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ABSTRACT 

The Academy produced large numbers of UPT entrants each year. HERC Project 9901 AIR 
provided a mechanism to study in a systematic manner the principles of airmanship and what 
individual characteristics constituted a "good" pilot, including the study of the acquisition of 
basic flying skills. This report describes the establishment within 9901 AIR of a flight 
simulation tool to study this kind of skill acquisition. 

The Basic Flight Instruction Tutoring System (BFITS) observed and tracked the behavior of 
students as they attempt to learn basic flight procedures (Benton et al., 1992). It taught the 
basic concepts and principles of flying, and then allowed students to apply what they had 
learned in the simulator setting of the program. Development work for and field validation 
of the BFITS were performed by contractors supported by the Air Force Armstrong 
Laboratory (now, the Human Effectiveness Directorate of the Air Force Research 
Laboratory; AFRL/HE).  The BFITS was, apparently, not in use at any other Air Force 
laboratory. Its software provided data that supported fundamental investigations of learning. 

Several modifications were required to adapt the BFITS to the needs of researchers at the 
United States Air Force Academy.  These modifications were accomplished by a team of 
five cadets enrolled in Behavioral Sciences 473, Human Factors Engineering, and their 
instructor, following a process that included literature review, system analyses, system 
design, and test and evaluation. A 90-megahertz Pentium personal computer host was set up 
and complemented with simulated aircraft yoke and rudder pedals. The cadets created easily 
understood instructions for users. The instructor wrote software that made BFITS academic 
lesson and flying performance data viewable in commercial spreadsheets. 

A limited test and evaluation assured that the BFITS research station worked as desired. The 
project used two independent groups who flew the first 14 of the 31 BFITS lessons: group 
one (novice), no prior fixed wing flying or flight simulator experience; and group two 
(experienced), who had at least completed their first solo in the soaring program. The 
hypothesis was simply that experienced users would demonstrate better performance in 
lessons and in simulated flight than novices. 

The BFITS is a rich resource for investigations of fundamental learning processes associated 
with novice pilot learning. It may be used extensively as a tool to support faculty and cadet 
investigations of those processes. The BFITS software allows many manipulations: 

• The field of view of the pilot may be altered for simulated flight; this will allow an 
attempt to investigate a theory of visual field requirements in simulation put forth by 
Stan Roscoe several decades ago. 

• Questions and answers may be rephrased and entire lessons re-written. 
• The instrument panel may be re-organized. 
• The pass-fail criteria for flight performance may be altered. 

IX 



INTRODUCTION 

The Academy produced large numbers of UPT entrants each year. HERC Project 9901 AIR 
provided a mechanism to study in a systematic manner the principles of airmanship and what 
individual characteristics constituted a "good" pilot, including the study of the acquisition of 
basic flying skills. This report describes the establishment within 9901ATR of a flight 
simulation tool to study this kind of skill acquisition. 

This report documents the creation of a workstation for learning research by a team of cadets 
enrolled in Dr. Miller's section of Behavioral Sciences 473, Human Factors Engineering, 
during the spring semester of 1999 at the US Air Force Academy. The research workstation 
was to be used in subsequent investigations of the learning of basic flying skills. The cadets 
were to follow a highly structured process that included literature review, system analyses, 
system design, and test and evaluation. The assignment was to: 

Create a flight training research system 

Background: The Human-Environmental Research center (HERC) has acquired 
software entitled the Basic Flight Instruction Tutoring System (BFITS). The software 
was created by Technology Systems Inc. under AF contract. BFITS "teaches a subset 
of the basic concepts and principles of flying and then provides the opportunity to 
practice the application of these in the flight simulator component of the tutor." 
Flying performance data are stored in ASCII text files. Reportedly, a validation study 
by Koonce and others suggested that the use of BFITS can reduce the number of 
flight hours to first solo by up to one-third. The HERC requires that this software 
become the central part of a research system that supports investigations of the way 
new pilot trainees learn to fly. 

System Requirements: 
The system shall 
• Be configured to support learning and training research by USAFA cadets and 

faculty 
• Include applicable, easily understood instructions for investigators for the use of 

the system as a research tool 
• Allow pilot performance data to be viewed in spreadsheet form 
• Be supported by all necessary hardware 
• Be located in a suitable environment for the conduct of research 
• System function shall be demonstrated by conducting one or more demonstration 

research projects, including hypothesis testing, using one or more subject groups, 
each of which contains at least six subjects with no prior pilot experience and who 
are not members of the design team, and an investigator who is not part of the 
design team. Human use approval will be needed.  

Literature Review 



Schneider (1990) focused on the fallacies of training high performance skills, such as flying 
an airplane. The first fallacy was the idea that 'practice makes perfect'. Schneider stated 
that, for tasks such as memorizing a telephone number or learning the way to work, practice 
makes perfect. However, when dealing with those who work in the air traffic control tower 
or in the cockpit of an airplane, "this assumption does not prove to be a valid generalization 
for high-performance training" (p. 298). In some cases, Schneider claimed, practice may not 
help at all. Practice makes perfect when the same routine and steps are taken in the same 
order repeatedly. However, when flying an airplane, the exact sequence of events rarely 
repeats. In addition, when operating an air traffic control tower, the situation changes 
continually. Thus, for tasks such as flying an airplane or operating an air traffic control 
tower, achieving perfection by practice is nearly impossible because different situations call 
for different decisions. 

Another fallacy was that "it is best to train a skill in a form similar to the final execution of 
the skill" (p. 299). The problem with this belief was that trainees would never acquire the 
instruction in the steps leading up to the final skill execution. The steps leading up to the 
final task may not always be the same. No one can predict what is going to happen next. In 
this case, if someone has not been properly trained in the steps leading up to the final stage, 
they will be inadequately prepared for the event or emergency. 

The third fallacy was that "skill learning is intrinsically motivated" (p. 300). This fallacy 
assumed that the person did not require any extrinsic motivating factors. One example, 
provided by Schneider, dealt with air traffic controllers. An air traffic controller's career was 
based upon his performance in the tower and his ability to apply the skill that he learned. If 
he did not performing the job correctly, he would lose the job and any monetary rewards that 
came with it. This was a strong, extrinsic motivating factor. If people are not rewarded for 
their jobs, why would anyone want to acquire that skill in the first place? 

The next fallacy was that "people should train for accurate performance" (pp. 300-301). 
Specifically, trainers would train air traffic controllers one function at a time, making sure 
that their performance on this task was perfect. This is not how it should be. Schneider 
stated "In many skill-training programs, the goal should be to obtain acceptable accuracy on 
a component skill while allowing attention to be allocated to other components of the task" 
(p. 301). As an air traffic controller or pilot, it is imperative that the person is capable of 
allocating his attention to different tasks at the same time. Without resource allocation like 
this, the person would never be able to take upon the responsibility of a job requiring high- 
performance skill. 

The fifth fallacy was that "initial performance is a good predictor of trainee and training 
program success" (p. 301). For obvious reasons, most people are not going to perform well 
during their first couple attempts at a high-performance skill. The trainee must first be 
exposed to the skill for a while (preferably 100-200 hours) and learn all about the system 
before an evaluation can be made. 

The final fallacy was that "once the learner has a conceptual understanding of the system, 
proficiency will develop in the operational setting" (p. 301). Specifically, if someone did 



well in the classroom during Undergraduate Pilot Training (UPT), this fallacy suggested that 
he or she would also do well when it was time to apply those concepts in the cockpit. But as 
we all know, sitting in a classroom and rehashing knowledge in an air conditioned room is 
completely different than doing it in a multi-million dollar aircraft with your life on the line. 
The classroom can only prepare you to a certain extent. 

Stark (1989) focused on simulator design. Simulators viewed as being used for three primary 
purposes: "to facilitate in experimenting with a system without having to actually build it; 
support and apply (past) research dealing with human limitations and capabilities; and 
simulators are used to train personnel in the operation of a system" (p. 109). Each simulator 
varies in effectiveness but there seems to be one quite common requirement: the simulator 
training must be transferable from the training environment into the operational environment. 
In addition to this, there are some other requirements in the simulator design. One 
requirement is that it must provide the most realistic environment, compared to the one in 
which the pilot will fly. Also, the simulator's mechanisms must be clear and easy to 
understand so the pilot knows what instruments stand for what. Standardization is also 
important. The same feedback must be given repeatedly to ensure accuracy and proper 
acquisition of skill. Finally, instructional interaction is pivotal. The instructor must be 
proficient and up to date on the simulator's operational methods. Without this capability, the 
training may produce negative effects. 

Koonce (1998) described a validation study of the BFITS conducted by the University of 
Central Florida. The BFITS was a flight simulation system that runs in DOS. The system 
was set up with rudder pedals, a joystick or yoke, and a VGA monitor. Koonce's experiment 
was designed to test the effectiveness of the BFITS system on novices, those who had no 
previous flight experience. To test BFITS' effectiveness, Koonce analyzed the amount of 
"flight time to first solo, number of landings prior to first solo, and total flight time to the 
private pilot certificate". 

There were three groups of subjects. The first was a control group that received no time in 
the BFITS simulator but proceeded with flight instruction until all requirements were 
satisfied. The second group contained 28 subjects from Taiwan, whose first language was 
not English. The third group held 129 English-speaking subjects. 

The results showed that, compared to the control group, the English speaking subjects "had 
an average of 3.21 hours less dual instruction prior to their first solo flight, 14.2 fewer 
landings prior to first solo, and 8.46 hours less total flight time to the private pilot 
certificate." The Taiwanese subjects needed 0.54 more hours of dual instruction, compared 
to the English subjects. However, the Taiwanese had 5.26 fewer landings before first solo. 

Koonce's experiment showed the effectiveness and need for a BFITS system in an 
introductory flight training course. Most of the results reported what one would expect, 
except for the Asian subjects performing fewer landings before their first solo. Koonce's 
explanation for this is that they had developed the perceptual-motor skills in the BFITS. 



Taylor et al. (1993), at the University of Illinois Institute of Aviation, examined transfer of 
flight skills training with flight training subjects. This study focused on determining the 
optimum design and features for flight training simulators. Some of the variables tested in 
this study were environmental effects, dynamic responses, visual scenes, and instrumental 
augmentations. The primary task in the first part of this experiment was approach and 
landing in a light aircraft. This task was chosen due to its high level of difficulty. Since 
landing is one of the more dangerous parts of flying, tests done which improve landing 
abilities could be highly beneficial. 

Taylor's experiment was conducted on 40 male and two female flight subjects from 18-30 
years old with ho prior flight experience. The group of subjects was broken down into 21 
pairs. From each pair, one subject received flight simulator training before instruction while 
the other subject only received flight instruction. The subject receiving no simulator training 
was the control. The training device used in this experiment was the ILLIMAC flight trainer. 
This flight trainer is a fixed base, digital simulator equipped with full light aircraft controls 
and displays. The task placed upon the experimental group of subjects was to make 
simulated approaches on a 4-degree glideslope starting at 10,100 feet from the runway, at 
635 ft altitude, and lined up with the runway centerline. The simulator provided no 
crosswind during the simulation. The subjects conducted the flight approach, flare, 
touchdown, and rollout. 

The flight training itself consisted of a beginning flight course which lasted through a 16- 
week semester and included ground school, 6 hours of instruction in a Link GAT-1 ground 
based flight trainer, and 24 hours of aircraft flying, including 3 hours of solo flight. The solo 
flight could not be accomplished before 17 hours of flight time. The experimental subjects 
received two additional training sessions, which included 26 landing trials each, in the 
ILLIMAC flight trainer. These additional sessions were conducted immediately before 
intensive landing sessions with an instructor. 

The results of this experiment showed that the experimental group of subjects averaged 66.0 
landings prior to solo at an average of 17.6 hours of flight time.  The control subjects 
averaged 75.8 landings before soloing and flew an average of 18.6 hours. The 9.8 difference 
in the number of landings was statistically significant, f(16) = 2.21; p = 0.021, one-tailed. 
These results showed that 2 hours of flight simulator training could reduce the number of 
pre-solo landings in light aircraft. Even with the limiting factor of needing 17 hours to solo, 
the experimental group still required significantly fewer hours to solo. Therefore, from this 
experiment, we can conclude that flight simulator training can aid training performance in 
light aircraft. 

In another experiment, conducted by Park and Lee (1992), computer aided tests were used to 
predict flight performance of trainees. This experiment focused around determining what 
skills were good predictors of flight training performance. Based upon previous literature 
and the experience of the authors, the categories used to classify pilot functions were 
tracking, reaction, memory, estimation, and visual scanning. These five categories were 
selected because they were viewed as essential functions for a pilot to perform. 



This study was conducted upon 64 senior cadets at the Korean Air Force Academy. They 
ranged from 22 to 24 years old. None of the subjects had prior flight experience. The 
apparatus used in this experiment was a computer that generated all the stimulus signals and 
then recorded the data. The subjects used keyboard, joystick, foot pedals, and a secondary 
keyboard to input their responses. The test was composed of 16 single tasks and 10 dual 
tasks. The single tasks were composed of tasks such as: hand and foot tracking, color and 
sound reaction, item recognition, memory tasks, time, speed, and size estimation, shape 
comparison, and position reading. The dual tasks consisted of one-hand tracking while 
performing the 10 tasks of reaction, memory, and estimation categories and were designed to 
measure time-sharing abilities. 

Upon completion of the experiments, the subjects began a basic flying course that included 
14 hours of dual flight time in a Cessna T-41 and a 1-hour check ride with a flight evaluator. 
All cadets passed this flight training and entered an intermediate flight training school. The 
intermediate school consisted of advanced flight training in a Cessna T-37. The training 
consisted of 60 hours flight time. After completing the first 25 hours of flight training, each 
subject was screened for the next stage of training. From the intermediate flight training, 43 
subjects passed, and 20 failed. 

The results of the experiment showed that the passing group generally performed better than 
the failing group in the single-task measures. However, there were only statistically 
significant differences (p < 0.05) between the two groups in three single task measures of 
foot-hand tracking, position reading, and shape comparison, and in one dual-task measure; 
one-hand tracking plus kinesthetic memory. From this study it was concluded that of the five 
factors originally believed to be good predictors of flight performance, only three factors 
ended up being good predictors: tracking, reaction, and memory. 

This experiment was important because it provided us with direction as to what to focus 
flight simulator training on. Since reaction, memory, and tracking seem to be important 
predictors in pilot performance, it would be good to design a simulator that develops these 
three factors. In addition, when evaluating how effective flight simulator training is, it would 
be good to test how the training affected the three factors of reaction, memory, and tracking. 



SYSTEM ANALYSES 

Predecessor Systems Analysis 

With computers advancing as quickly as they were, flight simulators were becoming more 
available to consumers and were becoming increasingly realistic. There were several 
different flight simulators available for personal computers. A couple, such as ProPilot 
(Sierra Corp., Bellevue, WA) and Microsoft Flight Simulator '98 provided consumers with 
various levels of flight training instruction. These simulators used sophisticated graphics. 
Realistic aircraft controls, including throttle, rudder pedals, and yoke or joystick, were easy 
to obtain and they added fidelity to computer simulations. Of course, the military and the 
airlines had numerous flight simulators, varying greatly in price and fidelity. 

There were two predecessor systems chosen for analysis before designing the BFTTS 
workstation: the T-37 aircraft (T-4) simulator and Microsoft Flight Simulator '98. During 
this project, the Air Force Academy owned and operated a number of T-37 simulators for 
procedure training. The simulators were located on the second floor Fairchild Hall, room 
2C28. 

The simulator itself was the cockpit of a Cessna T-37, equipped with working radios and 
moving instrument gauges. The simulator was run by analog computing systems and had all 
the moving instruments of an actual T-37. The cockpit would light up, various instruments, 
such as radios, had to be set, and different instruments, such as the altimeter, vertical speed 
indicator, and tachometer worked just as in the real aircraft. In addition, the subject in the 
cockpit received radio calls. In this sense, it had a very high level of fidelity. 

The T-37 simulator was quite useful, for several reasons. First, it was very realistic as far as 
appearance. Subjects using this simulator learned where various instruments were located. 
Exposing a subject to this kind of instrument training may aid in memory skills and help 
decrease reaction time in actual flight operations: In addition, the simulated flight 
environment of the system was very realistic. The subjects were given a scenario to 
accomplish. Usually, they took off, flew various headings to navigation points, encountered 
air traffic, and landed the aircraft. Subjects were also given emergency scenarios to deal 
with, on instruments. This was an important training concept, since a person's senses do not 
always tell the truth in the three dimensional world of flying. 

The simulator also allowed subjects to learn to listen to the radio. One of the toughest things 
for aviation trainees to learn is radio calls. Although they did not get to make radio calls, 
learning to listen for them is still an important and difficult thing to leam. Finally, the 
simulator did a good job of providing subjects with extremely difficult scenarios and a lot of 
information. Subjects could be overloaded with information. This was important because in 
an aircraft, emergencies can happen quickly and without much warning. The better a subject 
is at organizing information and reacting to difficult situations, the better he or she will react 
in real emergencies. 



However, there were a few drawbacks to this system. One was the lack of visual feedback. 
The only thing the subject saw in the T-37 simulator cockpit was a white canopy. The only 
visual feedback was the moving instruments. Flying this simulator was similar to flying in a 
cloud; everything was done with instruments. Piloting by visual flight rules could not be 
taught.   Also, there was no movement associated with the simulator. The physiological 
effects of pulling g's, or of even turning, could not be felt in this simulator. 

Of course, when designing a flight simulator, cost is important. More realistic simulators 
that move cost millions of dollars. Fidelity is also important in simulator design. However, 
just because a simulator has more fidelity does not necessarily mean it is a better simulator. 
Depending on the training objective, a simulator that teaches basic procedures may well be 
better than a simulator that has extremely good graphics. 

The other predecessor system we reviewed was Microsoft Flight Simulator '98. This was a 
PC based simulator. It was set up on a PC with a keyboard and joystick as control inputs. 
Different controls could be used with this simulator, such as a yoke and rudder pedals. This 
simulator also had its advantages and disadvantages. First, it also did a good job of providing 
subjects with realistic scenarios. Using this simulator, subjects took various academic 
courses that taught them various flight procedures. A faculty instructor talked to the subject 
while the subject was flying the simulator. The subject could opt to fly different missions 
with varying degrees of difficulty. For example, a subject could choose to fly into the 
Chicago airport with a 40-knot crosswind. By providing the subject with varying levels of 
emergencies, emergency procedure training could be conducted. This simulator also did a 
good job of providing the subject with realistic, one-way radio calls. The subject could 
receive the calls, but could not respond. 

Unlike the T-37 simulator, this simulator had better audio and visual feedback. For audio 
feedback, the subject could hear various aircraft noises, such as stall warnings and different 
power settings. Physically, the cockpit was not as good as the T-37 simulator, but a realistic 
instrument panel could be seen. Also, there was good visual feedback associated with flying 
the aircraft. The subject could see simulated visual references on the "ground" while 
maintaining a level flight "picture," or see what it looked like when the aircraft was climbing, 
descending, or turning. This capability improved the subjects' visual flight abilities. 

Just as with the T-37 simulator, however, this simulator also had its limitations. First, again, 
the movement of the simulator was non-existent. Besides what the subject saw on the 
computer screen, there was no sensation associated with moving in an aircraft. In addition, 
the controls were very limited. The subject could purchase more realistic controls, such as a 
yoke and pedals, but they were still not able to actually pull the throttle or turn a dial. The 
visual displays were limited. The subject did not experience the realism associated with 
being in an actual cockpit. Additionally, neither performance data nor training scenarios 
were available. 

Several interesting learning issues were identified from our analyses of these two predecessor 
systems. The first was the importance of visual feedback from the instrument layout. 
Having a good instrument layout may help enhance the subject's instrument procedures. Of 



course, transfer of training will be an issue when a subject leaves a simulator and steps into 
an actual cockpit. Second, control dynamics were important. If nothing else, at least these 
simulators caused the subject to consider movement in three dimensions as opposed to the 
typical two dimensions of most earth-based transportation, such as driving a car. Third, the 
simulations taught subjects to deal with information overload. Both of the predecessor 
systems did a good job of providing the subject with varying degrees of difficult situations. 
It is important teach aviation subjects to respond to the vast amount of information associated 
with flying, including radio calls, checklists, and trying to remember different steps to take 
for different situations. All of these issues may be investigated with the BFITS system. 

The BFITS system was designed to teach the basic concepts and principles of flying, and 
then allow subjects to apply what they had learned in the simulator setting of the program. 
Some modifications were required to custom fit the program to the needs of personnel at the 
United States Air Force Academy. First, it was to be configured to support learning and 
training research by both USAFA cadets and faculty members. Easily understood instructions 
for the users were needed. In addition, pilot performance data were to be viewable in 
spreadsheet format. The 90-megahertz personal computer on which the program ran needed 
to be complemented with simulated aircraft yoke and rudder pedals that provided personal 
computer game joystick signals. The apparatus was to be set up in a laboratory setting (i.e., 
quiet environment) with ample space for the users to operate. 

BFITS High-Level Task Analysis with Function Allocation 

The highest task levels for BETTS operation included the following: 
• Machine Setup 

• Turn on/boot up (investigator) 
• Run scandisk (investigator; DOS utility) 
• Run simulator to insure correct operation (investigator; BFITS utility) 
• Calibrate joystick yoke and rudder pedals (investigator; BFITS utility) 

• Completion of informed consent process (subject and investigator) 
• Lesson Accomplishment (subject) 
• Recovery of Subject Data 

• Write data (BFITS automation) 
• View data (investigator; BFITS utility) 
• Convert binary flying data files to ASCII files (investigator; BFITS utility) 
• Convert lesson and flying data files to spreadsheet format (comma-delimited) files 

(investigator, supported by USAFA's bfit2ss.exe program) 
• Move subject data to back-up medium (investigator) 
• Data Reduction (investigator) 
• Data Analysis and Report Writing (investigator) 

Mid-Level Task Analysis 

The first step in running the BFITS study is to set-up the workstation, composed of desk, 
adjustable chair, computer and monitor, keyboard, yoke, and foot pedals. Each of these parts 
of the workstation must be set up the same way each lesson for each subject. In addition, 



these parts need to be set-up according to human factors principles for a simulator design 
(see workstation design for further detail). 

The second step is to properly install the BFITS software. A c:\bfits subdirectory must be 
created on the hard drive. Executables, the lessons, and the flight criteria must be backed-up 
and copied. The third step is to test and calibrate the yoke and rudder pedals. 

The next step for the investigator is to setup each subject's data disks. Each subject requires 
his or her own subdirectory, data files, and password. For passwords, a randomized number 
assignment system should be used to help assure each subject's privacy. In addition, the 
investigator must teach the subject how to adjust his or her chair before each sequence of 
academic lessons or flight simulation. The investigator must stress the importance of a 
consistent chair position so the subject will see and feel everything the same way during 
every lesson. 

The investigator may, after a lesson has been accomplished, view the subject's flight 
summary. In this way, the investigator may verify the quality of subject's time on the 
system. The investigator should then view the subject's lesson summary. The BFITS 
software (Technology Systems, Inc., 1992) supports these functions. 

The final steps for the investigator deal with converting, reducing and analyzing lesson and 
flying data. First, the investigator must use the BFITS software to convert the subject's 
flying data from binary to ASCII format. Second, the investigator should use the USAFA 
program, bfit2ss.exe to reduce the lesson and flying data and send it to a comma-delimited, 
ASCII text file that is easily imported into a spreadsheet. Third, subject data should be 
transferred from the hard drive to a floppy on a regular basis. More than one copy of data 
should be kept for each subject. After data are copied, they should be erased from the hard 
drive to free up storage space. Finally, the investigator should analyze the data. Finally, the 
investigator will complete a written report of this analysis, compiling the data into an easy- 
to-understand report. 

Areas of Difficulty 

The BFTTS system contained some potential areas of difficulty related to human system 
operators. These were determined through observation of BFITS team members working 
with the software, compared to our previous studies of human factors principles. These areas 
of difficulty had to be considered during the preliminary design phase. 

One of the first areas was the written instructions for loading the BFITS program. The 
instructions were not as all-inclusive as they needed to be. For example, they did not deal 
with the loading of CH Product controls software. For the inexperienced user, this caused 
undue stress and a lag between starting the program and actually being able to use the 
program. 

Another area of difficulty was the negative transfer of training that occurred with 
experienced pilots. For example, the different types of aircraft they had flown caused 



varying transfer effects. Fighter pilots were not used to flying with a yoke and using the 
rudder. However, heavy transport pilots were more comfortable with the yoke and using the 
rudder. 

Last, extraneous noise level in the laboratory had a negative effect on the subjects. In 
particular, if a class was being taught, there was verbal interference while a subject was 
reading a BFITS lesson. 

Design Resources 

During our preliminary design phase (phase II), we consulted with Major Randy Gibb. 
Major Gibb was an experienced Air Force pilot with over 2,500 hours in the T-37, T-38, and 
C-5. He was also an instructor of Human Factors Engineering and Aviation Psychology, 
Department of Behavioral Sciences and Leadership, United States Air Force Academy. We 
introduced him to the BFITS and showed him what the BFTTS simulation looked like. At 
this point in our project, we still did not have access to a stick and rudder assembly. Maj 
Gibb noted that the design of the simulated cockpit was acceptable for a beginner's 
introduction to flight training. He was a little surprised that it was a DOS program, but for 
this knowledge-oriented introduction to flight training there was no need for advanced 
graphics. 

Constraints, Requirements and Possible Solutions 

One major constraint of the program is the "user-friendliness" of its instructions. After 
booting up the computer and loading up the program, it becomes confusing how to do 
various tasks. For example, whenever the program is restarted, after the computer has been 
shut down, the flight controls need to be re-calibrated. After fumbling around for a while, we 
finally figured out how to correctly calibrate the controls. The procedure for calibrating the 
controls is not difficult. However, for the first time user, the instructions for calibration are 
confusing. Another example of poor user-friendliness is the process of logging off the 
program. To log off, the user has to go to the screen that allows a new user to begin. At this 
screen, the user has to type in 'byebye' under the 'user name' block, and then type in a '0' 
twice for the user password. After doing this, the computer returns the user to the DOS 
prompt. When looking through the System Reference Manual, we had to search before we 
could even find this procedure. This manual was disorganized and hard to understand. It was 
also extremely long, which caused people to not want to use it. This resulted in users who 
did not understanding the BFITS program and, thus, could not use the program to its full 
potential. 

Several different solutions were possible to deal with the confusing instructions. First, 
automation could be used. Instead of having a paper-based reference manual, many of the 
instructions could be placed into the program themselves. One of the predecessor systems, 
Microsoft Flight Simulator '98, comes with one page of instructions; how to load the 
program. All the other program instructions are in the program. The program walks the user 
through it. However, since actually editing the BFITS program did not appear to be a 
possibility for this project, a paper-based instruction manual was viewed as a better option. 
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To create this manual, we envisioned working through the simulator and writing down 
instructions as they are needed, similar to a flow-chart. Instead of having to flip through the 
System Reference Manual, the manual we envisioned would walk the user easily through the 
program. This new manual would be very similar to a checklist. Once one task is 
accomplished, the user moves on to the next task. For example, when calibrating the 
controls, a checklist would show the user exactly how to calibrate. 

Another constraint was the interpretation of data. After the subject had completed a lesson, 
the user can have the BFTTS software convert the flying data to an ASCII format. However, 
neither the ASCII lesson nor the flying data could be used in a spreadsheet easily due to 
formatting limitations and the need for massive data reduction. Since the purpose of this 
program was to interpret data, this method needed to be much simpler. To solve this 
problem, we proposed creating a program to convert ASCII data automatically to a format 
more easily imported into a spreadsheet. This would help decrease the time needed to reduce 
data. 

A final constraint was the time involved in going through all the simulator's lessons. There 
were 30 different lessons, each requiring anywhere from 15 to 30 minutes, depending upon 
the user's abilities. Thus, it took from 7.5 to 15 hours per subject to complete all of the 
lessons. This is a demanding time commitment. 

To decrease the time required by the user, we would have to either decrease the number of 
lessons, or shorten the lessons. One way to shorten the lessons would be change some of the 
teaching techniques. The existing technique was to allow the user to try to answer a question 
twice before giving the correct answer. To shorten this, the program could provide the user 
with the correct answer after the first incorrect answer. However, since the purpose of the 
simulator was to teach, we did not view decreasing subject use time as a good option. 

There were two apparent ways to deal with the investigator time demand. First, divide the 
lessons amongst several investigators. The other way to deal with this problem would be 
change the program so it would not need an investigator. If the hardware only needed to 
calibrated once a day, and the data needed to be collected only once a day, these might be the 
only times when an investigator would be needed. 

We had several requirements to fulfill. First, since this was a computer based flight 
simulator, the computer hardware requirements were a necessity. This relatively old program 
required a computer with 2 megabytes (mb) of memory, 40-mb hard drive, math coprocessor, 
EGA/VGA color card, color monitor, joystick, game card, and rudder pedals. Another 
requirement relating to the hardware was the workspace for the simulator. This requirement 
is discussed, below. A final requirement was the time requirement. As stated already, each 
subject needed approximately 7.5 to 15 hours for all lessons. Not only does this take up the 
subject's time, but it also takes up the investigator's time. Thus, a major requirement was 
finding enough time when the investigator and subject can both be present. 

The first two requirements, the hardware and workspace, are addressed in the Workspace 
Design section of this report. The third requirement, time, was addressed partially as a 
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constraint. To address it as a requirement, however, we simply needed to find subjects 
willing to spend several hours on this simulator. To make it easier on the subjects, we 
needed to have a system that was easy to understand, ran smoothly, and was accessible at all 
times. To make the system easily understood and easily operable, we need to design a good 
reference manual. To make it accessible at all times, the computer needed to be turned on 
and ready to run at any time during the day. If we were able to figure how to circumvent the 
requirement for an investigator at every test session, the subjects would be able to use the 
simulator at any practical time. 

Functional Trade Study 

The purpose of this functional trade discussion was to address the issue of human 
involvement versus automation in the BFITS system. This program did a good job of not 
making tasks too hard on the user. The investigator was required to turn on the computer, get 
it set up for the user, and interpret the data. Of course, there were more steps involved than 
this, but those were the basic investigator tasks. The computer, on the other hand, dealt with 
things such as creating data files, converting the data to ASCII, and doing all of the actual 
flight simulator functions. However, some functions could be changed to improve the 
simulator. 

First, data collection should be automated. If there were a way to convert the data straight 
into spreadsheet form, much of the time spent by the user doing this would be saved. In 
addition, it would decrease the possibility of the user making errors in transferring the data, 
such as inadvertently deleting it. However, if this process could not be automated, a, simple 
reference manual, which would walk the user through the process, would also be extremely 
beneficial. 

The other task that could be automated would be command options, such as logging off the 
computer. With the existing system, the user did not know all the options available. For 
logging off, the user did not know how to do it unless they had happened to run across it in 
the Systems Reference Manual. This was not acceptable. The user should understand how 
to use the program without having to search through a manual for answers. By having the 
computer present the options, many those problems would be solved. However, changing the 
program was not practical. The other option was to create a reference manual that reads like 
a flow chart. For example, when the user finishes a lesson, the simple manual would show 
the options of going to the next lesson, or logging off. 

Based upon our functional trade considerations, we viewed putting more automation into the 
program as the best option. However, doing this would have required us to change the actual 
simulator computer code. Unfortunately, no contracting funds were available for such an 
effort. Since this was not an option, the next best option was to create a paper-based 
reference manual based upon a flow chart of the simulator. 
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SYSTEM DESIGN 

Workspace Design 

The Workstation was a critical aspect of the system design, providing comfort and continuity. 
These characteristics of the workstation design gave the subjects repeatable tactile 
experiences and visual cues. The essential components of the workstation included the 
keyboard, the yoke and pedals, the monitor, the chair, workspace (desktop), and the 
environment (Figure 1). We used the five male members of the BFTTS team as physical 
models for the examinations. The average height of the members was 69.2 inches. We 
assumed this to be about the average of male cadets at US AFA. We reviewed all of the 
anthropometric design considerations using the resources specified by the State of 
Washington, Department of Labor and Industry (1997). 

Figure 1. The BFTTS simulator workstation. 

The chair was adjustable so it was able to meet necessary back support requirements. The 
spine was supported with an extensive amount of padding in an economically designed chair 
back. The chair height and armrest height and width were adequately adjustable. The range 
of vertical chair adjustability was 16.75 to 23 inches. The only problem arising from the 
chair was ensuring that the subjects were aware of the proper sitting position and how to 
attain it. 

When the keyboard was in use, the wrists were in a neutral position, but there was no 
padding to support the wrist. This was determined not to be a problem because the lessons 
lasted only about twenty minutes, minimizing the likelihood of causing musculoskeletal 
damage. With the chair armrests in proper position, the forearms were parallel to the floor, 
the elbows were away from the body, and shoulders were relaxed. The keyboard was within 
acceptable limits based on our standards. 

We analyzed the yokes and pedals using the standards for a mouse due to their functional 
similarities. The yoke was on the same plane as, and was acceptably close to the keyboard. 
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The rudder pedals were located on the floor. The operability of these items was excellent 
and only required minor adjustments of the springs. 

The 19-inch monitor was located on a table behind the yoke. The eye declination was in the 
proper range of minus 15-30 degrees below horizontal gaze. The measurement for the 
members of our team ranged from minus 16 degrees to 25 degrees. The lateral viewing angle 
for all members was zero degrees. The viewing distance from the monitor to the user was an 
average of 33 inches. This is much greater than the recommended minimum 18 inches. The 
user must sit away from the table to use the yoke. In addition, the yoke attaches to the table 
in such a way that the screen must be pushed towards the back of the desk. At this distance, 
the visual image on a 15-inch screen was too small. The best way to improve this was to 
increase the size of the monitor. 

The desktop was free of clutter and excess materials. The edges were rounded to avoid wrist 
strain. The table was low enough to allow access to all simulator components without resting 
the wrists on the table edge. The reach envelope was within anthropometric requirements. 
The table was still tall enough, with a vertical clearance of 27.25 inches, to allow adequate 
leg clearance. 

The environmental analysis included lighting, temperature, and noise. The room lights were 
diffused to prevent reflection glare. The temperature was regulated by a central system; thus, 
we were unable to adjust it. However, it was comfortable for sedentary work. The sound 
and extra noise distractions seemed to be minimal during the design phase. 

Detailed Design 

There were three main design components: the computer hardware, the computer software, 
and paper-based instructions. 

The BETTS program required at least an 80486-equivalent central processor. Due to 
hardware incompatibility for the newer game-card used for flight control inputs, we decided 
to use a Pentium 75 processor. Since this processor was faster than a 486, this computer was 
more than adequate for the BEITS program. 

We started with a small display monitor of about 15 inches. However, after using the BFITS 
simulator several times and conducting a workstation analysis, we determined that we needed 
a bigger monitor. A 19-inch monitor proved to be big enough for acceptable BFITS 
operations. 

We chose the CH Products game card system, including yoke and rudder pedals, due to 
hardware-software compatibility with the BFITS program. Also, a yoke (Model #200602, 
Virtual Pilot, CH Products, Poway, CA) was selected instead of a stick controller due to the 
applicability to the light aircraft simulation presented by the BFITS program. The software 
required the use of a keyboard in conjunction with the yoke for flap inputs and for the first 
several BFTTS lessons, which required keyboard inputs. The CH products pedal assembly 
(Model #300-110, Pro Pedals, and ibid.) was used to control rudder inputs into the simulator. 
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We chose this particular rudder over a less expensive model because of its greater weight. 
We wanted a rudder assembly that would not move during use. We used a compatible 
adapter (game) card to interface the controls with the personal computer (Model 300-053, 
Game Card III Automatic, and ibid.). 

It was determined by Koonce et al. (1995) that the breakout force of the CH Products springs 
in the yoke was too great. This would cause the subjects to over-compensate when making 
roll inputs. We replaced the yoke roll spring with one provided by Dr. Koonce. It generated 
less tension on the yoke. This allowed more precise minor roll adjustments of the yoke. 

It was possible for us, within the BFITS software, to change the positioning of the flight 
instruments on the panel. However, the instruments were pre-arranged in the normal "six- 
pack" design that was widely accepted and used in general aviation. We showed the design 
to Major Gibb, introduced above. He said that the arrangement was fine for any beginner 
learning to fly. 

A BFITS Start-Up checklist was created to help users run the program (Appendix A). The 
design of the checklist was similar to a pilot's checklist. It described how to log in, use the 
simulator, and exit the program. 

We created a simple logbook since it might not be possible for an investigator to be present 
with the subject at all times. The logbook allowed entries of the time the subject started the 
program, ended the program and which lesson(s) the subject completed. The logbook 
allowed the investigator to monitor activities on the simulator easily, without needing access 
to the computer, at the DOS prompt level. Dr. Koonce (Appendix D) also provided a more 
complex logbook design. 

To convert BFITS academic and flying data output files to spreadsheet-readable files, the 
program bfit2ss.exe was written by Dr. Miller in the ANSI-compatible C language 
(Appendix C). According to the BFITS setup, bfit2ss.exe expected the BFITS subdirectory 
to be in the root directory of hard drive c:, and then subject subdirectories to be within 
c:\bfits. The program, bfit2ss.exe, was designed to be located in c:\bfits, though other 
locations were acceptable. Bfit2ss is executed most simply by typing 'bfit2ss' [Enter] at the 
DOS prompt while in c:\bfits. 

The screen output of bfit2ss showed the number of subject subdirectories detected. Then, for 
each subdirectory, it showed the decimal subject number, as entered by the investigator for 
the subject (converted from the hexadecimal code in the subdirectory name) and the 
subdirectory name, itself. These data were also stored in the ASCII text file, subj.txt. 

Bfit2ss.exe extracted academic data from BFITS Trail files, compiling the data and preparing 
them to be imported into a spreadsheet. Trail files contained BFITS lesson data concerning 
the number of words read, the time taken for reading and response correctness. These data 
were stored in the comma-delimited, ASCII text file, bfit_lsn.txt. The first line of this output 
file showed the column headings. These data columns included the decimal subject number, 
the lesson number, the total time spent in the lesson, the words per minute read during the 
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lesson, the total number of incorrect responses for the lesson, the total number of all 
responses for the lesson, and, as a quality check, the number of lines of data read for the 
lesson from the Trail file. 

The BFTTS flying-data files (FCllvvv.ASC, where 11 was the lesson number, and vvv was the 
version number [always 001, here]) contained data concerning heading, altitude, airspeed, 
location, etc. Bfit2ss.exe extracted flying data from these BFTTS flying-data text files', 
exporting the data to similar comma-delimited ASCII text files and also reducing the data 
and preparing them to be imported into a spreadsheet. The data were output as similar 
comma-delimited FCllvvv.txt files for spreadsheet import for data validation purposes. The 
flying data were then also compared to criterion data (Appendix B) and reduced. The criteria 
were based, in turn, upon FAA requirements for light aircraft operations during the private 
pilot certification process. 

Bfit2ss.exe stored the reduced flying data in the comma-delimited, ASCII text file, 
bfit_fly.txt. The first line of this output file showed the column headings. These data 
columns included subject number, lesson number, segment number, trial number, step 
number, then mean, standard deviation, number of samples, number of samples outside the 
respective criterion limit, and an error score for bank, heading, altitude, vertical speed, 
horizontal (forward) speed, altitude, and ball position, respectively. 

The error score was a version of that specified by Morris and Miller (1996): 

E = SD + ([X-A]-W)2 

where E = error score, 
SD = standard deviation, 
X = actual mean value (for example, 22° bank) 
A = assigned value (for example, 20° bank), and 
W = "window" value (absolute range from assigned value; for example, ±10° bank). 

For the example numbers, above, ([X - A] + W)2 = ([22 - 20] - 10)2. However, in 
bfit2ss.exe, the value, ([X - A] -s- W)2, was summed across samples. Thus, X was a sample 
value instead of a mean, and the equation for E was actually: 

E = SD + S( ([X - A] * W)2) 

The comma-delimited data files, FCllvv.txt, bfit_lsn.txt and bfit_fly.txt, were easily imported 
into any spreadsheet. The bfitjsn and bfit_fly data allowed comparisons across subject 
groups and across lessons. 

1 These text files were created with a BFITS Supervisor function from BFTTS binary files (Technology 
Systems, Inc., ca. 1992). 
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TEST AND EVALUATION 

Hypothesis 

Experienced fliers will perform better than novices in basic procedures and flying skills, with 
a probability of 0.05 for false rejection of the null hypothesis (one-tailed). This rather 
obvious hypothesis allowed us to pilot test the system. 

Experimental Design 

The design called for two independent groups consisting of twelve subjects per group. 
Group one (novice) included those with no prior fixed wing flying or simulator experience. 
Group two (experienced) included those who had at least completed their first solo in the 
soaring program. Unfortunately, the actual sample sizes of the groups were quite small. 

A sample power analysis of such a design follows, based upon the data from Koonce et al. 
(1995). In this study, the following group data were acquired with respect to student 
activities required to solo: 

Mean no. of 
Student SAL Mean no. of Hours 
Attempted Standard Flight Hours Standard 

Group Sample Size2 Landings Deviation Logged Deviation 
BFITS: 10 34.5 11.6 12.5 2.2 
Control: 17 53.8 21.7 17.6 4.9 
Pooled: 20 

(harmonic) 
46.6 18.6 (rms) 15.7 4.1 (rms) 

D (sdu): 1.0 1.2 

For an expected effect size of about 1.1 sdu, and a 2-tailed t test with a = 0.05, the power of 
the test would be about 92.5% (Table 2.3.5; Cohen, 1988). However, note that these 
measures were not available to us for analysis. We used learning measures provided by 
BFITS, including elapsed lesson time, words read per minute and the number of incorrect 
responses in quizzes. Subsequent power analyses may be conducted, based upon our report, 
for USAFA studies that use the learning measures. 

Procedures 

An investigator prepared the workspace. The table, chair, monitor, and flight controls were 
set-up according to human factors principles. After the workstation was set-up, the 
investigator turned on the computer and brought the program with a DOS batch file. The 
investigator also calibrated the flight controls. The program was set-up so that the subject 
only had to log-on and begin the lessons. In addition, a logbook was present on the desk to 
allow the subject to sign in and sign out. 

' Personal communication, Dr. Koonce. 
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The subjects completed lessons one through nine (basic procedures) and lessons ten through 
fourteen (flying skills)3. Each lesson required approximately twenty minutes of effort by the 
subject. After the subjects completed a lesson, or lessons, the data were saved automatically 
by the BFTTS software to the computer's hard drive. At the end of either the session or the 
day, the investigator checked the data and converted flying data to ASCII format. The 
subject characteristics are shown in Table 1. 

TABLE 1. Subject characteristics. Class = USAFA graduation year. 

Subject   Class/Rank   Gender  Age   Experience        Group 
yrs 

1 2000 Male      21    FAA Private   Experienced 

2000 Female    20 None Novice 

3 

4 

5 

1999 Male      22 

2000 Male      23 

USAF Officer    Male 

None 

None 

Novice 

Novice 

USAF        Experienced 
> 2500 hours 

6 2000           Male 20 < 10 hours        Novice 

7 USAF Officer    Male USAF Experienced 
> 2500 hours 

8 1999           Male 22 6 hours           Novice 

9 1999           Male 23 None            Novice 

10 USAF Officer Female USAF pilot Experienced 

11 1999           Male 23 None            Novice 

Results 

Subject performance for the academic portions of BFTTS is depicted in the graphs below. 
Because the sample size of the experienced group was so small, their data are shown as 
individual points related to the means and standard deviations of the novice group. The time 
required to complete the academics lessons, 1 through 6, did not appear to differ between 
novice and experienced pilots (Figure 2), nor for lessons 7 through 13 (Figure 3). 

3 The project was reviewed by US AFA Institutional Review Board (protocol no. FAC1999009) and informed 
consent was acquired from the subjects. 
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Time to Complete Lesson (Novice n>5) 
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Figure 2. Time, in seconds, required to complete lessons 1 through 6. Mean 
(thick line) and 95% confidence limits (dotted lines) for novice pilots, with 
individual data points for experienced pilots (X). 
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Figure 3. Time, in seconds, required to complete lessons 7 through 13. 
Individual data points for novice pilots (O) and individual data points for 
experienced pilots (X). 

Experienced pilots appeared to read the academic lessons faster than novice pilots in lessons 
2 and 3 (Figures 4 and 5). Novice and experienced pilots appeared not to differ on the 
numbers of incorrect responses to academic quizzes (Figure 6). 
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Words Per Minute (Novice n>5) 
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Figure 4. Reading speed, in words per minute, for lessons 1 through 6. Mean 
(thick line) and 95% confidence limits (dotted lines) for novice pilots, with 
individual data points for experienced pilots (X). 
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Figure 5. Reading speed, in words per minute, for lessons 7 through 13. 
Individual data points for novice pilots (O) and individual data points for 
experienced pilots (X). 
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Incorrect Responses Per Lesson (Novice n>5) 
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Figure 6. Numbers of incorrect responses to academic quizzes for lessons 1 
through 6^ Mean (thick line) and 95% confidence limits (dotted lines) for 
novice pilots, with individual data points for experienced pilots (X). 

For the simulated flight portions of the program, we collected self-report data from the 
subjects. Their feedback was broken down into several different categories: 

General. Experienced subjects tended to rush through the academic portions, especially the 
primary lessons. These subjects most likely missed questions due to carelessness or oversight 
that they would have answered correctly, had they taken their time. Therefore, the data 
(time/lesson, words/minute read, and incorrect responses) could be misleading for these 
subjects in lessons 1 through 9. 

Aileron Control. Some experienced subjects did not use the trim function, as they preferred 
to simply trim for neutral and then fly the airplane more manually. Similarly, most novice 
subjects did not use this function. However, this was because they either were not aware of it 
or found it was too touchy to use. 

Rudder Control. The "ball" (a simple, mechanical accelerometer that shows how well the 
rudders and ailerons are coordinated in a turn) was a major area of concern for experienced 
subjects. They felt it was too touchy, and quite unrealistic. Most of them failed several of 
the lessons due to being out of acceptable range in this area. Novice subjects did not have 
enough flying experience by which to judge the ball's feedback, but mentioned that it would 
"swing across" too fast in some cases, and not at all in other situations. This would induce 
overcorrecting, and was hard to recover. Perhaps relaxing the standards in this area is 
appropriate. 

Throttle Control. There were not any great concerns in this area. However, some 
experienced subjects would have preferred a control more similar to light aircraft 
(pulling/pushing movement). 
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Flap Control. Experienced subjects would have preferred more control over the flap 
settings. One subject commented that in a real aircraft, one has the ability to go directly from 
zero degrees of flap to twenty degrees, for example. 

Visual Display. This is the only form of feedback that subjects received. However, subjects 
felt that this was lacking in the area of realistic graphics and outside visual cues. The heading 
indicator raised concern among experienced subjects. They felt that an analog indicator 
would have been much more realistic. This would provide "moving part" feedback (Roscoe, 
1968, cited in Wickens et al., 1998). Furthermore, the digital display required subjects to 
perform an extra cognitive step in determining their heading. 

Auditory Signals. Experienced subjects felt the simulator portion of BFITS was lacking 
drastically in this area. The only auditory feedback they received was a rare stall warning. 

Tactile Feedback. Experienced subjects felt the simulator portion of BFITS was lacking 
drastically in this area. Without this feedback, the simulator was much harder for these 
subjects to fly than their actual aircraft. 

Recommendations 

After completing the data analysis and gathering feedback from the subjects, we made 
several recommendations for BFITS. First, the quantitative portion of the test and evaluation 
was inconclusive. More subjects should be run to complete this effort. The other 
recommendations fell into three basic categories; the software, hardware, and the 
environment. 

To begin with, fidelity was a big issue. The only feedback the user received from the 
simulator was visual feedback. Although the purpose of a simulator is not to re-create all 
aspects of feedback, there are some parts of feedback that could be added to the BFITS 
system. First, auditory feedback could be improved. The simulator does use some auditory 
feedback, but the realism of the feedback was extremely lacking. The auditory feedback 
should be louder and sound more like an actual airplane engine. In addition, flying cues such 
as a stall warning horn could be added. The simulator does sound when a stall has occurred, 
but a stall warning hom is supposed to sound before the stall occurs. In addition, instead of 
using written hints on the screen, auditory hints could be used to aid the user. Since the user 
is already relying heavily upon visual feedback, auditory feedback should be used. 
Reportedly, the latter problem has been dealt with in the follow-on version of BFITS, called 
the Semi-Automated Flight Evaluation System (SAFES; Baldwin et al., 1995). This version 
had not been made available to USAFA at the time this report was written. This was due 
primarily to project and personnel cutbacks in the AF Research Laboratory that led to a loss 
of applicable corporate memory. 

The visual feedback could be improved. The current simulator did not have very good visual 
displays compared to many other current flight simulators. The instrument panel on the 
simulator also needed improvement. The heading indicator was digital instead of the typical 
analog display in most aircraft. In this case, an analog display is preferred because in 
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provides the user with more information than a digital display does. Besides the heading 
indicator, the "six pack" was adequate. 

One final problem noted with the software was the pass-fail requirements. The biggest 
problem was with the rudder ball. Numerous expert subjects failed lessons due to the touchy 
ball. To solve this problem, the standards required to pass the lessons could be relaxed a bit. 
Other standards seemed to be adequate. 

For the hardware, several changes also need to be made. First, the rudder controls were 
claimed to be touchy. To solve this problem, the springs need to be adjusted in the assembly 
itself. Also, there was a previously identified problem with the yoke roll spring, requiring 
too great a breakout force (System design, above). This would cause the user to 
overcompensate with control inputs. However, we substituted a spring with a lower breakout 
force in our BFTTS workstation before we ran the test and evaluation. Finally, with current 
technology, force feedback joysticks are available. A force feedback joystick is simply a 
joystick which gives the user tactile feedback. This feedback usually occurs as the simulator 
takes off (the joystick shakes), when climbing in the simulator (gets stiffer as the subject 
climbs), and the joysticks shakes when a stall is going to occur. A force feedback yoke 
would be ideal for the BFITS program. 

Finally, for the environment, several changes also need to be made. First, extraneous noise 
should be minimized. The setting we used had a notable amount of extraneous noise. To 
combat this problem, we provided the subjects with earmuffs. However, to really solve this 
problem, the earmuffs should be used in combination with a location where extraneous noise 
will not be encountered. Excess traffic was also a problem. People were able to walk into 
and out of the room while the subjects were flying. A setting should be chosen where excess 
traffic could either be controlled or minimized. 
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Appendix A 
BFITS Operation Checklist for Subjects 

Complete "Name," "Date," and "Time In" portions in log notebook 
Ensure yoke/rudder pedals are connected to computer (lsn 4-14 only) 
Adjust chair for comfort and keyboard/yoke/rudder pedal access 
Turn on computer/monitor 
Type your name, press Enter 
Type last four digits of your social security number, press Enter 
Type last four digits of your social security number, press Enter (again) 
Ensure lesson number is correct 
Place earmuffs on your head 
Note: headband is adjustable 
On lesson one, read instructions on "How BFTTS Works." 
Read review of last lesson completed (lsn 2-14 only) 
Read overview of current lesson 
Begin lesson, answering questions when prompted 
Note: there is scrap paper for your use in the back of the log notebook on desk 
Take quiz at end of lesson 
Note: do not worry about recording your score—this is done automatically 
Upon completion of quiz, you may either continue to next lesson or hit the Esc key to 
quit BFTTS 
Note: unless another subject is waiting to use BFTTS, turn computer off and leave 
monitor on 
Complete "Time Out" portion in log notebook 



Appendix B 
Original Criterion File for Flying Lessons 

10, 1, 3, heading, 360,10, airspeed, 80, 10, rpm, 2500,100, ball, 0, 1, climb 
10, 1,4, heading, 360, 10, airspeed, 80,10, ball, 0, 1, close 
10, 1,5, heading, 360, 10, altitude, 3000,100, airspeed, 80,10, ball, 0,1, level off 
10, 2,2, heading, 180, 10, altitude, 3000,100, airspeed, 80,10, ball, cruise 
10, 3,2, open 
10, 3,3, heading, 210, 10, airspeed, 80,10, ball, 0,1, descent 
10, 3,4, heading, 210,10, airspeed, 80,10, ball, 0, 1, close 
10, 3,5, heading, 210,10, altitude, 2000,100, airspeed, 80,10, rpm, 2000,200, ball, 0,1, level-off 
11, 1, 3, bank, -15,7, altitude, 3000, 100, airspeed, 80,10, ball, 0,1, shallow right turn 
11, 1,4, bank, -15,7, altitude, 3000, 100, airspeed, 80,10, ball, 0,1, shallow right turn 
11,1,5, altitude, 3000,100, airspeed, 80,10, ball, 0,1, rollout 
11, 1, 6, heading, 60, 10, altitude, 3000, 100, airspeed, 80, 10, ball, 0, 1, stop turn 
11, 2,3, bank, +15,7, altitude, 3000,100, airspeed, 80,10, ball, 0,1, shallow left turn 
11.2.4, altitude, 3000,100, airspeed, 80,10, ball, 0,1, rollout 
11.2.5, heading, 90, 10, altitude, 3000, 100, airspeed, 80, 10, ball, 0,1, stop turn 
11, 3,3, bank, -30, 10, altitude, 3000,100, airspeed, 80, 10, ball, 0,1, medium right turn 
11,3,4, bank, -30,10, altitude, 3000,100, airspeed, 80,10, ball, 0,1, medium right turn 
11, 3,5, altitude, 3000,100, airspeed, 80,10, ball, 0,1, rollout 
11, 3,6, heading, 200, 10, altitude, 3000,100, airspeed, 80,10, ball, 0,1, stop turn 
11,4, 3, bank, +30,10, altitude, 3000,100, airspeed, 80, 10, ball, 0,1, medium left turn 
11.4.4, bank, +30, 10, altitude, 3000,100, airspeed, 80,10, ball, 0,1, medium left turn 
11.4.5, altitude, 3000,100, airspeed, 80,10, ball, 0,1, rollout 
11.4.6, heading, 150,10, altitude, 3000,100, airspeed, 80,10, ball, 0,1, stop turn 
12, 1,3, bank, -30,10, airspeed, 80,10, rpm, 2500, -200, ball, 0,1, climb right turn 
12, 1,4, airspeed, 80,10, rpm, 2500, -200, ball, 0,1, end turn 
12.1.5, heading, 300,10, airspeed, 80,10, rpm, 2500, -200, ball, 0,1, climbing 
12.1.6, heading, 300, 10, airspeed, 80, 10, ball, 0,1, level off 
12, 1,7, heading, 300,10, altitude, 4000,100, airspeed, 80,10, rpm, 2000,200, ball, 0,1, end 
12, 2,3, bank, +30,10, airspeed, 80,10, ball, 0,1, desc. left turn 
12.2.4, bank, +30, 10, airspeed, 80,10, ball, 0,1, desc. left turn 
12.2.5, airspeed, 80,10, ball, 0,1, end turn 
12,2, 6, heading, 300, 10, airspeed, 80, 10, ball, 0, 1, climbing 
12.2.7, heading, 300,10, airspeed, 80, 10, ball, 0, 1, level off 
12, 2, 8, heading, 300,10, altitude, 3000,100, airspeed, 80, 10, ball, 0,1, end 
12, 3, 3, bank, +30, 10, airspeed, 80,10, rpm, 2500, -200, ball, 0,1, climb left turn 
12, 3,4, bank, +30,10, airspeed, 80, 10, rpm, 2500, -200, ball, 0,1, climb left turn 
12, 3,5, airspeed, 80,10, rpm, 2500, -200, ball, 0,1, end turn 
12, 3,6, heading, 270,10, airspeed, 80,10, rpm, 2500, -200, ball, 0, 1, climbing 
12, 3,7, heading, 270,10, airspeed, 80, 10, ball, 0, 1, level off 
12, 3, 8, heading, 270, 10, altitude, 4000,100, airspeed, 80, 10, rpm, 2000, 200, ball, 0,1, end 
12, 4, 3, bank, -30,10, airspeed, 80,10, rpm, 1500,200, ball, 0,1, desc. right turn 
12.4.4, bank, -30,10, airspeed, 80,10, rpm, 1500,200, ball, 0,1, desc. right turn 
12.4.5, airspeed, 80,10, rpm, 1500,200, ball, 0, 1, end turn 
12.4.6, heading, 90, 10, airspeed, 80, 10, rpm, 1500,200, ball, 0,1, descent 
12.4.7, heading, 90, 10, airspeed, 80,10, ball, 0, 1, level off 
12,4, 8, heading, 90,10, altitude, 3000, 100, airspeed, 80, 10, rpm, 2000,200, ball, 0,1, end 
13, 1,2, start 
13, 1, 3, heading, 180,10, altitude, 3000,100, rpm, 2500, -200, ball, 0, 1, accel. start and level 
13, 1,4, heading, 180, 10, altitude, 3000,100, airspeed, 110, 10, ball, 0,1, accel. start and level 
13,2,2, start 
13,2, 3, heading, 180,10, altitude, 3000,100, rpm, 1750,200, ball, 0, 1, decel. start and level 
13, 2,4, heading, 180, 10, altitude, 3000,100, airspeed, 80,10, ball, 0,1, 80 mph flight 



13, 3, 3, bank, +30, 10, altitude, 3000, 100, rpm 2500, -200, ball, 0, 1, accel. left turn 
13, 3,4, bank, +30, 10, altitude, 3000, 100, rpm 2500, -200, ball, 0, 1, accel. left turn 
13, 3,5, altitude, 3000, 100, ball, 0, 1, accel. left turn 
13, 3, 6, bank, 0, 10, heading, 180, 10, altitude, 3000, 100, airspeed, 100,10, ball, 0, 1, rollout 
13,4,2, ball, 0, 1, start 
13,4, 3, bank, -30, 10, altitude, 3000, 100, rpm, 1750, 200, ball, 0, 1, decel. right turn 
13.4.4, bank, -30, 10, altitude, 3000, 100, rpm, 1750,200, ball, 0, 1, decel. right turn 
13.4.5, bank, -30, 10, altitude, 3000, 100, airspeed, 80, 10, ball, 0, 1, decel. right turn 
13,4, 6, altitude, 3000, 100, airspeed, 80, 10, ball, 0, 1, rollout 
13,4,7, heading, 270, 10, altitude, 3000,100, airspeed, 80, 10, ball, 0, 1, start and level 
14, 1,2, heading, 180, 10, altitude, 3000, 100, airspeed, 80, 10, ball, 0,1, cruise 
14, 1,3, heading, 180, 10, altitude, 2000, 100, vertspeed, 0, 150, airspeed, 80, 10, ball, 0,1, ? 
14, 2, 3, bank, +15,7, altitude, 3000,100, airspeed, 80,10, ball, 0,1, shallow left turn 
14.2.4, altitude, 3000,100, airspeed, 80, 10, ball, 0, 1, rollout 
14.2.5, heading, 90, 10, altitude, 3000, 100, airspeed, 80, 10, ball, 0, 1, stop turn 
14, 3, 3, bank, -30, 10, altitude, 3000, 100, airspeed, 80, 10, ball, 0, 1, med. right turn 
14, 3,4, bank, -30,10, altitude, 3000, 100, airspeed, 80, 10, ball, 0, 1, med. right turn 
14, 3,5, altitude, 3000, 100, airspeed, 80, 10, ball, 0,1, rollout 
14, 3,6, heading, 200, 10, altitude, 3000, 100, airspeed, 80, 10, ball, 0, 1, stop turn 
14,4, 3, bank, +30, 10, airspeed, 80,10, rpm, 2500, -200, ball, 0,1, climbing left turn 
14.4.4, bank, +30, 10, airspeed, 80,10, rpm, 2500, -200, ball, 0, 1, climbing left turn 
14.4.5, airspeed, 80, 10, rpm, 2500, -200, ball, 0, 1, end turn 
14.4.6, heading, 270, 10, airspeed, 80, 10, rpm, 2500, -200, ball, 0, 1, climbing 
14.4.7, heading, 270, 10, airspeed, 80, 10, ball, 0, 1, level off 
14.4, 8, heading, 270,10, altitude, 4000, 100, airspeed, 80, 10, rpm, 2000, 200, ball, 0,1, end 
14, 5, 3, bank, -30, 10, airspeed, 80, 10, rpm, 1500,200, ball, 0, 1, desc. right turn 
14.5.4, bank, -30, 10, airspeed, 80, 10, rpm, 1500,200, ball, 0,1, desc. right turn 
14.5.5, airspeed, 80, 10, rpm, 1500, 200, ball, 0, 1, end turn 
14.5.6, heading, 90, 10, airspeed, 80, 10, rpm, 1500,200, ball, 0, 1, descend 
14, 5,7, heading, 90, 10, airspeed, 80, 10, ball, 0, 1, level off 
14.5, 8, heading, 90, 10, altitude, 3000, 100, airspeed, 80, 10, rpm, 2000, 200, ball, 0, 1, end 
14, 6,2, start 
14, 6, 3, heading, 180, 10, altitude, 3000, 100, rpm, 2500, -200, ball, 0,1, accel. straight and level 
14, 6,4, heading, 180, 10, altitude, 3000, 100, airspeed, 110, 10, ball, 0, 1, accel. straight and level 
14,7, 3, heading, 180, 10, altitude, 3000,100, rpm, 1700,200, ball, 0, 1, decel. straight and level 
14, 7,4, heading, 180, 10, altitude, 3000, 100, airspeed, 80, 10, ball, 0, 1, 80, mph flight 
14, 8, 3, bank, +30, 10, altitude, 3000, 100, rpm, 2500, -200, ball, 0, 1, accel. left turn 
14, 8,4, bank, +30, 10, altitude, 3000, 100, rpm, 2500, -200, ball, 0, 1, accel. left turn 
14, 8, 5, altitude, 3000, 100, ball, 0, 1, accel. left turn 
14, 8,6, bank, 0,10, heading, 180, 10, altitude, 3000, 100, airspeed, 100,10, ball, 0,1, rollout 
14,9,2, ball, 0, 1, start 
14,9, 3, bank, -30, 10, altitude, 3000, 100, rpm, 1750, 200, ball, 0, 1, decel. right turn 
14, 9,4, bank, -30, 10, altitude, 3000, 100, rpm, 1750, 200, ball, 0, 1, decel. right turn 
14.9.5, bank, -30, 10, altitude, 3000, 100, airspeed, 80, 10, ball, 0,1, decel. right turn 
14.9.6, altitude, 3000, 100, airspeed, 80, 10, ball, 0, 1, rollout 
14.9.7, heading, 270, 10, altitude, 3000, 100, airspeed, 80, 10, ball, 0, 1, straight and level 
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Appendix C 
Source Code for bfits2ss.exe (ANSI C) 

bfit2ss.c 
Extracts data from BFITS ASCII text files for spreadsheet input. 
Created by Dr. James C. Miller, Human-Environmental Research Center, 
OSAF Academy« CO 80840.  Distribution unlimited. 

22 Apr 1999:  First version; lesson data files 
16 Jun 1999:  Began addition of flying data files 
10 Feb 2000:  Began changes after data validation work 
17 Feb 2000:  Removed leading 00 in subdirectory name capture 

Fixed the failure to close ascii flying files 
Added dot detection in subdirectory name to exclude file names 

from temp.txt 
For flying files, 

- Corrected output lesson no. from "k" to "loop" 
- Corrected the criterion for writing data 
- Corrected alignment of flight criteria w/ data from k to k+1 
- Hakes comma-delimited txt file corresponding to each asc file 

For flying files, 
- 999 for no ball sample (now 9999) 
- Corrected for 2-character flap data 

22 Mar 2000: For flying files, 
- Corrected data acquisition from asc files for blank fields; - 9999 
- Corrected data acquisition for mismatch between steps and ET 
- Mote:  zeroes in bfit_fly.txt indicate no applicable criterion 
- Corrected 360/0 degree heading problem in data processing 
- Note:  criterion file north headings should be 360, not 0 degrees 

18 Feb 2000: 

3 Mar 2000: 

»include <stdio.h> 
»include <stdlib.h> 
»include <string.h> 
»include <stdarg.h> 
»include <assert.h> 
»include <direct.h> 
»include <math.h> 

FILE *input_filei, *input_file2, *input_file3, *output_file, *output_file2, *output_file3, 
output_file4; 

char input_namel[35], input_name2[35], input_name3[35], output_name[35], output_name2[35], 
output_name3[35], output_name4[35]; 

char loop[3], buffer[128], subdir[128], *p; 
int j, k, m, status, subs = 0, temp, lines, lesson, flying, change - 0, critlines; 
long subj_no; 
int total_time, total_words, total_response, total_wrong; 

/* Note:  don't use int i, M or N in main */ 
float wpm; 
char response[2], answer[2]; 

struct in { 
int lessno; 
int segno; 
int trialno; 
double ET; 
double bank; 
double hdg; 
double alt; 
double vs; 
double as; 
double rpm; 
double pitch; 
double turn; 
double ball; 
double track; 
double mx; 
double mz; 

/* For flight, criteria & failure data */ 



double flaps; 
int stepno; 
} read, data; 

struct crit { 
int lessno; 
int segno; 
double bank; 
double hdg; 
double alt; 
double vs; 
double as; 
double rpm; 
double ball; 
int stepno; 
> «desired, «limit; 

/* For flight & criteria data */ 

struct „current { 
int segno; 
int trialno; 
int stepno; 
} current; 

struct _error { 
double bank_sum; 

double bank_ssq; 
double bank_n; 
double bank_out; 
double bank_E; 

For error scores 

double hdg_sum; 
double hdg_ssq; 
double hdg_n; 
double hdg_out; 
double hdg_E; 

double alt_sum; 
double alt_ssq; 
double alt_n; 
double alt_out; 
double alt_E; 

double vs_sum; 
double vs_ssq; 
double vs_n; 
double vs_out; 
double vs_E; 

double as_sum; 
double as_ssq; 
double as_n; 
double as_out; 
double as_E; 

double rpm_sum; 
double rpm_ssq; 
double rpm_n; 
double rpm_out; 
double rpm_E; 

double ball_sum; 
double ball_ssq; 
double ball_n; 
double ball_out; 
double ball_E; 

) error; 

/* for BASIC-like string operations */ 
static int stralloc_ptr; 
static char «strings[8]; 
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static int str_tag[8]; 

main ( int arge, char *argv[]) { 

/* Title */ 
clrscrn (); 

puts ( "bfit2ss.exe" ); 
puts ( "Human-Environmental Research Center, 2000" ); 
puts ( "USAF Academy CO 80840" ) ,- 
puts ( "unclassified.  Distribution unlimited." ); 
puts ( «*****************************************" ); 

/* Open flight criteria file */ 
strcpy ( input_name3, "c:\\bfits\\fltcrit.txt" ); 
input_file3 » fopen ( input_name3, "r"); 
if ( input_file3 ■■ NOLL ) { 

puts( "*** Can't find FltCrit.txt ***"); 
exit(0); 

) 

/* Get criteria line count from flight criteria file */ 
while ( fgets ( buffer, 128, input_file3 ) !=■ NOLL ) 

critlines++; 
printf ( "%s:  number of criteria lines ■ %d \n", input_name3, critlines ); 
rewind ( input_file3 ); 

/* Get flight criteria */ 
desired » calloc ( critlines, sizeof ( struct crit )); 
limit » calloc ( critlines, sizeof ( struct crit )); 
for ( k = 0; k < critlines; k++ ) { 

fgets ( buffer, 128, input_file3 ); 
Parse_Line (); 
> 

fclose ( input_file3 ); 

/* Capture subject subdirectories */ 
strcpy ( buffer, "dir c:\\bfits\\* /b /o:n > c:\\bfitsWtemp.txt" )» 

status = system ( buffer ); 
if ( status 1= 0 ) { 

printf ( "\noperating system error %d", status ); 
exit(0); 

> 
strcpy ( input_namel, "c:\\bfits\\temp.txt" ); 

input_filel - fopen ( input_namel, "r"); 
if ( input_filel == NULL ) { 
puts( "*** Can't find temp.txt ***"); 

exit(0); 
} 

/* Get subject subdirectory count from temp.txt */ 
while ( fgets ( buffer, 128, input_filel ) !» NULL ) 

subs++; 
printf ( "%a:    number of subdirectories = %d \n", input_namel, subs ); 

rewind ( input_filel ); 

/* Open output files */ 
strcpy ( output_name, "c:WbfitsWbfit_lsn.txt" ); 

output_file = fopen ( output_name, "w"); 
fprintf ( output_file, "subject, lesson, time, wpm, incorr, responses, lines\n" )» 

strcpy ( output_name2, "c: WbfitsWbfit_fly.txt" ); 
output_file2 = fopen ( output_name2, "w"); 
fprintf ( output_file2, "subj, lesson, segt, trial, step, bank_mn, bank_sd, bank_n, bank_out, 

bank_E, " ); 
fprintf ( output_file2, "hdg_mn, hdg_sd, hdg_n, hdg_out, hdg_E, alt_mn, alt_sd, alt_n, 

alt_out, alt_E, " ); 
fprintf ( output_file2, "vs_mn, vs_sd, vs_n, vs_out, vs_E, as_mn, as_sd, as_n, as_out, 

as_E, " ); 
fprintf ( output_file2, "rpm_mn, rpm_sd, rpm_n, rpm_out, rpm_E, ball_mn, ball_sd, ball_n, 

ball_out, ball_E \n" ); 
strcpy ( output_name3, "c:\\bfits\\subj-txt" ); 
output_file3 ■ fopen ( output_name3, "w"); 
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/* Subdirectory loop */ 
for ( j - 0; j < subs; j++ ) { 

fgets ( buffer, 128, input_filel ); 
/* exclude file name */ 

strtok ( buffer, "." ); 
if ( strtok ( NULL, "." )) continue; 

strcpy ( subdir, "WbfitsW" ); 
strcat ( subdir, left ( buffer, 8 )); 
subj_no « strtol ( buffer, NOLL, 16 ); 
if ( subj_no < 1 ) continue; 
printf ( "subject #%ld  (%s) \n", subj_no, subdir ); 
fprintf ( output_file3, "\nsubject #%ld  (%s) \n", subj_no, subdir ); 

/* subdirectory name */ 

/* subject number */ 

sons /* Loop for up to 31 lesso 
/* if ( subj_no > 500 ) */ 

for ( k - 0; k < 31; k++ ) { 
itoa ( k + 1, loop, 10 ); 
lesson ■ 1; flying ■ 1; 

troubleshoot */ 

/* assume BFITS data files are present */ 

/* Lesson file name and path */ 
if ( k < 9 ) { 

strcpy ( buffer, "WO" ); 
strcat ( buffer, left ( loop, 1 )); 
> 

else { 
strcpy ( buffer, "\\" ); 
strcat ( buffer, loop ); 
> 

strcat ( buffer, "trail" ); 
fnmerge ( input_name2, "c:", subdir, buffer, ".log" ); 

/* printf ( "check file name for %a  \n", input_name2 ); */ 
input_file2 - fopen ( input_name2, "r"); 

if ( input_file2 -- NOLL ) { 
lesson ■ 0;    /* no academic file */ 
fclose ( input_file2 ); 
> 

); 

if ( lesson ) { 
/* printf ( "getting data from %s \n", input_name2 ); */ 
fprintf ( output_file3, "getting data from %B  \n", input_name2 
total_time »0; total_words «0; 
total_response »0; total_wrong »0; lines »0; 

while ( fgets ( buffer, 128, input_file2 ) != NOLL ) {  /* line input 
lines +- 1; 
total_words +=» atoi ( mid ( buffer, 9, 5 )); 
total_time +- atoi ( mid ( buffer, 14, 5 ));    /* in seconds */ 
strcpy ( response, mid ( buffer, 19, 1 )); 
if ( strcmp ( response, "")»=■ 0 ) continue;  /* no response? */ 
else { 

strcpy ( answer, mid ( buffer, 20, 1 )); 
if ( strcmp ( response, answer ) ■» 0 ) 

total_response +=1; 
else { 

total_wrong +=1; 
total_response += 1; 
}      /* end else */ 

} /* end else */ 
) /* end of line */ 

correct 

incorrect 

/* For all lines in lesson— */ 
wpm - total_words; /* float */ 
wpm /» ( total_time / 60.0 ); /* words/minute */ 
fprintf ( output_file, "%41d, %2d, H5d, %4.1f, %>4d, %4d, %3d\n", 

subj_no, k + 1, total_time, wpm, total_wrong, total_response, lines ); 
if ( fclose ( input_file2 ) > 0 ) printf ( "file close error" ); 
) /* end of one lesson */ 

/* ASCII flying file name and path */ 
if ( k > 8 ) { 
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strcpy ( buffer, "Wfc" ); 
strcat ( buffer, loop ); 
strcat ( buffer, "001" ); 
fnmergo ( input_name2, "ci", subdlr, buffer, ".aso" ); 
input_file2 » fopen ( input_name2, "r" ); 
if ( input_file2 == NULL ) { /* works OK 2/18/00 */ 

flying = 0;   /* no flying file */ 
fclose ( input_file2 ); 
> 

if ( flying ) { 
fnmerge ( output_name4, "c:", subdir, buffer, ".txt" ); 
output_file4 » fopen ( output_name4, "w" ); 

/* printf ( "getting data from %s \n", input_name2 ); */ 
fprintf ( output_file3, "getting data from %s  \n", input_name2 ); 
while ( fgets ( buffer, 128, input_file2 )) { ' /* line input */ 

6et_FlyData_Fields (); /* sum each line of data */ 
if ( change ) { /* need output */ 

Step_Data_Calc (); /* end of step */ 
/* 
printf ( "SubjHld, %s, Segftd, Trtd, St%d \n", 

subj_no, loop, current.segno, current.trialno, current.stepno ); 
*/ 
Write_Data (); 
current.segno - current.trialno » current.stepno ■ 0; 
Init_Sums (); 
} /* end of output */ 

/* look for new step info */ 
if ( data.segno 1= 9999 ) current.segno = data.segno; 
if ( data.trialno !o 9999 ) current.trialno - data.trialno; 
if ( data.stepno 1- 9999 ) current.stepno « data.stepno; 

/* find relevant criteria, index » m */ 
for ( m » 0; m < critlines; m++ ) 
if ( limit[m] .lessno « ( k + 1 ) && limit[m].segno ■» current.segno && 

limit[m] .stepno «= current.stepno ) break; 
if ( m < critlines ) Sums (); 
} /* end of line processing */ 

fclose ( input_file2 ); 
fclose ( output_file4 ); 
}>    /* end of ASCII flying file & k > 8 */ 

} /* end of 31-lesson loop (k) */ 
/* end of subdirectory loop (j) */ 

printf ( "\n\nData in Ha  & %a  \n", output_name, output_name2 ); 
fcloseall (); 

/* end of main */ 

/*  ** BASIC-like string operations ** public domain by Bob Stout ** */ 
/*  [ note:  1-based, like BASIC default.  JCM ] */ 
/*  [ note: uses int i, M, N ] */ 

static int stralloc_ptr; 
static char *strings[8]; 
static int str_tag[8]; 

/*  strallocO is the key function in this package, maintaining a pool of 
reusable strings */ 

char *stralloc(int length) 
{ 

register int i; 
i « stralloc_ptr++; 
if ((!strings[i]) || (length > strlen(strings[i]))) { 

assert(strings[i] = (char *)realloc(strings[i], length)); 
str_tag[i] = -1; 
> 
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else str_tag[i] = 0; 
stralloc_ptr &= 7; 
return (strings[i]); 
/* Maintains 8 strings in a circular buffer */ 

} 

/* free the string pool */ 
void str_free(char «string) 
{ 

register int i; 
for (i - 0; i < 8; ++i) { 

if (strings[i] ■» string) { 
if (str_tag[l]) free(strings[i]); 
return; 
) 

) 

/* return the leftmost N characters from a string */ 
char *left(char *string, int N) 
{ 

char *buf; 
int strlength; 
strlength « strlen(string); 
if (N > strlength) N - strlength; 
buf » stralloc(N +1); 
memcpy(buf, string, N); 
buf[N] - ■\0'; 
return buf; 

> 
/* return the rightmost N characters from a string */ 
char *right(char «string, int N) 
{ 

char *buf; 
int strlength; 
strlength - strlen(string); 
if (N > strlength) N » strlength; 
buf » stralloc(N + 1); 
strcpy(buf, fcstring[strlength-K]); 
return buf; 

> 
/* return a substring, N characters long beginning at position M */ 
char *mid(char «string, int M, int N) 
{ 

char *buf; 
int strlength; 
strlength - strlen(string); 
if (M > strlength) return NULL; 
if (N > (strlength - M)) N - strlength - M; 
buf - stralloc(N +1); 
memcpy(buf, &string[M-l], N); 
buf[N] - 'Non- 
return buf; 

> 

void Get_FlyData_Fields () { 
if ( Kstrcmp ( left ( buffer, 2 ), "  " ))) 

data.segno » 9999; 
else data.segno « atoi ( left ( buffer, 2 )); 

if ( Kstrcmp ( mid ( buffer, 3, 2 ), "  " ))) 
data.trialno ■ 9999; 
else data.trialno - atoi ( mid ( buffer, 3, 2 )); 

if ( Kstrcmp ( mid ( buffer, 5, 6 ), "     " ))) 
data.ET = 9999; 
else data.ET = atoi ( mid ( buffer, 5, 6 )); 

if ( Kstrcmp ( mid ( buffer, 11, 3 ), "   " ))) 
data.bank = 9999; 
else data.bank - atoi ( mid ( buffer, 11, 3 )); 
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if ( !(strcmp ( mid ( buffer, 14, 3 ), "   " ))) 
data.hdg = 9999; 
else data.hdg = atoi ( mid ( buffer, 14, 3 )); 

if ( J(strcmp ( mid ( buffer, 17, 5 ), "    " ))) 
data.alt = 9999; 
else data.alt » atoi ( mid ( buffer, 17, 5 )); 

if ( I(strcmp ( mid ( buffer, 22, 5 ), "    - ))) 
data.vs - 9999; 
else data.vs « atoi ( mid ( buffer, 22, 5 )); 

if ( «(strcmp ( mid ( buffer, 27, 3 ), "   " ))) 
data.as - 9999; 
else data.as - atoi ( mid ( buffer, 27, 3 )); 

if ( !(strcmp ( mid ( buffer, 30, 4 ), "   " ))) 
data.rpm » 9999; 
else data.rpm - atoi ( mid ( buffer, 30, 4 )); 

if ( !(strcmp ( mid ( buffer, 34, 3 ), "   " ))) 
data.pitch » 9999; 
else data.pitch » atoi ( mid ( buffer, 34, 3 )); 

if ( 1(strcmp ( mid ( buffer, 37, 3 ), -   " ))) 
data.turn » 9999; 
else data.turn - atoi ( mid ( buffer, 37, 3 )); 

if ( !(strcmp ( mid ( buffer, 40, 3 ), "   " ))) 
data.ball - 9999; 
else data.ball - atoi ( mid ( buffer, 40, 3 )); 

if ( !(strcmp ( mid ( buffer, 43, 1 ), " » ))) 
data.track ■ 9999; 
else data.track » atoi ( mid ( buffer, 43, 1 )); 

if ( !(strcmp ( mid ( buffer, 44, 6 ), -     " ))) 
data.mx - 9999; 
else data.mx » atoi ( mid ( buffer, 44, 6 )); 

if ( !(strcmp ( mid ( buffer, 50, 6 ), "     " ))) 
data.mz = 9999; 
else data.mz ■ atoi ( mid ( buffer, 50, 6 )); 

if ( !(strcmp ( mid ( buffer, 56, 2 ), "  " ))) 
data.flaps - 9999; 
else data.flaps ■ atoi ( mid ( buffer, 56, 2 )); 

if ( 1(strcmp ( mid ( buffer, 58, 2 ), "  " ))) 
data.stepno » 9999; 
else data.stepno = atoi ( mid ( buffer, 58, 2 )); 

/* reset, if needed, based upon presence of new step (not ET = 000000) */ 
if ( data.stepno 1» current.stepno && data.stepno 1= 9999 ) 
change »1; 
else change »0; 

fprintf ( output_file4, 
■%d,%d,%6.0f,%3.0f,%3.0f,%5.0f,%5.0f,%3.0f,%4.0f,%3.0f,%3.0f,%3.0f,%1.0f,%6.0f,%6.0f,%2.0f,%d \n", 

data.segno, data.trialno, data.ET, data.bank, data.hdg, data.alt, 
data.vs, data.as, data.rpm, data.pitch, data.turn, data.ball, 
data.track, data.mx, data.mz, data.flaps, data.stepno ); 

> 

void Parse_Line () 
{      desired[k].lessno » limit[k].lessno - atoi ( strtok ( buffer, ■*, " )); 

desired[k].segno - limit[k].segno - atoi ( strtok ( NULL, ", " )); 
desired[k].stepno » limit[k].stepno = atoi ( strtok ( NOLL, ", " )); 
/* printf ( "%&,  %d, %d, ", desired[k].lessno, desired[k].segno, desired[k].stepno ); */ 
while ( p - strtok ( NOLL, ", \n" )) { 
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if ( Istrcmp ( p, "heading" )) { 
desired[k].hdg = atoi ( strtok ( NULL, ", » )); 
limit[k].hdg = atoi ( strtok ( NULL, ", " )); 
/* printf { "%s, %d,   %d", p, desired[k].hdg, limit[k].hdg ); */ 
) 

else if ( Istrcmp ( p, "vertspeed" )) { 
desired[k].vs = atoi ( strtok ( NOLL, ", " )); 
limit[k].vs » atoi ( strtok ( NOLL, ", " )); 
/* printf ( "%s, %d, %d", p, desired[k].vs, limit[k].vs ); */ 
) 

else if ( Istrcmp ( p, "airspeed" )) { 
desired[k].as = atoi ( strtok ( NOLL, ", " )); 
limit[k].as » atoi ( strtok ( NOLL, ", " )); 
/* printf ( "%s, %d, %d", p, desired[k].as, limit[k].as ); */ 

) 
else if ( Istrcmp ( p, "rpm" )) { 

desired[k].rpm - atoi ( strtok ( NOLL, ", " )); 
limit[k].rpm - atoi ( strtok ( NOLL, ", " )); 
/* printf ( "%s, %d, %d", p, desired[k].rpm, limit[k].rpm ); */ 

) 
else if ( Istrcmp ( p, "ball" )) { 

desired[k].ball » atoi ( strtok ( NOLL, ", " )); 
limit[k].ball - atoi ( strtok ( NOLL, ", " )); 
/* printf ( "%s, %d,  %d", p, desired[k].ball, limit[k].ball ); */ 

> 
else if ( Istrcmp ( p, "altitude" )) { 

desired[k].alt - atoi ( strtok ( NOLL, "," )); 
limit £k] .alt ■= atoi ( strtok ( NOLL, "," )); 
/* printf ( "%a,  %A,   %d", p, desired[k].alt, limit[k].alt ); */ 
} 

else if ( Istrcmp ( p, "bank" )) { 
desired[k].bank - atoi ( strtok ( NOLL, ", " )); 
limit[k].bank - atoi ( strtok ( NOLL, ", " )); 
/* printf { "%s, %&,  %d", p, desired[k].bank, limit[k].bank ); */ 

} 
/* else printf ( "*** undefined:<%s> *** \n", p ); */ 
> 

) 

void Init_Sums () { 
error.bank_sum » error.bank_ssq » error.bank_E - 0.0; 
error.bank_n ■ error.bank_out » 0.0; 

error.hdg_sum ■ error.hdg_ssq ■ error.hdg_E ■ 0.0; 
error.hdg_n = error.hdg_out ■ 0.0; 

error.alt_sum = error.alt_ssq ■ error.alt_E ■ 0.0; 
error.alt_n = error.alt_out » 0.0; 

error.vs_sum = error.vs_ssq ■ error.vs_E ■ 0.0; 
error.vs_n = error.vs_out = 0.0; 

error.as_sum = error.as_ssq = error.as_E ■ 0.0; 
error.as_n = error.as_out ■» 0.0; 

error.rpm_sum = error.rpm_ssq ■ error.rpm_E - 0.0; 
error.rpm_n = error.rpm_out - error.rpm_E » 0.0; 

error.ball_sum ■ error.ball_ssq ■ error.ball_E = 0.0; 
error.ball_n = error.ball_out = 0.0; 

void Sums () { 
float diff; 

if ( limit[m].bank && data.bank 1= 9999 ) { 
error.bank_sum += data.bank; 
error.bank_ssq += ( data.bank * data.bank ); 
error.bank_n += 1.0; 
diff = abs ( data.bank - desired[m].bank ); 
if ( diff > abs ( limit[m].bank ))  error.bank_out += 1.0; 
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error.bank_E += ( diff / limit[m].bank ) * ( diff / limit[m].bank ); 
} 

if ( limit[m].hdg && data.hdg 1= 9999 ) { 
/* heading rule for sums: use 360 degrees +/- */ 
if (( desired[m].hdg >= 270 || desired[m].hdg <= 90 ) && 

( data.hdg <= 90 && data.hdg >=0 )) 
data.hdg +» 360; 

error.hdg_sum += data.hdg; 
error.hdg_ssq +» { data.hdg * data.hdg ); 
error.hdg_n +» 1.0; 
diff « abs ( data.hdg - desired[m].hdg ); 
if ( diff > abs ( limit[m].hdg ))  error.hdg_out += 1.0; 
error.hdg_E += ( diff / limit[m].hdg ) * ( diff / limit[m].hdg ); 
} 

if ( limit[m].alt && data.alt !» 9999 ) { 
error. alt_sum +=■ data, alt; 
error.alt_ssq +■ ( data.alt * data.alt ); 
error.alt_n += 1.0; 
diff - abs ( data.alt - desired[m].alt ); 
if ( diff > abs ( limit[m].alt ))  error.alt_out += 1.0; 
error.alt_E +» ( diff / limit[m] .alt ) * ( diff / limit[m] .alt ); 
) 

if ( limit[m].vs && data.vs I- 9999 ) { 
error.vs_sum +» data.vs; 
error.vs_ssq += ( data.vs * data.vs ); 
error.vs_n +« 1.0; 
diff - abs ( data.vs - desired[m].vs ); 
if ( diff > abs ( limit[m].vs ))  error.vs_out +- 1.0; 
error.vs_E += ( diff / limit[m].vs ) * ( diff / limit[m] .vs ); 
> 

if ( limit[m].as && data.as 1» 9999 ) { 
error.as_sum +» data.as; 
error.as_ssq +■ ( data.as * data.as }; 
error.as_n +» 1.0; 
diff - abs ( data.as - desired[m].as ); 
if ( diff > abs ( limit [m] .as ))  error.as_out +=» 1.0; 
error.as_E += ( diff / limit[m].as ) * ( diff / limit[m].as ); 
} 

if ( limit[m] .rpm && data.rpm I- 9999 ) { 
error.rpm_sum += data.rpm; 
error.rpm_ssq +» ( data.rpm * data.rpm ); 
error.rpm_n += 1.0; 
diff *> abs ( data.rpm - desired[m] .rpm ); 
if ( diff > abs ( limit[m].rpm ))  error.rpm_out += 1.0; 
error.rpm_E += ( diff / limit[m].rpm ) * ( diff / limit[m] .rpm ); 
} 

if ( limittm].ball && data.ball != 9999 ) { 
error.ball_sum +» data.ball; 
error.ball_ssq +- ( data.ball * data.ball ); 
error.ball_n +» 1.0; 
diff - abs ( data.ball - desired[m].ball ); 
if ( diff > abs ( limit[m] .ball ))  error.ball_out += 1.0; 
error.ball_E += ( diff / limit[m] .ball ) * ( diff / limit[m].ball ); 

} 
> 

void Step_Data_Calc () { 
error.bank_ssq = error.bank_ssq - { error.bank_sum * error-bank_sum / error.bank_n ); 
error.bank_ssq = sqrt ( error.bank_ssq / error.bank_n );   /* sd */ 
error.bank_sum /» error.bank_n; /* mean */ 
error.bank_E ■ error.bank_ssq + error.bank_E; /* error score */ 
error.bank_out /= error.bank_n; /* percent out */ 

error.hdg_ssq ■ error.hdg_ssq - ( error.hdg_sum * error.hdg_sum / error-hdg_n ); 

C-9 



error.hdg_ssq = sqrt ( error.hdg_ssq  / error.hdg_n ); /* sd */ 
error.hdg_sum /= error.hdg_n; /* mean */ 
error.hdg_E = error.hdg_ssq + error.hdg_E; /* error score */ 
error.hdg_out /= error.hdg_n; /* percent out */ 

error.alt_ssq » error.alt_ssq - ( error.alt_sum * error.alt_sum / error.alt_n ); 
error.alt_ssq ■ sqrt ( error.alt_ssq / error.alt_n ); /* sd */ 
error.alt_sum /= error.alt_n; /* mean */ 
error.alt_E = error.alt_ssq + error.alt_E; /* error score */ 
error.alt_out /= error.alt_n; /* percent out */ 

error.vs_ssq ■ error.vs_ssq - ( error.vs_sum * error.vs_sum / error.vs_n ); 
error.vs_ssq ■ sqrt ( error.vs_ssq / error.vs_n );        /* sd */ 
error.vs_sum /» error.vs_n; /* mean */ 
error.vs_E » error.vs_ssq + error.vs_E; /* error score */ 
error.vs_out /» error.vs_n; /* percent out */ 

error.as_ssq » error.as_ssq - ( error.as_sum * error.as_sum / error.as_n ); 
error.as_ssq ■ sqrt ( error.as_ssq / error.as_n );        /* sd */ 
error.as_sum /«• error.as_n; /* mean */ 
error.as_E « error.as_ssq + error.as_E; /* error score */ 
error.as_out /» error.as_n; /* percent out */ 

error.rpm_ssq ■ error.rpm_ssq - ( error.rpm_sum * error.rpm_sum / error.rpm_n ); 
error.rpm_ssq ■ sqrt ( error.rpm_ssq / error.rpm_n ); /* sd */ 
error.rpm_sum /■ error.rpm_n; /* mean */ 
error.rpm_E « error.rpm_ssq + error.rpm_E; /* error score */ 
error.rpm_out /■ error.rpm_n; /* percent out */ 

error.ball_ssq ■ error.ball_ssq - ( error.ball_sum * error.ball_sum / error.ball_n ); 
error.ball_ssq ■ sqrt ( error.ball_ssq / error.ball_n )i       /* sd */ 
error.ball_sum /■ error.ball_n; /* mean */ 
error.ball_E - error.ball_ssq + error.ball_E; /* error score */ 
error.ball_out /- error.ball_n; /* percent out */ 

> 

void Write_Data () { 
fprintf ( output_file2, "%ld, %s, %d, %d, %d, %3.3f, %3.3f, %3.0f, %3.3f, %3.3f, ", 

subj_.no, loop, current.segno, current.trialno, current.stepno, 
error.bank_sum, error.bank_ssq, error.bank_n, error.bank_out, error.bank_E ); 

if ( error.hdg_sum > 360 ) error.hdg_sum -» 360; 

fprintf ( output_file2, "H3.3£, %3.3f, %3.0f, %3.3f, %3.3f, %3.3f, %3.3f, %3.0f, %3.3f, 
%3.3f, ", 

error.hdg_sum,  error.hdg_ssq,  error.hdg_n,  error.hdg_out,  error.hdg_E, 
error.alt_sum,  error.alt_ssq,  error.alt_n,  error.alt_out,  error.alt_E ); 

fprintf ( output_file2, "%3.3f, %3.3f, %3.0f, %3.3f, %3.3f, %3.3f, %3.3f, %3.0f, %3.3f, 
%3.3f, -, 

error.vs_sum,   error.vs_ssq,   error.vs_n, error.vs_out,   error.vs_E, 
error.as_sum,   error.as_ssq,   error.as_n, error.as_out,   error.as_E ); 

fprintf ( output_file2, "%3.3f, %3.3f, %3.0f, %3.3f, %3.3f, %3.3f, %3.3f, %3.0f, %3.3f, 
%3.3f \n", 

error.rpm_sum,  error.rpm_ssq,  error.rpm_n,  error.rpm_out,  error.rpm_E, 
error.ball_sum, error.ball_ssq, error.ball_n, error.ball_out, error.ball_E ); 

} 
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BFITS LOG 
LESSONS 1-9 

NAME: 

SUBJECT CODE: 

START DATE:. 

FINISH DATE: 

SI=Step Information ST=Step Question   C/I=Correct/incorrect        TQ=Test Question 

LESSON 1 LESSON 2 LESSON 3 

SISQ.CAIQ SI SQ Crt TQ SI SQ M IQ 

1.       XXX XXX     XXX XXX            XXX XXX   
2.                            .!_     
3.                                
4.             .                 _ 
5.                                
6                        . xxx xxx   
7.                  xxx xxx xxx   
8.             xxx xxx   xxx xxx xxx   
9.      xxx XXX   XXX XXX xxx XXX XXX xxx XXX   
10. XXX  XXX XXX XXX XXX XXX XXX XXX XXX XXX   

LESSON 4 LESSON 5 LESSON 6 

1.   XXX XXX      XXX XXX            XXX xxxx 

2.                            
3.                            
4.                            
5.                            
6.                            
7.                            
8.   xxx xxx                  xxx xxx 

9. XXX XXX XXX      xxx XXX   XXX XXX XXX 
10. XXX XXX XXX XXX XXX XXX   XXX XXX XXX 

LESSON 7 LESSON 8 LESSON 9 

1.      XXX XXX       XXX XXX             XXX XXX 

2.                                  
3.                              
4.                                  
5.                              
6.                          .    
7.     xxx xxx                   xxx xxx 

8. xxx xxx xxx           xxx xxx xxx 

9. xxx xxx xxx            xxx xxx xxx 

10. xxx XXX xxx     xxx xxx   xxx xxx XXX 



BFITS Log 

Name  Start Date 

File Code #       __^_ Finish Date 

Lesson Segment Trials   Lesson Segment Trials   Lesson Segment Trials 

10     1       16     1      

2 

11 

12 

13 

14 

1 

2 

3 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

1 y n 

2 y n 

3 y n 

4 y n 

5 y n 

6 y n 

7 y n 

8 y n 

9 y n 

17 

18 

19 

20 

21 

3 

4 

5 

6 

1 

2 

1 

2 

1 

2 

1 y n 

2 y n 

3 y n 

4 y n 

5 y n 

6 y n 

7 y n 

8 y n 

9 y n 

1 

2 

22 1 

2 

3 

24 1 

1 

1 

2 

3 

1 

1 

1 

2 

1 

1 

25 

26 

27 

28 

29 

30 

31 y n 

2 y n 

3 y n 

4 y n 

5 y n 

6 y n 

7 y n 

8 y n 

9 y n 

10 y n 

11 y n 

12 y n 


