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Section 1: SUMMARY of RESEARCH 

This report is a compilation of a summary of the research work and publications produced as a 
result of the project: "An Integrated Information Management System", ARPA Contract # 
F33615-93-C-1337, which was conducted at IBM's Almaden Research Center from 1994-1999 
with Allen Luniewski as Principal Investigator and Laura Haas as co-principal investigator. 
Other participants in this project were regular IBM employees (Peter Schwarz, Mary Tork-Roth, 
Bartholomew Niswonger), a number of students working temporarily at IBM (Neal Palmer, Paul 
Aoki, Fatma Ozcan, Ioana Ursu), and post-docs (Markus Tresch, Andreas Geppert). This work 
was conducted as part of DARPA's 13 (Intelligent Integration of Information) program. 

This project attacked two problems of relevance to the 13 program: the classification of 
semi-structured data to allow ingestion ofthat data into a data management system, and the 
creation of "wrapper" technology to allow integration of multiple, disparate, information sources 
into a central query engine. 

The classification work was intended to develop technologies to allow the automatic 
classification of semi-structured data into a given type (or class) taxonomy. This work was 
motivated by the observation made in the Rufus project [VLDB-93] that the vast majority of 
digital information was not contained in databases. To allow effective ingestion ofthat data into 
a data management system to allow effective mechanisms for organizing, searching and 
operating upon that data, it is necessary to determine the type of the data. The nature of 
semi-structured data means that the type of that information is not inherently known and must, 
instead, be determined. The general approach taken to automatically determine the type of 
semi-structured data was to define a set of features that might characterize semi-structured 
information (e.g., file name, presence of keywords in text) and use these features to define a 
feature space in which all documents lie. Within that space, points are defined for each type 
(called "centroids"). The type of the data is then determined to be the type represented by the 
centroid that is the minimum of a distance metric from the data to all of the centroids. A number 
of areas were investigated as part of this research. One area of research was to develop 
algorithms and heuristics to determine a good set of features. A second area was to determine 
which distance metric works best in this application. We also developed a metric that allows an 
estimation of how good the results of the classification are. Finally, we explored techniques for 
taking a classifier and extending it with additional types of data. This work is discussed in more 
detail in Section 2 and is described in detail in reprints of the conference papers that describe this 
work that are included in this report. 

The Garlic (and TSMMIS) project(s) focused on a different approach to making non-database 
data accessible via high-level queries. Rather than try to capture more data in databases as in 
Rufus, these projects introduced middleware systems that allow access to the data using the 
native capabilities of its existing storage mechanism via a central query engine. Wrappers are the 
portion of the system which encapsulates a data source. A wrapper's role is two-fold: to describe 
the data in its data source and the query capabilities of the wrapper/data source pair, so that the 
query engine knows what kinds of queries it may ask, and to translate queries from the engine 
into actions the underlying data source can perform to return the desired data. We examined a 



number of areas of wrapper architecture as part of this research. A key concern was the interface 
between the wrappers and the middleware query engine, especially how information about query 
capabilities is passed from wrapper to middleware. We developed a novel approach that allows 
the wrapper to actively participate in query planning. Once the wrapper can participate in query 
planning, it is natural to consider asking it to provide information on the cost of a possible plan. 
The ability to get this information from the wrapper makes the system much more extensible, yet 
puts a major burden on the wrapper creator to understand and model the source system. Thus a 
second major area of research was on an infrastructure for supporting wrapper cost estimates. In 
addition to these major thrusts, we prototyped a number of wrappers, including a flexible 
wrapper for web data sources. Our experiences led us to further investigate additional support 
for wrappers. In particular, we explored the use of a cache manager in the middleware to relieve 
the wrapper of the burden of caching expensive-to-access data. We also defined a simple 
language for declaring equivalent path expressions, information which allows the optimizer to 
choose a better overall execution plan for a query.  We cover this work in more detail in Section 
3, and in the reprints of conference papers that accompany this report. 
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Section 2: FILE CLASSIFICATION 

The file classification problem can be summarized as: given a piece of (semi-structured) 
information, and given a set of types, determine which type is the best match for that data. Much 
of the focus of our work was on semi=strctured text documents but it applies to non-textual data 
as well. The general approach that we took is based upon the vector space model of information 
retrieval. 

The vector space model consists of a feature space, a colleciton of centroids for the type 
taxonomy and a distance metric. The feature space is an N-dimensional space defined by a 
colleciton of N features. The features are determined by a human analyst. For each member of 
the type taxonomy a centroid in this space is determined by analyzing a set of pre classified 
training data. Finally, a distance metric is chosen. Classification proceeds as follows. When a 
document is presented for classification, the value of the N features for that document are 
determined. This defines a point in the feature space. The distance metric is then applied to 
determine the distance from this point to each centroid. The centroid closest, under the distance 
metric, to the data point determines the type of the data. This is discussed in more detail in 
[VLDB-95]. 

In [VLDB-95], this process was evaluated in the context of the data classification process. Key 
results are as follows. First, the cosine metric as used in traditional information retrieval systems 
performs best in this application also. Other metrics were found to either be less accurate or less 
stable as the training set and test data changed. Second, we discovered the existence of a 
confidence metric that gives an indication of how good a job the classifier did in determining the 
type of some data. If the confidence metric is sufficiently low, there is good reason to doubt the 
result of the classification and a human expert may need to be consulted. Third, we explored the 
training problem for the classifier. We determined that relatively small numbers of training 
documents are required to produce an effective classifier. Moreover, the confidence metric can 
be used to determine which documents are best added to the training set. Fourth, we explored 
feature selection. A large number of potential features exist for a given type taxonomy. We 
discovered that limiting the number of features resulted in a more effective classifier than with 
the larger number of features. We defined the discriminating power of a feature which was the 
basis for techniques for determining which features to include, as well as techniques for 
combining features. 

In [CIKM-95] we investigated the problem of extending a classifier. Consider a classifier that 
distinquishes between M types. Suppose that after this classifier is built, it is desired to add 
additional types to the set of types distinguished. If the initial training data is available, this 
extension is easy - the classifier construction algorithms can be directly executed. Suppose, 
however, that the training data is not available (e.g., the classifier is a product and the training 
data is considered proprietary). In this paper we explored techniques for building extensible 
classifiers and for doing the extension. We also explored an intermediate position in which 
abstracts of training data were made available. Highly effective classifiers could be constructed 
from these abstracts while limiting the information about the initial training set that had to be 
released. 
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These various research activities allow the creation of effective classifiers. The algorithms we 
explored support tools to help a human analyst create these classifiers with some rigor. 
Classifiers such as those that we explored in this work are inherently imprecise. We feel that this 
work represents a significant contribution to the quality of these classifiers. 



Section 3: WRAPPERS 

The figure below shows a typical database middleware system architecture, as exemplified by 
Garlic [RIDE-DOM'95]. Garlic is a query engine that optimizes and executes queries over 
diverse data sources posed in an object-extended SQL. Garlic is capable of executing any 
extended SQL operation against data from any source. In both planning and executing the query, 
it communicates with wrappers for the various data sources involved in the query. 

Quay <   j 
VCorofaaaDR,j 

Data Sources 

A wrapper hides the details of the data source's interface and enables access to the data source 
using the middleware's internal protocols.   Our research activities have been directed at 
designing a wrapper architecture that is flexible (able to wrap any data source), productive 
(wrappers can be written quickly and maintained easily), and effective (data can be retrieved 
efficiently and the search and data manipulation capabilities of the source utilized), and which 
supports the optimization of queries over data in multiple sources. 

Our wrapper architecture includes four main interfaces, as described in [VLDB-97]. The first 
interface allows the data in the source to be described to the middleware. Data are described 
using Garlic's data model, an object-oriented model based on the ODMG standard [ODMG]. 
Data in the source are viewed as objects, and Garlic refers to these objects using an OID it 
manufactures based on the source, the object's type, and a unique key determined by the 
wrapper. This OID allows the middleware to apply methods on objects; from the OID, the 
middleware can determine the appropriate wrapper, and the wrapper can locate the necessary 
data and apply the method. The wrapper also defines object collections (the targets of queries in 
Garlic). Using the second interface, wrappers provide methods to get the value of each attribute 
of an object, and to encapuslate any specialized search capabilities of the source. (These 
methods are typically implemented as commands in the native language or programming 
interface of the underlying source). The third interface provided by the wrapper allows the 
middleware query engine to open an iterator over a collection or query result. 

The fourth interface provides a description of the source's query processing capabilities. This 
description consists of a set of planning methods [VLDB-97]. Different sources may vary greatly 
in their query processing capabilities, and thus will provide different planning methods. For 
example, a wrapper for relational databases can typically handle multi-way joins as well as 
selections and projections on a single relation, hence the relational wrapper will provide methods 
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for planning both single-collection accesses and joins. On the other hand, a wrapper for an 
image processing system that only handles requests to a single collection of images would 
provide only a method for planning single-collection accesses. A wrapper does not have to 
reflect the full query functionality of its data sources. However, in order for the data in that data 
source to be accessible through queries, some minimum functionality must be provided, i.e., at 
least one planning method. 

This fourth, query processing interface is a unique contribution of our research. The interface 
allows a query optimizer to communicate with the wrapper during query optimization. The 
optimizer can describe a query that it would like the wrapper to handle. The wrapper can then 
indicate which part of the query it will handle, by returning one or more "plans". For example, 
the optimizer might ask the wrapper to access a particular collection and apply two predicates. If 
the wrapper can only handle a single predicate on that collection, it returns a list of plans to the 
optimizer, each of which applies only one of the predicates. 

We experimented with and tested the wrapper architecture, by building a number of wrappers. In 
particular, we designed and implemented a relational database wrapper, which can be used 
against DB2 or Oracle databases, a Lotus Notes wrapper, which we applied to two different 
Notes databases, and a molecular database wrapper for the Daylight chemical structure search 
engine. In addition, we built a versatile web wrapper. This wrapper provides much of the basic 
functionality needed to wrap web data sources, and can be easily tailored to wrap a particular 
source. We tested the generality and power of this wrapper by applying it to several different 
web sites, including a movie database, a CD-ROM database, a hotel guide, and the BigBook 
yellow page site. To customize the wrapper for a particular site, the wrapper writer writes a 
grammar describing the HTML pages generated as answers by the site. Given this grammatical 
description, the wrapper can generate the necessary code for answering queries, etc. This 
experiment demonstrated the flexibility of the wrapper architecture, and the power of the layered 
approach to wrapper writing. Overall, this diversity of data sources provided a good test of the 
architecture and interfaces, and the results were very encouraging. Typically, data from a new 
source could be accessed through the wrapper within three days of the start of wrapper 
development. A finely tuned wrapper took at most a few weeks. 

We also studied how the Garlic wrapper architecture could be applied to a commercial 
middleware product. The goal of this work was two-fold: to understand whether the wrapper 
architecture was complete and robust enough for commercial use, and as a first step to get the 
technology out to the world for its use. We worked closely with IBM's DataJoiner product team 
to compare their "data access modules" with our wrappers. Data access modules serve a similar 
role to wrappers, but in DataJoiner they must be created by DataJoiner developers, and adding a 
data access module requires that changes be made throughout the DataJoiner code base. This 
limits the flexibility and extensibility of the DataJoiner product. By replacing data access 
modules with wrappers, DataJoiner is able to dynamically add data sources in response to 
customer demand, and third parties will be able to create wrappers for other sources, increasing 
the "reach" of the DataJoiner middleware. Working with the product team, we designed data 
definition language (DDL) commands for creating new wrappers, and new catalogs to support 
the more flexible wrapper architecture. We also designed and implemented a version of the 
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necessary interfaces between the wrappers and DataJoiner's execution engine, and we are 
working to standardize these as part of the ANSI SQL/MED proposal. 

In [VLDB-99a], we described the framework we developed to support the wrapper's need to 
provide cost estimates to the optimizer for each plan it returns. It is essential for the extensibility 
of the system that wrappers do this; otherwise, either the optimizer would have to be changed for 
each new data source, or the system would not be able to do cost-based optimization, meaning 
that performance would suffer dramatically. However, in general the task of constructing a cost 
model for a new data source is a large and intimidating one. The wrapper writer essentially has 
to develop their own model of the data source, analyze the query, and determine a cost. The 
framework we developed makes it easy for wrappers to provide cost information, requires few 
changes to a conventional bottom-up optimizer, and is easily extensible to a broad range of 
sources. We provide storage for statistics in the middleware, a basic facility for updating 
statistics, cost equations for computing selectivities of predicates, and overall cost computation 
for plans. Wrappers can use these facilities "as-is", tailor them to meet their needs, or override 
them altogether. We believe that our framework for costing is the first to allow accurate cost 
estimates for diverse sources within the context of a traditional cost-based optimizer. 
Experiments demonstrate the importance of cost information in choosing good plans, the 
flexibility of the framework, the accuracy it allows, and finally, that it works -- the optimizer is 
able to choose good plans even for complex cross-source queries. 

In writing the wrappers mentioned above, we noticed that many real life wrappers needed to 
cache data for objects returned to the application, so that attributes of those objects could be 
quickly returned on subsequent method calls. The Web Wrapper, in particular, needed this 
ability; else the performance became so bad as to be unusable. However, other wrappers also 
were doing some amount of caching to improve their performance. Rather than force each 
wrapper writer concerned about performance to build their own cache manager, we decided to 
provide a simple service that automatically caches all the attributes of an object referenced, and 
to modify the method dispatch mechanism to exploit the cache. Thus, wrapper writers get 
caching "for free", dramatically improving performance for those with slow access to data or 
slow network connections. We investigated ways to allow queries to load the cache, as well, 
enhancing the performance of applications that use queries to identify the set of objects they 
need, and then use methods to retrieve data from the objects. We developed a new cache 
architecture that can be loaded efficiently with query results without flooding out cached objects 
that are currently of interest to the application. This work is described in detail in [VLDB-99b]. 

A concrete schema is a description of alternative paths for accessing sets of objects. A concrete 
schema is critical for efficiently processing queries containing paths, because it greatly expands 
the set of feasible plans for executing such queries. The expanded set of plans may include ones 
that are vastly more efficient than those suggested directly by the query, because, e.g., they can 
take advantage of an index on a collection not explicitly mentioned in the query, or allow a larger 
piece of the query to be delegated to a single repository. In [RJ-00], we describe a language by 
which a Garlic database administrator can specify a concrete schema. The work is novel because 
the more restrictive data models of traditional relational or object-relational databases make 
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concrete schema specifications unnecessary. Our language design strikes a careful balance 
between 
expressive power, simplicity, and implementability. Its syntax and semantics are straightforward, 
and a database administrator can easily express the specifications that are most likely to lead to 
large improvements in query execution speed. The middleware query processor can easily 
determine the specifications applicable to a query, and efficiently exploit the relationships they 
describe. Specifications are optional: omission of a specification cannot lead to incorrect query 
results. We built a prototype of this facility, and demonstrated that, at the price of some 
additional optimization time, dramatic savings in execution time can be achieved. 

The result of this work has been a wrapper architecture and a set of support services for wrappers 
that we believe are the first to meet the goals stated above. The architecture is flexible, allowing 
data to be queried from sources that may be complex or simple or idiosyncratic. It is productive: 
wrappers can be written quickly and evolved easily. It is effective, allowing queries access to all 
data types, as well as to the query processing and data manipulation capabilities of the source. It 
provides excellent support for query optimization, enabling efficient cross-source queries. We 
feel that this work represents a significant contribution to the field of heterogeneous data 
integration. 
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Abstract 

In this paper, we present a vector space classifier for deter- 
mining the type of semi-structured documents. Our goal was 
to design a high-performance classifier in terms of accuracy 
(recall and precision), speed, and flexibility.. 

The ability to dynamically extend a classifier with user- 
specific classes is crucial for many applications. Unfortu- 
nately, the training data of existing classes is often not avail- 
able, such that the extended classifier is imprecise as a result. 

We focus on this issue. First, we evaluate how to create 
class abstracts that can be used as training data replace- 
ment. Second, we introduce relevance feedback learning 
strategies to overcoming the remaining classifier flaw. 

1    introduction 

Novel networked information services [ODL93], for example 
the World-Wide Web, offer a huge diversity of information: 
journal articles, electronic mail, C source code, bug reports, 
television listings, mail order catalogs, etc. Most of this 
information is semi-structured. In some cases, the schema 
of semi-structured information is only partially defined. In 
other cases, it has a highly variable structure. And in yet 
other cases, semi-structured information has a well-defined 
but unknown schema. For instance, RFC822 e-mail follows 
rules on how the header must be constructed, but the mail 
body itself is not further restricted. 

The first step towards automatic processing of semi-struc- 
tured documents is classification, i.e., to assign an explicit 
type to them. Thus, a classifier is necessary that explores 
the implicit structure of such a document and assigns it to 
one of a set of predefined classes (e.g. document categories 
or file types) (GRW84, Hoc94]. 

This class can then be used to apply type-specific meth- 
ods that, for example, extract values of (normalized and 
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non-normalized) attributes in order to store them in special- 
ized databases. For instance, an object-oriented database 
might be used for storing complex structured data, a full text 
database for natural language text, and an image database 
for pictures. 

The Problem. Classifiers are usually created in two steps. 
First, the class hierarchy must be defined by giving features 
(distinguishable attributes) for each class. Second, the clas- 
sifier is trained with a set of typical documents for each 
class. 

However, this basic class hierarchy must be extensible. 
Users want to define and add specific classes according to 
their personal purposes. Extensibility of a classifier is there- 
fore crucial for many applications. In order to add classes 
to a classifier, a user must provide training data for the new 
classes. Training documents of the existing classes must be 
available too. This "old" training data is necessary because 
new classes must be trained with data for existing classes as 
well. As we will formalize later in this paper, if the "old" 
training data is missing, the extended classifier will be in- 
sufficiently trained, and consequently low in recall. 

Unfortunately, training data for the basic classes is often 
not available to a user at the time of extending the classifier. 
For instance, training data sets are potentially voluminous 
and/or may be proprietary, which make their distribution 
with the classifier undesirable. 

The Approach. In this paper, we present and evaluate the 
benefit of a novel two-step approach to overcoming the im- 
precision of insufficiently trained classifiers due to incom- 
plete or missing teaming data- Both steps together are re- 
quired for classifier extension: 

1. The first step employes automatic full text indexing 
techniques to summarize training data into class ab- 
stracts. These abstracts are used as training data re- 
placements. We present strategies to create abstracts 
that are much smaller than the training data, but still 
accurately characterize a class. 

2. In the second step, a novel algorithm for iterative clas- 
sifier learning is presented. This algorithm is based 
on reieiKOTce feedback: The classifier provides a human 
expert with feedback about how confident it is on the 
classification of a document, and the user gives feed- 
back to the classifier about documents that must be 
learned in order to improve its accuracy. 



This paper is organized as follows. In Section 2, we re- 
view our experimental vector space classifier. In Section 3, 
we formalize the problem of classifier extensibility and show 
how to summarize training data into abstracts. In Section 
4, we introduce classifier learning algorithms based on rele- 
vance feedback. In Section 5, we discuss related work, and 
conclude in Section 6 with a summary and an outlook. 

2    An Experimental Vector Space Classifier 

In this section, we introduce an experimental classifier sys- 
tem based on the vector space model [SWY75]. The goal was 
to build an extremely high-performance classifier, in terms 
of accuracy (precision and recall), speed, and flexibility for 
the classification of files by type. UNK was considered as 
a sample file system. The classifier examines a document 
(a UNIX file) and assigns one of a set of predefined classes 
(UNIX file types). To date, the classifier is able to distin- 
guish the 47 different file types illustrated in Figure 1. Note 
that the classifier presented here can be generalized to most 
non-UNIX file systems. 

This classifier plays a key role in the Rufus System, where 
the explicit type of a file - assigned by the classifier - is used 
to trigger type-dependent extraction algorithms [SLS+93]. 
Based on this extraction, Rufus supports structured queries 
that can combine queries against the extracted attributes as 
well as the original files. In general, a file classifier is nec- 
essary for any application that operates on a variety of file 
types and seeks to take advantage of the (probably hidden) 
document structure 

Vector space classifier» (VSC) are created for a particular 
classification task in two steps: 

1. Schema definition. The features fi,...,fm are defined 
and form the r)ifTlfi*T schema. The features span an 
m-dimensioaal feature space. In this feature space, 
each document d can be represented by a vector of 
the form i«»(ci,... .c«,) where a, gives the value of 
feature /, is document d. 

2. Classifier Tratnmf The classifier is trained with train- 
ing data - a collection of typical documents for each 
class. The frequency of each feature /, in all training 
document* a determined. For each class a, a centroid 
vc; = (ai a.) is computed, whose coefficients o< 
are the mean value of the extracted features of all 
training documents for that class. 

2.1    Defining the Classifier's Schema 

A feature is some tiift^'M» part of a document that distin- 
guishes between document classes. For example, a feature 
of LATEX files is that file names usually have the extension 
".tex" and that the text frequently contains patterns like 
"\begin{...}". Features can either be boolean or count- 
ing. Boolean features simply determine whether or not a 
feature occured in the document. Counting features deter- 
mine how often a feature was detected. In the sequel, we 
assume boolean features only and refer to [TPL94] for a dis- 
cussion of counting features 

To define the schema of the UNIX file classifier, four 
different types of features are supported. They can be used 
to describe pattern* tkat characterize file types: 

• A filenames pattern is matched against the name of 
a file; 

• A f irstpats pattern is matched against the first line 
of a file; 

• A restpats pattern is matched against any line of a 
file; 

• An extract feature specifies that there exists an ex- 
traction function, that is, an external procedure like a 
C program, to determine if the feature is present. 

The first three feature types are processed by a pattern 
matcher. For performance reasons, this is a finite state ma- 
chine specially built from the classifier schema. Patterns 
can either be string literals or regular expressions. Regular 
expressions supported so far are similar to the regular ex- 
pressions of the UNIX "ed" command. The fourth feature 
type, extract, is a C program that examines files for specific 
properties. For instance, it can be used to check whether a 
document is an executable file or a directory. 

Any feature can be defined as nnst, which means that 
its occurrence is mandatory. If such a feature is not present 
in a given file, the file cannot be a member of that class. 
Notice that the converse is not true. The presence of a must 
feature does not force a type match. 

Example 1: The following figure shows an excerpt of a 
sample classifier schema, defining classes for file types corre- 
sponding to POSTSCRIPT pictures, LATEX documents, MH- 
FOLDER directories, and COMPRESS files. O 

PostScript •{ 
filenames { 

"\.pst" regerp 

> 
fixstpats { 

*1>.'  regexp nnst 

> 
restpats { 

"ZEndComments" 
»XCreator:* 

> 
abstract { 

a«inity 30 5X 10K 
abstr.ps 

} 

HHFolder i 
extract 
abstract { 

directory 
abstr 

> 
> 

UTeX •£ 
filenames { 

"\.texj" regexp 

> 
restpats { 

"\begin{" 
•\ead{" 
"{document}* 

} 
abstract { 

affinity 30 SX 10X 
abstr.tex 

Compress { 
extract 
filenames { 

•VfctZ]** regexp 

> 
abstract { 

sample SO EX 10K 
abstr.Z 

> 

Finding appropriate features for each class is crucial to 
the accuracy of a classifier (Jam85]. It is difficult to au- 
tomate this task. For example, to define the 47 classes of 
the UNIX file classifier, a total of 206 features were care- 
fully specified. In general, there are two complementary 
approaches to feature selection and analysis: 

• an analyzer scans all training documents and proposes 
features with high distinguishing power; 

e an analyzer scans human generated features and iden- 
tifies those with poor distinguishing power. 

H 
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Figure 1: Class hierarchy of the experimental file classifier 

In both cases, a human expert is necessary to decide whether 
some feature must be included although they are not very 
distinguishing, for instance, those that are the only feature 
of a top-level class in the hierarchy (TEXT, BINARY, DIREC- 
TORY, SYMLINK). On the other hand, regular expression 
patterns, for example, may contain an error that cannot be 
detected and corrected automatically. 

There exist several techniques for separating good and 
bad features. In our system, we use the notion of distin- 
guishing power to identify highly distinguishing patterns (cf. 
[TPL94]). 

2.2 Training the Classifier 

To train the classifier, a human expert has to provide a 
reasonable number of documents that are typical of each 
class. The main issue in training a classifier is: how much 
training data is required for it to perform well. 

Experiments building the classifier with different num- 
bers of training documents showed that a surprisingly small 
set of training data, namely 10 to 20 documents per class, 

.produces a sufficiently accurate classifier. For example, a 
classifier built with only one random training document per 
dass has average recall/precision1 of 0.85/0.94. The same 
classifier with 5 random training documents has average re- 
call/precision of about 0.95/0.98, with 10 documents about 
0.96/0.98, and with 20 documents (~1000 total) 0.97/0.99. 

In the experiments discussed in the remainder of this pa- 
per, we use (unless stated otherwise) training data sets with 
an average of 17 documents per class (total ~800 documents 
= ~26 MBytes). These data sets have randomly been se- 
lected as subsets of a large collection of training documents 
that was gathered by manually classifying thousands of files 
from our company-wide UNIX file system. 

2.3 Finding the Most Similar Centroid 

Given a trained classifier with centroids for each class, clas- 
sification of a document d means finding the "most similar" 
centroid vCi and assigning d to that class a. A commonly 

1The accuracy of a classifier is measured for a particular das» C 
as [Jon71] 

Reeall(C) = 
objects of C assigned to C 

total objects of C 

objects of C assigned to C 
Precision(C) = toti] objects ^„d to C' ' 

To measure a classifier as a whole, we use the arithmetic mean of recall 
or precision over all classes. Notice that every object is classified into 
exactly one class (no unclassified or double classified objects). 

used similarity measure is the cosine metric [vR79]. It de- 
fines the distance between document d and class centroid a 
by the angle a between the document vector and the cen- 
troid vector, that is, 

sim(d,c<) =cosa 

A large number of alternative similarity measures are pro- 
posed in the literature. For example, [vR79] describes Asym- 
metric, Dice, Jaccard, Overlap, and Euclidian distance and 
many more can easily be imagined. However, experiments 
showed that the best and most reliable results, in terms of 
recall and precision, are achieved using the cosine as similar- 
ity measure (cf. [TPL94] for a detailed discussion, including 
performance experiments and results). 

Furthermore, the cosine metric is intuitive and can be 
easily computed. For example, on an IBM Workstation 
RISC System/6000 model 530H, an individual document is 
classified by the experimental classifier in about 40 millisec- 
onds, on average. 

3    Extending the Classifier 

We now concentrate on the main focus of this paper, namely 
extending a VSC with new classes. We assume that - for 
the afore mentioned reasons - training data is only available 
for new classes, not for existing ones. 

To formalize the error due to adding new classes, consider 
a classifier with existing classes ci,...,c, and existing fea- 
tures /i,. • • i fj- Assume this classifier is extended with new 
classes cfc)...,c« (h = g + 1) and new features /*,...,/n» 
(k — j + i). After extension, each coefiicient axv of the 
featvre-centroid matrix A of the classifier, shows the value 
of feature y in the centroid of class x. 

The upper-left sub-matrix of A shows the feature-cen- 
troid matrix of the classifier before extension. The upper- 
right sub-matrix of A, call it D, shows the centroid coeffi- 
cients of the new features for the existing classes. D reflects 
whether or not training data of existing classes has been 
used for extension. If full training data were used, D would 
be "accurate". However, as previously discussed, full train- 
ing data for existing classes will not be available at the time 
of extension. Thus, A will be only approximately correct. 
More precisely, if no training data is available for existing 
classes, all coefficients of D are zero. 

3.1    Abstract Creation 

The first step in making a VSC extensible is automatic con- 
struction of class abstracts (profiles, summaries) from each 
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dass' training data- This is a compromise between no and 
fall training data. In contrast to the training data itself, 
these abstracts will be generally available and play the role of 
training data surrogates during extension. For new classes, 
-we assume foil training data. 

Class abstracts must be significantly smaller than full 
training data. Though we know from Section 2.2 that 10 to 
20 training documents per class are sufficient, this is still a 
potentially large amount of data (~ 26 MBytes for a clas- 
sifier with 47 classes in our case). A challenging goal is 
that the size of an abstract should not exceed 1% of the 
size of the full training data. At the same time, abstracts 
should accurately characterize that class. For example, the 
classifier's performance (accuracy) should reach 95% of the 
performance of a classifier based on full training data. 

The way in which abstracts are created depends on the 
actual file type. The experimental classifier currently pro- 
vides four general strategies for building abstracts: 

• Textual style classes. A simple and fast approach is to 
scan the training data and build abstracts containing 
the most frequently used words. 
This strategy does not take into account features that 
are regular expressions defined over multiple words. 
Consider for example feature *END_»; regexp" of file 
type MOD3IMPL. This feature says that Modula-3 
implementations frequently contain the string literal 
"EHD" followed by any number of blanks and a ";"• 
The lexical affinity algorithm [MBK91] is more so- 
phisticated and uses word co-occurences. It constructs 
an abstract from the most resolving word pairs (n- 
tuples, in general). 
This strategy is well suited to most textual document 
classes that are identified by single string literals or 
small sequences of literals, e.g. MOD3IMPL, USENET, 
POSTSCRIPT, ... 

• Binary style classes. Binary style classes usually have 
a special string (magic number) at the beginning of the 
file's first line (e.g., LIB6000, GIF, FRAME, DVI, TIP). 
All other features are special C functions that search 
the file for a magic number. Hence, it is very difficult 
to define an abstraction strategy that is appropriate 
for a large variety of binary classes. 
One simple algorithm that works well is random sam- 
pling which takes samples from the training data to 
build an abstract. 
This strategy is mainly used for binary classes, eg. 
COMPRESS, TAR, OBJ6000. It is also well-suited to 
some special kinds of textual documents that are iden- 
tified by long contiguous sequences of words rather 
than frequently used keywords, e.g., BITMAP, SLATE, 
TELE. 

• Very special classes. A straight copy strategy creates 
an abstract as a full copy of the training data. 
This strategy is mainly used for very special document 
classes, whose files are already small, e.g. symbolic 
links (SYMLINK). 

• Directory style classes. A directory strategy is used 
for directory structured document classes. It creates 
an abstract that is itself a directory of abstracts. It 
recursively applies the appropriate choices from of the 
strategies above to all files of the original directory, 

creates abstracts of these files, and stores them in the 
newly created abstract directory tree. 
This strategy is used, for example, to create abstracts 
for classes DIRECTORY, MHFOLDER, and CPROGRAM. 

The schema file contains special abstract statements to 
define for each class an abstract strategy, its size, and the 
abstract's name. As an example, consider the schema def- 
inition in the above example. Notice that the VSC does 
not distinguish whether it uses, abstracts or the original 
training data. Hence, the name of a class abstract must be 
chosen carefully for document classes with filenames pat- 
terns. 

3.2   On the Quality of Class Abstracts 

To measure the quality of class abstracts, one can train a 
classifier using only abstracts for all classes and compar- 
ing its accuracy with a classifier that was trained with full 
training data for all classes. Table 1 summarizes several ex- 
periments. First, a classifier was built with a schema create 
by an unexperienced user resulting in low recall, and second, 
with a classifier based on a much improved schema created 
by an expert. In each test run, both classifiers were tested 
on the same test data sets. 

Table 1: Full training data vs. abstracts 
(a) unimproved schema 
full training data 
abstracts only 
(b) improved schema 
full training data 
abstracts only  

avg. recall 
0.86 (100%) 
0.74 (86.1%) 

avg- recall 
0.95 (100%) 
0.93 (98.3%) 

avg. precision 
0.86 (100%) 
0.80 (93.8%) 
avg. precision 

' 0.96 (100%) 
0.94 (99.8%) 

Table 1(a) shows an average recall/precision of 0.86/0.86, 
if created with full training data, as opposed to 0.74/0.80 if 
trained with abstracts only. Hence, using abstracts only 
for training achieved 86.1% of the recall and 93.8% of the 
precision of a classifier trained with full training data. The 
goal of 95% classifier accuracy, if using abstracts instead of 
full training data, was obviously not yet achieved. 

In Table 1(b), we mainly made the features more dis- 
tinguishing by applying the distinguishing power method 
[TPL94]. The average recall/precision increased to 0.95/0.96, 
just from using the optimized schema. The average re- 
call/precision of a classifier created with only abstracts was 
improved to 0.93/0.94. Notice that we now exceed our goal 
in terms of abstract quality. A classifier built with abstracts 
reached over 98% of the accuracy of a classifier built with 
full training data Consequently, schema tuning not only 
dramatically improves the classifier's overall accuracy, but 
also the relative quality of the abstracts. 

Notice that this experiment still does not really reflect 
classifier extension, where abstracts are used for existing 
classes only. For new classes, full training data is taken. As 
formalized with the feature-centroid matrix A, the error due 
to missing training data - and therefore the use of abstracts 
- depends on the ratio between the number of existing and 
added features, as well as the overlapping of the new features 
with the existing classes. Hence, Table 1 is a "worst case 
analysis" that will never apply in the extensibility scenario. 
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4    Relevance Feedback Learning 

Class abstracts do not completely eliminate centroid flaws. 
Even if they did, abstracts are built from (potentially old) 
training data that may no longer represent the actual user 
data. Hence, even a well trained classifier must adapt to 
actual needs. 

Consequently, a second step is required that deals with 
the remaining centroid error and ensures that a classifier 
is accurate over time. The technology employed here is 
relevance feedback, i.e. we show how a classifier can incre- 
mentally learn from a human expert. In particular, we use 
vector space modification to adjust the class centroids. This 
approach is cimilar to query modification known from infor- 
mation retrieval systems [Roc71, Ide71, Har92].2 

Iteratively, a human expert looks at test documents clas- 
sified by an existing classifier and forms, depending on the 
chosen learning strategy (see below), two sets of learning 
documents: {Di,..., £>„,,'} with centroid D = £\ ^ and 

{Ei En,} with centroid E = £. ■£ ■ In each iteration 
step, better approximations of the optimal class centroids 
are obtained by moving centroids C towards D and away 
from E, i.e., 

C{i+1)=aCw + ßD-tE (1) 

where Cw is the centroid after the t-th learning step. 
a, ß, and 7 control how far the centroids are moved per 

learning step. In the literature, experimental values can be 
found for query modification in information retrieval sys- 
tems. For example, [SB90] compared different methods and 
achieved best results with a = 1.0, ß - 0.75,7 = 0.25. How- 
ever, no formal reasons are given for this choice of values. 

Constant multipliers did not give stable results in our 
experiments. Our conjecture is that we were adjusting the 
centroids too "aggressively" and were, in essence, trying to 
track variations of features that are inherent in documents 
of a given class. In other words, this approach failed to take 
advantage of the fact that the information contained in a 
centroid increases after each learning iteration. 

To overcome this problem, we set a,ß,-y based on the 
information content of a centroid. For a particular iteration, 
let nc be the number of documents from which centroid C 
was computed. We define 

a = l- 
Ud nc 

nc+nd    ne + tit ß = 
«<j n« 

Tie + Tlrf nc+nt 
(2) 

This strategy moves centroid C proportional to the num- 
ber of underlying training/learning documents. After each 
learning iteration, n« increases as ni'+1) = n£  +«J +«=' . 
and therefore, the effect of new learning is reduced over time. 

The learning strategy determines which documents the 
classifier learns from. There are two approaches: 

• Negative Learning Strategy: The classifier learns from 
documents a human expert identifies as incorrectly 
classified, that is, D = documents of class C, but NOT 
classified as C, and E = documents NOT of class C, 
but classified as C. 

3 A different approach — that is not further considered here - is fea- 
ture weighting, what relates to term weighting in information retrieval 
systems. Here, the vector space remains unchanged, but weights 
are introduced that increase or decrease the importance of certain 
features. 

• Positive Learning Strategy: The classifier learns from 
documents a human expert identifies as correctly clas- 
sified, that is, D = documents of class C, correctly 
classified zsC. E = second closest centroids of docu- 
ments classified correctly as C. To reinforce the effect, 
the centroid is not only moved towards correctly clas- 
sified documents, but also away from second closest 
centroids. 

To illustrate these strategies, initial classifiers were built 
with one randomly selected file per class. Then, 10 feedback 
steps were performed, learning 20 documents each tune. 
Disjoint data sets were used for initial training, learning, 
and testing. Figure 2(a) shows the total number of learned 
files (x-axis) needed to achieve a certain average E-value 
(y-axis). It clearly shows that a negative feedback strategy 
(learning from 20 incorrectly classified files) gives the best 
learning curve, as opposed to a positive strategy (learning 
from 20 correctly classified files), or learning from any file 
(any 20 classified files). 

However, the really critical factor in the efficiency of a 
learning algorithm is not the number of documents a classi- 
fier has to learn from to achieve a given accuracy improve- 
ment, but the number of documents a human expert has to 
look at (touch). We propose the following definition: 

Definition-  The efficiency of a learning strategy is defined 

. AB-value 
learning efficiency = # of touciied mes ■ 

Figure 2(b) gives a revised view of the same data, but 
now uses the number of touched ßes as the x-axis. The 
negative learning strategy (dashed line), that had the fastest 
learning curve in Figure 2(a), now requires significantly more 
test files to be touched by the user, compared to the other 
strategies. The major problem is finding incorrectly classi- 
fied files. Remember, our goal is to improve a classifier that 
already classifies more than 90% of files correctly. Hence, 
to find 20 incorrectly classified files, a human expert has 
to touch about 200 files. Since this gets even worse as the 
classifier gets better, a fast way how to identify incorrectly 
classified documents is necessary. 

4.1    The Confidence Measure 

Earlier in this paper, we selected the cosine similarity metric 
to find the closest centroid. However, independent of which 
similarity measure is chosen, closeness to a centroid is not a 
very useful indicator of the classifier's confidence. Thus, we 
introduce the following novel measure that gives feedback 
on how sure the classifier is about a result. 

Definition. The confidence of an assignment of document 
d to class a is defined as 

confidence(d, a) 
def sim(d, a) - sim(<f, Cj) 
— sim(d, Cj) 

with ft the closest and Cj the second closest centroid. 

The confidence is the ratio of the similarity of the closest 
and second closest centroid over the similarity of the file and 
the closest centroid. 

'The E-value [vR78] is a single measure of classifier accuracy that 
combines and equally weights both, recall and precision, as E-value = 
1 — (2 Precision Recall)/(Precision 4- Recall). 
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Figure 2: Negative vs. positive feedback strategies 

A classifier can use the confidence measure to alert a hu- 
man expert whenever a classification is below a given confi- 
dence threshold ©. Figure 3 illustrates that the higher the 
confidence value, the higher the probability that the classi- 
fier classified the file correctly. 

Assume a given confidence threshold 6 (vertical fine), 
such that the user has to approve the classification if a file 
is classified with a confidence below that threshold. 

The dotted line shows the percentage of test files for 
which the assumption is true that they are classified cor- 
rectly if classified with a-confidence above threshold 6 and 
classified incorrectly otherwise. If, for example, the thresh- 
old 6 is set to 0.1, then about 94% are classified correctly if 
their confidence is above 0.1 and incorrectly otherwise (see 
dotted line hitting threshold). 

The solid line shows the percentage of test files that were 
classified with a confidence below 6. With 6 = 0.1, about 
10% of the files are presented to the user for checking (see 
solid line hitting the threshold). These were shown to a 
human expert. 

Finally, the dashed line shows the percentage of test files 
that were classified correctly even though they have a confi- 
dence below threshold 6. These are the files where the clas- 
sifier "annoyed" the user for no good reason. With 6 = 0.1, 
only 30% of the presented files were actually classified cor- 
rectly (see dashed line hitting the threshold). Thus, using 
the confidence measure, a user had to touch 10% of all files, 
of which in fact 70% were classified incorrectly. The classi- 
fier's overall recall could therefore be improved by 7% with- 
out bothering the user too much. 

0 = 0.1 provides a maximum accuracy (dotted line) 
while providing a reasonable number of files for the user's 
consideration while maintaining a modest "annoyance'' level. 

4.2   Mutual Feedback Learning Algorithm 

Low confidence is a good sign of incorrect classification. 
Consequently, we «•»" use this measure to find incorrectly 
classified documents in a relevance feedback learning strat- 
egy- 

At recall 0.90, about 70% of the least confidently clas- 
sified files are indeed incorrectly classified. I.e., to find 20 
incorrectly classified files to learn from, a human expert has, 
on average, to touch only the 29 least confidently classified 
files. 

The result is illustrated in Figure 2(b): The solid curve 
shows the negative learning strategy that uses the confidence 
measure to find incorrectly classified files. Obviously, it has 
a much better learning efficiency, because the number of 
touched files is reduced dramatically. 

The following classifier learning algorithm is based on bi- 
directional mutual feedback: The classifier provides feedback 
to a human expert is terms of how confident it is about a 
classification, and the user gives feedback to the classifier in 
terms of how particular files should be classified. 

while human expert is willing to approve documents do 
classify No documents using current classifier;   ' 
learning set L := 0; 
for i s= 1 to Ni do 

ask human expert to approve tth least 
confidently classified document <&; 
if di classified incorrectly then 

add di to i; 
end-, 
learn all documents in £, using negative 
learning strategy; 

end 
Choosing the number of test documents per iteration is 

not critical. It can be set fairly high, e.g., No -1000, or to 
even all the documents that are available, because classify- 
ing test documents and determining the confidence does not 
require user interaction. 

Notice that this algorithm requires the user to touch ex- 
actly the same number of documents each iteration, namely 
Ni. As the classifier gets better, fewer incorrectly classi- 
fied files are found among the N\ least confidently classified 
ones, and the number of learned documents decreases over 
time. 
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Figure 3: Feedback from the confidence measure 

The number of touched documents per step determines 
the steepness of the learning curve and the finally achieved 
E-value. The higher the number of touched documents per 
step, the flatter is the learning curve. However, the higher is 
the achieved accuracy because a higher variety of documents 
are included into the learning process. Figure 4 illustrates 
this behavior of the algorithm for Ni = 10,25,50,75. 

The mutual feedback learning algorithm is tuned to min- 
imize the user's interaction (in terms of touching test files), 
while at the same time, it achieves highest accuracy. 

5    Comparison of Related Classifier Technologies 

There are diverse technologies for building classifiers. Dis- 
criminant analysis (linear or quadratic) is a well known ba- 
sic statistical classification approach [Jam'85]. Decision ta- 
bles are very simple and determine according to table entries 
what class to assign to an object. The UNIX "file" command 
is an example of a decision table based file classifier. It scans 
the /ete/aagic file, the decision table, for matching values 
and returns a corresponding string that describes the file 
type. Decision tree classifiers construct a tree from training 
data, where leaves indicate classes and nodes indicate some 
tests to be carried out. CART [BFOS84] or C4.5 [Qui93] 
are well known examples of generic decision tree classifiers. 
Rule based classifiers create rules from training data. R- 
MINI [Hon94] is an example of a rule based classifier that 
generates disjunctive normal form (DNF) rules. Both, deci- 
sion tree and rule classifiers, usually apply pruning heuristics 
to keep these trees/rules in some minimal form. 

To rate our experimental vector space classifier, we built 
alternative file classifiers using quadratic discriminant anal- 
ysis, decision tables, the decision tree system C4.5, and the 
rule generation approach R-MINI. Our experience can be 
summarized as follows: . 

Speed. Training and classification using quadratic dis- 
criminant analysis is very slow because extensive compu- 
tations must be performed. The other classifier technolo- 
gies provide fast training and classification with performance 
comparable to a vector space classifier. 

Accuracy. Quadratic discriminant analysis and deci- 
sion tables did not achieve our accuracy requirements. They 
had error rates up to 30%. The other classifier technologies 
had much lower error rates. The C4.5 file classifier misclas- 
sified from 1.1 to 5.8% of files. The CART file classifier 
showed error rates from 3.2 to 4.7%. The R-MINI file clas- 
sifier showed error rates from 0.9 to 5.5%. The vector space 

classifier had 1.1 to 3.1% error rates. Hence, all three tech- 
nologies have approximately the same range of errors. 

Extensibility. The lack of extensibility of discnmmant 
analysis, decision table/tree and rule classifiers is the most 
dramatic difference. Extending these classifiers with new 
user-specific classes demands rebuilding the whole system 
(tables, trees, or rules) from scratch, that is, it requires com- 
plete reconstruction of the classifier. 

However, creation of abstracts is independent of a par- 
ticular classifier technology because it is performed before 
classifier training. Thus, it is applicable to most other tech- 
nologies that use feature extraction to learn from training 
data, including decision table/tree and rule classifier. 

Relevance feedback has been thoroughly investigated for 
information retrieval systems, e-g. in SMART [Roc71, Ide71]. 
To our knowledge, there is no work using relevance feed- 
back techniques to improve classifiers. The mutual relevance 
feedback algorithm presented in this paper slightly adjusts 
centroids. It is specific to the vector space model. Trans- 
ferring this algorithm to decision table/space classifiers is 
not possible, according to the above mentioned limitations 
in extensibility. 

6    Conclusion and Outlook 

High accuracy and dynamic extensibility are the primary 
criteria for any classifier. The experimental VSC for files 
presented in this paper fulfills both requirements. 

The file classifier can be seen as a component of object, 
text, and image database management systems. The clas- 
sifier can also provide useful services in a next-generation 
operating system environment. Consider for instance a file 
system backup procedure that uses the classifier to select 
file-type-specific backup policies or compression/encryption 
methods. 

Additional experiments have been conducted that uses 
the classifier for language and subject classification. Whereas 
language classification showed encouraging results, this tech- 
nology has its limitations for subject classification. The rea- 
son is that the classifier works mainly by syntactical explo- 
ration of the schema, but subject classification must take 
into account the semantics of a document. 

We axe currently working on the classification of struc- 
turally nested documents. A file classifier is being developed 
that is, for example, able to recognize Postscript pictures in 
electronic mail or C language source code in natural text 
documents. 
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Abstract: 

We provide an overview of the Garlic project, a new 
project at the IBM Almaden Research Center. The.goal of 
this project is to develop a system and associated tools for 
the management of large quantities of heterogeneous mul- 
timedia information. Garlic permits traditional and multi- 
media data to be stored in a variety of existing data 
repositories, including databases, files, text managers, 
image managers, video servers and so on; the data is seen 
through a unified schema expressed in an object-oriented 
data model and can be queried and manipulated using an 
object-oriented dialect of SQL, perhaps through an 
advanced query/browser tool that we are also developing. 
The Garlic architecture is designed to be extensible to new 
kinds of data repositories, and access efficiency is 
addressed via a "middleware " query processor that uses 
database query optimization techniques to exploit the 
native associative search capabilities of the underlying 
data repositories. 

1: Introduction 

In recent years, the problem of heterogeneous distrib- 
uted data management has attracted a great deal of atten- 
tion, both from the database systems research community 
and from developers of commercial database systems. 
This is due to the fact that improvements in communica- 
tion technologies, such as affordable high-speed lines, 
broad deployment of LAN technology, and availability of 
standardized protocols, have made it feasible to connect 
historically separate data systems. In commercial environ- 
ments, such data systems typically include relational data- 
bases from various vendors (e.g., IBM, Oracle, Sybase), 
older, non-relational databases of various genres (e.g., 
IMS databases), and record-based file systems (e.g., 
VSAM). Unfortunately, simply connecting all of the 

1. Garlic is not an acronym. Most members of the team really like garlic, 
and enjoy our laboratory's proximity to the Gilroy garlic fields! 

related systems does not solve the problem of writing 
applications that require access to enterprise data from 
several of them. Though the systems are connected, the 
data is still represented by different data models, meaning 
that the programmer must use different access interfaces to 
get at the data, and must worry about such details as locat- 
ing the desired data, optimizing access to the different data 
systems, and managing the transactional consistency of 
any updates performed. 

For traditional business data, solutions are becoming 
available to some of the problems mentioned above. How- 
ever, in both commercial enterprises (e.g., retailing or 
insurance) and in more specialized environments (e.g., 
health care or engineering design), non-traditional, multi- 
media data is assuming an increasingly central role. Fur- 
ther, these new types of data are needed for applications 
(e.g., catalog production, patient records) which also 
involve traditional, record-oriented data. In both commer- 
cial and more specialized environments, the existing mul- 
timedia data often resides in file-based data systems that 
provide media-specific capabilities for searching, storing, 
and delivering the (often large) multimedia data items. 
This increased heterogeneity of systems and data types 
significantly adds to the problems faced by application 
developers and end-users. 

If access to heterogeneous multimedia data is to 
become common, it will be necessary to develop uniform 
interfaces for providing location, network, and data model 
transparency for application developers. Otherwise, inter- 
face heterogeneity will inhibit the deployment of large- 
scale multimedia information systems. Providing uniform 
access to heterogeneous multimedia data presents a num- 
ber of new challenges and system requirements. First, both 
the user and application programming interfaces to the 
data must be flexible enough to support the new user inter- 
action models that are characteristic when dealing with 
multimedia data. These include visual query formation 
and support for both navigation-based querying and simi- 
larity queries. Secondly, in order for multimedia informa- 
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tion systems to be scalable, they must provide convenient 
mechanisms for integrating additional (new or legacy) 
data sources and data collections into the system and for 
smoothly extending the system's querying capabilities to 
cover such newly integrated data sources. 

The goal of the Garlic project at IBM's Alrnaden 
Research Center is to build a multimedia information sys- 
tem (MMIS) capable of integrating data that resides in dif- 
ferent database systems as well as in a variety of non- 
database data servers. This integration must be enabled 
while maintaining the independence of the data servers, 
and without creating copies of their data. "Multimedia" 
should be interpreted very broadly to mean not only 
images, video, audio, but also text and application specific 
types of data (CAD drawings, medical objects, maps,...). 
Since much of this data is naturally modeled by objects, 
Garlic provides an object-oriented data model that allows 
data from various data servers to be represented uniformly. 
This data model is complemented by an object-oriented 
query language (an object-extended dialect of SQL) and 
supported by a "middleware" layer of query processing 
and data access software that presents the object-oriented 
schema to applications, interprets object queries and 
updates, creates execution plans for sending pieces of que- 
ries to the appropriate data servers, and assembles query 
results for delivery back to the applications. A significant 
focus of the project is the provision of support for "intelli- 
gent" data servers, i.e., servers that provide media-specific 
indexing and query capabilities. It is hoped that the Garlic 
approach to unifying diverse data sources will signifi- 
cantly simplify application development, make end-user 
data exploration easier, and simplify the problem of inte- 
grating new data sources to support the deployment of 
large-scale, multimedia applications. 

The remainder of this paper provides a general intro- 
duction to the Garlic project, the approach being taken, 
and some of the key research issues in this area. The paper 
begins with a discussion of related work in Section 2. Sec- 
tion 3 provides a general overview of the project, describ- 
ing the architecture of the system and the role of each of 
its components. Section 4 presents the Garlic data model, 
with Section 5 focusing on Garlic's query language and 
query processing challenges. Finally, Section 6 touches on 
Garlic's application and end user interfaces. Section 7 con- 
cludes with a discussion of the current status of the project 
and our plans for the immediate future. 

2: Related Work 
Since the Garlic project is focused on the design' and 

implementation of a heterogeneous multimedia informa- 
tion system based on database concepts and technology, 
there are two areas where significant related work exists: 
heterogeneous databases and multimedia systems. 

2.1: Heterogeneous Databases 

The area of heterogeneous distributed database systems 
(also known as multidatabase systems) has been the focus 
of a significant level of research activity over the past five 
years. Early work in this area actually dates back much 
further, to projects such as the Multibase effort at CCA 
[4], but improved communication technologies and result- 
ing commercial demands have led to a recent resurgence 
of work in the area. Much of the research falls into one of 
three broad categories: providing uniform access to data 
stored in multiple databases that involve several different 
data models; handling similarities and differences between 
data representations, semantics, and stored values when 
the same (or similar) information about a given real-world 
entity is stored in multiple databases; and supporting 
transactions in heterogeneous distributed database systems 
in the face of incompatible concurrency control sub- 
systems and/or uncooperative transaction managers. A 
good survey of the relevant work can be found in [5]. In 
the commercial realm, products now exist for providing 
uniform access to data in multiple databases, relational 
and otherwise, and to structured files, usually through the 
provision of a unified relational schema. Such "middle- 
ware" products are one of the fastest-growing segments of 
the database market. 

Garlic's use of an object-oriented data model to inte- 
grate multiple databases is not new, as models with object- 
oriented features have been employed in projects such as 
[4], [6], [8] and others. However, a number of the techni- 
cal aspects of our approach are quite novel, and again, the 
intended range of target data repositories and data types is 
much broader. The TSIMMIS project at Stanford Univer- 
sity also strives to integrate a broad range of repositories, 
but using a specially developed Object Exchange Model 
[26]. What distinguishes the Garlic project from the afore- 
mentioned efforts is its focus on providing an object-ori- 
ented view of data residing not only in databases and 
record-based files, but also in a wide variety of media-spe- 
cific data repositories with specialized search facilities. 
With the exception of the Papyrus [6] and Pegasus [7] 
projects at HP Labs, we are aware of no other efforts that 
have tried to address the problems involved in supporting 
heterogeneous, multimedia applications. 

2.2: Multimedia Systems 
The multimedia area today is expanding at an 

extremely rapid pace, and the area is extremely broad, 
including work on hypermedia systems, specialized serv- 
ers with stringent quality of service requirements (e.g., 
video servers), image and document management tools, 
interactive games, structured presentations involving mix- 
tures of text, imagery, audio and video data, scripting Ian- 
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guages to support timed and synchronized playback of 
multimedia presentations, and so forth. This is most evi- 
dent in the personal computer industry, where a large num- 
ber of small-scale multimedia software packages and 
products have emerged due to the availability and afford- 
ability of CD-ROM technology. In the information sys- 
tems industry, despite the strong demand for multimedia 
technologies, things are moving more slowly. In particular, 
work on multimedia information systems is still in its 
infancy, with many problems remaining to be solved to 
combine multimedia data with more traditional, record- 
oriented data and support associative retrieval and data- 
intensive multimedia applications [9]. 

Most work to date on supporting associative retrieval of 
multimedia data has focused on retrieval methods for spe- 
cific data types. For example, years of research have pro- 
duced a solid technology base for content-based retrieval 
of documents through the use of various text indexing and 
search techniques [3]. Similarly, simple spatial searches 
are well-supported by today's geographic information sys- 
tems ([25], e.g.), and work in the area of image processing 
has led to systems such as QBIC [1] and Photobook [2] in 
which images can be recalled based on features such as the 
color, texture, and shape of scenes and user-identified 
objects. However, with the exception of simple 
approaches like attaching attributes to spatial objects, or 
associating user-provided keywords with images, these 
component search technologies remain largely isolated 
from one another. The only notable exception to this is the 
approach being taken by systems such as the Illustra 
object-relational DBMS [10], where media-specific class 
libraries (which Illustra calls DataBlades™) are provided 
in order to allow multimedia data to be stored in and man- 
aged by the DBMS. Garlic differs in that it aims to lever- 
age existing intelligent repositories, such as text and image 
management systems, rather than requiring all multimedia 
data to be stored within and controlled by the DBMS. Our 
belief is that Garlic's open approach will enable it to take 
advantage of continuing advances in multimedia storage 
and search technology. It should also be more effective for 
legacy environments, where multimedia data collections 
(such as documents or image libraries) and business data 
already exist in forms that cannot simply be discarded or 
migrated into a new DBMS. 

3: Garlic Overview 
Loosely speaking the goal of the Garlic project is to 

provide applications and users with the benefits of a data- 
base with a schema - similar to what an object-oriented or 
object-relational database system might provide ~ but 
without actually storing (at least the bulk of) the data 
within the Garlic system proper. Viewed from above, then, 
Garlic looks rather like a DBMS with an object-oriented 

schema. Internally, however, Garlic looks very different, 
with the data that makes up its database being scattered 
across a number of different data sources. To achieve the 
former view from the latter reality, Garlic provides two 
forms of "glue": an object-oriented data model and the 
ability to store additional complex objects to augment the 
data in the underlying data sources. 

3.1: The Big Picture 
Figure 1 depicts the overall architecture of the Garlic 

system. At the leaves of the figure are a number of data 
repositories containing the data that Garlic is intended to 
integrate. Examples of reasonable data repositories 
include relational and non-relational database systems, file 
systems, document managers, image managers, and video 
servers. Above each repository in the figure is a repository 
wrapper, which translates information about data types 
and collections (i.e., Schemas) and data access and manip- 
ulation requests (i.e., queries) between Garlic's internal 
protocols and that repository's native protocols. Informa- 
tion about the unified Garlic schema, as well as certain 
translation-related information needed by the various data 
repositories, is maintained in the Garlic metadata reposi- 
tory. The other repository shown in the figure is the Garlic 
complex object repository. This repository is used to hold 
the complex objects that most Garlic applications will 
need for "gluing" together the underlying data in new and 
useful ways. Complex objects will be needed to integrate 
multimedia data with legacy data in situations where the 
legacy data cannot be changed, and as a place to attach 
methods to implement new behavior. For example, in an 
auto insurance application, Garlic complex objects could 
be used to link the images of a damaged car (stored in an 
image-specific repository) together with an accident report 
(stored in a document management system) and a cus- 
tomer's claim and policy records (legacy data residing in a 
relational database) in order to form a "claim folder" 
object to be dealt with by an insurance agent. 

Query processing and data manipulation services are 
provided by the Garlic query services and runtime system 
component shown in Figure 1. This component presents 
Garlic applications with a unified, object-oriented view of 
the contents of a Garlic database and processes users' and 
applications' queries, updates and method invocation 
requests against this data; queries are expressed in an 
object-oriented extension of the SQL query language. This 
component will also be responsible for dealing with trans- 
action management issues. In the near term, Garlic will 
not provide any guarantees about consistency of legacy 
data that is operated on by legacy (as well as Garlic) appli- 
cations. The new Exotica project at Almaden [27] is exam- 
ining a combination of workflow with transactions which 
may offer some help for environments such as Garlic's. 
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Figure 1.Garlic System Architecture 

Finally, Garlic applications interact with the query ser- 
vices and runtime system through Garlic's object query 
language and a C++ application programming interface 
(API). Many applications will do this statically, in which 
case the Garlic schema will be presented to the application 
via a set of C++ classes that act as "surrogates" for the cor- 
responding classes of the actual Garlic schema. Certain 
applications may require more dynamic access to the data, 
in which case they will use a portion of the C++ API that 
provides dynamic access to information about the types 
and objects contained in a Garlic database and that enables 
objects to be manipulated without a priori (i.e., compiled) 
knowledge of the database schema. A particularly impor- 
tant example of such a dynamic application is the Garlic 
query/browser. This component of Garlic will provide end 
users of the system with a friendly, graphical interface that 
supports interactive browsing, navigation, and querying of 
the contents of Garlic databases. 

3.2: Repositories and Databases 

As mentioned previously, the purpose of the Garlic sys- 
tem is to integrate and unify data managed by multiple, 
disparate data sources. Thus, virtually all Garlic databases 
will involve data, most likely including legacy data, that 
resides in several data repositories. Up to this point, we 
have been using the term "data repository" loosely, refer- 
ring both to a particular kind of data management software 

(e.g., the DB2 C/S database system, the PixTex/EFS docu- 
ment manager, the QBIC image management library, etc.) 
and to the collections of data that it manages. However, to 
explain how we envision Garlic databases being created 
and used, it is useful to distinguish between the notion of a 
repository type, which is a particular kind of data manage- 
ment software, and a repository instance, which is a par- 
ticular data collection mat it manages. We will also refer to 
a repository manager, which is an instance of a repository 
type (for example^ a particular DB2 C/S installation). In 
order for Garlic to provide access to data that resides in a 
given repository manager, someone must have written a 
repository wrapper for that repository type. The Garlic 
architecture is designed to be extensible in this dimension, 
and we plan to provide tools to ease the task of writing 
such wrappers; we will also write such wrappers ourselves 
for a set of interesting repository types. Given the exist- 
ence of a wrapper for a repository type of interest, it is 
then possible to create Garlic databases that include one or 
more repository instances that are managed by repository 
managers ofthat repository type. 

The contents of a Garlic database, as mentioned earlier, 
are presented to applications and to end users as a global 
schema expressed in terms of the Garlic data model. The 
Garlic data model, discussed further in Section 4, is based 
on a proposed object-oriented data model standard [11]. 
The global schema is in turn the integration of a number of 
local Schemas, one per repository instance, that describe 
the data contents of each repository instance (including the 
Garlic complex object repository) that contributes data to 
the given Garlic database. Each of the local schemas, 
which are referred to in Garlic as wrapper schernas, is 
expressed in terms of the Garlic data model as well. 
Enabling access to the contents of a repository instance 
through a Garlic database involves identifying the data 
types and collections that are to be visible as part of the 
Garlic database and then writing a wrapper schema that 
describes the target data in GDL (the Garlic Data Lan- 
guage, the syntactic form of the Garlic data model), as 
well as providing any code required to implement the 
types' behavior (normally this will form a thin layer on top 
of the repository type's programming interface). For 
important repository types that support type systems of 
their own, e.g., a relational DBMS such as DB2 C/S, we 
expect that automated schema mapping tools will be pro- 
vided to assist Garlic database administrators (DBAs) with 
the task of defming a Garlic wrapper schema to represent 

2. It should be noted that, in the simplest of cases, the global schema 
may be nothing more than the union of the local schemas. However, it is 
more likely that the global schema will also involve views that serve to 
redefine, reshape, and hide some of the data definitions found in the 
underlying local schemas (see Section 4). 
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the native data types and collections that they wish to 
export from a given repository instance. 

4: The Garlic Data Model 

Our goal in Garlic is to understand the issues associated 
with providing an integrated, object-oriented view of data 
from disparate sources, and not to invent yet another 
object-oriented data model, so we have adopted the 
ODMG-93 object model [11] as a starting point for the 
Garlic data model and the syntax of the ODMG-93 object 
definition language, ODL, as a base for the Garlic Data 
Language, GDL. Some aspects of the Garlic data model 
differ from those of the ODMG-93 model, however, as 
Garlic's heterogeneous environment poses certain prob- 
lems not found in the logically centralized, OODB envi- 
ronment with which the ODMG-93 standardization effort 
is concerned. 

In the ODMG-93 standard, the fundamental building 
blocks of the data model are objects and values. Each 
object has an identity that uniquely denotes the object, 
thus enabling the sharing of objects (by reference). 
Objects are strongly t>pcd, and object types are expressed 
in the data model in terms of object interfaces (as distinct 
from implementations). The description of an object's 
interface includes the attributes, relationships, and meth- 
ods that are characteristic of all objects that adhere to the 
interface. The modd also supports an inheritance mecha- 
nism by which a new interface can be derived from one or 
more existing interface.. The derived interface inherits all 
of the attributes, relationships, and methods of the inter- 
faces from which it is derived, making the derived inter- 
face a subtype of those interfaces. 

Object identity: The ODMG-93 data model defines 
object identity in the traditional strong manner, guarantee- 
ing that an object's identity be both unique and immutable. 
Unfortunately, some repositories, such as relational data- 
bases, do not provide this strong notion of identity for the 
data items that they manage. To enable such data items to 
be modeled as objects in a Garlic database, references in 
the Garlic data modd arc based on a notion that we call 
weak identity-, this is simply a means of denoting an object 
uniquely but not necessarily immutably within the scope 
of a Garlic database An object's weak identity is formed 
by concatenating a token that designates the object's 
implementation with an implementation-specific unique 
key. For instance, to view a table in a relational database 
as a collection of objects m Garlic, the identity of the 
object corresponding to a relational tuple could be formed 
by pairing an implementation identifier that (indirectly) 
specifies the tuple's source table together with the values 
of the key field(s) of the tuple. An important consequence 
of weak identity is that it allows Garlic to treat data items 
for which only weak identification is possible as objects 

without requiring that proxy (or surrogate) objects be 
maintained within Garlic for each such data item. 
Although some systems have employed a proxy-based 
approach to heterogeneity in object bases (e.g., [8]), we 
felt that such an approach would cause serious problems in 
terms of practicality (both space and the cost of maintain- 
ing consistency are at issue) and efficiency of access for 
large legacy databases. 

Legacy references: Another problem related to iden- 
tity and object references in Garlic is the fact that legacy 
data can contain legacy references. For example, many 
foreign keys in a relational database are essentially object 
references, and we would like to show them as such in the 
portions of the Garlic schema that correspond to the 
underlying relational data. Similarly, in a repository that 
stores and indexes documents using a traditional file sys- 
tem for document storage, file names for documents are 
essentially references to document objects, and they 
should be shown as such in the Garlic schema. Unfortu- 
nately, in both cases, the underlying repository represents 
and manipulates these legacy references in its own, reposi- 
tory-specific manner. Clearly, to provide access to legacy 
databases, Garlic cannot require such reference attributes 
to be converted into and stored using Garlic's full weak 
identifier format; in fact, Garlic must be careful not to 
attempt to store long-form references into the reference 
attributes of legacy data objects. The Garlic data model 
addresses this problem by providing the notion of an 
implementation-constrained reference, which is a refer- 
ence that can only denote objects of a specified implemen- 
tation. Returning to the example of a foreign key, a 
relational tuple that references another tuple by means of a 
foreign key cannot reference any arbitrary Garlic object 
that has the appropriate interface; rather, it can only refer- 
ence tuples in the specified target table within the same 
relational database. Thus, when introducing an implemen- 
tation of a given interface, Garlic supports the association 
of such implementation constraints with the reference 
attributes mentioned in the interface. Repository wrappers 
(see Figure 1) are responsible for converting such refer- 
ence values between Garlic's object reference format and 
their repository-specific short forms as needed. Attempts 
to violate such constraints are detected by the relevant 
repository wrapper and result in a runtime error.- 

Extensions: The Garlic data model extends the con- 
cepts of the ODMG-93 object model in three significant 
ways. The first is the degree of support for alternative 

3. It should be noted that while most aspects of the Gallic data model are 
amenable to static type-checking, this solution is not However, when a 
new interface or implementation with the potential to lead to such run- 
time errors is introduced into the schema, Garlic can provide a warning 
and even (optionally) prohibit the change. 
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implementations of interfaces, the second is related to type 
system flexibility, and the third is an object-appropriate 
view definition facility. 

Garlic makes a sharp distinction between an interface 
and its implementations. The type of an object is deter- 
mined solely by its interface, and any number of imple- 
mentations of a given interface are permitted. It is quite 
possible that several repositories may offer alternative 
implementations of an important multimedia data type 
(e.g., text or image). Garlic supports both the notion of a 
type extent, which is the set of all instances of a given 
interface, and an implementation extent, which is the set 
of all instances managed by a given implementation of an 
interface of interest. 

In terms of type system flexibility, Garlic extends the 
ODMG-93 model with the concept of conformity [12]. 
One interface is said to conform to another if the former 
defines a subtype of the latter under the standard definition 
of subtyping (including contravariance in the argument 
positions) - even if the former interface was not derived 
from the latter interface using the data model's explicit 
inheritance mechanism. This notion results in an implic- 
itly-specified type lattice that can provide additional flexi- 
bility when independently-defined Schemas are merged 
later, which is clearly an important consideration for Gar- 
lic. However, to be compatible wtih ODMG-93 semantics, 
conformity in Garlic is provided as an option. The definer 
of an interface A may specify, when using the name of an 
interface B, whether that use of B should be restricted to 
mean instances of B and its explicitly derived subtypes, or 
whether any interface that conforms to interface B is 
acceptable. This is indicated by saying conforms(B) 
instead of B in the relevant part of the definition of A. 

Object-Centered Views: The most significant exten- 
sion that Garlic makes to the ODMG-93 data model is the 
notion of views. In Garlic, the primary purpose of a view 
is to enhance (extend, simplify, or reshape) a set of under- 
lying Garlic objects, usually by adding or hiding some of 
their attributes and/or methods. Garlic employs the notion 
of an object-centered view for this purpose. An object-cen- 
tered view defines a new interface, together with an imple- 
mentation of the new interface (usually written using 
Garlic's object query language), that is based on an exist- 
ing interface that the view definer wishes to enhance. The 
existing interface is said to be the center of the view, as 
each element of the view is an enhancement of an object 
instance whose type is given by the center interface. In the 
global schema, the view assumes a role similar to a type 
extent, as its elements can be queried and enumerated just 
like the objects in a type extent. The elements of a view 
are considered to be objects, and the identity of each 
object in a view is derived from the identity of the center 
object that it enhances. In particular, the identity of an 

object in a view consists of the identity of its center object 
prepended with an implementation identifier that indicates 
the view from which the object was obtained; this allows 
Garlic to properly handle referenqes to view objects when 
presented with them later. The methods available on the 
objects in an object-centered view are selected (or addi- 
tionally provided) by the view definer, and a view can 
optionally be positioned in the type hierarchy through 
explicit placement when the view's interface is defined. 

5: Queries in Garlic 
Given the schema for a Garlic database that a user or 

application wishes to utilize, Garlic provides access to the 
database through a high-level query language. Since the 
data model of Garlic is object-oriented, and since SQL is 
the dominant query language today for database applica- 
tion and tool builders, the query language of Garlic is an 
object-oriented extension of SQL. To accommodate the 
object-oriented nature of the Garlic data model, Garlic 
extends SQL with additional constructs for traversing 
paths composed of inter-object relationships, for querying 
and materializing collection-valued attributes of objects, 
and for invoking methods within queries. These object- 
oriented SQL extensions are similar to extensions pro- 
vided in various other recent object query language pro- 
posals (e.g., [13], [14]), including the ongoing efforts of 
the SQL-3 committee [15]. 

Since the Garlic query language is intended for query- 
ing databases that contain data in a variety of repositories, 
including multimedia repositories with associative search 
capabilities, Garlic's SQL extensions must also take the 
needs of such repositories into account. Many of then- 
needs can be accommodated simply through the use of the 
query language's object extensions, e.g., by making use of 
methods in query predicates and target lists. However, the 
search facilities provided by repositories that manage mul- 
timedia data types such as text and images are often based 
on a somewhat different query model than the one used in 
most database systems - rather than requesting the 
retrieval of every data item where a given predicate is true, 
text and image queries commonly request the ordered 
retrieval of the top N (or all) data items that come "close" 
(perhaps within a certain threshold) to matching a given 
predicate. An image-oriented example that could be satis- 
fied using the search capabilities of the QBIC system [1] 
would be "find all reddish images that contain a yellowish, 
circle-like object in the middle". QBIC would respond to 
this query by returning a list of all images that approxi- 
mately match the specified predicate, and would rank- 
order the results by their closeness to the query predicate, 
as measured by an appropriate similarity function. 

Integrating approximate match query semantics with 
more traditional (exact match) database query semantics is 
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an interesting problem, and we are currently developing a 
set of syntactic and semantic SQL extensions to support 
queries that involve both exact and approximate search 
criteria. This work involves introducing into SQL the 
notion of graded sets (the ordering of which can be mod- 
eled using lists in the Garlic data model). In such sets, 
each object is assigned a number between 0 and 1 for each 
atomic predicate; this number represents the degree to 
which the object fulfills the predicate, with 1 representing 
a perfect match. Boolean combinations of predicates can 
then be handled using the rules for combining predicates 
in fuzzy logic [16]. To enable query writers to specify the 
desired semantics, the syntax of SQL is extended to permit 
the specification of the number of matching results to be 
returned and whether or not rank-ordering (rather than an 
attribute-based sort order, or an arbitrary order) is desired 
for the query's result set. 

5.1: Query Processing 

Garlic queries may span a number of repositories. Garlic 
will thus benefit from and contribute to work on query 
processing in heterogeneous distributed database systems 
as well as on distributed query processing in general (e.g., 
[17], [18]). Since Garlic queries are formulated in an 
object-extended SQL dialect, we also expect to build on 
work in the area of object query processing (e.g., [19], 
[20]). In addition to the problems raised by coupling heter- 
ogeneous databases and supporting object queries, Garlic 
also faces significant query processing challenges that 
arise in accommodating a broad range of repository types 
and data types. 

Garlic will decompose a user's query into an execution 
plan containing a number of smaller queries, each of 
which can be executed by an underlying repository. It will 
be the wrapper's job to translate these smaller queries into 
the repository's native query language (or its native search 
API, if it has no actual query language). To do this decom- 
position, Garlic will need descriptions of the query pro- 
cessing power of each repository. The question of how to 
characterize the query power of a repository, in terms of 
the language subset that its wrapper is capable of process- 
ing directly (i.e., without help from the Garlic runtime sys- 
tem), is an interesting question that the project is currently 
investigating. Garlic will also need to come up with cost 
and selectivity estimates in order to devise an efficient 
access plan. Thus it will need cost- and selectivity-related 
metadata, which might be hand-written as part of the 
wrapper for repositories with fixed Schemas, or might rely 
on query plan EXPLAIN facilities provided by more 
sophisticated repsoitories. For queries involving approxi- 
mate-matching, new execution strategies are needed to 
produce the N best results efficiently (i.e., without materi- 
alizing every intermediate result item that matches at all). 

6: Garlic Interfaces and Applications 

Data in Garlic will be accessible through two primary 
interfaces. Application programs will be able to access 
data in the system via Garlic's C++ application program- 
ming interface. Within this C++ API, two major sub-inter- 
faces will be provided - one for compiled applications, 
written with a priori knowledge of the Garlic schema for 
the database of interest, and one for dynamic applications, 
written with no a priori knowledge of the types or objects 
that exist in the database. End users will be able to access 
data in the system via Garlic's query/browser interface, a 
dynamic Garlic application (the first client of the C++ 
API) that will provide a friendly and intuitive means for 
users to query and browse the contents of any Garlic data- 
base. Unlike existing interfaces to databases, users will 
move back and forth seamlessly between querying and 
browsing activities, using queries to identify interesting 
subsets of the database, browsing the subset, querying the 
contents of a set-valued attribute of a particularly interest- 
ing object in the subset, and so on. The query/browser will 
support synchronous browsing [21], [22] and a graphically 
oriented extension of query by example [23]. An interest- 
ing question, currently under investigation, is how much 
of the power of the Garlic query language the query/ 
browser will be able to make available without sacrificing 
ease of use and intuitive semantics. Finally, the query/ 
browser will provide support for type-specific "pickers" to 
support the construction of media specific predicates. 

7: Conclusions, Status and Future Work 

We have presented an overview of the Garlic project at 
the IBM Almaden Research Center. Garlic's goal is to 
build a heterogeneous multimedia information system 
(MMIS) capable of integrating data from a broad range of 
data repositories. We described the overall architecture for 
the system, which is based on repositories, repository 
wrappers, and the use of an object-oriented data model and 
query language to provide a uniform view of the disparate 
data types and data sources that can contribute data to a 
Garlic database. A significant focus of the project is the 
provision of support for repositories that provide media- 
specific indexing and query capabilities. 

An initial "proof of concept" prototype of Garlic should 
be running (or at least limping) by the time this proceed- 
ings becomes available. To speed development, we are 
using the ObjectStore DBMS [24] to hold both the com- 
plex objects and the metadata objects in the prototype. The 
initial prototype will be demonstrated via a simple appli- 
cation involving data that spans a relational DBMS (DB2 
C/S), an image repository (based on QBIC), and a text 
repository. The initial query/browser prototype will be the 
front end for this application. The goal of the first proto- 
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type is to provide clearer insights regarding the nature of 
wrappers, the challenges involved in query translation and 
processing, and the efficacy of the query/browser as an 
end-user window into a collection of multimedia data. 

In the longer term, we expect the Garlic project to lead 
us into new research in many dimensions, including 
object-oriented and middleware query processing technol- 
ogies, extensibility for highly heterogeneous, data-inten- 
sive environments, database user interfaces and 
application development approaches, and integration of 
exact- and approximate-matching semantics for multime- 
dia query languages. There are also many interesting, 
type-specific issues, such as what predicates should be 
supported on image and video data, how to index multime- 
dia information, how to support similarity-based search 
and relevance feedback, and what the appropriate user 
interfaces are for querying particular media types. We 
believe that significant challenges exist in each of these 
areas, and that solutions must be found if the field is going 
to move beyond the traditional boundaries of database sys- 
tems and keep pace with the emerging demand for large- 
scale multimedia data management. 
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Abstract 

Traditional optimizers assume that a query explicitly names the collection(s) in which the desired 
obj ects reside. In obj ect-relational or obj ect-oriented data models that support reference-valued attributes 
and path expressions, however, objects of interest may be reachable from several collections, or only 
indirectly via navigation from other objects. This suggests that optimizers for such data models could 
exploit alternative logical access paths to improve query performance. 

This paper presents a comprehensive approach to the problem of multiple logical access paths. We 
present a simple language for specifying different paths that denote the same set of objects, and describe 
how such specifications can be used to discover interesting access paths. By introducing a CHOICE 
operator that can be inserted into a logical query plan, we show how to extend a traditionally-structured 
cost-based optimizer to evaluate multiple logical access paths, and we show how we obtain and use 
statistics to model the cost of particular choices. We present experimental results that demonstrate that 
the right choice of logical access path can improve performance by orders of magnitude, and show that 
our methodology for optimization and costing chooses wisely among the alternative plans. 

1    Introduction 

Traditional query optimizers rely on a few basic assumptions about how and where data is stored. In par- 

ticular, the query explicitly names the (logical) collections that are to be searched, and it is assumed that 

no other collections can be used to access the same information. Increasingly, however, features are being 

added to database systems that weaken this assumption. For example, IBM DB2 Universal Database, an 

object-relational database that supports reference-valued columns and queries containing path expressions, 
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requires the definition of each reference-valued column to specify a scope, or target collection, for refer- 

ences that will be stored there [CCN+97]. Other systems rely on the existence of type extents, collections 

that are known to contain all objects of the referenced type [KM90a, JWKL90]. 

Knowledge of a target collection gives the optimizer a choice of two paths by which to access the 

referenced data: by navigation from the path's source collection, or by direct access to the target collection. 

We call these options logical access paths, to distinguish them from indices or other physical access paths 

traditionally considered by optimizers. For each logical access path, there may be several physical access 

paths to choose from. 

The preceding example describes a single instance of a more general phenomenon: database systems 

in which there can be multiple logical access paths for reaching the same data. The data models of object- 

oriented databases, such as ObjectStore [LLOW91], 02 [LRV88] or Gemstone [BOS91], are even more 

flexible than those of object-relational systems. A given object may be reachable from many collections, or 

only indirectly via navigation from other objects. Object attributes can contain collections of references to 

objects, as well as scalar references. 

If it is known that all of the objects of interest are reachable via a particular access path, it may be 

possible to choose an execution plan with much better performance. For example, consider the query: 

select e.name, e.dept.name 
from ResearchEmps e 
where e.dept.size > 20 and e.dept.budget < e.dept.expenses 

A naive execution plan would navigate from each employee in ResearchEmps to its department, and test the 

predicates. A more sophisticated optimizer would make use of the knowledge that the employee attribute 

dept is of type Department, and that all departments are included in a collection Depts. In addition to the 

naive navigational plan, this optimizer would be able to exploreplans that, for example, take advantage of an 

index on Depts to find the large departments, and join the resulting rows with ResearchEmps to answer the 

query. However, a still more sophisticated optimizer would recognize that although the employee attribute 

dept is of type Department, employees in the ResearchEmps collection belong to research departments, 

which can be reached via the (much smaller) collection ResearchDepts. This optimizer could consider not 

only all of the previous plans, but also ones in which ResearchEmps is joined with ResearchDepts. 

Federated systems, which integrate multiple data sources, exacerbate the problem of multiple logical 

access paths because independent collections of the same object type may exist at different sources. In 

the query above, the advantage of knowing that research employees reference research departments is even 

greater if the Depts collection contains references to departments stored by several data sources, making it 
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expensive to scan, whereas the ResearchDepts collection refers to departments stored at only one location, 

perhaps the same one where the research employees are stored. 

This paper presents a comprehensive approach to the problem of multiple logical access paths, devel- 

oped in the context of the Garlic federated database system. Rather than requiring explicit scope declarations 

or relying on the existence of type extents, we define a specification language with which a database admin- 

istrator can express a wide range of assertions concerning the objects reachable via a path. We present 

algorithms that analyze the assertions to discover useful logical access paths, and show how the ability to 

consider multiple logical access paths can be introduced into a traditionally-structured cost-based optimizer. 

Finally, we demonstrate experimentally the value of exploring alternative access paths, and show that our 

methodology for optimization and costing chooses a good execution plan. 

Throughout, we stress pragmatism over completeness. We rely on assertions by an administrator rather 

than constraints, which are difficult to enforce in a federated system with autonomous data sources. We 

limit the expressive power of our specification language to simplify its application to queries. Rather than 

search exhaustively for every possible access path, our algorithms focus on finding those most likely to lead 

to good execution plans. 

The paper is structured as follows. Section 2 describes our specification language, and Section 3 dis- 

cusses the algorithms for discovering logical access paths. Section 4 concerns optimization. In Section 4.1 

we describe how alternative access paths are represented in the query graph by means of the CHOICE logical 

operator, and we show how we obtain and use statistics to model the cost of particular choices in Section 4.2. 

Section 5 presents our experimental results, Section 6 discusses related work, and we summarize the paper 

in Section 7. 

2   A Logical Access Path Specification Language 

Although database metadata varies widely across data models and system implementations, conventional 

database Schemas typically provide limited information from which to deduce alternative logical access 

paths. For example, Garlic is based on an object-oriented data model, and its schema includes information 

about the type of objects referenced from a collection, and the types of object attributes, method parameters, 

and the like. Thus, a Garlic schema might include an Emps collection, containing references to objects of 

type Employee. Employee objects might have an integer Salary attribute, as well as a Dept attribute of type 

Ref<Department>, and so forth. Note, however, that while the schema states the type of the Dept attribute 

explicitly, it includes no indication as to whether the referenced Department objects are included in (i.e., 

referenced from) a particular collection, e.g. Depts. Our specification language is a means by which to 
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provide such information, in the form of simple inclusion assertions. For the purposes of this paper, we 

assume that the specifications are supplied by a knowledgable database administrator, and are correct. 

For the example above, the logical access path specification might be: 

{Emps.Dept} = F(Depts) 

This specification states that all the distinct Department objects reachable via the path Emps.Dept can also 

be reached from the collection Depts.1 The curly braces represent elimination of duplicates from a bag; 

thus the left-hand side represents distinct departments. The F on the right-hand side stands for Filter, if it 

were known that every department in Depts is referenced by at least one employee in Emps, a specification 

without a filter could be used instead: 

{Emps.Dept} = Depts 

If the target of a path spans multiple collections, a specification like the following could be used: 

{Emps.Dept} = ResearchDepts, F(SalesDepts) 

This states that the distinct departments reachable via the givenpath consist of all the departments referenced 

by the ResearchDepts collection, plus some departments referenced from the SalesDepts collection. More 

complex expressions built from these elements can describe a variety of interesting assertions. However, we 

do not claim that the language is capable of describing arbitrary relationships among collections. Our intent 

was to focus on assertions with practical implications for query processing, and to express such assertions 

with a limited number of constructs in a form easily understood by users or database administrators. 

More generally, a logical access path specification has the form: 

source = target 

and states that the bags denoted by the expressions source and target are identical. The source expression 

must be a path, optionally enclosed by {} to indicate duplicate elimination. A path consists of a root (a 

named collection in the schema) followed by 0 or more steps.2 Each step must be an attribute of the object 

type denoted by the previous step in the path. If any step in a path represents a collection-valued attribute, 

the collection is "flattened" before proceeding to the next path step. Thus, paths in specifications always 

denote bags of scalars, never bags of bags. For example, if objects of type Department have an attribute 
1 While the semantics of the specification language are those of bags, the examples in this paper assume that named collections 

(e.g. Emps) and collection-valued attributes (e.g. Depts.emps) do not contain duplicates. 
°2 Thus, a simple collection can be represented as a path having a root and no steps. 
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Emps which contains the department's set of employees, the expression DeptsEmps denotes the bag union 

of all the employees in the departments referenced by the collection Depts, not a bag of bags of employees. 

While path expressions that are not necessarily flattened at each step are allowed in the query language, 

and analogous specifications are of theoretical interest, we believe our more limited form of specification is 

sufficient to describe most situations that will be encountered in practice. 

The expression denoting the target of a specification is similar to the source expression, but may include 

the filter or union operators (written, respectively, as "F0" and ",") as well as the duplicate elimination 

operator. All of the operators take bag expressions as their argument(s), and produce a bag as their result. 

Restricting the source of a specification to a simple path, while permitting more complex expressions for 

the target, constrains the expressive power of the language but simplifies the application of specifications to 

a given query. The next section addresses the algorithms that implement this process. 

3    Applying Logical Access Path Specifications to Queries 

Before we describe how logical access path specifications are used, we will take a closer look at how the 

existence of an alternative logical access path can transform the query execution plan. Analogous to the 

distinction between logical and physical access paths, we distinguish a logical plan from an execution plan. 

In a logical plan, the collections to be queried are specified, along with any relevant predicates, but the 

variables considered by a traditional cost-based optimizer, (e.g join order and access method) are not. We 

focus on the logical plan here, while noting that several execution plans may exist for each logical plan. 

We will use SQL to express logical plans, because SQL provides exactly the right level of abstraction: the 

collections to be queried are specified, but there are no implications for join order, physical access method, 

etc. Whenever there is potential confusion as to whether an SQL statement represents a (user-submitted) 

query or a logical plan, we will be explicit. 

We begin by noting that a path expression with a root and N steps can be viewed as an JV-way join. For 

example, the query: 

select e.name, e.dept.name 
from ResearchEmps e 
where ... 

can be executed as a "pointer join", as represented by the following logical plan .3 

select e.name, d.name 

s Although the semantics of path expressions dictate that path steps through scalar attributes should be modeled as outer joins, 
our logical plan notation will use the more familiar and readable SQL for ordinary joins throughout. 
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from ResearchEmps e, e.dept d 

where e.dept = d.OID and ... 

This SQL statement represents the logical plan that locates qualifying objects of typt Deparment by navi- 

gation from qualifying objects in ResearchEmps. The join predicate does not actually need to be evaluated 

in this case; it is guaranteed to be true because the Department objects are obtained by navigation. In the 

absence of alternative access paths, this navigational logical plan is the only feasible means of answering 

the query. However, if there is an alternative means of enumerating the objects over which the quantifier d 

ranges, it can be substituted for the definition of d to give an alternative logical plan. For example, if all the 

relevant departments are included in the collection Depts the logical plan becomes: 

select e.name, d.name 

from ResearchEmps e, Depts d 

where e.dept = d.OID and ... 

For this logical plan, the join predicate is important: it captures the idea that not every Department object in 

the Depts collection is necessarily reachable via the dept field of a research employee. Each object in Depts 

must be matched with an object in ResearchEmps that references it. 

Given a query and a set of logical access path specifications, our algorithm systematically identifies 

substitutions like the one in the example above, and generates logical plans that take advantage of them. 

The algorithm proceeds in 2 phases. The matching phase determines, for each step in the path, collections 

or unions of collections that may be substituted for the corresponding quantifier definition. The generation 

phase produces logical plans by applying one or more of the substitutions identified during the matching 

phase. 

3.1    Matching Phase 

The matching phase builds a substitution list for each path step by starting with the path contained in the 

query, and looking for a logical access path specification whose source matches a prefix ofthat path. The 

matched prefix is replaced by the target of the specification, and the new path so formed is added to the 

substitution list. Both this new path and the original one are now eligible for further matching, and this 

process can be repeated as long as matching specifications are found. 

For example, suppose the query contains the path Emps.dept.mgr.name, and the logical access path 

specifications given in Figure 1 have been registered. The substitution list for the first path step is initialized 

to the first step of the path in the query, Emps.dept, which matches the source of specification (1). Replacing 

the matched portion by the target of (1) gives Depts, so this collection is added to the substitution list for 
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{Emps.dept} = F(Depts) 

{Depts.mgr} = F(Emps) 

{Depts.mgr}   =   F(SalesMgrs, ResearchMgrs) 

Figure 1: Logical Access Path Specifications 

(1) 

(2) 

(3) 

this step, after which no further substitutions are possible. Table 1 shows the completed substitution list for 

step one. 

Choice Collection 
Cl.l 
C1.2 

Emps.dept 
Depts 

Choice Collection 
C2.1 
C2.2 
C2.3 
C2.4 

Einps.dept.mgr 
Depts.ingr 

Emps 
SalesMgrs, ResearchMgrs 

Table 1: Substitution list for step one, Emps.dept Table   2:      Substitution   list   for   step   two, 
Emps.dept.mgi- 

For the second step, the list is initialized to Emps.dept.mgr. Applying specification (1) replaces Emps.dept 

by Depts, giving the new path Depts.mgr, which is added to the substitution list. This new path matches the 

source of specifications (2) and (3), so now each of these can be applied to add two more paths to the list: 

Emps and the union SalesMgrs, ResearchMgrs. At this point, no new matches are possible. Table 2 shows 

the completed substitution list for step two. 

For the specification language described in Section 2, it is impossible to guarantee in general that the 

matching phase of the algorithm will terminate. In practice, this problem can be resolved in a variety of 

ways. One approach is to stop adding to the substitution list after some number of candidate substitutions 

have been found. Since the original navigational plan is available even if no substitutions are made, there 

is no danger of being unable to execute the query. Another option is to limit the maximum length of paths 

added to the substitution list, e.g. to twice the length of the path in the original query. 

3.2    Generation Phase 

At the end of the matching phase, a substitution list has been created for each step of the original path. Each 

entry in a step's substitution list identifies a collection (or union of collections) that contains all the objects 

denoted by that step of the path. The generation phase creates a logical plan by choosing one element from 

the substitution list for each path step, repeating this process until every combination of choices has been 
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considered. However, the substitutions which can be applied at a given step depend on the substitutions 

that were made for preceding steps. A simple collection or union of simple collections can be substituted 

no matter what substitutions were made for preceding steps, but a collection represented by a path can be 

substituted only if each of the preceding steps chose the corresponding prefix of the same path. Thus, the 

number of logical plans actually generated is typically smaller than the total number of combinations. Note 

that this restriction is not strictly necessary, and eliminates from consideration any logical plans that have a 

greater number of joins than there are steps in the path expression being evaluated. We will return to this 

issue in Section 7. 

select   ... 
from Emps  e,   Cl d,   C2 m 
where e.dept = d.OID and d.mgr = m.OID and  ... 

Plan Choice 1 Collection Cl Choice 2 Collection C2 

LP1 
LP2 
LP3 
LP4 
LP5 
LP6 

Cl.l 
Cl.l 
Cl.l 
C1.2 
C1.2 
C1.2 

Emps.dept 
Emps.dept 
Emps.dept 

Depts 
Depts 
Depts 

C2.1 
C2.3 
C2.4 
C2.2 
C2.3 
C2.4 

Emps.dept. mgr 
Emps 

SalesMgrs. ResearchMgrs 
Depts.mgr 

Emps 
SalesMgrs. ResearchMgrs 

Table 3: Logical plans. 

Referring to the choices in Table 1 and Table 2, if choice Cl.l is used for step one, choices C2.1, C2.3 

and C2.4 are allowed in step two. C2.1 is allowed because Cl.l is its corresponding prefix. Conversely, 

C2.2 is disallowed because Cl.l is not its corresponding prefix. C2.3 and C2.4 are allowed because they 

are simple collections or unions of collections. Similarly, if choice C1.2 is used for step one, choices C2.2, 

C2.3, and C2.4 are allowed for step two. In total, six logical plans will be generated for this query, which are 

summarized in Table 3. The SQL above the table is a "template": logical plans LP1 - LP6 are constructed 

by substituting the collections given in the table for "C1" and "C2" in the template. The following examples 

illustrate the plans generated. For logical plan LP1, the complete SQL representation is: 

select   ... 
from Emps e, e.dept d, d.mgr m 
where e.dept = d.OID and d.mgr = m.OID and ... 

This is the original navigational plan, with no substitutions. For LP5, the SQL representation becomes: 

select   ... 
from Emps e, Depts d, Emps m 
where e.dept = d.OID and d.mgr = m.OID and ... 
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In this case, the Depts and Emps collections have been substituted for the first and second steps of the path. 

4    Exploiting Logical Access Paths For Query Optimization 

The purpose of introducing logical access path specifications is to improve the performance of queries 

containing path expressions. We have described a language for specifying alternative paths, and an algorithm 

for enumerating alternatives relevant to a given query. In this section, we turn our attention to integrating 

this capability with traditional query optimization, so that we can generate execution plans based on these 

alternatives and select the best one. 

Garlic processes queries following the Starburst model [HFLP89]. Queries are first parsed, and an 

internal, logical representation of the query is built in the form of a query graph. This representation is 

manipulated during Query Rewrite [HPH92], which heuristically transforms the query to arrive at a more 

"optimizable" form. Cost-based optimization [HKWY97, ROH99] then occurs, bottom-up, first deriving 

plans for single collection accesses, and then proceeding to build plans for joins from those. 

4.1    The CHOICE Operator 

To represent alternative logical plans, we added anew logical operator, CHOICE, to our query graphs [HP88]. 

As a query is parsed. Garlic uses schema information to look up any identifiers encountered, and builds 

pieces of query graph to represent them. When a path expression, P, is encountered, the logical access path 

specifications are consulted, and appropriate logical plans are identified using the algorithm in Section 3. 

Whenever there are multiple logical plans to select from, a CHOICE operator is introduced to represent P's 

output. For each of the alternative logical plans, a subgraph that completely describes the work required by 

that plan is built and hung below the CHOICE operator. All the subgraphs for P are semantically equivalent. 

After query rewrite, the cost-based optimizer traverses the final query graph depth-first, optimizing 

each node of the graph (each logical operation) individually. The output of optimization is an execution 

plan, which consists of a tree of physical operators. To optimize a particular logical operation, optimized 

execution plans for its children in the query graph must already have been produced. The plan for the 

new logical operation typically builds on the plan(s) for its children by adding operators. For example, to 

optimize a logical join operation, execution plans for accessing the individual collections must already have 

been generated; the plan for the join usually consists of some flavor of physical JOIN operator combining 

the outputs of the execution plans for each child (or, for a multi-way join, perhaps a tree of physical JOIN 

operators). Likewise, to optimize the CHOICE operation, the optimizer finds the best execution plan for 

each of its various children (alternatives) first. Then it selects the best of those plans as the plan for the 
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CHOICE. CHOICE itself adds no additional operators to the execution plan. 

Representing the logical access path alternatives explicitly in the query graph has a number of advan- 

tages. Since the query graph passes through both rewrite and cost-based optimization, rewrite can be used 

to expand the range of choices or to prune bad choices heuristically. The basic bottom-up nature of cost- 

based optimization is undisturbed, and existing code can be used to cost the individual alternatives. Because 

subgraphs of CHOICE can be arbitrarily complex, the query graph can express any alternative representable 

in the logical access path specification language - and more, since the CHOICE construct is available for 

other uses as well. For example, it could be used to represent the choice between using a materialized view 

or going straight to base data, or to represent the alternatives produced by chase/backchase in [DPT97]. 

A different approach to optimizing logical access paths would have delayed the exploration of alternative 

paths until cost-based optimization. In this approach, the path expression P would be treated as a single- 

collection access until the cost-based optimizer examined the possible access paths. The delayed approach 

has two potential advantages: it unifies logical and physical access path selection, and, because the cost- 

based optimizer can more easily re-use partial plans, it might allow certain efficiencies in optimization that 

will be harder to achieve using CHOICE. On the other hand, the delayed approach introduces a great deal 

of complexity into the cost-based optimizer, particularly because applying logical access path specifications 

can change the number of collections accessed to produce the query results. Most cost-based optimizers 

trying to plan a single-collection access are not well-prepared to optimize a join or union at that point. 

The use of a logical operator to hold alternative rewritings of a query so that they could be optimized 

by the cost-based optimizer was suggested by Hasan and Pirahesh in [HP88J. In [GW89], Graefe and Ward 

introduce a choose-plan operator that can appear in execution plans. This operator allows the execution 

system to choose among physical plans based on the runtime value of program variables in the query - 

a similar idea, but applied in a different context, for a different purpose. We elected to use the logical 

operator, CHOICE, because it minimized the changes to our query compiler, preserving its basic structure 

while offering a great deal of flexibility for handling path expressions and other applications. 

4.2    Selecting the Best Plan 

The CHOICE operation gives us the ability to construct query graphs that represent alternative logical plans 

for evaluating path expressions. To select the best alternative, the optimizer must cost each one. Some of 

the alternatives may be simple accesses or joins, whose costs can be determined normally by the optimizer. 

In this section, our concern is with predicting the cost of those plans that involve navigation (i.e. pointer- 

chasing). In particular, we add to the framework of [ROH99] the ability to estimate two critical quantities 
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in plans that employ pointer-chasing, and given these quantities, the ability to model the cost of navigation 

itself. The first quantity is result cardinality, i.e. the total number of objects denoted by the target of a path. 

The second quantity is predicate selectivity, which depends on the data value distribution of the attribute 

employed in the predicate. For example, consider the path expression NYBranches.Depts.Emps.Age. The 

result cardinality of this path expression is equal to the total number of employees in all departments of New 

York branches; the selectivity of a predicate containing this path depends on the value distribution of the 

Age attribute for this particular group of employees. 

The emphasized phrase at the end of the previous paragraph highlights what makes the calculation 

of these quantities difficult in practice. The distribution of employee age at the New York branches may 

be quite different from the distribution of age values in groups of employees denoted by other paths, e.g. 

CABranches.Depts.Emps.Age or USEmpsAge. To collect and store such statistics comprehensively would 

require keeping track of them for every potential path, which is impractical at best and an impossibility in 

the common case of Schemas containing cyclical relationships. 

Nor is the problem of storing path statistics confined to value distributions. A path's result cardinality is 

also influenced by every step. The total number of objects designated by a path depends on the cardinality of 

the root collection and Hat fanout zX each step (see, e.g., [BF93]). For example, the total number of employees 

designated by the first path above can be estimated based on the number of (New York) branches, the average 

number of departments in those branches, and the average number of employees in those departments. For 

the second path, CABranches.Depts.Emps. Age, any of these three numbers may be different. As in the case 

of value distribution statistics, keeping comprehensive fanout statistics for every potential path would be 

impractical or impossible. 

Our approach to computing result cardinalities and predicate selectivities exploits the same logical ac- 

cess path specifications that are used to develop alternative logical plans. Rather than storing fanout and 

uniform value distribution statistics (second-highest key, second-lowest key and number of distinct values) 

for every possible path, we record them for attributes of simple collections only. In addition, we introduce 

a new statistic, reLcollection, which is derived using the logical access path specifications and maintained 

for reference-valued attributes of simple collections. This statistic identifies the simple collection or union 

of simple collections which provides the best available statistics for that attribute when it appears in a path 

expression. When more than one collection or union of collections could be used to approximate a particular 

path step, we use statistics from the collection (or union) with the smallest cardinality. Since all collections 

identified using the logical access path specifications contain a superset of the desired objects, we expect the 

smallest such collection to provide the best approximation. 
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We illustrate with an example. Consider the query 

select e.name 
from Emps e 
where e.dept.name = 'Database' 

If we have the single specification 

{Emps.Dept} = F(Depts) (4) 

it seems clear that we would like to use the value distribution statistics relevant to Depts.name in predicting 

the selectivity of our predicate. But suppose Emps is a collection of research employees, and therefore we 

have also been provided with the specification: 

{Emps.Dept} = F (ResearchDepts) (5) 

Assuming that the collection ResearchDepts is smaller that the collection Depts, we would intuitively ex- 

pect that using the statistics associated with ResearchDepts.name would allow us to make more accurate 

predictions of the selectivity of the predicate. 

Alternatively, suppose that instead of this last specification we are given the specification: 

{Emps.Dept} = ResearchDepts, F(SalesDepts) (6) 

Perhaps the Emps collection collects together the technical employees of the company, some of whom are 

in sales. There are still probably fewer total departments in ResearchDepts and SalesDepts than in Depts, 

so we would prefer to use statistics based on those two collections. Using the statistics for either one alone, 

however, would clearly be wrong. 

For the query in our example above, we would estimate the selectivity of the predicate by consulting the 

ref_coUection statistic for the attribute dept of collection Emps. Depending on which logical access path 

specifications have been registered, we would be directed to different collections, as follows. 

In the first case, where only specification (4) has been registered, the ref_collection statistic for the 

dept attribute of the Emps collection would point to the Depts collection. In the second case, in which 

specification (5) has also been registered, it would point to the ResearchDepts collection instead. In the 

third case, in which specification (6) has been registered instead of specification (5), it would point to both 

ResearchDepts and SalesDepts. The statistics for the union would be computed by combining the individual 

collection statistics, using the functions indicated in Table 4 for fanout, second-highest key and second- 

lowest key, and the rules given in Table 5 for the number of distinct values. The rules in Table 5 are used 

iteratively for unions involving more than two collections. 
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Statistic Combining Function 
high2key 
low2key 
fanout 

Maximum 
Minimum 
Average 

Table 4: Functions used to compute statistics from underlying, unioned collections' statistics 

Condition Rule for Computing num.distinct 
rangei is a subset of range2 
range2 is a subset of rangei 
rangei overlaps range2 
rangei does not intersect ranges 

num-distinct = num-distinct? 
num-distinct = numjiistincti 
num-distinct = max(num.distincti, num-distinct2) 
num-distinct = num-distincti + num-distinct2 

Table 5: Rule for computing the number of distinct values of an attribute from underlying, unioned collec- 
tions' statistics. The range of an attribute spans the values between low2key and high2key. Rule is given for 
an attribute from two unioned collections; may be applied iteratively if more collections are being unioned. 

Note that the reLcollection statistic for an attribute only directs the optimizer to a collection that pro- 

vides the best available approximation to the desired statistics for paths with a single step. That is, the 

collection designated by the reLcollection statistic for Depts.mgr might not be the best possible approxi- 

mation for the objects denoted by the path Emps.dept.mgr. A better approximation could be obtained by 

keeping reLcollection statistics for such longer paths as well. However, by traversing the reLcollection 

statistics along a path, it is possible to arrive at a reasonable approximation of the desired statistics with- 

out dedicating the processing power and storage that would be required to maintain more comprehensive 

statistics. 

To clarify, we look at an example with a longer path expression. To calculate the selectivity of the pred- 

icate Emps.dept.mgr.secretary.name = 'Smith', we need to find the value distribution statistics pertaining to 

the attribute name. Assume the following logical access path specifications have been registered: 

{Emps.Dept} - F(Depts) 

{Depts.Mgr} = F(Emps) 

{Emps.Secretary} = F(Sctys) 

{Depts.Mgr.Secretary} = F(ExecSctys) 

(7) 

(8) 

(9) 

(10) 

The reLcollection statistic for Emps. dept tells us to find statistics for mgr by looking at the statistics for 

collection Depts. In turn, the reLcollection statistic for Depts.mgr tells us to find statistics for secretary by 

looking at the statistics for collection Emps, and, finally, the reLcollection statistic for Emps.secretary tells 

1& 



us to find the value distribution statistics for name by looking at the statistics for collection Sctys. Because 

we do not keep ref.coUection statistics for longer paths, we fail to take advantage of specification (10) and 

thus do not look at the statistics of the ExecSctys collection, which should more closely approximate the 

objects targeted by our path. However, we believe that what we give up in potential accuracy is more than 

made up for by the savings in time and space. 

In the preceding example, since the path included only scalar-valued attributes, the fanout at each step 

was one. However, if any of the attributes were collection-valued, we would use the ref.coUection statistics 

to find the best available fanout statistics in exactly the same way. 

The final step in costing a plan for evaluating a path expression is modeling the cost of the navigation 

itself. The cost of navigation is the cost of accessing the root of the path segment, fetching the attribute 

corresponding to the next step in the path, then fetching the attribute for the next step, and so on. Garlic 

keeps statistics that track the avg^ccess_cost for attributes [ROH99], that is, the cost, given an object 

identifier, to fetch a particular attribute for that object. Thus to compute the cost of navigating a path, we 

simply sum, for each step in the path, the cost of the necessary fetch to get the next attribute along the path, 

multiplied by the estimated cardinality of the path result thus far. This total is added to the cost to access the 

first collection of the path to arrive at a total cost for the plan. 

5   Logical Access Paths in Action 

In this section we demonstrate the power of using information about logical access paths to improve query 

optimization. In particular, we will show how the specification of alternative logical access paths increases 

the choices available to the optimizer, and that our optimizer uses this information wisely in determining a 

final execution plan. Along the way, we will show the utility of having union specifications, and indicate 

why merely having information about type extents does not always lead to choosing the best plan. 

Our experiments were done using artificial data on a university theme4. The test data was distributed in a 

way that allows us to explore a large number of scenarios, but which is not in any way intended to be natural 

or realistic for an actual application. The collections, their sizes and their locations are shown in Table 6. 

A high-level view of the type system, showing references among the classes, is presented in Figure 2, and 

Table 7 contains the logical access path specifications for this database schema. Note that the specifications 

provide several ways of computing the result of a given path expression. For example, all objects reachable 

via the path Courses, teacher can be obtained both from the People collection and the Professors collection. 

< We actually borrowed the data from the BUCKY benchmark [CDN+97], but modified the schema and distributed it to serve 

our experimental needs. 
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Professor 

department" 'department 

chair 

Student 

Department 
department 

set of 
students 

Course 

Figure 2: Inter-Class References 

The test data is distributed among three data sources: an IBM DB2 Universal Database (UDB) rela- 

tional database, a Lotus Notes version 4.5 database, and an ObjectStore version 4.0 object database. The 

wrappers [RS97] for these sources (and indeed, the sources themselves) have very different capabilities. 

The relational wrapper exposes most of the capabilities of its powerful underlying source. It can apply any 

predicate, do most joins (with the exception of OID to OID joins), and accept binding values for predicates. 

The Notes database is much less powerful; it does no joins, and the wrapper does not accept binding values 

for predicates. However, it does accept and execute most predicates that do not contain unbound variables. 

Most primitive of all is our ObjectStore wrapper, which provides only the minimal capabilities required of 

all wrappers, namely, the ability to select all OIDs from a given collection, and the ability to retrieve any 

attribute, given an OID. It does no projection or selection (or joins, of course).5 

We run our experiments in a distributed environment as well. Notes runs on an NT server; UDB and 

ObjectStore run on one RS/6000 server, while Garlic itself runs on another. All servers are on a LAN, with 

normal daily workloads. Each query was run multiple times, and we report an average time value. 

5 ObjectStore itself, of course, is capable of doing all of these operations. 
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Collection Name # of Objects Location Type (Referenced) 

Enrolled 100,000 UDB Enrolled 

Courses 1250 ObjectStore Course 

Departments 250 ObjectStore Department 

Physical-Sciences 84 UDB Department 

Social-Sciences 83 ObjectStore Department 

Humanities 83 Notes Department 

Students 25,000 ObjectStore Person 

Professors 25,000 ObjectStore Person 

People 50,000 UDB Person 

Table 6: Collections of the Example Schema 

{People.department} = F(PhysicaLSciences, Social-Sciences, Humanities) 
{Professors.departinent} = F(PhysicaLSciences, Social-Sciences, Humanities) 
{Students-department} = F(Physical.Sciences, Social-Sciences, Humanities) 
{Courses.department} = F(Physical_Sciences, Social-Sciences, Humanities) 
{Courses.teacher} = F(People) 
{Courses.teacb.er} = F(Professors) 
{Courses-students} = F(People) 
{Courses-students} = F(Students) 
{Enrolled.student} = F(People) 
{Enrolled.student} = F(Students) 
{Enrolled.course} = F(Courses) 
PhysicaLSciences.chair = F(People) 
Physical-Sciences.chair = F(Professors) 
{Physical-Sciencesxhair} = F(Professors) 
Social-Sciences.chair = F(People) 
Social-Sciences.chair = F(Professors) 
{Social-Sciences.chair} = F(Professors) 
Humanities.chair = F(People) 
Humanitiesxhair = F(Professors) 
{Humanities.chair} = F(Professors) 
{People.department} = F{Professors.department, Students.departmenf) 
{Professors-department} = F(People.department) 
{Students.department} = F(People.departinent)  

Table 7: Logical Access Path Specifications for the Example Schema 

5.1    A First Example 

In our little "university," each area manages its own information about its departments. The humanities 

area, for example, stores its information in the collection Humanities in Notes, while the social sciences and 

physical sciences store theirs in ObjectStore and UDB, respectively. There is a collection of information on 
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university people (students and professors) in UDB. A user desiring information about people in a particular 

department might issue a query such as: 

select p.age 

from People p 

where p.department.name = 'deptname99' 

PROJECT 
[p-age] 

FILTER 
[department.name = 'deptname99'] 

(outer) POINTER JOIN 
ODD = p.department 

inner [get department -> name] 

Relational Query 
(Select p.name, p.department 

p.age from People p) 

Figure 3: Execution Plan for People Query Without Logical Access Paths 

If logical access path specifications are not used, the optimizer has no choice but to use the plan shown 

in Figure 3: a straight path traversal, scanning People, and for each person, fetching the relevant department 

information (indicated as "Pointer Join" in the plan, this operation actually consists of a method invocation 

to get the values of the desired attributes), then testing whether it matches the predicate. As there are 50,000 

people in the database, this is a rather slow procedure. 

Using the logical access path specifications, however, the optimizer has considerably more freedom. 

The plan it chooses, shown in Figure 4, scans the three collections of departments, retrieving the department 

name. It then filters out all but the relevant department, and uses its OJD to probe UDB for the people in that 

department. As there are only 250 departments, this plan is considerably faster - in fact, almost 200 times 

faster, as shown in Table 8. (The predicate on department name could be pushed down through the union, 

further enhancing performance - a rewrite rule would accomplish this). 

Note that our schema includes a collection, Departments, that contains references to all the departments 

and thus could serve as a type extent. One might wonder whether a plan that scanned Departments, and 

then did the join with People wouldn't be faster than the one chosen by the optimizer. (The optimizer did 

not, in fact, evaluate the suggested plan, since no logical access path specification {PeopleJepartment} = 
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PROJECT 
[people.age] 

NLJOIN 
[BIND OLD] 

FILTER 
[deptname='deptname99'] 

UNION 

Notes Query        Relational Query 
(Select name, chair    (Select name, chair 
from Humanities)    from PhysicaLSciences) 

Relational Query 
(Select name, department.age 
from People where ? = department) 

Fetch 
[name] 

ObjectStore Query 
(Select oid 

from Social_Sciences) 

Figure 4: Execution Plan for People Query With Logical Access Paths 

Compilation Time 
Execution Time 

Without Log. Ace. Paths 
.121 sees 
1312.91 sees 

With Log. Ace. Paths 
.268 sees 
7.022 sees 

Table 8: Compile and Execution Time of the People Query 

F(Departments) was registered). However, note that the Departments collection stores only references to 

the actual departmental data. Therefore, for each department reference obtained, it would still be necessary 

to access one of the three sources to fetch its name - causing a lot of back and forth traffic between Garlic 

and the data sources. It is unlikely that this would be a better plan than the union, which very efficiently 

gathers the department information. Hence, the existence of a type extent does not automatically indicate a 

preferred path; depending on where the data are located, and on the query itself, the type extent may or may 

not be an efficient means of access to the data. 

5.2    Another Example 

The Enrollments collection in our schema is a relationship table linking students to the classes they are 

taking. All the information about university people (students and professors) can be found in the People 

collection; however, there is a collection in ObjectStore, Students, containing references to just the students. 

To find information about a particular student's department and courses, a user could issue the following 
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query: 

select e.student.department.name, e.course 

from Enrolled e 
where e.student.name = 'studentName97245' 

Figure 5 shows the query execution plan produced by the optimizer when it is given no logical access path 

specifications. As in the previous example, there is no choice - the only way to execute the query is by 

navigation from Enrolled, selecting the ODD of the student, then using method invocation to fetch first the 

student information, and then, whenever the enrollment record refers to the target student, the information 

about his or her department. As Enrolled is a very large table, and method invocation is an expensive 

operation, this takes about 2.4 hours to execute. 

When provided with logical access path specifications, however, the optimizer has many more choices 

(note the increase in optimization time in Table 9). It chooses the plan shown in Figure 6. This plan is much 

more efficient, executing in under five seconds, as shown in Table 9.6 Instead of starting with Enrolled, this 

plan goes to People, applying the predicate there, and using the OID of the single student that results to probe 

the Enrolled table, from which just a handful of records (two, to be precise) are returned. Since the number 

of records is so small, the cost to fetch the matching department information via navigation is insignificant, 

so a Pointer Join is used. Note that the values of Enrolledstudent can be found in either Students or People, 

yet the optimizer chose to use People. Again, this is a sensible decision: iterating through the ObjectStore 

collection Students would have required fetching name and department from UDB for each of the 25,000 

students before the predicate could be evaluated, whereas by using People the predicate can be applied to 

the data directly. 

Without Log. Ace. Paths Wim Log. Ace. Paths 

Compilation Time 
Execution Time 

.174 sees 
8682.71 sees 

.837 sees 
4.69 sees 

Table 9: Compile and Execution Time of'the Enrollment Query 

5.3   Discussion 

In this section, we have shown how knowledge about logical access paths can speed up the execution of 

queries by several orders of magnitude. We have also shown that the implementation we described works, 

and is able to make good decisions among logical access plans. 
6 An even better plan would have been to push the entire join down to the relational wrapper. This was not feasible because our 

relational wrapper does not currently support this particular kind of join on OID. 
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PROJECT 
[e.student->department->name, e.couise] 

(outer) POINTER JOIN 
OID = studentdepaitment 

inner [get department->name] 

FILTER 
[ student.name = 'studentName97245'] 

(outer) POINTER JOIN 
OID = e.student 

inner [get student->name, student->department] 

Relational Query 
(Select e.student, e.course 

from Enrolled e) 

Figure 5: Execution Plan for Enrollment Query Without Logical Access Paths 

Of course, there is no gain without some pain. In introducing alternative logical access plans, the search 

space of feasible execution plans is increased; hence, the compilation time of a query also increases. In 

Tables 8 and 9, we see the compilation time of the example queries with and without the use of logical access 

path specifications. Although the compilation time increases considerably (by a factor of five, for example, 

in Table 9), for these and for many queries the amount of time saved in execution more than justifies the 

extra time spent in compilation. In general, the compilation time grows linearly in the number of alternative 

logical access plans. Hence for queries with several complex path expressions, in an environment in which 

there are many logical access path specifications, compilation time can become significant (especially if the 

data sets are small, or local, or for other reasons, cheaply accessed). Heuristic rules could be devised to 

control whether to use the logical access plan mechanism in these situations. 

The schema and configuration we used for our tests was admittedly artificial, being designed for testing 

purposes, and not for a real application. However, the kinds of logical access path specifications we used, 

will, we believe, prove to be common and important, especially in middleware that integrates legacy systems. 

It is not uncommon for there to be duplicate collections of information in such environments, any one 

of which can answer a query. Likewise, partitioning of information, exemplified in our schema by the 

departmental data, arises frequently in any organization with subdivisions. We expect that other applications 

of these kinds of specifications will be prompted by the evolving need to store XML documents relational^. 

Logical access path specifications could provide support for untyped or variable-typed references, needed 



PROJECT 
[e.student->department->name, e.course] 

(outer) POINTER JOIN 
OED = p.department 

inner [get department->name] 

NLJOIN 
[BIND OID] 

Relational Query 
(SELECT p.name, p.department, 
FROM People p WHERE 
p.name = 'studentName97245' 
ORDER BY p.department ASC) 

Relational Query 
(SELECT e.course, e.student 
FROM Enrolled e WHERE 
? = e.student) 

Figure 6: Execution Plan for Enrollment Query With Logical Access Paths 

for efficient queries through XML IDREFs when the XML is decomposed into several relational tables for 

storage [STH+ 97], 

6    Related Work 

There have been many papers on the optimization of queries with path expressions. In this section we try to 

indicate the most relevant; we do not attempt a comprehensive survey! 

In [SC90]. Shckita and Carey demonstrated conclusively the value of having techniques other than 

simple pointer-chasing for executing path expressions. Since then, there have been a number of proposals for 

using type information (i.e., class extents) to transform pointer-chasing into more optimizable joins [KM90a, 

JWKL90, LV9?. CD92. BMG93]. [KM90a, JWKL90] focus on the minimization of I/O by using class 

extents to transform pointer chasing into algebraic join operations. [LV93, CD92] present frameworks which 

combine type-based query rewriting with standard algebraic optimization. [BMG93] proposes a complete 

optimization framework, which distinguishes between the logical algebra and the execution algorithms. 

They introduce a new logical operator, materialize, which allows them to consider segments of a path as 

independent nodes, and provide a corresponding set of logical transformation and implementation rules. Our 

work builds on these papers; in addition to type and schema information, we allow a database administrator 

to provide additional specifications which our system can also use to convert path expressions into explicit 

joins. 
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Cost models for object-oriented operations are proposed in [GGT95, GGT96, AOD96, BF93, MW99]. 

These papers by and large provide more detailed models than ours, as they take into account indexes, clus- 

tering, and other physical characteristics that are not relevant to our system (because Garlic does not store 

its data). They track similar attribute statistics to ours. [GGT95, GGT96] take into account clustering, in- 

dexes and embedded objects in a detailed physical model. [BF93] proposes a set of parameters to model the 

topologies of object references in an object-oriented database supporting inheritance hierarchies. [AOD96] 

employ formulas from statistics and probability theory to estimate the selectivity of path expressions and 

the size of joins. [MW99] introduces an optimization framework for XML queries. They track statistics for 

paths of length less than or equal to Jfc. Our cost model is generally not as sophisticated as those presented 

here, as that is not the focus of our work (and because we do not need to worry about the physical charac- 

teristics of the data storage [ROH99]). However, we present a novel mechanism for inferring the required 

statistics for paths of arbitrary length using basic statistics for paths of length one and the logical access path 

specifications. Our estimates could be improved by using some of the more detailed statistics presented in 

these papers. 

Another class of related papers uses constraints and other local information such as views to help find 

efficient query plans [Lev99, DPT97, AV97]. [Lev99] surveys the use of views in answering queries. [AV97] 

makes use of constraints in answering queries, but focuses heavily on validating the constraints; we leave this 

task to the definer of the logical access path specifications. [DPT97] uses constraints to define both logical 

and physical access paths, and proposes a general mechanism for generating alternative logical plans using 

chase and backchase. Our logical access path specifications focus more narrowly on logical alternatives for 

path expressions. However, we handle cases, such as types with no extent or types with an extent formed 

by a union, that require some extension to the framework of [DPT97]. We also expect our more focused 

algorithm for generating alternative logical plans to be more efficient. 

Other papers in this general area include works on secondary index structures such as path indices [BW89, 

Ber91] and access support relations [KM90a, KM90b]. Such techniques are more pertinent to the design of 

object-storage systems than to middleware environments where such structures are expensive to build and 

maintain. However, if indexes are available they can be exploited in our framework as part of cost-based 

optimization; this issue is orthogonal to our work [CCM96, MW99] propose query optimization techniques 

for generalized path expressions (primitives that allow data and structure to be queried uniformly), enabling 

search over semi-structured data. While we use our logical access path specifications in an environment with 

a fixed database schema, semi-structured database systems might also benefit from using such information 

in planning execution of generalized path expressions. 
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7    Summary and Conclusions 

Data that can be accessed via multiple logical access paths is rapidly becoming a reality in database systems 

that support today's more flexible data models. This paper has shown how a traditional cost-based optimizer 

can be adapted to explore alternative logical access paths, and that doing so leads to better execution plans 

for queries. 

The first part of the paper described our logical access path specification language, the means by which 

a database administrator makes the system aware of alternative paths. The language is quite expressive, but 

deliberately limited in scope so that specifications are easier to write and easier for the system to exploit. 

Further research and experience is needed to determine if our language strikes the right balance between 

expressive power and usability. 

Obviously, the optimizer will only make correct decisions if the specifications provided by adminis- 

trators are correct. Care must be taken, therefore, to register only those assertions that reflect persistent 

structural properties of the organization or system being modeled. We believe that such properties are plen- 

tiful in real applications. Nevertheless, mechanisms for enforcing or at least verifying assertions expressed 

in the specification language are another important area for future work. Finally, the greater the number of 

specifications provided, the more choices the optimizer will be able to explore in its search for the best plan. 

This suggests that mining tools capable of examining the data and suggesting possible specifications to the 

database administrator could be very valuable. 

The second part of the paper described our algorithm for enumerating alternative logical plans, given 

a query and a set of access path specifications. Our algorithm does not find all the alternative logical 

plans; in particular, plans in which extra joins are added to the query are not considered. While this may 

seem counter-intuitive, there are cases where adding a join can lead to a better execution plan, and further 

research is needed to determine whether such opportunities are sufficiently frequent to warrant the increase 

in complexity and optimization time needed to recognize them. 

The next portion of the paper discussed the implementation of our approach within a system based on a 

traditional cost-based optimizer. They fit together well: by introducing a CHOICE logical operation into the 

query graph, alternative logical plans can be evaluated without disturbing the basic bottom-up nature of cost- 

based optimization. Furthermore, because the CHOICE operation and all the alternatives are represented in 

the query graph, they are available during the query rewrite phase of optimization as well. Rewrite rules 

that expand the range of choices available to the optimizer or heuristically prune unpromising choices are 

another fertile area for additional study. 



The final part of the paper demonstrated experimentally that our optimizer can take advantage of logical 

access path specifications to find plans with dramatically better performance than could be achieved other- 

wise. However, exploring a larger space of plans drives up optimization time, and may not be warranted 

when the potential payoff is small. Further experiments are needed to better understand the tradeoff between 

increased optimization cost and decreased execution cost. 

Our approach to optimizing the evaluation of path expressions extends and generalizes previous work 

in which schema information is used to convert path expressions into joins. Its flexibility and pragmatic 

nature should prove particularly valuable in the context of federated database systems, for which the benefit 

in recognizing alternative logical access paths can be especially significant, but for which techniques that 

rely on tighter control over the data are difficult to implement. 
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Abstract 

While database systems provide good function for 
writing applications on structured data, computer 
system users are inundated with a flood of semi- 
structured information, such as documents, elec- 
tronic mail, programs, and images. Today, this in- 
formation is typically stored in filesystems that pro- 
vide limited support for organizing, searching, and 
operating upon this data. Current database systems 
are inappropriate for semi-structured information be- 
cause they require that the data be translated to their 
data model, breaking all current applications that 
use the data. Although research in database systems 
has concentrated on extending them to handle more 
varieties of fully structured data, database systems 
provide important function that could help users of 
semi-structured information. 

The Rufus system attacks the problems of semi- 
structured data. It provides searching, organizing, 
and browsing for the semi-structured information 
commonly stored in computer systems. Rufus mod- 
els information with an extensible object-oriented 
class hierarchy and provides automatic classification 
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of user data within that hierarchy. Query access is 
provided to help users search for needed information. 
Various ways of structuring user information are pro- 
vided to help users browse. Methods associated with 
Rufus classes encapsulate actions that users can take 
on the data. These capabilities are packaged in a 
framework for use by applications. We have built two 
demonstration applications using this framework: a 
generic search and browse application called xrufus 
and an extension to the Usenet news reading pro- 
gram trn. These applications are in daily use at our 
research laboratory. 

This paper describes the design and implementa- 
tion of our framework, our experiences using it, and 
their influence on the next version of Rufus. 

1    INTRODUCTION 

The volume and diversity of the information stored 
on computer systems have grown with the systems 
themselves. Current workstation users store gi- 
gabytes of information locally and have access to 
far more over local area networks. While some of 
this information is highly structured and stored in 
databases, most of it is stored in ordinary files ar- 
ranged in a directory tree. 

It is difficult for people to make effective use of 
the information that's available to them. The large 
amount of data makes it difficult to find things when 
they are needed, while the diversity of information 
makes it difficult to use the data when it is found. 
Since computer systems offer little help locating and 
using data, users are compelled to memorize the lo- 
cation of data and procedures for using it. The tools 
provided by current computer systems are crude and 
do not scale as needed. 

For example, consider the plight of an organiza- 
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tion with hundreds of internetworked workstations. 
Users of these workstations write documents using 
any of a dozen word processing systems. Although 
the workstations make use of shared file systems like 
NFS [17], users must still locate documents of inter- 
est by filename. The system might offer a brute force 
application for searching through files, but the appli- 
cations tend to be slow and to make it difficult to find 
what a user needs. Once a document is found, the 
user needs to remember how to browse or print the 
document using the application specific for its type. 
While this example uses word processor documents, 
the same situation holds for computer programs, im- 
ages, electronic mail, configuration files, and so on. 

Ideally, computer systems would provide signifi- 
cantly better tools for users to manage huge amounts 
of data. This ideal system would know what each 
piece of data is and how to use it. In the document 
example above, the system would know what appli- 
cation^) apply to each file and how to run them. 
The ideal system would also know what's inside each 
piece of data to allow users to search for information 
about a particular subject. The searching should 
adapt to the data type, with different techniques 
available for searching for text, images, and coded 
data. The ideal system would use indexing so that 
queries could be answered quickly. Finally, the ideal 
system would know the relationships between vari- 
ous pieces of data. For example, in a document that 
includes figures, the system should understand the 
inclusion relationship. 

In contrast to the  ideal system,  today's users 
must choose between storing their data in traditional 
filesystems or in database systems. For various rea- 
sons, filesystems have little or no semantics attached 
to stored files.  An attempt to add these semantics 
to an existing system would likely break all existing 
applications and creating a new system from scratch, 
with all new applications, is unthinkably expensive. 

Alternatively, users could store their data in a 
database.  Unfortunately, database systems are un- 
prepared to store the semi-structured information in- 
undating users.   Instead, database systems are ori- 
ented towards providing high integrity storage for 
structured data. Database research has concentrated 
on supporting the same type of data more efficiently, 
with better concurrency, and with better integrity. 
Efforts to extend the scope of data that database sys- 
tems can handle have succeeding in capturing more 
applications with fully structured data, but still do 
not support semi-structured data. 

There are two reasons why current database sys- 
tems are inadequate for storing semi-structured data. 
The biggest inhibitor is that database systems in- 
sist on "owning" the data. When you decide to use 
a database system, you convert your data into its 
format and access the data exclusively through the 
database system. Moving semi-structured informa- 
tion into a database abandons all the applications 
that were written against the data's original format. 

Another problem is that semi-structured data is 
imperfect—computer programs may have syntax er- 
rors or be incomplete, documents may not format 
correctly, and electronic mail may be damaged by 
the delivery system. A database solution designed to 
store this information must be able to represent im- 
perfections. Database systems are instead oriented 
towards storing perfect information and for provid- 
ing facilities for keeping it perfect. This need to cope 
with imperfection motivates filesystems to maintain 
unintrusive byte-stream models. 

In summary, given the choice between byte-stream 
filesystems and structured databases, users have cho- 
sen filesystems for storing their semi-structured data. 
This is an unfortunate choice, because database sys- 
tems offer many features that could help users cope 
with information overload. Database systems need 
to step up to the problems of semi-structured data 
to make these features available. 

The Rufus project brings features traditionally 
belonging to database systems to bear on semi- 
structured information. An object-oriented database 
is used to store descriptive information about file sys- 
tem objects. To preserve existing applications, Ru- 
fus does not modify the file system objects them- 
selves. An import process automatically categorizes 
each piece of user data into one of the Rufus classes 
and creates an object, instance to represent the data. 
The underlying database supports fast querying and 
object access. Rufus provides various ways of struc- 
turing the objects to support browsing. This ob- 
ject infrastructure is made available through a client- 
server interface. We have built two applications to 
demonstrate the value of our infrastructure. 

While designing the Rufus system, four particu- 
larly interesting problems were addressed. The first 
problem is the automatic classification of a file into 
one of the Rufus classes. Such a classifier must be 
fast, accurate, and easily extended with new classes. 
The second problem is correlating file system objects 
with Rufus objects. The most obvious approach, us- 
ing file names, fails when files are renamed but users 
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expect object identity to be maintained for the new 
file name. The third problem is the ability to add 
and delete classes from the class hierarchy of an ex- 
isting database. With traditional approaches, such 
schema changes break the class hierarchy, due to the 
class relationships established by inheritance. The 
fourth problem is that of maintaining a dynamically- 
extendible text index with concurrent readers. This 
problem is further complicated by the need to be able 
to scale text indices to hundreds of thousands or mil- 
lions of objects. 

This paper describes the design and implementa- 
tion of the Rufus system. Particular attention is fo- 
cused on how the system addresses the four key prob- 
lems listed above. 

2    RELATED WORK 

While existing data management systems do not sup- 
port semi-structured information, research in the ar- 
eas of object-oriented database systems, information 
retrieval, classification, hypertext, and some specific 
applications contribute useful techniques. 

Semantic file systems [11] (SFS) provide transduc- 
ers that extract attributes from files and provide 
them to an indexing system. Queries against a se- 
mantic file system are issued via extensions to the 
file naming syntax of the UNIX file system and are 
presently limited to conjunctive equality tests with 
string prefix matching. Rufus and SFS share the goal 
of raising the level of abstraction of the file system 
interface. Embedding the query language in the file 
naming mechanism provides access to SFS facilities 
without changing applications, but can be unnatural 
for some queries. As currently described, SFS does 
not associate actions with data, nor does it represent 
inter-file relationships. Users need richer data mod- 
eling and query capabilities to cope with the millions 
of files available to them. 

Intelligent mail filtering capabilities, such as those 
found in BBN/Slate [5], the Andrew Message Sys- 
tem [25], the Information Lens [18] and Tapestry 
[13] give users a large measure of control over their 
incoming mail. The term "mail" is used rather 
loosely here, as these systems purposely blur the dis- 
tinction between traditional point-to-point electronic 
mail and point-to-many bulletin-board message sys- 
tems. Tapestry, in particular, advocates replacing 
the notion of sender directed mail by recipient di- 
rected content-based retrieval. Thus the receiver, 
rather than the sender, controls what the receiver 

sees. Tapestry takes an active approach by provid- 
ing user-defined intelligent agents to forage through 
various mail/message databases for items of interest. 
Collaborative retrieval is supported in Tapestry by 
associating user annotations with messages. These 
annotations can be used by others to select messages 
to read. 

In many ways Tapestry is an information retrieval 
system applied to a limited interactive mail/message 
domain.  In contrast, full-text information retrieval 
systems such as RUBRIC [19] and WAIS [15] provide 
users with the ability to retrieve files as the result of 
queries posed against the document text.  To facili- 
tate retrieval across a wide variety of document for- 
mats, these systems treat their data as unformatted 
text.   Information retrieval systems and specialized 
systems such as mail handlers can be thought of as at 
opposite ends of the "domain specificity" spectrum. 
Rufus supports both kinds of use. A general purpose 
application can provide access across all data types, 
while special purpose applications can be written to 
exploit the semantics of specific data types. We de- 
scribe both kinds of applications later in this paper. 

Object-oriented database systems, such as Object- 
Store [21] and 02 [8], provide explicit frameworks for 
describing the structure of data types. These systems 
provide powerful query languages that allow users to 
express retrievals based .on the structures defined in 
the schema. Object-oriented systems also provide a 
simple framework for encapsulating an object's struc- 
ture together with its semantics, or behavior. As with 
other database systems, use of an OODBMS requires 
that a user's data reside in the database. 

Database systems do not really concern themselves 
with modeling and importing existing file types and 
files. Mechanisms are usually provided for the one- 
time import of users' files, but the expectation is that 
they will then "live" in the database world: appli- 
cations that were used to manipulate the original 
data are not applicable to the proprietary, internal 
database formats. Additionally, little or no support 
is provided for refreshing the imported data from na- 
tive files that may have changed (through the use of 
external applications). Users either step fully into the 
database world or are left to manage the consistency 
of the two worlds on their own. 

Hypermedia systems [6], which are based on a 
browsing metaphor rather than one of retrieval, also 
use proprietary internal data formats. Systems such 
as Intermedia [29] provide no avenues for integrat- 
ing existing structured data into a hypermedia doc- 
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ument other than as flat text. Once a hypermedia 
document or web is created, the systems offer only 
limited access paths to the underlying data. For 
example, although Intermedia is built on top of a 
relational database, the relational query capabilities 
are not available to Intermedia users. Hypermedia 
systems require that the data they operate upon be 
brought into the system, as is the case with database 
systems. Most of the value is derived from careful 
construction of links, which must be added by hand. 
Finally, hypermedia systems do not encode informa- 
tion about how to operate on data once it is found. 

3    RUFUS 

This section describes the Rufus approach to sup- 
porting semi-structured information. We describe 
how each aspect of the design is implemented in our 
current prototype, our experiences with the design 
choices, and modifications we are making to Rufus 
based on these experiences. To avoid confusion, "Ru- 
fus" refers to our general approach, "Rufus 1" refers 
to our current prototype, and "Rufus 2" refers to the 
version that we are in the process of building based 
on our experiences. 

Rufus augments the file system representation of 
user data with persistent objects that retain informa- 
tion extracted from the original data. The original 
data is not modified and remains the authoritative 
copy so that existing applications are not affected. 
Rufus provides a set of classes that describe types 
of user files; examples include mail messages, C lan- 
guage source code, and various image file formats. 
Rufus includes a classifier that automatically deter- 
mines the Rufus class of a file. 

The structured objects that Rufus extracts are 
used for querying, organizing, and operating upon 
the data. In addition to extracting structured in- 
formation about user data, Rufus indexes the data's 
contents. Rufus 1 supports a full-text index for tex- 
tual data; other types of indexing could be added 
for non-textual data. Queries on Rufus data com- 
bine search operators on the contents of data (full- 
text in Rufus 1) with predicates on the extracted ob- 
jects. Rufus uses collections, sub-classing, composite 
objects, and hypertext links to represent structure 
between objects. Some examples: 1) a mail folder 
is modeled as a collection of mail message objects; 
2) a C program is modeled as a composite object 
including collections of source and object code, com- 
pilation instructions, and documentation; and 3) the 

structure of questions and answers in bulletin board 
articles is represented with hypertext links. 

Rufus 1 is implemented on a client/server model 
to mimic the location transparency provided by dis- 
tributed file systems. Rufus applications are written 
using a client library that provides program access to 
queries and Rufus data. Rufus 1 includes a catalog 
server to locate active Rufus servers. We have written 
two applications, one general purpose and one data- 
specific, as Rufus clients. These applications are in 
daily use at our laboratory. 

Figure 1 shows the general structure of the Rufus 

system. 

3.1    Classifier 

The classifier examines a file and guesses what its 
Rufus class is, providing the first piece of information 
that a user needs about a piece of data. Given the 
volumes of semi-structured data, it is unreasonable 
to expect people to classify information manually. 
Thus, automatic classification is needed. Successful 
classification permits Rufus to dispatch the correct 
import method to extract attributes from user data. 

The classifier uses the presence of keywords, file 
name patterns and file type (directory or normal file), 
and the presence of constant bit patterns near the be- 
ginning of the file ("magic numbers"). For efficiency, 
the classifier scans the file once to prepare an abstract 
of sampled keywords from the beginning, middle, and 
end of the file. The keyword samples include the to- 
ken to the left of the keyword to pick up punctuation 
in examples like \section in 1£TEX. 

Each class supplies an evaluation function that 
returns a weight from 0 to 10 according to how 
likely the data is a member of the class. For suffi- 
ciently nondescript data, the classifier will likely re- 
turn TEXT (plain ordinary text) for files that have 
mostly printable characters or BINARY for anything 
else. In case of error, the user may manually reclas- 
sify an object. 

For the set of classes we have defined, the classifier 
is reasonably accurate and fast. To test it, we classi- 
fied 847 examples of various file types. 90% were clas- 
sified correctly, 8% were editor backup files that are 
given unusual names and were classified as "Text" in- 
stead of their actual type (mostly C language source 
code), and 2% were more significant errors (most 
were telephone directories classified as "Text"). A 
similar test on 100 randomly-selected user files re- 
vealed 4 significant misclassifications. Two were text 
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Figure 1: Structure of Rufus System 

formatter documents generalized to "Text," one was 
an extremely short text editor command script mis- 
classified as "Binary," and the last was a command 
script misclassified as a specific kind of script. On 
these tests, the classifier averaged 55 milliseconds of 
CPU time per file on an IBM RISC System/6000, 
model 350. 

The larger problem is that the classifier must care- 
fully balance the weights returned by the evaluation 
functions to make the right decision in most cases. 
It would be difficult or impossible to add many more 
classes without upsetting this balance. 

To address these limitations, we are building a new 
classifier based on a different model. In this new clas- 
sifier, the programmer describes salient features of a 
new type, such as binary numbers that should appear 
near the beginning or regular expressions that should 
be found in textual formats and provides examples of 
objects of the given type. A classifier training pro- 
gram collects all the unique features into a global fea- 
ture vector and computes the centroids of the feature 
vector for each type for which samples are available. 

The actual classification of an object is performed 
by constructing its feature vector and matching it to 
the class with the nearest centroid. We are currently 
using the cosine coefficient similarity measure, a dot- 
product of two feature vectors normalized to remove 
biases towards classes with many features. 

To date, we have tried this new classifier technique 
on a set of about 45 types, including those that Ru- 
fus 1 supports. The results are encouraging: the new 
classifier is about as accurate as the previous version 
and the process of adding new types is simple to it 
is simple. We now need to improve the performance 

of the new classifier (it can take it several seconds 
to classify a file) by combining the regular expres- 
sion features into a single finite automaton with an 
algorithm like that suggested in [1] and to build the 
feature vectors for each class in a single pass through 
the file. 

3.2    Importing Data 

Once a piece of user data has been classified as class 
C, it can be imported into Rufus. Importing simply 
means that attributes are extracted from the under- 
lying data and stored as an object. If the underlying 
data is not perfectly formatted, values may be left 
out of the extracted object. If the class of the object 
is text-oriented, the textual contents of the data are 
added to the text index. 

Each Rufus class provides an import method that's 
responsible for performing extraction. Although the 
writers of classes are free to choose any formalism 
they wish to analyze the underlying data, Rufus nei- 
ther supplies nor dictates the use of any such formal- 
ism. We have used plain C code for extraction in the 
classes we have implemented so far. 

When a file is imported into Rufus for the first 
time, a new object identifier is created for it. If the 
file is modified and re-imported, its object identity 
is retained. When files are renamed, it can be diffi- 
cult to maintain object identity. To cope with this 
problem, Rufus uses a type-specific unique identifier 
to track file identity, rather than the file name. For 
example, mail messages have unique "message iden- 
tifiers" associated with them. Plain Unix files can 
be identified by their "inode" and "device" numbers. 
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When a file is imported, its unique identifier is dis- 
covered by its class's constructor. A persistent map- 
ping from unique identifier to object identifier is con- 
sulted; if the unique identifier is already known to 
Rufus, then the existing object identifier is reused. 
Rufus converts the varying-length unique identifiers 
to fixed-size object identifiers for convenience. 

The Rufus strategy for unique identifiers works 
well for data that has an intrinsic unique identifier. 
For cases where Rufus must rely on the Unix file iden- 
tification, our scheme works as long as file identity 
and object identity remain in sync. 

Rufus includes a utility for importing data called 
rufusbld. Rufusbld reads a user-written specification 
that describes the files to be imported, classifies the 
files, and imports them into Rufus. Rufusbld does 
little work for files that are already "current" in the 
Rufus database, so an affordable way to keep Ru- 
fus current is to periodically run rufusbld. We de- 
cided against a strategy of hooking Rufus into the 
operating system's file system interface to avoid non- 
portable, system-dependent programming. 

We tested rufusbld on a sample of 1,000 USENET 
articles. On our IBM RISC/System 6000 model 350, 
it takes about 130 milliseconds of CPU time per ar- 
ticle imported, exclusive of classification. The real 
time to import is about 2.5 times the CPU time, due 
to waiting for database disk I/O's. 

3.3    Data Model 
The Rufus data model represents structured informa- 
tion observed about user data. The structured view 
describes what the data is, interesting values deter- 
mined about the data, and what operations can be 
performed on it. We chose an object-oriented (00) 
model [12]. The classes in the hierarchy are recogniz- 
able to users as types of information that they use. 
Rufus creates an object to represent each piece of in- 
formation that a user might think of as distinct. For 
example, Rufus creates an object for each file of C 
source code, as well as an object for the makefile 
(compilation instructions) and an encompassing ob- 
ject for the entire program that refers to the con- 
stituent source code, makefile, documentation, etc. 

A Rufus class is defined by a set of attributes as- 
sociated with each instance of the class and a set 
of methods that can be applied to any instance of 
the class. Rufus supports substitutability, where in- 
stances of a class can be used in places that expect 
instances of a superclass. This capability allows users 

to take a specific or general view of a piece of data. 
For instance, one might seek a document that con- 
tains a particular phrase, without regard to the type 
of formatter used to compose it. 

Attributes of type context define parts of the un- 
derlying real data for text indexing, similar to loca- 
tion restrictions in information retrieval systems like 
STAIRS [14]. For example, a document class might 
define the context abstract to refer to the words in the 
up-front summary of a paper. Contexts allow users 
to restrict the locations that words or phrases must 
appear in so that more accurate results are possible. 
For convenience, a class may indicate that particular 
string-valued attributes are to be indexed as contexts. 

Every Rufus class includes a set of standard at- 
tributes and methods. The standard attributes in- 
clude the object identifier, the document identifier 
(used to cope with new versions of the object in the 
text index), a unique identifier derived from the un- 
derlying object for correlation, the object's class, the 
date the object was last refreshed, and a string de- 
scription of the object for browsing. Standard meth- 
ods display an object, import an object into Rufus, 
and print an object. The standard methods provide 
the set of basic services that any Rufus object is ex- 
pected to support. 

Although methods defined for a Rufus class may 
choose to modify the underlying data, Rufus provides 
no built-in mechanism for mapping modifications to 
Rufus objects to the underlying data. Such a map- 
ping would be difficult to provide, given that Rufus 
objects do not typically model all the information in 
the underlying data. 

Our prototype currently has 34 classes, including a 
few formats of electronic mail, several formats of doc- 
uments, C language source code, a few image types, 
bibtex citations [16], and employee records from IBM 
telephone books. Figure 2 shows a subset of the sup- 
ported classes. 

We chose the object-oriented (00) model because 
its features closely follow a user's mental model of 
data. For example, 00 data models feature a strong 
notion of object identity, while other data models are 
oriented around values. Object identity gives us an 
easy way to refer to objects in different contexts; in 
particular, it allows us to organize the same objects in 
different ways. Object identity is also useful for mod- 
eling complex objects made up of simpler ones. Rufus 
uses the attributes of objects to describe features ex- 
tracted from the underlying data (e.g., author, title, 
and date written). Rufus uses the methods of an ob- 
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ject to describe both user-visible operations that can 
be performed, as well as operations needed by the 
Rufus infrastructure, such as display and import. 

Effective exploitation of the class system requires 
high quality, detailed class definitions. For exam- 
ple, Rufus 1 extracts the sender, newsgroup, sub- 
ject, line count, summary, and organization fields 
from USENET articles, as well as creating links that 
show the "question and answer" relationship between 
articles. In contrast, the C source code class does 
not provide the same level of detail: it only distin- 
guishes between siring and comment contexts and 
does not distinguish between function definitions and 
references. As a result, Rufus 1 is more helpful for 
manipulating USENET articles than for C source. 

While the object-oriented model has served our 
purposes well, some things are difficult to describe in 
a single-inheritance hierarchy. For example, in Rufus, 
embedded PostScript is a sub-class of IMAGE, which 
in turn is a subclass of BINARY. PostScript is tex- 
tual rather than binary, though. In addition, while 
most people probably think of embedded PostScript 
as an image format, others see it as a programming 
language, requiring different treatment. 

Schema changes in our prototype are discour- 
aged because they invalidate existing databases. We 
note that schema evolution is a common problem in 
object-oriented database systems. 

We are adopting a significantly different 00 data 
model to address the above problems. Our new sys- 
tem uses the conformity data model of Emerald [3] 
and Melampus [22]. In this data model, only the 
methods of an object are visible outside its class def- 
inition. For convenience, an attribute can be marked 
so a method will be generated to return its value. 

In the conformity model, the suitability of an object 
for a purpose is dictated by whether it implements 
the necessary method names with the right param- 
eter lists. For example, a user might be looking for 
objects that have an Author and a Title. In the sys- 
tem, objects of type BTEX, TROFF -MM, and SGML 
might conform to this specification by implementing 
these two methods. 

In the conformity model, inheritance is decoupled 
from subtyping. Schema evolution is simplified by 
the resulting independence between class definitions. 
Inheritance is not used to structure the class hierar- 
chy, but rather as a modularity and reuse aid. When 
a class definition changes, the old definition of the 
class will be retained as long as there are object in- 
stances of the old class. All new object instances will 
use the new class definition. 

In the new data model, class definitions are ma- 
chine independent, so that client applications can re- 
trieve class definitions from servers to interpret ob- 
jects, even on different architecture hosts. 

We have a working class compiler for the new data 
model and modifications to Rufus that fetch and 
store the new types of objects, keep track of the types 
of collections, dispatch methods on objects, and ex- 
ecute simple queries. We have so far implemented a 
few types in the conformity model, including FILE, 

TEXT, and RFC822 (mail messages). 

3.4    Example of a Class Definition 

This section presents an example of a Rufus class defi- 
nition. The definition of the RFC822 class (electronic 
mail as passed over the Internet) is used. RFC822 is 
a subclass of MAIL. The table below lists some of the 
attributes extracted from RFC822 format methods: 

Meaning Attribute Data Type 
length integer 
filename string 
messageid string 
posted date 
subject string 
to string list 
from string 

Length of message 
File message stored in 
Unique identifier 
Date written 
Subject of message 
List of recipients 
Message sender 

In addition, RFC822 supports contexts that con- 
tain the header fields of the message, the "Subject:" 
field of the message, the sender of the message, and 
the body of the message. 

The RFC822 class supports several methods, 
among them: 
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Method    Meaning 
display Format message for display 
edit Edit the file containing the message 
reply Compose a reply to the message 
forward Forward message to someone else 

The "reply" and "forward" methods bring up parts 
of a pre-existing application to perform these tasks. 
Users like to locate a message with Rufus, then apply 
their usual mail-reading tools to it. 

In the original Rufus classifier, RFC822 format 
messages were recognized by the existence of "Re- 
ceived" and "To" fields in the header of the message. 
In the new classifier, RFC822 format messages are 
required to have a line beginning with "Received:" 
or "Delivery-Date:"; other features indicative of the 
format are lines beginning with "From:" "To:" and 
"Message-Id." We currently use about 30 samples of 
RFC822 format messages to train the classifier. 

3.5    Structuring Concepts 

While it is important for users to be able to under- 
stand facts about an individual object, it is also im- 
portant to understand the relationships between ob- 
jects. By making these relationships explicit, users 
are freed from having to know or discover them. 
Structure information is particularly helpful to ap- 
plications that support browsing. 

Rufus provides collections, object composition, 
subclassing, and hypertext links [6] to represent inter- 
object structure. Collections are sets of objects. An 
object can be in several collections at once. Col- 
lections themselves are objects and can be stored in 
collections as well. For each class, Rufus maintains a 
collection of all instances of the class, called the class 
extent Collections are also used to store the results 
of queries. The objects in a collection can be from 
arbitrary classes. 

Rufus uses object composition to represent com- 
plex things made up of other objects. For exam- 
ple, a C program is modeled as the composition of a 
makefile, C source code, and documentation. Rufus 
complex objects are represented by allowing the use 
of object identifiers as object attributes. 

Subclassing is used in Rufus to indicate the special- 
ization of object types. For example, an implementa- 
tion might model filesystem directories as a subclass 
of collections. A filesystem directory does everything 
that a collection does, in addition to which it has file 
system attributes like filename, owner, modification 

date, etc. 

Finally, hypertext links model system-discovered 
and user-specified connections between otherwise un- 
related objects. For example, entries in the tradi- 
tional Unix manual refer to other entries. The import 
method for Unix manual entries can create links to 
represent the cross-references. Likewise, a user writ- 
ing a textual annotation of an image might establish 
a link to represent the relationship. In Rufus, links 
are separate objects that point to the linked objects. 
Fine granularity of link endpoints is achieved us- 
ing type-specific selection identifiers, which are fixed 
length bit strings that an object's class can convert 
into a specific part of the underlying native data. In 
contrast with traditional hypermedia systems, Rufus 
does not modify the original data to represent links. 

3.6    Query Language 

The Rufus query language extends content-based ac- 
cess to semi-structured data. Rufus queries combine 
predicates on the objects extracted from the under- 
lying data with predicates on the underlying data 
content. Rufus 1 supports simple object predicates 
and text search. 

A Rufus 1 query searches a collection or class ex- 
tent and returns objects that match a predicate. The 
predicate contains boolean combinations of condi- 
tions on the objects' attributes and text search pred- 
icates on the underlying real data. Attribute con- 
ditions are simply relational tests against constants, 
such as posted > date(12/10/92). 

More powerful query capabilities would be useful. 
For example, suppose one were looking for a message 
written during an electronic mail conversation with 
a colleague. In order to find the set of messages that 
comprise the conversation, one would like the query 
language to be able to follow the links established by 
the "In-Reply-To" fields of the messages and compute 
the transitive closure.  We chose a simple subset to 
implement for expediency and to capture the most 
immediate needs.   We are considering a new query 
language based on the set-oriented operators of the 
Melampus query language [23] to address these needs. 

For text predicates, we implemented near (words 
close to each other) and adjacent (words close to 
each other in the right order).   The boolean com- 
binations supported by the query language provide 
the usual and,  or, and not.    A special optimiza- 
tion is made to execute text predicates like "phrasel 
and not phrased efficiently.    The proximity and 
boolean operators can be nested to pose queries like 
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near(adj(San Francisco)  earthquake). 
Rufus supports stemming [27] and flexible capi- 

talization. Stemming is based on a dictionary of 
10,000 root forms and allowable stems. Users can 
state that they wish to ignore capitalization, want 
an exact match, or want at least the first letter cap- 
italized. 

Boolean and proximity text search have been thor- 
oughly criticized [4]. We selected them as our initial 
text search capability because the results are eas- 
ily explained to users. We are adding approximate 
searching based on term weighting [24] and relevance 
feedback [26] ("find me more documents like these") 
to Rufus. 

3.7    Text Indexing 

Rufus maintains an index on the text content of im- 
ported files to support fast searching on their con- 
tent. We implemented a text index due to preva- 
lence of textual data. For flexibility, we selected in- 
verted files with word locations. Inverted files sup- 
port both traditional boolean and proximity search- 
ing [27] and term-weighted searching [24]. We used 
fixed-size small blocks to represent the inverted file 
so that it can be updated incrementally. For our in- 
tended applications, we find that most of the objects 
indexed are unchanged from day to day, so incre- 
mental indexing makes refreshing the Rufus database 
significantly faster than a complete rebuild. The in- 
verted file can also be updated concurrently with 
query access. A B-tree is used to store the starting 
block number of the inverted list for each indexed 
word. 

For the sake of experience, we support two large 
Rufus databases. One covers a week's worth of 
Usenet articles (about 35,000); the other covers many 
weeks of IBM internal bulletin board articles (about 
130,000). We found that the text index dominated 
the size of the Rufus data, the time to refresh the Ru- 
fus databases, and query performance. We were able 
to realize significant improvements with some sim- 
ple modifications. Further improvement is expected 
when we change our stored structures. 

When we measured the Rufus text index, we found 
that a huge number of words were being indexed. 
As a test, we selected 20,000 random articles from 
the Usenet article base. When indexed, they yielded 
more than 400,000 unique words and more than 
8,000,000 word occurrences. We developed a stop 
list of the 280 most common words that eliminates 

44% of the word occurrences. Random sampling of 
the vocabulary revealed that many time-stamp based 
identifiers and meaningless words derived from tex- 
tual encoding of binary data were being indexed. Re- 
finement of the constructor for the USENET class to 
avoid indexing such material reduced the vocabulary 
by one half. This example illustrates the advantage 
of specializing import according to the data's class. 

We took a small random sample of the remaining 
vocabulary and classified each word by hand. Here's 
what we found: 

Category % 

Proper names 
Real words 
Machine names, userid's 
Program symbols 
Misspellings 

20% 
18% 
18% 
13% 
8% 

Addresses, ZIP codes, phone numbers 7% 
Other junk 5% 

Acronyms ^/0 

Message-ID's 4% 

Codes 3% 

In our text database, we also found that the stor- 
age scheme of using fixed size blocks suffered from 
internal fragmentation and poor locality. Due to the 
distribution of word frequencies, many words have 
few occurrences. These infrequent words take up an 
entire small block, wasting space. Other words are 
more common and take up many small blocks, requir- 
ing many seeks to resolve a query. We are replacing 
our fixed block text inverted list implementation with 
a variable length block scheme such as that described 
in [9]. Briefly, this scheme uses small initial blocks, 
then scales up to larger blocks as the list of occur- 
rences for a word grows. Efficient storage is achieved 
for infrequent words, while longer word lists are clus- 
tered better, reducing seeks. 

While textual data is prevalent, indices oriented 
towards other data types would be useful. For ex- 
ample, the QBIC (Query by Image Content) project 
[20] at IBM Almaden is working on searching med- 
ical images. Their algorithms could be provided in 
Rufus for image data in addition to the text search 
capabilities already supported. 

3.8    Client/Server 
Since users are provided access to much of their data 
through distributed file systems, the Rufus capabili- 
ties described in the foregoing are implemented by 
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servers to provide the same connectivity to data. 
Each Rufus server mediates access to a single Ru- 
fus database. Access to Rufus server functions is 
provided through a client-callable library of routines. 
These routines provide the ability to connect to Ru- 
fus servers; create, destroy, and modify objects; it- 
erate through collections; invoke methods; and pose 
queries. In turn, the client library routines invoke 
functions in the Rufus server using an RPC mecha- 

nism. 
Rufus servers provide their own concurrency con- 

trol to allow queries and data import to run in paral- 
lel without threatening the physical integrity of the 
Rufus database The concurrency control that Rufus 
wields does not apply to the underlying files. Due 
to the asynchronous updating of the Rufus database 
with respect to the underlying data, it is possible to 
locate files via queries that should no longer match 
the query predicate We have considered additional 
processing to drop query results that should not 
match due to changes that occurred since import but 
have not done so The larger problem is locating 
query results that now should be included in the an- 
swer but do not due to a stale Rufus database; for 
that we have no answer without modifying the oper- 

ating system 
In Rufus 1, client applications can connect to a 

single Rufus server at a time. This limitation puts 
the burden on the user to figure out the correct Ru- 
fus server to use We are removing this restriction 
in Rufus 2 so that clients will be able to connect to 
several servers at once Objects in one database will 
be able to point to objects in other databases. The 
new system will also be able to access servers sup- 
porting other remote protocols, such as WAIS [15] 
with Z39.50 [2]. Conversely, our system will export a 
Z39.50 protocol itself, so that its databases can also 
be searched by WAIS clients. Servers will be able to 
swap class definitions between themselves, using the 
same mechanism a* is used to inform clients of class 
definitions. 

Servers will be able to publish a summary of the 
information they store to permit automatic routing 
of queries to only those servers that might have useful 
information. 

4    Applications 

We wrote two applications to demonstrate the Rufus 
capabilities. Xrufus, an X-windows [28] application, 
provides querying, browsing, and operation execution 

over any of the data types known to Rufus. An object 
found by querying or browsing is displayed in xrufus 
according to the object's class. In addition, a menu of 
operations is prepared specific to the type of object. 
For example, the menu for electronic mail objects 
contains actions like "reply" and "forward." 

Users can create buttons that represent commonly 
useful queries. For example, a user might define a 
"Callup" button that looks up a name in the site 
telephone book. Then, the user can select a name 
with the mouse in most X-windows applications, and 
click the button to run the query. 

With more class definitions and integration, 
xrufus could be extended into the "researcher's 
workbench." Activities like processing mail, read- 
ing bulletin boards, program development, document 
processing, appointment scheduling, and talk prepa- 
ration could all be provided in a seamless environ- 
ment. The Rufus infrastructure would help users 
find and organize their information and to drop into 
the right applications at each step without having to 
think about them. 

We've also developed an extension of the popular 
trn news reading program [7] called rufustm. Rufus- 
trn works just like trn, in addition to which users 
can define virtual newsgroups that contain all the 
articles that match a Rufus query.   For example, a 
user might select specific articles from a newsgroup 
based on content to cut down the number of articles 
that must be examined. Alternatively, a subject of 
interest might appear in several newsgroups.   This 
subject can be collected into a single virtual news- 
group for convenience. Rufustm also allows users to 
pose queries of "one time" interest and browse the 
results. A nice feature of rufustm is that articles are 
always displayed with the standard trn user interface. 
The result is a news reader enhanced with query ca- 
pabilities, rather than a completely new application. 
The approach of rufustm differs somewhat from that 
used in Infoscope [10]. Infoscope defines virtual news- 
groups in a DAG structure based on the contents of 
other virtual newsgroups and of header fields. In con- 
trast, rufustrn defines virtual newsgroups as the re- 
sult of a query. Rufustrn provides a single mechanism 
for both one-time queries and for topics of continuing 
interest. 

We envision supporting further applications be- 
yond rufustrn. For example, a mixed database of 
text and multimedia data could allow users to search 
for film clips by searching through textual descrip- 
tions and invoking methods to view related clips. 
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To support such an application, Rufus only needs 
to have a "film clip" data type added with a method 
that invokes a video viewer on the user's workstation. 

5    CONCLUSIONS 

Users are inundated with semi-structured informa- 
tion. Current database systems do not handle such 
information well. As a result, users are forced to 
turn to specialized applications that improve access 
to particular kinds of data. Each specialized appli- 
cation is forced to re-invent and re-implement basic 
infrastructure to support flexible access. For struc- 
tured information, database systems provide stan- 
dard capabilities that make applications easier to 
write. The same leverage must now be applied to 
semi-structured information. 

The Rufus project has developed an infrastruc- 
ture based on object-oriented database and text 
search principles to support applications using semi- 
structured information. Applications built with the 
Rufus infrastructure remember key information that 
users would otherwise be forced to memorize, such 
as the relationship between files, how to find them, 
and what to do with them when you find them. Ru- 
fus raises the level of abstraction so that users no 
longer have to deal with their data as simple se- 
quences of characters. We have built a prototype 
to demonstrate the Rufus ideas and deployed it for 
use at Almaden. Early experience with the prototype 
has been promising and has suggested important ar- 
eas for further work. While we built our prototype 
on a UNIX system, we expect the Rufus concepts to 
be useful in other operating system environments as 
well. 

The extensions being made in our new Rufus pro- 
totype will support applications on a significantly 
larger scale. Improvements in the storage structures 
will support databases with millions of objects. The 
work in distributed access will free users from spec- 
ifying where to search for information and will inte- 
grate users' environment with information available 
in external information servers and libraries. The 
new conformity data model will allow new classes to 
be written and refined to support new kinds of data. 

Acknowledgements Eli Messinger wrote both versions 
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helpful feedback given by the reviewers. 
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Type Classification of Semi-Structured Documents' 
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Abstract 

Semi-structured documents (e.g. journal arti- 
cles, electronic mail, television programs, mail 
order catalogs, ...) are often not explicitly 
typed; the only available type information 
is the implicit structure. An explicit type, 
however, is needed in order to apply object- 
oriented technology, like type-specific meth- 
ods. 

In this paper, we present an experimental vec- 
tor space classifier for determining the type of 
semi-structured documents. Our goal was to 
design a high-performance classifier in terms 
of accuracy (recall and precision), speed, and 
extensibility. 

Keywords: file     classification,      semi- 
structured data, object, text, and image 
databases. 

1    Introduction 
Novel networked information services [ODL93], for ex- 
ample the World-Wide Web, offer a huge diversity of 
information: journal articles, electronic mail, C source 
code, bug reports, television listings, mail order cata- 
logs, etc. Most of this information is semi-structured. 
In some cases, the schema of semi-structured informa- 
tion is only partially denned. In other cases, it has 
a highly variable structure. And in yet other cases, 
semi-structured information has a well-defined, but 
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unknown schema [Sch93]. For instance, RFC822 e- 
mail follows rules on how the header must be con- 
structed, but the mail body itself is not further re- 
stricted. 

The ability to deal with semi-structured informa- 
tion is of emerging importance for object-oriented 
database management systems, storing not only nor- 
malized data but also text or images. However, semi- 
structured documents are often not explicitly typed 
objects. Instead they are, for instance, data stored as 
files in a file system like UNIX. This makes it difficult 
for database management systems to work with semi- 
structured data, because they usually assume that ob- 
jects have an explicit type. 

Hence, the first step towards automatic processing 
of semi-structured data is classification, i.e., to assign 
an explicit type to them [Sal89]. A classifier explores 
the implicit structure of such a document and assigns 
it to one of a set of predefined types (e.g. document 
categories, file classes, ...) [GRW84, Hoc94]. This type 
can then be used to apply object-oriented techniques. 
For example, type-specific methods can be triggered to 
extract values of (normalized and non-normalized) at- 
tributes in order to store them in specialized databases 
such as an object-oriented database for complex struc- 
tured data, a text database for natural language text, 
and an image database for pictures. 

Such a classifier plays a key role in the Rufus sys- 
tem [SLS+93], where the explicit type of a file, assigned 
by the classifier, is used to trigger type-dependent ex- 
traction algorithms. Based on this extraction, Rufus 
supports structured queries that can combine queries 
against the extracted attributes as well as the text of 
the original files. In general, a file classifier is neces- 
sary for any application that operates on a variety of 
file types and seeks to take advantage of the (possibly 
hidden) document structure. 

Classifying semi-structured documents is a chal- 
lenging task [GRW84, Sal89]. In contrast to fully 
structured data, their schema is only partially known 
and the assignment of a type is often not clear. But 
as opposed to completely unstructured information, 
the analysis of documents can be guided by partially 
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available schema information and must not fully rely 
on a semantic document analysis [Sal89, Hoc94]. As 
a consequence, much better performing classifiers can 
be achieved. However, neither the database nor the 
information retrieval community have come up with 
comprehensive solutions to this issue. 

In this paper, we present a high performance classi- 
fier for semi-structured data that is based on the vector 
space model [SWY75]. Based on our experiences with 
the Rufus system, we define high performance as: 

• Accuracy. The classifier must have an extremely 
low error rate. This is the primary goal of any 
classifier. For example, to be reliable for file clas- 
sification an accuracy of more than 95% must be 

achieved. 

• Speed. The classifier must be very fast. For exam- 
ple, to be able to classify files fed by an informa- 
tion network, classification time must be no more 
than 1/10 of a second. 

• Extensibility. The classifier must easily be exten- 
sible with new user-defined classes. This is im- 
portant to react to changing user demands. The 
ability of quick and incremental retraining is cru- 
cial in this context. 

The remainder of the paper is organized as follows. 
In Section 2, we review the basic technology of our 
experimental vector space classifier and compare the 
accuracy of several implementation alternatives. In 
Section 3, we introduce a novel confidence measure 
that gives important feedback about how certain the 
classifier is after classifying a document. In Section 
4, we show that finding a good schema is crucial for 
the classifier's performance. We present techniques for 
selecting distinguishing features. In Section 5, we com- 
pare the vector space classifier with other known clas- 
sifier technologies, and conclude in Section 6 with a 
summary and outlook. 

2    An Experimental Vector Space Clas- 
sifier 

In this section, we introduce our experimental vector 
space classifier (VSC) system. The goal was to build 
an extremely high-performance classifier, in terms of 
accuracy, speed, and extensibility for the classification 
of ßes by type. UNIX was considered as a sample 
file system. The classifier examines a UNIX file (a 
document) and assigns it to one of a set of predefined 
UNIX file types (classes). To date, the classifier is able 
to distinguish the 47 different file types illustrated in 
Figure 1. These 47 types were those that were readily 
available in our environment. Note that the classifier 
presented here can be generalized to most non-UNIX 

file systems. In the sequel, we briefly review the under- 
lying vector space model [SWY75]. We focus on issues 
that are unique and novel in our particular implemen- 
tation. 

VSCs are created for a given classification task in 
two steps: 

1. Schema definition. The schema of the classifier 
is defined by describing the names and features 
of all the classes one would like to identify. The 
features, say /i... fm, span an m-dimensional fea- 
ture space. In this feature space, each document 
d can be represented by a vector of the form 
vd = (ai,..., Om) where coefficient a; gives the 
value of feature fc in document d. 

2. Classifier training. The classifier is trained with 
training data - a collection of typical documents 
for each class. The frequency of each feature /; 
in all training documents is determined. For each 
class a, a centroid vCi = (äi,..., am) is computed, 
whose coefficients a\ are the mean values of the 
extracted features of all training documents for 
that class. 

Given a trained classifier with centroids for each 
class, classification of a document d means finding the 
"most similar" centroid vc and assigning d to that class 
c. A commonly used similarity measure is the cosine 
metric [vR79]. It defines the distance between docu- 
ment d and class centroid c by the angle a between 
the document vector and the centroid vector, that is, 

sim(d, c) = cos a 
Vd -Vc 

MM 
Building centroids from training data and using the 
similarity measure allows for very fast classification. 
To give a rough idea, an individual document can be 
classified by our system in about 40 milliseconds on an 
IBM RISC System/6000 Model 530H. In Section 2.2, 
we will compare the accuracy of the cosine metric with 
common alternatives. 

2.1    Defining the Classifier's Schema 

A feature is some identifiable part of a document that 
distinguishes between document classes. For example, 
a feature of LATEX files is that file names usually 
have the extension ". tex" and that the text frequently 
contains patterns like "\begin{.. .}"• 

Features can either be boolean or counting. Boolean 
features simply determine whether or not a feature oc- 
curred in the document. Counting features determine 
how often a feature was detected. They are useful to 
partially filter out "noise" in the training data. Con- 
sider for example CSouRCE files, having a lot of curly 
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Figure 1: Class hierarchy of 
braces.   Many other file types have curly braces too, 
but only a few. Hence, counting this feature instead of 
just noting its presence would differentiate CSOURCE 

files from others. 
In the remainder of this paper, we assume boolean 

features only. Using counting features is part of future 
work. In general, counting features in a VSC must be 
normalized before using, like proposed for example by 
the non-binary independence model [YMP89]. 

To define the schema of the file classifier, four dif- 
ferent types of features are supported. They can be 
used to describe patterns that characterize file types: 

• A filenames feature specifies a pattern that is 
matched against the name of a file; 

• A f irstpats feature specifies a pattern that is 
matched against the first line of a file; 

• A restpats feature specifies a pattern that is 
matched against any line of a file; 

• An extract feature specifies that there exists an 
extraction function (e.g. a C program) to deter- 
mine if the feature is present. 

The feature types filenames, firstpats, and 
restpats are processed by a pattern matcher. For 
performance reasons, this is a finite state machine spe- 
cially built from the classifier schema. Patterns can ei- 
ther be string literals or regular expressions. The reg- 
ular expressions supported are similar to the regular 
expressions of the UNIX "ed" command. The feature 
type extract is used to define file properties that can- 
not be described by regular expressions. For instance, 
extract features can be programmed to check whether 
a document is an executable file or a directory. 

Any feature can be defined as must, which means 
that its occurrence is mandatory. If such a feature is 
not present in a given file, the file cannot be a member 
of that class. Notice that the converse is not true: the 
presence of a must feature does not force a type match. 

Example 1:      Figure 2 shows an excerpt of a sam- 
ple classifier schema, defining classes for POSTSCRIPT 

the experimental file classifier 
pictures, LATEX documents, MHFOLDER directories, 
and COMPRESS files. 

A filenames feature specifies that names of 
POSTSCRIPT files usually end with the extension 
". ps", names of LATEX files with ". tex", and names 
of COMPRESS files with ".z" or ".Z". They are all de- 
fined as regular expressions, as indicated by the key- 
word "regexp". 

A firstpats feature is defined for POSTSCRIPT 

files. It is a regular expression, saying that the first 
lines of these files always begin with "7.!". This pat- 
tern is given with a must keyword, i.e., it must be 
present in POSTSCRIPT files. 

restpats features specify that POSTSCRIPT files 
usually contain the two string literals '"/.EndComments" 
and '"/.Creator" and that LATEX files often con- 
tain the string literals "\begin{", "\end{", or 
"■[document >". 

Extraction functions exist for classes MHFOLDER 
and COMPRESS. Notice, that the implementation 
of extraction functions is not part of the classifier 
schema. However, by naming convention, they are 
implemented by C functions called "ex_HHFolder" 
and "ex_Compress" respectively. For example, 
"ex_Compress" searches for a file checksum and 
"ex_MHFolder" opens the directory and looks for mail 
filesT O 

Finding appropriate features for each class is crucial 
to the accuracy of a classifier [Jam85]. This has been 
verified by our experiments. For example, to define 
the 47 classes of the UNIX file classifier, a total of 206 
features were carefully specified. We come therefore 
back to the issue of feature selection in Section 4. 

2.2    Alternative Similarity Metrics 

Diverse similarity metrics are proposed in the litera- 
ture. For example, [vR79] describes Asymmetric, Co- 
sine, Dice, Euclidian, Jaccard, and Overlap distance. 

Table 1 summarizes our extensive classifier perfor- 
mance experiments. Experiments involved choosing 
random subsets from a collection of 26MB of sample 
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PostScript i 
filenames i 

"\.ps$" regerp 

} 
firstpats { 

""'/.!" regerp must 

> 
restpats i 

LaTeX {. 
filenames i 

"\.tex$" regexp 

> 
restpats { 

"\begin-C" 

"\end-[" 
"{document}" 

"•/«EndComment s " } 

"•/.Creator:" } 

} 
} Compi ess { 

extract 

MHFolder { 

extract 

} 
> 

filenames { 

"\.[zZ]$" regexp 

} 

Figure 2: Sample 
data for training and then for performance testing. To 
find the closest centroid, the distance between docu- 
ment d and centroid c was alternatively measured with 
the above six common distance metrics (dj, Cj means 
the j-th coefficient of the vector d or c respectively).1 

Best and most reliable accuracy has been achieved 
using the cosine as similarity measure in our VSC. A 
promising alternative though is the asymmetric mea- 
sure. It captures the inclusion relations between vec- 
tors, i.e., the more that properties of d are also present 
in c, the higher the similarity. Dice, Jaccard, and 
Overlap metrics give lower accuracy for our purposes. 
Surprisingly very low results have been achieved by 
Euclidian distance. 

The bottom line of this evaluation is that the classi- 
fier's accuracy could not have been improved by choos- 
ing a different distance measure. In the following sec- 
tion we discuss a way of getting feedback about the 
classifier's confidence which can, in turn, be used to 
improve the accuracy of the classifier. 

classifier schema 
3    The Confidence Measure 

Independent of which similarity measure is chosen, 
closeness to a centroid is not a very useful indicator 
of the classifier's confidence in its result. Hence, we 
introduce the following novel measure that gives im- 
portant feedback on how sure the classifier is about a 
result. 

Definition. The confidence of an assignment of doc- 
ument d to class Cj is defined as 

1 The accuracy of a classifier is measured for a particular class 

C as [Jon71] 

objects of C assigned to C 
reCa"(C> =  total objects of C 

precision(C) 
objects of C assigned to C 

total objects assigned to C 

To measure a classifier as a whole, we use the arithmetic mean 
of recall or precision over all classes. Notice that every object is 
classified into exactly one class (no unclassified or double clas- 
sified objects). The B-value [vR79] 

El-value: 
2 precision recall 
precision + recall 

is a single measure of classifier accuracy that combines and 
equally weights both, recall and precision. 

confidence(d, ci)   = 
def  sim(<i, Cj) — sim((J, Cj) 

sim(d, Ci) 

with Ci the closest centroid and CJ the second closest 
centroid. 

The confidence is the ratio of the similarity of the 
closest and second closest centroid over the similarity 
of the file and the closest centroid.2 The following 
example illustrates how the confidence measure works. 

Example 2: Consider two centroids c\ and c2, having 
both the same distance from a given document d, i.e. 
sim(d, et) = sim(d,Cj). Classification as one or the 
other class is therefore completely arbitrary. 

However, if these centroids are very close to the 
document, the similarity alone suggests a very good 
classification result, which is not correct. The true 
situation is reflected by the confidence, which gives a 
very low value, namely 0. ^ 

The confidence measure can be used to tell whether 
the classifier probably misclassified a document. The 

2The confidence measure can be generalized to take into ac- 
count the n closest centroids. In this paper however, we use the 
closest and second closest centroids only. 

tfo 



Table 1: Alternative similarity metrics 

distance metric sim(d, c) recall precision E-value 

1. Cosine Uf||c|    -   COSÖ 0.97 0.97 0.97 

2. Asymmetric 
1 »■ 

0.94 0.95 0.95 

3. Dice 
2 (d-c) 0.94 0.93 0.94 

r, «+*>i 
4. Jaccard 

de 0.94 0.93 0.94 
y>i+»»-u,-^-> 

5. Overlap dc 0.93 0.90 0.91 
min(U,d> • 2-JiC>) 

6. Euclidian jE^-c.y 0.69 0.87 0.77 

higher the confidence value, the higher the classifier's 
certainty and therefore the higher the probability that 
the file is classified correctly. 

Figure 3 shows the distribution of the confidence 
for a sample classifier. Each dot represents one of the 
~2500 test files. The (logarithmic) x-axis shows the 
classifier's confidence in assigning a test file to a file 
type. The y-axis is separated into two areas, the lower 
one for correctly classified files and the upper one for 
incorrectly classified files. Both areas have one row for 
each of the 47 file types. 

This distribution illustrates the tendency of cor- 
rectly classified files to have a confidence around 0.7 
and the incorrectly classified files around 0.07. One 
can make use of that to alert.a human expert, that is, 
to apply the following algorithm: choose a confidence 
threshold 0; classify document d, resulting in a class c 
with confidence 7; if 7 < © then ask a human expert 
to approve the classification of document d as class c. 

Figure 4 illustrates how much feedback can be de- 
rived from the confidence measure. Assumes a given 
confidence threshold 6 (vertical line), such that the 
user has to approve the classification if a file is classi- 
fied with a smaller confidence. 

The dotted curve shows the percentage of test files 
for which the assumption is true that they are clas- 
sified correctly if classified with a confidence above 
threshold 6 and classified incorrectly otherwise. If, 
for example, the threshold 0 is set to 0.1, then about 
94% are classified correctly if their confidence is above 
0.1 and incorrectly otherwise (see dotted line hitting 
threshold). 

The solid curve shows the percentage of test files 
that were classified with a confidence below 0. With 
0 = 0.1, about 10% of the files are presented to the 
user for checking (see solid curve hitting the thresh- 
old). These were shown to a human expert. Note that 
about 5% of the files had a confidence of 0. These 
files were equidistant from 2 centroids indicating that 

the classifier had to make an arbitrary choice between 
them. 

Finally, the dashed curve shows the percentage of 
test files that were classified correctly even though they 
have a confidence below threshold 0. These are the 
files where the classifier "annoyed" the user for no good 
reason. With 0 = 0.1, only 30% of the presented files 
were actually classified correctly (see dashed line hit- 
ting the threshold). Thus, using the confidence mea- 
sure, a user had to touch 10% of all files, of which 
in fact 70% were classified incorrectly. The classifier's 
overall recall could therefore be improved by 7% with- 
out bothering the user too much. 

In this classifier, 0 = 0.1 provides a maximum accu- 
racy (dotted line) while providing a reasonable number 
of files for the user's consideration while maintaining 
a modest "annoyance" level. 

3.1    Classifier Training Strategies 

The confidence measure's primary use is to detect mis- 
classified documents. This not only improves the clas- 
sifier's performance, but also proved to be useful for 
other purposes. In this section, we concentrate on us- 
ing the confidence measure to speed up classifier train- 
ing. Quick (re)training is an ability that is crucial for 
any classifier, especially for extensibility, as we will see 
later. 

To train the classifier, a human expert has to pro- 
vide a reasonable number of documents that are typ- 
ical of each class. The first questions is: how much 
training data is required for it to perform well? Pre- 
liminary experiments showed that a surprisingly small 
set of training data produces a sufficiently accurate 
classifier. In Figure 5, the solid line shows the perfor- 
mance (E-value) of a classifier built with different sizes 
of training data. 

For example, a classifier trained with only one doc- 
ument per class has average E-value of 0.89. The same 
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classifier with 5 training documents has average E- 
value of about 0.96, with 10 documents about 0.97, 
and with 20 documents (~1000 total) nearly 0.98. 

In the experiments discussed in the remainder of 
this paper, we use (unless stated otherwise) training 
data sets with an average of ~17 documents per class 
(total ~800 documents = ~26 MBytes). These data 
sets have randomly been selected as subsets of a large 
collection of training documents. On an IBM RISC 
System/6000 Model 530H, training the experimental 
file classifier takes about 50 seconds, with this amount 
of training data. For evaluating the classifier's perfor- 
mance randomly selected data is used that is always 
disjoint from the training data. 

Though it shows that only little training data is re- 
quired, the second question is: what are good training 
documents and how can they be found. One common 
way is to use an incremental training strategy, where 
the classifier is initially trained with few (one or two) 
documents of training data for each class. Then the 
classifier is run on unclassified test documents. A hu- 
man expert manually classifies some of them and adds 
them to the training data. After about 20 documents 
have been added to the training data, the classifier is 
retrained with the extended training set. 

The crucial parameter of this strategy is whether 
the correctly or the incorrectly classified documents 
should be added to the training data set. We actu- 
ally used a third approach and added those documents 
to the training data for which the classifier was least 
confident about the classification, i.e., the confidence 
measure was below a given threshold. The final incre- 
mental training algorithm is illustrated in the follow- 
ing: 

step 1: 
train an initial classifier with No 

documents per class; 
step 2: 

while the classifier's performance is 
insufficient 

and a user is willing to classify 
documents do 
classify document using current 

classifier; 
if confidence was below a certain threshold 

then 
classify document by user and 
add it to training data set; 

if Ni training documents have 
been added then 
retrain the classifier with new 
training set; 

end 

Incremental training is very efficient when adding 
the least confident documents to the training data set. 
Consider again Figure 5: the dashed line shows the 
classifier's performance using the incremental training 
strategy, as opposed to training the classifier with ran- 
domly selected data, all at once (solid line). An initial 
classifiers was built with N0 - 2 training documents 
per class (~100 documents in total), which resulted in 
an E-value of about 0.94. In five iterations, Ni = 20 
documents per iteration were incrementally added to 
the training data. 

To achieve a classifier of E-value 0.96, one iteration 
was necessary. Notice, that at this point of time, only 
a total of 120 training documents were used, compared 
to 250 needed documents if training with random data 
in one step. After five iterations we already achieved 
0.98 and used only 200 training documents, compared 
to 1,000 if trained with random data in one step (cf. 
Figure 5). 

The incremental training algorithm is similar to the 
uncertainty strategy proposed by [LG94]. However, 
the number of files needed by their strategy is signif- 
icantly larger than ours (up to 100,000 documents), 
because they are doing semantic full textual analysis 
of all the words in the documents. In contrast, we 
look for a few syntactic patterns and can get enough 
randomness in 10 files. 

4    Feature Selection 

Finding good features is crucial for a classifier's per- 
formance. However, it is a difficult task that can not 
be automated. 

On one hand, features must identify one specific 
class and should apply as little as possible to other 
classes. This is easy for classes that can be identi- 
fied by examining files for matching string literals, like 
e.g., FrameMaker documents, or GIF pictures. But 
it is difficult for classes that are very similar, like dif- 
ferent kinds of electronic mail formats, e.g. RFC822 
mail, Usenet messages, MBox folders. It may also be 
a problem for textual files containing mainly natural 
language and having only few commonalities. 

On the other hand, there must be enough features 
to identify all kinds of files of a particular class. This 
causes a problem, if classes can only be described by 
very general patterns or can take alternative forms, 
like for instance word processors having different file 
saving formats. In these cases, it is advisable to ei- 
ther define completely different classes or to combine 
features together. 

In this section, we present techniques to analyze and 
improve the schema of a classifier. These techniques 
help a human expert choose good features. To reveal 

U 



the results in advance, we managed to improve a clas- 
sifier's performance from an average E-value of 0.86 to 
0.94, just by optimizing the schema. 

4.1    Distinguishing Power 

The most important property of features is how precise 
they identify one particular class. Thus, good features 
can be separated from bad features in how distinguish- 
ing they are, i.e., the number of classes they match. 

We use the variation of feature coefficients over all 
centroids to measure how distinguishing features are. 
Consider vector fc = (an,.. .,Oin), where a^ is the 
coefficient of feature fc in centroid Cj (1 < i < m, 1 < 
j < n). This vector represents the feature's distribu- 
tion over classes. Assuming normal distribution, we 
define: 

Definition. The distinguishing power of feature /,- is 
defined as 

dist—power(/,)   =   — 
a 

where s2 - ^J^^fai - a)2 is the variance and 

5 = - X^"=i °*j ^s *ne mean- 

This definition of distinguishing power values both, 
low variance and low mean. It ranges from 0 to 1. 
For an optimal feature that has all coefficients Ojy = 
0 except for one that is 1, the variance s2 is equal 
to its mean 5. Hence, the distinguishing power of a 
perfect feature is 1. For a worst-case feature that has 
a uniform distribution over all classes (and 5^0), the 
variance, and therefore the distinguishing power, is 0. 
The higher dist-power(/i) is, the more distinguishing 
is feature /j. 

Example 3: Figure 6 illustrates distin- 
guishing power for two sample features. Fea- 
ture    "Snellscript set_"   is   defined   for   class 
SHELLSCRIPT and searches for string literal " set ". 
This feature matches many different classes to a low 
degree, which is reflected in a very low distinguishing 
power (0.1978). 

Feature "RFC822_~From:" is defined for class 
RFC822 (an e-mail format) and searches for lines be- 
ginning with "From:". This feature has a much better 
distinguishing power (0.7742). It selects fewer classes, 
most of them to a high degree. Notice that this feature 
now identifies a group of four classes that are similar 
(e-mail like). 

An example of a perfect feature (distinguishing 
power 1.0) is feature "CHeader_. h$" (not shown in 
Figure 6), a regular expression looking for file names 

ending with ".h". Its coefficients are 1 for class 
CHEADER and 0 for all others. O 

In general, feature analysis can be performed in two 
different ways. These approaches are complementary: 

• the analyzer scans human generated features and 
identifies those with poor distinguishing power; 

• the analyzer scans all training documents and pro- 
poses features with high distinguishing power. 

A human expert is necessary in both cases. Ultimately, 
the expert must decide whether to include a proposed 
feature into a schema, change an existing feature's def- 
inition in order to make it more specific, delete a fea- 
ture, or keep it as it is. It is difficult to automate this 
task. Some features must be included although they 
are not very distinguishing, for instance, those that 
are the only feature of a top-level class in the hier- 
archy (TEXT, BINARY, DIRECTORY, SYMLINK). On 
the other hand, regular expression patterns, for exam- 
ple, may contain an error that cannot be detected and 
corrected automatically. 

To illustrate feature analysis, the experimental file 
VSC was built using a non-optimized schema with 
about 200 features, created by a user with moderate 
experience in using the classifier. This classifier had 
an average E-value of 0.86. 

Subsequent feature analysis showed that only about 
15% of these features identified exactly one type (dist- 
power = 1), 10% did not match any type at all, and 
more than 50% had dist-power < 0.5. Based on this 
feature analysis, the schema was optimized. Patterns 
were changed to make features more specific and syn- 
tax errors that caused features to fail to identify any 
class were corrected. A new classifier was built with 
this improved schema. The average E-value increased 
to 0.94, just from using the optimized schema. 

4.2    Combining Features 

Some file types have the property that documents of 
these classes match a highly varying number of fea- 
tures (e.g. SCRIPT, TROFFME, YACC, CSOURCE). 

Some documents match 20 to 30 features, whereas oth- 
ers only 1 or 2. Even if the 1 or 2 features are a subset 
of the 20 to 30 features, the classifier performs poorly 
for these classes, because it can only be trained to 
properly recognize one of the two styles of documents. 

One approach would be to define two different 
classes to cover the two styles. However, it proved to 
be extremely difficult to define the schemas for the two 
separated classes and to separate the training data. 

A better solution is combining several features 
/ii • • ■ > fm into one feature. The new feature is built 
as a regular expression / = /i| - • • |/m connecting the 
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Uli J lu. 

Feature -RFC822_AFrom:" 
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original features via "or" patterns. There are two ways 
to combine the features of a given class together: 

• Combining "disjoint" features. The first way is to 
combine "disjoint" features that never (less than a 
given amount of the time) appear together. Con- 
sider as an example file types with two different 
initialization commands where only one of which 
appears at the beginning of the file. 

• Combining 'duplicate" features. The second way 
is to combine "duplicate" features, that is, fea- 
tures that always (more than a given amount 
of the time) appear together, but do not ap- 
pear often (in more than a given amount of the 
files). For example, patterns "arge" and "argv" 
in CSOURCE The second limitation allows the 
classifier to keep the really good features like 
""Received" and ""From" which appear in all 
RFC822 files, but it will combine "arge" and 
"argv" which only sometimes occur in CSOURCE 

files. 

The algorithm for combining features looks as fol- 
lows (choosing 80% as the threshold to combine fea- 
tures and 60% for the number of files duplicate features 
should not appear in has given the best results): 

foreach class c, (t = 1... n) of the schema do 
step 1: 

m = number of features of class Cj; 
F = features {/i,..., fm} of class a; 
P(F) = the powerset of F, 

without the empty set; 
step 2: 

train the classifier: 
scan all training documents of class c; 

for feature occurrences; 
foreach s G P{F) do 

Figure 6: Distinguishing power of features 
occ(s) = percentage of training 

documents of class Cj 
where features s occur together; 

end 
step 3: 

find features to be combined: 
while m> 1 do 

foreach s G P{F) with m features do 
if (avg/€socc(s)/occ{f) < 0.20) 
or ((avg/63occ{s)/occ{f) > 0.80) 
and occ(s) < 0.60) 
then 

combine features in s; 
remove all sets from P(F) 
containing any of the 
features in s; 

end 
m ; 

end 
end 

The algorithm works class by class and combines only 
features that are defined within the same class, that 
is, features from different classes are never combined 
together.3 

In step 1, the algorithm computes P(F) as the set 
of all possible subsets of features {/i,..., fm} for the 
current class c». In step 2, the classifier is trained 
by classifying a large number of documents (~40 - 50 
per class). While scanning training documents, the 
algorithm remembers for each of the feature combina- 
tions s G P(F) the percentage of documents in which 
this combination occurred. In step 3, the algorithm 
searches features to be combined. It tries to combine 
as many features as possible and starts therefore with 
the largest feature combination having all m features. 
If the combination fulfills one of the "disjoint" or "du- 

sIn the current experimental classifier, feature combination 
runs on restpats features only. 
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plicate" occurrence conditions, all features of the set 
s are removed from the schema and replaced by one 
new feature that combines them as described above. 
All sets are removed from P(F) containing any of the 
features from s, because maximum combination was 
already achieved for these features. If all feature com- 
binations of this size m have been processed, m is 
decremented and the algorithm tries to combine the 
remaining feature combinations of the smaller size. 

Running feature combination on the restpats of 
the already optimized schema of the previous section, 
combined 37 disjoint features into 14 new features and 
58 duplicate features into 20 new ones. Just by auto- 
matic feature combination, the classifier's performance 
has been improved from an overall E-value of 0.94 to 
now 0.96. In detail, the recall of file type TROFPME 
has been increased by 9.1% combining 7 into 2 fea- 
tures, YACC by 7.1% combining 2 into 1 feature and 
SCRIPT by 6.2% combining 38 into 13 features. 

5     Comparison of other Classifier Tech- 
nologies 

There are diverse technologies for building classifiers. 
Decision tables are very simple classifiers that deter- 
mine according to table entries what class to assign to 
an object. The UNIX "file" command is an example 
of a decision table based file classifier. It scans the 
/etc/magic file, the decision table, for matching val- 
ues and returns a corresponding string that describes 
the file type. Decision tree classifiers construct a tree 
from training data, where leaves indicate classes and 
nodes indicate some tests to be carried out. CART 
[BFOS84] or C4.5 [Qui93] are well known examples of 
generic decision tree classifiers. Ride based classifiers 
create rules from training data. R-MINI [Hon94] is an 
example of a rule based classifier that generates dis- 
junctive normal form (DNF) rules. Both, decision tree 
and rule classifiers, usually apply pruning heuristics to 
keep these trees/rules in some minimal form. Discrim- 
inant analysis (linear or quadratic) is a well known 
basic statistical classification approach [Jam8$- 

To rate our experimental vector space classifier, we 
built alternative file classifiers using quadratic discrim- 
inant analysis, decision tables, the decision tree system 
C4.5, and the rule generation approach R-MINI. Ta- 
ble 2 summarizes the conducted experiments. The in- 
tent of this table is to give a rough overview of how 
the different techniques compare on the file classifica- 
tion problem and not to present detailed performance 
numbers ("+" means an advantage and "-" means a 
disadvantage of a particular classifier technology). 

Speed. Training and classification using quadratic 
discriminant analysis is very slow because extensive 
computations must be performed.    All other classi- 

fier technologies provide fast training and classifica- 
tion. The vector space classifier simply needs to com- 
pute angles between the document vector and all cen- 
troids. For example, on an IBM RISC System/6000 
model 530H, an individual document is classified by 
the experimental classifier in about 40 milliseconds, 
on average. The other classifier technologies (except 
of discriminant analysis) proved a similar speed. 

Accuracy. Quadratic discriminant analysis and 
decision tables did not achieve our accuracy require- 
ments. They had error rates up to 30%. All other clas- 
sifier technologies proved much lower error rates. The 
C4.5 file classifier showed error rates from 2.6 to 5.0% 
misclassified files. The R-MINI file classifier showed 
error rates from 2.6 to 4.9%. The vector space clas- 
sifier had 2.1 to 3.1% error rates. Hence, all three 
technologies have approximately the same range of er- 

rors. 
Extensibility. A classifier is usually trained with 

a basic set of general classes. However, this basic class 
hierarchy must be extensible. Users want to define 
and add specific classes according to their personal 
purposes. Extensibility of a classifier is therefore cru- 
cial for many applications. In order to add classes 
to a classifier, a user must provide class descriptions 
(schema) and training data for the new classes. Train- 
ing documents of the existing classes must be available 
too. This "old" training data is necessary because new 
classes must be trained with data for existing classes 

as well. 
Vector space classifiers are highly suited for exten- 

sibility purposes. Consider as an example a classi- 
fier with existing classes ci,...,cs and existing fea- 
tures /i ,...,fj ■ Assume this classifier is extended with 
new classes ch,..., c„ (h = g + 1) and new features 
fk, • • •, fm {k - j + 1). After extension, the feature- 
centroid matrix A of the classifier, where each coeffi- 
cient Oj-y shows the value of feature y in the centroid 
of class x, looks as follows: 

an 

agi 

aj»i 

<*nl 

ay ! aifc 

-aJA-i agk 

ähj      O-hk 

Onj      Onk 

O-lr, 

u-gm 

a-hm 

a*nm 
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The upper-left (dashed) sub-matrix of A shows the 
existing feature centroid matrix. To add new classes, 
these existing centroid coefficients need not be recom- 
puted. The feature-centroid matrix can incrementally 
be extended with coefficients for newly added classes. 
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Table 2: Different Classifier Technologies 

Quad. 
Discr. 

Analysis 

Decision 
Tables 

Decision 
Trees 
(C4.5) 

DNF 
Rules 

(R-MINI) 

Vector 
Space 
Model 

Speed - + + + + 
Accuracy - - + + + 
Extensibility - - - - + 

The lack of extensibility of discriminant analysis, 
decision table/tree and rule classifiers is the most dra- 
matic difference. In contrast to vector space classifiers, 
extending this kind of classifiers with new user-specific 
classes demands rebuilding the whole system (tables, 
trees, or rules) from scratch, that is, it requires com- 
plete reconstruction of the classifier. Incremental, ad- 
ditive extension is not possible. 

6    Conclusion and Outlook 

High accuracy, fast classification, and incremental ex- 
tensibility are the primary criteria for any classifier. 
The experimental VSC for assigning types to files pre- 
sented in this paper fulfills all three requirements. 

We evaluated different similarity metrics and 
showed that the cosine measure gives best results. A 
novel confidence measure was introduced that detects 
probably misclassified documents. Based on this con- 
fidence measure, an incremental training strategy was 
presented that significantly decreases the number of 
documents required for training, and therefore, in- 
creases speed and flexibility. The notion of distin- 
guishing power of features was formalized and an algo- 
rithm for automatic combining disjoint and duplicate 
features was presented. Both techniques increase the 
classifier's accuracy again. Finally, we compared the 
VSC with other classifier.technologies. It revealed that 
using the vector space model gives highly accurate and 
fast classifiers while it provides at the same time ex- 
tensibility with user-specific classes. 

The file classifier can be seen as a component of ob- 
ject, text, and image database management systems. 
There is recently an increasing interest in merging the 
functionality of database and file systems. Several pro- 
posals have been made, showing how files can benefit 
from object-oriented technology. 

Christophides et al. [CACS94] describe a map- 
ping from SGML documents into an object-oriented 
database and show how SGML documents can benefit 
from database support. Their work is restricted to this 
particular document type. It would be interesting to 
see how easily it can be extended to a rich diversity of 
types by using our classifier. 

Consens and Milo [CM94] transform files into a 

database in order to be able to optimize queries on 
those files. Their work focuses on indexing and op- 
timizing. They assume that files are already typed 
before reading, for example, by the use of a classifier. 

Hardy and Schwartz [HS93] are using a UNIX file 
classifier in Essence, a resource discovery system based 
on semantic file indexing. Their classifier determines 
file types by exploiting naming conventions, data, and 
common structures in files. However, the Essence clas- 
sifier is decision table based (similar to the UNIX "file" 
command) and is therefore much less flexible and tol- 
erant. 

The file classifier can also provide useful services in a 
next-generation operating system environment. Con- 
sider for instance a file system backup procedure that 
uses the classifier to select file-type-specific backup 
policies or compression/encryption methods. 

Experiments have been conducted using the classi- 
fier for language and subject classification. Whereas 
language classification showed encouraging results, 
this technology has its limitations for subject classi- 
fication. The reason is that the classifier works mainly 
by syntactical exploration of the schema, but subject 
classification must take into account the semantics of 
a document. 

We are currently working on making the classifier 
extensible even without the requirement of training 
data for existing classes. We are also investigating the 
classification of structurally nested documents. A file 
classifier is being developed that is, for example, able 
to recognize Postscript pictures in electronic mail or C 
language source code in natural text documents. Use 
of this classifier to recognize, and take advantage, of a 
class hierarchy is an item for future work. 
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Abstract 

Garlic is a middleware system that provides an in- 
tegrated view of a variety of legacy data sources, 
without changing how or where data is stored. In 
this paper, we describe our architecture for wrap- 
pers, key components of Garlic that encapsulate 
data sources and mediate between them and the 
middleware. Garlic wrappers model legacy data as 
objects, participate in query planning and provide 
standard interfaces for method invocation and 
query execution. To date, we have built wrappers 
for 10 data sources. Our experience shows that 
Garlic wrappers can be written quickly and that 
our architecture is flexible enough to accommo- 
date data sources with a variety of data models 
and a broad range of traditional and non-tradition- 
al query processing capabilities. 

1 Introduction 

Most large organizations have collected a considerable 
amount of data, and have invested heavily in systems and 
applications to manage and access that data. It is increas- 
ingly clear that powerful applications can be created by 
combining information stored in these historically separate 
data sources. For example, a medical system mat integrates 
patient histories, EKG readings, lab results and MRI scans 
would greatly reduce the amount of time required for a doc- 
tor to retrieve and compare these pieces of information be- 
fore making a diagnosis. 

Garlic is a middleware system mat provides an integrat- 
ed view of heterogeneous legacy data without changing 
how or where the data is stored. Middleware systems lever- 
age the storage and data management faculties provided by 
legacy systems, providing a unified schema and common 
interface for new applications without disturbing existing 
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applications. Freed from the responsibilities of storage and 
data management, these systems focus on providing pow- 
erful high-level query services for heterogeneous data. 

Middleware systems typically rely on wrappers [4] [18] 
[9] that encapsulate the underlying data and mediate be- 
tween the data source and the middleware. The wrapper ar- 
chitecture and interfaces are crucial, because wrappers are 
the focal point for managing the diversity of data sources. 
Below a wrapper, each data source, or repository, has its 
own data model, schema, programming interface, and que- 
ry capability. The data model may be relational, object-ori- 
ented, or specialized for a particular domain. The schema 
may be fixed, or vary over time. Some repositories support 
a query language, while others are accessed using a class li- 
brary or other programmatic interface. Most critically, re- 
positories vary widely in their support for queries. At one 
end of the spectrum are repositories that only support sim- 
ple scans over their contents (e.g., files of records). Some- 
what more sophisticated repositories may allow a record 
ordering to be specified, or be able to apply certain predi- 
cates to limit the amount of data retrieved. At the other end 
of the spectrum are repositories like relational databases 
that support complex operations like joins or aggregation. 
Repositories can also be quite idiosyncratic, allowing, for 
example, only certain forms of predicates on certain at- 
tributes, or joins between certain collections. The wrapper 
architecture of Garlic [4] addresses the challenge of diver- 
sity by standardizing how information in data sources is de- 
scribed and accessed, while taking an approach to query 
planning in which the wrapper and the middleware dynam- 
ically determine the wrapper's role in answering a query. 

This paper describes the Garlic wrapper architecture, 
and summarizes our experience building wrappers for ten 
data sources with widely varying data models and degrees 
of support for querying. The next section gives a brief over- 
view of Garlic, and is followed by a section that summariz- 
es the goals of the wrapper architecture. Section 4 describes 
how a wrapper is built, and Section 5 discusses the current 
status of our system. Section 6 briefly summarizes related 
work, and Section 7 concludes the paper and presents some 
opportunities for future research. 

2 An Overview of Garlic 

Garlic applications see heterogeneous legacy data stored in 
a variety of data sources as instances of objects in a unified 
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Figure 1. The Garlic Architecture. 
schema. Rather than invent yet another object-oriented data 
model, Garlic's data model and programming interface are 
based closely on the Object Database Management Group 
(ODMG) standard [5]. Methods are of particular impor- 
tance to Garlic, since they provide a convenient and natural 
way to model the specialized search and data manipulation 
facilities of non-traditional data sources. By extending 
SQL to allow invocations of such methods in queries, Gar- 
lic provides a single straightforward language extension 
that can support many different kinds of specialized search. 

The overall architecture of Garlic is depicted in 
Figure 1. Associated with each repository is a wrapper. In 
addition to the repositories containing legacy data, Garlic 
provides its own repository for Garlic complex objects, 
which users can create to bind together existing objects 
from legacy repositories. Garlic also maintains global 
metadata that describes the unified schema. Garlic objects 
can be accessed both via a C++ programming interface and 
through Garlic's query language, an extension of SQL that 
adds support for path expressions, nested collections and 
methods. The heart of the Garlic middleware is the query 
processing component. The query processor develops plans 
to efficiently decompose queries that span multiple reposi- 
tories into pieces that individual repositories can handle. 
The query execution engine controls the execution of such 
a query plan, by assembling the results from the reposito- 
ries and performing any additional processing required to 
produce the answer to the query. 

3 Goals for the Wrapper Architecture 

Our experience in building wrappers for Garlic confirms 
that the architecture we describe in this paper achieves sev- 
eral goals that make it well-suited to integrate a diverse set 
of data sources. We summarize these goals here before de- 
scribing the wrapper architecture in detail. 

1.  The start-up cost to write a wrapper should be small. 
We expect a typical Garlic application to combine data 
from several traditional sources (e.g., relational data- 
base systems from various vendors) with data from a 
variety of non-traditional systems such as image serv- 
ers, searchable web sites, etc., and one-of-a-kind 
sources such as a home-grown molecular similarity 
search engine. Although Garlic is intended to ship with 

wrappers for popular data sources, we must rely on 
third party vendors and customer data administrators to 
provide wrappers for more specialized data sources. To 
make wrapper authoring as simple as possible, we 
require only a small set of key services from a wrapper, 
and ensure that a wrapper can be written with very lit- 
tle knowledge of Garlic's internal structure. In our 
experience, a wrapper that provides a base level of ser- 
vice can be written in a matter of hours. Even such a 
basic wrapper permits a significant amount of the 
repository's data and functionality to be exposed 
through the Garlic interface. 

2. Wrappers should be able to evolve. Our standard meth- 
odology in building wrappers has been to start with a 
version that models the repository's content as objects 
and allows Garlic to retrieve their attributes. We then 
incrementally improve the wrapper to exploit more of 
the repository's native query processing capabilities. 

3. The architecture should be flexible and allow for 
graceful growth. We require only that a data source 
have some form of programmatic interface, and we 
make no assumptions about its data model or query 
processing capabilities. Wrappers for new data sources 
can be integrated into existing Garlic databases without 
disturbing legacy applications, other wrappers, or 
existing Garlic applications. 

4. The architecture should readily lend itself to query 
optimization. The author of a Garlic wrapper need not 
code to a standard query interface that may be too 
high-level or too low-level for the underlying data 
source. Instead, a wrapper is a full participant in query 
planning, and may use whatever knowledge it has 
about a repository's query and specialized search facil- 
ities to dynamically determine how much of a query 
the repository is capable of handling. This design 
allows us to build wrappers for simple data sources 
quickly, and still exploit the unique capabilities of 
unusual data sources such as image servers, text search 
engines, engines for molecular similarity search, etc. 

4 Building a Garlic Wrapper 

As shown in Figure 2, a wrapper provides four major ser- 
vices in the Garlic system. First, a wrapper models the con- 
tents of its repository as Garlic objects, and allows Garlic 
to retrieve references to these objects. Secondly, a wrapper 
allows Garlic to invoke methods on objects and retrieve 
their attributes. This mechanism is important, because it 
provides a means by which Garlic can get data out of a re- 
pository, even if the repository has almost no support for 
querying. Third, a wrapper participates in query planning 
when a Garlic query ranges over objects in its repository. 
The Garlic metadata does not include information about the 
query processing capabilities of individual repositories, so 
the Garlic query processor has no a priori knowledge about 
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Figure 2. Services Provided by a Wrapper. 

what predicates and projections can be handled by a given 
repository. Instead, the query processor identifies portions 
of a query relevant to a repository and allows the reposito- 
ry's wrapper to determine how much of the work it is will- 
ing to handle. The final service provided by a wrapper is 
query execution. During query execution, the wrapper 
completes the work it reported it could do in the query plan- 
ning phase. A wrapper may take advantage of whatever 
specialized search facilities the repository provides in order 
to return the relevant data to Garlic. 

In the sections that follow, we describe each of these ser- 
vices in greater detail, and provide an example of how to 
build wrappers for a simple travel agency application. 

4.1 Modeling Data as Objects 

The first service that a wrapper provides is to turn the data 
of the underlying repository into objects accessible by Gar- 
he. Each Garlic object has an interface that abstractly de- 
scribes the object's behavior, and an implementation that 
provides a concrete realization of the interface. The Garlic 
data model permits any number of implementations for a 
given interlace. For example, two relational database re- 
positories that contain information about disjoint sets of 
employees may each export distinct implementations of a 
common Employee interface. 

During an initial registration step, wrappers provide a 
description of the content of their repositories using the 
Garlic Data Language, or GDL. GDL is a variant of the 
ODMG's Object Description Language (ODMG-ODL). 
The interfaces that describe the behavior of objects in a re- 
pository are known collectively as the repository schema. 
Repositories are registered as parts of a Garlic database and 
their individual repository Schemas are merged into the glo- 
bal schema that is presented to Garlic users. 

A wrapper also cooperates with Garlic in assigning 
identity to individual objects so that they can be referenced 
from Garlic and from Garlic applications. A Garlic object 
identifier (OID) has two parts. The first part, the implemen- 

tation identifier (HD), is assigned by Garlic and identifies 
which implementation is responsible for the object, which 
in turn identifies the interface that the object supports and 
the repository in which it is stored. The second part of the 
OID, the key, is uninterpreted by Garlic. It is provided by 
the wrapper and identifies an object within a repository. 
Specific objects, usually collections, can be designated as 
roots. Root objects are identified by name, as well as by 
OID, and as such can serve as starting points for navigation 
or querying (e.g., root collection objects can be used in the 
from clause of a query). 

As an example of how data is modeled as objects in Gar- 
he, consider a simple application for a travel agency1. The 
agency stores information about the countries and cities for 
which it arranges tours as tables in a relational database. It 
also has access to a web site that provides booking informa- 
tion for hotels throughout the world, and to an image server 
in which it stores images of different travel destinations. 
These images can be retrieved and ordered according to 
features such as color, shape, texture, etc. 

These sources are easily integrated as a Garlic database. 
The description of the Country and Ci ty interfaces that 
describe the relations in the relational database are shown 
in the left column of Figure 3. The attributes of each inter- 
face correspond to the columns of each relation, and the 
primary key value of a tuple serves as the key portion of the 
Garlic OID. Note that the country attribute on the Ci ty 
interface and the scene attributes on the Country and 
city interfaces are Garlic references to other Garlic ob- 
jects. The relational wrapper registers Cities as a root 
collection of City objects, and Countries as a root col- 
lection of Country objects. 

The web wrapper exports a single root collection of Ho- 
tel objects. The GDL for a Hotel object is shown at the 

1. For brevity, we have omitted many of the implementation 
details of this application. See [22] for a more precise descrip- 
tion. 
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Relational Repository Schema 

interface Country { 
attribute string name; 
attribute string airlines_served; 
attribute boolean visa_required; 
attribute Image scene;} 

interface City { 
attribute string name; 
attribute long population; 
attribute boolean airport,- 
attribute Country country; 
attribute Image scene;} 

Web Repository Schema 

interface Hotel { 
attribute readonly string name; 
attribute readonly short class; 
attribute readonly double daily_rate; 
attribute readonly string location; 
attribute readonly string city;} 

Image Server Repository Schema 

interface Image { 
attribute readonly string file_name; 
double matches(in string file_name); 
void display(in string device_name);} 

Figure 3. Travel Agency Application Schema. 

top of the right hand column in Figure 3. The web site pro- 
vides unique identifiers on the HTML page for hotel list- 
ings it returns, and these identifiers serve as the key portion 
of Hotel OIDs. 

The interface for the image data stored in the image 
server is provided at the bottom of the right hand column of 
Figure 3. The image server repository exports 2 methods 
on the Image interface: matches (), which takes as in- 
put the name of a file containing the description of an image 
feature and returns as output a score that indicates how well 
an image matches the feature, and display (), which 
models the server's ability to output an image on a specified 
device. Image file names provide the key for image OIDs. 

4.2 Method Invocation 

The second service a wrapper provides is a means to invoke 
methods on the objects in its repository. Method invoca- 
tions can be generated by Garlic's query execution engine 
(see Section 4.3), or by a Garlic application that has ob- 
tained a reference to an object (either as the result of a que- 
ry or by looking up a root object by name). 

In addition to explicitly-defined methods like mat cri- 
es (), two types of accessor methods are implicitly de- 
fined for retrieving and updating an object's attributes — a 
"get" method for each attribute in the interface, and a "set" 
method for attributes that are not read-only. For instance, a 
get_class () method would be implicitly defined for 
the read-only class attribute of the Hotel interlace. 

Garlic uses the ED portion of a target object's OID to 
route a method invocation to the object's implementation. 
The implementation must be able to invoke each explicitly 
defined method in the corresponding interface, as well as 
the accessor methods. An implementation consists of wrap- 
per code that maps Garlic method invocations into appro- 
priate operations provided by the repository. To 
accommodate the widest possible range of repositories, 
Garlic provides two variants of method invocation: stub 
and generic dispatch. 

A wrapper that utilizes stub dispatch provides a stub 
routine for each method of an implementation. Stub dis- 
patch is a natural choice for repositories whose native pro- 
gramming interface is a class library, such as the image 
server in our travel agency example. For the display () 
method, for example, the image server wrapper provides a 
routine that first extracts the file name of the target image 

from the key field of the OID, and unpacks the device name 
from the argument list supplied by Garlic. To display the 
image on the screen, the routine calls the appropriate dis- 
play function from the image server's class library, giving 
the image file name and display name as arguments. 

Generic dispatch is useful for repositories that support a 
generic method invocation mechanism, or for repositories 
that do not directly support objects and methods. A wrap- 
per that supports generic dispatch exports a single method 
invocation entry point An important advantage of generic 
dispatch is that it is schema-independent. A single copy of 
the generic dispatch code can be shared by repositories that 
have a common programming interface but different Sche- 
mas. The relational wrapper is an example of a wrapper that 
uses generic method dispatch. This wrapper supports only 
accessor methods, and each method invocation translates 
directly to a query over the relation that corresponds to the 
target object's implementation. The wrapper maps the 
method name into a column name, maps the HD portion of 
the object's OID into a relation name, extracts the primary 
key value from the OID, and uses these values to construct 
a query to send to the database. 

4.3 Query Planning 

A wrapper's third obligation is to participate in query plan- 
ning. The goal of query planning is to develop alternative 
plans for answering a query, and then to choose the most ef- 
ficient one. The Garlic query optimizer [8] is a cost-based 
optimizer modeled on Lohman's grammar-like rule ap- 
proach [12]. STARs (STrategy Alternative Rules) are used 
in the optimizer to describe possible execution plans for a 
query. The optimizer uses dynamic programming to build 
query plans bottom-up. First, single collection access plans 
are generated, followed by a phase in which 2-way join 
plans are considered, followed by 3-way joins, etc., until a 
complete plan for the query has been chosen. Garlic ex- 
tends the STAR approach by introducing wrappers as full- 
fledged participants during plan enumeration. During each 
query planning phase, the Garlic optimizer identifies the 
largest possible query fragment that involves a particular 
repository, and sends it to the repository's wrapper. The 
wrapper returns zero or more plans that implement some or 
all of the work represented by the query fragment The op- 
timizer incorporates each wrapper plan into the set of plans 
it is considering to produce the results of the entire query, 
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adding operators to perform in Garlic any portion of the 
query fragment that the wrapper did not agree to handle. 

As noted previously, repositories vary greatly in then- 
query processing capabilities. Furthermore, each reposito- 
ry has its own unique set of restrictions on the operations it 
will perform. These capabilities and restrictions may be 
difficult or impossible to express declaratively. For exam- 
ple, relational databases often have limits on the number of 
tables involved in a join, the maximum length of a query 
string, the maximum value of a constant in a query, etc. 
These limits vary for different products, and even for differ- 
ent versions of the same product As another example, our 
web wrapper is able to handle SQL LIKE predicates, but is 
sensitive to the placement of wild card characters. A key 
advantage to our approach is that the optimizer does not 
need to track the minute details of the capabilities and re- 
strictions of the underlying data sources. Instead, the wrap- 
per encapsulates this knowledge and ensures that the plans 
it produces can actually be executed by the repository. 

Our approach allows a wrapper to model as little or as 
much of the repository's capabilities as makes sense. If a 
repository has limited query processing power, then the 
amount of code necessary to support the query planning in- 
terface is small. On the other hand, if a repository does have 
specialized search faculties and access methods that Garlic 
can exploit, the interface is flexible enough for a wrapper to 
encapsulate as much of these capabilities as possible. Even 
if a repository can do no more than return the OIDs of ob- 
jects in a collection, Garlic can evaluate an arbitrary query 
by retrieving data from the repository via method invoca- 
tion and processing it within Garlic. 

A wrapper's participation in query planning is con- 
trolled by a set of methods that the optimizer may invoke 
during plan enumeration. Theplan_access() method 
is used to generate single-collection access plans, and the 
plan_ j oin () method is used to generate multi-way join 
plans. Joins may arise from queries expressed in standard 
SQL, or joins may be generated by Garlic for queries that 
contain path expressions, a feature of Garlic's extended 
SQL. The plan_bind() method is used to generate a 
specific kind of plan that can serve as the inner stream of a 
bind join (to be described in Section 4.3.3). Each of these 
methods takes as input a work request, which is a light- 
weight parse-tree description of the query fragment to be 
processed. The return value is a set of plans, each of which 
includes a list of properties that describe how much of the 
work request the plan implements, and at what cost The 
plans are represented by instances of a wrapper-specific 
specialization of a wrapper_Plan class. In addition to 
the property list, they encapsulate any repository-specific 
information a wrapper needs to actually perform the work 
described by the plan. 

4.3.1 Single Collection Access Plans 

The plan_access () method is the interface by which 
the Garlic query optimizer asks a wrapper for plans that re- 
turn data from a single collection. It is invoked for each col- 
lection to which a Garlic query refers. The wo± request for 

C select Rname, Rcity, Rdaily_rate 
from Hotels H 
where Rclass » 5 and Rlocation «= 'beach' 

I 
/ 

Garlic Optimizer 

Work Request 

Project: ROID, Rname, Rcity, 
Rdaily_rate, Rclass, Rlocation 

Preds:   Rclass - 5 
Rlocation = 'beach' 

\ 

Web Wrapper Access Plan 
for Hotels 

Properties 

Project: ROTD, Rname, 
Rcity, Rdaily_rate, 
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Preds:Rclass = 5 
Cost:< access cost> 

Plan details (private) 
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Hotel Guide Repository 

Figure 4. Construction of a Wrapper Access Plan. 
a single-collection access includes predicates to apply, at- 
tributes to project, and methods to invoke. Since the Garlic 
optimizer does not know a priori which (if any) of the pred- 
icates a wrapper will be able to apply, the projection list in 
a work request contains all relevant attributes and methods 
mentioned in the query, including those that only appear in 
predicates. This gives the wrapper an opportunity to supply 
values for attributes that the Garlic execution engine will 
need in order to apply predicates that the wrapper chooses 
not to handle. As a worst-case fallback, the projection list 
also always includes the OID, even if the user's original 
query made no mention of it The execution engine uses the 
OID and the method invocation interface to retrieve the val- 
ues of any attributes it needs that are not directly supplied 
by the wrapper. 

Figure 4 shows the first phase of query planning for a 
simple single-collection query against our travel agency 
database. Suppose a Garlic user submits a query to find 5- 
star hotels with beach front property. The Garlic query op- 
timizer analyzes the user's query and identifies the frag- 
ment that involves the Hotels collection. Since the 
Hotels collection is managed by the web wrapper, it in- 
vokes the web wrapper's plan_access () method with 
a description of the work to be done. This description con- 
tains the list of predicates to apply and attributes to project. 

During the execution of plan_access (), the web 
wrapper looks at the work request to determine how much 
of the query it can handle. In general, our web wrapper can 
project any attribute and will accept predicates of the form 
<attr> <op> <const>, where <op> is either = orthe 
SQL keyword LIKE. However, the web wrapper cannot 
handle equality predicates on strings because the web site 
does not adhere to SQL semantics for string equality. The 
web site treats the predicate "location = 'beach'" 
as "location LIKE ' %beach%'", which provides a 
superset of the results of the equality predicate. This differ- 
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Figure 5. Construction of a Wrapper Join Plan. 
ence in semantics means that the web wrapper cannot re- 
port to the optimizer that it can apply a string equality 
predicate. Nevertheless, when string equality is requested, 
it is still beneficial for the wrapper to apply the less restric- 
tive LIKE predicate in order to reduce the amount of data 
returned to Garlic. The wrapper therefore creates a plan 
that will handle the entire projection list, perform the pred- 
icate on class, and the predicate "location LIKE 
' %beach%'", while reporting through the plan's proper- 
ties that the location predicate will not be applied/The 
wrapper assigns the plan an estimated cost and returns it to 
the optimizer. If this access plan is chosen to be part of the 
global plan for the user's query, the optimizer will need to 
add the necessary operator to apply the predicate on lo- 
cation, although it would be applied to a far smaller set 
of objects than if the wrapper had not (covertly) applied the 
LIKE predicate. 

4.3.2 Join Plans 

The Garlic query optimizer uses the access plans generated 
in the first phase of optimization as a starting point for join 
enumeration. If the optimizer recognizes that two collec- 

tions reside in the same repository, it invokes the wrapper s 
plan_j oin () method (if one is implemented) to try to 
push the join down to that repository. The work request in- 
cludes the join predicates as well as the single-collection 
access plans that the wrapper had previously generated for 
the collections being joined. In the plan_join() 
method, the wrapper can re-examine these plans, and con- 
sider the effect of adding join predicates. 

Let's return to ourtravel agency. Figure 5 shows how the 
relational wrapper provides a plan for a join between 
Countries and Cities. In the first phase of optimiza- 
tion (omitted from the picture), the optimizer requested and 
received access plans for Cities and Countries from 
the relational wrapper. During join enumeration, tiie opti- 
mizer invokes the relational wrapper's plan_jom() 
method and passes in the join predicate as well as the two 
access plans previously created. The wrapper agrees to per- 
form all of the work from its original access plans and to 
accept the join predicate, and creates a new plan for the 
join.The new plan's properties are made up of the proper- 
ties from the input plans and the new join predicate. 

During the next phase of join enumeration, the optimiz- 
er will follow a similar procedure for 3-ways joins of col- 
lections that reside in the same repository, and so on. 

433 Bind Plans 
During the join enumeration phase, the Garlic ortfimizer 
also considers a particular kind of join called a bind join 
similar to the fetch-matches join methods of [14] and [13]. 
In a bind join, values produced by the outer node of the join 
are passed by Garlic to the inner node, and the inner node 
uses these values to evaluate some subset of the join predi- 
cates. A wrapper is well suited to serve as the inner node of 
a bind join if the programming interface of its repository 
provides some mechanism for posing parameterized que- 
ries. As an example, ODBC and the call level interfaces of 
most relational database systems contain such support. 

Suppose our travel agency user is really interested in 
finding 5-star hotels on beaches in small towns in Greece. 
This query involves the Countries and Cities collec- 
tions managed by the relational wrapper, and the Hotels 
collection managed by the web wrapper. The web wrapper 
does not support 1he plan_bind () method, but the rela- 
tional wrapper does. Figure 6 shows how a bind plan for 
this query is created. During the first phase of optimization, 
the optimizer would have requested and received an access 
plan from the web wrapper for the Hotels collection as 
described in Section 4.3.1. Itwould also have requested and 
received access plans for the countries and Cities 
collections from the relational wrapper. While considering 
2-way joins, the optimizer would have received a join plan 
forcountries andcities from the relational wrapper, 
as described in the previous section. 

Next, the optimizer develops a plan to jom all three col- 
lections. The optimizer recognizes that a bind join is possi- 
ble, with the web wrapper's access plan as the outer stream 
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Figure 6. Construction of a Wrapper Bind Plan. 

and the join plan provided by the relational wrapper as the 
inner stream. The optimizer invokes the relational wrap- 
per's planjbind () method, passing in a work request 
that consists of the join plan for Countries and Cities 
that the wrapper previously provided and the description of 
the bind join predicate between Cities and Hotels. 
The relational wrapper creates a new plan that handles the 
work of the original join plan plus the bind predicate. It 
uses the input plan's properties to fill in the new bind plan 
properties, and adds in the bind predicate. 

4.4 Query Execution 

A wrapper's final service is to participate in plan translation 
and query execution. A Garlic query plan is represented as 
a tree of operators, such as FILTER, PROJECT, JOIN, etc. 
Wrapper plans show up as the operators at the leaves of the 
plan tree. Figure 7 shows an example of a complete Garlic 
plan based on the bind join plan for the query discussed in 
Section 4.3.3. The outer node of the bind join is the web 
wrapper's access plan from Section 4.3.1, and the inner 
node is the relational wrapper's bind plan described in Sec- 
tion 4.3.3. The Garlic optimizer added a FILTER operator 
to handle the predicate on location and a PROJECT op- 
erator to project name and daily_rate. 

The optimized plan must be translated into a form suit- 
able for execution. As is common in demand-driven run- 
time systems [7], operators are mapped into iterators, and 
each wrapper provides a specialized iterator subclass 
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FILTER 
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1 

Relational Wrapper Bind Plan 
for Countries, Cities and Hotels 

Properties 

Project: C.OID, Cname, LOID, 
Lname, Lpopulation, 
Lcountry 

Preds: Cname = 'Greece' 
Lpopulation < 500 
Lcountry »C.OID 
Lname - $BIND_1 

Cost: <bind cost > 

Web Wrapper Access Plan for Hotels 

Properties 

Project: H.OID, Hname, Hcity, 
H-daily_rate, Hclass, 
H-location 

Preds-JLclass - 5 
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Figure 7. A Plan for a Garlic Query. 
that controls execution of the work described by one of its 
plans. The wrapper must also supply an implementation of 
Wrapper_Plan:: translate (), to translate a wrap- 
per's plan into an instance of the wrapper's Iterator 
subclass. Translation involves converting the information 
stored in the plan into a form that can be sent to the repos- 
itory. For example, our relational wrapper stores the ele- 
ments of the select, from and where clauses of the 
query to be sent to the relational database in the private sec- 
tion of its plan. At plan translation time, the wrapper ex- 
tracts these elements, constructs the query string, and stores 
it in an instance of its iterator subclass. As another ex- 
ample, our web wrapper stores the list of attributes to 
project and the set of predicates to apply in the private data 
section of its plan. At plan translation time, the predicates 
are used to form a query URL that the web site will accept 

The Garlic execution engine is pipelined, and employs a 
fixed set of methods on iterators at runtime to control the 
execution of a query. Default implementations for most of 
the methods exist, but for each operator, two methods in 
particular define the unique behavior of its iterator ad- 
vance () and reset (). The advance () method com- 
pletes the work necessary to produce the next output value, 
and the res et () method resets an iterator so that it may 
be executed again. An additional bindO method is 
unique to wrapper iterators, and provides the mechanism 
by which Garlic can transfer the next set of bindings to the 
inner node of a bind join. 

Our relational wrapper uses standard ODBC calls to im- 
plement reset(), advance0 and bind(). re- 
set () prepares a query at the underlying database, and 
bind () binds the parameters sent by Garlic to the un- 
bound values in the query string. The advance () method 
fetches the next set of tuples from the database. 

The web wrapper's iterator subclass is very simple. 
The reset () method loads the HTML page that corre- 
sponds to the query URL generated at plan translation time. 
In the advanc e () method, the wrapper parses the HTML 
page to extract the query results. Each HTML page pro- 
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TABLE 1. A Description of Existing Wrappers. 

DB2, Oracle 

Searchable web sites: 
http://wwwiotelguide.ch, 
a hotel guide, and 
http://www.bigbook.com, 
U.S. business listings 

Proprietary database for molecular 
similarity search 

QBIC [16] image server that orders images 
according to color, texture and shape 
features 

Glimpse [15] text search engine that 
searches for specific patterns in text files 

Lotus Notes databases: 
Phone Directory database, Patent Server 
database 

Complex Object Wrapper 

Schema description: Columns of a relation map to attributes of an interface; relations become collections of objects, 
primary key value of a tuple is key for OID. Method invocation: accessor methods only, generic dispatch. Query 
operations: general expression projections, all basic predicates, joins, bind joins, joins based on OID. 

Schema description: Each web site exports a single collection of listing objects; HTML page data fields map to 
attributes of an interface; unique key for a listing provided by web site is key for OID. Method invocation: wcessor 
methods only, generic dispatch. Query operations: attribute projection, equality predicates on attributes, LIKE 
predicates of the form '%<value>%. 

Schema description: A single collection of molecule objects; interface has contains_substructureO and 
similarityjoO methods to model search capability of engine; molecule 1-number is key for OID. Method invocation: 
stub dispatch. Query operations: attribute and method projection; predicates of the form <attr> <op> <const> and 
<method> <op> <const>, if <op> is a comparison operator; bind plans if similarity_toQ is m bind predicate. 

Schema description: Collections of image objects; interface has matchesO method to model ordering capability; 
image file name is key for OID. Method invocation: stub dispatch. Query operations: ordering of image objects by 

image feature. 

Schema description: Collections of files; interface contains several methods to model text search capability and 
retrieve relevant text of a file; file name is key for OID. Method invocation: stub dispatch. Query operations: 
projection of attributes and methods. 

Schema description: Notes database becomes a collection of note objects; interface defined by database Form; note 
NOTCH) is key for Garlic Ott). Method invocation: accessor methods only, generic dispatch. Query operations: 
attribute projection; predicates with logical, comparison and arithmetic operations; LIKE predicates. 

Schema description: Collections of objects; interface corresponds to interface of objects in database; database Ott) is 
key for Garlic OID. Method invocation: stub dispatch. Query operations: attribute projection.  

vides a link to the next page of results, so after all of tiie re- 
sults on one page are returned to Garlic, the wrapper 
follows Ihe link and retrieves the next page. 

4.5 Wrapper Packaging 

In the previous sections, we have described the services 
that a wrapper provides to the Garlic middleware. The 
wrapper author's final task is to package these pieces as a 
complete wrapper. A wrapper may include three kinds of 
components: interface files that contain one or more inter- 
face definitions written in GDL, environment files that con- 
tain name/value pairs to encode repository-specific 
information for use by the wrapper, and libraries that con- 
tain dynamically loadable code to implement schema reg- 
istration, method invocation, and the query interfaces. 
Libraries are further subdivided as follows: core libraries 
that contain common code shared among several similar re- 
positories, and implementation libraries that contain repos- 
itory-specific implementations of one or more interfaces. 

Packaging wrapper code as dynamically loadable librar- 
ies that reside in the same address space as Garlic keeps the 
cost of communicating with a wrapper as low as possible. 
This is important during query processing, since a given 
wrapper may be consulted several times during the optimi- 
zation of a query, and non-trivial data structures are ex- 
changed at each interaction. Very simple repositories can 
be accessed without crossing address space boundaries, 
and repositories that are divided into client and server com- 
ponents are easily accommodated by linking their wrapper 
with the repository's client-side library. This approach en- 
capsulates the choice of a particular client-server protocol 
(e.g., CORBA-IIOP, ActiveX/DCOM, or ODBC) within 
the wrapper, allowing Garlic to integrate repositories re- 
gardless of the particular protocol(s) they support. 

Decomposing wrappers into interface files, libraries, 

and environment files gives the designer of a wrapper for a 
particular repository or family of repositories considerable 
flexibility. For example, our relational wrapper packages 
generic method dispatch, query planning and query execu- 
tion code as a shamble core library. For each repository, an 
interface file describes the objects in the corresponding da- 
tabase. An environment file encodes the name of the data- 
base to which the wrapper must connect, the names of the 
collections exported by the repository and the tables to 
which they are bound, the correspondence between at- 
tributes in interfaces and columns in tables, etc. 

Implementation libraries are useful when a wrapper that 
employs stub dispatch is built for a data source whose sche- 
ma can evolve over time. As new kinds of objects are added 
to the repository schema, implementation libraries can be 
registered with stubs for the new implementations. 

5 Current Status 

To test the flexibility of our architecture, we have imple- 
mented wrappers for a diverse set of 10 data sources. 
Table 1 describes some of the features of these wrappers. 
The data models for these sources vary widely, including 
relational, object-oriented, a simple file system, and a spe- 
cialized molecular search data model. Likewise, the data 
sources provide query processing power that ranges from 
simple scanning to basic predicate application to complex 
join processing. Wrappers such as the relational wrapper 
have been fine tuned and are fairly mature. Others, such as 
the molecular wrapper, are still in a state of evolution. 

Based on our experience writing these wrappers, we 
have identified 3 general categories of wrappers, and pro- 
vide a base class for each category. We also provide wrap- 
per writers with a library of schema registration tools, 
query plan construction routines, and other useful routines 
in order to automate the task of writing a wrapper as much 
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as possible. To test our assertion that wrappers are easy to 
write, we asked developers outside of the project to write 
several wrappers listed in the table. For example, a summer 
student wrote the text and image server wrappers over a pe- 
riod of a few weeks, and a chemist was able to write the 
molecular database wrapper during a 2-day visit to our lab. 

6 Related Work 

Presenting a uniform interface to a diverse set of informa- 
tion sources has been the goal of a great deal of previous re- 
search, dating back to projects like CCA's Multibase [20]. 
Surveys of much of this work can be found in [3] [6] [10] 
[19], and [1] [21] describe actual implementations. In terms 
of query processing, the architectures of these earlier sys- 
tems are built around a lingua franca for communicating 
with the underlying sources. These systems assume that 
any data source, assisted by the translator, can readily exe- 
cute any query fragment. 

OLE DB [2] takes an important step towards integrating 
heterogeneous data sources by defining a standardized con- 
struct, the rowse:, to represent streams of values obtained 
from a data source. A simple tabular data source with no 
querying capability can easily expose its data as a rowset. 
More powerful data sources can accept commands (either 
as text or as a data structure) that specify query processing 
operations peculiar to that data source, and produce rowsets 
as a result Thus, although OLE DB does not include a mid- 
dleware query processing component like Garlic, it does 
define a protocol by which a middleware component and 
data sources can interact This protocol differs from the 
Garlic wrapper interface in several ways. First, the format 
of an OLE DB command is defined entirely by the data 
source which accepts it, whereas Garlic query fragments 
are expressed in a standard form based on object-extended 
SQL. Secondly, an OLE DB data source must either accept 
or reject a command in its entirety, whereas a Garlic wrap- 
per can agree to perform part of a work request and leave 
any parts it cannot handle to be performed by Garlic. 

A different set of techniques for integrating data sources 
with various levels of query support relies upon an a priori 
declarative spedficauon of query capability for each data 
source. In the TSIMM1S system [18], specifications of que- 
ry power are expressed tn the Query Description and Trans- 
lation Language (QDTL) [ 17]. A QDTL specification for a 
data source is a context-free grammar for generating sup- 
ported queries. DISCO [9] builds on the notion of capabil- 
ity records described tn the Information Manifold [11] and 
requires a wrapper writer to describe a data source's capa- 
bilities by means of a language based on a set of (relational) 
logical operators such as select, project, and scan. 

The idea of compact declarative specifications of query 
power is attractive, but there are some practical problems 
with this approach. First, it is often the case that a data 
source cannot process a particular query, but can process a 
subsuming query whose answer set includes the answer set 
of the original query. In general, finding maximal subsum- 
ing queries is computationally costly, and choosing the op- 
timal subsuming query may require detailed knowledge of 

the contents, semantics, and statistics of the repository. 
Secondly, in defining a common language to describe all 

possible repository capabilities, it is difficult to capture the 
unique restrictions associated with any individual reposito- 
ry. For example, as we noted earlier, relational database 
systems often place limits on the query string length, the 
maximum constant value that can appear in a query, etc. 
Likewise, our web wrapper can handle LIKE predicates, 
but only if the pattern is of a specific form. The molecular 
wrapper is sensitive to which attributes and methods appear 
together in the projection and predicate lists. A language to 
express these and other repository-specific restrictions 
would quickly become very cumbersome. Furthermore, in 
a strictly declarative approach such as DISCO, as new 
sources are integrated, the language would need to be ex- 
tended to handle any unanticipated restrictions or capabili- 
ties introduced by the new sources. 

As we saw in Section 4.3, Garlic forgoes the declarative 
approach for one in which the knowledge about what a spe- 
cific repository can and cannot do is encapsulated by the 
wrapper. Rather than solve the query subsumption problem 
in general at the Garlic level, we ask wrapper authors to 
solve the simpler special-case problem for their own repos- 
itories. Decisions about how much of a query can be han- 
dled by a repository are made by the wrapper at query 
planning time, taking advantage of repository-specific se- 
mantic knowledge. Since our approach is not limited by the 
expressive power of a query specification language, we can 
accommodate the idiosyncrasies of almost any data source. 

7 Conclusions 

In this paper, we have described the wrapper architecture 
for Garlic, a middleware system designed to provide a uni- 
fied view of heterogeneous, legacy data sources. Our archi- 
tecture is flexible enough to accommodate almost any kind 
of data source. We have developed wrappers for sources 
that represent a broad spectrum of data models and query 
capabilities. For sources with specialized query processing 
capabilities, representing those capabilities as methods has 
proven to be viable and convenient. 

The Garlic wrapper architecture makes the wrapper 
writer's job relatively simple, and as a result, we have been 
able to produce wrappers for new data sources in a matter 
of days or hours instead of weeks or months. Wrapper au- 
thoring is especially simple for repositories with limited 
query power, but even for more powerful repositories, a ba- 
sic wrapper can be written very quickly. This allows appli- 
cations to access data from new sources as soon as possible, 
while subsequent enhancements to the wrapper can trans- 
parently improve performance by taking greater advantage 
of the repository's query capabilities. 

Our design also allows the Garlic query optimizer to de- 
velop efficient query execution strategies. Our approach 
does not require a complex language to describe the minute 
details of the capabilities and restrictions of the underlying 
data sources. Furthermore, we do not require a wrapper to 
raise a repository's query processing capabilities to a fixed 
level, or "dumb down" the query processing interface to the 

ß3 



lowest common denominator. Instead, our architecture al- 
lows each wrapper to determine on a case-by-case basis 
how much of a query its repository is capable of handling. 

In the future, we will continue to refine the wrapper in- 
terfaces. An open research question is to develop a truly 
satisfactory cost model for a diverse set of data sources. We 
intend to focus on making the wrapper's job of providing a 
cost model easier, by providing a basic framework that a 
wrapper writer can customize for a specific repository. We 
will also investigate the possibility of introducing QDTL- 
style templates to allow a wrapper to declare up-front a 
specification of the expressions it will support. With such 
information, the Garlic query processor could filter out ex- 
pressions that a wrapper is unable to handle before the 
work request is generated. Such a template would be a step 
toward a hybrid system, combining Garlic's dynamic ap- 
proach to query planning with the declarative approach of 
TSIMMIS and DISCO; striking an appropriate balance be- 
tween the techniques is an interesting research opportunity. 
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Abstract 

An important issue for federated systems of diverse data 

sources is optimizing cross-source queries, without build- 

ing knowledge of individual sources into the optimizer. 

This paper describes a framework through which a fed- 

erated system can obtain the necessary cost and cardinal- 

ity information for optimization. Our framework makes it 

easy to provide cost information for diverse data sources, 

requires few changes to a conventional optimizer and is 

easily extensible to a broad range of sources. We believe 

our framework for costing is the first to allow accurate 

cost estimates for diverse sources within the context of a 

traditional cost-based optimizer. 

1    Introduction 
Increasingly, companies need to be able to interrelate infor- 
mation from diverse data sources such as document manage- 
ment systems, web sites, image management systems, and 
domain-specific application systems (e.g., chemical structure 
stores, CAD/CAM systems) in ways that exploit these sys- 
tems' special search capabilities. They need applications that 
not only access multiple sources, but that ask queries over the 
entire pool of available data as if it were all part of one vir- 
tual database. One important issue for such federated systems 
is how to optimize cross-source queries to ensure that they 
are processed efficiently. To make good decisions about join 
strategies, join orders, etc., an optimizer must consider both 
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the capabilities of the data sources and the costs of operations 
performed by those sources. Standard database optimizers 
have built-in knowledge of their (sole) store's capabilities and 
performance characteristics. However, in a world where the 
optimizer must deal with a great diversity of sources, this de- 
tailed, built-in modeling is clearly impractical. 

Garlic is a federated system for diverse data sources. Gar- 
lic's architecture is typical of many heterogeneous database 
systems, such as TSIMMIS [PGMW95], DISCO [TRV96], 
and HERMES [ACPS96]. Garlic is a query proces- 
sor [HFLP89]; it optimizes and executes queries over diverse 
data sources posed in an extension of SQL. Data sources are 
integrated by means of a wrapper [RS97]. In [HKWY97, 
RS97], we described how the optimizer and wrappers cooper- 
ate to determine alternative plans for a query, and how the op- 
timizer can select the least cost plan, assuming it has accurate 
information on the costs of each alternative plan. This paper 
addresses how wrappers supply information on the costs and 
cardinalities of their portions of a query plan and describes 
the framework that we provide to ease that task. This infor- 
mation allows the optimizer to compute the cost of a plan 
without modifying its cost formulas or building in knowledge 
of the execution strategies of the external sources. We also 
show that cost-based optimization is necessary in a heteroge- 
neous environment; heuristic approaches that push as much 
work as possible to the data sources can err dramatically. 

Our approach has several advantages. It provides suffi- 
cient information for an optimizer to choose good plans, but 
requires minimal work from wrapper writers. Wrappers for 
simple sources can provide cost information without writing 
any code, and wrappers for more complex sources build on 
the facilities provided to produce more accurate information 
as needed. Our framework requires few changes to a con- 
ventional bottom-up optimizer. As a result, in addition to 
examining the full space of possible plans, we get the ben- 
efits of any advances in optimizer technology for free. The 
framework is flexible enough to accommodate a broad range 
of sources easily, and does not assume that sources conform 
to any particular execution model. We believe that our frame- 
work for costing is the first to allow accurate cost estimates 
for diverse sources within the context of a traditional cost- 
based optimizer. 

The remainder of the paper is structured as follows. Sec- 
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tion 2 discusses the traditional approach to costing query 
plans. In Section 3, we present a framework by which these 
costing techniques can be extended to a heterogeneous envi- 
ronment. Section 4 shows how a set of four wrappers with di- 
verse capabilities adapt this framework to provide cost infor- 
mation for their data sources. In Section 5, we present exper- 
iments that demonstrate the importance of cost information 
in choosing good plans, the flexibility of our framework, the 
accuracy it allows, and finally, that it works - the optimizer 
is able to choose good plans even for complex cross-source 
queries. Section 6 discusses related work, and in Section 7 
we conclude with some thoughts about future directions. 

2   Costing in a Traditional Optimizer 

In a traditional bottoin-up query optimizer [SAC+79], the 
cost of a query plan is the cumulative cost of the operators 
in the plan (plan operators, or POPs). Since every operator in 
the plan is the root of a subplan, its cost includes the cost of 
its input operators. Hence, the cost of a plan is the cost of the 
topmost operator in the plan. Likewise, the cardinality of a 
plan operator is derived from the cardinality of its inputs, and 
the cardinality of the topmost operator represents the cardi- 
nality of the query result. 

In order to derive the cumulative costs and cardinality es- 
timates for a quay plan, three important cost numbers are 
tracked for each POP: total cost (the cost in seconds to ex- 
ecute that operator and get a complete set of results), re- 
execution cost (the cost in seconds to execute the POP a sec- 
ond time), and cardinality (the estimated result cardinality of 
the POP). The difference between total and re-execution cost 
is the cost of any initialization that may need to occur the first 
time an operator is executed. For example, the total cost of 
a POP to scan a temporary collection includes both the cost 
to populate and scan the collection, but its re-execution cost 
includes only the scan cost 

The total cost, re-execution cost, and cardinality of a POP 
are computed using cost formulas that model the runtime be- 
havior of the operator. Cost formulas model the details of 
CPU usage and I/O (and in some systems, messages) as accu- 
rately as possible. A special subset of the formulas estimates 
predicate selectivity 

Cost formulas, of course, have variables that must be in- 
stantiated to arrive at a cost. These include the cardinality 
of the input streams to the operator, and statistics about the 
data to which the operator is being applied. Cardinality of 
the input streams is either computed using cost formulas for 
the input operators or is a statistic if the input is a base table. 
Hence, statistics are at the heart of any cost-based optimizer. 
Typically, these statistics include information about collec- 
tions, such as the base cardinality, and about attributes, such 
as information about the distribution of data values. A tradi- 
tional optimizer also has statistics about the physical system 
on which the data is stored, usually captured as a set of con- 
stant weights (e.g., CPU speed, disk transfer rate, etc.). 

Figure 1 summarizes this flow of information. At the core 

Figure 1: Traditional ost-based optimization 
is a set of statistics that describe the data. At the next layer, 
these statistics feed cost formulas to compute selectivity esti- 
mates, CPU and I/O costs. Finally, in the outer layer, operator 
costs are computed from the cost formulas, and these operator 
costs ultimately result in plan costs. 

3   Costing Query Plans in a Heterogeneous En- 
vironment 

This section focuses on the process of costing query plans in 
a heterogeneous environment. Two significant challenges in 
adapting a traditional cost-based optimizer to a heterogenous 
environment are first, to identify what additional information 
is required to cost the portions of a query plan executed by 
remote sources, and second, how to obtain such information. 
Section 3.1 addresses the what, by introducing a framework 
for wrappers to provide information necessary to extend tra- 
ditional plan costing to a heterogeneous environment. Sec- 
tion 3.2 addresses the how, by describing a default adapta- 
tion of the framewo± and facilities that a wrapper may use to 
compute cost and cardinality information for its data source. 

3.1   A Framework for Costing in a Heterogeneous Envi- 
ronment 

While the flow of information from base statistics to plan op- 
erator costs described in Section 2 works well in a traditional 
(relational) environment, it is incomplete for a heterogeneous 
environment. Given the diversity of data sources involved 
in a query, it is impossible to build cost formulas into the 
optimizer to compute the costs of operations performed by 
those data sources. Furthermore, since the data sources are 
autonomous, a single strategy cannot be used to scan the base 
data to gather and store the statistics the optimizer needs to 
feed its formulas. Clearly, a cost-based optimizer cannot ac- 
curately cost plans without cooperation from wrappers. In 
this section, we describe what information is needed from 
wrappers to extend cost-based optimization to a heteroge- 
neous environment. 

3.1.1    Cost Model 

The first challenge for an optimizer in a heterogeneous envi- 
ronment is to integrate the costs of work done by a remote 
data source into the cost of the query plan. In Garlic, the 
portions of a query plan executed by data sources are encap- 
sulated as PUSHDOWN POPs. Such POPs show up as leaves 
of the query plan tree. As a result, total cost, re-execution 
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cost, and result cardinality are all that is needed to integrate 
the costs of a PUSHDOWN POP into thecost of the query plan. 

Fortunately, these three estimates provide an intuitive level 
of abstraction for wrappers to provide cost information about 
their plans to the optimizer. On one hand, these estimates 
give the optimizer enough information to integrate the cost 
of a PUSHDOWN POP into the cost of the global query plan 
without having to modify any of its cost formulas or under- 
stand anything about the execution strategy of the external 
data source. On the other hand, wrappers can compute to- 
tal cost, re-execution cost, and result cardinality in whatever 
way is appropriate for their sources, without having to com- 
prehend the details of the optimizer's internal cost formulas. 

3.1.2    Cost Formulas 

Wrappers will need cost formulas to compute their plan costs, 
and most formulas tailored to the execution models of the 
built-in operators will typically not be appropriate. On the 
other hand, some of the optimizer's formulas may be widely 
applicable. For example, the formula to compute the selec- 
tivity of a set of predicates depends on the predicates and at- 
tribute value distributions, and not on the execution model. 
Wrappers should be able to pick from among available cost 
formulas those that are appropriate for their data sources, and 
if necessary, develop their own formulas to model the execu- 
tion strategies of their data sources more accurately. 

Additionally, wrappers may need to provide formulas to 
help the optimizer cost new built-in POPs specific to a hetero- 
geneous environment. For example, traditional query proces- 
sors often assume that all required attributes can be extracted 
from a base collection at the same time. In Garlic, wrap- 
pers are not required to perform arbitrary projections in their 
plans. However, they must be able to retrieve any attribute of 
an object given the object's id. If a wrapper is unable to sup- 
ply all requested attributes as part of its plan, the optimizer 
attaches a FETCH operator to retrieve the missing attributes. 
The retrieval cost may vary greatly between data sources, and 
even between attributes of the same object, making it impos- 
sible to estimate using standard cost formulas. Thus, to allow 
the optimizer to estimate the cost of this FETCH operator, 
wrappers are asked to provide a cost formula that captures 
the access cost to retrieve the attributes of its objects. 

As another example, wrappers are allowed to export meth- 
ods that model the non-traditional capabilities of their data 
sources, and such methods can be invoked by Garlic's query 
engine. Methods may be extremely complex, and their costs 
may vary greatly depending on the input arguments. Again, 
accurately estimating such costs using generic formulas is im- 
possible. Wrappers are asked to provide two formulas to mea- 
sure a method's costs: total method cost (the cost to execute 
the method once), and re-execution method cost (the cost to 
execute the method a second time). These formulas provide 
an intuitive level of abstraction for the wrapper, yet give the 
optimizer enough information to integrate method invocation 
costs into its operator costs. 

3.13   Statistics 

Both the optimizer and the wrappers need statistics as input to 
their cost formulas. In a heterogeneous environment, the base 
data is managed by external data sources, and so it becomes 
the wrapper's task to gather these statistics. Since wrappers 
provide the cost estimates for operations performed by then- 
data sources, the optimizer requires only logical statistics 
about the external data. Statistics that describe the physical 
characteristics of either the data or the hardware of the un- 
derlying systems are not necessary or even helpful; unless the 
optimizer actually models the operations of the data sources, 
it would not know how to use such statistics. 

A traditional optimizer's collection statistics include base 
cardinality, as well as physical characteristics (such as the 
number of pages it occupies), which are used to estimate the 
I/O required to read the collection. In a heterogeneous envi- 
ronment, the optimizer still needs base cardinality statistics to 
compute cardinality estimates for its operators. 

For attributes, optimizers typically keep statistics that can 
be used to compute predicate selectivity assuming a uniform 
distribution of values, and some physical statistics such as 
the average length of the attribute's values. More sophisti- 
cated optimizers keep detailed distribution statistics for oft- 
queried attributes. In a heterogeneous environment, an opti- 
mizer still needs some attribute statistics in order to compute 
accurate cardinality estimates. In Garlic, wrappers are asked 
to provide uniform distribution statistics (number of distinct 
values, second highest and second lowest values). They may 
optionally provide more detailed distribution statistics, and 
the optimizer will make use of them. Physical statistics such 
as average column length are not required, although they may 
be helpful to estimate the cost to operate on the data once it 
is returned to Garlic. If not provided, the optimizer estimates 
these costs based on data type. 

Not only are these statistics needed for the optimizer's 
formulas, but wrappers may need them as input to their pri- 
vate cost formulas. In addition, wrappers may introduce new 
statistics that only their cost formulas use. Such statistics may 
be for collections, attributes, or methods. For example, the 
cost formulas a wrapper must provide to estimate the total and 
re-execution costs of its methods are likely to require some 
information as input. Thus, as with cost formulas, the set of 
statistics in a heterogeneous environment must be extensible. 

To summarize, Figure 2 shows the extended flow of infor- 
mation needed for an optimizer in a heterogeneous environ- 
ment. White objects represent information that is produced 
and used by the optimizer. Obj ects with horizontal lines (e.g., 
;the formula to compute predicate selectivity) are provided by 
the optimizer and made available to the wrappers. Those with 
vertical lines are provided by the wrappers, and used by both 
the optimizer and the wrappers. Statistics and cost formulas 
shown shaded in gray are introduced by and available only 
to wrappers. The outer circle shows that wrappers are asked 
to report the total cost, re-execution cost, and result cardi- 
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Figure 2: Heterogeneous cost-based optimization 
nality for their plans. Armed with this information, the op- 
timizer can combine the costs of PUSHDOWN POPs with the 
costs of built-in POPs to compute the cost of the query plan. 
In the next circle, wrappers are asked to provide formulas to 
compute attribute access costs and method costs. In addition, 
they can make use of some existing cost formulas, and add 
new formulas to model the execution strategies of their data 
sources. Finally, in the inner circle, wrappers are asked to 
provide the basic statistics about their collections and the at- 
tributes of their objects that the optimizer needs as input to its 
formulas. They may also compute and store statistics that are 
required by their own formulas. 

3.2    C ompleting the Framework 

Figure 2 shows how our framework extends the traditional 
flow of cost information to include wrapper input at all lev- 
els. To make it easy to provide such information (particularly 
for simple data sources), the framework also provides a de- 
fault cost model, default cost formulas, and a facility to gather 
statistics. The framework is completely flexible; wrappers 
may use any of the defaults provided, or choose to provide 
their own implementations. 

3.2.1    Extending the Cost Model 

As described in Section 3.1.1, a wrapper's first job is to re- 
port total cost, re-execution cost, and result cardinality for 
its plans. To make this task as easy as possible, the frame- 
work includes a default cost model which wrappers can use 
to model the execution strategies of their data sources. Wrap- 
pers can take advantage of this cost model, or, if it is not 
sufficient, replace it with a cost model of their own. 

The default cost model was designed with simple data 
sources in mind. We chose this approach for two important 
reasons. First, simple data sources have very basic capabili- 

Pi 

P2 
P3 

Cost Model 

plan Jotal-cost       =       reset-cost     +     advancecost     x 
((resultcardinality + 1) /BLOCK.SIZE) 
planj-eexecutioncost = planJotaLcost - reset.cost 
plan j-esult cardinality 
U"-^BASE-CARDj x applied predicates selectivity 

Table 1: Default cost model estimates for wrapper plans 

ties. They can iterate over the objects in their collections, and 
perhaps apply basic predicates. They do not perform joins or 
other complex SQL operations. This limited set of capabili- 
ties often means that their execution strategy is both straight- 
forward and predictable. These characteristics make it easy to 
develop a general purpose cost model. Second, an important 
goal of Garlic is to ensure that writing a wrapper is as easy 
as possible. If the default cost model is complete enough to 
model very basic capabilities, then wrapper writers for simple 
data sources need not provide any code for computing costs. 

The default cost model is anchored around the execution 
model of a runtime operator. Regardless of whether a runtime 
operator represents a built-in POP or a PUSHDOWN POP, its 
work can be divided into two basic tasks1: reset, which repre- 
sents the work that is necessary to initialize the operator, and 
advance, which represents the work necessary to retrieve the 
next result. Thus, the total cost of a POP can be computed as 
a combination of the reset and advance costs. As shown in Ta- 
ble 1, the default model exploits this observation to compute 
the total and re-execution costs of a wrapper plan.     ' 

(PI), the formula to compute the total cost of a plan, 
captures the behavior of executing a PUSHDOWN POP once. 
The operator must be reset once, and advanced to retrieve 
the complete result set (plus an additional test to determine 
that all results have been retrieved). BLOCK-SIZE represents 
the number of results that are retrieved at a time. Default 
formulas to compute reset and advance costs are described 
in Section 3.2.2 below. The re-execution cost (P2) is com- 
puted by factoring out the initialization costs from the to- 
tal cost estimate. Since PUSHDOWN POPs are leaf POPs of 
the query plan tree, the result cardinality estimate (P3) is 
computed by multiplying the cross product of the n collec- 
tion base cardinalities accessed by the plan by the selectiv- 
ity of the applied predicates. As described in Section 3.2.3, 
BASEJZARD is the basic collection cardinality statistic, and 
applied .predicates-selectivity can be computed using the 
standard selectivity formula provided by the optimizer. 

3.2.2   Extended Cost Formulas 

Our framework provides default implementations of all the 
cost formulas wrappers need to supply (including those intro- 

'Our model actually has three tasks; we are omitting discussion of the 
bind task to simplify exposition. Bind represents the work needed to provide 
the next set of parameter values to a data source, and can be used, for exam- 
ple, to push join predicate evaluation down to a wrapper. However, simple 
sources typically don't accept bindings, as they cannot handle parameterized 
queries. Our relational wrapper does accept bindings, and provides cost for- 
mulas to calculate their cost 
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Fl 

F2 
F3 
F4 
F5 

Cost formula 

access j:ost(A)   =   AVG-ACCESS-COST*. 
OVERHEAD x AVG-ACCESS JZOSTmax 

+    n 

method jotal^ostj = AVG-TOTALMETHJZOSTj 
method j-eexecutionxosU = AVG-REEX-METH-COSTj 
resetxost - AVGJJESETJ0OSTc 

advancexost = AVGJLDVANCE.COSf^ 

Table 2: Default cost formulas 

duced in Section 3.1.2) as well as those needed by the default 
cost model of Section 3.2.1. These formulas are summarized 
in Table 2, and we will describe each formula in greater detail 
below. They rely on a new set of statistics, and Section 3.2.3 
describes how these statistics are computed and stored. 

(Fl) is the default definition of the attribute access cost 
formula. A represents a set of n attributes to be retrieved by a 
FETCH POP. Typically there is a significant charge to retrieve 
the first attribute, but only an incremental charge to retrieve 
additional attributes once the first attribute has been retrieved. 
AVGACCESSJZOSTi is a new attribute statistic that measures 
the cost to retrieve attribute i, and AVG-ACCESSJZOSTmax 

is the most expensive attribute retrieved by the FETCH. 
OVERHEAD is a constant multiplier between 0 and 1 that rep- 
resents the additional cost to retrieve an attribute, assuming 
that the most expensive attribute in A has already been re- 
trieved. Wrappers may adjust this value as appropriate. 

(F2) and (F3) represent the default definitions provided 
by the framework for the optimizer's method cost formulas. 
AVG-TOTALMETHJCOST and AVGJREEXMETH.COST are 
new statistics that represent measures of the average total and 
re-execution costs to invoke a method. This information is 
similar to the information standard optimizers keep for user- 
defined functions [Cor97]. These statistics are extremely sim- 
ple, and do not, for example, take into account the set of ar- 
guments that are passed in to the method. As we will illus- 
trate in Section 4.2, wrappers that use methods to export the 
nontraditional capabilities of a data source may provide new 
definitions that match the execution strategy of their under- 
lying data source more accurately, including any dependency 
on the method's arguments. 

Formulas (F4) and (F5) are the default cost formulas used 
by the default cost model to compute plan costs. For simple 
wrappers with limited capabilities, computing average times 
over the range of queries that the data source supports may 
often be sufficient to obtain accurate cost estimates. The de- 
fault cost formulas to compute plan costs use this approach. 
While these formulas are admittedly naive, in Section 5.2 
we show that they work remarkably well for the simple data 
sources in our experiments. Since simple wrappers typically 
do not perform joins, the reset and advance costs are com- 
puted to be the average reset and advance costs of the sin- 
gle collection c accessed by the plan. AVG-RESET.COST and 
A!/G-ADVANCE.COST are new collection statistics that repre- 
sent measures of the average time spent initializating and re- 
trieving the results for queries executed against a collection. 

If these default cost formulas are not sufficient for a partic- 

Category Statistic Query template 

Collection BASE-CARD select  count(*) ftom 
collection 

AVG-RESET.COST", 
AVG-ADVANCE.COST* 

select c.OID from col- 
lection c 

Attribute NUMJDISTINCT.VALUES select    count(distinct 
c.attribute) from col- 
lection c 

2NDJHIGH.VALUE select cattribute from 
collection c order by 1 
desc 

2ND-LOW.VALUE select cattribute from 
collection c order by 1 
asc 

AVG_ACCESS.COSr select c.attribute from 
collection c 

Method AVG-TOTAL.METH-COST, 
AVG_REEX_METH_COSr 

select  cmethod(args) 
from collection c 

Table 3: Statistics generated by update_statistics facility 

ular data source (and they won't be for more capable sources), 
a wrapper writer may provide formulas that more accurately 
reflect the execution strategy of the data source. In fact, our 
framework for providing cost formulas is completely exten- 
sible; wrappers may use the optimizer's predicate selectivity 
formulas, any of the default formulas used by the default cost 
model, or add their own formulas. Wrapper-specific formulas 
can feed the formulas that compute operator costs and cardi- 
nalities, and their implementations can make use of the base 
statistics, and any statistics wrappers choose to introduce. 

3.23   Gathering Statistics 

As described in Section 3.1.3, both the standard cost for- 
mulas and wrapper-provided cost formulas are fueled by 
statistics about the base data. Garlic provides a generic up- 
datestatistics facility that wrappers can use to gather and 
store the necessary statistics. The update_statistics facility in- 
cludes a set of routines that execute a workload of queries 
against the data managed by a wrapper, and uses the results 
of these queries to compute various statistics. Wrappers may 
use this facility "as-is", tailor the query workload to gain a 
more representative view of the data source's capabilities and 
data, or augment the facility with their own routines to com- 
pute the standard set of statistics and their own statistics. 

Table 3 describes the default query workloads that are used 
to compute various statistics. From the table, it should be 
clear how the standard statistics are computed. However, 
the calculations for the newly introduced statistics (marked 
with an asterisk) bear further description. For collections, 
the default cost model described in Section 3.2.1 relies on 
statistics that measure the average time to initialize and ad- 
vance a wrapper operator. These measures are derived by 
executing a workload of single-collection queries defined by 
the wrapper writer (or DBA) that characterizes the wrap- 
per's capabilities. For example, for a simple wrapper, the 
workload may contain a single simple "select c.OID 
from collection c" query, executed multiple times. 
Running averages of the time spent in reset and advance 
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Wrapper Code Cost 
model 

Cost formulas Statistics 

ObjectStore 0 default default default 

Lotus Notes 0 default default default 

QBIC 700 default replaces method 
cost,  reset,  ad- 
vance formulas 

added 
method 
statistics 

Relational 400 default replaces     reset, 
advance 
formulas 

added col- 
lection 
statistics 

Table 4: Wrapper adaptations of framework 

of the wrapper's runtime operator are computed for this 
workload of queries, and those measures are stored as the 
AVGJIESET.COST and AVG-ADVANCE.COST statistics. Note 
that these times include network costs, so the plan cost for- 
mulas do not have to consider network costs explicitly. 

To compute the new attribute statistic AVG-ACCESS£OST 
(used by the default cost formula to compute attribute access 
cost), a single query which projects the attribute is executed, 
and the optimizer is forced to choose a plan that includes a 
FETCH operator to retrieve the attribute. This query is exe- 
cuted multiple times, and a running average of the time spent 
retrieving the attribute is computed, including network costs. 

For the new method statistics, a workload of queries which 
invoke the method with representative sets of arguments (sup- 
plied by the wrapper writer) is executed multiple times. Run- 
ning averages are computed to track the average time (includ- 
ing network costs) to execute the method both the first time, 
and multiple subsequent times. These averages are stored as 
the AVG-TOTAL-METH-COST and AVGJREEXMETH.COST 
statistics, respectively. 

of its simplicity, the wrapper uses the default cost model to 
compute its plan costs and cardinality estimates, and uses 
the update-statistics facility "as-is" to compute and store the 
statistics required to fuel the default formulas, as well as those 
used by the optimizer to cost the appended Garlic POPs. We 
will see in Section 5.2 that the default model is indeed well- 
suited to this very basic wrapper. 

We also implemented a more capable wrapper for Lotus 
Notes databases. It can project an arbitrary set of attributes 
and apply combinations of predicates that contain logical, 
comparison and arithmetic operators. It cannot perform joins. 
We have observed that the execution strategy for Lotus Notes 
is fairly predictable. For any given query with a set of at- 
tributes to project and set of predicates to apply, Lotus will 
retrieve each object from the collection, apply the predicates, 
and return the requested set of attributes from those objects 
that survive the predicates. 

We intended to demonstrate with this wrapper that only a 
few modifications by the wrapper were needed to tailor the 
default cost model to a more capable wrapper. However, as 
we will show in Section 5.2, we discovered that although the 
wrapper for Lotus Notes is much more capable than the Ob- 
jectStore wrapper, the behavior of its underlying data source 
is predictable enough that the simple default cost model is still 
suitable. The wrapper writer was only required to tailor the 
workload of queries used to generate the AVG-RESET.COST 
and AVG ADVANCE HOST collection statistics so that they 
more accurately represented the data source's capabilities. 
We used a simple workload of queries; techniques described 
in [ZL98] might do a better job of choosing the appropriate 
sample queries. 

4    Wrapper Adaptations of the Framework 4.2   Data Sources with Interesting Capabilities 

Figure 2 shows how our framework enables wrapper input in 
each concentric circle. In this section, we describe how a set 
of wrappers have adapted this framework to report cost infor- 
mation about their data sources to the optimizer. These wrap- 
pers represent a broad spectrum of capabilities, from the very 
limited capabilities of our complex object repository wrapper 
to the very powerful capabilities of our wrapper for relational 
databases. Table 4 summarizes how these different wrappers 
adapted the framework to their data sources, as well as the 
number of lines of code involved in the effort. 

4.1    Simple Data Sources 

We use ObjectStore as a repository to store complex objects, 
which Garlic clients can use to bind together existing objects 
from other data sources. This wrapper is intentionally simple, 
as we want to be able to replace the underlying data source 
without much effort. This wrapper will only generate plans 
that return the objects in the collections it manages, i.e., it will 
only produce plans for the simple query "select c. OID 
from collection c". The optimizer must append Gar- 
lic POPs to the ObjectStore wrapper's plans to fetch any re- 
quired attributes and apply any relevant predicates. Because 

QBIC [N+93] is an image server that manages collections of 
images. These images may be retrieved and ordered accord- 
ing to features such as average color, color histogram, shape, 
texture, etc. We have built a wrapper for QBIC that mod- 
els the average color and color histogram feature searches 
as methods on image objects. Each method takes a sample 
image as an argument, and returns a "score" that indicates 
how well the image object on which the method was invoked 
matched the sample image; the lower the score, the better the 
match. These methods may be applied to individual image 
objects via the Garlic method invocation mechanism In ad- 
dition, the QBIC wrapper will produce plans that apply these 
methods to all image objects in a collection, and return the 
objects ordered from best match to worst match. It can also 
produce plans that return the image objects in an arbitrary 
order. It does not apply predicates, project arbitrary sets of 
attributes, or perform joins. 

Both the average color feature searches and color his- 
togram feature searches are executed in a two-step process 
by the QBIC image server. In the first step, an appropriate 
'colorvalue' is computed for the sample image. In the second 
step, this value is compared to corresponding pre-computed 
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Feature sample^valxost comparison jiost 

Average 
color 

AVG.COLORJSLOPE          x 
sampleMze                          + 
AVG.COLOR JNTERCEPT 

AVG.COLOR-COMPARE 

Color 
histogram 

AVGJilSTOGRAMJiVAL HISTOGRAM^LOPE          x 
{numberj>fjcolors)                + 
HISTOGRAMJNTERCEPT 

Table 5: QBIC wrapper cost formulas 
values for the images in the scope of the search. In our imple- 
mentation, the scope is a single object if the feature is being 
computed via method invocation, or all objects in the collec- 
tion if the feature is being computed via a QBIC query plan. 
For each image in the collection, the relationship between the 
sample image's color value and the image's color value de- 
termines the score for that image. Hence, the cost of both 
feature searches can be computed using the following gen- 
eral formula: 

search j:ost — sample^val^ost + m x comparisonjsost 

In this formula, samplejeval^cost represents the cost to com- 
pute the color value of the sample image, comparisonjzost 
represents the cost to compare that value to a collection image 
object's corresponding value, and m is the number of images 
in the scope of the search. 

In an average color feature search, the color value rep- 
resents the average color value of the image. The exe- 
cution time of an average color feature search is domi- 
nated by the first step and depends upon the x-y dimen- 
sions of the sample image; the larger the image, the more 
time it takes to compute its average color value. How- 
ever, the comparison time is relatively constant per image 
object. The first entry in Table 5 shows the formulas the 
wrapper uses to estimate the cost of an average color fea- 
ture search. AVG-COLORSLOPE, AVG.COLORJNTERCEPT, 
and AVGJZOLOR-COMPARE are statistics the wrapper gath- 
ers and stores using the update_statistics facility. The wrap- 
per uses curve fitting techniques and a workload of queries 
with different sizes for the sample image to compute both the 
AVG-COLORSLOPE and AVG.COLORJNTERCEPT statistics. 
AVGJZOLORJZOMPARE represents the average time to com- 
pare an image, and an estimate for it is derived using the same 
workload of queries. 

In a color histogram feature search, the color value rep- 
resents a histogram distribution of the colors in an image. 
In this case, the execution time is dominated by the sec- 
ond step. For the typical case in which the number of col- 
ors is less than six, QBIC employs an algorithm in which 
the execution time of the first step is relatively constant, and 
the execution time of the second step is linear in the num- 
ber of colors in the sample image. The second entry of Ta- 
ble 5 shows the formulas the wrapper uses to compute the 
cost of color histogram searches. AVGJHSTOGRAMJEVAL, 
HISTOGRAM MOPE, and HISTOGRAMJNTERCEPT are 
new statistics, and number.of.colors represents the num- 
ber of colors in the sample image. Again, the wrapper 
uses curve fitting and a workload of queries with differ- 
ent numbers of colors for the sample image to compute 

HISTOGRAM SLOPE and HISTOGRAMJNTERCEPT. It uses 
the same workload of queries to compute an average cost for 
AVGJilSTOGRAMJiVAL. 

The wrapper uses these formulas to provide both method 
cost estimates to the optimizer and to compute the costs of its 
own plans. The effort to provide these formulas and compute 
the necessary statistics was about 700 lines of code. 

43   Sophisticated Data Sources 

Our relational wrapper is a "high-end wrapper"; it exposes as 
much of the sophisticated query processing capabilities of a 
relational database as possible. Clearly, the default formulas 
are not sufficient for this wrapper. Vast amounts of legacy 
data are stored in relational databases, and we expect perfor- 
mance to be critically important. The time invested in imple- 
menting a more complete cost model and cost formulas for a 
relational query processor is well-worth the effort. 

However, decades of research in query optimization show 
that modelling the costs of a relational query processor is not 
a simple task, and creating such a detailed model is not within 
the scope of this paper. We believe that an important first 
step is to implement a set of formulas that provide reasonable 
ball-park cost estimates, as such estimates may be sufficient 
for the optimizer to make good choices in many cases. With 
this goal in mind, for the relational wrapper, we chose to use 
the default cost model, and implement a very simple set of 
formulas to compute the reset and advance costs that use an 
oversimplified view of relational query processing: 

resetjzost = prepjcost 
advancejzost = execution j:ost + fetch-cost 

In these formulas, prep.cost represents the cost to compile 
the relational query, execution-cost represents the cost to ex- 
ecute the query, and fetchjcost represents the cost to fetch 
the results. At a high level, prepjcost and execution-cost 
depend on the number of collections involved in the query, 
and fetch-cost depends on the number of results. The re- 
lational wrapper used curve fitting techniques and the up- 
date-Statistics facility to compute and store cost coefficients 
for these formulas. The total number of lines to implement 
this was less than 400. 

While this is an admittedly naive implementation, the esti- 
mates produced by this formula are more accurate than those 
from the default model, and provide the optimizer with ac- 
curate enough information to make the right plan choices in 
many cases. However, we do not claim that our implementa- 
tion is sufficient for the general case. We believe many of the 
techniques applied in [DKS92] and the approaches of more 
recent work of [ZL98] could be adapted to work within the 
context of the relational wrapper, and present an interesting 
area of research to pursue. 

5   Experiments and Results 

In this section, we describe the results of experiments that 
show that the information provided by wrappers through our 



Query Pushdown 
join  time 
(sees) 

Garlic 
join time 
(sees) 

Card 

Qi select p.id, pi.id 
from professor p, professor p 1 
where p.id < pi.id 

and p.status = pl.status 
and p.aysalary > 115000 
andpl.aysalary> 115000 

369.47 1550.52 605401 

Q2 select p.id, pi.id 
from professor p, professor p 
where p.id < pi.id 

and p.status < pl.status 
and p.aysalary > 115000 
andpl.aysalary> 115000 

6332.14 1766.11 2783677 

Table 6: A comparison of execution times for 2 join queries 

framework is critical for the optimizer to choose quality exe- 
cution plans. Without wrapper input, the optimizer can (and 
will) choose bad plans. However, with wrapper input, the op- 
timizer is able to accurately estimate the cost of plans. As 
with any traditional cost-based optimizer, it may not always 
choose the optimal plan. However, for most cases, it chooses 
a good plan and avoids bad plans. 

We adapted the schema and data from the BUCKY bench- 
mark [C+97] to a scenario suitable for a federated system. 
We used only the relational schema, distributed it across a 
number of sources, and added to it a collection of images 
representing department buildings. We developed our own 
set of test queries that focus on showing how the optimizer 
performs when data is distributed among a diverse set of data 
sources. The test data is distributed among four data sources: 
an IBM DB2 Universal Database (UDB) relational database, 
a Lotus Notes version 4.5 database, a QBIC image server, 
and an ObjectStore version 4.0 object database. For the ex- 
periments, the query engine executed on one machine, the 
UDB database, QBIC image server, and Obj ectStore database 
all resided on a second server machine, and the Notes server 
resided on a third machine. All were connected via a high- 
speed network. When an execution plan included a join, we 
limited the optimizer's choices to nested loop join and push- 
down join. This did not affect performance, and allowed us 
to illustrate the tradeoffs in executing a join in Garlic or at a 
data source without having to consider countless alternative 
plans. It should be noted that Garlic is an experimental proto- 
type, and as such, the Garlic execution engine is slower than 
most commercial relational database product engines. How- 
ever, it is significantly faster than Notes. Hence, we believe 
our test environment is representative of a real world environ- 
ment in which some sources are slower and some faster than 
the middleware, and hence, is a fair testbed for our study. 

5.1    The Need for Wrapper Input 

This first set of experiments addresses the need for cost-based 
optimization in an extensible federated database system. It 
has been suggested [ACPS96, EDN097, LOG93, ONK+96, 
SBM95] that heuristics that push as much work as possible 
to the data sources are sufficient. Consider the two queries 

ID Department 
predicate 

Professor 
predicate 

Cardinality 

03 dno< 1 id =101 0 

Q4 dno<51 id =101 50 

05 dno < 101 id = 101 100 

06 dno < 151 id =101 150 

07 dno < 201 id =101 200 

08 id < 102 250 

09 id < 103 500 

Q10 id < 105 1000 

on id < 107 1500 

Q12 id < 109 2000 

Table 7: UDB professorxdepartment predicates 
defined in Table 6. (Ql) finds all pairs of similarly ranked 
professors that make more than SI 15,000 a year. (Q2) finds, 
for all professors that make at least $115,000 a year, the set 
of professors of a lower rank that also make at least $115,000 
a year.   The professor collection is managed by the rela- 
tional wrapper. There are two obvious plans to execute these 
queries: push both the join and the predicate evaluation down 
to the UDB wrapper, or push the predicate evaluation down to 
the wrapper but perform thejoin in Garlic. Table 6 also shows 
the result cardinality and execution times for these 2 plans. In 
(Ql), the equi-join predicate on status restricts the amount of 
data retrieved from the data source, so the pushdown join is a 
better plan. However, in (Q2), thejoin predicates actually in- 
crease the amount of data retrieved from the data source, so it 
is faster to execute thejoin in Garlic. These queries represent 
two points in a query family that ranges from an equi-join 
(p.status = pLstatus) to a cross product (no predicate on sta- 
tus). At some point in this query family, there is a crossover 
point at which it no longer makes sense to push thejoin down. 
The crossover point depends on different factors, such as the 
amount of data, the distribution of data values, the perfor- 
mance of both query engines, network costs, etc. Cost-based 
optimizers use such information to compare plan alternatives 
to identify where such crossover points exist, while heuristic 
approaches can only guess. 

5.1.1   Working without wrapper input 

The previous example motivated the need for cost-based opti- 
mization in a federated system by showing that pushing down 
as much work as possible to the data sources is not always a 
winning strategy. In this experiment, we show that accurate 
information is crucial for a cost-based optimizer to identify 
crossover points. For this set of experiments, we chose a fam- 
ily of queries over the UDB department and professor collec- 
tions. To control result cardinality, we used a cross product 
with local predicates (shown in Table 7) on each table. 

To predict plan costs accurately, a cost-based optimizer de- 
pends heavily on the availability and accuracy of statistics. If 
statistics are not available, the optimizer uses default values 
for these parameters. Without accurate information, the opti- 
mizer will sometimes choose a good plan, and sometimes it 
will not. In our environment, in the absence of wrapper input, 
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Figure 3: Optimizer choices without wrapper input 
the optimizer's parameters have been tuned to favor pushing 
as much work down to the data sources as possible. 

For the set of queries in Table 7, the crossover point at 
which it makes sense to execute the join in Garlic occurs be- 
tween queries (Q8) and (Q9), or when the result cardinality 
is between 250 and 500. Figure 3 shows the execution times 
for executing these queries with both the pushdown join and 
Garlic join plans. For each query, an x marks the plan that 
was chosen by the optimizer. Since the optimizer does not 
have the benefit of wrapper input, it relies on its defaults, and 
favors the pushdown join plan in all cases. With only de- 
fault values, the cardinalities of the base collections look the 
same, and all local predicates (e.g., d.dno < 101 or p.id < 
102) have the same selectivity estimates. Without more ac- 
curate information, the optimizer cannot easily discriminate 
between plans. 

5.1.2   Working with wrapper input 

Consider the same set of queries, only this time with input 
from the UDB wrapper, using the cost model and formulas 
described in Section 4.3. Figure 4 shows both the optimizer's 
estimates and the execution times for both the pushdown and 
Garlic join plans. The graph shows that while the optimizer's 
estimates differ by 10% to 45% from the actual execution 
costs, the wrapper input allows the optimizer to compare the 
relative cost of the two plans. Keep in mind that the cost for- 
mulas implemented by the UDB wrapper are fairly naive; if 
the wrapper writer invested more effort in implementing cost 
formulas reflecting the execution strategies of UDB, the opti- 
mizer's estimates would be more accurate. 

Now instead of favoring the pushdown plan in all cases, 
the optimizer recognizes a crossover point in which it makes 
sense to execute the join in Garlic. The vertical dotted line 
on the graph shows the actual crossover point. The vertical 
solid line on the graph shows the optimizer's estimate of the 
crossover point. The area between the two lines represents 
the range in which the optimizer may make the wrong choice. 
Since we didn't have a data point in this area of the graph, we 

Figure 4: Optimizer estimates with statistics 
ran further experiments to identify the range more accurately. 
These experiments used a few more predicates to allow us to 
control the result cardinality more precisely. We found that 
the execution crossover point is at cardinality = 251, and the 
optimizer identifies the crossover point in the 278-298 range. 
Thus, the range in which the optimizer will make the wrong 
choice is between 251 and at most 298. In this narrow range, 
the execution times of the plans are so close that the wrong 
plan choice is not significant. 

5.2   Adaptability of the Framework 

In the previous section, we showed that wrapper input is crit- 
ical for the optimizer to choose good plans. In this section, 
we show that our framewo± makes it easy for wrappers to 
provide accurate input. We look at 3 wrappers in particular: 
ObjectStore, Notes, and QBIC. 

5.2.1   Wrappers that Use the Default Cost Model 

As described in Section 4.1, the ObjectStore wrapper is our 
most basic wrapper and uses the default cost model without 
modification. [ROH99] shows the optimizer's estimates and 
actual execution times for a set of queries that exercise the 
wrapper's capabilities. The experiments show that the de- 
faults are well suited for the ObjectStore wrapper; the opti- 
mizer's estimates differ from the actual execution time by no 
more than 10%. 

Recall that although Notes is a more capable wrapper, the 
Notes wrapper also uses the default cost model, formulas, and 
statistics. Again, [ROH99] shows that for a set of queries 
that exercise the wrapper's capabilities, the optimizer's esti- 
mates are "in the ballpark", ranging from a 13% to 40% dif- 
ference from the actual execution time. For the experiments 
with more complicated queries, the optimizer's estimates are 
off by more than 30%. Further analysis showed that a signif- 
icant percentage of this difference can be attributed to result 
cardinality underestimates, which were off by 21% for both 
of these queries. Such inaccuracies are not unusual for cost- 
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Figure 5: QBIC avg color query plan 
based optimizers, and are the result of imperfect cost formu- 
las and deviations in the data from the distribution assump- 
tions. To make up the difference between the estimate and the 
actual execution time that cannot be attributed to inaccurate 
result cardinality estimates, the wrapper writer could provide 
formulas that model the predicate application strategy of Lo- 
tus Notes more accurately. However, we do not believe such 
effort is necessary. Analysis to be presented in section 5.3 
shows that even for this more capable wrapper, the default 
cost formulas provide estimates that are close enough for the 
optimizer to choose good plans in most instances. 

5.2.2   Wrappers with Interesting Capabilities 

For data sources with unusual capabilities, such as QBIC, the 
default model is not sufficient As described in Section 4.2, 
the execution time for an average color search depends on 
the size of the sample image. Figure 5 shows optimizer es- 
timates and actual execution times for a family of average 
color queries with increasingly larger predicate images. The 
x-axis shows the size of the sample image. The first bar for 
each query represents the optimizer's cost estimate without 
wrapper input, the second bar shows the optimizer's cost es- 
timate with wrapper input, and the third bar shows the actual 
execution time. 

Without wrapper input, the optimizer has no knowledge 
of how much an average color search costs, nor is it aware 
that the cost depends on the size of the sample image. Thus, 
it must rely on default estimates, which can in no way ap- 
proximate the real cost of the search or the plan. However, 
with wrapper input, the optimizer's estimates do reflect the 
dependency on the image predicate size, and its estimates are 
extremely accurate, with most being within 4% of the actual 
cost. An analysis of color histogram queries yields similar 
results. As we will see in Section 5.3, such input from wrap- 
pers with unusual capabilities is crucial for the optimizer to 
choose good plans when data from that source is joined with 
data from other sources. 

53   Cross-Repository Optimization 

Our final experiment shows that our framework provides suf- 
ficient information for the optimizer to choose good plans for 
complex queries. For this experiment, we used the query 
template given in Table 8 to generate a query family. The 
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Figure 6: 4-way cross-repository join queries 

Query template 
select i.OID, 

i.avg-color('767x589-irnage.gif), 
i.avg_color(' lxlimagcgif) 

from images i, notes-departments n.d, 
udb_course u.c, udb-department u_d 

where n.d.building = i.image_file_name 
and u_c.dno = u.d.OID 
and u.d.dno = n_d.dno 

Table 8: 4-way join query template 
query template is a 4-way join between the department and 
course collections managed by the UDB wrapper, the Notes 
department collection, and the QBIC image collection. To 
generate the family, we added predicates on the UDB depart- 
ment collection and the UDB course collection that control 
the cardinality of the results. These predicates and the result 
cardinalities are shown in Table 9. The queries also contain 2 
average color image searches, one of which is for a lxl image 
(cheap), while the other is for a 767x598 image (expensive). 

The number of possible plans for executing this query fam- 
ily is over 200. However, a large number of these plans are 
clearly bad choices, as they would require computing large 
cross-products. We enumerated and forced the execution of 
the 20 most promising plans, including the ones the optinnzer 
itself selected. In any plan, the optimizer is forced to push one 
average color search down and evaluate the other by method 
invocation because the QBIC wrapper returns plans that exe- 
cute only one search at a time. 

Figure 6 shows the execution time of 7 plans for each 
query. The first bar represents the plan the optimizer chose 
without statistics or wrapper input. The other 6 bars are rep- 
resentative plans from the set that we analyzed. The plans are 

ID Predicates Card 

Q13 u_d.budget  <   10000000 and 
u-ccno < 102 

456 

Q14 u.d.budget   <   6000000   and 
u-c.cno < 102 

258 

Q15 u_d.budget   <   2000000   and 
u_c.cno = 102 

23 

Table 9: 4-way join query predicates 
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denoted by the order in which the joins are evaluated. A col- 
lection is identified by the first character of the wrapper that 
manages it. The UDB collections are further marked by the 
first character of each collection. An upper case X indicates 
that the join was done in Garlic, and a lower case x indicates 
the join was pushed down to the UDB wrapper. A * over a 
bar indicates that the optimizer, working with wrapper input, 
chose the corresponding plan. 

For all three queries, the optimizer picked the best plan of 
the alternatives we studied, and, we believe, of all possible 
plans. Note that this may not happen in general; the purpose 
of a cost-based optimizer is not to choose the optimal plan for 
every query, but to consistently choose good plans and avoid 
bad ones. 

The graph once again reinforces the assertion that wrap- 
per input is crucial for the optimizer to choose the right plan. 
Without wrapper input, the optimizer chose the same plan for 
all three queries, which was to push thejoin between the UDB 
collections down to the UDB wrapper, join the result ofthat 
with the Notes department collection, and join that result with 
the image collection. Without information from the QBIC 
wrapper about the relative costs of the two image searches, 
it arbitrarily picked one of them to push down, and the other 
to perform via method invocation. In this case, the optimizer 
made a bad choice, pushing the cheap search of the lxl im- 
age down to the QBIC wrapper, and executing the expensive 
search via method invocation on the objects that survive the 
join predicates. This plan is a bad choice for all three queries, 
with execution times well ova 1000 seconds. 

When the optimizer was given input from the QBIC wrap- 
per about the relative cosi of the two average color searches, 
it chose correctly to push the expensive search down to the 
QBIC wrapper and perform the cheap search via method in- 
vocation. This is true for all plans we looked at for all queries, 
and brings the execution times for all of our sample plans to 
under 200 seconds. 

This experiment also shows that pushing down as much 
work as possible to the data sources does not always lead to 
the best plan. For (Ql *) and (Q15), the best plan did in fact 
include pushing the join between the UDB collections down 
to the UDB wrapper However, for (Q14), the best plan actu- 
ally split these two collections, and joined UDB department 
with Notes department as soon as possible. In this plan, the 
predicate on the UDB department collection (u_d.budget < 
6000000) restricted the number of UDB department tuples 
by 50%. Joining this collection with the Notes department 
collection first also reduced the number of tuples that needed 
to be joined with the image collection by 50%. For (Q13), 
the UDB department predicate (u_d.budget < 10000000) was 
not as restrictive. In this case, it would have only reduced the 
number of tuples that needed to be joined with the image col- 
lection by 9%, which was not a significant enough savings to 
make this alternative attractive. Instead, it was better to group 
UDB department and UDB course together and push thejoin 
down to the UDB wrapper. 

For (Q15), the UDB department predicate is even more 
restrictive, filtering out over 90% of the tuples. In this case, it 
is a good idea to use it to filter out both the Notes department 
tuples and UDB course tuples as soon as possible. Thus, the 
two best plans push the join between the UDB collections 
down to the wrapper, and immediately join the result with 
Notes. The two worst plans failed to take advantage of this. 
Plan 2 in the figure arranged these collections out of order, 
and plan 3 joined the entire Notes department collection with 
QBIC image before thejoin with the UDB collections. 

These experiments show that cost-based optimization is 
indeed critical to choose quality execution plans in a hetero- 
geneous environment. Using our framework, wrappers can 
provide enough information for the optimizer to cost wrap- 
per plans with a sufficient degree of accuracy. By combining 
such cost information with standard cost formulas for built-in 
operators, traditional costing techniques are easily extended 
to cost complex cross-source queries in a heterogeneous en- 
vironment. 

6   Related Work 

As federated systems have gained in popularity, researchers 
have given greater attention to the problem of optimizing 
queries over diverse sources. Relevant work in this area in- 
cludes work on multidatabase query optimization [LOG93, 
DSD95, SBM95, EDN097, ONK+96] and early workonhet- 
erogeneous optimization [Day85, SC94], both of which fo- 
cus on approaches to reduce the flow of data for cross-source 
queries, and not on estimation of costs. More recent ap- 
proaches [PGH96, LR096] describe various methods to rep- 
resent source capabilities. Optimizing queries with foreign 
functions[CS93, HS93] is related, but these papers have fo- 
cused on optimization algorithms, and again, not on estimat- 
ing costs. [UFA98] describes orthogonal work to incorporate 
cost-based query optimization into query scrambling. 

Work on frameworks for providing cost information and 
on developing cost models for data sources is, of course, 
highly relevant. OLE DB [Bla96] defines a protocol by which 
federated systems can interact with external data sources, 
but it does not address cross-source query optimization, and 
presumes a common execution model. The most complete 
framework for providing cost information to date is In- 
formix's DataBlades [Cor97] architecture. DataBlades inte- 
grates individual tables, rather than data sources, and the op- 
timizer computes the cost of an external scan using formulas 
that assume the same execution model as for built-in scans. 

Various approaches have been proposed to develop cost 
models for external data sources. These approaches can be 
grouped into four categories: calibration [DKS92, GST96], 
regression [ZL98], caching [ACPS96], and hybrid tech- 
niques [NGT98]. The calibration and regression approaches 
typically assume a common execution model for their sources 
(which doesn't work for heterogeneous federations), but may 
be useful in developing wrapper cost models for particular 
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sources. Both [ACPS96] and [NGT98] deal with diverse data 
sources, but neither approach employs standard dynamic pro- 
gramming optimization techniques. 

7 Conclusion 
We have demonstrated the need for cost-based optimization 
in federated systems of diverse data sources, and we pre- 
sented a complete yet simple framework that extends the ben- 
efits of a traditional cost-based optimizer to such a federated 
system. Our approach requires only minor changes to tradi- 
tional cost-based optimization techniques, allowing us to eas- 
ily take advantage of advances in optimization technology. 
Our framework provides enough information to the optimizer 
for it to make good plan choices, and yet, it is easy for wrap- 
pers to adapt. In the future, we intend to continue testing our 
framework on a broad range of data sources. We would like 
to add templates to support classes of data sources that share 
a common execution model, and test our framework for how 
well it handles object-relational features such as path expres- 
sions and nested sets. 
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Abstract 

Data intensive applications today usually run in either a client- 
server or a middleware environment. In either case, they must 
efficiently handle both database queries, -which process large 
numbers of data objects, and application logic, which involves 
fine-grained object accesses (e.g., method calls). We propose a 
wholistic approach to speeding up such applications: we load 
the cache of a system with relevant objects as a by-product 
of query processing. This can potentially improve the perfor- 
mance of the application, by eliminating the need to fault in 
objects. However, it can also increase the cost of queries by 
forcing them to handle more data, thus potentially reducing the 
performance of the application. In this paper, we examine both 
heuristic and cost-based strategies for deciding what to cache, 
and when to do so. We show how these strategies can be inte- 
grated into the query optimizer of an existing system, and how 
the caching architecture is affected. We present the results of 
experiments using the Garlic database middleware system; the 
experiments demonstrate the usefulness of loading a cache with 
query results and illustrate the tradeoffs between the cost-based 
and heuristic optimization methods. 

1    Introduction 

Data intensive applications today usually run in either 
a middleware or client-server environment Examples 
of middleware systems include business application, e- 
commerce or database middleware systems, while CAD 
and CAE systems are typically client-server. In either 
case, they must efficiently handle both database queries, 
which process large numbers of data objects, and appli- 
cation logic, with its fine-grained object accesses (e.g., 
method calls). In both architectures, application logic 
and query processing may be co-resident, and take place 
on a processor other than that on which the data resides. 
It is increasingly likely that some or all of the data will 
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be on remote and/or nontraditional data sources that are 
expensive to access, such as web sources or specialized 
application systems. 

Sophisticated optimization techniques reduce query 
processing times in these environments, while caching 
is used to reduce the cost of the application logic by 
avoiding unnecessary requests to the data sources. Ap- 
plications often ask queries to identify objects of interest 
and then manipulate the result objects. Though it is now 
possible to do chunks of application logic in the query 
processor, applications still do much of the work them- 
selves. Some applications require user interaction; oth- 
ers desire greater portability and ease of installation (e.g., 
big business applications such as Baan IV, Peoplesoft 
7.5, or SAP Pv/3). In traditional systems, query process- 
ing and caching decisions are made in isolation. While 
this provides acceptable Performance for these systems, 
it is a disaster for applications using data from the Inter- 
net. This query-and-manipulate pattern means that tradi- 
tional systems access the data twice: once while process- 
ing the query, and then again, on the first method call, to 
retrieve and cache the object. If data is on the Internet, 
this will be prohibitively expensive. In some cases, the 
data source may not even be able to look up individual 
objects; hence uns extra round trip is impossible. 

In this paper we propose to load the cache with rel- 
evant objects as a by-product of the execution of a 
query. With this technique it is possible to get orders 
of magnitude improvements for applications that involve 
both queries and methods over expensive-to-access data. 
However, a naive implementation can do more harm than 
good. An application today can manually cache query 
results by explicitly selecting all the data for the ob- 
ject in the query itself. However, this may increase the 
cost of queries dramatically by forcing them to handle 
more data. For complex queries this effect may be large 
enough to more than offset the benefit. Therefore, the 
decisions of what to cache and when during query exe- 
cution to do so should be made by the query optimizer in 
a cost-based manner. 

The remainder of this paper is organized as follows. 
In Section 2, we elaborate on the motivation for our 
work, and discuss the caching of objects in our environ- 
ment. While loading a cache with query results is essen- 
tial when data is expensive or difficult to access, our ap- 
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proach can also be used to speed up applications in tradi- 
tional two- or three-tier architectures as described above. 
For ease of exposition we will talk about "middleware" 
as the site of query processing and caching in the follow- 
ing sections. In a two-tier system, these activities would 
take place in the client. Section 3 presents alternative 
ways to extend an optimizer to generate query execution 
plans that load a cache with query results. We describe 
two simple heuristics, as well as a more sophisticated 
cost-based approach. Section 4 discusses our implemen- 
tation of caching in the Garlic database middleware sys- 
tem, and Section 5 contains the results of performance 
experiments that demonstrate the need to load a cache 
with query results and show the tradeoffs of the three 
alternative ways of extending the query processor. Sec- 
tion 6 discusses related work, and Section 7 concludes 
the paper. 

2   Caching in Middleware 
2.1   A Motivating Example 
To see why loading the cache with query results is useful, 
consider this (generic) piece of application code: 

foreach o, Oj. Oi in 
(select  r.oid,   S2.oid,   ss.oid 
fror. R r,   Si   Si,   S2   S2,   ... 
where   . . .) 

{ ...ojnethod(02,0s);... } 

The query in this example is used to select relevant ob- 
jects from the database. After further analysis and/or 
user interaction, the method carries out operations on 
these objects. The query can be arbitrarily complex, in- 
volving joins, subquenes, aggregation, etc. The method 
will involve accesses to certain fields of the object 0 and 
possibly to other objects (o2, os) as well, r.oid refers 
to the object identifier of an object of collection R; this 
identifier is used to invoke methods on the object and to 
access fields of theobject. Such a code fragment could be 
found in mam applications. For example, an inventory 
control program might select all products for which sup- 
plies were low (and their suppliers and existing orders). 
After calculating an amount to order (perhaps with user 
input), it might invoke a method to order the product 

In a traditional middleware system this code fragment 
is carried out as follows: 

1. the query processor tries to find the best (i.e., lowest 
cost) plan to execute the query. 

2. the query processor executes the query, retrieving 
the object ids requested. 

3. an interpreter executes the method, using the object 
ids to retrieve any data needed. To speed up the ex- 
ecution of methods that repeatedly access the same 
objects, the interpreter uses caching. Requests to 
access obj ects already in the cache can be processed 
by the interpreter without accessing the underlying 

data sources), and a request to access an object not 
found in the cache would result in faulting in that 
object. 

The key observation is that query processing does not af- 
fect caching in traditional systems: if therelevant objects 
of R are not cached prior to the execution of the query, 
these objects will not be cached as a by-product of query 
execution and they will have to be faulted in at the be- 
ginning of each method invocation. In an environment in 
which data access is slow, this can be extremely expen- 
sive -just as expensive, in fact, as processing the query. 
Loading the cache with query results avoids this extra 
cost of faulting in objects by copying the R objects into 
the cache while the query is executed; that is, it seizes 
the opportunity to copy the R objects into the cache at a 
moment at which the objects must be accessed and pro- 
cessed to execute the query anyway. 

2.2   Caching Objects 

Our goal is to decrease the overall execution time of 
applications, such as those described above, that use 
queries to identify the objects on which they will op- 
erate (i.e., on which they will invoke methods). There 
are many possible ways to accomplish this goal. In this 
paper, we focus on speeding up method execution, by 
essentially "pre-cacbing" the objects that methods will 
need. This pre-caching is possible in our environment, 
first, because, in executing the query, the query proces- 
sor has to touch the needed objects anyway, and second, 
because in the architectures we consider, some portion 
of the query processing is done at the same site as that at 
which the methods are executed. Hence, the query pro- 
cessor has the opportunity to copy appropriate objects 
into a cache, for the methods to use. 

Obviously, it will only be beneficial to cache objects 
that are subsequently accessed by the application pro- 
gram. Ideally, one would carry out a data flow analy- 
sis of the application program [ASU89] in order to de- 
termine which objects of the query result are potentially 
accessed. Unfortunately, such data flow analyses are im- 
possible in many cases due to the separation of appli- 
cation logic and query processing - and interactive ap- 
plications are totally unpredictable. Thus some heuristic 
approach to identifying the relevant objects is needed. 
It is likely that the objects whose oids are returned as 
part of the query result (i.e., objects of collections whose 
oid columns are part of the query's SELECT clause) are 
going to be accessed by the application program subse- 
quently (why else would the query ask for oids?)1. We 
refer to such collections as candidate collections; these 
collections are candidates because objects of these col- 
lections are likely to be accessed. However, they are not 
guaranteed to be cached, as it might nevertheless not be 
cost-effective. 

1 Alternatively, we could assume that the application programmer 
gives hints that indicate which collections should be cached. 
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In the applications we are considering, queries and 
methods run in the same transaction. Hence we are only 
interested in intra-transaction caching in this paper, and 
cache consistency is not an issue. Our approach is par- 
ticularly attractive in environments that do not support 
inter-transaction caching because transactions start with 
no relevant objects in the cache. Issues of locking and 
concurrency control are orthogonal to loading a cache 
with query results. In a middleware environment, it is of- 
ten undesirable or impossible to lock data in the sources 
for the duration of the transaction. Under such circum- 
stances, our approach may cause an application to pro- 
duce different output; but, in some sense, this output can 
be seen as better output because our approach guaran- 
tees that the methods see the same state of an object as 
the query. 

In this paper, we assume that the granularity of 
caching is an entire object. (We discuss how an object 
is defined in Section 4.) To cache the object, the whole 
object must be present. One may argue that we should 
only copy those fields of objects mat are retrieved as part 
of the query anyway. However, state-of-the-art caches 
cache in the granularity of whole objects (e.g., the cache 
of SAP R/3 [KKM98]). This is necessary for pointer 
swizzling [Mos92, KK95] and to organize the cache effi- 
ciently (i.e., avoid a per attribute overhead in the cache). 
One may also argue that the granularity of caching and 
data transfer should be a group of objects or a page; 
caching and data transfer in such a granularity, however, 
is not possible in systems like Garlic. 

A consequence of this approach is that caching during 
query execution is not free. It introduces additional cost, 
as no attribute of an object may be projected out before 
the object is cached, even if the attribute is not needed 
to compute the query result. This has two implications. 
First, objects should only be cached if the expected ben- 
efit (overall application speedup due to faster execution 
of methods) outweighs the cost in query execution time. 
Second, the point in the query execution at which obj ects 
are cached will affect the cost and benefit If caching 
occurs too early, irrelevant objects may be cached, and 
might even flood the cache, squeezing out more relevant 
objects. If caching occurs too late, the intermediate re- 
sults of query processing will be larger due to the need 
to preserve whole objects for caching. Consider, for in- 
stance, a query that involves a join between R and 5 and 
asks for the oid of the R objects that qualify: joining 
only the oid column of R with S is cheaper than join- 
ing the whole R (i.e., oid and all other columns) with S, 
especially if the oid column of R fits into main memory 
and the whole R does not. Because caching impacts the 
size of intermediate results, it should also impact join or- 
dering; for instance, joins that filter out many objects of 
candidate collections should perhaps be carried out early 
in a query plan if caching is enabled. Hence, the best 
way of executing the query may be different depending 
on whether we are caching objects. 
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Figure 1: Example Cache Enhanced Query Plans 

In summary, our goal is to speed up the execution 
of methods by caching the objects they need (as indi- 
cated by the select list of a query) during execution of 
that query. The granularity of the cache is an object, and 
caching objects during query execution incurs costs that 
can affect the choice of query execution plan. As a result, 
we will allow the query optimizer to decide what objects 
to cache, and when. 

3   Caching During Queries 

In this section, we describe ways to extend the query pro- 
cessor of a middleware system in order to generate plans 
which cache relevant objects. We introduce a new Cache 
operator which the query optimizer can use to indicate 
where in a plan objects of a particular collection should 
be cached. A Cache operator copies objects from its in- 
put stream into the cache and projects out columns of the 
input stream which are not needed to produce the query 
results. A Cache operator takes two parameters, one 
that specifies which objects of the input stream should 
be copied into the cache, and one that specifies which 
columns should be "passed through" to the next operator 
(notprojectedout). The plans shown in Figure 1 could be 
produced by the enhanced query optimizer. The Cache 
operator of the first plan copies objects of collection R; 
the first Cache operator of the second plan copies ob- 
jects of R and Si while the second copies 52 objects. A 
plan may contain several Cache operators if the objects 
of more than one collection are to be cached; however, 
it makes no sense to have two Cache operators for the 
same collection in a plan. The Return operators pass the 
query results to the application program. The Ship oper- 
ators pass intermediate query results from a data source 
to the middleware; since Cache operators are always ex- 
ecuted by the middleware, all Cache operators must be 
placed somewhere above a Ship operator and below the 
final Return operator. 

In order to generate such plans, the query optimizer 
must decide (1) for which collections involved in a query 
to include Cache operators in a query plan, and (2) where 
to place Cache operators in a query plan. We present 
three approaches. The first two are heuristics which serve 
as baselines for our study. The third approach is cost- 
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based cache operator placement: this approach is likely 
to make better decisions (i.e., produce better plans), but 
increases the cost of query optimization. 

3.1   Cache Operators at the Top of Query Plans 

The first approach makes the two cache operator place- 
ment decisions in the following heuristic way: (1) gener- 
ate a Cache operator for every candidate collection, and 
(2) place all Cache operators high in a query plan. This 
approach corresponds to what an application could do 
manually, and is based on the principle that all relevant 
objects (objects which are part of the query result and 
belong to candidate collections) should be cached during 
the query and no irrelevant objects (those not part of the 
query result) should be cached. In detail, this approach 
works as follows: 

1. rewrite the SELECT clause of a query, replacing all 
occurances of oidby *. 

2. optimize the rewritten query in the conventional 
way. 

3. include Cache operators for the collections whose 
oid columns are requested in the SELECT clause of 
the query, and place those Cache operators at the top 
of the query plan generated in Step 2 (i.e., just below 
the Return operator); remember that Cache opera- 
tors carry out projections so that the right columns 
for the original query are returned. 

4. push down Cache operators through non-reductive 
operators. A non-reductive operator is an operator 
that does not filter out any objects. Examples are 
Sort operators and certain functional joins for which 
integrity constraints guarantee that all objects sat- 
isfy the join predicates) (see [CK97] for a formal 
definition of non-reductive operators). 

The push-down of Cache operators through non- 
reductive operators (Step 4) reduces thecost of executing 
the query and at the same time obeys the principle that 
only relevant objects are copied into the cache. Suppose, 
as an example, that a Cache operator is pushed below a 
Sort: the cost of the Sort is reduced because the Sort op- 
erator works on thin tuples, because the Cache operators 
project out all the columns that were added as part of the 
rewriting in Step 1. At the same time, no irrelevant ob- 
jects are copied into the cache because the Sort does not 
filter out any objects. 

While pushing down Cache operators through non- 
reductive operators is certainly an improvement, this 
"caching at the top" approach clearly does not always 
produce good cache-enhanced plans. Because Cache op- 
erators impact the size of intermediate results, the place- 
ment of Cache operators should also impact join order- 
ing; however, the heuristic ignores this interdependency. 
Furthermore, Cache operators high in a plan force lower 

operators to handle thicktaples with high extra cost. The 
heuristic basically assumes that the extra cost incurred 
by plans with Cache operators is always outweighed by 
the benefit of these Cache operators for (future) method 
invocations - an assumption which is not always valid, 
even when data accesses are expensive (Section 5.4). 

3.2   Cache Operators at the Bottom of Query Plans 

The second approach, "caching at the bottom", makes the 
following cache operator placement decisions: (1) gener- 
ate a Cache operator for every candidate collection, and 
(2) place all Cache operators low in a query plan. Like 
the "caching at the top" heuristic, the "caching at the bot- 
tom" heuristic assumes that the benefits of Cache oper- 
ators for candidate collections always outweigh the cost 
incurred by the presence of Cache operators. However, 
the "caching at the bottom" heuristic places Cache op- 
erators low in query plans, following the principle that 
columns which are only needed for caching and not to 
evaluate the query itself should be projected out as early 
as possible. Thus, the "caching at the bottom" approach 
affects the cost of other query operators (i.e., joins, group 
bys, etc.) as little as possible, but it might copy objects 
into the cache that are not part of the query result and 
which would be filtered by these other query operators. 

In detail, the "caching at the bottom" approach works 
as follows: 

1. optimize the original query in the conventional way. 

2. for each leaf node of the resulting plan, if the oper- 
ator accesses a candidate collection, expand the fist 
of attributes returned to include all the attributes of 
the objects. 

3. place a Cache operator for that collection above 
each such leaf operator. 

4. pull up Cache operators that sit below pipelining 
operators (e.g., filters or nested-loop joins). 

Cache operator pull-up in the "caching at the bottom" 
approach is analogous to Cache operator push-down in 
the "caching at the top" approach. Push-down heuristics 
reduce the cost of a query without increasing the number 
of false cache insertions (adding objects to the cache that 
do not participate in the query result, hence will not be 
used later). Pull-up heuristics reduce the number of false 
cache insertions without increasing the cost of a query. 
Consider as an example a Cache operator that sits below 
a pipeline operator which filters out some of its input 
tuples. Moving the Cache operator above that pipeline 
operator will reduce the number of objects copied into 
the cache, without increasing the cost of the pipeline op- 
erator because the cost of a pipeline operator does not 
depend on the width of the tuples it processes. 
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33   Cost-based Cache Operator Placement 

It should be clear from the previous two subsections 
that there is a fundamental tradeoff between "high" and 
"low" Cache operators: the higher a Cache operator, 
the lower the number of false cache insertions, and the 
higher the number of other query operators that sit below 
the Cache operator and operate at increased cost because 
they must process thick tuples. The "caching at the top" 
and "caching at the bottom" heuristics attack this tradeoff 
in simple ways; obviously, there are situations in which 
either one or even both approaches do not find the best 
place to position a Cache operator in a query plan. 

In this section, we show how a query processor can 
make Cache operator placement decisions in a cost- 
based manner. The approach is based on the following 
extensions: 

1. extend the enumerator to enumerate alternative 
plans with Cache operators 

2. estimate the cost and potential benefit of Cache op- 
erators to determine the best plan; the cost models 
for other query operators (e.g., joins, etc.) need not 
be changed 

3. extend the pruning condition of the optimizer to 
eliminate sub-optimal plans as early as possible 

We describe these three extensions in more detail in the 
following subsections. 

33.1   Enumeration of Plans with Cache Operators 

The implementation of the cost-based placement strategy 
is integrated with the planning phase of the optimizer. 
We discuss the necessary changes in the context of a 
bottom-up dynamic programming optimizer [SAC+79]. 
Optimizers of this sort generate query plans in three 
phases. In the first phase, they generate plans for sin- 
gle collection accesses. In the next phase, they generate 
plans for joins. They first enumerate the two-way joins, 
using the plans built in the first phase as input Like- 
wise, they then plan three-way joins, using the plans pre- 
viously built (for single collections and two-way joins), 
and so on, until a plan for the entire join is generated. 
The final phase then completes the plan by adding op- 
erators for aggregation, ordering, unions, etc. Each plan 
has a set ofplanproperties that track what work has been 
done by that plan. In particular, they record what collec- 
tions have been accessed, what predicates applied, and 
what attributes are available, as well as an estimated cost 
and cardinality for the plan2. Each operator added to a 
plan modifies the properties ofthat plan to record what 
it has done. At the end of each round of joins, as well as 
at the end of each phase, the optimizer prunes the set of 
generated plans, finding plans which have done the same 

2TheTe are several other properties that are tracked; we only list the 
most relevant for this paper. 

Plan 1: Index Scan - Athick 
Plan 2: Index Scan - Athin 
Plan 3: Relation Scan - Athick 
Plan 4: Relation Scan - Athin 
Plan 5: Cache(A) - Ship - Index Scan - Athick 
Plan 6: Cache(A) - Ship - Relation Scan - Athick 

Figure 2: Plans for Accessing Table A 

work (have the same properties) and eliminating all but 
the cheapest. 

Only a few changes need to be made to an existing 
optimizer to allow it to generate plans with Cache op- 
erators. First, we have to define what a Cache operator 
does to a plan's properties. Cache projects out (i.e., does 
not pass on to higher operators) unneeded attributes, so 
it changes the attribute property. It also will affect the 
cost, as discussed in Section 3.32 below. Next, the first 
and second phases must be modified to generate alter- 
native plans with Cache operators. In modern dynamic 
programming optimizers [Loh88, HKWY97], this corre- 
sponds to adding one rule to each of those phases. In the 
access phase, in addition to the normal (thin) plans for 
a collection, which select out just the attributes needed 
for the query, the new rule will also generate plans for 
getting all the attributes of the objects in the collection 
(thickplans), if the collection is one of those whose oid 
column is selected by the query (i.e., a candidate collec- 
tion). In addition, the rule will generate extra plans which 
consist of a Cache (and Ship) operator above each of the 
thick plans. Figure 2 shows the six plans that would be 
generated in phase one of enumeration if the collection 
access could be done by either scanning the collection 
or by scanning an index. If thick and thin coincide (i.e., 
all columns of A are needed to produce the query result, 
regardless of caching), only four plans would be enumer- 
ated, as Plans 1 and 3 would be identical to 2 and 4, re- 
spectively. 

Similarly, in the join planning phase, the enumerator 
must consider possible caching plans in addition to nor- 
mal join plans. Since there will be a thick plan for each 
candidate collection, we will automatically get joins with 
thick result objects. On top of these, we add appropriate 
Cache operators during each round of joining. We can 
consider caching any subset of available candidate col- 
lections in a given plan, where available means that the 
plan's properties indicate that that collection has been ac- 
cessed, that no other Cache operator for that collection is 
present in the plan, and that the full objects are present 
(it's a thick plan for that collection). This, of course, can 
cause an exponential explosion in the number of plans 
that must be considered. For example, Figure 3 shows 
four basic join plans and five caching plans for a two 
table join query; actually, even more plans are possible 
taking into account that more than one join method is 
applicable and that Ship operators can be placed before 
or after the joins. In Section 3.3.3, we discuss how ag- 
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Plan 1: Join - Ship - Scan - Athick 
- Ship - Scan -Bthick 

Plan 2: Join - Ship - Scan - Athin 
- Ship - Scan -Bthick 

Plan 3: Join - Ship - Scan - Athick 
- Ship - Scan -Bthin 

Plan 4: Join - Ship - Scan - Athin 
- Ship - Scan -Bthin 

Plan 5: Cache(A) - Join - Ship - Scan - Athick 
- Ship - Scan -Bthick 

Plan 6: Cache(B) - Join - Ship - Scan - Athick 
- Ship - Scan -Bthick 

Plan 7: Cache(A,B) - Join - Ship - Scan - .Athick 
- Ship - Scan -Bthick 

Plan 8: Cache(B) - Join - Ship - Scan - -Athin 
- Ship - Scan -Bthick 

Plan 9: Caehe(A) - Join - Ship - Scan - bthick 
- Ship - Scan -Bthin 

Figure 3: Plans Generated for A tx B 
A, B are candidate collections 

gressive pruning can help control this explosion. 

33.2   CostfBenefit Calculation of Cache Operators 

Since Cache operators can only be applied on whole ob- 
jects, their presence increases the cost of underlying op- 
erators (because these underlying operators must work 
on more data). Further, since Cache operators project out 
the columns not needed for the query result, their prop- 
erties (other than cost) are the same as a simple (non- 
caching) thin plan. For example, Plans 2, 4, 5 and 6 in 
Figure 2 have the same properties, excluding cost. Plans 
with Cache operators have done more work to get to the 
same point; they can survive, therefore, only if the Cache 
operators have a negative cost At the beginning of opti- 
mization, a potential benefit is computed for each collec- 
tion to be cached. The cost of a Cache operator is defined 
as the actual cost to materialize its input stream minus 
the estimated benefit, or savings, from not faulting in ob- 
jects in future method invocations. The actual cost of the 
Cache operator is proportional to the cardinality of the 
input plan, and represents the time to copy objects into 
the cache, and do the project to form the output stream. 

The benefit is considerably trickier to estimate. For- 
tunately, a reasonably detailed model is possible, and is 
sufficient for choosing good plans. To compute the ben- 
efit of a collection, we need to know how many distinct 
objects of the collection will be part of the query result. 
For simplicity, we will refer to this number as the output 
of the collection for this query. We assume that the appli- 
cation will invoke methods on a certain fraction F (e.g. 
80 %) of the objects in the query result. The benefit, B, 
is proportional to the output, O: B = k x F x O, where 
k represents the time to fault in the object3, k, F,andthe 

output of a collection are constant for a given query; they 
do not depend on the plan for the query, or when (or if) 
caching occurs. Thus, the benefit can be computed be- 
fore planning begins. For complete accuracy, B should 
include a factor /i representing the fraction of the rele- 
vant objects not already in the cache; however, the over- 
head to estimate /i is not justified given the accuracy we 
can achieve for other parts of the formula, so we ignore 
this factor and assign F a lower value accordingly. 

The tricky part is how to estimate the output One 
approach is to let the optimizer do it. For this alterna- 
tive, to find the output of a collection R, the optimizer 
is asked to plan a modified version of the original query, 
such that the original select list is replaced by "distinct 
R.oid". The result cardinality of this query is the required 
output. Note that since the plan for this modified query is 
unimportant, the optimizer can use any greedy or heuris- 
tic approach it wants to reduce optimization time, as long 
as it does use its cardinality estimation formulas. How- 
ever, this approach is still likely to be expensive, espe- 
cially for large queries in which multiple collections are 
candidates for caching, as the optimizer will be called 
once per candidate collection, and then again to plan the 
actual query. Nor is the result guaranteed to be accurate; 
it will be only as good as the optimizer's cardinality esti- 
mates. 

Instead, we devised a simple algorithm for estimat- 
ing output [HKU99]. This approach has much less over- 
head and estimates the output of a collection with accu- 
racy close to that of the optimizer for queries where the 
join predicates are independent. The algorithm takes a 
query as input, and returns an estimate of the output of 
each candidate collection for the query. The algorithm 
essentially emulates the optimizer's cardinality computa- 
tions, but without building plans. It starts by estimating 
the effect of applying local predicates to the base col- 
lections, using the optimizer formulas. It then heuris- 
tically chooses an inner for each join and "applies" the 
join predicate to the inner's output. The output of a col- 
lection is taken to be the minimum value among its ini- 
tial cardinality, its output after applying the most selec- 
tive local predicate (if any) and its output after applying 
the most selective join predicate (if any). The algorithm 
seems to provide a good compromise between accuracy 
and overhead, though it needs tuning for joins over com- 
posite keys. 

333   Pruning of Plans with Cache Operators 

At the end of each phase of planning, and at the end of 
each round of joins, the optimizer examines the plans that 
have been generated, and "prunes" (i.e., throws away) 
those which are at least as expensive as some other plan 
that has equivalent or more general properties. Thin 
plans are less general (because they make available fewer 
attributes) than thick ones; hence, although thick plans 

s k depends on the data source and object [ROH98] describes how        an optimizer can assess the value of this parameter. 
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are typically more expensive, they will not naturally be 
pruned in favor of thin plans. 

This is good, in terms of ensuring that all possible 
caching plans are examined. However, as described in 
Section 3.3.1, it also leads to an exponential explosion in 
the number of plans. Fortunately, since the Cache oper- 
ator only passes through those attributes needed for the 
query, it creates thin plans (or at least, thinner plans) that 
compete with each other. For example, in Figure 2, of 
the six plans generated for accessing collection A in the 
first phase of optimization, at most two will survive: one 
thick plan and one thin plan (if it is cheaper than the thick 
one). The thin survivor could either be a caching plan 
(e.g., Plan 6) or an original thin plan (e.g., Plan 2). In the 
join phase, the maximum number of plans that survives 
each round is 2n, where n is the number of candidate col- 
lections in this round. So in Figure 3, four plans could 
survive: one in which both A and B are thick, one in 
which both are thin; one in which A is thick and B thin, 
and one in which B is thick and A thin (for example, the 
survivors might be Plans 1,2,6 and 7). 

However, under certain conditions we can safely 
prune a thick plan in favor of a thin - and the sooner we 
eliminate such plans the better for optimization times. In 
particular, we can prune the thick plan for a candidate 
collection A if: 

CostAthi. < CostAlUct + CostAc — Benefit 

where CostActckcBiil is the rninimum actual cost incurred 
to cache a collection and corresponds to the case where 
the Cache operator sits direcüy above that join that re- 
sults in the minimum number of output tuples from the 
collection. It can be computed before optimization, dur- 
ing the output calculations described in Section 3.3.2. 
The condition basically says that if we assume the min- 
imal possible cost for caching A (lowest actual cost less 
constant benefit), and that is still more than the cost of a 
thin plan for A, then there is no point in keeping the thick 
plan, as caching A is not a good idea. 

3.4   Other Strategies and Variants 

In this section, we presented three alternative ways to 
generate plans with Cache operators. These three ap- 
proaches mark cornerstones in the space of possible 
strategies for integrating Cache operator placement into 
a query processor. The first two approaches are sim- 
ple strategies that always place Cache operators either 
at the top or at the bottom of query plans. Neither ap- 
proach causes much overhead during query optimiza- 
tion, but they are likely to make sub-optimal decisions in 
many cases. The third approach is a full-fledged, cost- 
based approach for determining cache operator place- 
ment. This approach can be the cause of significant addi- 
tional overhead during query optimization, but is likely 
to make good decisions. 

We can imagine many approaches that make better de- 
cisions than the "caching at the top" and "caching at the 
bottom" heuristics at the expense of additional overhead, 
or approaches that are cheaper than "cost-based caching" 
at the risk of making poor decisions in some cases. We 
describe here just a few variants: 

cost-based Cache operator pushdown: rather than 
push Cache operators down through non-reductive query 
operators only, this variant would push a Cache opera- 
tor down through another operator if the result would be 
a lower cost plan, using the cost model and cost/benefit 
calculations for Cache operators of Section 3.3.2. 

cost-based Cache operator pull-up: Cache operator 
pull-up can also be carried out during post-processing of 
plans in a cost-based manner, instead of pulling Cache 
operators up only through pipeline operators. 

flood-sensitive Cache operator elimination: The 
"caching at the bottom" variant can be extended in such a 
way that Cache operators that would flood the cache be- 
cause they are applied to too many objects (according to 
the cardinality estimates of the optimizer) are eliminated 
from the plan. 

rigorous pruning in cost-based approach: There are 
several possible variants of the "cost-based caching" ap- 
proach which more aggressively prune plans, even when 
it may not be wholly "safe" to do so (in other words, 
they may discard plans that could be the basis of win- 
ning plans later on). These variants reduce the cost of 
query optimization considerably, at the expense of per- 
haps missing good plans. For example, one aggressive 
variant might generalize the pruning condition of Sec- 
tion 3.3.3, and always keep at most one of the alternative 
plans at the end of the round. A somewhat gentler vari- 
ant might keep two plans at the end of each round of plan 
generation: a "pure" thick plan, that is, a plan in which 
all attributes of all candidate collections of the plan are 
present, and a "pure" thin plan, that is, a plan in which no 
attributes not necessary forthe original query are present. 

4   Implementation Details 
We implemented all three cache operator placement 
strategies described in the previous section and inte- 
grated them into the Garlic database middleware system. 
In this section, we describe the major design choices we 
made in our implementation. 

4.1   Double Caching Architecture 

Figure 4 shows the overall design of the cache man- 
ager and query execution engine. Our implementation 
involves a double caching scheme. There is a primary 
cache used by the application, while Cache operators 
load objects into a secondary cache during query execu- 
tion. From the secondary cache these objects are copied 
into the primary cache when they are first accessed by 
a method. Resident object tables (ROT) in both the pri- 
mary and secondary cache are used to quickly find an 
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Figure 4: Double Caching Architecture 

object in the cache. Cache operators only copy objects 
into the secondary cache that are not present in either the 
primary or the secondary cache. Thus, they waste as little 
main memory for double caching as possible and avoid 
copying objects into the secondary cache multiple times 
if the input stream of the Cache operator contains dupli- 
cates. During method invocations, an object is faulted 
into the primary cache from the data sources if it is not 
found in the primary or the secondary cache, just as in a 
traditional middleware system 

The double caching scheme shown in Figure 4 has 
two important advantages. First, copying objects into a 
secondary cache, rather than directly into the primary 
cache, prevents the primary cache from being flooded 
with query results, thus displacing frequently used ob- 
jects. Consider, for example, a case in which the query 
optimizer estimates that the Cache operator copies, say, 
100 obj ects; but in fact, the optimizer errs because of out- 
dated statistics and the Cache operator would in fact copy 
millions of objects into the cache. The double caching 
scheme makes it possible to control and limit the impact 
of Cache operators. Second, the overhead of copying 
objects into the cache as a by-product of query execution 
can be reduced in such a double caching scheme. In the 
primary cache, objects are managed and replaced in the 
granularity of objects—this is reasonable because indi- 
vidual objects are faulted in and replaced in the primary 
cache during method invocations. The secondary cache, 
on the other hand, is organized in chunks; that is, when 
a Cache operator begins execution it will allocate space 
for, say, 1000 objects in the secondary cache, knowing 
that it is likely to copy many objects. In other words, the 
double caching scheme makes it possible to efficiently 
buMoad the cache with relevant objects. 

However, the double caching scheme also has some 
disadvantages: (1) it incurs additional computational 
overhead in order to copy objects from the secondary 
cache into the primary cache when the objects are 
needed; (2) it does waste main memory because after an 

object has been copied from the secondary into the pri- 
mary cache, it is cached twice; (3) it requires some (al- 
beit little) tuning effort—this is the flip side of the coin 
which provides better control over the impact of Cache 
operators. In our experience, the advantages of the dou- 
ble caching scheme outweigh these disadvantages, but, 
in general, the tradeoffs strongly depend on the kind of 
application being processed by the middleware system. 

4.2   Caching in Middleware for Diverse Sources 

Garlic has been designed with an emphasis on handling 
diverse sources of information, especially sources that 
do not have traditional database capabilities, though they 
may offer interesting search and data manipulation ca- 
pabilities of their own. Loading the middleware cache 
with query results is particularly attractive for systems 
like Garlic. First, communicating with some sources 
may be expensive in Garlic; almost any Web source, for 
example, will have a highly variable and typically long 
response time. In such situations, the benefit of Cache 
operators is particularly high (i.e., parameter k is large). 
Second, some sources are unable to just produce an ob- 
ject given its oid; that is, they do not support the faulting 
in of objects. Applications that operate on data stored 
in such data sources must load relevant objects as a by- 
product of query execution; otherwise, such applications 
simply cannot be executed.4 

Loading the middleware cache with query results also 
raises several challenges in this environment Diverse 
sources have diverse data. It may not always be prac- 
tical to cache an entire object For example, an object 
may have large and awkward attributes that should only 
be brought to the middleware if they are really needed. 
Alternatively, it may be desirable to cache values that 
are actually computed by methods of a data source be- 
cause these values are frequently referenced by appli- 
cation programs. So, a flexible notion of "object" is 
needed. Garlic provides some flexibility in defining ob- 
jects. Garlic communicates with sources by way of wrap- 
pers [RS97]. A wrapper writer must understand the data 
of a source and describe it in terms of objects. The de- 
scription can indicate for each attribute (and method) of 
an object whether it should be part of the cached rep- 
resentation of the object. Garlic has access to this de- 
scription during query processing, and can use it to de- 
cide what attributes and/or methods to include in a thick 
plan. Ideally, however, we would cache application ob- 
jects which could include data from several collections, 
possibly from different data sources, and let program- 
mers define such application objects for each applica- 
tion program individually. At present we have no mech- 
anism to cache such usCT-defined application objects, but 
caching the underlying objects serves the same purpose, 
by bringing the data needed to construct the application 

4 In such situations, our cost-based approach must be extended to 
make sure that the winning plan contains a Cache operator. 
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Collection Base 
cardinality 

Data 
source 

course 12,000 UDB 
department 250 UDB 

coursesecrjon 50,000 UDB 
professor 25,000 UDB 
student 50,000 UDB 

kids 116,759 UDB 
NotesCourses 12,000 Notes 

NotesDepartments 250 Notes 
WWWPeople 25,000 WWW 

Table 1: Test Data Sources and Object Collections 

Query Data 
sources 

Output 
cardinality 

select c.oid from course c where c.deptno< 11 UDB 500 
select coid fromNotesCourses c 
where c.course_dept< 11 Notes 500 
select p.oid from WWWPeople 
where p.WWWcategory- 'professor' 
and p.WWWhame like 'professorNamel5%' 

WWW 500 

UDB Notes WWW 

no caching 47.8 22.9 3538.5 
traditional caching 22.9 182 1762.3 
enhanced caching 2.2 12.7 11.9 

Table 2: Benchmark Queries for Experiment 1 

object to the middleware server. 

5   Experiments and Results 

This section presents the results of experiments that 
demonstrate the utility (and even, the necessity) of load- 
ing a cache with query results by studying the overall 
running times of applications that involve queries and 
methods. Next, we look at how query planning time is 
affected by the three Cache operator placement strate- 
gies. Finally, we compare the quality of plans produced 
by the three approaches. We begin with a description of 
the experimental environment. 

5.1   Experimental Environment 

The experiments were carried out in the context of the 
Garlic project, using the double caching architecture de- 
scribed in Section 4.1. For our experiments, we adapted 
the relational schema and data from the BUCKY bench- 
mark [CDN+97] to a scenario suitable for a federated 
system. The test data is distributed among three data 
sources: an IBM DB2 Universal Database (UDB), a Lo- 
tus Notes version 4.5 database, and a World Wide Web 
(WWW) source. The WWW source is populated with 
data from UDB at the time of query execution using 
IBM's NetData product The data collections, base car- 
dinalities, and distribution among data sources are shown 
in Table 1. The Garlic middleware and the UDB and 
WWW databases run on separate IBM RS/6000 work- 
stations under ADC; the Notes database resides on a PC 
running Windows NT. All machines are connected by 
Ethernet. In all experiments, the middleware cache is 
initially empty. 

52   Experiment 1: The Value of Caching 

The first set of experiments shows the importance of 
caching in general, and of our enhanced caching (load- 
ing the cache with query results) in particular. We mea- 

Table 3: Total Running Time [sees] 

sured the running times of three simple application pro- 
grams that initiate the execution of a query and invoke 
two methods on each object of the query result. The 
queries used in the three application programs are given 
in Table 2; they are simple one-table queries against the 
UDB, Lotus Notes, and WWW databases. For these sim- 
ple queries, all three Cache operator placement strategies 
presented in Section 3 produce the same plan: Cache- 
Ship-Scan. Each method involves reading the value of 
one attribute of the object to which the method is bound. 
The size of the primary and secondary cache are cho- 
sen such that all relevant objects fit in both. We ran 
each application program ten times (beginning with an 
empty cache each time) and report on the average run- 
ning times. 

Table 3 shows the results. As expected, enhanced 
caching wins in all cases. The gains are particularly pro- 
nounced for the WWW application because interaction 
with the WWW database, as required to fault in objects, 
is particularly expensive—even if the WWW server is 
only lightly loaded and has all information available in 
m?rin memory. The savings in cost are relatively low for 
the Notes application because faulting in objects from the 
Notes database is quite cheap so that the cost of query 
processing dominates the overall cost of the application 
in this case. In all cases, traditional caching, which faults 
in obj ects when they are used for the first time as part of a 
method invocation, beats no caching because it saves the 
cost of interacting with the data sources for the second 
method invocation. 

In this experiment, the application program accesses 
all objects returned by the query; i.e., F = 1. For 
smaller F, the savings obtained by traditional and en- 
hanced caching are less pronounced. As mentioned in 
Section 332, the benefit increases linearly with F; in 
the extreme case, for F = 0, no caching and traditional 
caching have the same running time as enhanced caching 
(in fact, a little better). 

53   Experiment 2: Query Planning Times 

The next experiment studied the planning times of the 
three Cache operator placement strategies. The two pa- 
rameters that impact the planning time most are the num- 
ber of collections involved in the query and the num- 
ber of candidate collections. Our queries join collections 
stored in UDB and Notes. We varied the number of col- 
lections involved in the query and in all cases, all collec- 
tions were considered candidate collections. Thus, these 
queries can be seen as tough cases which are expensive 
to optimize. 
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Figure 5: Planning Times forUDB/Notes Queries 

Figure 5 shows the resulting planning times for each 
of the three approaches presented in Section 3. As a base- 
line, we also show the running time of a traditional op- 
timizer that does not generate plans with Cache opera- 
tors. Again, there are no surprises. The full-fledged cost- 
based approach becomes prohibitively expensive if there 
are more than four candidate collections in a query. At 
this point one of the two heuristics or the variants pro- 
posed in Section 3.4 should be used. Up to that point, 
however, the cost-based approach has negligible over- 
head and can safely be used. Comparing the "caching at 
the bottom," "caching at the top," and "traditional opti- 
mizer" lines, we see that the two heuristics have virtually 
no overhead. 

5.4   Experiment 3: The Right Caching Decisions 

The last set of experiments demonstrates the need to 
carry out cost-based Cache operator placement in certain 
situations. The experiments show: 1) how a Cache oper- 
ator at the top can increase the cost of the other operators 
that sit below; 2) the overhead introduced by unneces- 
sarily caching a large number of objects when a Cache 
operator is placed at the bottom; 3) the need to avoid 
flooding the secondary cache with irrelevant objects; and 
4) that it is not always beneficial to have Cache operators 
for all candidate collections, even when accessing slow 
sources. We used queries over collections from the UDB 
and WWW databases. The queries and the best execution 
plan for each query are presented in Figure 6. "Caching 
at the top" works best for the first query; for the second 
query, "caching at the bottom" works best; and for the 
third query, no Cache operator at all should be generated. 
We again measured the total execution time of three sim- 
ple application programs that each execute one of these 
queries and invoke one method on each object returned 
by that query. The method simply reads the value of one 
attribute. The size of the primary cache was set to 1000 
objects which is more than enough to hold all objects 
involved during method invocations. For the first query 
(Ql), we studied two configurations for the secondary 

Table 4: Total Running Time [sees] 
size of sec. cache: medium=1000 obj.; large=6000 obj. 

cache: (a) medium, with a capacity of 1000 objects, and 
(b) large, with a capacity of 6000 objects. We varied the 
size of the secondary cache for Ql in order to study the 
implications of loading the cache with irrelevant objects, 
in particular for the "caching at the bottom" approach. 
For the other two queries, a medium secondary cache 
was sufficient in all cases, so we only show the results 
obtained using such a medium secondary cache. 

Table 4 shows the results. We can see that the cost- 
based approach to loading the cache with query results 
shows the overall best performance, making the right 
caching decisions in all situations. The "caching at 
the top" approach, as expected, makes suboptimal deci- 
sions for Q2 and Q3, and the "caching at the bottom" 
approach makes suboptimal decisions for Ql and Q3. 
The "caching at the bottom approach" shows particularly 
poor performance if it floods the secondary cache, so that 
few relevant objects are loaded as a by-product of ex- 
ecuting the query (Ql with a medium-sized secondary 
cache). "Caching at the bottom" is never much worse 
than traditional caching or no caching at all, and it can, 
therefore, be seen as a conservative method of extend- 
ing today's database systems to load a cache with query 
results. The "caching at the top" heuristic, on the other 
hand, is as much as 37% more expensive than traditional 
caching in our experiments, and could easily be more. 
In these experiments, traditional caching and no caching 
show approximately the same performance because ev- 
ery result object is accessed exactly once as part of the 
method invocations. 

6   Related Work 

Most work on data processing in distributed systems has 
focused either on query processing or on caching, and 
most middleware systems today are built in such a way 
that query processing does not affect caching and vice 
versa. For example, SAP R/3 [BEG96, KKM98] is a 
very popular business administration system that sup- 
ports the execution of (user and pre-defined) queries and 
methods, processing applications that involve both as de- 
scribed in Section 2.1. Persistence [KJA93] is a mid- 
dleware system that enables the development of object- 
oriented (C++, Smalltalk, etc.) applications on top of a 
relational database system. That system typically pushes 
down the execution of queries to the relational database 
system and executes methods in the middleware using 
caching. Query processing and caching do not interact in 
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Figure 6: Benchmark Queries for Experiment 3 

either system, so both would benefit from the techniques 
presented in this paper. 

Database systems that have a data shipping architec- 
ture naturally load a cache with query results; exam- 
ples are most object-oriented database systems such as 
02 [D+90]. These systems bring all the base data to the 
middleware (or dient) to evaluate a query and that base 
data is then cached for subsequent queries and methods, 
if the cache is large enough. In some sense, data ship- 
ping, therefore, corresponds to the "caching at the bot- 
tom" approach - however, there is no Cache operator 
pull-up and no way to execute joins at data source(s). 
This causes data shipping to perform poorly for many 
types of queries [FJK96]. 

Another experimental database system that supports 
query processing and caching is KRISYS. In an early 
version which was targeted for engineering applications, 
KRYSIS used queries to load the cache with relevant ob- 
jects [HMNR95], as proposed in our work. However, 
that version only supported a variant of the "caching 
at the top** approach (without Cache operator push- 
down). In a more recent version [DHM+98], KRY- 
SIS supports predicate-based caching. Predicate-based 
caching [KB94]. like view caching [Rou91] and seman- 
tic caching [DFJ * 96], makes it possible to cache the re- 
sults of queries. The purpose of predicate-based caching, 
however, is to use the cache in order to answer future 
queries (rather than for methods). Hence, it requires sig- 
nificantly more complex mechanisms for tracking cache 
contents, and is not geared for the lookup of individual 
objects. 

Two further lines of work are relevant. The first is 
cache investment [FK97]. Cache investment also ex- 
tends a query processor to make it cache-aware. Again, 
however, the purpose of cache investment is to load 
the cache of the middleware in such a way that fu- 
ture queries (rather than methods) can be executed ef- 
ficiently. The second related line of work is prefetch- 
ing [PZ91, CKV93, GK94]. The purpose of prefetching 

is to bring objects into the cache before they are actu- 
ally accessed. Prefetching, however, is carried out as a 
separate process, independent of query processing. 

7   Conclusion 

In this paper, we showed that caching objects during 
query execution dramatically speeds up applications that 
involve both queries and methods in a middleware (or 
client server) environment The performance wins that 
can be achieved by this method are huge; they are par- 
ticularly high in environments in which interactions with 
the data sources are very expensive; e.g., data sources on 
the Internet. In certain scenarios, loading a cache with 
query results in this way is even necessary; such a sit- 
uation arises in heterogeneous database environments in 
which some data sources are not able to respond to re- 
quests for individual objects. 

To implement our approach we extended the cache 
manager and the query processor of a middleware sys- 
tem. We used a double caching scheme to reduce the 
overhead of our approach and to avoid flooding the pri- 
mary cache with (useless) objects as a by-product of 
query execution. We explored three alternative ways 
of extending the query processor: "caching at the top," 
"caching at the bottom," and "cost-based caching." The 
first two approaches are simple heuristics which can 
be easily incorporated in an existing query processor 
and which typically do not increase query optimization 
times; however, the "caching at the top" approach can 
result in substantially increased query execution times, 
while the "caching at the bottom" approach may cache 
many useless objects, thereby causing additional ova- 
head and providing no benefit if the cache is too small. 
The third approach is significantly more complex to im- 
plement and increases optimization times of complex 
queries substantially, but is always able to make the best 
decisions of the three approaches. Based on these obser- 
vations, we propose to use the full "cost-based" approach 
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for simple queries that involve no more than four collec- 
tions and heuristics for more complex queries. In the 
future, we plan to investigate the tradeoffs of optimiza- 
tion time and application performance for some of the 
variants described in Section 3.4. 
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