1978). If the linear transformation is a pure 

rotation, YN will only be dependent on the water depth assuming this is the primary 

parameter affecting the brightness, while the remaining variables are functions of the 

bottom reflectance. Lyzenga states that this is similar to principal component analysis 
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only in that it involves a rotation transformation. The transformation removes the depth 

dependence from all but one variable, and does not necessarily reduce the number of 

variables. This method is better than the ratio method because it does not require that the 

wavelength bands have equal water attenuation coefficients or that there are equal bottom 

reflectance ratios for all bottom types. However, the method is more complex. 

Lyzenga (1985) also presents another technique for mapping bathymetry, which is 

a hybrid of both an active and a passive technique. He makes use of pulsed laser 

technology by using it to calibrate the passive multispectral data for depth. The 

advantage of this technique is that it does not rely on sea-truth data for depth calibration. 

This technique incorporates the laser's accuracy in determining depth with the higher 

spatial resolution of the multispectral scanner (MSS). 

Clark et al. (1987) describe another technique for determining depth, the linear 

multiband algorithm. This method gives the depth by 

(2.55) 

where the symbols are defined above in equation 2.50, Xt = ln(Zr-£ia>) where Z.(cois the 

average signal over deep water, and the sum is taken over several bands with the 

constraint that the weights, CCH, sum to one (Eö}= 1). The testing of this algorithm 

involved the use of 600 points of known depth for georeferencing. Three hundred of 

these points were used in a regression fit of the model equation, while the remaining 300 
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were used to test the calculated depth against the actual depth. The deep-water signals 

(Lioc) were subtracted from the corresponding Z, values in order to correct for atmospheric 

scattering, etc. This linear multiband method builds on the two-band ratio assumption 

that two bands can be found for which the ratio c1R.ailc2R.a2 remains constant over 

different bottom types. The assumption that the ratio ciRailc2Ra2 remains constant is 

generalized by assuming that there are constants <£ and a independent of bottom type a, 

so 

(cRal^-{c2.Ra2^2.{c3.Ra3)C3K=a 

(2.56) 

Certain weights can be found so that when used in Eq 2.55, an equation for z is produced 

where z is independent of bottom reflectance, Rai, and depends only on the values <£: 

z=(y2^kl\i-clxl-c2x2-K) 

(2.57) 

This equation may be written in a more generalized form. The following equation is for 

a two-channel model 

z = A0 + AiXi+A2X2 

(2.58) 
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The coefficients Ao, Ai,.. .A„ are constants that are independent of the bottom type at 

which the depth is being calculated. A linear regression is performed on the model 

equation against the calibration points from which the outputs are the coefficients Ao, 

Ai... which can then be used in equation 2.58 to determine depth. The linear multi-band 

algorithm (Clark et al. 1987) performed better than the band ratio method (Lyzenga 1978) 

applied to the same data. However, both models underestimated the depth in shallow 

areas and overestimated the depth in deeper areas. In addition to performing better than 

the ratio method, the linear multi-band method did not depend on clustering and 

classification routines to find areas of similar bottom reflectance. 

Another method for mapping bottom reflectance and determining depth is found 

in Bierwirth et al. (1993). The method involves separating the effect of water depth 

variation from the spectral nature of the substrate. The algorithm derives both substrate 

reflectance and depth. The algorithm assumes that the water is relatively clear and there 

are only small variations in the concentrations of water column components. They tested 

their approach using data from Hamelin Pool, Shark Bay, Western Australia, and 

therefore, met this assumption because that area is characterized by shallow, clear water. 

The algorithm applies a constraint, which standardizes the sum of the logarithms of band 

substrate reflectances. One of the problems with this algorithm is that it derives a value 

for the attenuation coefficient specifically for Hamelin Pool, Shark Bay, Western 

Australia. Unless the waters one is working with are similar to these Australian waters, 

attenuation coefficients would have to be derived from known bathymetric data. The 
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advantage of this algorithm is that it removes the effect of water depth variation and 

retains the spectral nature of the substrate. 

2.5 Principal Components Method 

The principal components algorithm was developed by Dr. William Philpot 

(1989) and is a generalization of Lyzenga's approach (1978). The benefit of this 

algorithm is that it extracts depth information and bottom type information even when the 

conditions are not ideal. Philpot begins with a very simple radiative transfer equation, 

Ld=Lbexp(-gz) + Lw 

(2.59) 
Ld = radiance observed at the remote detector 
g = an effective attenuation coefficient of the water 
z = depth of water column 
Lb = radiance term which is sensitive to bottom reflectance 
Lw = remotely observed radiance over optically deep water 

The model assumes that the optical properties of the water are vertically homogeneous. 

For the shallow waters that are being considered here, this seems to be a reasonable 

assumption, although the results will show the limitations of the assumption. The 

coefficient g is a two way attenuation coefficient and is defined according to 

g*kd+aDu 

(2.60) 

where kd is the diffuse attenuation coefficient for downwelling light that was defined 

above, a is the beam attenuation coefficient, and Du is the distribution factor for 

upwelling irradiance. As discussed in Kirk (1989), the distribution factor for upwelling 
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irradiance is different from that of the downwelling irradiance since the angular 

distribution of the photons scattered upward is biased toward the horizontal. The term g 

is approximately equal to the attenuation for downwelling light plus the attenuation for 

the upwelling irradiance. 

In order to quantitatively solve for depth, Ld, Lb, g and Lw must be known. Past 

methods (Lyzenga 1978) (Paredes and Spero 1983) (Spitzer and Dirks 1987) have 

assumed that some of these terms are constant over the scene. They also assume that the 

radiance observed over deep water is constant. Next, they obtain Ld for two or more 

known depths. With a system of two equations and two unknowns, they solve for Lb and 

g. Philpot (1989) describes a more complete radiative transfer equation, which includes 

atmospheric effects, sea state, water reflectance, and other terms in order to generate a 

synthetic data set upon which to implement his algorithm. He demonstrates that his 

principal components algorithm works on his synthetic data. The present research 

implements the algorithm on an actual scene in order to derive qualitative bottom type 

and depth maps. 

Philpot describes three cases in his paper. For the purposes of this research, the 

case 2 assumptions of variable depth and variable bottom type will be made. Under case 

2, ZHand g are still assumed to be constant over the scene and the water is assumed to be 

vertically homogeneous.   A deep-water correction, defined in Eq. 2.61, can be performed 

because Lw is assumed constant. This procedure defines a new variable, X, 
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X = HLd-Lw) = \n(h)-gz   whenLd-Lw>0 
and 

X = \n(Lw -Ld) = \n(-Lb) + gz   whenLd-Lw<0 

(2.61) 

Usually, it is assumed that Ld - Lw > 0 because the bottom reflectance is typically 

greater than the water reflectance. The ratio methods discussed earlier used a ratio of 

measurements taken in different spectral bands, which resulted in an improvement in the 

depth estimate over a single spectral band. It follows that using even more spectral bands 

will improve the results. 

A new variable is defined, Y, according to 

Y = a»X = a • )n(Lb )-(a* g)z 

(2.62) 
Y= a scalar variable 
X= ln(Ld-Lw), a linearized measurement vector 
g = an effective spectral attenuation coefficient vector 
a = unit vector of arbitrary coefficients 

The components of the vectors represent different spectral bands. When using two 

bands, Eq. 2.62 is reduced to the band-ratio model when a = r = (1,-1). Using this 

method (Eq. 2.62) with the two-band approach discussed above shows that the two band 

coefficients are not optimal. However, optimal coefficients can be determined using 

eigenvector analysis, from which the first eigenvector consists of the optimal coefficients 

for determining depth. This optimal unit vector is referred to as a\\, highlighting its 

parallel relationship to the direction of changing depth in linearized measurement space. 

Fig. 2.8 is a scatter plot from Philpot's article (1989) ofXat 550 nm vsXat 650 nm 

46 



which demonstrates how depth varies linearly and how the optimum coefficient vector, a, 

points in the direction of maximum variance. 

oiue-.jre<-  m-:i.-   jl«;     ;;- 
2- 

0- 

-2- 

./<>« 

-4- 
!V 

p^Sm 

-t- A D   J° 

-t- A g   10m 

-10- **'       * *7         'S 
X=\n(Ld-Lw) at 650 nm -12- 

-H- 

07  o 

B/° 
-16- 0 

CD 20m 

-16- 

-20- 
2Sm 

-22- 

-24- i             i             i ,,.,.  1  

X=ln(Ld-Lw) at 550 nm 

Figure 2.11 Linearized radiance data for the two-band case. (Philpot 1989 Fig. 1) 

Fig. 2.12 shows how much of an improvement the optimal coefficients are over the ratio 

coefficients (a = (1,-1)) when applied to Philpot's (1989) synthetic data. 
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Figure 2.12 Comparison of noise in predicted depth using simple ratio vs optimal 
coefficients (Philpot 1989 Fig. 2) 

For case 2 situations, the data form separate but parallel clusters in the linearized 

measurement space (Xj^) in Fig. 2.13. For this reason, adequate difference is required 

in bottom reflectance between the various bottom types in order to distinguish between 

clusters. Each of these clusters will be aligned with the optimal coefficient vector, ajj. 

The scalar variable, Y\\, defined in Eq. 2.62 will be sensitive to depth for each bottom type 

if an eigenvector analysis of each bottom type is performed. In order to obtain the 

absolute depth information, Lb must be known for each bottom. This can be found using 

the system of two equations in two unknowns, which requires L<j for two known depths 

over each bottom type. 
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The clusters in linearized space are separated by a certain distance, which is 

related to the difference between the bottom reflectances. This separation can be seen in 

Figure 2.13, a scatter plot (Philpot 1989), in which shows synthetic data for three 

different bottom types (sand, silt, and vegetated). 

X=)n(Ld-Lw) at 650 nm 

(blue-jrecn water; 

0- tf D oao. bottom / /j -2- 
+ * bottom fj I -4- J* f n. f 
• ^jitataoi MRtuttl 

//** i -t- 

-    /*XB/B 

*&/£ 
./Wo 

•/, 

•20- A"J 
■a- /%** a 

■W - ■          i          i  -i  
-2 

X=\n(Ld-Lw) at 550 nm 

Figure 2.13 Linearized radiance data - constant water, but varying depth and bottom type 
(Philpot 1989 Fig. 3) 

A second vector, a±, is perpendicular to the optimal coefficients vector (g||) and 

characterizes Y±, which is independent of depth but sensitive to the bottom type. The 

vector ay, is perpendicular to ajj, which is parallel to g, so that ai«g = 0. Y± is a scalar 

variable independent of depth according to: 
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Y± = ax • X = aL • In(ZA) 
(2.63) 

showing that the bottom type may be characterized by the scalar variable Y±. 

Philpot's (1989) Case 3 includes varying water type in addition to varying depth 

and bottom type. He indicates that using a single deep-water observation to linearize the 

entire data set when different water types exist can result in nonlinearities and errors 

unless the effective attenuation coefficients of the different water types are spectrally 

proportional. The absolute depth prediction equation determined for one water type may 

yield incorrect results when applied to another water type. Therefore, Lb, Lw, and g and 

the optimal coefficient vector, a, would need to be determined for each water type. 

Theoretically, these parameters can be estimated if at least three depths are known for 

each water type, which requires that the depths must be assigned to their respective water 

types prior to analysis. Another difficulty exists if two pixels representing two different 

depths and different bottom types are spectrally identical. A preferable method for 

working with an image containing different bottom types is to partition the image into 

areas based on water type. Then, the appropriate deep-water pixels can be selected to 

perform the linearization of the data. 

2.6 Choosing the Method 

The principal components algorithm (Philpot 1989) described in Section 2.5 was 

chosen because it seemed the most straightforward to implement. The single band 

reflectance model (Jerlov 1976) assumes that too many factors are constant - bottom 
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type, atmosphere, and water surface conditions. The two-band ratio methods yield more 

accurate results than the single band model. However, the two-band method have other 

limitations. The ratio methods require that the attenuation coefficients remain constant or 

that the ratio of the bottom reflectances in the two bands is the same (Paredes and Spero 

1983). A pair of wavelengths that satisfy either of these criteria may not exist (Lyzenga 

1978). Also, when using a similar ratio method to distinguish between different bottom 

types, there must be sufficient difference in their reflectances (Lyzenga and Wezernak 

1978) in addition to meeting the condition that the attenuation in the two spectral bands 

must be equal. Additionally, this technique requires water depth calibration and is more 

sensitive to environmental parameters. Some of the other methods require a priori 

knowledge or the ability to derive attenuation coefficients that are specific for a particular 

area (Bierwith et al. 1993). These methods only take advantage of two bands. The 

attractive feature of the principal components algorithm is that it takes advantage of the 

numerous bands in a hyperspectral image. The algorithm extracts both depth and bottom 

type information even when the conditions are not ideal. The other algorithms reviewed 

looked at either determining water depth or determining bottom type, but not both in the 

same algorithm. The assumption at the start of the research using Philpot's (1989) 

algorithm is that the water type is constant. The results will show that this assumption, 

while not valid over the entire image processed, was more valid over smaller portions of 

the image, carefully selected to approach the assumption of constant water type. 
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Chapter 3 

Methods 

The approach taken in this research involves the use of various methods and tools. 

An understanding of these methods, to include their strengths and weaknesses, must be 

understood prior to a discussion of the approach taken. 

3.1 Principal Components Analysis 

The final method for bottom type classification and water depth determination 

discussed in Chapter 2 was Philpot's (1989) principal components algorithm, selected for 

implementation in this research. Some of the benefits of this algorithm include ease of 

implementation and capability to take advantage of hyperspectral information in addition 

to providing both depth and bottom type information. These advantages result from the 

use of principal components analysis to transform the linearized data (Xs) into 

eigenvectors by finding the variability in the data. 

Each pixel of the MISI images, to which the algorithm was applied, contains a 

spectrum of calibrated radiance values in 63 bands. The variations in the spectra are 

related to depth, bottom type, water type, and other changing conditions which contribute 

to the signal in addition to the instrument variations such as detector noise, etc. Yet, 

there exists some amount of independent variation in the spectral data. The PC method 

finds the variability in the data. It is the assumption of this research that the largest 
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variations in the radiance spectra are due to the different input factors, such as depth, 

bottom type, and water type, especially after linearizing the data (Sec. 2.5). PCA breaks 

down spectra into their most significant variations, where the variation spectra are known 

as eigenvectors, or principal components. Eigenvectors are useful in many areas of math 

and science. The basic eigenvalue equation, 

Av =\v 
(3.1) 

is satisfied for certain A and v, the eigenvalues and eigenvectors. A is a square (usually 

symmetric) matrix, and A is an eigenvalue of A, found by solving the following equation, 

det(A-Xl) = 0 

(3.2) 

where I is the identity matrix. Once the eigenvalues are found, the eigenvectors can be 

found. 

In order to implement this Principal Components Algorithm, the principal 

components must be obtained through eigenvector analysis. The eigenvector 

corresponding to the largest eigenvalue of the covariance matrix indicates the direction of 

greatest variance. The covariance matrix is defined as 
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The second-largest eigenvector indicates the direction of greatest variation perpendicular 

to the first eigenvector. These are the two eigenvectors that are required to implement the 

principal components algorithm (Philpot 1989). Eigenvectors can be used to predict what 

the unknown inputs were and are often used in place of the original spectra when doing 

inverse least squares regression. This procedure of using the principal components in 

place of the original spectra in regression is called Principal Components Regression 

(PCR) and is defined in Sec. 3.3. 

An advantage of using principal components analysis is that it separates out the 

factors that are independent of each other, although there is no guarantee that these 

factors have physical meaning. One limitation of PC A is that there can be problems with 

collinearity, if the spectra share the same variations, although different in magnitude. 

The PC analysis was performed in IDL using a publicly available program called 

PCA.PRO which is located on the internet at the following website, 

http://idlastro.gsfc.nasa.gov/contents.html. A copy is located in Appendix B along with 

the IDL program used to implement Philpot's principal components algorithm on an 
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image. This program is based on the PCA method in Murtaugh and Heck (1987). The 

PCA.PRO program standardizes the variables, i.e. it corrects each observation for its 

mean and standard deviation. Mean centering is important because it enhances the subtle 

differences between spectra, essentially removing the first most common variation before 

the data is processed by the PCA algorithm. PCA.PRO also normalizes the eigenvectors 

by the square root of the eigenvalues. 

PCA is used in the algorithm implemented in this research to determine 

qualitative bottom type and water depth maps. One of the goals of this research was also 

to determine quantitative depth information without extensive ground truth, using a 

procedure, principal components regression. PCR combines the benefits of principal 

components analysis with regression. 

3.2 Regression 

Regression analysis is a statistical method for predicting values of dependent 

variables (Y) from a collection of independent variables (X). Regression is used to find 

the relationship between the Ys and the Xs by estimating the regression coefficients from 

the regression equation, Y=Xb. For multiple variables, a linear relationship can be 

assumed in order to form a linear regression, as in the following equation, 

Y = b0 + b,X! + b2X2 +K + bpXp 

(3.5) 
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where p = number of observations, Y = independent variables, X_= dependent variables, 

and b = a vector of regression coefficients. The regression coefficients are solved for 

according to the following equation, 

b = X"1 Y 

(3.6) 

An estimate of the inputs (Y) is obtained by plugging X into the equation, Y = Xb 

using the regression coefficients, b, found in Eq. 3.6. The regression coefficients are 

determined such that the sum of squares of error is minimized, 

min    X,-0;<~-fc)2 

(3.7) 

The problem with inverse least squares regression is that the number of variables cannot 

exceed the number of observations due to the dimensions of the matrices. Theoretically, 

adding additional observations should allow for additional variables; however, the 

observations tend to decrease and increase together as the constituents of the observation 

spectra change, known as collinearity. An additional concern while using regression is 

overfitting, which occurs at the point when adding additional variables no longer 

increases accuracy, but instead the prediction accuracy gets worse. Combining 
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regression with the principal components analysis discussed in the previous section yields 

a procedure called principal components regression. 

3.3 Principal Components Regression 

One of the concerns in implementing Philpot's (1989) principal components 

algorithm on the MISI images was that the pc algorithm assumes constant water type. An 

early thought in this research was that quantitative depth and bottom type information 

could be obtained through PCR because the regression coefficients would be determined 

from HydroMod model data where water type was varied in known amounts along with 

depth and water type. Then, depth and bottom type could be determined regardless of 

varying water type, and the need for extensive ground truth would be eliminated because 

the regression coefficients are determined from model data. 

PCR combines PCA spectral decomposition with the inverse least squares regression 

method. A spectrum, such as the radiance spectra, which are the expected output of 

HydroMod, may be represented through PCA by a collection of a series of scores and 

factors, as in the following figure. 
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Figure 3.1 PC A (Galactic 2000) 

PCA breaks apart the spectral data into the most common spectral variations 

(eigenvectors) and the corresponding scaling coefficients (scores). For PCR, the 

regression described in the preceding section was performed not on the X matrix itself, 

but on the scores matrix, which is determined by multiplying the X matrix times its 

principal components. 

One of the advantages of PCR is that it reduces collinearity in the observed 

spectral radiances, which is important in this situation because hyperspectral data are 

almost always highly correlated. When the predictor variables are highly correlated, it is 

difficult to obtain a good inverse of XTX; as the predictor variables become more 

correlated, the same thing occurs to the regression coefficients themselves (Jackson 

1991). PCR relates the principal component scores to the variables of interest, and 

hopefully separates the effects of the variables of interest on the spectra. There is no 

guarantee that the pea vectors directly correspond to the constituents of interest, although 
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in this research, the assumption is that the first principal components carries depth 

information and the second carries bottom type information. Another disadvantage of 

PCR is that generally, a large number of observations are required for accurate 

calibration, while still being careful to avoid collinearity. The greatest limitation, with 

regards to this research, is that PCR does not work on categorical data. The implications 

of this limitation are discussed in Chapter 5. 

The regression coefficients were calculated from the scores, a result of 

eigenvector analysis of the HydroMod radiance outputs. These radiance spectra were 

generated by the radiative transfer model, HydroMod, for different bottom types, depths, 

and water types. The water types that served as inputs to HydroMod were determined 

from processing of water samples collected at the area of study, the Ginna power plant. 

3.4 Water Sampling 

Extensive water sampling was undertaken at the Ginna power plant and the Ontario 

Beach area of Lake Ontario, where the Genesee river empties into the lake. The latter 

field sampling included stations in Braddocks Bay, Irondequoit Bay, and at the Russell 

power plant. These field sampling efforts were made throughout the summers of 1999 

and 2000. The field sampling used as inputs to HydroMod was made at Ginna on 

September 3, 1999 and Ontario Beach on July 5, 2000. These samplings were made 

during an overflight of the MISI aircraft and an overpass by one of the following sensors: 

AVIRIS, Landsat 5, or Landsat 7. At each water sampling location, various 

measurements were made and water samples were collected. The GPS coordinates were 
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recorded at each location in addition to collecting a sample of the water near the surface. 

Also, secchi depths were determined at various locations and where the water was 

shallow enough, the secchi disk was lowered to the bottom to determine depth. 

3.4.1 Filtering 

The water samples were filtered on the same day they were collected. They were 

filtered onto Whatman GF/F 25 mm filters, which is common practice (Mitchell 1990), 

(Bricaud and Stramski 1990). A pump was used to create a vacuum which forces the 

water through three different filters: one used for Total Suspended Solids (TSS), one for 

Chlorophyll a, and one for particle absorption. The volume of water filtered through each 

filter was recorded in order to calculate component concentrations. The weight of the 

TSS filters were recorded prior to filtering in order to calculate the difference between the 

post-filtered weight and the pre-filtered weight. Each of the filters was placed in a plastic 

capsules which was labeled according to the water sample number and the component 

concentration being measured. The plastic capsules with the filters intended for 

chlorophyll extraction were placed in a bag in the freezer to await analysis. The 

September 3, 1999 filters were stored for 12 days prior to processing for chlorophyll 

concentration. The tissue prep capsules help protect the filters from light and ice. The 

Monroe County Environmental Health Laboratory Standard Operating Procedures 

located in Appendix C states that if the sample is frozen and kept in the dark, it can be 

held up to 3 weeks (1996). The particle absorption filters were analyzed immediately. 
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3.4.2 Particle Absorption 

The particle absorption was analyzed using a Shimadzu spectrophotometer. A 

reference filter was prepared by filtering distilled water through the filter. The spectrum 

of the reference filter was subtracted from the absorption spectrum measured for each of 

the sample filters, and the resultant spectra were recorded. The particle absorption 

spectra were corrected for the multiple scattering effects due to the filter using a quadratic 

fit: 

ODs(A) = aODf(A) + b[ODf(A)f 

(Mitchell 1990) (3.8) 

where ODs(k) is the optical density of phytoplankton in suspension, and ODj(k) is the 

optical density of the suspension on a filter. Published coefficients, a and b, given by 

Cleveland and Weidemann (1993) are currently used in the particle absorption process 

utilized by the Digital Imaging and Remote Sensing (DIRS) group. The absorption due 

to particulates was then calculated using the following equation (Mitchell 1990), 

ap(A) = 2.30Ds(A)/lg 

(3.9) 

lg = V/Ac, where Vf is the volume filtered, and Ac = TTT
2
, with r being the radius of the 

portion of the filter which contains the particles removed from the suspension. Also, a 

methanol extraction was done on the filter in order to remove the absorption due to 

chlorophyll pigment, leaving only the absorption due to TSS. 

61 



3.4.3 Chlorophyll a 

The chlorophyll filter was removed from the freezer and the concentration of 

chlorophyll extracted from the filter using the procedure outlined in Standard Methods 

(Appendix C). The concentrations were derived both spectrophotometrically and 

fluorimetrically. A comparison was conducted on a few of the samples to determine if 

the results seemed reasonable. These results are reported along with the results of the 

water sample processing in Appendix D. 

The uncorrected chlorophyll values are used as inputs to HydroMod, which uses the 

four-component model discussed in 2.1.3.2. Bukata et al. (1981) analyzed the water 

quality parameters of Lake Ontario using a five component model, the fifth component 

being nonliving organic component (NLO). They state that it is possible to use a four 

component model provided that the values of chlorophyll uncorrected for phaeophytin 

contamination, which thereby includes some detrital component. 

3.4.4 CDOM 

The absorption spectra of colored dissolved organic matter (CDOM) is also 

determined using a spectrophotometer. First, the spectrophotometer is zeroed by placing 

distilled water in both the reference cell and the sample cell (10 cm pathlength). Next, 

the water sample is filtered using a syringe filter into the sample cell. Then, the 

absorption spectra is recorded. The concentration of the yellow substance can be 

expressed as the absorption coefficient at 380 nm, 7=aj,(380) (m'1) (Spitzer and Dirks 

1987). The CDOM processing results from the DIRS sampling campaign are recorded as 
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scalar values as seen in the Results chapter. A mean absorption spectrum was calculated 

from a wide range of Lake Ontario water and then ratioed against each of the water 

sample absorption spectra to obtain a scalar value for each sample. 

3.4.5 TSS 

TSS filters are placed in a heater/dryer that is located in the basement of the CIS 

building. The heater is set at -150 °C and the filters are left to dry there for about 24 

hours. The post-drying weight of the filters is recorded, the pre-filtered weight is 

subtracted, and the concentration is determined based on the amount of water that was 

filtered. 

3.5   Bottom Target Reflectance 

In addition to varying the water type, bottom type was also varied in the HydroMod 

runs to produce radiance values in each of the MISI bands. In order to obtain the spectra 

for each of the bottom types, an ASD spectrometer was used to record reflectances (ASD 

is the name given to the FieldSpec made by Analytical Spectral Devices, Inc.) The ASD 

is a portable spectroradiometer that records the reflectance spectra of the object that the 

"gun" is aimed at and compares it to a reference material with known reflectance 

properties. 

The methods presented here were used as tools in the development of the approach 

discussed in the next chapter. 
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Chapter 4 

Approach 

In this chapter, the background information and methods presented in the previous 

two chapters is used in the development of an approach to gain knowledge about shallow 

water from a remotely-sensed image. Just as the band ratio methods improve the 

accuracy of depth determination over single-band methods, it often follows that using 

even more bands, such as in hyperspectral imagery, will further improve the results. This 

work consists of four major parts. First, ground truth was collected including water 

depths, bottom samples, and water samples. Second, the principal components analysis 

method was used to perform bottom type classification and water depth determination on 

a hyperspectral image. The third part of the research involved work with HydroMod to 

generate sensor-reaching radiances for different depths, bottom types, and water types 

that were collected in part 1. The fourth part built on parts 2 and 3; a regression was 

performed on the scores obtained from principal components algorithm analysis of both 

the image data and the model data and the errors were determined using ground truth. 

4.1 The Image 

The images used for this particular application were taken by the Modular 

Imaging Spectrometer Instrument (MISI) constructed by the Digital Imaging and 

Remote Sensing Group (DIRS) at RIT. MISI is a line scanning hyperspectral sensor with 
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63 spectral channels from 0.4 pm to 1.018 ^m at approximately 0.010 |^m intervals. 

Table 4.1 shows the Band Centers for MISI. 

MISI Band Centers 
VIS(FWHM=10nm) NIR (FWHM=8 nm) 

1 418.2962 33 754.044748 
2 429.009263 34 762.967334 
3 438.465412 35 771.871315 
4 448.409214 36 780.87618 
5 458.344586 37 789.844196 
e 467.972961 38 798.515896 
7 477.574686 39 807.440903 
8 487.774504 40 825.065944 
9 497.398 41 834.01772 
10 506.996088 42 842.876596 
11 516.928457 43 851.474834 
12 526.484894 44 860.375241 

13 536.063395 45 868.633836 
14 546.026128^ 46 877.17614 
15 555.924146 47 885.87757 
16 565.443029 48 893.950338 
17 574.95592 49 903.311413 
18 584.476584 50 911.152567 
19 594.052835 51 919.083669 
20 603.982259 52 926.97443 
21 613.047188 53 934.554513 
22 622.507265 54 942.574798 
23 631.955658 55 950.564254 
24 641.055941 56 958.448494 
25 650.501156 57 965.709716 
26 659.530681 58 973.463033 
27 668.874578 59 981.01458 
28 677.892293 60 988.147481 
29 686.558489 61 995.21763 
30 695.512074 62 1002.620013 
31 704.448606 63 1009.525889 
32 713.066255 

Table 4.1 MISI Band Centers for Visible and NIR Bands 
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An advantage of MISI's hyperspectral nature is that it records a fine spectral 

resolution electromagnetic profile for each pixel. The wavelength-dependent 

characteristics in the reflectance spectra reveal important information about the optical 

properties of water, which can be important in water quality studies. More information 

about MISI and its calibration can be found in Appendix A. 

The MISI images of Lake Ontario were fairly noisy. Steps were taken in order to 

minimize the effects of the noise. A discussion of the problems with image noise and the 

steps taken to correct their effects is included in Chapter 5. 

4.2 Principal Components Algorithm 

Philpot's principal components analysis has been performed on a synthetic data 

set (Philpot 1989), but there are no published examples of his approach using real data. 

The website, http://w\\rw.geog.ubc.ca/courses/klink/g472/class98/hamren-larsson/ 

(Hamren-Larsson 1998) provides information on how a principal components analysis 

was applied to a Landsat scene. The principal components algorithm was more accurate 

in predicting depths than the single band algorithm it was compared to. The PCs were 

linearly regressed against known depth values. However, no bottom type information 

was determined in this paper although bottom type variation was included as one of the 

factors that decreased the accuracy of the algorithm. The MISI images contain more 

spectral bands; and therefore, this research will test to see if more bands increase the 

accuracy.   The algorithm was coded in the software language, Interactive Data Language 

(IDL) and used on images taken of the Lake Ontario shoreline by MISI in order to map 

66 



various bottom types, which were verified using ground truth collected at various points 

in the image. This information was useful in two ways. First, bottom type mapping near 

the Ontario Beach area has value to the County Health Lab, which is interested in 

knowing where the green algae is located. This information will help them address the 

issue of beach closures, which occurred 13% of the time in 1998 because of cladophora 

and spyrogyra washing up on the beach and decaying. A second possible use of this 

bottom type map be as a scene in future work with DIRSIG (DIRSIG is a first principles 

based synthetic image generation model developed by the DIRS program at the Center 

for Imaging Science (CIS).). 

MISI images of the Lake Ontario shore line for summer 1999 and 2000 were 

available. IDL was used to code the algorithm; the software package, ENvironment for 

Visualizing Images, ENVI, was used to read in a variety of image formats, filter, classify, 

and resize images. Following is a list of steps that were taken in applying the principal 

components algorithm. 

4.2.1    Pre-Processing 

1.        Mask out the land. This was accomplished in ENVI and the land was masked to a 

value of-1. The mask value of-1 was chosen over the typical value of 0 to account for 

any of the water pixels which might have a radiance value equal to 0. Masking the land 

increases the accuracy of the principal components analysis on the water areas in the 

image, because it eliminates the variability of radiance in the land portions of the image. 
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2. Geo-register the image. The images were manually geo-registered in Arc/Info or 

ENVI. This was done by matching up a Landsat image of the area containing GPS 

coordinates to water sampling location GPS coordinates. 

3. Select deep-water areas in the image which are considered deep water. 

Bathymetry data were used to select areas deep enough that the bottom could not be seen. 

Lyzenga & Schuchman (1979) did so by averaging a set of scan lines in the along track 

direction in order to obtain the deep-water signal as a function of the pixel number or 

scan angles. The pixels selected as deep water were averaged to form a single deep-water 

observation. 

4. Address the noise problems, as discussed in Chapter 4. 

4.2.2 Deep Water Correction 

1. Linearization of data. The simple radiative transfer equation for optically shallow 

waters is linearized. The parameter X is found, such that 

X = \n(Ld-LJ = \n(Lb)-gz 
(4.1) 

2. Plot the data in linearized feature space to visually determine if there are 

nonlinearities and if there are clusters which indicate different bottom types. 

4.2.3 The Algorithm - Depth 

1.   Form a matrix of all X calculations and perform an eigenvector analysis on the X 

matrix. Use a plot of the eigenvalues in order to determine how many principal 

components to retain. The SCREE plot method, a graphical technique that retains the 
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eigenvalues that are to the left of the break in the plot, is used. The last eigenvalues tend 

to be small and in a straight line; the eigenvalues retained are before the plot levels out. 

(Jackson 1991) The first principal component is assumed to be the optimal coefficient 

vector, ay. Knowing an will allow for determination of Y||: 

Y =aX = aln(L )-(ag)z 

(4.2) 

For the remainder of the discussion, this depth dependent variable will be referred to as 

Y. 

4.2.4 The Algorithm - Bottom Type 

In addition to depth information, the variation in bottom types will be mapped. 

1. For each bottom type, determine ax, which is the eigenvector perpendicular to ay, and 

can be used to characterize the depth independent variable Yj_: 

Y,=a  X = a  ln(I ) 
~i ~     ~±     ~b 

(4.3) 

Notice this variable is entirely independent of depth, since a± is perpendicular to % 

a±g = 0, and the depth-related term drops out of the equation. 

2. Use the depth-independent variable for the bottom type, Yx, to perform a 

classification on the image. For this task, the k-means unsupervised classification 

capability of ENVI will be used. The bottom type map is actually a one band image and 
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therefore the unsupervised classification is really a gray-level slice which classifies the 

data in the Yi image based on brightness. 

The next step is to determine how well the algorithm performed and determine some 

quantitative information about depth and bottom type. It is preferable to do this without 

performing an extensive ground truthing effort of diving and sampling the bottom of the 

lake, so a principal components regression is performed first on the HydroMod radiance 

values in order to determine regression coefficients which are then applied to the 

principal component algorithm-processed images (Philpot 1989). This assessment takes 

advantage of the flexibility of the model, HydroMod. The concentrations of TSS, 

Chlorophyll a, and CDOM gathered from DIRS data collections were used as inputs to 

HydroMod. Then, both bottom type and depth were varied in order to generate sensor- 

reaching radiance values for use in the PCR. 

4.3 Inputs to HydroMod 

In order to use PCR, the conditions under which the images were taken need to be 

modeled as closely as possible; therefore, the characteristics of the intervening water 

column must be known. This requires an extensive water sampling campaign and water 

processing to determine various concentrations that will serve as inputs to HydroMod. 

This research takes full advantage of the features of HydroMod which takes into account 

the atmosphere, water reflectance, water quality, and bottom reflectance in order to 

provide the sensor reaching radiance. The details of the program HydroMod can be 

found in Fairbanks (1999). The water sampling and filtering processes were presented in 
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Chapter 3. The results of this processing and bottom reflectance measurements were 

used to build the forward model. 

4.4 The Forward Model 

The inputs to HydroMod will simulate as closely as possible the conditions under 

which the images were recorded. The components of this forward model built to 

calibrate the principal components regression (Section 3.3) are shown in Figure 4.1. 

Inputs 
Bottom Type 
Water Type 

Depth 
Atmosphere 

^ HydroMod w, w W 

Outputs 
Sensor Reaching Radiances 

Figure 4.1 Components of the Forward Model 

The radiosonde data from the image collection day will be used to calculate the 

effects of the atmosphere. Radiosonde is a term that refers to the instrument package that 

collects and transmits meterological data, and is carried into the atmosphere by a weather 

balloon. Although HydroMod includes the capability to add clouds to the scene, this 

option will not be used; because the images were taken on clear days. The water quality 

parameters are derived from the filtering and subsequent processing of the water samples. 

The default absorption cross-sections and scattering cross sections (Figs. 2.5-2.8, 

respectively) are based on Lake Ontario (Bukata 1995) and updated cross-sections 

determined from water samples collected on May 20,1999. 
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A different bottom boundary will be created using the bottom type reflectances 

discussed in Section 3.5. From the HydroMod User's Manual, it seems that only a 

wavelength independent reflectance is allowed if the "User Supplied Constant 

Reflectance" option is selected. This is not an acceptable option because bottom 

reflectances vary with wavelength; therefore, HydroMod will need to be modified in 

order to add the bottom types characteristic of the area captured in the image. The 

reflectance spectra needed - Lake Ontario sand, cladophora and/or spyrogyra, and 

additional spectra- will have to be collected. 

HydroMod runs at various depths with various bottom and water types were made. 

The resulting sensor-reaching radiance values will be put into a matrix for use in the PCR 

discussed in the next section. Table 3.3 shows the various depths, bottom types, and 

water types that will be used in a factorial method. 

Bottom Types 
# Name 
1 Ontario sand 
2 Hydromod Green Algae 
3 Gray Rock1_wet 
4 Gray Rock2_wet 
5 Red Rock with algae2 
6 RedRockl wet 
7 Light gray rock1_wet 
8 Yellow rockl wet 

Depth 
(m) 
0.5 
1.0 
3.0 
5.0 
7.0 
10.0 
30.0 

Wa ter Type 
Sample Chi (mg/mA3) TSS (mg/L) CDOM (scalar) 

11 0.934 1.000 0.451 
A5 1.145 1.000 0.485 
A3 1.671 1.333 0.481 
A6 1.698 0.750 0.454 
A2 1.868 1.000 0.467 
14 3.463 2.400 0.438 

Table 4.2 Inputs to HydroMod 

The inputs from Table 4.2 are used to build the forward model, which is then used to 

calibrate the principal components regression. 

72 



4.5 Applying Principal Components Regression to this Research 

Principal components regression is a statistical tool that combines principal 

components analysis with regression.   For multiple observations, the independent 

variable of the regression, X forms the matrix defined below for L0bs= the dependent 

variable: 

X = 

1    Lobs1(Al)   ... Lobsx{Ap) 

1   Lobs2(Al)   ... Lobs2(Ap) 
* " • • • 

1   LobsM)   - Lobsn{Ap) 

(4.4) 

where p = number of bands and n = number of observations. 

Then, the linear regression equation to determine the matrix of regression coefficients, b, 

is 

b = X'lY 

(4.5) 

which is actually calculated as 

b = (xT x)X XT Y 

(4.6) 

For the PCR, the regression described in the preceding section will be performed 

not on the X matrix itself, but on the scores matrix, which is determined by multiplying 

the X matrix times its principal components. The following equation shows in matrix 
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form how one principal component score (PC) is obtained by multiplying an eigenvector, 

a, by the data, JJX). 

PC, 

PC 

• * ■ 

apLMP) fl, 

(4.7) 

Again, p = number of bands and n = number of observations. 

Instead of performing a regression directly on the spectral responses, this method 

regresses the concentrations on the PCA scores. The PCA scores are the result of 

transforming the data using the principal components, so in other words, an observation 

is transformed using the first principal component (eigenvector), resulting in the score. 

According to Galactic Industries Corp. (2000), using the eigenvectors to calculate the 

regression instead of the spectral responses themselves "produces a robust model for 

predicting concentrations of the desired constituents in very complex samples". This is 

because the eigenvectors of the principal components analysis represent the spectral 

variations common to all of the calibration data. 

Eq. 4.8 is the principal component regression equation that will be used in this 

research. The assumption is made that varying depth, bottom type, and water type 

account for the greatest variation in the data. Therefore, only the first three principal 

components (PCs) will be retained for the PCR against the dependent variables, depth 
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(d), bottom type (bt), and water type (wt) from which the regression coefficients, b, will 

be calculated. 

dx    btx    wtx 

d„   bt„    wt„ 

1   PCI,...      PC\ 

1   PC\p...   PC3(Ap) 

Xb 

(4.8) 

4.5.1 PCR Applied -- HydroMod 

The HydroMod runs will be used to calibrate the PCR because both the inputs 

(depths, water components, bottom types) and the outputs (radiances) are known. In an 

effort to model the image as closely as possible, the radiosonde file for the day 

(September 3, 1999) was used to build the sky files in MODTRAN as part of HydroMod. 

Also, the water components used will be the constituents actually found in the water 

samples collected in the Ginna area. 

The steps for implementing PCR on this data are as follows: 

1. Perform deep water subtraction on the X matrix by subtracting the radiance values 
calculated for a depth of 30m, and take the natural log of the data (Philpot's 1989 
algorithm). 

2. Calculate the covariance of the X matrix from Step 1. 
3. Determine the eigenvectors. These are the coefficients for the linear combination 

that maximize the variance in the data. Only the depth, bottom type, and water 
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type were varied in the HydroMod runs. Therefore, only the first three 
eigenvectors will be retained (A). 

4. Determine scores for the retained eigenvectors. PC = XA 
5. Perform the regression. Use the pseudoinverse to calculate the regression 

coefficients, b. 

bHydroKECjPCr'PCjY 
(4.9) 

The Y matrix here represents the inputs to HydroMod 
6. Calculate Ygst. Yest = PCbHy<iro 
7. Compare the results. The depth estimate, for example, is the first column of the 

Yest matrix. Compare this value to the actual depth input into HydroMod using 
root mean squared (RMS) error, 

-jn </,.-<£)  =MSE       RMS = -JMSE 

(4.10) 

4.5.2 PCR Applied - The Image 

The next steps involve implementing Philpot's algorithm and PCR on the image. 

1. Select an area of the image which can be assumed to be deep water. Average 
some of these deepwater pixels. 

2. Subtract the deepwater pixel from the rest of the image. 
3. Take the natural log of this deepwater subtracted image (Philpot's X matrix). 
4. Calculate the covariance of the data. (X) 
5. Determine the eigenvectors (A). These are the coefficients, or weights. Most 

likely only the first three eigenvectors will be retained based on looking at a plot 
of the eigenvalues. 

6. Calculate scores. PCimage = XA 
7. Using the b s calculated from the above HydroMod Step 5, estimates for the 

dependent variables, depth, bottom type, and water type are found. 
Xest-A-LcimagefiHydro 

8. Compare the results with ground truth. For example, for depth, compare depth 
estimates with actual bathymetry. 
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Chapter 5 

Results 

5.1 Data Collection 

Often, data collection for this research was at the mercy of the weather, 

functioning instruments, and boat availability. Although sometimes data collection was 

frustrating, it was also very rewarding because the location for data collection was Lake 

Ontario, usually on a boat on a beautiful, sunny day. The data needed for this research 

consisted of water samples, bottom type samples, and the images themselves. 

5.1.1 Water Sampling 

Water was collected under Landsat and MI SI overpasses in order to characterize 

the water at the time the images were taken. The sample bottles were rinsed out twice 

with lake water prior to filling them up with water at each sampling location. The water 

sampling days and locations for 1999 and 2000 are shown in Table 5.1. 
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11 May 1999 Near Charlotte Pier, in Irondequoit Bay 

20 May 1999 Near Charlotte Pier 

07Junl999 Ginna Power Plant 

26M1999 Near Charlotte Pier 

03 Sep 1999 Ginna Power Plant 

05 Jul 2000 Near Charlotte Pier 

Table 5.1 Water Sampling Dates and Locations- 1999 and 2000. 

The water samples were filtered and processed as explained in section 3.4. The 

results of the processing of the 1999 samples will be located on the following website, 

http://www.cis.rit.edu/research/dir.shtml. Information on the September 3 1999 

processing is located in Appendix D.    The water parameters used for the HydroMod 

portion of this research are from the samples taken at Ginna on 3 September. Table 5.2 

shows the sample number and the results of processing. 

Sample CHL-a (mg/mA3) TSS (mg/L) CDOM (scalar) 
A2 1.868 1.000 0.467 
A3 1.671 1.333 0.481 
A5 1.145 1.333 0.485 
A6 1.698 0.750 0.454 
11 0.934 1.000 0.451 
14 3.463 2.400 0.438 

Table 5.2 Sampling Results for Ginna, September 3, 1999 
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Of note are the high chlorophyll and TSS values for the last sample, 14. These relatively 

high concentrations from sample 14 will manifest themselves in both the qualitative 

results from the algorithm processing and the radiance outputs from HydroMod. 

These data were input into HydroMod in order to simulate as closely as possible 

the conditions under which the MISI images were taken. In order to be more accurate in 

simulating these conditions, bottom reflectances were also needed. 

5.1.2    Bottom Sampling 

The ASD was used to take reflectance spectra of various materials assumed to 

form the bottom boundary at the Ginna site near the power plant, based on visits to the 

area. This data collection requires a clear day in order to have consistent lighting 

conditions. To calculate the reflectance spectra, a Spectralon white reference is used to 

account for the lighting conditions. 

The bottom at Ginna consists predominantly of rock and algae-covered rock. 

Therefore, a variety of rock spectra, and even spectra of algae-covered rock were 

collected. There is also some sand in the area, and so, this spectrum was included in the 

model. The following figures include images and spectra of the bottom types that were 

input into HydroMod to build the forward model. 

Figure 5.1 is a graph of sand spectra: one is built into HydroMod, and the other 

was the spectrum of Ontario sand measured by the ASD. The bottom reflectance 

spectrum that is used for sand in these HydroMod runs is Ontario sand. The other sand 
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reflectance spectrum is inherent in the HydroMod program; however, it is for bright coral 

sand, and is not indicative of the sand found on the bottom of Lake Ontario. 
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Figure 5.1 Hydromod Sand vs Ontario Sand - Reflectance Spectra 
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Figure 5.2 Green Algae Bottom Type in HydroMod 
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Figure 5.2 shows the green algae bottom that will form another bottom type used in 

the HydroMod runs. Actual reflectance spectra were collected of algae dredged from the 

bottom of the Lake near Charlotte Pier. The spectra had a similar shape as that of Figure 

5.2; however, the magnitude was lower, due to the fact that the algae was dying. It was 

dark green and had a decaying odor. Therefore, the decision was made to use the 

HydroMod green algae spectrum because the bottom type that needs to be modeled is of 

live, benthic algae. 

The following figures are images and spectra of various rocks and algae-covered 

rocks measured at Ginna on July 20, 2000. The various spectra will be inputs to 

HydroMod, representing different bottom types. 

Figure 5.3 Gray rock wet (Grocl_wet) 
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Figure 5.4 Grocl_wet input to HydroMod 
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Figure 5.5 Gray Rock 2 (Groc2) Figure 5.6 Groc2_wet input to Hydromod 
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Figure 5.7 Red rock (redrock_wet) Figure 5.8 Redrock_wet input to HydroMod 

Figure 5.9 Algae on Red Rock (Rro_alg2)     Figure 5.10 Rro_alg2 input to HydroMod 
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Figure 5.11 Light gray rock wet Figure        5.12 Ltgrol_wet input to HydroMod 
(Ltgrol_wet) 
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Figure 5.13 Yellow Rock wet (yrocl_we)     Figure 5.14 Yrocl_wet input for HydroMod 

These bottom types are all characteristic of the Ginna area. The Ontario Beach area is 

characterized by the green algae spectrum and the Ontario sand spectrum. However, a 

visit to the coastal waters near Ontario Beach revealed that the algae is found growing on 

rock that is dark in color. The reflectance spectrum needs to be collected for the rock 
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found out near Ontario Beach in order to model accurately the parameters that form the 

MISI images of this area. 

Bottom sampling was also conducted as part of ground truth collection. In order 

to sample the bottom, a Fieldmaster bottom dredger (Fig 5.15) was used. It is set open 

and dropped to the bottom. When it hits the bottom, it closes, scooping up whatever is 

there. At Ginna, it frequently hit rock, and therefore, nothing was pulled up. 

Figure 5.15 Bottom Dredger 

This verifies,though, that the bottom consists of rock. The results of the ground truth are 

discussed in Section 5.5.5 for Ontario Beach. 

5.2 MISI Images 

The MISI images of the Charlotte Pier (Ontario Beach) and the Ginna Power plant were 

challenging to work with. Steps were taken to correct the significant noise problems 

observed in the MISI data. First, a low pass filter was convolved with the image, but 

upon analysis of each of the 63 bands, a significant amount of vertical banding and 
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horizontal streaking remained. Also, there were some bands that were unintelligible even 

after they were convolved with a low-pass filter (Fig. 4.16 and 4.17) 

Figures 5.16 and 5.17 Band 12 and Band 20 Noise Problems in C9 (Ginna) 

In addition to convolving the image with a low-pass filter, some of the worst bands were 

discarded prior to implementation of Philpot's algorithm. On the September 3,1999 

Ginna image (C9, Flight Line GFL2) that was taken perpendicular to shore, an area of the 

image was selected that began near the shore and went out perpendicular from shore. 

After some of the worst bands were discarded, 51 remained. The image used here to 

discuss the noise problems was 116 by 258 by 51 (Ginna_four) and is shown in Figure 

4.18. 
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Figure 5.18 R,G,B Image near Ginna (Ginna_Four (Bands 24,14,5)) 

After initial noise processing, the principal components algorithm (Philpot 1989) was 

implemented on the image in an effort to determine water depth and bottom type 

information. Y_n refers to the image obtained by multiplying the first eigenvector times 

the X matrix (linearized variable), and is assumed to provide information about depth; XL 

refers to that image obtained by multiplying the second eigenvector times the X matrix, 

and is assumed to provide information about bottom type. The principal components 

algorithm (Philpot 1989) was run on this image (Fig. 5.18) and then both the Y.11 image 

and the Yj. image were read into ENVI. A simple unsupervised &-means classification 

was performed to determine which image areas are similar. The Ä-means classification is 

performed on a single-band image, Y\\ or Y_i, and therefore is simply a gray-level map 

showing areas of similar brightness rather than a classification, which is typically done on 
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multi- or hyperspectral images. Figures 5.19-22 show the Y_n images and their respective 

gray-level maps. 

Figure 5.191„ on Ginna_four(Fig. 5.18)       Figure 5.20 Xu on Ginna_four classified 

Figure 5.21 Yj. on Ginna_four Figure 5.22 Yj. on Ginna_four classified 
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The greatest variation in the original image, highlighted by the algorithm and displayed in 

these images, appears fairly structured. It looked very much like the vertical banding 

seen in the NIR bands, two of which are shown in Figures 5.23 and 5.24. 

Figure 5.23 Image Band 48 Figure 5.24 Ginna_Four Image Band 45 
from a 400 by 400 portion of C9 

From these images, one can see that the vertical, wavy banding and the pattern that shows 

up in the algorithm-processed images are similar. The NIR bands don't penetrate very 

deep into the water, and therefore carry little information, with most of the signal due to 

noise. 

Using ENVI, the image was spectrally resized again, deleting the NIR bands from 

the new image, 'Ginna_seven'(Fig. 5.25). The figures below show these results and from 

them one can see that the banding structure no longer is a significant part of the 

transformed images. 
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ÜfV; 

Figure 5.25 Y_n Ginna_seven Figure 5.26 Yn Ginna_seven classified 

Figure 5.27 Yj. Ginna_seven Figure 5.28 Yj. Ginna_seven classified 

Additional steps were taken to improve the images prior to processing. First, median 

filtering was performed on the image, using a 5 x 5 median filter in ENVI. This helped 

alleviate some of the salt and pepper noise. Next, the image was convolved with a 5 x 5 

low-pass filter to further blur some of the remaining noise effects. In an effort to increase 

the signal to noise of the image, the REBIN function in IDL was used to shrink the image 

spatially by averaging neighboring pixels, while still maintaining the spectral resolution, 
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although the spectral structure is degraded some due to the mixing of the adjacent pixels. 

Then, the same function restores the spatial dimensions of the image, using the default 

bilinear sampling on the expansion. After all of this processing, there were still bands 

that needed to be discarded, mostly in the NIR. A majority of the results discussed in this 

section were obtained by performing the principal components algorithm (Philpot 1989) 

on the September 3,1999 Ginna image, C9 (Fig. 5.29). After pre-processing the image to 

reduce noise, only 24 bands were retained, shown in Table 5.3. 

C9 
MISI 
Band 

From 
(nm) 

1 

13 
14 
15 
17 
18 
19 
21 
22 
23 
24 
26 
27 
28 
29 
31 
32 

To (nm) 
413.2962423.2962 
424.0093434.0093 
433.4654443.4654 
443.4092453.4092 
453.3446463.3446 
472.5747482.5747 
482.7745492.7745 

492.398 
531.0634541.0634 
541.0261 
550.9241 

502.398 

551.0261 
560.9241 

569.9559579.9559 
579.4766589.4766 
589.0528599.0528 
608.0472618.0472 
617.5073627.5073 
626.9557636.9557 
636.0559646.0559 
654.5307664.5307 
663.8746673.8746 
672.8923682.8923 
681.5585691.5585 
699.4486709.4486 
708.0663718.0663 

Table 5.3 Ginna (C9) MISI Bands retained for algorithm 
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5.3 Image Selection 

Philpot's algorithm (1989) was implemented on an image called C9 after noise 

processing. The image is shown in Figure 5.29. 

Notice that 
the water is 
lighter out 
here 

Area of 
Image C9 
shown in Fig. 
5.30 

Figure 5.29 C9 - R,G,B, Image of Ginna 

Philpot's algorithm (1989) depends on a deep-water subtraction. Many of the images 

taken during flight lines parallel to shore do not contain deep-water pixels. A benefit of 

using this image is that deepwater pixels taken at the same angle as the image can be 

selected. A second benefit of using this image is that the Ginna area has a lot of variation 

in it. Figure 5.30, a smaller piece of C9, shows the variation in bottom type near the 

shore, which the algorithm will extract. 
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Figure 5.30 Smaller portion of Image C9 showing coastal bottom type variation 

An aspect of this image, which will be discussed later in this Chapter, is the bright blue 

area of water at the left side of Figure 4.30. This image characteristic provided a 

challenge in implementing Philpot's (1989) algorithm on Case 3 data, where the water 

type varies, and in this image, the water type variation is apparent from the image. The 

very bright blue corner, A, is most likely due to a phytoplankton bloom that was 

occurring at the time this image was taken and was noted during water sampling on 

September 3(corresponding to sample 14 discussed in Table 5.2). The slightly darker 

water, B, is most likely due to a combination of different water type and lighting 

conditions and C is an area where the water type appears darker than both A and B. The 
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image was taken at 11:19 EST, which means that the sun was more towards the left side 

of the image (east), resulting in a variation in lighting conditions. 

Although most of the results were calculated from the September 3, 1999 image 

of Ginna, one of the MSI images taken on July 5, 2000 near the Charlotte Pier, C2 

(Flight Line RFL1), was also processed (Fig. 5.31). These images were taken parallel to 

the shore, and therefore were not ideal, because there is not much deep water. The deep- 

water pixels are selected from an area of the image that was not at the same angle relative 

to nadir as that area being processed by the algorithm. However, one of the goals of this 

research is to see how well the algorithm performs on images taken of this portion of 

Lake Ontario, since it experiences many problems due to algae washing up on the shore. 

The images from this day have some missing lines, so a smaller area of image C2 (Fig. 

5.31) was selected that did not have missing lines and contained land references easily 

recognizable from the water for ground truth purposes. 
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Figure 5.31 C2 - along Ontario Beach and a spatially resized portion of C2, Ont_one 

5.4 Qualitative Results 

After applying Philpot's (1989) algorithm to various small pieces of the C9 image, 

the next step was to look at bigger areas of the image. In order to do this, the algorithm 

must be able to perform the eigenvector analysis on just the water pixels, because 

applying the algorithm to the entire image, including the land, decreases the likelihood 

that the variability of interest is in the first two eigenvalues, if any of them. The image, 

C9, was resized both spatially and spectrally in ENVI to produce an image that contains 

the shallow water and eliminates the noisy bands, resulting in a 24-band image, the bands 

shown earlier in Table 5.3. The depth and bottom type maps are a result of k-means 
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unsupervised classifications, which essentially are just the gray-level maps discussed 

earlier, on the YN and Y± images, for which areas that are similar in brightness are 

grouped in the same class. 

5.4.1   Using the Entire Width for Deep-Water 

Usually, deep-water pixels are selected such that they cover the same columns as 

the image. However, in C9, there was an obvious difference in water type further out in 

the image, which might affect the results. Figure 5.32 is the image, called Ginna for 

discussion purposes, and the corresponding deep water taken over the entire width of the 

original image, C9 (Fig 5.29). 

C9 

Ginna 

Deepwater 

Figure 5.32 Image Ginna and the deepwater taken over the entire width of the image 
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Of note is how light the pixels are on the left side of the deepwater image. The deep- 

water pixels were averaged and the resulting vector was subtracted from each of the 

pixels in the Ginna image. The next step in this deep-water correction technique is to 

calculate the natural log of the resulting matrix. The final result of this deep-water 

correction is the linearized variable, X. Plotting the X values for the 640 nm vs 545 nm 

band should show that there is a somewhat linear relationship between the two linearized 

variables, X64o and X545, provided the water type is constant. Figure 5.34 is a scatter plot 

of these two bands in linearized space for the colored section of the image in Figure 5.33. 

Next, the principal components analysis was performed on the linearized data. The first 

principal component points in the direction of maximum variance in the data set, showing 

that a linear combination of the variables X64o and X545 using the optimal coefficients 

(first eigenvector) indicates the information that is correlated between the two bands. 

Figure 5.33 Y for Ginna image processed     Figure 5.34 Scatter plot of X640 (Band 24) 
using the entire width of C9 for deep vs. X545 (Band 15) using the entire width of 
water (colored portion corresponds to 5.34)   C9 
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This plot is not linear, which is an indication that an assumption has been violated. The 

scatter plot should be linear if the water type is constant, which is not true of this 

example. The deepwater term, Lw, used in the principal components algorithm (1989) is 

also presumed constant, but when this is not a valid assumption, the usual linearization is 

no longer suitable, and attempting to use it results in the nonlinearities seen in the scatter 

plot (Fig. 5.34). 

Further analysis of the scatter plot and its corresponding regions in the image 

reveal other inconsistencies. The red and green regions of the image (Fig 5.33), which, 

based on their position in the scatter plot, should correspond to the shallow areas of the 

image, seem reasonable, but the next region (yellow) based on the scatter plot should be 

getting shallower because the yellow points start to spread towards the top of the plot, 

also shows up near the left side of the image. Intuition and bathymetry confirm that this 

trend of getting deeper as one moves away from shore and then shallower again further 

out is due to error in the assumptions made. The blue area in the image corresponds to 

pixels in the scatter plot that are in a very shallow area due to their location near the top 

of the plot. However, considering the location of the blue region in the image, this does 

not make sense, and results from a combination of the different water types, i.e. water 

with different optical properties, in the image being processed by the principal 

components algorithm and from using the entire width of the image, which contains 

different water types, for the deep water. The deep-water correction of the algorithm 
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subtracts off the averaged deep-water pixels and therefore does not take into account the 

fact that the image being processed contains different deep and shallow water types. The 

next figures show the depth map and bottom type map resulting from using the entire 

width for deep water. 

Figure 5.35 XII - deepwater of entire image  Figure 5.36 XL - deepwater of entire image 
(-Depth) (-Bottom type) 

These maps do not seem reasonable, as might be expected based on analysis of the scatter 

plot in Fig 5.34. In Figure 5.35, the depth map, the water gets deep and then shallow 

again as one moves away from shore. There is deeper water (yellow) near the shore. 

From water truth observations, the trends in the depth map are not true. Figure 5.36 is 

not picking up on the bottom type variation that is visible from the image itself. It is also 

very similar to Figure 5.35 in appearance, which was not expected because it is a bottom 

type map. 

Next, the technique was repeated, choosing a different area for deep-water pixels. 
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5.4.2   Using Darker Deep-Water 

The algorithm was performed on the same shallow water image, Ginna, but the 

deep-water pixels were selected from the right side of the image C9 as shown in Fig 5.37. 

  C9 
Ginna 

Figure 5.37 Ginna image and deepwater from the right side of the image, C9 

The deepwater image in Figure 5.37 is noticeably darker than that shown in 5.32, which 

used the entire width of the image. The left side of the deepwater image is still brighter 

than the right side due to stretching in ENVI. Once again, the average of the deep-water 

pixels was calculated and the algorithm applied, as above, resulting in improved depth 

and bottom type maps. Figure 5.39 is the scatter plot of the linearized variables, X640 vs 

X 545, and it is closer to the expected linear plot that should result when the water type is 

constant. 
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Figure 5.38 Xii for Ginna processed with      Figure 5.39 Scatter plot of X640 (Band 24) 
deep water from right (colored portion vs. X545 (Band 15) using the right side of C9 
corresponds to Fig. 5.39) for deepwater 

The colors of the scatter plot represent the data that correspond to the regions of the 

image in Figure 5.38. The linearization performed better at smaller depths, but where the 

scatter plot spreads out at greater depths, the results depart from intuition. The dark 

green class at the left side of the image corresponds to the portion of the scatter plot 

pointed to by the arrow. If our assumptions are correct, this dark green area is more 

shallow than the sea-green region of the image. However, the dark green region is 

located at the very left of the image, where the water should be the deepest. This 

inconsistency is probably a result of the dark deepwater being subtracted from an area of 

different water type, and the greatest variation is no longer related to depth, but is now 

associated with a change in water type. The shallow areas of the image correctly 

correspond to the right side of the scatter plot, although caution is required in 
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interpretation because this may be an area where water type varies with depth. The 

uncertainty of the depth estimate increases greatly with depth, as can be seen in Figure 

5.39, indicated by the spreading out of the graph as the depth increases. 

Figure 5.40 is a plot of the eigenvalues for this image. The first eigenvalue, the 

amount of variability assumed to be due to depth, accounts for 41% of the variability. 

The second eigenvalue, variability assumed to be related to bottom type, accounts for 

21% of the variability in the data. 

Eigenvalues 

12 
10 
8 
6 
4 
2 
0 m 

10 15 20 

MISI Band 

25 30 

Figure 5.40 Eigenvalues from PCA on Ginna image processed using 
deep water from the right side of C9 

The first three bands carry most of the variability in the data. In this example, the 

variability accounted for in the first eigenvector does not totally correspond to depth 

variation but also includes some variation due to change in water type. Similarly, the 

second eigenvector is mixed because as soon as the first eigenvalue is mixed, the 

remaining eigenvalues must also be mixed due to their perpendicular nature. 

The depth map and bottom type map determined using the deep-water from the 

right side of the C9 image seem more reasonable than the previous example (Fig. 5.32). 

101 



Figure 5.41 Y using deep water from right      Figure 5.42 Yperp using deep water from 
(-Depth) right (-Bottom Type) 

Figure 5.41 is more intuitive than the depth image calculated when the entire width of the 

image was used for deep-water. The first four classes (cyan, yellow, blue, and then green 

in order of decreasing brightness) show that the water gets consistently deeper as one 

moves out from the shore, as one would expect. But, the results show again that the 

water gets deeper and then shallow, so that the area one would expect to be deepest (the 

bottom left corner of Fig 5.41) is actually shown to have a similar score, i.e. is as shallow 

as, the water right off the coast (cyan class). The algorithm is equating the brightness in 

the lower left corner of the Ginna image presumably caused by different water type to 

shallow water. Figure 5.42 is a great improvement over the bottom map from the results 

processed using the entire width of the image for deep-water (Fig. 5.36). Fig. 5.43 points 

out where the bottom map seems to be discerning bottom-type variations that are visible 

in the image. 
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Figure 5.43 XL (-Bottom type) is picking up on variations in Ginna image 

The cyan class on the left side of the Yi image is still problematic. This is due to the 

deep water not being consistent with the water qualities in the rest of the image. It can be 

inferred that the bottom type mapping, like depth mapping, performs better at smaller 

depths, which is most likely because there is less effect due to water-type variation in 

shallow water. 

The qualitative effects of variable water type in the deepwater pixels are 

significant. Further processing was done on smaller portions of the image where there 

appeared to be constant water type. 

5.4.3   Consistent Deep Water 

Figure 5.44 shows the image selected from the right side of the image 

(Ginna_right) and its respective deep-water image that was used to perform the 

algorithm. 
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Ginna_right 

Figure 5.44 Image and Deep_water from the Right Side of Ginna 

Figure 5.45 Ginna_right with colors 
corresponding to 4.45 

Figure 5.46 Scatter plot of X545 

(Band 15) vs. X640 (Band 24) 
for Ginna_right 
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The results from processing with these images are very encouraging. Fig. 5.46 exhibits 

much more linear behavior, indicating that the information in these bands is more closely 

correlated in the linearized space and that there are fewer unmodeled factors. 

Statistically, the information was pretty highly correlated before, but this does not always 

mean that the correlation provides the information desired. The trend in Fig. 5.47 is very 

intuitive, the water gets deeper as one moves away from the shore. Below are the depth 

and bottom type maps. 

Figure 5.47 Xn(-depth) - &-means classification of Ginna_right using 3 classes and 4 
classes, respectively 

These results are very reasonable; the water gets consistently deeper as one moves out 

from the shore. Looking at 2 m resolution bathymetry from this area confirms this trend. 
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Ginna_right 

Figure 5.48 XL (-bottom type) using 3 and 4 classes, respectively and comparison to 
actual image. Arrows indicate where bottom type variation seen in the image shows up 
in the bottom type maps 

This bottom map is reasonable, however it appears that using three different gray-level 

brightnesses is sufficient for distinguishing the different bottom types. The bottom type 

map highlights some of the major variations that can be seen in the image, and there are 

problems with the varying water types seem to be eliminated. 

The algorithm performs better when the deep water is the same, or nearly the 

same, water type as the image being processed as in this example. The results do not 
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contain the non-linearities evident in the example discussed in Section 5.4.1, which used 

the entire width of the image as the deep water. The depth map and bottom type map 

agree with intuition and analysis of the image. 

In summary, to obtain good results, one must select an area in which the water 

type is constant over the image and the deep water, there are depth variations, and bottom 

variations. This is a limitation of the principal components analysis approach in that it 

depends on the image selection. 

5.4.4 More Results 

Attempts were made to select other areas in the image where the water type was 

thought to be constant, although the efforts were not as successful as that in Sec. 5.4.3. 

Ginna left 

Depth 
Bottom Type - Bottom Type 

Figure 5.49 Ginnajeft with its corresponding   Figure 5.50 Ginna_middle with its 
corresponding depth and bottom type 
maps 

depth and bottom type maps 
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An interesting feature of the depth maps of both images is a narrow region (red) that 

indicates some sort of trench, or area of deeper water. The "trench" corresponds to the 

line where the water becomes deep very quickly as indicated by the drop-off in the ability 

to see the bottom variation in the image. The "trench" shows up in both depth maps, 

which were produced using eigenvectors from different principal component analyses. 

The bottom maps again are highlighting variations in bottom type that can be seen in the 

images themselves. 

The algorithm performs better on smaller sections of the image because there are 

typically not as many variations, such as water type, over a small area. The variations 

that will most likely be present in an image that covers a greater spatial region are not 

limited to varying water type, but might include atmospheric conditions, illumination, 

and sea state. 

5.4.5   Ontario Beach Results 

In order to determine the feasibility of mapping the distribution of benthic algae 

in the Ontario Beach area to benefit the County Health Lab, a preliminary analysis was 

done on a MISI image taken of the area July 5, 2000. The image selected for this 

analysis was C2 (Fig. 5.51). This image was selected because it was taken at a higher 

altitude than some of the other images; this is significant because more water is included 

in the image, which is important in deep-water selection. Also, it was one of the better- 

quality images in terms of noise, missing lines, and sun glint through the middle of the 
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image. The flight line for this image was parallel to shore, and therefore, it is almost 

certain that the deepwater pixels are not at the same angle relative to nadir as the part of 

the image being processed. This effect was not corrected for in this analysis. 

Ont one 

Figure 5.51 Image near Ontario Beach, C2, and the Image area selected for 
processing, Ont_one 

Although this was one of the better images from the July 5,2000 MISI collect, the sun 

glint can be seen down the middle of the image C2, and is present on the right side of 

Ont_one. Below (Fig. 5.52 - 5.55) are the results of applying the algorithm to this image. 

The deepwater was selected from the extreme right of the image (C2) because there is not 
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a significant amount of water that appears to be deep enough to not be influenced by the 

bottom type. 

KjT: 

Figure 5.52 Y for Ont_one 

ft 

Figure 5.53 Y classified for Ont_one 

Figure 5.54 Y± for Ont.one Figure 5.55 Y± classified for Ont_one 

The depths and bottom types are correlated in this image. Analysis of Figs. 5.52 and 5.53 

indicates that there are ridges on the lake floor and the depth alternates between shallow 

and deep with these ridges. The bright area (green in Fig 5.53) on the right of 5.52 is due 
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to the sun glint effect and is not related to depth. The shallow areas (green) correspond to 

the light areas in Fig. 5.54, which are of sand bottom type, based on ground truth. The 

deeper areas (red) correspond to the dark areas in Fig. 5.54, which indicate rock bottom 

type. The change in depth has been verified by ground truth. 

These preliminary results are very promising for the application of this algorithm 

to MISI images in order to determine the location of benthic algae. The algae attach 

themselves to hard surfaces, i.e. rock. At one sampling location, a small amount of algae 

was grabbed from the rock bottom with the dredger. 

The depth changes and bottom type changes in Figs. 5.53 and 5.55 were verified 

by ground truth. Fig. 5.56 shows the sampling locations and data for this image, which 

was collected on July 30, 2000. 

Bottom Type Depth (m) 
1 Rock 2 
2 Sand 1.6 
3 Rock 2.4 
4 Sand 2.2 

Figure 5.56 Ground Truth Results for Ont_one 

111 



5.5 Building the Forward Model 

The HydroMod model was run for September 3, 1999 atmosphere and water 

conditions. The water types that were input were based on the water sampling campaign 

and subsequent processing of the samples. The results for sampling are in Appendix D. 

The output for each of the HydroMod runs was water-leaving radiance. For the purposes 

of comparison to the algorithm output, the sensor-reaching radiance was needed. To get 

the radiance to the sensor, it was necessary to multiply by the transmission and then add 

upwelled radiance for the September 3, 1999 atmosphere. Figure 5.57 shows the 

upwelled radiance and transmission information for September 3, 1999 conditions 

sampled at MISI wavelengths. These values were obtained using MODTRAN. 

3 Sep 99 

0.000001200000 

0.000001000000 

0.000000800000 

0.000000600000 

0.000000400000 

0.000000200000 

0.000000000000 
1   5  9  13  17  21  25  29  33  37  41  45  49 

MISI Bands 

-TRAN-»-UWR 

Figure 5.57 Transmission and Upwelled Radiance for September 3,1999 

112 



One ran was performed, with the bottom reflectance set to zero at every band in 

order to determine the radiance due to the water column itself. Fig. 5.58 is a plot for the 

various water types at various depths over the zero reflectance bottom. 

Zero Reflectance Bottom 
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Figure 5.58 Plot of Sensor-Reaching Radiances for a Zero-Reflectance Bottom 

The spectra with the greatest radiance in the plot are from the water sample 14, which 

contained the highest values of chlorophyll-a and TSS. The characteristics of the spectra 

for the sample 14 agree with the physics of the situation, a high TSS concentration 

increases the radiance, and the high CDOM value for this sample decreases the radiance 

at wavelengths < 600 nm. 

The next figures, 5.59,5.60, and 5.61, plot the sensor-reaching radiances for 

various water types and bottom types at 0.5 m, 1 m, and 30 m respectively. In Figs. 5.59 

and 5.60, the plots for each water type are grouped by color, based on bottom type, for 

legibility purposes. The 30 m plot does not show which bottom type the spectra represent 
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because at 30 m, the water is deep enough that the bottom has no influence on the 

radiance. These spectra were used as the deep water data in the application of the 

algorithm to the HydroMod output. 

0.5 m 
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Figure 5.59 Sensor -Reaching Radiances at Depth of 0.5 m 
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Figure 5.60 Sensor-Reaching Radiances at Depth of 1 m 
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Figure 5.61 Sensor-Reaching Radiances at Depth of 30 m 

Aside from the radiances calculated for the HydroMod green algae bottom, the other 

radiance spectra are similar in shape. At one point, an area of the C9 Ginna image was 

selected, that was known to contain red rocks on the bottom, and a z-profile (where z = 

wavelength) of the radiance spectra at each wavelength was collected using ENVI. Then, 

a crude procedure was implemented to try to match the shape of the z-profile to the shape 

of the radiance spectra output from the HydroMod runs. The z-profile matched to one of 

the Ontario sand spectra by minimizing the RMS error between the z-profile and the 

HydroMod radiance spectra. Several other areas in the image known contain some type 

of rock bottom matched to Ontario sand spectra as well. This seems to be because there 

is not a significant difference in the output spectra from HydroMod, especially in the 24 

bands that were retained from the MISI image. 
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5.6 PCR 

The principal components regression was attempted on the HydroMod outputs. 

The deep-water correction was performed by subtracting the 30 m spectra generated by 

HydroMod from the spectra generated for the other depths, and then taking the natural 

log of the result. The principal components analysis was then performed on the 

linearized data. Fig. 5.62 is the plot of the eigenvalues from the PCA. 

Figure 5.62 Eigenvalues from the PCA on Model Data 

The first principal component accounts for 80.5% of the variability in the data, the second 

for 11.3 %, and the third for 3.5%. Depth accounts for 80% of the variability in the data. 

Next, the first three principal components were regressed against the inputs, depth, 

bottom type, and water type in order to obtain regression coefficients. The regression 

failed with regard to bottom type and water type because the inputs, numbers 

representing the bottom type or water type, had no physical meaning and regression does 

not work on categorical data. The regression predicted the depth with an RMS error of 
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0.82 m which is not very accurate because it is greater than one of the depths the 

regression is attempting to predict. The depth does not account for 100% of the variation 

in the data. The effects of depth, bottom type, and water type cannot be completely 

separated and still have some influence on one another even after principal components 

analysis. 

The images of Ginna discussed in previous sections were transformed into Y and 

Yi using the algorithm and then the depth regression coefficients determined from the 

HydroMod model data were applied to see what depths would be predicted (Figs. 5.63- 

5.65). Then, these values were compared to actual ground truth. 

Figure 5.63 Quantitative Depth Results for Ginnajeft 

117 



Figure 5.64 Quantitative Depth Results for Ginna_right 

Figure 5.65 Quantitative Depth Results for Ginnamiddle 
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Some fairly reasonable estimates were made of depth. However, there are some 

limitations to using the PCR for this application which will be discussed in the following 

chapter. 
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Chapter 6 

Conclusion 

Recently, increased attention has been given to studying shallow water to include 

the effects of bottom reflectance. Great potential exists for determining qualitative water 

depths and bottom type maps in the shallow coastal waters of Lake Ontario. The 

implementation of Philpot's (1989) principal components algorithm was successful under 

certain conditions. The approach used in this research to determine quantitative depth 

and bottom type information had serious limitations, but introduced the concept of 

incorporating the radiative transfer model, HydroMod, into this type of bathymetric 

research. 

Philpot's method (1989) was chosen for implementation for a number of reasons. 

The first was ease of implementation. The algorithm consists mainly of a deep-water 

correction and principal components analysis (PCA), which was easy to implement 

because there are PCA programs available. The principal components algorithm was 

more flexible than other methods for bottom type mapping and water depth 

determination, because the main assumptions of Philpot's algorithm (1989) are vertically 

homogeneous water and constant water type. In addition, the algorithm takes advantage 

of the hyperspectral nature of the MISI images upon which it was implemented.   The 

algorithm was implemented in a variety of situations on a MISI image (C9) taken 3 

September 1999 on a perpendicular flight path over the Ginna power plant. This 
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particular image was selected for its perpendicular nature because there were more deep- 

water areas than in the parallel-to-shore images. Another benefit of the perpendicular 

image is that the deep water can be selected from an area of the image that has the same 

ground instantaneous field of view as the shallow water area that is being processed. 

Therefore, the deep water contains the same atmospheric conditions and lighting 

conditions as the shallow water from which it is being subtracted, which is important 

since the angular effects were not taken into account. In addition to the image near the 

Ginna power plant, an image taken on 5 July 2000 near Ontario Beach was processed in 

order to analyze the potential of the algorithm for future algae distribution mapping. 

First, the entire shallow area in the C9 image taken near Ginna was processed by 

selecting different areas of the image for deep water. The selection of deep water had a 

great impact on the results of the processing. Substantial non-linearities occurred when a 

deep water area included different water types. One example included selecting deep 

water over the entire width of the image. This particular image contained different water 

types that were visible from the image itself, as shown in the C9 image of Ginna (Fig. 

6.1). 
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Different 
water types 

Figure 6.1 C9 image near Ginna power plant 

By selecting the deepwater pixels over the entire width of the image, part of the light 

water from the left side of the image was included. The same light water does not appear 

in the shallow water areas of the image. The qualitative depth and bottom type maps 

from this particular example (Fig. 6.2 and 6.3) are inaccurate. 

Figure 6.2 XII - deepwater of entire image  Figure 6.3 Xi - deepwater of entire image 
(-Depth) (-Bottom type) 
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The bottom type map shows none of the bottom type variations that were visible from the 

image itself. The interpretation of the depth map is that the water becomes deeper 

moving away from shore and then becomes shallow again nearing the left edge of the 

image, where the lighter water occurs. Better results are obtained by selecting deepwater 

pixels from the right side of the image where the water appears to be more consistent 

with the water over the shallow areas. The scatter plot is significantly more linear than 

the plot obtained from the previous example. However, though they were improved over 

the example using deepwater from the entire width of the image, the bottom type map 

and water depth map (Fig. 6.4 and 6.5) were still inaccurate. 

Figure 6.4 Yy using deep water from right      Figure 6.5 Yj_ using deep water from right 
(-Depth) (-Bottom Type) 

The depth map still showed the trend of the water getting deeper and then shallower 

moving away from shore, which ground truth and bathymetry disproved. 

The nonlinearities of the above examples result from the deepwater correction, 

because several pixels are averaged to form a single deep-water observation, used to 
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linearize the entire shallow-water image. If the deep-water pixels contain different water 

types and/or if the shallow-water image contains different water types, the deep-water 

correction will lead to errors caused by these different water types. 

The algorithm is more successful over smaller sections of the image because there 

is typically less variation in smaller portions. When a shallow water area from the right 

side of C9 is processed with deep-water pixels from the same columns of the image, the 

results are very intuitive. The water increased in depth moving further away from shore 

(Fig.6.6). The bottom type map (Fig. 6.7) picked up on bottom type variations that were 

visible in the image itself, but the bottom maps are somewhat correlated with depth. 

Figure ö.öjf^-depth) for Ginna_right Figure 6.7 Yx (-bottom type) for 
Ginna_right 

Two additional sections of the image were chosen for processing because the 

corresponding deep-water pixels appeared to be of the same water type. The shallow 

water images overlapped and the interesting feature was a "trench" that appeared in both 
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of them. Some inaccuracies are still evident in these smaller images due to the presence 

of the lighter water and also variant lighting conditions. 

The assumptions of the algorithm restrict its application to areas that contain 

invariant water type and atmospheric conditions. Another limitation involved in using 

the Case 2 assumptions (variable depth, variable bottom type, constant water type) is that 

the image must contain depth variation as well as bottom type variation. The images 

must be pre-processed to reduce noise effects, and as is evident in using the MISI images, 

the NIR bands may have to be deleted because they may contain mostly noise and very 

little signal. The NIR bands carry little information because these wavelengths do not 

penetrate very far into the water. The PCA picks up on any variation in the data; if there 

is significant noise, it becomes one of the main sources of variation. If the image 

contains land pixels, these must be masked out to eliminate land variability. 

The flexibility and multiplicity of utilities that Hydro Mod has was demonstrated 

here. For a variety of bottom types, water types, and depths, water leaving radiances 

were generated for a particular atmosphere to be used as a calibration model for a 

Principal Components Regression. HydroMod radiance outputs matched expectations 

based on knowledge of the effect that aquatic component concentrations have on 

reflectance spectra. One of the September 3,1999 Ginna water samples contained a 

relatively high amount of chlorophyll-a and total suspended solids, which could be seen 

in the spectrum of sensor-reaching radiances. The sample with high chlorophyll and TSS 

peaked in the green due to the chlorophyll and was significantly brighter than the other 
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spectra, which is characteristic when there is high TSS. This sample was collected from 

an area near the left side of the image, (Fig. 6.8), in the lighter water (A), which 

corresponds to the brighter spectra for this sample. 

Figure 6.8 Smaller portion of Image C9 (Ginna) 

For the 24 bands retained while working with the Ginna images, and also the 

HydroMod data, there was not significant difference between the shape of the spectra 

over the various bottom types, although there was some difference in magnitude. This is 

the reason why the z-profile method of verifying bottom type did not work. An area of 

the image that appeared to be a different bottom type was selected and then a z-profile of 

some of the pixels in that area were averaged and normalized. When all of the 

HydroMod spectra were normalized in an attempt to match the shape of the image z- 

profile to the normalized HydroMod spectra, the z-profile of the image bottom type 

consistently matched to Ontario sand. There was not enough variation in the spectra, 
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with the exception of HydroMod algae; however, there did not appear to be any areas in 

the image that consisted of HydroMod algae. 

The Principal Components Regression approach to determining quantitative 

results from the algorithm had some success with the depth information, although there 

are serious limitations to this approach. PCR attempts to reduce the collinearity in the 

data, which is a problem for other linear regression models, by regressing the 

concentrations on the PCA scores as opposed to the constituent concentrations 

themselves. PCA can also have problems with collinearity, though, if the concentrations 

of two important constituents in the calibration samples are always present in the same 

ratio. The PCR was calibrated using the radiance outputs from HydroMod, for which the 

input "concentrations" of depth, water type, and bottom type were known. One limitation 

of this approach is that the model is scene-specific - the atmosphere, bottom types, and 

water types, are for a specific location and day. Another limitation is that determining 

the bottom types and water types for the scene is somewhat arbitrary. There are mixed 

bottom types at Ginna, containing some sand, some algae and some rock in mixed 

patches. It is difficult to model the radiance that comes from this mixture of bottom 

types. 

The PCR on depth information resulted in a 0.82 m RMS error, which is not very 

accurate considering one of the inputs was 0.5 m. However, the depth estimates were 

somewhat consistent with the actual depths. The PCR on bottom type and water type 

information did not perform at all because regression does not work on categorical data, 
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which is grouped in categories with no ordinal significance. No information was 

gathered from PCR on these two inputs; each bottom type and water type were simply 

assigned a number to represent them, with no physical meaning to the number. More 

work needs to be done in this area, looking at categorical data analysis, or perhaps 

figuring out another way to relate categorical data to a principal component. 

The eigenvector analysis on the model data showed that over 80% of the 

variability in the data is contained in the first principal component, and therefore is due to 

depth. Only 11.3% of the variability is due to bottom type. As discussed earlier, there 

was not significant variability in the radiance spectra. This method would perhaps work 

better in the Ontario Beach area where there are two bottom types that differ 

significantly, algae (or the rock it grows on) and sand. Another consideration is how 

many bands are retained; some of the bands that are deleted may contain most of the 

variability between bottom types. 

Another limitation of PCR is that there is no guarantee that the largest common 

variations will be related to changes in the constituent concentrations (Galactic 2000). 

PCR will suffer if the constituent concentrations are collinear, which can be avoided by 

using many observations. 

Regression coefficients for depth were obtained through PCR and applied to the 

actual image data from the C9 image of Ginna. The results were reasonable, although the 

approach is somewhat arbitrary. There is no indication of how many different bottom 

types, water types, or depths are needed to adequately calibrate the regression. 
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Monroe county is interested in the location of benthic algae near Ontario Beach in 

an attempt to manage the problem of dead algae washing up in the recreational areas. 

Some preliminary analysis was done to see if Philpot's algorithm (1989) would be of use 

in addressing the problem. A July 5,2000 image taken parallel to shore, near the Ontario 

Beach area, was processed with the algorithm. Only a small section of the image was 

used due to noise, missing lines, and sun glare that runs down the middle of the image. 

The image, C2 is shown in Figure 6.9. 

Figure 6.9 C2 - Image near Ontario Beach 

The results of this processing were very encouraging for future work in this geographic 

area of the lake. There are predominantly two bottom types in the area - sand and rock 

with some algae growing on it. There were "ridges" in the image that was processed, as 

evidenced by the depth map and confirmed with ground truth. Also, the ridges were 

alternating bottom types, according to the map created using the second eigenvector and 

confirmed by ground truth. One of the characteristics of this image is that bottom type 

and depth are correlated, where there is sand, the water is shallower, and vice versa. The 
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effects of illumination conditions affected the right side of the depth map, which 

indicated that the water was shallow at the furthest point from shore. This is due to the 

glint that is down the center of the image C2 (Fig. 6.9), evidenced in the brighter right 

side of this portion of the image. The deep water was selected from a different portion of 

image C2, that is at a different angle from the shallow portion of the image, but the angle 

effects have not been analyzed here. This is an area for future study especially if most of 

the images that are being worked with are parallel to shore. 

Images that are perpendicular to shore, or at least taken at a higher altitude, are 

better because there are more deepwater pixels. Images taken perpendicular to shore can 

take advantage of having deepwater pixels at the same angle from nadir as the portion of 

the image that is of interest. More perpendicular flight lines need to be planned for data 

collections. 

Further work needs to be performed in taking advantage of the HydroMod data. 

Both the inputs and outputs for various conditions are known. The capability of this 

approach to relate depth to the principal components using the HydroMod data should be 

considered at the Ontario Beach area where there are two distinct bottom types. 

Implementing Philpot's (1989) algorithm on MISI data was challenging, but 

under the proper conditions, it performed reasonably well in obtaining qualitative depth 

and bottom type information. There is definite promise in using this algorithm to process 

the Ontario Beach images to determine algae distributions in the area. HydroMod also 

has potential in this area; however, it needs to be developed further. 
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DIRS Research 

The Modular Imaging Spectrometer 
Instrument (MISI) 

Modular Imaging Spectrometer Instrument (MISI) 

The Digital Imaging and Remote Sensing Group 
at RIT has constructed an imaging spectrometer 
called the Modular Imaging Spectrometer 
Instrument which is a line scanner with a 6" 
rotating mirror coupled to a Cassegräin telescope 
of focal ratio f/3.3. Two 0.5mm square silicon 
detectors (broad-band visible) and two 1.5mm 
fiber optics are placed at the primary focal plane 
to give a GEFOV of 0.3 m and 1.0 m respectively 
at 0.3 km of altitude. The fibers lead to two 
separate 36-channel spectrometers to cover the 
EM spectrum from 0.440um to 1.020um in 
O.OlOum spectral bands. A pyramid mirror 
diverts some photons from the primary focal 
plane to five HgCdTe detectors for the long-wave 
infrared region; secondary focal planes are 
available in the SWIR and MWIR for future use 
(Feng, 1995). An on-board calibration system 
consisting of two blackbodies for the LWIR and a 
tungsten source for the visible completes this 
imaging system for gathering absolute 
radiometrically calibrated data for remote sensing 
applications. 

The system is designed to serve as: 

an airborne laboratory for earth observation 
research 
a high resolution under-flight system for 
high-altitude aircraft and satellite sensor 
performance evaluation 
a versatile data collection platform for 
acquiring imagery to be used in algorithm 
development and evaluation for 
reconnaissance and environmental 
application 
and as a survey instrument for 
demonstration and proof-of-concept 
studies of image analysis methods in areas 
such as energy conservation, water quality 
assessment, and hazardous waste site 
management 
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An AutoCad schematic of MISI 
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The MISI Optical System 

The Spectral Calibration of MISI 

The Thermal Calibration of MISI 

Web Reference: 

Feng, Xiaofan., "Design and Performance of a 
Modular Imaging Spectrometer Instrument", 
Rochester Institute of Technology Ph.D. 
Dissertation, (1995). 
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DIRS Web Resources 

First Line-Scan Image Taken by the 
Broad-Band Visible Detectors on the 
MISI of the Rochester Skyline 
(12/02/95). 

First Line-Scan Image Taken by the 
Broad-Band Visible Detectors on the 
MISI of the RIT Dormitories (12/02/95). 
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DIRS Research 

The MISI Optical System 

The overall optical system with the various focal 
planes is shown in the figure. The 6-inch clear 
aperture scan mirror will spin at up to 40 revolutions 
per second and folds the image onto a second fold 
rnirror which reflects the image into the Dall- 
Kirkham Cassegrainian-style telescope. The 
converging image is split onto four slightly off-axis 
(less than 2 degrees) focal planes by a four-sided 
pyramid mirror. The on-axis rays pass through a hole 
in the center of the pyramid mirror and are used to 
sample the visible/near-infrared EM region. Of the 
four off-axis focal planes, two are in the along-track 
scan direction (one fore and one aft of the primary 
optical axis) and two are in the cross-track direction 
(one leading, one lagging the primary optical axis). 
Presently, only the on-axis (VIS/NIR) and cross- 
track (long-wave infrared) focal planes are utilized. 
The along-track focal planes are intended for 
additional detector modules. The modular nature of 
the focal planes allow for easy addition of new 
detectors arrays or modification of the existing ones. 
The total field-of-view is 90 degrees (plus/minus 45 
degrees) with calibration standards being viewed 
within every full rotation. 

MSIMwwfusM 

Line-Scanner Optical Schematic 
Showing Complete Radiation 
Path From Ground 
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DIRS Research 

Spectral Calibration of MISI Spectrometer Channels 

With hyperspectral imaging, the absolute spectral, 
calibration is extremely important since the 
detector response function is convolved with the 
estimate of the radiance-at-the-sensor (during the 
inversion to reflectance process). The detector 
response function itself (for typical hyperspectral 
systems) is completely characterized by the 
center wavelength and FWHM (full width half- 
max) of the gaussian. Errors in center spectral 
wavelength because of poor spectral calibration 
technique can result in gross radiometric errors 
when performing analysis on spectral features of 
ground targets that require spectral match-up. 

By illuminating a spectroradiometer with a stable 
spectral line source, such as Mercury or Argon 
lamp, the spectroradiometer can be spectrally 
calibrated to tolerances tighter than 0.1 nm. The 
spectroradiometer can then be used illuminate the 
hyperspectral sensor array with narrow 
bandwidth light to find the maximum spectral 
response point (center) and FWHM of the 
typically Gaussian detector response function. 
From a discrete, fine scan through the visible 
wavelengths, the detector response functions for 
each channel of the imaging spectrometer can be 
determined. This spectral scan can also be used to 
find cross-talk between spectral channels as well 
as determine if there is grating misalignment in 
the hyperspectral imager. 
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Overhead view of absolute radiometric 
calibration set up. 

A Mercury line source is used to 
calibrate the monochromator. 

140 

http://www.cis.rit.edu/research/dirs/reseaixh/spectraI_caLhtml 8/17/00 



A broad-band source is then put through 
the monochromator (illumination with 
2.5nm bandwidths of light), collimated 
(since the MISI optics are focused at 
infinity), and detected at the 
spectrometer focal plane. 
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Appendix B: 
IDL Programs 
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PRO deepwater, deepwater_mean 

NAME: 
deepwater 

PURPOSE: 
Read in the area that has been selected as "deep water" from 
the MISI image.  It will average the pixels over each band in 
the image, returning a vector. 

EXPLANATION: 
Program called by runpca_ginna.pro for use in deepwater 
subtraction 

CALLING SEQUENCE: 
deepwater, deepwater_mean 

INPUT PARAMETERS 
None.  The deepwater_filename is hardcoded into this procedure. 
MISI images must be read into an intarr() because they are 
unsigned integer 

OUTPUT PARAMETERS 
deepwater_mean = a 1 column by zsize vector which contains the 
average of the pixels over each band 

NOTES: 
Make sure that the deepwater_filename corresponds to the image 
that is being processed with runpca_ginna.pro 

REVISION HISTORY: 
Nikole Wilson    November 1999 

;Name of the deepwater file.  Assumes file is BSQ and hardcoded 

deepwater_filename='/dirs/home/nlw4923/C9/ginna_right_deep' 

Dimensions of the deepwater image hardcoded 
xsize=308.0 ; Number of columns in deepwater image 
ysize=16.0  ; Number of rows in deepwater image 
zsize=24.0  ;number of bands 

;Print size of deepwater image before read to check dimensions 
print, "size of deepwater filename" 
print, size(deepwater_filename) 

;Reading in the deepwater image 
deepwater_image = intarr(xsize, ysize, zsize) 

print, "size of deepwater image before read" 
print, size(deepwater_image) 

openr,lun,deepwater_filename,/GET_LUN 
readu,lun,deepwater_image 
close,lun 
Free_LUN,lun 

;Print size of deepwater image after read 
print, "size of deepwater image" 
print, size(deepwater_image) 
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;Getting MI SI image calibrated radiance values into uW/cmÄ2srA-lnmA-l 
;because these are the units on the HydroMod output 
deepwater_image=temporary(deepwater_image)/100.0 

;Setting up the array which will hold the average value in each of 
;the z bands 

deepwater_mean=fltarr(zsize) 

for i=0,(zsize-1) do begin 
sum = total(deepwater_image[*,*,i]) 
deepwater_mean[i]=sum/(xsize*ysize) 

endfor 

;Printing out the average of the deepwater image 
print,'deepwater mean' 
print,deepwater_mean 
print,size(deepwater_mean) 

deepwater_mean=transpose(temporary(deepwater_mean)) 

END 
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PRO runpca_ginna,shore_image,a,eigenval,percentages,x,final,yest 

NAME: 
runpca_ginna 

PURPOSE: 
Implements Philpot's principal components algorithm (1989)on a 
MISI image. Also applies the regression coefficients obtained 
through principal components regression on HydroMod model data 
in pcrtest.pro 

EXPLANATION: 
The pc scores are stored in the parameter, final 
which can be imported into ENVI.  The first band in final 
corresponds to the data multiplied by the first eigenvector, 
which provides depth information.  The second band in final 
corresponds to bottom type information. 

CALLING SEQUENCE: 
runpca_ginna, shore_image,a,eigenval,percentages,x,final,yest 

INPUT PARAMETERS: 
None.  The shore_image is read into the procedure.  It must be 
read into an intarr because the MISI data is in unsigned integer. 
The regression coefficient matrix, b, is also read in. 

OUTPUT PARAMETERS: 
shore_image: the MISI image being processed by the algorithm 
a = zsize by zsize matrix containing the eigenvectors 
eigenval = zsize element vector containing the sorted eigenvalues 
percentages = zsize element vector containing the cumulative 

percentage variances associated with the 
principal components 

x = xsize x ysize x zsize matrix of deepwater-corrected data 
(linearized data) 

final = xsize x ysize x zsize matrix of transformed data. 
Obtained by multiplying the matrix x by a.  The first 
band is the matrix Y, which corresponds to depth 
information and is a qualitative depth map.  The second 
band is the matrix Y"\     which corresponds to bottom 

type 
information and is a qualitative bottom type map 

yest = 1 x h vector of quantitative depth information obtained by 
applying the regression coefficients, b, to the first 
score (1st eigenvector x the data) 

NOTES:  The land must be masked in shore_image and set to a value of 
-1 so the land pixels are not included in the principal 
components analysis.  The radiance values in shore_image are 
changed from calibrated radiances to uW/cmA2sr/S-lnm"-l 
so the image data is in the same units as the HydroMod output 

PROCEDURES CALLED: 
deepwater,astrolib,pca 

REVISION HISTORY: 
Nikole Wilson November 1999 
Added ability to process just the unmasked data N. Wilson Jun '00 
Algorithm taken from Philpot (1989) 
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H 

;Call deepwater procedure to read in the deepwater average vector 
deepwater,deepwater_image,deepwater_mean 
deepwater_mean=transpose(temporary(deepwater_mean)) 

;Opening shore_image 

shore_filename='/dirs/home/nlw4923/C9/ginna_right' 
;Setting up array for shore image 
xsize=308.0 
ysize=284.0 
zsize=24.0 
/Reading bsq shore image into an array 
shore_image=intarr(xsize,ysize,zsize) 

print, "size of shore image before read" 
print, size(shore_image) 

openr,lun,shore_filename,/GET_LUN 
readu,lun,shore_image 
close,lun 
Free_LUN,lun 

;Setting up shore image into a 2-d array with the pixels down the side 
;and the bands across the top 
g=xsize*ysize 
shore_image = reform(temporary(shore_image) ,g,zsize) 
;changing it to floating point data 
shore_image=temporary(shore_image)*1.0 
;changing calibrated radiances into uW/cm/s2sr"-lnm^-l 
shore_image=temporary(shore_image)/100.0 
;assigning water pixels to matrix "values" 
values=where(shore_image gt -.005,count);the mask value of -1 has been 

/changed due to changing the 
;units 

;setting up one band image with the mask values so the yest matrix 
;determined near the end can be reformed into the original spatial 
;information 
one_band=shore_image(*,*,0) 
values_one_band=where(one_band gt -0.005,values_count) 

h=count/zsize ;determining the number of observations that are just 
; water pixels for dimensioning purposes 

print,'shore_image has been reformed into a 2d matrix' 
print,'' 
print,'Size of shore_image:' 
print, size(shore_image) 
values_array=shore_image(values) 
print,'size of values array:' 
print,size(values_array) 
;Reforming the water pixels into an array with h columns and 
;zsize rows for the deepwater subtraction 
values_array=reform(temporary(values_array),h,zsize) 

/Setting up a unit vector as big as the shore image so I can multiply 
;it by the deepwater'mean in order to subtract 
;the mean matrix from the shore .image or vice versa if the mean matrix 
;value is larger than the shore_image value 
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mean=fItarr(h,zsize) 

temp=(replicate(1.0,h,1)) 
print,'unit vector has been set up' 
print,size(mean) 
mean=deepwater_mean##temp 
print,'mean_matrix has been created' 
print,size(mean) 
print,size(shore_image) 

;Deepwater subtraction 

;Subtract mean_matrix from shore_image. 
x=fltarr(h,zsize) 
;for i=0L,(g-1) do begin 
for i=0L,(h-1) do begin 

for j=0,(zsize-1) do begin 
if (values_array(i,j) gt mean(i,j)) $ 
then x(i,j)=(values_array(i,j)-mean(i,j)) else  $ 
x(i,j) = (mean(i,j)-values_array(i, j)) 

endfor 
endfor 

print,'just ran loop' 
print,size(x) 

;Take natural log of non-zero data 
logx= x*1.0 
templogx=alog(x(where(x ne 0))) 

logx(where(logx ne 0))=templogx 
print,'Performed natural log function' 

data=fltarr(zsize,h) 
data=transpose(logx) 
print,'data' 
print,size(data) 

,-Reshaping linearized .data (X) into original size image 
shore_image(values)=logx 
x=reform(shore_image,xsize,ysize,zsize) 

data=transpose(temporary(data)) 

/Calling astrolib procedure to run two procedures that are required 
;for PCA.pro 
astrolib 
/Running PCA.pro, 
PCA,data,eigenval,eigenvect,percentages,/covariance,/silent 

plot,eigenval 

a=eigenvect 
scores=transpose(a)##data 
shore_image(values)=scores 
final=reform(shore_image,xsize,ysize,zsize) 
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scores=trans'pose (scores) 
xforpcr=fltarr(2,63972) 
xforpcr(0,*)=1.0 
xforpcr(1,*)=scores(0,*) 
b=fltarr(l,2) 
fname='/dirs/home/nlw4923/C9/b' 
openr,unit,fname,/get_lun 
readf,unit,b 
close,unit 
free_lun,unit 

yest=xforpcr##b 

print,'size of yest:',size(yest) 

print,'done' 

end 
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PRO PCA, data, eigenval, eigenvect, percentages, proj_obj, proj_atr, $ 
MATRIX=AM,TEXTOUT=textout,COVARIANCE=cov,SSQ=ssq,SILENT=silent 

+ 
NAME: 

PCA 

PURPOSE: 
Carry out a Principal Components Analysis (Karhunen-Loeve 

Transform) 
EXPLANATION: 

Results can be directed to the screen, a file, or output variables 
See notes below for comparison with the intrinisc IDL function 

PCOMP. 

CALLING SEQUENCE: 
PCA, data, eigenval, eigenvect, percentages, proj_obj, proj_atr, 

[MATRIX =, TEXTOUT = ,/COVARIANCE, /SSQ, /SILENT ] 

INPUT PARAMETERS: 
data -  2-d data matrix, data(i,j) contains the jth attribute 

value 
7 
total 

the 

for the ith object in the sample.    If N_OBJ is the 

number of objects (rows) in the sample, and N_ATTRIB is 

total number of attributes (columns) then data should be 
dimensioned N_OBJ x N_ATTRIB. 

OPTIONAL INPUT KEYWORD PARAMETERS: 
/COVARIANCE - if this keyword is set, then the PCA will be carried 

out 

the 
on the covariance matrix (rare), the default is to use 

correlation matrix 
/SILENT - If this keyword is set, then no output is printed 
/SSQ - if this keyword is set, then the PCA will be carried out on 

on the sums-of-sguares & cross-products matrix (rare) 
TEXTOUT - Controls print output device, defaults to !TEXTOUT 

textout=l      TERMINAL using /more option 
textout=2      TERMINAL without /more option 
textout=3      <program>.prt 
textout=4      laser.tmp 
textout=5     user must open file 
textout = filename (default extension of .prt) 

OPTIONAL OUTPUT PARAMETERS: 
eigenval - N_ATTRIB element vector containing the sorted 

eigenvalues 
eigenvect - N.ATRRIB x N_ATTRIB matrix containing the 

corresponding 
; eigenvectors 

percentages - N_ATTRIB element containing the cumulative 
percentage 
; variances associated with the principal components 

proj_obj - N_OBJ by N_ATTRIB matrix containing the projections of 
the 
; objects on the principal components 

proj_atr - N_ATTRIB by N_ATTRIB matrix containing the projections 
of 
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the attributes on the principal components 

OPTIONAL OUTPUT PARAMETER 
MATRIX  = analysed matrix, either the covariance matrix if 

/COVARIANCE 
is set, the "sum of squares and cross-products" matrix if 

' /SSQ is set, or the (by default) correlation matrix. 
Matrix 

will have dimensions N_ATTRIB x N_ATTRIB 

NOTES 

Loeve 

Data 

This procedure performs Principal Components Analysis (Karhunen- 

Transform) according to the method described in "Multivariate 

Analysis" by Murtagh & Heck [Reidel : Dordrecht 1987], pp. 33-48. 

Keywords /COVARIANCE and /SSQ are mutually exclusive. 

The printout contains only (at most) the first seven principle 
eigenvectors.   However, the output variables EIGENVECT contain 
all the eigenvectors 

Different authors scale the covariance matrix in different ways. 
The eigenvalues output by PCA may have to be scaled by 1/N_0BJ or 
1/(N_0BJ-1) to agree with other calculations when /COVAR is set. 

PCA uses the non-standard system variables 1TEXT0UT and 
TEXTUNIT.. 

These can be added to one's session using the procedure ASTROLIB. 

The intrinisc IDL function PCOMP (introduced in V5.0) duplicates 
most 

most of the functionality of PCA, but uses different conventions 
and 

normalizations.   Note the following: 

(1) PCOMP requires a N_ATTRIB x N_OBJ input array; this is the 
transpose 
;        of what PCA expects 

(2) PCA uses standardized variables; use /STANDARIZE keyword to 
PCOMP 
; for a direct comparision. 
;   (3) PCA (unlike PCOMP) normalizes the eigenvectors by the square 
root 
#" of the eigenvalues. 

(4) PCA returns cumulative percentages; the VARIANCES keyword of 
PCOMP 

returns the variance in each variable 

EXAMPLE: 
Perform a PCA analysis on the covariance matrix of a data matrix, 

DATA, 
and write the results to a file 

IDL> PCA, data, /COVAR, t = 'pca.dat' 

Perform a PCA analysis on the correlation matrix.   Suppress all 
printing, and save the eigenvectors and eigenvalues in output 

variables 
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IDL> PCA, data, eigenval, eigenvect, /SILENT 

PROCEDURES CALLED: 
TEXTOPEN, TEXTCLOSE 

REVISION HISTORY: 
Immanuel Freedman (after Murtagh F. and Heck A.).    December 

1993 
Wayne Landsman, modified I/O December 1993 
Converted to IDL V5.0  W. Landsman  September 1997 
Fix MATRIX output, remove GOTO statements  W. Landsman August 

Changed some index variable to type' LONG   W. Landsman March 
1998 

2000 

On_Error,2    ;return to user if error 

; Constants 
TOLERANCE = 1.0E-5      ; are array elements near-zero ? 

; Dispatch table 

IF N_PARAMS() EQ 0  THEN BEGIN 
print,'Syntax - PCA, data, [eigenval, eigenvect, percentages, 

proj_obj, proj_atr,' 
Print,' [MATRIX =, /COVARIANCE, /SSQ, /SILENT, 

TEXTOUT=]' 
RETURN 
ENDIF 

SZ = size(data) 
if SZ[0] NE 2 THEN $ 
BEGIN 
HELP,data 
MESSAGE,'ERROR - Data matrix is not two-dimensional' 
ENDIF 

Nobj = sz[l]   & Mattr = sz[2]      ;Number of objects and attributes 

IF KEYWORD_SET(cov) THEN BEGIN 
msg =.'Covariance matrix will be analyzed' 

; form column-means 
temp = replicate (1.0, Nobj) 
column_mean = (temp # data)/Nobj 
X = (data - temp # transpose(column_mean)) 

ENDIF ELSE $ 
IF KEYWORD_SET(ssq) THEN BEGIN 

msg = 'Sum-of-squares & cross-products matrix will be analyzed' 
X = data 

ENDIF ELSE BEGIN 
msg = 'Default: Correlation matrix will be analyzed' 

; form column-means 
temp = replicate( 1.0, Nobj ) 
column_mean = (temp # data)/ Nobj 
X = (data - temp # transpose(column_mean)) 
S = sqrt(temp # (X*X)) & X = X/(temp # S) 
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ENDELSE 

A = transpose(X) # X 
if arg_present(AM) then AM = A 

; Carry out eigenreduction 
trired, A, D, E ; D contains diagonal, E contains off- 

diagonal 
triql, D, E, A ; D contains the eigen-values, A(*,i) - 

vectors 

; Use TOLERANCE to decide if eigenquantities are sufficiently near zero 

index = where(abs(D) LE TOLERANCE*MAX(abs(D)),count) 
if count NE 0 THEN D[index]=0 
index = where(abs(A) LE TOLERANCE*MAX(abs(A)),count) 
if count NE 0 THEN A[index]=0 

index = sort(D) ; Order by increasing eigenvalue 
D = D[index] & E=E[index] 
A = A[*,index] 

; Eigenvalues expressed as percentage variance and ... 
Wl = 100.0 * reverse(D)/total(D) 

;... Cumulative percentage variance 
C = replicated., Mattr, Mattr) 
for j = 1L, Mattr-1 do C[0,j] = fltarr(j) 
W = C # Wl 

;Define returned parameters 
eigenval = reverse(D) 
eigenvect = reverse(transpose(A)) 
percentages = W 

; Output eigen-values and -vectors 

if not keyword_set(SILENT) then begin 
;      Open output file 

if not keyword_set( TEXTOUT ) then TEXTOUT = textout 
textopen,'PCA', TEXTOUT = textout 
printf,ITEXTUNIT,'PCA: ' + systime() 
szl = strtrim( Nobj,2) & sz2 = strtrim( Mattr, 2 ) 
printf,'TEXTUNIT, 'Data matrix has '+ szl + ' objects with up 

to ' + $ 
sz2 + ' attributes' 

printf,iTEXTUNIT, msg 
printf,ITEXTUNIT, " " 
printf,ITEXTUNIT, $ 

Eigenvalues    As Percentages      Cumul. 
percentages' 

for i = 0L, Mattr-1 do $ 
printf,ITEXTUNIT, eigenval[i], Wl[i], percentages[i] ,f = 

'(3fl5.4)' 
print f,!TEXTUNIT, " " 
printf,iTEXTUNIT, 'Corresponding eigenvectors follow...' 
Mprint = Mattr < 7 
header = ' VBLE  ' 
for i = 1, Mprint do header = header + '  EV-' + strtrim(i,2) + 

print f,!TEXTUNIT, header 
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for i = 1L, Mattr do printf,ITEXTUNIT, $ 
i, eigenvect[0:Mprint-l,i-l], f='(i4,7f9.4)' 

endif 

; Obtain projection of row-point on principal axes  (Murtagh & Heck 
convention) 
projx = X # A 

; Use TOLERANCE again... 
index = where(abs(projx) LE TOLERANCE*MAX(abs(projx)),count) 
if count NE 0 THEN projx[index]=0 
proj_obj = reverse( transpose(projx) ) 

if not keyword_set( SILENT ) then begin 
printf,ITEXTUNIT,' ' 
printf,ITEXTUNIT, 'Projection of objects on principal axes ...' 
printf,ITEXTUNIT,' ' 
header = ' VBLE 
for i = 1, Mprint do header = header + 'PR0J-' + strtrim(i,2) + 

printf,ITEXTUNIT, header 
for i = 0L, Nobj-1 do printf,ITEXTUNIT, $ 

i+1, proj_obj[0:Mprint-l,i], f='(i4, 7f9.4)' 
endif 

; Obtain projection of column-points on principal axes 
projy = transpose(projx)#X 

; Use TOLERANCE again... 
index = where(abs(projy) LE TOLERANCE*MAX(abs(projy)),count) 
if count NE 0 THEN projy[index] = 0 

; scale by square root of eigenvalues... 
temp = replicate( 1.0, Mattr ) 
proj_atr = reverse(projy)/(sqrt(W)#temp) 

if not keyword_set( SILENT ) then begin 
printf,ITEXTUNIT,' ' 
printf,ITEXTUNIT,'Projection of attributes on principal axes 

printf,ITEXTUNIT,' ' 
printf,ITEXTUNIT, header 
for i = 0L, Mattr-1 do printf,ITEXTUNIT, $ 

i+1, proj_atr[0:Mprint-l,i], f='(i4,7f9.4)' 
textclose, TEXTOUT = textout ; Close output file 

endif 

RETURN 
END 
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Appendix C: 
Standard Methods 

Chl-a process 
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MftR-25-1999 09:35  FROM ENVIR.HEALTH LflB TO 
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water, 
less 
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CHLOROPHYLL a 

HEALTH LABORATORY 
OPFRATI^fi PROrcnMR£cL__ 

CHLOROPHYLL a 

94755809      P.02 
v-i ii_vynv_/rriT 1_L a 

3/9/96 
■£A£E_1 

DESCRIPTION: j' 

al3ohnt llaT '^W^frtfr 1 t0 2% of the 4 ^ht of organic material 
A.S? ■      -S?        I 'I       PrefB,Ted *ndicat0r for al9af ^assi estimates. 
£^5n£      V7        meaSUr6S Ih9 am0unt 0f Photosyhthetic pigments in the ter, both Ch oronhv    a   anH it* Haor^«*; ..  . ■    . ra * ,w 

REFERENCE 

Standard Methods, 18th ed.,p.10-1S,10200H spectropjhotometric method (1992) 

ENVIRONMENTAL LABORATORY APPROVAL PROGRAM jiiSLAP) Method code 

SPECIAL SAFETY PRECAUTIONS:  See Material Safety DaL Sheets (MSDSI for: 

a. acetone [: 
b. magnesium carbonate, MgC03 ' ;• 
c. hydrochloric acid,  HCI, concentrated I 

PRECISION STATEMENT -based on 1996 data I. 

RANGE. 

<25 

>25 

//g/L 

MQ/l 

ANAI.YJF 

Uncor. Chlor a 
Cor. Chlor a 
Pheophytin 

Uncor. Chlor a 
Cor. Chlor a 
Pheophytin 

MEAN 

0.38 
0.74 
0.79 

7.3 
na 
na 

Og-96 
1186 

.   i 

n& 
ft* 
na 

i 

i 

U£L 

1.25 
2.41 
2.59 | 

24 
na 
na 

155 



MfiR-25-1999    09:36      FROM    ENUIR.HEALTH i_flB 

: ENVIRONMENTAL HEALTH LABORATORY 
= STANDARD OPERATlKfn PRnrpDURES 

TO 

VUf 

X. 

94755809      P.03 
VH1.VMU.  Ill t_i_ e! 

8/9/93 
 ._£AOE_2 

Vfll.  ACCURACY STATEMENT 

no «jxtehal standards are available for this analysis at tnis time 

. EQUIPMENT AND SUPPLIES 

I   ;    ■ ■ M ' 
No^e that all glassware must be acid-free 

A' DMitr<m^V°meM"' ""^ a T°W b3nd reso'^tion(Ctö7r^) Use the Varian 
DMS-90 UV-visible spectrophotometer. ^--?- r^ 

B.  Cuvjette.s - matched with 2 cm path length. ' 
J- IiS^H«.j9ldBäer. ground glass-ground glass - A H T' Co h 26 
D. Centrifuge - use the DYNAC in the ME Lab.    - ' * 
E. Centrifuge Tubes - 15ml glass - marked with line at 12 am   ■' 
r. Corljs - to stopper the centrifuge tube 
G. Rltrciioh equipment: '■ 

1.  Fitter unit 

H, Pasteur pipet with bulb 
I. Automatic pipettor adjusted to deliver 2.80 ml 
J. 1 mljgraduated pipet with pipetting bulb 
K. 250 fnl graduated cylinder 

IX! REAGENTS 

A. Magnesiym Carbonate Suspension 1 % 
add 

Note 

mix 
water 
90% 

1 .Oi g finely powdered MgC03 to 100 ml deionized distilled water. Stir well 
n-this will noj go into solution. we"' 

B.  Aqueous Acetone Solution,  90% (also known as 9 + I} • 
— 900 ml acetone (reagent grade BP 56 c) with 100 ml deionized distilled 

r. (ffinal vol. will be less than 1000 ml). 
Acetone Containing Magnesium Carbonate Suspension - 

0. l^&^SFÄf"above '00 m'of ma9n*si* <*'bo^ «-P-*» 
E. $Ü£ZZTt6d HCI t0 ' °° -'^* .****! dNlM —. 

Dilute 3;ml IN HCIto 30 ml. 
!   ; •    .: 

PRESERVATION AND HOLDING TIMES 
1. VolunU required: about 250 ml ;. 
2. Preservation: ■:'{■[ 

fiiterjwithin 24 hours, place filter with sample in a corked centrifuge tube  If the 
sample ,s then frozen and kept in the dark, it can be heltfup to 3 wJeks 
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MftR-25-199S 33:36  FROM ENUIR.HEALTH LflB 

'   ET I IV^u"^'AU "tALTH LABORATORY 
iU 

XI. PROCEDURE 

94755909      P.04 

8/9/96 
- PA££_£ 

exdessU linh, 1J h!„   «, Samp,es should be processed away from SSfX^ Msamples shouW ba -^ «* >— Ä 
A .Filtrating 

6, 

'■Sha^sampietomix. Using the graduated cylindar^aasura 250 ml of «ha 

2' t3ST*e iM0 ,he fi"erin9 "nit With the ,ilter ■"> *• W turn on the      : 

pr: Sä *ää^ filtef 4 ,,mss and 
5. If! the extraction is to be done « ^Jr^*   T      ;'f ^ St°Pper with a cork- J^n, h «he «?„-; =^S|=S^r 

Extraction- 

,-Ä» äE IUTä iu,b,rnd •*"•*inaiBe tha ,e™,a h°«<* 
not «s. an? »ca^^^Ä^^^n^"^ °' «^ °° 

2- Add 2 «liquot. - 2.8 mis eaoh of 90% acatona/ MgtO, uslnq tha 

3' S °n hj9h '° T" UP <iHer' Then' ,nssn the "** h»» of tha tissue 
^ andproq aed ,o grind tha ,i,tor remnants unfehe sampie Spieteiy 

4. Lilt tHe male half of the arindsr ear^firiiw *~A ,•       i- 

tfo f quo» 90% ÄC^T !"mt0 the fema,e h3,f W?th 

6  A3H olI° TIX and  ST the eXtraCt back imo th>* centrifuge tube 
6. Add one aliquot ~ 2.8 mis of 90%.aCet /MoC03 üJÄ, thiYV      *• 

thle gijinder. -«^«wjvig^ud us!l9 the automatic pipettor to 

7. Vortejj to rinse 2nd add rinse to centrifuge tube    '   ! '       : 

8. U^ngjthe pipettor, bring the volume in the centrifuge1 tube to 12 ml with Qftc/ 
acet./kusp.. Mix well with a Pasteur pipet Cork       ' ? '° 

..Place each centrifuge tube in a reck in a covered container 
i u. hepeat one in five samples and do two blanks   Whi£ *ii '«* *k , 

d^.lplaoa the tubas in ,ha ooidroom (4"cTand ,^t1Ä^?' 

Analysig- 

1. nemove rack from oofd room and placa tubas into whifa DYNAC can.rifuga <in 
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MflR-25-1399    09:37      FROM    ENUIR.HEALTH LAB 

teNVlKUNMENTAL HEALTH LABORATORY 
SIANDAtRCLOPERATiMr; PROCPHI IRFS 

TO 94755809      P.05 
uiiLunurriYLL a 

8/9/96 
 = EA£E_4 

irtto the cuvette, carefully so 
centrifuge tube. Fill only to 

(VIE area). 

jr. tk= o .<        , P3#   ° in tne Operation manüa . Use 90% acp-fvm» 

66*™ TBS ™a750nt 2" T™ "" ^ * "** 63° "m Ä 
it 847  ell^Hill Sm:   er° *he ,nstru"'e"t « 630 nrn. and check the zero 
iom ,h. .      T■     ?' SUb,raCt *e S"'9ht '««""S 'W zero fccnd at 750 nm 
l'°m the sample's absorbance at 750 nm    ' ; " 

&VrHe SamP'eS fr0m 'he Cer"ri,U9e and <"aM «»■** '" *e covered 

5' At™ ^ USed ,0 "* ** ">*'-. Ä— « the front, and 

6. Vjrtthia Pasteur pipet proceed to pipette the sample 
as net to disturb the sediment in the bottom of the 

the stem leaving room for HCI addition later 

tu*?6 COVer.°n thS CUVette' Wipe faces with « c»Än Kimwipe and check 
8 sSS^r ?eaK Th6n P,aCe CUVCtte ,n sP^roph6tomeTe" P '     " ^ 

9. Remove the cuvette and add 0 2 ml of 0 i w wri   -r?        *-~ 

**mix the SamP,e. Record the^^ aS^7^T aT waT at 

K tiT-   Ut n° m°re than 2 minUteS ^radding'the acid Note !n mult? 
Xu li

6/PeCtr°^0tOmeter PaUSSS for 10 -conds9after each wavelength  If 
ypu wait appro*. 45 sec. after adding the acid then start the sole   the le5 
750nm wavelengths will read between 1 min  15 W ZTt   P   ™' 

0. Dump the sample into waste container fo^eto^     " ' ^ 35 S*C' 

oW*££> Z™^*Pett0r fi" CWette ha,fwaV Ä 90% to rinse it, and 

12. F epeat steps #5 through #11 for each sample. 

Xtl  CALCULATIONS 

Th -ee parameters are determined: 

Uncorredted.jchlorophyil a, this includes both chlorophyll a and its deara^tinn 
product pheophytin a but subtracts out ch, b and ^Ä3S3 ; 

a{jJh/L) Jllj^^                                                                            extract x 10= 

I ml sampHe X cell path length cm.]   

B. Corrected chlorophyll a 
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X ml sample X cell path length cnuji 

C.  PHEOPHYTINa 

l?!^;^^:;^^'{^D^-°D75o))X |il extract x 10*] 

[ml sample x light path length cm? ?      ' 

PHEO a ic/g/L) 

Where a=y reading after acidification 
i     •; 

Xjll REPORTING 

1"; 
Detection limit is 0.1 ug./l. 

I      * 
gDJ^CEjjiRATiON RAM5F- 

i 

j   0.1 -9.9/,g/| 
■ '  .   i     : 

j   10- 100/ig/l 

£ !^^\<fi\sh^l0pdoc<5\ Y^ckiöCa , ?<?p 

REPORT T.n MgAPcoj 

.0.1   //g/| 
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Soak for 2 min in a second 100% propanol wash, filter, and add 
xylene. At least two washes are required; let the final one soak 
10 min before filtering. Trim the xylene-soaked filter and place 
on a microscope slide on which there are several drops of mount- 
ing medium.t Apply several more drops of medium to top of 
filter and install a cover glass. Carefully squeeze out excess 
mounting medium. Make the final mount permanent by lac- 
quering the edges of the cover glass. 

Count organisms using the most appropriate magnification. 
"Live" diatoms typically are red while "dead" ones are un- 
stained. Oil immersion is necessary for species identifications of 
diatoms and many other algae. Count either strips or random 
fields and calculate plankton densities per milliliter: 

No./mL = 
C x A, 
Ac x V 

where: 
C = number of organisms counted, 

A, = total area of effective filter before trimming and mounting, 

Ar = area counted (strips or fields), and 
V = volume of sample filtered, mL. 

3. References 

t Permount, Fisher Scientific Co., or equivalent. 
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10200 G.   Zooplankton Counting Techniques 

1. Subsampling 

Count entire samples having low Zooplankton numbers (<200 
zooplankters) without subsampling. However, most Zooplankton 
samples will contain more organisms than can be enumerated 
practically; therefore, use a subsampling procedure. Before sub- 
sampling, remove and enumerate all large uncommon organisms 
such as fish larvae in fresh water or coelenterates, decapods, fish 
larvae, etc., in salt water. Subsample by the pipet or splitting 
method. 

In the pipet method, adjust sample to a convenient volume in 
a graduated cylinder or Imhoff cone. Concentrating the plankton 
by using a rubber bulb and clear acrylic plastic tube with fine 
mesh netting fitted on the end is convenient and accurate (Figure 
10200:9). For picoplankton and the smaller microzooplankton, 
use sedimentation techniques described for concentrating phy- 
toplankton. Transfer sample to a beaker or other wide-mouth 
vessel for subsampling with a Hensen-Stempel or similar wide- 
bore pipet. Gently stir sample completely and randomly with the 
pipet and quickly withdraw 1 to 5 mL. Transfer to a suitable 
counting chamber. 

Alternatively, subsample by splitting with any of a number of 
devices of which the Folsom plankton splitter1 is best known 
(Figure 10200:10). Level splitter before using. Place sample in 
the splitter and divide into subsplits. Rinse splitter into the sub- 
samples. Repeat until a workable number (200 to 500 individuals) 
is obtained in a subsample. Exercise care to provide unbiased 
splits. Even when using the Folsom splitter unbiased subsamples 
cannot be unquestioningly assumed;2 therefore, count animals 
in several subsamples from the same sample to verify that the 
splitter is unbiased and to determine the sampling error intro- 
duced by using it. 

Another method permits abundance estimates of more equiv- 
alent levels of precision among taxa than obtained with either 

the Hensen-Stempel pipet or the Folsom splitter.3 Normal count- 
ing procedures tally organisms on the basis of their abundance 
in a sample. Therefore, in a sample with a dominant organism 
making up 50% of total numbers, the tally of the dominant taxon 
will be large and have a small error. However, error abouf the 
subdominants will increase as the tally of each taxon decreases. 
By accepting one level of precision, the technique3 has been 
developed to obtain the same error about dominants and sub- 
dominants, permitting quantitative comparisons between taxa 
over successive times or between stations. 

2. Enumeration 

Using a compound microscope and a magnification of 100 x., 
enumerate small Zooplankton (protozoa, rotifers, and nauplii) 
in a 1- to 5-mL clear acrylic plastic counting cell fitted with a 
glass cover slip. For larger, mature microcrustacea use a counting 
chamber holding 5 to 10 mL. A Sedgwick-Rafter cell is not 
suitable because of size. An open counting chamber 80 by 50 
mm and 2 mm deep is desirable; however, an open chamber is 
difficult to move without jarring and disrupting the count. A 
mild detergent solution placed on the chamber before counting 
reduces organism movements or special counting trays with par- 
allel or circular grooves or partitions4-5 can be used. Count mi- 
crocrustacea with a binocular dissecting microscope at 20 x to 
40 x magnification. If identification is questionable, remove or- 
ganisms with a microbiological transfer loop and examine at a 
higher magnification under a compound microscope. 

Report smaller Zooplankton as number per liter and larger 
forms as number per cubic meter: 

No./m3 C x V 
V" x V" 
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Figure 10200:9. A simple, efficient device for concentrating plankton. 
The tube is lowered into the beaker containing the sam- 
ple. Water filtering into the tube is removed with the 
rubber bulb. The filter is nylon monofilament screen 
cloth that is glued to the bottom of the tube. The mesh 
size should be sufficiently small to prevent zooplankters 
from entering the filtrate (after Dodson and Thomas5). 

I 

Figure 10200:10. The Folsom plankton splitter. 

where: 
C = number of organisms counted, . 
V = volume of the concentrated sample, mL, 
V" = volume counted, mL, and 

V" = volume of the grab sample, m\ 

To obtain organisms per liter divide by 1000. 
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5. DODSON, A.N. & W.H. THOMAS. 1964. Concentrating plankton in 
gentle fashion. Limnol. Oceanogr. 9:455. 

10200 H.   Chlorophyll 

The concentration of photosynthetic pigments is used exten- 
sively to estimate phytoplankton biomass.'-2 All green plants 
contain chlorophyll a, which constitutes approximately 1 to 2% 
of the dry weight of planktonic algae. Other pigments that occur 
in phytoplankton include chlorophylls b and c, xanthophylls, 
phycobilins, and carotenes. The important chlorophyll degra- 
dation products found in the aquatic environment are the chlo- 
rophyllides, pheophorbides, and pheophytins. The presence or 
absence of the various photosynthetic pigments is used, among 
other features, to separate the major algal groups. 

The three methods for determining chlorophyll a in phyto- 
plankton are the spectrophotometric,3"5 the fluorometric,6"8 and 
the high-performance liquid Chromatographie (HPLC) tech- 
niques.9 Fluorometry is more sensitive than spectrophotometry, 
requires less sample, and can be used for in-vivo measurements.10 

These optical methods can significantly under- or overestimate 
chlorophyll a concentrations,""'8 in part because of the overlap 
of the absorption and fluorescence bands of co-occurring acces- 
sory pigments and chlorophyll degradation products. 

Pheophorbide a and pheophytin a, two common degradation 
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products of chlorophyll a, can interfere with the determination 
of chlorophyll a because they absorb light and fluoresce in the 
same region of the spectrum as does chlorophyll a. If these pheo- 
pigments are present, significant errors in chlorophyll a values 
will result. Pheopigments can be measured either by spectro- 
photometry or fluorometry, but in marine and freshwater en- 
vironments the fluorometric method is unreliable when chloro- 
phyll b co-occurs. Upon acidification of chlorophyll b, the resulting 
fluorescence emission of pheophytin b is coincident with that of 
pheophytin a, thus producing underestimation and overestima- 
tion of chlorophyll a and pheopigments, respectively. 

HPLC is a useful method for quantifying photosynthetic 
pigments9131516"-2' including chlorophyll a, accessory pigments 
(e.g., chlorophylls b and c), and chlorophyll degradation prod- 
ucts (chlorophyllides, pheophorbides, and pheophytins). Pig- 
ment distribution is useful for quantitative assessment of phy- 
toplankton community composition and Zooplankton grazing 
activity.22 

1. Pigment Extraction 

Conduct work with chlorophyll extracts in subdued light to 
avoid degradation. Use opaque containers or wrap with alumi- 
num foil. The pigments are extracted from the plankton con- 
centrate with aqueous acetone and the optical density (absorb- 
ance) of the extract is determined with a spectrophotometer. The 
ease with which the chlorophylls are removed from the cells 
varies considerably with different algae. To achieve consistent 
complete extraction of the pigments, disrupt the cells mechani- 
cally with a tissue grinder. 

Glass fiber filters are preferred for removing algae from water. 
The glass fibers assist in breaking the cells during grinding, larger 
volumes of water can be filtered, and no precipitate forms after 
acidification. Inert membrane filters such as polyester filters may 
be used where these factors are irrelevant. 

a. Equipment and reagents: 
1) Tissue grinder:* Successfully macerating glass fiber filters 

m tissue grinders with grinding tube and pestle of conical design 
may be difficult. Preferably use round-bottom grinding tubes 
with a matching pestle having grooves in the TFE tip. 

2) Clinical centrifuge. 
3) Centrifuge tubes, 15-mL graduated, screw-cap. 
4) Filtration equipment, filters, glass fiberf or membrane (0.45- 

u.m porosity, 47-mm diam); vacuum pump; solvent-resistant dis- 
posable filter assembly, 1.0-p.m pore size;* 10-mL solvent-re- 
sistant syringe. 

5) Saturated magnesium carbonate solution: Add 1.0 g finely 
powdered MgC03 to 100 mL distilled water. 

6) Aqueous acetone solution: Mix 90 parts acetone (reagent- 
grade B'P 56°C) with 10 parts saturated magnesium carbonate 
solution. For HPLC pigment analysis, mix 90 parts HPLC-grade 
acetone with 10 parts distilled water. 

b. Extraction procedure: 
1) Concentrate sample by centrifuging or filtering as soon as 

possible after collection. If processing must be delayed, hold 
samples on ice or at 4°C and protect from exposure to light. Use 
opaque bottles because even brief exposure to light during stor- 

• Komcs Glass Co., Vineland, N.J. 0836(1: Glass/glass grinder, Model No. 8855: 
Glass/TEh grinder. Model 886000; or equivalent. 
t Whatman GF/F (0.7 u.m), GFB (1.0 u.m), Gclman AE (1 u,n),» or equivalent. 
I Gelnian Acrodisc or equivalent. 

age will alter chlorophyll values. Samples on filters taken from 
water having pH 7 or higher may be placed in airtight plastic 
bags and stored frozen for 3 weeks. Samples from acidic water 
must be processed promptly to prevent chlorophyll degradation. 
Use glassware and cuvettes that are clean and acid-free. 

2) Place sample in a tissue grinder, cover the 2 to 3 mL 90% 
aqueous acetone solution, and macerate at 500 rpm for 1 min. 
Use TFE/glass grinder for a glass-fiber filter and glass/glass grinder 
for a membrane filter. 

3) Transfer sample to a screw-cap centrifuge tube, rinse grinder 
with a few milliliters 90% aqueous acetone, and add the rinse 
to the extraction slurry. Adjust total volume to 10 mL, with 90% 
aqueous acetone. Use solvent sparingly and avoid excessive di- 
lution of pigments. Steep samples at least 2 h at 4°C in the dark. 
Glass fiber filters of 25- and 47-mm diam§ have dry displacement 
volumes of 0.03 and 0.10 mL, respectively, and introduce errors 
of about 0.3 and 1.0% if a 10-mL extraction volume is used. 

4) Clarify by filtering through a solvent-resistant disposable 
filter (to minimize retention of extract in filter and filter holder, 
force 1 to 2 mL air through the filter after the extract), or by 
centrifuging in closed tubes for 20 min at 500 g. Decant clarified 
extract into a clean, calibrated, 15-mL, screw-cap centrifuge tube 
and measure total volume. Proceed as in 2, 3, 4, or 5 below. 

2. Spectrophotometric Determination of Chlorophyll 

a. Equipment and reagents: 
1) Spectrophotometer, with a narrow band (pass) width (0.5 

to 2.0 nm) because the chlorophyll absorption peak is relatively 
narrow. At a spectral band width of 20 nm the chlorophyll a 
concentration may be underestimated by as much as 40%. 

2) Cuvettes, with 1-, 4-, and 10-cm path lengths. 
3) Pipets, 0.1-and5.0-mL. 
4) Hydrochloric acid, HC1, 0.1N. 
b. Determination of chlorophyll a in the presence of pheophytin 

a: Chlorophyll a may be overestimated by including pheopig- 
ments that absorb near the same wavelength as chlorophyll a. 
Addition of acid to chlorophyll a results in loss of the magnesium 
atom, converting it to pheophytin a. Acidify carefully to a final 
molarity of not more than 3 x 10"3Af to prevent certain acces- 
sory pigments from changing to absorb at the same wavelength 
as pheophytin a.13 When a solution of pure chlorophyll a is con- 
verted to pheophytin a by acidification, the absorption-peak- 
ratio (OD664/OD665) of 1.70 is used in correcting the apparent 
chlorophyll a concentration for pheophytin a. 

Samples with an OD664 before/OD665 after acidification ratio 
(664b/665a) of 1.70 are considered to contain no pheophytin a 
and to be in excellent physiological condition. Solutions of pure 
pheophytin show no reduction in OD665 upon acidification and 
have a 664^665. ratio of 1.0. Thus, mixtures of chlorophyll a 
and pheophytin a have absorption peak ratios ranging between 
1.0 and 1.7. These ratios are based on the use of 90% acetone 
as solvent. Using 100% acetone as solvent results in a chlorophyll 
a before-to-after acidification ratio of about 2.0.3 

Spectrophotometric procedure—Transfer 3 mL clarified ex- 
tract to a 1-cm cuvette and read optical density (OD) at 750 and 
664 nm. Acidify extract in the cuvette with 0.1 mL 0.1N HC1. 
Gently agitate the acidified extract and read OD at 750 and at 
665 nm, 90 s after acidification. The volumes of extract and acid 

§ GF/F ;>r equivalent. 
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and the time after acidification are critical for accurate, consistent 
results. 

The OD664 before acidification should be between 0.1 and 
1.0. For very dilute extracts use cuvettes having a longer path 
length. If a larger cell is used, add a proportionately larger vol- 
ume of acid. Correct OD obtained with larger cuvettes to 1 cm 
before making calculations. 

Subtract the 750-nm OD value from the readings before (OD 
664 nm) and after acidification (OD 665 nm). 

Using the corrected values calculate chlorophyll a and pheo- 
phytin a per cubic meter as follows: 

Chlorophyll a, mg/m> = *•? («*. - 665.) x V, 
V2 x L 

Pheophytin a, mg/m3 = 26.7 [1.7 (665„) - 664,,] x V, 
1/      v     7 V, x L 

where: 
V, = volume of extract, L, 
V2 = volume of sample, m3, 
L = light path length or width of cuvette, cm, and 

664t, 665„ = optical densities of 90% acetone extract before and after 
acidification, respectively. 

The value 26.7 is the absorbance correction and equals A x K 

where: 
A = absorbance coefficient for chlorophyll a at 664 nm = 11.0, 

and 
K = ratio expressing correction for acidification. 

'6646\ 
TTT) pure chlorophyll a 

/6646\ /664 \ 
\665j P"re chlor°Phy11 a - I ggr I pure pheophytin a 

1.7 
1.7 - 1.0 2.43 

c. Determination of chlorophyll a, b, and c (trichromatic method): 
Spectrophotometric procedure—Transfer extract to a 1-cm cu- 
vette and measure optical density (OD) at 750, 664, 647, and 
630 nm. Choose a cell path length or dilution to give OD664 
between 0.1 and 1.0. 

Use the optical density readings at 664, 647, and 630 nm to 
determine chlorophyll^, b, and c, respectively. The OD reading 
at 750 nm is a correction for turbidity. Subtract this reading from 
each of the pigment OD values of the other wavelengths before 
using them in the equations below. Because the OD of the extract 
at 750 nm is very sensitive to changes in the acetone-to-water 
proportions, adhere closely to the 90 parts acetone: 10 parts water 
(v/v) formula for pigment extraction. Turbidity can be removed 
easily by filtration through a disposable, solvent-resistant filter 
attached to a syringe or by centrifuging for 20 min at 500 g. 

Calculate the concentrations of chlorophyll a, b, and c in the 
extract by inserting the corrected optical densities in following 
equations:5 

a) C„ = 11.85(OD664) - 1.54(OD647) - 0.08(0D630) 
b) C„ = 21.03(OD647) - 5.43(OD664) - 2.66(OD630) 
c) Cc = 24.52(OD630) - 7.60(OD647) - 1.67(OD664) 
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where: 
C, Q, and Cr = concentrations of chlorophyll a, b, and c, respectively 

mg/L, and 
OD664, OD647, 

and OD630 = corrected optical densities (with a 1-cm light path) at 
the respective wavelengths. 

After determining the concentration of pigment in the extract, 
calculate the amount of pigment per unit volume as follows: 

Chlorophyll a, mg/m3 = C' * CXtraCt Volume' L 

volume of sample, m3 

3. Fluorometric Determination of Chlorophyll a 

The fluorometric method for chlorophyll a is more sensitive 
than the spectrophotometric method and thus smaller samples 
can be used. Calibrate the fluorometer spectrophotometrically 
with a sample from the same source to achieve acceptable results. 
Optimum sensitivity for chlorophyll a extract measurements is 
obtained at an excitation wavelength of 430 nm and an emission 
wavelength of 663 nm. A method for continuous measurement 
of chlorophyll a in vivo is available, but is reported to be less 
efficient than the in-vitro method given here, yielding about one- 
tenth as much fluorescence per unit weight as the same amount 
in solution. Pheophytin a also can be determined fluorometri- 
cally.24 

a. Equipment and reagents: In addition to those listed under 
la and 2a above: 

Fluorometer,|| equipped with a high-intensity F4T.5 blue lamp, 
photomultiplier tube R-446 (red-sensitive), sliding window ori- 
fices 1 x, 3 x, 10 x, and 30 x, and filters for light emission (CS- 
2-64) and excitation (CS-5-60). A high-sensitivity door is 
preferable. 

b. Extraction procedure: Prepare sample as directed in 16 above. 
1) Calibrate fluorometer with a chlorophyll solution of known 

concentration as follows: Prepare chlorophyll extract and analyze 
spectrophotometrically. Prepare serial dilutions of the extract to 
provide concentrations of approximately 2, 6, 20, and 60 u,g 
chlorophyll afL. Make fluorometric readings for each solution 
at each sensitivity setting (sliding window orifice): 1 x, 3 x, 10 x, 
and 30 x. Using the values obtained, derive calibration factors' 
to convert fluorometric readings in each sensitivity level to con- 
centrations of chlorophyll a, as follows: 

F -£ 
'     R. 

where: 
F, = calibration factor for sensitivity setting 5, 
R, = fluorometer reading for sensitivity setting S, and, 
C„ = concentration of chlorophyll a determined spectrophotomet- 

rically, p.g/L. 

2) Measure sample fluorescence at sensitivity settings that will 
provide a midscale reading. (Avoid using the 1 x window because 
of quenching effects.) Convert fluorescence readings to concen- 
trations of chlorophyll a by multiplying the readings by the ap- 
propriate calibration factor. 

■■t. ! 

II Model 10-005, Turner Designs, Sunnyvale. Calif, or equivalent. 
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c. Determination of chlorophyll a in the presence ofpheophytin 
a: This method normally is not applicable to freshwater samples. 
See discussion under 10200G and lc above. 

1) Equipment and reagents—In addition to those listed under 
la and 2a above, pure chlorophyll a# (or a plankton chlorophyll 
extract with a spectrophotometric before-and-after acidification 
ratio of 1.70 containing no chlorophyll b). 

2) Fluorometric procedure—Calibrate fluorometer as directed 
in U 3M). Determine extract fluorescence at each sensitivity set- 
ting before and after acifidication. Calculate calibration factors 
(F,) and before-and-after acidification fluorescence ratio by di- 
viding fluorescence reading obtained before acidification by the 
reading obtained after acidification. Avoid readings on the 1 x 
scale and those outside the range of 20 to 80 fluorometric units. 

3) Calculations—Determine the "corrected" chlorophyll a and 
pheophytin a in sample extracts with the following equations:824 

Chlorophyll a, mg/m3 = Fz -
J— (R„ - R„) ^ 

r - 1 " V, 

Pheophytin a, mg/m3 = Fs j-~ (rR, - Rb) £ 

where: 
F, = conversion factor for sensitivity setting S (see 1i 2b, above), 
Rb = fluorescence of extract before acidification, 
R„ = fluorescence of extract after acidification, 

r = RJRa, as determined with pure chlorophyll a for the instru- 
ment (redetermine r and Fs if filters or light source are changed), 

V, = volume of extract, and 
V, = volume of sample. 

d. Extraction of whole water, nonfiltered samples: Alterna- 
tively, to prevent cell lysis during filtration, extract whole water 
sample. 

1) Equipment and reagents—Fluorometer equipped with a 
high-sensitivity R928 phototube** with output impedance of 36 
ma/W at 675 nm and a high-sensitivity door. Place neutral density 
filter (40-60N) in the rear light path,tt selected to permit re- 
agent blanking on the highest sensitivity scale. 

2) Extraction procedure—Decant 1.5 mL sample into screw- 
cap test tube and add 8.5 mL 100% acetone. Mix with vortex 
mixer and hold in the dark for 6 h at room temperature. Filter 
through glass fiber filtert or centrifuge. Measure fluorescence 
as described in Section 10200H.3 and estimate concentrations as 
in f 3c. Because humic substances interfere, if they are present 
filter a sample portion (see 10200H.16) and process filtrate with 
sample. Subtract filtrate (blank) fluorescence from that of sample. 

4. High-Performance Liquid Chromatographie Determination 
of Algal Chlorophylls and Their Degradation Products 

a. Equipment and reagents: In addition to those listed for pig- 
ment extraction, H la above: 

1) High-pressure liquid Chromatograph capable of a flow rate 
of 2.0 mL/m. 

2) High-pressure injector valve equipped with a 100-u.L sample 
loop. 

3) Guard column (4.0 x 0.5 cm, C,R packing material, 3-u.m 
particle size, or equivalent protection system) for extending life 
of primary column. 

4) Reverse-phase HPLC columnM 
5) Fluorescence detector capable of excitation at 430 ± 30 nm 

and measuring emission at wavelengths greater than 600 nm. 
6) Data recorder device: Strip chart recorder or, preferably, 

an electronic integrator. 
7) Syringe, glass, 250-jxL. 
8) HPLCeluenls: System A (80:15:5; methanol:Type I reagent 

watenion-pairing solution) and System B (80:20; metha- 
nol:acetone). Use HPLC-grade solvents; measure volumes before 
mixing. Filter eluents through a solvent-resistant 0.4-fim filter 
before use and degas with helium. Prepare the ion-pairing (IP) 
solution from 15 g tetrabutylammonium acetate|| || and 77 g am- 
monium acetate## made up to 1 L with Type I reagent water.15 

9) Calibration standards: Individually dissolve 1 mg each pure 
chlorophyll a and b\\ || in 100 mL 90% acetone. Determine the 
exact concentrations spectrophotometrically (e^ for chlorophyll 
a in 90% acetone = 87.67 L g"1 cm"1; E(M7 for chlorophyll b in 
90% acetone = 51.36 L g"1 cm"1).5 Prepare pheophytin a + 
a' and b + b' standards from the primary chlorophyll a and b 
standards by acidification with hydrochloric acid; correct re- 
spective concentrations for Mg2 + loss. Extract chlorophyll c with 
90% acetone from diatoms, purify by thin-layer chromatography 
(TLC)25 and calibrate spectrophotometrically (e631 for a mixture 
containing equal amounts of chlorophylls c, and c2 in 90% ace- 
tone containing 1% pyridine = 42.6 L g"1 cm"1; the absence of 
this small amount of pyridine is presumed to cause only small 
differences in the absorption properties of chlorophyll c.26 Al- 
ternatively, determine the chlorophyll c content of a 90% acetone 
extract made from diatoms, spectrophotometrically (chlorophyll 
Ci + c2, u.g/mL = 24.36E630 - 3.73E664)5 and use as standard. 
Prepare chlorophyllide a from diatoms,27 purify by TLC25 and 
calibrate spectrophotometrically in 90% acetone (e^ for chlo- 
rophyllide a = 128 L g"1 cm"1).28 Prepare pheophorbide a by 
acidification of chlorophyllide a, purify by TLC,25 and calibrate 
spectrophotometrically in 90% acetone (e^ for pheophorbide 
a = 69.8 L g-' cm-1).28 Standards stored under nitrogen in the 
dark at -20°C are stable for about 1 month. 

b. Procedure: 
1) Set up and equilibrate the HPLC system with solvent System 

A at a flow rate of 2 mL/min. Adjust fluorometer sensitivity to 
provide full-scale reading with the most concentrated chlorophyll 
a standard. 

2) Calibrate HPLC system by preparing working standards 
from the primary standards (on day of use). Once retention times 
of the standards are determined for a particular system, simplify 
standardization by preparing serial dilutions from mixed stand- 
ards. Prepare separately mixed standards for the chlorophylls 
and chlorophyllide a and for the pheophytins and pheophorbide 
a. Mix 1-mL portions of standards with 300 u.L ion-pairing so- 
lutions and equilibrate for 5 min before injection (use of ion- 
pairing agents greatly enhances separation of dephytolated pig- 
ments, chlorophyllide a, chlorophyll c, and pheophorbide a). 
Prepare blanks by mixing 1 mL 90% acetone with 300 uX IP 
solution. Rinse syringe twice with 150 u.L standard and draw 

# Purified chlorophyll a, Sigma Chemical Company, Si. Louis, Mo., or equivalent. 
** Hammamatsu Corp., Middlesex, N.J., or equivalent. 
tt If using Model 10-005, Turner Designs, or equivalent. 
tt Whatman GF/F or equivalent. 

§§ Microsorb C„ column, 10 cm long, 3-u.m particle size, Rainin Co., or equivalent. 
IIII Fluka Chemical Corp., 980 South Second Street, Ronkonkoma, N. Y., or equiv- 
alent. ^ 
## Sigma Chemical Company, or equivalent. 
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about 250 u.L standard into syringe for injection. Place syringe 
in injector valve, overfilling the 100-u.L sample loop. Construct 
calibration curves by plotting fluorescence peak areas (or heights) 
against standard pigment concentrations. 

3) Prepare samples for injection by mixing a 1-mL portion of 
the 90% acetone pigment extract with 300 u.L IP solution. 

4) Use a two-step solvent program to optimize separation of 
the chorophyils from their degradation products.'5 After injec- 
tion, change from solvent System A to System B over 5 min and 
follow with System B for 15 min at a flow rate of 2 mL/min. Re- 
equilibrate the column with System A for 5 min before the next 
injection for a total analysis time of approximately 25 min. Degas 
the solvent systems with helium during analysis. Increase lifetime 
of HPLC column by storing it in 100% methanol between runs. 
Periodically flush the HPLC system with reagent water (Type I) 
to avoid buildup of ion pairing agents. 

5) Calculate individual pigment concentrations using the fol- 
lowing formula: 

C, = 
A, F, VE 

v,vs 
where: 

C; = individual pigment concentration, mg/L, 
A, = area of individual pigment peak from sample injection, 
F, = standard response factor (mg pigment/0. lmL standard divided 

by corresponding peak area). 
V, = injection volume (0.1 mL), 
VE = extraction volume, mL, and 
Vs = sample volume, L. 

6) This method is designed only for quantification of chloro- 
phylls and their degradation products. Detect carotenoid pig- 
ments, which also are present in 90% acetone extracts but do 
not fluoresce, by absorbance spectroscopy (at about 440 nm).21 

7) The elution order and approximate retention times for the 
major chlorophyll pigments and their degradation products are 
shown in Figure 10200:11. The detection limits (s/n = 2) vary 
with fluorometer configuration and flow rate; however, they range 
from 10 to 100 pg per injection for most chlorophylls and their 
degradation products.I5-2'-29 The accuracy of the HPLC method 
depends primarily on purity of pigment standards. Preferably 
measure absorption spectra (350 to 750 nm) of the standards and 
compare with published data. Pigment purity also can be assessed 
by HPLC analysis, providing there are no co-eluting contami- 
nants with absorption and fluorescence bands overlapping those 
of the standards. HPLC and spectrophotometrically derived pig- 
ment concentrations for available EPA standards agree reasonably 
well (± 20%) if spectrophotometric results are corrected for the 
presence of pheopigments and the HPLC results are expressed as 
pigment equivalents (e.g., chlorophyll a equivalents = chloro- 
phyllide a + chlorophyll a + chlorophyll a', provided that the 
proper molecular weight corrections are applied).30 Thus, if sig- 
nificant amounts of chlorophyll derivatives are present, pigment 
concentrations determined spectrophotometrically will be over- 
estimated. The agreement between HPLC and fluorometrically 
derived results depends on the presence of accessory chlorophylls 
b, c, and their derivatives. Triplicate injections of a fivefold 
dilution of an EPA sample gave coefficients of variation of 7 5% 
(chlorophyllide a), 9.1% (chlorophyll c), 13.4% (pheophorbide 
a), 9.6% (chlorophyll b), 0.5% (chlorophyll a), 6.2% (pheo- 
phytin a), and 22.9% (pheophytin a'), with an average value of 
10% for the seven pigments analyzed. 
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Figure 10200:11. Reverse-phase HPLC chromatogram for a fivefold di- 
lution of EPA sample. Injection volume 100 u.L; peaks 
detected by fluorescence spectroscopy (\cx: 400-460 
nm; \CK: >600 nm). Peak identities are: 1—chloro- 
phyllide a; 2—chlorophyll c; 3—pheophorbide a; 4— 
chlorophyll b; 5—chlorophyll a; 6—pheophytin a; and 
7—pheophytin a. The chlorophyll b degradation prod- 
ucts, pheophytin b and pheophytin b', were below de- 
tection limits. Peak identities confirmed by on-line diode 
array spectroscopy (350-550 nm). 

5. High-Performance Liquid Chromatographie Determination 
of Algal Chlorophyll and Carotenoid Pigments (PROPOSED) 

a. Equipment and reagents: In addition to those listed for pig- 
ment extraction, H la above: 

1) High-performance liquid Chromatographie pump capable of 
gradient delivery of three different solvents at a flow rate of 1 
mL/min. 

2) High-pressure injector valve equipped with a 200-u.L sample 
loop. 

3) Guard column (50 x 4.6 mm, CI8 packing material,*** 5- 
u.m particle size) for extending life of primary column. 

4) Reverse-phase HPLC column with endcapping (250 x 4.6 
mm, 5-u.m particle size, C18 column***), 

5) Variable wavelength or filter absorbance detector with low- 
volume flowthrough cell. Detection wavelength is 436 nm. 

6) Data recording device: Strip chart recorder or, preferably, 
an electronic integrator or computer equipped with hardware 
and software for Chromatographie data analysis. 

7) Syringe, glass, 500-u.L. 
8) HPLC eluents: Eluent A (80:20, v:v; methanol:0.5Af am- 

monium acetate, pH 7.2); Eluent B (90:10, v:v; acetoni- 
trile:water), and Eluent C, ethyl acetate. Use HPLC-grade sol- 
vents. Measure volumes before mixing. Filter eluents through a 
solvent-resistant 0.4-u.m filter'before use and degas with helium. 

9) Calibration standards: Chlorophylls a and b, and ß,ß-car- 
otene can be purchasedttt as can zeaxanthin and lutein.tt* 
Other pigment standards can be purified from plant extracts by 

*** Spherisorb ODS-2, Phase Separations Inc., Norwalk, Conn., or equivalent, 
ttt Sigma Chemical Co., St. Louis, Mo., or equivalent. 
ttt Roth Chemical Co., distributed by Atomergic Chemetals Corp., Farmingdale, 
N.Y., or equivalent. 
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Appendix D: 
Processing Results 

for September 3, 1999 
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Results for September 3, 1999 

Chlorophyll-a values were determined both spectrophotometrically and fluorimetrically. 

The spetrophotometric results for Sep 3 are shown in Table D.I. The equations for 

converting the absorbance readings to concentrations are located in the Appendix C: 

Standard Methods. 

Blank vs Blank acetone 0              0 0 -0.002 

Tube 

# 

Sample 

# 

SampVd 

ml 

XtrVd 

ml 

Light Path 

cm 

Absorbance before acid w/acid:.1mlof0.1NHCI 
630       nm 647        nm 664        nm 750       nm 665a 

nm 

750a 

nm 

1 A3 600 10 0.007 0.008 0.013 0.004 0.01 0.005 

2 11 600 10 0.006 0.006 0.009 0.004 0.008 0.005 

3 A2 600 10 0.008 0.009 0.015 0.005 0.012 0.006 

4 14 750 10 0.009 0.011 0.026 0.003 0.017 0.004 

5 A6 800 10 0.005 0.006 0.014 0.002 0.01 0.004 

6 A5 800 10 0.005 0.005 0.011 0.003 0.007 0.003 

Tube 

# 

Sample 

# 

Chloropyll a ug/L Pheophytin 

ug/L 
corr. for b & 

c (Trichrom) 

corr for 
pheophytin 

1 A3 1.670833 1.782 -0.22275 
2 11 0.9335 0.891 0.04455 
3 A2 1.868333 1.782 0.0891 
4 14 3.463333 3.564 -0.32076 
5 A6 1.6975 2.00475 -0.601425 
6 A5 1.1445 1.3365 -0.40095 

Table D.l September 3, 1999 Chlorophyll-a concentrations - determined 
spectrophotometrically 

Chlorophyll-a results were also determined fluorimetrically. The excitation bandpass 

was set at 20 nm in order to have a lot of signal and the data values were recorded at an 
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emission bandpass of 5 nm for a higher resolution. The concentrations were determined 

using a standard chlorophyll solution to calibrate the data values to concentrations. The 

fluorimetrically determined chlorophyll-a values are shown in Table D.2. 

Sample 

# 

Samp Vol 

ml 

XtrVol 

ml 

Data Value 

(20/5) 

Cone (ug/L) 

A3 600 10 42.61 1.49135 
11 600 10 21.94 0.7679 
A2 600 10 50.09 1.75315 
14 750 10 102.26 2.86328 
A6 800 10 58 1.5225 
A5 800 10 38.53 1.011413 

Table D.2 September 3, 1999 Chlorophyll-a values determined fluorimetrically 

The TSS values were also calculated for each of the water samples and are shown in 

Table D.3: 

Filter* Sample # Vol Filtered (ml) Pre-weight (g) Post-weight (g) Difference TSS (mg/L) 
1 A3 600 0.0351 0.0359 0.0008 1.3333333 
2 11 600 0.0354 0.036 0.0006 1 
3 A2 600 0.0361 0.0367 0.0006 1 
4 14 750 0.0365 0.0383 0.0018 2.4 
5 A6 800 0.0366 0.0372 0.0006 0.75 
6 A5 800 0.0357 0.0365 0.0008 1 

Table D.3 September 3, 1999 TSS Values 

The CDOM scalar values were obtained from another student who performed the 

processing. These values are located in Table D.4. 
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Sample CDOM (scalar) 
11 0.451 
A5 0.485 
A3 0.481 
A6 0.454 
A2 0.467 
I4 0.438 

Table D.4 September 3, 1999 CDOM Values 

As a verification of my chlorophyll-a processing, three filters from the July 26, 

1999 collect were delivered to the County Health Lab for processing. The results of the 

comparison are shown below in Table D.5. The County Health Lab chemists process 

chlorophyll samples on a weekly basis and felt that the outcome of the comparison 

indicates that our processes yield comparable results. Further development of a control is 

necessary to test the robustness of the RIT chlorophyll processing procedure, to include 

sending more samples to the Health Lab and testing to see how the presence of 

chlorophyll degrades over storage time. 

County Health Lab Results RIT Results 

Sample # 
I1/A8 
I2/A6 
I3/A15 

Chlorophyll a 
(Corrected for 
b,c) 

3.8 ug/l 
15.8 
7.1 

Chlorophyll a 
(Corrected for 
pheophytin) 

3.0 ug/l 
9.6 
5.7 

Pheophytin 

1.4 ug/l 
9.5 
2.3 

Chlorophyll a 
(Corrected for 
b,c) 

1.7 ug/l 
15.3 
4.7 

Chlorophyll a 
(Corrected for 
pheophytin) 

1.3 ug/l 
10.7 
3.3 

Pheophytin 

0.5 ug/l 
7.3 
2.3 

Table D.5 Comparison of Chlorophyll-a processing results 
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Some of the discrepancies between the values determined by the County and RIT can be 

attributed to instrumentation and slight differences in processing. The spectrophotometer 

in the basement would not stay "zeroed". After the blank acetone sample was zeroed, the 

reading on the blank fluctuated between -0.001 and -0.003 regardless of the number of 

times the blank sample was zeroed. The County Health Lab uses a Teflon tip on a drill to 

grind the glass filters. The grinders at RIT were glass and the glass filters tend to wear 

down the grinding texture of the pestel, decreasing its effectiveness in grinding. At 

times, the Health Lab uses filters that are larger in size and are not made of glass. These 

slight differences may account for some of the discrepancies. 
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