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Report developed under SBIR contract. In this Phase I SBIR research we demonstrated the feasibility
of an information extraction (IE) system that can leverage semantic representations to significantly
increase end-to-end recall for the IE task while maintaining or improving precision. Our end-to-end
Ontology-Based IE (OBIE) system combines machine learning techniques with a novel architecture built
around a shared domain ontology. This architecture enables interaction between different levels of the IE
processing stream simultaneously through the shared ontology. By incorporating hierarchical knowledge
in their learning algorithms, IE modules can perform their extraction tasks with greater depth and
accuracy. Bootstrapping algorithms were extended to automatically learn the ontology of a new domain,
to assist in training the IE components, and to reduce the burden of annotation on the end-user. Broad-
coverage and rare-case extraction rules were augmented by classifiers induced from the trained ontology
to shore up the precision typically lost by such rules. Performance metrics allow a preliminary
characterization of recall and precision gains enabled by the proposed architecture. Our Phase I research
and development of a proof-of-concept prototype demonstrated the feasibility and utility of OBIE’s
ontology-based IE capability and provides a solid foundation for our Phase II implementation.
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1 Introduction

The unprecedented ability to access information on-line provided by the World Wide Web
and other Open Source text databases has created an overwhelming amount of free text and a
concurrent need for the automatic mining and extraction of information from that text. In
response to these needs, the field of information extraction (IE) has arisen to address the goal of
creating domain-independent, portable systems capable of extracting information from free text.
Driven in large part by the DARPA-sponsored Message Understanding Conferences (MUCs)
[SAIC, 1998], IE technology has evolved a capacity to extract shallow (i.e., verb-centered) events
and named entities from text through a variety of both handcrafted and statistical, corpus-driven
text analytic approaches. Deeper extraction is performed by identifying the relationships
between the output lower-level entities and events via scenario pattern matching (refer to
[Muslea, 1999] for a summary) and assembling them into scenario templates (e.g., terrorist
activities, corporate succession events, etc.). While statistical techniques have made some
inroads into this more challenging IE task of complete template extraction, hand-derived systems
still enjoy a slight edge in performance due to the encoding and application of human ingenuity.
Such handcrafted systems do not lend themselves to domain-portability, however, and the trend
in IE over the last few years has been a shift to corpus-driven, automatic approaches for all levels
of the IE task.

The traditional metrics for accuracy within the IE community are those of recall and
precision. Recall is the ratio of correctly extracted items (entities, template slots, or complete
templates, depending on the granularity of the IE task) to the number of items actually present in
the text. Precision is the ratio of correctly extracted items to the number of items both correctly
and erroneously extracted from the text. A low recall measure corresponds intuitively to many
false negatives; that is, many items that should have been extracted were not. A low precision
measure corresponds to many false positives; that is, many items were extracted when they
should not have been. Another metric, the F-score, is sometimes used to combine both precision
and recall into one score. The F-score used in this proposal, F = (2 * precision * recall) /
(precision + recall), equally weights both metrics.

There is a generally recognized trade-off between precision and recall in that points in
precision may typically be purchased at the cost of some points in recall, and vice versa. The
reason for this trade-off stems from the high redundancy of natural language: an item may be
referred to by many different words configured in many different ways, and a training set for an
IE system is likely to have a sparse representation of this infinitely expressive space. This creates
tension between the specificity of examples derived from a training corpus and the need for
generality sufficient to process new text. This tension is of fundamental concern to all machine
learning tasks.

IE systems generally have tended towards higher precision and lower recall, primarily
because learning systems are driven by the features available in the training corpus, which as just
mentioned are sparse with respect to the total expressiveness of natural language. Generalizing
without over-generalizing (thus increasing recall without decreasing precision) has proven a
difficult problem. State-of-the-art end-to-end IE systems have pretty much leveled-off at F =
60% [Appelt and Israel, 1999]. In the MUC-6 evaluations, for example, typical template-
extracting systems performed in the range of a recall of 43 to 50% and a precision of 59 to 70%
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for F-scores of 51 to 56% [Grishman, 1997]. Scores range higher in specific IE subtasks (e. g.,
named entity discovery, part-of-speech tagging, etc.) but preserve the general trend of higher
precision and lower recall. The objective of improving recall while maintaining (if not also
increasing) precision has therefore become an important goal in IE research. This final report
describes our Phase I SBIR efforts in meeting this goal.

1.1 Phase | Objectives

The primary goal of the Phase I research was to develop and assess the feasibility and utility
of a new architecture for portable end-to-end IE systems designed to significantly increase system
recall while maintaining or increasing precision. All of the tasks set out in the Phase I proposal
were successfully accomplished and indicate that an end-to-end IE system incorporating the
developed techniques will perform high-precision, high-recall extraction of events, entities, and
their relationships within a given domain of interest. Further, the resulting system will be user-
centered, will require little domain or system expertise on the part of the user, and will facilitate
the sharing of information between domains via shared ontologies.

The Phase I prototype addresses the goal of increased recall in two ways. First, it
demonstrates that a centralized ontology facilitates the sharing of semantic information between
modules in the IE stream and provides an efficient common representational structure (similar to
a blackboard in many classical Al systems) for use by any component. The hierarchies of the
ontology permit rules and lexicons to be specialized to nodes at precisely the right level of
abstraction. This maintains precision by filtering out the application of rules to non-semantically
related concepts while increasing recall by generalizing the rules to operate on all members of the
conceptual hierarchy rooted at that level in the ontology. Rules that extract the entities related to
explosions in a terrorist domain, for example, are specialized enough to preclude application to
non-explosive weapons (e.g., to guns, a sibling concept in the weapons abstraction hierarchy) but
are applied to all specializations of an explosive, including grenades, mines, and so forth.

The second manner in which OBIE increases recall is by allowing very general or rare-case
rules to be added to its extraction rulebases. Many existing IE systems attempt to learn only the
most predictive of rules, discarding rules that extract too many irrelevant jtems. This process
favors precision at the expense of recall. OBIE takes the opposite approach, permitting any rule
that extracts relevant information to be included in its rulebases. To ensure that recall is not
simply being purchased at the expense of precision, OBIE then shores up the reduced precision
via a different process. The training procedure by which lexicons and rulebases are associated
with nodes in the ontology efficiently captures information that can be used to discriminate
between different semantic interpretations of an item extracted by a high-recall rule. This
information is exploited by OBIE to create a suite of classifiers that are capable of enforcing
precision when any of OBIE’s rules are applied. These classifiers thus restore the precision lost
by favoring broad-coverage rules over only highly predictive rules.

In addition to addressing the primary goal of increased recall, OBIE also addresses several
secondary goals deemed important to the successful deployment and commercialization of a
fully-functional IE system. OBIE employs a user-centered approach to text analysis that assumes
little domain or system expertise. Bootstrapping discovers the highest coverage rules first,
allowing an iterative exploration of a new domain while maximizing the benefits of user training.
The user can get a functioning extraction system up and going in a short amount of time, with
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each iterative cycle of training resulting in increased accuracy and coverage. Additionally, OBIE
can assist in the actual modeling of the domain by integrating ontology development with the
discovery and training phase of the system. Some preliminary investigations were conducted
which characterized the degree to which semi-automated ontology discovery could be integrated
within OBIE’s training cycle.

Our Phase I research and development have laid the groundwork for the Phase I
implementation of a complete system for high-accuracy, user-centered, domain-independent text
extraction, and its eventual commercialization. This research addressed the primary objectives
identified in the Phase I proposal as being necessary to support the goal of high-recall, ontology-
driven information extraction:

* Develop an ontology supporting generalization and compositional hierarchies accessible
via an Application Programming Interface (API) to form the backbone of the IE
processing pipeline. During our Phase I research, we identified several types of ontological
relationships necessary to represent entities and events within any arbitrary domain. We
identified the need for a simple abstraction hierarchy to capture varying levels of generality
among ontology nodes and a simple compositional hierarchy to specify role and part-of
relationships between nodes. A frame-based representational scheme similar to Memory
Organization Packets [Schank, 1982] encapsulates all of the necessary characteristics and was
chosen as the basis of our implementation. This scheme supports abstraction and packaging
links as well as the infrastructure required to attach rulebases and lexicons to specific nodes
in the ontology. A rudimentary API mediates access to the ontology; any component of the
system is free to elaborate or consult the ontology when desired. This common structure
facilitates automatic communication and sharing between modules of the IE stream.

¢ Create a simple, graphical toolkit to allow browsing of the ontology, to support viewing
and annotation of corpus documents, and to support algorithmic interaction with the
end-user. While the GUI components of the prototype were not emphasized, sufficient user
interfaces were developed to support the Phase I research effort. The interfaces permit visual
inspection of the ontology and the current state of its hierarchies and infrastructure, including
lexicons and node instantiations. Learning interfaces present entities and events for
classification in their original textual context, giving maximum support to novice end-users
unversed in the internals of the system. Document browsers permit the viewing of syntactic
and semantic features within the corpus of interest. Clustering visualizations are used to
uncover the structure of events of interest to the user.

¢ Develop bootstrapping and active learning techniques to automatically discover the
domain ontology, thereby reducing the burden on the end-user when porting OBIE into
a new domain. Our vision of a commercial version of OBIE involves both the automated
elaboration of domain ontology structure from free text under guidance of a non-expert end-
user and the automated discovery of the lexicons and rulebases that permit the mapping from
free text into those ontological representations. The Phase I effort emphasized those
processes that best support high-recall information extraction rather than those that address
the more abstract questions of ontology induction from free text. For this reason, the OBIE
prototype assumes a largely static initial ontology that is to be used during the IE process.
New nodes (called scaffolding nodes) are created in the ontology during the training step to
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support the learning of mappings between natural language and target nodes of the ontology.
Functional knowledge is also represented explicitly within the ontology to permit efficient
marker-passing algorithms to assist in text processing tasks.

Through bootstrapping techniques coupled with an active learning approach to solicit
feedback from the user, the prototype demonstrates how lexicons and rulebases may be
learned that allow ontological nodes and their relationships to be recognized from text.
These rules and lexicons may be generated quite efficiently from only a few sample seed
instances by an end-user engaged in simple classification tasks (i.e., “Is this entity in this
context an example of the class you are interested in?”). By allowing the results of event and
entity bootstrapping to cross-seed each other, the OBIE system can be rapidly deployed in a
new domain. Classifiers were also developed from these rules and lexicons that permit high-
recall rules (e.g., those that are highly general or rare-cases) to be used by extraction
applications. These classifiers enforce the precision of high-recall rules, ensuring that recall
is not purchased at the expense of precision.

In accordance with our second longer-term objective of automated ontology induction
from free text, we also investigated algorithms and techniques that might permit the actual
structure of the ontology to be similarly bootstrapped from text. We have identified (though
not implemented) several promising techniques described in Section 2.1.6 based on rulebase
and lexicon clustering that may be able to facilitate ontology discovery automatically or
through the informed guidance of the end-user. The OBIE prototype includes several tools
supporting the investigation of these techniques.

* Implement a semantic analysis IE component and a scenario pattern-matching
component capable of leveraging the ontology to achieve increased recall without
reducing precision. During Phase I, we implemented two application tools: A semantic
tagger and a scenario-template event extractor, that integrate with the ontology to perform
their tasks. Each tool leverages any work done in elaborating the ontology during training by
the other tool to its own advantage. The training performed to allow OBIE to recognize
entities for semantic tagging permits rapid bootstrapping of the event extractor and vice
versa. Both components exploit the same representational structures and classification
algorithms to perform their respective tasks. We present some preliminary results
demonstrating the effectiveness of the OBIE approach.

* Develop a limited prototype that highlights OBIE’s most critical features and
demonstrates the feasibility of the proposed approach. The prototype developed as part
of our investigation served three important functions. First, it was a useful research platform,
allowing us to better understand the interplay of abstract ontological representations with the
actual instances of their occurrence in text. This also allowed us to characterize the trade-off
between precision and recall, permitting us to increase recall while maintaining precision
through the use of trained classifiers. Second, the prototype was an effective demonstration
tool, since it was a functional test model illustrating the actual process used to rapidly
bootstrap IE applications in a free text environment. In a short twenty-five minute demo
requiring just four seed terms (“bomb”, “grenade”, “mine”, and “died”), a fully functioning
extraction process is bootstrapped by the prototype. This process extracts 16 scenario
templates describing bombing events (including the weapon used, any casualties, and the
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bombing location) from a test set of 200 documents. Third, the prototype serves as the

launching pad for the design of our Phase II system and the ultimate commercialization of an
OBIE-like system.

In addition to meeting the primary objectives laid out in the Phase I proposal, we also
discovered during the implementation of the prototype that the technique of employing classifiers
to shore up high-coverage extraction rules could significantly increase recall. This technique was
not predicted in the original proposal but has since become a foundation to our approach. We
therefore introduced and satisfied an additional goal to those originally proposed:

* Develop a suite of classifiers capable of restoring precision for broad-coverage
extraction rules. We developed three different types of classifiers to help enforce the
precision lost by favoring rare-case or overly general (i.e., high-recall) extraction rules.
These classifiers used lexical similarity, similarity in linguistic pattern frequencies, and
sentence similarity to classify entities extracted from text via such extraction rules. The use
of these classifiers permits OBIE to favor rules that enhance recall while avoiding the
traditionally associated penalty of decreased precision.

2 Phase | Investigation

The Phase I research objective for OBIE was to develop and assess the feasibility and utility
of a new architecture for portable end-to-end IE systems designed to significantly increase system
recall while maintaining or increasing precision. The new approach departs from the traditional
architecture consisting of a loosely coupled pipeline of IE components (Figure 1) to a tightly
integrated, ontology-based IE system that permits a natural interaction between components and
with a non-specialist end-user (Figure 2). Active learning and bootstrapping are used to
intelligently adapt both the ontology of the system and its IE components to a new domain
without imposing the heavy burden of text annotation on the end-user required by traditional
supervised learning algorithms. Classification methods that exploit the results of bootstrapping
permit the incorporation of general, broad-coverage extraction patterns by verifying the results of
each extraction.

Lexical Partial Semantic Scenario Coreference Merging
— Analysis (g Syntactic [ g/ Analysis ! Pattern —J»{  Analysis — ] and —p
Analysis Matching Inference

Figure 1. Traditional Pipeline IE Stream
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Figure 2. Ontology-Based IE Stream

This architecture provides a natural solution to several recall-limiting problems (identified

early on from a review of the IE literature) that have kept the accuracy of IE systems artificially
low:

L.

There is no feedback between modules in most IE systems. Typically, information made available by
components downstream is not accessible to modules upstream. This is largely a consequence of the
black-box nature of each IE component. No effort is made to share representations or techniques
across modules. The benefits of each representation are constrained to the module and are not
available to other modules, even when such information might be useful. Additionally, errors that
occur early on in the stream are propagated (and sometimes amplified) by subsequent processing
stages. A methodology to allow all components of the system to work in an integrated manner and to
learn from each other would be of benefit [Glickman and Jones, 1999; Roth, 1998]. OBIE offers
such a methodology by providing a shared data structure (the ontology) to all modules. This
ontology also enforces a common semantic interpretation by all modules of the IE stream during
different phases of text processing. In the Phase I prototype, the event extractor application makes
use of the ontological structures built up by the semantic tagger, and the semantic tagger
automatically accesses and tags the entities bootstrapped during training by the event extractor.

IE systems that rely purely on lexical or syntactic features of the input corpus are limited by the
informational content of that text. There is a general consensus that the F = 60% rough upper bound
that limits current IE systems is a byproduct of the informational content readily accessible by
systems capable of shallow syntactic processing with little or no recourse to domain models [Appelt
and Israel, 1999]. External sources of knowledge may be necessary to surpass that 60% ceiling. For
example, semantic networks have been used by [Humphreys, et. al., 1997] to make inferences from a
source outside of the input text during event coreference resolution. (Coreference resolution
involves recognizing different descriptions of the same entity or event, including pronoun use and
anaphora.) External lexicons and semantic nets such as WordNet [Miller, 1995] have been employed
by numerous IE researchers, but the gains in lexical or semantic breadth they provide are typically
offset by having to deal with rare-use cases not relevant to the domain. The proposed ontology
provides a portable, automatic knowledge source tuned precisely to the domain under consideration.
Ontological representations of domain objects are sharable across domains, though new training is
necessary to tune the lexicons and rulebases of the ontology to the idiosyncrasies of each domain.

Mamny IE systems do not effectively leverage the involvement of an end-user. While end-user
involvement is crucial to the porting of an IE system to new domains, a consensus is emerging that
traditional supervised learning (in which a human annotates a large set of test cases within a domain
for use in training) is an inefficient use of human resources, creating a bottleneck in the IF, process
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[Kehler, et.al., 1998; Glickman and Jones, 1999; Jones, et. al., 1999; Soderland, 1999; Thompson, et.
al., 1999]. Because of this bottleneck, insufficient amounts of annotated text exist from which to
effectively train systems when porting them across domains, thereby decreasing the accuracy of those
systems. Further, the annotations provided by a non-specialist human agent reduce the semantic
knowledge of that agent into an impoverished representation (a simple mapping between text and
templates or other entities) rather than capturing useful domain knowledge as a natural part of the
interactive process. Bootstrapping and active learning are two techniques used by OBIE to diminish
the burden of text annotation. Both techniques are part of the current trend away from purely
supervised learning. The combination of both approaches allows iterative development of a text
extraction system in which the best-coverage rules are discovered quickly, taking maximal advantage
of whatever amount of effort the user is willing to invest in training components of the system.

Many IE systems favor precision at the expense of recall. There is a generally recognized trade-off
between precision and recall in that points in precision may typically be purchased at the cost of
some points in recall, and vice versa (see Section 1). IE systems generally have tended towards
higher precision and lower recall, in part because many systems favor rules that extract many
instances of a target item without introducing too much noise; that is, high-precision rules. Rare-case
rules are not deemed reliable enough from which to generalize and high-coverage rules often
introduce too much noise into the system to be worth the trouble of inclusion. OBIE exploits
information gathered from the user during bootstrapping and the organizing structure of the ontology
to generate suites of classifiers capable of shoring up the precision of rare-case and high-coverage
rules. This permits OBIE to favor recall without paying the classical penalty of significantly reduced
precision.

Over the course of the Phase I research, the following areas were addressed in approximate

order:

Ontology Development — An ontology accessible via a rudimentary API was developed
capable of representing entities, events, and their relationships through abstraction and
compositional hierarchies. A simple ontology viewer was developed and a sample ontology
defined for use in processing texts from the domain of Latin American terrorist news articles
featured in MUCs 3 and 4.

Document Processing — A filter to convert texts into lower case (needed by the syntactic
parser) and to strip off identifying header information was written in Perl. The Link Parser
developed at CMU was adapted to perform phrasal segmentation and identification.
Document browsers were written to view the results of syntactic and semantic processing.

Entity Bootstrapping — Bootstrapping techniques developed by Riloff and Jones [1999]
were adapted to learn dictionaries and extraction rulebases with respect to the domain
ontology. User interactions in the form of simple, non-expert classification tasks were
developed to capture user semantic information within the ontology and were integrated with
the adapted bootstrapping cycle.

Classifier Development — A key to incorporating high-recall extraction rules into OBIE was
the development of several classifier suites capable of enforcing high precision on entities
and events extracted by those rules. Classifiers were developed that relied on lexical
similarity, pattern usage similarity, and sentence similarity between extracted literals and
training examples captured within the ontology during bootstrapping.

10
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e Event Bootstrapping — The bootstrapping techniques developed for entity extraction were
extended to perform event bootstrapping. The additional task of role assignment was
developed to learn the applicability of rules to compositional links within the ontology. The
interplay between event and entity bootstrapping was exploited to permit work performed by
one task to cross-seed the other.

* Semi-Automatic Ontology Discovery — Preliminary investigations were made to
characterize the ability of OBIE to automatically discover some of the ontological structure of
anew domain. Results suggested that event structure could be discerned through clustering
techniques but that entity structure was more problematic.

* Semantic Tagging — A semantic tagging application was developed to demonstrate entity
extraction and to evaluate the effectiveness of the classifier suites developed to shore up
precision. Positive results indicate that high-coverage rules can be successfully added to the
system without paying a significant precision penalty.

* - Event Extraction — An event extractor was developed to demonstrate simple event
extraction and more complicated inter-sentence scenario template extraction. Simple node
generators were written to generate instantiated nodes into English for result summaries.
Marker passing algorithms were developed to efficiently focus ontological processing.

These research and development tasks are implemented in the fully functioning research
prototype developed for Phase I. That prototype is the topic of the next section.

2.1 Prototype Design

Figure 3 shows the system architecture of the Phase I OBIE research prototype. To support
rapid prototyping and research, Allegro Common LISP was used for the majority of the
development effort. Some off-the-shelf C code (the Link Parser) was adapted for use in
performing syntactic phrasal segmentation and was linked with the LISP image via a Dynamic
Link Library (DLL). Perl text-preprocessing scripts were written to transform corpus texts into a
machine-readable format.
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Figure 3. OBIE Phase I System Architecture
2.1.1  Ontology Development

The initial focus of OBIE prototype development was on implementing an ontology
accessible via an APIL. This API permits different components of the IE stream to elaborate the
ontology (by augmenting the lexicon or rulebase of a node, by adding new nodes, etc.) and to
access the ontology during training or extraction tasks. A frame-based semantic representation
was adopted which permits the specification of abstraction (IS-A) and composition (HAS-A)
links between nodes. Lexical strings and extraction rules are also associated with nodes in the
ontology. The semantics of a node are thus determined by the node lexicon that maps language
into the node, the extraction patterns that extract or activate the node within some linguistic
context, and the linkages between that node and other nodes of the ontology. (See Figure 4 for a
diagram of a portion of the ontology used by OBIE.)

The top level of the ontology includes abstract representations for the basic building blocks
of a domain, namely the entities and simple (atomic) events that compose it. Functional
knowledge may be associated with nodes in the ontology for efficient processing. For example,
functions to generate nodes into English are attached to the abstract entity and event nodes of the
ontology. Scenario templates are represented by template nodes, which consist of a collection
(similar to a script) of atomic events that are to be extracted as a group from text. Finally, a class
of scaffolding nodes captures irrelevant semantic senses for each entity or event node undergoing
training in the ontology. These scaffolding nodes, in conjunction with the entity and event nodes
they mirror, are used to store information captured from user classification tasks in support of the
precision-enhancing classifiers mentioned earlier.

“Two bombs exploded yesterday
in San Miguel.”
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Figure 4. A Portion of the Prototype Ontology
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The task of entity and event bootstrapping is to learn the linguistic mapping between natural
language and the ontology. For example, “two bombs” refers to an instance of the node
representing the semantics of an explosive device. “San Miguel” is a geographical location and
should activate that concept in the ontology when encountered in input text. The verb phrase
“exploded” indicates that a bomb explosion took place, an atomic event. The extraction pattern
exploded in <x> extracts entities that potentially play the role of location in the bombing event
frame. In ontology-based information extraction, the extraction task is thus recast as an ontology
recognition task. Processing of the sentence “Two bombs exploded yesterday in San Miguel”
involves instantiating a bombing event frame that captures the fact that two bombs were the
weapon used and that the location was San Miguel. This explosion event itself is incorporated
into a scenario template along with the other atomic events (e.g., people getting hurt) that fully
describe terrorist bombings; this template is not shown in the diagram due to spatial constraints.

Killing
Instrument
Gun Stone Fire Projectile
Cutting Device Explosive Torture
Hand | Molotov - issil
gun Grenade Bomb Cocktail Missile
Machine Gun p— T l — Rocket
Vehicle Bomb Mine
Mortar —
Dynamite Aerial Bomb

Rifle _j

Figure 5. The MUC Killing Instruments Ontology

As a starting point for the ontology used in the prototype, we encoded the actual ontology for
killing instruments defined for the MUC 3 and 4 participants. This hierarchy is shown in Figure
5. (Note that node i-o-explosive.2 in Figure 4 should really be i-o-bomb.2 according to the
ontology of Figure 5 but has been changed for clarity within the diagram.)
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2.1.2  Document Processing

A document management system was developed to import and store training and test
documents within OBIE. As a necessary precondition to bootstrapping, which relies on an
exhaustive list of the phrasal patterns that occur in training text, a syntactic parser was needed to
segment input sentences into noun, verb, object, and prepositional phrases. An off-the-shelf
syntactic parser called the Link Parser developed at CMU [Sleator and Temperley, 1993] and
available for research purposes was chosen for this task. (The Link Parser is virtually the only
freely available, competent parser around.) This parser is used to segment the input text into
syntactically tagged phrases. These phrases are then used to heuristically generate a library of
patterns capable of extracting noun phrases from text.

The Link Parser is a full-sentence parser, which is non-optimal for our purposes (only partial
parsing is necessary for phrasal segmentation) because full-sentence parsers inevitably cannot
handle the richness of actual language use. The parser is thus a significant source of errors in our
IE process. (Annoyingly, these are largely recall-diminishing errors, since significant sections of
text are ignored or are incorrectly parsed.) Despite these errors, it certainly performed well
enough to be of significant use to the research prototype. Fortunately, the techniques used by
OBIE are quite robust and do not require perfect text parses.

2.1.3 Entity Bootstrapping

With document preprocessing in place, the next step was to adapt entity bootstrapping
algorithms (developed by Riloff and Jones to learn dictionaries and extraction patterns; see
Section 2.2.1) to the process of mapping natural language into OBIE’s ontology. Riloff and
Jones (henceforth called R&J) demonstrate how a dictionary and set of extraction rules can

be automatically bootstrapped for a target entity (i.e., noun) class from a small set of seed
words. We extended the R&J algorithms in two ways to perform ontology-based entity
bootstrapping. First, we adapted the algorithms to learn distributed lexicons and rulebases.

Each node of the ontology learns a dictionary of the literals that correspond to natural
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Figure 6. Entity Bootstrapping Algorithm

node and a set of extraction patterns that extract the node’s lexicon items (and thus the node)
from text. Figure 6 summarizes the adapted entity-bootstrapping algorithm.

We also used OBIE’s abstraction hierarchy to specialize the extraction patterns to appropriate
ontological levels. By restricting patterns to a specific level of the hierarchy, we enforce the
optimal balance between precision and recall for an extraction pattern. As a concrete example,
consider the pattern <x> exploded, where x is the entity being extracted by the pattern. In the
Killing Instrument ontology shown in Figure 5, the rule should be specialized to the Explosive
node. Through inheritance, all specializations of the Explosive node can access the pattern (“two
bombs exploded”, “the grenade exploded”, “a mine exploded™). Abstractions of the Explosive
node can also use the pattern, since more general terms sometimes follow a specific reference in
text, as in “The bombs were planted under a car. The weapons exploded two hours later.” (Note
that the reference to weapons can be unified with the previous reference to bombs via the Bomb
IS-4 Explosive relationship if the literal “weapons” is in the Killing Instrument node’s lexicon
and the extraction pattern <x> were planted is also resident in the system. In this fashion, OBIE
can perform referent disambiguation on the fly early in the IE stream instead of relying on
decontextualized frame merging rules later in the stream to perform this step.) Siblings of the
Explosive node do not have access to the rule, however. The phrase “the rifle exploded” has a
passive semantic sense similar to that of “the melon exploded” and is different than the active
sense of “the bomb exploded”. We are likely only interested in the active sense for terrorist
domain extraction. Of course, the system could be trained to specialize the rule to the level of
the Entity node if we wanted these passive senses to be extracted. This is up to the user who
trains the system to decide.
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Figure 7. User Classification of “Mine” in Context

The second extension to entity bootstrapping involved the insertion of the user into the
bootstrapping process much earlier than R&J suggest. They have the user evaluate the final list
of extraction rules once bootstrapping is concluded — a task which requires some system
expertise by the user who must be taught what an extraction rule is and what constitutes “good”
or “bad” rules. By having the user perform simple classification tasks in context (see Figure 7)
We require no system expertise from the user.

We can also capture additional semantic information that is overlooked by R&J. Because the
contents of a node lexicon drive the bootstrapping process, unambiguous lexical items are
desirable when performing bootstrapping or the lexicons and rulebases become corrupted with
irrelevant semantic classes. (R&] utilize a clever but somewhat ad-hoc meta-bootstrapping step
to help offset this, but it remains a problem.) For example, R&J bootstrapping might add the
literal “mine” to the weapons dictionary and use it to suggest additional weapon entries.
However, the bootstrapping process then becomes quickly corrupted by multiple semantic senses
of the word. Consider the two semantic classes shown for in Figure 7. Case (a) is an instance of
a Killing Instrument mine; this semantic sense of “mine” should be added to the lexicon for the
mine ontology node. Case (b), however, is clearly an irrelevant semantic sense of “mine” and
should be rejected for use in the bootstrapping process, lest patterns that extract ore mines work
their way into the Killing Instrument extraction rulebase.

By storing the second instance as a negative example (once the user so classifies it) attached
to a scaffolding node, OBIE learns that multiple senses of “mine” exist and knows to be careful
when dealing with the literal. For example, a Semantic Tagger should tag “mines” in the first
sentence as a Killing Instrument but not in the second sentence. We realized that the semantic
information captured by OBIE from the user via classification tasks could be used to
automatically train a set of classifiers after bootstrapping to discriminate between different
semantic senses of a word. The ontology facilitates this process by efficiently storing positive
and negative training instances as part of the distributed lexicons learned during bootstrapping. It
was also apparent that the classifiers we trained could be generalized to discriminate any literal
Wwith respect to actual nodes in the ontology. That is, given a specific literal like “the copper
mine”, “the land mine”, or “the foreign debt crisis”, a classifier could determine whether the
literal was likely to be affiliated with the Mine node, the Gun node, or any other (possibly
irrelevant) node. With this realization, it occurred to us that we could afford to allow low-
precision, high-recall rules into the rulebases by using these classifiers to shore up their precision.
When a rule from a rulebase is used to extract an entity, we pass the extracted literal to a
classifier to verify that the item is in fact of the desired type.

2.1.4 Classifier Development

While not predicted by our original Phase I proposal, the importance of allowing high-recall,
low-precision rules into OBIE’s rulebases was immediately apparent in pursuit of the goal of
high-recall extraction. The more rules there are in a rulebase capable of extracting an entity (at
whatever precision), the greater the coverage and recall. We therefore extended the focus of our
research to perform preliminary investigations into classification methods that could be used by
OBIE to boost the precision of high-recall rules. Three categories of classifier were developed
and tested (see also Section 2.2.2).
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* Lexical Similarity — The first type of classifier was a simple dictionary lookup procedure
that checked the lexicons of a target node and its scaffolding node (with negative instances)
for the best match using right-to-left (head-based) relative similarity.

* Pattern Similarity — A second set of classifiers uses k-nearest-neighbor classification
techniques based on vectors of extraction pattern feature similarity. These classifiers
essentially find the node with lexicon items that are on average extracted by extraction
patterns with the same frequency distribution as the input literal. This set of classifiers in
effect looks at the pattern context for a literal over all training documents.

® Sentence Similarity — The third class of classifiers uses Naive Bayes and bag-of-word
frequencies to capture sentence contexts. These classifiers determine how similar the
sentence containing the input literal is to the sentences that contain positive instances of
lexicon items.

Generally, dictionary lookup was the most accurate, followed by pattern context, followed by
sentence context. We also investigated serial committees of classifiers. In many cases, multiple
views of an item are useful in performing disambiguation. In the ambiguous case of “mine” from
the last section, the word is listed in both the mine node lexicon and its irrelevant scaffolding
node lexicon. Simple dictionary lookup is thus not sufficient to perform classification of any
given extraction of the phrase, so contextual classifiers must contribute to the disambiguation.
An optimal committee composition mirrored the intuition of what people do when confronted
with an unknown phrase. First, see if the head of the phrase is recognized from a dictionary. If
not, see if the immediate pattern context is indicative of meaning. Otherwise, check the other
words in the sentence for clues to meaning.

Figure 8 lists some results from a study of classifier performance. We trained the system to
recognize the Killing Instrument ontology, spending about 2 hours of effort (using decidedly non-
optimized algorithms) to build a lexicon of 283 relevant entities and a rulebase of 79 extraction
rules. We then applied these rules to 200 new test documents and handed each extraction to the
classifiers to determine if the item was a Killing Instrument or was irrelevant. The rules
extracted 170 entities, 95 (or 55.9%) of which were classified by the author as irrelevant and 75
(or 44.1%) of which were Killing Instruments. Each classifier could attempt a classification or
abstain when insufficient information was available.

Tried Abstain | Correct Wrong Precision | F-Score
RHM 0.706 0.294 0.706 0.000 1.000 0.828
NB 1.000 0.000 0.724 0.276 0.724 0.840
LPS 0.912 0.088 0.812 0.100 0.890 0.901
RHM + NB 1.000 0.000 0.906 0.094 0.906 0.951
RHM + LPS 0.958 0.042 0.929 0.029 0.970 0.964
RHM + LPS + NB | 1.000 0.000 0.947 0.053 0.947 0.973
RHM + AI 1.000 0.000 0.982 0.018 0.982 0.991

RHM = Lexical Similarity LPS = Pattern Similarity NB = Sentence Similarity AI = Guess Irrelevant
Figure 8. Some Classifier Results for Killing Instruments

Dictionary lookup (RHM) within the Killing Instrument ontology and the scaffolding nodes
that mirror it correctly classifies about 71% of the entities with perfect precision. (“Tried” is the
analog of the recall statistic indicating the total proportion of cases covered by the classifier.)
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Pattern and sentence context classifiers (LPS and NB, respectively) are both willing to classify
more items (at 91% and 100% coverage), but they do so with decreased precision (89% and
72%). The committee of all three classifiers in sequence does better than any individual
classifier, classifying everything and achieving almost 95% accuracy in doing so. The final row
represents the heuristic “classify the item using the dictionaries and if it isn’t listed, assume the
item isn’t relevant.” The fact that this strategy works so well indicates that entity bootstrapping
built up a pretty comprehensive Killing Instrument lexicon, one sufficient to identify all
extractions of actual weapons. While this heuristic is effective for a relatively closed class of
entities like weapons, open classes (company names, people, etc.) must rely more heavily on
context classifiers.

2.1.5 Event Bootstrapping

Two innovations were necessary to adapt ontology-based entity bootstrapping to ontology-
based event bootstrapping. First, patterns associated with verb phrases must be identified, as
verb phrases instead of noun-phrases comprise an event’s lexicon. These patterns extract a set of
entities that can still be used to perform bootstrapping in much the same way that an entity’s
lexicon is used to bootstrap an entity. The entities that comprise the roles of an event are also
pertinent and can be added to this set for use in ranking extraction patterns. This idea is captured
in Figure 9.

/”"”"—‘MM___“\
bombs a b”dge “blew Up”
a grenade two buildings

the fmln

“detonated”

peasants guns
rifles

“shot”

terrorists three civilians

\\~_/j
Figure 9. Role Entity Overlapping in Event Bootstrapping

Assume that the lexicon for the explosion event has already been seeded with the phrase
“detonated”. Two roles are represented by the entities associated with the phrase, the perpetrator
of the detonation and the weapon detonated. We would expect that other phrases that are
associated with the bombing event would share the same roles and thus would have high overlap
with the entities the seed phrase extracts. We see that “blew up” has significant overlap in
extracted entities (due to shared roles), more so than another pattern like “shot”. By ranking
patterns based on the entities extracted by event patterns plus the entities associated with entity
lexicons from the roles of the event, OBIE can quickly identify new patterns that have a similar
semantic function to verb phrases in the event lexicon.

The second extension necessary to perform event bootstrapping is to learn the mapping
between extraction patterns and the roles of the event to which they correspond. Because OBIE
utilizes single-slot extraction patterns, each pattern will be typically associated with a single role
of the event (or it will extract semantic classes the user considers irrelevant to the event). The
user is asked to perform a categorization task as part of the event training process for role
learning. This task presents to the user a list of the entities extracted by a target pattern and a list
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of the available roles in the event (e.g., location and weapon). If any of the items in the list are
part of a role category then the user is asked to specify that category and to classify each
unknown entity in the list with respect to that category. This process is sufficient to allow OBIE
to learn which roles are mapped into by each relevant extraction pattern. The final algorithm for
event bootstrapping developed for the prototype is summarized in Figure 10.

1. User selects event node from

ontology to train. User may provide

seed terms to augment node lexicon. 2. User classifies verb patterns

anchored by seed as indicating 3. A new scaffolding
Seed: “detonated” the event occurred. node is linked to

¥ Two bombs were detonated. organize irrelevant
X The mine might have been detonated. ~ leXicon items.

‘were detonated” 4. All rules from the
training set are ranked
- source using the entities
Bomb Explosion (q.____ extracted by relevant
- - Irrelevant Event node patterns + all
weapon  _.-~ “>so location , lexicons of role nodes.
g Y “might have been
A “A detonated” “Two bombs”  +
Explosive | Location “Nicaragua”
“San Miguel”
“a bomb” “Nicaragua” “a bomb”
“two grenades” “San Miguel” “two grenades”
5. New verb patterns are @
6. Patterns are assigned to roles bootstrapped. User classifies
by the user and rulebases are new patterns as relevant or not. EP1 detonated
: <x> detonate:
updated. New patterns are added to the EP2: <x> exploded
EP1: <x> detonated = weapon appropriate lexicons. EP3: shot in <>

EP2: <x> exploded = weapon ¥ A car bomb exploded in Lima.

Figure 10. Event Bootstrapping Algorithm
2.1.6 Semi-Automatic Ontology Discovery

The success of the classifiers at identifying the relevance of entities with respect to a given
ontology node and the manner in which role overlapping helps bootstrap events suggests that
perhaps clustering techniques might be able to discern some of the relationships that structure the
domain of interest. That is, clustering might help to automatically elucidate the structure of the
ontology. While not specifically a recall-enhancing activity, this ability could assist a user in
defining a domain ontology for extraction. Such a tool would be a useful feature for a
commercial version of the system. We therefore invested a short amount of time on an
implementation of pattern-based agglomerative clustering.

This clustering technique was applied to event nodes that were trained via bootstrapping.
Visual inspection suggested that the role structure of an event could indeed be discerned within
the resulting clusters. Specifically, clustering on the bomb explosion event yielded clusters
suggestive of structural targets (bridges, buildings), locations (Bogota, Medellin), casualties
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(peasants, nuns), and weaponry (explosives, bombs). The clusters were not entirely well-defined,
indicating additional techniques and/or user-guidance would have to be integrated with the
technique to achieve better results. The possibility of semi-automatic event structure induction
raises the hope that the definition of scenario templates can be derived from text automatically
under user supervision, a central goal for user-driven information extraction systems [Wilks and
Catizone, 1999].

We also ran the clustering algorithm on the Killing Instrument lexicon to see if we could
recover some of the ontological structure defined in the MUC ontology of Figure 5. While we
were able to discern the basic division between guns and explosives, little additional structure
could be recovered. This is likely because linguistic pattern usage is fairly similar across levels
of the Killing Instrument ontology, making fine-grained structure hard to recover via this
technique.

2.1.7 Semantic Tagging

To test the techniques developed thus far, two applications similar in function to traditional
IE system components were implemented. The first of these was a semantic tagger, capable of
taking an arbitrary entity node from the ontology and tagging it (and its children) within new
input text. This component takes a parsed input test document from the document manager and
applies the rulebases for all nodes in the subtree rooted at the ontological node of interest. If any
of these rules extract a literal from the sentence, that literal is then classified by the classifier
suites. Recall that each rule in the rulebase is specialized to the nodes that it extracts. For
example, <x> detonated might be specialized to the Bomb, Mine, Explosive, and one or more
(irrelevant) scaffolding nodes based on the training data. Each of these nodes becomes the root
of a subtree in the ontology that the classifiers will consider as candidates for the literal.
Ontology search is thus constrained quite efficiently. If the classifier identifies the best fitting
node of the ontology as being the node of interest or a specialization of the node of interest, the
node is tagged with the semantic class (i.e., the ontology node name). Otherwise, the extraction
is ignored.

The semantic tagger also served as a testbed for evaluating the classifier suites (see Section
2.1.4). The interface to the tagger permits the user to choose which classifiers to employ in
performing the semantic tagging. We could thus evaluate the relative accuracy of each
classification method and of different combinations of classifiers. The data for Figure 8 was
generated via this interface.

To verify that the addition of increasingly more imprecise rules to OBIE’s extraction
databases would increase recall while not significantly harming system precision (thanks to the
classifiers), we ran another set of tests on the Killing Instrument ontology. We started with the
bootstrapped lexicon used in the F igure 8 experiment and deleted all of the extraction rules that
had been trained up. We then relearned the rules incrementally and plotted the gains in recall and
the loss in precision entailed by adding each new set of rules. We ran the experiment over a test
set of 50 documents. The author exhaustively catalogued all Killing Instrument references within
that text, discovering 71 instances. Visual inspection of the parsed documents indicated that only
53 of those instances could physically be extracted from the text via extraction rules. The
remaining 18 were either completely missed by the parser or the phrases that would normally
anchor the extraction rules around those entities were absent due to parse errors. (This will be
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mitigated in Phase II by better parsing techniques and by secondary dictionary scans of text
missed by the parser.) Recall statistics are therefore assumed from a basis of 53 total instances.

Figure 11 summarizes the results of this experiment. A total of 91 patterns were learned in
six increments. (OBIE’s highly non-optimized rulebase learning algorithms are polynomial with
respect to lexicon size due to a constant re-ranking of rules during every bootstrapping step; each
set of patterns added to the rulebase thus significantly increased processing time. While many
additional patterns remained for inclusion, we stopped at 91 rules for this experiment due to time
constraints. If implemented correctly, the rule-learning algorithm is theoretically linear in time.)
The diagram on the left shows the total number of extractions after each addition of rules. The
relative number of relevant (e.g., Killing Instrument instances) and irrelevant extractions is also
indicated. Note that as additional less-precise rules are added to the system, more irrelevant
items become extracted in relation to the number of relevant items.
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Figure 11. Behavior as Extraction Rules are Added to Rulebases

The right side of Figure 11 shows the interplay of recall and precision as rules are added. The
lowest line (labeled “R”) represents the recall, which as expected increases as more rules are
added to the rulebase. The line labeled “BP” represents the baseline precision of all extracted
items without the classification step; that is, all items are assumed to be relevant since no means
to disambiguate them exist. As less precise rules are added to the rulebase, the precision drops
with the increase in irrelevant items extracted. The “BF” line is the baseline F-score. Note the
classical tradeoff between recall and precision, with the F-score balanced in the 50% range. The
line labeled “CP” represents the precision of all extracted items with classification by the
lexicon/pattern/sentence committee of classifiers (the RHM + LPS + NB classifier of Section
2.1.4). Perfect precision is maintained until over 80 patterns are added to the rulebase. The “CF”
line represents the F-score computed with the augmented precision. It is clear from this diagram
that the strategy of adding broad-coverage rules to enhance recall while shoring up precision
through classification is effective in practice.

2.1.8 Event Extraction

The second application to be implemented was an event extractor, similar to the scenario
template extractors of typical IE systems. The OBIE extractor had two tasks: recognize and
extract from text atomic events (usually corresponding to verb phrases) trained via event
bootstrapping, and then pull together the atomic events that compose a scenario template event
(possibly across sentence boundaries).
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The recognition of atomic event nodes was performed in a manner similar to that of entity
recognition during semantic tagging. The rulebases associated with atomic events are used to
recognize events from text, and rudimentary event classifiers (similar to the entity classifiers but
not nearly as developed due to time constraints) are used to confirm that the actual event phrase
in context corresponds to a relevant (rather than irrelevant) node. Once an indicator is
recognized for an event, the roles of the event can be predicted to occur in the text. When this
prediction is made, a check is performed to see if the predicted nodes have already been activated
within the ontology during processing of the current document. If so, the atomic event node is
informed of the fact. Otherwise, the prediction is stored with the predicted node. If that node is
activated during the processing of subsequent sentences, the predicting atomic event is again
informed. Once the document has been processed completely, all events pull together the results
of their fulfilled predictions and instantiate themselves with all applicable frame slots filled in.

A spreading activation model in combination with marker passing algorithms (see Section
2.2.3) is used to efficiently implement these activation and prediction mechanisms. When an
entity or atomic event is recognized within the ontology via the classified results of extraction
rules, an activation marker is placed on that node in the ontology. This activation spreads up the
abstraction hierarchy to all generalizations of the node. Event predictions are performed by
passing prediction markers through the compositional hierarchy of the event. Collisions of
activation and prediction markers indicate that a prediction may have been fulfilled (subject to
certain lexical adjacency and semantic constraints). For example, the prediction that an
explosive will be found in the text will be satisfied if an instance of a bomb is encountered, since
activation spreads from the bomb instance up to the Explosive node, where a collision between
the two markers occurs.

These techniques constrain processing to relevant areas of the ontology. Natural language is
used as the insertion point into the ontology and the structure of the ontology itself constrains
subsequent processing and permits the correlation of related information. The elaboration and
sharing of ontologies across domains is an important goal for the overall OBIE system; this will
potentially create quite large ontologies. Efficiently limiting the scope of search and activation in
the ontology is therefore vital for a scalable system. These techniques thus contribute to the
scalability of our proposed architecture.

The recognition of scenario templates (also called template events) from text occurs in a
similar manner. Each template script has an anchoring event that indicates that the template
should be activated. For example, the Bombing scenario template used by the prototype consists
of two atomic events, the Bomb Explosion event and the People Harmed event. The Bomb
Explosion is considered to be the anchor for the template, since it is a necessary component of
any instantiated template (people get harmed for all sorts of reasons, not just through bomb
explosions, so People Harmed is not an anchoring event). A permanent prediction marker is
therefore passed through a role link to the Bomb Explosion node. When an atomic Bomb
Explosion event is activated through text processing, the Bombing template becomes activated
through the collision of the prediction and activation markers and non-anchoring roles in the
template are predicted. Once document processing finishes, the template events collect together
instantiated components and an instance template is created.

To control the combinatorial problems of multiple events of the same type activating from an
input document, a simple heuristic is used in the prototype to constrain the events of a template
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to cluster together within adjacent sentences of text. (Semantic constraints resident within node
definitions also limit the fusion of activated nodes; all components of the larger template must be
semantically compatible with each other.) A sentence that contributes nothing to the template
essentially terminates collection of role fillers for that template. An important issue to be
addressed in Phase II is the actual recognition of topic shifts during text processing via a more
sophisticated discourse model. Such topic shifts should be the actual stimulus that terminates
open event templates. While the Phase I heuristic worked fairly well in practice, it is far too
simplistic to capture the actual complexities of input text.

As a final aid in viewing the extracted templates, events, and entities, we attached
functionality to those nodes in the ontology. This functionality generates a canned summary of
the node in question in English, which can then be displayed to the user. In practice, the precise
linguistic patterns that map into a node should be used (assuming sufficient syntactic knowledge
is resident within the system) to map back out of a node into English. However, generation is not
relevant to the goals of the Phase I project and was thus not supported in any depth. We note
merely that the structure of the ontology and the existing linguistic information captured during
bootstrapping already lay the foundation for more sophisticated generation and summarization
capabilities. ‘

Without a complete information extraction stream in place to support processing, meaningful
recall statistics are difficult to characterize for event extraction. After approximately forty-five
minutes of training, 9 out of 16 (56%) event bombings were recognized in a testing corpus of 50
documents. Three limits to better event recall keep this metric artificially low within the Phase I
prototype. First, parse errors caused several events to be missed because the explosion
description was erroneously parsed. Second, several event descriptions required some inference.
The fact that a bomb placed by terrorists causes some damage implies that an explosion took
place. While inference generation is an important aspect of semantic processing, it was not a
focus of investigation within the Phase I prototype. Finally, events referred to by noun
descriptions (e.g., “an explosion took place”) are not handled by the prototype due to its artificial
distinction between event and entity node lexicons. In Phase II, event and entity node activation
and training will be generalized and this distinction removed.

2.1.9 Prototype Demo

For the final briefing of this contract, we prepared a prototype demonstration. This demo
consists of a half-hour exercise of all of the components described thus far. A training set of 400
documents is loaded into the system. The system is initialized to create a database of all possible
extraction patterns from the input text. The Killing Instrument concept is seeded with three
phrases: “bomb”, “grenade”, and “mine”. The user performs the necessary classification tasks to
disambiguate and specialize these terms in context. Entity bootstrapping is then performed on
the Killing Instrument node and a rulebase of six extraction patterns is generated from the result.

To demonstrate the interplay of different components of the ontology, the Bomb Explosion
event is next bootstrapped without requiring any seed terms. The fact that the weapons role has
already been trained via the Killing Instrument hierarchy is sufficient to quickly discover several
lexicon items and three extraction rules for bomb explosion events via simple user classification
tasks. Just as ontological training during entity bootstrapping can be leveraged during event
bootstrapping, we also demonstrate the converse by bootstrapping the Geo Location entity, a role
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of the bomb explosion event, again without seeding. From this process, a node lexicon and four
extraction rules are learned for geographic locations.

We next demonstrate that seeding can be used for events as well as entities by providing a
single seed term for the People Harmed atomic event, “died”. This allows us to bootstrap a
lexicon (including different tenses of “wounded”) and three extraction rules. We finally generate
extraction patterns for the People entity from the results of that event training without actually
bootstrapping (the event training captures enough information to immediately generate several
extraction patterns for People). The ontology can be browsed to view the results of this training
process. We also demonstrate how clustering can be used to discern the structure of the ontology
automatically at this point.

With training done (one iteration of this whole process takes about 15 minutes), we induce
the various classifiers from the ontology. A testing set of 200 documents is then loaded, and we
run the semantic tagger application. The use of different classifiers and their varying results is
demonstrated during semantic classification. A visual document browser allows tags to be
viewed in the training documents. We also demonstrate how different levels of the entity
hierarchy can be tagged by changing between all Explosive instances and just Bomb instances.

We conclude the demo by running the event extractor. This application processes the test
documents and creates approximately 16 instances of the Bombing template. We visually
browse the results via the English generators attached to the event nodes of the ontology.

A demo walk-through script describing these steps is contained in Appendix A.
2.1.10 Prototype Summary

As mentioned, the prototype demonstration consists of a twenty-five minute exercise of all of
the components described thus far. We bootstrap and demonstrate a complete extraction process
over a predefined ontology for a bombing template consisting of a bomb explosion and of people
getting hurt while requiring only four seed terms and some non-expert classification tasks. Just
this amount of work is sufficient to extract 16 templates from a test set of 50 documents. The
user is then free to return to the training documents and to resume bootstrapping of the entities
and events to better increase recall (through the learning of more extraction patterns and lexicon
entries) and precision (by providing the classifiers with more training data). Alternately, the user
might flesh out the ontology to represent additional items to be extracted, or to move on to a
different analytical focus.

As a rough baseline, even given the decidedly non-optimized implementation of the
algorithms used by OBIE, approximately two hours is sufficient to learn a fairly complete entity
lexicon consisting of almost 300 literal phrases for Killing Instruments. By actively ranking the
patterns to favor broad coverage during bootstrapping and by the cross-leveraging of training that
the ontology facilitates, we maximize the gains made by user investment in training and support
an iterative approach to text analysis. The ability to add increasingly tenuous extraction patterns
shored up by classifiers to the system increases the recall of the extraction system without paying
a significant precision penalty. We feel the Phase I research prototype thus successfully validates
OBIE’s approach to user-centered, ontology-based information extraction.
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2.2 Description of Methodologies
2.2.1 Bootstrapping

Bootstrapping is a general mechanism for improving a learner using unlabeled data [Jones,
et. al., 1999]. It is an iterative method, in which a small set of user-labeled data is allowed to
seed a clustering algorithm that takes as input the corpus of unlabeled text. The resultant clusters
are used to estimate new labels from the unlabeled data. These labels are evaluated for
applicability; accepted labels are added to the seed set and the process repeats until some
threshold of diminished returns is reached.

[Riloff and Jones, 1999] describe a bootstrapping algorithm for generating a domain-specific
lexicon and ruleset capable of extracting a class of domain entities. A user provides an initial list
of examples for a class to be extracted. Using an existing program called AutoSlog [Riloff,
1993], an exhaustive list of lexical patterns capable of extracting all noun phrases is collected
from the domain corpus. Patterns that extract any element in the given seed set are identified.
These patterns are typically general enough to extract other elements from the corpus. An
assumption implicit to this process is that the lexical and semantic constraints encoded by these
patterns will extract semantic classes of which the seed set elements are members. Non-seed
elements extracted by the patterns are scored for applicability and the top few elements are added
to the seed list. This process is iterated until a threshold is passed.

As we demonstrated during Phase I, this algorithm can be generalized to extract events and
role relationships from text. In fact, any concept that is correlated with specific configurations of
natural language should be amenable to the bootstrapping process. We also discovered that the
bootstrapping of one conceptual type (e.g., entities) can automatically seed the bootstrapping of
other conceptual types (e.g., events), minimizing the amount of seed information the user must
provide.

2.2.2 Classification

Classification may be seen as the task of assigning group membership to an instance based on
similarity metrics between group members and the instance. The induction of classifiers from
data sets of annotated instances is a central problem in machine learning. In OBIE, classifiers are
used to assign instances extracted from text via broad-coverage extraction rules into appropriate
ontological structures. As such, classification is one of the foundations supporting high-recall
extraction, since it permits the system to use highly general or rare-case extraction rules without
the decrease in precision that use of such rules typically invites.

Numerous approaches to the problem of classification exist. Phase I investigated three
classification techniques. The first was a simple dictionary lookup scheme in which node
lexicons bootstrapped during system training are used to interpret new extraction instances.
Right-to-left phrasal head matching is used to determine the relative similarity of new instances
to previous instances in both relevant and irrelevant lexicons. Depending on the quality of the
lexicons (as determined by the amount of time spent building them up through training), this
technique quickly and efficiently classifies a majority of new instances. Novel literals not yet
seen in training data must be classified by more statistical methods.

Naive Bayes classifiers [Mitchell, 1997] have proven successful for classifying text-based
documents during information retrieval tasks. This second classifier type takes a set of training
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data and learns the conditional probability of each attribute A, given the class label C.
Classification is then done by applying a Bayes rule to compute the probability of C given the
particular instance of A,, ..., A, and then predicting the class with the highest posterior
probability. This computation is rendered feasible by making a strong independence assumption:
all the attributes A, are conditionally independent given the value of the class C. We adapted this
technique to classify extractions based on word frequency features of the sentence containing the
extracted item in relation to other sentences with extractions known to correspond to a class of
interest.

The third type of classification technique used in Phase I is that of the k-nearest neighbors
approach [Mitchell, 1997]. The linguistic patterns in which an extracted literal occurs within
training data are used to create pattern feature vectors describing the linguistic context of the
literal. Each lexicon associated with a node in the ontology contains multiple such literal items.
A group average feature vector in pattern space can thus be computed for each node of the
ontology (forming a sort of pattern neighborhood in pattern space). Classification consists of
determining which node has the most similar pattern vector to that of the instance or, put another
way, which lexicon items in pattern space represent the closest neighbors to the instance being
classified.

2.2.3 Marker-Passing Algorithms

Marker-passing algorithms are a class of techniques used to constrain search over large
semantic networks. A marker is simply a data structure containing useful information (such as a
pointer to the originating semantic node). Markers are passed from node to node via the links
that structure an ontology. In the Phase I prototype, markers were used to activate all
abstractions of a node recognized from text. Markers are also used to store predictions about
other semantic concepts that are expected to appear in text. The collision of activation and
prediction markers represents fulfilled expectations and permits the efficient correlation of
activated concepts without requiring additional search over the ontology. Marker-passing
algorithms thus facilitate scalable semantic representations since processing is focussed within
the representation itself,

Marker-passing techniques have also been used to perform semantic inference [N orvig,
1989]. Using this technique, markers are passed along different link types of a semantic network.
Collisions between markers from different nodes indicate a semantic relationship between those
nodes; the exact relationship is determined by the topology of the links traversed by the markers.
Techniques of this nature may be incorporated within the Inference Generation module of the
Phase II system to perform automated semantic inferencing using the structure of the ontology.

By passing activation markers up the abstraction hierarchies of activated nodes, co-reference
resolution is facilitated. Assume the ontology of Figure 5 and consider the sentences “Two ak-
47s were confiscated from a Lima apartment. The weapons were believed to have been used in
last evening’s attack.” The instantiation of a semantic node representing the ak-47 rifles causes
activation of the Rifle hierarchy, including the Gun and Weapon nodes. When the reference to
weapons in the second sentence activates the Weapon node, the Reference Resolution module
can unify the two references by examining the activation markers on the node and recognizing
that the weapons reference likely refers to the two rifles. In a similar manner pronoun or
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anaphoric disambiguation can be efficiently performed by examining patterns of activation over
the ontology during text processing.

2.2.4 Shrinkage

Shrinkage [Freitag and McCallum, 1999] is a statistical technique whereby probability
estimates for children in a hierarchy borrow from their ancestors through interpolation.
Weighted frequency probabilities from a node’s abstraction hierarchy can be incorporated into an
estimation of a node’s frequency distribution. This technique has shown considerable promise in
dealing with sparse data, since probability estimates garnered from data at various levels of
generality can be leveraged to help characterize rare-case instances.

Shrinkage has been used quite successfully with Hidden Markov Models for part-of-speech
tagging and speech recognition. The technique will be generalized within OBIE to similarly
leverage probability distributions during any applicable statistical machine learning task,
including implementations of the IE stream components and the classifier sujtes.

2.2.5 Semantic Parsing

OBIE draws considerable inspiration from the case-based parsing paradigm developed in
Martin’s Direct Memory Access Parser [Martin, 1989]. Case-based parsing recasts the
traditional text parsing process as the recognition and activation of nodes in a semantic network
during natural language understanding. In this approach, stereotypical patterns of natural
language are typically hand-crafted into rules that form indices into a semantic case-library. This
hand-crafting makes deployment into new domains difficult and leads to rather brittle processing
systems.

This semantics-laden approach was largely abandoned in the early 1990°s with the rise of
more automatic, statistical approaches to language processing. The goal of natural language
understanding gave way to the sub-discipline of information extraction, a more constrained and
viable task. OBIE represents a fusion of these more recent statistical techniques with some of the
earlier goals of deeper semantic understanding. Traditional statistical IE approaches combined
with user guidance through bootstrapping are employed to learn the actual patterns of language
use that index into the ontology, with the ontology providing a consistent basis from which to
perform inference and limited semantic processing.

2.3 Literature Search

Automatic learning algorithms that make use of a concept hierarchy are rare (a few are
discussed briefly below). Handcrafted, rule-based components more frequently use a custom-
designed ontology (particularly in the form of abstraction hierarchies), but this makes them
highly non-portable. While individual IE modules exist that rely on a semantic hierarchy of
some sort, OBIE is the first IE system to incorporate an ontology as the central organizing
backbone at all levels of the IE pipeline. It is also the first to suggest how such an ontology can
be automatically constructed by the IE modules themselves. In doing so, OBIE provides a
completely integrated mechanism to allow communication and feedback across all levels of the
IE process, a capability lacking in other IE end-to-end systems.

One system that has attempted to allow at least some components to share information is
FASTUS [Kehler, et. al., 1998]. FASTUS provides a structure called a lattice that allows
multiple interpretations of an ambiguous linguistic phenomenon to be passed between phases in
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the IE pipeline. Because modules at different levels of the IE stream are handcrafted (rather than
corpus-generated), heuristics can be added to each module to allow the processing of the lattice
structure. The capacity of a lattice is more naturally provided by OBIE’s ontology. Multiple
interpretations of a phenomenon by an IE component could be simply represented by multiple
active nodes in the ontology as processing flows from module to module down the end-to-end
processing stream.

[Embley, et. al., 1998] propose an ontology-centered approach for performing wrapper
induction, a close cousin of the IE task, for semi-structured documents on the WWW. They
develop a parser, named entity recognizer, and a structured text generator guided by a system
ontology to induce wrappers from a corpus of web pages. Their approach is in spirit similar to
OBIE’s and they report a significant benefit to the use of an ontology-centered approach. Their
work provides evidence that the application of an ontological backbone to the IE processing
stream can lead to significant gains in accuracy.

[Roth, 1998] proposes the idea of using a single learning algorithm for all levels of the IE
task. Roth notes that multiple existing learning algorithms for disambiguation tasks can be recast
as learning linear separators in the feature space of the domain. A sparse network of linear
separators that employ the Winnow learning algorithm is used to solve three tasks: context-
sensitive spelling correction, part-of-speech tagging, and prepositional phrase attachment. Roth
speculates on the benefits of using a single algorithm across all levels of the IE task. Itisa
matter for empirical investigation as to whether or not a single algorithm is well-suited to all task
domains. Somewhat contrary to that approach, OBIE allows each component to use any
algorithm it feels is best suited to the task, providing a common representational structure to aid
the algorithm and to permit feedback processes.

Researchers have used Hidden Markov Models for several IE subtasks, including part-of-
speech tagging and named entity extraction [Glickman and J ones, 1999]. A technique suitable
for combination with HMM models is that of shrinkage, which takes advantage of class

the face of sparse training data. Shrinkage has also been used in bootstrapping [Jones, et. al.,
1999]. Because OBIE’s ontology makes such class abstraction hierarchies available to all
components of the IE stream, it is likely that other learning algorithms could benefit from the
application of shrinkage techniques.

As guiding principles, OBIE will incorporate techniques from the ontology research
community in creation of its ontology. [Guarino, 1997] provides useful insights into the
formulation of a top-level ontology for information extraction and retrieval tasks. [Noy and
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Hafner, 1997] provides a useful survey of different ontologies developed by Al researchers and
the issues of expressiveness and portability that must be addressed.

[Woods, 2000] presents positive results for the creation of large-scale subsumption (i.e.,
abstraction) hierarchies from lexical and phrasal analysis of free text. By analyzing relationships
among constituents of phrases and compound morphemes, lexical strings from text can be
automatically placed at appropriate levels of generality within a hierarchy encoding subsumption
relationships. The algorithms developed by Woods for automatically determining the level of
generality for new lexical phrases may be adaptable for use by OBIE in mapping novel lexical
items to appropriately specialized ontological lexicons.

24 Lessons Learned During Phase |

Our Phase I investigations and prototype development have proved quite valuable. Our
explorations of potential techniques for applying semantic knowledge to the information
extraction task and of attempting to increase recall through broad-coverage rule use have allowed
us to characterize multiple interactions within our proposed architecture that together lead to
increased extraction recall. In addition, the development of our limited prototype has provided
us with a vehicle for testing our preconceptions and for highlighting the key challenges in
providing this functionality. We list the primary results of our investigation below. Note that
each of these findings has been folded into our Phase II approach discussed in Section 3.

* Patterns of language use contain information exploitable for ontology-based IE.

Our bootstrapping algorithms allow the rapid deployment of OBIE into a new domain by
discovering correlations of language use with ontological structures. This technique leads to
the generation of lexicons and rulebases for use in performing the extraction task. While the
literature has previously described techniques for entity bootstrapping, it wasn’t clear at the
outset that patterns of language use are sufficient to also bootstrap events and relationships
between entities and events. Nor was it clear that rulebases and lexicons could be attached to
ontological structures with ease. The development of ontologically-based bootstrapping
algorithms for entities, events, and relationships has confirmed that language patterns contain
sufficient information to support the extraction task at all levels of processing.

In addition to bootstrapping, patterns of language use play a key role in developing classifiers
to shore up the precision of high-recall rules. Several suites of classifiers rely on both phrasal
similarity and sentence word-frequency similarity to classify extracted entities as either
relevant or not to the task at hand.

* Classifiers permit points of recall to be purchased by incorporating broad-coverage or
rare-case rules without sacrificing precision.

Classifiers can be trained from the ontology using information captured during bootstrapping
processes. These classifiers permit OBIE to use extremely general, broad-coverage, or rare-
case rules during extraction tasks. Traditionally, using such rules to increase recall has meant
a corresponding decrease in precision as more irrelevant items are extracted from text. By
using classifiers to evaluate the results of rule extractions, we shore up this lost precision and
reap the benefits that such rules afford.
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* Work performed by one component in training the ontology is of use by other
components.

As we show during the prototype demonstration, work done to train entities can be leveraged
directly by events that package those entities, allowing the user to bootstrap events without
the need to seed the event nodes in the ontology. Similarly, event bootstrapping captures
information about entities as a natural by-product that can be exploited by entity
bootstrapping to learn entity rules without the need for additional user seeding. Both
processes in effect cross-seed each other, allowing very rapid deployment into a new domain.
For example, during the demo we bootstrap a complete extraction process capable of
extracting 16 complex bombing events from a training corpus, including the weapons
involved, the location, and the people injured, from just three entity seed words and one event
seed word.

* Automatic ontology and scenario template discovery from free text may be
accomplishable via clustering techniques.

As part of our investigation, we applied agglomerative clustering techniques to entity and
event node lexicons and rulebases in the ontology in an attempt to discern the ontological
structure and relationships involving those items. Interestingly, event roles are largely
differentiable via clustering. For bombing events, we could discern the roles of target,
perpetrator, weapon, and location. These clusters are not completely well-defined, indicating
that additional refinements or user-interaction may be necessary. These results are suggestive
that the ontology itself might be induced from free text.

Our results on entity clustering were less conclusive. While we could discern gross divisions
in weaponry by clustering on weapon lexicons and rulebases (e.g., guns and explosives
formed two broad categories), we couldn’t discern any of the finer grained divisions present
in our hand-coded ontology. We conclude therefore that patterns of language use within a
semantic class may not have enough granularity to be exploitable through the attempted

techniques.

* Bootstrapping techniques incorporate high-payoff patterns quickly, maximizing use of
limited user time.

The bootstrapping algorithms developed in the prototype have the useful benefit of bringing
the most accurate patterns (i.e., those with the best ratio of signal to noise) to the forefront for
user evaluation before less accurate patterns. The scarce resource of user training time is
therefore maximized during system porting. This permits a user to quickly get a system up
and going, and to then iteratively broaden the coverage of the system through additional
training,

* Simple contextual classification tasks are sufficient to capture useful parts of a user’s
semantic knowledge.

By requiring only simple classification or categorization tasks of the user in which lexical
strings are presented in context for evaluation, OBIE assumes little domain and no system
expertise by the end-user. This contrasts with IE systems in which users must become versed
in rule representation languages or other arcane system features.
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2.5

Spreading activation via marker-passing over the ontology is an efficient means of
managing contextual predictions.

Because potentially large ontologies will be used with OBIE, it is crucial that all algorithms
scale with respect to ontology size. The use of marker-passing techniques fulfills this
condition by allowing the structure of the ontology itself to constrain processing to precisely
those areas where it should occur. Natural language (in the form of extraction rules and
dictionaries) serves as an index into the ontology during processing, further obviating the
need for expensive ontology search strategies. Additionally, spreading activation techniques
should permit inferential and reference disambiguation methods that similarly scale in the
Phase II implementation.

Entity recognition is mediated by the roles the entity plays in events from text.

During the course of our Phase I investigation, we realized the deficiencies inherent in the
simple ontological hierarchies that we employed for OBIE. The use of the packaging
hierarchy to capture role information is a slight abuse of the semantics of composition. As
such, we will likely add a role link type to the ontology in Phase II. Other link types useful in
capturing other semantic relationships will be added to the ontology after a thorough
requirements analysis in Phase II. As long as these link types are correlated with specific
configurations of natural language, the bootstrapping techniques developed during Phase I
should be adaptable for use in learning to recognize and extract those links.

Technical Feasibility
Several factors contribute to the assurance of the technical feasibility of the proposed OBIE

system:

Scalability. Scalability is a crucial requirement if OBIE is to be employed by military and
commercial users. Two tacks are taken to ensure that OBIE scales with respect to ontology
size. First, lexicons and rulebases are distributed throughout the ontology by attaching them
to actual nodes and links within the system. In Phase II, classifier data will also be
distributed in this manner. This obviates the need for expensive searches, since such
information can be applied directly during node or link extraction. Second, marker-passing
algorithms allow the structure of the ontology itself to constrain processing. When combined
with the use of natural language patterns as indices into the ontology, processing is directed
and restricted only to relevant areas within the ontology, mitigating the need for ontology
search and thus ensuring scalability.

Consistency. By wrapping the IE stream around the central backbone of the ontology, OBIE
ensures that a consistent semantics is imposed on all IE modules. Additionally, components
are free to share information and views regarding an emerging interpretation of input text.
Additionally, each component can contribute different information to the ontology, using it as
a sort of blackboard to guide processing. As a worse case, IE modules may ignore the
ontology; this is simply the degenerate case of existing non-ontology-based IE systems.

Robustness. The design of OBIE focuses on the development of robust strategies for
training, classification, and extraction. Iterative bootstrapping algorithms permit natural
language to be mapped onto ontological structures with increasing coverage as more training
is performed. By forming committees of classifiers, the system can pool multiple viewpoints
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2.6

to come to a consensus regarding the classification of entities, events, and relationships.

Both ontology-based processing strategies such as inference and reference disambiguation are
combined with machine learning approaches in performing information extraction. As the
Phase I prototype demonstrates, the system is robust with regards to the numerous parsing
errors introduced via an adapted, off-the-shelf syntactic parser.

Modularity. Object-oriented design practices are used at all stages of the development
process. The ontology is accessible only through an Application Programming Interface to
ensure that all modules interact with it in a formalized and well-understood manner. Because
[E stream modules interact only through the shared ontology, between-module interactions
and unintended side-effects are minimized.

Conclusions
The OBIE project offers several innovations that together facilitate the primary goal of

higher-recall information extraction and the secondary goal of developing a non-expert, user-
centered, domain-portable, commercial text processing system:

A Tightly-Coupled Architecture — Integration of the IE stream with a shared ontology
reduces cumulative errors in the processing stream by providing a blackboard-like data
structure that facilitates knowledge sharing, integration, and feedback between components
during both training and extraction. Disambiguation is a joint and cumulative pooling of
different viewpoints across modules of the IE stream.

Semantic Processing — The ontology imposes a single, shared semantic view of the world.
Ontological relationships (e. g., abstraction, composition, etc.) permit inference and co-
referencing to be performed early and automatically in the extraction cycle. Non-shallow
levels of information extraction, including role recognition and across-sentence relationships,
are achieved by recasting the extraction process as a semantic recognition and extraction task.
Automatic machine learning algorithms may be augmented to take advantage of relationships
(like abstraction) specified by the ontology.

Bootstrapping — Extensions to existing entity-bootstrapping algorithms permit not only
entity but event and role learning, as well, all with respect to a given domain ontology. These
techniques rapidly discover high-quality rules and lexicons using simple seed terms and
patterns of natural language use inherent in the training text. The approach also captures the
highest-payoff rules first, maximizing the benefits of potentially scarce user interactions, and
allows an iterative developmental cycle. Any relationship between entities or events that is
correlated with specific patterns of language use should be learnable via bootstrapping
processes.

Classifier-Enhanced, Broad-Coverage Rulebases — By building classifiers from
information already captured as part of the bootstrapping process, OBIE permits high-recall
but low-precision (e.g., broad-coverage or rare-use) rules to be incorporated into its rulebases.
The classifiers use multiple contextual or lexical viewpoints to shore up and elevate the
precision of such rules, ensuring that recall is not simply purchased at the price of precision.

A User-Centered Approach — By allowing an arbitrary, user-provided ontology to structure
the information extraction task and by relying on simple classification or categorization tasks
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performed from the user’s perspective and according to the user’s objectives, the user is
placed firmly in the driver’s seat of the text analysis and extraction process.

3 Phase Il Design & Future Work

The goal of our OBIE system is to increase the accuracy of the information extraction task by
expanding the coverage of the extraction process while still maintaining high precision. This
will be accomplished through a synthesis of several techniques incorporated into an end-to-end
information extraction system. First, we apply semantic knowledge to the extraction process
through the use of a centralized domain ontology. This semantic processing permits inference
and disambiguation not possible given access to only surface (syntactic) features of text. Second,
we tightly couple all elements of the IE stream to the common representational structure of the
ontology, permitting feedback and integrated processing absent in a completely modularized IE
pipeline. This also minimizes the accumulation and amplification of errors when text processing
is performed by the sequential stages of a traditional IE system. Finally, we allow extremely
general and rare-case extraction rules to be included at any level of the extraction process by
augmenting all extraction rules with suites of classifiers capable of shoring up the low precision
typically afforded by such rules. We also note that the common representational structure of the
ontology permits the integration of the IE task with a wide range of text mining and text
processing applications, including link extraction, text summarization, and multilingual
extraction. While these tasks are outside the scope of the Phase II effort, it is clear that the
development of a robust extraction capability that facilitates such applications will significantly
enhance the commercial potential of the OBIE system.
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Figure 12 gives an overview of the components and processing flow of our proposed Phase II
OBIE system, building on the lessons we learned during the execution of Phase . General
processing flow involves roughly seven steps (refer to the numbered stars in the diagram):

1.

Definition of the domain ontology. A basic ontology toolset will be constructed to
support user definition of a domain ontology. This toolset may include viewers, node and
link editors, and other elements necessary to visualize and manipulate the ontology.
Functionality may be implemented to import ontological definitions from other sources
(e.g., Ontolingua) as needed.

. Loading and pre-processing of training documents. Documents are typically imported

in some machine-readable format from a corpus source. Text may be encoded for
efficiency using word and phrase hash tables. Lexical processing is performed, including
morphological analysis and part-of-speech tagging. Text will be further segmented into
phrasal constituents to support the bootstrapping step. Processed documents are stored
internally and are managed by OBIE to provide efficient access by all components of the
IE stream.

Generation of pattern sets to support bootstrapping. An exhaustive set of heuristic
patterns is generated from a training corpus as a precursor to the entity, event, and
relationship bootstrapping processes. These patterns form the engine from which
extraction rulebases and lexicons are populated for the new domain.

Bootstrapping of the ontology and classifiers. Bootstrapping algorithms are run in
conjunction with user training to learn the mappings between natural language and the
entities, events, and relationship linkages that compose the ontology. During this
training, node lexicons and extraction rulebases are learned, as are the rulebases used to
recognize relationships between nodes from text. After the user concludes an iteration of
the training process, precision-enhancing classifiers are induced from training data
captured during the bootstrapping process.

Loading and pre-processing of source documents for extraction. At this point, the
trained ontology is ready to be used by the IE stream to perform text extraction. The
same pre-processing mechanisms used on the training document set are applied to new
source documents.

Semantic interpretation by components of the IE stream. Input documents are fed to
the IE processing stream. Entity and event nodes in the ontology are instantiated via
extraction rules by the Node Activation module. These rules may be quite broad in
coverage; classifiers are used by the activation modules to restore the precision lost by
favoring high-recall rules. Relationships between activated nodes are recognized and
instantiated by the Link Activation module. The ontology itself serves as a blackboard to
organize the semantic content of the input text. Because abstraction, composition, and
other relationships are encoded in the ontology, anaphora and co-reference
disambiguation can occur dynamically by the Reference Resolution module by unifying
different references to the same conceptual nodes or links. A Discourse Tracking module
determines when topic shifts occur so that template instantiation can be terminated at
appropriate times. Also, an Inference Generation module can help make explicit those
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connections that are left implicit in the text, facilitating more robust instantiations of
scenario template nodes.

It is important to note that all of the modules can work in unison, each contributing to the
emerging semantic interpretation of input text via the shared ontology. Data is not passed
between modules as in a traditional IE stream, but rather each module is free to work with the
unfolding parse of the input text within the ontology. Certainty factors may be attached to
node and link instantiations depending on the consensus of views by all modules, if desired.

7. Harvest instantiated templates from the ontology and update knowledge bases.
Once a document has been processed, fields of interest from instantiated templates in the
ontology can be exported from the ontology and used to populate knowledge bases.
Additionally, user verification or filtering of highly uncertain extraction data may occur.

The remainder of this section will briefly examine each of the components represented in
Figure 12.

3.1.1  Document Management

As part of the infrastructure necessary to support an end-to-end extraction system, a
document management subsystem will coordinate the input and preprocessing of corpus text.
This task includes recognition of source data formats. Word strings will likely be hashed into
integer identifiers to facilitate efficient comparison and pattern matching operations. The
manager will guide the application of morphological analysis, part-of-speech annotation, and
syntactic phrase segmentation by the Syntactic Analysis module. The preprocessed and
annotated documents will be stored internally for access by the training and extraction systems.
Document viewers and other tools will be developed as needed to support the end-to-end
extraction process.

3.1.2 The Ontology

One of the first tasks for the Phase II effort will be to decide on the representative capacity of
the ontology. The Phase I ontology represented entity and event nodes as well as abstraction and
compositional (part-of) links between nodes. Role relationships were represented implicitly as
part of the compositional hierarchy (a slight abuse of semantics). To formalize the
expressiveness of the ontology, additional link types will likely be incorporated, including
explicit role links and part-whole relationships. We will also consider current trends in
ontological research to ensure that the ontology is sufficiently well specified to facilitate sharing
across domains. For example, work by Guarino and Welty [2000] seeks to identify meta-features
of the ontology that, if properly adhered to, facilitate ontological transfer between applications
and domains.

In addition to their structural context, nodes of the ontology are further semantically defined
by the lexicons and rulebases that map into them. Phase II will augment these with link rulebases
to capture the patterns of language use that correlate with different link types. Data structures to
support classification will also be attached to nodes to ensure that scalable and incremental
classification can occur. (In Phase I, all classifier data was maintained in a global lookup table, a
less-scalable solution.) By distributing all semantically-laden information within the nodes and
links of the ontology and by allowing natural language to activate that information as it is needed,
OBIE will avoid expensive ontology search algorithms, ensuring a scalable architecture.
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Access and elaboration of the ontology will be restricted to a well-defined API to ensure that
the ontology is structured consistently and predictably by all modules of the training component
and the [E stream. A toolset sufficient to enable a user to view and modify the ontology will be
developed as part of the system infrastructure.

3.1.3 Training Components

Our Phase I research extended entity-bootstrapping algorithms to integrate them with the
ontology and to perform both entity and event bootstrapping. In Phase II, these algorithms will
be generalized to support generic bootstrapping of nodes in the ontology via the Node
Bootstrapping component. We also developed a technique to recognize the role components of
events. This technique will be generalized and other techniques developed to perform link
bootstrapping, in which language patterns correlated with different link types are discovered and
added to link rulebases.

Another Phase I discovery was that information recorded as part of the bootstrapping process
was sufficient to induce multiple suites of classifiers capable of enhancing the precision of node
rulebases. The Classifier Induction component will organize these classifiers. We will also
develop analogous classifiers to assist in the link recognition process. Every rule-based
mechanism resident within OBIE will be augmented by precision-enhancing classifiers to permit
rules of maximum breadth (and thus recall) to reside in the system.

3.1.4 |E Stream Components

The largest part of the Phase II development cycle will involve the implementation of the
actual modules that compose the ontology-based IE stream. These modules will not form a
processing pipeline as in traditional IE systems, wherein the results of one module are handed off
to the next for further processing. Rather, all modules will interact with the domain ontology,
instantiating increasingly more complex and detailed interpretations of input text through node
and link activation, template correlation, ambiguous reference resolution, and semantic inference.

The Syntactic Analysis module will be driven by the document manager and will perform
morphological analysis, part-of-speech tagging, and phrasal segmentation. This pre-processing
will support the bootstrapping process and will form the pool from which OBIE’s extraction
rules are drawn.

The Node Activation module will be responsible for recognizing and activating references to
ontological nodes in natural language text, including entity, event, and more complex template
nodes. Each instantiation of a node represents an extraction of that component from text. We
will build on the semantic tagger and event extractor applications developed in Phase [ in
designing and implementing this module.

The Link Activation module is responsible for recognizing and activating references to
relationships between nodes within the ontology. Relationships (such as the roles played by
entities within events) mediate the interpretation of entities and events as they occur in text. This
process is similar to traditional link discovery and extraction, except that the links are typically
part of a more organized ontology of relationships. Extraction thus occurs at a deeper semantic
level than just surface (syntactic) features.

The abstraction and compositional hierarchies (plus other link types chosen as part of the
ontological formalization) permit a rich set of referent disambiguations to occur, including
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anaphor and co-reference resolution. One automated technique will leverage patterns of
activation over the ontology to correlate references to more abstract or general entities during
discourse. This process is efficiently implemented via marker passing (see Section 2.2.3). Other
techniques may include directed ontological search (e.g., for pronoun dereferencing) that can be
performed on the fly.

As templates are being constructed within the ontology, some mechanism is required to
recognize topic shifts such that template construction can be concluded. In Phase I, we employed
a simple heuristic that assumed that references to a template event were always constrained to
contiguous sentences within a text. The advent of a sentence with no new template information
was cause to terminate template construction. While the heuristic works fairly well in many
cases, clearly more sophisticated discourse analysis should be performed. This is the function of
the Discourse Tracking module.

Finally, a mechanism to perform semantic inference will be implemented by the Inference
Generation module. Such inferences explicitly fill in information or activate relationships that
are left implicit in text. A strength of OBIE’s ontology-based approach is its ability to use the
structure of the ontology to make such inferences in an automated manner. This can be
accomplished by several methods. As with reference resolution, marker-passing techniques can
efficiently connect related nodes in a semantic network. Additionally, the ontology may be
viewed as a large case-library of extracted events, entities, and relationships. As such,
generalizations may be drawn from previous extractions for use in understanding new text.

3.1.5 Results Database

Since extraction results are stored as instantiated nodes and links in the ontology, some
mechanism must exist to pull this information from the ontology and package it as database
templates for export to a knowledge base. This basic function is performed by the Results
Database component. This module may also perform some filtering and user verification of
extraction results. This process can be facilitated by attaching certainty factors to extractions
based on the cohesiveness of various system viewpoints. (Heavy inferencing may, for example,
diminish the certainty of the extraction.) Elaboration of this capability will depend on the degree
to which it is useful to the system development effort.

3.2 Phase Il Technical Objectives

Phase II research and development will build on the significant progress made in Phase I and
result in a complete implementation of OBIE, an ontology-based, end-to-end, high-recall
information extraction system. The primary goals of the Phase II research are to:

1. Elaborate the key algorithms of the OBIE system:

e We will formalize the specification of the ontology used by OBIE. In addition to
abstraction and compositional links, role and attribute links may be useful to more
precisely define the semantics of a node. We will also investigate the capacity to
represent domain-specific abstract relationships of interest to a user.

e We will generalize the bootstrapping procedures to operate on all formalized
relationship (link) types, in addition to the existing entity, event, and role capabilities.
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Essentially any relationship that has a correlated pattern of language use should be
amenable to discovery by bootstrapping.

We will extend the capabilities of OBIE’s precision-enhancing classifiers. This will
include refinements to the existing algorithms, as well as the development of additional
classifier types. Committee-based approaches, in which weighted classifiers become
voting members of a committee, typically outperform individual members and will be
investigated.

We will augment the existing training interface to incorporate training tasks other than
simple classification and categorization, while still assuming a user without system or
domain expertise. Such tasks might include reverse extraction, in which rare-case
extraction rules are generalized over other ontological nodes by presenting to the user
original training contexts for the rule with alternative lexical items substituted from other
candidate nodes. Such a capability would allow rules generated from sparse data to be
reliably generalized, thereby increasing their coverage.

2. Implement each component of the end-to-end information extraction stream:

A comprehensive review will be made of existing approaches to each element of the IE
stream. Favoring the best current techniques, we will characterize how each approach
might benefit from the ontology. For example, we know that statistical techniques can
probably utilize the abstraction hierarchy to incorporate shrinkage-like techniques (see
Section 2.2.4). We will implement the most promising technique for each module,
ensuring that it is fully integrated with the ontology.

The semantic tagging and event extraction applications will be converted into true
IE stream modules to perform event, entity, and relationship extraction.

Additional necessary ontology-based IE modules will be developed, including a
Syntactic Analysis module (to perform morphology, part-of-speech, and phrasal analysis),
a Reference Resolution module, a Discourse Tracking module, and an Inference
Generation module.

3. Evaluate OBIE’s accuracy metrics and scalability during a larger-scale demonstration in a
DARPA-chosen task domain. At a minimum, OBIE might be tested in at least one of the
Message Understanding Conference task domains, permitting a baseline comparison to
previous systems.

4

Commercialization Plans

Over the past several years, global competition and other complexities have increased the
reliance of U.S. military and civilian institutions on computers and the large amount of
information to which they provide access. This trend offers a unique opportunity for the
marketing of tools that can increase productivity by augmenting the ability of institutions to
process electronic documents. We feel that the combination of features that we plan for this
project have direct commercial applicability to commercial health care and insurance
corporations, as well as to electronic commerce. In each of these domains, the ability to generate
accurate databases automatically from the large quantities of free-text documents they process
would be a great productivity boon. While other information extraction tools exist, their ability
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to extract content at high recall and precision is very limited, as is their ability to adapt to new
domains.

There are two primary types of products for commercialization. First, we can market OBIE
as a stand-alone system and allow customers to develop their own information extraction
applications. Since off-the-shelf modules may integrate with OBIE’s ontology-based architecture
via its API to form a customized and portable end-to-end IE system for use directly by end users,
this tool should prove extremely attractive to a wide variety of potential clients. Our expectation
is that we will be able to attract substantial outside commercial investment from one of the major
knowledge management software development companies or venture capitalists within 12
months after the beginning of Phase II. Further, we expect that OBIE will start generating
commercial revenues (in the realm of $200,000 to $300,000) within six months after the end of
Phase II, most likely through licensing agreements.

We are also particularly interested in developing “competitive intelligence” solutions that
would provide our clients with, for example, a dramatically improved ability to plan product
development and marketing strategies and monitor their competitors. This application area is
very attractive because of the increasingly aggressive strategies required to succeed in an era
where information is disseminated widely and rapidly via the World Wide Web. Marketing such
specialized situation assessment system development services is similar to SHAI’s core business
of marketing Al research and development services, at which we are very successful. SHAI’s
current annual revenue from such services is approximately $4 million. Within six months after
the end of Phase II, we expect revenues from this commercialization direction could amount to
over $200,000 annually.
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Appendix A - Demo Sequence

98-1 24.02

A twenty-five minute demo was prepared for the final presentation (see Section 2.1.9). The
following demo script assumes that Allegro CL 5.0.1 has been installed on the system upon
which the demo is to execute. The prototype runs within the Allegro CL environment — there is
no executable. (Make sure that the Allegro build is current via sys:update-allegro. The CD
install of 5.0.1 doesn’t seem to handle packages properly.)

Step 1: Setup the System

1. Load OBIE Project — Start Allegro LISP 5.0.1 under the IDE environment. Open the
obie.lpr project from the OBIE project directory. Close all Allegro CL IDE windows except

the debug window.

2. Run OBIE - Choose Run Projects option. The prototype demo interface should appear, as
pictured below. Click the Load button next to the Active Documents edit box (or choose
Documents / Open Document File) and load the muc-training-set-demo.obdoc file. After
that finishes, click the Initialize System button. This may take a couple of minutes to
execute. The Debug Window will say “Done initializing system” when finished.

OBIE Research Prototype

Observe that the parser makes numerous
errors, including a bad verb phrase
(“cordova left”) and a missed sentence “In
a case like this....” While these errors
diminish accuracy (especially recall), the
techniques used by OBIE are robust and the

Note Initial Conditions — No lexical
knowledge exists in the system as yet. The
domain is that of Latin American terrorism.
Browse the training documents with
annotated syntactic tags by clicking the
Document Viewer button (or choose
Documents / View Documents). Select to
view dev-muc3-0010. Text with color-
coded syntactic tags should appear.

| 2 Document Yiewer

{that surrounded cur diplomatic mission in panama were

Alearned that the embassy considered him persona non
{grata . ithink journalists have magnified the issus abit ,

{harassed or mistreated . in a case like this , however , in
{which there was an alleged involvement in a murder whlch

president alan garcia has confirmed that the u.s. troops

withdrawn after a Former minister surnamed cordova left
the embassy . the military man , who is involved in a
murder trial , left the peruvian embassy as soon as he

as far as we know , people sought protection . . . .
omeone arrives at the door of the embassy and asks For
refuge in view of a situation of force . the situation in
panarna is abnormal ; it has been totally invaded by 30,00
soldiers . some persons entered the embassy . at least
one of them had been allegedly linked with the death of a
anamanian minister , a mr spadafora , whi was murdered
. the authorities of the embassy and of the foreign mlmstry
stated that this person s presence was undesirable . we
do not refuse ko grant rsfugs -- a condition that is granted -
before granting poiitical asylur: -- to whomever feels ;

was commltted years ago , this person -- i believe he is a
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Step 2: Train the Ontology
5.

parsing is sufficient for research purposes.

You may also wish to browse the structure of the ontology via the Ontology Viewer button.
A graphical representation of the ontology will appear. Note the top-level division of nodes
into functional knowledge (e.g., generation and activation functions), entities, events, and
irrelevant (i.e., scaffolding) nodes. You may examine node contents by left-clicking on a
node to turn it red and then right-clicking for a menu of options. Since all lexicons are
currently empty, clustering will have no effect and node lexicons will have no entries. You
may wish to view the packaging hierarchy of :0-bombing. When you have finished
examining the ontology, close the ontology viewer window.

Seed Nodes — Under the premise that we are interested in extracting out examples of bomb
explosions, seed the :0-killing-instrument node with the phrase “bomb” via the Seed
Ontology button. When the seed dialog appears as at left, select :0-killing-instrument as the
node to be seeded and type “bomb” into the text edit.
Click the Apply Seed button. You will then be prompted
to categorize instances of the seed term in text as being a
member of the class of interest or not. Specialize the
training examples to the :0-bomb node via the combo
box as shown to the

right. Since all bomb
examples in the text
correspond to actual
bombs, accept all
examples by checking the “Apply to all contexts” box and
then click the Accept button. Next, seed the :0-killing-
instrument node with the phrase “grenade”. When
classifying, specialize the node to :0-grenade and accept
the example. Finally, seed the :0-killing-instrument node
with the phrase “mine”. When classifying, specialize the
mine node to :0-mine. Since there are two semantic
classes of mine represented in the training examples (ore
mines and explosive mines), carefully accept instances of
bombs in the text but reject instances of ore mines (via the
Reject button). Close the Seed Ontology dialog if it is still
open.

| . Seed Ontology N

JO-KILLING-INSTRUMENT

verify Seeded Entitié

Train Killing Instruments — Select :0-killing-instrument
in the Ontology Node combo of the main interface and
click on the Build Lexicon button. OBIE will display a
series of lexically similar concepts. You will accept all positive examples and reject all
negative examples. The system will make a best guess as to the appropriate level of the
ontology to which the node should be specialized. The only time you will have to change the
category for the node is with car bombs (e.g., “other car bombs™): change the category to :o-
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vehicle-bomb. The only entities you will have to reject are those of the irrelevant semantic
sense of mines (e.g., “peruvian mines™). If you run across a long sequence of contexts for a
phrase (e.g., for the phrase “bombs™), you may wish to click the “Apply to all contexts™
check-box to accept them all at once (assuming they are all likely to be relevant). Next,
OBIE bootstraps new entities that may or may not be weapons and presents them for
classification. Reject all contexts for “kg”, specialize “device” to :0-explosive and accept,
specialize “dynamite charge” to :0-dynamite and accept all, accept relevant examples of
“charge” and reject irrelevant examples (all but “...charge of dynamite...” are irrelevant),
reject all of “people”, “late-model white monza”, “savmgs , and “checkpoints”, accept all of
“explosive devices”, and then reject all the remaining items. Hit the Preview Rules button to
see what the currently best-ranked rules are. Now click on the Learn Rules button. You will
be asked to classify more training
examples. Accept both of the
“explosive charge” instances. Click on
View Rulebase to see the actual rules
learned; there should be six rules shown
as at left. Notice that they have been
specialized to all of the ontology nodes
to which they are applicable based on
the training data.

£ Rulebase for :0-KILLING-INSTRUMEN

6. Train the Bomb Explosion Event — The :0-bomb-explosion event has two roles, one
corresponding to the geographic location in which the event occurred and one corresponding
to the weapon used. Since we have trained up the node packaged by the weapon role (:o-
killing-instrument), OBIE can use that work to seed the explosion event training process. We
will thus bootstrap up bomb explosion events without seeding. Select :0-bomb-explosion in
the Ontology Node combo box. Hit Preview Rules to see what patterns are currently best
ranked as indicators of the :0-bomb-explosion event based on the weapons training that we
have done thus far. Train :0-bomb-explosion by hitting the Build Lexicon button. Since we
want to accept only instances where an explosion occurred, reject all examples of “must be
place”, “have been place”, “can be placed”, “were placed”, and “was placed”. Accept all

examples of “had exploded”, “exploded”, and “has exploded”. Hit Learn Rules to learn the

event rulebase. A role assignment dialog will appear as shown to the left. This dialog will
present a list of entities associated with a given pattern. Two roles will be available in the
combo box for this event, one for weapon and one for geographic location (defined for our
purposes as specific cities, countries, and neighborhoods). For each role assignment dialog,
scan the list of entities. If any entlty is a relevant location or weapon, select the appropriate
| 3 Assign Role to of x| role in the combo and hit assign. Otherwise, select “Not

Relevant” and hit assign. Because the entities in the

dialog to the left are neither weapons nor specific

geographic locations, choose the “Not Relevant” option
and hit the assign button. You will also assign as “Not

Relevant” the patterns exploded before <x> and exploded

<x>. When the dialog for exploded in <x> appears,

notice that the list of entities does include specific
geographic names (medellin, bogota, etc.) as shown to the
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left. Choose the Location role and click assign. You will
then need to classify each of the entities as being valid
locations or not. Reject “kitchen” and “lima restaurant”.
Accept “medellin” and “bogota”. Reject “vendor stands”
and “new buildings”. Accept “san victorino neighborhood”
and “city”. Reject all of the rest. Assign as “Not Relevant”
the patterns exploded under <x> and exploded of <x>.
Assign to the Location role the pattern exploded near <x>.
Accept the one entity. Assign as “Not Relevant” the pattern
exploded inside <x> and exploded on <x>. Assign to the
Weapon role the pattern <x> exploded. Reject the two
entities that are given for classification. (The remaining
items are already in the weapons lexicon and do not need to
be reclassified.) With training complete, click on the View Rulebase button and verify the
presence of three extraction rules for this event.

. Train the Geo-Location Entity — Just as entity training can automatically seed the event

bootstrapping process, the work we just performed in training the bomb explosion event can
automatically seed the bootstrapping of geographic locations. We will now bootstrap that
entity without requiring user seeding. Select :0-geo-location in the Ontology Node combo
box. Hit the Build Lexicon button. Accept all of the suggested lexically similar items.
When the contextually similar entities appear, Reject all of “motion” and “agriculture
livestock ministry”. Accept all of “el congo” and “cali”. Reject all of “alvarez”, “office”,
“no arrests”, “attention”, “high-ranking government officials”, “judges”, “political leaders”,
“citizens”, and “public officials”. Accept all of “el salvador”. Because the list of entities is
pretty long, we will now discontinue this process by clicking on the X button (close window)
of the classification dialog. Click the Learn Rules button. Accept all of “rochela”. Reject
all of “regiment”. Accept all of “12% block”. View the rulebase via the View Rulebase
button and verify the presence of six rules. Note that some of them don’t have much to do
with bombings, but they do reliably predict locations in general.

. Train the People Harmed Event — To demonstrate event seeding, we will now learn to

recognize indicators for people getting harmed by providing one seed term. Click on the
Seed Ontology button. Choose :0-people-harmed in the node combo and type the seed term
“died”. Accept all of the classification entities. Close the seed dialog. Select :0-people-
harmed in the Ontology Node combo of the main interface. Click on the Build Lexicon
button. Accept all of the lexically similar “had died”, “have died”, and “has died” verb
phrases. Accept all of the contextually similar “were wounded” and “was wounded” phrases.
Reject the “may have been wounded” phrase since this doesn’t definitively indicate a
harming has occurred. Accept all of the “were wounded” and “was wounded” phrases.
(These are actually different phrases than the previous versions though they look identical.)
Now click the Learn Rules button. Note that this event has only one role, that of victim,
associated with it. Assign as “Not Relevant” the patterns died on <x>, died as <x>, died
from <x>, died at <x>, died since <x>, and died during <x>. Assign to the Victim role died
<x> since the entities listed are indeed people. Accept both entities. Assign as “Not
Relevant” the pattern died in <x>. Assign to Victim <x> died. To expedite the demo,
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10.

accept all entities as relevant (one or two irrelevant ones may slip in, but that is ok as the
classifiers are robust). Assign as “Not Relevant” * wounded by <x>, * wounded in <x>,
*wounded as <x>, and * wounded to <x>. Assign as Victim <x> * wounded. Again in the
interests of time, accept all entities. Finally, assign as “Not Relevant” * wounded during
<x>. Press the View Rulebase button and verify that three rules exist.

Learn the People Entity — In the interests of time, we will skip bootstrapping of the :o-
people node and directly learn from the training instances captured during event
bootstrapping in the last step. Select :0-people in the Ontology Node combo and click the
Learn Rules button. Accept the given entity. Click the View Rulebase button and verify
the presence of four rules.

Observe Bomb Explosion Clusters — To suggest how event structure might be induced
semi-automatically from text, we’ll run a clustering algorithm on the :0-bomb-explosion
event. Click on the Ontology Viewer button of the main interface. Left click on the :o-
bomb-explosion node in the atomic event hierarchy, turning it red. Right click on the same
node and choose the Cluster Literals option. Browse the clusters and notice that weapons
and locations tend to separate fairly well. Structural targets and locations also segregate
somewhat. (These clusters become better with more training of the ontology.) This suggests
that the structure of an event may be inducible directly from text, perhaps under user-
guidance. OBIE could thus assist in the ontology definition process. Close the Cluster
Explorer and Ontology Viewer windows.

Cluster Explorer
TR

3 - bogota

~[® dawn

| @ Score: 0.453679, Size: 4
-D university branch
L-[Y eastem end

[ headquartess

L[ santa isabel neighborhood
(& Score: 0.34615725, Size: 11
I-[® other car bombs

[ fragmentation grenade
L[ Iate-model white monza
—D device

L™ second bomb

4 [ carbomb

Step 3: Train the Classifiers

11.

Train the Classifiers — Click the Train Classifiers button on the main interface. This will
allow the naive-bayes and k-nearest-neighbor classifier suites to initialize themselves based
on the training data captured during the bootstrapping process.
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12. Load the Test Documents — Click the Load Documents button on the main interface and

select muc-testing-set.obdoc. This will load 200 test documents.

13. Run the Semantic Tagger — Click on the Semantic Tagger button. The semantic tagger
interface will appear. This interface is used to tag entities from the ontology in the most

:0-GEO-LOCATION
10-GRENADE
10-GUN
:0-HANDGUN

ILL IS~ IRETRUMENT
{0-MACHINE-GUN
1O-MINE
10-MISSILE
:0-MOLOTOV-COCKTAIL

2 (lassifier Summary

recently loaded document set (the test documents in this case). Note the multiple classifier

types available to
be used during
semantic tagging.
Choose RHM:
Relative Head
Matcher in the
classifier combo
box. This
classifier uses
direct dictionary
lookup to try and
classify each
entity extracted
by the node v
rulebases used by

the tagger. Select the :0-
killing-instrument node in
the entity list box. Click
the Tag Documents
button. Then click the
Evaluate Tagger button.
When the file load dialog
appears,
killing-instrument-
key.obsem file. (This
contains an answer key for
the classifiers to use in
determining their accuracy
characteristics.) OBIE

choose the demo-

will now show a list of all entities extracted from the test documents and the classification of
each entity by the classifier, as well as various accuracy metrics based on the answer key.
Notice that “foreign debt crisis” and “dynamite” could not be classified by dictionary lookup
because “crisis” and “dynamite” (the head nouns of each phrase) never appeared in the
training texts. The node name in square brackets after misclassified entities is the correct
answer from the key. Close the Classifier Summary window and now select the RHM +
LPS + NB + AI Committee classifier. Hit the Tag Documents and Evaluate Entities
buttons again. Note this time that the classifiers correctly identify “foreign debt crisis” as

irrelevant (i.e., not a killing instrument) and “dynamite” as dynamite based
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similarities. Also note that “leon” and “paz teachers’ leaders™ are incorrectly classified. As
more training is performed on the ontology, the classifiers become more accurate and make
fewer such mistakes. Close the Classifier Summary window.

14. View Document Tags —

O-FIRE
O-GEO-LOCATION
0O-GRENADE

FILLIG-IMSTRUMEMT

at the same time , another bomb exploded
at a banco popular branch , two blocks
away from where the first explosion took
place , police said . other banks and shops
were damaged by the second explosion ,
and the security guard at the banco
popular was also injured by pleces of flying
glass , the authorities said . according to

downtown bogota . the bombs were
nla f thwe il

Select document tst3-
muc4-0040 in the
document selection combo
box of the Entity Tagger
interface. The text for that
document will be displayed
with all classified killing

MACHINE-GUN lirni ts , two men placed the . . . .
preliminary reports , two
explosive devices and left the scene on Instruments hlghhghted n
foot . both of these attacks tonight , h
attributed to the drug trafficking cartels , red. Note that the tagger
took place after 10 bombs exploded early . 13
this morning in the teusaquillo area in mlSSCd one, the Phrase 10

bombs”. A visual
inspection of the syntactic
tags for that document

(viewable via the document viewer if you are interested) reveals that the syntactic parser
incorrectly parsed that sentence. Because “exploded” was ignored by the parser completely,
no relevant extraction rules could pick the entity up. To see how any level of the ontology
can be tagged, select the node :0-bomb for tagging in the node selection combo and hit the
Tag Documents button. Note that “explosive devices” is no longer tagged in the document

because it is an example of an :0-explosive node, at one level of generality above the :0-bomb
node. Close the Entity Tagger interface window.

Run the Event Extractor Application — Click on the Event Extractor button. An interface
window will appear listing all of the template events and all of the atomic events currently in
the system No instances should yet ex1st in the system. Choose the classifier suites to be

i used for event and entity classification during
the extraction task. Select RHM + NB
Committee for the entity classifier combo and
RHM: Relative Head Matcher for the event
classifier combo. (The use of RHM + NB will
cause some irrelevant extractions to occur as
that classifier is overly permissive, but the errors
are somewhat instructive.) Click on the Extract
From Documents button to run the extractor.
This application will apply all of the entity and
event rulebases to extract out the entities and
events related to bombings according to the
training performed thus far, and will correlate
the extracted information into instantiated
ontology nodes. Once the extractor has run, the
interface will display all of the instantiated
nodes that were extracted from the test

Extract and vlew Events

@ O-TEMPLATEEVENT
o L[N 0-BOMBING
- /| @ D-ATOMIC-EVENT
rt—g 0-PEOPLE-HARMED
0-TERROR-ATTACK
L™ 0-BOMB-EXPLOSION

tive Head Matcher
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documents. Double-clicking on any node (an instance node or a category node) will display
all of the extractions in English in a pop-up dialog. The nodes are generated into English via
a simple canned expression by functionality attached to the abstract entity and event nodes in
the ontology. Double-click on the :0-bombing entry. 16 extractions are summarized into
English and are displayed. Notice that a couple of incorrect extractions are performed,
mainly “the missile exploded in the air” and “The foreign debt crisis exploded in andean
countries”. These occur because the RHM + NB classifier is overly permissive in its entity
classifications. Notice also that some of the extractions occur across sentence boundaries.
For example, if you inspect the document tst3-muc4-0044 via the document viewer, you will
see that the information correlated together into the summary “A bomb exploded. Casualties
included a woman.” spans multiple sentences. Finally, notice that all types of information
trained during the bootstrapping phase are represented in the extractions, including both the
explosion and people harmed events, and the people, location, and weapon entities. When
you have finished examining the extractions, close all of the windows and exit the LISP
environment. That concludes the demo sequence.

£ Entract and Yiew Even

Ning ev be 1.2 :0-BOMBING

{ @ O-TEMPLATE-EVENT

| EHTIERE

1 |-[ 1-0-BOMBING.34661
L[ 1-0-BOMBING.34643
[ 1-0-BOMBING.34607
- 1-0-BOMBING.34568
- 1-0-B0MBING.34563
[ 1-0-BOMBING.34545
L™ 1-0-BOMBING.34540
™ 1-0-BOMBING.34514
L™ 1-0-BOMBING.34469
- 1-0-BOMBING.34428
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