
Carnegie Mellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

Spiral Development:
Experience, Principles,
and Refinements
Spiral Development Workshop
February 9, 2000

CMU/SEI-2000-SR-008

Barry Boehm, edited by Wilfred J. Hansen

July 2000

COTS-Based Systems

Unlimited distribution subject to the copyright.

20001003 022

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731 -2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col., USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2000 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract vii

1 introduction 1
1.1 Success Stories from the Workshop 1
1.2 The Spiral Development Model 3

2 The Invariants and Their Variants 5
2.1 Spiral Invariant 1: Concurrent Determination

of Key Artifacts (Ops Concept, Requirements,
Plans, Design, Code) 6

2.2 Spiral Invariant 2: Each Cycle Does
Objectives, Constraints, Alternatives, Risks,
Review, Commitment to Proceed 9

2.3 Spiral Invariant 3: Level of Effort Driven by
Risk Considerations 11

2.4 Spiral Invariant 4: Degree of Detail Driven by
Risk Considerations 13

2.5 Spiral Invariant 5: Use of Anchor Point
Milestones: LCO, LCA, IOC 14

2.6 Spiral Invariant 6: Emphasis on System and
Life Cycle Activities and Artifacts 16

3 Anchor Point Milestones 19
3.1 Detailed Descriptions 19
3.2 Relationships to Other Process Models 21

Evolutionary Development 21

Rational RUP Phases 22

WinWin Spiral Model 23

MBASE Electronic Process Guide 24

4 Summary 27

References 31

Acronyms 35

CMU/SEI-2000-SR-008

CMU/SEI-2000-SR-008

List of Figures

Figure 1: Original Diagram of Spiral Development 2

Figure 2: Two System Designs: Cost vs. Response
Time 7

Figure 3: Models Excluded: Sequential Phases
without Key Stakeholders 10

Figure 4: Pre-Ship Test Risk Exposure 12

Figure 5: Scientific American Order Processing 17

Figure 6: Anchor Points and the Rational RUP
Phases 22

Figure 7: The WinWin Spiral Model 23

Figure 8 EPG Top-Level Outline of Activities,
Artifacts, and Agents 25

Figure 9 EPG Diagram of the Inception Phase 25

Figure 10 EPG Outline and Description of Risk
Driven Analysis 26

Figure 11 The "Outputs" Section of the Description
on the Right of Figure 10. 26

CMU/SEI-2000-SR-008

jv CMU/SEI-2000-SR-008

List of Tables

Table 1: WinWin Spiral Anchor Points (with risk-
driven level of detail for each element) 20

Table 2: Invariants of Spiral Processes: Name,
Rationale, and Variants 28

Table 3: Hazardous Spiral Look-Alikes 29

CMU/SEI-2000-SR-008

vi CMU/SEI-2000-SR-008

Abstract

Spiral development is a family of software development processes characterized by repeat-
edly iterating a set of elemental development processes and managing risk so it is actively
being reduced. This paper characterizes spiral development by enumerating a few "invariant"
properties that any such process must exhibit. For each, a set of "variants" is also presented,
demonstrating a range of process definitions in the spiral development family. Each invariant
excludes one or more "hazardous spiral look-alike" models, which are also outlined. This
report also shows how the spiral model can be used for a more cost-effective incremental
commitment of funds, via an analogy of the spiral model to stud poker. An important and
relatively recent innovation to the spiral model has been the introduction of anchor point
milestones. The latter part of the paper describes and discusses these.

Editor's Note: This document began as a set of slides prepared and annotated by Barry Boehm and
presented by him at the Spiral Development Workshop, February 2000. With Barry's consent, I un-

dertook the task of converting these slides to the text you now see. The original slides are available on
the workshop Web site: http ://www. sei .emu .edu/cbs/spiral2000/B oehm.

CMU/SEI-2000-SR-008 vii

viii CMU/SEI-2000-SR-008

1 Introduction

This presentation opened the Workshop on Spiral Development Experience and Implementa-
tion Challenges held by the University of Southern California (USC) and the Software Engi-
neering Institute (SEI) on February 9-11, 2000 at USC. The workshop brought together
leading executives and practitioners with experience in spiral development of software-
intensive systems in the commercial, aerospace, and government sectors. Its objectives were
to distill the participants'experiences into a set of critical success factors for implementing
and conducting spiral development, and to identify the most important needs, opportunities,
and actions to expedite organizations' transition to successful spiral development. For the
workshop, "development" was defined to include life cycle evolution of software-intensive
systems and such related practices as legacy system replacement and integration of commer-
cial-off-the-shelf (COTS) components. Although of greatest utility for software develop-
ments, the spiral model can also be used to develop hardware or integrate software, hardware,
and systems.

To provide a starting point for addressing the workshop objectives, I have tried in this talk to
distill my experiences in developing and transitioning the spiral model at TRW; in using it in
system acquisitions at the Defense Advanced Research Projects Agency (DARPA); in trying
to refine it to address problems that people have had in applying it in numerous commercial,
aerospace, and government contexts; and in working with the developers of major elabora-
tions and refinements of the spiral model such as the Software Productivity Consortium's
(SPC) Evolutionary Spiral Process (SPC) [SPC 94] and Rational, Inc.'s Rational Unified Pro-
cess (RUP) [Royce 98, Krachten 98, Jacobson 99]. I've modified the presentation somewhat
to reflect the experience and discussions at the Workshop and this report is a further refine-
ment.

One of the findings of the workshop was a need for a clear and widely understood definition
of the spiral development model. The characteristics of the model noted here should suffice
as a starting point for this work.

1.1 Success Stories from the Workshop
A number of projects and project frameworks successfully exploiting the spiral model were
presented at the workshop, often with supplementary material elsewhere. C-Bridge's RAPID
approach has been used successfully to develop e-commerce applications in 12-24 weeks. Its
Define, Design, Develop, and Deploy phases use the equivalent of the anchor point mile-
stones (see Section 2.5) as phase gates [Leinbach 00]. The large spiral telecommunications

CMU/SEI-2000-SR-008 1

applications discussed in [Bernstein 00] and [DeMillo 00] use a complementary best practice
as their anchor point milestones: the AT&T/Lucent/Telcordia Architecture Review Board pro-
cess [AT&T 93]. Xerox's Time-to-Market process uses the anchor point milestones as hard-

ware-software synchronization points for its printer business line [Hantos 00].

Several successful large aerospace spiral projects were also discussed. The best documented
of these is the CCPDS-R project discussed in [Royce 98]. Its Ada Process Model was the
predecessor of the Rational Unified Process and USC MBASE approach, which have both
been used on a number of successful spiral projects [Jacobson 99, Boehm 98], as has the SPC
Evolutionary Spiral Process [SPC 94]. Further successful large aerospace spiral projects

were presented by SAIC and TRW [Kitaoka 00, Bostelaar 00].

COMMITMENT
PARTITION.

REVIEW

Figure 1: Original Diagram of Spiral Development

CMU/SEI-2000-SR-008

1.2 The Spiral Development Model

Figure 1 is a redrawing of the original spiral model diagram published by Boehm [Boehm
88]. It captures the major spiral model features: cyclic concurrent engineering; risk driven
determination of process and product; growing a system via risk-driven experimentation and
elaboration; and lowering development cost by early elimination of nonviable alternatives
and rework avoidance. As a result of planning and risk analysis, different projects may
choose different processes. That is, the spiral model is actually a risk-driven process model
generator, in which different risk patterns can lead to choosing incremental, waterfall, evolu-
tionary prototyping, or other subsets of the process elements in the spiral model diagram.

For a number of reasons, however, the spiral model is not universally understood. For in-
stance, Figure 1 contains some oversimplifications that have caused a number of misconcep-
tions to propagate about the spiral model. These misconceptions may fit a few rare risk pat-
terns, but are definitely not true for most risk patterns. The most significant misconceptions
to avoid are: that the spiral is just a sequence of waterfall increments; that everything on the
project follows a single spiral sequence; that every element in the diagram needs to be visited
in the order indicated; and that there can be no backtracking to revisit previous decisions. In
addition to these misconceptions, other similar—but hazardously distinct—processes have
been held up as spiral processes.

To promote understanding and effective use of the spiral model, this report more precisely
characterizes the spiral model. We begin with a simple overview definition to capture the
essence of the model:

The spiral development model is a risk-driven process model generator.
It is used to guide multi-stakeholder concurrent engineering of software-
intensive systems. It has two main distinguishing features. One is a
cyclic approach for incrementally growing a system's degree of
definition and implementation while decreasing its degree of risk. The
other is a set of anchor point milestones for ensuring stakeholder
commitment to feasible and mutually satisfactory system solutions.

Risks are situations or possible events that can cause a project to fail to meet its goals.
They range in impact from trivial to fatal and in likelihood from certain to improb-
able. A risk management plan enumerates the risks and prioritizes them in degree of
importance, as measured by a combination of the impact and likelihood of each. For
each risk the plan also states a mitigation strategy to deal with the risk. For instance,
the risk that technology is unready may be mitigated by an appropriate prototype im-
plementation in an early spiral cycle.

Aprocess model answers two main questions:
• What should be done next?

CMU/SEI-2000-SR-008 3

• For how long should it continue?
Under the spiral model the answers to these questions are driven by risk considerations and
vary from project to project and sometimes from one spiral cycle to the next. Each choice of
answers generates a different process model. At the start of a cycle, all of the project's suc-
cess-critical stakeholders must participate concurrently in reviewing risks and choosing the

project's process model accordingly. (Risk considerations also apply toward to ensuring that

progress is not impeded by stakeholders' overparticipation).

The cyclic nature of the spiral model was illustrated in Figure 1.

Anchor point milestones drive the spiral to progress toward completion and offer a means to
compare progress between one spiral project and another. The second half of the report ex-

pands on these milestones. It also presents some experience-based refinements of the spiral

model developed to address spiral usage problems encountered over the years: evolutionary

development, Rational Unified Process (RUP), the Win Win spiral model, and the Model-
Based (System) Architecting and Software Engineering (MBASE) approach.

The spiral development model is more precisely characterized in the next section with invari-
ant properties and their variants. Invariant 5 invokes the relatively new concept of "anchor
point milestones." These are considered in more depth in the third section. The fourth section

presents tables summarizing the material.

CMU/SEI-2000-SR-008

2 The Invariants and Their Variants

Those successfully following the spiral model discipline will find that their cycles invariantly
display these six characteristics:

1. Concurrent rather than sequential determination of artifacts.

2. Consideration in each spiral cycle of the main spiral elements:
- critical-stakeholder objectives and constraints
- product and process alternatives
- risk identification and resolution
- stakeholder review
- commitment to proceed

3. Using risk considerations to determine the level of effort to be devoted to each activity
within each spiral cycle.

4. Using risk considerations to determine the degree of detail of each artifact produced in
each spiral cycle.

5. Managing stakeholder life-cycle commitments with three anchor point milestones:
- Life Cycle Objectives (LCO)
- Life Cycle Architecture (LCA)
- Initial Operational Capability (IOC)

6. Emphasis on activities and artifacts for system and life cycle rather than for software
and initial development.

Subsequent sections describe each of these invariants, the critical-success-factor reasons why
it is an essential invariant, and its associated optional variants. Examples are given, including
an analogy with stud poker which demonstrates how the spiral model accommodates cost-
effective incremental commitment of funds. Many processes are adopted which may seem to
be instances of the spiral model, but lack essential invariants and thus risk failure. Each in-
variant excludes one or more such process models, which we call "hazardous spiral look-
alikes." They are cataloged and pilloried as part of describing the invariants.

CMU/SEI-2000-SR-008

2.1 Spiral Invariant 1: Concurrent Determination of
Key Artifacts (Ops Concept, Requirements, Plans,
Design, Code)

Spiral Invariant 1 states that it is success-critical to concurrently determine a compatible and
feasible combination of key artifacts: the operational concept, the system and software re-
quirements, the plans, the system and software architecture and design, and the key code
components including COTS, reused components, prototypes, success-critical components,
and algorithms.

Summary of invariant 1

Why invariant :
avoids premature sequential commitments to

system requirements, design, COTS,
combination of cost/schedule /performance

Example: "one second response time"

Variants
1a. Relative amount of each artifact developed in each cycle
1b. Number of concurrent mini-cycles in each cycle

Models excluded
Incremental sequential waterfalls

with high risk of violating waterfall model assumptions

Why is this a success-critical invariant? Because sequential determination of the key artifacts
will prematurely overconstrain, and often extinguish, the possibility of developing a system
which satisfies the stakeholders' essential success conditions. Examples are premature com-
mitments to hardware platforms, to incompatible combinations of COTS components [Garlan
95], and to requirements whose achievability has not been validated, such as the one-second
response time requirement Example just below.

Variants la and lb indicate that the product and process internals of the concurrent engineer-
ing activity are not invariant. For a low technology, interoperability-critical system, the ini-
tial spiral products will be requirements-intensive. For a high-technology, more standalone
system, the initial spiral products will be prototype code-intensive. Also, there is no invariant
number of mini-cycles (e.g., individual prototypes for COTS, algorithm, or user-interface

risks) within a given spiral cycle.

CMU/SEI-2000-SR-008

Example: One-Second Response Time

Figure 2 provides an example of the kinds of problems that occur when high-risk require-
ments are prematurely frozen. In the early 1980s, a large government organization contracted
with TRW to develop an ambitious information system. The system would provide more
than a thousand users, spread across a large building complex, with powerful query and
analysis capabilities for a large and dynamic database.

$100M

$50M

Arch. A:
Custom
many cache processors

Original Spec

V

Modified ^%^
Client-Server ""^^Sässs™:

After Prototyping

¥
1 2 3 4 5

Response Time (sec)

Figure 2: Two System Designs: Cost vs. Response Time

TRW and the customer specified the system using a classic sequential-engineering waterfall
development model. Based largely on user need surveys and an oversimplified high-level
performance analysis, they fixed into the contract a requirement for a system response time of
less than one second.

Two thousand pages of requirements later, the software architects found that subsecond per-
formance could only be provided via Architecture A, a highly customized design that at-
tempted to anticipate query patterns and cache copies of data so that each user's likely data
would be within one second's reach. The resulting hardware architecture had more than 25
super-minicomputers busy caching data according to algorithms whose actual performance
defied easy analysis. The scope and complexity of the hardware-software architecture
brought the estimated cost of the system to nearly $100 million, driven primarily by the re-
quirement for a one-second response time.

Faced with this unattractive prospect, the customer and developer decided to develop a pro-
totype of the system's user interface and representative capabilities to test. The results

CMU/SEI-2000-SR-008

showed that a four-second response time would satisfy users 90 percent of the time. A four-
second response time could be achieved with Architecture B, cutting development costs to
$30 million [Boehm 00a]. Thus, the premature specification of a one-second response time
inserted the hidden risk of creating an overly expensive and time-consuming system devel-
opment.

Hazardous Spiral Look-Alike: Violation of Waterfall Assumptions

Invariant 1 excludes one model often labeled as a spiral process, but which is actually a "haz-
ardous spiral look-alike." This is the use of a sequence of incremental waterfall developments
with a high risk of violating the underlying assumptions of the waterfall model. These as-

sumptions are

1. The requirements are knowable in advance of implementation.

2. The requirements have no unresolved, high-risk implications, such as risks due to
COTS choices, cost, schedule, performance, safety, security, user interfaces, and
organizational impacts.

3. The nature of the requirements will not change very much either during development or
evolution.

4. The requirements are compatible with all the key system stakeholders' expectations,
including users, customer, developers, maintainers, investors.

5. The right architecture for implementing the requirements is well understood.

6. There is enough calendar time to proceed sequentially.

These assumptions must be met by a project if the waterfall model is to succeed. If all of
these are true, then it is a project risk not to specify the requirements, and the waterfall model
becomes a risk-driven special case of the spiral model. If any of the assumptions are untrue,
then specifying a complete set of requirements in advance of risk resolution will commit a
project to assumptions/requirements mismatches that will lead the project into trouble.

Assumption 1—the requirements are knowable in advance of implementation—is generally
untrue for new user-interactive systems, because of the IKTWISI syndrome. When asked for
their required screen layout for a new decision-support system, users will generally say, "I
can't tell you, but I'll know it when I see it (IKIWISI)." In such cases, a concurrent
prototyping/requirements/architecture approach is essential.

The effects of invalidity in Assumptions 2, 4, and 5 are well illustrated by the example in
Figure 2. The one-second response time requirement was unresolved and high-risk. It was
compatible with the users' expectations, but not with the customer's budget expectations.
And the need for an expensive custom architecture was not understood in advance.

The effects of invalidity in Assumptions 3 and 6 are well illustrated by electronic commerce
projects. In these projects the volatility of technology and the marketplace is so high that re-
quirements and traceability updates will swamp the project in overhead. Furthermore, the
amount of initial calendar time it takes to work out a complete set of detailed requirements

CMU/SEI-2000-SR-008

that are likely to change several times downstream is not a good investment of the scarce time
to market available to develop an initial operational capability.

2.2 Spiral Invariant 2: Each Cycle Does Objectives,
Constraints, Alternatives, Risks, Review,
Commitment to Proceed

Spiral Invariant 2 identifies the activities in each quadrant of the original spiral diagram that
need to be done in each spiral cycle. These include consideration of critical-stakeholder ob-
jectives and constraints; elaboration and evaluation of project and process alternatives for
achieving the objectives subject to the constraints; identification and resolution of risks atten-
dant on choices of alternative solutions; and stakeholders' review and commitment to proceed
based on satisfaction of their critical objectives and constraints. If all of these are not consid-
ered, the project may be prematurely committed to alternatives that are either unacceptable to
key stakeholders or overly risky.

Summary of Invariant 2
Why invariant

Avoids commitment to stakeholder-unacceptable
or overly risky alternatives.

Avoids wasted effort in elaborating unsatisfactory alternatives

Example: "Windows-only COTS"

Variants
2a. Choice of risk resolution techniques:

prototyping, simulation, modeling, benchmarking,
reference checking, etc.

2b. Level of effort on each activity within each cycle

Models excluded
Sequential phases with key stakeholders excluded

Project groups must also guard against having the appearance but not the reality of
stakeholder participation by accepting an unqualified member of an integrated product team
(IPT). A good set of criteria for qualified IPT members—as described in Boehm and adopted
in USAF [Boehm 98, USAF 00]—is to ensure that IPT members are representative (of or-
ganizational rather than personal positions), empowered (to make commitments which will be
honored by their organizations), knowledgeable (of their organization's critical success fac-
tors), collaborative, and committed.

Spiral Invariant 2 does not mandate particular generic choices of risk resolution techniques.
However, there are risk management guidelines that suggest, for example, the best-candidate

CMU/SEI-2000-SR-008

risk resolution techniques for the major sources of project risk [Boehm 89a]. This invariant
also does not mandate particular levels of effort for the activities performed during each cy-
cle. Levels must be balanced between the risks of learning too little and the risks of wasting

time and effort gathering marginally useful information.

Example: Windows-Only COTS

Ignoring Invariant 2, can lead to a good deal of wasted effort in elaborating an alternative that
could have been shown earlier to be unsatisfactory. One of the current USC digital library
projects is developing a web-based viewer for oversized artifacts (e.g., newspapers, large im-
ages). The initial prototype featured a tremendously powerful and high-speed viewing capa-
bility, based on a COTS product called ER Mapper. The initial project review approved se-

lection of this COTS product, even though it only ran well on Windows platforms, and the

Library had significant Macintosh and UNIX user communities. This decision was based on

initial indications that Mac and UNIX versions of ER Mapper would be available soon.

However, subsequent investigations indicated that it would be a long time before such Mac
and UNIX capabilities would become available. At a subsequent review, ER Mapper was
dropped in favor of a less powerful but fully portable COTS product, Mr. SID, but only after
a good deal of effort was wasted on elaborating the ER Mapper solution. If a representative
of the Mac or UNIX user community had been involved in the early project decisions, the
homework leading to choosing Mr. SID would have been done earlier, and the wasted effort
in elaborating the ER Mapper solution would have been avoided.

Hazardous Spiral Look-Alike: Excluding Key Stakeholders

Excluded by Invariant 2 is another "hazardous spiral look-alike": organizing the project into
sequential phases or cycles in which key stakeholders are excluded. Examples are excluding
developers from system definition, excluding users from system construction, or excluding
system maintainers from either definition or construction.

User,
Customer

Customer,
Developer

Developer,
User, Maintainer

A
Inception

Elaboration
A Construction Transition

Figure 3: Models Excluded: Sequential Phases without Key Stakeholders

10 CMU/SEI-2000-SR-008

Even though the phases shown in Figure 3 may look like risk-driven spiral cycles, this spiral
look-alike will be hazardous because its exclusion of key stakeholders is likely to cause criti-
cal risks to go undetected. Excluding developer participation in early cycles can lead to
project commitments based on unrealistic assumptions about developer capabilities. Ex-
cluding users or maintainers from development cycles can lead to win-lose situations, which

generally evolve into lose-lose situations [Boehm 89b].

2.3 Spiral Invariant 3: Level of Effort Driven by Risk
Considerations

Spiral Invariant 3 dictates the use of risk considerations to answer the difficult questions of
how-much-is-enough of a given activity. How much is enough of domain engineering?
prototyping? testing? configuration management? and so on.

Summary of Invariant 3
Why invariant

Determines "how much is enough" of each activity:

domain engineering, prototyping, testing, CM, etc.
Avoids overkill or belated risk resolution

Example: Pre-ship testing

Variants
3a. Choice of methods used to pursue activities:

MBASE/WinWin, Rational RUP, JAD, QFD, ESP,...

3b. Degree of detail of artifacts produced in each cycle

Models excluded

Risk-insensitive evolutionary or incremental development

If you plot a project's risk exposure as a function of time spent prototyping, there is a point at
which risk exposure is minimized. Spending significantly more time than this is an overkill
leading to late market entry and decreased market penetration. Spending significantly less
time prototyping is an underkill, leading to premature development with significant delays
due to unanticipated snags. Given that risk profiles vary from project to project, this means
that the risk-minimizing level of prototyping effort will vary from project to project. The
amount of effort devoted to other activities will also vary as a function of a project's risk pro-
file.

Variants to be considered include the choice of methods used to pursue activities (e.g.,
MBASE/WinWin, Rational RUP, JAD, QFD, ESP) and the degree of detail of artifacts pro-

CMU/SEI-2000-SR-008 11

duced in each cycle. Another variant is an organization's choice of particular methods for risk

assessment and management.

Example: Pre-Ship Testing

Figure 4 shows how risk considerations can help determine "how much testing is enough"
before shipping a product. This can be determined by adding up the two main sources of
Risk Exposure, RE = Probability (Loss) • Size (Loss), incurred by two sources of loss: loss of
profitability due to product defects, and loss of profitability due to delays in capturing market
share. The more testing that is done, the lower becomes the risk exposure due to defects, as
discovered defects reduce both the size of loss due to defects and the probability that undis-
covered defects still remain. However, the more time spent testing, the higher are both the
probability of loss due to competitors entering the market and the size of loss due to de-

creased profitability on the remaining market share.

10--

Risk Exposure
RE =
Size (Loss) •
Pr (Loss)

8 --

6 --

4 "-

Amount of testing; Time to market

Figure 4: Pre-Ship Test Risk Exposure

As shown in Figure 4, the sum of these risk exposures achieves a minimum at some interme-
diate level of testing. The location of this minimum-risk point in time will vary by type of
organization. For example, it will be considerably shorter for a "dot.com" company than it
will for a safety-critical product such as a nuclear power plant. Calculating the risk exposures
also requires an organization to accumulate a fair amount of calibrated experience on the
probabilities and size of losses as functions of test duration and delay in market entry.

Hazardous Spiral Look-Alikes: Risk Insensitivity

Hazardous spiral model look-alikes excluded by Invariant 3 are

• risk-insensitive evolutionary development
(e.g., neglecting scalability risks)

• risk-insensitive incremental development
(e.g., suboptimizing on increment 1 with a point-solution architecture which must
be dropped or heavily reworked to accommodate future increments)

• impeccable spiral plans with no commitment to managing the risks identified.

12 CMU/SEI-2000-SR-008

2.4 Spiral Invariant 4: Degree of Detail Driven by Risk
Considerations

Spiral Invariant 4 is the product counterpart of Invariant 3: that risk considerations determine
the degree of detail of products as well as processes. This means, for example, that the tradi-
tional ideal of a complete, consistent, traceable, testable requirements specification is not a
good idea for certain product components, such as a graphic user interface (GUI) or COTS
interface. Here, the risk of precisely specifying screen layouts in advance of development
involves a high probability of locking an awkward user interface into the development con-
tract, while the risk of not specifying screen layouts is low, given the general availability of
flexible GUI-builder tools. Even aiming for full consistency and testability can be risky, as it
creates a pressure to prematurely specify decisions that would better be deferred (e.g., the
form and content of exception reports). However, some risk patterns make it very important
to have precise specifications, such as the risks of safety-critical interface mismatches be-
tween hardware and software components, or between a prime contractor's and a subcon-
tractor's software.

Summary of Invariant 4
Why invariant

Determines "how much is enough" of each artifact

(OCO, Requirements, Design, Code, Plans) in each cycle
Avoids overkill or belated risk resolution

Example: Risk of Precise Specification

Variants
Choice of artifact representations

(SA/SD, UML, MBASE, formal specs,

programming languages, etc.)

Models excluded
Complete, consistent, traceable, testable requirements

specification for systems involving significant levels of

GUI, COTS, or deferred decisions

This guideline shows when it is risky to over-specify and under-specify software features:

• If it's risky to not specify precisely, DO specify
(e.g., hardware-software interface, prime-subcontractor interface)

• If it's risky to specify precisely, DO NOT specify
(e.g., GUI layout, COTS behavior)

Spiral variants related to Invariant 4 are the choices of representations for product artifacts.

CMU/SEI-2000-SR-008 13

Example: Risk of Precise Specification

One editor specification required that every operation be available through a button on the
window. As a result, the space available for viewing and editing became unusably small. The
developer was precluded from moving some operations to menus because the GUI layout had

been specified precisely at an early step. (Of course, given too much freedom programmers
can develop very bad GUIs. Stakeholder review is essential to avoid such problems.)

2.5 Spiral Invariant 5: Use of Anchor Point Milestones:
LCO, LCA, IOC

A major difficulty of the original spiral model was its lack of intermediate milestones to serve

as commitment points and progress checkpoints [Forsberg 96]. This difficulty has been reme-
died by the development of a set of anchor point milestones: Life Cycle Objectives (LCO),
Life Cycle Architecture (LCA), and Initial Operational Capability (IOC) [Boehm 96]. These
can be described as stakeholder commitment points in the software life cycle: LCO is the
stakeholder's commitment to support architecting; LCA is the stakeholders' commitment to
support full life cycle; and IOC is the stakeholders' commitment to support operations.

Summary of Invariant 5
Why invariant

Avoids analysis paralysis, unrealistic expectations,

requirements creep, architectural drift, COTS shortfalls
and incompatibilities, unsustainable architectures,

traumatic cutovers, useless systems

Example: Stud Poker Analogy

Variants
5a. Number of spiral cycles or increments between anchor points

5b. Situation-specific merging of anchor point milestones

Models excluded
Evolutionary or incremental development

with no life cycle architecture

The anchor point milestones were defined in a pair of USC Center for Software Engineering
Affiliates' workshops, and as such represent joint efforts by both industry and government
participants [Clark 95]. One of the Affiliates, Rational, Inc., had been defining the phases of
its Rational Unified Process (RUP), and adopted the anchor point milestones as its phase

gates.

14 CMU/SEI-2000-SR-008

The first two anchor points are the Life Cycle Objectives (LCO) and Life Cycle Architecture
(LCA). At each of these anchor points the key stakeholders review six artifacts: operational
concept description, prototyping results, requirements description, architecture description,

life cycle plan, and feasibility rationale (see Section 3.1 for details).

The feasibility rationale covers the key pass/fail question: "If I build this product using the
specified architecture and processes, will it support the operational concept, realize the
prototyping results, satisfy the requirements, and finish within the budgets and.schedules in

the plan?" If not, the package should be reworked.

The focus of the LCO review is to ensure that at least one architecture choice is viable from a
business perspective. The focus of the LCA review is to commit to a single detailed defini-
tion of the review artifacts. The project must have either eliminated all significant risks or
put in place an acceptable risk-management plan. The LCA milestone is particularly impor-
tant, as its pass/fail criteria enable stakeholders to hold up projects attempting to proceed into
evolutionary or incremental development without a life cycle architecture.

The LCO milestone is the equivalent of getting engaged, and the LCA milestone is the
equivalent of getting married. As in life, if you marry your architecture in haste, you and
your stakeholders will repent at leisure. The third anchor point milestone, the Initial Opera-
tional Capability (IOC), constitutes an even larger commitment: It is the equivalent of having

your first child.

Appropriate variants include the number of spiral cycles of development increments between
the anchor points. In some cases, anchor point milestones can be merged. In particular, a
project deciding to use a mature and appropriately scalable fourth generation language (4GL)
or product line framework will have already determined its choice of life cycle architecture
by its LCO milestone, enabling the LCO and LCA milestones to be merged.

Further elucidation and discussion of the anchor point milestones is deferred to Section 3.

Spiral Model and Incremental Commitment: Stud Poker Analogy

A valuable aspect of the original application of the spiral model to the TRW Software Pro-
ductivity System was its ability to support incremental commitment of corporate resources to
the exploration, definition, and development of the system, rather than requiring a large out-
lay of resources to the project before its success prospects were well understood [Boehm 88].
These decisions are codified with the specific guidelines of the LCO and LCA.

Funding a spiral development can thus be likened to the game of stud poker. You can put a
couple of chips in the pot and receive two cards, one hidden and one exposed, along with the
other players in the game. If your cards don't promise a winning outcome, you can drop out
without a great loss. If your two cards are both aces, you will probably bet on your prospects

CMU/SEI-2000-SR-008 15

aggressively (although perhaps less so if you can see the other two aces as other players'ex-
posed cards). In any case, you can decide during each round whether it's worth putting more
chips in the pot to buy more information about your prospects for a win or whether it's better

not to pursue this particular deal, based on the information available.

Stud Poker Analogy
• Evaluate alternative courses of action

- Fold: save resources for other deals
- Bet: buy at least one more round

• Use incomplete information
- Hole cards: competitive situation
- Rest of deck: chance of getting winner

• Anticipate future possibilities
- Likelihood that next betting round will clarify outcome

• Commit incrementally rather than all at once
- Call only the most recent bet
- Raise an amount of your own choice

One of the main challenges for organizations such as the Department of Defense (DoD), is to
find incremental commitment alternatives to its current Program Objectives Memorandum
(POM) process which involves committing to the full funding of a program (putting all of its
chips in the pot) based on very incomplete early information.

2.6 Spiral Invariant 6: Emphasis on System and Life
Cycle Activities and Artifacts

Spiral Invariant 6 emphasizes that spiral development of software-intensive systems needs to
focus not just on software construction aspects, but also on overall system and life cycle con-
cerns. Software developers are particularly apt to fall into the oft-cited trap: "If your best tool
is a hammer, the world you see is collection of nails." Writing code may be a developer's
forte, but it stands in importance to the project as do nails to a house.

The spiral model's emphasis on using stakeholder objectives to drive system solutions, and
on the life cycle anchor point milestones, guides projects to focus on system and life cycle
concerns. The model's use of risk considerations to drive solutions makes it possible to tailor
each spiral cycle to whatever mix of software and hardware, choice of capabilities, or degree
of productization is appropriate.

16 CMU/SEI-2000-SR-008

Summary of Invariant 6
"Why invariant

Avoids premature suboptimization on
hardware, software, or development considerations

Example: Order Processing

Variants
6a. Relative amount of hardware and software determined in each cycle
6b. Relative amount of capability in each life cycle increment
6c. Degree of productization (alpha, beta, shrink-wrap, etc.)

of each life cycle increment

Models excluded
Purely logical object-oriented methods (because they are insensitive to

operational, performance, and cost risks)

Example: "Order Processing"

A good example is the Scientific American order processing system sketched in Figure 5.
The software people looked for the part of the problem with a software solution (their "nail"),
pounded it in with their software hammer, and left Scientific American worse off than when
they started.

OLD SYSTEM

INCOMING
MAIL

, NON-ORDERS

CASHIER'S
CAGE

WORK STATIONS:
SORT, CODE, PUNCH
VERIFY, BATCH

TAB RUNS
ORDERS CARDS

t

BILLS, LABELS, REPORTS

INVALID INPUTS

(minutes)
FIX BY EYEBALLS-
KEYPUNCH

NEW SYSTEM , NON-ORDERS MASTER FILE '

INCOMING
MAIL

CASHIER'S
CAGE ORDERS

WORK
STATIONS
(SAME) CARDS

t
CARD-TO-

TAPE

IBM 360/30:

CHECK VALID INPUTS
UPDATE MASTER FILE
GENERATE BILLS,

LABELS, REPORTS

NEW
'MASTER

BILLS,
'LABELS,

REPORTS

.INVALID
INPUTS

RESULTS:

•MORE TRIVIAL ERRORS
•GREATER DELAYS
•POOR EXCEPTION-HANDLING
•CUMBERSOME INPUT CONTROLS
•MORE LABOR-INTENSIVE

(hours)

l_ LOCATE DECKS
RECONCILE WITH FORMS .
KEYPUNCH AND REPLACE^
CARDS

TRW

Figure 5: Scientific American Order Processing

Scientific American's objectives were to reduce its subscription processing system's costs,
errors, and delays. Rather than analyze the sources of these problems, the software house
jumped in and focused on the part of the problem having a software solution. The result was

CMU/SEI-2000-SR-008 17

a batch-processing computer system whose long delays put extra strain on the clerical portion
of the system that had been the major source of costs, errors, and delays in the first place. As
seen in the chart, the business outcome was a new system with more errors, greater delays,
higher costs, and less attractive work than its predecessor [Boehm 81].

This kind of outcome would have resulted even if the software automating the tabulator-
machine functions had been developed in a risk-driven cyclic approach. However, its Life
Cycle Objectives milestone package would have failed its feasibility review, as it had no
system-level business case demonstrating that the development of the software would lead to
the desired reduction in costs, errors, and delays. Had a thorough business case analysis been
done, it would have identified the need to re-engineer the clerical business processes as well

as to automate the manual tab runs. Further, as shown by recent methods such as the DMR

Benefits Realization Approach, the business case could have been used to monitor the actual

realization of the expected benefits, and to apply corrective action to either the business
process re-engineering or the software engineering portions of the solution (or both) as ap-

propriate [Thorp 98].

Hazardous Spiral Look-Alikes: Logic-Only 00 Designs

Models excluded by Invariant 6 include most published object-oriented analysis and design
(OOA&D) methods, which are usually presented as abstract logical exercises independent of
system performance or economic concerns. For example, in a recent survey of 16 OOA&D
books, only six listed the word "performance" in their index, and only two listed "cost."

18 CMU/SEI-2000-SR-008

3 Anchor Point Milestones

The anchor point milestones from invariant 5 are

Life Cycle Objectives (LCO)

Life Cycle Architecture (LCA)

Initial Operational Capability (IOC)

Since these milestones [Boehm 96] are relatively new additions to the spiral development
model, they are covered in some depth in succeeding pages. The next two subsections de-
scribe the anchor points themselves and are followed by a discussion of how an "evolution-
ary" development process can benefit from the LCA milestone. Succeeding sections summa-
rize other aspects of the spiral model relevant to the anchor point milestones, such as their
support of incremental commitment and their relation to the Rational Unified Process and the
USC MBASE approach.

3.1 Detailed Descriptions
Table 1 lists the major features of the LCO and LCA milestones. Unlike most current soft-
ware milestones

• Their focus is not on requirements snapshots or architecture point solutions, but on re-
quirements and architectural specifications which anticipate and accommodate system
evolution. This is the reason for calling them the "Life Cycle" Objectives and Archi-
tecture milestones.

• Elements can be either specifications or executing programs with data (e.g., prototypes,
COTS products).

• The Feasibility Rationale is an essential element rather than an optional add-on.

• Stakeholder concurrence on the milestone elements is essential. This establishes mu-
tual stakeholder buy-in to the plans and specifications, and enables a collaborative team
approach to unanticipated setbacks rather than an adversarial approach as in most con-
tract models.

These characteristics explain why LCO and LCA and critical to success on projects, and thus
why they are able to function successfully as anchor points across many types of software
development.

A key feature of the LCO milestone is the need for the Feasibility Rationale to demonstrate a
viable business case for the proposed system. Not only should this business case be kept up
to date, but also it should be used as a basis for verifying that expected benefits will actually
be realized, as discussed in the "Order Processing" example for Invariant 6.

CMU/SEI-2000-SR-008 19

Table 1: WinWin Spiral Anchor Points (with risk-driven level of detail for each
element)

Milestone
Element Life Cycle Objectives (LCO) Life Cycle Architecture (LCA)

Definition of
Operational
Concept

Top-level system objectives and scope

- System boundary

- Environment parameters and
assumptions

- Evolution parameters

Operational concept

- Operations and maintenance scenarios
and parameters

- Organizational life-cycle responsibilities
(stakeholders)

Elaboration of system objectives and
scope of increment

Elaboration of operational concept by
increment

System
Prototype(s)
Definition of
System
Requirements

Exercise key usage scenarios

Resolve critical risks

Exercise range of usage scenarios

Resolve major outstanding risks

Top-level functions, interfaces, quality
attribute levels, including:

- Growth vectors and priorities

- Prototypes

Stakeholders' concurrence on essentials

Elaboration of functions, interfaces,
quality attributes, and prototypes by
increment

- Identification of TBD's (to-be-
determined items)

Stakeholders' concurrence on their
priority concerns

Definition of
System &
Software
Architecture

Top-level definition of at least one feasible
architecture

- Physical and logical elements and
relationships

- Choices of COTS and reusable software
elements

Identification of infeasible architecture options

Choice of architecture and elaboration by
increment

- Physical and logical components,
connectors, configurations,
constraints

- COTS, reuse choices

- Domain-architecture and
architectural style choices

Architecture evolution parameters

Definition Of Identification of life-cycle stakeholders

Life-Cvcle Plan " Users- customers, developers,
maintainers, interoperators, general
public, others

Identification of life-cycle process model

- Top-level stages, increments

Top-level WWWWWHH* by stage

Elaboration of WWWWWHH* for Initial
Operational Capability (IOC)

- Partial elaboration, identification of
key TBDs for later increments

Feasibility
Rationale

Assurance of consistency among
elements above

Assurance of consistency among elements
above

- Via analysis, measurement, prototyping, All major risks resolved or covered by risk
simulation, etc. management plan

- Business case analysis for requirements,
feasible architectures

»WWWWWHH: Why, What, When, Who, Where, How, How Much

20 CMU/SEI-2000-SR-008

A feature distinguishing the LCA milestone from the LCO milestone is the need to have all of

the system's major risks resolved, or at least covered by an element of the system's risk man-
agement plan. For large systems, passing the LCA milestone is the point of significant esca-
lation of staff level and resource commitments. Proceeding into this stage with major risks
unaddressed has led to disaster for many large projects. Some good guidelines for software
risk assessment can be found in [Boehm 89a, Charette 89, Carr 93, Hall 98].

The Initial Operational capability (IOC) is the first the users will see of a functioning system,
so getting things wrong in the IOC can have serious consequences. Greeting users with a
new system having ill-matched software, poor site preparation, or poor users preparation has

been a frequent source of user alienation and project failure.

The key elements of the IOC milestone are

• Software preparation, including both operational and support software with appropriate
commentary and documentation; data preparation or conversion; the necessary licenses
and rights for COTS and reused software, and appropriate operational readiness testing.

• Site preparation, including facilities, equipment, supplies, and COTS vendor support
arrangements.

• User, operator and maintainer preparation, including selection, teambuilding, training
and other qualification for familiarization, usage, operations, or maintenance.

As with the Pre-Ship Testing Example given with Invariant 3, the IOC milestone is risk-
driven with respect to the system objectives determined in the LCO and LCA milestones.
Thus, for example, these objectives drive the tradeoff between IOC date and quality of the
product. These will differ markedly between such systems as the safety-critical Space Shuttle
Software and a market-window-critical commercial software product. The difference be-
tween these two cases is narrowing as commercial vendors and users increasingly appreciate
the market risks involved in buggy products [Cusumano 95].

3.2 Relationships to Other Process Models
This section sketches four process models that have adopted portions of the spiral model or
extended the spiral model.

Evolutionary Development
All too often, a project will be started on an evolutionary development approach based on a
statement such as, "We're not sure what to build, so let's throw together a prototype and
evolve it until the users are satisfied." This approach is insensitive to several risks corre-
sponding to the set of assumptions for a successful evolutionary. These assumptions are:

1. The initial release is sufficiently satisfactory to key system stakeholders that they will
continue to participate in its evolution.

CMU/SEI-2000-SR-008 21

2. The architecture of the initial release is scalable to accommodate the full set of system
life cycle requirements (e.g., performance, safety, security, distribution, localization).

3. The operational user organizations are sufficiently flexible to adapt to the pace of
system evolution

4. The dimensions of system evolution are compatible with the dimensions of evolving-
out the legacy systems it is replacing.

Without some initial attention to user needs, as required for LCO and LCA, the prototype
may be so far from the users' needs that they consider it a waste of time to continue. As dis-
cussed above, it will be risky to proceed without a life cycle architecture to support evolution.
Another risk is "information sclerosis": the propensity for organizations to lock into opera-
tional procedures making it difficult to evolve toward better capabilities [Boehm 88]. A final
frequent risk is that legacy systems are often too inflexible to adapt to desired directions of

evolution. In such cases, a preferable process model is incremental development, with the

increments determined by the ease of evolving-out portions of the legacy system.

Rational RUP Phases

Versions of Figure 6 appear in the three main books on the Rational Unified Process (RUP)
[Royce 98, Kruchten 98, Jacobson 99]. It shows the relations between LCO, LCA, and IOC
milestones and the RUP phases of Inception, Elaboration Construction, and Transition. It
also illustrates that the requirements, design, implementation, and deployment artifacts are
incrementally grown throughout the phases. As indicated in Variant 3b, the size of the shaded
bars (the relative efforts for Requirements, Design, Implementation, and Deployment) will
vary from project to project.

Engineering Stage
Inception

Production Stage
Elaboration Construction Transition

Feasibility LC0 Architecture LCA

Iterations Iterations
Usable

Iterations

IOC Product
Releases

Management nagement gament

Figure 6: Anchor Points and the Rational RUP Phases

RATIONAL
Software Corporation

22 CMU/SEI-2000-SR-008

WinWin Spiral Model

The original spiral model [Boehm 88] began each cycle of the spiral by performing the next
level of elaboration of the prospective system's objectives, constraints and alternatives. A
primary difficulty in applying the spiral model has been the lack of explicit process guidance

in determining these objectives, constraints, and alternatives. The Win-Win Spiral Model

(Figure 7) [Boehm 94] uses the Theory W (win-win) approach [Boehm 89b] to converge on a
system's next-level objectives, constraints, and alternatives. This Theory W approach in-
volves identifying the system's stakeholders and their win conditions, and using negotiation
processes to determine a mutually satisfactory set of objectives, constraints, and alternatives
for the stakeholders.

Win-Win
Extensions

1. Identify next
level Stakeholders 3. Reconcile win

conditions. Esablish
next level objectives :

7. Review, commitment \ _^C _J^J 4. Evaluate product and
process alternatives
Resolve risks

6. Validate product
and process
definitions / 5. Define next level of product

and process - including partitions

Original
Spiral

Figure 7: The WinWin Spiral Model

In particular, as illustrated in the figure, the nine-step Theory W process translates into the
following spiral model extensions (numbered as in the figure):

1. Determine Objectives. Identify the system life-cycle stakeholders and their win condi-
tions. Establish initial system boundaries and external interfaces.

2. Determine Constraints. Determine the conditions under which the system would pro-
duce win-lose or lose-lose outcomes for some stakeholders.

3. Identify and Evaluate Alternatives. Solicit suggestions from stakeholders. Evaluate
them with respect to stakeholders'win conditions. Synthesize and negotiate candidate
win-win alternatives. Analyze, assess, and resolve win-lose or lose-lose risks.

Commit. Record Commitments, and areas to be left flexible, in the project's design record
and life cycle plans.

4-7. Cycle Through the Spiral. Elaborate the win conditions, evaluate and screen alterna-
tives, resolve risks, accumulate appropriate commitments, and develop and execute
downstream plans.

CMU/SEI-2000-SR-008 23

MBASE Electronic Process Guide

The Model-Based (System) Architecting and Software Engineering (MBASE) approach

[Boehm 99a, Boehm 99b, Boehm 00b], provides more detailed definitions of the anchor point

milestone elements [Boehm 00b], and a process guide for deriving them. LCO and LCA are
both described as consisting of Operational Concept Definition, Requirements Definition,
Architecture Definition, Life Cycle Plan, Key Prototypes, and Feasibility Rationale. Each of
these artifacts is described in detail.

The MBASE Electronic Process Guide (EPG) [Mehta 99] was developed using the Electronic

Process Guide support tool provided by the SEI [Kellner 98]. It uses Microsoft Access to
store the process elements, using an Activities-Artifacts-Agents model, and translates the re-

sults into hyperlinked HTML for web-based access. Four sorts of windows appear: diagrams,

outlines, descriptions, and templates. Figure 8 shows the top-level outline of activities, arti-

facts, and agents. Figure 9 shows the diagram for the Inception Phase of the process. A click
on any element of that diagram brings up a structured description of that element. In the Fig-
ure, the "Risk Driven Analysis" section was clicked to bring up the outline and description
shown in Figure 10.

The top section of the outline window in Figure 11 places Risk Driven Analysis within its
context of the Inception Phase, parallel to the Elaboration Phase, with both being part of the
MBASE 577a Process (used for Computer Science course 577a at USC). The other activities
of the Inception Phase are also listed and can be fetched by clicking their names in the out-
line. Below the process outline is the outline of the Risk Driven Analysis description shown
to the right. Clicking there on the "Outputs" item scrolls the description to its Outputs sec-
tion, which is shown in Figure 10. Clicking an artifact name like "Operational Concept De-
scription" brings up another structured description; in this case one containing a reference to
an active template document for the artifact. Clicking in the fields of this document lets the
user enter the values and descriptions appropriate to his or her own particular project.

24 CMU/SEI-2000-SR-008

MBASE 577 Process 'Guide
IliloiS»^ 1 o«Aee*»v [«HAVIORAL IFÜNCTIOHJU 1 GUIDS 1 PROCESS Ky^St"
j|:«iC|^(»»:!; | BUJÄ**T } DIAGRAMS | DIAGRAMS | HELP j HELR . |jf-:;rjnfb ^

aosc
WINDOW

Activities Artifacts Agents

H- MBASE 577a Process 0 ■ Engineering Documents 3- Participating Agent

B" Inception Phase : B-; LCAPaAage :••• Custom«/

S-- Risfc-driven Analysis ■ E)-- Operational Concept Description •■•User

?■•■ Identify Critical Risks ;■■• Domain Description •■•• Domain Expert

:••* Identify Frequent Risks •-*• Proposed System B"" Performing Agent

'•■■ Develop Prototype •••• Common Definition Language •:■• Project Manager

B" Domain Analysis B • System and Software Requirement I".- Architect

:•■■ Tailor WinWin Taxonomy ;•• Project Requirements :•■• System Analyst

•■•• Negotiate System Capabilities ;•■• Capability Requirements '.■■■ Designer

:•-• Consider Product Lin« OppoftL ;-•■ System Interface Requirement •-•• Developer

i •• Define System Boundary and 1 •■•• Level of Sendee Requirement!

'■•-Describe Current System and F :--; Evolution Requirements

Ö" Success Analysis •••• Common Definition Language

•••• Identify Stakeholders B" System and Software Architecture t

■••* Identify PrlmarvWin Condition :••• Arehttectura! Analysis

Figure 8 EPG Top-Level Outline of Activities, Artifacts, and Agents

Inception
©. Risk Driven Atulysl«

V

ICQ Revttw and
Commitment

Figure 9 EPG Diagram of the Inception Phase

CMU/SEI-2000-SR-008 25

Activities: Ql Risk-driven Analysis

B ■ MBASE 577a Piocfss

Q ■ Inctption PkMS* Overview

:••• Identify Critical Rides System analysis driven by risk
:■•■ Identify Frequent Risks

•••■ Develop Prototype Purpose
0 ■ ■ Dom Jin Analysis

I±I-- Success Analysis The objectives of this activity are:
ffi" Product Analysis

■ To identify the most critical risk factors in the project
E" Process Analysis ■ To assess the:impaet of the risks associated with the
0" Property Analysts project
£)■■ LCO Review and Commitmer ■ To prepare a risk mitigation plan for the most critical risks _

Q- Elaboration Phas«

•• R«cord Project Effort Decomposition
Ö-- MfJhods tor MBASE

The activity Risk-driven Analysis is decomposed into the following:

.1 M ■ Identify Frequent Risks
■ Develop Prototype
" Identify Critical Risks

Activity:

Risk-driven Description

Analysis MBASE is a risk-driven process framework and every process
based on MBASE adopts an early risk assessment and resolution

• Overview approach. During Inception critical system risks should be
• Purpose identified and resolved based on their impact on the system
• Decomposition life-cycle
• Description
• Tools and Techniques
• Pitfalls

Tools and Techniques
,• Participation
• Agent Responsibilities

. • Inputs
Software Risk Taxonomy,
Project Simplifies and Complicators

■• Outputs
* Behavior Pitfalls
• Effort Guidelines

The common pitfalls during this activity are:
" Not identifying the major technological risks during

Inception ^

Figure 10 EPG Outline and Description of Risk Driven Analysis

Participating Agent

Performing Agent

aufjuurt. Ms* iiiiuyduuri di
performing agents

Identify and resolve proje

Inputs

The following artifacts are inputs to the Risk-dri\

Artifact

System and Software Architecture
Description

Sc

Pr

Outputs

The following artifacts are outputs to-the Risk-di

Artifact Source

Feasibility Rationale Description Project

■Operational Concept Description Project

iBehavior

Figure 11 The "Outputs" Section of the Description on the Right of Figure 10.

26 CMU/SEI-2000-SR-008

4 Summary

This paper has presented a preliminary definition of the spiral development model and char-

acterized the model further by presenting a set of six "invariant" attributes. That is, six prop-
erties which every spiral development process must incorporate. These are listed in Table 2
along with a notion of why they are necessary and a few characteristics, called "variants,"
that may vary from one spiral process model to another.

Numerous process models with development structured in a cyclic series of efforts can ap-
pear to be spiral models and yet violate one or more invariants and subsequently fail. These
are listed in Table 3, together with a reference to further discussion in the text.

The second part of the paper was devoted to the anchor point milestones of Invariant 5. These
milestones—Life Cycle Objectives (LCO), Life Cycle Architecture (LCA), and Initial Oper-
ating Capability (IOC)—provide concrete artifacts to drive the project toward completion.
They also provide for comparison, evaluation, and planning between projects. The discussion
concluded with the Win Win spiral model and MB ASE, which assist in the use of the anchor
point milestones.

This paper is intended as a sufficient characterization of the spiral development model to dis-
tinguish it from other project process models. Although not within itself a full description and
user's guide for the spiral development model, it is a suitable basis for such further works.

CMU/SEI-2000-SR-008 27

Table 2: Invariants of Spiral Processes: Name, Rationale, and Variants

Invariant {& example} Why invariant Variants

1. Concurrent rather than
sequential determination of
key artifacts--Ops Concept,
Requirements, Plans, Design,
Code-in each spiral cycle

{One- Second Response Time}

Avoids premature
sequential commitments

1a. Relative amount of each
artifact developed in each
cycle

1b. Number of concurrent
mini-cycles in each cycle

2. Each cycle considers
critical stakeholder objectives
and constraints, product and
process alternatives, risk
identification and resolution,
stakeholder review, and
commitment to proceed
{Windows-only COTS}

Avoids commitment to
alternatives that are risky or
unacceptable to
stakeholders
Avoids wasting effort on
unusable alternatives

2a. Choice of risk resolution
techniques: prototyping,
simulation, modeling,
benchmarking, reference
checking, etc.

2b. Level of effort on each
activity within each cycle

3. Level of effort on each
activity within each cycle
driven by risk considerations
{Pre-ship Testing}

Avoids too little or too much
of each activity
Avoids overkill or belated
risk resolution

3a. Choice of methods used
to pursue activities:
MBASE/WinWin, Rational
RUP, JAD, QFD, ESP, . . .
3b. Degree of detail of
artifacts produced in each
cycle

4. Degree of detail of artifacts
produced in each cycle driven
by risk considerations
{GUI layouts}

Avoids too little or too much
of each artifact
Avoids overkill or belated
risk resolution

4a. Choice of artifact
representations (SA/SD,
UML, MBASE, formal specs,
programming languages, etc.)

5. Managing stakeholder life
cycle commitments via the
LCO, LCA, and IOC anchor
point milestones
{Stud Poker Analogy}

Avoids analysis paralysis,
unrealistic expectations,
requirements creep,
architectural drift, COTS
shortfalls or
incompatibilities,
unsustainable
architectures, traumatic
cutovers, useless systems

5a. Number of spiral cycles
or increments between
anchor points
5b. Situation-specific
merging of anchor point
milestones

6. Emphasis on system and
life cycle activities and
artifacts rather than software
and initial development
activities and artifacts
{Order Processing}

Avoids premature
suboptimization on
hardware, software, or
development
considerations

6a. Relative amount of
hardware and software
determined in each cycle

6b. Relative amount of
capability in each life cycle
increment
6c. Degree of productization
(alpha, beta, shrink-wrap,
etc.) of each life cycle
increment

28 CMU7SEI-2000-SR-008

Table 3: Hazardous Spiral Look-Alikes

Hazardous Spiral Look-Alike £

c
.5 'JZ
CO
>
c Examples

Incremental sequential waterfalls with
significant COTS, user interface,
or technology risks

1 One Second Response Time

Violation of Waterfall Assumptions

Sequential spiral phases with key
stakeholders excluded from
phases

2 Windows-only COTS
Excluding Key Stakeholders

Risk-insensitive evolutionary or
incremental development

3 Pre-ship Testing
Risk Insensitivity

Section 3.3: Risks of Evolutionary
Development

Impeccable spiral plan with no
commitment to managing risks

3 (special case of the above)

Insistence on complete specifications
for COTS, user interface, or
deferred-decision situations

4 Risk of Precise Specification

Evolutionary development with no life-
cycle architecture

5 Section 3.3: Risks of Evolutionary
Development

Purely logical object-oriented methods
with operational, performance, or
cost risks

6 Logic-Only 00 Designs

CMU/SEI-2000-SR-008 29

30 CMU/SEI-2000-SR-008

References

[AT&T 93]

[Bernstein 00]

[Boehm 81]

[Boehm 88]

[Boehm 89a]

[Boehm 89b]

[Boehm 94]

[Boehm 96]

[Boehm 97]

[Boehm 98]

[Boehm 99a]

[Boehm 99b]

[Boehm 00a]

AT&T, Best Current Practices: Software Architecture Validation.
Murray Hill, NJ: AT&T, 1993.

Bernstein, L. "Automation of Provisioning," Proceedings, USC-SEI
Spiral Experience Workshop. Los Angeles, CA, Feb. 2000.
http://www.sei.cmu.edu/cbs/spiral2000/Bernstein

Boehm, B. Software Engineering Economics. New York, NY: Pren-
tice Hall, 1981.

Boehm, B. "A Spiral Model of Software Development and En-
hancement." Computer (May 1988): 61-72.

Boehm, B. Software Risk Management. Washington, D.C.: IEEE
Computer Society Press, 1989.

Boehm, B. & Ross, R. "Theory W Software Project Management:
Principles and Examples." IEEE Trans. Software Engr. (Jul. 1989).

Boehm, B. & Bose, P. "A Collaborative Spiral Software Process
Model Based on Theory W." Proceedings, ICSP 3, IEEE, Reston,
VA, Oct. 1994

Boehm, B. "Anchoring the Software Process." IEEE Software 13,4
(July 1996): 73-82

Boehm, B. "Developing Multimedia Applications with the Win Win
Spiral Model." Proceedings, ESEC/FSE 97. New York, NY: Springer
Verlag, 1997.

Boehm, B. "Using the Win Win Spiral Model: A Case Study." IEEE
Computer (July 1998): 33-44.

Boehm, B. & Port, D. "Escaping the Software Tar Pit: Model
Clashes and How to Avoid Them." ACM Software Engineering
Notes (Jan. 1999): 36-48.

Boehm, B. & Port, D. "When Models Collide: Lessons from Soft-
ware Systems Analysis." IEEE IT Professional (JanVFeb. 1999):
49-56.

Boehm, B. "Unifying Software Engineering and Systems Engineer-
ing." IEEE Computer (March 2000): 114-116.

CMU/SEI-2000-SR-008 31

[Boehm 00b]

[Bostelaar 00]

[Carr 93]

[Charette 89]

[Clark 95]

[Cusumano 95]

[DeMillo 00]

[Forsberg 96]

[Garlan 95]

[Hall 98]

[Hantos 00]

[Jacobson 99]

Boehm, B; Abi-Antoun, M; Brown, A.W.; Mehta, N. & Port, D.
"Guidelines for the LCO and LCA Deliverables for MBASE." USC-

CSE, Mar. 2000. http://sunset.usc.edu/classes/cs577b 2000/EP/07/
MBASE Guidelines for CS577v0 2.pdf

Bostelaar, T. "TRW Spiral Development Experience on Command &
Control Product Lines Program," Proceedings, USC-SEI Spiral Ex-

perience Workshop. Los Angeles, CA., Feb. 2000.
http://www.sei.cmu.edu/cbs/spiral2000/Bostelaar

Carr, M.; Kondra, S.; Monarch, I.; Ulrich, F. & Walker, C. Taxon-

omy-Based Risk Identification (CMU/SEI-93-TR-06 ADA 266992)
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon

University, 1993 http://www.sei.cmu.edu/publications/documents/

93.reports/93.tr.006.html.

Charette, R.N. Software Engineering Risk Analysis and Manage-

ment. New York, NY: McGraw Hill, 1989.

Clark, B. & Boehm, B. (eds.) "Knowledge Summary: Focused
Workshop on COCOMO 2.0," USC-CSE, May 16-18, 1995.

Cusumano, M.& Selby, R. Microsoft Secrets. New York, NY: Free
Press, 1995

DeMillo, R. "Continual Improvement: Spiral Software Develop-
ment," Proceedings, USC-SEI Spiral Experience Workshop. Los
Angeles, CA, Feb. 2000.
http://www.sei.cmu.edu/cbs/spiral2000/DeMillo

Forsberg, K; Mooz, H. & Cotterman, H. Visualizing Project Man-
agement. New York, NY: Wiley Publishers, 1996.

Garlan, D.; Allen, R. & Ockerbloom, J. "Architectural Mismatch:
Why Reuse Is So Hard," IEEE Software (Nov 1995): 17-26.

Hall, E. Managing Risk: Methods for Software Systems Develop-
ment. Reading, MA: Addison Wesley, 1998.

Hantos, P. "From Spiral to Anchored Processes: A Wild Ride in
Lifecycle Architecting," Proceedings, USC-SEI Spiral Experience

Workshop. Los Angeles, CA, Feb. 2000.
http://www.sei.cmu.edu/cbs/spiral2000/Hantos

Jacobson, I; Booch, G. & Rumbaugh, J. The Unified Software De-

velopment Process. Reading, MA: Addison-Wesley, 1999.

32 CMU/SEI-2000-SR-008

[Kellner 98]

[Kitaoka 00]

[Kruchten 98]

[Leinbach 00]

[Mehta 99]

[Royce 98]

[SPC 94]

[Thorp 98]

[USAF 00]

"Process Guides: Effective Guidance for Process Participants,"
Proceedings of the 5th International Conference on the Software

Process: Computer Supported Organizational Work. Los Alamitos,

CA: IEEE Comput. Soc! Press, 1998.

Kitaoka, B. "Yesterday, Today & Tomorrow: Implementations of
the Development Lifecycles," Proceedings, USC-SEI Spiral Expe-
rience Workshop. Los Angeles, CA, Feb 2000.
http://www.sei.cmu.edu/cbs/spiral2000/Kitaoka

Krutchten, P. The Rational Unified Process. Reading, MA:
Addison-Wesley, 1998.

Leinbach, C. "E-Business and Spiral Development," Proceedings,
USC-SEI Spiral Experience Workshop. Los Angeles, CA, Feb 2000.
http://www.sei.cmu.edu/cbs/spiral2000/Leinbach

Mehta, N. MBASE Electronic Process Guide. USC-CSE, Los An-
geles, CA: Oct 1999. http://sunset.usc.edu/research/MBASE/EPG

Royce, W. Software Project Management: A Unified Framework.
Reading, MA: Addison Wesley, 1998.

Software Productivity Consortium, Process Engineering with the
Evolutionary Spiral Process Model (SPC-93098-CMC, Version
01.00.06). Herndon, Virginia, 1994.

Thorp, J. The Information Paradox. New York, NY: McGraw Hill,
1998.

U.S. Air Force. "Evolutionary Acquisition for C2 Systems." Air
Force Instruction (January 1, 2000) 63-123.

CMU/SEI-2000-SR-008 33

34 CMU/SEI-2000-SR-008

Acronyms

AC2ISRC Aerospace Command and Control, Intelligence, Surveillance, and
Reconnaissance Command (Air Force)

AFOTEC Air Force Operational Test and Evaluation Center

ASC Aeronautical Systems Center

C2ISR Command and Control, Intelligence, Surveillance, and Reconnaissance

CCPDS-R Command center processing and display system replacement

CECOM US Army Communications-Electronics Command

CIO Chief Information Officer

CMU Carnegie Mellon University, home of SEI

COTS Commercial-Off-The-Shelf

CSE Center for Software Engineering, USC

DAU Defense Acquisition University

DCMC Defense Contract Management Command

DoD Department of Defense

DSMC Defense Systems Management College

ESC Electronic Systems Command (Air Force)

ESP Evolutionary Spiral Process (SPC)

FAA Federal Aviation Agency

FFRDC Federally Funded Research and Development Center

GUI Graphical User Interface

IKIWISI 111 know it when I see it

INCOSE International Council on Systems Engineering Air Force Operational Test
and Evaluation Center

IOC Initial Operating Capability

IPT Integrated Product Team

JAD Joint Applications Development

LCA Life Cycle Architecture

LCO Life Cycle Objectives

MBASE Model-Based Architecting and Software Engineering (CSE)

MITRE MITRE (an FFRDC)

CMU/SEI-2000-SR-008 35

00

00A&D

OSD

OUSD/AR

PMI

POM

QFD

ROI

RUP

SAF/AQ

SAIC

SA/SD

SDM

SEI

SMC

SPAWAR

SPC

TBD

UML

use
USD/AT&L

WWWWWHH

Object-Oriented

Object-Oriented Analysis and Design

Office of the Secretary of Defense

Office of the Under Secretary of Defense / Acquisition Reform

Program Management Institute

Program Objectives Memorandum

Quality Function Deployment

Return on investment

Rational Unified Process (Rational)

Secretary of the Air Force/Acquisition

Science Applications International Corporation

Structured Analysis/Structured Design

Spiral Development Model

Software Engineering Institute, CMU

Air Force Space and Missile Systems Center

Space and Naval Warfare Systems Command

Software Productivity Consortium

To Be Determined

Unified Modeling Language

University of Southern California, home of CSE

Under Secretary of Defense/Acquisition, Technology, and Logistics

Why, What, When, Who, Where, How, How much

36 CMU/SEI-2000-SR-008

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(LEAVE BLANK)
2. REPORT DATE

July 2000
3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Spiral Development: Experience, Principles and Re-
finements

5. FUNDING NUMBERS

C —F19628-95-C-0003

6. AUTHOR(S)

Barry Boehm, Wilfred J Hansen, editor
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2000-SR-008

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731 -2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.B DISTRIBUTION CODE

13. abstract (maximum 200 words)
Spiral development is a family of software development processes characterized by re-
peatedly iterating a set of elemental development processes and managing risk so it is
actively being reduced. This paper characterizes spiral development by enumerating a
few "invariant" properties that any such process must exhibit. For each, a set of "variants"
is also presented, demonstrating a range of process definitions in the spiral development
family. Each invariant excludes one or more "hazardous spiral look-alike" models, which
are also outlined. This report also shows how the spiral model can be used for a more
cost-effective incremental commitment of funds, via an analogy of the spiral model to stud
poker. An important and relatively recent innovation to the spiral model has been the in-
troduction of anchor point milestones. The latter part of the paper describes and dis-
cusses these.

14. SUBJECTTERMS Spiral development model, invariant,
variant, anchor point milestones, software develop-
ment, project management, risk management, cyclic
phases, iterative process

INTS

15. NUMBER OF PAGES
36

16. PRICE CODE

7. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY
CLASSIFICATION OF
THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-1B
298-102

CMU/SEI-2000-SR-008 37

