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Abstract 

Nonlinear Scale-based signal and analysis techniques are widely viewed as a viable alter- 
native to meet the challenges of increasingly complex engineering problems. The research 
effort described in this report addresses two problems which require such techniques: 

1. To make Global Positioning System more robust to outside interference and pertur- 
bations 

2. To perform filtering on images for Automatic Target Recognition driven by features 
which may be potential signatures. 



Chapter 1 

Summary of contributions 

The funding of AFOSR-F49620-98-1-0190 grant has helped the PI establish a solid footing 
for a new research program, and has resulted in substantiabicontributions in Nonlinear 
Multi-scale Estimation and Filtering. A Master's thesis funded at 100% authored by B. 
Karacali was completed [1] and two partially (50% funding each) supported Ph.D. theses 
by Y. F. Bao (May'01) and O.V. Poliannikov (May 02) are near completion . Partial 
support of this grant has also led to the publication of four journal papers [2, 3, 4, 5] and 
three journal papers under review [6, 7, 8], as well as two invited book chapters[9, 10] and 
several conference papers at ICASSP and ICIP [11, 12, 13, 14] and invited national and 
international seminars, including an invitation for a one month visit in-the department of 
information sciences at University of Tokyo (Japan) (Nov. 1999), courtesy of the Japanese 
Society for Advancement of Science, and an invitation as principal guest speaker at a 
workshop on Mathematics in Imaging at University of Hong Kong (China) (Dec. 2000). 

In the course of this project, working contacts have also been initiated with key technical 
members of the GPS group of the Air Force Laboratories. Our plan in the very near 
future is to contact the ATR groups around the Air Force Laboratories and to better 
communicate some of our results and help fine tune them to specific problems of direct 
interest to the Air Force. 

The increasing complexity of engineering problems in general, together with the demand 
for additional performance in signal and image processing problems in particular, have led 
to an intensification of search for nonlinear alternative approaches. This is widely viewed 
as a promising framework which would provide reliable as well as robust techniques to 
meet new challenges. 

Towards that goal, the work performed over the duration of the current grant has focused 
on multi-scale nonlinear techniques with two main application thrusts: 

1. Robust methods for Global Positioning System applications 

2. Automatic Target Recognition in Synthetic Aperture Radar, Infra-red and Inverse 
Synthetic Aperture Radar imaging. 

1 



In GPS. a frequently encountered important problem in particularly adverse conditions 
(e.g. intentional jamming) is a loss of lock which in turn, may lead to unexpected delays 
and hence to serious consequences in critical GPS applications. 

The first part of this report addresses such a problem, using nonlinear wavelet techniques 
which are well known to show particular resilience to noisy environments and and to 
exhibit robustness to perturbations. Specifically, we develop a new code lock detection 
technique which among others, facilitates the detection of the location of the data bit 
transition. In the second part of this report, we explore the potential of nonlinear scale- 
based techniques in ATR. Specifically, we develop a probabilistic framework for well known 
nonlinear filtering/diffusion techniques which give an intuitively appealing interpretation 
which.we in turn use to develop more performing techniques in blind image enhancement 
[6] and techniques which use features inherent to the image to drive the filtering. 
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Part I       , 

Robustness of GPS 



Chapter 2 

Nonlinear Wavelet Techniques in 
GPS 

2.1    INTRODUCTION 

Global Positioning System (GPS) is today's most advanced navigation system, which 
incorporates a position determination tool through a web of satellites that broadcast 
their exact position in orbit repetitively at particular time instants. By decoding each 
satellite's message to get their exact position, and by computing their individual distances 
to the receiver, a user can determine their position on the earth's surface with very good 
accuracy. 

A successful operation of the receiver consists of its simultaneous decoding of at least four 
different satellites which in turn requires tracking of the signal carrier frequency and code 
delay. This requirement, as illustrated in Figure 2.1, is reflected by the demodulation 
step as well as the receiver's alignment of its Pseudo Random Noise (PRN) sequence to 
that of the received signal. On account of currently used discriminators' vulnerability to 
bit transitions, the receiver has to acquire lock in both domains within a 20 m-sec time 
interval. 

The present work addresses this problem and provides additional robustness to carrier 
frequency and code delay lock discriminators which are subject to such navigation message 
bit transitions. In what follows, we first summarize the GPS receiver operation, and 
subsequently describe the robust discriminators together with performance comparisons 
with the current discriminators using real GPS data. 



2.2    GPS OVERVIEW 

Figure 2.1 shows the block diagram of a generic GPS receiver. Upon its preconditioning 
and discretization at a lower intermediate frequency (IF), the radio frequency (RF) signal 
is fed to receiver channels which track signals from different satellites. 
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Figure 2.1: The block diagram of a generic GPS receiver 

The receiver channels provide the demodulated navigation messages of all observable 
satellites to the receiver processing, which then feeds the readings to navigation processing 
that computes the position for the user. 

The accurate computation of the position is therefore crucially dependent on accurate 
demodulation of several satellites' signals, which is intrinsic to the receiver channels. 

2.2.1     Generic Receiver Channel 

A simplified block diagram of a generic receiver channel is shown in Figure 2.2.   The 
incoming digital IF signal is first stripped off from its carrier through the sine and cosine 
maps, and then collapsed to baseband once correlated with the receiver generated PRN 
code. 

The receiver processor acquires frequency, phase and code delay errors through Ie, lp, It, 
Qe, Qp and Q, readings, and tries to preserve the locks by adjusting the frequency and 
phase of the sine and cosine maps, and the clock rate of the PRN code generator. 
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Figure 2.2: The block diagram of a generic GPS receiver channel 



2.3    CURRENT LOCK DISCRIMINATORS 

The lock discriminators used in this work are summarized below. A more through pre- 
sentation is available in [15] §5.1. 

2.3.1    Frequency and Phase Lock Discriminators 

In order to be able to strip the carrier from the spread spectrum signal, the receiver needs 
to know the precise carrier frequency of the incoming digital IF signal. One of the most 
commonly used frequency lock discriminators is given by: 

(*2 - *i)2n 

where fa = atan2(Ip, Qp), and Ip is the lp sample observed at time U, for i = 1,2. This 
discriminator gives the true frequency error in a neighborhood inversely proportional to 
the integration time. The plot of the discriminator output versus true error is shown in 
Figure 2.3. The dashed line in Figure 2.3 indicates the ideal discriminator output. 
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Figure 2.3: The error output of the regular FLL discriminator 

The phase lock is generally obtained by a Costas loop. The optimal phase lock discrimi- 
nator [15] is given by 

fy = atan(Ip/Qp). 



This phase discriminator gives the true phase error in a neighborhood of ±11/2. 

2.3.2    Code Delay Lock Discriminators 

Among a number of common delay lock discriminators, the normalized early minus late 
envelope discriminator given by 

err 
E yiTTQl - E VW^Wi 
Ev/irTQ!+E%/irrof 

provides an amplitude insensitive delay error within ± 0.5 bit delay. In spite of its high 
computational load, it will be used in this text as a basis for comparison for the proposed 
code delay lock discriminator. The theoretical error output of this common discriminator 
is shown in Figure 2.4. 
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Figure 2.4: The theoretical error output of the normalized power DLL discriminator 

2.4    PROPOSED LOCK DISCRIMINATORS 

The lock discriminators described here are based on research work presented in [16]. In 
[16] §5.2.2, an operator Oj0 acting on a signal s that returns high values for signal regions 



with embedded singularities is defined. An operator d defined through Oj0 with jo = 1 as 

d(s) = max \ max{öi(s)}, max-fö^s)} \ 
I    k k ) 

where k is the time index of Oj0(-)1, s : [0,i0] -^ K, and s(t) is given by 

[ — s(i)    otherwise     ' 

is shown to be robust to sign transitions in s(t), which creates potential for use in lock 
discriminators with robustness to bit transitions. 

2.4.1    Robust Frequency Lock Discriminator 

Let Ip denote the input of the integrate and dump operator that produces Ip samples. 
Then, the robust frequency loop lock (FLL) discriminator is defined as 

OJr (t2-*i)2II 

where ipi = atan2(/p, Ql
p) with Tl

p = d(lp) ■ sign(^Ip) observed for a certain period of 
time until U, for i = 1, 2. Figure 2.5 shows the discriminator output versus true frequency 
error to be almost linear with slope 1 around the true frequency, indicated by the dashed 
line, and therefore, the discriminator indeed can be used to determine the frequency error 
between the incoming and the receiver generated carriers. 

2.4.2    Robust Code Delay Lock Discriminator 

The robust code delay lock (CDL) discriminator is defined by the following equation: 

erTr = V^J-v^) 
y/d(s~ej + ^/d(s7j 

where 

yir+Q!-sign(Ie)    m>EQ 
V^T+Qf • sign(Qe)   otherwise 

"-c  1 

The empirical plot of the error output versus input delay of the robust discriminator is 
shown in Figure 2.6. Note that the plot is very similar to the theoretical input output 
response of the regular code delay lock detector, showing linear error within ± 0.5 bit of 
delay error. 

1 Note that k = 1,... ,2*>. 
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2.5    PERFORMANCE ANALYSIS 

The performance analysis of the regular lock discriminators and the proposed robust 
discriminators is conducted using real GPS data2. The data consists of the output of the 
analog-to-digital converter in a GPS receiver, which is the input fed to individual receiver 
channels for carrier and code stripping processes. 

2.5.1 Frequency Tracking Performance 

The vulnerability of the regular frequency lock loop discriminators to bit transitions in 
the navigation signal is well known. This is also demonstrated in Figure 2.7 which shows 
frequencies at which the regular discriminator indicates the frequency lock. For some time 
where no bit transitions occur in the data stream, the lock appears stable. Any inadvertent 
bit transition, however, causes the discriminator to either lock at another frequency, or 
loose the frequency lock altogether. Note that the spikes v^iich depict the loss of the 
frequency lock are exactly 20 msec apart, indicating that they indeed correspond to the 
bit transitions of the 50 Hz navigation signal. 

The proposed robust FLL discriminator however, does not show erratic behaviors around 
the bit transition regions that fool the regular discriminator, maintaining the frequency 
lock regardless of the navigation message bit transitions, as shown with solid, lines in Figure 
2.8. The dashed lines in Figure 2.8 represent the regular frequency lock discriminator 
track. 

2.5.2 Code Delay Tracking Performance 

In [16], it was empirically shown that the robustness to bit transitions in the conventional 
code delay lock detectors based on envelope detection was at a cost of a higher sensitivity 
to noise. The performance comparison between the regular code delay lock discriminators 
and the proposed discriminators should hence be carried out as a function of prevailing- 
noise. 

Towards that end, the real GPS data is demodulated separately using regular and pro- 
posed delay lock discriminators, both with the regular frequency lock discriminator, on a 
signal region with no navigation message bit transitions. This procedure is fifty hundred 
times, and with various levels of white noise added artificially to the initial real GPS 
signal. The results are shown in Table 2.1. 

The simulation results indicate that in similar conditions, the proposed delay lock dis- 
criminator offers better noise performance than the regular discriminator, under additive 
white Gaussian noise. The increasing noise levels impair both discriminators, but at SNR 

2We would like to thank Michael S. Braasch and Maarten U. de Haag of University of Ohio for 
providing the real GPS data. 
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Figure 2.7: The regular FLL discriminator's frequency tracking 

Table 2.1: 

SNR 20 15 10 5 0 
regular 

discriminator 
lock 50 50 50 46 6 
miss 0 0 0 4 44 

robust 
discriminator 

lock 50 50 49 49 23 
miss 0 0 1 1 27 
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Figure 2.8: The robust FLL discriminator's frequency tracking 

levels where the regular discriminator looses the signal, the robust discriminator still offers 
accurate signal tracking. 

2.6    CONCLUSION 

So far, we have presented a performance analysis on the proposed frequency lock and code 
delay lock discriminators on real life GPS data, and compared their performances to two 
existing discriminators. The proposed frequency lock discriminator proved to be robust 
to navigation data bit transitions. This is a big problem for regular discriminators as it 
limits the predetection integration time and the noise performance thereafter. The use of 
a robust frequency lock discriminator therefore should alleviate the 20 msec restriction on 
the predetection integration time, making operation possible in much heavier attenuation, 
noise or interference environments. 

In comparison to envelope detection, the proposed code delay lock discriminator showed 
better performance in establishing a delay lock under real noise conditions This confirms 
the simulated results presented in [16], and offers promising functionality of the newly 
proposed techniques in adverse signal conditions. 

13 
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Chapter 3 

Anisotropie Diffusion 

3.1    Introduction 

Scale-based analysis has played an increasingly important role in signal and image anal- 
ysis since Witkin's ground breaking paper[17], in which a so-called linear scale space was 
constructed. This was based on the conclusion that convolving a signal with a Gaussian 
kernel was equivalent to evolving it with a Heat differential operator where time plays the 
role of scale [18, 19]. This linear filtering approach, however, presented a major limita- 
tion, namely that important details in signal/image also get smoothed away along with 
the noise. On the other hand, and with a different twist, Mallat [20] proposed a system- 
atic nonlinear multi-scale analysis framework using wavelet bases. The computational 
efficiency of a wavelet analysis together with its ability to focus on and localize salient 
features of a signal via its multi-scale coefficients have secured it great popularity. This 
framework provided a solid foundation for a-number of subsequent studies on De-noising, 
segmentation, etc. [21, 22]. The implicit/explicit assumption of independence of the 
wavelet coefficients in the analyses of these De-noising techniques and others turned out- 

to be a limitation in some cases and degraded their performance and overall effectiveness 
in others. An attempt to mitigate such a problem was provided for 1-dimensional signals 
in [23] by accounting for some Markovian structure, the solution appeared to improve 
performance albeit at a substantial computational cost. Its applicability for images, to 
the authors' best knowledge, was never given. Given the intrinsic ability of the continuous 
scale approach to preserve intra-scale correlation information as well as inter-scale infor- 
mation, it is reasonable to expect techniques based on such approach to result in more 
efficient and effective filtering. Such a clever notion was first used by Perona and Malik 
in their landmark paper [24] where they aimed at preserving important sharp features 
such as edges in images. Their technique may also be viewed as a nonlinear filter whose 
selective smoothing is based upon the computed local gradient (maximal smoothing in low 
gradient or homogeneous regions, and minimal smoothing in high gradient regions). The 
novelty of this approach together with its most promising results triggered a tremendous 

15 



research activity in computer vision and applied mathematics (see [25] for a good review 
of the literature as well some other fundamental papers such as [26, 27]). 

A number of very good papers have recently provided inspiring variational interpretations 
to various nonlinear smoothing techniques [25]. Specifically, many existing nonlinear 
evolution equations were shown to result from a minimization of energy functional whose 
Euler-Lagrange equations led to a gradient descent method, thereby giving rise to a PDE. 
All of these evolution techniques required an a priori stopping time, the absence of which 
almost always led to, as is well known, to a complete smoothing of the signal/image 
(i.e., the steady state of the PDE). Furthermore most of the existing developments, if 
not all, have been predominantly deterministic in nature, with little to no stochastic 
treatment or interpretation of the diffusion. The characteristics of the random process 
which underlies a diffusion have hence been overlooked, and their overall influence on the 
solution in different scenarios has remained unclear. Pollak et. at. [5] recently proposed 
an approach addressing robustness issues, and showed some remarkable results for a wide 
class of perturbation noises. The analysis remained as in all other cases, fundamentally 
deterministic, and also required knowledge of the stopping time for the evolution. 

Towards understanding the intrinsic stochastic behavior of nonlinear diffusions, we adopt 
a probabilistic view of diffusion (and partially described) in [11], and propose a framework 
where nonlinear diffusions are cast and are given an insightful interpretation. Additional 
extensions are also proposed in [12]. In this report we describe in sufficient detail an 
alternative view of nonlinear filtering/diffusion which may also be found in [6]. This in 
fact is instrumental in our providing an alternative interpretation of,existing methods, 
e.g., Perona-Malik equation, and in using the gained insight to propose a solution to its 
well known limitations. More specifically, we view an evolution equation as a solution to 
a controlled diffusion [28] resulting from an optimization of an energy functional. This 
ultimately leads to a two to four state Markov Chain (MC) with one step transition 
probabilities well adapted to preserving the salient features of an image/signal ( such 
as edges) while smoothing away the noise. As will be elaborated on further below, in 
addition to a marked performance improvement over P-M equation, and by way of our 
newly proposed technique we are able to lift a longstanding problem in nonlinear diffusion, 
namely requiring prior knowledge of a stopping time. We in fact show that the stable point 
for our equation is a staircase function. The immediate applications of such a filtering 
technique are signal/image enhancement as well as segmentation and feature extraction 

[7]- 

Some background material is first presented in the next section and prior to our reformu- 
lation of the diffusion problem in Section 3. Following a discrete formulation, we proceed 
to alternatively reinterpret in Section 4 nonlinear diffusion equations as non-homogeneous 
controlled Markov Chains. In Section 5, we use the insight gained in the previous sections 
to propose a new algorithm whose evaluation through numerous substantiating examples 
is provided in Section 6. We finally give some concluding remarks in Section 7. 
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3.2     Probabilistic View of Diffusion 

A stochastic process Xt may be defined as a parameterized collection of random variables 
{Xt}teT defined on a probability space (Q, T', P) and assuming values in 7ln in general, 
so that, 

Vw 6 0, u -> Xt{co), t e T, 

where Q is the usual sample space, T the a-field and P the probability measure. A nice 
and intuitively appealing interpretation for to is that of a particle whose position at time 
t is given by Xt(u). 

Definition 1. A stochastic process which satisfies the following stochastic differential 
equation(SDE) is called an Ito-diffusion[29]. 

dXt = b{t, Xt)dt + a{t, Xt)dBu (3.1) 

where Bt is a standard Brownian motion and b(t,x),a(t,x) are drift and diffusion coeffi- 
cients, (d = 1, 2 in this paper). Furthermore, if the drift and diffusion terms b(t, x), a(t, x) 
are associated with a function v(t,x), XI = Xt is called a controlled diffusion, where X% 
satisfies the SDE 

dXv
t =b(t,v{t,Xt))dt + a{t,v{t,Xt))dBt.        ^ (3.2) 

Denote by p(s, x, t, dy) the probability transition function of a stochastic process Xt, i.e., 
p(s,x,t,dy) = P(Xt e dy\Xs = x), and by p(s,x,t,y) the probability transition density 
function of a particle starting at location x and time s and reaching y at time t. The 
transition probability is normally determined by the drift and diffusion coefficients, which 
characterize how the diffusion behaves. If there is a control factor in the coefficients, 
it is reflected by a constrained transition probability for the particle. The infinitesimal 
generator (i.e., continuous operator which described such a motion) of the diffusion in 
Eq. (3.2) can be then written as : 

Vt = I ± „«(*,«(«,»))^ + t tf(«,.(«,x))I 

where a.(t,v(t,x)) = a(t,v(t,x))Ta(t,v(t,x)), The solution of the resulting PDE 

^ = WM 
U(s,x)   =   f(x)    for some    s > 0, (3.3) 

can be written as an expected value Ut{x) = Ex{f(Xt)} = J f(y)P(s,x,t,dy) [30]. If we 
let s = 0., Eq.( 3.3) is the so-called Markov forward equation. A backward equation can 
be viewed as a reverse time process, with the following form: 
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Figure. 3.1:  A particle (pixel) may diffuse over many possible paths, and an average is 
usually computed. 

^ WM =o 
UT{x) = f{x)    for some   T > 0, (3.4) 

where Lv
t*{-) is an adjoint operator of Lv

t. The solution can again be expressed as Ut{x) = 
EtiX(f(XT)), where T is the fixed terminal/end time of the diffusion (or initial in the 
case of an inverse diffusion). Note that a backward diffusion equation can be viewed as a 
forward diffusion by merely selecting t' = T — t. 

An illustrating example of a non-controlled diffusion is the prf cess described by the PDE 
in Eq.( 3.8), in which Lv

t is specified as a Laplacian operator A (i.e., J^- + &). Diffusion 
of heat in a homogeneous medium fundamentally stems from the motion of particles. It 
can be shown that the inherent randomness of this motion is well-described by a Brownian 
motion Bt [29], where an individual outcome u G Q in the prevailing sample space, may be 
associated to a particle. The process Bt can then be interpreted as the distance traveled by 
particle w at time t. It is well known that such a transition density for a Brownian motion 

in 1-D case, for instance, is a Gaussian PDF p(t, x, y) = 7^kme 2t Vz, y e TZ, t > 0 
(recall that a Brownian motion has independent Gaussian increments). It is thus clear 
that a stochastic interpretation of a solution (if it exists) subject to some differentiability 
conditions, can be given by way of an ensemble average [30] 

Ut(x) = Ex{f(Bt)}= [ p(t,x,y)f(y)dy, (3.5) 

where the expectation E(-) is computed over all possible reachable positions Xi starting 
at position x. In the 2-D case, it is similarly possible to have such an interpretation as 
displayed in Fig. 3.1. The times t = tx and t = t2 are the instants at which all possible 
positions are averaged to yield a solution at the respective times. 

3.3      Diffusion on a Lattice 

As previously noted, our chief interest here is to propose a framework within which a 
stochastic interpretation of a diffusion (or more generally of the so-called scale space 
analysis) is achieved, and is in turn instrumental in gaining insight. Towards that end 
and to further extend and possibly improve on existing techniques, we begin by discretizing 
the space as well as the scale/time variables. 
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3.3.1    Discrete Approximation of Diffusion 

Recall that a symmetric one-dimensional (1-D) random walk is well known to converge 
to a Brownian motion as r —»■ 0 and 5—^0, with r, 5 respectively denoting scale and 
distance discrete steps. A particle following such a trajectory will move on a 1-D lattice 
with probability 1/2 to the left or to the right, while on a 2-D plane, it will move to 
any of the four nearest neighbors (east, west, north, south) with equal probability of 1/4. 
Formally, in 2-D space, we write the spatial variable (x\, x2) = (xi+i5, x2+iö) with % G Z 
and the scale tn = nr with n G N, and we denote the one step transition probability of a 
particle from {x\,x°2) to (x1,x2) at the nth scale step, hjpn((x°,xl), (xi,x2)). As a result, 
we obtain a standard form from Eq. (3.5), namely the probability of a particle being at 
(xi,x2) at scale/time (n + l)st step as r -» 0 and 5 —> 0, 

Proposition 1.  The following discrete equation, 

Pn+iiix^xl), (zi.za))   =   |p„(«z!j), (x -8,y) + \pn{{A>A)> (*i + 5,x2)) 
+\Pn{{x1,x°2), {x1,x2 - 5)) + %{{xl,x°2), {xux2 + 6)) 

(3.6) 

converges to 

dptdxlxD^xuxJ) _ d2pt({xlxl),(xux2))     d
ipt((xlxl),(x1,x2)) 

dt _ dx\ dx\ {ö   } 

Proof: Subtracting pn(x\, x\) from both sides of Eq. (3.6) and dividing it by r, we obtain 

\pn+l((xl,x°2), (xux2)) -pn((x1,x%), (xux2))]/r = 

h \Pn{{x°1}X°2), {X, - 5,X2)) - 2Pn({xlx0
2), {XUX2)) + Pn{(xlx°2), {xt + 5,X2))} + 

Tr \Pn((xlx°2), (XUX2 - 6))  - 2Pn{{x°1, X°2), (xUX2)) + 

Pn((x?,^),(x1,X2 + (5))] 

which upon letting r = 52/4 and 5 -> 0, concludes the proof. ■ 

The numerical approximation of a linear diffusion is hence readily implemented by way 
of a random walk. 

When considering a 1-D Brownian motion on a compact interval, a reflecting wall should 
be accounted for, making the Markov Chain (MC) aperiodic and recurrent and for which 
a solution to AU{x) = 0,U0{x) = /(f) takes the form U(x) = Es{f(XT)). This also 
implies a discrete solution [/(f) = y~]pif(Xi) where Pi is the probability of a particle to 

i 
be in state i as t grows large. The independence of the solution [/(f) of the initial state, is 
equivalent to its convergence to some mean value of /(f) as f is averaged over all possible 
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paths. This in a sense provides an intuitive justification for the convergence of a heat 
equation to a constant. The case in point arises when we are faced with a deterministic 
diffusion Xt, which is alternatively expressed as dXt = [10]dt. The corresponding solution 
obtained from Eq. (3.3) is U(x) = f(x0i +t,x0-2), where x0 is the initial state, clearly 
non-constant as expected. 

In light of the foregoing development, and for better insight and intuitive clarity, we find 
it useful to carry out most of the exposition and the analysis in a discrete setting. Prior 
to delving into our formulation and interpretation of a Non-Linear (NL) diffusion, we 
present an illustrative example where a so-called controlled diffusion leads to a Markov 
Chain as a result of an optimization. 

3.3.2    Finite Markov Chain Example 

We start with a finite Markov chain [31] as in Fig. 3.2 with three possible states a,/?,7 
with respective costs 1, 2, 3. Our goal is to select a "best" strategy (minimum cost) for a 
particle to make, a two-step transition from a state, say a. The corresponding transition 
probabilities are obtained from the following sets of strategies: 

G* = {(^,0,^(^,0)} 

Gß = {(|,0,|.),(|,|,0)> 

G1   =   {(1,0,0),(|,0,|),(|,0,|)}. 

For state a for instance, two choices are possible: 

• the first strategy has it move to state 7 with probability |, and remain stationary with 
probability |, 

• the second lets it move to state ß with probability \ and remain stationary with prob- 
ability |. 

Taking into account the respective costs as well as the transition probabilities, an optimal 
strategy for a is determined to be (|,|,0) with a minimum cost of |, while in state 
ß a cost of § with the strategy (|,|,0), and in state 7 we obtain a cost of 1 with 
strategy (1,0,0). A second step transition may be similarly found, with respective costs 
for a, ß, 7, of f, I, I resulting from (f, 0, |), (f, 0, |), (f, 0, |) respectively. This process 
may be continued indefinitely. 

Note that more complex strategies are possible and may be constructed for the intermedi- 
ate steps, e.g., variable strategies along the steps, etc.. When, on the other hand, a given 
strategy set only depends on the previous state, it is referred to as a Markov strategy. It 
is also clear from the foregoing example that the resulting process, by way of its transition 
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In an attempt to solve Eq.( 3.8) and using its stochastic interpretation, we proceed to 
write 

Ut(x) = EtiS(f(XT)), (3.10) 

where /(•) = 17(0, x) is the initial data. In particular, we obtain one step transition as 

Ut{x)   =. Et>x{Et-T{f{XT))) 

=    \ Et-T,yU{XT))p{T,x,y)dy 

=   I Ut.r{y)PT(y\x)dy. (3.11) 

Note that the above diffusion is a backward diffusion which, as mentioned in Section 2, is 
treated as a forward diffusion for the sake of clarity. The probability PT{y\x) should then 
be interpreted as P(£t_T = y\£T = x) to emphasize the backward evolution in time/scale. 

3.4.1    Discrete Time/Scale Evolution 

In discretizing x and t, we account for a reverse time evolution by relabeling time "i - r" 
by 1 and "t - nr" by n, hence making a backward diffusion equation look more like a 
forward diffusion. We denote by Un(x) the value of the solution at time step m and 
location/state x. Eq.( 3.11) can then be written in the form, 

un+1{x) = YluMp»(yW- (3-12) 

y 

Since the solution to Eq.( 3.7) is a Gaussian transition density function, it characterizes 
the evolution of a particle along a Brownian trajectory starting at xQ and time t. Using 
the fact that a limiting process of a random walk is a Brownian motion, we may compute 
the solution to Eq. (3.12) at any desired discrete time/scale. At the first time step r and 
for a 1-D case, we can write 

Uiix)   =   l-f(x-8)-v\f{x + 5)) (3.13) 

while in a 2-D scenario, we have 

Ui(xx, x2)   =   -j{x1 - 6, x2) + -f(xl + 8, x2) + -/(arx, x2 - 5) + -f{xu x2 + 5), 

(3.14) 

both of which are the result of an averaging process. More generally, we can write the 
solution to the linear heat equation as a discrete expectation for respectively 1-D and 2-D 
as 

Un+l(x)   =   iun(x-6) + \un{x + 5), (3.15) 
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Un+i{xi,x2)   =   jUn(x -S,y) + -Un(xi + 8,x2) + jUn(xu x2 - 8) + 

-Un{;xux2 + 8) (3.16) 

(3.17) 

Due to the underlying random walker moving to its neighbor with 1/2 probability in 1-D 
(and to its four nearest neighbors with probability 1/4 in 2-D), it is clear that the linear 
evolution will indiscriminately smooth away sharp features along with the noise. 

3.4.2    A Stochastic View of Perona-Malik Diffusion 

The linear stochastic differential equation led to a linear diffusion by way of a Laplacian 
as its corresponding infinitesimal generator. Using this development as an inspiration, 
together with its discrete stochastic formulation and interpretation, we proceed in an 
analogous manner to rewrite the P-M equation to be interpreted as a particle-based 
diffusion. 

Proposition 2. Based on a particle system interpretation, P-M equation may rewritten 
as 

Un+i{x)   =   pn(x,x + 8)Un(x + 6)+pn(x,x - S)Un(x - 8), 

[1 - pn(x, x + 8) + pn{x, x - S]Un(x).        .' (3.18) 

Proof: The proof follows immediately from the discretization of Eq.( 3.9) and rewriting 
l/2g (| Un(x ± S) - Un(x) |) = pn(x,x ± 8) = pn{£n+i = x ± 8 | £n = x) to denote the 
transition probability of a Markov chain {£(.)} to move from state x to state x ± 8. 

A similar expression for a 2-D signal (image) may be written as 

Un+1(x1,x2) 

=   p^ixuX^Unixi + 8, x2) + p^+1[/n(.Ti - 8, x2) 

+pn
E
+1(xi,x2)Un(xl,x2 + 8) +plt1Un(x1,x2 - 8) 

+   [l-p^+1{x1,x2)-P
n

I+
1{x1,x2) -p

n
E
+1(x1,x2)-plt1(xl,x2)]Un(x1,x2), 

(3.19) 

where 

p^+1(xux2) = jg (| Un{xi + 8, x2) - Un{xu x2) |), 

pn
N
+1(xux2) = -g (| Un(x - 8, y) - Un(xu x2) |), 

tfE1(xxix2) = -g{\Un{xi,x2 + 8)-Un{x1,x2)\), 

p^t1 (21,2:2) = -g(\ Un(xux2 -8)- Un(xx,x2) |) 
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represent the transition probabilities of the underlying Markov chain £n, i.e., 
Ps (£n+i = (^1 + ^^2) I £n = (^1,^2)) = P5+1(^i)3;2)- These equations are intuitively ap- 
pealing, in that the random walk of a particle/pixel (or the diffusion) £„ takes place accord- 
ing to the prevailing one sided gradient at position (xi,x2) in any of the four directions. At 
time step n + 1, a south (resp. north, east, west) moving walk takes place with probabil- 
ity Ps+1 (xi,x2) (resp. pp~l(xi,x2), p

7^1 (.Xi, £2), P\yl (xi, x2)), and the particle remains in 
place with probability p%+1 (x) = 1 -pn

s
+1 (xx, x2) -p7}/1 (xi, x2) ~PE

+1
 (xi, x2)-p^t1 {xx ,x2). 

It is clear here that the transition probability of a random walk is determined by the gra- 
dient, thus, the resulting diffusion is well controlled. This is in sharp contrast to the 
linear diffusion where the random walk invariably takes place with a constant probability 
of 1/4. Note that while the derivation of an exact SDE corresponding to P-M equation 
as an infinitesimal generator, is interesting in and of itself, it requires a more complex 
system of particles which is of no additional insight and of little relevance to our stated 
goal in this paper. 

3.5     Two Sided Gradient-Driven Diffusion 

3.5.1    A variation on a theme 

As discussed in Section 2, at each scale of our analysis, the mean value of the process 
£/(•,•) is evaluated as a result of a non-homogeneous random walk with the transition 
probability controlled by the underlying process at the previous scale. In addition, and to 
avoid potential stability problems, we ensure that the probability of a jump of a particle 
(pixel) farther than an immediate neighbor is zero, which effectively emulates a continuous 
diffusion. Furthermore, we ensure that there always be a one step transition of a particle 
to its neighbors to avoid a slowdown in convergence due to likely stationary states [28]. 
We adopt this paradigm to construct a non-homogeneous Markov chain whose transition 
probabilities are based on the current particle states and their functional value. This 
results in a set of consecutive transition steps through scales, each in a sense, defining a 
new random process with a new probability transition. 

While the goal in signal/image processing is to maximally smooth out the noise, we are also 
keen on achieving a solution that is as faithful as possible to the initial underlying signal. 
To thus help better localize the homogeneous regions together with their boundaries, we 
use in our transition dynamics a bidirectional gradient-based "probability measure". (sub- 
gradient in continuous space). Using the Szökefalvi-Nagy's inequality[32], to optimize 
the gradient energy (to delineate regions), we have to minimize the following energy 
expression, 
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£(Un+1) = Y,£{Un+l(x)) 
X 

=    Y}^U^X + 8)-Un^Wn+l{x)-Un{x-5))f 
x 

+   [(Un(x-8)-Un(x))(Un+l(x)-Un(x + 8))}2 (3.20) 

where Un+i(x), assumed to result from Eq.( 3.11), is written as 

Un+i(x) = Pn+l(x - 8\x)Un(x -8) + Pn+1{x + S\x)Un{x + 5), (3.21) 

with Pn+i(x — 5\x) + Pn+i{x + 5\x) = 1. Minimizing Eq.( 3.20) entails an appropriate 
choice of a probability measure as follows, 

Theorem 1.  The trarisition probability solving Eq.( 3.20) is^jiven by 
Pn+i{x - 8\x) = P{£n+i = x- 6\£n = x} with 

. p       (r_XM-  \Un(x + S)-Un{x)\2  
n+l{        ' ' ~ I Un(x -5)- Un(x) |2 + | Un(x + 5)- Un(x) r [      ] 

where Un+i(x) satisfies Eq.( 3.21). 

(See Appendix A for Proof). ■ 

For a 2-D image, we denote the transition probability by p^+l(xi,x2) = P{£n+i = (x\ + 
8,x2)\£,n = (xi,x2)} (similarly for other probabilities) and obtain the following expression 
for the transition probability 

tfH*L*,) = s+^e + w, (3.23) 

where 

N = \Un(x-6,y)-Un(x1,x2)\
2 

S = I Un(xi + 8,x2) - Un(xux2) |2 

£ = I Un{x1,x2 + 5) - Un(xt,x2) |2 

W = I Un(xx,x2 - 8) - Un(xi,x2) |2 

Using the above transition probability, our newly proposed diffusion is written as 

Un+1{xux2)   =   Un{xl + 8,x2)p
n

s
+1{xi,x2) + Un{x-8,y)p1p~l{xl,x2) 

Un{xux2 + 8)p%+\xux2) + Un(x,y - 8)p^\xl)x2).      (3.24) 
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challenges to simple gradient-based segmentation and/or linear filtering, and this is for 
the most part due to their impulsive nature. The results of such approaches usually re- 
sults in visually unpleasant and quantitatively inaccurate results if at all. In Fig. 3.6, the 
potential for complete diffusion rather quickly (for an inadequate choice of the threshold 
parameter in the P-M equation) is exhibited whereas and as demonstrated above, the new 
approach will stabilize with no parameter adjustment. For a well known stopping time 
and well chosen parameter, P-M approach performs quite well, this may, however, may 
turn out to be a limitation for a number of real applications. 

In Fig. 3.7 an enhancement/De-blurring-like effect using our algorithm is also demon- 
strated for a checker board. The price for avoiding the explicit knowledge of the stopping 
time using our approach, is the arising of block effects which although common to many 
existing techniques is a drawback. Although this may be fine tuned away for pure De- 
noising purposes, we are currently looking into techniques specifically addressing such an 
issue. In Figure 3.7, a De-blurring example is shown, demonstrating the capacity of the 
algorithm to enhance edges and again stabilize at staircase frictions. 

For establishing a more quantitative measure of performance we use the figures in Fig- 
ure 3.8. A pixel deviation is computed and a Monte Carlo simulation is conducted to 
construct an error rate curve which is consistent with our visual assessment and displayed 
in Fig. 3.9. 
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Figure 3.3: Stable signal remains unchanged following proposed nonlinear diffusion. 
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3.7    Conclusion 

The proposed stochastic interpretation together with its link to controlled diffusion are 
shown to not only explicate existing techniques and their limitations, but to also provide 
sufficient insight to develop other novel physically and geometrically driven methodologies. 
We have also succeeded in resolving in part a well known and long standing problem of 
unknown stopping criterion. 
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Chapter 4 

Geometric Stochastic Flows 

4.1    Introduction ^ 

Closely related techniques to the above anistropic diffusions are those of curve evolutions. 
As we elaborate further in the next section, the so-called geometric heat flow may be 
viewed as a descendent of the linear heat flow, in spite of the fact that the general class 
of curve evolutions itself need not be so. Curve evolution has, in recent years, emerged 
as an important application of partial differential equations (PDE's) in image processing, 
computer vision, and computer graphics. Their applications to individual curves such as 
in edge-detection, skeletonization, and shape analysis, but have also been extended to 
their simultaneous action on the level sets of an image in a number of geometrically based 
anisotropic smoothing algorithms. A detailed account of these methods may be found in 
[33, 34] and also in, e.g. [7]. 

If run for too long, however, even large scale features will be destroyed. The reason stems 
from the fact that as the geometric heat flow shrinks any closed curve, the curve becomes 
more and more circular (elliptical in the case of the affine flow) and will eventually collapse 
into a single point [35]. It is therefore not always possible to preserve desired features in 
the shapes of objects (corners for example) if too much evolution is required to remove 
a significant level of noise. Furthermore, it is not well understood how these curvature- 
based filters are affected by different noise distributions and when this sort of problem 
may occur. Much like the anisotropic diffusion problem, the curve evolution technique has 
largely been addressed in the literature, outside [2, 36], in a purely deterministic setting. 
In this part of our research effort, we provide a stochastic formulation of the geometric 
heat equation and use the resulting insights to develop a new class of curvature-based 
flows and anisotropic diffusion filters which preserve desired features in the shape of an 
object. Under these new flows, evolving curves take the limiting form of a polygon (see 
[37] for evolutions of polygons related to the geometric and affine geometric heat flows). 
The resulting diffusion models may therefore be applied for much longer periods of time 
without distorting the shapes of polygonal objects in the image, thereby mitigating the 
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We may write these directions in terms of the first derivatives of the image as 

_ {Ux,Uy) (~Uy,  Ux) 

y/ux
2 + Uy2' y/ux

2 + Uy2' 

Since these constitute orthogonal directions, we may exploit the rotational invariance 
of the Laplacian operator and re-write the linear heat equation in terms of these two 
variables: 

Ut = V • (Vw) = Utf + um 

where unn and u^ denote second-order directional derivatives in the directions of rj and £ 
respectively. It is possible to derive the following expressions 

UXUXX   +   2,UxUyUxy   +   UyUyy 
Hv   =    TT~2  v4-2) u2

x + u2
y 

'Uy'U'XX   —   AUXUyUXy   +   UxUyy*m . 

Hi =     rr~~2 • ' 4-3 
u2

x + u2
y 

By subtracting the normal diffusion component (4.2) from the linear heat equation, which 
diffuses isotropically, we obtain the following anisotropic model, which diffuses along the 
boundaries of image features but not across them 

UyUxx ZUXUyUXy   +   UxUyy 
ut = iitf = -* 2~— . - 4.4) 

K + % 

We may obtain this same equation in a completely different and much more geometric 
manner by specifying the evolution of each level curve in the image. Let C denote a 
particular iso-intensity contour which we will deform over time via the following flow, 

Ct = Css = KN (4.5) 

where s denotes the arclength parameter, K the Euclidean curvature, and N the inward 
unit normal. Equation (4.5), referred to as the Geometric Heat Equation (GHE), is well 
known for its smoothing properties. It has been shown by Grayson [35] that any closed, 
embedded curve evolving according to (4.5) will convexify and smoothly shrink to a single 
point in finite time, becoming more and more circular along the way. This flow is also 
referred to as the curve shortening flow since it corresponds to the gradient (descent) 
evolution of the arclength functional. See [39, 40, 41] for a more extensive discussion of 
the many properties associated with this flow. Because the evolution speed is a function 
of the curvature at each point on a curve, this flow gives rise to a Euclidean invariant 
scale space (see [42, 43, 38]) in which finer features are removed first, followed by coarser 
features, as the curve evolves. A related flow, based upon the affine geometry of the curve, 
is given by Ct — K

1
^N and shares many of the same properties as the curve shortening 

flow but gives rise to a more general affine invariant scale space (see [42, 44, 45]). 

34 



(ux(t,x),u.y(t, x))/\Jux(t,x)2 + uy(t,x f. It follows, 8(ux(t,x),uy(t,x)) = tan l{u
u
y}^\)- 

Using these equations, and defining an operator AGim of the form 

AGHEu(t,x)   =   sin2 9(ux(t, x),uy(t, x)) uxx(t,x) 

— 2sin9(ux(t,x),Uy(t,x)) cos6(ux(t,x),uy(t,x)) uxy(t,x) 

+  COS2 8 (UX(t,X),Uy(t,X))    Uyy(t,X), (4.7) 

the geometric heat equation (4.4) can be re-written as 

ut(t,x)   =   AGHEu{t,x), (4.8) 

u(0,a;)   =   u0{x), (4.9) 

where u0(x) is the initial level set function. We next show how an evolution equation in 
fact corresponds to an infinitesimal generator of a Stochastic Differential Equation (SDE), 
by using Ito diffusions and the Kolmogorov backward diffusion theorem [46, 2, 36]. 

4.3.1    Ito Diffusion 

The diffusion of a particle is usually well modeled by an SDE which, in turn, represents 
the underlying microscopic process of an evolution of a pixel or a point. The dynamics of 
this evolution at a macroscopic level are captured by a PDE, henceforth also referred to 
as a generator (infinitesimal) of the diffusion. 

Definition 2. Suppose we want to describe the motion of a small particle suspended in a 
moving liquid, subject to random molecular bombardments. If b(t,x) 6 Rn is the velocity 
of the fluid at a point x € W1 and time f GK+, then a widely used mathematical model 
for the position X (t) of the. particle at time t is an SDE of the form 

dX(t) = b(t,X(t))dt + cr(t,X(t))dB(t), (4.10) 

where X (t) is an n-dimensional stochastic process, cr(t,x) G K"Xm, and B (t) is an 
m-dimensional Brovmian motion. &(•,•) is called the drift coefficient, and cr (•, •) is called 
the diffusion coefficient. 

The first term in this equation corresponds to a non-random/deterministic motion, whereas 
the second term models randomness or noise in the motion. 

The solution of such an SDE may be thought of as a mathematical description of the 
motion of a small particle in a moving fluid, and such stochastic processes are called (Ito) 
diffusions [46]. For many applications, a second order partial differential operator A can 
be associated to an Ito diffusion X (t) given by Eq. (4.10). The basic connection between 
A and X (t) is that A is the generator of the process X (t). liw(x) 6 CQ (Rn), (i.e., it is 
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continuous with continuous derivatives up to order 2, and has a compact support), then 
A is given in the form 

_4„, = 55>^)ij(a;) +E(,j(x) («I) 

Next, we state a theorem, the so-called Kolmogorov's backward equation [46], which gives 
a probabilistic solution to linear PDE's. 

Theorem 2. Define-y(t,x) = Ex [f{X (t))}, whereX {t) = (X^{t),X^(t)), andEx[] 
is the expectation operator with respect to the probability law of X (t) starting at the point 
x, then there exists an operator A such that, 

?1   =   Ay,      t>0, x eE2, (4.12) 
at 

7(0,aj)   =   f{x),    x el2. (4.13) 

4.3.2    Stochastic Formulation 

In light of the foregoing development, a natural question which arises is: given a PDE 
which governs a curve shortening flow, can we obtain a corresponding SDE associated 
with the underlying diffusion? 

The nonlinearity of GHE presents a significant challenge to find a global Ito diffusion which 
explains the overall microscopical behavior of the system. Our approach here for solving 
such a nonlinear problem is, to explore the short-time behavior by linearizing around a 
known (nominal) solution. The perturbation equations so obtained will be linear and 
hence an approximate solution to the nonlinear problem can be obtained as the nominal 
value plus the perturbation term. Let us denote by un(t, x) the solution to Eq (4.8): 

dun 

sin2   tan-1 (-J)     un
xx - sin ^taif^-J)     <y + ™s2   tan"1^) I  *; dt \ yunJ)    xx V ux J V X "yy 

J \ "'x   / \ "'x   / 

and if we write u(t,x) as 

u(t, x ) = un(t, x ) + eu(t, x), 
un(t X 1 

and define the corresponding nominal angle 6n(t, x) = ten    (ultt'X))> we Set a linearized 
version of the geometric heat equation around a nominal value: 

'       « ^GHEHn«(t, x) = sin2(0n(ai)) uxx(t, x) - sin(20n(a:)) uxy(t, x) + 
at 

cos2(9n(x)) uyy(t,x) + c(x)(-Uy(x) ux(t,x) + v%(x) uy(t,x)), 

(4.14) 

where c(x ) = (<(a))4(ttn(g;))2 [sin(2ön(aj ))«>) - un
yy(x)) - cos^sc ))2un

xy(x)] (see 

Appendix B A for details of this derivation). 

In light of this, we can proceed to state the following: 
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Proposition 3. The right hand side of the linear PDE in Eq. (4-H) is the generator of 
the following Ito diffusion satisfying the SDE 

( dXW(t) \ _ ( -v»(X{t)) \ r2 ( sme«(X(t)) \ 

(4.15) 

Proof. The operator AGnEv,n in Eq. (4.14) is first re-written as, 

•4GHEii„   =   bT(X)-V +^<T(X)CT
T

(X) 0H 

■^(«,)r-(i)+ 
/ sin20n(X) -sm6n{X)cos9n{X)\ 
\ - sin 0n {X) cos 6n (X) cos2 9n(X) ) 0    ' 

T 
where H is a Hessian operator and 0 is a Hadamard product. The factorization of \crcrT 

leads to 

a (X ) = V2 ( ~^^x)   )    and ^ identification,   b{X) = c(X)( ~^^ ^ . 

Given the functions b (X (t)), and a (X (t)), we come up with a pair of processes (X (t), B(t)) 
such that the SDE in Eq. (4.15) holds. In this case, the solution X (t) is called a weak 
solution, as it does not specify beforehand the explicit representation of the white noise, 
i.e. the version B{t) of the Brownian motion is not given in advance. D 

Both the drift and diffusion coefficient vectors of this SDE are in the tangent direction 
of our level curves, which helps us interpret it as a 1-dimensional Ito diffusion on the 
instantaneous tangent direction T (v%(t),Uy(i)). A differentiability assumption on u(t, x) 

u(t + 5t, x) — u(t,x)      du(t,x)       . .      . 
hm -i '—^ ^^ =     v '    ' « AGiiEymu{t, x 
<5t->o St at 

is sufficient for a short-time existence of the linearized PDE version of the nonlinear 
geometric heat equation. 

Using Kolmogorov's theorem cited above, and assuming u(t,x) and its derivatives are 
"sufficiently regular" (Lipschitz properties), starting at each time t, the diffusion X (t) 
in Eq. (4.15) is constructed for each time interval (t — St,t), and may be used to write a 
Backward Kolmogorov Equation, 

u(t-St,x) = E{u(t,X(t))/X{t-St)=x}, 

as a mean value around each pixel dictated by the motion of the constructed diffusion 
X (t).  This equation can also be written in forward time (since in the small time step 
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not change but only the measure on the trajectories change. This theorem involving a 
change of measure provides us with a means of changing the mean of the process X (t) 
we obtained in Eq. (4.16), particularly removing the drift and obtaining the process in 
Eq. (4.17). 

This intuitively appealing interpretation of a particle/pixel motion in the process of a 
diffusion is shown in the next section to be particularly useful and insightful for developing 
more general and feature/shape adapted flows. 

4.4    A New Class of Flows 

The insight gained from the .tangential Brownian motion on a curve together with the 
normal angle 9(t,x), lead to the idea of constraining the Brownian motion at some 
specific orientation angles at each point x . A natural generalization of the geometric heat 
equation, based upon the stochastic framework presented infection 4.3, is to construct 
an SDE weighted by a carefully chosen functional h(6n), (h(.) G C°°(Rn)) designed to 
capture specific features in an image, and we write locally 

dX (t) = Tn(X (t)) {cn(X {t))h{0n{X (*))) dt + V2 h{6n{X (t))) dB{t)). 

Here, neglecting the drift motion concentrating on pure diffusion, the Brownian motion 
in the tangent direction is being further constrained at some specific orientation values, 
i.e. at the zeros of the h(6n) function, 

dX (t) « V2 Tn(X (t)) h(8n{X (£))) dB(t)). (4.1.9) 

Constraining" the diffusion of particles at points with specified orientations is aimed at 
extracting desired features of a contour as it is being smoothed. Such models are generated 
by the following class of PDE's which generalize the geometric heat flow (4.4) 

d^l = h2(9(t,x))umttX), (4.20) 

which is locally the generator of the diffusion in SDE (4.19). When applied to an image, 
this flow induces the following curve evolution on each iso-intensity contour C 

r)C 
°± = K\e)KN. (4.21) 

4.4.1    Well-posedness of the generalized model 

Proposition 4.  The corresponding PDE's (4-20) are well-posed. 
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Proof. The geometric heat equation which corresponds to the simplest case of this class 
with h2(9(t,x)) = 1, Vt, Vx. has been shown to be well-posed, and its existence and 
uniqueness properties may be found in [43, 47, 48]. 

The operator of the geometric heat equation is given by 

L[u] = C[u] - ^ = 0 (4.22) 

where 

£[w] = /, aij~^—ö— = sm2 # uxx — 2 sin 9 cos 9 uxy + cos2 9 uyy, (4.23) 
«>j 

cfoj ÖXj 

is the principal part of the operator L. The matrix of coefficients [a^-] is positive semi- 
definite with the eigen values 1 and 0. If we multiply this matrix by a positive function, 
it remains positive semi-definite. Such elliptic-parabolic operators satisfy a maximum 
principle (see, for example, [49]). In our case we multiply %y a non-negative function 
h2{9) which can be made strictly positive by adding a very small number, e > 0, 

[h2{6) + e]£u>0. 

This results in a family of nonlinear parabolic equations each of which satisfies a strong 
maximum principle. Our operator is obtained in the limit as  e —>• 0. D 

4.4.2    Polygon leading diffusions 

The geometric heat equation is a rotationally invariant flow which evolves, as mentioned 
earlier, any shape into a circle [35]. It is the only rotationally invariant shape in Euclidean 
space. If we wish to capture more general shapes (triangles, squares, etc ... ) it is only 
then natural to consider flows which are not rotationally invariant. Such a class is given 
by the form (4.21) when h{6) is chosen to be other than a constant. If we are particularly 
interested in polygons, we may consider periodic functions (whose periodicity is dictated 
by the desired number of vertices) such as 

"2("> = {Ä <«■*> 
leading to curve evolution equations of the form 

dC dC 
— = cos2(n9)nN    or    — = sin2(n#)/ciV. (4.25) 

If we apply (4.25) to a convex shape, there will be 2?^ points on the curve which do not 
diffuse (corresponding to the zeros of cos(n#) or sin(nö)) at equally separated rotations 
of the unit normal N. As the unit normal moves further and further away from these 
angles, the diffusion increases. It hence makes sense to expect a curve to develop vertices 
(points of maximal curvature) at these points. 
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Lemma 1. The angle of a unit normal does not change at points where the chosen func- 
tion h2(9) vanishes. Those points, in turn, remain fixed for a short-time, and their speed 
remains at zero. 

Proof. Assume that a family of curves C(t,p), where p is any parameter along the curve, 
evolves according to the evolution equation 

8C 
— = a(t,p)T+ß(t,p)N (4.26) 

The evolution equation for the angle of the unit normal is given in [39] as 

dt = TWp~aK9] 

where g = ||CP|| = ^JX2 + y2 is the length along the curve (metric). If we consider the 
case a = 0 and ß = —II

2
(9)K (following the convention used by the authors in [39]), 

which corresponds to the form of the deformation we proposed, the orientation evolution 
is governed by 

=   - {2h{9) {h{9))pK + h2{9) KP} 

=   - h{9) {2 {h(9))p K + h{9) KP} r (4.27) 

Notice that |f = 0 for those points at which h(9) = 0. D 

We note that in [39], the orientation of a curve is defined as the angle subtended by the 
tangent and the x-axis, whereas we here define 9 as the angle subtended by the normal 
and the x-axis. There is, however, complete equivalence in so far as the evolution equation 
of the angle 9 is concerned. 

In light of the above development, we can thus state that the zeros of the function h{9) 
lead to fixed end points of curve segments. Fixing two end points, say a,\ and a2 , we 
examine the evolution of curvature, whose general form is given by (in [39]) 

8K        82ß       8K 

dt ds2        8s 
where s is the arc-length parameter along the curve.   When substituting a = 0 and 
ß = —h2(9)n into this equation, we have 

^   =   [h2(9)K}ss + h2(9y 

^   =   [(h2(9))ssK + 2(h2(9))sKs + h2(9)Kss] + h2(9)K3 

^   =        h2(9)Kss     +h2(9) K3 + (h2(9))ss K + 2(h2(9))s KS^ 

diffusion  term reaction term 
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This clearly demonstrates that a regularizing diffusion takes place, since the multiplica- 
tive factor h2{6) never becomes negative (which would result in an ill-posed backward 
diffusion). In addition, we have the reaction term which is composed of functions of «, 
K

Z
, and KS. 

We have hence shown that with fixed end points, a particular curve segment subject to 
the new evolution equation for the curvature shown above, results in a straight line as a 
final solution. 

Now, we can state a theorem where we put our argument of convergence to regular 
polygons. 

Theorem 3. A convex curve C subject to the evolution Ct = JI
2
(9)K,N will converge to 

an M-sided, regular polygon whose M vertices will be formed at those vanishing points of 
the function h2{9). 

The proof of this theorem can be completed using the arc-length evolution equation 

dL{C) -      r\2h2(9)ds, 
dt 

where ds denotes the incremental arclength of C. Since the integrand is strictly positive, we 
see that a curve will continue to shrink until curvature vanishes, that is the curve segment 
converges to a straight line between the end points oi and a?,. This in conjunction with 
the above lemma completes the proof of the theorem. 

4.5    Experimental Results 

4.5.1    Examples in Polygonization 

To substantiate the stated theorem, we next present examples illustrated in Fig. B.5 and 
Fig. B.6. In our experiments with contours, we use the narrow-band implementation of the 
level set method developed in [50]. The time step is, St = 0.2. Numerical implementations 
of the proposed flows are applied to a variety of convex shapes shown in part (a) of each 
figure. In Fig. B.5, the shapes in part (b) were obtained by using h2(6) = cos2 (29) via 
the following curve evolution 

Ct = cos2(29)KN,, (4.28) 

while the shapes in part (c) were obtained using h2(9) = sin2 (2$). In both cases, we 
expect to obtain four-sided and'regular polygons. The zeros of cos(2#) and the zeros 
of sin(20) are however 45 degrees out of phase. As such, we see the evolved shapes 
in part (b) taking the form of a square, whereas the evolved shapes in part (c) take 
the form of a diamond, corresponding to a 45 degree rotation of the shapes in part 
(b).   In Fig. B.6, we see the effect of using different periods.   The shapes in part (b) 
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are obtained using Ct = COS
2
(3ö)KJV, while the shapes in part (c) are obtained using 

Ct = sin2(1.5(6> — 7r/2))«-,AT. In the first case, we expect 6 vertices, and in the second 
case we expect 3 vertices. Our expectations match the results shown in part (b) and (c), 
where we observe hexagonal and triangular shapes, respectively. 

We may also apply these flows to the level sets of an image in the same manner that 
the geometric heat equation may be applied. This gives rise to a family of anisotropic 
smoothing filters which, unlike the geometric heat equation, are not rotationally invari- 
ant. This feature can be useful in smoothing noisy images where corners and edges are 
priorly known to have certain orientations. These diffusions are modeled by PDE's of the 
following form: 

ut = h\e)V-(-^\\\Vu\\. (4.29) 

Note that the trigonometric expressions we have considered Jor h2(9) can be written in 
terms of the first derivatives of u, for example X 

9/^      {ul~ul)2 ,      ■ o^m       (2MXM„) cos2 (20) = f| %-    and    sin2 (20) -   v       y> 

allowing one to implement the PDE without having to compute the orientation of the unit 
normal to each level curve. Note that these expressions involve only first order derivatives 
and therefore do not alter the quasi-linear structure of these second order flows. 

4.5.2    Examples in Feature-Preservation 

Feature-preserving properties as well as polygonal approximation properties of the pro- 
posed flows will be demonstrated in this section. We illustrate the idea of capturing 
different polygonal features of shapes by our proposed flows on the following examples. 

The first example is a "chef" shape with both round and polygonal features as shown 
in Fig. B.7. Geometric heat flow Ct = KN , (n = 0), evolves these features into circles 
as shown in the second row of Fig. B.7 for time points t = 40,80,160. Particularly, at 
t = 160, most parts of the shape turns into incomprehensible blob-like structures. In 
contrast to this, polygonal features of the chef like his nose, and tray, are preserved by 
the flow Ct = sin2(20)hiN, (n — 2), which favors diamond-like structures (see third row 
of Fig. B.7 for t = 40,80,160). Similarly, the flow Ct = COS

2
{A9)KN , (n = 4), favors 

octagonal features as shown on the fourth row of Fig. B.7, which is observed at chef's 
hat at all time points t = 40,80,160. The regularity of these flows is readily observed 
through the smoothness of the resulting shapes. When we view each row from left to 
right, we observe a progression from finer to coarser scale. The scale-spaces produced 
by our modified flows in the last two rows are visually more pleasing since corners are 
preserved, whereas in the row above we see them smoothed away by the pure geometric 
heat flow. 
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The second shape example is a fish which contains some fine detail structures as well as 
coarse features (Fig B.8). The second row shows the result of the geometric heat flow 
Ct = KN ,(n = 0), which smoothes away not only fine features but some coarse features 
as well (the fins for example). The results of the flow, Ct — cos'2(26)KN ,(71 = 2), are 
shown in the third row of Fig B.8. In this case, rectangular features are preserved for 
longer periods throughout the evolution. Finally, the flow, Ct = sin2[A9)KN, {n = 4), 
is depicted in the. last row, preserving octagonal features as shown in the nose and the 
dorsal things. 

In the third example, we start with a noisy shape at time t = 0 shown in Fig. B.9. 
This shape is evolved with the geometric heat flow Ct = KN , (n = 0), the flow Ct = 
sin2(1.5(# - TT/2))KN, (n = 1.5), the flow Ct = sin2 (29) KN , [n = 2), and the flow 
Ct = cos2(2.5(# - TT/2))KN , (n = 2.5), as shown in Fig. B.9. The geometric heat flow 
at the top row quickly smoothes corners of the shape out, and at coarser scales, the 
shape loses all of its features. The initial shape converges to a circle regardless of the 
global feature of the plane being a polygonal shape. This motivates the application of the 
geometric heat flow with a sin2 (n9) factor, where n=1.5 whoSe weak limiting shape is a 
triangle which intuitively matches the coarser form of the given plane shape. Similarly, 
for n = 2 and n — 2.5, different features of the shape are kept, and persist over a much 
longer time period as can be observed from the column of shapes at t = 400. Note that 
the geometric heat flow result at the top quickly washes out any similarity to the actual 
shape, whereas the results of the other three flows keep the global shape as well as some 
finer details on the wings, the tail, and the head part. 

4.5.3    Examples with Gray-scale Images 

The proposed flows may also be applied to images in a straightforward fashion. For the 
case h2(9) = cos2(26), all level sets of the image are driven to rectangles, thereby enhanc- 
ing those features in an image. Such features can be found in contemporary buildings 
where one example in NCSU, Centennial Campus is shown in Fig.B.10(a). The part of 
the building image with an additive Gaussian noise is shown in Fig.B.10(b). The 2nd row 
shows the results of the geometric heat flow ut = u# at t — 10, 20, 50. The noisy image at 
t = 0 is smoothed out very quickly at the expense of rounding off all the corners because 
the level sets of the image converge to circles. The 3rd row shows the ut = cos2(29)u^ 
flow results at the same time points t = 10,20,50. Since the diffusion is constrained in 
order to drive image level sets to rectangles, the removal of noise is slower. However, 
the rectangular features still nicely appearing after noise removal (see the image on the 
right), makes it worthwhile to slow down the De-noising effect of the geometric heat flow 
according to our needs. 

In Fig. B.ll, an experiment involving diamond-like shapes in the image taken from a 
poster on a wall is shown. In the middle row, rounding effects on diamond shapes in 
this image performed by geometric heat flow is clearly observed during evolution. The 
proposed flow, shown in the bottom row, which takes the form ut = s'm2(29)u^ for this 
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particular shape is very good in carrying out a shape-adapted smoothing which takes 
place at the boundaries of the diamonds. The slight blurring effect on the picture at 
continued application however is clue to the interaction between consecutive level curves. 

A photograph taken by path-finder in mars, shown in Fig. B.12, is argued to be a hexagon- 
shaped structure on mars' surface. The particular flow adapted to this shape is given by 
ut = cos2 (36)utf, and the resulting images at the second column of the figure demonstrate 
a better smoothing performance at the boundaries of the hexagon when compared to the 
images in the first column processed by geometric heat equation. From low scales to very 
large scales, the hexagon-adapted flow enhances and keeps on highlighting the related 
structure. 

A noise contaminated Aerial image is shown in Fig. B.13(a). The geometric heat equation 
(see 2nd row, t = 20,40,80) sweeps away the shape information of the important details 
such as the city on the left bottom, the white bright rectangle on the right bottom, and 
the black feature at the top. The three images resulting from the ut = cos2(2ö) u# flow, 
are quite sharp at the edges between both low and high contrast fields, therefore more 
useful in recognition of details as well as removing noise. 

A last example is shown in Fig. B.14, where windows and a roof of a section of a house 
are seen. On the left column, are the results of the geometric heat flow ut = u# at times 
t = 40,80,160, and on the right are the results of ut = cos2(29)u^ at same time steps. 
The noise is successfully removed by the geometric heat equation whose smearing effect 
on different regions into one another is also slow, at a cost of a problematic rounding off 
of corners. At time t = 160 for the result on the right bottom, approximately the same 
amount of noise as that of geometric heat equation at t = 40 is removed, and in addition 
to that the corners are still well-preserved. 

4.6    Conclusions 

Using insights from a stochastic formulation of the geometric heat equation, we have pre- 
sented an alternative stochastic view of the nonlinear filtering with an ability to generalize 
and propose new flows driven by desired geometrical features, such as polygonal shapes 
of interest in a variety of shape recognition tasks. 
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Appendix A 

Proof: We first proceed to re-express S(Un+i) in terms of Eq.( 3.21) and Pn+\{x + S\x) = 
1 - Pn+i(x — 5\x). By subsequently differentiating with respect to Pn(x — ö\x) and bearing 
in mind that a two sided-gradient is used, we have the following equation 

d(£(Un+1))/dPn+1{x - 5\x) T 

=   2[(Un(x + 5)-Un(x))2(Un+l(x)-Un(x-5))](dUn+1(x))/dPn+1(x-6\x) 

+   2[{Un(x -5)- Un{x))2(Un+1{x) - Un(x + 5))}{dUn+l{x))/dPn+l(x - 6\x) 

(A.l) 

Setting d(S(Un+i))/dPn+i(x — 5\x) = 0 , and assuming the non-degenerate case of 
dUn+i(x)/dPn+i(x — 5\x) ^ 0, the optimal transition probability at^the n-th step im- 
plies 

[{Un(x + 5)- Un{x)f + (Un(x -6)- Un{x)f]Un+l{x) 

=   (Un(x + 6)- Un(x))2Un(x -5) + (Un(x -5)- Un(x))2Un{x + 6)       (A.2) 

where the replacement of Un+i(x) with Eq.( 3.21) will reduce to Eq. ( 3.22). Note that if 
dUn+i(x)IdPn+i(x — S\x) = 0, we can see that a left sided-gradient is equal to the right 
sided-gradient resulting in an optimal choice of probability 1/2. ■ 
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Appendix B 

* 

Let us denote by un(t, x) the solution to Eq (4.8): 

°£ = sin* (tan-(|)) <,-sin(2tan-(|)) <, + cos' (^"'(J)) 

and define 

/i«,<,<J = sm2^tan-1(^)J<:c, 

/3«,<,<,) = cos2(tan-1(^))<?;. 

If we write u(t, x) as 

u(t, cc) = un(t, x) + ew(t, x) 

,2  / + „„-!/V 

then e'u(t, cc) satisfies 

deu 

~dt 
=   /i« + eu*. u£ + euj,, <s + e«IX) - /x«\ <, <T) - {/2(< + eux, un

y + e«„, un
xy + euxy) 

-/2«, uj|, un
xy)} + UK + eux, un

y + euy, u
n

yy + euyy) - /3«, <, <,)• (B.l) 

Assuming /i(-, •, •), h{-, ; •) and /3(-, •, •) are differentiate in their arguments, we can ex- 
pand /!(-,-, •■) in Taylor series about (<, un

y, u
n

xx), /2(-, •, •) about {un
x, u£, <,), and /3(-, •, •) 

about (u" u" <„). For notational simplicity, let us denote by JBI = (us^,?^*-) and 
a? = «u£Xx)> z2 - K,«»,^) and x^ = {un

x,v^,un
xy), and a* = {ux,uy,Uyy) and 

a;£  = (v£,v%,v%y).   If we assume that eu(t,aj) is small enough, we can neglect higher 

48 



order terms and write a linear approximation as 

deu 
dt 

deu 

~~d7 

eXl -V,A« 

e^Ux  Uy  Uxx) 

-ex2 -Vf2{x»)+ex3 -Vf3{x%) 

^sin^an-^l^cos^an-^l) 

2sin(tan-1(|))cos(tan-1(|) 

v sin2 (tan-(|) 

(B.2) 

& ««   \ 
V «I ' 

1 

1+(S 
-  ?7n 

< ^2 <        XX 

( 2 cos f2tan-1(4)N) —h^ivSä «£, \ 

l\UX       Uy       UXy) 2cos(2tan-1(§) L u? 
SV i+(^ji.)2 «S    ^ 

+   e(ux  uy  u yy) 

sin(2tan-1(|)) 

/ 2cos (tan-^l)) (-sin (tan^g)))^^ ^ \ 

2cos (tan-H|)) (-sin (tan^f )))^^ «£,    (1,3) 

^ cos2 (tan"1®) " J 

„, n (f Q£ \ 

Defining the corresponding nominal angle 8n(t, x) = tan (J^'g;))) and re-arranging the 
terms of'Eq. (B.3), we get the linearized version of the geometric heat-equation around a 
nominal value: 

^%^ « AGHElinu(t, * )   =   sm2(6n(t, x )) uxx(t, x ) - sin(20n(i, x )) uxy(t, x ) + 
in 

COS2{ßn{t, X )) Uyy{t, X ) + C{-Un
y(t, X ) Ux(t, X ) + <(t, X ) Uy(tlJl$) 

where c = (U£)2^(M»)2 [sin(2^)fc - «£„) - cos(2ö")2<J . 
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5 t i,y( t+Stli 

Figure B.l: Points of the zero-level set, i.e. initial contour (X(t), y(t)), at time t, is shown 
on the left. Those points whose sample realizations result in an average value of zero at 
time, t + St (u{t + 5t,x) = Ex [u(X (t))] = 0) form the new contour(AT(i + 6t),y(t + St)) 
(on the right). 

Figure B.2: Brownian Motion on the tangent direction, and corresponding interpolati 
on square grid. 

ion 

j   c   :.)    c 
_y 

c~) 
/ 

Figure B.3: Equivalent random walk on the tangent direction implemented on the level 
set function u(x,y).   The tangent direction is estimated directly from the level set set 

function : 9T = tan 1   /   -Us The level set function is on a 250 x 250 grid, St = 0.25. 
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Figure B.4: Middle row: Brownian Motion on T is showrftto produce similar results 
with those in Bottom Row: Geometric Heat flow. The speeds of the two algorithms are 
different. The level set function is on a 191 x 221 grid, St — 0.25. 
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Figure B.5: (a) Initial set of shapes (b) Flow Ct = COS
2
{28)KN (C) Flow Ct = sin2(2%IV 

c 

(a) '    (b) (c) 

Figure B.6:  (a) Initial set of shapes (b)Flow Ct = cos2(39)K,N , which tends to produce 
hexagons, (c)Flow Ct — sin2(1.5(ö—TT/2))KN , which tends to produce triangle-like shapes. 
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Actual Shape 

n=0 

n=4 

t=40 t=80 t=160 

Figure B.7: Each row corresponds to a curve evolution method with different n, Is* row: 
Ct = K,N, 2nd row: Ct = sin2(26)r,N, 3rd row: Ct = cos2(40)/dV . 
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Actual Slwpe 

n=0 

n=4 

t=40 t=160 

Figure B.8: Each row corresponds to a curve evolution method with different n, 1st row: 
Ct = nN, 2nd row: Ct = COS

2
(26)KN , 3rd row: Ct = sin2(A6)KN . 
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t=100 t=200 t=400 

n=0 

Actual Shape 

n=1.5 

Noisy Shape 

n=2 

^^V1^^ 

n=2.5 

Figure B.9:   Each row corresponds to a curve evolution method with different n, 1 
row: Ct = KN, 2

M
 row: Ct = sm2(1.5(0 - 7T/2))KJV, 3rd row: Ct = sm2(20)/dV, 4 
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Figure B.10:  (a) Clean building image (b) noisy building image (c) Geometric heat flow 
ut = u^ (left-right) t = 10,20,40 (d) Flow ut = cos2(2#) uK (left-right) t = 10,20,40. 
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Figure B.ll: (Top) Diamonds image (Middle row) Geometric heat flow ut = u# (Bottom 
row) Flow ut = sin2(20) u^. 
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Figure B.12: (Top) An image from mars pathfinder, (First column) Geometric heat flow 
ut = iitf, (Second column) Flow ut = cos2(3$) u^. 
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Figure B.13: Top: Aerial image; 2nd row: geometric heat flow ut — u#, (left to right)* = 
20,40,80; 3rd row: flow ut = cos2(29)uK, (left to right)* = 20,40,80. 
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Figure B.14:  Top:   House; Left:   Geometrie heat flow ut = u^, (top to bottom) t 
40,80,160; Right: Flow ut = cos2(20) u#, (top to bottom) t = 40,80,160. 
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