
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

AN ALL-DIGITAL IMAGE SYNTHESIZER FOR
COUNTERING HIGH-RESOLUTION

IMAGING RADARS

by

Stig R.T. Ekestorm and
Christopher Karow

September 2000

Thesis Advisor:
Second Reader:

Phillip E. Pace
Robert E. Surratt

Approved for public release; distribution is unlimited

HP msm msmrnz $

20000919 149

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE
September 2000

REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE:
An All-Digital Image Syntesizer for Countering High-Resolution Radars

6. AUTHOR(S)
Stig R.T Ekestorm
Christopher Karow
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Naval Research Laboratory

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The subject of this thesis is a digital image synthesizer (DIS), which is especially useful as a counter-targeting signal repeater, i.e.,
for synthesizing the characteristic echo signature of a pre-selected target. The DIS has a digital radio frequency memory (DRFM)
and associated circuitry, including digital tapped delay lines and a modulator in each delay line to impose both amplitude and
frequency modulation in each line. A unique property of the digital image synthesizer is its ability to synthesize false targets using
wideband chirp signals of any duration. The system-on-a-chip uses a scalable CMOS technology that increases the bandwidth and
sensitivity of such a repeater over prior analog-based systems. The application-specific integrated-circuit reduces the noise of the
repeated signal, reduces the size and cost of such a system and permits real-time alteration of operating parameters, permitting
rapid and adaptive shifting among different types of targets to be synthesized.

14. SUBJECT TERMS
Inverse Synthetic Aperture Radars, ISAR, Countermeasure, Digital Radio Frequency Memory, DRFM,
Image Synthesizer, Field Programmable Gate Array, FPGA, Application Specific Integrated Circuit,
ASIC, Chip Design

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY
CLASSD7ICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF
PAGES 374

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

AN ALL-DIGITAL IMAGE SYNTHESIZER FOR COUNTERING
HIGH-RESOLUTION IMAGING RADARS

Authors:

Stig R.T Ekestorm
LTC, Swedish Army

BSSE, Swedish National Defense College, 1996

Christoper Karow
LCDR, German Navy

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2000

Approved by:

Stig R.T. Ekesförffi—
; f

J -- - / /

Christopher Karow

QSLiVc
Phillip E. Pace, Thesis Advisor

Robert E. Surratt, Second Reader

)an C. Boger,
Information Warfare Academic Group

ui

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

The subject of this thesis is a digital image synthesizer (DIS), which is especially

useful as a counter-targeting signal repeater, i.e., for synthesizing the characteristic echo

signature of a pre-selected target. The DIS has a digital radio frequency memory (DRFM)

and associated circuitry, including digital tapped delay lines and a modulator in each

delay line to impose both amplitude and frequency modulation in each line. A unique

property of the digital image synthesizer is its ability to synthesize false targets using

wideband chirp signals of any duration. The system-on-a-chip uses a scalable CMOS

technology that increases the bandwidth and sensitivity of such a repeater over prior

analog-based systems. The application-specific integrated-circuit reduces the noise of the

repeated signal, reduces the size and cost of such a system and permits real-time

alteration of operating parameters, permitting rapid and adaptive shifting among different

types of targets to be synthesized.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. COUNTERING THE SENSOR-SHOOTER ENGAGEMENT 1

H. INTRODUCTION TO INVERSE SYNTHETIC APERTURE RADAR 5

A. RANGE-DOPPLER IMAGING 6

B. RANGE COMPRESSION PROCESS 6

1. Analog Range Compression Network Example 8

2. Digital Range Compression 9

C. AZIMUTH COMPRESSION PROCESS 11

m. THE DIGITAL IMAGE SYNTHESIZER CONCEPT 15

A. SCATTERING PHYSICS OF A TARGET 15

B. ANALOG IMAGE SYNTHESIS 16

C. DIGITAL IMAGE SYNTHESIS 17

D. FUNCTIONAL DESCRIPTION OF THE DIGITAL IMAGE

SYNTHESIZER 19

IV. ARCHITECTURE VARIATIONS AND SIMULATION 25

A. ARCHITECTURE VARIATIONS 25

B. SIMULATION OVERVIEW 29

C. SIMULATION DETAILS 31

1. User Input 33

2. Defining the Radar Parameters 34

3. Creation of the Intercepted Radar Signal 35

4. Simulation of the DIS (Original and Modified Architecture) 38
Vll

5. Range and Azimuth Compression 40

6. Plot and Compare Results 42

7. Original and Modified DIS Comparison 45

8. Multiple Scatterer Per Range-Bin 49

D. SIMULATION RESULTS 51

V. DIS USING FIELD PROGRAMMABLE GATE ARRAYS 57

A. INTRODUCTION 57

B. THE ALTERA MAX+PLUSII ENVIRONMENT 57

C. FPGA TECHNOLOGY AND THE ALTERA 10K50 61

D. DIS ARCHITECTURE USING FPGA 63

1. The Concept Demonstrator 63

a. Host (PC) 64

b. FPGA DIS 65

c. FPGA DIS Hardware 66

d. Processing DRFM-Phase Data 67

2. FPGA DIS Schematic 71

a. Top-Level FPGA Hierarchy 71

b. Tap-Delay Line 73

c. Doppler Modulation Coefficient Latch 75

d. Phase Accumulator 76

e. Look-Up Table (LUT) 77

f. Gain Modulation Coefficient Latch 78
via

g. Gain Modulator 79

h. Final Summer 82

E. SIMULATION RESULTS 83

1. Simulation Setup 83

2. Simulation Results 85

VI. FPGA-TO-ASIC CONVERSION 89

A. FPGA LIMITATIONS 89

1. Altera-to-MOSIS Process Flow 90

a. Altera to MOSIS Link Overview 90

b. Statecad and Statebench 92

c. SimGen 94

B. LEONARDO SPECTRUM 95

C. AMERICAN MICROSYSTEMS INC 98

D. MIGRATION TO TANNER , 99

VH. ASIC DESIGN: SCHEMATIC. 101

A. INTRODUCTION TO TANNER TOOLS 101

1. Nettran 103

2. L-Edit 104

3. S-Edit 106

4. Layout Versus Schematic (LVS) 107

5. The Circuit Simulator T-Spice Pro 108

IX

6. The Waveform Viewer W-Edit 109

B. DIGITAL IMAGE SYNTHESIZER ARCHITECTURE 109

C. SCHEMATIC DESIGN IMPLEMENTATION 116

1. General Design Hierarchy 116

2. Architecture Circuit Description in Level 1 117

a. Basis Elements 117

b. Adder Cell 118

c. Register Cell 119

3. Architecture Circuit Description in Level 2 122

a. Look-Up Table 122

b. Gain Shifter 124

4. Architecture Circuit Description in Level 3 127

a. Tapline with Phase-Rotation 127

b. Tapline with Double Buffering 133

5. Architecture Circuit Description in Level 4 136

6. Architecture Circuit Description in Level 5 137

VET ASIC DESIGN: TIMING & CONTROL 143

A. CONTROL SIGNALS 143

1. Clock 143

2. Load 144

3. Hold 144

x

4. Load Phase Increment 145

5. Delta Phase Increment 146

6. Use Phase Increment 146

7. Load Gain Register 147

8. Target Extent 147

9. Range Bin Valid 148

10. ValidResultln 148

11. Overflow In/Out 149

B. TIMING CONTROL • 149

1. Initial Loading Phase 149

2. Timing between Radar Pulses 154

C. SCAN-PATH TESTING 156

IX. ASIC DESIGN: SIMULATION 161

A. T-SPICE SIMULATIONS 161

B. 2-TAPLINE SIMULATION 167

C. SIMULATION OF THE 32-TAPLINE CASE 175

1. Switch Model 175

2. Test Setup 176

a. Simulation Commands 176

b. Input and Output Pads 179

c. Test Vectors 181
xi

3. Results 182

X. LAYOUT AND FABRICATION 185

A. 8-TAPLINE SCHEMATICS 185

B. TIMING AND CONTROL 187

C. PHYSICAL LAYOUT GENERATION 192

APPENDK A. MATLAB CODES 195

1. DIS SIMULATION FILES-VERSION 4 195

a. runDISv4.m 196

b. guiv4.m 197

C. mathostv4.m 203

d. mathostv4b.m 209

e. simhwchkv4.m 216

f. simhwchkv4_write.m 221

g. simhwchkv2.m 228

h. simhwchkv2_write.m 233

i. plothwv4.m 241

2. COMMON FILES IN ALL VERSIONS (VERSION 1 TO 4) 243

a. cosine.txt 244

b. sine.txt 245

C. genLUT.m 245

Xll

d. genfixptvO.m 248

e. genfloat.m 249

f. dec2two.m 249

g. two2dec.m '. 252

h. plot_like_NRL_image.m 254

i. plot_in_dB.m 255

3. GENERATING PARAMETERS FOR MULTIPLE SCATTERERS PER

RANGE-GATE 256

a. extract_para_v4_Vcase.m 256

b. extract_para_v4_Ship64.m 260

4. CREATING TEST VECTORS IN T-SPICE 264

a. convert2binary_rawint.m 264

b. convert2binary_para.m 267

c. convert2binary_control.m 274

5. COMPARING MATLAB AND T-SPICE SIMULATIONS 278

a. hard_limiter.m 278

b. compare.m 281

6. BIT-VICE TRUNCATION OF TWO'S COMPLEMENT BINARY

REPRESENTATION 284

a. truncate.m 284

Xlll

APPENDIX B. VISUAL BASIC CODES 287

1. VISUAL BASIC PROJECT TO RUN THE DIS CONCEPT

DEMONSTRATOR 287

a. file.bas 288

b. flecfunc.bas 290

C. global.bas 304

d. main.bas 304

e. the_isar.bas 305

APPENDK C. SCHEMATICS AND SYMBOLS 313

1. LEVEL 1 MODULES 313

2. LEVEL 2 MODULES 318

3. LEVEL 3 MODULES 336

4. LEVEL 4 MODULES 338

5. LEVEL 5 MODULES 340

LIST OF REFERENCES 343

INITIAL DISTRIBUTION LIST 345

XIV

LIST OF FIGURES

Figure 1. Sequence of Steps Necessary to Land a Missile on a Target 1

Figure 2. Comparison of the Geometrical Relationship between (a) Focused Spotlight

SAR and (b) ISAR (From Ref. [1]) 5

Figure 3. Chirp Pulse Waveform >. 7

Figure 4. Chirp Pulse Compressed using Analog Pulse Compression Network 8

Figure 5. ISAR Range Compression Signal 10

Figure 6. ISAR Azimuth Compression Processing 12

Figure 7. Summary of ISAR Compression Processing 13

Figure 8. A Ship and an Aircraft in the Line of Sight of an Interrogating Radar Signal. 15

Figure 9. Block Diagram of the Digital Image Synthesizer (DIS) (From Ref. [3]) 19

Figure 10. Block Diagram of the Original DIS Architecture 26

Figure 11. Original DIS Architecture for In-Phase Processing 27

Figure 12. Block Diagram of the Modified DIS Architecture 28

Figure 13. Modified DIS Architecture for In-Phase Processing 28

Figure 14. ISAR-DIS Simulation Configuration 29

Figure 15. Matlab Simulation Flowchart 31

Figure 16. The Range-Doppler-Amplitude Map Entry Program 33

Figure 17. ISAR Range-Doppler Image with (a) No Amplitude or Doppler Frequency

Shift and (b) Amplitude and Doppler Frequency Shift as Shown in Table 2 38

Figure 18. Cosine and Sine Look-Up Table (LUT) 39

Figure 19. Range Compression 41

XV

Figure 20. Azimuth Compression 41

Figure 21. IS AR Range-Doppler Images Showing (a) the Unmodulated DIS Output and

(b) the Modulated DIS Output (Matlab Simulation) 42

Figure 22. Matlab DIS Simulation vs. Hardware Result 43

Figure 23. Matlab Simulation Result vs. Hardware Result and the Difference 44

Figure 24. .Matlab Simulation Result (3-D Mesh Surface Plot) 45

Figure 25. The Range-Doppler-Amplitude Map Entry Program 46

Figure 26. Original vs. Modified DIS Algorithm Simulation Results 48

Figure 27. Original vs. Modified DIS Algorithm Simulation Results and the Difference

 48

Figure 28. DIS V-Case: Setup and Simulation Result 50

Figure 29. ISAR Image (From Ref. [7]) 51

Figure 30. Photo of a P-3 Aircraft (From Ref.[7]) 52

Figure 31. Photo of USS Crockett (From Ref. [7]) 52

Figure 32. AN/APS-137B(V)5 Radar System (From Ref. [8]) 53

Figure 33. Ship Case-Simulation Setup in Matlab 53

Figure 34. True ISAR Image, Simulation Setup, and Seven Different Simulations 55

Figure 35. Altera Max+Plus II Environment (From Ref. [10]) 58

Figure 36. Max+Plus II Design Environment (From Ref. [11]) 59

Figure 37. Altera FLEX 10K50 (From Ref. [11]) 62

Figure 38. Block Diagram and Host-Interface Diagram of the DIS 64

Figure 39. Picture of the Concept Demonstrator-Host (PC) with FPGA Board (DIS)... 66

Figure 40. Picture of the Customized FPGA Board Used for the DIS Prototype 67
xvi

Figure 41. Top-level FPGA Hierarchy of the DIS (simple.gdf) 72

Figure 42. Schematic of the Tap-Delay Line (delay.gdf) 74

Figure 43. Schematic of the Phase-Coefficient Latch for Doppler Modulation (phi.gdf)75

Figure 44. Schematic of the Phase Accumulator (ph_acc.gdf) 76

Figure 45. Schematic Diagram of the Look-Up Table (LUT) (lut.gdf) 77

Figure 46. Schematic of the Gain Modulation Coefficient Latch (gain.gdf) 78

Figure 47. Schematic of the Gain Modulation (newgainl.gdf) 79

Figure 48. A 3-Target Cell Long Target with Different Gain Modulation Coefficients. 80

Figure 49. Schematic of the Shift Primitive in the Gain Modulation Block (shiftO.gdf) 81

Figure 50. Schematic of the MUX2 in the Gain Modulation Block (mux2.gdf) 81

Figure 51. Schematic of the Final Summer (out_summer.gdf) 82

Figure 52. The Range-Doppler-Amplitude Map Entry Program 83

Figure 53. Matlab DIS Simulation vs. FPGA Hardware Results 85

Figure 54. Matlab Simulation Result vs. FPGA Hardware Result and Their Difference 86

Figure 55. Matlab Simulation Result vs. FPGA Hardware Result and Their Difference 87

Figure 56. Flowchart-Altera to MOSIS Link 91

Figure 57. Statecad Screenshot (From Ref. [13]) 93

Figure 58. Block Diagram for the MAX+PLUS II/Leonardo Workspace (From Ref. [11])

 97

Figure 59. Tanner Tools Block Diagram (From Ref. [17]) 103

Figure 60. Nettran Function Block Diagram (From Ref. [17]) 104

Figure 61. Flow for Netlist Comparison in LVS 108

Figure 62. Tapline in ASIC Architecture 110
XVll

Figure 63. Simplified Data Flow in the ASIC Architecture Ill

Figure 64. P-FET Transistor. 118

Figure 65. Adder Cell 119

Figure 66. Register Cell 120

Figure 67. D-Register Cell 122

Figure 68. Look-Up-Table (LUT) Module 123

Figure 69. Part of the LUT-ROM 124

Figure 70. Gain-Shift Block 126

Figure 71. Tapline with On-Board Phase-Increment 128

Figure 72. Phase-Increment Block 129

Figure 73. Tapline LUT Module 130

Figure 74. Tapline Gain and Adder Block 132

Figure 75. Tapline with Double-Buffered Phase and Gain 134

Figure 76. Phase Buffering 135

Figure 77. Gain-Coefficients Double Buffer 136

Figure 78. Supertap Schematics 137

Figure 79. Toplevel Consisting of Four Supertaps 138

Figure 80. Output Pad 141

Figure 81. Timing Diagram for the Initial Loading Phase 153

Figure 82. Timing Diagram between Two Radar Pulses 155

Figure 83. Register Cell 157

Figure 84. Schematics of a 2-Bit Register 158

Figure 85. Scan Path in a Tapline with Phase-Rotation On-Board 160
xviii

Figure 86. Positive Edge Triggered Clock 165

Figure 87. 2-Tapline Test Case 168

Figure 88. Modified Range-Amplitude Entry Map 169

Figure 89. 2D Plot of the Simulation Results 173

Figure 90. 3D Plot of the Simulation Outputs and Their Comparison 174

Figure 91. Exploit T-Spice Simulation Results 174

Figure 92. Comparing Matlab and T-Spice Outputs-I-Channel 183

Figure 93. Comparing Matlab and T-Spice Outputs-Q-Channel 183

Figure 94. 8-Tapline Chip 186

Figure 95. Timing Diagram for the Initial Loading Phase of the 8-Tapline Chip 190

Figure 96. Timing Diagram between Two Radar Pulses for the 8-Tapline Chip 191

Figure 97. Layout for the 8-tapline Chip Showing Enlarged Pad-Area Region 193

Figure 98. P-FET and N-FET Transistor Definition 313

Figure 99. P-FET and N-FET Symbols 313

Figure 100. Mux2 Circuit 314

Figure 101. Mux2 Symbol (modified from Tanner's version) 314

Figure 102. Register Cell Circuit 315

Figure 103. Register Cell Symbol 315

Figure 104. D-Bit Register Cell with Synchronous Clear 316

Figure 105. D-Bit Register Cell Symbol 316

Figure 106. Adder Cell Circuit 317

Figure 107. Adder Cell Symbol 317

Figure 108. 2-Bit Register Circuit 318
XIX

Figure 109. 2-Bit Register Symbol 318

Figure 110. 4-Bit Register Circuit 319

Figure 111. 4-Bit Register Symbol 319

Figure 112. 5-Bit Register Circuit : 320

Figure 113. 5-Bit Register Symbol 320

Figure 114. 8-Bit Register Circuit 321

Figure 115. 8-Bit Register Symbol 322

Figure 116. 11-Bit Register Symbol 322

Figure 117. 11-Bit Register Symbol 323

Figure 118. 16-Bit Register Circuit 324

Figure 119. 16-Bit Register Symbol 325

Figure 120. 5-Bit Adder Symbol 325

Figure 121. 5-Bit Adder Circuit 326

Figure 122. 16-Bit Adder Symbol 327

Figure 123. 16-Bit Adder Circuit 328

Figure 124. 5-to-32-Bit Decoder Part 1 Circuit 329

Figure 125. 5-to-32-Bit Decoder Parti Symbol 330

Figure 126. 5-to-32-Bit Decoder Part2 Circuit 331

Figure 127. 5-to-32-Bit Decoder Part2 Symbol 332

Figure 128. Programmed LUT Module Circuit 333

Figure 129. LUT Symbol 334

Figure 130. Gain-Shifter Circuit 335

Figure 131. Gain-Shifter Symbol 335
XX

Figure 132. Tapline Circuit 336

Figure 133. Tapline Symbol 337

Figure 134. Supertap Circuit 338

Figure 135. Supertap Symbol 339

Figure 136. Toplevel 5-to-32 Decoder Symbol 340

Figure 137. Toplevel 5-to-32 Decoder Circuit 341

Figure 138. Toplevel Circuit 342

XXI

THIS PAGE INTENTIONALLY LEFT BLANK

xxii

LIST OF TABLES

Table 1. Files Used during the Matlab Simulation 32

Table 2. User Specified Inputs of the False Target 34

Table 3. Contents of the File sigparl.dat 34

Table 4. Defined Radar Parameters (file mathostvX.m) 35

Table 5. Contents of the File rawint.txt 36

Table 6. Contents of the File para.txt 37

Table 7. Amplitude and Doppler Offsets Selected for 32 Range-Bin False Target 47

Table 8. True ISAR Image, Simulation Setup, and Seven Different Simulations 54

Table 9. Max+Plus II Suite of Applications and Functions (From Ref. [10]) 60

Table 10. FLEX 1 OK Highlights (From Ref. [11]) 61

Table 11. AlteraFLEX 10K50 Device Features from [11] 62

Table 12. Correct Processing of DRFM Samples (Original DIS Architecture) 68

Table 13. Processing of DRFM Samples Using FPGAs (Original DIS Architecture)70

Table 14. Internal Address Usage in the Tap Delay Line 73

Table 15. Translation of Gain Values 79

Table 16. Number of Bits vs. Dynamic Range 80

Table 17. User Specified Inputs of the False Target 84

Table 18. Workspace between Max+Plus II and Leonardo 96

Table 19. Tapline Outputs with Three Taplines 114

Table 20. Clock Cycles within a Tapline 115

Table 21. LUT Programming 124

xxni

Table 22. Gain Shift 125

Table 23. Loading Example for the Bussed Inputs 140

Table 24. Scan-Path Test Control Signals 157

Table 25. T-Spice Simulation Commands 163

Table 26. Test Concept of a 2-Bit-Register 165

Table 27. Output Table for the Transient Analysis of a 2-Bit-Register 166

Table 28. Matlab Inputs into the Range-Doppler Map 168

Table 29. T-Spice Inputs for Gain and Phase-Increment 169

Table 30. Input Data for the Three Radar Pulses as used in the 2-Tapline Test 171

Table 31. T-Spice Simulation Outputs (hard limited) 172

Table 32. Output Pads for the 32-Tapline Circuit 179

Table 33. Input Pads for the 32-Tapline Circuit 181

Table 34. Matlab Files to Generate a T-Spice Input File 182

Table 35. Output Pads for the 8-Tapline Circuit 187

Table 36. Input Pads for the 8-Tapline Circuit 188

XXIV

EXECUTIVE SUMMARY

The subject of this thesis is a digital image synthesizer (DIS), which is especially

useful as a counter-targeting signal repeater, i.e., for synthesizing the characteristic echo

signature of a pre-selected target. The DIS has a digital radio frequency memory (DRFM)

and associated circuitry, including digital tapped delay lines and a modulator in each

delay line to impose both amplitude and frequency modulation in each line. A unique

property of the digital image synthesizer is its ability to synthesize false targets using

wideband chirp signals of any duration. To generate the false target, the user can program

the target extent (number of taps) and the amplitude and Doppler frequency of each

range-Doppler cell within the image. The algorithm of the DIS has been computer

simulated and has verified the theory behind it. A concept demonstrator has been

developed using a field programmable gate array technique. The DIS has developed

further toward physical implementation as an application specific integrated circuit. The

system-on-a-chip uses a scalable CMOS technology that increases the bandwidth and

sensitivity of such a repeater over prior analog-based systems. The application-specific

integrated-circuit reduces the noise of the repeated signal, reduces the size and cost of

such a system, and permits real time alteration of operating parameters, permitting rapid

and adaptive shifting among different types of targets to be synthesized. A scan-path test

capability is also included to allow intra-chip signal analysis and verification.

XXV

THIS PAGE INTENTIONALLY LEFT BLANK

XXVI

ACKNOWLEDGMENTS

We would like to thank Professor Phillip E. Pace and Professor Douglas J. Fouts

for their technical directions and assistance throughout the course of this thesis. Working

together as a team provided dimensions and analysis that could not have occurred if we

had been working individually.

Furthermore, we would like to thank Dr. Harry Hurt and CDR Dan Gahagan of

the Office of Naval Research for their inspiration and support during this project. We

would also like to express our sincere appreciation to Mr. Robert E. Surratt, Section

Head, Code 5760, Integrated Electronic Warfare Simulation Branch, Tactical Electronic

Warfare Division, Naval Research Laboratory for his time and for his helpful comments

on our work. With the help of these extraordinary gentlemen, this thesis, funded in part

by the Office of Naval Research and the Naval Research Laboratory, Code 5740, proved

to be fascinating, edifying, and highly productive.

Stig Ekestorm would also like to thank his colleagues in the Swedish Armed

Forces personally for their support in making his studies in the United States possible. He

would like to encourage his friends at the Lapland Ranger Regiment who are at this

moment facing hard times. May the true spirit of an Arctic Ranger always follow you.

Most of all, Stig Ekestorm would like to single out his wife Kristina, and his son, Oskar,

for their love, support and encouragement throughout his educational experience at the

Naval Postgraduate School.

XXVU

Christopher Karow would also like to thank his friends of the 5th Fast Patrol Boat

Squadron for their friendship, support and encouragement. In particular, he would like to

express his special appreaciation to the "Leader of the Band of Brothers," a superior and

a friend, Captain (Ge Navy) Heinrich Lange, for his trust and support during bleak times

and for making the studying at the NPS a reality. Of course, Christopher Karow's

warmest appreciation must be extended to his extremely patient, often neglected, but

never resentful wife, Irina, who never stopped supporting him with love and

encouragement, and who assumed a great burden and made a great sacrifice by setting

her own educational goals aside to assist him in his efforts here at the Naval Postgraduate

School.

XXVHl

I. COUNTERING THE SENSOR-SHOOTER ENGAGEMENT

Future Navy electronic warfare (EW) systems must be designed to operate in the

RF environment to provide a layered EW defense and also to serve as a fully-integrated

shipboard combat system sensor. The next generation EW systems must also provide

threat identification and a complete situational awareness to allow the quick reaction

modes required to counter the modern anti-ship cruise missile (ASCM) threat. Figure 1

shows the sequence of events taken by the enemy sensor-shooter in order to place a

missile on a target (hard kill). A typical sequence begins with the enemy's electronic

support surveillance sensor detecting the target of interest (e.g., with a long range over-

the-horizon targeting radar). After acquiring a number of hits on the target, one can

identify the target by using an additional high-resolution sensor, such as an airborne

inverse synthetic aperture radar (ISAR) imager. This type of radio frequency (RF) sensor

forms an image of the target that can be used for recognition and identification.

Surveillance
Acquisition

and Identification

Counter-
Surveillance

Counter-
Identification

HARD KILL

Engage
Decision

Weapon
Selection

and
Launch

Mid-Course
Guidance

Acquisition

Counter-
Targeting

Counter
Lock-on

>

Terminal
Homing

Counter-
Terminal

Figure 1. Sequence of Steps Necessary to Land a Missile on a Target

Depending on the target identification, the decision to engage the target and

launch a weapon (such as an ASCM) is made using the inputs, for example, from the

1

ISAR imager. After the ASCM is launched, acquisition and terminal homing of the

missile is again accomplished using the missile's ISAR. Use of an ISAR in the terminal

phase of the missile allows good aimpoint accuracy and greater probability of kill.

To avoid the ASCM hard kill, one can use a number of countering techniques

including counter-surveillance, counter-identification, counter-targeting, counter-lock-on

and counter-terminal. Counter-surveillance and counter-identification include the use of

low-radar cross-section materials, stealth and deception devices. Counter-targeting

includes the use of active electronic attack (EA) and the use of decoy repeaters. Counter-

lock-on and counter-terminal techniques consist of EA, distraction and seduction chaff as

well as decoy repeaters.

Counter-identification and counter-targeting systems can begin the electronic

attack well before the opposition launches any missiles due to the generation of a lower

probability of target acquisition. Since acquisition systems and future missile seekers will

employ pulse-to-pulse spread spectrum using unfocused SAR and ISAR to improve

target recognition and decoy rejection, the need for coherent countering of these imaging

sensors/seekers remains a high priority for EA systems. Countering-identification and

counter-targeting techniques employ a false target image generated or synthesized with

the objective of deceiving the imaging radar into believing the false target is a real one.

Imaging sensors use coherent range-Doppler processing. Consequently, various forms of

complex modulations must be imposed on the intercepted wideband waveforms in order

to enable the imager to integrate the false target properly.

In this report, the design, analysis and fabrication of an all-digital image

synthesizer for pulse-to-pulse countering of high resolution RF imaging sensors (e.g.,

SAR, ISAR) is presented. The signal processing used in the digital image synthesizer

circuit is especially useful as a signal repeater, i.e., for synthesizing the characteristic

echo signature of a pre-selected target. The entire system has a digital radio-frequency

memory (DRFM) and associated circuitry, including a digital-tapped delay line and a

modulator in each delay line to impose both amplitude and frequency modulation in each

range-cell. The use of digital semiconductor technology (0.5/0.35um CMOS) increases

the bandwidth and sensitivity of the repeater over prior analog-based systems and reduces

the noise of the repeated signal. It also reduces the size and cost of such a system and

permits real-time alteration of operating parameters, permitting rapid and adaptive

shifting among different kinds of targets to be synthesized. The integrated circuit is

designed so that it can easily be integrated with a number of phase-sampling DRFM

architectures.

For completeness, Chapter II provides a brief introduction of ISAR and ISAR

signal processing. Chapter HI discusses the digital image synthesizer concept and how

the false target is generated. Chapter IV describes a set of modular Matlab programs that

is easy to use and maintain for hardware simulation and evaluation of concept

alternatives. Chapter V presents an Altera field-programmable gate-array (FPGA)

implementation of the image synthesizer concept. To increase the bandwidth of the

device, Chapter VI describes the investigation into converting the FPGA design into an

application specific integrated circuit (ASIC). In Chapter VII, the schematic of an ASIC

design in scalable CMOS is described in detail. Chapter Vm addresses timing and

control of the ASIC. In Chapter DC, simulation results are presented including full-scale

simulation of a radar pulse. Comparison of the results with the Matlab simulation is also

presented in order to verify the concept and detail the advantages of the architecture.

Finally, in Chapter X, layout and fabrication issues are discussed.

II. INTRODUCTION TO

INVERSE SYNTHETIC APERTURE RADAR

ISAR is a high-resolution technique for imaging isolated moving targets, such as

ships and aircraft. The technique used by both targeting sensors and ASCMs closely

parallels the SAR imaging approach in which the image (or map) is generated from the

return signals being reflected off the target as the radar moves past the target area. In the

ISAR technique, the target imaging is generated from the return signals being reflected

off the target as the target rotates within the radar illumination. To illustrate this duality

Figure 2 (a) shows a spotlight SAR in which the radar transverses a circular path about

the target while collecting the return signals (focused spotlight) [Ref. 1]. The radar

antenna in the spotlight SAR continually tracks the target. Note that the same signal

returns could be collected if the radar were stationary and the target was put through a

rotation as shown in Figure 2 (b).

vt cU-
a)

b)

Stationary
Target

Figure 2. Comparison of the Geometrical Relationship between

(a) Focused Spotlight SAR and (b) ISAR (From Ref. [1])

A. RANGE-DOPPLER IMAGING

The range-Doppler image consists of resolution cells, each containing estimates

of the target's magnitude and position of scatterers in both range and cross-range

(Doppler). The orientation of the range-Doppler image is determined by the target's

rotation relative to the ISAR. The range dimension within the range-Doppler image is

oriented along the radar line of sight (LOS). Range focusing is based on the range-

independent point target response determined by the wideband chirp waveform. The

cross-range dimension of the range-Doppler image is the dimension lying perpendicular

to the plane contained by the radar LOS and contains the Doppler frequency of the

resolved scatterers in range. Determining the rotational motion during data collection and

calculating the compressions for the sharpest focus accomplish the azimuth focusing. The

Doppler frequency shift produced by a range resolved scatterer is proportional to the

angular rotation rate 0) and the cross-range distance between the scatterer and the center

of target rotation [Ref. 1].

B. RANGE COMPRESSION PROCESS

High range resolution ISAR uses an analog-frequency coding technique called

chirp. A chirp pulse waveform is shown in Figure 3. The transmitted chirp can be

expressed as a complex narrowband signal

5,(r)= a(t)e^ = vcct(-)ej2^'+K,2/2) (2.1)

rect

t
1 for

(0 T

T * /
0 for

t

T

1
< —

2

1
> —

2

(2.2)

where fc is the carrier frequency, A is the linear frequency sweep or bandwidth of the

transmitted signal, K is the slope or chirp rate (K = A/7), T is the pulse width and the

instantaneous frequency (time-dependent frequency) is obtained as:

Instantaneous
Frequency

Signal
Amplitude

time-

Figure 3. Chirp Pulse Waveform

Within the pulse duration T, the instantaneous frequency changes from fc-KT/2 to

fc+KT/2. The dispersion D or time-bandwidth product of the waveform is D = TA

[Ref. 1].

1. Analog Range Compression Network Example

The chirp pulse waveform can be compressed using an analog pulse compression

network as shown in Figure 4.

Network
Delay

Pulse
Compression

h(t)

J\
SM

\n

A

JTK Increase

(compressed
pulse width)

H-M Frequency

Figure 4. Chirp Pulse Compressed using Analog Pulse Compression Network

This common form of a pulse compression network is called a phase equalizer and

equalizes the slope of the linear frequency sweep. The transfer function of the pulse

compression network can be written as:

H(f)=eJ2n/K(f-fJ

The corresponding impulse response can be expressed as:

h(t)=]H(fy**df

(2.4)

(2.5)

or

h(t)= UKeJ24f^r-/2) (2.6)

The complex matched filter output is obtained by convolving the chirp signal with the

impulse response as:

S0(t) = h(t)*S(t)= ^j^le^-K^) (2>7)

The compressed pulse duration of the envelope at the 2/n points is Tc - 1/A (Raleigh

resolution). The corresponding range resolution is then:

dr = — (2.8)
2Ä

Note the wider the bandwidth of the ISAR chirp signal transmitted, the smaller the range-

bin size.

2. Digital Range Compression

If the pulse compression is performed digitally on the baseband return samples, it

is possible to control the matched filter transfer function adaptively. The range resolution

is determined by the ADC sampling rate. The convolution can be carried out in the

frequency domain using the advantages of the fast Fourier transform (FFT) as:

S0(f)=F{s(t)*h(t)}=S(f)H(f) (2.9)

and is the time domain convolution carried out by multiplication in the frequency domain

where S(f) is the spectrum of the returns from one transmitted pulse and H(f) is the

transfer function (reference function) of the pulse compression, filter which is stored as a

series of complex pairs (constant for a particular chirp waveform). The range

compression signal processing is shown in Figure 5.

\ 7 LO

ADC Down
Conversion
Quadrature

•

ADC

5(n)

/.*A

...

<-

Range
Bins

c
2A

-><

- FFT -®-

Complex
Range
Profile

Figure 5. IS AR Range Compression Signal

The number of samples required for both S(n) and h(ri) to avoid a circular convolution is

2(R2-R1)

(2.10)
T + -

N> £-
Ar

-1

where i?2 and R\ are the edges of the range window to be processed and At = \lfs is the

ADC sampling period. Zeroes must be added to the signal and to the T/At samples of the

impulse response (common period of length A7). Also note that N = 2a (where a is an

integer) due to the constraint on the FFT algorithm. The unambiguous range extent of the

ISARis

R - HrC - n'c

U 2A 2fs
(2.11)

and depends on the bandwidth of the chirp signal. A two-dimensional high-resolution

spectral analysis algorithm based on 2-D linear prediction using autoregressive estimation

for IS AR has been presented in [Ref. 2]. This approach is superior to the FFT method

mentioned above.

10

C. AZIMUTH COMPRESSION PROCESS

If the target rotates at a rate of co rad/s towards the radar, a scatterer at a cross

range distance a has an instantaneous velocity (oa toward the radar with a corresponding

Doppler frequency shift:

A-^ (2-12)

Considering two scatterers in the same slant range cell separated by da then:

dfd=^f- (2.13)

resulting in a cross-range resolution of:

da=^-dfd (2.14)

The Doppler resolution is related to the inverse synthetic integration (frame) time

dfd = — giving a cross-range resolution of (see Figure 6):

<to = -i- = A (2.15)
2coT 2yr

A cross-range profile exists for each range-bin. Samples that are integrated to form a

cross-range profile come from the same range-bin separated by a pulse repetition interval

(PRI) as shown in Figure 6.

11

Wideband
Chirp

I
J III III Ml

Frame
Time

PRI

|* PRI

Figure 6. ISAR Azimuth Compression Processing

The unambiguous cross-range extent corresponds to the target size in the cross-range.

The required PRF for unambiguous sampling a target of cross-range extent Au is

PRF = (2.16)

and the number of range samples needed is

2o)\T

The cross-range extent is

"° = A

\ = nada = -*—

(2.17)

2y/"
(2.18)

12

A summary of the IS AR compression process is shown in Figure 7.

Range Samples

Range Compression

h(nTs)

Azimuth
Compression

u ADC

Down
Conversion
Quadrature

A A
da = = —

2coT 2y

V>-*-£ 2A

Figure 7. Summary of ISAR Compression Processing

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

III. THE DIGITAL IMAGE SYNTHESIZER CONCEPT

A. SCATTERING PHYSICS OF A TARGET

An object will modify any signal reflected from it according to the object's shape,

surface material properties, and the object's velocity relative to the signal. This permits

an enemy sensor to identify the nature of such objects, which, if the objects are military

platforms like warships or aircraft, is not desirable. One solution is to artificially

synthesize false characteristic echo signatures by responding to an interrogating signal.

Figure 8 shows a ship and an aircraft, in the line of sight of an interrogating radar signal.

As the signal hits the aircraft and the ship, it is reflected from their major scattering

surfaces. The return signal from the ship and the aircraft will be the superposition of the

reflections from the various surfaces such as the hull, superstructure, the aircraft wings

and nose.

AAJJU.

JUUUkA.

AAAAA.

KAAAA.

Interrogating

Radar Signal

Figure 8. A Ship and an Aircraft in the Line of Sight of an Interrogating Radar Signal

15

The reflections of these surfaces are at different places along the radar's line of sight.

These superimposed reflections will be out of phase with one another, owing to the

varying times of signal propagation to each reflecting surface.

This tends to lengthen the return radar pulse by an amount equal to the round trip

propagation time of the radar signal between the nearest and farthest major reflector and

to make the reflection magnitude vary as dictated by the varying radar cross sections of

the reflecting surfaces. Furthermore, movements of the aircraft or ship relative to the

radar signal will Doppler shift the returned reflections. That is, any platform that reflects

the radar signal will frequency-modulate the signal, so the returned reflections permit the

radar to calculate the nature and motion of the platform.

The most common way to detect a Doppler spectrum in the return signal is to

compare the reflections from consecutive pulses. Thus, an imaging sensor, such as a

search radar, SAR, or ISAR can calculate the Doppler by comparing consecutive return

pulses on a range-bin by range-bin basis. The Doppler spectrum is conventionally

computed using an algorithm that incorporates the discrete Fourier Transform.

B. ANALOG IMAGE SYNTHESIS

Any credible counter-targeting repeater decoy must synthesize the temporal

lengthening and amplitude modulation caused by the many recessed and reflective

surfaces, and must generate a realistic Doppler shift for each surface. Conventionally this

has been done using analog systems that receive an interrogating signal and pass it

through a length of cable having serial taps along its length, one tap per range-bin. Each

tap modulates the signal in amplitude and/or frequency to synthesize the reflection from

16

the reflective surfaces within that range-bin. The delay time between taps is selected to

correspond to the differing times of flight of the radar pulse to the respective range-bins.

Finally, the signals from the taps are summed, and the synthesized signal is retransmitted.

In this manner, the system returns what appears to be an echo from an object located

within the selected range-bins having a signature indicative of the moving ship or aircraft

object to being synthesized.

Unfortunately, analog systems have drawbacks that limit their usefulness as

image synthesizers. They are inherently noisy and can hold an incoming signal only a

short time for processing before the signal deteriorates below the noise. This limits the

system bandwidth and permits effective synthesis of only small objects. Further, analog

systems are costly and very bulky, the latter being a particular concern for military

platforms, where space is extremely limited. Finally, analog systems cannot readily

change operating parameters, such as relative delays among taps, or the amount of

modulation in the various taps. This means that analog image synthesizers cannot switch

among different simulated objects on the fly, but rather must typically be fabricated for

one specific type of target.

C. DIGITAL IMAGE SYNTHESIS

The main advantage of the all-digital image synthesizer repeater is the increase in

bandwidth provided to the tapped delay line processors of the kind above described. In

addition, the capability to hold the received signals as long as necessary for a given

application is provided. Due to the all-digital architecture, modulation of the target extent

17

(number of range-bins) and Doppler frequency of each resolution cell is also a capability.

This results in a small, low-cost and flexible counter-targeting repeater decoy processor.

The digital image synthesizer uses a DRFM and an associated digital-processing

circuit having a plurality of tapped delay lines, a summer in order to sum the output of the

delay lines, and range-bin signal modulator in each of the delay lines. A DRFM is a

semiconductor device that can rapidly and permanently record radio frequency

information as digitized samples of the incoming signal, and read it back equally rapidly

when needed. Because the DRFM can hold data indefinitely, the duration of the

synthesized signal is not limited, as with analog systems, thus permitting (as in the

example of Figure 8) simulation of larger objects by adding more taps to accommodate

more range-bins. Because the associated circuitry is digital, and most especially because

the circuitry can be dedicated to its processing task (rather than requiring extensive

programming to perform its tasks), the speed of the synthesizer can be especially great.

In an optimum hardware configuration, the associated digital image synthesizer

circuitry is made a part of the DRFM on the same monolithic chip in order to increase the

synthesizer speed even more. This is in contrast to a computer, or programmable

processor, which, in conjunction with a fast and permanent memory like a DRFM, could

in principle do the necessary processing. But the time needed to execute the large number

of programming instructions necessary to process data makes this far less desirable than

the current design described in this report, and, for the specific problem of counter-

targeting decoy repeaters, largely ineffective.

18

D. FUNCTIONAL DESCRIPTION OF THE DIGITAL IMAGE

SYNTHESIZER

Figure 9 shows a block diagram of the digital image synthesizer [Ref. 3]. The

antenna receives the radar pulse from a (possibly hostile) search radar. After the down

conversion (not shown), a set of comparators digitizes the phase of the analog signal

producing a stream of digital samples, which are stored in the DRFM. The phase samples

are a digital representation of the phase only. Phase sampling DRFMs have fewer

comparators and permit coherent reconstruction of the original signal using stored

amplitude information [Ref. 4]. The digitized samples are read serially from the DRFM

via the tapped delay line.

Figure 9. Block Diagram of the Digital Image Synthesizer (DIS) (From Ref. [3])

19

The circuit of Figure 9 shows two taps, but this is illustrative, and in principle the

device contains the largest number of taps that the particular application dictates (the

number of major reflective surfaces of the synthesized target). The digital-phase samples

from the DRFM are sequentially read into the taps by clocking. The signals in the

respective taps are delayed with respect to one another by pre-selected amounts dictated

by the delays. For simplicity, the following discussion references the first tap leg only.

However, the function of each leg is identical. The phase signals in the tap pass through a

phase accumulator and an associated look-up-table (contains sine and cosine values for a

2% cycle used in constructing the I & Q components). Although the tap process could

readily calculate cos (<t>n) and sin (())„), doing so is less computationally efficient than use

of a look-up-table, and thus would reduce the overall system speed. At the output of the

look-up-table, a selectable gain multiplies the signal by a pre-selected amount. Together,

these blocks constitute a range-bin signal modulator.

The accumulator frequency modulates the signal, traversing the tap leg by phase-

rotation (serrodyne modulation). The phase <j> of any signal subjected to a linear

frequency modulation, such as a Doppler shift is given by <f> = (ü>f ay)t, where cuis signal

angular frequency, ftfe is the change in frequency due to the modulation, and t is time.

Thus at each point in time the difference in phase between the modulated and

unmodulated signal is ayt. For a digitally-sampled signal, the phase of the nth sample <p„

= n(QH-(Oti)PRI, where n is an integer counter and PRI is the period at which the signal is

sampled. The phase difference due to the Doppler frequency is n(üdPRI. Thus one can

shift the frequency of a digitally-sampled signal by an amount (£>d by rotating each nth

20

phase sample by ruüdPRI. That is, the frequency of a digitally-sampled signal can be

shifted by incrementing the phase naPRI of each nth sample by nCüaPRI.

In summary, the Doppler of a target is typically inferred by sampling target-

echoes (within a single range-bin) at the pulse repetition rate and inspecting these

samples for Doppler-induced phase differences between the echoes. One can simulate a

Doppler shift of ftfe by repeating the pulses from a sensor, with each pulse phase shifted

with respect to the next by an amount ayPRI, where PRI is the pulse repetition interval. A

unique property of the DIS is its ability to synthesize false targets using chirp signals of

any duration. The number of tap stages is equal to the target range-extent desired for

synthesis.

In operation, the phase accumulator sets nominal values of Oh and con' per

instructions from the DRFM controller. A sensor sends a burst of AT pulses having a pulse

repetition period of PRI. The phase samples from the first pulse (stored in the DRFM) are

piped to the first tap leg and the accumulator rotates the phase of each sample by an

amount (üdPRI. The resultant phase samples are converted to / and Q components and

scaled by a gain factor A,. In the absence of output from the second tap leg shown, the

complex signal is returned to the DRFM, and thereafter to the digital-to-analog converter

that reconstructs the analog pulse for up-conversion and retransmission.

The waveform of the retransmitted pulse is identical to that of the received pulse,

except that it is a phase rotated by (OdPRI. After processing this pulse, the DRFM changes

the phase of the first tap accumulator to 2(OdPRI, rotates each phase sample of the second

pulse by 2(üdPRI, and, again assuming no output from the second tap, retransmits the

reconstructed pulse. This continues through the N pulses of the burst, with the phase

21

samples of each pulse rotated by an amount niüdPRI, where n is pulse number, i.e., n = 1,

2, ..., N. In the absence of output from the second tap, the result is a stream of analog

pulses from the antenna that are different in phase from one pulse to the next by (üdPRI. A

sensor detecting these echoes would interpret the constant pulse-to-pulse phase shift of

(üdPRI as a Doppler shift from a single reflector. The second tap accomplishes the same

task by use of a different coy. The summer then combines the output of the first and

second taps. The complex signal that the summer returns to the DRFM is the

superposition of the signals exiting the first and second tap legs. This means that for each

n pulse of the N pulses, the summer's output will be the superposition of two copies of

the n^ pulse, delayed with respect to one another by the tap delay, scaled differently by

the gains A,, with one phase rotated by nc^PRI, the other by n(o'dPRI. A sensor, which

receives the corresponding N analog pulses, will interpret this as having come from two

reflectors located in range-bins separated by the delay with reflective cross sections

respectively proportional to the two gains. Because the pulse-to-pulse phase difference

between these pulses is (üaPRI for the range-bin corresponding to the first delay and

ta'dPRI for the bin corresponding to the second delay, the sensor will interpret that the

reflectors in these two range-bins have Doppler frequencies of caw and (a'd, respectively.

The decoder and latch shown in Figure 9 updates the phase-rotation and gain-

coefficients for the tap legs. The controller is a process computer interfaced with the

DRFM that permits an operator to change these parameters on the fly in real time. In

addition to the phase and gain-coefficients, the number of taps utilized (target extent) can

be changed. Alternatively, the controller can do this automatically. This is particularly

important if üüa in any tap leg varies with time. In the example of Figure 8, the aircraft

22

flies directly at the sensor at a constant speed and Doppler shifts the signal by a constant,

positive, amount. The ship, on the other hand, could be rocking back and forth in the

water along the line of sight and thus the Doppler shift corresponding to this motion

would oscillate in time.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

IV. ARCHITECTURE VARIATIONS AND SIMULATION

A. ARCHITECTURE VARIATIONS

Two different implementations of the DIS architecture have been studied. The

major difference between the two implementations is the placement of the time-delay

processor. Advantages and disadvantages of the two approaches are addressed in this

Chapter and are mainly the result of the hardware technologies used. The two different

implementations are referred to as the "original architecture" and the "modified

architecture."

The "original architecture" described in Chapter III is illustrated in the block

diagram shown in Figure 10. The intercepted chirp signal within the DRFM operating

bandwidth is down converted into its I,Q components with a corresponding intermediate

frequency that lies within the instantaneous bandwidth of the phase-sampling DRFM

comparator technology. The phase-sampling DRFM digitizes the phase of the I,Q

components with the sampling period (time between phase samples) corresponding to the

range resolution of the DRFM. The DRFM-phase data is fed serially into the tapped

delay processor with each delay corresponding to the range resolution of the image

synthesizer. The phase data at each tap is processed in a pipelined range-bin signal

processor in order to generate the selected scattering mechanism As previously

discussed, this is done by continuously rotating the phase «A0 = ncodPRI, translating the

phase into a complex signal I,Q that is amplitude modulated using A,-. When the complex

I,Q data exits each tap, it is summed with available data from all the other tap processors

25

each clock cycle. The digital sum at each clock cycle is then converted to an analog

signal for up conversion onto the carrier for retransmission.

V *<

Down
Conversion

Q

Phase
Sampling

Computer
Image
Control

Phase

A,

M,

^ w
LO Up

Conversion

Original
Architecture

f ►

(n-1)

•-> -??

Range-Bin
Signal

Processing

Range-Bin
Signal

Processing

y\.

■>e
*&

DAC

??

??

/(«)

DAC

<M

Figure 10. Block Diagram of the Original DIS Architecture

In order to show the equivalence of both architecture variations, we show the

details of the original architecture for the in-phase processing in Figure 11 where E is the

image extent, Afy is the phase-increment value for the ith tap processor, and At is the

amplitude modulation. The input phase is $(n) and the output is:

l(ji)=^Ai cos(<t>(n-i)+ A0,). (4.1)
i=0

26

+ (n)
-f ►

<t>(n-I) Mn-E)

A<p0—®

cos()

A0—®

40;—©

cos()

^

40£—©

cos()

-KB—/(«>

Figure 11. Original DIS Architecture for In-Phase Processing

The "modified architecture" was developed while investigating a move from

field-programmable gate-array (FPGA) technology (Altera's Max+Plus II) to an

application-specific integrated-circuit (ASIC). A block diagram of the modified

architecture is illustrated in Figure 12. The modified algorithm enables loading all tap

processors synchronously with the DRFM-phase data. The DRFM-phase data is

processed in parallel in all tap processors in a pipelined fashion. The results from the taps

are then added together by partial sums (serial summation) from one tap to another. The

major difference between the original architecture and the modified architecture is that

the time delay processor is embedded within the summation at the output. For both of the

approaches described above, it is essential that the individual taps be sequentially enabled

during the start-up or initial strobing of the phase data from DRFM into the tapped delay

line. The taps must also be sequentially disabled during shutdown as the phase data

leaves the DIS. This avoids the problem of erroneous data from entering into the

summation during start-up and shutdown. More details concerning the change of

technology is addressed in Chapter VII.

27

V V
Down

Conversion

/

LO

Phase
Sampling

Phase <t>(n)
Modified

Architecture

Range-Bin
Signal

Processing

-&

Q

-e-

Range-Bin
Signal

Processing

_T\

-??

Up
Conversion

DAC DAC

Figure 12. Block Diagram of the Modified DIS Architecture

The details for the modified DIS are shown in Figure 13.

()■

A<i>N-@ A4,,-® A(j>0

cos() cos()
±
cos()

AN—(X) A,—00 A0—<x)

3 IM(n)

Figure 13. Modified DIS Architecture for In-Phase Processing

Proving the correctness of the modified algorithm relative to the original gives the

following expressions:

1M (n) = \ cos(0(n)+ A0O)+ Dl [A, cos((j>{n)+ Aft)]+•■• + DN [AN cos((j>(n)+ A<pN)] (4.2)

28

where D is a delay operator. Rewriting /w(n) gives:

IM (n)= AQ cos(^(n)+ A<j>0)+ A1 cos((j)(n -1)+ Aft)+• • •+ AN cos((j)(n -N)+ A$N) (4.3)

or

IM W = E A- cos(0(n - /)+ A0,) (4.4)
i=0

which is exactly (4.1).

B. SIMULATION OVERVIEW

To evaluate the performance of the architecture and to compare the results of the

hardware implementation, we constructed a Matlab simulation of both the DIS and an

ISAR as shown in Figure 14. Some of the essential features of an ISAR are simulated

including the wideband chirp pulse waveform that is intercepted by the DIS. The

DRFM/DIS is also simulated. The complex outputs from the DRFM/DIS are presented to

the ISAR signal processing for image generation. Matlab has also been used in several

intermediate steps to compare simulation results with actual and simulated hardware

design results.

ISAR / Signal
wideband or nip

Processing)'

1

i

r

k
DRFM

Synthesized
Imaae with

DIS

False Target

Wideband Chirp with
Coherent Modulation

Figure 14. ISAR-DIS Simulation Configuration

29

Matlab is a product from the MathWorks, Inc., and it is an integrated-technical

computing environment that combines numeric computation, advanced graphics and

visualization, and a high-level programming language [Ref. 5]. Matlab includes several

useful functions for:

• Data analysis and visualization

• Numeric and symbolic computation

• Engineering and scientific graphics

• Modeling, simulation, and prototyping

• Programming, application development, and graphical user interface (GUI)

design.

Matlab can be used in a variety of application areas including signal and image

processing, control system design, financial engineering, and medical research. It features

a family of application-specific toolboxes, containing comprehensive collections of

functions for solving particular classes of problems in areas, such as signal processing,

image processing, control system design, neural networks, and more. The current version

of Matlab used in this project is version 5.3.

In FY98, Siew-Yam Yeo developed the original set of codes during his thesis

work at the Naval Postgraduate School [Ref. 6]. This set of codes has been modified to

better serve the purpose of further development in the project. For example, the

"original" code has been modified to deal with more then three taped delay lines. This set

of codes all end with a "...vl.m" extension. Parallel to the development of the ASIC

hardware design (modified DIS architecture), simulations were developed to emulate the

new design. The new codes are used to verify that the newly-modified architecture is

30

giving the correct results. This set of codes all end with a "...v2.m" extension. Two

additional set of codes has been developed to deal with multiple scatterer per range-bin.

Version 3 ("...v3.m") varies phase modulation coefficients between radar pulses. Version

4 ("...v4.m") varies both phase and gain modulation coefficients.

C. SIMULATION DETAILS

The different steps of the simulation are easily identified by using numerous

comments within the set of simulation codes (m-files). A description of the steps,

together with some intermediate results is given below in order to visualize the

development process. The flowchart shown in Figure 15 together with Table 1

summarizes the different Matlab files used during the simulation. Important text files are

also listed.

steps m-files plots txt-files

<ZZ Start J^ r-1 ninDISvX.m

User Inputs

Radar Input
Parameters

Create Transmitted
Radar Chirp Pulse

Generate DRFM
Phase Data

DIS Algorithm

ISAR
Pulse Compression

~*~ I guivX.m GUI

extract_para_X.m
only vS and v4

=fe I sigparLdat

mathostvX.m 5 ara.txt

rawinttxt

CD
sine.txt

i r cosine.txt

simhwchkvX.m E
checkvX.txt

plothwvX.m |^Z
imagei.txt

fmm hnrrhmre

Compare yJEIH
imageq.txt

Figure 15. Matlab Simulation Flowchart

31

m-files txt-files Remarks

runDISvX.m To execute the simulation

guivX.m To get user inputs of the false target to be generated

sigparl.dat Signal parameters of the false target to be generated

extract_para_X.m Extracts parameters for multiple scatterer per range-bin

mathostvX.m Simulates the ISAR transmitted pulse

Simulates the DRFM at the DIS location

para.txt Number of range-bins of the ISAR

Number radar pulses to be processed (integrated)

Target extent

Amplitude settings for each cell

Phase values representing an increasing/decreasing

Doppler shift

rawint.txt DRFM-phase data samples

simhwchkvX.m Simulates the DIS algorithm

cosine.txt Cosine look-up table, 32 values for one period

sine.txt Sine look-up table, 32 values for one period

dec2two.m Matlab function that converts decimal number to

two's complement binary representation

two2dec.m Matlab function that converts two's complement binary

representation to decimal number

checkvX.txt Intermediate results through the DIS algorithm

imagei.txt Hardware/hardware simulation results (I-channel)

imageq.txt Hardware/hardware simulation results (Q-channel)

plothwvX.m Pulse compresses the radar return of the false target

generated by the DIS hardware

Plots the final results for comparison

Table 1. Files Used during the Matlab Simulation

32

A selection of the m-files mentioned in the table above, and some other important

m-files used in this thesis (referred to in later chapters), together with the cosine.txt and

the sine.txt files are attached in Appendix A.

1. User Input

To run the simulation, the user executes the runDISvl.m or the runDISv2.m file

depending on whether the original or the modified architecture is desired (afterward the

files are referred to as "...vXm"). The runDISvX program is a script file to execute other

script files in a pre-defined order. The user is presented with a graphical user interface

(GUI) of a Range/Doppler map-the Range-Doppler-Amplitude Map Entry Program

guivX.m is shown in Figure 16 (runDISvX.m executes guivXm).

Bangj-Oopßlsr-Amplitude Map EMty Program

: «Bonge W

-;poppieriäJ.

jOopptetrf*

3

M&B:

«SV*«!, ft*™

Figure 16. The Range-Doppler-Amplitude Map Entry Program

33

In this example the user has specified the following data to generate the false

target using the DIS shown in Table 2.

Target

Cell

Range

CeD

Doppler

CeU

Amplitude Doppler

Shift

Remark

1 1 20 2 0 Tap 0-1st Tap

2 2 20 2 1 Tapl-2naTap

3 3 20 2 2 Tap2-3rflTap

Table 2. User Specified Inputs of the False Target

The values, called signal parameters of the false target, are written to an

intermediate file that is called sigparl.dat. Examining the sigparl.dat file for this case

will give the values shown in Table 3. The file only holds the numerical values. The

header of the table has been applied later to explain what the different values relate to.

Range Cell Doppler Cell Amplitude Doppler Shift

1.0000000e+000 2.0000000e+000 2.0000000e+000 0.0000000e+000

2.0000000e+000 2.0000000e+000 2.0000000e+000 1.0000000e+000

3.0000000e+000 2.0000000e+000 2.0000000e+000 2.0000000e+000

Table 3. Contents of the File sigparl.dat

2. Defining the Radar Parameters

The next file to be executed by the runDISvX.m file is mathostvX.m. The

mathostvX.m file represents both the ISAR while generating the transmitted chirp pulse

and the DRFM on the platform where the DIS is located. The radar specific parameters of

the ISAR are coded into this program In this case the radar parameters used is shown in

Table 4.

34

ISAR Theoretical Parameter Value

Matlab Equivalent Variable

Version 1 and 2 Version 3 and 4

Uncompressed pulse width, x 500 ns pw pw

Compressed pulse width, TC 8 ns pwc pwc

Pulse repetition frequency, PRF 2kHz Prf Prf

Pulse repetition interval, PRI 500 us pri pri

Bandwidth of the chirp pulse, BW 125 MHz bw bw2

Pulse compression rate, K 2.5 x 1014 mu=2i^bw/pw) k

Sampling frequency, fs 125 MHz fs fs

Sampling time step, ts 8 ns Ts Ts

Table 4. Defined Radar Parameters (file mathostvX.m)

3. Creation of the Intercepted Radar Signal

The signal parameters specified by using the GUI used to create the baseband

complex signal represented by

Sb(t)=TCCtU\J2^PR''K,2/2) (4.5)

where fd is the Doppler frequency of the DIS platform intercepting the chirp signal. Note

that this expression is similar to (2.1) where the parameter K is the chirp slope-rate and T

is the pulsewidth. The Doppler frequency fd must be taken into consideration when

building the received chirp waveform in the DIS simulation. An approximation is used

that assumes a constant phase change due to Doppler within a chirp pulse. This

assumption is valid since the Doppler shift is only tens of hertz compared to the MHz

chirp bandwidth. The wideband intercepted signal is then phase sampled and the phase is

quantized into 5-bits or 32 different values, representing a phase between 0 and 2n

radians. The values used are 0 to 31 as a decimal representation of a 5-bit binary word

35

(2 = 32). The DRFM-phase data is written to a text file (rawint.txt) that is read by

simhwchkvX.m. An example of the DRFM-phase data matrix contained in the rawint.txt

file is shown in Table 5. The file only holds the numerical values. The rows of the matrix

represent radar pulses. The columns represent DRFM-phase data samples from a specific

radar pulse at specific sampling times. The variable names used in Matlab are also

shown.

Radar Pulse

(batchCnt)

DRI

1

M-p

2

hase

3

Data

4

(intr

5

aPuls

6

eCnt

7

)

8 9 10 62

1 0 0 0 0 0 0 5 5 10 15 10

2 15 15 15 15 15 15 15 20 20 25 25

4 3 25 25 25 25 25 25 31 31 4 9

4 10 10 10 10 10 10 10 15 15 20 20

•

64 25 25 25 31 31 31 31 4 4 0 9

Table 5. Contents of the File rawint.txt

The impulse-response waveform used in the ISAR range-compression algorithm

is also computed when executing this file. The amplitude and Doppler frequency-shift

values for each range-Doppler cell are also obtained from the GUI and represent the gain-

and phase-rotation values required for the DIS.

A number of different values are written to another text file (para.txt). The values

are used for simulating the DIS both in Matlab and in the hardware design. The file only

holds the numerical values. These values represent the following information (also

exemplified in Table 6): number of range-bins of the ISAR, number radar pulses the

ISAR is using for processing (integrating) received radar return signals, target extent

(number of target cells/taps used), amplitude settings for each cell translated into a gain

36

value of 1, 2, 4 or 8, and set of phase values representing an increasing/decreasing

Doppler shift due to the motion of the target cell relative to the IS AR

Value Variable Comment

62 nRangeCell Number of Range Cells (range-bins of the ISAR)

64 nDopplerCell Number of Doppler Cells (Doppler-bins of the ISAR)

3 targetExtent Target Extent

2 gain(l) Gain modulation coefficient, target cell 1

2 gain(2) Gain modulation coefficient, target cell 2

2 gain(3) Gain modulation coefficient, target cell 3

0 phi(l,batchCnt) Doppler modulation coefficient, target cell 1,1st radar pulse

0 phi(2,batchCnt) Doppler modulation coefficient, target cell 2,1st radar pulse

0 phi(3,batchCnt) Doppler modulation coefficient, target cell 3,1st radar pulse

0 phi(3,batchCnt) Doppler modulation coefficient, target cell 1, 3rd radar pulse

1 phi(3,batchCnt) Doppler modulation coefficient, target cell 2, 3rd radar pulse

2 phi(3,batchCnt) Doppler modulation coefficient, target cell 3, 3rd radar pulse

0 phi(l,batchCnt) Doppler modulation coefficient, target cell 1,64th radar pulse

31 phi(2,batchCnt) Doppler modulation coefficient, target cell 2, 64th radar pulse

63 phi(3,batchCnt) Doppler modulation coefficient, target cell 3,64th radar pulse

Table 6. Contents of the File para.txt

Remark: For Version 4 - Gain modulation coefficients are gain(tap,batchCnt). That is,

the gain modulation coeffiecients are individual for each tapline (tap) and radar pulse

(batchCnt).

The range-Doppler image from the ISAR signal-processing simulation is plotted

in Figure 17 to visualize the effect of the amplitude and the Doppler frequency-shift

values shown in Figure 16.

37

a. Unmodulated Rd-Dp Map

m O
>>";

C
<a

S 20 o

*-----»-»-l™-«.„„«.«,„ „!„. _„_»_„«. _I„ -__„.._1B..^„,___,„.-.__.1...

10 20 30 40

Down Range Cells,

b. Amplitude and Doppler Modulated Rd-Dp Map

'm'i Wfi

-so;

m o
«isi

c
as
a:

§20
o

SS5^¥S.tl

10 20 30 40

Down Range Cells
"..-Sttf :?6Ql

Figure 17. ISAR Range-Doppler Image with (a) No Amplitude or Doppler Frequency

Shift and (b) Amplitude and Doppler Frequency Shift as Shown in Table 2.

Figure 17 (a) represents the ISAR range-Doppler image but contains no amplitude

or Doppler frequency shift. Figure 17 (b) shows the ISAR range-Doppler image with

amplitude and Doppler frequency shift as shown in Table 2.

4. Simulation of the DIS (Original and Modified Architecture)

To simulate the DIS algorithm, the runDISvX program executes the

simhwchkvX.m file, which starts by reading in the values from para.txt. The number of

Doppler cells within the range-Doppler map is used as an index for an outer for-loop in

the program for processing phase data from one radar pulse to the next. The number of

38

range-bins within the range-Doppler map is used as an index for an inner (nested) for-

loop and represents the number of clock pulses it takes to process the DRFM-phase data

from one radar pulse to the next. The target extent represents the number of taps in the

tap delay line. A target cell is also referred to as a tap in the DIS algorithm. The number

of target cells specified in the GUI is therefore equivalent to the number of taps used to

create a false target. The gain value selected for each tap along with the corresponding

Doppler frequency shift are recorded and relate to the synthesized motion of each target

cell.

Next the DRFM-phase data from the rawint.txt file is read. The program also

loads data from cosine.txt and sine.txt. These files hold data used as the look-up table

(LUT) and contain one period of a cosine waveform and a sine waveform (32 values) as

shown in Figure 18.

-1X2

-0.4

-0.6

-0.8 1 - -\- ■ - - *-/i ---,«--r-

10 15 20 25 30

.

0.8

0.6

0.4

0.2

0

- </- r -
i (. ^t^—p

Figure 18. Cosine and Sine Look-Up Table (LUT)

Recall that the LUT translates the input phase (from the phase accumulator) into a

complex signal. Using the for-loops, the DIS algorithm modulates the phase data to

compute the signal that represents the return signal corresponding to the desired false

39

target. The original and the modified architecture calculate the modulation and perform

the computation in different ways as described earlier.

In the original DIS architecture the DRFM-phase data propagates serially from

tap to tap during one clock-pulse time delay. The phase data at each tap is then modulated

and the results from all taps are summed together to form the output. In the modified DIS

architecture, the DRFM-phase data is presented to all the taps synchronously. The phase

data in this case, is processed in parallel in all taps. The delay is implemented during

summation of the results from each tap. The individual taps are enabled during the start-

up and disabled during shutdown according to the reasons described earlier.

In the Matlab simulation several sets of DRFM-phase data representing samples

from a number of radar pulses are processed directly one after another. In an actual

implementation, the set of DRFM-phase data will of course be separated in time by one

PRI.

5. Range and Azimuth Compression

At the receiver side of the IS AR, as part of the signal processing, the radar return

signals containing the generated false target are compressed both in range and azimuth.

First range compression is done. Range compression is based on correlating the

received signal, S(n) with a pre-stored reference waveform (also refer back to Chapter n,

Digital range compression and (2.6)):

h(n) = ^e-JnK^2. (4.6)

The FFT is performed on the received signal. The resulting spectrum is multiplied by the

complex conjugate of the FFT of the reference waveform (4.6) created in the

40

mathostvX.m file. The procedure is shown in Figure 19. An inverse FFT (IFFT) is then

performed to obtain the range-bin profiles for each PRI.

Complex
Range
Profile

Figure 19. Range Compression

For the azimuth compression for a single range-bin, the complex range samples

are taken from 2n pulses and integrated into an FFT (also refer back to Chapter U,

Azimuth compression process). The magnitude of the FFT output is the Doppler profile

for that particular range-bin as shown in Figure 20.

Frame Wideband
Chirp

I
Time

PRI
U PRI-

J iffiiniiiiiii I iflwiuiL*—I IQHIMI

FFT

l«l

T Doppler
Profile

Figure 20. Azimuth Compression

The received signal after compression can be visualized as a contour plot as

shown in Figure 21 and is referred to in the second sub-plot below as the Matlab

Simulation plot (Amplitude and Doppler Modulated Range-Doppler Map).

41

m.

^40
c
03
a:

.|2o;

im

a. Unmodulated Rd-Dp Map

! ' t 1 1 """""' 1 1
i t ! t i i r
1 > l i i 1

1 * > 1 I I If
' ' 1 i 1 I -
i i f t i ,
i ! i | | , r

! 1 (| | I 1.
' > f t i \ $
1 ' > f 1 i ^
1 > 1 I I i

 1 ' f (l t £

10 20 . 3Q 40 50 60
Down Range Cells

fa. Amplitude and Doppler Modulated Rd-Dp Map,(MATLAB Simulation)

■L-- L i.___..; I x:

^40
en

a:

8 20

^5='

Mm 20 30 40
Down Range Cells

ISO/; 60

Figure 21. IS AR Range-Doppler Images Showing (a) the Unmodulated DIS Output

and (b) the Modulated DIS Output (Matlab Simulation)

6. Plot and Compare Results

The last file to be executed by the runDISvX program is the plothwvX.m. This

file obtains the I- and Q-values of the hardware simulation from the imagei.txt and the

imageq.txt file (written by Altera/Visual Basic FPGA hardware program). Range and

azimuth pulse compression is performed using the same procedure as described for the

Matlab simulation results. The results are plotted for comparison. The DIS simulation

results are shown in the first sub-plot of Figure 22. In the second sub-plot, the hardware

or hardware simulation result are shown when data is available. A full comparison is

42

shown in the following chapters when the different hardware implementation techniques

are described.

' .a. amplitude and floppier Modulated Rd-Dp hfep (MÄOAS Simulation Result)

60

5D
;--■ " JO-,"-':?'--:"'

TO
J 30

m:

ID;

 i i i 1 1 '

 ^ „„„ | _«-- l 1 -4 1

 1 I 1 1 ■ '

50

40:

30

gär

10

10 20 30 40
Down Range Cells

-so-

b. Anplitude and DopplerModulated Rd-Dp Map (HARDWARE Result}

Hardware Result

•m 2D .30 40
Down Range Cells

50

;BOS

Figure 22. Matlab DIS Simulation vs. Hardware Result

To better visualize the image created by the DIS (the generated false target seen

by the ISAR), Matlab uses the same data as before to construct a 3-D mesh surface plot,

as shown in Figure 23. The first sub-plot shows the result of the Matlab DIS simulation.

The second sub-plot shows the hardware (or hardware simulation) result. Finally, the

third sub-plot shows the difference between the Matlab simulation and the hardware

results.

43

a. Anplitude/Doppler Modulated Rd-Dp titep(MATLAS Simulation Result)

Cross Range Cells '"' fl " 0 50

b- Anplitude/Ooppler Modulsted Rd-Dp Map (HARDWARE Result)

100 15D

Bonn Range Cells
200

1

:D3 Hardware Result

0-1 0-2 0.3 D.4 0.5 0.6 0.7 0.8 0.8 1
c, Difference

Difference
(Matlab Simulation Result - Hardware Result)

0' 0.2 0.3 0.4 . 0.5 0.8
.Down Range Cells

0.7 0.8 ■AMT

Figure 23. Matlab Simulation Result vs. Hardware Result and the Difference

To better study the results from the DIS simulation, the IS AR image of the false

target is exposed, as shown in Figure 24. The user defined target cells, after DIS

modulation and ISAR signal processing (range and azimuth compression) stand out

clearly from the background in the plot.

44

aS^piuä^ijpptepMi^teted Rd-Dp Map (MATLAB Simulation; Result)*?

7000 ^

Cross;-Rw|ge CelU;: ms ■.#■

200 J

Doom Range Cells

Figure 24. .Matlab Simulation Result (3-D Mesh Surface Plot)

7. Original and Modified DIS Comparison

To ensure that both the original and modified algorithms produce the same result,

a series of comparisons for different test cases were conducted. The example below

shows the ISAR output when using the different algorithms. It also shows the ability to

modulate the extent of the false target using a large number of taps. In the test case below

32 taps are used. Figure 25 shows the input target entry. Table 7 shows the amplitude and

Doppler offset values selected for the 32 range-bin false target to be synthesized.

45

Pgnge-Doppler-Ampiiiide Map bntty Ptccram

Range Cell : 32

Doppler Cell 20

Amplitude 2

11 J ll
Doppler shift T'T

jj til

Range Cell

CLEAR j SAVE)

Figure 25. The Range-Doppler-Amplitude Map Entry Program

Target

Cell

Range

CeU

Doppler

Cell

Amplitude Doppler

Shift

Remark

1 1 20 2 -8 Tap 0-1st Tap

2 2 20 2 -8 Tap 1 - 2nd Tap

3 3 20 2 -7 Tap 2-3rd Tap

4 4 20 2 -7 Tap 3-4th Tap

5 5 20 2 -6 Tap 4 - 5th Tap

6 6 20 2 -6 Tap 5 - 6th Tap

7 7 20 3 -5 Tap 6 - T Tap

8 8 20 3 -5 Tap 7 - 8th Tap

9 9 20 3 -4 Tap 8 - 9th Tap

10 10 20 3 -4 Tap 9 - 10th Tap

46

Target

CeU

Range

CeU

Doppier

CeU

Amplitude Doppier

Shift

Remark

11 1 20 4 -3 Tap 10- llm Tap

12 12 20 4 -3 Tap 11-12th Tap

13 13 20 4 -2 Tapl2-13toTap

14 14 20 4 -2 Tapl3-14ffiTap

15 15 20 3 -1 Tapl4-15mTap

16 16 20 3 -1 TaplS-lö^Tap

17 17 20 2 0 Tapl6-17mTap

18 18 20 2 0 Tap 17 - 18m Tap

19 19 20 2 1 Tapl8-19mTap

20 20 20 2 1 Tapl9-20mTap

21 21 20 2 Tap 20-21st Tap

22 22 20 2 Tap 21-22nd Tap

23 23 20 3 Tap 22-23rd Tap

24 24 20 3 Tap23-24mTap

25 25 20 4 Tap24-25mTap

26 26 20 4 Tap25-26mTap

27 27 20 5 Tap26-27mTap

28 28 20 5 Tap27-28mTap

29 29 20 2 6 Tap28-29mTap

30 30 20 2 6 Tap 29 - 30m Tap

31 31 20 2 7 Tap 30-31st Tap

32 32 20 2 7 Tap 31-32nd Tap

Table 7. Amplitude and Doppler Offsets Selected for 32 Range-Bin False Target

As observed in Figure 26 and Figure 27, the two different algorithms perform the

same result, which also has been proven in the previous chapter.

47

a.MffirtftB Simulation - Original OIS Ägarithm

S6Q:

m:
-'«.

8. »
lax

m

3D
Do«m Rang« Ctls

b. MATU« Simulation ■ Modified OIS flgorithm

X

320"" 3D 40
Doom Range Cels-

ius •.-80"

Figure 26. Original vs. Modified DIS Algorithm Simulation Results

x1D*
a. WHlfiB Simulation - Original OiS ^goritfwrt (Rd-Dp Map)

x 1D
■0 0

b. MATLAB Simulation - Modified DIS /ügorithro (Rd-Dp Map)

D 0
c. DiKsrenc« (Original ■ VlbMtt)

200«

11"

o o:
Cross Ranga.Celjs . Dospn Range Cels

Figure 27. Original vs. Modified DIS Algorithm Simulation Results and the Difference

48

8. Multiple Scatterer Per Range-Bin

Up to this point, we have only considered one single scatterer per range-bin. The

DIS mustbe able to deal with one more dimension. A true target will generate several

radar returns from many different scatterers within the size of one single range-bin of the

ISAR. The radar return in one range-bin can be treated as a sum of the individual

scatterers radar-return signals due to superposition. The different scatterers will modulate

the incident radar signal with a different gain and a different Doppler depending on

factors such as shape, size, material, angle and relative motion.

Finding the corresponding amplitude values (gain modulation) and phase values

(phase modulation) at a certain time interval and using these values to modulate the

DRFM-phase samples in the DIS would then represent a combined radar-return signal for

one entire range-bin. For this, the DIS must be able to process variable gain and phase

modulation coefficients between radar pulses. This will also be addressed in further detail

in later chapters where different hardware implementation techniques are discussed. The

latest developed Matlab codes (version 3 and 4) can deal with this complex situation. The

parameters (gain and phase modulation coefficients) must first be determined for the

shape and motion of the false target to be generated. This has been done manually by

mapping out the shape and specifying Doppler frequencies to each scatterer.

To illustrate the procedure, consider a simple "V" shape of a small set of

scatterers. Each individual scatterer can be plotted in a range-Doppler map, where the

different range-bins are on the x-axis, and the different Doppler-bins are on the y-axis.

For this example, nine different scatterers were used, all with the same gain. The

scatterers were assigned different initial Doppler frequencies representing differences in

49

relative motion to the ISAR. Some of the scatterers were also located in the same range-

bin. Figure 28 shows to the left a sketch of the initial setup of the shape of the false target

to be generated by the DIS. In the 1st range-bin there is only one scatterer located with

zero Doppler (no relative motion to the ISAR). In the 2nd to the 4th range-bins, there are

two scatterers per range-bin, each with different Doppler (negative or positive). Finally,

for the 5 and the 6th range-bins, there are again only one scatterer per range-bin. The

individual Doppler frequencies were specified in a Matlab script file

(extract_para_VcaseX.m) and running the file produced a set of gain- and phase-

modulation coefficients that were then used as inputs to the DIS. The Matlab simulation'

result can be seen to the right in Figure 28 below.

12 2 2 1 1 # of scatterers

c
m

i
k_
05
D.
Q.
O
Q

4

3

2

1

0

-1

-2

-3

-4

-5

$

|#
$

^

^ o
<3>

1 23456789 10
 ►

©

Q.
O
Q

Range-Bin

Setup

Range

Simulation Result

Figure 28. DIS V-Case: Setup and Simulation Result

The simulation results represent the modulated ISAR-return signals using 64 radar

pulses, received by the ISAR and after performing range and azimuth pulse compression.

The individual scatterers can clearly be identified (the bright spots) in the simulated

50

ISAR image of the false target. The following section presents simulation results of a

more realistic false target, consisting of several scatterers per range-bins.

D. SIMULATION RESULTS

To verify correctness of the concept of the DIS algorithm, a set of larger scale

simulations has also been conducted. The goal was to be able to produce a realistic ISAR

image of a target, similar to a real ISAR image.

The ISAR Section of the Radar Analysis Branch at the Naval Research

Laboratory (NRL) works on developing advanced algorithms and processing systems for

ISAR [Ref. 7]. The picture shown below in Figure 29 is a radar image generated using

ISAR imaging.

Figure 29. ISAR Image (From Ref. [7])

This image was taken by the P-3 aircraft (Figure 30). It is the image of the ship, USS

Crockett, which is pictured in Figure 31.

51

Figure 30. Photo of a P-3 Aircraft (From Ref.[7])

'^B^^^M

Figure 31. Photo of USS Crockett (From Ref. [7])

The ISAR image is a two-dimensional representation of the target, with the

resolution in the horizontal dimension determined by the short pulse characteristic of the

radar and the vertical dimension by the Doppler of the radar returns.

The radar used in the P-3 aircraft is an AN/APS-137. The APS-137 family of

radars has consistently demonstrated outstanding performance in anti-submarine warfare

(ASW) and anti-surface warfare (ASuW). Current operational capabilities include long-

range surface search and target tracking, periscope detection in high sea states, ship

imaging and classification using ISAR, and SAR for overland surveillance, ground

mapping, and targeting. The radar system is produced by Raytheon and is shown in

Figure 32 [Ref. 8].

52

Figure 32. AN/APS-137B(V)5 Radar System (From Ref. [8])

In order to create a false target that looks similar to the NRL IS AR image of the

USS Crockett, some simplifications had to be done, due to the complexity of a real target

(i.e. the number of scatterers, RCS of each individual scatterer, and unknown exact radar

parameters).

First, the necessary phase and gain modulation parameters of the false target had

to be generated. A simplified range-Doppler map of the target is shown in Figure 33. The

number of individual scatterers manually specified in range and Doppler was 182.

Figure 33. Ship Case-Simulation Setup in Matlab

Only 32 taps were used to represent the full length of the target, due to the limitations in

the developing of the hardware equivalent circuit, and also to accelerate the simulation

53

time. The phase and gain-coefficients were thereafter extracted in a correct format by a

Matlab script file (extract_para_ShipX.m). Most of the simulation parameters were kept

the same as earlier, i.e. 62 DRFM-phase data were captured for each radar pulse. A series

of seven different simulations was the conducted representing different Doppler

resolutions of the counter-targeted ISAR (integration of 64, 128, 256, 512, 1024, 2048,

and 4096 radar pulses respectively).

The results are shown in the following set of figures (Figure 34). The true ISAR

image has of course a much higher resolution than the Matlab simulated images, which is

best observed in range. The ISAR image is also a final image for the end user. That is, the

radar-return signals have not only been signal processed as a radar signal, but various

filtering and image enhancement techniques have also been applied. The Matlab

simulation images result from only pure signal processing because of pulse compression.

No additional filtering and image enhancements have been used.

Table 8 explains the differences of the nine sub-figures shown in Figure 34. The

number of radar pulses referred to relates to how many radar pulses were used for the

ISAR-image integration for that specific simulation. Seven different simulation results

are shown.

True ISAR image Simulation setup 64 radar pulses

128 radar pulses 256 radar pulses 512 radar pulses

1024 radar pulses 2048 radar pulses 4096 radar pulses

Table 8. True ISAR Image, Simulation Setup, and Seven Different Simulations

54

(a) True ISAR Image

(d) 128 Radar Pulses

(g) 1024 Radar Pulses

(b) Simulation Setup

(e) 256 Radar Pulses

(h) 2048 Radar Pulses

(c) 64 Radar Pulses

(f) 512 Radar Pulses

(i) 4096 Radar Pulses

Figure 34. True ISAR Image, Simulation Setup, and Seven Different Simulations

This test case was developed to visualize the expected results of the DIS. The goal

was to create a realistic image of a false target, though limiting the scatterers to a

relatively small number. Other limitations were precision and dynamic range of the phase

55

and gain modulation coefficients used in the current design. In spite of that, the

simulation results show that creating relative realistic false targets using a Digital Image

Synthesizer as described is possible.

An additional remark is that the simulated DIS refers to a 5-bit phase sampling

DRFM. The phase-modulation coefficients are 4-bit binary words, and the gain

modulation coefficients are only 2-bit binary words. The final outputs (I- and Q-channel)

consist of a 16-bit two's complement binary word respectively. A set of different tools

(Matlab script files and function calls) has been developed for later use in order to further

investigate tradeoffs in number of bits used throughout the architecture, especially for the

final stages of adders and for representing the final output words. An example of how to

use these files and function calls are presented in Appendix A.

56

V. DIS USING FIELD PROGRAMMABLE GATE ARRAYS

A. INTRODUCTION

This chapter discusses the hardware implementation of the DIS by using FPGA

technology. The hardware design is captured using the Altera Multiple Array Matrix

Programmable Logic User System or Max+Plus II software version 9.21 (the project was

started in 1998 using version 8.3). Max+Plus II is the design environment for Altera

Programmable Logic Devices (PID). A brief description of the Max+Plus II software is

given below followed by a short introduction to Field Programmable Logic Devices

(FPLDs) [Ref. 9]. In particular, FPGAs, specifically the Altera 10K50 family is

described. Later sections of this Chapter describe each of the modules of the DIS

hardware design, starting from the top-level-hierarchy and progressing down. The final

section addresses the FPGA results and the comparison to Matlab simulations.

B. THE ALTERA MAX+PLUS II ENVIRONMENT

The Max+Plus II software provides a multi-platform, architecture-independent

design environment that easily adapts to specific design needs. The Max+Plus II

development software is a fully-integrated programmable logic-design environment. This

tool supports all Alterä programmable device families and works in both PC and UNIX

environments. The Max+Plus II allows seamless integration with industry-standard

design entry, synthesis, and verification tools.

57

Figure 35 shows a block diagram of the Altera Max+Plus II environment.

Max+Plus II both reads and writes:

• Altera Hardware Description Language (AHDL) files and standard EDIF

netlist files

• Verilog HDL files

• VHDL files

• OrCAD schematic files

<#
MAX+PLUS II Block Diagram

Project Processing

MAX+PLUS II Compiler

Compiler Netlist
EKirador {ind. all

netlist readers)

Design Doctor

Timing, Functional,
or Linked

SNF Extractor
j MAX+PLUS II
7 Message

Database
Builder

Logic
Synthesizer

Partitioner Filter

EDIF/Verilog/
VHDL NeUist

Writers
Assembler

r. , Processor & f.
Project Verification \ Hierarchy /

—^ Display £-
Device Programming

MAX+PLUSI
Simulator

MAX+PLUS II
Waveform Editor

MAX+PLUS II
Timing Analyzer

MAX+PLUS II
Programmer

Figure 35. Altera Max+Plus II Environment (From Ref. [10])

In addition, Max+Plus II reads Xilinx netlist files and writes Standard Delay

Format (SDF) files for interface to other industry-standard CAE software. The Max+Plus

II message processor handles the different features like design entry, project processing,

58

project verification and device programming. An overview of the Max+Plus II compiler

interface is shown in Figure 36. The hierarchy display is a convenient way to switch

between the different parts of the program and shows a hierarchy tree with branches, that

represents the sub-designs.

Design Entry

MAX+PLUS II Graphic Editor
MAX+PLUS II Symbol Editor
MAX+PLUS II Text Editor
MAX+PLUS II Waveform Editor
MAX+PLUS II Floorplan Editor
AHDL
VHDL
Verilog HDL
Other Industry-Standard

CAE Design Entry Tools

Design Verification

MAX+PLUS II Simulator
MAX+PLUS II Waveform Editor
MAX+PLUS II Timing Analyzer
Other Industry-Standard

CAE Design Verification Tools

Device Programming
MAX+PLUS II Programmer
Data i/0
Other Industry-Standard

Programmers

Figure 36. Max+Plus II Design Environment (From Ref. [11])

The complete Max+Plus II system includes 11 fully integrated applications that

take the designer through every step of creating a design. A logic design, including all

sub-designs, is called a "project" in Max+Plus II. The main applications are summarized

in Table 9.

59

Application Function

Hierarchy Display For displaying the current hierarchy of files as a hierarchy tree

with branches that represents sub designs.

Graphic Editor For entering a schematic logic design. Altera provides primitives,

megafunctions, and macrofunctions, which serve as basic circuit-

building blocks.

Symbol Editor For adding existing symbol and creating new ones.

Text Editor For creating and editing text-based logic design files written in

hardware description language (AHDL, VHDL, Verilog HDL).

Application Function

Waveform Editor For entering test vectors and viewing simulation results.

Floor-Plan Editor For assigning logic to physical device pins and logic cell resources

in a graphic environment.

Compiler For processing project, including checking for errors, synthesizing

the logic, fitting the project into one or more Altera devices.

Simulator For testing the logical operation and internal timing of logic

circuits. The simulator supports functional simulations, timing

simulations, and linked multi-device simulation.

Timing Analyzer For analyzing the performance of the logic circuits after they have

been synthesized and optimized by the compiler.

Programmer For programming, configuring, verifying, examining and testing

Altera's devices.

Message Processor For displaying warning and information messages on the status of

the project. It also locates the source of a message automatically in

the original design files.

Table 9. Max+Plus II Suite of Applications and Functions (From Ref. [10])

60

C. FPGA TECHNOLOGY AND THE ALTERA 10K50

Different devices are available to capture the developed FPGA design file. The

FLEX 10K50 chip (FLEX = flexible logic element matrix architecture) for example is a

static random access memory (RAM) with typically 70,000 gates (logic & RAM). The

Flex 10K50 device contains an embedded array and a logic array. The logic array

performs the same function as a sea of gates in a gate array. The FLEX 10K50 is used to

implement general logic, such as counters, adders, state machines, and multiplexers. The

embedded array is used to implement memory and specialized logic functions. Table 10

describes the features and benefits of using FPGAs and Table 11 the features of the

FLEX 10K50.

Feature Benefit

200 MHz and above System Performance Supports today's most demanding speed

requirements

Density from 10,000 to over 1.5 Million

Gates

Addresses 90% of all gate array design

starts

Embedded Array Blocks Efficient RAM, ROM, FIFO and other

high-performance mega-functions

Multi-Volt I/O Operation Ideal for mixed-voltage systems

5.0V, 3.3V, 2.5V, and 1.8V Device

Options

Supports multiple operating voltages

PCI Compliance Meets all specifications of the PCI local bus

Table 10. FLEX 1 OK Highlights (From Ref. [11])

The Altera FLEX 10K devices are configured at system power-up with data

stored in an Altera serial configuration EPROM device or provided by a system

controller. A picture of the FLEX 10K50 is shown in Figure 37.

61

Figure 37. AlteraFLEX 10K50 (From Ref. [11]).

A microprocessor interface permits the microprocessor to configure the FLEX 10K

devices serially, in parallel, and synchronously or asynchronously [Ref. 11].

The features of the FLEX 10K50 device are as shown in Table 11:

Features FLEX 10K50

System Performance 115 MHz

Typical Gates (logic & RAM) 50,000

Logic Elements 2,880

Logic Array Blocks 360

Embedded Array Blocks 10

Total RAM Bits 20,480

Flip-Flops 3,184

Maximum User I/O Pins 310

Table 11. Altera FLEX 10K50 Device Features from [11]

62

D. DIS ARCHITECTURE USING FPGA

1. The Concept Demonstrator

A concept demonstrator of the DIS architecture has been developed in Field-

Programmable Gate-Array (FPGA) technology. The concept demonstrator comprises

three parts:

• Matlab simulations of the ISAR signal processing architecture (described in

Chapter IV)

• Computer board containing hardware design using an Altera FPGA device

(FLEX 10K50)

• A Visual Basic program (flextest.vbp) to access the Altera FPGA computer

board and download the image-formation parameters and raw data and to

upload from the board processed data. The data gathered from the board are

stored in files that are in turn read by plothwvX.m for post-processing and

display for comparison.

The DIS and its interface with the host computer are shown in Figure 38 as a

block- and host-interface diagram. The host computer is an ordinary personal computer

(PC). The DIS hardware is a FPGA (Altera 10K50 FPGA chip) mounted on a Naval

Research Laboratory (NRL) custom designed PC I/O board. The various modules for the

DIS are described below.

63

Host(PQ Customized Designed FPGA Computer Board (DIS)

Setup GUI

Signal
Generator

Processing
Parameters

Range
Compression

Azimuth
Compression

Display

(N

«

TapO Tapl Tap 2

Delay

Phase Adder

Look-Up Table

L[WU¥

Q

Tt» Iff

Delay

Phase Adder

Look-Up Table

[^y

Delay

Phase Adder

Look-Up Table

Summer

Figure 38. Block Diagram and Host-Interface Diagram of the DIS

a. Host (PC)

Setup GUI: The setup as most of the blocks of the host refers back to the

Matlab code discussed in Chapter IV. In the GUI the user specifies the parameters for the

false target to be generated.

Signal Generator. The DRFM-phase data samples are produced within

this block and printed to a text file. This text file (rawint.txt) is used both in the Matlab

simulation file and the Visual Basic program running the FPGA computer board.

Processing Parameters: The processing parameters of the specified false

target consist of a phase-increment/decrement corresponding to the selected Doppler shift

and the gain-coefficients representing the amplitude modulation.

64

Range and Azimuth compression: These parts represent basic signal

processing functions in the ISAR. Pulse compression is performed on the radar return

signal from the false target generated by the FPGA DIS.

Display: After processing, the signals will be presented to the user as an

image. In this case, it will be done by a series of plots using Matlab (as described in

Chapter 4).

b. FPGA DIS

Buffers: "Buffer 1" is for storage of DRFM-phase data samples to be fed

into the tapped delay lines. "Buffer 2" is for storage of modulation parameters, which are

computed and updated by the host. These include parameters for target extent, amplitude

modulation and Doppler shift. "Buffer 3" is for storing the outputs of the DIS (modulated

signals).

Tap 0 to 2: Three tapped-delay lines have been implemented using the

FPGA technology in order to study the trade-offs involved. Each tap consists of a delay

element, implemented in hardware using a cascaded chain of flip-flops. The phase adder

together with the look-up table provides a Doppler modulated complex signal. The gain

modules provide amplitude modulation to the signal, represented by the triangular

symbols connected to the outputs of the look-up tables.

Summer. The summer adds outputs from I- and Q-channels separately.

The addition is accomplished by first taking a partial sum of the outputs from two last

taps and then as an additional step, adding this result to the output of the first tap.

65

c. FPGADIS Hardware

The hardware used for the DIS implementation and its interface with the

host computer is shown in Figure 39 and Figure 40. Figure 39 shows a photo of the host

computer, a PII 300 MHz with 128 MB RAM.

Figure 39. Picture of the Concept Demonstrator-Host (PC) with FPGA Board (DIS)

Figure 40 shows the DIS hardware consisting of a FPGA (Altera 10K50 FPGA

chip) mounted on a Naval Research Laboratory (NRL) custom-designed computer board.

It can be seen inserted in the lower slot of the computer. The Altera 10K50 FPGA chip is

the large device in the center of the board.

66

Figure 40. Picture of the Customized FPGA Board Used for the DIS Prototype

d. Processing DRFM-Phase Data

Processing of DRFM-phase data samples by the three-tap original DIS

architecture can be visualized as follows. For each received radar chirp pulse, a set of

phase samples will be provided by the DRFM. At startup, valid output data consists of

only the output from the first tap (Tap 0). At the next clock cycle valid data will be the

sum of processed data from Tap 0 and Tap 1. At the third clock cycle, the output will be

the sum of processed data from all three taps. At the end of the pulse, the taps are

shutdown in reverse order while the phase data is propagating through the delays. An

example of 64 radar pulses and 62 DRFM-phase data samples (range-bins) per radar

pulse are summarized in Table 12.

67

Radar

Pulse

DRFM

Data

Clk TapO Tapl Tap 2 Result

1 D, 0 Pn(Di) 0 0 Pn(D,)

1 D2 1 Pn(D2) Pn+i(DO 0 Pn(D2)+Pn+1(Di)

1 D3 2 Pn(D3) Pn+l(D2) Pn+2(D0 Pn(D3)+Pn+1(D2)+Pn+2(D,)

• • • • • •

1 D62 61 Pn(D62) Pn+l(D6l) Pn+2(D6o) Pn(D62) + Pn+l(D61) + Pn+2(D60)

1 - 62 0 Pn+l(D62) Pn+2(D6i) Pn+l(D62)+Pn+2(D61)

1 - 63 0 0 Pn+2(D62) Pn+2(D62)

• • • • • •

2 D, 64 Pn(DO 0 0 Pn(DO

2 D2 65 Pn(D2) Pn+i(DO 0 Pn(D2) + Pn+l(D1)

2 D3 66 Pn(D3) Pn+l(D2) Pn+2(D0 Pn(D3)+Pn+1(D2) + P„+2(D,)

• • • • • •

64 D62 4093 Pn(D62) Pn+l(D61) Pn+2(D6o) Pn(D62) + Pn+l(D61) + Pn+2(D60)

64 - 4094 0 Pn+i(D62) Pn+2(D6l) Pn+l(D62) + Pn+2(D61)

64 - 4095 0 0 Pn+2(D62) Pn+2(D62)

Table 12. Correct Processing of DRFM Samples (Original DIS Architecture)

Remarks for Table 12 (notations and descriptions):

• Radar Pulse - Represents one radar pulse. The number of radar pulses

represents the number of Doppler cells for the ISAR, in this case 64.

• DRFM-phase Data - 62 DRFM-phase samples per radar pulse in this case

• Clk - Clock pulse for the DIS

• Tap n - Output of the n* tap

• Tap n+1 - Output of the (n+1) tap

68

• Tap n+2 - Output of the (n+2) tap (the last tap in this example)

• Result - The output from the DIS

• Pn+x(Dx) - Processed phase data in a tap available as valid output

The processing of DRFM-phase data in the three taps that has been

implemented using FPGA technology is shown in Table 13. Noted that the

implementation of the DIS algorithm using FPGAs does not perform a correct startup and

shutdown of the individual taps when a set of DRFM samples is processed. Instead a data

value of zero is processed through the tap and produces an incorrect output due to the

cosine look-up table (cos(O) =1). This adds an error at the beginning and trailing edges of

the pulse compared with the Matlab simulation that follows the original DIS algorithm

69

Radar

Pulse

DRFM

Data

Clk Tapn Tap n+1 Tap n+2 Result

Di 0 Pn(Di) Pn+i(0) Pn+2(0) Pn(Di) + Pn+,(0) + Pn+2(0)

D2 1 Pn(D2) Pn+l(Di) Pn+2(0) PnCD^+Pn^CDO + Pn^O)

D3 2 Pn(D3) Pn+l(D2) Pn+2(Di) PnCD^ + P^iCD^+Pn^CDO

• • • • •

D62 61 Pn(D62) Pn+l(D6l) Pn+2(Döo) Pn(D62) + Pn+i(D6i) + P„+2(D60)

0 62 Pn(0) Pn+l(D62) Pn+2(D61) Pn(0) + Pn+i(D62) + Pn+2(D6i)

0 63 Pn(0) Pn+l(0) Pn+2(D62) Pn(0) + Pn+1(0) + Pn+2(D62)

0 64 Pn(0) Pn+l(0) Pn+2(0) Pn(0) + Pn+,(0) + Pn+2(0)

• • • • • •

2 Di 64 Pn(D,) Pn+l(0) Pn+2(0) Pn(D,) + Pn+1(0) + Pn+2(0)

2 D2 65 Pn(D2) Pn+l(Di) Pn+2(0) Pn(D2) + Pn+1(Di) + P„+2(0)

2 D3 66 Pn(D3) Pn+l(D2) Pn+2(Di) PnCD^ + Pn^CD^+Pn^CDO

• • • • • •

64 D62 4096 Pn(D62) Pn+i(D6i) Pn+2(D6o) Pn(D62) + Pn+i(D61) + Pn+2(D6o)

64 0 4097 Pn(0) Pn+l(D62) Pn+2(D6i) P„(0) + Pn+1(D62) + Pn+2(D61)

64 0 4098 Pn(0) Pn+i(0) Pn+2(D62) Pn(0) + Pn+1(0) + Pn+2(D62)

64 0 4159 Pn(0) Pn+l(0) Pn+2(0) P„(0) + Pn+1(0) + Pn+2(0)

Table 13. Processing of DRFM Samples Using FPGAs (Original DIS Architecture)

Remarks for Table 13 (notations and descriptions):

• Radar Pulse - Represents one radar pulse. The number of radar pulses

represents the number of Doppler cells for the IS AR, in this case 64.

• DRFM-phase Data - 62 DRFM-phase samples per radar pulse in this case

• Clk-Clock pulse for the DIS

• Tap n - Output of the n* tap

70

• Tap n+1 - Output of the (n+1) tap

• Tap n+2 - Output of the (n+2) tap (the last tap in this example)

• Result - The output from the DIS

• Pn+x(Dx) - Processed phase data sample in a tap available as valid output

• P„+x(0) - Processed "0" in a tap available as output

2. FPGA DIS Schematic

a. Top-Level FPGA Hierarchy

The top-level hierarchy of the design using FPGAs is shown in Figure 4L

The purpose of this figure is to visualize the Altera environment at the top-level of this

architecture. The bottom left hand block is the I/O-decode and Built-in-Test (BIT) block.

The purpose of the I/O decode block is to provide up to 256 addressable "internal"

address spaces for reading and writing. The other blocks have direct correspondence to

the other modules in the DIS:

• Tap-Delay Line (delay.gdf)

• Doppler Modulation Coefficient Latch (phi.gdf)

• Phase Summer (ph_acc.gdf)

• Look-Up-Table (lut.gdf)

• Gain Modulation Coefficient Latch (gain.gdf)

• Gain Modulator (newgainl.gdf, shiftO.gdf, shiftl.gdf, shift2.gdf, mux2.gdf)

• Output Summer (out_summer.gdf)

Each of these modules is described in further detail below.

71

lilllil
IDDODOO

\M w
MI

M
355

!

15553?

I ins
lOOQ SIss.

»DQO

<-#

Figure 4L Top-level FPGA Hierarchy of the DIS (simple.gdf)

72

b. Tap-Delay Line

The tap-delay line schematic with 3 tap delay lines is shown in Figure 42.

The tap-delay lines are composed of a chain of D-flip-flops and occupy four internal

addresses, 0x30, 0x31, 0x32 and 0x33. The meaning of the data values written to these

locations is described in Table 14 below.

Internal Address (in hex)

0x30

0x31

0x32

0x33

Function

Write "1" to reset tap-delay line, "0V

otherwise

Write any value to this address to cause a

propagation of the values down the delay

line

Write the new DRFM value to the first tap

of the delay line

Unused

Table 14. Internal Address Usage in the Tap Delay Line

Updating the tap-delay line is a 2-stage process. This is accomplished by

writing any value into address 0x31 (to effect propagation) followed by writing a new

value into address 0x32 (to load in a new value at the first tap of the delay line).

73

*[7.J0] "r^'"ww : I ? ^.j.

IRd (—^■TNCJT' : 1) yjcj

IV* , .' t»w*
. fr. ' UM

n —1 > Tap014..0]

a —< > Tap1[4..0l
-CTZ> T«p2t4.Ill

Jivsc -i > Data[4..0]

W2 J^

Base «Mr if modal« a
Base addr «f k«»rd «"this coaslaat

:LPM_CV»Llje=Hii3b'
;LPM WIDTH=8

:LPM_CONSTANT
. |t—t_ji resutfl; BaseAddrp.J]

■RW

. CLBH

Treset

IAddrp.,01
Ba»eAddrT7..2l

IRd

lof4
I HDDH[7. . OJ RDI3. . ©J

BHSE[7..2] UR[3..e]

IRD PROBE

I HR

HW-2 V*0 :«iar rWrO

Rd[3..0]
WH3..01
prob«

Rd1 Rd2

Tap0r4..01 ^K ; DetoH.Jl Tap1[4..0l ^ ; Dal.f4.Jl Tap2T4..0l TU"; Paw ..01

Figure 42. Schematic of the Tap-Delay Line (delay.gdf)

74

c. Doppier Modulation Coefficient Latch

The phase-coefficient latch (for Doppler modulation) is comprised of a

l-of-4 decoding block and a set of flip-flops as shown in Figure 43.

IM l i ,NPÜT

" BX*-" "r^S WPÜT :

ja -< > Ph»[4..0]
arjTBiir —1 > PWt[4..01

—1 > Pti2[4.D]

■jr -1 > PW3t4.JD]

ävid ■< > Dota(4..0]

Cast aMr *f module •
Bast iUi af baard «this caastaat

;LPM_WIDTH=8

iLPM^CÖNSTÄNT;
result!] ; BaseAddrt7..0)

(cvalue)l

Phi Latch

WrO 3R-
äiäaa. T&

CUM

3T:

Wr1
^

iliifl.

Wri

IA«rf7..0|
lof4 ; Rd[3.X>l

1 RDDRI7. . OJ RDC3. . O]

BASE[7..23 MRt3- OJ

1 RD PROBE

1 UR

B»lA4dr[7 ■2] : VW[3.DJ

IR4 : preb*
IWr

26

nSr

CLPM

Datal4..«l

io....V....

0 o

>
. OLIM

Da«at4..01 ^

, CUM

Phi0t4..01

Phil 14 ..01

Phl2(4..01

PN3H-0]

"jrj.''"; Data(4. ■ 01

Rdl

p"; p"8"*-"1

g"""; D8tef4-'

FW3

I*""; Datal4J

Figure 43. Schematic of the Phase-Coefficient Latch for Doppler Modulation (phLgdf)

75

d. Phase Accumulator

The phase accumulator schematic is shown in Figure 44 (one for each

tap). The inputs to the accumulator are the 5-bit DRFM-phase samples (the values from

the tap-delay line) and the latched 5-bit phase coefficients. Furthermore, the output bit-

width matches the input bit-width (the carry-bits are discarded) representing a modulus

addition operation (which is desired). Due to truncation of values larger than five bits, the

phase values above In are folded back into the principle range between zero and 2n. The

LPM-ADD-SUB module available in the Library of Parameterized Module (LPM) is

used to configure the adder.

:jj. rjpi|4.fl Ci>7

t»pqi!t«f*,jqi . !~">T

Bopc«s«üf*.jfl

LPM ÄCTD'SUB"

lPIW>SPPUCrj'Ar|aK.%KilCNCCr:

«■rat

tPM'»D'0"SU&"

 LPKü'ismrsuö'

■gtfflif > j«2f4..J«

Figure 44. Schematic of the Phase Accumulator (ph_acc.gdf)

76

e. Look-Up Table (LUT)

The look-up table (LUT) is indexed by the output phase from the phase

accumulator. This phase value is mapped to an 8-bit amplitude value stored in the LUT.

Since the LUT output is a complex number, cosine and sine tables indexed by the same

phase are required. The schematic diagram for the LUT is given in Figure 45. For the

LUT configuration, a text file is associated with each LPMJROM module. In Altera, this

file is called a memory initialization file (.mif). A Matlab script file (genLUT.m), which

is capable of automatically generating the text-file, based on the width and depth of the

LUT desired, has been used. This file generates the memory initialization file for the

LPM_ROM module (cos.mif and sin.mif). It calls two Matlab function files

(genfixptvO.m and genfloat.m). These two programs perform the fix and floating-point

conversions. The Matlab files [Ref. 6] are included in Appendix A.

UWftW
miMe'ruD* a

■^■»*'v"

wmjiwaxr JU vac Ktnv

mfc^r'['n±>\v[r'.M''

IWtO orpurju M WEE a'PCP
lPM_MDTtVB

■"""■

■^iWiT""iiüi> «in-'ji'

•LPWJP.W";

Figure 45. Schematic Diagram of the Look-Up Table (LUT) (lut.gdf)

77

/. Gain Modulation Coefficient Latch

The latch for the gain modulation coefficient comprises a l-of-4 decoding

block and a set of flip-flops as shown in Figure 46. Although four DQ flip-flops are

shown, only three of them are used (one for each tap).

Gain Latch
as IAddr[7..0] 1—-> «« ':

33 Rd i—v INPUT .
I—> Vic :

M) IV*

Ja -I > Gah012..0]

3J -C±> GahijiXli
33 -4 > Gain212.fll

-1 > Gain3{2.^]

mm -(> Data[2..0]

arc-

WrO
•jß *^

Data[2..0] PUN
D 0

o:
«w

Wr1
Pata[2..01 PRN

D 0

. CUM

last addraf raadalt s

Base addr of board «this coastaat

•ÜWOÄÜ'SlnÖ'
ILFM WI0TH=8

i'LPM'CONStÄMr';

; F¥?)lresuTO: B-MDVJI
:2a' ' :

Wr2
Data[2..ei

WrJ t£*H-

cm
IT

jrf

Data[2..01 pqN
D 0

IAddrI7.,0]

BaseAddrI7..21

IRd

IWr

lof4
IBODR[7. .03 RDC3..B]

BRSEC7. .2] MRC3..0]

IRD PROBE

IUR

: Rd[3.J]

. CUN

?3T

I V»[3.J1

1 root

RdO

Gain0[2..0] ^R'' j DataB.,0]

Refl

Gainir2..01 f%Jj'"] DataT2..Q]

Rd2

"JA *^

Rd3

■si ^

Figure 46. Schematic of the Gain Modulation Coefficient Latch (gain.gdf)

78

g. Gain Modulator

The gain modulator applies a gain to the binary signal from the LUT by

shifting the binary word toward the most significant bit position and pads zeros at the

least significant bit position. The gain modulator is shown in Figure 47.

shifts

lü"g*ci2J>i cz^F
^ÄjnÖpij EZfr^'j- AC7..03 OUTCXO. -Ol

GRXNOE2. . O]

4 W-Uf SNB.outO(10.J)]

$ä jni [7. jjj izz)"^"
a> 9»1[2.i)) TCT"

shiftl
nt7.. O] OUTIXO. . O]

GAIN1C2- -O]

p-p^^ OU1F10-01 ;

Figure 47. Schematic of the Gain Modulation (newgainl.gdf)

The original amplitude values, as set by the user in the Matlab GUI (the

Range-Doppler-Amplitude Map Entry Program), are "translated" into a corresponding

number of positions for the shift according to Table 15.

GUI Amplitude Value # of Shift Left Steps Represents Decimal Multiplication by

1 0 1

2 1 2

3 2 4

4 3 8

Table 15. Translation of Gain Values

Figure 48 exemplifies the results of applying different gain modulation

coefficients. In the first sub-plot, a GUI Amplitude value of "1" was applied, representing

a decimal gain value of "1," for a 3-target cell long target. In the next three sub-plot the

GUI Amplitude value was increased to "2," "3," and "4" respectively, representing a

decimal gain value of "2," "4," and "8."

79

tvf ©sn-1 -

r—s

,8\ t

~m>

V

w<
X1

no* <s«*i-a ! H10* ' 0*0-4

■W^-. .^«a^-ts.^.. IL ftwufftacu^fc^.
1 ^ v

«.I« Oar-

, e- so .«-
OownRanaeCels

0 20 «3
Do>vnff8flaeCefls "^

JNi^fi)'
.tff^

0 28 • 40' • SO
Down Range Ceßs

Figure 48. A 3-Target Cell Long Target with Different Gain Modulation Coefficients

Using only a 2-bit word for representing the gain modulation coefficient

will limit the dynamic range to 18.1dB when using shift modules. Another limitation is

that only four discrete amplitude levels can be used. Increasing the word size, i.e. to three

(or four) bits will give 42.1dB (90.3dB) dynamic range and 8 (16) different amplitude

levels.

of bits Shift by

0 to 2n-l

Multiplication by

1.....2 2
n-l

Dynamic Range [dB]

201og10(2
2n-Vl)

201og10(Vmax/Vmin)

Table 16. Number of Bits vs. Dynamic Range

80

The schematic diagram of the shift primitive is shown in Figure 49 and the

schematic diagram of the MUX2 building block is provided in Figure 50.

pinOO

■m- --i MX

gain01

Ü

fcfl«

4m

MJ1

|R P»

>« M*

I- K I
« * H
b z z

Figure 49. Schematic of the Shift Primitive in the Gain Modulation Block (shiftO.gdf)

7 select izzP^F-

JSfJDi"

EH
»IBS'

Mt» SCH

<W2 :

torn <SUTW

Figure 50. Schematic of the MUX2 in the Gain Modulation Block (mux2.gdf)

81

h. Final Summer

The schematic of the final summer is given in Figure 51. This circuit

implements the addition of the tap outputs in two's complement. The addition in two's

complement involves sign-extension of the numbers to be added and discarding the carry-

out bit. The LPM-ADD-SUB module, available in the LPM, is used to configure the

summer.

IÄUJUCDNI
U*LPFELK>D

WW_WD't*->3
&».»</ It C

■f£?^HCZ> ««riiii

UHtFPU.tC-0

VW of»

WWJWStJCW
«K.WD'rt-'S
9K.NV SC

Figure 51. Schematic of the Final Summer (out_summer.gdf)

82

E. SIMULATION RESULTS

1. Simulation Setup

Several simulations have been done to verify the expected results. Below is one

example of a simulation ran to illustrate the steps and to visualize the results. In this case,

the false target to be generated has the same parameters given in the example above

(Matlab simulation) as is shown again in Figure 52.

; -Rangt-DßSpIejÄtttplitüjl^litej!1 Etttty,. Pregrarr '>:;:!r"^T^;^/^;^^^. -":<v,../:,.

6S 1 j 1 __ 1

-i—
~i

 ■■ ■iii""

'/:'* x::~ j—i—
54

-i—'- —^j— $
■■:; ='* ■T- —i—

r-x
 T

! '
a

■■:-;■■.« 1 j L-| h +
v-:.v«

 1 , ,„i i
:.-:-* _£-_- T t

v::;- a 1
 1 ; ;;:;;_;;:;: > ;._;:_

-:-.-:»
 1 1 1
 l_-l

Sn —Li_. i a "* :::±: 31 ̂ areet Cells T . -as

.■■,;■■»

^JKLJ I-_ :::::-_! +

■"■■-«

:':■.. O r=
 1 1 '■■:

■:'■■: .:^:t3
^ ",:;■« |—

4--H
:;:;::_u: 1

11 *
5
f

\

|E?EEEEEE 1 1

:;::::x:::::::::::^:::::: — i
" '-■>>*

■ .3
■":..""■'"« +------ ||EEEEEE

)~„ ■ - -

 .1

BangeCal

Dop&wCei

KDopptetshifl

3

' 2*0"'

: CLEAR. SAV£:;

>.Range;Os»-.;

Figure 52. The Range-Doppler-Amplitude Map Entry Program

83

In this example the user has specified the data in Table 17 for the false target to be

created by the DIS.

Target

Cell

Range

CeU

Doppler

CeU

AmpHtude

Value

Doppler

Shift

Remark

1 1 20 2 0 Tap 0-1st Tap

2 2 20 2 1 Tap 1 - 2nd Tap

3 3 20 2 2 Tap 2-3rd Tap

Table 17. User Specified Inputs of the False Target

In order to make the comparison between the Matlab simulation and the DIS

implemented using FPGA technology, an intermediate step was added in the simulation

flow as described in Chapter 4. After the Matlab file mathostvX.m has been executed, aU

necessary inputs are avaüable in text files to run the hardware implementation of the DIS.

The interface with the FPGA computer board is a set of Visual Basic files composed into

a Visual Basic project caUed FlexTest (flextest.vbp). To compüe and run the project and

the board properly, the necessary files must be located in a file structure with the

foUowing path: c:\temasek\denise\thesis\final_design\vbfiles.

To run the Visual Basic project, FlexTest, the user must open the project, open the

the_isar.bas file, and then run the file. Another GUI wül show up on the computer display

to visualize the signal processing taking place in the taps of the DIS.

84

2. Simulation Results

The 2-D contour plots in Figure 53 show the results from the Matlab simulation

and the results from running the DIS implemented on the Altera FPGA device. The

Matlab simulation results are shown in the upper sub-plot. Both sub-plots are presented in

a range-Doppler map. That is, Down Range (range) versus Cross Range (Doppler). The

two results look quite similar but will be examined closer to verify if any differences are

present or not.

a.«amplitude'and Doppler Msdulated Rd-Bp &SapiflfcWiTLAB Simulation i Result)i

80

50

o 40

30

:M:

■10':

60

m:

o 40

mm*
w
w

10 20 30 40
Ooiun Range Cells

m>

- ! I I I I . _ I

1Ü 20 30 -ffl 40 eo
Down Range Cells

b. Amplitude and Doppler Modulated Rd-Dp Map (HARDWARE Result)

1 L 1 1 __J J_

feeos.

Figure 53. Matlab DIS Simulation vs. FPGA Hardware Results

85

Figure 54 shows the 3-D mesh surface plots. The first sub-plot shows the results

from the Matlab DIS simulation. The second shows the result from the FPGA hardware.

Finally, the third sub-plot shows the difference between the Matlab simulation and the

FPGA hardware results. As expected, a slight difference between the Matlab simulation

and the hardware results can be observed (note the scale on the amplitude axis of the

three sub-plots).

a. ATiplitude/Doppler Modulated Rd-Dp Map (MAiTLAB Simulation Result)

0 0

b. Anplitude/DopplerModulated Rd-Dp Map (HARDWARE Result)

0 0

200

Sfflfe

Cross Range Cells Douin Range Cells

Figure 54. Matlab Simulation Result vs. FPGA Hardware Result and Their Difference

These differences are because the implementation of the DIS algorithm using

FPGAs does not consider a correct startup and shutdown of the individual taps when a set

of DRFM-phase data from one radar pulse is processed (as discussed earlier). This

86

contributes to a slight error compared to the Matlab simulation, which strictly follows the

original DIS algorithm.

To verify that the errors are actually due to the difference in startup and shutdown

sequences, the Matlab simulation code was adjusted to process the phase data in the same

manner as the FPGA hardware. The results of the modified test case are shown in

Figure 55.

:;a. >topii^€rfD6ppier;liA>dluiäted: Rd-Dp l*p:pSTtM Simulation Result)

0 ■;;;.;■&

b. Arnplitude/Ooppler Modulated Rd-Dp Map (HARDWARE Result)

D 0
c. Difference

l.-v

0- • '

so e°~"ir~
Cross Range Cells

D 0

;:2DD

Down iRaSge ;Ce8s

Figure 55. Matlab Simulation Result vs. FPGA Hardware Result and Their Difference

As expected, there are now no differences between the Matlab simulation results and the

hardware FPGA results. The Concept Demonstrator has therefore been proven to work

with its known limitations.

87

THIS PAGE INTENTIONALLY LEFT BLANK

88

VI. FPGA-TO-ASIC CONVERSION

Since the first design was captured using the Altera Max+Plus II software, which

targets the Altera Programmable Logic Device (PLD), several methods were investigated

to convert this design using third-party tools. This chapter discusses the different methods

of converting the existing design in a format for tools that target an Application Specific

Integrated Circuit (ASIC), instead of a PLD and their related problems. This chapter

further concludes with a summary of problems encountered and the reasons behind

choosing the Tanner Tools environment instead of one of the discussed converting tools.

A. FPGA LIMITATIONS

After analyzing the original, nearly complete implementation of the original

architecture, we realized that several limitations were being imposed on the design, solely

because the implementation employed FPGA technology. First and foremost was the

speed limitation. The target clock speed for the design is 500MHz (2ns clock rate). This

is an aggressive goal for any new chip design, and although it might eventually be

possible to meet this target with an FPGA design, in the foreseeable future, a full-custom

IC has a higher probability of meeting this speed requirement. A second major

contributing factor was the physical size of the implementation. The initial, proof-of-

concept design does not require a large number of taps. However, even with a small

number of taps the design could not be implemented into a single FPGA. One of the

goals for this initial, proof-of-concept design was to create a devise easily extendable to

more taps. Extending the FPGA implementation to more taps would require a significant

89

increase in the number of FPGAs. This was considered a major drawback of the FPGA

implementation.

After realizing the limitations of the FPGA implementation, we decided to

convert the FPGA design to an ASIC design. Several FPGA-to-ASIC conversion

techniques were investigated.

1. Altera-to-MOSIS Process Flow

The Altera-to-MOSIS conversion process investigates attempts to translate the

design from Altera's Max+Plus II implementation to a high speed ASIC fabricated by

MOSIS. It will be shown that the conversion is highly complex, and that parts of the

conversion process are unpredictable, since some tools do not have a common interface.

a. Altera to MOSIS Link Overview

The flowchart shown in Figure 56 shows the complete conversion path

from the current FPGA design in Max+Plus II to an ASIC fabrication at MOSIS using

several tools in different stages of the process. Statecad in conjunction with Statebench

provides an add-in state machine into the existing FPGA design so that the resulting

project file can be compiled in the Max+Plus II compiler. SimGen converts the compiler

output file (.EDO) into a .MAC file, which can be read by Nettran. Nettran is a program

of the Tanner Tool environment and converts different formats into useable input files for

other Tanner Tool programs, e.g., the layout editor L-Edit. L-Edit uses the resulting .TPR

file as input and creates a physical layout based on its library elements. The layout file

needs to be compared with the original input files to ensure that the circuit representation

is the same as the compiler output file. After verification and post-layout simulation, the

layout can be sent to Mosis in form of a .CIF file for fabrication.

90

StateCad

StateCad generates code .§
for statemachine in AHDL "«
checked by StateBench "*

Max+Plus II

Develop design
using Graphic
Editor (.GDF)

StateBench

GDF

Compiler create EDF
Output of entire project

MaxPlus Project Compiler .EDO File

.VHDLFile

|^
B

L
K

_X
T

R
K

 U
PI

 s
cr

ip
t t

o
ex

po
rt

 .M
A

C
 SimGen

chip

>

E
u
<
2

Nettran |
u
E
06

L-Edit |

■ Mosis Compare f

Compare simulated FPGA
Max+Plus II with created
ASIC layout

Figure 56. Flowchart-Altera to MOSIS Link

Remarks for Figure 6.1

• GDF is Graphic Design File and is the file format of the Graphic Editor in

Max+Plus II

• AHDL is Altera Hardware Description Language

• EDO is EDIF output file

91

• MAC is Macro file, to use between SimGen and Nettran

• TPR is Tanner Tools file type

• CIF is Chip fabrication format for the final layout

• VHDL is VHSIC Hardware Description Language

Controling the data flow by a state machine was considered, however, due to a different

approach in the later ASIC design, a state machine implementation was not deemed

necessary. Furthermore, Nettran and L-Edit are not part of the following program

description. They are explained in detail in the following chapter to avoid unnecessary

redundancy.

b. Statecad and Statebench

Statecad is a powerful tool to create state machines of all kinds easily. It

is a graphical entry tool that allows the user to express ideas as state diagrams. Statecad

has been designed for simplicity in use as a tool for digital design, documentation, and

error analysis. The Statecad GUI is shown in Figure 57 to illustrate the graphical concept

of the tool. After validating a diagram, the program generates, directly from the diagram,

hardware description language (HDL) code that can be simulated and synthesized. The

HDL is valid, consistent, maintainable, and implements the graphical diagram. The HDL

can be VHDL-1076, Verilog, ABEL-HDL, AHDL or ANSI-C. Interactive dialog boxes

provide an environment for intuitive work and help to eliminate syntax errors and

incomplete portions of state diagrams. [Ref. 12]

Once a design is completed in Statecad, it can be verified in the add-on

software Statebench. After verification, a timing test bench can be written automatically.

The test bench can be used for post synthesis timing verification.

92

SIMTUTDIA - SUUBmtHtm)

I Serial in, Parallel out, Adding Unit

eye RESET ,,- !? -

~.S— _| _~-B^rc= '1'; ,J3^'
''' do_add ^

as = (ac+s); !

cnt=0 U

s = s2l.s0:di; fecj - B ~3

Är^E^criix":.:.'..-;.' ■■.-■:■:■. ■-■

s = s2l.s0:di:
rc§Q':

5cnt=3

„„a—^

split

':^a^i

2S
^j»o«f

ft ©
^Ind »VM wwtipoiftt

Is
;-gamfcrg->--j ;cir.lr:

^ * =
SsßSwsOn» ' raseiSn* " OwnredßÄ Radar's" Hext* Dcämöi

FSM!

IRE2HT
I»
I««

IHotmii

^

Figure 57. Statecad Screenshot (From Ref. [13])

Statebench is an add-on program to Statecad and automates behavioral

verification and VHDITVerilog test bench generation of any state diagram created in

Statecad. Automatic test benches attempt to exercise every input, output, transition, and

logic equation in a design. For verification the program can usually check approximately

80% of the design automatically. The remaining 20% requires minor user inputs to

complete the validation of the design. Statebench can generate VHDL or Verilog test

benches for post-synthesis verification by adding time constraints that can be imported in

third-party test programs for further validation.

93

c. SimGen

SimGen is an EDIF to Nettran and a FPGA to ASIC conversion utility for

Tanner Tools EDA that improves routine operation designing within the Tanner

environment. SimGen uses EDIF or MAC files as input and can generate VHDL files

from a chip layout to support verifications in VHDL design flows. It automatically

creates simulation files (.SIM and .VEC) for GateSim. For these types of files SimGen

sets up template files with input/output lists and restores true port names. Due to its

ability to create .MAC files, SimGen supports file import into Tanner's Nettran software.

Since the conversion between different file formats is not unproblematic, it attempts to

clean up and repair netlists so that they can work as expected when going from one tool

to another. SimGen provides a Windows control shell to activate, coordinate, and

generate command files for Tanner's remaining DOS tools, e.g., GateSim, as well as file

editing functions and waveform viewing functions [Ref. 14].

The conversion process from Max+Plus II to an ASIC in form of the

Altera-to-Mosis Link is long and in parts unpredictable. One of the major drawbacks is

that SimGen has no direct supported interface to Max+Plus II. Another major drawback

is the incompatibility between the library cells used in the FPGA design and the required

library cells for an ASIC design. Therefore a significant amount of hand conversion of

library cells is required, which is time consuming and potentially error prone. Other

problems with this conversion approach include the efficiency of the conversion process

with respect to speed, layout area, and power consumption of the final IC design.

Furthermore a future chip expansions or even minor changes to the design require

94

working through the entire link again, resulting in a considerable amount of time and new

sources of conversion errors.

B. LEONARDO SPECTRUM

An alternative program to create an ASIC can be found in Spectrum's Leonardo

software [Ref. 15]. Leonardo was not chosen because of the very complicated workspace

creation process between Max+Plus II and Spectrum's software. Also Leonardo lacks the

capability to directly import file types, which are generated by Max+Plus II.

Nevertheless, Leonardo has the capability to target an entered or imported design either

as an ASIC or as a FPGA. It includes several wizards to optimize, re-target and improve

the design. Spectrum and Altera offer the possibility to create a working environment

between MAX+PLUS II and Leonardo, which is illustrated in Table 18 and Figure 58.

The described data flow was never investigated in detail since the involved programs had

to be bought and were not available for testing. Nevertheless this was not desired either

owing to the extremly long and complicated data flow to generate the workspace between

the two endpoints. The MAX+PLUS II read.me file provides more information about

which versions of Mentor Graphics applications are supported by the current version of

MAX+PLUS II. It also provides information on installation and operating requirements

that are not mentioned in this report.

95

Max+Plus n/Mentor Graphics Software Requirements

The following products are used to generate, process, synthesis, and verify a project

with the Max+Plus II and Mentor Graphics Leonardo software:

Mentor Graphics

System_1076

Compiler

QuickSim II

Design Architect

ENRead

ENWrite

GEN JUB library

Quick HDL

Quick HDL Pro

Quick Path

LSJLib library

DVE

Exemplar

Galileo Extreme V4.1.1

Leonardo V4.1.3

Altera

Max+Plus II V.9.2

Table 18. Workspace between Max+Plus II and Leonardo

In more general terms, the flexibility of programs like Max+Plus II, Leonardo,

Statecad, etc. is determined by their ability to import files of different types. The most

common file types are EDIF, Verflog, and VDHL files. One has to strictly differentiate

between input and output files. Output files from Altera's MAX+PLUS II software are

not compatible to input files with the same file extension, so there is a need to examine

the differences in more detail. The following example is based on the MAX+PLUS II

software, but is transferable to the other above-mentioned programs: the input file types

are VHDL, Verilog, AHDL, GDF, SCH (schematic files from ORCAD) and the EDIF

files from third party synthesis tools. The output files produced by the Max+Plus II

compiler are VO (Verilog output netlist file), VHO (VHDL output netlist file),

96

(/}
Z> .
_J <n
OL

<T> + a.

§ o o S O

}g Q. M

J5 05 Jo
3E LL.

._i

_f ■Q:
eg?

n _i *m
Ä

5 I

*-"E c ~ *-
Ml en 0 0
>

<D > ^
Q JJ "J ^

"3

o

_l
0

_J X
Q fe en
£ =2

JP >

Figure 58. Block Diagram for the MAX+PLUS II/Leonardo Workspace (From Ref. [11])

97

TOO (AHDL output netlist file), and EDO (EDIF output netlist file). Now it should be

obvious that output files cannot easily be used as import files for other programs. Hence a

lot of other third-party tools are required to establish a conversion path in order to create

a link between the two main programs.

The only VHDL, Verilog or EDIF files that can be generated by the Max+Plus II

compiler after synthesis are post place and route netlist files. These files are normally

used as either input to third party simulation tools like e.g., Verilog-XL from Cadence,

Modelsim from Modeltech etc. or as input for static timing analysis tools, like Primetime

& Motive from Synopsys. These netlists contain a gate-level description of the design

and the timing delays, where Max+Plus II's EDIF input file is a synthesized netlist.

Therefore extracting an input file from an output file involves an extraordinary number of

steps since the output files are place and route netlists.

C. AMERICAN MICROSYSTEMS INC.

Another alternative to building an ASIC from an FPGA is to contract with a

company that specializes in FPGA-to-ASIC conversions, e.g., American Microsystems

Inc. (AMI). For this approach, the entire design has to be done in FPGA-oriented

software like Max+Plus II and sent to AMI for the conversion process. AMI also

provides customers with their software in a light version, warning, however, that they

cannot recommend this method since the tools are very complicated and require much

experience [Ref. 16].

This approach was not selected and not further investigated for several reasons.

First, the design conversion process yields an ASIC design that is readable by a computer

98

and cannot be read, manipulated, and modified easily by a human, even with the

appropriate CAD tools. Therefore, when the initial DIS design is eventually expanded to

include more taps, the expanded design would have to be accomplished using the FPGA

tools and then another design conversion would have to be performed by the contractor

and paid for. Another drawback is the efficiency of the design conversion with respect to

speed, layout area, and power consumption of the final IC. Although great strides have

been made in automated optimization for design conversion, much work still needs to be

done in this area. Moreover, chip designs that start life as an ASIC design usually wind

up being faster, smaller, and consume less power. Finally, one of the goals at the NPS

Center for Joint Services Electronic Warfare is to offer students the chance to research

and to create projects while working toward a Master's degree. Hiring an outside firm to

perform the design conversion would eliminate this opportunity in addition to being

costly and ending up with an imperfect design.

D. MIGRATION TO TANNER

All the above-described processes were investigated to convert the existing FPGA

design into an ASIC in order to achieve two goals. Most importantly, the high-level DIS

architecture had to be fast, both with respect to high throughput and short latency.

Second, the design had to be extensible, allowing an inexpensive prototype with fewer

taps to be easily turned into a more finished product by just increasing the number of

taps. After analyzing the original architecture, we realized that there were several

limitations being imposed on the design solely because the implementation was done

using FPGAs.

99

The major concern is the speed limitation, in view of the fact that the clock speed

for the design should be close to 500MHz. Although it might eventually be possible to

meet this target with an FPGA design, in the foreseeable future, a full-custom IC will

have a higher probability of meeting this speed goal.

A second major contributing factor is the physical size of the implementation.

The initial, proof-of-concept design did not require a large number of taps. However, if

more taplines are desired to build a full operational prototype, the taplines would not fit

into a single FPGA. Extending the FPGA implementation to more taplines would require

a significant increase in the number of FPGAs. This is considered a major drawback of

the FPGA implementation. Furthermore, additional taps could not just be added to the

design since the adder tree used to sum the outputs of the taps for the final output would

have to be redesigned. Beyond this, as the number of taps increases, either the clock

speed must be slowed down (reduced throughput) or the number of pipeline stages must

be increased (increase in the total latency) to accommodate the extra delay in the

additional adders in the adder tree. The total latency is the sum of the latency in the tap

and the latency in the adder tree, which increases as the number of taps increases.

After considering the various different alternatives for design conversion, we

realized that a dedicated ASIC design using the Tanner Tools would be the most efficient

approach. The original architecture and FPGA design allows, however, an in-depth

analysis of the behavior of the algorithms to be implemented in the ASIC and also allows

the investigation of future design concepts (for example, to counter stepped-frequency

waveforms).

100

VII. ASIC DESIGN: SCHEMATIC

This chapter gives an overview over the Tanner Tool environment with emphasis

on the programs used to construct the DIS architecture. The second section discusses the

DIS architecture in more detail as it is modified and completed based on the FPGA

architecture. The last section melts the previous section together and presents the detailed

design implementations in Tanner's schematic capture tool S-Edit. Additionally, ideas

and already created circuit improvements for future development will be addressed

briefly. These improvements reflect circuit simplifications in terms of less transistors

used in certain modules, or redesign issues for a higher clock speed.

A. INTRODUCTION TO TANNER TOOLS

The Tanner Tool environment consists of five major integrated modules: S-Edit,

T-Spice, W-Edit, L-Edit, and Nettran. The following list presents a short overview of the

complete Tanner environment [Ref. 17]:

Simulation Tools:

• T-Spice-an analog/digital circuit simulator

• GateSim-a gate-level simulator

• W-Edit-a waveform viewer

• L-Edit/Therm-a 3-D finite-element thermal analyzer

Front End and Netlist Tools:

101

• S-Edit-a schematic editor

• LVS-a layout-versus-schematic netlist comparator

Mask-Level-Tools:

• L-Edit-a layout editor

• L-Edit/SPR-an automatic standard cell placement and routing package

• L-Edit/Extract-a layout extractor

• L-Edit/DRC-a design rule checker

The ordered Tanner Tool package consists of:

• L-Edit with Design Rule Checker (DRC), Extract, and Standard Place and

Route (SPR)

• S-Edit (Schematic Editor)

• LVS (Layout vs. Schematic)

• T-Spice Pro with Advanced Model Library

• W-Edit (Waveform Viewer)

• Tanner Tools Pro Manuals

Figure 59 [Ref. 17] illustrates at first a schematic overview of the Tanner environment

and at second the data flow between the different programs of the package. The main

environment consists of the programs S-Edit, LVS and L-Edit, where L-Edit finally saves

the layout in a GDSII or CIF file that will be send to MOSIS for chip fabrication. The

other components may not be used but are shown for completeness.

102

Technoiogy |
independant

Library

Netlist Tool
Mask Level Tools

L-Edit/SPR
Standard Cell
Place&Route

L-Edit
Full Custom Layout

Editor

i GPSII&CTF
1 •^ MOSIS

L-Edit/DRC
On-line Design
Rule Checker

^»..._ .«.i— * b — *

Figure 59. Tanner Tools Block Diagram (From Ref. [17])

1. Nettran

Nettran is a tool within the Tanner environment that has routines and libraries to

import different file types and convert them into other Tanner programs readable formats.

It is used as a netlist translation application to ensure file exchange between the different

tools and other applications. Figure 60 [Ref. 17], shown below, illustrates how Nettran

fits into the Tanner Tools environment. The use of Nettran is required to translate S-Edit

103

files into an appropriate format for the use in the logical simulator GateSim or third party

programs.

Third-Party Tools ^. Vendor Format Files

Figure 60. Nettran Function Block Diagram (From Ref. [17])

Nettran can to translate either wirelist, netlist, or EDIF files from third party tools like

OrCad to standard Spice format, GateSim, or L-Edit netlist formats. Due to extended

capabilities, S-Edit is now able to export a Tanner Data Base file (.TDB) that can be

directly imported into L-Edit so that a conversion with Nettran is not required in this step.

2. L-Edit

L-Edit is a physical design layout editor that creates the device level fabrication

files necessary to realize the integrated circuit. The user has different possibilities to enter

a layout or project into L-Edit. The first is the layout by hand. Like in CAD tools, the

elements of transistor components, e.g., P-Well, N-Well, or different metal layers are

drawn in the editor window. Since this process is quite time consuming, the vendor

104

provides various libraries for different layout processes. These libraries contain layouts

for digital design components, which are called L-Edit's wizards. Using the wizards is

the second way to generate a layout in L-Edit. Besides the Block Place and Route tool (L-

Edit/BPR), the Standard Place and Route tool (L-Edit/SPR) is the most important wizard.

SPR and BPR generally perform the same task, where SPR is more specialized, provides

more sophisticated functionality, and has more constraints.

The Standard Place and Route module generates layouts for standard cell design

and can automatically construct entire chips. It includes cell placement and routing, pad

frame generation, and pad routing. SPR reads netlist files produced by S-Edit and creates

masks useable as a basis for fabrication. Nevertheless, this automatically generated layout

needs at least to be verified with the DRC. Tests have shown that the SPR module is

working only to a certain degree of satisfaction. Even with specified design rules for the

target process, e.g., 0.5 micron, it can produce faulty designs. The automatic layout

process is adjustable in many ways. The most important adjustments are the placement

optimization factor and the routing optimization. The placement optimization factor

determines the effort of the algorithm to reduce the size of the layout and therefore the

size of the entire chip. Factors between 00.0 (no optimization) and 10.0 (highest level of

optimization) can be specified. With higher factor the computation time will increase

exponential with decreasing effect. Furthermore, tests have shown that the results with

different factors are variable and that a higher factor does not necessarily produce better

results. Unfortunately the only way to determine the best factor settings is through trial

and error. The best result gives a trade off between the least possible DRC violations and

the smallest layout area.

105

The Design Rule Checker (L-Edit/DRC) performs a design rule check for the

intended fabrication process and can optimize the place and route. It verifies the

generated layout with pre-defined rules, which can be edited or extended. Even with the

automatic function of place and route with SPR or BPR, it is absolutely necessary to run

DRC on a layout generated by these tools. Additionally, a design that passed the DRC is

not assumed to be free from errors. A post-layout simulation in the circuit-simulator tool

or a netlist comparison with the netlist comparison tool is crucial.

L-Edit/Extract creates SPICE-compatible circuit netlists from L-Edit layouts. The

output can be exported in either GDSII or CIF file format for fabrication. The extract tool

is the way to produce a Spice code for post-layout simulation or netlist comparison. For

netlist comparison, see the description for LVS.

3. S-Edit

S-Edit is a schematic capture tool to enter the electronic layout of a circuit. For

research and prototype devices intended for MOSIS fabrication, S-Edit contains a

complete MOSIS library of components for each of the different scheduled runs, e.g., 0.5

micron or 0.35micron. S-Edit can directly generate netlists that are usable in the circuit

simulator, where a direct link writes a complete schematic directly into T-Spice. S-Edit

holds the complete DIS architecture in form of a schematic representation. To simplify

the circuit creation, the program can use different design levels. In other words,

repeatedly used circuits, such as a tapline in the DIS design, are assigned to a symbol. To

accomplish this, S-Edit has two main workspaces, the schematic editor and the symbol

editor. Besides the creation of electronic circuits in the schematic editor, the user can

create a symbol for a circuit of any size in the symbol editor. Due to this possibility, S-

106

Edit is able to handle different levels of a project and can use custom-made circuits in the

same manner as its own library elements on every level of the design. For the DIS

project, S-Edit is used to construct a hierarchy consisting of five levels, where lower

levels provide higher levels with building blocks to create more complex circuits.

4. Layout Versus Schematic (LVS)

LVS is a layout-versus-schematic netlist comparator. It compares the exported

netlist from S-Edit and the extracted netlist from L-Edit/Extract. It can also compare the

layout with any other SPICE compatible netlist and ensures that both netlists represent

the same circuit. LVS is working on the logic gate level. It uses the pre-defined library

element for comparison and is not able to compare on the transistor level. Therefore

custom-made layouts on the transistor level are a potential problem.

The goal is to compare the layout mask generated by SPR with the schematic

circuit in S-Edit. LVS is used to compare the netlists of both representations. This will

guarantee the equality of the layout with the tested circuit before the design is sent to

fabrication. As shown in Figure 61, the differences after netlist comparison are used for

editing the compared files by hand. Finally this procedure will ensure the equality of the

circuits.

107

T-Spice

——-■——

L-Edit

~~HK >

\/

/■ *

LVS

j 1

f c 1 o

H & as 1 o

[
Difference

.

Figure 61. Flow for Netlist Comparison in LVS

5. The Circuit Simulator T-Spice Pro

T-Spice Pro is a complete circuit design and analysis system, which includes T-

Spice, the Advanced Model Package, the waveform editor W-Edit, and S-Edit. T-Spice is

a circuit simulator using SPICE as input language. The Advanced Model Package

consists of the latest transmission and semiconductor device models to achieve more

realistic simulation results that are closer to real world behavior. The Tanner Company

claims that T-Spice simulates a circuit design with more than 300,000 elements. With

extremely large circuits, the simulator requires an exponential increase of computer

resources. To some extent T-Spice can handle very large circuits consisting of linear

elements like switches or resistors. However, transistors are not linear and are

approximated by polynomial functions. Because transistors are exclusively used in digital

designs, the program is not capable of handling a large digital circuit with approximate

300,000 elements. The DIS design with 32 taplines consists of almost 290,000 transistors

108

and is not simulateable with T-Spice using a transistor model. In order to test the design,

a switch model can be used to replace the transistor model. This approach will be

discussed in greater detail in Chapter 9.

S-Edit (described above) provides a direct link to T-Spice, which makes the

translation of the schematic design into a SPICE file easy. By adding parameters and bit

pattern test vectors, the circuit logic can be tested before layout. T-Spice offers only a

semi-usable algorithm for binary testing. The input data to the circuit are digital and

coded in a binary form (0=OV, 1=5V), but the output will be in real voltages instead of

binary words. Therefore the output is of limited use.

6. The Waveform Viewer W-Edit

W-Edit is a waveform editor acting primarily as a back-end data processor for the

data generated in T-Spice. It is designed to display T-Spice simulation output waveforms.

W-Edit is used to verify the functionality of small circuits like a register cell or a 2 input

NAND gate. It is not useful for larger circuits.

B. DIGITAL IMAGE SYNTHESIZER ARCHITECTURE

This section focuses on the new DIS design (ASIC architecture) and discusses its

implementation in detail. The ASIC architecture is based on a modified FPGA concept,

where a tap and its associated range-bin processing is now called a tapline to distinguish

between the two implementations. The general data flow within a tapline is shown in

Figure 62. The main differences between the original architecture and the modified

architecture as implemented in the ASIC are summarized as follows:

109

1. Parallel DRFM-phase data input into all (32) taplines simultaneously instead

of serial inputs through a tap delay line

2. Implementation of registers in the data flow of a tapline (pipelining

3. Serial summation of the tapline data output in order to achieve the necessary

delay and to add the output data in correct sequence for the final output

4. Built-in scan-path test capability

Phase Increment^
Values

Gain
Coefficients

"M
M.

,DRFM-Phase
Data

Phase Adder

PipelineRegisteril)

LUT

Pipeline Register!1 >

Pipeline Register 3 .

i_£
Adder

X
Pipeline Register* I

To Tapline N-l^_
or Final Output^™

3L

Pipeline Register!

Pipeline Register 3

I Tapline N+l
>¥ ■£"""" I and Q Output

Adder

I
Pipeline ^Register 4.-'

Tapline N -1 and Q Output

Figure 62. Tapline in ASIC Architecture

110

As illustrated in Figure 62, the DRFM-phase-increment values ((|>(n)) are one of the four

inputs for a tapline. So far, the integrated circuit is composed of 32 taplines, which

synchronously receive (no delay) the same clocked DRFM-phase data for each tapline as

input. The Phase Adder combines the DRFM-phase data and the phase-increment value

(A$n). The phase-increment consists of the phase-rotation of several backscatters and is

generated off chip for the most recent tapline version. The result of the phase addition in

the phase adder continues to propagate into Pipeline Register 1, where it is available for

the LUT (Look Up Table) after the first clock cycle. The LUT uses this input as a pointer

to an address space in the LUT-ROM and stores the resulting I and Q values into Pipeline

Register 2. After the second clock cycle, the values can penetrate the gain block, where

the appropriate gain (An) is applied. After the third clock cycle the values can enter the

second adder. The adder's function is to combine the phase data with the phase data from

the next higher tapline. Figure 63 illustrates this concept of the summation in a simplified

way. To compensate for not having delay in the input DRFM-phase data, delay

DRFM-Phase Data Bus

Tapn Tap n+1 Tap n+2 Tap n+3
' r > ' < r ' '

Pipe-
lined

Process

Pipe-
lined

Process

Pipe-
lined

Process

Pipe-
lined

Process From

■ ' > r ' ' ' '
next
Tap

Sum Sum Sum Sum

■ '
Result

Figure 63. Simplified Data Flow in the ASIC Architecture

111

is automatically achieved during the second addition ("Sum" in Figure 63) by using a

pipelined adder chain instead of an adder tree. Recall that the processed DRFM-phase

data resulting in a tapline output are of the form Pn(D3) + Pn+i(D2) + Pa+2(Pi). In the

original architecture, this form is achieved by delaying the DRFM-input data at the input

because it is propagating through all available taps. The parallel summation at the end of

the process gives the above-mentioned form. In the ASIC arcitecture, the adder chain not

only creates the required delay, it also eliminates the two most significant problems of the

original design. First, adder chains are easily extensible since additional adders can be

chained together connecting output to input, as long as the adders do not overflow. If the

adder overflows, it is a simple process to increase the number of bits for the second adder

in the VLSI library. Second, in a pipelined ASIC architecture, the total pipeline latency

from the first input-data to the first output-data is the pipeline latency in the tapline plus

the pipeline delay of only one adder. Thus, as the number of taplines increases, the

latency stays the same instead of increasing as with a growing adder tree. Of course, the

latency from the last phase-data input sample to the last output result does increase, but

this is inherent in the algorithm being used and occurs in both designs.

As shown in Figure 62 and Figure 63, every tapline combines its processed data

with the output data of the next higher tapline. The result is a chain of data between the

first and the last used tapline. Table 19 illustrates this concept. The clock cycles used to

describe the data flow in the tapline ignore the time necessary to load the inputs into the

IC. The method of describing the data in Table 19 simplifies this even more and assumes,

that no time is needed to process the data within a tapline. In this example tapline n (T„)

is the first one in a row of three taplines. The output of Tn is the final output, consisting of

112

I and Q values. After clock one, every tapline produces an output with the same DRFM-

phase data (£>/) as input. With clock two, the output of Tn+2 gets added to the processed

data (Pi) in T„+j and the output of T„+i gets added to the processed data (D2) in Tn.

Continuing with this concept, the final output is the same as the previously proven FPGA

architecture.

113

Radar

Pulse

DRFM

Data

CLK tapline n tapline n+1 tapline n+2

1 Di 0 PnCDO + 0 + 0 Pn+1(D0 + 0 Pn+2(D0

1 D2 1 Pn(D2) +Pn+1(D!) + 0 Pn+l(D2) + Pn+2(D!) Pn+2(D2)

1 D3 2 Pn(D3) +P„+i(D2) + Pn+2(D1) Pn+i(D3) + Pn+2(D2) Pn+2(D3)

1 D4 3 P„(D4) +Pn+1(D3)+Pn+2(D2) Pn+1(D4) + Pn+2(D3) Pn+2(D4)

• • • • • •

• • • • • •

1 D62 61 Pn(D62) + P„+l(D6l) + Pn+2(D60) Pn+l(D62) + Pn+2(D6i) Pn+2(D62)

1 - 62 0 + Pn+i(D62) + Pn+2(D61) 0 + Pn+2(D62) 0

1 - 63 0 + 0 + Pn+2(D62) 0 + 0 0

1 - 64 0 0 + 0 0

• • • • • •

2 D, 65 Pn(Di) + 0 + 0 Pn+1(Di) + 0 Pn+2(Dl)

2 D2 66 Pn(D2) +Pn+i(Di) + 0 Pn+l(D2) + P„+2(Di) Pn+2(D2)

2 D3 67 Pn(D3) +Pn+1(D2)+Pn+2(D1) Pn+i(D3) + Pn+2(D2) Pn+2(D3)

2 D4 68 P„(D4) +Pn+i(D3)+Pn+2(D2) Pn+i(D4) + Pn+2(D3) Pn+2(D4)

• • • • • •

• • • • • •

64 D62 4093 Pn(D62) + P„+l(D6i) + Pn+2(D60) Pn+l(D62) + Pn+2(D61) Pn+2(D62)

64 - 4094 0 + P„+i(D62) + Pn+2(D6i) 0 + Pn+2(D62) 0

64 - 4095 0 + 0 + Pn+2(D62) 0 + 0 0

64 - 4096 0 0 + 0 0

Table 19. Tapline Outputs with Three Taplines

Remarks for Table 19

1. A radar pulse consists of 62 samples, where a sample is the DRFM-phase data

2. Tapline n, n+1, n+2 are the outputs of the three taplines.

114

3. Pn+x(Dy) represents the processed phase-data sample available at the

designated tapline output.

Table 19 ignores the time that is needed to process data within a tapline. To complete this

discussion, Table 20 summarizes the clock cycles needed to process the data within a

tapline.

Clock Cycle Output available at:

0 Phase Accumulator

1 Output of Pipeline Register 1 (5-bit)

2 Output of Pipeline Register 2 (8-bit)

3 Output of Pipeline Register 3 (11-bit)

4 Output of Pipeline Register 4 (16-bit), end of tapline

Table 20. Clock Cycles within a Tapline

Before data can be processed in a tapline, it must be loaded into the chip. Even

though the loading process requires a certain number of clocks, this section considers

only the general concept of a tapline. The loading cycles for the chip are addressed later.

Due to the adaptation of registers between the building blocks of a tapline, a test

path is installed to improve the testability and functionality for the entire IC. This scan-

path test capability can be used to strobe values into the registers to produce results for

special test cases. The test vectors within the registers can then be processed for a

desirable number of clock cycles before they are read out again. The implemented scan

path is also part of later discussions.

115

C. SCHEMATIC DESIGN IMPLEMENTATION

The following section provides information about how the DIS concept is

implemented in the schematic capture tool S-Edit. Since the program supports design

hierarchy, the DIS architecture is divided into five design levels. In order to increase the

signal flow control and the functionality, several control signals are introduced. These

control signals are also used to indicate the states (valid/not valid) of the output data.

Furthermore a scan-path test capability is installed to enhance the testability for sub-

levels during the test phase and to verify the correct operation for the entire IC.

1. General Design Hierarchy

S-Edit is a schematic editor to enter an electronic layout or schematic of a circuit.

It is capable of creating hierarchical circuits by using library elements or self-created

modules. Tanner provides the customer with a great variety of modules and building

blocks, but only a few of them are used to build blocks on the lower levels for the use on

higher design levels.

The DIS design in S-Edit consists of five levels. The first level uses transistors or

low-level building blocks like logic gates. Using blocks from lower hierarchy levels

allows creating higher levels in order to increase the complexity stepwise. This concept

provides two main advantages:

1. The logic of the design is more obvious, easier to understand, and easier to verify.

2. The layout editor L-Edit can use the same hierarchy to synthesize the layout

stepwise. Since the hierarchical layout process allows a slow increase in the

complexity, the layout editing is easier, more reliable, more efficient and faster.

116

The following hierarchy tree illustrates the structure of the architecture in S-Edit:

1. Level 1 elementary building elements from existing libraries or modified

library elements. This includes for example, a register cell, an adder cell, a

Mux2, transistors and all logic gates.

2. Level 2 builds on elements from Level 1 to create: 5-to-32-bit decoder part 1,

5-to-32-bit decoder part 2, the LUT-ROM, Gain Shift, N-bit register, and N-

bit adder.

3. Level 3 makes use of the elements from Level 2 and 1 to build the tapline.

4. Level 4 holds the Supertap and the Supertap Mirror consisting of Level 3 and

level 1 components.

5. Level 5 consists of a 5-to32-Bit decoder and extends the concept of Level 4

components to create the top level circuit with a data input bus, input pads,

and output pads.

A complete graphical representation of each building block can be found in the

Appendix. Also listed are the symbols and schematics for all sub-circuits used for the

design implementation.

2. Architecture Circuit Description in Level 1

a. Basis Elements

The very basic elements in a digital design are the P-FET and the N-FET

transistors. These types of transistors are represented only by a symbolic appearance,

which is specified by a SPICE output statement, as shown in Figure 64. The SPICE

117

OS

TO

GCX3

[A S^ 6*1*11

[PS = 24*P]

W=28T

IM =1]

()E

[A D = « 6*1*1']

[PD = 24«1'J

Figure 64. P-FET Transistor

output defines the transistor in ports, gate length and width. Additionally parameters are

also defined that are not relevant for the current design and therefore are not mentioned

here. The important parameters are multiples of the technology specific variable lambda

(1) so that the transistor is scaleable and can be used for different layout processes. Due to

monetary reasons and availability of certain process runs at MOSIS, we decided to target

on HP 0.5^im process. Nevertheless, if the concept is demonstrated and the IC is fully

operational, the target process can be easily changed to a smaller (faster) process without

any changes to the existing design in S-Edit.

b. Adder Cell

The adder cell and register cells, as shown in Figure 65 and Figure 66, are

building blocks to create n-bit adders or n-bit registers. The adder cell can add two 1-bit

binary input words. The input pads are labeled A and B, where the third input pad, Ci the

carry-in bit is used to connect two or more adder cells. The carry output pad, Co and the

output pad S define the 2-bit output word. The function of the cell is described by the

following two equations:

118

S = invB * invCi + invA * B * invCi + invA * invB * Ci + A * B * Ci

Co = A*B+B*Ci + A*Ci

(7.1)

(7.2)

E>

" 1IWÄ s^ invB Ci" invCi

o
QL

Figure 65. Adder Cell

To build an n-bit adder, Co of cell N gets connected to Ci of cell N+l. A 5-bit adder and

a 16-bit adder are part of Level 2 in the hierarchy.

c. Register Cell

The register cell, as shown in Figure 66, implements the scan-path test and

introduces control over the data flow in the tapline logic. The control logic consists of

hold, load, clock, and the scan path pads. Besides the clock, only one of the control

signals is allowed to become high at the same time. If load goes high, the register

performs normal operations and "clocks" the input to the output. A logical high for

"hold" freezes the last processed value and ignores new input data. If all control pads are

low at the same time, the register is forced to perform a synchronous clear (all outputs

become low). To construct an n-bit register, Q of cell N must be connected to SRDi of

cell N+l and Q of cell N must be connected to SLDi of cell N-l, where the register

119

control pads are connected in parallel. A 2-bit register, a 4-bit register, a 5-bit register, an

8-bit register, an 11-bit register, and a 16-bit register are part of Level 2 of the design

hierarchy.

SRQL

SLDL

i>

D Q

Figure 66. Register Cell

The register cell in Figure 66 consists of 48 transistors for the logic gates and the D-Flip-

Flop. By using library elements throughout a module, L-Edit can perform the layout

process without any complication. Nevertheless, this construct has three levels of delay

and cannot be driven at very high clock speeds. Furthermore, in a tapline there are 94

register cells. Depending on the number of taplines used for one chip, the layout area

could be reduced to a more compact design. ASIC designers use Transmission Gates

(TG) for these purposes. Transmission Gates are basically one P-FET and one N-FET

transistor connected via drain and source controlled through their gate ports. The control

signal is spit to provide two signals, the signal itself and its complement. If the control

signal is high, the TG lets the input data pass. If the control signal is low, the TG blocks

the input data. The described behavior is identical to that of a simple switch controlled by

120

voltage. Figure 67 shows a register cell using TGs. The control signals in this cell are the

same as for the register cell in Figure 66 plus their complements needed to drive the

gates. The controls drive the column of four TG (counting from the bottom) and

implement the basic register functions load, hold, and the scan path features. At the top of

the figure, the row of four TGs is responsible for the data output and is basically formed

out of two latches. The marked point "M" separates the master (left) from the slave

(right). The clock signal and its complement with a combinational logic of inverters drive

the gates. Due to the implementation of the clock signal, the master together with its

slave form a positive triggered flip-flop so that its behavior is quite different from a latch.

This means that at clock low the master gets loaded with the resulting value out of the TG

column. If the clock switches from low to high, the loaded value gets stored in the

master's second TG and feeds the slave, which is now in loading mode. When the clock

changes again, the master can load new data, where the slave is in store mode and feeds

the output.

The D-Register cell consists of 26 transistors. This is a reduction of 45%

in comparison to the current used register cells. For a chip with 32 taplines and 95

registers per tapline, 66,880 transistors could be saved. Moreover, TGs are used for high-

clock rate circuits and process data faster. In spite of these advantages, the critical factor

is the coherence of the control signals and its complement. The phase difference for the

clock in particular must be held at a minimum to ensure correct function at high clock

speeds.

121

M>

LKF> 1—

>

Master Latcfl Slave Latch

0-<f

1. p
.CLI^

CLKB

o

<>■

i> o-
i>

o- n>

<^

D>-

-J-

-m>

s>

Figure 67. D-Register Cell

3. Architecture Circuit Description in Level 2

Level 2 elements are the building blocks for a tapline.

a. Look-Up Table

The Look-up-Table (LOT), as shown in Figure 68, is a composition of

three sub-building blocks that are listed in the Appendix: 5-to-32 bit decoder part 1, 5-to-

32 bit decoder part 2, and the LUT-ROM. For simplicity during circuit creation, the 5-to-

32 bit decoder was split into two parts. The two parts together use a five bit binary input

and convert it into an address space used as input for the Look-Up-Table. A five bit

122

binary number represents 32 decimal numbers. Each of these numbers corresponds to two

lines in the LUT module. Therefore the five-bit input triggers the corresponding address

line in the LUT, where the LUT makes the stored value available at the output. Figure 69

shows only a small part of the LUT-ROM to illustrate the general structure.

5-to-32 decoder part 1

s " ^ «. a 3 a. *K

5-to-32 Decoder part 2

3 a * a 3 a 3B 3 a 3 B 3 a ?o 3 s 3 a 3 a 3 a 3 a 3 a 3 a 3 a ?a 3 a 3 a 3 a 3 a ?■ 3 ' 1' i" 5 "P* * W ?• O 3 B ? • }l

a. a ja a. B a. n * 6 o.a °,G a, n a. a 3a 30 33 3a 30 30 3a 3a |a 0, a 3a | a a, a ^ » j » ^ E ;■ 3« |» 3 « ^ » 3« $'

~ LUT-ROM
 TT TTT TTT. fnnm

Figure 68. Look-Up-Table (LUT) Module

The entire block is shown in the Appendix. The ROM consists of 32 double rows of

transistors with a length of 16 transistors per row, each divided into two columns. Every

double row represents a 2 * 8 bit value, the cos (I) and sin (Q) outputs. Placing P-FET

and N-FET transistors at the wire crossing of row and output pad programs the desired

output value as shown in Table 21. Recall that this is the same concept as for the FPGA

architecture. The difference here is that the ASIC architecture combines the table look-up

for the I and Q phase values in only one table, using the fact that I and Q are always in

phase quadrature.

123

<-
Hiiv_wo >-

W>

*
|inv_Wl >-

Hb^4

? ̂

H^H

^ ^3

#4

3

^

-o -o -6 t 3 -o -6

Figure 69. Part of theLUT-ROM

Program a "0" Program a "1"

Set N-FET transistor in row for

input pad Wn

Set P-FET transistor in row for

input pad inv_Wn

Table 21. LUT Programming

b. Gain Shifter

The Gain Shifter "multiplies" the input by performing a shift. The binary

input pads GainO and Gainl, as shown in Figure 70, determine the amount of shift or gain

applied to the two's complement input word. Two rows of Mux2 perform the shift of the

input. The first row connects its "select" input to GainO and the second one to Gainl. If

select gets high, the Mux2 uses Port A as input otherwise Port B. Since Port A is

connected to the input of the next lower bit, the row performs a shift of one digit to the

left. The Mux2s of the second row connect their Port A to the next but one input bit

performing a shift by two. The equation for a Mux2 is as follows:

Out = MuxA * Sei + MuxB * not_Sel (7.3)

Table 22 illustrates the gain effects on the input and summarizes the shift discussion.

124

Binary Input Gain Multiplication Effect on binary input word

Gainl GainO Factor Factor

0 0 0 1 No effect on input word; input = output

0 1 1 2 Input word gets shifted by one digit to the left,

For example: Input =1101

Output =11010

1 0 2 4 Input word gets shifted by two digit to the left,

For example: Input =1101

Output =110100

1 1 3 8 Input word gets shifted by three digit to the left,

For example: Input =1101

Output =1101000

Table 22. Gain Shift

The gain factor in Table 22 is the integer representation of the two gain inputs. They are

related to a multiplication factor as specified in the Matlab m-file Range-Doppler-

Amplitude Map Entry Program described in previous chapters.

Figure 70 illustrates the concept of the Gain Shift block. It shows the logic

that leads to the shift of the two's complement binary input. The Gain Shift block or Gain

Modulator requires an 8-bit two's complement input word and two gain-coefficients

(GainO, Gainl). Due to the largest possible shift of three positions with gain-coefficients

of Gain0=l and Gainl=l, the output word can be an 11-bit two's complement binary

number.

125

B B B B

EäliüT)-

Mux_out=A*Sel+nSel*3

painl >-

V
a 3 3

! 3 3

! 3 3

s 3 3

s 3 5
Xn.tin

s 1 3

! 3 3

a 3 3

3 3 3

raj raj m

a 3 3 3 3 3

s 3 3

a 3 3

3 3 3
NOX.TIS

V
3 3

3 3 3 s 3 3

fc*.Tin

\7

v

Figure 70. Gain-Shift Block

The dynamic range of the Gain Shifter can be calculated as follows:

DR = 20 * log(max multiplication) (7.4)

DR = 20 * log(8) = 18 dB (7.5)

Since a dynamic range of 18dB is not sufficient to counter a sophisticated IS AR, a higher

dynamic range might be desired for future design implementation. Adding another row of

Mux2s performing a shift of four easily does the extension. The highest multiplication

factor for a shift of seven bits is 128, which would increase the dynamic range to 42dB.

Extending the current gain shifter by even two more rows would increase the dynamic

range to 90dB.

126

4. Architecture Circuit Description in Level 3

Design architecture level 3 holds only one, but the most important module, the

tapline. The tapline combines the modules of Level 2 and Level 1 to form the data

pipeline for processing as descried earlier. Three different taplines have been created,

where only two are described here. The third tapline is a realization of the D-Register cell

implementation and was not tested.

a. Tapline with Phase-Rotation

A tapline as shown in Figure 71 is the central building block of the DIS

architecture since every other block in higher design levels is a multiple of this module.

The chip capabilities are directly related to the number of taplines implemented in the

chip. Every additional tapline extends the possible size of a false target. In reference to

the Range-Doppler Map Entry, one tapline in the hardware represents a single cell in the

Range-Doppler Map. Currently the chip design contains 32 taplines. Therefore the target

extent is 32 cells in the "Range-Doppler-Amplitude Map Entry program," which can be

related to a physical false target extent of:

1.2m (for each cell) * 32 taplines = 38.4m (7.6)

The tapline module allows an unproblematic interconnect of several

taplines so that a greater target extend can be achieved by adding taplines. A constraint

for more than 32 taplines is the size of the second adder, as discussed in upcoming

chapters.

127

m,..»-..,. i-lfr*^

DCB
.i>li>3>-l

rFfnl bn~>^

H.J..J. »Lp»—ID ^-^"71

Figure 71. Tapline with On-Board Phase-Increment

Due to the complexity of the tapline, it is split into three sub-blocks for illustration

purposes. The control signals and the scan-path test are not part of the discussion and are

excluded for now. The first block is called the phase-incrementer and is shown in Figure

72. It consists of a 4-bit register, a 5-bit register and a 5-bit adder and requires a 4-bit

binary input word. The two's-complement binary input is the desired phase-increment

value (oPRI that has to be added to the DRFM-phase data. The phase-incrementer

128

supplies integer multiples of the desired phase-increment (ncoPRI) to the phase data on a

pulse-to-pulse basis. That is, due to the phase-rotation requirement, the output of the

phase-incrementer must increase or decrease by the amount of the phase-increment value

for every new pulse. The increment value supplied to the tapline may be constant over

several radar pulses (constant Doppler frequency). To achieve this "constant," the

increment value is added as the first input for the 5-bit adder, where the connection

N HO

Phase Rotation Reg

fc*4 kH hH HM

VYrV Phase Inc Reg

ä OS i

. a °
3 m «

ft
s a s s

Z S E S 8

3 cn

3L

Phase Inc Ac:

äa i a\ / z a ä = s7

5-Bit -|- Adder /

^ Increment
3 output

Figure 72. Phase-Increment Block

between bit four and five is the sign extension. The adder output goes into a 5-bit register

that is again connected to the adder in a loop. Due to this construction, the output of the

5-bit adder is always a n-multiple (n = 1, 2, ...) of the original input. The phase-rotation

can be adjusted by control signals, which control the registers in this block. The master

clock controls the overall behavior of the registers. Since a register needs one clock cycle

to produce a valid output, the Phase-incrementer has a requirement of at least one clock

cycle before a valid result is present at the output. Therefore the phase-increment in the 5-

bit register needs to be activated exactly one clock cycle before a new pulse with new

DRFM-phase data can be processed to produce a valid output. The output is a two's

129

complement binary word, which is the input to the next logical block, the LUT-Module.

An alternative phase-increment design is described in Section B that allows even further

flexibility in false target generation.

The LUT-Module, shown in Figure 73, is the second sub-block of a

tapline. It consists of a 5-bit adder, a 5-bit register, a LUT for I and Q values, and a 8-bit

register. The adder takes the DRFM-phase data inputs and the Phase-incrementer outputs

and adds them. Note that the addition of two 5-bit binary words could result in a 6-bit

word. This fact can be ignored, since the Phase-incrementer output is a phase value

repeating over a period of 2TI. Therefore the adder output, in conjunction with the cosine

and sine LUT, can also be shown to be periodic over five bits.

MM)
s s 3 i s V

5-Bit -|- Adder

Phase Ace

Pipeline Reg 1
en
Q)
OS

a l

LUT
sin-table-output cos-table-output

a OJ M M Dt DIM 01 DO

—\l 8-Bit Reg s

for Q-Block
9

0' 0» « 0» 01 01 01 00

Pipeline Reg 111 M DS 01 D)D2 Dl DO

- 8-Bit Reg ä

3 &
for I-Block

9
QT (X 01 0< 01 01 01 09

@5@5@S@3

Figure 73. Tapline LUT Module

130

In continuation with the data flow, the adder output leads into a 5-bit register (Pipeline

Reg 1), where it is available at the output after one clock cycle. The LUT block takes the

5-bit input word and uses it as an address to determine the corresponding I and Q values

in the sine/cosine LUT as described earlier. From this point the signal flow is divided into

two data channels, which are the in-phase and quadrature values (I and Q). However the

operations performed on data within the I and Q channel will be the same up to the final

output at the end of the first tapline. The LUT output data are inputs to an 8-bit register

(Pipeline Reg 2) and become available at the output after the next clock cycle leads into

the last module, the gain and adder block

The "gain and adder block" is shown in Figure 74 and consists of a gain

shift block with a gain register, a 16-bit adder, and a 16-bit register each for the I and Q

channels (compare also with Figure 71). The input to the gain shift is the output of the

LUT. As described earlier, the gain shift performs a shift of the input data in accordance

with the specified gain-coefficients. The output results in a two's complement 11-bit

word for each channel. After one clock cycle, the values are present at the output of the

following 11-bit register (Pipeline Reg 3). The following 16-bit adder takes two inputs.

One is the output of the Gain Shift block, which again requires a sign extension to the

most significant bit achieved by the interconnection of bits 11 to 15. The second input is

the output of the tapline that is the next higher in a cascade of 32 taplines. This illustrates

the concept mentioned at the beginning of this chapter. To recall, imagine that the

considered tapline is tapline #1. The next higher tapline is #2. After four clock cycles, the

first outputs at both taplines are available at the gain and adder block output (see Table

20), where tapline #2 presents its values to the 16-bit adder of tapline #1. With the next

131

clock cycle, tapliiie #2's incoming data is added to tapline #l's data coming out of the

11-bit register after the gain shift. After the addition in the 16-bit adder, the values are

presented to the input of the last register (Pipeline Reg 4) in the tapline. After one more

clock cycle, the values in the form of 16-bit two's complement words are available at the

tapline output. The size of the last adder determines the numbers of taplines because all

outputs are added at the adder inside the first tapline. A 16-bit adder can be used with 32

taplines without achieving an overload at the end of the chain. Every multiple of the

current 32 taplines requires increasing the number of adder bits by one bit.

111111 % 1111

_|«.. Gain Shift
iiiiitijiii

Pipeline Reg

H" 11-Bit Reg ä

for Q-Block1

seas' ees
Tfffi

WYYVVVVYSVAWY' I t t , t

sea
333
 -YllMi

IS Bit l Mfer
S 3 a a 5 c n\ a s 3 = t

'. 11-Bit Reg s

! for I-Blocks

3 = 1 s 3 = 3 = J t!

 / ^

""
9 8 »S SSe» P«9»8

= aa TVä = 323 =
16 Bit I Mder
* 3 3 r *K . .. t „ „ n

333333333333333

16-Bit Reg
55ä2istSS.565SS8*

°i °i si °i
ess» E" *- t- t- wwW

sss
o o o

si e s e

Pipeline Reg 4 Jtt

1ZZ7

= 335=3338333333

16-Bit Reg i
e3S3ess&3S33acs

°' a] ' £88

Figure 74. Tapline Gain and Adder Block

All of the three sub-blocks that have been discussed include control and test signals

managing the data flow to achieve the physical requirements for the DIS. These signals

are not part of this section but are discussed in detail later on. Furthermore, there are four

132

1-bit registers on the right hand side shown in Figure 71, that were not part of the

discussion either. These registers are used to allow particular control signals to penetrate

the tapline synchronously with the clock.

b. Tapline with Double Buffering

Figure 75 shows a modified version of a tapline with double-buffered

phase data and gain-coefficients. The main body for DRFM-phase data treatment is still

the same, but the application of the phase data and the gain-coefficients is different. The

Phase-incrementer is replaced with a double register buffer consisting of two 4-bit

registers as shown in Figure 76 (compare with Figure 72). The generation of the phase-

increment is done off chip and can be applied on a PRI to PRI basis. Therefore the

flexibility is increased, since generation of multiple scatterers (superposition of several

Doppler phases) are possible within one Range-Doppler-cell.

For this process, the phase data is stored in the second register while new

data is loaded into the first register. The phase-increment is normally fixed for one radar

pulse so that the loading requirements will not reduce the speed of the data processing.

The only trade off in this design is the resolution in Doppler due to the supplied phase

data. The phase-rotation in the other tapline design allows a controller to produce

multiples of the original 4-bit input phase, which could result in a 5-bit output going into

the phase accumulator. With phase buffering the input is four bits and no phase-rotation

is done on chip. The phase data must propagate through the registers before being added

to the DRFM-phase data in the phase accumulator. The phase accumulator requires two

5-bit inputs to produce the different Doppler phase values. In order to avoid limitations,

133

Tapline New

Clock 1

Clock 2

Clock 3

Clock 4

Figure 75. Tapline with Double-Buffered Phase and Gain

134

Phase_inc Register Buffer

TT
SLDi STOi

DO 00

4-Bit Reg

U SI I »

Phase_inc Register

11

4-Bit Reg

cu; st Si 10

Input for DRFM
Phase Data

V
Phase Ace \ 5_B.t _j. Mder

 3 £3—to—S
O O O O

Figure 76. Phase Buffering

the least significant bit for the phase-increment data leading into the phase accumulator is

fixed at zero (grounded). This overcomes a reduction in the range of possible phase-

increment values since the four input bits are equally spread over a range of five bits.

Nevertheless the phase-increment data are limited to even decimal numbers loaded as

binary words. This is considered acceptable for a concept demonstrator, since otherwise a

major redesign of Level 4 and Level 5 would be required and would postpone the

fabrication considerably.

Figure 77 shows the gain-coefficients that are also double-buffered. This

provides increased flexibility in terms of loading the chip. The gain-coefficients normally

change together with the phase data with every radar pulse. A logic is required to change

the new gain at exactly the same time the processed data is present at the gain shifter.

This logic is not shown in Figure 77, but can be observed in Figure 75. To change the

gain-coefficients, the control signal activating the phase-increment data penetrates two

135

1-bit control registers. Thus, the control signal is delayed by two clock cycles, which

represent the time the data needs to reach the gain shifter. Once the control signal is

present at the second gain register, the register loads the new gain-coefficient from the

gain register buffer and the gain shifter uses the new gain to perform the shift of its input

data.

3ain_DatO
3ain Datl

">— oa;

\ Dfl

o o o o o

2= 9 05 ri 3 Q|

2-Bit Reg o:
SLDi SRDi

TT
Gain Reg Buffer

O Q Q O 0

D2= 9 ffi rt ö Q(

?» 2-Bit Reg o:
SLDi SRDi

TT Gain Reg

TTTMHT
ConO

Gaiil ^ \JU-U1 iJIÜLL- ,mnner(Mux2]

33338333833

AT A6 A5 A4 A3 \2 Al At

Gain Shift

odoood odddo

Figure 77. Gain-Coefficients Double Buffer

5. Architecture Circuit Description in Level 4

Level 4 of the design construct in S-Edit pursues the tapline. Figure 78 shows a

Supertap that consists of 8-taplines connecting the data pipleline in series. The Supertap

design is not affected by the two different tapline designs mentioned in the previous

section. The only difference is the name of a control signal that reflects the tapline used

to construct the Supertap. Form now on, we will consider only the double-buffered

tapline, as it is used to generate the layout in L-Edit.

A Supertap has the same control signals and output pads as a tapline. For

example, the gain-coefficients, the phase-increment values, and the target-extent control

signals are different for the individual taplines. The target extent signal is discussed under

the control signal section and will be disregarded for now. The gain-coefficients and

phase-increment values are important data for the false target generation, as described

earlier.

136

Figure 78. Supertap Schematics

Due to the serial addition in the 16-bit adder for the new architecture (see Figure 74), the

same DRFM-phase samples serve as inputs for all taplines simultaneously, as illustrated

earlier in this Chapter. The 2* 16-bit input pads on the right hand side of Figure 78 are

used to cascade another Supertap. Due to this concept of cascading Supertaps, in theory

any number of Supertaps could be easily chained together almost without any need for

modifying the existing design. The number of Supertaps is therefore limited only to the

size of the chip and the current available technology for mask layout. If the desired false-

target-extent is larger than the available Supertaps that could fit into an IC, several ICs

can be "daisy-chained" together to increase the possibilities for false target generation.

For daisy-chaining more than four Supertaps together, the 16-bit adder within a tapline

needs to expand by one more bit. Every doubling of the used 32 taplines or four

Supertaps requires one more bit for the adder.

6. Architecture Circuit Description in Level 5

Level 5 is the highest level of the current design. As shown in Figure 79, four

Supertaps are connected to get an overall number of 32 taplines (8-taplines per Supertap).

A 5-to-32-Decoder is used to control the target-extent control signal in the form of a truth

table. The required target size can be smaller than the available number of taplines. The

137

decoder generates control signals to "turn on" the needed number of taplines. To

illustrate, a five bit input word corresponds to decimal numbers between 0 and 31. These

numbers are directly related to the tapline enumeration as shown in Figure 78. If the

generation of a false target requires five taplines, the binary input to the decoder is 00110,

which activates tapline zero to tapline four in Supertap A (lower left corner in Figure 79).

The schematics of the decoder can be found in the Appendix.

Figure 79. Toplevel Consisting of Four Supertaps

138

The input and output pads used in Level 5 are summarized as follows:

Inputs:

• Supertap D has two rows of 16 input pads each for I and Q values in order to

connect Supertaps in series. For this layout, they are connected to ground to

exclude possible side effects based on pending or floating nodes.

• 5-bit input for the 5-to-32-Decoder to control the target size.

• A master clock, which is connected in parallel to clock input pads throughout

all five levels.

• Control signals for the scan-path test (SR, SL, S_P_Test_Rin, S_P_Test_Lin).

• 2 * 32 = 64 gain-coefficients (GainO/Gainl for each tapline).

• 4 * 32 = 128 phase-increment values (phase_incO/1/2/3 for each tapline).

• 5-bit DRFM-input data (same input for all tapline).

• Several 1-bit control inputs to control the data flow in the chip (load_phase,

delta_Phase_increment, Range_bin_valid, Load_Gain_Reg and overflow_in).

These signals are discussed in the next section.

Outputs:

• Final output for I and Q channel in Supertap A representing the data for the

false target. This data is imported into Matlab for verification.

• Control signals for the scan-path test (S_P_Test_Rout, S_P_Test_Lout).

• Two 1-bit control outputs to verify the output result of the chip (Overflow_out

and Data_Processed_out)). These signals are discussed in the next section.

With a total of two gain-coefficients, four phase-increment inputs per tapline, and 32

taplines for the current design, a total of 192 input pins are required. Adding this many

139

pins to the number of high-speed input and output pins would greatly increase the cost of

IC fabrication and the complexity and cost of using the finished IC in a system.

Furthermore, if the number of taplines is increased in the future, this problem would

become even worse. However, the gain-coefficients and the phase-increment values

change only at the beginning of a new radar pulse, not on every sample within a radar

pulse. Therefore, the gain-coefficient and phase-increment inputs are of relatively low

bandwidth and can be bussed together. To maintain compatibility with off-the-shelf,

digital signal processing microprocessors and components, a 32-bit input bus has been

designed for the top-level design. The 64 gain-coefficient inputs for 32 taplines (two per

tap) are loaded in two bus cycles. The 128 inputs for 32 taplines (four per tap) for the

phase-increment are loaded in four bus cycles. Table 23 lists the bus cycles and the

control signals and represents an example for how the inputs could be loaded into the IC.

Bus-CLK Control Signal Function

1 Load gain Reg Tap 0-15 Loads the gain-coefficients for tapline 0-15

2 Load gain Reg Tap 16-31 Loads the gain-coefficients for tapline 16-31

3 Load Phase Inc Supertap A Loads the 4-bit phase-increment value into

taplines 0-7

4 Load Phase Inc Supertap B Loads the 4-bit phase-increment value into

taplines 8-15

5 Load Phase Inc Supertap C Loads the 4-bit phase-increment value into

taplines 16-23

6 Load Phase Inc Supertap D Loads the 4-bit phase-increment value into

taplines 24-31

Table 23. Loading Example for the Bussed Inputs

140

The current design can be easily expanded to include more than 32 taplines

without a further increase in on-chip hardware related to the bus or the number of I/O

pins. To extend the current design, the gain-coefficient inputs and phase-increment inputs

from each additional Supertap need to be connected to the bus. Every additional Supertap

requires its own loading cycle so that the number of bus cycles will increase.

In Level 5 all inputs and outputs are attached to Pad cells. A Pad consists of a

Buf4 and a Padln or PadOut for an input or output respectively; Figure 80 shows an

output pad. The Pads provide the interface between the chip and the outside world. Their

primary element is a piece of metal that connects to the pins of the chip via the pad

frame. Another important element within a pad is a buffer (Buf4). A Buf4 is a cell that

does not perform any logic function but does provide buffering of logic signals

(triangular symbol with number four inside in Figure 80). A Buf4 can be driven at high

speed by a minimum-sized logic gate. It is capable of sinking and sourcing four times the

amount of current that a minimum-sized logic gate can sink or source. Therefore it is very

good for driving networks that have a high fan out and have large capacitive loads, such

as clock and control signals and is used throughout the design.

ln> Out >

Figure 80. Output Pad

The two types of Pads are distinguishable by their function. Padln is used to

connect signals from outside the IC to the on-chip inputs. It provides a bond pad site for a

wire bond, a static-discharge protection circuit, and logic signal buffering to drive high-

141

fanout and high-capacitate on-chip networks. PadOut is used to connect the IC outputs to

the off-chip networks. It provides a high-power driver circuit, a static discharge

protection circuit, and a bond pad site for the wire bond.

142

VIII. ASIC DESIGN: TIMING & CONTROL

This chapter provides a detailed description of inputs controlling the IC and the

signal-flow. Furthermore, timing control diagrams will illustrate the signal flow within

the IC and demonstrate the use of the control signals to achieve a correct data output.

Moreover, the concept of scan-path testing is discussed and illustrated as an example for

the tapline implementation.

A. CONTROL SIGNALS

At this point it should be mentioned that the master clock exclusively controls all

control signals. Due to this setup, the data processing can be controlled precisely in the

data pipeline, where a pipeline is the data flow within a tapline.

The Scan-path test consists of several inputs and outputs and will be discussed in

more detail later. The associated ports are: Scan-path test Left Out (S_P_Test_Lout),

Scan-path test Right Out (S_P_Test_Rout), Scan-path test Left In (S_P_Test_Lin), Scan-

path test Right In (S_P_Test_Rin), Shift Right Data In (SRDi), Shift Left Data In (SLDi),

Shift Right (SR), and Shift Left (SL). They are mentioned here briefly for introduction

purposes because they are used in the following description.

1. Clock

The clock (CLK) is the most important control signal throughout the IC. Every D-

Flip-Flop used passes its input data to the output when the clock signal is high. This

concept is called "positive edge" clocking. Since the clock driven register cell is the basic

element of a n-bit register, the entire data flow is clock controlled. With the clock

143

changing from low to high, the data transports one step further down in the tapline

pipeline and allows total control over the internal control signals and the data processing.

2. Load

Load (LD) is a signal to control the behavior of the registers. Due to the structure

of the register cell, the signals Shift Right (SR), Shift Left (SL) and Hold (HLD) have to

be low when LD is high. Otherwise the register cell is in an undefined state and will

produce erroneous results. Load is the mode for normal operation. If LD is high, the data

can penetrate the pipeline controlled by the clock. If LD is low, the chip is principally in

a special mode, where the other control signals, such as, Hold or Shift Right can be used.

3. Hold

Hold (HD) is one of the register cell signals that can be exclusively high for a

certain performance within a register. If HD is high, SR, SL and LD have to be low. Hold

is used to store or hold a value within a register that should not change over the clock

period. The input data bits to a register with HLD high are simply ignored and the last

data within the register are retained. This concept is used to achieve buffering for the

gain-coefficients and the phase-increment data. Since these data bits are used within a

period of a radar pulse, they are stored in registers and made available for subsequent

processing using the clocked DRFM-phase data.

Hold, Load, Shift Right and Shift Left are the key control signals for every

operation. As mentioned earlier only one of these signals is permitted to be high within a

clock cycle, or the IC will be in an undefined state. However, if all control signals are low

at the same time, the register performs a special function, the synchronous clear. A

synchronous clear forces the register to reset and sets all output bits to low (zero). This

144

function is used as initialization before data is loaded into the IC and for the two 11-bit

registers leading its output into the 16-bit adder. The 11-bit register's LD signal is

connected to a two-input AND gate. The gate inputs are connected to control signals in

such a way that they signal if data is present or if data is not present at the gain shifter. If

data is present, the register will perform a normal load. If no data is present, it will

perform a synchronous clear and zero the output. The requirement for this operation is

due to the way the data is summed in the 16-bit adder. The DRFM-phase data penetrate

all taplines simultaneously. Therefore tapline 2 to 32 will still have valid data in the adder

chain, where as tapline 1 is already finished with its data processing. The rest of the data

is clocked through the adder chain, consisting of the 16-bit adders within the single

taplines. No data is allowed to influence the continuing data transport at this stage.

Therefore it is necessary for the idle tapline not to have any undefined data present at its

16-bit adders. The synchronous clear function will guarantee that this input (A input row

of the 16-bit adder) is zero.

4. Load Phase Increment

Load Phase Increment (LD Phase Inc) is a control bit that affects the two registers

in the phase-increment block in order to signal a change for the phase-increment value.

The signal performs the same operation for both described taplines. If LD Phase Inc and

LD are high, a new phase value gets loaded into the first phase-increment register. For

the rotation phase tapline, the second register performs a synchronous clear to reset the

phase-rotation, whereas the second register in the double-buffered tapline design remains

unchanged. If LD Phase Inc is low and LD is high, the Phase Inc Reg in both designs is

145

in a hold mode, in order to keep the phase-increment value constant over the duration of a

radar pulse.

The gain-coefficients and the phase-increment values are transported on a 32-bit

bus. There are four phase-increment bits per tapline and 32 bits for a Supertap, therefore

the chip needs to load a total of 128 phase-increment values to be able to process DRFM-

phase data. Since the bus has a length of 32-bits, four bus cycles are needed to load the

gain-coefficients, controlled by the signals "Load Phase inc Supertap A-D." These

signals are equivalent to the controls to LD Phase Inc on the top level of the chip. They

perform the same operation and trigger the tapline controls.

5. Delta Phase Increment

Delta Phase Increment (Delta Phase Inc) is a control signal for the Phase-Rotation

Register (Phase Rot Reg) and is used only in the tapline with on-chip phase-rotation

instead of double-buffered coefficients. Since a CHIRP pulse or radar pulse is divided

into samples and the phase should only rotate once for every pulse, the phase-rotation

value has to be incremented between pulses. If Delta Phase Inc and LD are high, the

phase-increment can "rotate" under control by the clock. The resulting value will be

added to the DRFM-input data. If Delta Phase Inc and LD Phase Inc are low, the Phase

Rot Reg is in a hold mode and the phase-increment value (input for the Phase

Accumulator) is fixed. Before processing a new Radar pulse, the phase has to rotate once

to produce the new phase value.

6. Use Phase Increment

Use Phase Increment (Use Phase Inc) is the substitute for Delta Phase Inc in the

double-buffered version of the tapline. In this case the phase-increment data has to pass

146

through two registers in order to arrive at the phase accumulator. With Use Phase Inc and

LD high, the data can flow from the buffer register into the phase-increment register.

Furthermore the same control signal propagates through two more control registers to

adjust the loading of the gain-coefficients at the proper time, since gain and phase usually

change collectively. Thus the controller is free from initiating the gain change to

correspond to the phase change.

7. Load Gain Register

Load Gain Register (LD Gain Reg) affects the behavior of the gain register (the

buffer for the double-buffered tapline) in order to signal a change of gain data within a

tapline. To load new gain data, LD Gain Reg and LD must be high at the same time. If

LD Gain Register is low and LD is high, the gain register is in a hold mode.

The gain-coefficients and the phase-increment values are bused on a 32-bit bus.

There are two gain-coefficients per tapline and 16 coefficients per Supertap. Therefore

the chip needs to load 64 gain-coefficients values to be able to process DRFM-phase

data. Since the bus has a length of 32-bits, two bus cycles are needed to load the gain-

coefficients controlled by "Load Gain SupTap AB" and "Load Gain SupTap CD." Load

Gain SupTap AB/CD are the equivalent controls on the top level of the chip. They

perform the same operation and trigger the tapline controls.

8. Target Extent

The Target Extent (Tgt Extent) control is used to activate or deactivate taplines in

accordance with the appropriate size of the false target. The current design is able to

handle a false target up to 32 cells corresponding to the in Matlab constructed Range-

Doppler map. For a small false target, less taplines are needed to create the target. In

147

design level 5 a 5-to-32-bit decoder uses a truth table to adjust the required taplines in

dependency of the target size. If the target generation requires, for example only 12

taplines, the Tgt Extent for the first 12 taplines is high. The Tgt Extent for the other

taplines is low and the output values are ignored.

9. Range Bin Vaüd

A tapline needs four clock cycles to produce a valid output. Range bin valid goes

high when new DRFM-phase data are presented to the input of a tapline. The bit

penetrates through 1-bit register cells to the Data Processed Out pad. If Data Processed

Out goes high, the output from the tapline is fully processed and the output is valid. As

long as Data Processed Out is low, the clocked output must be ignored.

Besides the normal function, there is an interaction between two controls at this

point. The Range bin valid control string feeds the two input AND gate for the Pipeline

Register 3 as mentioned in VIII.A3. If the Range bin valid is low, the register after the

gain-shift block gets cleared with every clock cycle. Recall, that a higher tapline can

produce valid results, even if a lower one cannot. Consequently the lower tapline is not

allowed to add undefined data to the valid output of a higher tapline and must be cleared.

10. Vaüd Result In

Valid Result In performs a similar operation as Range bin Valid. It connects to the

Valid Result Out port of the next higher tapline. If the next higher tapline produces a

valid output that leads into the lower tapline, Valid Result In is high and the next lower

tapline produces a valid output with the following clock, although it may not produce any

valid data within its own gain-shift block.

148

ll.Overflow In/Out

Overflow In is an error-checking signal from the next higher tapline. If a higher

tapline produces an invalid output due to an overflow in the 16-Bit-Adder, the entire chip

output will become invalid. Overflow Out is the pipelined output to flag data produced by

a 16-bit adder overflow.

B. TIMING CONTROL

The clock controls the normal mode of operation. Several control signals have to

interact in order to ensure correct DRFM-input data treatment. In other words, the

operator needs to know the timing relationship for functions, such as bus loading,

DRFM-phase data input, and data read out. The best method to demonstrate the

complicated timing control is with an example. The example in Figure 81 shows the

timing diagram for the initial loading phase and Figure 82 shows the timing constraints in

terms of clocks for the initial loading phase and the time between two radar pulses. In the

diagrams, the clock is set to 5nsec low and 5nsec high so that one clock cycle is lOnsec.

Moreover, for illustration purposes, multiple input and output bits are collapsed into a

single bit.

1. Initial Loading Phase

Before data processing can begin, the IC should be initialized, clock 0-10nsec, as

shown in Figure 81. This will clear all registers with a synchronous clear and set the

control bits to a defined state. The next six clock cycles are reserved to load the gain-

coefficients and the phase-increment values through the 32-bit bus. From these six clock

149

cycles the first four are required to load the phase-increments for all four Supertaps. This

involves interacting with the controls and is summarized as follows:

1. Supertap A loads its phase-increment data during the first of the six clocks.

For this purpose the corresponding data are presented to the 32-bit input bus

and the control "LD Phase SuptapA" is high for this particular clock.

2. Supertap B loads its phase-increment data during the second of the six clocks.

For this purpose the corresponding data are presented to the 32-bit input bus

and the control "LD Phase SuptapB" is high for this particular clock.

3. Supertap C loads its phase-increment data during the third of the six clocks.

For this purpose the corresponding data are presented to the 32-bit input bus

and the control "LD Phase SuptapC" is high for this particular clock.

4. Supertap D loads its phase-increment data during the fourth of the six clocks.

For this purpose the corresponding data are presented to the 32-bit input bus

and the control "LD Phase SuptapD" is high for this particular clock.

The following last two clock cycles are used to load the gain-coefficients for the

Supertaps and move the buffered phase-increment data into the next register:

5. Supertap A and Supertap B loads its gain-coefficients during the fifth of the

six clocks. For this purpose the bus pads "BusO" to "Busl5" are the inputs for

Supertap A and "Busl6" to "Bus32" are the inputs for Supertap B.

Additionally, the controls "LD_Gain_SupTap_AB" and "Use Phase Inc" are

required to be high for this particular clock, where "use Phase Inc" moves the

buffered data into the registers for data treatment. Due to the delay

150

propagation of the Phase Inc control, the buffered gain-coefficients move after

two more clock cycles into the register for data treatment.

6. Supertap C and Supertap D loads its gain-coefficients during the sixth of the

six clocks. For this purpose the bus pads "BusO" to "Bus 15" are the inputs for

Supertap C and "Busl6" to "Bus32" are the inputs for Supertap D.

Additionally, the control "LX)_Gain_SupTap_CD" is required to be high for

this particular clock.

Thus, seven clock cycles are needed before the first DRFM-phase data can be read into

the taplines. Due to the pipelined structure of a tapline, the data treatment demands four

more clock cycles before the first valid output is present at the first tapline (clock 70-

lOOnsec). During these four clocks, the phase-increment and the gain are applied to the

DRFM-phase data and the resulting data adds up with the output data from other taplines

in the 16-bit adder. In summary, eleven clock cycles are required before the first valid

output is observable at the output. The "Data Processed Out" control signal is an

indicator for valid results. As long as this control signal has a high output, the

corresponding output for the I and Q channel are valid and can be used for false target

generation. After initialization the DRFM-phase data for the first radar pulse can be

processed within the taplines. The time between two radar pulses requires some attention

again and is discussed in the next sub-section. The initialization for the second Radar

pulse is the same, as it concerns the loading phase with phase-increment data and gain-

coefficients. Nevertheless the register initialization with a synchronous clear is not

required.

151

During the time of loading and data processing, LD is high except for the

synchronous clear at the very beginning. All other register control signals like the scan-

path controls and HLD are low, since this is the defined state for normal operation.

Moreover, the target extent as defined through level 5's 5-to-32-bit decoder activates the

taplines. The example in Figure 81 assumes all taplines active and shows the

corresponding decoder inputs (Tgt Extent In 0-4) as high.

152

<n i
c 1 o 1
in
CN

CO
c
o
CD
o

to
c

CD-
in
r*w

to
c

ri
ID

(0
C
O-
uri
CM

- o o o - - - o a o V O o a o o o o - - - o

a.
< CD ü Q UJ

< a.
£ a.
3

CO
1

CD

Q.
CO

CO
1—

c —,

(0

3
CO

1
u
c

£2.
CO
1-
Q.

CO
1

o
c

Q.
to

h-
a.

CO
1

ü
c

(0
1-
a.

CO
1

o
c

CD
CO
CO

sz
a.
, i

u
c

1

a.
CO
1-
Q.
3

CO
1

U)
CD

1-
£2.
3

CO
c

~<0

CD
v I

Q.
3 ^

CO 3

•S °l
CD VS. 13
•J to 52 w
£ *l S £ v

• c o S S
<? Ö -°l £ 3 3
CX) CD 0) "-| o O
T- S2 ™ w I 1 ^£

_J
tn _T

es
tL

i

E
xt

en
t. 1

CD
CO
CO

D_

1
CD
CO
CB
.c
a

1
en
to
to

a

1
CD
CO
C»
f

0-

CM ro
n

CD
to
CO
-c
0. 1

or
i c

to
CD

1 c
to

CD

5 O

o
o n u- ' 1 i i 1 (0 1 1 to CO to C .22 Q| Q] CD o _j or 1 O O) n n n n 3 CO n n 3 3 .5= CO CO je CO o O X 00 CO _l 1— _i _J _i _i LU 3 _J _i UJ CO Q. DC Q H- (—

4 4 4 4 4 4 4 | 4 4 4 4 4 4 4 a I l s I i 1 1

Figure 81. Timing Diagram for the Initial Loading Phase

153

2. Timing between Radar Pulses

After processing all DRFM inputs for one Radar pulse, there are still valid results

in the adder chain propagating in direction of the first tapline in the row. The time

between two radar pulses is much greater than the time between the samples. Therefore it

is desired to read out the rest of the data. For example, assume 62 DRFM-phase samples

for one radar pulse and a requirement for 32 taplines, where the 62nd DRFM input is

processed parallel in all taplines and now reside in the corresponding 16-bit registers. The

16-bit register of the first tapline is the chip output. Therefore its output is already read

out, but 31 outputs need to be clocked through the chain. Consequently, 31 clock cycles

are required to read the rest of the remaining data. Figure 82 shows that the DRFM input

is low during this time and does not contain any data for processing. As mentioned

earlier, the 11-bit register within a tapline not containing any valid data needs to be

cleared since it leads into the 16-bit adder. Therefore the control Range-bin valid needs to

change from high to low after the last DRFM-phase data gets loaded into the taplines. In

view of the fact that the taplines are basically idle during the read out of the processed

data, the time is used to load the phase-increment data and gain-coefficients for the next

radar pulse.

154

cri
£5

a
Q

O

ON
CO

<
3

3

o
8

CO

»- ~- i- o a — o o o o -- *- — o

O
_j
I

< CD O

WWW

J O
Uli °-.

•a.
03 »- o.
3

171 <C
1 J=

o n, c

<u
C4

.c to
LL o

Q o a tn

en n CL 03
<r c > 05 |_
i_ i— UJ

a. ÜJ c
3 3 C

CO M 03 CD

a> rr cr □ "-,
£ i i i i- 2 .E E co oo
n ro re *— [A a, O (5. 6 2

a' a'
I w

CD CD

<3

a.

S 2 >'

CC Q V-

4 4 4 4 4 H U 4 H 4 H II H 1 ! II

Figure 82. Timing Diagram between Two Radar Pulses

155

C. SCAN-PATH TESTING

The design of a workable system solution for a given problem is only half of the

work. Furthermore one must also be able to test the system to a degree, where it can be

ensured that the system is fully functional with a high confidence level. In very small-

scale digital systems, tests can be performed exhaustively, where the system is exercised

over its full range of operating conditions. This method is not an economical or useful

approach to verify the functionality. Therefore other strategies are necessary to perform

proper testing. The scan-path methodology is probably the most widely used technique

for testing those parts of a integrated circuit that are constructed of clocked flip-flops

interconnected by combinational logic. As illustrated in Figure 83, the scan path can be

implemented into a simple circuit very easily. When the circuit is put into test mode, one

can shift an arbitrary test pattern into the register. By returning the circuit to normal mode

for one clock period, the contents of the scan register and primary input signals act as

inputs to the attached combinational circuitry and new values are stored in the register. If

the circuit is then placed into test mode again, the controller can shift out the contents of

the scan register for comparison with the correct response.

By using test points, one can easily enhance the absorbability and controllability

of a circuit. The scan-path register effectively provides such test points, whereas in FPGA

design the implementation of Tristate-buffers is necessary. To control the test points in a

scan-path test several control signals are implemented to adjust the mode of operation.

Table 24 lists the signals used for the scan-path test in the new DIS design.

156

EäT>
SRDi

s>

IB=[>
D 0

Figure 83. Register Cell

Padname Function

SR (Shift Right) Input pad to control function of register. If high, the

data within the register will be shifted to the right with

every clock cycle. All other control signals have to be

low (HLD, LD, SL)

SL (Shift Left) Input pad to control function of register. If high, the

data within the register will be shifted to the left with

every clock cycle. All other control signals have to be

low (HLD, LD, SR)

SRDi (Shift Right Data in) Test data input pad from right front end of scan-path

test

SLDi (Shift Left Data in) Test data input pad from left front end of scan-path test

SRDo (Shift Right Data out) Test data output pad for a right shifted output

SLDo (Shift Left Data out) Test data output pad for a left shifted output

Table 24. Scan-Path Test Control Signals

157

A scan path register is a serial cascade of scan path register cells whose inputs and

outputs are connected to the internal logic of a chip as illustrated in Figure 84. During

normal operation, the LD signal is asserted and the logic value at the inputs DO and Dl

reach the outputs QO and Ql after one clock cycle. When on the other hand the SL is

asserted during test mode, the logic value at SLDi arrives at Ql one clock cycle later and

continues propagating to QO with the following clock cycle. When SR is asserted during

a test, the logic value at SRDi arrives at QO one clock cycle later and continues

propagating to Ql with the following clock cycle. If the chip is still in test mode, the

values keep propagating in the forced direction through all the connected registers in the

scan path.

SRDi

^ ^ r^

HLD LD SR SL

SRDi

Di
Reg CellQB

SLDi
CLK

HLD LD SR SL

SRDi Q

Reg CellQB
SLDi(

CLK

Di
-<SLDi

Figure 84. Schematics of a 2-Bit Register

158

In summary, the scan-path test can be used for two valuable testing functions.

First, a certain test setup can be tested, where test data is placed in every register of the

chip. After loading the test data via the scan path, the chip is put into normal operation

mode and the resulting outputs can be observed at the output for examination. Second,

after normal operation all stored data in the registers can be read out by using the scan-

path shift option to move the register data to the left or to the right. The results can be

examined by comparing them with calculated values. The scan-path test implementation

for a tapline with phase-rotation on-chip is shown in Figure 85. The path between the

taplines within a Supertap and beyond is simply realized by a serial connection of inputs

and outputs. The scan chain from the toplevel point of view connects tapline 0 to 31 in a

long row of registers. To give an overview about the number of bits penetrating through

the scan chain, imagine the following calculation: 90 bits are used in the registers of one

tapline, where 32 taplines are implemented in the chip. This will result in 90 * 32 =

2,880 values to read out for the complete scan path. A double-buffered tapline has 94

register bits. Therefore the length of the scan path on the toplevel is even higher with

3,040 values.

159

im

C
« 5 |^—--l

JIM
" toff "i

! so S

ttttü

5-Bit _l_Adda

iili)

am K/1! i! i,

Right In

if
Left Out

! Shift Left i

v
5-Bit _l_Adder

urn

— « Bä a_

sä!

tm
at

LUT

11J i 1111 liliJJJl

Shift Right

H n t m

^5 8-BitRegJ^""
o_ J forQ-Block *~—

n«n«e

pn;
2-ÄIJ8f]

TL

tUHJJT

^ 8-BitReg|
o_ a forl-Block

mm J||.....:„h^,^7.i.J..U.i.i.ü::::!*
■TTTTTT-TT""'"'" miTm*

--.iW*Wfti --liWlWpMI

£■ 11-BitReg *}Z.

:uuuim

-F~^
11-BitReg |
forl-Block"

immun

'S a -

■83 I

■8«!

4 ßssss!ssaj5<s3s»V22ii = !sasiaj s = ; W BälssSsjsTTTTTTTVTTTTTTTTTaTTsTsiü
. . . J4Bil ■ Adder
a a a 4 a 3 a ""1^* a a a a a a

mmmilTTM!
i_!ii i E i i h : : t !i : : i ;

I a

! 16-Bit Reg 3

rrTTTrnTnTrnT

ight Out

M m. +

kiiii iiEiiiiiiiiii

•I

IHUIUUlUUI

in intimttiii

16-Bit Reg

 •^■M-.VI-J-H-i-H-Wiv.f.

ieftln

7

-ti a "
-S-SeO;

Figure 85. Scan Path in a Tapline with Phase-Rotation On-Board

160

IX. ASIC DESIGN: SIMULATION

This chapter is dedicated to circuit verification with simulation using the circuit

simulator T-Spice. It provides useful information about simulation parameters and semi-

digital simulation. Two examples are used to illustrate the testing concept. The first

example is the two-tapline test case, where the regular transistor model is used to perform

the simulation. The second example is the 32-tapline chip where a switch model replaces

the transistor model to reduce simulation time and complexity.

A. T-SPICE SIMULATIONS

Two goals are established by doing the simulation in T-Spice. First and foremost,

the correct logical implementation needs to be verified, which includes the check of each

connection between elements (wire connections). The second goal is to prove the proper

implementation of the developed algorithm within the circuit. This section describes how

the simulation is done in T-Spice. Simulating a smaller part of the entire circuit design

and comparing the results to the Matlab simulation achieves the verification of the circuit

functionality.

S-Edit supports a direct export of a schematic layout into a T-Spice readable

SPICE format. The exported SPICE file contains only circuit information, but does not

contain test-commands or test-vectors. Therefore several lines of code have to be added

to create a valid simulation file that can be used in T-Spice. To illustrate the test concept

in T-Spice a 2-bit register is used as example. Table 25 contains parts of the 2-bit-register

SPICE file that are used for simulation.

161

T-Spice is not a logical circuit simulator, but can perform various analog

simulations like DC-analysis and frequency sweeps. Nevertheless, T-Spice can make use

of the "bit" command to push binary inputs into the input pads of the circuit

representation. The voltages are OV for a logical zero and 5V for a logical one. By

defining the inputs as voltage sources, T-Spice analyses the input vectors, calculates a

DC operating point, and calculates the defined output pads in form of voltages.

162

T-Spice Code Meaning

VddVddGndDC5
Defines the voltages between OV

(Ground) and +5V DC

.include "D:\Chris\Thesis\schematics\testfiles\

Register\2Bit\input_table2Reg.md"

Reads the file input_table2Reg.md,

which is an text file containing all input

used during simulation

.options prtdel=80n

The option command customizes the

simulation. PRTDEL sets the reading for

output pads to exact every 80nsec

.tran lOn 800n start=70n

Performs a transient analysis with a

maximum step size for calculations of

lOnsec, a simulation stop time of

800nsec and an offset for the first output

reading of 70nesc

.print tran

"D:\Chris\Thesis\Schematics\testfiles\

Register\2Bit\Inputs.out" V(CLK) V(SL)

V(SR) V(SLDi) V(SRDi) V(LD) V(HLD)

V(D0) V(D1)

.print tran

"D:\Chris\Thesis\Schematics\testfiles\

Register\2Bit\Outputs.out" V(Q0) V(Q1)

The print tran command is used to define

the monitored output pads and the file in

which the records are saved. The file

"inputs.out" records all control signals

and the inputs of the register, whereas

the file "Outputs.out records only the

outputs of the register.

.param l=0.05u Specifies the wavelength as 0.05um

.include

"D:\Chris\Thesis\ModelParammod.nid"

Includes the transistor parameters for the

target process (MOSIS - HP 0.5um)

used for the simulation.

Table 25. T-Spice Simulation Commands

163

Below is an example of the input vectors for the 2-bit-Register simulation.

VinDO DO Gnd bit ({0010111111} on=5.0 off=0.0 pw=80n rt=0.In ft=0.In

VinDl Dl Gnd bit ({0001011111} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n

VinSRDi SRDi Gnd bit ({0000000000} on=5.0 off=0.0 pw=80n rt=0. In ft=0. In

VinSLDi SLDi Gnd bit ({0000000011} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n

VinHLD HLD Gnd bit ({0000100000} on=5.0 off=0.0 pw=80n rt=0.In ft=0.In

VinLD LD Gnd bit ({0111010000} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n

VinSR SR Gnd bit ({0000001100} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n

VinSL SL Gnd bit ({0000000011} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n

VinCLK CLK Gnd bit ({01} on=5.0off=0.0pw=40nrt=0.1nft=0.1n

The input vectors are defined by name for the voltage source (input pad) against ground,

bit pattern used as inputs for the voltages sources, the definition of zero and one, pulse

width (pw) of the signal, rise time (it), and fall time (ft) in nano seconds. The registers are

constructed for using a positive edge triggered clock. This means that all signals have to

be changed and stable before the clock switches from low to high. A change of a value

after the clock goes high cannot be processed properly. As an illustrated example in

Figure 86, the clock starts low (zero Volts) for a time of 40nsec and switches to high (five

Volts) afterwards. Consequently, the entire clock cycle is 80nsec, which corresponds to

the pulse width of the input signals.

The above-mentioned input values are used to test the behavior of the 2-bit-

Register under normal and test-mode conditions. Table 26 illustrates the basic test

concept and the relation between the control signals in T-Spice.

164

LD

5V = 1^"

0V = 0

Clock

5V=1

0V = 0

0

~\^~

1 u

40nsec 80nsec 120nsec 160nsec

Figure 86. Positive Edge Triggered Clock

DO SRDi SLDi HLD LD SR SL CLK Q0 Remark

0/1 0 0 0 0 0-+1 0 Synchronous Clear

0/1 0 1 0 0 0->l 0/1 Data (DO) - normal operation

0/1 1 0 0 0 0->l 0/1 Previous data, "do nothing"

0/1 0 0 1 0 0-»l 0/1 Right data (SRDi)

0/1 0 0 0 1 0->l 0/1 Left Data (SLDi)

Table 26. Test Concept of a 2-Bit-Register

The test mode signals are in direct relationship to each other because only one input of

SR, SL, HLD, and LD can be high at the same time to perform a legal operation in test

mode.

165

During the transient analysis, T-Spice uses the input vectors to determine the

voltage values for the outputs. The determined values are saved in the predefined files

and the transient analysis results are automatically stored in a separate file. These

transient results can be used to probe at circuit nodes of the schematic layout in S-Edit.

Probing calls W-Edit automatically and creates a graphical output of the voltage versus

time for the probed node. The user defined output files, which contains the simulation

results, hold exact voltage values in the region between OV and 5V, as shown below in

Table 27. The analog output values distinguish between one and zero. The output values

are analog voltages and the results must be sent through a hard limiter to get a binary

output table in order to compare the results with the correct binary output pattern

produced by Matlab.

Time (sec) V (QO) (Volts) V (Ql) (Volts)

7.0000E-08 1.2408E-07 1.2414E-07

1.5000E-07 1.4298E-07 1.4302E-07

2.3000E-07 5.0000E+00 6.3223E-08

3.1000E-07 8.6684E-08 5.0000E+00

3.9000E-07 1.9326E-07 5.0000E+00

4.7000E-07 5.0000E+00 5.0000E+00

5.5000E-07 2.8934E-07 5.0000E+00

6.3000E-07 1.2812E-07 -2.4128E-07

7.1000E-07 4.3775E-08 5.0000E+00

7.9000E-07 5.0000E+00 5.0000E+00

8.0000E-07 5.0000E+00 5.0000E+00

Table 27. Output Table for the Transient Analysis of a 2-Bit-Register

166

In very small-scale digital systems, tests can be performed exhaustively, where

the system is exercised over its full range of operating conditions. This kind of test was

used to simulate the elements of Level 1 and 2 of the design hierarchy, as exercised for

the 2-bit-Register test case. However, for higher-level elements the input values were

chosen more carefully to simulate only critical cases. By increasing the number of sub-

circuits, the simulation time and the amount of required computing power increases in an

almost exponential manner. For a Supertap simulation (level 4), a PC with Pentium IH

processor and 768MB RAM could not satisfy the need for resources by the T-Spice

simulation.

B. 2-TAPLINE SIMULATION

Due to the limitations in available computer resources, we decided to prove the

algorithm with a 2-tapline circuit using a transistor model. The setup is shown in Figure

87. The Matlab programs discussed earlier produces a set of input DRFM data for 10

radar pulses with 15 samples each. After simulation, the "hard_limiter2Taps.m" Matlab

program converts the results into a binary form. Then, the data is translated into decimals

and plotted in Matlab. Matlab also performs the same simulation so that the outputs of

both simulations are comparable and so the T-Spice simulation can be verified. The

following figures and tables give an overview about the setup and the obtained results.

This particular simulation needs a special setup in the Matlab test environment.

The range-Doppler-amplitude map entry program is modified for the 2-tapline test case

so that only 10 radar pulses with 15 samples per pulse (150 DRFM data) are used to

decrease the simulation time in T-Spice. Since two taplines are used, only two cells in the

167

range-Doppler map are defined for the false target generation, as shown in Figure 88. The

setup for the amplitude (gain-coefficients) and the Doppler Shift (phase-increment data)

are summarized in Table 28.

2 Tapline Test Setup

z I

Qm * fWnM norD» (HaBi DKBse ™

Tap Line 0

UM

5} S I 1| »| !!!! '"" 1 Alraih TUMS» «tab TOBse

Tap Line 1

— - i^^BM i :=
■~™«"r--"- « iV".
■"■■"-—"—•"
- ■■■ — r
■ ■■■■■■■— | «•

Figure 87. 2-Tapline Test Case

Target Cell Range Cell Doppler Cell Amplitude Doppler Shift Remark

1 1 1 2 2 Tap 0 - 1st Tap

2 2 1 3 4 Tap 1-2nd Tap

Table 28. Matlab Inputs into the Range-Doppler Map

168

Range-DGppIsr-Ampiituds Map Entry Program

^ s

Range Cell

■ Dopplet Ceil

Ampiude

jj J-il
Doppier shift

<1 J J

CLE^R 1 SAVE|
1 a a * S 6 7.8 * tt 11 12 13 u ts

Range Celi

Figure 88. Modified Range-Amplitude Entry Map

The rest of the Matlab simulation follows the same path as described in Chapter 4. The

values in Table 28 can be translated into T-Spice test vectors, which specify the input

parameters for the gain-coefficients and the phase-increment values to the taplines. The

corresponding values are listed in Table 29.

Tapline Range Cell Doppler Cell Gain

Coefficients

Phase

Increment

Remark

0 - - 01 0010 Binary Inputs

1 - - 10 0100 Binary Inputs

Table 29. T-Spice Inputs for Gain and Phase-Increment

Table 30 shows only a small part of the input vectors used for this test case, but it

explains the interaction between input control signals, input vectors and the output

169

values. Note that Phase 0-4 represents the 5-bit DRFM-phase data input to both taplines.

Also, the first input performs a synchronous clear to zero all registers. A radar pulse

consists of 15 samples, where sample by sample is read in controlled by the clock. Note

also that the gap between the radar pulses is manually set and not part of the DRFM-

phase data. This gap is required to read out the processed value in tapline 2 that is still in

the adder chain. Therefore one clock cycle between the radar pulses is required to read

out the last final output. Setting range-bin valid to low between the pulses clears the 11-

bit register in the taplines to ensure that no undefined data gets added to the last valid

output. The delay of one output produces the 16th output value for only 15 input samples.

After the last processed phase sample in tapline 1 reaches the final output through tapline

0, the first fully-processed sample from the next radar pulse is already present for output.

170

Input Pad

Name

Sync

CLR

Radar Pulse 1 Radar Pulse 2 Radar Pulse 3

PhaseO 0 001101010000110 0 001101010000110 0 001101010000110

Phase 1 0 000100000011111 0 000100000011111 0 000100000011111

Phase2 0 001110100100110 0 001110100100110 0 001110100100110

Phase3 0 000101010011111 0 000101010011111 0 000101010011111

Phase4 0 000001110100010 0 000001110100010 0 000001110100010

Delta

Phase inc

0 000000000000000 1 000000000000000 1 000000000000000

LD Phase

inc

0 100000000000000 0 000000000000000 0 000000000000000

LDGain 0 100000000000000 0 100000000000000 0 100000000000000

Range-

bin valid

111111111111111 0 111111111111111 0 111111111111111

Table 30. Input Data for the Three Radar Pulses as used in the 2-Tapline Test

Table 31 shows only the first 22 clock cycles out of 171. The I and Q values are

listed in form of most significant bit to least significant bit. The first five clock cycles are

needed to process the first input, where the first output is a synchronous clear. Bus cycles

are not required for a 2-tapline-test, but have to be included for a 32-tapline-test. Clock

19 and 20 are the last outputs from radar pulse 1. Due to the delay just described, sample

15 will produce two outputs. The phase outputs for both channels are 16-bit two's

complement words. To verify the results, the outputs are converted into decimal numbers,

in order to plot them in Matlab. The Matlab simulation produces similar results to

compare both simulation output against each other.

171

CLK Valid Result I values Q values Pulse# Sample#

1 0 0000000000000000 0000000000000000 Sync Clear

2 0 0000000000000000 0000000000000000

3 0 0000000000000000 0000000000000000

4 0 0000000000000000 0000000000000000

5 0000000011111110 0000000000000000 1 1

6 0000001011111010 0000000000000000 1 2

7 0000001010000010 0000000011010110 1 3

8 0000000000010000 0000000111000100 1 4

9 1111111010110110 0000000011101000 1 5

10 0000000110110100 0000000010000010 1 6

11 1 0000000000010110 1111110101011100 1 7

12 1111111100100100 1111110110000010 1 8

13 1 0000000110101110 1111111000100100 1 9

14 1 0000000101100010 1111111100111000 1 10

15 1111111001011110 1111111101010100 1 11

16 1111111010110110 0000001010101100 1 12

17 1111111000101000 0000000111100000 1 13

18 1111111100000110 0000000000110000 1 14

19 I 0000000110001110 0OOOOOOO11100100 1 15

20 1111111100100100 0000000111001000 1 15

21 L 0000000011101000 0000000001100100 2 1

22 L 0000001001000100 OOOOOOOl11010100 2 2

Table 31. T-Spice Simulation Outputs (hard limited)

To extend the 2-tapline-test case to x-number of taplines, a controller must set the "range-

bin valid" control bit for at least x-1 clocks to low between two radar pulses. Due to the

172

shifted read out, a similar delay as for the FPGA design is achieved. Furthermore, the

delay requirement produces additional outputs,

number of DRFM samples per pulse + (x-1) = number of outputs. (9.1)

After the T-Spice simulation results are transformed into a decimal representation,

the controller can process the results in Matlab. Figure 89 shows a two-dimensional

contour plots for Matlab (upper plot) and T-Spice (lower plot) simulation results in

comparison. By visual inspection there is no obvious difference in the preliminary

simulation results. Figure 90 shows the results in a 3D view and the graphical

representation of the difference between the two simulations. Since the difference is only

a plane at level zero, there is no difference. Thus, the simulations produced the same

results and the proof is complete. Figure 91 exploits the T-Spice simulation results in a

single graph and identifies the specified gain-coefficients for the obtained results.

3«**w»w$).-i-

#*-

- ":-";:
;>^-^^?%^:^! ^.. !::i-!;ü":^>:'-;;:.:'. ::.:■:: !■ 1 ^ -:-iV^-^V1--:-;^:"' -^" vlf^**-

... ; '•
: ; t-
!
!' ;

■-- /-, . \ : r :
;
L^.. ^. v

 f - -: ...

1 1 i 1
*> . » B- 38 « £--^;<T:-":::-:"--.; ■. ;'-&^£M&^^ L, y^&t^Qt&M? D

Figure 89. 2D Plot of the Simulation Results

173

».*T^jC«/Ot*w»»«i«)M^Pj.üt,wte.CB»i-T«« «»*»*««rwtfLw; :

pMttai^^ b.*x-r^'(^(!«MB<M<^*j.^i^[M*p'jd»Aft£^p.^>>iiri;Ä(pC|lf ;

*5— 5|

;!: L.DMM! *fciw7c»te"^:

Figure 90. 3D Plot of the Simulation Outputs and Their Comparison

b. /nsikuWOlWr UaWanl Rtf-0|> Mp (HARDWARE output)

«0.

3*0.

MO.

MO.

300.,

1»^

••i--''ÄmplitudeCeir2

'■'^mplitud^''i /
Sidel0be6 due töi ISÄR'

:^Ce6ts .Raoa».CÄ»:^
^'PiMnR::^naw; C*8i--'

Figure 91. Exploit T-Spice Simulation Results

174

The 2-tapline test case illustrates the testing procedure and can be a guide for

future testing. Transistor models, as used in this case, are non linear. Unfortunately T-

Spice quickly reaches its limits simulating larger digital circuits. The simulation time

increases almost exponential for large circuit simulation and often results in program

crashes. The next section offers a method, which indicates how to partly overcome these

problems. A simplification of the primary element in a digital circuit, the transistor, will

reduce simulation time and increase the simulatable size of the circuit.

C. SIMULATION OF THE 32-TAPLINE CASE

Two approaches have been tested to find an efficient way for testing larger digital

circuits. The first method is to replace every single logic gate with a gate definition. The

gate definition will replace the gate circuit, e.g., 2NAND, and substitute it with a table of

predefined output values. With this substitution the transistor layer could almost be

completely eliminated. Unfortunately the code for the replacement is not fully developed

and cannot be used for larger circuits. The second method tries to reduce the complexity

of the transistor model itself. For this approach the transistors are replaced with simple

switches.

1. Switch Model

The replacement of every transistor in the circuit with a simple switch reduces the

computational requirements in the simulator tremendously. As shown earlier, the

transistor definition is done in S-Edit. The definition for the P-FET and N-FET transistor

calls the model in the SPICE-OUTPUT definition. By changing this line, a new model

can be called. The new definition is: X${T} %{D} %{G} %{S) %{B} NMOSX. This

175

line defines the ports of a transistor, gate, source, drain and base. NMOSX is the new

name for the transistor definition in switch form, e.g., definition for a N-FET switch.

Since the definition of the transistors is changed in Level 1, the entire design circuit is

affected by this change. Every module calling a transistor will use the switch instead. The

schematic layout is still the same, but the mathematical behavior during the SPICE

simulations is simplified.

2. Test Setup

The test setup in T-Spice is basically the same as for the two tapline test case.

Even so, the circuit is more complex and contains approximately 16 times more nodes. T-

Spice can handle circuits up to 300,000 elements. With 32 taplines, the circuit has

290,604 elements. This is very close to the limit and involves a lot of adjustments and

initialization to get the simulation to perform.

a. Simulation Commands

S-Edit provides the SPICE translation of the schematic circuit

automatically. After the SPICE definition is imported into T-Spice, it has to be modified

with simulation commands and initialization commands. The following is an excerpt

from a modified SPICE file ready to simulate:

1. VddVddGndDC5

2. .include "D:\mput_table_ship.md"

3. .include "D:\ModelSwitch.md"

4. .options prtdel=400n numnt=150 abstol=500n reltol=0.01

5. .tran400n 17200n start=390n

176

Line one defines the voltage range between zero and five volts. Line two includes the test

vectors for the simulation. The vectors are defined with the already introduced "bit"

command. Line three is the definition for the transistor model, which defines the P-FET

and N-FET transistors as switches. The definition is simple, but effective:

* Switch-level model definitions for NFETs and PFETs.

.model SWMODN S W VT=2.5 ron=lel2 roff=4000 dv=l

.model SWMODP SW VT=-2.5 ron=4000 roff=lel2 dv=l

.SUBCKT NMOSX D G S B

S2 D S G B SWMODN

.ENDS

.SUBCKT PMOSX D G S B

SIS DGB SWMODP

.ENDS

The first block defines the switch behavior in general. For both switches the threshold

voltage in both directions is 2.5 Volts, where the resistance values are inversed between

N-definition and P-defmition. The resistance determines the switch behavior. Since a P-

FET pulls the output high and a N-FET pulls the output low, the resistance values have to

be inverted. A value of lel2 correspond to an open switch, where 4000 is a closed

switch with 4000Q resistance. The sub-circuit definitions are called by the simulator due

to the include statement in the third line. The model's sub-circuit defines the order of the

transistor nodes so that the switch behaves as expected.

177

Line four in the SPICE excerpt customizes the simulation. As before

prtdel defines the readout cycle. Numnt defines the maximum number of iterations

allowed during the solution of the Kirchhof-Current-Law (KCL) equations during a DC

analysis. For a transient analysis, T-Spice first calculates the DC operating point of the

circuit. This is a critical calculation for a very large circuit. The default for numnt is ten,

which is not sufficient. If the circuit does not converge, T-Spice tries to use source

stepping to find a DC operating point, which normally fails. A high number of iterations

are therefore required. Curiously, T-Spice recommends decreasing numnt when the

simulation fails. Also part of the .options commands is the definition of tolerances in

absolute and relative form. An increasing of the tolerances results in a faster simulation.

Nevertheless, definitions that are too loose result in wrong outputs. The values used for

absolute tolerance and relative tolerance are very close to the acceptable limits and

should not be further increased.

Line five holds the command for the type of simulation. The type is a

transient analysis with a maximum step size of 400nsec, a simulation length of 17200nsec

and an offset for the first output reading of 390nsec. In conjunction with the prtdel

setting, the readout is every 400nsec starting at 390nsec so that each sample (defined with

a pulse width of 400nsec) is read out only once. The readout is at the end of the sample to

catch the solid-state result of the pulse.

T-Spice allows using initialization for certain nodes within a circuit. For

the 32-tapline circuit, it is crucial to initialize the D-Flip-Flop outputs and the carry-out

bit of the adders. Since the circuit in T-Spice has the same hierarchy as the schematic

circuit, the initialization can be done directly in the sub-circuit definition for the D-FIxp-

178

Flop and the adder cell. This will initialize every register cell output and every adder

carry-out to the defined values. Nodeset sets an initial guess for the iterative DC-

operating point calculation. After the first iteration, the specified nodes are allowed to

float. Since very large circuits need more than one iteration, the IC command should be

used instead. IC sets node voltages for the duration of a DC operating point calculation.

The command is inserted in the sub-circuit definition. For a DFFC sub-circuit the line is

.ic Q=0 QB=5. This initializes the Q output port to zero volts and its complement to 5

volts. For the adder cell sub-circuit the line is ic Co=0 and initializes the carry-out to

zero volts.

b. Input and Output Pads

The only purpose of this sub-section is to provide an overview of the input

and output pads. Multiple bits are collapsed into one single bit, e.g., Phase 0 to Phase 4

(five bits) corresponds to PhaseO-4.

Outputs Function

S_P_Test_Rout Scan path out for a shift to the right (1 bit).

S_P_Test_Lout Scan path out for a shift to the left (1 bit).

Tap_ouÜ0-15 Output for processed values in I channel (16 bit).

Tap_outQ0-15 Output for processed values in Q channel (16 bit).

Data_Processed_out Control bit flags valid output (1 bit).

Overflow_out

Control bit to check for overflow in a 16-bit adder

(1 bit).

Table 32. Output Pads for the 32-Tapline Circuit

179

Inputs Function

S_P_Test Lin Scan path input to load test values into registers from the left.

S_P_Test Rin Scan path input to load test values into registers from the right.

Tgt_Extent_inO-4
Input for the truth table to select the number of taplines used for

false target generation (5 bits).

LD_Phase_SupTap_A
Select phase-increment registers in Supertap A and reads in

from Bus 0 to 31(1 bit).

LD_Phase_SupTap_B
Select phase-increment registers in Supertap B and reads in

from Bus 0 to 31 (1 bit).

LD_Phase_SupTap_C
Select phase-increment registers in Supertap C and reads in

from Bus 0 to 31 (1 bit).

LDJPhase_SupTap_D
Select phase-increment registers in Supertap D and reads in

from Bus 0 to 31(1 bit).

LD_Gain_SupTap_AB

Select gain-coefficient registers in Supertap A and B. Supertap

A reads in the data from Bus 0 to 15, Supertap B reads in the

data from Bus 16 to 31 (1 bit).

LD_Gain_SupTap_CD

Select gain-coefficient registers in Supertap C and D. Supertap

C reads in the data from Bus 0 to 15, Supertap D reads in the

data from Bus 16 to 31 (1 bit).

BusO-15 First 16 bits from the 32-input bus (16 bits).

Busl6-31 Second 16 bits from the 32-input bus (16 bits).

PhaseO-4 Input for the DRFM-phase samples (5 bits).

use_Phase_inc
Makes the phase-increment and the gain-coefficient stored in

the buffer available for data processing (1 bit).

Range_bin_valid
Control input bit that is required to be high when valid DRFM-

phase data is present at PhaseO-4 (1 bit).

Overflow_in Control bit that is used for daisy chaining of more Supertaps.

Data_Processed_in Control bit that is used for daisy chaining of more Supertaps.

180

Tap_inI0-15
Input for I channel that is used for daisy chaining of more

Supertaps (16 bits).

Tap_inQ0-15
Input for Q channel that is used for daisy chaining of more

Supertaps (16 bits).

HLD Chip hold for special operation mode.

LD Chip load for normal operation mode.

SR Shift right for scan-path test mode.

SL Shift left for scan-path test mode.

CLK Master clock used throughout the chip.

Table 33. Input Pads for the 32-Tapline Circuit

c. Test Vectors

For simulation every input requires a test vector, even it is zero for the

entire simulation time. The test vectors used the bit command to define the input to the

pads in binary form: "VinPhase2 Phase2 Gnd bit ({00110110111111101} on=5.0 off=0.0

pw=400n)." VinPhase2 is the name of the voltage source, where the following Phase2

Gnd is the port name measured versus ground. To prevent confusion, the names should

be the same. The bit command contains the vectors used during simulation. As defined

after the parenthesis one corresponds to five volts and zero to zero volts. The pulse width

for each bit is 400nsec. The entire simulation time as specified in the .tran command in

T-Spice is 400nsec multiplied by the number of input bits. The length of a line in the

editor determines the length of the input vector for one input. Normally 500 input bits can

be used without any problems. The pulse width is important to achieve a steady state for

each input. The larger the circuit, the higher is the required pulse width. In the manual are

no specifications about the maximum pulse width or the maximum length of the input

vector. Tests have shown that values higher than 590nsec for the pulse width and a length

181

of more than 500 characters for a line result into a computer crash. Due to these

constraints, it was not possible to run a complete simulation of the ship test target

mentioned at the end of Chapter 4. Instead, certain radar pulses have been chosen to

verify the outputs produced by T-Spice.

A set of Matlab script files was developed to generate accurate test

vectors. The Matlab script files convert data used in the Matlab equivalent simulation into

a binary two's complement representation and create a simulation-input file using the

appropriate syntax. The different files used are shown in Table 34.

Matlab script file Output (text file) Remark

convert2binary_rawint.m converted_rawmt.txt DRFM-phase data

con vert2bi nary_para.m converted_para.txt Modulation parameters

(phase and gain modulation

coefficients)

convert2binary_control.m converted_control.txt Control signals

Table 34. Matlab Files to Generate a T-Spice Input File

3. Results

After performing the simulations, the output files have to be examined and

checked for correctness. A procedure was developed to examine T-Spice outputs using

Matlab. The T-Spice output files are saved as text files and edited, presenting the first set

of valid output data in the first row of the text files. Then, the Matlab script file

"hardjimiter.m" is used to convert the results into binary two's complement

representation. Finally, the script file "compare.m" is used to plot and compare each

single output data produced by T-Spice with the results from the equivalent Matlab

simulation. An example of test results after simulating one complete radar pulse is shown

182

in Figure 92 and Figure 93. The simulation refers to the ship test case using 64 radar

pulses for the ISAR image integration discussed at the end of Chapter 4. Figure 92 shows

a comparison between the single output data for the I-channel generated in Matlab and T-

Spice. Figure 93 illustrates the Q-channel results. As for the two-tapline case, there are no

differences between the Matlab and the T-Spice simulations, which verify the correctness

of the DIS architecture based on the Matlab simulation.

TOO

iso

Comparing Matlab .and T-Spice outputs;» :J-Chanriet h

ftS'-O

i-50-

^00

40? ,6®-""
„mSS®

T

S§S3QSSSKpS3©S!83SiSää

!^s, .,..<&« «3>

O Matlab
K T-Spice

^«-W-W^v^-ÄS«^ *

. io;.<. .::,20.:.J ;30ü 40 ,sr iSEK ■=■70.. 80 . ;30.
tData

Figure 92. Comparing Matlab and T-Spice Outputs-I-Channel

■.im

m

-= o

:-50

-100

Compsing/Maiiab andl-Spcftoul^rt^ä&Cfiannsty

T

«es««®««»1?—"--

Js&W

\^^^f??^^4u
JS&* '«fe ̂5®

«©" .«®

V «*>„

O Matlab
x T-Spice

8 ^^J% » r...l.7«-..,^....s^% .VöSSöa^ |

.10 Ja»* i>305 MR saß .60 50.; ■80 S901:

Figure 93. Comparing Matlab and T-Spice Outputs-Q-Channel

183

THIS PAGE INTENTIONALLY LEFT BLANK

184

X. LAYOUT AND FABRICATION

The cost of the DIS implementation, as with many integrated circuits, is directly

proportional to the size of the chip. Moreover, the size of the DIS is directly proportional

to the number of taps. In order to keep the implementation costs to a minimum and get a

usable demonstration chip, we reduced the size of the design to 8-taplines. This Chapter

illustrates the schematic layout of an 8-tapline chip and describes the physical layout in

L-Edit. It points out and summarizes only the major differences of previously-discussed

designs.

A. 8-TAPLINE SCHEMATICS

The 8-tapline circuit is based on the same hierarchy as the 32-tapline chip, using

the double-buffered register tapline. As shown in Figure 94, a Supertap is used to

implement the 8-taplines. The Supertap is connected to the 32-bit input bus and loads the

phase values and gain-coefficient using a reduced number of control signals. The toplevel

32-to-5-bit decoder is not part of this design. The logic for a decoder representing a truth

table to adjust the number of used taplines would increase the size of the design

significantly, but gains almost no value for the concept realization. Therefore the user has

to ensure a proper setup for normal operation. Since the number of taplines determines

the size of the generated false target, only a continuous tapline activation beginning with

the first tapline up to the desired one is acceptable. In spite of the missing target-extent

decoder, the circuit chosen for fabrication has the same flexibility as the 32-tapline IC.

Even a design of 8-taplines guarantees a usable concept demonstrator; however, it

185

decreases the size of the false target. Nevertheless the fabrication costs are reduced, since

the IC area is less than a quarter in size. The first fabrication run will supply several

chips. Because the concept provides the capability of daisy chaining, four chips could be

interconnected to result in a 32-tapline-chip equivalent without a decoder capability.

Thus, the limitations are reduced to a negligible value.

~u- ■iimuai

<ne uiu

~o-

~t-

<T»a!

«•I—

A*ui

mmmmMmüümiMm
iiniiiiiiimiiitMttitiiiiiiii
iiitiiniimiiiiimiiiiiinii]
IIIIIII JJ] I] JI11JI II nil Ill Jlill

lilllltlllllllll

Figure 94. 8-Tapline Chip

186

B. TIMING AND CONTROL

The control requirements for normal chip operation are reduced due to the fact

that only 32 phase value and 16 gain-coefficients are loaded. The corresponding output

and input pads are listed and explained in Table 35 and Table 36, where a few pad names

have changed in comparison to the 32-tapline IC, but these pads still perform the same

functions.

Outputs Function

S_P_Test_Rout Scan path out for a shift to the right (1 bit).

S_P_Test_Lout Scan path out for a shift to the left (1 bit).

Tap_outI0-15 Output for processed values in I channel (16 bit).

Tap_outQ0-15 Output for processed values in Q channel (16 bit).

Data_Processed_out Control bit flags valid output (1 bit).

Overflow_out Control bit to check for overflow in a 16-bit adder (1 bit).

Table 35. Output Pads for the 8-Tapline Circuit

187

Inputs Function

S_P_Test_Un Scan path input to load test values into registers from the left.

S_P_Test_Rin Scan path input to load test values into registers from the right.

Tgt_ExtentO-7
Input to select the number of taplines used for false target

generation (8 bits), where no decoder logic is implemented.

LD_Phase_inc
Select phase-increment registers in IC and reads in from Bus 0

to 31 (1 bit).

LD_Gain_Reg
Select gain-coefficient registers in IC. Since there are only 16

gain values to load, Bus 0 to 15 are used to read them in (1 bit).

BusO-15 First 16 bits from the 32-input bus (16 bits).

Bus 16-31 Second 16 bits from the 32-input bus (16 bits).

PhaseO-4 Input for the DRFM-phase samples (5 bits).

use_Phase_inc
Makes the phase-increment and the gain-coefficient stored in

the buffer available for data processing (1 bit).

Range_bin_valid
Control input bit that is required to be high when valid DRFM-

phase data is present at PhaseO-4 (1 bit).

Overflow_in Control bit that is used for daisy chaining of more Supertaps.

Data_Processed_in Control bit that is used for daisy chaining of more Supertaps.

Tap_inI0-15
Input for I channel that is used for daisy chaining of more

Supertaps (16 bits).

Tap_inQ0-15
Input for Q channel that is used for daisy chaining of more

Supertaps (16 bits).

HLD Chip hold for special operation mode.

LD Chip load for normal operation mode.

SR Shift right for scan-path test mode.

SL Shift left for scan-path test mode.

CLK Master clock used throughout the chip.

Table 36. Input Pads for the 8-Tapline Circuit

188

Figure 95 shows the timing diagram for the initial loading phase. In addition to

the reduced number of control bits for the gain and phase adjustment, the loading cycle is

decreased by four clock cycles. Figure 96 illustrates the readout phase between two radar

pulses. Given that the number of taplines is reduced to eight, only seven clock cycles are

necessary to read out the processed data remaining in the adder chain after the last DRFM

sample is processed (instead of 31 clock cycles as shown before). In general, the timing

constraints are very closely related to the 32-tapline design as discussed in detail in

previous chapters.

189

CO
c

o

to a
o-JI

ö un

CO

§

CD a

Figure 95. Timing Diagram for the Initial Loading Phase of the 8-Tapline Chip

190

o un
CD

CO

O
UD
CN
CD

CD
CD

to c:
D,
uri

(0
sz
D.
Ö
un

un
CM

o
CD

un
CD

o
un
CD

CD
_co
ZJ
CL

03
■o

CO

CD c

2
u_
Q

CO o

=3 o
CO
CD

CD

5

CD -a
CO

CO
CD

o

CD
CD

CD
CO
CO
SI
Q.

e i o
en

CJ
o Q

_l
X

CO
cE

CD

LU

CO CO
I Q o Q

(T)

CD

1 "I
CD
CO
CO

en
CD

cr
i c

CO

O.
CD
to

'co
O

CD
CO

CD

ZJ
c o
CO

■T3

"55

1
-a

CD
(0 un

•2, *l
to
CD

Ul) ■ ZJ
1 CJ ■ o o

"ir- T Id
1

o o <*
Cn CD D_ z> ZJ o

<E
(O CD CD 1 o o

CO O 1 1
CO CO c <7 <-> a>
3 -C CO CO s-

CO a cr Q 1— 1— C_>

441444444

Figure 96. Timing Diagram between Two Radar Pulses for the 8-Tapline Chip

191

C. PHYSICAL LAYOUT GENERATION

The IC layout is automatically generated with the layout editor, L-Edit. A wide

range of different optimization parameters affecting both cell placement and network

routing are tried with varying degrees of success. The final layout of the chip core with

pad frame is shown in Figure 97 and is approximately 5.25 mm by 5.62 mm. With I/O,

power, and ground pads and the power and ground distribution buses, the layout is

approximately 5.71 mm by 6.07 mm with a total chip area of slightly less than 35 square

mm. After layout generation, a design rule check revealed several DRC violations that

had to be corrected by hand. Also, additional power and ground pads had to be connected

by hand to the power and ground distribution buses. Layout correctness is confirmed

using the layout versus schematic comparison tool, LVS. For layout verification the

extracted netlist in L-Edit is compared with the netlist of S-Edits circuit representation.

At this point of the process minor design incompatibilities are still vacant. As soon as the

netlist comparison is passed, the extracted file will be simulated in T-Spice to confirm

correct logical functionality. With the T-Spice simulation, the developing process

concludes and the resulting files are sent to fabrication. The finished IC will be fabricated

through the MOSIS fabrication service at Hewlett Packard on their 0.5 micron CMOS

line. The selection of the HP 0.5 micron process was determined to be a reasonable

compromise between cost and performance. Although maximum performance will

eventually be desired, for this initial, proof-of-concept chip, the moderate performance of

the 0.5 micron process is sufficient. It should be noted that the Tanner scalable CMOS

library used is compatible with IC fabrication processes down to 0.25 micron without

192

modification and with only minor modifications it can be used with fabrication processes

as small as 0.18 micron. Use of a 0.18 micron fabrication process would allow the DIS

design to operate at clock rates in excess of 500 MHz, which is one of the goals for future

work.

IXMBIMM

TOiWiiliirWfiiiiiir

r nirrr7«wr«rirnr Tli mi ilitt^>vv?--• • *■
*■' US»

■ ■rVAiarr r.niii m IM mil nfMRH

^j^aa^^ja^fltff,-,-
'■:.-«•=.■>' ■. -,V'-i : ':■ '* -»II:»■ W

._ ,. _. _, ~^\V;f''*^iTlin

^'■^^^^^^^^ä^^^lSk '<

^r^^m^^r^mm^M^^

npi ~*s£

Figure 97. Layout for the 8-tapline Chip Showing Enlarged Pad-Area Region

193

THIS PAGE INTENTIONALLY LEFT BLANK

194

APPENDIX A. MATLAB CODES

1. DIS SIMULATION FILES-VERSION 4

The DIS Simulation files presented in this appendix are the latest version of

Matlab codes in this project. The following version of simulating the Digital Image

Synthesizer architecture in Matlab has been developed for testing purposes. This

modified version (v4) of the original code now represents the new architecture that has

been developed during the process of working on the hardware layout in Tanner Tools.

The original version (vO) was developed by Sy Yeo, 1998.

A script file (runDISv4.m) has been developed to execute the different files in a

more convenient way than is used to run a full simulation. This modified code includes

flexibility in choosing the number of taps to be used, proper start-up and shutdown of the

taps during processing, "parallel processing" of DRFM-phase data in the taps, and "serial

summation" of the results in the taps (partial summation starting from the last taps in use,

all the way up to the first tap, which then will be the valid output data). Compared to the

v2- and v3-codes, this set of codes is easy to scale-up, can deal with multiple scatterers

per range-bin (multiple Doppler that will vary both phase and gain-coefficients between

radar pulses). The code can be set in an initial state to run in Version 2 mode (single

scatterer per range-bin) if so desired.

Before running the runDISv4.m file, one must extract parameters of the false

target one wants to generate if one is working with multiple scatterers per range gate. An

appropriate extract_XXX.m file (existing or by modifying an existing file) must be used.

After that, the new parameter text file must be called by the simhwchkv4.m file

195

(check/modify line 33 to 40). The graphical user interface (guiv4.m) in this version only

serves to get a Doppler offset of the whole false target.

The code also writes data to text files that represent the functionality of the scan-

path testing options that are included in the hardware layout, and also to separate I- and

Q-data outputs. Minor corrections have also been made to the original code.

a. runDISv4.m

%%
% runDISv4.m
% This script file will help you run the Digital Image Syntesizer
% (DIS). This is a modified version that is able to handle different
% target extents (that is, how many taps the user would like to use
% that will represent the radial length of the target, seen from the
% ISAR). The user can also specify some necessary input parameters.
% Created by:
% LTC Stig Ekestorm, Apr -00
% Naval Postgraduate School
%%

% set path
% cd c:\temasek\denise\thesis\final_design\vbfiles

% clear the workspace
clear

% declare global variables, used in outer m-files and functions
global sorm
global dp_pts
global rg_pts
global hda
global printdata

% interactive - use of a dialog box to get inputs parameters from user
title='User Specified Parameters - Matlab DIS Simulation';
prompt={'Single (Version 2) or Multiple (Version 4) Scatterer per range
gate [1 for Multiple]. If Version 4, then need to run
extract_para_X.m first.',...

'Number of Doppler cells in the ISAR.',...
'Number of Range gates in the plots.', . . .
'Hardware Data available for comparison [1 for yes].',...
'Print Intermediate Data to text file (slows down the

simulation) [1 for yes].'};
default={' 0 ' , ' 64 ' , ' 200 ' , ' 0 ' , ' 0 '_}_;
response=inputdlg(prompt, title, 1, default);
fields={'sorm', 'dp_pts', 'rg_pts', 'hda','printdata'}; % number of
Doppler cells, hardware data available
input=cell2struct(response,fields,1);
% convert cell structure created by dialog box back to numbers

196

sorm=str2num(input.sorm) ;
dp_pts=str2num(input.dp_pts) ;
rg_pts=str2num(input.rg_pts) ;
hda=str2num(input.hda);
printdata=str2num (input.printdata);

% run the graphical user interface (GUI) to specify target parameters
disp('Enter the values in the Grapical User Interface')
disp('Press any key to continue')
guiv4
pause

% pre-process signal parameters, simulate ISAR
if sorm == 0

mathostv4
else

mathostv4b
end

% simulate the DIS in Matlab
% This simulation does "parallel processing" and then "serial
summation", including:
% - correction at start-up ("initializing outputs from the taps, one
tap after another")
% - correction at the end ("shutting down the taps, one tap after
another")
if sorm == 1,

if printdata == 1,
simhwchkv4_write

else
simhwchkv4

end
else

if printdata == 1,
s imhwchkv2_wri te

else
simhwchkv2

end
end

% plot results for visual comparison
plothwv4

% end of file

b. guiv4.m

function [dat] = guiv4(action) ;

%%
% guiv4.m
% Get inputs from screen
% MAJ Stig Ekestorm, Feb -00
% Modified version of guivO.m by SY YEO, Jan -98

197

global hf
global hl
global b.2
global data
global loc
global patchsize
global txtloc
global count
global ph
global dp_pts

if nargin<l,
action='start';

end;

if strcmp(action,'start'),

% initialize the figure

set(0,'DefaultAxesFontSize', 6) ;

hf = figure(1); elf
set(hf, 'NextPlot' , 'add') ;

set(hf, ...
'NumberTitle', 'off', ...
'Name','Naval PostGraduate School
'backingstore','off',...
'Units','normalized');

%rg_pts = 15;
rg_pts = 62;
%dp_pts = 64;
data = []; loc = [];
count = 0;
ph = [] ;

hi = axes('Position',[0 0 1 1],'Visible','off');
h2 = axes('Position',[0.1 0.1 0.6 0.8]);

set(hf,'currentaxes',h2);

xa = l:rg_pts;
ya = 0:(dp_pts-l);

xtick = 0:l:rg_pts;
set(gca,'XTickMode','manual');
set(gca,'XLimMode','manual');
set(gca,'XLim',[1 rg_pts]);
set(gca, 'XTick',xtick) ,•
set(gca,'XGrid','on');
set(gca,'GridLineStyle','-');

set(gca,'YTickMode','manual');
set(gca,'YLimMode','manual');
%set(gca,'YLim',[0 dp_pts-l]);

198

if dp_pts > 64,
set(gca,'YLim',[0 64-1]);

else
set(gca,'YLim',[0 dp_pts-l]);

end
ytick = 0:l:dp_pts;
set(gca,'YTick',ytick);
set(gca,'YGrid','on');
set(gca,'GridLineStyle','-');

xh = xlabel('Range Cell'); set(xh,'FontSize',8); clear xh
yh = ylabel('Doppler'); set(yh,'FontSize',8); clear yh
ht = title('Range-Doppler-Amplitude Map Entry Program');
set(ht,'FontSize',10,'Color',[0 0 1]);

a = uicontrol('Units','normalized', ...
'BackgroundColor',[.9 .9 .9], ...
'Position', [0.72 0.80 0.15 0.04], ...
'Style','text', ...
'FontSize',6,...
'String','Range Cell', ...
'Tag','aText');

b = uicontrol('Units','normalized', ...
'BackgroundColor',[.9 .9 .9], ...
'Position',[0.72 0.75 0.15 0.04], ...
'Style','text', ...
'FontSize',6,...
'String', 'Doppler Cell' , ...
'Tag','bText');

c = uicontrol('Units','normalized', ...
'BackgroundColor',[.9 .9 .9], ...
'Position',[0.72 0.65 0.15 0.04], ...
'Style','text', ...
'FontSize',6,...
'String','Amplitude', ...
'Tag','cText');

ell = uicontrol('Units','normalized
'BackgroundColor',[.9 .9 .9], ..
'Position',[0.72 0.60 0.15 0.04]
'Style','slider','min',0,'max',4
'SliderStep',[0.25 0.5],...
'Callback','guiv4(''updatel'')')

d = uicontrol('Units','normalized', ...
"BackgroundColor',[.9 .9 .9], ...
'Position',[0.72 0.50 .15 0.04], ...
'Style','text', ...
'FontSize',6,..-
'String','Doppler shift');

dll = uicontrol('Units','normalized', ...
'BackgroundColor',[.9 .9 .9], ...
'Position', [0.72 0.45 0.15 0.04], ...

199

'Style', 'slider', 'Min',-10, 'Max',10, . . .
'SliderStep',[0.05 0.1],...
'Callback','guiv4(''updatel'")');

al = uicontrol('Units','normalized', ...
'BackgroundColor' , [1 11], ...
'Position',[0.9 0.80 0.05 0.04], ...
'Style','text', ...
'FontSize',6,...
'String','', ...
'Tag','alText');

set(gcf,'currentaxes',hl);
bl = uicontrol('Units','normalized', ...

'BackgroundColor',[1 11], ...
'Position',[0.9 0.75 0.05 0.04], ...
'Style','text', ...
'FontSize',6,...
'String','',...
'Tag','a2Text2');

set(gcf,'currentaxes',hi);
cl = uicontrol('Units','normalized', ...

'BackgroundColor',[1 11], ...
'Position',[0.9 0.65 0.05 0.04], ...
'Style','text', ...
'FontSize',6,...
'Callback','guiv4(''update'')',...
'String','');

dl = uicontrol('Units','normalized', ...
'BackgroundColor',[1 11], ...
'Position',[0.9 0.50 0.05 0.04], ...
'Style','text', ...
'FontSize',6,...
'Callback','guiv4(''update'')',...
'String','');

ql = uicontrol('Units','normalized', ...
'BackgroundColor','Yellow', ...
'Position',[0.9 0.10 0.05 0.04], ...
'Style','pushbutton', ...
'FontSize',8,...
'String','SAVE', ...
'Callback','guiv4(''savequit'')');

q2 = uicontrol('Units','normalized', ...
'BackgroundColor','Yellow', ...
'Position',[0.78 0.1 0.1 0.04], ...
'Style','pushbutton', ...
'FontSize',8,...
'String','CLEAR', ...
'Callback','guiv4(''start'')');

txtloc = [a al b bl c cl ell d dl dll];
% Assign action when mouse button is pressed

200

set(h2,'ButtonDownFcn','guiv4(''down•')');

elseif strcmp(action,'down'),
% Obtain coordinates of mouse click location in axes units

set(hf,'currentaxes',h2);
pt=get(h2,'currentpoint');

x=pt(l,l); xf = floor(x);
y=pt(l,2); yf = floor(y);
[r,c] = size(data);

set(txtloc(7), 'Value',0) ;
set(txtloc(9),'Value',0);

tmp = [x y 1 0] ;
loc = [loc tmp];
tmp = [xf yf 1 0];
data = [data;tmp];
[r,c] = size(data);
ypos = [yf yf+1 yf+1 yf];
xpos = [xf xf xf+1 xf+1];

count = count + 1;
%disp(count);
txt = ['Tag',num2str(count)];
ptr = patch(xpos,ypos,[1 1 1]*0.9);
%disp(ptr);
set(ptr,'ButtonDownFcn' , [...

'guiv4(''update'')']);
set(ptr,'Tag',txt);
set(ptr,'UserData',[xf yf 1 0]);
ph = ptr;
set(txtloc(2),'String',xf) ;
set(txtloc(4),'String',yf);
set(txtloc(6),'String',1);
set(txtloc(9),'String',0);

elseif strcmp(action,'update'),
% Determine the patch that is selected
ph = gcbo;
%set(ph,'Selected','on');
% Retrieve the values for that patch and display it
% txtloc = [a al b bl c cl ell d dl dll];
% txtloc 2: Range cell
% txtloc 4: Doppler cell
% txtloc 6: Amplitude txtloc 7: Slider bar
% txtloc 9: Doppler offset txtloc 9: Slider bar
ud = get(ph,'UserData');
set(txtloc(2),'String',ud(l))
set(txtloc(4),'String',ud(2))
set(txtloc(6),'String',ud(3))
set(txtloc(9),'String',ud(4))
set(txtloc(7),'Value',ud(3));
set(txtloc(10),'Value',ud(4));

201

elseif strcmp(action,'updatel'),
if (-isempty(ph))

phi = gcbo;
if ((phi == txtloc(7)) | (phi == txtloc(lO)))

ud = get(ph,'UserData');
xf = ud(l); yf = ud(2)
ypos = [yf yf+1 yf+1 yf]
xpos = [xf xf xf+1 xf+1]
set(ph,'Selected',' off')
% Update the amplitude/Doppler values
if (phi == txtloc(7))

tmpl = get(txtloc(7),'Value');
tmpl = round(tmpl)
set(txtloc(6),'String',tmpl);
set(txtloc(7),'Value',tmpl);
i f (tmpl < 1),

set(txtloc(7),'Value',1);
set(txtloc(6),'String',' 1') ;
tmpl = 1;

end
col =[11 l]*(l-tmpl/10);
set(ph,'FaceColor',col);
set(ph,'UserData',[ud(l) ud(2) tmpl ud(4)]);

end
if (phi == txtloc(10))

tmp2 = round(get(txtloc(10),'Value'));
set(txtloc(9),'String',tmp2);
set(txtloc(10),'Value',tmp2);
set(ph,'UserData',[ud(l) ud(2) ud(3) tmp2]);

end
%disp('HHH');
%disp(get(ph,'Tag'))
%disp(get(ph,'UserData'))

end
end

elseif strcmp(action,'savequit'),
dat = [];
for i = 1:count

tt = findobj('Tag',['Tag' num2str(i)]) ;
tmp = get(tt,'UserData')
dat = [dat;tmp];
fprintf('count = %d, Tag = %s ',count,get(tt,'Tag'));
disp(tmp);

end
save -ascii sigparl dat
close gcbf

end

202

C. mathostv4.m

%%
% mathostv4.m
% MAJ Stig Ekestorm, Feb -00
% Modified version of mathostvO.m by SY YEO, Jul-98
%
% Generate pri_dp map and range-Doppler map
% - generates the files for input to hardware
% -- file para.txt contains:
% line 1: number of range cells
% line 2: number of pulse in a batch (equals to dp_pts in this
% program)
% line 3: extent of target in cells (n: integer); number of taps in
% delay also equals n (pipeline design)
% line 4: gainl, gain2, ..., gain n (integer)
% line 4+n+l: phiO (pulse 1),
% line 4+n+2: phil (pulse 1),
% line 4+n+targetExtent: phi-targetExtent (pulse 1),
% line 4+n+targetExtent+l: phiO (pulse 2),
% line 4+n+targetExtent+2: phil (pulse 2),
% line 4+n+2*targetExtent: phi-targetExtent (pulse 2),
%
% line 4+n+dp_pts*targetExtent: phi-targetExtent (pulse dp_pts)

%
% -- file raw.txt contains the instantaneous phases of simulated DFRM-
% data (quantized to 45deg step):
% line 1: pulse 1 (integer)
% line 2: pulse 2
%
% line dp_pts: pulse dp_pts

clear

global sorm
global dp_pts
global rg_pts
global doppler_inc
global printdata

set(0,'defaultAxesFontSize',8);

noplot = 0;
Ncontours = 20;

% Parameters
bw = 100e6;
pwc = 1/(1.25*bw); % compressed pulsewidth
pw =0.5e-6;
prf = 2e3; pri = 1/prf;
mu = 2*pi*bw/pw;
fs = 1.25*bw; Ts = 1/fs;
snr = 0;

203

% set-up grid
% x-axis(rg), y-axis(dp)
%rg_pts = 200;
%dp_pts = 64;

pri_rg_map = zeros(dp_pts/rg_pts);
pri_rg_mapq = zeros (dp_pts,rg_pts) ;
pri_rg_map_shift = zeros(dp_pts, rg_pts) ;
pri_rg_map_shiftq = zeros(dp_pts,rg_pts);
pri_rg_phaseq = zeros(dp_pts,rg_pts);

% insert waveform into grid;
load -ascii sigparl
sigpar = sigparl';
doppler_inc = sigpar(4,:);
sigpar([2 4],:) = sigpar([2 4],:)*prf/dp_pts;
[lxs,lys] = size(sigpar);
%t0 = 0:Ts:pw-Ts;
tO = Ts:Ts:pw;

%for the reduced 2-Tap T-Spice simulation
%TsNew=4*l/fs;
%tnew = 0:TsNew:pw-TsNew;
%tnew = TsNew.-TsNew:pw;
%t0 = tnew;

num_chirp_samples = length (tO); if ((num_chirp_samples + lxs) > rg_pts)
disp('Warning : Chirp is clipped - set grid size larger'); end

% open files for writing
fl = fopen('para.txt', 'w') ;
fprintf (fl, '%d\r\n' ,num_chirp_sam.ples) ; % number of range cells
fprintf(fl,'%d\r\n',dp_pts); % number of Doppler cells
fprintf(fl,'%d\r\n',lys); % target extent

% adjustment to correct multiplication factors for the amplitude (gain)•
value
for i = 1:lys

switch sigpar(3,i)
case {1}

sigpar(3,i)=l; % no shift, multiplication by 1, hardware bit "00"
case {2}

sigpar(3,i)=2; % shift by 1, multiplication by 2, hardware bit
"01"

case {3}
sigpar(3,i)=4; % shift by 2, multiplication bv 4, hardware bit

"10"
case {4}

sigpar(3,i)=8; % shift by 3, multiplication by 8, hardware bit
"11"

end
fprintf(fl, '%d\r\n',sigpar(3, i)); % gainl, gain2, ..., gainN

end

nbitsph = 3;
nbitsdop = 5;

204

nbitsamp = 8;
b = 2*pi/(2Anbitsph);
a = 2*pi/(2/snbitsamp) ;
p = 2*pi/(2Anbitsdop);
%for the reduced 2-Tap T-Spice simulation, Nov -99
%p = 2*pi/(dp_pts);

for idxl = l:dp_pts % Repeat for total number of pulses within
batch

tl = tO + (idxl)*pri;
%tl = tO + (idxl-1)*pri;
for idx = l:lys

%**** approximation used here, assume phase change due to Doppler
within a chirp is constant

%**** since the Doppler is tens of hertz compared to the MHz
chirp bandwidth

oldphase = mu*tl.*tl/2 + 2*pi*sigpar(2,idx)*tl;
%oldphase = mu*tl.*tl/2 + 2*pi*sigpar(2,idx)*(idxl-1)*pri;
oldphase = mod(oldphase,2*pi);

% quantize the oldphase to 1 of 8 phases
int_oldphase = round(oldphase/b);
oldphaseq = b*int_oldphase; % quantize the phase
xc = exp(sqrt(-l)*oldphase);
lx = (sigpar(1,idx)):(sigpar(1,idx))+length(xc)-1;
pri_rg_map(idxl,lx) = xc+pri_rg_map(idxl,lx);
pri_rg_phaseq(idxl,lx) = int_oldphase;

xcq = exp(sqrt(-l)*oldphaseq);
xcq = p*round(xcq/p); % quantize the phase
pri_rg_mapq(idxl,lx) = xcq+pri_rg_mapq(idxl, lx) ;
% phase focusing
dopphase = 2*pi*sigpar(4,idx)*(idxl)*pri; % approximation used

here

here

%dopphase = 2*pi*sigpar(4,idx)*(idxl-1)*pri; % approximation used

newphase = oldphase + dopphase*ones(size(oldphase));
xl = cos(newphase);
xQ = sin(newphase);
xl = sigpar(3,idx)*(xl+sqrt(-1)*xQ) j;
pri_rg_map_shift(idxl,lx) = pri_rg_map_shift(idxl,lx) + xl;

int_dopphaseq = rovmd(dopphase/p);
dopphaseq = int_dopphaseq*p;
newphaseq = oldphaseq + dopphaseq;
xl = cos(newphaseq);
xQ = sin(newphaseq);
xl = round(xI/a)*a;
xQ = round(xQ/a)*a;
xl = sigpar(3,idx)*(xI+sqrt(-l)*xQ);
pri_rg_map_shiftq(idxl,lx) = pri_rg_map_shiftq(idxl,lx) + xl;

% store the dopphase value (ignore intrapulse phase change since

it is small)
%fprintf(f1,'%d\r\n',int_dopphaseq); %originals

code, incrementation of phase modulation coefficients

205

%fprintf(fl, '%d\r\n' ,mod(int_dopphaseq,32)); %to get
true phase modulation coefficients each PRI

fprintf(fl,'%d\r\n',mod(2*fix(int_dopphaseq/2),32)); %to
represent phase modulation coefficients using 4-bits words

end
end
fclose(fl);

noise = randn(size(pri_rg_map))*c_snr(snr); noise = 0;
pri_rg_map = pri_rg_map + noise;
pri_rg_map_shift = pri_rg_map_shift + noise;

%

save pulsel pri_rg_map_shiftq

%

% Perform pulse compression
% (a) for the non-quantized phase case
disp{'Creating reference waveform');
ph = (mu*tl.*tl/2);
crefc = exp(sqrt(-l)*ph);
cref = conj(fft(crefc,2*rg_pts-l));
save pc_ref cref tl
pc_ref_map = fft(pri_rg_map.',2*rg_pts-l).';
pc_ref_map_shift = fft (pri_rg_map_shift. ' ,2*rg_pts-l) .

disp('Performing pulse compression') ;
pri_rg_mapl = zeros(size(pri_rg_map)) ;
pri_rg_map2 = zeros(size(pri_rg_map)) ;

% Compress the original signals
for idx = l:dp_pts

tmp = cref.*pc_ref_map(idx,:) ;
tmpl = fftshift(ifft(tmp));
pri_rg_mapl(idx,:) = tmpl(rg_pts:end) ;

end

% Compress the Doppler shifted signals

for idx = l:dp_pts
tmp = cref.*pc_ref_map_shift(idx, :) ;
tmpl = fftshift(ifft(tmp));
pri_rg_map2(idx,:) = tmpl(rg_pts:end);

end

% Compute the rg-dop map
disp('Plotting ... r-d map');

<äp_rg_map = f ft (pri_rg_mapl,dp_pts) ;
dp_rg_map_shi ft = fft (pri_rg_map2, dp_pts) ;

[lx,ly] = size(dp_rg_map);
rax = 1: (length (ly)) ,-
dax = 0:(length(lx))-l;

206

dpy = abs(dp_rg_map);
dpy_shift = abs(dp_rg_map_shift);

if (noplot == 0)
figured) ;

subplot(2,1,1);
h = contour(dpy,Ncontours); grid
title('a. Original Rd-DpMap');
axis([l 62 0 dp_pts])
xlabel('Down Range Cells'); ylabel('Cross Range Cells') ;
subplot(2,1,2);
h = contour(dpy_shift,Ncontours); grid
axis([1 62 0 dp_pts])
title('b. Amplitude and Doppler Modulated Rd-Dp Map');
xlabel('Down Range Cells'); ylabel('Cross Range Cells');

% Perform pulse compression
% (b) for the quantized phase case
disp('Performing pulse compression for quantized phase case');
pc_ref_niapq = fft(pri_rg_mapq.',2*rg_pts-l).';
pc_ref_map_shiftq = fft(pri_rg_map_shiftq.',2*rg_pts-l).' ;
pri_rg_map3 = zeros(size(pri_rg_mapq));
pri_rg_map4 = zeros(size(pri_rg_mapq));

% Compress the original signals

for idx = l:dp_pts
tmp = cref.*pc_ref_mapq(idx,:);
tmpl = fftshift(ifft(tmp));
pri_rg_map3(idx,:) = tmpl(rg_pts:end);

end

% Compress the Doppler shifted signals

for idx = l:dp_pts
tmp = cref.*pc_ref_map_shiftq(idx,:);
tmpl = fftshift(ifft(tmp));
pri_rg_map4(idx,:) = tmpl(rg_pts:end);

end

% Compute the rg-dop map
disp('Plotting ... r-d map');

dp_rg_mapq = fft(pri_rg_map3);
dp_rg_map_shiftq = fft(pri_rg_map4);

[lx,ly] = size(dp_rg_mapq);
rax = 1:(length(ly));
dax = 0:(length(lx))-l;

dpyq = abs(dp_rg_mapq);
dpy_shiftq = abs(dp_rg_map_shiftq);

% -- Simulation of phase quantizing DRFM
% Now convert amplitude to phase.

207

% Convert phase to positive numbers between 0-360deg, so do not need
to handle

% negative numbers in Altera.
pri_rg_mapq_angle = mod(pri_rg_phaseq,2*pi);
pri_rg_mapq_shift_angle = angle(pri_rg_map_shiftq);

f2 = fopen('rawint.txt', 'w') ;
[lx,ly] = size(pri_rg_mapq_angle);
deltaDegrees = 2*pi/(2~nbitsdop);
for i = l:lx

int_raw = round (pri_rg_mapg_angle (i, 1: num_chirp_samples-
1)/deltaDegrees); % need to store in Visual basic text file format

fprintf(f2,'%d,',int_raw);
int_raw =

round (pri_rg_mapq_angle (i, num_chirp_samples) /deltaDegrees) ;
fprintf(f2,'%d\r\n',int_raw);

end;
fclose(f2);
q = 2*pi/(2~nbitsph);
pri_rg_mapq_drfm = exp(sqrt(-1)*(round(pri_rg_mapq_angle/q))*q);
pri_rg_mapq_shift_drfm = exp(sqrt(-

1)*(round(pri_rg_mapq_shift_angle/q))*q);

% Perform pulse compression
% (c) for the quantized phase case with phase DFRM model
disp('Performing pulse compression for quantized phase case

(simulates phase DFRM effects)1);
pc_ref_mapq_drfm = fft(pri_rg_mapq_drfm.',2*rg_pts-l) . ' ;
pc_ref_mapq_shift_drfm = fft(pri_rg_mapq_shift_drfm.',2*rg_pts-l).';
pri_rg_map5 = zeros(size(pri_rg_mapq_drfm));
pri_rg_map6 = zeros(size(pri_rg_mapq_shift_drfm));

% Compress the original signals

for idx = l:dp_pts
tmp = cref.*pc_ref_mapq_drfm(idx,:);
tmpl = fftshift(ifft(tmp));
pri_rg_map5(idx,:) = tmpl(rg_pts:end);

end

% Compress the Doppler shifted signals

for idx = l:dp_pts
tmp = cref.*pc_ref_mapq_shift_drfm(idx,:);
tmpl = fftshift(ifft(tmp));
pri_rg_map6(idx,:) = tmpl(rg_pts rend);

end

% Compute the rg-dop map
disp('Plotting ... r-d map');

dp_rg_mapq_drfm = fft(pri_rg_map5);
dp_rg_map_shiftq_drfm = fft(pri_rg_map6);

[lx,ly] = size(dp_rg_mapq_drfm);
rax = 1:(length(ly));

208

dax = 0:(length(lx));
%dax = 0:(length(lx))-l;

dpyq_drfm = abs(dp_rg_mapq_drfm);
dpyq_shift_drfm = abs(dp_rg_map_shiftq);

save plot dpyq dpyq_shift_drfm

end

figured); print -dtiff simhostl

d. mathostv4b.m

%%
% mathostv4b.m
% MAJ Stig Ekestorm, Feb -00
% Modified version of mathostvO.m by SY YEO, Jul -98
%
% Generate pri_dp map and range-Doppler map
% - generates the files for input to hardware
% -- file para.txt contains:
% line 1: number of range cells
% line 2: number of pulse in a batch (equals to dp_pts in this
% program)
% line 3: extent of target in cells (n: integer); number of taps in
% delay also equals n (pipeline design)
% line 4: gainl, gain2, ..., gain n (integer)
% line 4+n+l: phiO (pulse 1),
% line 4+n+2: phil (pulse 1),
% line 4+n+targetExtent: phi-targetExtent (pulse 1),
% line 4+n+targetExtent+l: phiO (pulse 2),
% line 4+n+targetExtent+2: phil (pulse 2),
% line 4+n+2*targetExtent: phi-targetExtent (pulse 2),
%
% line 4+n+dp_pts*targetExtent: phi-targetExtent (pulse dp_pts)

%
% -- file raw.txt contains the instantaneous phases of simulated DFRM-
% data (quantized to 45deg step):
% line 1: pulse 1 (integer)
% line 2: pulse 2
%
% line dp_pts: pulse dp_pts
%%

clear

global sorm
global dp_pts
global rg_pts
global doppler_inc
global printdata

set(0,'defaultAxesFontSize',8);

209

noplot = 0;
Ncontours = 20;

% Parameters
%bw = 100e6;
%pwc = 1/(1.25*bw); % compressed pulsewidth
%pw =0.5e-6;
%prf = 2e3; pri = 1/prf;
%mu = 2*pi*bw/pw;
%fs = 1.25*bw; Ts = 1/fs;
%snr = 0;

bw = 100e6;
bw2 = 1.25*bw; % bandwidth of the chirp signal, delta
pwc = 1/(1.25*bw); % compressed pulsewidth
pw =0.5e-6; % uncompressed pulsewidth
prf = 2e3; % PRF
pri = 1/prf; % PRI
k = bw2/pw; % pulse compression rate, delta / uncompressed
pulsewidth
%mu = 2*pi*bw/pw;
fs = 1.25*bw; % sampling frequency
Ts = 1/fs; % sampling time step
snr =0; % no extra noise added

% set-up grid
% x-axis(rg), y-axis(dp)
%rg_pts = 200;
%dp_pts = 64;

pri_rg_map = zeros(dp_pts,rg_pts);
pri_rg_mapq = zeros(dp_pts,rg_pts);
pri_rg_map_shift = zeros(dp_pts,rg_pts);
pri_rg_map_shiftq = zeros(dp_pts,rg_pts);
pri_rg_phaseq = zeros(dp_pts,rg_pts) ;

% insert waveform into grid;
load -ascii sigparl
sigpar = sigparl';
doppler_inc = sigpar(4,:);
%sigpar([2 4],:) = sigpar([2 4],:)*prf/dp_pts;
sigpar(2,:) = sigpar(2,:) * 0 + 1000-9*31.25; %to create an
artificial Doppler offset for the Ship Case, 32 Taps
%sigpar(2,:) = sigpar(2,:) * 0 + 1000-5*31.25; %to create an
artificial Doppler offset for the Ship Case, 16 Taps
[lxs,lys] = size(sigpar);
%t0 = 0:Ts:pw-Ts;
tO = Ts:Ts:pw;

%for the reduced 2-Tap T-Spice simulation
%TsNew=4*l/fs;
%tnew = 0:TsNew:pw-TsNew;
%tnew = TsNew:TsNew:pw;
%t0 = tnew;

210

num_chirp_samples = length(tO);
if ((num_chirp_samples + lxs) > rg_pts)

disp('Warning : Chirp is clipped - set grid size larger');
end

% open files for writing
f1 = fopen('para.txt','w');
fprintf(f1,'%d\r\n',num_chirp_samples); % number of range cells
fprintf(fl,'%d\r\n',dp_pts); % number of Doppler cells
fprintf(fl,'%d\r\n',lys); % target extent

% adjustment to correct multiplication factors for the amplitude (gain)
value
for i = 1:lys

switch sigpar(3,i)
case {1}

sigpar(3,i)=l; % no shift, multiplication by 1, hardware bit "00"
case {2}

sigpar(3,i)=2; % shift by 1, multiplication by 2, hardware bit
"01"

case {3}
sigpar(3,i)=4; % shift by 2, multiplication by 4, hardware bit

"10"
case {4}

sigpar(3,i)=8; % shift by 3, multiplication by 8, hardware bit
"11"

end
fprintf(fl,'%d\r\n',sigpar(3,i)); % gainl, gain2, ..., gainN

end

nbitsph = 3;
nbitsdop = 5;
nbitsamp = 8;
b = 2*pi/(2~nbitsph);
a = 2*pi/(2~nbitsamp);
p = 2*pi/(2~nbitsdop);
%for the reduced 2-Tap T-Spice simulation, Nov -99
%p = 2*pi/(dp_pts);

for idxl = l:dp_pts % Repeat for total number of pulses within
batch

tl = tO + (idxl)*pri;
%tl = tO + (idxl-1)*pri;
for idx = l:lys

%**** approximation used here, assume phase change due to Doppler
within a chirp is constant

%**** since the Doppler is tens of hertz compared to the MHz
chirp bandwidth

oldphase = 2*pi*((k*tl.*tl)/2 + sigpar(2,idx)*tl);
%oldphase = mu*tl.*tl/2 + 2*pi*sigpar(2,idx)*tl;
%oldphase = mu*tl.*tl/2 + 2*pi*sigpar(2,idx)*(idxl-1)*pri;

oldphase = mod(oldphase,2*pi);

211

here

here

% quantize the oldphase to 1 of 8 phases
int_oldphase = round(oldphase/b);
oldphaseq = b*int_oldphase; % quantize the phase
xc = exp(sqrt(-l)*oldphase);
lx = (sigpar(l,idx)):(sigpar(1,idx))+length(xc)-1;
pri_rg_map(idxl,lx) = xc+pri_rg_map(idxl,lx);
pri_rg_phaseq(idxl,lx) = int_oldphase;

xcq = exp(sqrt(-l)*oldphaseq);
xcq = p*round(xcq/p); % quantize the phase
pri_rg_mapq(idxl,lx) = xcq+pri_rg_mapq(idxl,lx);
% phase focusing
dopphase = 2*pi*sigpar(4,idx)*(idxl)*pri; % approximation used

%dopphase = 2*pi*sigpar(4,idx)*(idxl-1)*pri; % approximation used

newphase = oldphase + dopphase*ones(size(oldphase));
xl = cos(newphase);
xQ = sin(newphase);
xl = sigpar(3,idx)*(xl+sqrt(-1)*xQ);
pri_rg_map_shift(idxl,lx) = pri_rg_map_shift (idxl, lx) + xl;

int_dopphaseq = round(dopphase/p);
dopphaseq = int_dopphaseq*p;
newphaseq = oldphaseq + dopphaseq;
xl = cos(newphaseq);
xQ = sin(newphaseq);
xl = round(xI/a)*a;
xQ = round(xQ/a)*a;
xl = sigpar(3,idx)*(xl+sqrt(-1)*xQ);
pri_rg_map_shiftq(idxl,lx) = pri_rg_map_shiftq(idxl, lx) + xl;

% store the dopphase value (ignore intrapulse phase change since
it is small)

%fprintf(f1,'%d\r\n',int_dopphaseq); %originals
code, incrementation of phase modulation coefficients

%fprintf(f1,'%d\r\n',mod(int_dopphaseq,32)); %to get
true phase modulation coefficients each PRI

fprintfffl, '%d\r\n',mod(2*fix(int_dopphaseq/2),32)) ; %to
represent phase modulation coefficients using 4-bits words

end
end
fclose(fl);

noise = randn(size(pri_rg_map))*c_snr(snr); noise = 0;
pri_rg_map = pri_rg_map + noise;
pri_rg_map_shift = pri_rg_map_shift + noise;

save pulsel pri_rg_map_shiftq

% Perform pulse compression
% (a) for the non-quantized phase case
disp('Creating reference waveform');

212

ph = 2*pi*((k*tl.*tl)/2 + sigpar(2,l)*tl);
crefc = sqrt(j*k)*exp(j*ph);
cref = conj(fft(crefc,2*rg_pts-l));
save pc_ref cref tl

%ph = (mu*tl.*tl/2);
%crefc = exp(sqrt(-1)*ph);
%cref = conj(fft(crefc,2*rg_pts-l));
%save pc_ref cref tl
pc_ref_map = fft(pri_rg_map.',2*rg_pts-l).';
pc_ref_map_shift = fft(pri_rg_map_shift.',2*rg_pts-l) . ' ;

disp('Performing pulse compression');
pri_rg_mapl = zeros(size(pri_rg_map));
pri_rg_map2 = zeros(size(pri_rg_map));

% Compress the original signals
for idx = l:dp_pts

tmp = cref.*pc_ref_map(idx,:);
tmpl = fftshift(ifft(tmp));
pri_rg_mapl(idx,:) = tmpl(rg_pts:end);

end

% Compress the Doppler shifted signals

for idx = l:dp_pts
tmp = cref.*pc_ref_map_shift(idx,:);
tmpl = fftshift(ifft(tmp));
pri_rg_map2(idx,:) = tmpl(rg_pts:end);

end

% Compute the rg-dop map
disp('Plotting ... r-d map');

dp_rg_map = fft(pri_rg_mapl,dp_pts);
dp_rg_map_shift = fft(pri_rg_map2,dp_pts);

[lx,ly] = size(dp_rg_map);
rax = 1:(length(ly));
dax = 0:(length(lx))-l;

dpy = abs(dp_rg_map);
dpy_shi f t = abs(dp_rg_map_shi ft);

if (noplot == 0)
figured) ;

subplot(2,1,1);
h = contour(dpy,Ncontours); grid
title('a. Original Rd-Dp Map');
axis([l 62 0 dp_pts])
xlabeK'Down Range Cells'); ylabel ('Cross Range Cells');

subplot(2,1,2);
h = contour(dpy_shift,Ncontours); grid
axis([1 62 0 dp_pts])

213

title('b. Amplitude and Doppler Modulated Rd-Dp Map');
xlabel('Down Range Cells'); ylabel('Cross Range Cells ');

% Perform pulse compression
% (b) for the quantized phase case
disp('Performing pulse compression for quantized phase case');
pc_ref_mapq = fft(pri_rg_mapq.■,2*rg_pts-l).';
pc_ref_map_shiftq = fft(pri_rg_map_shiftq.',2*rg_pts-l).•;
pri_rg_map3 = zeros(size(pri_rg_mapq));
pri_rg_map4 = zeros(size(pri_rg_mapq));

% Compress the original signals

for idx = l:dp_pts
tmp = cref.*pc_ref_mapq(idx,:) ;
tmpl = fftshift(ifft(tmp));
pri_rg_map3(idx,:) = tmpl(rg_pts:end);

end

% Compress the Doppler shifted signals

for idx = l:dp_pts
tmp = cref.*pc_ref_map_shiftq(idx, :);
tmpl = fftshift(ifft(tmp)) ;
pri_rg_map4(idx,:) = tmpl(rg_pts:end);

end

% Compute the rg-dop map
disp('Plotting ... r-d map');

dp_rg_mapq = fft(pri_rg_map3);
dp_rg_map_shiftq = fft(pri_rg_map4);

[lx,ly] = size(dp_rg_mapq);
rax = 1:(length(ly));
dax = 0:(length(lx))-l;

dpyq = abs(dp_rg_mapq);
dpy_shiftq = abs(dp_rg_map_shiftq) ;

% -- Simulation of phase quantizing DRFM
% Now convert amplitude to phase.
% Convert phase to positive numbers between 0-360deg, so do not need

to handle
% negative numbers in Altera.
pri_rg_mapq_angle = mod(pri_rg_phaseq,2*pi);
pri_rg_mapq_shift_angle = angle(pri_rg_map_shiftq) ;

f2 = fopen('rawint.txt',' w') ;
[lx,ly] = size(pri_rg_mapq_angle);
deltaDegrees = 2*pi/(2~nbitsdop);
for i = l:lx

int_raw = round (pri_rg_mapq_angle (i, 1: num_chirp_samples-
1)/deltaDegrees); % need to store in Visual basic text file format

fprintf(f2,'%d,',int_raw);

214

int_raw =
round (pri_rg_mapq_angle (i / num_chirp_samples) /deltaDegrees) ;

fprintf(f2,'%d\r\n',int_raw);
end;
fclose(f2);
q = 2*pi/(2Änbitsph);
pri_rg_mapq_drfm = exp(sqrt (-1) * (round(pri_rg_mapq_angle/q)) *q) ;
pri_rg_mapq_shift_drfm = exp(sqrt(-

1) * (round (pri_rg_mapq_shift_angle/q)) *q) ;

% Perform pulse compression
% (c) for the quantized phase case with phase DFRM model
disp ('Performing pulse compression for quantized phase case

(simulates phase DFRM effects)');
pc_ref_mapq_drfm = fft(pri_rg_mapq_drfm. ' ,2*rg_pts-l) . ' ;
pc_ref_mapq_shift_drfm = fft (pri_rg_mapq_shift_drfm. ' ,2*rg_pts-i;
pri_rg_map5 = zeros(size(pri_rg_mapq_drfm));
pri_rg_map6 = zeros(size(pri_rg_mapq_shift_drfm));

% Compress the original signals

for idx = l:dp_pts
tmp = cref.*pc_ref_mapq_drfm(idx, :) ;
tmpl = fftshift(ifft(tmp));
pri_rg_map5(idx,:) = tmpl(rg_pts:end) ;

end

% Compress the Doppler shifted signals

for idx = l:dp_pts
tmp = cref.*pc_ref_mapq_shift_drfm(idx, :) ;
tmpl = fftshift(ifft(tmp));
pri_rg_map6(idx,:) = tmpl(rg_pts:end) ;

end

% Compute the rg-dop map
disp('Plotting ... r-dmap');

dp_rg_mapq_drfm = f ft (pri_rg_map5) ;
dp_rg_map_shiftq_drfm = fft(pri_rg_map6) ;

[lx,ly] = size(dp_rg_mapq_drfm);
rax = 1:(length(ly));
dax = 0:(length(lx));
%dax = 0:(length(lx))-l,■

dpyq_drfm = abs (dp_rg_mapq_drfm) ;
dpyq_shift_drfm = abs (dp_rg_map_shiftq) ;

save plot dpyq dpyq_shift_drfm

end

figure(l); print -dtiff simhostl

215

e. simhwchkv4.m

%%
% simhwchkv4.m
% MAJ Stig Ekestorm, Feb -00
% Modified version of simhwchkvO.m
% Purpose: This program performs a architectural true simulation of the
% Digital Image Synthesizer hardware
% Modifications will perform "parallel processing" and then "serial
% summation" including:
% - correction at start-up ("initialize outputs from the taps, one tap
% after another")
% - correction at the end ("shutting down the taps, one tap after
% another")
% Original file: simhwchk.m by SY YEO, Jul -98
%%

clear

global dp_pts
global rg_pts
global doppler_inc

set(0, 'defaultAxesFontSize' ,8);

noPlot = 0;
Ncontours = 20;

depthLUT =32;
widthLUTFile =2; % in units of number of hex digits
widthLUT =8; % n bits
ndopbits = 5;

%*****************************

% Read from data files

% Read from para.dat
%fid = fopen('para.txt','r'); %opens para.txt to be read
%fid = fopen('paraMULTI.txt','r'); %opens paraMULTI.txt to be read
%fid = f open ('paraMULTIq5.txt', 'r') ; %opens paraMULTIq5.txt to be read
%fid = f open ('paraMULTIq4.txt', 'r') ,- %opens paraMULTIq4.txt to be read
%fid = f open ('paraMULTIq4NEW.txt', 'r') ; %opens paraMULTIq4NEW.txt to be
read
%fid = fopen('paraMULTIq4Vcasel.txt', 'r'); %opens paraMULTIq4Vcase.txt
to be read
fid = fopen('paraMULTIq4Vcase2 . txt' , ' r ') ; %opens paraMULTIq4Shipl. txt
to be read

tmp = fscanf (fid, ' %f') ; %reads in the values, for non-quantized test
case
%tmp = fscanf(fid,'%d'); %reads in the values

nRangeCell = tmp(l); %lst value: 62, represents the number of range
cells

216

nDopplerCell = tmp(2); %2nd value: 64, represents the number of radar
pulses
targetExtent = tmp(3); %3rd value: 3, represents the radial length of
the target expressed in number of range cells

gain = tmp(4:4+targetExtent*nDopplerCell-l);
gainRev = reshape(gain,targetExtent,nDopplerCell);
tmpl = tmp(4+targetExtent*nDopplerCell:end);
phi = reshape(tmpl,targetExtent,nDopplerCell);

%gain = tmp(4:4+targetExtent-1); %4th to 6th values: 1,2,4 - the gain
value for each tap
%gainRev = fliplr(gain);
%tmpl = tmp(4+targetExtent:end); % 7th to last value: the phase-
increment values for each tap
%phi = reshape(tmpl,targetExtent,nDopplerCell); %3x64 matrix with zeros
in the 1st column
fclose(fid);

% Read from rawint.dat
raw = zeros(nDopplerCell,nRangeCell); %create a 64x62 matrix,
initialized to zeros
fid = fopen('rawint.txt','r'); %open rawint.txt to be read
for j = l:nDopplerCell

for k = 1:nRangeCell-1
raw(j.k) = fscanf(fid,'%d',1);
comma = fscanf(fid,'%c',1);

end
raw(j,nRangeCell) = fscanf(fid,'%d',1);

end
fclose(fid);
[row,col] = size(raw);
raw = [raw,zeros(row,targetExtent-1)]; %raw: 64x64 matrix, last 2
columns with zeros
%raw = [raw,zeros(row,targetExtent)]; %raw: 64x65 matrix, last 3
columns with zeros

% Read from the LUT files.
load -ascii cosine.txt % variable is cosine
load -ascii sine.txt % variable is sine

% initialize some intermediate variables and vectors
Tgt_Extent=targetExtent;
DRFM_Phase=raw;
GainRev = gain';
gainRev = gainRev';
Phase_inc=phi;
phiRev = zeros(Tgt_Extent,1);
depthLUT =32;
phaseAdderOut = zeros(Tgt_Extent,1);
lutOut = zeros(Tgt_Extent, 1) ;
tapOut = zeros(nRangeCell + (Tgt_Extent-l),Tgt_Extent);

% open files to write results to
%fl = fopen('checkv2.txt','w'); % "scan-path test"
f2 = fopen('lout.txt1,'w'); % I-values, final output

217

f3 = fopen('Qout.txt','w'); % Q-values, final output
f4 = fopen('Iout_bin.txt','W); % I-values in 2-complement binary,
final output
f5 = fopen('Qout_bin.txt','w'); % Q-values in 2-complement binary,
final output

% signal processing
for batchCnt = lrnDopplerCell,

disp(['Processing Pulse 'num2str(batchCnt)]);

for intraPulseCnt = 1:(nRangeCell + (Tgt_Extent-l)), % clock cycle

% This part simulates the intra pulse processing in hardware

%This part does "parallel processing" and then "serial summation"

% "parallel processing"

% initialize some intermediate variables and vectors
tap=zeros(1,Tgt_Extent);

% extraxt DRFM-phase data
DRFM_data=DRFM_Phase(batchCnt,intraPulseCnt);
for idx=l:Tgt_Extent,

tap(idx)=DRFM_data;
end

% phase addition (add phase-increment (Doppler offset) to DFRM
phase data)

phaseAdderOut=tap(1:Tgt_Extent)' + Phase_inc(:,batchCnt);

% phase-amplitude look-up (to obtain complex time signal)
%tmp=mod(phaseAdderOut,32)/32*2*pi; %test case

with non-quantized phase and LUT
%lutOut = cos(tmp) + sqrt (-1) *sin(tmp) ,- %test case

with non-quantized phase and LUT
tmp = mod(phaseAdderOut,depthLUT) + 1; %original DIS

code
lutOut = cosine(tmp) + sqrt(-1)*sine(tmp); %original DIS

code

% correction at the end ("shutting down the taps one tap after
another")

if intraPulseCnt>nRangeCell,
for idx2=l:(intraPulseCnt-nRangeCell) ,

lutOut((idx2),:)=0;
end

end

% gain modulation, and storing values in an intermediate matrix
if intraPulseCnt<=nRangeCell,

GainOut = gainRev(batchCnt,:)'.*lutOut;
for idx3=0:Tgt_Extent-l,

tapOut(intraPulseCnt+idx3,idx3+l)=GainOut(idx3+l);
end

218

end

% final accumulation - "serial summation"
% - 1st: extract partial sums (I and Q)
% - 2nd: extract final sums (I and Q)
tapNew=tapOut;
add=0;
tt=Tgt_Extent;

if tt>=2,
while tt>=2,

add=add+l;
tapNew(intraPulseCnt,tt-

1)=tapNew(intraPulseCnt,tt)+tapNew(intraPulseCnt, tt-1) ;
partial_tapsum(intraPulseCnt,1)=tapNew(intraPulseCnt,tt-1);

tt=tt-l;
end
tt=tt-l;

end

if tt==l,
partial_tapsum(intraPulseCnt,1)=tapOut(intraPulseCnt,1);

end

Iout=real(partial_tapsum(intraPulseCnt,1));
Qout=imag(partial_tapsum(intraPulseCnt,1));

% write final results (I and Q) to separate files
format long
fprintf(f2,'%5.7f\n',Iout);
fprintf(f3,'%5.7f\n',Qout);
fprintf(f4,'%d',dec2two(lout,8,7));
fprintf(f4,'\r\n');
fprintf(f5, '%d',dec2two(Qout, 8, 7)) ;
fprintf(f5,'\r\n');

end %intraPulseCnt

finalAdderOut(batchCnt,:)=conj(partial_tapsum');

end %batchCnt

% close files
fclose(f2)
fclose(f3)
fclose(f4)
fclose(f5)

9.*****************************

% Pulse Compression
0. **************************** *

% Compress the Doppler shifted signals
load pc_ref
priRgMapShift = zeros(nDopplerCell,rg_pts);

tic
pcRefMapShift = fft(finalAdderOut.',2*rg_pts-l).'

219

for idx = l:nDopplerCell
tmp = cref.*pcRefMapShift(idx,:);
tmpl = fftshift(ifft(tmp));
priRgMapShif t (idx, 1: end-targetExtent+1) = tmpl (rg_pts+targetExtent-

l:end);
end
dpRgMapShiftMOD = abs(fft(priRgMapShift));
%dpRgMapShift = abs (f ft (priRgMapShift)) ,-
toe

dpRgMapShi ftMOD4Vcase2 =dpRgMapShi ftMOD;
finalAdder0utVcase2=finalAdder0ut;
save plotMOD4Vcase2 dpRgMapShiftMOD4Vcase2
%dpRgMapShiftMOD4Ship2=dpRgMapShiftMOD;
%save plotMOD4Ship2 dpRgMapShiftM0D4Ship2
%%dpRgMapShi ftM0D4NEW=dpRgMapShi ftMOD;
%save plotM0D4NEW dpRgMapShiftM0D4NEW
%dpRgMapShiftM0D4=dpRgMapShiftM0D;
%save plotMOD4 dpRgMapShiftM0D4
%dpRgMapShiftMOD5=dpRgMapShiftMOD;
%save plotM0D5 dpRgMapShiftMOD5
%dpRgMapShiftMODnot=dpRgMapShiftMOD;
%save plotMODnot dpRgMapShiftMODnot
save plotMOD dpRgMapShiftMOD

save fAddOut finalAdderOut

% Display
ft*****************************

if (noPlot == 0)
figure(2) ;
load plot.mat
subplot(2,1,1) ;
h = contour(dpyg,Ncontours); grid; axis([l 64 0 dp_pts])
%h = contour(dpyg_shift_drfm,Ncontours); grid; axis([0 20 0 32])
titlef'a. Amplitude and Doppler Modulated Rd-Dp Map (unmodulated /

MATLAB) ');
xlabel('Down Range Cells'); ylabel('Cross Range Cells ') ;
axis([l 62 0 dp_pts])
subplot(2,1,2);
h = contour(dpRgMapShiftMOD,Ncontours); grid; axis([l 64 0 dp_pts])
%h = contour (dpRgMapShi ft, Ncontours) ,- grid; axis([l 20 0 32])
title('b. Amplitude and Doppler Modulated Rd-Dp Map (Bit-True,

modulated / MATLAB) ');
xlabeK'Down Range Cells'); ylabel ('Cross Range Cells');
axis([l 62 0 dp_pts])

end

220

f. simhwchkv4_write.m

% simhwchkv4_write.m
% MAJ Stig Ekestorm, Feb -00
% Modified version of simhwchkvO.m
% Purpose: This program performs a architectural true simulation of the
% Digital Image Synthesizer hardware
% Modifications will perform "parallel processing" and then "serial
% summation" including:
% - correction at start-up ("initialize outputs from the taps, one tap
% after another")
% - correction at the end ("shutting down the taps, one tap after
% another")
% Original file: simhwchk.m by SY YEO, Jul -98
%%

clear

global dp_pts
global rg_pts
global doppler_inc

set(0,'defaultAxesFontSize',8);

noPlot = 0;
Ncontours = 20;

depthLUT = 32;
widthLUTFile =2; % in units of number of hex digits
widthLUT =8; % n bits
ndopbits = 5;

p.*****************************

% Read from data files
9-*****************************

% Read from para.dat
%fid = fopen('para.txt','r'); %opens para.txt to be read
%fid = fopen('paraMULTI.txt",'r'); %opens paraMULTI.txt to be read
%fid = fopen('paraMULTIq5.txt','r'); %opens paraMULTIq5.txt to be read
%fid = fopen('paraMULTIq4.txt','r'); %opens paraMULTIq4.txt to be read
%fid = fopen('paraMULTIq4NEW.txt','r'); %opens paraMULTIq4NEW.txt to be
read
%fid = fopenCparaMULTIq4Ship64a.txt', 'r') ; %opens paraMULTIq4Shipl.txt
to be read
fid = fopen('paraMULTIq4Vcase2.txt', 'r') ; %opens paraMULTIq4Shipl.txt

to be read

%tmp = fscanf(fid,'%f■); %reads in the values, for non-quantized test

case
tmp = fscanf(fid,'%d'); %reads in the values

nRangeCell = tmp(l); %lst value: 62, represents the number of range

cells

221

nDopplerCell = tmp(2); %2nd value: 64, represents the number of radar
pulses
targetExtent = tmp(3); %3rd value: 3, represents the radial length of
the target expressed in number of range cells

gain = tmp(4:4+targetExtent*nDopplerCell-l);
gainRev = reshape(gain,targetExtent,nDopplerCell);
tmpl = tmp(4+targetExtent*nDopplerCell:end);
phi = reshape(tmpl,targetExtent,nDopplerCell);

%gain = tmp(4:4+targetExtent-l); %4th to 6th values: 1,2,4 - the gain
value for each tap
%gainRev = fliplr(gain);
%tmpl = tmp(4+targetExtent:end); % 7th to last value: the phase-
increment values for each tap
%phi = reshape (tmpl, targetExtent, nDopplerCell) ,- %3x64 matrix with zeros'
in the 1st column
fclose(fid);

% Read from rawint.dat
raw = zeros(nDopplerCell,nRangeCell) ; %create a 64x62 matrix,
initialized to zeros
fid = fopen('rawint.txt','r') ; %open rawint.txt to be read
for j = 1:nDopplerCell

for k = l:nRangeCell-l
raw(j,k) = fscanf(fid,'%d',1);
comma = fscanf (fid, ' %c', 1) ,-

end
raw(j,nRangeCell) = fscanf(fid,'%d',1);

end
fclose(fid);
[row,col] = size(raw);
raw = [raw,zeros(row,targetExtent-1)] ; %raw: 64x64 matrix, last 2
columns with zeros
%raw = [raw,zeros(row,targetExtent)]; %raw: 64x65 matrix, last 3
columns with zeros

% Read from the LUT files.
load -ascii cosine.txt % variable is cosine
load -ascii sine.txt % variable is sine

% initialize some intermediate variables and vectors
Tgt_Extent=targetExtent;
DRFM_Phase=raw;
GainRev = gain';
gainRev = gainRev■;
Phase_inc=phi;
phiRev = zeros(Tgt_Extent,1);
depthLUT =32;
phaseAdderOut = zeros(Tgt_Extent,1);
lutOut = zeros(Tgt_Extent,1);
tapOut = zeros(nRangeCell + (Tgt_Extent-l),Tgt_Extent);

% open files to write results to
fl = fopen('checkv4.txt','w'); % "scan-path test"
f2 = fopen('lout.txt','w'); % I-values, final output

222

f3 = fopen('Qout.txf, 'W) ; % Q-values, final output
f4 = fopen('Iout_bin.txt','W); % I-values in 2-complement binary,
final output
f5 = fopen('Qout_bin.txt','W); % Q-values in 2-complement binary,
final output

% signal processing
for batchCnt = l:nDopplerCell,

f nrintf (fl l9-s' i *************************************** *'******');

fprintf(fl,'\r\n');
fprintf(fl,'\r\n');
fprintf(fl,'%s:%d\r\n', 'batchCnt (Radar Pulse) ' ,batchCnt);
fprintf(fl,'\r\n') ;
disp(['Processing Pulse 'num2str(batchCnt)]);

for intraPulseCnt = 1:(nRangeCell + (Tgt_Extent-l)), % clock cycle

fprintf(fl, '%s:%d\r\n', 'intraPulseCnt',intraPulseCnt) ;
fprintf(fl, '\r\n');
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock

Pulse',intraPulseCnt);

% This part simulates the intra pulse processing in hardware

%This part does "parallel processing" and then "serial summation"

% "parallel processing"

% initialize some intermediate variables and vectors
tap=zeros(1,Tgt_Extent);

% extraxt DRFM-phase data
DRFM_data=DRFM_Phase(batchCnt,intraPulseCnt);
fprintf(fl,'%s\r\n','DRFM-phase Data processed:');
for idx=l:Tgt_Extent,

tap(idx)=DRFM_data;
end
for idx=l:Tgt_Extent,

fprintf(fl,'%s%d',' tap',idx-1);
DRFM_bin=dec2two(DRFM_data,5,0);
fprintf(fl,':%d\r\n',DRFM_data);
fprintf(fl,' %d',DRFM_bin(l,2:6));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

end

% phase addition (add phase-increment (Doppler offset) to DFRM

phase data)
phaseAdderOut=tap (1: Tgt_Extent) ' + Phase_inc (: , batchCnt) ;
fprintf(fl,'\r\n");
fprintf(fl,'%s\r\n','Phase-increment:');
for idx=l:Tgt_Extent,

fprintf(fl,'%s%d',' tap',idx-1);
%fprintf(fl,':%d\n',doppler_inc(idx));
%fprintf(fl,' %d',dec2two(doppler_inc(idx),3,0));

223

fprintf(fl,':%d\n',Phase_inc(idx,batchCnt));
phase_inc=dec2two(Phase_inc(idx,batchCnt),5,0);
fprintf(f1,' %d' ,phase_inc(1,2:5));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

end
fprintf(fl,'\r\n');
fprintf(fl,'%s\r\n','Phase-rotation Register:');
for idx=l:Tgt_Extent,

fprintf(fl,'%s%d',' tap',idx-l);
fprintf(fl, ':%d\n',mod(Phase_inc(idx,batchCnt) ,32));
Pi=dec2two(mod(Phase_inc(idx,batchCnt),32),5,0);
fprintf(fl, ' %d',Pi(l,2:6)) ;
fprintf(fl,'\r\n');
fprintf (fl, '\r\n') ,-

end
fprintf(fl,'\r\n');
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock

Pulse',intraPulseCnt+1);
fprintf(fl,'%s\r\n",'After Phase Adder:');
for idx=l:Tgt_Extent,

fprintf(fl,'%s%d',' tap",idx-l);
fprintf(f1, ':%d\n',mod(phaseAdderOut(idx),32)) ;
pAO=dec2two(mod(phaseAdderOut(idx) , 32) , 5, 0) ;
fprintf(fl,' %d',pAO(l,2:6));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

end
fprintf(fl,'\r\n');
fprintf(fl,,\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock

Pulse',intraPulseCnt+2);

% phase-amplitude look-up (to obtain complex time signal)

% tmp=mod(phaseAdderOut,32)/32*2*pi; %test case
with non-quantized phase and LUT

% lutOut = cos(tmp) + sqrt(-1)*sin(tmp); %test case
with non-quantized phase and LUT

tmp = mod (phaseAdderOut, depthLUT) + 1; %original DIS
code

code
lutOut = cosine(tmp) + sqrt(-1)*sine(tmp); %original DIS

fprintf(fl,'%s\r\n','After LUT (I-values):');
for idx=l:Tgt_Extent,

fprintf(fl,'%s%d',' tap',idx-l);
fprintf(fl, ':%5.7f\n',real(lutOut(idx))) ;
fprintf(fl,' %d',dec2two(real(lutOut(idx)),0,7));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

end
fprintf(fl,'%s\r\n','After LUT (Q-values):');
for idx=l:Tgt_Extent,

fprintf(fl,'%s%d',' tap',idx-l);
fprintf(fl,':%5.7f\n',imag(lutOut(idx)));
fprintf(f1, ' %d',dec2two(imag(lutOut(idx)),0,7)) ;

224

fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

end

% correction at the end ("shutting down the taps one tap after
another")

if intraPulseCnt>nRangeCell,
for idx2=l:(intraPulseCnt-nRangeCell),

Iut0ut((idx2),:)=0;
end

end

fprintf(fl,'\r\n');
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock

Pulse',intraPulseCnt+3);

% gain modulation, and storing values in an intermediate matrix
fprintf(fl,'%s\r\n','Gain Value:');
for idx=l:Tgt_Extent,
% if GainRev(l,idx)==1,
% GainRev2=0;
% elseif GainRevd, idx) ==2,
% GainRev2=l;
% elseif GainRevd, idx) ==4,
% GainRev2=2;
% elseif GainRevd, idx) ==8,
% GainRev2=3;
% end

fprintf(fl,'%s%d',' tap',idx-1);
fprintf(fl,':%5.7f\n',gainRev(batchCnt,idx));
GRbin=dec2two(gainRev(batchCnt,idx),2,0);
fprintf(fl,' %d',GRbin(l,2:3));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

end
if intraPulseCnt<=nRangeCell,

GainOut = gainRev(batchCnt,:)'.*lutOut;
for idx3=0:Tgt_Extent-l,

tapOut(intraPulseCnt+idx3,idx3+l)=GainOut(idx3+l);

end
end
fprintf(fl,'%s\r\n','After Gain Block (I-values):');
for idx=l:Tgt_Extent,

fprintf(fl,'%s%d' , ' tap',idx-1);
fprintf(fl,':%5.7f\n',real(GainOut(idx)));
fprintf(fl,' %d',dec2two(real(GainOut(idx)) ,3,7)) ;
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

end
fprintf(fl,'%s\r\n','After Gain Block (Q-values):');
for idx=l:Tgt_Extent,

fprintf(fl,'%s%d',' tap',idx-1);
fprintf(fl,':%5.7f\n',imag(GainOut(idx)));
fprintf(fl,' %d',dec2two(imag(GainOut(idx)) ,3,7));

fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

225

end

fprintf(fl,'\r\n');
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n'

Pulse',intraPulseCnt+4) ;
'Clock

% final accumulation - "serial summation"
% - 1st: extract partial sums (I and Q)
% - 2nd: extract final sums (I and Q)
tapNew=tapOut;
add=0;
tt=Tgt_Extent;
fprintf(fl,'%s\r\n','Final values in each tap (I- and Q-

values):');

fprintf(fl,'%s%d',' Final I-value in tap',tt-1);
fprintf(fl,':%5.7f\n',real(tapNew(intraPulseCnt,tt)));
fprintf(fl,■ %d',dec2two(real(tapNew(intraPulseCnt,tt)),8,7)) ;
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');
fprintf(fl,'%s%d',' Final Q-value in tap',tt-1);
fprintf(fl, ':%5.7f\n',imag(tapNew(intraPulseCnt,tt))) ;
fprintf (fl, ' %d' ,dec2two(imag(tapNew(intraPulseCnt, tt)) ,8,7)) ,-
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

if tt>=2,
while tt>=2,

add=add+l;
tapNew(intraPulseCnt,tt-

1)=tapNew(intraPulseCnt,tt)+tapNew(intraPulseCnt,tt-1);

1)),8,7))

D),8,7))

fprintf(fl,
fprintf(fl,
fprintf(fl,

fprintf(fl,
fprintf(fl,
fprintf(fl,
fprintf(fl,
fprintf(fl,

%s%d',' Final I-value in tap',tt-2);
:%5.7f\n',real(tapNew(intraPulseCnt,tt-1)));
%d',dec2two(real(tapNew(intraPulseCnt,tt-

\r\n');
\r\n');
%s%d',' Final Q-value in tap',tt-2);
:%5.7f\n',imag(tapNew(intraPulseCnt,tt-1)));
%d',dec2two(imag(tapNew(intraPulseCnt,tt-

fprintf(fl,'\r\n');
fprintf(fl,'\r\n');
partial_tapsum(intraPulseCnt,1)=tapNew(intraPulseCnt,tt-1);
tt=tt-l;

end
tt=tt-l;

end

if tt==l,
partial_tapsum(intraPulseCnt, 1)=tapOut(intraPulseCnt,1);

end

fprintf(fl,'\r\n');
Iout=real(partial_tapsum(intraPulseCnt,1));
Qout=imag(partial_tapsum(intraPulseCnt,1));
fprintf(fl,'%s\r\n','Final Output values (I- and Q-values):');

226

fprintf(fl,'%s%d',' lout - Final I-value for
intraPulseCnt',intraPulseCnt);

fprintf(fl,':%5.7f\n',Iout);
fprintf(f1,' %d',dec2two(lout,8,7));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');
fprintf(fl,'%s%d',' Qout - Final Q-value for

intraPulseCnt',intraPulseCnt);
fprintf(fl,':%5.7f\n',Qout);
fprintf(fl,' %d',dec2two(Qout,8,7));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');
fprintf(fl,'%s','

');
fprintf(fl,'\r\n');

% write final results (I and Q) to separate files
format long
fprintf(f2,'%5.7f\n',Iout);
fprintf(f3,'%5.7f\n',Qout);
fprintf(f4,'%d',dec2two(lout,8,7));
fprintf(f4,'\r\n');
fprintf(f5,'%d',dec2two(Qout,8,7));
fprintf(f5,\\r\n');

end %intraPulseCnt

finalAdderOut(batchCnt,:)=conj(partial_tapsum');

end %batchCnt

% close files
fclose(fl)
fclose(f2).
fclose(f3)
fclose(f4)
fclose(f5)

S-*****************************

% Pulse Compression
s-*****************************

% compress the Doppler shifted signals
load pc_ref
priRgMapShift = zeros(nDopplerCell,rg_pts);

tic
pcRefMapShift = fft(finalAdderOut.',2*rg_pts-l).';
for idx = lrnDopplerCell

tmp = cref.*pcRefMapShift(idx,:);
tmpl = fftshift(ifft(tmp));
priRgMapShift (idx, 1 :end-targetExtent+l) = tmpl (rg_j?ts+targetExtent-

l:end);
end
dpRgMapShiftMOD = abs(fft(priRgMapShift));
%dpRgMapShift = abs(fft(priRgMapShift));

toe

227

dpRgMapShi ftM0D4 Ship6 4a=dpRgMapShi ftMOD;
finalAdderOut64a = finalAdderOut;
save plotMOD4Ship64a dpRgMapShiftMOD4Ship64a finalAdderOut64a
%dpRgMapShiftMOD4Ship2=dpRgMapShiftMOD;
%save plotM0D4Ship2 dpRgMapShiftMOD4Ship2
%%dpRgMapShiftMOD4NEW=dpRgMapShiftMOD;
%save plotMOD4NEW dpRgMapShiftMOD4NEW
%dpRgMapShiftMOD4=dpRgMapShiftMOD;
%save plotMOD4 dpRgMapShiftMOD4
%dpRgMapShiftMOD5=dpRgMapShiftMOD;
%save plotMOD5 dpRgMapShiftMOD5
%dpRgMapShiftMODnot=dpRgMapShiftMOD;
%save plotMODnot dpRgMapShiftMODnot
save plotMOD dpRgMapShiftMOD
save fAddOut finalAdderOut

%*****************************

% Display

if (noPlot == 0)
figure(2);
load plot.mat
subplot(2,1,1);
h = contour(dpyq,Ncontours); grid; axis([l 64 0 dp_pts])
%h = contour(dpyq_shift_drfm,Ncontours); grid; axis([0 20 0 32])
title('a. Amplitude and Doppler Modulated Rd-Dp Map (unmodulated /

MATLAB) ');
xlabeK'Down Range Cells'); ylabel ('Cross Range Cells');
axis([l 62 0 dp_pts])
subplot(2,1,2);
h = contour(dpRgMapShiftMOD,Ncontours); grid; axis([l 64 0 dp_pts])
%h = contour(dpRgMapShift,Ncontours); grid; axis([l 20 0 32])
title('b. Amplitude and Doppler Modulated Rd-Dp Map (Bit-True,

modulated / MATLAB) ');
xlabel('Down Range Cells'); ylabel('Cross Range Cells');
axis([l 62 0 dpjpts])

end

g. simhwchkv2.m

%%
% simhwchkv2.m
% MAJ Stig Ekestorm, Sep -99
% Modified version of simhwchkvO.m
% Purpose: This program performs a architectural true simulation of the
% Digital Image Synthesizer hardware
% Modifications will perform "parallel processing" and then "serial
% summation" including:
% - correction at start-up ("initialize outputs from the taps, one tap
% after another")
% - correction at the end ("shutting down the taps, one tap after
% another")
% Original file: simhwchk.m by SY YEO, Jul -98
%%

228

clear

global dp_pts
global rg__pts
global doppler_inc

set(0,'defaultAxesFontSize',8);

noPlot = 0;
Ncontours = 20;

depthLUT =32;
widthLUTFile =2; % in units of number of hex digits
widthLUT =8; % n bits
ndopbits = 5;

s.* *************************** *

% Read from data files
a*****************************

% Read from para.dat
fid = fopen('para.txt','r'); %opens para.txt to be read
%fid = fopen('paraMULTI.txt','r'); %opens paraMULTI.txt to be read
%fid = fopen('paraMULTIq5.txt','r'); %opens paraMULTIq5.txt to be read
%fid = fopen('paraMULTIq4.txt', 'r'); %opens paraMULTIq4.txt to be read
%fid = fopen('paraMULTIq4NEW.txt','r'); %opens paraMULTIq4NEW.txt to be

read
%fid = fopen('paraMULTIq4Shipl.txt', 'r ') ; %opens paraMULTIq4Shipl.txt

to be read

%tmp = fscanf(fid,'%f'); %reads in the values, for non-quantized test

case
tmp = fscanf(fid,'%d'); %reads in the values

nRangeCell = tmp(l); %lst value: 62, represents the number of range

cells
nDopplerCell = tmp(2); %2nd value: 64, represents the number of radar

pulses
targetExtent = tmp(3); %3rd value: 3, represents the radial length of
the target expressed in number of range cells
gain = tmp(4:4+targetExtent-l); %4th to 6th values: 1,2,4 - the gain
value for each tap
gainRev = fliplr(gain);
tmpl = tmp(4+targetExtentrend) ; % 7th to last value: the phase-
increment values for each tap
phi = reshape(tmpl,targetExtent,nDopplerCell); %3x64 matrix with zeros

in the 1st column
fclose(fid);

% Read from rawint.dat
raw = zeros(nDopplerCell,nRangeCell); %create a 64x62 matrix,
initialized to zeros
fid = fopenCrawint.txt', 'r') ; %open rawint.txt to be read
for j = 1:nDopplerCell

for k = l:nRangeCell-l
raw(j,k) = fscanf (fid,'%d',D;

229

comma = fscanf(fid,'%c',1);
end
raw(j,nRangeCell) = fscanf(fid,'%d',1);

end
fclose(fid);
[row,col] = size(raw);
raw = [raw,zeros(row,targetExtent-1)]; %raw: 64x64 matrix, last 2
columns with zeros

%raw = [raw,zeros(row,targetExtent)]; %raw: 64x65 matrix, last 3
columns with zeros

% Read from the LUT files.
load -ascii cosine.txt % variable is cosine
load -ascii sine.txt % variable is sine

% initialize some intermediate variables and vectors
Tgt_Extent=targetExtent;
DRFM_Phase=raw;
GainRev = gain';
Phase_inc=phi;
phiRev = zeros(Tgt_Extent,1);
depthLUT = 32;
phaseAdderOut = zeros(Tgt_Extent,1);
lutOut = zeros(Tgt_Extent,l);
tapOut = zeros(nRangeCell + (Tgt_Extent-l),Tgt_Extent);

% open files to write results to
%fl = fopen('checkv2.txt','w'); % "scan-path test"
f2 = fopen('lout.txt','w'); % I-values, final output
f3 = fopen('Qout.txt','w'); % Q-values, final output
f4 = fopen('Iout_bin.txt','w'); % I-values in 2-complement binary,
final output
f5 = fopen('Qout_bin.txt','w'); % Q-values in 2-complement binary,
final output

% signal processing
for batchCnt = lmDopplerCell,

disp(['Processing Pulse 'num2str(batchCnt)]);

for intraPulseCnt = 1:(nRangeCell + (Tgt_Extent-l)), % clock cycle

% This part simulates the intra pulse processing in hardware

%This part does "parallel processing" and then "serial summation"

% "parallel processing"

% initialize some intermediate variables and vectors
tap=zeros(1,Tgt_Extent);

% extraxt DRFM-phase data
DRFM_data=DRFM_Phase(batchCnt,intraPulseCnt);
for idx=l:Tgt_Extent,

tap(idx)=DRFM_data;
end

230

% phase addition (add phase-increment (Doppler offset) to DFRM
phase data)

phaseAdderOut=tap(1:Tgt_Extent)' + Phase_inc(:,batchCnt);

% phase-amplitude look-up (to obtain complex time signal)

%tmp=mod(phaseAdderOut,32)/32*2*pi; %test case
with non-quantized phase and LUT

%lutOut = cos(tmp) + sqrt-(-l) *sin(tmp) ; %test case
with non-quantized phase and LUT

tmp = mod(phaseAdderOut,depthLUT) + 1; %original DIS
code

lutOut = cosine(tmp) + sqrt(-1)*sine(tmp); %original DIS
code

% correction at the end ("shutting down the taps one tap after
another")

i f intraPulseCnt>nRangeCell,
for idx2=l:(intraPulseCnt-nRangeCell),

lutOut((idx2) ,:)=0;
end

end

% gain modulation, and storing values in an intermediate matrix
for idx=l:Tgt_Extent,

if GainRev(l,idx)==l,
GainRev2=0;

elseif GainRevd, idx)==2,
GainRev2=l;

elseif GainRevd, idx) ==4,
GainRev2=2;

elseif GainRevd, idx) ==8,
GainRev2=3;

end
end
if intraPulseCnt<=nRangeCell,

GainOut = GainRev.*lutOut';
for idx3=0:Tgt_Extent-l,

tapOut(intraPulseCnt+idx3, idx3+l)=GainOut(idx3 + l);
end

end

% final accumulation - "serial summation"
% - 1st: extract partial sums (I and Q)
% - 2nd: extract final sums (I and Q)
tapNew=tapOut;
add=0;
tt=Tgt_Extent;

if tt>=2,
while tt>=2,

add=add+l;
tapNew(intraPulseCnt,tt-

1)=tapNew(intraPulseCnt,tt)+tapNew(intraPulseCnt,tt-1);
partial_taps\om(intraPulseCnt, 1) =tapNew(intraPulseCnt, tt-1) ;

231

tt=tt-l;
end
tt=tt-l;

end

if tt==l,
partial_tapsum(intraPulseCnt,1)=tapOut(intraPulseCnt,1);

end

Iout=real(partial_tapsum(intraPulseCnt,1));
Qout=imag(partial_tapsum(intraPulseCnt,l));

% write final results (I and Q) to separate files
format long
fprintf(f2,'%5.7f\n',Iout);
fprintf(f3,'%5.7f\n',Qout);
fprintf(f4,'%d',dec2two(lout,8,7));
fprintf(f4,'\r\n');
fprintf(f5,'%d',dec2two(Qout,8,7));
fprintf(f5,'\r\n');

end %intraPulseCnt

finalAdderOut(batchCnt,:)=partial_tapsum■;

end %batchCnt

% close files
%fclose(fl); ,
fclose(f2);
fclose(f3);
fclose(f4);
fclose(f5);

%*****************************
% Pulse Compression
%*****************************
% Compress the Doppler shifted signals
load pc_ref
priRgMapShift = zeros(nDopplerCell/rg_pts);
tic
pcRefMapShift = fft(finalAdderOut.',2*rg_pts-l)
for idx = l:nDopplerCell

tmp = cref.*pcRefMapShift(idx,:);
tmpl = fftshift(ifft(tmp));
priRgMapShift(idx,l:end-targetExtent+l) = tmpl(rg_pts+targetExtent-

l:end);
end
dpRgMapShiftMOD = abs(fft(priRgMapShift));
%dpRgMapShift = abs(fft(priRgMapShift));
toe

dpRgMapShi f tMOD4 Shiplb=dpRgMapShi f tMOD;
save plotM0D4Shiplb dpRgMapShiftM0D4Shiplb
%dpRgMapShi ftMOD4Ship2 =dpRgMapShi f tMOD;
%save plotMOD4Ship2 dpRgMapShiftMOD4Ship2

232

%%dpRgMapShi ftM0D4NEW=dpRgMapShi ftMOD;
%save plotMOD4NEW dpRgMapShiftMOD4NEW
%dpRgMapShi ftMOD4=dpRgMapShiftMOD;
%save plotMOD4 dpRgMapShiftMOD4
%dpRgMapShiftMOD5=dpRgMapShiftMOD;
%save plotMOD5 dpRgMapShiftMOD5
%dpRgMapShi ftMODnot=dpRgMapShi ftMOD;
%save plotMODnot dpRgMapShiftMODnot
save plotMOD dpRgMapShiftMOD

save fAddOut finalAdderOut

%*****************************

% Display
%*****************************

if (noPlot == 0)
figure(2);
load plot.mat
subplot(2,1,1);
h = contour(dpyq,Ncontours); grid; axis([l 64 0 dp_pts])
%h = contour(dpyq_shift_drfm,Ncontours); grid; axis([0 20 0 32])
titleCa. Amplitude and Doppler Modulated Rd-Dp Map (unmodulated /

MATLAB) ');
xlabel('Down Range Cells■); ylabel('Cross Range Cells');
axis([1 62 0 dp_pts])
subplot(2,1,2);
h = contour(dpRgMapShiftMOD,Ncontours); grid; axis([l 64 0 dp_pts])
%h = contour(dpRgMapShift,Ncontours); grid; axis([l 20 0 32])
title('b. Amplitude and Doppler Modulated Rd-Dp Map (Bit-True,

modulated / MATLAB) ');
xlabel('Down Range Cells'); ylabel('Cross Range Cells');
axis([l 62 0 dp_pts])

end

h. simhwchkv2_write.m

%%
% simhwchkv2_write.m
% MAJ Stig Ekestorm, Sep -99
% Modified version of simhwchkvO.m
% Purpose: This program performs a architectural true simulation of the
% Digital Image Synthesizer hardware
% Modifications will perform "parallel processing" and then "serial
% summation" including:
% - correction at start-up ("initialize outputs from the taps, one tap
% after another")
% - correction at the end ("shutting down the taps, one tap after

% another")
% Original file: simhwchk.m by SY YEO, Jul -98

clear

global dp_pts

233

global rg_pts
global doppler_inc

set(0, 'defaultAxesFontSize' , 8) ;

noPlot = 0;
Ncontours = 20;

depthLUT =32;
widthLUTFile =2; % in units of number of hex digits
widthLUT =8; % n bits
ndopbits = 5;

% Read from data files
%****************■*************

% Read from para.dat
fid = fopen('para.txt','r'); %opens para.txt to be read
%fid = fopen('paraMULTI.txt','r'); %opens paraMULTI.txt to be read
%fid = fopen('paraMULTIq5.txt','r'); %opens paraMULTIq5.txt to be read
%fid = fopen('paraMULTIg4.txt','r'); %opens paraMULTIq4.txt to be read
%fid = fopen('paraMULTIq4NEW.txt', 'r') ; %opens paraMULTIq4NEW.txt to be
read
%fid = fopen('paraMULTIq4Ship64a.txt' , 'r'); %opens paraMULTIq4Shipl.txt
to be read

%tmp = fscanf(fid,'%f'); %reads in the values, for non-quantized test
case
tmp = fscanf(fid,'%d'); %reads in the values

nRangeCell = tmp(l); %lst value: 62, represents the number of range
cells
riDopplerCell = tmp(2); %2nd value: 64, represents the number of radar
pulses
targetExtent = tmp(3); %3rd value: 3, represents the radial length of
the target expressed in number of range cells
gain = tmp(4:4+targetExtent-l); %4th to 6th values: 1,2,4 - the gain
value for each tap
gainRev = fliplr(gain);
tmpl = tmp(4+targetExtent:end); % 7th to last value: the phase-
increment values for each tap
phi = reshape(tmpl,targetExtent,nDopplerCell) ; %3x64 matrix with zeros
in the 1st column
fclose(fid);

% Read from rawint.dat
raw = zeros(nDopplerCell,nRangeCell) ; %create a 64x62 matrix,
initialized to zeros
fid = fopen('rawint.txt','r'); %open rawint.txt to be read
for j = 1:nDopplerCell

for k = l:nRangeCell-l
raw(j,k) = fscanf(fid,■%d',1);
comma = fscanf(fid,'%c',1);

end
raw(j,nRangeCell) = fscanf(fid,'%d',1);

end

234

fclose(fid);
[row,col] = size(raw);
raw = [raw,zeros(row,targetExtent-1)]; %raw: 64x64 matrix, last 2
columns with zeros
%raw = [raw,zeros(row,targetExtent)]; %raw: 64x65 matrix, last 3
columns with zeros

% Read from the LUT files.
load -ascii cosine.txt % variable is cosine
load -ascii sine.txt % variable is sine

% initialize some intermediate variables and vectors
Tgt_Extent=targetExtent;
DRFM_Phase=raw;
GainRev = gain';
Phase_inc=phi;
phiRev = zeros(Tgt_Extent,1) ;
depthLUT =32;
phaseAdderOut = zeros(Tgt_Extent,1);
lutOut = zeros(Tgt_Extent,1);
tapOut = zeros(nRangeCell + (Tgt_Extent-l),Tgt_Extent);

% open files to write results to
fl = fopen('checkv2.txt','w'); % "scan-path test"
f2 = fopen('lout.txt','w'); % I-values, final output
f3 = fopen('Qout.txt','w'); % Q-values, final output
f4 = fopen('Iout_bin.txt','w'); % I-values in 2-complement binary,
final output
f5 = fopen('Qout_bin.txt','w'); % Q-values in 2-complement binary,

final output

% signal processing
for batchCnt = l:nDopplerCell,

fnrintf(fl lSts' ■**');
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');
fprintf(fl,'%s:%d\r\n','batchCnt (Radar Pulse)',batchCnt);
fprintf(fl,'\r\n*);
disp(['Processing Pulse 'num2str(batchCnt)]);

for intraPulseCnt = 1:(nRangeCell + (Tgt_Extent-l)), % clock cycle

fprintf(fl,'%s:%d\r\n','intraPulseCnt',intraPulseCnt);
fprintf(fl,'\r\n');
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock

Pulse',intraPulseCnt);

% This part simulates the intra pulse processing in hardware

%This part does "parallel processing" and then "serial summation"

% "parallel processing"

% initialize some intermediate variables and vectors
tap=zeros(1,Tgt_Extent) ;

235

% extraxt DRFM-phase data
DRFM_data=DRFM_Phase(batchCnt,intraPulseCnt);
fprintf(fl,'%s\r\n','DRFM-phase Data processed:');
for idx=l:Tgt_Extent,

tap(idx)=DRFM_data;
end
for idx=l:Tgt_Extent,

fprintf(fl,'%s%d',' tap',idx-1);
DRFM_bin=dec2two(DRFM_data,5,0);
fprintf(fl,':%d\r\n',DRFM_data);
fprintf(fl,' %d',DRFM_bin(l,2:6));
fprintf(fl,•\r\n');
fprintf(fl,'\r\n');

end

% phase addition (add phase-increment (Doppler offset) to DFRM
phase data)

phaseAdderOut=tap(1:Tgt_Extent)' + Phase_inc(:,batchCnt);
fprintf(fl,'\r\n');
fprintf(fl,■%s\r\n','Phase-increment:');
for idx=l:Tgt_Extent,

fprintf(fl,'%s%d',' tap',idx-1);
%fprintf(fl,':%d\n',doppler_inc(idx));
%fprintf(fl,' %d',dec2two(doppler_inc(idx),3,0));
fprintf(fl,':%d\n',Phase_inc(idx,batchCnt));
phase_inc=dec2two(Phase_inc(idx,batchCnt) , 5, 0) ;
fprintf(f1,' %d',phase_inc(1,2:5));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

end
fprintf(fl,'\r\n');
fprintf(fl,'%s\r\n','Phase-rotation Register:');
for idx=l:Tgt_Extent,

fprintf(fl,'%s%d',' tap',idx-1);
fprintf(fl,':%d\n',mod(Phase_inc(idx,batchCnt),32));
Pi=dec2two(mod(Phase_inc(idx,batchCnt),32),5,0);
fprintf(fl,1 %d',Pi(1,2:6));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

end
fprintf(fl,'\r\n');
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock

Pulse',intraPulseCnt+1);
fprintf(fl,'%s\r\n','After Phase Adder:');
for idx=l:Tgt_Extent,

fprintf(fl,'%s%d',' tap',idx-1);
fprintf(fl,':%d\n',mod(phaseAdderOut(idx),32));
pA0=dec2two(mod(phaseAdderOut(idx),32),5,0);
fprintf(fl,' %d',pAO(1,2:6));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

end
fprintf(fl,'\r\n');
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock

Pulse',intraPulseCnt+2);

236

% phase-amplitude look-up (to obtain complex time signal)

% tmp=mod(phaseAdderOut,32)/32*2*pi; %test case
with non-quantized phase and LUT

% lutOut = cos(tmp) + sqrt(-1)*sin(tmp); %test case
with non-quantized phase and LUT

tmp = mod(phaseAdderOut,depthLUT) + 1; %original DIS
code

lutOut = cosine(tmp) + sqrt(-1)*sine(tmp); %original DIS
code

fprintf(fl,'%s\r\n','After LUT (I-values):');
for idx=l:Tgt_Extent,

fprintf(fl,'%s%d',' tap',idx-1);
fprintf(fl,':%5.7f\n',real(lutOut(idx)));
fprintf(fl,1 %d',dec2two(real(lutOut(idx)),0,7));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n");

end
fprintf(fl,'%s\r\n','After LUT {Q-values):');
for idx=l:Tgt_Extent,

fprintf(fl,
fprintf(fl,
fprintf(fl,
fprintf(fl,
fprintf(fl,

end

%s%d',' tap',idx-1);
:%5.7f\n',imag(lutOut(idx)));
%d',dec2two(imag(lutOut(idx)),0,7));
\r\n');
\r\n');

% correction at the end ("shutting down the taps one tap after
another")

if intraPulseCnt>nRangeCell,
for idx2=l:(intraPulseCnt-nRangeCell),

lutOut((idx2),:)=0;
end

end

fprintf(fl,'\r\n');
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock

Pulse',intraPulseCnt+3);

% gain modulation, and storing values in an intermediate matrix
fprintf(fl,'%s\r\n','Gain Value:');
for idx=l:Tgt_Extent,

if GainRev(l,idx)==l,
GainRev2=0;

elseif GainRevd, idx) ==2,
GainRev2=l;

elseif GainRevd, idx) ==4,
GainRev2=2;

elseif GainRevd, idx) ==8,
GainRev2=3;

end
fprintf(fl,'%s%d',' tap',idx-1);
fprintf (fl, ' :%5.7f\n' , GainRevd, idx)) ;
GRbin=dec2two(GainRev2,2,0);

237

fprintf(fl,■ %d',GRbin(l,2:3));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

end
i f intraPulseCnt<=nRangeCell,

GainOut = GainRev'.*lutOut;
for idx3=0:Tgt_Extent-l,

tapOut(intraPulseCnt+idx3,idx3+l)=GainOut(idx3+l);
end

end
fprintf(fl,'%s\r\n','After Gain Block (I-values):');
for idx=l:Tgt_Extent,

fprintf(fl,
fprintf(fl,
fprintf(fl,
fprintf(fl,
fprintf(fl,

%s%d',' tap',idx-l);
:%5.7f\n',real(GainOut(idx)));
%d',dec2two(real(GainOut(idx)),3,7)) ;

\r\n');
\r\n');

end
fprintf(fl,'%s\r\n','After Gain Block (Q-values)
for idx=l:Tgt_Extent,

fprintf(fl,
fprintf(fl,
fprintf(fl,
fprintf(fl,
fprintf(fl,

%s%d",' tap',idx-l);
:%5.7f\n",imag(GainOut(idx)));
%d',dec2two(imag(GainOut(idx)),3,7));

\r\n');
\r\n');

end

fprintf(fl,'\r\n');
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n'

Pulse',intraPulseCnt+4);
'Clock

% final accumulation - "serial summation"
% - 1st: extract partial sums (I and Q)
% - 2nd: extract final sums (I and Q)
tapNew=tapOut;
add=0;
tt=Tgt_Extent;
fprintf(fl,'%s\r\n','Final values in each tap (I- and Q-

values):');
fprintf(fl,'%s%d',' Final I-value in tap',tt-l);
fprintf(fl,':%5.7f\n',real(tapNew(intraPulseCnt,tt)));
fprintf(fl,' %d',dec2two(real(tapNew(intraPulseCnt,tt)),8,7));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');
fprintf(fl,'%s%d',' Final Q-value in tap',tt-l);
fprintf(fl,':%5.7f\n',imag(tapNew(intraPulseCnt,tt)));
fprintf(fl,' %d',dec2two(imag(tapNew(intraPulseCnt,tt)),8,7));
fprintf(fl,'\r\n');
fprintf(fl,'\r\n');

if tt>=2,
while tt>=2,

add=add+l;
tapNew(intraPulseCnt,tt-

1)=tapNew(intraPulseCnt,tt)+tapNew(intraPulseCnt,tt-1);
fprintf(fl,'%s%d',' Final I-value in tap',tt-2);

238

1)),8,7)

1)),8,7))

fprintf(fl,
fprintf(fl,

fprintf(fl,
fprintf(fl,
fprintf(fl,
fprintf(fl,
fprintf(fl,

:%5.7f\n',real(tapNew(intraPulseCnt,tt-1))) ;
%d' , dec2two(real(tapNew(intraPulseCnt,tt-

\r\n');
\r\n');
%s%d',' Final Q-value in tap',tt-2);
:%5.7f\n',imag(tapNew(intraPulseCnt,tt-1)));
%d',dec2two(imag(tapNew(intraPulseCnt,tt-

fprintf(fl,'\r\n');
fprintf(fl,'\r\n');
partial_tapsum(intraPulseCnt,1)=tapNew(intraPulseCnt,tt-1);
tt=tt-l;

end
tt=tt-l;

end

if tt==l,
partial_tapsum(intraPulseCnt,1)=tapOut(intraPulseCnt,1);

end

fprintf(fl,'\r\n');
Iout=real(partial_tapsum(intraPulseCnt,1));
Qout=imag(partial_tapsum(intraPulseCnt,1)) ;
fprintf(fl,'%s\r\n','Final Output values (I- and Q-values):');
fprintf(fl,'%s%d',' lout - Final I-value for

intraPulseCnt',intraPulseCnt);
fprintf(fl,':%5.7f\n',Iout);
fprintf(f1,' %d',dec2two(lout,8,7));
fprintf(fl,'\r\n') ;
fprintf(fl,'\r\n');
fprintf(fl,'%s%d',' Qout - Final Q-value for

intraPulseCnt',intraPulseCnt);
fprintf(fl,':%5.7f\n',Qout);
fprintf(fl,' %d',dec2two(Qout,8,7));
fprintf(fl,■\r\n');
fprintf(fl,'\r\n');
fprintf(fl,'%s','--

fprintf(fl,'\r\n');

% write final results (I and Q) to separate files
format long
fprintf(f2,'%5.7f\n',Iout);
fprintf(f3,'%5.7f\n',Qout);
fprintf(f4,'%d',dec2two(lout,8,7));
fprintf(f4,'\r\n');
fprintf(f5,'%d',dec2two(Qout,8,7));
fprintf(f5,'\r\n');

end %intraPulseCnt

finalAdderOut(batchCnt,:)=conj(partial_tapsum');

end %batchCnt

239

% close files
fclose(fl)
fclose(f2)
fclose(f3)
fclose(f4)
fclose(f5);

9-* * * * ********** * * * ********** * *

% Pulse Compression
%*****************************

% Compress the Doppler shifted signals
load pc_ref
priRgMapShift = zeros(nDopplerCell,rg_pts) ;
tic
pcRefMapShift = fft(finalAdderOut.',2*rg_pts-l).';
for idx = l:nDopplerCell

tmp = cref.*pcRefMapShift(idx,:) ;
tmpl = fftshift(ifft(tmp)) ;
priRgMapShift(idx,1:end-targetExtent+1) = tmpl(rg_pts+targetExtent-

l:end) ;
end
dpRgMapShiftMOD = abs(fft(priRgMapShift)) ;
%dpRgMapShift = abs (f ft (priRgMapShift)) ,-
toe

dpRgMapShi f tM0D4 Ship 6 4 a=dpRgMapShi f tMOD ;
finalAdderOut64a = finalAdderOut;
save plotMOD4Ship64a dpRgMapShiftM0D4Ship64a finalAdderOut64a
%dpRgMapShiftM0D4Ship2=dpRgMapShiftM0D,-
%save plotM0D4Ship2 dpRgMapShiftMOD4Ship2
%%dpRgMapShiftM0D4NEW=dpRgMapShiftM0D;
%save plotM0D4NEW dpRgMapShiftM0D4NEW
%dpRgMapShiftM0D4=dpRgMapShiftM0D;
%save plotM0D4 dpRgMapShiftM0D4
%dpRgMapShiftM0D5=dpRgMapShiftM0D;
%save plotM0D5 dpRgMapShiftM0D5
%dpRgMapShiftMODnot=dpRgMapShiftMOD;
%save plotMODnot dpRgMapShiftMODnot
save plotMOD dpRgMapShiftMOD

save fAddOut finalAdderOut

S- * ~k *■ * k k -k k k k k k k k k k k k -k k k k k k k k k k k

% Display
Qzkkkkkkkrkkkkkkkkkkkkkkkkkkkkkk

if (noPlot == 0)
figure(2);
load plot.mat
subplot(2,1,1);
h = contour(dpyg,Ncontours); grid; axis([l 64 0 dp_pts])
%h = contour(dpyq_shift_drfm,Ncontours); grid; axis([0 20 0 32])
title('a. Amplitude and Doppler Modulated Rd-Dp Map (unmodulated /

MATLAB) ');
xlabeK'Down Range Cells'); ylabel ('Cross Range Cells');
axis([l 62 0 dp_pts])
subplot(2,1,2);

240

h = contour(dpRgMapShiftMOD,Ncontours); grid; axis([l 64 0 dp_pts])
%h = contour(dpRgMapShift,Ncontours); grid; axis([l 20 0 32])
title('b. Amplitude and Doppler Modulated Rd-Dp Map (Bit-True,

modulated / MATLAB) ');
xlabeK'Down Range Cells'); ylabel ('Cross Range Cells');
axis([1 62 0 dp_pts])

end

i. plothwv4.m

%%
% plothwv4.m
% MAJ Stig Ekestorm, Feb -00
% Modified version of plothwvl.m by Stig Ekestorm, Aug -99
% Original file: plothwvO.m by SY YEO, Aug -98
% This version processes the output from the LUT
% Works in concert with mathostv4.m and simhwchkv4.m
%%

clear

global hda
global dp_pts
global rg_pts

set(0,'defaultAxesFontSize',7)

noplot = 0;

%to load data from hardware output files
if hda==l,

load -ascii imagei.txt
load -ascii imageq.txt

end

fid = fopen('para.txt','r');
tmp = fscanf(fid,'%d');
nRangeCell = tmp(l);
nDopplerCell = tmp (2);
targetExtent = tmp(3);
fclose(fid);

%for getting the data form hardware in the right format
if hda==l,

image = reshape(image,nRangeCell+(targetExtent-1),nDopplerCell);

image = imagei - j*imageq;
image = reshape(image,nRangeCell+(targetExtent-1),nDopplerCell);

%for ASIC simulation
%image = reshape(image,nRangeCell+targetExtent,nDopplerCell); %for

FPGA 3-tap simulation /

image = image';
end

load fAddOut

241

if (noplot == 0)

% Pulse Compression
%*****************************

% Compress the Doppler shifted signals
figure(3);
orient tall

load plot.mat
load plotMOD.mat

Ncontours = 9;
subplot(2,1,1);
%h = contour(dpyq_shift_drfm,Ncontours); grid, axis([l 62 0 64])
h = contour(dpRgMapShiftMOD,Ncontours); grid; axis([l 62 0 dp_pts])
title("a. Amplitude and Doppler Modulated Rd-Dp Map (Bit and

Architecture-True / MATLAB)');
xlabel('Down Range Cells'); ylabel('Cross Range Cells');

%to post-process data from hardware
if hda==l,

load pc_ref
priRgMapShift = zeros(nDopplerCell.■,rg_pts);
tic
pcRefMapShift = fft(image.',2*rg_pts-l).';
for idx = 1:nDopplerCell

tmp = cref.*pcRefMapShift(idx,:);
tmpl = fftshift(ifft(tmp));
priRgMapShift(idx,1:end-targetExtent+1) =

tmpl(rg_pts+targetExtent-lrend);
end
dpRgMapShift = abs(fft(priRgMapShift));
toe

end

subplot(2,1,2);
if hda==l,

h = contour(dpRgMapShi ft,Ncontours);
grid, axis([l 62 0 dp_pts])

end
title('b. Amplitude and Doppler Modulated Rd-Dp Map (from HARDWARE

output)');
xlabel('Down Range Cells'); ylabel('Cross Range Cells');

end

figure(3)
print -dtiff hwres

figure(4)
subplot(3,1,1);
h = mesh(dpRgMapShiftMOD); grid;
%h = mesh(dpyg_shift_drfm); grid;
title('a. Amplitude/Doppler Modulated Rd-Dp Map (Bit-True, modulated /
MATLAB)');
xlabel('Down Range Cells'); ylabel('Cross Range Cells'); grid

242

subplot(3,1,2);
%to plot hardware output
if hda==l,

h = mesh(dpRgMapShift); grid;
end
titleCb. Amplitude/Doppler Modulated Rd-Dp Map (HARDWARE output)');
xlabel('Down Range Cells'); ylabel('Cross Range Cells'); grid
subplot(3,1,3);
%to plot difference between Matlab simulation and hardware output
if hda==l,

%h = mesh(dpyq_shift_drfm/max(max(dpyq_shift_drfm))-
dpRgMapShift/max(max(dpRgMapShift))); grid;

h = mesh(dpRgMapShiftMOD-dpRgMapShift); grid; %plot the real
difference, Stig Aug-99

%h = mesh(dpyq_shift_drfm-dpRgMapShift); grid; %plot the real
difference, Stig Aug-99
end
title('c. Difference');
xlabel('Down Range Cells'); ylabel('Cross Range Cells'); grid
print -dtiff diffplot

%for comparison 5 Oct -99, Stig Ekestorm
%to plot MATLAB simulation output separately
figure(5)
h = mesh((dpRgMapShiftMOD/max(max(dpRgMapShiftMOD)))); grid;
%normalized
%h = mesh(dpRgMapShiftMOD); grid;
titleCa. Amplitude/Doppler Modulated Rd-Dp Map (Bit-True, modulated /
MATLAB) ') ;
xlabel('Down Range Cells'); ylabel('Cross Range Cells'); grid

figure(6);
%to plot hardware output separately
if hda==l,

h = mesh(dpRgMapShift); grid;
end
title('b. Amplitude/Doppler Modulated Rd-Dp Map (HARDWARE output)');
xlabel('Down Range Cells'); ylabel('Cross Range Cells'); grid

2. COMMON FILES IN ALL VERSIONS (VERSION 1 TO 4)

These files are used in all versions. The two first files (cosine.txt and sine.txt)

represent the look-up tables. The next three files (genLUT.m, genfixptvO.m and

genfloat.m) are used to create the look-up tables [Ref. 6]. Two Matlab functions

(dec2two.m and two2dec.m) have been developed to translate from decimal

243

representation to binary two's complement representation and vice versa. Two extra plot-

files are also presented. The first plot-file (plot_like_NRL_image.m) has been used to

plot simulation results in a comparable way to a real ISAR image. The second plot-file

(plot_in_dB.m) can be used to examine the results in the range-Doppler map as

normalized amplitude values in dB.

a. cosine.txt

9.9218750e-001
9.6875000e-001
9.0625000e-001
8.1250000e-001
6.7968750e-001
5.2343750e-001
3.4375000e-001
1.4843750e-001

-4.6875000e-002
-2.4218750e-001
-4.2968750e-001
-6.0156250e-001
-7.5000000e-001
-8.6718750e-001
-9.4531250e-001
-9.8437500e-001
-9.8437500e-001
-9.4531250e-001
-8.6718750e-001
-7.5000000e-001
-6.0156250e-001
-4.2968750e-001
-2.4218750e-001
-4.6875000e-002
1.4843750e-001
3.4375000e-001
5.2343750e-001
6.7968750e-001
8.1250000e-001
9.0625000e-001
9.6875000e-001
9.9218750e-001

244

b. sine.txt

O.OOOOOOOe+OOO
1.9531250e-001
3.9062500e-001
5.6250000e-001
7.1875000e-001
8.3593750e-001
9.2968750e-001
9.7656250e-001
9.8437500e-001
9.5312500e-001
8.9062500e-001
7.8125000e-001
6.4062500e-001
4.7656250e-001
2.9687500e-001
9.3750000e-002
-9.3750000e-002
-2.9687500e-001
-4.7656250e-001
-6.4062500e-001
-7.8125000e-001
-8.9062500e-001
-9.5312500e-001
-9.8437500e-001
-9.7656250e-001
-9.2968750e-001
-8.3593750e-001
-7.1875000e-001
-5.6250000e-001
-3.9062500e-001
-1.9531250e-001
O.OOOOOOOe+OOO

C. genLUT.m

%%

% genLUT.m
% mfile to generate memory initialization file (cos and sin look-up)
% for altera memory initialization
% Created by: SY YEO, Jul -98

clear

% parameters
depth =32;
nbits = 8;

del = l/(2~(nbits-D);
amp = (1-del);

cosine = zeros(depth,1);

245

for i = 0:depth-1
cosine(i+1) = amp*cos(2*pi*i/(depth-1));

end
[i,j] = find(abs(cosine) < 4*eps);
p = isempty(i) + isempty (j);
if (p == 0)

cosine(i,j) = 0;
end
cosine_fixpt = genfixptvO(cosine,nbits);
inv_cosine_fixpt = genfloat(cosine_fixpt,nbits);

fid = fopen('cos.mif','w');
%fidl = fopen('cos.txt','w');

fprintf(fid,'— MAX+plus II : memory initialization file');
fprintf(fid, '\n');

txt = (['WIDTH = ' num2str(nbits) '\n']);
%fprintf(fid,'WIDTH = 8\n');
fprintf(fid,txt);
txt = (['DEPTH = ' num2str(depth) '\n']);
%fprintf(fid,'DEPTH = 32\n');
fprintf(fid,txt);

fprintf(fid,'ADDRESS_RADIX = HEX\n');
fprintf(fid,'DATA_RADIX = HEX\n');
fprintf(fid,'\n');

fprintf(fid,'CONTENT BEGIN\n');
tmpl = dec2hex(bin2dec(cosine_fixpt),2);
t_cosine_fixpt = cosine_fixpt';
for i = 1:depth

tmp = dec2hex(i-l,2);
fprintf(fid,'%s\t:\t%s;\n',tmp,tmpl(i,:)');
%fprintf(fidl,'%s\n',t_cosine_fixpt(:,i));
%fprintf(fidl,'%s\n',tmpl(i,:)');

end
fprintf(fid,'END;\n');
fclose(fid);
%fclose(fidl);

disp('—Check--')
[cosine inv_cosine_fixpt]
ddcos = std(cosine-inv_cosine_fixpt);

%%%% Repeat for the sin LUT
sine = zeros(depth,1);
for i = 0:depth-1

sine(i+l) = amp*sin(2*pi*i/(depth-1));
end
[i,j] = find(abs(sine) < 4*eps);
p = isempty(i) + isempty(j);
if (p == 0)

sine(i,j) = 0;
end
sine_fixpt = genfixptvO(sine,nbits);

246

inv_sine_fixpt = genfloat(sine_fixpt,nbits);

fid = fopen('sin.mif','w');
%fidl = fopen('sin.txt','W);

fprintf(fid,'-- MAX+plus II : memory initialization file');
fprintf(fid,'\n');

txt = (['WIDTH = ' num2str(nbits) '\n']);
fprintf(fid,txt);
txt = (['DEPTH = ' num2str(depth) '\n']);
fprintf(fid,txt);

fprintf(fid,'ADDRESS_RADIX = HEX\n');
fprintf(fid,'DATA_RADIX = HEX\n');
fprintf(fid,'\n');

fprintf(fid, 'CONTENT BEGINXn');
tmpl = dec2hex(bin2dec(sine_fixpt),2);
t_sine_fixpt = sine_fixpt';
for i = 1:depth

tmp = dec2hex(i-l,2);
fprintf(fid,'%s\t:\t%s;\n',tmp,tmpl(i,:)');
%fprintf(fidl,'%s\n',t_sine_fixpt(:,i));

% fprintf(fidl,'%s\n',tmpl(i,:)');
end
fprintf(fid,'END;\n');
fclose(fid);
%fclose(fidl);

[sine inv_sine_fixpt]
disp('Std in Reconstruction Errors (cos)')
ddcos
disp('Std in Reconstruction Errors (sin)')
ddsin = std(sine-inv_sine_fixpt)

cosinefp = inv_cosine_fixpt
sinefp = inv_sine_fixpt

save -ascii cosine.txt cosinefp
save -ascii sine.txt sinefp

figured) ;
11 = 1:length(cosinefp);
plot(11,cosinefp,11,cosine); grid;

%end of file

247

d. genfixptvO.m

%%
% genfixptvO.m
% Fixed point and floating conversion
% PROGRAM in Matlab converts from FLOATING POINT to FIX POINT
% given a number of BITS (nbits) for fix point representation
% Note: that the decimal numbers must be scaled to +- 1.0
% function [out] = genfixpt(in,nbits);
% Created by: SY YEO, Jul -98
%%

function [out] = genfixpt(in,nbits);

del = l/(2Ä(nbits-l));

num = in(:);

% Convert to binary
len = length(num);
numl = []; numb = [];
for i = l:len

if (num(i) >= 0.0)
if num(i) == 1

num(i) = 1 - del;
end
numl = [numl; fix(num(i)/del)] ;
numb = [numb; dec2bin(num(i)/del,nbits)];

else
tmp = abs(num(i));
tmp = dec2bin(tmp/del,nbits) ;
if (bin2dec(tmp) ~= 0)

for k = 1:length(tmp)
if (tmp(k) == '0')

tmp(k) = ■1';
else

tmp(k) = ' 0';
end

end
tmp = bin2dec(tmp)*del + del;
tmp = dec2bin(tmp/del,nbits) ;

end
numb = [numb; tmp] ;

end
end
out = numb;

%end of file

248

e. genfloat.m

%%
% genfloat.m
% Floating and fix point conversion
% PROGRAM in Matlab converts from FIX POINT to FLOATING POINT
% given a number of BITS (nbits) for fix point representation
% Note: that the decimal numbers must be scaled to +- 1.0
% function [out] = genfloat (in, nbits) ,-
% Created by: SY YEO, Jul -98
%%

function [out] = genfixpt(in,nbits);

numb = in;
del = l/(2"(nbits-D) ;

[len,c] = size(numb);
num2 = [];
for i = l:len

if (numb(i,l) == '1')
tmp = numb(i,:) ;
for i = l:length(tmp) % invert all bits

if (tmp(i) == '0')
tmp(i) = "1';

else
tmp(i) = ' 0';

end
end
tmp = -l*(bin2dec(tmp)*del + del); % add a BINARY one!
num2 = [num2; tmp];

else
num2 = [num2; bin2dec(numb(i,:))*del];

end
end
out = num2;

%end of file

f. dec2two.m

% dec2two.m
% This MATLAB function converts a number in decimal representation
% (positive or negative) to a vector in binary 2-complement
% representation. With a slight modification the output can be
% presented in as a string with a "." character separating integer and
% fractional parts. The user has to specify the number to be converted
% and the format for the %binary presentation (number of bits used for
% the integer part and the %fractional part). A sign bit will
% automatically be included in the output vector (string).
%
% Function call:
% dec2two(dec,integerbits,fractionbits)

249

User inputs:
dec - the number in decimal representation to be converted
integerbits - # of bits to represent the integer part
fractionbits - # of bits to represent the fractional part

Example (1):
type in the MATLAB Command Window: dec2two(2.75,8,4)
returned answer: 0000000101100
(returned answer: 000000010.1100)

Example (2):
type in the MATLAB Command Window: dec2two(-2.75,8,4)
returned answer: 1111111010100
(returned answer: 111111101.0100)

Created by:
MAJ Stig Ekestorm, Oct -99
Naval Postgraduate School

%
%
%%

function [out] = dec2two(dec,integerbits,fractionbits);

%binary format to be displayed
signbit=l;
the sign
%integerbits
the integer part
%fractionbits
the fractional part

%initialize output vector
aa=signbit+integerbits+fractionbits;
vector
bb=zeros(l,aa);
vector to zero

%check if the number is negative
if dec<0,

dec=dec*(-l);
positive

bb(l,l)=l;
end

%# of bits to represent

%# of bits to represent

%# of bits to represent

%length of output

%initialize output

%if negative number
%turn number into

%set sign bit to "1"
%end if statement

%integer part
mm=floor(dec) ;
part
for idxl=2:integerbits+l,
not included)

cc=2* (integerbits+1-idxl);
representation

bb(l,idxl)=floor(mm/cc);
integer division

mm=rem(mm,cc) ;
division
end

%extract the integer

%integer bits (sign bit

%binary bit

%set each bit after

%extract reminder after

%end for loop

250

%fractional part
ff=dec-floor(dec); %extract fractional
part
for idx2=signbit+integerbits+l: aa, %fraction bits

dd=l/(2~(idx2-(signbit+integerbits))) ; %binary bit
representation

bb(l,idx2)=floor(ff/dd); %set each bit after
integer division

ff=rem(ff,dd); %extract reminder after
division
end %end for loop

%adjust negative value to 2-complement representation
if bb(l,l)==l, %if negative value

for idx3=l:aa. %index for switching
bit values

if bb(l,idx3)==2,
bb(l,idx3)=0;

end
if bb(l,idx3)==0, %switch all "0"

bb(l,idx3)=l; %to "1"
else

bb(l,idx3)=0; %and vice versa
end %end if/else statement

end %end for loop
bb(l,aa)=bb(l,aa)+l; %add "1" to the LSB

idx4=aa; %index for binary

addition
while bb(l,idx4)==2, %if carry (bit-to-bit)

bb(1,idx4-l)=bb(1,idx4-l) +1; %add "1" to next higher

bit
bb(l,idx4)=0; %set current bit to "0"

idx4=idx4-l; decrement index

(higher bit)
end , %end while loop

bb(l,l)=l;
end %end if/else statement

Ireturn output in string format (integer and fractional parts separated

by ".")
%out=([num2str(bb(l,l:signbit+i ntegerbits)), ' . . .
% ,num2str(bb(l,signbit+integerbits+1:aa))]) ;

%return output in vector format
seDaration)

(integer and fractional parts without

out=bb;

%end of file

251

g. two2dec.m

%%
% two2dec.m
% This MATLA3 function convert vectors in binary 2-complement
% representation to numbers in decimal representation (positive and
% negative). The user has to specify a vector or a set of vectors in a
% matrix to be converted, and the format for the binary presentation
% (number of bits used for the fractional part). The first bit is
% assumed to be a sign bit for the binarv vector.
%
% Function call:
9; two2dec(two,fractionbits)

%

% User inputs:
% two -the vector/matrix of vectors in binary 2-complement

representation to be converted to decimal number
% fractionbits - # of bits that represent the fractional part
%
% Output:
% number/set of numbers in decimal representation
%
% Created by:
% MAJ Stig Ekestorm, Nov -99
% Naval Postgraduate School

%function call
function [out] = two2dec(two,fractionbits);

%determine the size of the matrix of vectors to be converted
[row col]=size(two);

%initialize vectors/variables used
integer=two(:,l:col-fractionbits); %integer part
fraction=two(: ,col-fractionbits+l:col); %fractional part
total=[integer fraction];
[rowi coli]=size(integer); %size of integer part
[rowf coif]=size{fraction); %size of fractional part
[rowt colt]=size(total); %size of fractional part
out=zeros(row,col/col); %output vector

%convert bit pattern representing binary 2-complement number to decimal
number
for idxl=l:row, %vector-by-vector

%if positive number - convert
if integer(idxl,1)==0, %if sign bit is "0" (positive)

testi=fliplr(integer(idxl,1:coli)); %flip integer part of vector
testf=fraction(idxl,1:coif); %fractional part of vector
for idx2=l:coli-l, %integer part, bit-by-bit

if testi(1,idx2)==1, %check for ones
out(idxl,l)=out(idxl,l)+2'>(idx2-l) ; %add decimal value

end %end if
end %end for

252

for idx2=l:colf, %fractional part, bit-by-bit
if testf(l,idx2)==l, %check for ones

out(idxl,l)=out(idxl,1)+2A(-(idx2)); %add decimal value
end %end if

end %end for

%if negative number - adjust and convert
else %if sign bit is "1" (negative)

for idx4=l:colt, %index for switching all bit values
if total(idxl,idx4)==0, %switch all "0"

total(idxl,idx4)=l; %to "1"
else

total(idxl,idx4)=0; %and vice versa
end %end if/else statement

end %end for loop
if colt>l, %must be...

total(idxl,colt)=total(idxl,colt)+l; %add "1" to the LSB
idx5=colt; %index for binary addition
while total(idxl,idx5)==2, %if carry (bit-to-bit)

total(idxl,idx5-l)=total(idxl,idx5-l)+l; %add "1" to next
higher bit

total(idxl,idx5)=0; %set current bit to "0"
idx5=idx5-l; %decrement index (higher bit)
if idx5==l, %if this is the last bit

total(idxl,idx5)=l; %reset sign bit to "1"
end %end if

end %end while
end %end if
testi=fliplr(total(idxl,1:coli)); %flip integer part of vector
testf=total(idxl,coli+l:coli+colf); %fractional part of vector
for idx2=l:coli-l, %integer part, bit-by-bit

if testi(1,idx2)==l, %check for ones
out(idxl,l)=out(idxl,l)+2~(idx2-l); %add decimal value

end %end if
end %end for
for idx2=l:Colf, %fractional part, bit-by-bit

if testf(l,idx2)==l, %check for ones
out(idxl,l)=out(idxl,l)+2^(-(idx2)); %add decimal value

end %end if
end %end for
out(idxl,l)=out(idxl,l)*(-l); %assign a negative value

end %end if

end %end for

%end of file

253

h. plot_Kke_NRL_image.m

% plot_like_NRL_image.m

% This MATLAB script file can be used to plot image in colors similar
% to the ship case refered to at NRL homepage

% (http://radar-www.nrl.navy.mil/Areas/ISAR)
% Created by:
% MAJ Stig Ekestorm, Feb -00
% Naval Postgraduate School
%%

%load plotMOD4Shipl_64
%load plotM0D4ShipK

%load plotM0D4VcaseKb
load plotMOD4Ship8_64
%load plotMOD

%Shipl =

dpRgMapShiftM0D4Shipl_64(1:64,1:62)/max(max(dpRgMapShiftMOD4Shipl_64(1:
64,1:62)));
%Ship2 =

dpRgMapShiftMOD4DIS2000(l:256,l:62)/max(max(dpRgMapShiftMOD4DIS2000(1:2
56,1:62)));
%Ship2 =

dpRgMapShiftM0D4ShipK(1:64,1:62)/max(max(dpRgMapShiftM0D4ShipK(1:64,1:6
2))) ;
%Ship2 =

dpRgMapShiftMOD4VcaseKb(1:64,1:62)/max(max(dpRgMapShiftMOD4VcaseKb(1:64
,1:62)));

Ship2 = dpRgMapShiftMOD4Ship8_64(l:64-
1,1:62) /max(max(dpRgMapShiftMOD4Ship8_64(1:64-1,1:62))) ;

colordef white
figure(64)
colordef black
colormap(hot(100))
%contour(Ship2(:,:),20)
contour(Ship2(:,:),100)
title('8-Tapline Ship Target - 64 Radar Pulses')
xlabel('Range')
ylabel('Doppler')
%axis([0 10 24 38])
axis square

%end of file

254

i. plot_in_dB.m

%%
% plot_in_dB.m
% This script file will help you to plot results in dB.
% 1st run plot_like_NRL_image.m, then run this file with the
% appropriate input matrix specified in the mesh-command line.
% Created by:
% LTC Stig Ekestorm, Apr -00
% Naval Postgraduate School
%%

colordef white
colormap('default')

figured)
subplot(2,1,1)
mesh(20*loglO(Ship2)) ^convert to normalized voltage to dB
axis([0 62 0 64 -100 0])
title('8-Tapline Ship Target - 64 Radar Pulses')
xlabel('Range')
ylabel('Doppler')
zlabel('Normalized Amplitude [dB] ')
view(0,0) %view along the range axis

subplot(2,l,2)
mesh(20*logl0(Ship2)) . %convert to normalized voltage to dB
axis([0 62 0 64 -100 0])
%title('8-Tapline Ship Target - 64 Radar Pulses')
xlabel('Range')
ylabel('Doppler')
zlabel('Normalized Amplitude [dB]')
view(90,0) %view along the Doppler axis

%end of file

255

3. GENERATING PARAMETERS FOR MULTIPLE

SCATTERERS PER RANGE-GATE

Two examples of extract files are presented. The first one for the "V"-case and

the other for the ship simulation case. Both are discussed in the end of Chapter IV.

a. extract_para_v4_Vcase.m

%%
% extract_phase_v4_Vcase.m
% To extract Phase and Magnitude information to the DIS chip
% Print modified para.txt file
% Created by:
% MAJ Stig Ekestorm, Feb -00
% Naval Postgraduate School
9:S;9:S:%S:äSrS:&^&9:S;S:&9;S;9r9-&9-9-9-Q;9-9-9-9-9-9-9-9-g-9-9-S-9-9'9-9-9-arC!-Q.Q, Q.Q-Q- 9-0.0,0.0.0.0-0.0.0.0.0.0.0,0.0.0,0-0,0,0.
o o o otj OID^T3 o^> o o o^o^o15^15^o^^^^o^^^o^^^^^^oo^^^o^'o^^o^^^^'o^^:6^>^3^S'o^>t>'ot>T5'ö^5%^>

clear

%parameters from mathostv2.m
rg_pts=62;

dp_pts=64;
pulses)
%dp_pts=128;
pulses)
%dp_pts=256;
pulses)
%dp_pts=512;
pulses)
%dp_pts=1024;
pulses)
%dp_pts=4096;
pulses)

%# of range-bins

%# of Doppler bins (same as number of radar

%# of Doppler bins (same as number of radar

%# of Doppler bins (same as number of radar

%# of Doppler bins (same as number of radar

%# of Doppler bins (same as number of radar

%# of Doppler bins (same as number of radar

bw = 100e6;
pwc = l/(1.25*bw);
pw =0.5e-6;
prf = 2e3;
pri = 1/prf;
mu = 2*pi*bw/pw;
fs = 1.25*bw;
Ts = 1/fs;
snr = 0;
nbitsdop = 5;
phase
p = 2*pi/(2/vnbitsdop) ; %quant factor

%compressed pulsewidth

%PRF = 2 kHz
%PRI =0.5 msec

%# of bits used for precision of the Doppler

256

%additional parameters

dopplerbin=prf/dp_pts;
N=dp_pts;
NP=2*N-1; %number of points for the fft
NP=N;
tstop=pri*dp_pts; %32ms for 64 radar pulses (0.5ms * 64 radar
pulses)
ti=linspace(0,tstop,N);

numtaps=16,•
numfreq=[l 111111111122211]; %# of Doppler frequencies
in each range-bin
freq=zeros(numtaps,dp_pts);
freq(l,l:l)=[32.25];
freq(2,l:2)=[5 63.5];
freq{3,l:2)=[-30.25 94.75];
freq(4,l:2)=[-61.5 126];
freq(5,l:l)=[-92.75];
freq(6,l:l)=[-124];
zeropad=zeros(10,dp_pts);
freq=[zeropad;freq];

for idxl = l:numtaps
for idx2 = l:dp_pts

if freq(idxl,idx2) == 0
%do nothing

else
freq(idxl,idx2) = freq(idxl,idx2) + 1000;

end
end

end

for idxl =1:10
freq(idxl,1) = idxl*10-10;

end

AA=zeros(numtaps,dp_pts);
%AA(l,l:l)=[le6];
%AA(2,l:2)=[le6 le6];
%AA(3,l:2)=[le6 le6];
%AA(4,l:2)=[le6 le6];
%AA(5,l:l)=[le6];
%AA(6,l:l)=[le6];
AA(1,1:1)=[1];
AA(2,1:2)=[2 2]
AA(3,1:2)=[4 4]
AA(4,1:2)=[2 8]
AA(5,1:1)=[4];
AA(6,1:1)=[8];
zeropad=zeros(10,dp_pts);
AA=[zeropad;AA];

targetSum = zeros(numtaps,dp_pts);

for idxl = 1:numtaps

257

target = zeros(dp_pts,length(ti));
for idx2 = l:numfreq(idxl) %Doppler frequencies

for idx3 = l:length(ti) %create each signal seperately
fi = rand(l)*0.1; %random initial phase shift
%target(idx2,idx3) = l*exp(-j*2*pi*freq{idxl,idx2)*ti(1, idx3)

+ fi);
target(idx2,idx3) = AA(idxl,idx2)*exp(-

j*2*pi*freq(idxl,idx2)*ti(l,idx3) + fi) ;
end

end
for idx4 = 1:numfreq(idxl) %create the combined

signal for that range gate
targetSum(idxl,:) = targetSum(idxl,:) + target(idx4,:);

end
end

%amplitude values %use manual gain values since we 'can
only do 1, 2, 4, or 8

%gain =[122211];
%gain = input('Enter gain value for each range-bin (enter values as a
row vector): ') ;
%gain=[l 1-12421181244448884421128141221
1];
%gain=[4 444444444444444444444444444444
4];
%gain=[2 224422282244444444422228242442
2];
%gain=[4 222422284242244444444228442444
2];

amp = abs(targetSum);
ampmax = max(amp);
ampmaxmax = max(ampmax);
for il = l:numtaps

for i2 = l:dp_pts
if amp(il,i2)/ampmaxmax > 0.8

ampq(il,i2) = 8;
end
if amp(il,i2)/ampmaxmax < 0.8

ampq(il,i2) = 4;
end
if amp(il,i2)/ampmaxmax < 0.4

ampq(il,i2) = 2;
end
i f amp(il,i2)/ampmaxmax < 0.2

ampq(il,i2) = 1;
end

end
end

gain = ampq;

%phase-increment values

vphasel=zeros(numtaps,dp_pts);

258

vphase2=zeros(numtaps,dp_pts);
vphase3=zeros(numtaps,dp_pts);
for idx5 = 1:numtaps

vphasel(idx5,:)=angle(targetSum(idx5, :)) ;
vphase2=vphasel*2~5/(2*pi);
vphase3=round(mod(vphase2,2~5));

end

phaseinc=zeros(numtaps,dp_pts);
for idx6 = 1:numtaps

for idx7 = l:dp_pts
if idx7==l,

phaseinc(idx6,idx7)=phaseinc(idx6,idx7)+vphase2(idx6,idx7);
else

phaseinc(idx6,idx7)=phaseinc(idx6,idx7-l)+vphase2(idx6,idx7-
1)-vphase2(idx6,idx7);

end
end

end

for idx8 = l:dp_pts
for idx9 = 1:numtaps

phasecoeff(idx9,idx8)=2*fix(mod(phaseinc(idx9,idx8),32)12) ; %4-
bit phase modulation coefficient

end
end

%write modulation parameters to text file

f4 = fopen('paraMULTIq4Vcase3.txt','w');
%f4 = fopen('paraMULTIq4Ship2_1024.txt', 'W) ;
%f4 = fopen('paraMULTIq4Shipl.txt', 'W) ;

fprintf(f4,'%d\r\n',rg_pts); %# of range-bins
fprintf(f4,'%d\r\n',dp_pts); %# of Doppler bins
fprintf(f4,'%d\r\n',numtaps); %# of tap lines (target
extent)

for aa=l:dp_pts
for bb=l:numtaps

fprintf(f4,'%d\r\n',gain(bb,aa));
end

end

% adjustment to correct multiplication factors for the amplitude (gain)
value
%for i = 1:length(gain)

%switch gain(l,i)
%case {1}
% gain(l,i)=l; %no shift, multiplication by 1, hardware bit "00"
%case {2}
% gain(l,i)=2; %shift by 1, multiplication by 2, hardware bit

"01"
%case {3}
% gain(l,i)=4; %shift by 2, multiplication by 4, hardware bit

"10"

259

%case {4}
% gain(l,i)=8

"11"
%end
%fprintf(fl,'%d\r\n',gain(l,i))
%fprintf(f2,'%d\r\n',gain(l,i))
%fprintf(f3,'%d\r\n',gain(l,i))
%fprintf(f4, '%d\r\n',gain(l, i))

%end

%shift by 3, multiplication by 8, hardware bit

%gainl, gain2, . .., gainN
%gainl, gain2, . .., gainN
%gainl, gain2, ..., gainN
%gainl, gain2, ..., gainN

for aa=l:dp_pts
for bb=l:numtaps

fprintf(f4,'%d\r\n',phasecoeff(bb,aa));
end

end

fclose(f4);

%end of file

b. extract_para_v4_Ship64.m

%%
% extract_para_v4_Ship64.m
% To extract Phase and Magnitude information of the Ship test case

to be used for Matlab and T-Spice simulation of the DIS chip
Prints modified para.txt file
Created by:

MAJ Stig Ekestorm, Feb -00
% Naval Postgraduate School
%%

%parameters from mathostv2.m

rg_pts=62;

dp_pts=64;
pulses)
%dp_pts=128;
pulses)
%dp_pts=256;
pulses)
%dp_pts=512;
pulses)
%dp_pts=1024;
pulses)
%dp_pts=4096;
pulses)

bw = 100e6;
pwc = l/(1.25*bw);
pw =0.5e-6;
prf = 2e3;
pri = 1/prf;
mu = 2*pi*bw/pw;

%# of range-bins

%# of Doppler bins (same as number of radar

%# of Doppler bins (same as number of radar

%# of Doppler bins (same as number of radar

%# of Doppler bins (same as number of radar

%# of Doppler bins (same as number of radar

%# of Doppler bins (same as number of radar

%compressed pulsewidth

%PRF = 2 kHz
%PRI =0.5 msec

260

fs = 1.25*bw;
Ts = 1/fs;
snr = 0;
nbitsdop = 5;
phase
p = 2*pi/(2/vnbitsdop) ; %quant factor

%Additional parameters

of bits used for precision of the Doppler

dopplerbin=prf/dp_pts;
N=dp_pts;
NP=2*N-1;
NP=N;
tstop=pri*dp_pts ;
pulses)
ti=linspace(0,tstop,N);

%# of Doppler bins
%number of points for the fft
%change variable
%32ms for 64 radar pulses (0.5ms * 64 rada:

%false target parameters

numtaps=32; %# of taps used

%Doppler frequencies per range-bin

freq=zeros(32,dp_pts);
freq(l,l:2)=
freq(2,l:3)=
freq(3,l:3)=
freq(4,l:4)=
freq(5,l:6)=
freq(6,l:4)=
freq(7,l:2)= .
freq(8,l:3)=
freq(9,l:16)=
440 471 505 536
freq(10,l:4)=
freq(ll,l:4)=
freq(12,l:ll)=
442 475];
freq(13,l:8)=
freq(14,l:8)=
freq(15,l:8)=
445];
freq(16,l:10)=
446 481 515];
freq(17,l:ll)=
447 482 516 546
freq(18,l:9)=
448 483 518];
freq(19,l:7)=
449 484];
freq(20,l:6)=
450];
freq(21,l:4)=
freq(22,l:3)=
freq(23,l:3)=

15 45];
17 47 72];

49 74 100]
51 77 103

79 105
80 108

111
113

571 601];

130];
132 160 195 231];
134 162];
137];
139 166];
141 168 199 230 260 291 321 351 379 409

142 169 201 232];
171 204 234 262] ;
173 206 236 264 294 323 353 381 411

208 237 265 295 324
212 238 266 296 325

241 267 297 326

354 382 412];
355 383 413];
356 384 414

582];

242 268 298 327 357 385 415

269 299 328 358 386 416

270 300 329 359 387 417

301 329 360 389 418

302 330 361 390 419

331 362 391 420];
332 363 392; ;

364 393 422];

261

freq(24,l:4)= [365 394 423
454];
freq(25,l:16)= [395 425
455 491 526 556 590 620 651 681 714 741 776 808 840 869];
freq(26,l:3)= [396 426
456];
freq(27,l:6)= [427
457 493 528 558 592];
freq(28/l:3)= [428
458 494];
freq(29,l:3)= [
459 495 530];
freq(30,l:4)= [
460 496 531 560];
freq(31,l:2)= [
497 532];
freq(32,l:2)= [
498 533];

numfreq=[2 3346423 16 44 11 888 10 11 9764334 16 3633
4 2 2]; %# of Doppler frequencies in each range-bin

%amplitude of each scatterer

A = ones(numtaps,dp_pts); %all amplitudes set to "1" for
simplification, representing equal strong scatterers

%create a combined signal per range gate

targetSum = zeros(numtaps,dp_pts);

for idxl = l:numtaps
target = zeros(dp_pts,length(ti));
for idx2 = 1:numfreq(idxl) %Doppler frequencies

for idx3 = 1:length(ti) %create each signal seperately
fi = rand(l)*0.1; %random initial phase shift
target(idx2,idx3) = A(idxl,idx2)*exp(-

j*2*pi*freq(idxl,idx2)*ti(l,idx3) + fi) ;
end

end
for idx4 = 1:numfreq(idxl) %create the combined signal for

that range gate
targetSum(idxl,:) = targetSum(idxl,:) + target(idx4,:);

end
end

%extract gain (amplitude) coefficients

amp = abs(targetSum); %extract magnetude
ampmax = max(amp); %find max
ampmaxmax = max (ampmax); %f ind max
for il = l:numtaps %hard limit magnetude using 4
levels

for i2 = l:dp_pts
if amp(il,i2)/ampmaxmax > 0.8

ampq(il,i2) - 8;

262

end
if amp(il,i2)/ampmaxmax < 0.8

ampq(il,i2) = 4;
end
if amp(il,i2)/ampmaxmax < 0.4

ampq(il,i2) = 2;
end
if amp(il,i2)/ampmaxmax < 0.2

ampq(il,i2) = 1;
end

end
end

gain = ampq; %assign quantized magnetude values
to gain-coefficient matrix

%extract phase angle

vphasel=zeros(numtaps,dp_pts); %initialize
vphase2=zeros(numtaps,dp_pts); %initialize
vphase3=zeros(numtaps,dp_pts); %initialize
for idx5 = l:numtaps %for each range gate,

vphasel(idx5,:)=angle(targetSum(idx5,:)); %extract phase angle
vphase2=vphasel*2"5/(2*pi); %adjust value to be

between 0 and 32 (dec)
vphase3=round(mod(vphase2,2A5)); %round and mod32 to get a

5-bit binary representation
end

%extract phase coefficients

phaseinc=zeros(numtaps,dp_pts); %initialize
for idx6 = l:numtaps %turn values into phase-increments

for idx7 = l:dp_pts
if idx7==l,

phaseinc(idx6,idx7)=phaseinc(idx6,idx7)+vphase2(idx6,idx7);
else

phaseinc(idx6,idx7)=phaseinc(idx6,idx7-l)+vphase2(idx6,idx7-
1)-vphase2(idx6,idx7);

end
end

end

for idx8 = l:dp_pts %adjust values to represent the
number of bits used in hardware

for idx9 = l:numtaps
phasecoeff(idx9,idx8)=2*fix(mod(phaseinc(idx9,idx8) ,32)/2) ; %4-

bit phase modulation coefficient
end

end

%write modulation parameters of the false target to text file

% f4 = fopen('paraMULTIq4Vcasel.txt', ' w') ;
f4 = fopen('paraMULTIq4Ship3_64.txt','w•);
%f4 = fopen('paraMULTIq4Shipl.txt','W);

263

fprintf(f4,'%d\r\n',rg_pts);
fprintf(f4,'%d\r\n',dp_pts);
fprintf(f4,'%d\r\n',numtaps);
extent)

for aa=l:dp_pts
for bb=l:numtaps

fprintf(f4,'%d\r\n',gain(bb,aa))
end

end

for aa=l:dp_pts
coefficients

for bb=l:numtaps
fprintf(f4,'%d\r\n'.phasecoeff(bb,aa));

end
end

fclose(f4);

%end of file

%# of range-bins
%# of Doppler bins
%# of taplines (target

%gain modulation coefficients

%phase modulation

4. CREATING TEST VECTORS IN T-SPICE

Creating a long test vector in binary format can be tedious if it must be done

manually and the probability of making mistakes cannot be ignored. These three files

presented here have been used for transforming data, parameters, and control signals,

used for Matlab simulations, into T-Spice format including appropriate T-Spice

commands in a computer process. The outputs from these files are in text-file format,

which can easily be added together for a complete T-Spice input file.

a. convert2binary_rawint.m

%%
% convert2binary_rawint.m
% To convert input values to T-Spice input vector format
% to be used for T-Spice simulation of the DIS chip.
% Prints modified DRFM-phase data as binary test vector.
% Created by:
% MAJ Stig Ekestorm, Feb -00
% Naval Postgraduate School
%%

264

set = 1; %what set of radar pulses
norp = 1; %number of radar pulses in
one set
norpl = 1; %number of radar pulses in
one set

%nDopplerCell=8;
%nRangeCell=10;
nDopplerCell=64;
nRangeCel1=62;
pw=400;
numzero=31;

drfm=ones(nDopplerCell,nRangeCell);

fid = fopen('rawintTspice.txt','r'); %open rawint.txt to be read
for j = 1:nDopplerCell

for k = 1:nRangeCell-1
drfm(j,k) = fscanf(fid,'%d',1);
comma = fscanf(fid,'%c',1);

end
drfm(j,nRangeCell) = fscanf(fid, '%d',1);

end
fclose(fid);

fl = fopen('drfm_binl.txt' , 'W); %DRFM-phase data in bimary,
intermediate file
for j = 1:nDopplerCell

%fprintf(fl,'\r\n');
%fprintf(fl,'%s%d','Radar Pulse: ',j);
%fprintf(fl,'\r\n');
for k = 1:nRangeCell

drfm_bin = dec2two(drfm(j,k),6,0);
fprintf(f1,' %d',drfm_bin(1,3:7));
fprintf(fl,'\r\n');

end
end
fclose(fl);

drfm2=zeros(nDopplerCell*nRangeCell,5);
fid = fopen('drfm_binl.txt','r'); %
for j = l:nDopplerCell*nRangeCell

for k = 1:4
drfm2(j,k) = fscanf(fid,'%d',1);

end
drfm2(j,5) = fscanf(fid,'%d',1);

end
fclose(fid);

drfm3=drfm2';

f2 = fopen("drfm_bin2.txt','W); %DRFM-phase data in binary
f3 = fopen('drfm_bin3.txt', 'W); %DRFM-phase data in binary, T-Spice

format
for j = 1:5

for k = 1:nDopplerCell*nRangeCell

265

if j==l & k==l,
fprintf(f3,'%s','VinPhase4 Phase4 Gnd bit ({');

end
if j==2 & k==l,

fprintf(f3, '%s' , 'VinPhase3 Phase3 Gnd bit ({');
end
if j==3 & k==l,

fprintf(f3,'%s','VinPhase2 Phase2 Gnd bit ({');
end
if j==4 & k==l,

fprintf(f3,'%s','VinPhasel Phasel Gnd bit {{'),-
end
if j==5 & k==l,

fprintf(f3, '%s' , 'VinPhaseO PhaseO Gnd bit ({');
end
drfm_bin = drfm3(j, k) ;
fprintf(f2,'%d',drfm_bin);
fprintf(f3,'%d',drfm_bin);

end
fprintf(f3,'%s','} on=5.0 off=0.0 pw=■,num2str(pw),'n)');
fprintf(f2,'\r\n');
fprintf(f3,'\r\n');

end
fclose(f2);
fclose(f3);

drfm4 = [];
zeropadstart = zeros(5,7); %1 for sync clear, 6 for loading gain and
phase mudulation coefficients
zeropad = zeros(5,numzero); %31 for reading out results between radar
pulses
for k = l:nDopplerCell

if k==l,
drfm4 = [drfm4,zeropadstart,drfm3(1:5,1:nRangeCell)];

else
drfm4 = [drfm4,zeropad,drfm3(1:5, (k-

1)*nRangeCell+l:k*nRangeCell)] ;
end

end
drfm4 = [drfm4,zeropad];

f4 = fopen{'converted_rawint_l.txt',''w'); %DRFM-phase data in binary,
padded with 31 col's of zeros after every radar pulse, T-Spice format

start = (1+6)+(set-l)*norpl*(62+31) + 1; %start bit of the set
if set == 1 %lst set (special case)

start = 1; %start bit is then the 1st
bit
end
stop = (start-1) + norp*(62+31); %stop bit of the set
if start == 1 %lst set (special case)

stop = (1+6) + norp*(62+31); %7 bits for sync clear and
load, then 3 radar pulses (3* (62 + 31))
end

for j = 1:5

266

for k = start:stop %from start bit to stop bit
%for k = 1:length(drfm4)
%length(zeropadstart)+nDopplerCell*(nRangeCell+length(zeropad))

if j==l & k==start,
fprintf(f4,'%s','VinPhase4 Phase4 Gnd bit ({');
if k>l

fprintf (f 4, '%s\ '0000000');
end

end
if j==2 & k==start,

fprintf(f4,'%s','VinPhase3 Phase3 Gnd bit ({');
if k>l

fprintf(f4, '%s', '0000000 ');
end

end
if j==3 & k==start,

fprintf(f4,'%s','VinPhase2 Phase2 Gnd bit ({');
if k>l

fprintf(f4, •%s ' , '0000000') ;
end

end
if j==4 & k==start,

fprintf(f4,'%s','VinPhasel Phasel Gnd bit ({');
if k>l

fprintf(f4, '%s' , '0000000');
end

end
if j==5 & k==start,

fprintf(f4,'%s','VinPhaseO PhaseO Gnd bit ({');
if k>l

fprintf(f4, '%s', '0000000'),-
end

end
drfm_bin = drfm4{j,k);
fprintf(f4,'%d',drfm_bin);

end
fprintf(f4, '%s','} on=5.0 off=0.0 pw=',num2str(pw),'n)');
fprintf(f4,'\r\n');

end
fprintf(f4, '%s ', ' * ') ;
fprintf(f4,'\r\n');
fclose(f4);

save converted_rawint drfm4

%end of file

b. convert2binary_para.m

% convert2binary_para.m
% To convert input values to T-Spice input vector format
% to be used for T-Spice simulation of the DIS chip.
% Prints modified gain and phase modulation parameter data as binary

267

% test vector.
% Created by:
% MAJ Stig Ekestorm, Feb -00
% Naval Postgraduate School
0.0,0,0,0, 0.0.0.0.0.0.0.0.0.0.0.0,0-0.0, 0.0,0.0, o, o, c, o, o. 5.9. 0,0.0.0,0,a o, o. Q, o, p, o. o, 9,0, 0,9,9,9,9,0,0,0,9,0,0,0,0,0,0,0,0,0,0.0,0,0,0,0,
t^M^tt^^t^^^^ti^tt^^^^^H^^to^^^^Uoo^o^^u^u^u^ o'ö'O'o-o o T> o o o o o o o o o

set = 1;
norp = 1;
in the set
norpl = 1;
in the set

%what set of radar pulses
%number of radar pulses used

%number of radar pulses used

%simulation parameters
pw=400;
pulse in T-Spice
pbit=4;
Phase Modulation Coefficient

%extract values - select input file
%fid = fopen('para.txt', 'r') ;
%fid = fopen('paraMULTI.txt' , 'r') ;
read
%fid = fopen('paraMULTIq5.txt', 'r') ;
read
%fid = fopen{'paraMULTIq4.txt' , 'r') ;
read
fid = fopen('paraMULTIq4Ship3_64n.txt'
paraMULTIq4ShipXXX.txt to be read

%pulsewidth of simulation

%# of bits used to represent

%open para.txt to be read
%open paraMULTI.txt to be

%open paraMULTIqS.txt to be

%open paraMULTIq4.txt to be

1 r'); %open

%# of DRFM-phase samples per

%# of Tapline used, target

%extract scaling parameters
for j = 1:3

if j==l,
nRangeCell = fscanf(fid, '%d',1);

radar pulse, range-bins
end
if j==2,

nDopplerCell = fscanf(fid,'%d',1); %# of radar pulses, Doppler
bins

end
if j==3,

targetExtent = fscanf(fid,'%d', 1)
extent

end
end

%initialize matrices
gain=zeros(targetExtent,1);
phase=zeros(nDopplerCell,targetExtent);

%extract gain modulation values
for j = 1:nDopplerCell

for k = 1:targetExtent
gain(j,k) = fscanf(fid,'%d',1);

end
end

268

%extraxt phase modulation values
for j = l:nDopplerCell

for k = 1:targetExtent
phase(j,k) = fscanf(fid,'%d',1);

end
end
fclose(fid);

%convert gain modulation coefficients
%adjustment to correct multiplication factors for the amplitude (gain)
value
for j = l:nDopplerCell

for k = 1:targetExtent
switch gain(j,k)
case {1}

gain(j,k)=0; %no shift, multiplication by 1, hardware bit
"00"

case {2}
gain(j,k)=l; %shift by 1, multiplication by 2, hardware bit

"01"
case {4}

gain(j,k)=2; %shift by 2, multiplication by 4, hardware bit
"10"

case {8}
gain(j,k)=3; %shift by 3, multiplication by 8, hardware bit

"11"
end

end
end

f1 = fopen('para_gain_binl.txt','w'); %
for j = l:nDopplerCell

for k = 1:targetExtent
gain_bin = dec2two(gain(j,k),2,0) ;
fprintf(fl,' %d',gain_bin(l,2:3));
fprintf(fl,'\r\n');

end
end
fclose(fl);

gain2=zeros(nDopplerCell*targetExtent,2);
fid = fopen('para_gain_binl.txt','r'); %
for j = l:nDopplerCell*targetExtent

for k = 1:2
gain2(j,k) = fscanf(fid,'%d',l);

end
end
fclose(fid);

gain2MOD=fliplr(gain2);
gain3=gain2MOD';

f2 = fopen('para_gain_bin2.txt','w'); %
for j = 1:2

for k = l:nDopplerCell*targetExtent
gain_bin = gain3(j,k);

269

fprintf(f2,'%d',gain_bin);
end
fprintf(f2,'\r\n');

end
fclose(f2);

f3 = fopen('para_gain_bin3.txt', 'W) ; %in format for Toplevel input
file
gain4 = zeros(2,nDopplerCell*32) ;
[row col]=size(gain3(1:2,l:nDopplerCell*targetExtent));

for m = l:nDopplerCell
for j = 1:targetExtent

for k = 1:2
if m==l,

gain4(k,j) = gain3(k,j);
else

gain4(k,j+(m-l)*32) = gain3(k,j+(m-1)*targetExtent);
end

end
end

end

gain5=reshape(gain4,8*pbit,2*nDopplerCell);

for j = l:8*pbit
for k = l:2*nDopplerCell

fprintf(f3, '%d',gain5(j,k)) ;
end
fprintf(f3,'\r\n');

end
fclose(f3);

%convert phase modulation coefficients
f4 = fopen('para_phase_binl.txt' , 'w'); %
for j = l:nDopplerCell

for k = 1:targetExtent
phase_bin = dec2two(phase(j , k) , 5, 0) ;
fprintf(f4,' %d',phase_bin(l,2:pbit+l));
fprintf(f4,'\r\n');

end
end
fclose(f4);

phase2=zeros(nDopplerCell*targetExtent,pbit);
fid = fopen('para_phase_binl.txt','r'); %
for j = l:nDopplerCell*targetExtent

for k = l:pbit
phase2(j,k) = fscanf(fid,'%d',1);

end
end
fclose(fid);

phase2M0D=fliplr(phase2);
phase3=phase2MOD';

270

f5 = fopen('para_phase_bin2.txt','w'); %
for j = lrpbit

for k = l:nDopplerCell*targetExtent
phase_bin = phase3(j, k);
fprintf(f5,'%d',phase_bin);

end
fprintf(f5,'\r\n');

end
fclose(f5);

f6 = fopen('para_phase_bin3.txt','W); %in format for Toplevel input
file
phase4 = zeros(pbit,nDopplerCell*32);
trow col]=size(phase3(l:pbit,l:nDopplerCell*targetExtent));

for m = l:nDopplerCell
for j = 1:targetExtent

for k = l:pbit
if m==l,

phase4(k,j) = phase3(k,j);
else

phase4(k,j+(m-l)*32) = phase3(k,j+(m-1)*targetExtent) ;
end

end
end

end

phase5=reshape(phase4,8*pbit,4*nDopplerCell);

for j = l:8*pbit
for k = l:4*nDopplerCell

fprintf(f6,'%d',phase5(j,k));
end
fprintf(f6,'\r\n');

end
fclose(f6);

%make one matrix of Gain and Phase Modulation Coefficients
phasegain = [];
zeropadstart = zeros(32,1); %1 for sync clear
zeropad = zeros(32,nRangeCell+31-6); %62 for processing DRFM-phase
data, (31-6) for reading out values and loading new gain and phase
modulation coefficients
zeropadend = zeros(32,nRangeCell+31); %62+31 for the last radar pulse
and final readout

start = set*(norpl-l); %start radar pulse of the set
%start = set*norp + 1; %start radar pulse of the set
%start = (1+6)+(set-l)*norp*(62+31) + 1; %start radar pulse of the set
if set == 1 %lst set (special case)

start = 1; %start radar pulse is then
the 1st radar pulse
end
stop = set*(norpl-l) + (norp-1); %stop radar pulse of the set
%stop = set*norp + norp; %stop radar pulse of the set

271

if start == 1
stop = norp;

pulses
end
%stop = (start-1) + norp*(62+31;
%if start == 1
% stop = (1+6) + norp*(62+31);
%end

%lst set (special case)
%just the number of radar

%stop radar pulse of the set
%lst set (special case)

for k = start:stop
%for k = l:nDopplerCell

if k==start,
%if k==l,

phasegain =
[phasegain,zeropadstart, phase5(1:8 *pbit,1:4),gain5(1:8 *pbit,1:2)];

else
phasegain = [phasegain,zeropad,phase5(1:8*pbit,(k-

l)*4+l:k*4),gain5(l:8*pbit,(k-1)*2+l:k*2)];
end

end
phasegain = [phasegain,zeropadend];

f7 = fopen('converted_para_l.txt','W); %gain and phase modulation
coefficients in binary, padded zeros during every radar pulse and time
for readout, T-Spice format
for j = l:8*pbit

for k = 1:length(phasegain)
if j==l & k==l,

fprintf(f7,'%s','VinBusO BusO Gnd bit
end
if j==2 Sc k==l,

fprintf (f7, "■
end
if j==3 Sc k==l,

fprintf (f7, "■
end
if j==4 & k==l,

fprintf (f7, '"
end
if j==5 & k==l,

fprintf(f7, "
end
if j==6 & k==l,

fprintf (f7, •'■
end
if j==7 Sc k==l,

fprintf (f 7, •'
end
if j==8 & k==l,

fprintf (f 7, •'■
end
if j==9 & k==l,

fprintf (f 7, "■
end
if j==10 & k==l,

fprintf(f7,'%s','VinBus9 Bus9 Gnd bit

'%s','VinBusl Busl Gnd bit

'%s','VinBus2 Bus2 Gnd bit

'%s','VinBus3 Bus3 Gnd bit

'%s','VinBus4 Bus4 Gnd bit

'%s','VinBus5 Bus5 Gnd bit

%s','VinBus6 Bus6 Gnd bit

'%s','VinBus7 Bus7 Gnd bit

'%s','VinBus8 Bus8 Gnd bit

272

end
if j==ll & k==l,

fprintf(f7,'%s','VinBuslO
end
if j==12 & k==l,

fprintf(f7,'%s','VinBusll
end
if j==13 & k==l,

fprintf(f7,'%s','VinBusl2
end
if j==14 & k==l,

fprintf(f7,'Is1,'VinBusl3
end
if j==15 & k==l,

fprintf(f7,'%s','VinBusl4
end
if j==16 & k==l,

fprintf(f7,'%s','VinBusl5
end
if j==17 & k==l,

fprintf(f7, '%s ' , 'VinBusl6
end
if j==18 & k==l,

fprintf(f7,'%s','VinBusl7
end
if j==19 & k==l,

fprintf(f7,'%s','VinBusl8
end
if j==20 & k==l,

fprintf(f7,'%s','VinBusl9
end
if j==21 & k==l,

fprintf(f7,'%s','VinBus20
end
if j==22 & k==l,

fprintf(f7, '%s ' , 'VinBus21
end
if j==23 & k==l,

fprintf(f7,'%s','VinBus22
end
if j==24 & k==l,

fprintf(f7,'%s','VinBus23
end
if j==25 & k==l,

fprintf(f7,'%s','VinBus24
end
if j==26 & k==l,

fprintf(f7,'%s','VinBus25
end
if j==27 & k==l,

fprintf(f7,'%s','VinBus26
end
if j==28 & k==l,

fprintf(f7,'%s','VinBus27
end
if j==29 & k==l,

Bus10 Gnd bit

Bus11 Gnd bit

Bus12 Gnd bit

Busl3 Gnd bit

Bus14 Gnd bit

Bus15 Gnd bit

Bus16 Gnd bit

Busl7 Gnd bit

Bus18 Gnd bit

Bus19 Gnd bit

Bus20 Gnd bit

Bus21 Gnd bit

Bus22 Gnd bit

Bus23 Gnd bit

Bus24 Gnd bit

Bus25 Gnd bit

Bus26 Gnd bit

Bus27 Gnd bit

273

fprintf(f7,•%s','VinBus28 Bus28 Gnd bit ({');
end '%
if j==30 & k==l,

fprintf(f7,'%s','VinBus29 Bus29 Gnd bit ({');
end
if j==31 & k==l,

fprintf(f7,■%s','VinBus30 Bus3 0 Gnd bit ({');
end
if j==32 & k==l,

fprintf(f7,'%s','VinBus31 Bus31 Gnd bit ({');
end
phasegain_bin = phasegain(j,k);
fprintf(f7, '%d',phasegain_bin) ;

end
fprintf(f7,'%s','} on=5.0 off=0.0 pw=',num2str(pw),'n)');
fprintf(f7,'\r\n');

end
fprintf(f7,'%s' , '*');
fprintf(f7,'\r\n');
fclose(f7);

%end of file

C. convert2binary_control.m

%%
% convert2binary_control.m
% To convert input values to T-Spice input vector format
% to be used for T-Spice simulation of the DIS chip.
% Prints chip control signals as binary test vector.
% Created by:
% MAJ Stig Ekestorm, Feb -00
% Naval Postgraduate School

nurp = 1; %number of radar pulses used
in the set
nurpl = 1; %number of radar pulses used
in the set
nDopplerCell=nurp;
%nDopplerCell=64;
nRangeCel1=62;
numzero=31;
pwc=200; %pulsewidth of clock pulse in
T-Spice
pw=2*pwc; %pulsewidth of signal pulse
in T-Spice
load converted_rawint %variable is drfm4

fl = fopen('converted_control_l.txt' , 'W); %control signals in
binary, T-Spice format
%
fprintf(fl,'%s','*');
fprintf(fl,'\r\n');

274

%clock
fprintf(fl, '%s', 'VinCLK CLK Gnd bit ({01');
fprintf(fl,'%s','} on=5.0 off=0.0 pw=',num2str(pwc),'n)');
fprintf(fl,'\r\n');
fprintf(fl,'%s','*') ;
fprintf(fl,'\r\n');
%hold
fprintf(fl, '%s' , 'VinHLD HLD Gnd bit ({0');
fprintf(fl, '%s' ,' } on=5.0 off=0.0 pw=',num2str(pw), 'n) ');
fprintf(fl,'\r\n');
%load
onel=ones(1,1+6+nurp*(62+31)-1);
%onel=ones(1,length(drfm4)-1);
for k = 1:1+6+nurp*(62+31)
%for k = 1:length(drfm4)

if k==l'
fprintf(fl, '%s', 'VinLD LD Gnd bit ({0');

else
fprintf(fl,'%d',onel(l,k-l));

end
end
fprintf(fl, '%s','} on=5.0 off=0.0 pw=',num2str(pw),*n) ');
fprintf(fl,'\r\n');
%scan right
fprintf(f1, '%s', 'VinSR SR Gnd bit ({0 ') ;
fprintf(fl, '%s','} on=5.0 off=0.0 pw=',num2str(pw), 'n) ');
fprintf(fl,'\r\n');
%scan left
fprintf(fl,'%s','VinSL SL Gnd bit ({0');
fprintf(fl, '%s" ,'} on=5.0 off=0.0 pw=',num2str(pw), 'n) ');
fprintf(fl,'\r\n');
fprintf(fl,'%s','*■);
fprintf(fl,'\r\n');
%scan right in
fprintf(fl,'%s','VinS_P_Test_Rin S_P_Test_Rin Gnd bit ({0');
fprintf(fl,'%s','} on=5.0 off=0.0 pw=',num2str(pw),'n)');
fprintf(fl,'\r\n');
%scan left in
fprintf(fl,'%s','VinS_P_Test_Lin S_P_Test_Lin Gnd bit ({0');
fprintf(fl,'%s','} on=5.0 off=0.0 pw=',num2str(pw),'n)');
fprintf(fl,'\r\n');
fprintf(fl,'%s','*');
fprintf(fl,"\r\n');
%range-bin valid
one2 = ones(1,nRangeCel1);
zero2 = zeros(l,numzero);
block = [];
for k = l:nDopplerCell

block = [block,one2,zero2];
end
for k = 1:length(block)+1

if k==l'
fprintf(fl,'%s','VinRange_bin_valid Range_bin_valid Gnd bit
({0000000');

else
fprintf(f1,'%d',block(1,k-1));

275

end
end
fprintf(fl, '%s' , '} on=5.0 off=0.0 pw=',num2str(pw),'n)');
fprintf(fl,'\r\n');
fprintf(fl,'%s','*');
fprintf(fl,'\r\n');
%load phase A
zero3 = zeros(l,nRangeCell+numzero-6);
PhaseA = [1,0,0,0,0,0];
LoadPhaseA = [] ;
for k = l:nDopplerCell

LoadPhaseA = [LoadPhaseA,PhaseA,zero3];
end
for k = 1:length(LoadPhaseA)+1

if k==l'
fprintf(fl,'%s','VinLD_Phase_SupTap_A LD_Phase_SupTap_A Gnd bit
({0');

else
fprintf(fl,'%d',LoadPhaseA(l,k-l));

end
end
fprintf(fl, '%s','000000} on=5.0 off=0.0 pw=',num2str(pw) , 'n) ');
fprintf(fl,'\r\n');
%load phase B
zero3 = zeros(l,nRangeCell+numzero-6);
PhaseB = [0,1,0,0,0,0];
LoadPhaseB = [] ;
for k = l:nDopplerCell

LoadPhaseB = [LoadPhaseB,PhaseB,zero3];
end
for k = 1:length(LoadPhaseB)+1

if k==l'
fprintf(fl,'%s','VinLD_Phase_SupTap_B LD_Phase_SupTap_B Gnd bit
({0');

else
fprintf(fl,'%d',LoadPhaseB(l,k-l));

end
end
fprintf(fl, '%s', '000000} on=5.0 off=0.0 pw=',num2str(pw) ,'n) ');
fprintf(fl,'\r\n');
%load phase C
zero3 = zeros (l,nRangeCell+numzero-6) ;
PhaseC = [0,0,1,0,0,0];
LoadPhaseC = [];
for k = l:nDopplerCell

LoadPhaseC = [LoadPhaseC,PhaseC,zero3];
end
for k = 1:length(LoadPhaseC)+l

if k==l*
fprintf(fl, '%s', 'VinLD_Phase_SupTap_C LD_Phase_SupTap_C Gnd bit
({0');

else
fprintf(f1,'%d',LoadPhaseC(1,k-1));

end
end
fprintf(fl, '%s','000000} on=5.0 off=0.0 pw=',num2str(pw) ,'n) ');

276

fprintf(fl,'\r\n');
%load phase D
zero3 = zeros(l,nRangeCell+numzero-6);
PhaseD = [0,0,0,1,0,0];
LoadPhaseD = [] ;
for k = l:nDopplerCell

LoadPhaseD = [LoadPhaseD,PhaseD,zero3];
end
for k = 1:length(LoadPhaseD)+1

if k==l'
fprintf(fl,'%s','VinLD_Phase_SupTap_D LD_Phase_SupTap_D Gnd bit
({0');

else
fprintf(f1,'%d',LoadPhaseD(1,k-1));

end
end
fprintf (fl, ' %s" , '000000} on=5.0 off=0.0 pw=',num2str(pw),'n)');
fprintf(fl,'\r\n');
fprintf(fl,'%s','*');
fprintf(fl,'\r\n');
%use phase
zero3 = zeros(l,nRangeCell+numzero-6);
Phaseinc = [0,0,0,0,1,0];
UsePhaseinc = [] ;.
for k = l:nDopplerCell

UsePhaseinc = [UsePhaseinc,Phaseinc,zero3];
end
for k = 1:length(UsePhaseinc)+1

if k==l'
fprintf(fl,'%s','Vinuse_Phase_inc use_Phase_inc Gnd bit
({0');

else
fprintf(fl,'%d',UsePhaseinc(1,k-1));

end
end
fprintf(fl, '%s' , '000000} on=5.0 off=0.0 pw= ' ,nura2str (pw) , 'n) ') ;
fprintf(fl,'\r\n');
fprintf(fl, '%s' , '*');
fprintf(fl,'\r\n');
%load gain AB
zero3 = zeros (l,nRangeCell+niamzero-6) ;
GainAB = [0,0,0,0,1,0];
LoadGainAB = [];
for k = lrnDopplerCell

LoadGainAB = [LoadGainAB,GainAB,zero3];
end
for k = 1:length(LoadGainAB)+1

if k==l'
fprintf(fl,'%s','VinLD_Gain_SupTap_AB LD_Gain_SupTap_AB Gnd bit
({0');

else
fprintf(f1,'%d',LoadGainAB(1,k-1));

end
end
fprintf(fl, '%s','000000} on=5.0 off=0.0 pw=',num2str(pw) , 'n) ');
fprintf(fl,'\r\n');

277

%load gain CD
zero3 = zeros(l,nRangeCell+numzero-6) ;
GainCD = [0,0,0,0,0,1];
LoadGainCD = [] ;
for k = l:nDopplerCell

LoadGainCD = [LoadGainCD,GainCD,zero3];
end
for k = 1:length(LoadGainCD)+1

if k==l'
fprintf(fl,'%s','VinLD_Gain_SupTap_CD LD_Gain_SupTap_CD Gnd bit
({0');

else
fprintf(f1, '%d',LoadGainCD(1,k-1)) ;

end
end
fprintf(fl, '%s' , '000000} on=5.0 off=0.0 pw=',num2str(pw), 'n) ');
fprintf(fl,'\r\n');
fprintf(fl, '%s' , '*');
fprintf(fl,'\r\n');
%
fclose(fl);
%end of file

5. COMPARING MATLAB AND T-SPICE SIMULATIONS

Examining the outputs from T-Spice simulations requires some sort of post-data

treatment. In this case a hard-limiter script-file converts output voltage levels from

T-Spice simulations into binary and decimal representation. These values can thereafter

be used i.e. by the compare script-file to compare Matlab simulation results with T-Spice

outputs.

a. hard_limiter.m

%%
% hard_limiter.m
% Hard Limiter
% - reads modified text files generated from T-Spice output files
% - extracts and assigns values to variables
% - hard limiters values into binary representation
% - writes results in decimal form to text files
% - writes results in 2-complement binary form to text files
% Created by:
% MAJ Stig Ekestorm, Nov -99, Modified Jan -00
% Naval Postgraduate School

278

% *** READ IN VALUES FROM T-SPICE OUTPUT FILES (in text file format)
* **

clear %clear all variables

%specify the number of rows and columns for the original text files
row=207;
%colin=6;
input
Colout=17;
output

%# of rows
%# of columns for

%# of columns for

%open original text files to read values
%fin = fopen(' .txt','r');
foutl = fopen('Switch_I_OutputsMODld.txt' , 'r') ;
name
foutQ = fopen('Switch_Q_OutputsMODld.txt' , ' r ') ;
name

^specify file name
%specify file

%specify file

%initalize
%tmpin=zeros (row, colin) ,-
tmpoutI=zeros(row,colout);
tmpoutQ=zeros(row,colout);

%extract values from the original text files
%for idx2=l:row,
% for idx3=l:colin,
% tmpin(idx2,idx3)=fscanf(fin, '%f ' ,1);
% end
%end
for idx2=l:row,
result out

for idx3=l:colout,
1st column is time

tmpoutI(idx2,idx3)=fscanf(foutl,'%f',1);
values

tmpoutQ(idx2,idx3)=fscanf(foutQ,'%f',1);
values

end
end

%# of rows
%# of columns
%reads in the values

%# of rows of valid

%# of columns, OBS:

%reads in the I

%reads in the Q

%close original text files
%fclose(fin);
fclose(foutl);
fclose(foutQ);

% *** EXTRACT/SEPARATE VARIABLES

%initalize
time=zeros(row,1);
%in=zeros(row,colin-1);
outI=zeros(row,colout-l);
outQ=zeros(row,colout-1) ;
%input=zeros(row,colin-1) ;

279

Iout=zeros(row,colout-l) ;
Qout=zeros(row,colout-1);

%assign values to correct variable
time=tmpoutI(:, 1) ;
%in=tmpin(:,2:colin);
outI=tmpoutI(:,2:colout);
outQ=tmpoutQ(:,2:colout);

% *** HARD LIMITER ***

%hard limiter
for idx4=l:row,

%for idx5=l:colin-1,
% if in(idx4,idx5)<=2.5,
% input(idx4,idx5)=0;
% else
% input(idx4,idx5)=l;
% end
%end
for idx5=l:colout-1,

if outI(idx4,idx5)<=2.5,
lout(idx4,idx5)=0 ;

else
lout(idx4,idx5)=1;

end
end
for idx5=l:colout-1,

if outQ(idx4,idx5)<=2.5,
Qout(idx4,idx5)=0;

else
Qout(idx4,idx5)=1 ;

end
end

end

%if less then 2.5V
%set bit to "0"
%if higher then 2.5V
%set bit to "1"

%if less then 2.5V
%set bit to "0"
%if higher then 2.5V
%set bit to "1"

%if less then 2.5V
%set bit to "0"
%if higher then 2.5V
%set bit to "1"

%flip matrices to get MSB to the left, and LSB to the right
%check the order of the values in the text file to confirm if this is
necessary
%input=fliplr(input);
Iout=fliplr(lout);
Qout=fliplr(Qout);

% *** PRINT TO MATLAB COMMAND WINDOW ***

%print input and output matrices to MATLAB Command Window
%disp(' ')
%disp('Input vectors:')
%input
%disp(' ')
%disp('Output vectors:')
%Iout
%Qout
%disp(' ')

% *** PRINT TO TEXT FILES ***

280

%print I- and Q-output in decimal values to two new separate text files
fl=fopen('IoutputsDECld.txt','w'); %open text file to write I-
results to
f2=fopen('QoutputsDECld.txt','W); %open text file to write Q-
results to
%print I- and Q-output in 2-complement binary representation to two new
separate text files
f3=fopen('IoutputsBINld.txt',"W); %open text file to write I-
results to
f4=fopen('QoutputsBINld.txt',"W); %open text file to write Q-
results to

Iout_dec=two2dec(Iout,7); ^convert to decimal values
Qout_dec=two2dec(Qout,7); %convert to decimal values

fprintf(fl,'%12.8f\n',Iout_dec); %write I-values as decimal
value
fprintf(f2,'%12.8f\n',Qout_dec); %write Q-values as decimal
value
%fprintf(fl,'%d\n',Iout_dec); %write I-values as decimal value
%fprintf(f2,'%d\n',Qout_dec); %write Q-values as decimal value

for idx=l:row,
fprintf(f3,'%d',dec2two(Iout_dec(idx),8,7)); %write I-values as 2-

complement binary
fprintf(f3,'\r\n');
fprintf(f4,'%d',dec2two(Qout_dec(idx),8,7)); %write Q-values as 2-

complement binary
fprintf(f4,'\r\n');

end

fclose(fl); %close text file that results
has been written to
fclose(f2); %close text file that results
has been written to
fclose(f3); %close text file that results
has been written to
fclose(f4); %close text file that results
has been written to
%end of file

b. compare.m

%%

% compare.m
% Compare Matlab and T-Spice outputs
% - plots Matlab outputs for I and Q channel
% - plots T-Spice outputs for I and Q channel
% - plots difference between Matlab and T-Spice outputs for I and Q

% channel
% Created by:
% MAJ Stig Ekestorm, Nov -99, Modified Jan -00
% Naval Postgraduate School

281

%%

% *** READ IN VALUES FROM T-SPICE OUTPUT FILES (in text file format)
•k -k -k

%clear %clear all variables

%specify the number of values to read from the original text files
%num=93; %# of values, 1st radar
pulse
num=207; %# of values, total # of
valid outputs from this T-Spice run

%open original text files to read values
fTI = fopen('IoutputsDECld.txt', 'r'); %specify file name
£MI = fopen('lout.txt','r'); %specify file name
fTQ = fopen('QoutputsDECld.txt', 'r'); %specify file name
fMQ = fopen('Qout.txt','r'); %specify file name

%extract values from the original text files
tmpTI = fscanf(fTI, '%f ') ; %reads in the values
tmpMI = fscanf(fMI, '%f') ; %reads in the values
TI = tmpTI(l:num);
MI = tmpMI(1:num);
tmpTQ = fscanf(fTQ,'%f'); %reads in the values
tmpMQ = fscanf(fMQ, '%f'); %reads in the values
TI = tmpTI(l:num);
MI = tmpMI(1:num);
TQ = tmpTQ(1:num);
MQ = tmpMQ(1:num);

fclose(fTI);
fclose(fMI);
fclose(fTQ);
fclose(fMQ);

%plot results
figure(1)
subplot(2,1,1)
plot(MI(62+32-1:2*(62+32-1)),'bo')
hold on
plot(TI(62+32-1:2*(62+32-1)),'rx')
hold off
grid
title('Comparing Matlab and T-Spice outputs - I-Channel')
xlabel('Data■), ylabel('Amplitude')
legend('Matlab','T-Spice')
axis([0 93 -100 100])
subplot(2,1,2)
plot(MI(62+32-l:2*(62+32-l))-TI(62+32-1:2*(62+32-1)) , 'g')
grid
title('Difference (Matlab and T-Spice) - I-Channel')
xlabel('Data') , ylabel('Amplitude')
legend('Difference')
axis([0 93 -11])

282

figure(2)
subplot(2,1,1)
plot(MQ(62+32-1:2*(62+32-1)),'bo')
hold on
plot(TQ(62+32-1:2*(62+32-1)),'rx')
hold off
grid
title('Comparing Matlab and T-Spice outputs - Q-Channel')
xlabel('Data'), ylabel('Amplitude')
legend('Matlab','T-Spice')
axis([0 93 -100 100])
subplot(2,1,2)
plot(MQ(62+32-l:2*(62+32-l))-TQ(62+32-l:2*(62+32-1)),'g')
grid
title('Difference (Matlab and T-Spice) - Q-Channel')
xlabel('Data'), ylabel('Amplitude')
legend('Difference')
axis([0 93 -1 1])

%end of file

283

6. BIT-VICE TRUNCATION OF TWO'S COMPLEMENT

BINARY REPRESENTATION

A script file is presented that produces an example of how one can truncate values

in two's complement binary representation for examining different effects.

a. truncate.m

%%
% truncate.m
% Test of how to truncate a decimal number representing a binary word
% Created by:
% MAJ Stig Ekestorm, Mar -00
% Naval Postgraduate School
%%

format long

%a number, 8 integer bits and 7 fraction bits
aa_bit = zeros(1,15);
for idx =0:7

aa_bit(8+idx) = 2^idx;
end
for idx = 1:7

aa_bit(idx) = 2A(idx-8);
end

%bit-by-bit value
aa_bit

%make the binary word into a decimal number
aa_dec = 0;
for idx =1:15

aa_dec = aa_dec + aa_bit(1,idx);
end

%original decimal number
aa_dec

%convert original number from decimal to 2-complement binary
aa_bin = dec2 two(aa_dec,8,7)

%truncate the binary word (i.e. take out the two least significant
bits)
aa_bin_trunc = aa_bin(1,1:length(aa_bin)-2)

284

%convert the truncated binary word from 2-compIement to decimal
aa_dec_trunc = two2dec(aa_bin_trunc,5)

9.**********************+***********************************

%end of file

(Example-Printout from Matlab Command Window)

» clear
» truncate

aa_bit =

1.0e+002 *

Columns 1 through 4
0.00007812500000

0.00062500000000
0.00015625000000 0.00031250000000

Columns 5 through 8
0.00125000000000 0.00250000000000

0.01000000000000

Columns 9 through 12
0.02000000000000 0.04000000000000

0.16000000000000

Columns 13 through 15
0.32000000000000 0.64000000000000

0.00500000000000

0.08000000000000

1.28000000000000

aa_dec =
2.559921875000000e+002

aa_bin =
Columns 1 through 12

0 1 1 1

Columns 13 through 16
1111

aa_bin_trunc =
Columns 1 through 12

0 111

Columns 13 through 14
1 1

aa_dec_trunc =
2.559687500000000e+002

285

THIS PAGE INTENTIONALLY LEFT BLANK

286

APPENDIX B. VISUAL BASIC CODES

1. VISUAL BASIC PROJECT TO RUN THE DIS CONCEPT

DEMONSTRATOR

To be able to make the comparison between the Matlab simulation of the DIS and

the DIS implemented using FPGA technology, one must add an intermediate step to the

simulation flow described in Chapter V. After the Matlab file mathostvX.m has been

executed, then all the necessary inputs are available in text files to run the hardware

implementation of the DIS.

The interface with the FPGA computer board is a set of Visual Basic files

composed into a Visual Basic project called FlexTest (Flextest.vbp). The files in the

HexTest project are included below. The files are

• file.bas

• Flecfunc.bas

• GlobaLbas

• Main.bas

• the_isar.bas

To be able to compile and run the project and the board properly, the necessary

files have to be located in a file structure with the following path

c:\temaseftdenise\thesisyinal_design\vbfiles due to hard coding issues. To run the Visual

Basic project HexTest, the user needs to open the project, open the the_isar.bas file, and

287

then run the file. A graphical user interface (GUI) will show up on the computer display

to visualize the signal processing taken place in the taps of the DIS.

a. file.bas

Attribute VB_Name = "fileio"
Public nRangeCell As Integer
Public nDopplerCell As Integer
Public targetExtent As Integer
Public GainO As Integer
Public Phi() As Integer
Public DRFMO As Integer
Public sine() As Double
Public cosine() As Double

Public Sub readParaO
' This sub-routine reads the processing parameters generated by

Matlab (reading from paraVB.txt)
Dim idx As Integer
Dim idxl As Integer

Open "c:/temasek/denise/thesis/final_design/vbfiles/para.txt" For
Input As #1

' read in number of range cells (number of samples of the chirp
signal)

Input #1, nRangeCell
flexform.ParaText(0) = Val(nRangeCell)

' read in number of Doppler cells (ndop) first
Input #1, nDopplerCell
flexform.ParaText(1) = Val(nDopplerCell)

' next read in the target extent
Input #1, targetExtent
flexform.ParaText(2) = Val(targetExtent)

' read in gain values (number of gain values = targetExtent)
1 ReDim Gain(targetExtent - 1) As Integer
ReDim Gain(3) As Integer
Gain(O) = 0
Gain(l) = 0
Gain(2) = 0
For idx = 0 To targetExtent - 1

Input #1, Gain(idx)
' adjustment to correct multiplication factors for the

amplitude (gain) value
Select Case Gain(idx)

Case Is = 1
Gain(idx) =0 'no shift, multiplication by 1, hardware

bit "00"
Case Is = 2

288

Gain(idx) = 1 ' shift by 1, multiplication by 2, hardware

Case Is = 4
Gain(idx) = 2 ' shift by 2, multiplication by 4, hardware

Case Is = 8
Gain(idx) = 3 ' shift by 3, multiplication by 8, hardware

bit "01"

bit "10"

bit "11"
End Select

Next idx

■ read in the next nDoppler values
ReDim Phi(nDopplerCell - 1, targetExtent - 1) As Integer
For idx = 0 To nDopplerCell - 1

For idxl = 0 To targetExtent - 1
Input #1, Phi(idx, idxl)

Next idxl
Next idx
Close #1

End Sub
Public Sub readRawO

• This sub-routine reads the raw matlab-simulated ISAR data

Dim idxl As Integer
Dim idx2 As Integer

Open "c:/temasek/denise/thesis/final_design/vbfiles/rawint.txt" For
Input As #1

■ Create the array dynamically
ReDim DRFM(nDopplerCell - 1, nRangeCell + targetExtent - 1) As

Integer

• read in the first samples of the first pulse
• these values are phase values from the DFRM
For idxl = 0 To nDopplerCell - 1

For idx2 = 0 To nRangeCell - 1
Input #1, DRFM(idxl, idx2)

Next idx2
Next idxl
Close #1

End Sub
Public Sub readCosineO

• This sub-routine reads the raw matlab-simulated ISAR data

Dim idxl As Integer
Dim tmp As String

Open "c: /temasek/denise/thesis/final_design/vbfiles/cosine.txt" For

Input As #1

■ Create the array dynamically
ReDim cosine(32) As Double

• read in the first samples of the first pulse
■ these values are phase values from the DFRM

289

For idxl = 0 To 31
Line Input #1, tmp
cosine(idxl) = Val(tmp)

Next idxl
Close #1

End Sub
Public Sub readSine()

' This sub-routine reads the raw matlab-Simulated ISAR data

Dim idxl As Integer

Open "c:/temasek/denise/thesis/final_design/vbfiles/sine.txt" For
Input As #1

' Create the array dynamically
ReDim sine(32) As Double
Dim tmp As String

' read in the first samples of the first pulse
' these values are phase values from the DFRM
For idxl = 0 To 31

Line Input #1, tmp
sine(idxl) = Val(tmp)

Next idxl
Close #1

End Sub

b. flecfunc.bas

Attribute VB_Name = "FlexFunc"
Option Explicit
U4 Flex Programming Logic Control & Status Ports

Control

3

Port 380/382 - Write A/B A/B
DO = nConfig U4-H10/B8 Flex U27/U28 - AU1
Dl = nCS U4-J11/F9 Flex U27/U28 - A35

CS Flex U27/U28 - C33 (HI)
D2 = nClr U4-D11/F3 Flex U27/U28 - C17
D3 = OutEn U4-K3/K10 Flex U27/U28 - C19

Port 380/382 - Read
D4 = Init_Done U4-L3/L2 Flex U27/U28 - R35
D5 = Conf_Done U4-L4/K4 Flex U27/U28 - C37
D6 = nStatus U4-L10/L9 Flex U27/U28 - AU37
D7 = RDYnBSY U4-J2/K11 Flex U27/U28 - N35

Port 381/383 - Write
D0-D7 Configuration Data for Flex chip A/B

nWS U4-H11/E11 Flex U27/U28 - E31

Port 381/383 - Read
D7 - RDYnBSY for Flex chip A/B

nRS U4-G9/F10 Flex U27/U28 - A33

290

Port 384 - FLEX User Control/Status Register
DO = Enable DATA_DIR for READ Buffers (DO on U4-A9, DATA_DIR

on U4-B11)
Dl = An/B Select Flex A = 0, Select Flex B = 1
D2 = Int_CLRn
D3 = Unused
D4 = CFA1 Spare chip interconnect to FLEX A
D5 = CFB1 Spare chip interconnect ot FLEX B
D6 = TST_A Flex A circuit Test Point
D7 = TST_B FLEX B circuit TEst point

Port 386 - FLEX A (left from component side) User Base
Addr. Register

Port 387 - FLEX B (right from component side) User Base
Addr. Register

Declare Function write_port Lib "in_out" (paddr%, pdata%, byteword%) As
Integer
Declare Function read_port Lib "in_out" (paddr%, pdata%, byteword%) As
Integer
Declare Function InitClicks Lib "in_out" () As Integer
Declare Function Clicks Lib "in_out" () As Integer
Declare Function disable_int Lib "in_outn () As Integer
Declare Function enable_int Lib "in_out" () As Integer

Declare Function FlexConfig Lib "altera" (ByVal file As String, ByRef
plength As Long) As Integer
Declare Function FlexSend Lib "altera" (ByVal Cntrl_port%, ByVal
Status_port%, ByVal Data_port%) As Integer
Declare Function FlexSendl0k50 Lib "altera" (ByVal Cntrl_port%, ByVal
Status_port%, ByVal Data_port%) As Long

'Memory Calls
Declare Function Memorylnit Lib "memory" (ByVal Start As Long, ByVal
Length As Long) As Integer
Declare Function MemoryRead Lib "memory" (ByVal Location As Long, Value
As Any) As Integer
Declare Function MemoryWrite Lib "memory" (ByVal Location As Long,
ByVal Value As Long) As Integer
Declare Function MemoryReadBuffer Lib "memory" (ByVal Location As Long,
ByVal Count As Long, ByRef Value As Integer) As Integer
Declare Function MemoryWriteBuffer Lib "memory" (ByVal Location As
Long, ByVal Count As Long, ByRef Value As Integer) As Integer

'LoadTgt DLL
Declare Function LoadTgtBuf Lib "loadtgt" (ByVal TgtNum%, ByVal param%,
ByVal Valuefc) As Integer
Declare Function TargetWrite Lib "loadtgt" (ByVal TgtNum%) As Integer
Declare Function WriteTargets Lib "loadtgt" (ByVal NumTgts%) As Integer
Declare Function InitializePorts Lib "loadtgt" () As Integer

'*** RES added variables ***
Public NumBds As Integer, offset As Integer

291

Public flex_user_ba_ctrl As Integer ' set this port to determine
user design ba
Public user_ba(8) As Integer
Public BoardNum As Integer
Dim maxcount As Integer
Public present(8) As Integer, fstatus(8) As Integer
Public configdone{8) As Integer, Status(8) As Integer
Public num_bds_fnd As Integer
i ***************************

' RMS 17 Sep 96
' Do I need to declare Function Delay(Dwell As Double) ?

Global filename As String
Global MSG As Integer
Global BoardType(8) As String "Either "10K" or "8K"

' 5032 or 5192 Chip Addresses
Global FlexCtrlPortBA(8) As Integer
Global FlexCtrlPort As Integer
Global FlexStatusPort As Integer
Global FlexDataPort As Integer
Global FlexUserCtrlPort As Integer 'Used to Toggle between chips
Global FlexUserBasePort As Integer 'Used to Set base address in Flex
Global NumFlexes As Integer
Global Flexlndex As Integer
Global NumFlexFiles As Integer
Global FlexFilelndex As Integer
'RMS 17 Sep 96
•These are for 8K only, and maybe not there if we change the 5192
Global FlexONPort As Integer
Global FlexOFFPort As Integer

"Flex 10K50 Chip Addresses
Global FlexUserBA(8) As Integer

"Flex File Names and Documentation
Global flexfilename(lO) As String
Global FlexMaxFiles As Integer
Global FlexFileDoc(lO) As String

Global DP_MEM_Right_Addr_Lo As Integer
Global DP_MEM_Right_Addr_HI As Integer
Global DP_MEM_Right_Data As Integer
Global DP_MEM_Right_Ctrl As Integer

Global DP_MEM_Left_Addr_Lo As Integer
Global DP_MEM_Left_Addr_HI As Integer
Global DP_MEM_Left_Data As Integer
Global DP_MEM_Left_Ctrl As Integer

Global DP_MEM_Hand_Shake_Sim As Integer

Global DP_MEM_Left_addr_Mux As Integer
Global HP_Ctrl_Port As Integer 'Control Port to select HP connector
A data

292

Global HP_Ctrl_data As Integer
B data

Global AttenPortLO As Integer
Global AttenPortHI As Integer

'Control data to Select HP connector

' Data - HPA HPB
0 Toggle Toggle
1 Mem Toggle
2 Toggle Mem
3 Mem Mem

Global Const nConfigLo = &H2
Global Const nConfigHI = &H3
Global Const nConfigHI_nCSLO = &H1
Global Const nConfigHI_nCSHI = &H3
Global Const nStatLO_RDYnBSYHI = &HC
Global Const ConfDone = &H18 'Conf Done & nSatus HI

Global alteraf100000) As Integer
Global MaxAlteraPnts As Long

Global Const RngDef = &H100
Global Const PWDef = &H200

****** internal addresses for the ISAR program *****
'Global Const phiAddr = &H10 ' for Doppler offset
•Global Const gainAddr = &H20 ' for gain
'Global Const tapAddr = &H30 ' for tap delay line
•Global Const modPulseAddr = &H40 ' for modulated pulse readback
•Global Const feedback = &H60 ' for reading back values

Function Delay(Dwell As Double)

• This routine creates a time delay that lasts untill Dwell seconds
• elapse from the time of call.
i

' It uses VBasic's Timer function, which returns the number of seconds
• since midnight on the system clock, rolling from 86400 to 0 at
midnight.

i

• This routine allows delays to begin before midnight and end after,
■ or that span several days.

Dim SecPerDay As Double
Dim Start As Double, Done As Double, T As Double, LastT As Double

SecPerDay = 86400* ' = 60.0 * 60.0 * 24.0 seconds in a day

Start = Timer
Done = Start + Dwell

While (Done > SecPerDay) ' Midnight will come before the delay elapses.
LastT = Start
T = Timer
While (T > LastT) ' Timer has not rolled over.

LastT = T

293

T = Timer
DoEvents

Wend
' It's midnight, so deduct the previous day's waiting
' and start a new day.
Done = Done - (SecPerDay - Start)
Start = 0

Wend

' The delay will elapse before midnight comes.
While (Done > Timer)

DoEvents
Wend

End Function
Public Function LoadFlex(filename As String, Index As Integer)

Dim MSG As Long
Dim duml As Integer
Static Status As Integer
Dim FileDate As String

'setup flex addresses
FlxBaseAddr (BoardNum)

"Reset Flex Chip
MSG = write_port(FlexCtrlPort, nConfigLo, 1) 'Set nConfig (bit 0) LO

'Read & Send Data'
DoEvents

MSG = FlexConfig(filename, MaxAlteraPnts)

If (MSG = 1) Then

MSG = FlexSendl0k50(FlexCtrlPort, FlexStatusPort, FlexDataPort)
Status = GetlOKStatus()

FileDate = FileDateTime(filename)
If Status = True Then

DoEvents
MSG = write_port(FlexCtrlPort, &HF, 1) 'Set nCONFIG, nCS,

nCLR, IO_ENB = 1
LoadFlex = True

Else
LoadFlex = False

End If

Delay (0.2) 'Delay .2 Second for Visual Effect

Else
LoadFlex = False

End If

End Function
Public Sub InitFlexTypeO

294

Dim i As Integer
Dim ret As Integer
Dim memory_length As Long
Dim status_init As Integer

BoardType(BoardNum) = "10K"

Call InitBoardBase(BoardType(BoardNum)) 'Get Base Address

If BoardType(BoardNum) = "10K" Then InitFlxlOKAddr (BoardNum)
'Set First Board as Default

End Sub

Function GetlOKStatus()
Static MSG As Integer

MSG = write_port(FlexUserCtrlPort, &H1, 1) 'Turn on Read
Buffer Capability

MSG = read_port(FlexStatusPort, fstatus(BoardNum), 1) 'Get
Flex Status

If fstatus(BoardNum) = &HFF Then
'the board is off or not plugged in
GetlOKStatus = False
present(BoardNum) = False
Status(BoardNum) = False
configdone(BoardNum) = False
Exit Function

End If

If (&H40 And fstatus(BoardNum)) <> &H40 Then
'nSTATUS bit =0 — an error occurred
GetlOKStatus = False
Status(BoardNum) = False
configdone(BoardNum) = False
Exit Function
Else
End If

If (&H60 And fstatus(BoardNum)) = &H60 Then
'nSTATUS bit = 1 and CONF_DONE = 1 -- the FLEX programmed OK

'' ConfigDone.Value = 1
Else

'' ConfigDone.Value = 0
configdone(BoardNum) = False
GetlOKStatus = False
Exit Function

End If

present(BoardNum) = True
Status(BoardNum) = True
configdone(BoardNum) = True
GetlOKStatus = True

295

End Function
Sub get_flex_ini()
Dim a As String, b As Integer

On Error GoTo ini_err_handler

Open "flex.ini" For Input As #1
Input #1, NumBds, a

For b = 1 To NumBds
Input #1, BoardNum
Input #1, FlexCtrlPortBA(BoardNum) , crystal_clk(BoardNum)
Input #1, user_ba(BoardNum), flexfilename(BoardNum)
Input #1, a

Next b
Close #1
Exit Sub

ini_err_handler:
Exit Sub

End Sub

Function FlexSendVB(altera() As Integer, NumPnts As Long)

Static Status As Integer
Static j As Long
Static ConfigData As Integer

Debug.Print altera(5)
Debug.Print NumPnts

'Reset Flex Chip
MSG = write_port(FlexCtrlPort, nConfigLo, 1)

MSG = write_port(FlexCtrlPort, nConfigHI, 1)

'Check for FLEX Proper Response
j = 0
MSG = write_port(FlexCtrlPort, nConfigHI_nCSLO, 1)
MSG = read_port(FlexStatusPort, Status, 1)
While Status <> nStatLO_RDYnBSYHI

MSG = read_port(FlexStatusPort, Status, 1)

j = j + 1
If j > 200 Then

FlexSendVB = -2
Exit Function

End If
Wend

For j = 1 To NumPnts
ConfigData = altera(j)
MSG = write_port(FlexDataPort, ConfigData, 1)

Next j

MSG = write_port(FlexCtrlPort, nConfigHI_nCSHI, 1)

296

Delay (0.5) 'Wait half a second before getting status
MSG = read_port(FlexStatusPort, Status, 1)
Status = Status And &H1C 'And out unused bits

If Status <> ConfDone Then 'Is Conf_Done & nStatus HI
FlexSendVB = -3
Exit Function

End If

FlexSendVB = True

End Function

Function FlexConfigVB(filename As String) As Integer

Dim line As String
Static i As Long
Static CommaLeft As Integer
Static CommaRight As Integer
Static Token As Integer

'main.flexstatus.Text = "Reading Flex File " + filename
'main.flexstatus.BackColor = LtGray
DoEvents

Open filename For Input As #1
i = 1
Do While Not EOF(BoardNum) ' Loop until

Line Input #1, line ' Read data into two variables.
Debug.Print line ' Print data to Debug window.

CommaLeft = 1
CommaRight = -1
Do While True

CommaRight = InStr(CommaLeft, line, ",", 1)
If CommaRight = 0 Then 'If not at first character then exit

If CommaLeft <> 1 Then Exit Do
CommaRight =10

End If
Token = Mid(line, CommaLeft, CommaRight - CommaLeft)
altera(i) = Val(Token)
i = i + 1
CommaLeft = CommaRight + 1

Loop
Loop

Close #1 ' Close file.
MaxAlteraPnts = i - 1 'Fix total number of bytes read
FlexConfigVB = True
End Function
Function FlxlOKSetAddr(Index As Integer)

Dim MSG As Integer, CBA As Integer, UBA As Integer

CBA = FlexCtrlPortBA(Index)
UBA = FlexUserBA(Index)

297

FlexCtrlPort = CBA 'Control Port
FlexDataPort = CBA + 1 'Data Programming Port
FlexStatusPort = CBA 'Status Port
FlexUserCtrlPort = (CBA And &H3F0) + 4 'Flex User Control Port (A

or B)
FlexUserBasePort = UBA

' RMS 17 Sep 96
1 These do not make sense with the new (or old) U4 map. Bob?
DP_MEM_Right_Addr_Lo = CBA + 3
DP_MEM_Right_Addr_HI = CBA + 5

End Function

Function FlexSendBuffer()
Dim MSG As Long

•main.flexstatus(0).Text = "Sending Data "
MSG = FlexSendVB(altera(), MaxAlteraPnts)
If MSG <> MaxAlteraPnts Then
' main.flexstatus(0).Text = "Error Configuring Flex"
' main.flexstatus(0).BackColor = red

FlexSendBuffer = False
Exit Function

End If

'main.flexstatus(0).Text = "Flex Configured"
•msg = GetFlexSDatus()

FlexSendBuffer = True
End Function

Sub InitFlxlOKAddr(BoardNum As Integer)

'Set Altera 5192 Base Addresses
FlexCtrlPort = FlexCtrlPortBA(BoardNum) + 0
FlexDataPort = FlexCtrlPortBA(BoardNum) + 1
FlexStatusPort = FlexCtrlPortBA(BoardNum) + 2
'optFlxBaseAddr(Board).Value = True.

'Set FLEX Address for Left side of Dual Port Memory
DP_MEM_Left_Data = FlexUserBA(BoardNum) + 0
DP_MEM_Left_Addr_Lo = FlexUserBA(BoardNum) + 1
DP_MEM_Left_Addr_HI = FlexUserBA(BoardNum) + 2
DP_MEM_Left_Ctrl = FlexUserBA(BoardNum) + 3

'Set FLEX Address for Right side of Dual Port Memory
DP_MEM_Right_Data = FlexUserBA(BoardNum) + 4
DP_MEM_Right_Addr_Lo = FlexUserBA(BoardNum) + 5
DP_MEM_Right_Addr_HI = FlexUserBA(BoardNum) + 6
DP_MEM_Right_Ctrl = FlexUserBA(BoardNum) + 7

DP_MEM_Left_addr_Mux = FlexUserBA(BoardNum) + &HC

298

End Sub

'Note that 'FlexUserBA' is determined by .ttf design file
'FlexCtrlPortBA(BoardNum) is the board addr. determined by wire straps
to 5192

'This Routine returns the number of Files read
Public Sub InitBoardBase(BrdType As String)
Dim i As Integer
Dim dum As String
Dim line As String
Dim line2 As String
Dim filename As String

i************

Exit Sub

filename = "Win" + BrdType + ".ini"

Open filename For Input As #1

Input #1, NumFlexFiles, dum
For i = 0 To NumFlexFiles - 1

Input #1, flexfilename(i), FlexFileDoc(i)
Next i

' Skip Three lines
Line Input #1, dum
Line Input #1, dum
Line Input #1, dum

i = 0
Do Until E0F(1)

Input #1, FlexCtrlPortBA(i), FlexUserBA(i), dum '5192 and FLEX
base addr

i = i + 1
Loop

If (i > 8) Then
NumFlexes = 8
MsgBox ("File " + filename + " contains too many base addresses.")

Else
NumFlexes = i

End If

Close #1

End Sub
Sub init_flex_param()

5032 or 5192 Addresses
FlexCtrlPort = FlexCtrlPortBA(BoardNum) + 0
FlexDataPort = FlexCtrlPortBA(BoardNum) + 1

299

FlexStatusPort = FlexCtrlPortBA(BoardNum) + 2

FlexOFFPort = FlexCtrlPortBA(BoardNum) + 6
FlexONPort = FlexCtrlPortBA(BoardNum) + 7

flex_user_ba_ctrl = FlexCtrlPortBA(BoardNum) + 3

End Sub

'I input parameter sets the address of the right port
'on dual port memory (0-4095)

Function SetAddrRight(i As Integer)
Static LoAddr As Integer
Static HiAddr As Integer

If i > 4095 Then
SetAddrRight = False: Exit Function

End If

LoAddr = i Mod 256
HiAddr = i \ 256
MSG = write_port (DP_MEM_Right_Addr_Lo, LoAddr, 1)
MSG = write_port(DP_MEM_Right_Addr_HI, HiAddr, 1)

SetAddrRight = True

End Function
Private Sub FlxBaseAddr(Index As Integer)
Dim a
Dim MSG As Integer, CBA As Integer, UBA As Integer

'Definition of Ports used to program and control the FLEX chip
■on a 10K50 board

FlxlOKSetAddr (Index)
MSG = GetlOKStatusO

optFlxBaseAddr(Index).Value = True
FlexIndex = Index

'Get and Display Status of Current Flex Chip
MSG = GetlOKStatusO

End Sub

'I input parameter sets the address of the left port
■on dual port memory (0-4095)

Function SetAddrLeft(i As Integer)
Static LoAddr As Integer
Static HiAddr As Integer

300

If i > 4095 Then
SetAddrLeft = False
Exit Function

End If

LoAddr = i Mod 256
HiAddr = i \ 256 'Be Sure to Integer divide
MSG = write_port(DP_MEM_Left_Addr_Lo, LoAddr, 1)
MSG = write_port(DP_MEM_Left_Addr_HI, HiAddr, 1)

SetAddrLeft = True

End Function

Function usecDelay(Dwell As Integer)
Dim initClick As Long
Dim currentClick As Long
Dim EndClick As Long
Dim icnt As Long
Dim ret As Integer

EndClick = Dwell ./ 0.8381 "Each click represents 0.8381 usec

ret = InitClicks
initClick = Clicks 'Sets Down counter to max value (about
65,000)
If initClick < 0 Then

initClick = 65535 + initClick
End If
currentClick = Clicks 'Reads current count
If currentClick < 0 Then

currentClick = 65535 + currentClick
End If

icnt = 0

While (EndClick > (initClick - currentClick))
currentClick = Clicks
If currentClick < 0 Then

currentClick = 65535 + currentClick
End If
icnt = icnt + 1
If icnt > 1000000 Then

usecDelay = False
Exit Function

End If
Wend

usecDelay = True
End Function

Sub Board_Bit()
Dim i As Integer

301

init_flex_param
flexform.ini_num.Text = NumBds
num_bds_fnd = 0

'** find # of boards that respond to ping **
For BoardNum = 1 To NumBds

FlxlOKSetAddr (BoardNum)
flexform.addr(BoardNum).Text = Hex(FlexCtrlPortBA(BoardNum))

ck_bd_present
If present(BoardNum) = False Then

flexform.present(BoardNum).BackColor = red
Else

flexform.present(BoardNum).BackColor = green
num_bds_fnd = num_bds_fnd + 1

End If
Next BoardNum

flexform.found_num.Text = num_bds_fnd

End Sub
Sub ck_bd_present()
Static MSG As Integer

MSG = write_port(FlexUserCtrlPort, &H1, 1) 'Turn on Read
Buffer Capability

MSG = read_port(FlexStatusPort, fstatus(BoardNum), 1) 'Get
Flex Status

If fstatus(BoardNum) = &HFF Then
present(BoardNum) = False

Else
present(BoardNum) = True

End If

End Sub
Sub test_boards()
Dim dum As Integer, dly As Long, invar As Integer

flexform.Show
•** set initial state to gray in leds

For dum = 1 To NumBds
flexform.present(dum).BackColor = LtGray
flexform.Bstatus(dum).BackColor = LtGray
flexform.Bconfigdone(dum).BackColor = LtGray
flexform.BBIT(dum).BackColor = LtGray

Next dum
'** check presence of boards ***

get_flex_ini ' read basic flex addrs. & pri param. from
filename$.ini file

reset_flexs

Board_Bit ' check # of boards and operational status

'** load flex chips & display status **
For BoardNum = 1 To NumBds

302

If present(BoardNum) = True Then
InitFlexType
flexform.Bconfigdone(BoardNum).BackColor = yellow
MSG = LoadFlex(flexfilename(BoardNum), 1)
FlxlOKSetAddr (BoardNum)
GetlOKStatus

If Status(BoardNum) = False Then
flexform.Bstatus(BoardNum).BackColor = red

Else
flexform.Bstatus(BoardNum).BackColor = green

End If
'*** write user base addr. to flex (a=3x6, b=3x7)

offset = (0.5 * (FlexCtrlPortBA(BoardNum) And &H2) + 6) -
(FlexCtrlPortBA(BoardNum) And &H2)

dum = write_port(FlexCtrlPortBA(BoardNum) + offset,
user_ba(BoardNum) \ &H4, 1) 'set Flex User BaseAddr

If configdone(BoardNum) = False Then
flexform.Bconfigdone(BoardNum).BackColor = red

Else
flexform.Bconfigdone(BoardNum).BackColor = green

End If
flexform.filename(BoardNum).Text = flexfilename (BoardNum)
flexform.userBA(BoardNum).Text = Hex(user_ba(BoardNum))

•** check BIT register for proper load
dum = write_data(&HFC, BoardNum * &H15A5, 2) 'write board

(internal addr (linear addr. 0 ->255 words) , data , word)
dum = read_data(&HFC, invar, 2)
If invar = BoardNum * &H15A5 Then

flexform.BBIT(BoardNum).BackColor = green
Else

flexform.BBIT(BoardNum).BackColor = red
End If
dum = write_port(user_ba(BoardNum), 0, 2) ' zero BIT reg.

for noninterference w/next board
End If 'end check for board present

Next BoardNum

For dly = 1 To 10000: DoEvents: Next dly
End Sub
Sub reset_flexs() 'reset flex chips (unload)
Dim dum As Integer

get_flex_ini
For BoardNum = 1 To NumBds
MSG = write_port(FlexCtrlPortBA(BoardNum), nConfigLo, 1) 'Set

nConfig (bit 0) LO
MSG = write_port(FlexCtrlPortBA(BoardNum) , nConfigHI, 1) 'Set

nConfig (bit 0) LO
Next BoardNum

•** set initial state to gray in leds
For dum = 1 To NumBds

flexform.present(dum).BackColor = LtGray
flexform.Bstatus(dum).BackColor = red
flexform.Bconfigdone(dum).BackColor = LtGray
flexform.BBIT(dum).BackColor = LtGray

303

Next dum

Board_Bit

End Sub
Function write_data(iaddr As Integer, idata As Integer, iword As
Integer) As Integer

•MSG = write_port(user_ba(BoardNum) + 2, iaddr, 2) 'internal addr
of I/O - 256 addrs. per Flex chip

'MSG = write_port(user_ba(BoardNum) + 0, idata, 2) 'internal data
of I/O - always 16 bit (word) write

MSG = write_port(FlexUserCtrlPort, &H0, 1)
MSG = write_port(user_ba(&Hl) + 2, iaddr, 2) 'internal addr of I/O

- 256 addrs. per Flex chip
MSG = write_port(user_ba(&Hl) + 0, idata, 2) "internal data of I/O

- always 16 bit (word) write
End Function
Function read_data(iaddr As Integer, idata As Integer, iword As
Integer) As Integer

MSG = write_port(FlexUserCtrlPort, &H0, 1)
MSG = write_port(user_ba(&Hl) + 2, iaddr, 1) 'internal addr of I/O

- 256 addrs. per Flex chip
MSG = write_port(FlexUserCtrlPort, &H1, 1)
MSG = read_port(user_ba(&Hl) + 0, idata, 2) 'internal data of I/O -

always 16 bit (word) write
End Function

c. global.bas

Attribute VB_Name = "global"
Global crystal_clk(8) As Single

'***** color definitions ****
Global Const red = &HFF&
Global Const blue = &HFF0000
Global Const green = &HFF00&
Global Const black = &H0
Global Const yellow = &HFFFF&
Global Const brown = &H80FF&
Global Const ltblue = &HFFFF00
Global Const LtGray = &H8000000F
Global Const DkGray = &H808080
Global Const Beige = &HC0FFFF

d. main.bas

Attribute VB_Name = "MainMod"
Option Explicit

Sub Main()
Dim dum As Integer, cnt As Integer, invar As Integer

• * * * open running windows * * *

304

flexform.Show 'flexform.frm

*** check the latch values ***
test boards ' flexfunc.has
readPara
readRaw
readCosine
readsine
isar

file.bas
file.bas
file.bas
file.bas
the isar.bas

' pep_test 'peptest.bas'
End Sub

e. the isar.bas

Attribute VB_Name = "the_isar"
Option Explicit
****** internal addresses for the ISAR program *****
Global Const phiAddr = &H10 ' for Doppler offset
Global Const gainAddr = &H20 ' for gain
Global Const tapAddr = &H30 ' for tap delay line
Global Const modPulseAddr = &H40 ' for modulated pulse readback
Global Const feedback = &H60 ' for reading back values

Public Sub isar()

Dim batchCnt As Integer
Dim pulseCnt As Integer
Dim intraPulseCnt As Integer
Dim tapCnt As Integer
Dim Tap(3) As Integer
Dim Phase(3) As Integer
Dim rgain(3) As Integer
Dim Gain0utl(3) As Integer
Dim Gain0utQ(3) As Integer
Dim Ace(3) As Integer
Dim Lut(6) As Integer
Dim finalAcc(4) As Integer
Dim tmp As Integer
Dim dummyl, dummy2 As Double
Dim LutI As Double
Dim LutQ As Double
Dim GainOutldec, GainOutQdec As Double
Dim dummy3, dummy4 As Double
Dim idx As Integer
Dim suml, sumQ As Double
Dim finalAccI, finalAccQ As Double
Dim finalAcd_NEW, finalAccO_NEW As Double 'for test of Public Function
numFormConv
Dim number As Integer 'for test of Public Function
twoComplement2Float
Dim test As Double 'for test of Public Function
twoComplement2Float
Dim n As Integer 'for test of Public Function
twoComplement2Float

305

'load data files (file.has)
readPara
readRaw

'Open file for write
Open "lets_check.txt" For Output As #1
Open ■imagei.txt" For Output As #2
Open "imageq.txt" For Output As #3

test of Public Function twoComplement2Float
Print #1, "Test of Public Function twoComplement2Float: "
n = 4 'number of bits
For number = 0 To (2 " n - 1)

test = twoComplement2Float(number, n) '* 2 A (n - 1)
Print #1, number, "=-, test 'print to lets_check

Next number

'Initialize gain values
flexform.TGain(O).Text = Gain(O)
flexform.TGain(l).Text = Gain(l)
flexform.TGain(2).Text = Gain(2)

■Reset tap-delay line
MSG = write_data(tapAddr, 0, 2)
MSG = write_data(tapAddr, 1, 2)

1 loop for batch
For batchCnt = 0 To nDopplerCell - 1

t

'loop for intra-pulse: repeat for number of range gates + target
extent

For intraPulseCnt = 0 To (nRangeCell + targetExtent - 1)

'Write Phi and Gain values
For tapCnt = 0 To targetExtent - 1

'load Doppler offset parameters
'MSG = write_data(phiAddr + tapCnt, Phi(nDopplerCell -

batchCnt - 1, tapCnt), 2)
MSG = write_data(phiAddr + tapCnt, Phi(batchCnt, tapCnt),

2)

Print #1, "batchCnt=", batchCnt
Print #1, "intraPulseCnt=n, intraPulseCnt
Print #1, "tapCnt=", tapCnt
Print #1, "Phi(batchCnt, tapCnt)=", Phi(batchCnt, tapCnt)
t

'load gain parameters
MSG = write_data(gainAddr + tapCnt, Gain(tapCnt), 2)

i

Next tapCnt

306

'Read back gain values
For idx = 0 To 2

MSG = read_data(gainAddr + idx, rgain(idx), 2)
rgain(idx) = rgain(idx) And &H7
flexform.TGain(idx).Text = rgain(idx)
Print #1, "rgain=", rgain(idx)

Next idx

'Read back phi values
For idx = 0 To 2

MSG = read_data(phiAddr + idx. Phase(idx), 2)
Phase(idx) = Phase(idx) And &H1F
flexform.TPhi(idx).Text = Phase(idx)
Print #1, "Phase=", Phase(idx)
Print #1, "Phase(idx)=", twoComplement2Float(Phase(idx), 5)

(2 Ä 7), "converted from 2-complement"

Next idx

• Strobe into delay line
MSG = write_data(tapAddr +1, 0, 2) ' ripple data
MSG = write_data(tapAddr + 2, DRFM(batchCnt, intraPulseCnt), 2)

' Strobe in new data
Print #1, "DRFM(batchCnt, intraPulseCnt)=", DRFM(batchCnt,

intraPulseCnt)
Print #1, "DRFM(batchCnt, intraPulseCnt)=",

twoComplement2Float(DRFM(batchCnt, intraPulseCnt), 5) * (2 ~ 7),
"converted from 2-complement"

'Read back tap values
For idx = 0 To 2

MSG = read_data(tapAddr + idx. Tap(idx), 2)
Tap(idx) = (Tap(idx) And &H1F)
flexform.TTap(idx).Text = Tap(idx)
Print #1, "Tap=", Tap(idx)

Next idx
f —„ _ _ „__ -_ — _ — _ — — — —

'Read back ph_acc values (mod 32)
For idx = 0 To 2

MSG = write_data(feedback, idx, 2)
MSG = read_data(feedback, Ace(idx), 2)
Ace(idx) = Ace(idx) And &H1F
flexform.TAcc(idx).Text = Acc(idx)
Print #1, -Acc=", Ace(idx)
Print #1, "Acc(idx)=", twoComplement2Float(Ace(idx), 5) *

(2 A 7), "converted from 2-complement"

Next idx

•Read back LUT values
tmp = 3
'suml = 0

307

'sumQ = 0
For idx = 0 To 2

MSG = write_data(feedback, tmp + (idx * 2), 2)
MSG = read_data(feedback, Lut(idx * 2), 2)
MSG = write_data(feedback, tmp + (idx * 2 + 1), 2)
MSG = read_data(feedback, Lut(idx * 2 + 1), 2)
Lut(idx * 2 + 1) = (Lut(idx * 2 + 1) And &HFF)
Lut(idx * 2) = (Lut(idx * 2) And &HFF)
dummyl = Val(Format(twoComplement2Float(Lut(idx * 2), 8),

■##.###■))

dummy2 = Val(Format(twoComplement2Float(Lut(idx * 2 + 1),
8), "##.###»))

LutI = twoComplement2Float(Lut(idx * 2), 8)
LutQ = twoComplement2Float(Lut(idx * 2 + 1), 8)
flexform.TLut(idx).Text = Str(dummyl) & ", " & Str(dummy2)
'Print #1, "LUT(idx*2)=", Lut(idx * 2), "dummyl=", dummyl,

"Lutl=", LutI
'Print #1, "LUT(idx*2+l)=", Lut(idx * 2 + 1), "dummy2=",

dummy2, "LutQ=", LutQ
'Yeo's output of intermediate results
•flexform.TPhi(idx).Text = Hex(Lut(idx * 2)) & "," &

Hex(Lut(idx * 2 + 1))
"suml = suml + twoComplement2Float(Lut(idx * 2), 8) *

Gain(idx)
'sumQ = sumQ + twoComplement2Float(Lut(idx * 2 + 1), 8) *

Gain(idx)
Print #1, "idx =", idx
Print #1, "LutK"; idx; ")=", " ", Lut (idx * 2), "Lutl=",

LutI
Print #1, "LutQC; idx; ") = ", " ", Lutfidx * 2 + 1) ,

■,LutQ='', LutQ
Print #1, "GainC; idx; ") = ", " ", Gain (idx)

Next idx
•flexform.TSum(O).Text = Str(suml)
'flexform.TSum(l).Text = Str(sumQ)
•flexform.TSum(2).Text = Str(O)
•flexform.TSum(3).Text = Str(O)
■Print.#2, suml
■ Print #3, sumQ

■Read back gain block outputs (I channel - 11 bits)
tmp = 13
For idx = 0 To 2

MSG = write_data(feedback, (tmp + idx), 2)
MSG = read_data(feedback, GainOutI(idx), 2)
GainOutl(idx) = GainOutI(idx) And &H7FF
•GainOutldec =

Val(Format(twoComplement2Float(GainOutI(idx), 11), "##.###"))
GainOutldec = twoComplement2Float(GainOutI(idx), 11)
Print #1, "GainOutI("; idx; ")=", GainOutI(idx),

"GainOutIdec=", GainOutldec
Next idx

■Read back gain block outputs (Q channel - 11 bits)
tmp = 16

308

For idx = 0 To 2
MSG = write_data(feedback, (tmp + idx), 2)
MSG = read_data(feedback, GainOutQ(idx), 2)
GainOutQ(idx) = GainOutQ(idx) And &H7FF
'GainOutQdec =

Val (Format (twoComplement2Float (GainOutQ (idx) , 11), "###.###"))
GainOutQdec = twoComplement2Float(GainOutQ(idx), 11)
Print #1, "GainOutQ("; idx; ")=", GainOutQ(idx) ,

"GainOutQdec=", GainOutQdec
Next idx

DoEvents

■Read back sum values (modified code by Stig, 2 Aug -99)
tmp =9
finalAccI =0
finalAccQ = 0
t

•Read back sum values (I channel - 13 bits)
MSG = write_data(feedback, tmp + 0, 2)
MSG = read_data(feedback, finalAcc(O), 2)
finalAcc(O) = finalAcc(O) And &H1FFF
dummy3 = Val(Format(twoComplement2Float(finalAcc(O), 13),

"####.###"))
■flexform.TSum (0).Text = Str(dummy3)
finalAccI = twoComplement2Float(finalAcc(O), 13)
finalAccI_NEW = numFormConv(finalAcc(0))
flexform.TSum(O).Text = Str(finalAccI)
Print #1, "finalAcc(0)=", " ", finalAcc(O), "finalAccI = ",

finalAccI
Print #1, " - To test the new numFormConv function",

"finalAccIN = ", finalAccI_NEW
Print #2, finalAccI

'Read back sum values (Q channel - 13 bits)
MSG = write_data(feedback, tmp +1, 2)
MSG = read_data(feedback, finalAcc(l), 2)
'Print #1, "TTTEEESSSTTT finalAcc(l) = ", finalAcc(l)
finalAcc(l) = finalAcc(l) And &H1FFF
dummy4 = Val(Format(twoComplement2Float(finalAcc(l), 13),

"####.###"))
'flexform.TSum(l).Text = Str(dummy4)
finalAccQ = twoComplement2Float(finalAcc(1), 13)
finalAccQ_NEW = numFormConv(finalAcc(1))
flexform.TSum(l).Text = Str(finalAccQ)
Print #1, "finalAcc(1)=", " ", finalAcc(l), "finalAccQ=",

finalAccQ
Print #1, " - To test the new numFormConv function",

"finalAccQN = ", finalAccQ_NEW
Print #1, "

Print #3, finalAccQ

309

13), "##

dummy3

flexform.TSum(2).Text = Str(O)
flexform.TSum(3).Text = Str(O)

tmp = 9
For idx = 0 To 1

MSG = write_data(feedback, tmp + idx, 2)
MSG = read_data(feedback, finalAcc(idx), 2)
finalAcc(idx) = finalAcc(idx) And &H1FFF
dummy3 = Val(Format(twoComplement2Float(finalAcc(idx),

###■))

Print #1, "FINALACC(idx)=", finalAcc(idx), "dummy3=",

flexform.TSum(idx).Text = Str(dummy3)
finalAc = sumQ + twoComplement2Float(GainOutQ(idx) , 11)

Next idx
Print #2, finalAcc(0)
Print #3, finalAcc(1)

flexform.Clock.Text = Str(batchCnt) + ",- + Str(intraPulseCnt +
1)

Next intraPulseCnt 'end intra-pulse loop
Next batchCnt 'end batch loop
Close #1
Close #2
Close #3
End Sub
Public Function twoComplement2Float(a As Integer, nbits As Integer) As
Double 'modified by Stig Ekestorm, 4 Aug -99
Dim dummyl, dummy2, dummy3, dummy4 As Integer

dummyl = 2 * (nbits - 1)
dummy4 = 2 A nbits
dummy2 = dummyl - 1
If (a >= dummyl) Then ' negative number test

dummy3 = dummyl - (a And dummy2)
twoComplement2Float = -1 * dummy3 / (2^7) '/ dummyl '(divide by

128 to put the decimal point at the right position)
Else

twoComplement2Float = a / (2^7) '/ dummyl '(divide by 128 to put
the decimal point at the right position)
End If

If a >= 2 A nbits Then
twoComplement2Float = -1111

End If
End Function
Public Function numFormConv(a As Integer) As Double 'created by Prof.
Fouts, 4 Aug -99
Dim tempvar As Integer

tempvar = &H1FFF And a
If (tempvar >= 4096) Then ' negative number test

tempvar = tempvar Xor &H1FFF
tempvar = tempvar + 1
numFormConv = -1 * tempvar / (2 Ä 7)

Else

310

numFormConv = tempvar / (2^7)
End If
End Function

311

THIS PAGE INTENTIONALLY LEFT BLANK

312

APPENDIX C. SCHEMATICS AND SYMBOLS

This Appendix contains all elements created in the five different design levels.

Every Figure has two parts. The upper part shows the circuit as build in S-Edit, where the

lower part shows the corresponding symbol. The regular Tanner library elements are not

listed and can be found in the Tanner tools Library manual.

1. LEVEL 1 MODULES

TO

OE

TO

[Hte'24'11]

|K='S«*1']

f\~S I»S='66*l*n

z+v g [AS='66-1*1']

IPS='M*1'1

K='28-l'

■e^jP"1'
IB=1]

!JD='66*1*1']

Figure 98. P-FET and N-FET Transistor Definition

N-Fet
Q

TO

G- -^-0

©

P-Fet
Q

TO W='H*1'

L='7-r 0.01 -e^e u'7':
K='28*l'

L='7*l'

0

Figure 99. P-FET and N-FET Symbols

313

a
rO

Select 3-
-<3-|

1
-°G

Logic Equation = (MuxA*notSelect + MuxB*Select)

Figure 100. Mux2 Circuit

[TPR OUTPUT=]

Figure 101. Mux2 Symbol (modified from Tanner's version)

314

SRDi

SLDi

üüT>-

-o-

JL>

Figure 102. Register Cell Circuit

SRDi>

Di>

C/3
i-3
CO

V V V V
HLD LD SR SL

SRDi

Di
Reg CellQB

CLK

Eö>
QB>

SLDJ-^CSLDi

A

Figure 103. Register Cell Symbol

315

Register Cell with CLR *«« i*ten

i—o
ELK>£><J£>O -j—

ITlave Latch

The combination of P-FET and N-FET is called a transmission gate.
P-FET pulls output high, N-Fet pulls output low
Point H is the transission between the master latch to the slave latch.
This setup is a positive-edge-triggered flip-flop that gets fed by a input tree.
The input tree produces only one valid output at a tine as described in the operational notes.

Operational Note
When clock changes from low to high,
exactly one input of HLD, LD, SR, or
SL must be high, the other 3 must be low.
If all control inputs
are low, the output is cleared (low).

To Make N-Bit Register:
* use n cells
* connect Q of cell n to SRDi of cell ntl
* connect Q of cell n to SLDi of cell n-1
* connect HLD, SR, SL, LD, and CLK in parallel
* there will be n Di inputs; one to each cell
* there will be n Q and n QB outputs

SRDo = shift right data out
SLDo = shift left data out
SLDi = shift left data input
SRDi = shift right data in
HLD = hold (do nothing, Q tx=Qt, notQ th=notQ tl
SR = shift right
SL = shift left
Di = data input
LD = load data
CLK = clock (positive edge triggered
Q = data output (consist of SLDo and SRdo]
QB = inverted data output

Figure 104. D-Bit Register Cell with Synchronous Clear

SRDi

HD*-

SRDi

Di

CO

9

D Reg
SLDi

S S 3 ri « «>

A A A A

QB>

SLDi

[TPR OUTPUT=]
S PQ PQ

Cd
CO

m
CO

Figure 105. D-Bit Register Cell Symbol

316

£>

!>

^>

$K invA B^ invB Ci1^ invCi

Co

Figure 106. Adder Cell Circuit

Figure 107. Adder Cell Symbol

317

2. LEVEL 2 MODULES

SRDiV-

HLD LD SR SL

SRDi

Di
Reg CellQB

SLDi
CLK

HLD LD SR SL

SRDi

Di
Reg CellQB

SLDi
CLK

&

Figure 108. 2-Bit Register Circuit

-<SLDi

Dl
DO

CO CO

VvWV
Dil3

DiO

QO

2-Bit Reg QI
SLDi SRDi

A
-H
Q
CO

A
Q
P^
CO

«QO
«Ql

Figure 109. 2-Bit Register Symbol

318

n

(SRDi >—

Figure 110. 4-Bit Register Circuit

Q

CO CO w
SLDi SRDi

DO QO

Dl , Ql

4-Bit Reg
D2 3 Q2

D3 Q3
CLK SL SR LD HLD

oQO
<>Ql
<>Q2
oQ3

Figure 111. 4-Bit Register Symbol

319

ÜD-

<wi

Figure 112. 5-Bit Register Circuit

PO.
Dl_
D2_
D3_
D4

DO

Dl

CO CQ

VV
SLDi SRDi

"5-Bit Reg
D3

QO

Ql

Q2

Q3

D4 CLK SL SR LD HLD Q4

AAAAA
CO

P4
CO

-O

«Ql

-0

QO

Q2
Q3
Q4

Figure 113. 5-Bit Register Symbol

320

&>$>-

E>-

E>

1>

E>

E>

E>

E>

-■ 1
S> a

a <->

rr

•3 a

£ «

XT

~i r

rrr

.8 §

VI i-

TT

\.B i-

TT

T_
-6 |

TT

'S a
a " a

-(OT>

-1E>

-E>

-EE>

-E>

-GD

-E>

-tE>

Figure 114. 8-Bit Register Circuit

321

QQQQQQQQ

YVVVYVYV
*g D7 D6 D5 D4 D3 D2 Dl DO

8-Bit Reg

Q6 Q5 Q4 Q3 Q2 Ql QO

CN1
Of OJ

<SLDi

<SRDi

Figure 115. 8-Bit Register Symbol

CO

SIBi SBDi

01
CD
Pi

l

Q10
QI SL SI U III

<>Q0

«Ql
<>Q2

<>Q3
<>Q4

«—(>Q5

<>Q6

<>Q7

<>Q8

4Q9
4Q1Q^>

Figure 116. 11-Bit Register Symbol

322

E>-

E>

E>

E>

E>

E>

E>

sJa-

°Ja
? 9
*■" a

3-L
_« a
« 9
° R

i f

Ja
? 9

1+

-a

~i r

-K a
T 9

-a
'Ja

-«a
£ «

Us
« 9

_* a
3 a

rtf

i r
Ja
S 3

^

-E>

-GL>

-CD

-ßD

-E>

-<Z>

—CD

-E>

-E>

-G5>

Figure 117. 11-Bit Register Symbol

323

E»l>-

^T^k

^U

■-! 3
71

_«s-

.'!-

Ä

Figure 118. 16-Bit Register Circuit

324

Figure 119. 16-Bit Register Symbol

Y Y
03

Y Y Y
PQ

Y
CO
PQ

Y
CSJ
PQ

Y
PQ

Y
C3>
PQ

Y
_» en CM f-H o
*C .< »< < •<

■«* CO OQ r-H C
pQ pQ PQ m PQ

5-Bit -J- Adder

Figure 120. 5-Bit Adder Symbol

325

BO

&0

Bl

PQ O

>+
<< o

PQ O

co jjö>

>
to

Al

PQ o

s[>

>+co-[sr>

^>^a

PQ O

>+co-{sT>

Ä3>-

B4

•< o

PQ O

>H--o-[s4>

üy >< O
o

Figure 121. 5-Bit Adder Circuit

326

BIO
Bll
B12
B13
B14
B15

MO
Ml
M2
M3
Mi
A15

-<>S2
^>S3
4S4~

'S5
^S6~
^>S7
4S8"

^S9_
4S1Q

-"Sll
-QS12
4S13~

>S14
•S15

Figure 122. 16-Bit Adder Symbol

327

-Gö>

-fs~6>

» -Ts~9>

Figure 123. 16-Bit Adder Circuit

328

|Ä3>-4-^>0 A J>OHA32;

- po-[Inv_A41 >

inv_A42 >

All)

^y—A— j^x»—i—^C^MT Ä42)

^XH inv_Ä3P>

yO-\ inv_Ä32~>

Ä31>

Ä32>

inv_A21 >

inv_A22 >

Ä21)

^>—6— po i J>Q-|A22 ^ Ä22)

inv_All >

inv_Al2 >

Än>

[ÄT>—4-^>D 4 ^>0-|Al2 Ä12)

inv_A01 >

inv_A02 >

ÄÖ2~>

§T>—4— J^X) i ^>O-|A0i; ÄÖT>

Figure 124. 5-to-32-Bit Decoder Part 1 Circuit

329

-j inv_A41 >

■j inv_A42)>

-fÄ4l>

in»J31

a
u
CD

T3
O
O
CD

CNI
m

i
O
4-)

I
LD

H~Ä22>

iwJÜJ

iwjCS

-4Ä42">

-*f inv_A31 >

■j inv_A32 >

-£Ä3T>

-fÄ32">

inv_A21 >

fdnv_A22 >

Ml)

<f inv_AH >

—4 inv_A12 ">

AIF>

M2>

^ inv_A01 >

^ inv_A02 >

ÄÖ2>

ÄÖT>

Figure 125. 5-to-32-Bit Decoder Parti Symbol

330

H

tiniMl >
« 1 inv_WO >

rl>Hs>
» (inv^Wl >

r-[>H*>

rl>s>
J (inv_W3 >

rt>-lä>
■J 1 inv_l« >

i-[>-e>
)>• 1 invJB >

J 1 imr_W6 >

<-j>HE>
b) I imuf7 >

inv_W8>

iayjnO >

inv_Wll >

rt>°^>

P' I iavjt

POKSD
)>i 1 invjr

a 1 I invJflZ >

r|>{äi>
y>* 1 inv_wl3 >

r-[>°-M>
3 ' I imr_wu">

r|>HlD
}>■ 1 inv.wis >

■* 1 inv.W6 >

* I inv_im >

P I I ingjns >

i-{]>0-{fiE>
' I invjnä >

i I lny_lgO >

|-p<gD

i 1 inv_W22 >

r-[XM>
P ' I inv_lC3 >

I I invJC4 >

i I iav_K5 >

[-|>HEE>
pi I inv «26 >

rl>*M>
i I inv_«7 >

i-C>HM>
1 I invJ08 >

I-OKSD
i I inv,« inv_W29 >

|-[>HM>
i I inv.WO >

|-[>0-M>
\> I I ipyjm >

Figure 126. 5-to-32-Bit Decoder Part2 Circuit

331

NO

nv.ND

»».■1

112

■».Nl

BY.«)

Nt

■».A» *».N*

A 41 *!*.*!

A U Hr .¥ 1

•w »11 B* If*

& -
'" u -■"

•a ""
o

-.1» |

O
■■■ v .:;,:

LO
A»

unjt 1 -

KIT -

m.ki -

11».All

Nit -

All
B».V1 -

■».Nl -

»V.A01
»*>1 -

Nil -
A 01

«w.tri -

»01

»31 -

■V.N3 -

»V.Nl -

»31 -

»*_N2 -

Kit -

■».Nl -

«10 -

nr.Nl -

¥11 -

«l».NJ -

—fv5~>
-< iroJC >

-fi5">
— imrJO >

-fiO
-" iroJM >

-f»T>
linrJUl >— -i ÜWJ6 >

—f5T>
|imJlJ2 >— -" iroJ6 >

-fw>
E>- -c iwjfl >

-W>
0E>- -< iwJ8 >

-fis">
linrjai >— -< iiwjß >

-fmT>
|WjU2 >— - inrJttO >

-fwT>
E>- -i inrjni >

-für>
H>- -< inijtB >

-+N13 >
|imJUl >- - iiwjm >

-f*r>
bwjzi y— -^ imyii >

m>- -flür>
- iiHjns >

w>- -rar>
-4im.W16 >

timJUl >—
- iiwjn? >

-4W.8 ^
ÜWJ12 >-

■H iw_)118 >

E>^ J¥>

-I imJBS >

H>- -fi5T>
- ÜKjßO >

- KT> iSnrJOl >—
-c imJEl >

-fK> IpmJJll >—
- inrjffi >

@E>- 4KT>
- imJB2 >

&£>- -fiör>
■" imrJW >

-lffi^>
- iwJBS >

-fK6">
■< inJB6 >

-T5T>
J iwJG7 >

-c «r>
-i ÜJÜC8 >

-wr>
-i iaiJBS >

^■iör>
- imJBO >

- «r>
- Inrjßl >

Figure 127. 5-to-3 2-Bit Decc

332

»der Part2 Symbol

jijßflflflflfl a a a a a a a a
"wj idü^diüi

■fe^^^?^
^
"3^.^.^".^%
y
^"^-^^3:!-^%./.,;
"%
"Ä^^V:*--^

£.
^^^Wi^
* a aa aaa-32-!

^J^Z^"^^"?^"

•^^^i^---^
£
«^^^-^--^^^

^-,55d5-5--,%-i
- ^^-i-^i^
y

■^z^"^:^:^
=5s —? 5 — -^— -?

-^-ii^i^V
^
•a.^/"^:^^ _g - , = ,
„JJ^^J-iJJJJJJJJJJ
y

^i3533-i--^:,d-ü $

■s^^^^v*
y

■ä^-^^-^^
^^^iV5^ $
"=i,-ddR,,5d--,ii #
- ^-^^^"^
y

^"idi^-id^1":* 3
"2^-^^iiii^i
g

«^-^-^---^^:S

^-sV^^i^-i^
-s^^^iAV
„-^-^3-^^

^^^ä^.^
./^^i^^^
* «^--^--w
^

■^iiiiiiiilliJJJJ

Figure 128. Programmed LUT Module Circuit

333

HnvJO y—

|inv_Wl >—

Hnv_W2 y—

|inY_W3 y—

jinvJH y— i

Env_W5 >— i

Hnv_W6

|inY_W7 y—

 gj
|inv.W8

 [J9_
|invJ9

, EH"
|inv_W10 >—v»

, iD-*1
[inv_Wll >— »J"

Envjm >—-ja

EäT>— »
|inv_W13 7— »JU

frlTV- «.
jinv_W14 >— «.»'

fnTV- »
|inv_W15 y— *ju

, H>-«
Hnv_W16 >— »ja

, M>-"
Hnv_W17 >—-x<

|inY_W18

. EH«
|Jnv_W19 >—-.

EJ2Ö">— «
Hnv_W20 >—-.

KnvJCl >— "■

|inY_W22 >—..

|inv_W23 >—.

E2TV- «
|inv_H24 y—'i

fi25>-.
Hnv_W25 >—»J

|inY_W26 y— -.

|inv_W27 >—I».

 [H
|inv_W28

ftnv_W29

65ö~>—I«
|inY_W30 >—-■

tnvJBl y—V-

1

Figure 129. LUT Symbol

334

EainO >-

Mux out=A*Sel+nSel*3

ISainl >-

V
3 2 2

? 9 ?, 9 9 9 9

3 2 2 3 1 1 3 2 1 3

3 2 2 ! 2 2 3 2 2 s 2 2

3 2 2 3 2 2 3 2 2 3 2 2

3 2 2

IK.1U

3 2 2

V

! 2 2 3 2 2
V

Figure 130. Gain-Shifter Circuit

GainO
Gainl

r— vo
<:

LO CN]
<

CD

GainO

Gaisl

,A7 A6 AS , A4 A3 A2 Al AO

Gain Shift
r-i <T\ CO vo u"> ^« m r*a *—l o

OJ 4-> 4J J-> •»-> •*-) -£J

-©-

o

4->

o

oo
4-)

o
4-J

o
4->

o

LO
4-)

O

4-J

o
4-J

o

csi
4-J

O

-&

4-J

o
4->

o

Figure 131. Gain-Shifter Symbol

335

3. LEVEL 3 MODULES

Clock 1

Clock 2

Clock 3

Clock 4

Figure 132. Tapline Circuit

336

fTaP-OutllS1 —
fTap_outI14 "—
CTap_outI13
fTap_outI12
foap.outlir
(1ap_outI10
yTap_outI9
?Tap_outI8"
^Tap_outIT~
CTap_outI6
vTap_outir
;Tap_outI4 "—
CTap_outI3
^Tap_outI2~
C Tap_outIl
CTap_outI0 T—

fTap_outQ15
vTap_outQ14"
> Tap_outQfT
'Tap_outQ12
i Tap.outQir
' Tap_outQ10
rTap_putQ9
?Tap_outQ8"
CTap.outQ7 ■ —
^Tap_outQ6
CTap.outQS
CTap_outQ4 ' —
E Tap_outQ3
rTap_outQ2 ' —
fTap.outQl "—
CTap.outQO f—

< valid_result_out
< Overtlow_out

rai c

<rt <n «rt
3 en

1 cu
s c

"3 '3
c

m1

4J
c'

•**
<1> ^ * 0)

la] aj I3J |S13J IfiJ Is! cu CM Id y cu cu cJ
T« loutt

TV KKXV

Tap lout!

ftp tout!

Tap toutlQ

Tap tout»

Tap touts

Dplort 3

Tap loutt 3

ftp lout* ^

Top lout«

ftp lout)

ftp touü
pa

ftp tout! |g

TwtoutO A

TapOjtli
CQ

ftpQ**U 2

ftpOC»

DpOxiil

ftpf&utll

ftpCputJO 3

TapCputJ 3

ftpQ>*i Q,

Tap»*'

ftpCP«5

ftp*K*4

T«pO>ut!

rap*ut:

ftpCoutl

Tgp CputO

valid Etault out

Durrtlew.Cut

VW W W rrW YTYTY

Gain
I? U HI! nil

delta Phi
LSB -

Tap Line

Phase Data

Phase Increment

LUT

Gain Shift

Adder

Register

Scan Path Test

I \ \ \
sis»

s

Figure 133. Tapline Symbol

337

4. LEVEL 4 MODULES

Figure 134. Supertap Circuit

338

?i 1

OUteUMJ

«on.**

OUJUI.T»«

II§
3ain DatO l&pO >—
JaiiLpatljrapQ >-
»aio_PatOJfepl >—
JainJ&tl Tapl >—
SainJ)atE)_Tfcp2 >—
SaiiLDatlJftp2 V—
Sain DatO Tap3 >—
3ain_Patl_Iap3 >—
JainJfetOJ&pl y—

3 SainJ)atlJfop4 >—
Jaio_Dat0jfop5 ^~
JainJ)atlJfop5 >—
5ainJfetO_?ap6 >—
äin^tl Tap6 >~
JainJ)atOJftp7 >—
JainJJatl Tap7 >-

fcELGainJteg >—

Sase2
Sase3
Based

fraogebÜLvaJid

Beltajfaasejac

SiSSSSSSSS SS!sSSSSSS!S!SSS '

I Iipit LSB > MSB Q IlpUt

I Output

CO

CD

:=*
CO

<Tat_Extato"

-<S_PJtestJJa

u.*«>« —4s_P_Test_gout
.«•ju —<S_PJestjan I

Q Output

I l l I 1 If l l ! 8 112 1 ii H H i i i it i i u i ii
U ' I 'l.1.1'1'1'1.1.1. .UAUA'.'A'.UN'.VHW

(1gtJx£ert.T
<7j|tJ«tet6
<Tat_Bctent5"
<Wt_Bctent4
(Tat.Rtfmft
CW_Ettent2
CTatjBxtmtl

SJJtestJout

Hmtjjrttm

•—J*U»d

—<Riase indJTap7
i—< Riase_inc2_Tap7
—< Hiase_in:l_Tap7
—<Hiase_incO_Tap7
—<Sbase inc3 Tap6
—< aase_inc2jrap6
—■< Ehase_incl_1Sp6
—<aase incO_Tap6
—< Hiase_ür3_Tap5
—< Hase_inc2_Tap5 l^ —<Hiase incl.TapS

■*-• ^-< &ase_ircOJTap5
—< Riase_inc3_Tap4

5 —«Cftiase inc2.Tap4
—< ÖHse_incl_Tapd
—< Hiase_incO_Tap4

1
f—< &ase_inc3_Tap3
r-<Hiase inc2 Tap3

s i—<J Hiase_incl_Tap3
i-< H>ase_incO_Tap3

i MCftase inc3_Tap2
-<flase_inc2_Tap2
-<Hase_incl_Tap2
-<Hiase..ii)cO Tap2
-Vftase_inc3jlapl
—< ftase_inc2_Tapl
^-•Cflase incl_Tapl
h-K&ase iicO_Tapl
^-< Hase_inc3JiapO
-<ftase_ii)c2JiapO
-«CHiase .ind TapO
^RiaseJnrfLTapO

Figure 135. Supertap Symbol

339

5. LEVEL 5 MODULES

(Extent_Tapl6 i—

■—

>—

i—

i—

i—

i—

i—

i—

i—

>—

i—

>—

i—

i—

Extent_Tapl6
Extent_Tapl7
Extent_Tapl8
Extent_Tapl9
Extent_Tap20
Extent_Tap21
Extent_Tap22
Extent_Tap23
Extent_Tap24
Extent_Tap25
Extent_Tap26
Extent_Tap27
Extent_Tap28
Extent_Tap29
Extent_Tap30
Extent_Tap31

Extent_TapO
Extent_Tapl
Extent_Tap2
Extent_Tap3
Extent_Tap4
Extent_Tap5
Extent_Tap6
Extent_Tap7
Extent_Tap8
Extent_Tap9
Extent_TaplO
Extent_Tapll
Extent_Tapl2
Extent_Tapl3
Extent_Tapl4
Extent_Tapl5 ,

CD
T3
O
O
CD
Q

PQ
i

CNI
m

i
LO

i—i

CD
>
CD
i—1

Q<
O
EH

Tgt_Extent_inO
Tgt_Extent_inl
Tgt_Extent_in2
Tgt_Extent_in3
Tgt_Extent_in4

CExtent_Tapl7
(Extent_Tapl8
^Extent_Tapl9
CExtent_Tap20 <
^Extent_Tap21 <
(Extent_Tap22 <
^Extent_Tap23 <
^Extent_Tap24 <
C Extent_Tap25 <
^Extent_Tap26 <
' Extent_Tap27 <

vExtent_Tap28 <
^Extent_Tap29 <
' Extent_Tap30 <
^Extent_Tap31 <

—e(Tgt_Extent_inO
—«C Tgt_Extent_inl
—«(Tgt_Extent_in2

<fExtent_TapO <
s—
i—

!
(
)
)

i

t—

1

)
>

1

1

(—
1

—<* Tgt_Extent_in3
<Extent_Tapl < —<Tgt_Extent_in4
< Extent_Tap2 <
<Extent_Tap3 «
<Extent_Tap4 <
<Extent_Tap5 '
< Extent_Tap6 <
<Extent_Tap7 <
<Extent_Tap8 <
<Extent_Tap9 <
'ExtentJTaplO «
Extent_Tapll <
Extent_Tapl2 «
Extent_Tapl3 <
Extent_Tapl4 <

vExtent_Tapl5 «

Figure 136. Toplevel 5-to-32 Decoder Symbol

340

UltJttatjnO
Ht_ftffimtjifl
iat_BaatJn2
[jlt_Bctgit_iii3
Hfe.BttHt.inl

ä

\o 1 Btentjapt ~~>

\> iBttentJBp? ~>

"\j iBftamrt >

Figure 137. Toplevel 5-to-32 Decoder Circuit

341

ii Him« it ti m «it
»■nun tinman

Figure 138. Toplevel Circuit

342

LIST OF REFERENCES

1. Donald R. Wehner, "High Resolution Radar," 2nd Edition.

2. R. M. Nuthalapathi, "High Resolution Reconstruction of ISAR Images," IEEE
Transactions on Aerospace and Electronic Systems," Vol. 28, No. 2, p. 462ff, April,
1992.

3. P. E. Pace, Surratt, R. E., Yeo, S.-Y., "Signal Synthesizer and Method Therefore,"
Patent File Attorney Docket No. 79,429, Sept. 1,1999.

4. T. T. Vu, et al., "A GaAs Phase Digitizing and Summing System for Microwave
Signal Storage," IEEE Journal of Solid State Circuits, Vol. 24, p. 104, February,
1989.

5. Mathwork Inc., Homepage for MATLAb, http://www.mathworks.com.

6. Yeo, Siew-Yam, "A Digital Image Synthesizer for ISAR Counter-Targeting,"
Master's Thesis, Naval Postgraduate School, Monterey, September 1998.

7. Naval Research Laboratory (NRL), http://radar-www.nrl.navy.mil/Areas/ISAR.

8. Raytheon Homepage, http://www.ueci.com/es/esproducts/sesl37/sesl37.htm.

9. MAX+PLUS II Getting Started version 8.1 (5.4 MB).

10. Altera Max+Plus II Online-manual.

11. Altera Homepage, http://www.altera.com/.

12. Visual Software Inc., Statecad 5.0 and Statebench printed manuals.

13. Visual Software Solutions Inc. Homepage, http://www.statecad.com

14. SimGen Online manual.

15. Mentor Graphics Homepage, http://www.mentor.com.

16. AMI FPGA/ASIC Design Techniques Seminar, April 16,1999.

17. Tanner Tools, printed manuals for LVS 8.02, Nettran, General Instructions for
Tanner Tools.

343

THIS PAGE INTENTIONALLY LEFT BLANK

344

INITIAL DISTRIBUTION LIST

Defense Technical Information Center...
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

Chairman, Code IW
Information Warfare Academic Group
Naval Postgraduate School
Monterey, California 93943-5121

4. Chairman, Code EC
Department of Electrical and Computing Engineering
Naval Postgraduate School
Monterey, California 93943-5121

Dr. Phillip Pace, Code EC/PC
Department of Electrical and Computing Engineering
Naval Postgraduate School
Monterey, California 93943-5121

6. Dr. Douglas J. Fouts, Code EC/FS
Department of Electrical and Computing Engineering
Naval Postgraduate School
Monterey, California 93943-5121

7. Commanding Officer Naval Research Laboratory
Attn: Dr. John Montgomery
Code 5700.00
4555 Overlook Avenue, S.W.
Washington, D.C. 20375-5339

8. Commanding Officer Naval Research Laboratory
Attn: Mr. Alfred DiMattesa
Code 5701.00
4555 Overlook Avenue, S.W.
Washington, D.C. 20375-5339

345

9. Commanding Officer Naval Research Laboratory
Attn: Dr. Joseph Lawrence
Code 5740.00
4555 Overlook Avenue, S.W.
Washington, D.C. 20375-5339

10. Commanding Officer Naval Research Laboratory,
Attn: Mr. Gregory Hrin
Code 5742.00
4555 Overlook Avenue, S.W.
Washington, D.C. 20375-5339

11. Commanding Officer Naval Research Laboratory.
Attn: Mr. Dan Bay
Code 5742.01
4555 Overlook Avenue, S.W.
Washington, D.C. 20375-5339

12. Commanding Officer Naval Research Laboratory.
Attn: Mr. Jon Uffelman
Code 5740.00
4555 Overlook Avenue, S.W.
Washington, D.C. 20375-5339

13. Commanding Officer Naval Research Laboratory.
Attn: Mr. Brian Edwards
Code 5760.00
4555 Overlook Avenue, S.W.
Washington, D.C. 20375-5339

14. Commanding Officer Naval Research Laboratory.
Attn: Mr. Robert E. Surra«
Code 5760.00
4555 Overlook Avenue, S.W.
Washington, D.C. 20375-5339

15. Commanding Officer Naval Research Laboratory.
Attn: CDR Dan Gahagan
ONR-313EW
CodeONR-313
800 North Quincy Street
Arlington VA. 22217-5660

346

16. Commanding Officer Naval Research Laboratory
Attn: Dr. Harry Hurt
ONR-313EW
CodeONR-313
800 North Quincy Street
Arlington VA. 22217-5660

17. German Ministry of Defence
FÜSI5
Postbox 1328
D-53003 Bonn
Germany

18. Amt für Studien und Übungen der Bundeswehr.
Postbox 3191
D-51531 Waldbröl
Germany

19. Universität der Bundeswehr München.
Werner-Heisenberg-Weg 39
D-85577 Neubiberg
Germany

20. Universität der Bundeswehr Hamburg.
Holstehofweg 85
D-22043 Hamburg
Germany

21. German Ministry of Defence
Naval Staff IE 1
Plans & Policy, International Cooperation
Captain Heinrich Lange
Postbox 1328
D-53003 Bonn
Germany

22. German Navy / Fleet Command - OP 3.
Captain Axel Seemann
Postbox 1163
D-24956 Glücksburg
Germany

347

1

23. Swedish Armed Forces Headquarters.
HKV/KRILLED
107 85 Stockholm
Sweden

24. Swedish Army Technical School.
ATS
831 85 Östersund
Sweden

25. Swedish National Defense College.
Försvarshögskolan
Box 27805
115 93 Stockholm
Sweden

26. Swedish National Research Establishment.
Försvarets Forskningsanstalt (FOA 7)
Institutionen for telekrig (71)
Box 1165
581 11 Linköping
Sweden

27. LTC Stig R.T Ekestorm.
601 Pine Street
Monterey, CA 93940

28. LCDR Christopher Karow.
1065 Harrison Street
Monterey, CA 93940

348

L

