NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

AN ALL-DIGITAL IMAGE SYNTHESIZER FOR
COUNTERING HIGH-RESOLUTION

IMAGING RADARS
by
Stig R.T. Ekestorm and
Christopher Karow
September 2000
Thesis Advisor: Phillip E. Pace
Second Reader: Robert E. Surratt

Approved for public release; distribution is unlimited

B8 QUALTYY InspmomED 4

20000919 149

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2000 Master’s Thesis

4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS

An All-DiE'tal Image Syntesizer for Countering High-Resolution Radars

6. AUTHOR(S)

Stig R.T Ekestorm

Christopher Karow

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Naval Research Laboratory AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Distribution unlimited.

13. ABSTRACT (maximum 200 words)
The subject of this thesis is a digital image synthesizer (DIS), which is especially useful as a counter-targeting signal repeater, i.c.,
for synthesizing the characteristic echo signature of a pre-selected target. The DIS has a digital radio frequency memory (DRFM)
and associated circuitry, including digital tapped delay lines and a modulator in each delay line to impose both amplitude and
frequency modulation in each line. A unique property of the digital image synthesizer is its ability to synthesize false targets using
wideband chirp signals of any duration. The system-on-a-chip uses a scalable CMOS technology that increases the bandwidth and
sensitivity of such a repeater over prior analog-based systems. The application-specific integrated-circuit reduces the noise of the
repeated signal, reduces the size and cost of such a system and permits real-time alteration of operating parameters, permitting
rapid and adaptive shifting among different types of targets to be synthesized.

14. SUBJECT TERMS 15. NUMBER OF
Inverse Synthetic Aperture Radars, ISAR, Countermeasure, Digital Radio Frequency Memory, DRFM, | PAGES 374

Image Synthesizer, Field Programmable Gate Array, FPGA, Application Specific Integrated Circuit,

ASIC, Chip Design 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY 19. SECURITY 20. LIMITATION
OF REPORT CLASSIFICATION OF THIS CLASSIFICATION | OF ABSTRACT
PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL

Standard Form 298 (Rev. 2-89)

NSN 7540-01-280-5500
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

AN ALL-DIGITAL IMAGE SYNTHESIZER FOR COUNTERING
HIGH-RESOLUTION IMAGING RADARS

Stig R.T Ekestorm
LTC, Swedish Army
BSSE, Swedish National Defense College, 1996

Christoper Karow
LCDR, German Navy

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL

September 2000
Authors: B
__— StigR.T. Ek%jﬁm——‘
Christopher Karow

Qs Cor

Phillip E. Pace, Thesis Advisor

LA Son¥

Robert E. Surratt, Second Reader

A C B

\1TSan C. Boger
Information Warfare Academic Group

Approved by:

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The subject of this thesis is a digital image synthesizer (DIS), which is especially
useful as a counter-targeting signal repeater, i.e., for synthesizing the characteristic echo
signature of a pre-selected target. The DIS has a digital radio frequency memory (DRFM)
and associated circuitry, including digital tapped delay lines and a modulator in each
delay line to impose both amplitude and frequency modulation in each line. A unique
property of the digital image synthesizer is its ability to synthesize false targets using
wideband chirp signals of any duration. The system-on-a-chip uses a scalable CMOS
technology that increases the bandwidth and sensitivity of such a repeater over prior
analog-based systems. The application-specific integrated-circuit reduces the noise of the
repeated signal, reduces the size and cost of such a system and permits real-time
alteration of operating parameters, permitting rapid and adaptive shifting among different

types of targets to be synthesized.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. COUNTERING THE SENSOR-SHOOTER ENGAGEMENTcococeiniicninnniinnnn 1
II. INTRODUCTION TO INVERSE SYNTHETIC APERTURE RADAR.................... 5
A. RANGE-DOPPLER IMAGINGccccoceeiimiirnrinsiniirrreessnsssesinsssnsssessesanes 6

B. RANGE COMPRESSION PROCESSccccoivinummrnrmnnirereneseenenenssssasens 6

1. Analog Range Compression Network Examplec.ccccevinnncns 8

2. Digital Range COMPIESSION.........ccouuemereemriresrinsesssssssssssessesssscasense 9

C. AZIMUTH COMPRESSION PROCESS.......cciieniinenneeeneciacinnes 11

1. THE DIGITAL IMAGE SYNTHESIZER CONCEPT.......cconiiiiiiireeiiiiiiiienes 15
A. SCATTERING PHYSICS OF A TARGET........ccoceiirermernnnseeneecnenenens 15

B. ANALOG IMAGE SYNTHESIS.......cociniimnrierrnreinnneesnessseeseacsssesanes 16

C. DIGITAL IMAGE SYNTHESIScoocimiiiiininiennestnnesenenessensenes 17

D. FUNCTIONAL DESCRIPTION OF THE DIGITAL IMAGE
SYNTHESIZERooooteeieereneeseeeiiieesissennsssseesssssasnesssesssessssesssssesaessisns 19

IV. ARCHITECTURE VARIATIONS AND SIMULATIONcccceceeniiimninniniinnnennen 25
A. ARCHITECTURE VARIATIONScooinminiirininrenreniceenenssencsnnninies 25

B. SIMULATION OVERVIEW.........coocinimuinninirenienreressssssnssssessessasessesses 29

C. SIMULATION DETALLSccocteereirecerenniernessnenessesnsssasssessseassessssenas 31

1. USET INPUL «...vovevereceeiccerereerscscscasastsse s s ssssssnssssensescnsssnne 33

2. Defining the Radar Parameters...........cocevemereeessssnssusescacssuecninacs 34

3. Creation of the Intercepted Radar Signalcccocceveinnicnninnnnnne 35

4. Simulation of the DIS (Original and Modified Architecture) 38

vil

5. Range and Azimuth COmPIession...........ccevvveeuererevrececneeeeeeeeeenne. 40

6. Plot and Compare ReSUILSccecererererereeiireeeeieeeseeseeeeenas 42

7. Original and Modified DIS Comparison.............cceeeeeeveeerenennnnn. 45

8. Multiple Scatterer Per Range-Bin............cccoveveeeeveeeereeeveeeererannnn. 49

D. SIMULATION RESULTS........cccotmuereeererereeeeteeesereveneeeseeeesesseesssesesssenes 51
V. DIS USING FIELD PROGRAMMABLE GATE ‘ARRAYS 57
A. INTRODUCTIONcctreiemnrerrirrinsenerererenssssesseeseseessesessessesesssssssesens 57
B THE ALTERA MAX+PLUS I ENVIRONMENTcooeveueeeeeeeeererennnnn 57
C. FPGA TECHNOLOGY AND THE ALTERA 10K50.......coceeveeernernnn.. 61
D DIS ARCHITECTURE USING FPGAc.ccoouereerrererererereenceeeennns 63
1. The Concept DEMONSIIALOL.ccveeureneeeeeieeeeeereeeeeeeeeeeessesseannes 63

A HOSE (PC).cneeeeireeiiieeeteeeteceecee st eeseeeeeeseeesesssasseseesssens 64

b. FPGADIS......ooicinereetreeee ettt sese e 65

c. FPGA DIS Hardware......... .. 66

d. Processing DRFM-Phase Data...........c.ccoccovvemeeeeeeeeeeeneeraenen 67

2. FPGA DIS Schematic.............. e, 71

a. Top-Level FPGA Hierarchy.......ccoeeverueeeeeeeereereeeieneieeeeneenes 71

b. Tap-Delay Linecccccevurueevmnieeeieneeeeeeeeeeeseeeceeeeseenenens 73

c. Doppler Modulation Coefficient Latch......; 75

d. Phase ACCUMUIALOT......ccceeruerreerrreerereerceeesieieeeeeceste e eeeenas 76

€. Look-Up Table (LUT)coooueriieeieeeereeeeeeeeereeeeeeeseseeessenns 77

f. Gain Modulation Coefficient Latchc.ceervrueuvevrueennene. 78

viii

g. Gain Modulator.........ccoovueiveiciiinireiinnriiircnen e 79

h. Final SUMMETcccccctvivuiiiininiiiiriiiecneneccnneccnecenane 82

E. SIMULATION RESULTS.....ooerreeetreeeccee st seeecssnnsaee s ssaeeeas 83

1. SIMUIAtION SELUPcveveverereeiereeriereseeseserseresnessasseseessnssessssanes 83

2. Simulation RESUILSceeeeeererierererererenrenrectenrssesessssescsseessesesnens 85

VI. FPGA-TO-ASIC CONVERSIONcoriiittirietnrettrciesesssenieesnsnessssonssessssssesssns 89
A. FPGA LIMITATIONS......cotieteeereeeereernseeseseessessesssesseseessessesnesscssasseeseens 89

1. Altera-to-MOSIS Process FIOWc.occceeercncreerruercneereecnesunsenes 90

a. Altera to MOSIS Link OVEIVIeWcccoviiiiiiiicinniniecninenne. 90

b. Statecad and Statebenchc.cceveviiiiinuiiniiiniiiniiniceees 92

C. SIMGEN ...ueeviiriiiiiiinetintiniinreienrr et sse e s saeas 94

B. LEONARDO SPECTRUM.....cccociirrrerinrenincicimiinetesscssscssnsseesesssnsssens 95

C. AMERICAN II\'HCROSYSTEMS INC. ettt 98

D. MIGRATION TO TANNERcccccerieerrieennnaee eertrererteneetresaserasasaessaases 99

VII. ASIC DESIGN: SCHEMATIC.......ieiiiiiiinieiiiiiiiinieisnirrnitisesseenseseeesssssenseessee 101
A. INTRODUCTION TO TANNER TOOLScoocciiiiiriiinieecnenenenns 101

1. INEHTAN ...cuvevevereereereseresesaesesassssasaesssesssesassensensseesentesessosessnesesssaes 103

2>. | I ¢ SO TTTRTRN 104

3 S-Edit....uuveeeeireeeeirieeesreeesrueeesssessesereecesaeseesssssessssssesssosssnsssons 106

4. Layout Versus Schematic (LVS) ...cccccceveviemrirenrninnnerisrerenenenenens 107

5. The Circuit Simulator T-SPiCe Procccveceeeeeverereressecreseeeerenenes 108

ix

6. The Waveform Viewer W-Edit.......c..ecoveeeeveeeveeeereeeeeeeeeeeonnn 109

B. DIGITAL IMAGE SYNTHESIZER ARCHITECTURE....................... 109
C. SCHEMATIC DESIGN IMPLEMENTATIONcoeceueiveerererennnn. 116
1. General Design Hi€rarchyoceveveveeiececeneneeneeeeeesssenennnn. 116

2. Architecture Circuit Description in Level 1c.coceveuennnen.... 117

a. Basis EIEMEntscccccooeviivueernrnrerirceeeceeceee e 117

D, Adder Cell.......ccueieiceneererieeneee et 118

C. RegiSter Cell.....c.oevirmiiiireeinieieeeeeret et eeveseeee e 119

3. Architecture Circuit Description in Level 2cccceveeevennn... 122

a. LOOK-UP Table....ccccovrirrrrereeeeeereetececceeeee e eee e 122

b, Gain Shifter......ccvvrueviireieeeeecccceeee e 124

4. Architecture Circuit Description in Level 3c.ooueueene...... 127

a. Tapline with Phase-Rotation..........ccccueeverveeereeeerirucrennnne... 127

b. Tapline With Double Buffering.......cccccoeeverveivuiveevrecreeeennne. 133

5. Architecture Circﬁit Description in Level 4uuuuun..... 136

6. Architecture Circuit Description in Level 5cccovvueeneenee... 137

VIHI. ASIC DESIGN: TIMING & CONTROL 143
A. CONTROL SIGNALS........ccotieteterenrereeerererereeresesessssesesssesseessesasssesens 143
1. ClocK ..oveuenrerrnen. ... 143

2 L0Ad......iinirieeccneeee ettt e en 144

3 HOI o ceee ettt ettt a e sr e e e 144

4. L0ad Phase INCTEMENLovveverrereeeeaessssarsssssssssssssssssssssseseces 145

5. Delta Phase INCIEMENL........c.ccerruruevemeneerercecssenereseesessosessssessssssens 146

6. Use Phase INCTEMENLeeerrverereeeresesesesesesesseeeesesescesssensssnens 146

7. Load Gain REGISIETcvueuerevererreerrreeeseeriicsisnsssassessesessessanes 147

8. Target EXIEMNL......c.ovueieeeecueeareeesessicnessissasirnsnessasnsesesssessssessssasanes 147

0. RANEE BNl VAderrroeeeereeeeeeessneese oo snsseeese e 148

10. Valid ReSult INu.cuvveeeeveeeereeeeeseeceseseeceneessesissssnesseseessesessenenes 148

11, OVErfIoW INOUL.....coveeeeretreeeeersereeeeeeneennreeneneassessssesnensassenens 149

B. TIMING CONTROL TN 149
1. Initial Loading Phase........ceeueveuereeemimecsirirmemsirnssesssesessssnansens 149

2. Timing between Radér PUISES...cveriererenererenrneesneeeeeseensneanens 154

C. SCAN-PATH TESTING.......ceceiecerrereirirnisinrinraraeienesscsssssnssssssssnsncesees 156
IX. ASIC DESIGN: SIMULATION eeeeveseereee e ase s e e e ease s st s s s r et s s s s ansantenee 161
A. T-SPICE SIMULATIONScooverrrmmmmmrmmsrnnrnssmsssssess ceeeeaeeerisessenane 161
B. 2-TAPLINE SIMULATIONcciiiirmeeeeernuenierrrsinntannnsiessessesesssneecanaes 167
C. SIMULATION OF THE 32-TAPLINE CASE.......iiiirieieennneeenns 175
1. SWItCh MOGEL......veeeereecreicreeereeeeereestesesseaessesaesasesasnssnanaanans 175

2. TESE SELUD c.vvvoververeereesssesesseesesesecnssensesssssssssassasassesssasssssssssasases 176

a. Simulation Commands........ccocveerrrieeriiierenieernnnnienniniiinninnes 176

b. Input and Output Pads.......ccoveemniinveninncnininiiieieneiane. 179

C. TSt VECIOTS .evveeeeeeeeeeeercuienenteeinseeessrnessssnsessssneesssssscssnns 181

X. LAYOUT AND FABRICATION........cocoviieteterereictieeieeeseesneeessesssssseesessesesneenes 185
A 8-TAPLINE SCHEMATICS..........oocertrrirreereerenneeneseesesaeeeseesseseesseans 185

B TIMING AND CONTROL........coctirtirietireeeeeeieectreeaeeneseseressenseseseens 187

C PHYSICAL LAYOUT GENERATION..........cccceceeereetererererereene e, 192
APPENDIX A. MATLAB CODES.........ocoiieteeeerereneerernrenseesssessssenesssessssssossesseesnes 195
1 DIS SIMULATION FILES-VERSION 4ooveoeeeeeereecrecieeneeeeneen 195

a. TUNDISVAIN oottt 196

b. BUIVA Mottt etetets e eas et esnasss s e e se e s sesseseseseenesenns 197

c MAthOSIVA.M....uviiiiiiiiiiiiieecete ettt see e e aeens 203

d MAthOSEVAD.IML...c.cevrveeeerecieiresieeee st ete e seesss e e s ss st s seseeaes 209

€ SIMhWChKVA.M ..ottt 216

f. SIMNWCNKVA _WIIE. T e veeeeeeeeeeeeeeeeeeesnrereorsesseesssessssassssesssnssesns 221

g. SIMhWCHKVZ2.M ettt 228

h. SIMhWChKV2_WIHE. M ..ucueeveeiecieeiceieeneete st eese e eaans 233

1 PIOtRWVA. I ...ttt esnese et ne st aennanens 241

2. COMMON FILES IN ALL VERSIONS (VERSION 1 TO 4)............... 243

a. (67013 1 1T o« SO PR 244

b. SINE.EXL woveeiereureeierenieresesenssessesesesessssesesassesansesesesnassesesesesensnsens 245

C. CENLUT Ml eeteererreeeerese s nrasssae e e e aannaanan 245

xii

d. GENFIXPEVO.IM.ereeererriecseeeccetcnensrsissisisessasaesssssaesesenessssssssanans 248
e. ZENFlOALIM. ..ottt ettt 249
f. EC2UWOML ccecssnmnnnsnensessss s 249
g. EWO2AEC M ecveeeeeecneeneseatseeteseneneseserrenessanssesassssessesssnssssenenes 252
h. plot_like_NRL _image.m..... e rerereeronns 254
1 PIOt_in_dB.IM c..ceviiiiiiiiiiiettete s 255

GENERATING PARAMETERS FOR MULTIPLE SCATTERERS PER

RANGE-GATEcoteieeeeeeteceeeseentstenssesssensesessesssssesssssassassassessessess 256
a. extract_para_v4_VCase.M.......coererveererensnserseseennsnennesessssnsnsssnnans 256
b. extract_para_v4_Ship64.M........ceceuvvevrireirremnrnrererssssnseessesenaes 260
CREATING TEST VECTORS IN T-SPICE........ccccevumimenerrnsnssencnaeae 264
a. convert2binary_TaWint.M.......coceeerveieeenrnenssenensinesssssesesessessesns 264
b. CONVETt2DINATY_PATA.Mi...cucueerccereesesesesssssssseissssemnssenssssansasses 267
C. convert2binary_CONtIOLIM «....cccveerureinienieenneniesiaeessesesesensesscenses 274
COMPARING MATLAB AND T-SPICE SIMULATIONS 278
a. hard_JiMiter.IM....cceerrueererrreecacncteiesssereerssrsessnsesssssnnessssnnsessssesess 278
b. COMPATE.IMN ..ovevveveeeranracrssssssessssnenssessssssssssssssassssassstassasassscsscses 281

BIT-VICE TRUNCATION OF TWO’S COMPLEMENT BINARY
REPRESENTATION......oeciiiiiiiiiiieriiiinreeensieessstesessneesssssesesssansssane 284

a. ETUNCALE.TI] e eveeereesneeennssccsesoncenssssessssesssesssnsnsnsssssssssesssssassssssnssenns 284 -

APPENDIX B. VISUAL BASIC CODES.......cceoeiuimieeeiteiieeieeeeeseneesaeeeeseeeeesssssesessnens 287

1. VISUAL BASIC PROJECT TO RUN THE DIS CONCEPT

DEMONSTRATORcoeuiiiriinininreiereteseeseeresenressesessssssesssesmessnessnens 287

a. FIIE.DAS ...ttt ettt 288

b. fIECTUNC.DAS ..ottt 290

C. ZIODALDAS.......eciiiiiitcetee e 304

d. MAINLDAS.....comimirenereiereecsietetete ettt senesseseseneneea 304

€. the_1SAT.DASveeeeeerieerierecitecsreeeeecee e seeeesseeeeeseeeeneeesnneeeseenns 305

APPENDIX C. SCHEMATICS AND SYMBOLS........ccoooeereereeeetencieeeeeneeereeseeesnenas 313
1. LEVEL 1 MODULEScccecemietiinueenteeniensesessessenessesessessessesessesens 313

2. LEVEL 2 MODULEScctirirreeentetenenenreerenteeeessesesnensesseesessssens 318

3. vLEVEL B3 MODULESooiiriititreeceeneetetenressaestenssesesseeesessseesesseans 336

4. LEVEL 4 MODULESccoctiiieenrinrrinenenreneeenessesnesaessesssesnesssenes 338

5. LEVEL 5 MODULEScooiiertiteeierenieteneesressseessesseesaessessnsensessennes 340

LIST OF REFERENCESc.cooioirieentiiriineeentesteeseeesesensensessessesssssssssonsesssossencn 343
INITIAL DISTRIBUTION LIST ... 345

Xiv

LIST OF FIGURES

Figure 1. Sequence of Steps Necessary to Land a Missile on a Target.......cc.cccoccoueeneeenee. 1

Figure 2. Comparison of the Geometrical Relationship between (a) Focused Spotlight

SAR and (b) ISAR (From Ref. [1])....coevmvirniininiiiiiinniiinieeeccteeee e enaneeane 5
Figure 3. Chirp Pulse Waveform.......co.oovveeuinirninnisieniiienccniciccciicecntiicnencnees 7
Figure 4. Chirp Pulse Compressed using Analog Pulse Compression Network............... 8
Figure 5. ISAR Range Compression Signal.........ceceeveeeneenmmenincnennnnniniinininenee 10
Figure 6. ISAR Azimuth Compression Processingc.cocecveeueceviinnniniicnieniieenenne 12
Figure 7. Summary of ISAR Compression PrOCESSING....cvevrervsereerereseassssecacneseaeseeene 13

Figure 8. A Ship and an Aircraft in the Line of Sight of an Interrogating Radar Signal. 15

Figure 9. Block Diagram of the Digital Image Synthesizer (DIS) (From Ref. [3]) 19
Figure 10. Block Diagram of the Original DIS Architecture..........ccoccvvienivieiiennnenne. 26
Figure 11. Original DIS Architecture for In-Phase Processing..........cccocuvevueuenniinienennne. 27
Figure 12. Block Diagram of the Modified DIS Architectureccooeeverueenueinecnnnnnne. 28
Figure 13. Modified DIS Architecture for In-Phase Processingcccoueveeernienienennnn 28
Figure 14. ISAR-DIS Simulation Configurationcccecveeivuniiieinmiinieennessencenen. 29
Figure 15. Matlab Simulation FIOWChartc.ccceeveeeiciininiiiiiiiieee 31
Figure 16. The Range-Doppler-Amplitude Map Entry Program cerreeneeeree e aeaeaetesrasanes 33

Figure 17. ISAR Range-Doppler . Image with (a) No Amplitude or Doppler Frequency

Shift and (b) Amplitude and Doppler Frequency Shift as Shown in Table 2........... 38
Figure 18. Cosine and Sine Look-Up Table (LUT)....cccovvurimninieiniiiiinssentnscceens 39
Figure 19. Range COMPIESSIONcovevereuesesesessestsressmitisiistststsneter e essssssssssnesencusnsacacens 41

XV

Figure 20.

Azimuth COMPIESSION.......coveourirrereereriereeteetecreseeseseesessestesesessessseseseeesonas 41

Figure 21. ISAR Range-Doppler Images Showing (a) the Unmodulated DIS Output and

(b) the Modulated DIS Output (Matlab Simulation)..........cceeeeevrveeeeeverreeevreeereerenenns 42
Figure 22. Matlab DIS Simulation vs. Hardware ReSultoecvvureeererseunrrreenrennnnn. 43
Figure 23. Matlab Simulation Result vs. Hardware Result and the Difference............... 44
Figure 24. .Matlab Simulation Result (3-D Mesh Surface Plot)...........ccccoevrvereveuenennee.. 45
Figure 25. The Range-Doppler-Amplitude Map Entry Programccoevevvevreeneneee. 46
Figure 26. Original vs. Modified DIS Algorithm Simulation Results...............c............ 48

Figure 27.

........

Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.

Figure 40.

Original vs. Modified DIS Algorithm Simulation Results and the Difference

... 48
DIS V-Case: Setup and Simulation Result..........cccoeueeiuieorecruencienreccnenen, 50
ISAR Image (From Ref. [7]) coceeomieeeeecereeecceteecceeeecee e eese st ee e 51
Photo of a P-3 Aircraft (From Ref.[7]) .uceeeereeereeieeceeeceeeeeceee e 52
Photo of USS Crockett (From Ref. [7]) ceeervovureeeeiiieieeeeeeeeeeeeeeeeeseeeenenenan 52
AN/APS-137B(V)5 Radar System (From Ref. [8])....ccccveeeerveecueeneencnnrennans 53
Ship Case—Simulation Setup in Matlab..........cccceoevirvieninvencceeeeeeeeeeene, 53
True ISAR Image, Simulation Setup, and Seven Different Simulations....... 55
Altera Max+Plus II Environment (From Ref. [10])..c.cceovveeevummereiieeneeennen. 58
Max+Plus II Design Environment (From Ref. [11]) «.cceevevieeeeeeeeeceeecnnene. 59
Altera FLEX 10K50 (From Ref. [11]). cuveeeeoireeiieeeeeeeeeeecerneeeeeeeenreeneees 62
Block Diagram and Host-Interface Diagram of the DIS..........ccccceevueruerrennn. 64

Picture of the Concept Demonstrator—Host (PC) with FPGA Board (DIS)... 66

Picture of the Customized FPGA Board Used for the DIS Prototype............ 67

Xvi

Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.

Figure 62.

Top-level FPGA Hierarchy of the DIS (simple.gdf)ccccooeeeninniicnnnn. 72
Schematic of the Tap-Delay Line (delay.gdf)c.coeeueeveninniiininiinnass 74

Schematic of the Phase-Coéfﬁcient Latch for Doppler Modulation (phi.gdf)75

Schematic of the Phase Accumulator (ph_acc.gdf)oceovuveiinmvnvininninnnns 76
Schematic Diagram of the Look-Up Table (LUT) (lut.gdf).........ccoovrveeenenee. 77
Schematic of the Gain Modulation Coefficient Latch (gain.gdf) 78
Schematic of the Gain Modulation (newgainl.gdf)........cccevuevvuvvvuvinvnnninnnnnn. 79
A 3-Target Cell Long Target with Different Gain Modulation Coefficients. 80

Schematic of the Shift Primitive in the Gain Modulation Block (shift0.gdf) 81

Schematic of the MUX2 in the Gain Modulation Block (mux2.gdf) 81
Schematic of the Final Summer (out_summer.gdf).......cccceeeeevivnuervneennnen 82
The Range-Doppler-Amplitude Map Entry Programccccccoeenecviiccnnnnne 83
Matlab DIS Simulation vs. FPGA Hardware Results............coovvenieneniacnannne 85

Matlab Simulation Result vs. FPGA Hardware Result and Their Difference 86

Matlab Simulation Result vs. FPGA Hardware Result and Their Difference 87

Statecad Screenshot (From Ref. [13])...coceivciiniiiiiiiiiiiicirerctneeeeeeee, 93

Block Diagram for the MAX+PLUS II/Leonardo Workspace (From Ref. [11])

... 97
Tanner Tools Block Diagram (From Ref. [17])...ccveivieiinincniiniiiinnnnnns 103
Nettran Function Block Diagram (From Ref. [17])....covrrieininininiiannnnne. 104
Flow for Netlist Comparison in LVS ... 108
Tapline in ASIC ArChiteCtUTE.......cceotrurueueueccriietsintsisisicnntnier s 110

Figure 63. Simplified Data Flow in the ASIC Architecture................ccoeererrereueenernnns 111
Figure 64. P-FET TTanSIiStOrc.coueuiereremrieeetineaceerereseseneaesessseseeeeseseeseesessssssesesssena. 118
Figure 65. AddEr Cellc.covivirieieieieieieiieeeeec ettt eeeeeee e eeeeseeesesesesen e s s e e esnns 119
Figure 66. ReEGISLEr Cell......c.cccoveiririririnirerrerereeeeseresesescsecssessessseseensesesesseseessseasnas 120
Figure 67. D-RegiSter Cell......cc.cccouvrirmmirererieeneeeeeereteseeeceeseseseesesessesseseseesesesseeens 122
Figure 68. Look-Up-Table (LUT) MOGUIEcccoveverereeeierrreiicerereneeececeeeeeeeeeeseenae 123
Figure 69. Part of the LUT-ROM.........cococvrrerrrrererererererereirceiseresseseesenseeesesesessesns 124
Figure 70. Gain-Shift BIOCKc.cocuriiiereereeeiiteceeieeeictet ettt eeseeseeseesse e e sesssnas 126
Figure 71. Tapline with On-Board Phase-Increment.............cccceueueeveremeeeneenenenenennnen 128
Figure 72. Phase-Increment BIOCKccccevetrerenreereieieiereeeeeeeeeeessenceseeessessesseseenens 129
Figure 73. Tapline LUT MOQUIEccceeruruererrininineriereieieiereeeetee et eseeaessennas 130
Figure 74. Tapline Gain and Adder BIOCKccceveuiverircncninenenrcnrenencneeriecseeeeeneens 132
Figure 75. Tapline with Double-Buffered Phase and Gain..........c.c.coeeueeuvimerueenrenennene 134
Figure 76. Phase BUffering..........ccccocuviviviierceinsciineninennene st evennes 135
Figure 77. Gain-Coefficients Double Buffer...........ccccoovvvroeneeceeeiieeceeceeeeereeeene. 136
Figure 78. Supertap SChEMALICSccceveeteuerererrrrnrieientrsiereerteceeseeesree e erreeesssessesaesneas 137
Figure 79. Toplevel Consisting of Four Supertaps............oceceveeeeeeseeesneereseereessenvennes 138
Figure 80. Output Pad.........ccoivuivuiiiiicicincerinneeieniecteeceeestesneesesaeseesssesseesessessennes 141
Figure 81. Timing Diagram for the Initial Loading Phase.........ccccceevvevveereervecrerneennenne. 153
Figure 82. Timing Diagram between Two Radar Pulses............cccceervrerveeereeeeerveeennnne. 155
Figure 83. ReiSter Cell......cciieieriiiiieirieieeieecteseseestesreenseesreesssesseeseesassseeessesnes 157
Figure 84. Schematics of @ 2-Bit REGIStErccccerrriereiirrcriniecreeeeerrteecteeeceeeeeaeeeeeeens 158
Figure 85. Scan Path in a Tapline with Phase-Rotation On-Boardccuuu........ 160

Xviii

Figure 86. Positive Edge Triggered CIOCK.....coveieiiniiiiininieniccenccniitnccininnnens 165
Figure 87. 2-Tapline Test Casecccvumvenrereneeenieninninneesecnicseenenns eeenresentessneenne 168
Figure 88. Modified Range-Amplitude Entry Mapccoccoveeieiicceninnininninnnninne, 169
Figure 89. 2D Plot of the Simulation ReSUMS........cccoviieeniiinieciiiiniiiiiiinens 173
Figure 90. 3D Plot of the Simulation Outputs and Their Comparisoncccoveueues 174
Figure 91. Exploit T-Spice Simulation Results........ccoveeueerieeniinienniiiiiiiiiinns 174
Figure 92. Comparing Matlab and T-Spice Outputs—I-Channelcccccevrirnnnnnn. 183
Figure 93. Comparing Matlab and T-Spice Outputs-Q-Channel...........ccccccoveverrnnnen. 183
Figure 94. 8-Tapline ChIDcceeeeririetieninesientecnines et 186
Figure 95. Timing Diagram for the Initial Loading Phase of the 8-Tapline Chip......... 190
Figure 96. Timing biagram between Two Radar Pulses for the 8-Tapline Chip.......... 191
Figure 97. Layout for the 8-tapline Chip Showing Enlarged Pad-Area Region 193
Figure 98. P-FET and N-FET Transistor Definition ..o 313
Figure 99. P-FET and N-FET SYMDbOISccccoceereiununmimiiniiiiniiieiiiinensssssnss s 313
FAUEE 100, MUX2 CIICUIE .rvveressssersrssssseeesssesesssseesseseessssssssessessssssssessssssssssssssss 314
Figure 101. Mux2 Symbol (modiﬁed from Tanner’s VErsion)........ceeeeeereeeecenneeeneeeeenens 314
Figure 102. Register Cell CICUIL.......cvemvveeeisuriemeetcsiniisicinttn e 315
Figure 103. Register Cell SYmbOlcvveeicinimiininininnieeeeee st 315
Figure 104. D-Bit Register Cell with Synchronous CIEarcceememeiecieninccicincass 316
Figure 105. D-Bit Register Cell Symbol.......ccoviiimmmiuimnmimmmiiiiinetecscenneneens 316
Figure 106. Adder Cell Circuit...........c....... ... 317
Figure 107. Adder Cell SYMbOL......c.ovureuremrincmrmrenscusnsiississinsinsisnss s ssssssencnenss 317
Figure 108. 2-Bit Register Circuit 318

Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.
Figure 130.

Figure 131.

2-Bit RegiSter SYMDBOL.......c.covuiertrrerereeeriresesiere et seseesesese s eeesesenns 318
4-Bit RegiSter CilCUILcucueuiverteeererrerieeetereeete et eeeee e 319
4-Bit RegiSter SymbOl............ccceeriemeeeiieieieeeteeiee e 319
5-Bit REZIStET CIICUILvevererrrrrreres ettt et ee e e ssese e 320
5-Bit Register SYMDOL.......c.cccovenireninrrieereeeeeerereen e see e 320
8-Bit Register Circuit s 321
8-Bit Register SYMDOL......cc.cueveruiuirtreieerireetereret e 322
11-Bit ReGIStEr SYMDBOL.........veeeveeeeereancenieseeeeeneeeeseeesseessessesssessessraeses 322
11-Bit Register Symbol.........c.ccceeeuiviremnnnineeeeseeeereeeresee e 323
16-Bit RegiSter CIrCUILcoevreerrrrrererrerreeereerrereesreesseseessssesseseenessseseenns 324
16-Bit Register SYmMDbOL.......cccceeieieriieiiitreeeerteree et 325
S5-Bit Adder Symbol.........cccvvieireirciiieirietetrene sttt 325
5-Bit Adder CIrCUitcoviiviiiiieereeeceieeeeeenestesteseeeeseste s e ese s 326
16-Bit Adder SYmbOlcc.coveeuevuieinirrinientictereetese ettt 327
16-Bit Adder CirCUitccuvucereueireninintnieisniissteete e 328
5-t0-32-Bit Decoder Part 1 CirCuit.........cceecevveveereecreseecrnieerereereeessesseneens 329
5-t0-32-Bit Decoder Partl Symbolcccccocevirieveinienninreerereeerecreeieenenne 330
5-t0-32-Bit Decoder Part2 CirCUit «........cccecerveererrerererennecrerssesseseeeernennnns 331
5-t0-32-Bit Decoder Part2 Symbol.........cccoevvueeeceeeecieeneeeeeeeeeeeeeeneenee. 332
Programmed LUT Module Circuit........ccocceeeueerueesieennrereersreseeseennseesneennes 333
LUT SYMDBOL....ciiiiiiiiieeritiecteeernteesreneeeeseeeeesesereenseesaeesassseesanees 334
Gain-Shifter CirCuit........cooeiviiriiiiieirecierrereieee st eeter e e e e sre e e e neeens 335
Gain-Shifter Symbolcoccoiiiiieieeeere e, 335

Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.

Figure 138.

TaPHNE CATCUILevviiueiienriitiaiieieirrterete e ere s et st e e 336

Tapline SYMbOL.......coovivviiniiiriniiiietiete ettt 337
Supertap CITCUIL ...c.eevvieirieiiieiererere ettt 338
Supertap SYMbOL.....c.ucoviiminiiiieereee e 339
Toplevel 5-t0-32 Decoder SymbOL.........ooieeiiieieiiecreeenceeeeeeans 340
Toplevel 5-t0-32 Decoder CirCUitccrmrrrrseseesnns eeeeeeeeeeeseeeanseseeees 341
TOPIEVE] CAICUILcuvervinrinninirerieneiet ettt en et 342

xxi

THIS PAGE INTENTIONALLY LEFT BLANK

XXil

LIST OF TABLES

Table 1. Files Used during the Matlab Simulation..........coeeeevmnoeniiiiniinncncccnnenne 32
Table 2. User Specified Inputs of the False Target........cccceeeecmcvevinininnnininnnniicninne. 34
Table 3. Contents of the File sigparl.datccceeeveevrvenneenenennen. reereereee s tneaseneessesresrasras 34
Table 4. Defined Radar Parameters (file mathostvX.m)....c..ccovevuinciinsenrenrnnneneenreenueens 35
Table 5. Contents of the File TaWINL.AXL......cccvvireriirieniiiinnrinireecstessnesressesenss e enses 36
Table 6. Contents of the File para.tXt.......c.ccuirerierieneienisieniessnenissessessesesssssssessnssenes 37
Table 7. Amplitude and Doppler Offsets Selected for 32 Range-Bin False Target......... 47
Table 8. True ISAR Image, Simulation Setup, and Seven Different Simulations........... 54
Table 9. Max+Plus II Suite of Applications and Functions (From Ref. [10]) 60
Table 10. FLEX 10K Highlights (From Ref. [11]) cueeoeemniereiereiiiecicnincniiinineaens 61
Table 11. Altera FLEX 10K50 Device Features from [11] ...cooccoveinienniinnnninnniiieceees 62
Table 12. Correct Processing of DRFM Samples (Original DIS Architecture)............... 68
Table 13. Processing of DRFM Samples Using FPGAs (Original DIS Architecture) 70
Table 14. Internal Address Usage in the Tap Delay Linecoeveeeevererneenennncnccncnencneen 73
Table 15. Translation of Gain ValUEscceeiereruirmeereinsiensnnissstessesieencssetssessissisnissesns 79
Table 16. Number of Bits vs. Dynamic Rangecoeoeereenenuinninieececncieninsninnene 80
Table 17. User Specified Inputs of the False Targetcccecenvvvcnininvnnciinineninennes 84
Table 18. Workspace between Max+Plus II and Leonardoc.ccccvecvvmivivininnennsnnncne. 96
Table 19. Tapline Outputs with Three Taplines.........cocececveccieiininiiiiiiiininenene 114
Table 20. Clock Cycles within @ Taplinecoveueeeceiecicicniicsiniiniiicsioninineciseesnne 115
Table 21. LUT PrOZrammiNg.......cccoceererereseseresssssesssssessssessassssssssssnssssssssasssnsssasssnsassassass 124

xxiii

Table 22.

Table 23.

Table 24.

Table 25.

Table 26.

Table 27.

Table 28.

Table 29.

Table 30.

Table 31.

Table 32.

Table 33.

Table 34.

Table 35.

Table 36.

GAIN SHIft o..oeeeeeec s et se s s s s e s s eae 125
Loading Example for the Bussed INPULSvucvrumereeeeeeeeeeeeeesseresessesssns 140
Scan-Path Test Control Signals.........eeueveeereveveverrenceeeereseeseeeeeeseesesssessessnns 157
T-Spice Simulation COMMANGSc.eveeeeeeeeerieeeeeeeeeeeeeeeeseseseeesesesesssssesans 163
Test Cbncept Of @ 2-Bit-ReISET......c.cocereierererrieecereeeereeeeee s e eeeees 165
Output Table for the Transient Analysis of a 2-Bit-Register......................... 166
Matlab Inputs into the Range-Doppler Mapccouueueeeeeeeceneeeeeeeeesresennns 168
T-Spice Inputs for Gain and Phase-Increment............cceeeuvevueeerevererenenersnnnnn. 169
Input Data for the Three Radar Pulses as used in the 2-Tapline Test............ 171
T-Spice Simulation Outputs (hard limited)..........c.eerereveuieevereeeeereenereeeennns 172
Output Pads for the 32-Tapline Circuit........c.ceeeerererereereerereesnreceseeseeerenenns 179
Input Pads for the 32-Tapline CirCuit.........ccoceueuererererreeerrereeeeceeesseeneneseenens 181
Matlab Files to Generate a T-Spice Input File.........ccceeeverereeeerereeeeennennen. 182
Output Pads for the 8-Tapline Circuit...........ccceereverreerrerereererisieseneeeesesreesenens 187
Input Pads for the 8-Tapline CirCuit...........oecevereerererrereecrerernereeeeenieesnenesennees 188
XXiv

EXECUTIVE SUMMARY

The subject of this thesis is a digital image synthesizer (DIS), which is especially
useful as a counter-targeting signal repeater, i.e., for synthesizing the characteristic echo
signature of a pre-selected target. The DIS has a digital radio frequency memory (DRFM)
and associated circuitry, including digital tapped delay lines and a modulator in each
delay line to impose both amplitude and frequency modulation in each line. A unique
property of the digital image synthesizer is its ability to synthesize false targets using
wideband chirp signals of any duration. To generate the false target, the user can program
the target extent (number of taps) and the amplitude and Doppler frequency of each
range-Doppler cell within the image. The algorithm of the DIS has been computer
simulated and has verified the theory behind it. A concept demonstrator has been
developed using a field programmable gate array technique. The DIS has developed
further toward physical implementation as an application specific integrated circuit. The
system-on-a-chip uses a scalable CMOS technology that increases the bandwidth and
sensitivity of such a repeater over prior analog-based systems. The application-specific
integrated-circuit reduces the noise of the repeated signal, reduces the size and cost of
such a system, and permits real time alteration of operating parameters, permitting rapid
and adaptive shifting among different types of targets to be synthesized. A scan-path test

capability is also included to allow intra-chip signal analysis and verification.

XXV

THIS PAGE INTENTIONALLY LEFT BLANK

XXvi

ACKNOWLEDGMENTS

We would like to thank Professor Phillip E. Pace and Professor Douglas J. Fouts
for their technical directions and assistance throughout the course of this thesis. Working
together as a team provided dimensions and analysis that could not have occurred if we
had been working individually.

Furthermore, we would like to thank Dr. Harry Hurt and CDR Dan Gahagan of
the Office of Naval Research for their inspiration and support during this project. We
would also like to express our sincere appreciation to Mr. Robert E. Surratt, Section
Head, Code 5760, Integrated Electronic Warfare Simulation Branch, Tactical Electronic
Warfare Division, Naval Research Laboratory for his time and for his helpful comments
on our work. With the help of these extraordinary gentlemen, this thesis, funded in part
by the Office of Naval Research and the Naval Research Laboratory, Code 5740, proved
to be fascinating, edifying, and highly productive.

Stig Ekestorm would also like to thank his colleagues in the Swedish Armed
Forces personally for their support in making his studies in the United States possible. He
would like to encourage his friends at the Lapland Ranger Regiment who are at this
moment facing hard times. May the true spirit of an Arctic Ranger always follow you.
Most of all, Stig Ekestorm would like to singlé out his wife Kristina, and his son, Oskar,
for their love, support and encouragement throughout his educational experience at the

Naval Postgraduate School.

XXvii

Christopher Karow would also like to thank his friends of the 5% Fast Patrol Boat
Squadron for their friendship, support and encouragement. In particular, he would like to
express his special appreaciation to the “Leader of the Band of Brothers,” a superior and
a friend, Captain (Ge Navy) Heinrich Lange, for his trust and support during bleak times
and for making the studying at the NPS a reality. Of course, Christopher Karow’s
warmest appreciation must be extended to his extremely pafient, often neglected, but
never resentful wife, Irina, who never stopped supporting him with love and
encouragement, and who assumed a great burden and made a great sacrifice by setting
her own educational goals aside to assist him in his efforts here at the Naval Postgraduate

School.

Xxviii

I. COUNTERING THE SENSOR-SHOOTER ENGAGEMENT

Future Navy electronic warfare (EW) systems must be designed to operate in the
RF environment to provide a layered EW defense and also to serve as a fully-integrated
shipboard combat system sensor. The next generation EW systems must also provide
threat identification and a complete situational awareness to allow the quick reaction
modes required to counter the modern anti-ship cruise missile (ASCM) threat. Figure 1
shows the sequence of events taken by the enemy sensor-shooter in order to place a
missile on a target (hard kill). A typical sequence begins with the enemy’s electronic
support surveillance sensor detecting the target of interest (e.g., with a long range over-
the-horizon targeting radar). After acquiring a number of hits on the target, one can
identify the target by using an additional high-resolution sensor, such as an airborne
inverse synthetic aperture radar (ISAR) imager. This type of radio frequency (RF) sensor

forms an image of the target that can be used for recognition and identification.

HARD KILL >

Weapon
. Acquisition Engage Selection Mid-Course - Teminal
Surveillance and ldentification Decision and Guidance Acquisition Homing
Launch
- J “ v) \ ~) . v .. v —
Counter- Counter- Counter- Counter Counter-
Surveillance Identification Targeting Lock-on Terminal

Figure 1. Sequence of Steps Necessary to Land a Missile on a Target

Depending on the target identification, the decision to engage the target and
launch a weapon (such as an ASCM) is made using the inputs, for example, from the

1

ISAR imager. After the ASCM is launched, acquisition and terminal homing of the
missile is again accomplished using the missile’s ISAR. Use of an ISAR in the terminal
phase of the missile allows good aimpoint accuracy and greater probability of kill.

To avoid the ASCM hard kill, one can use a number of countering techniques
including counter-surveillance, counter-identification, counter-targeting, counter-lock-on
and counter-terminal. Counter-surveillance and counter-identification include the use of
low-radar cross-section materials, stealth and deception devices. Counter-targeting
includes the use of active electronic attack (EA) and the use of decoy repeaters. Counter-
lock-on and counter-terminal techniques consist of EA, distraction and seduction chaff as
well as decoy repeaters.

Counter-identification and counter-targeting systems can begin the electronic
attack well before the opposition launches any missiles due to the generation of a lower
probability of target acquisition. Since acquisition systems and future missile seekers will
employ pulse-to-pulse spread spectrum using unfocused SAR and ISAR to improve
target recognition and decoy rejection, the need for coherent countering of these imaging
sensors/seekers remains a high priority for EA systems. Countering-identification and
counter-targeting techniques employ a false target image generated or synthesized with
the objective of deceiving the imaging radar into believing the false target is a real one.
Imaging sensors use coherent range-Doppler processing. Consequently, various forms of
complex modulations must be imposed on the intercepted wideband waveforms in order
to enable the imager to integrate the false target properly.

In this report, the design, analysis and fabrication of an all-digital image

synthesizer for pulse-to-pulse countering of high resolution RF imaging sensors (e.g.,

SAR, ISAR) is presented. The signal processing used in the digital image synthesizer
circuit is especially useful as a signal repeater, i.e., for synthesizing the characteristic
echo signature of a pre-selected target. The entire system has a digital radio-frequency
memory (DRFM) and associated circuitry, including a digital-tapped delay line and a
modulator in each delay line to impose both amplitude and frequency modulation in each
range-cell. The use of digital semiconductor technology (0.5/0.35um CMOS) increases
the bandwidth and sensitivity of the repeater over prior analog-based systems and reduces
the noise of the repeated signal. It also reduces the size and cost of such a system and
permits real-time alteration of operating parameters, permitting rapid and adaptive
shifting among different kinds of targets to be synthesized. The integrated circuit is
designed so that it can easily be integrated with a number of phase-sampling DRFM
architectures.

For completeness, Chapter II provides a brief introduction of ISAR and ISAR
signal processing. Chapter III discusses the digital image synthesizer concept and how
the false target is generated. Chapter IV describes a set of modular Matlab programs that
is easy to use and maintain for hardware simulation and evaluation of concept
alternatives. Chapter V presents an Altera field-programmable gate-array (FPGA)
implementation of the image synthesizer concept. To increase the bandwidth of the
device, Chapter VI describes the investigation into converting the FPGA design into an
application specific integrated circuit (ASIC). In Chapter VII, the schematic of an ASIC
design in scalable CMOS is described in detail. Chapter VIII addresses timing and
control of the ASIC. In Chapter IX, simulation results are presented including full-scale

simulation of a radar pulse. Comparison of the results with the Matlab simulation is also

presented in order to verify the concept and detail the advantages of the architecture.

Finally, in Chapter X, layout and fabrication issues are discussed.

II. INTRODUCTION TO

INVERSE SYNTHETIC APERTURE RADAR

ISAR is a high-resolution technique for imaging isolated moving targets, such as
ships and aircraft. The technique used by both targeting sensors and ASCMs closely
parallels the SAR imaging approach in which the image (or map) is generated from the
return signals being reflected off the target as the radar moves past the target area. In the
ISAR technique, the target imaging is generated from the return signals being reflected
off the target as the rarget rotates within the radar illumination. To illustrate this duality
Figure 2 (a) shows a spotlight SAR in which the radar transverses a circular path about
the target while coilecting the return signals (focused spotlight) [Ref. 1]. The radar
~ antenna in the spotlight SAR continually tracks the target. Note that the same signal
returns could be collected if the radar were stationary and the target was put through a

rotation as shown in Figure 2 (b).

1
=
' .
! Stationary
a) ! Target
\
1
‘\
\\ R
\\
~ N v ~
w H=—___ W
e R »|

Figure 2. Comparison of the Geometrical Relationship between

(a) Focused Spotlight SAR and (b) ISAR (From Ref. [1])
5

A. RANGE-DOPPLER IMAGING

The range-Doppler image consists of resolution cells, each containing estimates
of the target’s magnitude and position of scatterers in both range and cross-range
(Doppler). The orientation of the range-Doppler image is determined by the target’s
rotation relative to the ISAR. The range dimension within the range-Doppler image is
oriented along the radar line of sight (LOS). Range focusing is based on the range-
independent point target response determined by the wideband chirp waveform. The
cross-range dimension of the range-Doppler image is the dimension lying perpendicular
to the plane contained by the radar LOS and contains the Doppler frequency of the
resolved scatterers in-range. Determining the rotational motion during data collection and
calculating the compressions for the sharpest focus accomplish the azimuth focusing. The
Doppler frequency shift produced by a range resolved scatterer is proportional to the
angular rotation rate ® and the cross-range distance between the scatterer and the center

of target rotation [Ref. 1].
B. RANGE COMPRESSION PROCESS

High range resolution ISAR uses an analog-frequency coding technique called
chirp. A chirp pulse waveform is shown in Figure 3. The transmitted chirp can be

expressed as a complex narrowband signal

S, ()= a(t)e™®" = rect[%;)ej 2n{ssskefe) 2.1

.
1 for ki < -1—
¢ Tl 2 .
rect| — | =3 2.2)
T] 1
0 for |—H>—
Tl 2

where f; is the carrier frequency, A is the linear frequency sweep or bandwidth of the
transmitted signal, K is the slope or chirp rate (K = A/T), T is the pulse width and the

instantaneous frequency (time-dependent frequency) is obtained as:

fe)= =tk 2.3)

Instantaneous I
Frequency ¢

-__--_J)._-

e - T -

Signal
Amplitude

time—»
Figure 3. Chirp Pulse Waveform

Within the pulse duration 7, the instantaneous frequency changes from f—KT/I2 to

f.+KT/2. The dispersion D or time-bandwidth product of the waveform is D = TA

[Ref. 1].

1. Analog Range Compression Network Example

The chirp pulse waveform can be compressed using an analog pulse compression

_ JTA Increase

network as shown in Figure 4.

Pulse
Compression |—yp

h(?) Se(®)

| 1 | (compressed
f A pulse width)

Network
Delay

ld— A —b’ Frequency

Figure 4. Chirp Pulse Compressed using Analog Pulse Compression Network

This common form of a pulse compression network is called a phase equalizer and
equalizes the slope of the linear frequency sweep. The transfer function of the pulse

compression network can be written as:
The corresponding impulse respbnse can be expressed as:

he)= [H(F Y™ df 2.5)
or

h()= % einla-rrl2) 2.6)

The complex matched filter output is obtained by convolving the chirp signal with the

impulse response as:
$u0)= ()50 =07 S el @)

The compressed pulse duration of the envelope at the 2/n points is T, = 1/A (Raleigh

resolution). The corresponding range resolution is then:

c
dr=— 2.8
2A (28)

Note the wider the bandwidth of the ISAR chirp signal transmitted, the smaller the range-
bin size.

2. Digital Range Compression

If the pulse compression is performed digitally on the baseband return samples, it
is possible to control the matched filter transfer function adaptively. The range resolution
is determined by the ADC sampling rate. The convolution can be carried out in the
frequency domain using the advantages of the fast Fourier transform (FFT) as:

Su(£)= FlsErHO}= (1)) @9
and is the time domain convolution carried out by multiplication in the frequency domain
where S(f) is the spectrum.of the returns from one transmitted pulse and H(f) is the
transfer function (reference function) of the pulse compression, filter which is stored as a
series of complex pairs (constant for a particular chirp waveform). The range

compression signal processing is shown in Figure 5.

Y7 LO

[
S
Down ADC @)
Conversion : = — FFT FFT!
Quadrature i i
ADC i Range | l
: Bins | Complex
>A
. < "’2LA —> FFT Range
Profile

H)= L2 e

Figure 5. ISAR Range Compression Signal

The number of samples required for both S(») and A(n) to avoid a circular convolution is

T + 2(R2 _Rl)

N> Atc -1 (2.10)

where R, and R, are the edges of the range window to be processed and At = 1/f; is the
ADC sampling period. Zeroes must be added to the signal and to the 7/Ar samples of the

impulse response (common period of length N). Also note that N = 2% (where « is an
integer) due to the constraint on the FFT algorithm. The unambiguous range extent of the

ISAR is

_nc_nc

T (2.11)

and depends on the bandwidth of the chirp signal. A two-dimensional high-resolution
3
spectral analysis algorithm based on 2-D linear prediction using autoregressive estimation

for ISAR has been presented in [Ref. 2]. This approach is superior to the FFT method

mentioned above.

10

C. AZIMUTH COMPRESSION PROCESS

If the target rotates at a rate of w rad/s towards the radar, a scatterer at a cross

range distance a has an instantaneous velocity an toward the radar with a corresponding

Doppler frequency shift:
2ma
== 2.12
fa 2 (2.12)
Considering two scatterers in the same slant range cell separated by da then:
df, = (2.13)
A
resulting in a cross-range resolution of:
da= A df, (2.14)
20 ¢ '

The Doppler resolution is related to the inverse synthetic integration (frame) time

df, =% giving a cross-range resolution of (see Figure 6):

da =—r=— (2.15)

A cross-range profile exists for each range-bin. Samples that are integrated to form a

cross-range profile come from the same range-bin separated by a pulse repetition interval

(PRI) as shown in Figure 6.

11

. Frame
Wideband Time T=n,
Chirp PRI

Tl T lguuni o T g

[P —

y
FFT ’ /'
Cross
Range
nda
[e]

Vo2

— A,

Range —»

Figure 6. ISAR Azimuth Compression Processing

The unambiguous cross-range extent corresponds to the target size in the cross-range.

The required PRF for unambiguous sampling a target of cross-range extent A, is

PRF = 3‘:’1& (2.16)

and the number of range samples needed is

n, = 20AT 2.17)
A
The cross-range extent is
n A
A, =n,da=-= (2.18)
2y

A summary of the ISAR compression process is shown in Figure 7.

1
]
1
1
\ 4 ADC Down |
FFT FFT Conversion
1

ADC Quadrature

Azimu:t:--: il E ol j/
i T //////////T

Compression !

Nl 777777
// /S S S S
//////J///

/////////
LSS

s

Figure 7. Summary of ISAR Compression Processing

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

III. THE DIGITAL IMAGE SYNTHESIZER CONCEPT

A. SCATTERING PHYSICS OF A TARGET

An object will modify any signal reflected from it according to the object’s shape,
surface material properties, and the object’s velocity relative to the signal. This permits
an enemy sensor to identify the nature of such objects, which, if the objects are military
platforms like warships or ﬁrcraft, is not desirable. One solution is to artificially
synthesize false characteristic echo signatures by responding to an interrogating signal.
Figure 8 shows a ship and an aircraft, in the line of sight of an interrogating radar signal.
As the signal hits tﬁe aircraft and the ship, it is reflected from their major scattering
surfaces. The return signal from the ship and the aircraft will be the superposition of the

reflections from the various surfaces such as the hull, superstructure, the aircraft wings

and nose.
Interrogating
Radar Signal
AAAANA
AAAAA

Figure 8. A Ship and an Aircraft in the Line of Sight of an Interrogating Radar Signal

15

The reflections of these surfaces are at different places along the radar’s line of sight.
These superimposed reflections will be out of phase with one another, owing to the
varying times of signal propagation to each reflecting surface.

This tends to lengthen the return radar pulse by an amount equal to the round trip
propagation time of the radar signal between the nearest and farthest major reflector and
to make the reflection magnitude vary as dictated by the varying radar cross sections of
the reflecting surfaces. Furthermore, movements of the aircraft or ship relative to the
radar signal will Doppler shift the returned reflections. That is, any platform that reflects
the radar signal will frequéncy—modulate the signal, so the returned reflections permit the
radar to calculate the nature and motion of the platform.

The most common way to detect a Doppler spectrum in the return signal is to
compare the reflections from consecutive pulses. Thus, an imaging sensor, such as a
search radar, SAR, or ISAR can calculate the Doppler by comparing consecutive return
pulses on a range-bin by range-bin basis. The Doppler spectrum is conventionally

computed using an algorithm that incorporates the discrete Fourier Transform.
B. ANALOG IMAGE SYNTHESIS

Any credible counter-targeting repeater decoy must synthesize the temporal
lengthening and amplitude modulation caused by the many recessed and reflective
surfaces, and must generate a realistic Doppler shift for each surface. Conventionally this
has been done using analog systems that receive an interrogating signal and pass it
through a length of cable having serial taps along its length, one tap per range-bin. Each

tap modulates the signal in amplitude and/or frequency to synthesize the reflection from

16

the reflective surfaces within that range-bin. The delay time between taps is selected to
correspond to the differing times of flight of the radar pulse to the respective range-bins.
Finally, the signals from the taps are summed, and the synthesized signal is retransmitted.
In this manner, the system returns what appears to be an echo from an object located
within the selected range-bins having a signature indicative of the moving ship or aircraft
object to being synthesized.

Unfortunately, analog systems have drawbacks that limit their usefulness as
image synthesizers. They are inherently noisy and can hold an incoming signal only a
short time for processing before the signal deteriorates below the noise. This limits the
system bandwidth and permits effective synthesis of ohly small objects. Further, analog
systems are costly and very bulky, the latter being a particular concern for military
platforms, where space is extremely limited. Finally, analog systems cannot readily
change operating parameters, such as relative delays among taps, or the amount of
modulation in the various taps. This means that analog image synthesizers cannot switch
among different simulated objects on the fly, but rather must typically be fabricated for

one specific type of target.
C. DIGITAL IMAGE SYNTHESIS

The main advantage of the all-digital image synthesizer repeater is the increase in
bandwidth provided to the tapped delay line processors of the kind above described. In
addition, the capability to hold the received signals as long as necessary for a given

application is provided. Due to the all-digital architecture, modulation of the target extent

17

(number of range-bins) and Doppler frequency of each resolution cell is also a capability.
This results in a small, low-cost and flexible counter-targeting repeater decoy processor.

The digital image synthesizer uses a DRFM and an associated digital-processing
circuit having a plurality of tapped delay lines, a summer in order to sum the output of the
delay lines, and range-bin signal modulator in each of the delay lines. A DRFM is a
semiconductor device that can rapidly and permanently record radio frequency
information as digitized samples of the incoming signai, and read it back equally rapidly
when needed. Because the DRFM can hold data indefinitely, the duration of the
synthesized signal is not limited, as with analog systems, thus permitting (as in the
example of Figure 8) simulation of larger objects by adding more taps to accommodate
more range-bins. Bec;ause the associated circuitry is digital, and most especially because
the circuitry can be dedicated to its processing task (rather than requiring extensive
programming to perform its tasks), the speed of the synthesizer can be especially great.

In an optimum hardware éonﬁguration, the associated digital image synthesizer
circuitry is made a part of the DRFM on the same monolithic chip in order to increase the
synthesizer speed even more. This is in contrast to a computer, or programmable
processor, which, in conjunction with a fast and permanent memory like a DRFM, could
in principle do the necessary processing. But the time needed to execute the large number
of programming instructions necessary to process data makes this far less desirable than
the current design described in this report, and, for the specific problem of counter-

targeting decoy repeaters, largely ineffective.

18

D. FUNCTIONAL DESCRIPTION

SYNTHESIZER

OF THE DIGITAL IMAGE

Figure 9 shows a block diagram of the digital image synthesizer [Ref. 3]. The

antenna receives the radar pulse from a (possibly hostile) search radar. After the down

conversion (not shown), a set of comparators digitizes the phase of the analog signal

producing a stream of digital samples, which are stored in the DRFM. The phase samples

are a digital representation of the phase only. Phase sampling DRFMs have fewer

comparators and permit coherent reconstruction of the original signal using stored

amplitude information [Ref. 4]. The digitized samples are read serially from the DRFM

via the tapped delay line.

BN
%

z

T

Conversion

|+—

Lo

Down
Conversion

Data (signak-phase)

Phase
Sampling

DRFM

DAC

> Decoder
Data (gain & phase) >

Latches

A
PRI achl @, PRI ace
A | 4
i i
H Phase i Phase
| Magnitude : Magnitude
H wr H wr
| 3
- ' —
: LQ H r,Q
: 3 i 3
-onan ———
=y Gain Gain
“Ganw T\ T Gan(A)
Summer

/l

Synthesized Target Image (1,Q)

Figure 9. Block Diagram of the Digital Image Synthesizer (DIS) (From Ref. [3])

The circuit of Figure 9 shows two taps, but this is illustrative, and in principle the
device contains the largest number of taps that the particular application dictates (the
number of major reflective surfaces of the synthesized target). The digital-phase samples
from the DRFM are sequentially read into the taps by clocking. The signals in the
respective taps are delayed with respect to one another by pre-selected amounts dictated
by the delays. For simplicity, the following discussion references the first tap leg only.
However, the function of each leg is identical. The phase signals in the tap pass through a
phase accumulator and an associated look-up-table (contains sine and cosine values for a
2m cycle used in constructing the I & Q components). Although the tap process could
readily calculate cos (¢») and sin (¢»), doing so is less computationally efficient than use
of a look-up-table, and thus would reduce the overall system speed. At the output of the
look-up-table, a selectable gain multiplies the signal by a pre-selected amount. Together,
these blocks constitute a range-bin signal modulator.

The accumulator frequency modulates the signal, traversing the tap leg by phase-
rotation (serrodyne modulation). The phase ¢ of any signal subjected to a linear
frequency modulation, such as a Doppler shift is given by ¢ = (w+ay)t, where @ is signal
angular frequency, ay is the change in frequency due to the modulation, and ¢ is time.
Thus at each point in time the difference in phase between the modulated and
unmodulated signal is ayz. For a digitally-sampled signal, the phase of the nth sample ¢,
= n(w+ay)PRI, where n is an integer counter and PRI is the period at which the signal is
sampled. The phase difference due to the Doppler frequency is n@wzPRI. Thus one can

shift the frequency of a digitally-sampled signal by an amount ®; by rotating each nth

20

phase sample by noyPRI. That is, the frequency of a digitally-sampled signal can be

shifted by incrementing the phase n@PRI of each nth sample by na,PRI.

In summary, the Doppler of a target is typically inferred by sampling target-
echoes (within a single range-bin) at the pulse repetition rate and inspecting these
samples for Doppler-induced phase differences between the echoes. One can simulate a
Doppler shift of ay by repeéting the pulses from a sensor, with each pulse phase shifted
with respect to the next by an amount 0;PRI, where PRI is the pulse repetition interval. A
unique -property of the DIS is its ability to synthesize false targets using chirp signals of
any duration. The number of tap stages is equal to the target range-extent desired for
synthesis.

In operation, the phase accumulator sets ﬁominal values of ay and au’ per
instructions from the DREM controller. A sensor sends a burst of N pulses having a pulse
repetition period of PRI. The phase samples from the first pulse (stored in the DRFM) are
piped to the first tap leg and the accumulator rotates the phase of each sample by an
amount ®;PRI. The resultant phase samples are converted to I and Q components and
scaled by a gain factor A;. In the absence of output from the second tap leg shown, the
complex signal is returned to the DRFM, and thereafter to the digital-to-analog converter
that reconstructs the analog pulse for up-conversion and retransmission.

The waveform of the retransmitted pulse is identical to that of the received pulse,
except that it is a phase rotated by wuPRI. After processing this pulse, the DRFM changes

the phase of the first tap accumulator to 2wsPRI, rotates each phase sample of the second

pulse by 2w,PRI, and, again assuming no output from the second tap, retransmits the

reconstructed pulse. This continues through the N pulses of the burst, with the phase

21

samples of each pulse rotated by an amount noyPRI, where n is pulse number, i.e., n = 1,
2, ..., N. In the a])sence of output from the second tap, the result is a stream of analog
pulses from the antenna that are different in phase from one pulse to the next by w;PRI. A
sensor detecting these echoes would interpret the constant pulse-to-pulse phase shift of
:PRI as a Doppler shift from a single reflector. The second tap accomplishes the same
task by use of a different w; The summer then combines the output of the first and
second taps. The complex signal that the summer returns to the DREFM is the
superposition of the signals exiting the first and second tap legs. This means that for each
n™ pulse of the N pulses, the summer’s output will be the superposition of two copies of
the n™ pulse, delayed with respect to one another by the tap delay, scaled differently by
the gains A;, with one phase rotated by nwPRI, the other by nw'sPRI. A sensor, which
receives the corresponding N analog pulses, will interpret this as having come from two
reflectors located in range-bins separated by the delay with reflective cross sections
respectively proportional to the two gains. Because the pulse-to-pulse phase difference
between these pulses is wsPRI for the range-bin corresponding to the first delay and
o'4PRI for the bin éorresponding to the second delay, the sensor will interpret that the
reflectors in these two range-bins have Doppler frequencies of wy; and g, respectively.
The decoder and latch shown in Figure 9 updates the phase-rotation and gain-
coefficients for the tap legs. The controller is a process computer interfaced with the
DRFM that permits an operator to change these parameters on the fly in real time. In
addition to the phase and gain-coefficients, the number of taps utilized (target extent) can
be changed. Alternatively, the controller can do this automatically. This is particularly

important if wy in any tap leg varies with time. In the example of Figure 8, the aircraft

22

flies directly at the sensor at a constant speed and Doppler shifts the signal by a constant,
positive, amount. The ship, on the other hand, could be rocking back and forth in the
water along the line of sight and thus the Doppler shift corresponding to this motion

would oscillate in time.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

IV. ARCHITECTURE VARIATIONS AND SIMULATION

A. ARCHITECTURE VARIATIONS

Two different implementations of the DIS architecture have been studied. The
major difference between the two implementations is the placement of the time-delay
processor. Advantages and disadvantages of the two approaches are addressed in this
Chapter and are mainly the result of the hardware technologies used. The two different
implementations are referred to as the “original architecture” and the “modified
architecture.”

The “original architecture” described in Chapter III is illustrated in the block
diagram shown in Figure 10. The intercepted chirp signal within the DRFM operating
bandwidth is down converted into its 1,Q components with a corresponding intermediate
frequency that lies within the instantaneous bandwidth of the phase-sampling DRFM
comparator technology. The phase-sampling DRFM digitizes the phase of the LO
components with the sampling period (time between phase samples) corresponding to the
range resolution of the DRFM. The DRFM-phase data is fed serially into the tapped
delay processor with each delay corresponding to the range resolution of the image
synthesizer. The phase data at each tap is processed in a pipelined range-bin signal
processor in order to generate the selected scattering mechanism. As previously

discussed, this is done by continuously rotating the phase nA¢ = nw, PRI , translating the

phase into a complex signal I,Q that is amplitude modulated using Ai. When the complex

I,Q data exits each tap, it is summed with available data from all the other tap processors

25

each clock cycle. The digital sum at each clock cycle is then converted to an analog

signal for up conversion onto the carrier for retransmission.

v Sy

Down LO Up
Conversion Conversion
T =
1 0 { Original !
' Architecture H
! ¢ (n) ¢(n-1) ;
Phase ! Voo Q
Phase p T TR
i 1 1
Sampling i I I 1 | DAC| | DAC
1
: !
A 1 | Range-Bin Range-Bin E
Computer _AJ_¢A "'I', Signal Signal !
Image ——— Processing Processing :
Control |—£__ 4 i
! :
AL] R, N N £ (0]
; Pany : o(n)
! —»{D R E
]

Figure 10. Block Diagram of the Original DIS Architecture

In order to show the equivalence of both architecture variations, we show the
details of the original architecture for the in-phase processing in Figure 11 where E is the

image extent, A¢; is the phase-increment value for the i* tap processor, and A; is the

amplitude modulation. The input phase is ¢(n) and the output is:

I(n)= iA,. cos(p(n—i)+Ag,). 4.1)

26

l

¢(n) ¢(n-1) ¢ (n-E)

Ag,—D A¢, —D A¢p —D
cos() cos() cos()
Ao—é() 4 "'{)5 Ag "‘é
f(!) cee In)

Figure 11. Original DIS Architecture for In-Phase Processing

The “modified architecture” was developed while investigating a move from
field-programmable gate-array (FPGA) technology (Altera’s Max+Plus II) to an
application-specific integrated-circuit (ASIC). A biock diagram of the modified
architecture is illustrated in Figure 12. The modified algorithm enables loading all tap
processors synchronously with the DRFM-phase data. The DRFM-phase data is
processed in paraillel in all tap processors in a pipelined fashion. The results from the taps
are then added togethef by partial sums (serial summation) from one tap to another. The
major difference between the original architecture and the modified architecture is that
the time delay processor is embedded within the summation at the output. For both of the
approaches described above, it is essential that the individual taps be sequentially enabled
during the start-up or initial strobing of the phase data from DRFM into the tapped delay
line. The taps must also be sequentially disabled during shutdown as the phase data
leaves the DIS. This avoids the problem of erroneous data from entering into the
summation during start-up and shutdown. More details concerning the change of

technology is addressed in Chapter VIL

27

Y

T

Down Up
Conversion Lo > Conversion
___________________________________ A A
I] '
© on o) Modfied |
Phase ase : ¢ Architecture ® E
Sampling ' ' 0 1
1]
) i
]]
A 1 | Range-Bin Range-Bin 1 [PAC| |DAC
Computer —'Z;)—’: Signal Signal "
Image [——-% [Processing Processing E
Control ——E-—D{ !
: 1
: 1| @ E
: 1
! » ™\ [1] 71 ;
: D—/] 17] —D= 5
S— o A

Figure 12. Block Diagram of the Modified DIS Architecture

The details for the modified DIS are shown in Figure 13.

¢(n) j
Ay —D a4, —D Agp,—D
cos () cos () cos ()

t —&— « —&®—1,m

Figure 13. Modified DIS Architecture for In-Phase Processing

Proving the correctness of the modified algorithm relative to the original gives the
following expressions:
I (n)= 4, cos(@(n)+ A9,)+ D'[A, cos(9(n)+ A9,)]+---+ D" [A, cos(p(n)+ A,)] (4.2)

28

where D is a delay operator. Rewriting Ip(n) gives:
1, (n)= A, cos(@(n)+ Ad,)+ A cos(@(n—1)+Ag,)++--+ Ay cos(@p(n— N)+Apy,) (4.3)

or
1, ()= 3, 4, cos(pln—i)+ A9, @)
i=0

which is exactly (4.1).
B. SIMULATION OVERVIEW

To evaluate the performance of the architecture and to compare the results of the
hardware implementation, we constructed a Matlab simulation of both the DIS and an
ISAR as shown in Figure 14. Some of the essential features of an ISAR are simulated
including the wideband chirp pulse waveform that is lintercepted by the DIS. The
DRFM/DIS is also simulated. The complex outputs from the DRFM/DIS are presented to
the ISAR signal processing for image generation. Matlab has also been used in several

intermediate steps to compare simulation results with actual and simulated hardware

design results.

Wideband Chirp
ISAR / Signal

Processing v
DRFM

Synthesized DIS
Image with
False Target

Wideband Chirp with
Coherent Modulation

Figure 14. ISAR-DIS Simulation Configuration

29

Matlab is a product from the MathWorks, Inc., and it is an integrated-technical
computing environment that combines numeric computation, advanced graphics and
visualization, and a high-level programming language [Ref. 5]. Matlab includes several
useful functions for:

¢ Data analysis and visualization

¢ Numeric and symbolic computation

¢ Engineering and scientific graphics

e Modeling, simulation, and prototyping

® Programming, application development, and graphical user interface (GUI)

design.

Matlab can be used in a variety of application areas including signal and image
processing, control system design, financial engineering, and medical research. It features
a family of application-specific toolboxes, containing comprehensive collections of
functions for solving particular classes of problems in areas, such as signal processing,
image processing, control system design, neural networks, and more. The current version
of Matlab used in this project is version 5.3.

In FY98, Siew-Yam Yeo developed the original set of codes during his thesis

work at the Naval Postgraduate School [Ref. 6]. This set of codes has been modified to

better serve the purpose of further development in the project. For example, the
“original” code has been modified to deal with more then three taped delay lines. This set
of codes all end with a “...v1.m” extension. Paralle] to the development of the ASIC
hardware design (modified DIS architecture), simulations were developed to emulate the

new design. The new codes are used to verify that the newly-modified architecture is

30

giving the correct results. This set of codes all end with a “...v2.m” extension. Two
additional set of codes has been developed to deal with multiple scatterer per range-bin.
Version 3 (“...v3.m") varies phase modulation coefficients between radar pulses. Version

4 (“...v4.m”) varies both phase and gain modulation coefficients.

C. SIMULATION DETAILS

The different steps of the simulation are easily identified by using numerous
comments within the set of simulation codes (m-files). A description of the steps,
together with some intermediate results is given below in order to visualize the
development process. The flowchart shown in Figure 15 together with Table 1
summarizes the different Matlab files used during the simulation. Important text files are
also listed.

steps m-files plots txt-files

—rrunDISvX.mJ [extract_para_X.mJ

only v.ii and v4
User Inputs ~_guivkm |~ E
; » | sigparl.dat |
Radar Input L> math ostvX.m | [paatxt |

Parameters ‘——*I rawint.txt
Create Transmitted l——» [D

Radar Chirp Pulse ,

Generate DRFM
Phase Data l -
DIS Algorithm | | simhwchkvX.m| [onestexon
l—'.—._—l

IS AR L, r < 1ma'gel;txt

) plothwvX.m]: e
Pulse Compression imageq.txt |

" —EE

Figure 15. Matlab Simulation Flowchart

31

m-files

txt-files

Remarks

runDISvX.m

To execute the simulation

guivX.m

To get user inputs of the false target to be generated

sigparl.dat

Signal parameters of the false target to be generated

extract_para_X.m

Extracts parameters for multiple scatterer per range-bin

mathostvX.m

Simulates the ISAR transmitted pulse
Simulates the DRFM at the DIS location

para.txt

Number of range-bins of the ISAR

Number radar pulses to be processed (integrated)
Target extent

Amplitude settings for each cell

Phase valués representing an increasing/decreasing
Doppler shift

rawint.txt

DRFM-phase data samples

simhwchkvX.m

Simulates the DIS algorithm

cosine.txt

Cosine look-up table, 32 values for one period

sine.txt

Sine look-up table, 32 values for one period

dec2two.m

Matlab function that converts decimal number to

two’s complement binary répresentation

two2dec.m

Matlab function that converts two’s complement binary

representation to decimal number

checkvX.txt

Intermediate results through the DIS algorithm

imagei.txt

Hardware/hardware simulation results (I-channel)

imageq.txt

Hardware/hardware simulation results (Q-channel)

plothwvX.m

Pulse compresses the radar return of the false target
generated by the DIS hardware

Plots the final results for comparison

Table 1. Files Used during the Matlab Simulation

32

A selection of the m-files mentioned in the table above, and some other important
m-files used in this thesis (referred to in later chapters), together with the cosine.txt and
the sine.txt files are attached in Appendix A.

1. User Input

To run the simulation, the user executes the runDISvl.m or the runDISv2.m file
depending on whether the original or the modified architecture is desired (afterward the
files are referred to as “...vX.m”). The runDISvX program is a script file to execute other
script files in a pre-defined order. The user is presented with a graphical user interface
(GUI) of a Range/Doppler map-the Range-Doppler-Amplitude Map Entry Program

guivX.m is shown in Figure 16 (runDISvX.m executes guivX.m).

O RangnsDopplerAmpliute Hlap Eniry Frogrsrn

S ZZDTVICTTINBHR WX 1 K243 GA5 8

Figure 16. The Range-Doppler-Amplitude Map Entry Program

33

In this example the user has specified the following data to generate the false

target using the DIS shown in Table 2.

Target Range Doppler Amplitude |Doppler Remark

Cell Cell Cell Shift

1 1 20 2 0 Tap 0 — 1% Tap
2 2 20 2 1 Tap 1 -2" Tap
3 3 20 2 2 Tap 2 — 3 Tap

Table 2. User Specified Inputs of the False Target

The values, called signal parameters of the false target, are written to an

intermediate file that is called sigparl.dat. Examining the sigparl.dat file for this case

will give the values shown in Table 3. The file only holds the numerical values. The

header of the table has been applied later to explain what the different values relate to.

Range Cell Doppler Cell Amplitude Doppler Shift

1.0000000e+000 2.0000000e+000 2.0000000e+000 0.0000000e+000
2.0000000e+000 2.0000000e+000 2.0000000e+000 1.0000000e+000
3.0000000e+000 2.0000000e+000 2.0000000e+000 2.0000000e+000

Table 3. Contents of the File sigparl.dat

2. Defining the Radar Parameters

The next file to be executed by the runDISvX.m file is mathostvX.m. The
mathostvX.m file represents both the ISAR while generating the transmitted chirp pulse
and the DRFM on the platform where the DIS is located. The radar specific parameters of
the ISAR are coded into vthis program. In this case the radar parameters used is shown in

Table 4.

34

Matlab Equivalent Variable

ISAR Theoretical Parameter Value Version 1 and 2 Version 3 and 4
Uncompressed pulse width, 7 500 ns pw pw
Compressed pulse width, 7. & ns pwc pwc
Pulse repetition frequency, PRF 2kHz prf prf
Pulse repetition interval, PRI 500 ps pri pri
Bandwidth of the chirp pulse, BW 125 MHz bw bw2
Pulse compression rate, K 2.5x10" | mu=2m(bwipw) k
Sampling frequency, f; 125 MHz fs fs
Sampling time step, 8 ns Ts Ts

Table 4. Defined Radar Parameters (file mathostvX.m)

3. Creation of the Intercepted Radar Signal
The signal parameters specified by using the GUI used to create the baseband

complex signal represented by
Sb(t)=r¢ct(%)ejz"(f”PR’+K'z/2) @5)

where f; is the Doppler frequency of the DIS platform intercepting the chirp signal. Note
that this expression .is similar to (2.1) where the parameter K is the chirp slope-rate and T
is the pulsewidth. The Doppler frequency f; must be taken into consideration when
building the received chirp waveform in the DIS simulation. An approximation is used
that assumes a constant phase change due to Doppler within a chirp pulse. This
assumption is valid since the Doppler shift is only tens of hertz compared fo the MHz
chirp bandwidth. The wideband intercepted signal is then phase sampled and the phase is
quantized into 5-bits or 32 different values, representing a phase between 0 and 27

radians. The values used are 0 to 31 as a decimal representation of a 5-bit binary word

35

2 = 32). The DRFM-phase data is written to a text file (rawint.txt) that is read by
simhwchkvX.m. An example of the DRFM-phase data matrix contained in the rawint.txt
file is shown in Table 5. The file only holds the numerical values. The rows of the matrix
represent radar pulses. The columns represent DRFM-phase data samples from a specific

radar pulse at specific sampling times. The variable names used in Matlab are also

shown.

Radar Pulse DRFM-phase Data (intraPulseCnt)

(batchCnt) I {2 13 |4 |5 |6 |7 |8 (9 |10]. |. |. |62
1 0 [0 |0 |0 |O |O |5 |5 (10}15]. |[. |. |10
2 15 [15({15(15|15]15}15]20}20(25]|. |. |. |25
3 25 |25)25|125|125(|25(31|31(4 |9 |. |[. {. |4

4 10 |10|10{10{10(10|1015(15(20]. |. |. [20
64 25 |25)125|31(31(31|31(4 |4 |0 9

Table 5. Contents of the File rawint.txt

The impulse-response waveform used in the ISAR range-compression algorithm
is also computed when executing this file. The amplitude and Doppler frequency-shift
values for each range-Doppler cell are also obtained from the GUI and represent the gain-
and phase-rotation values required for the DIS.

A number of different values are written to another text file (para.txt). The values
are used for simulating the DIS both in Matlab and in the hardware design. The file only
holds the numerical values. These values represent the following information (also
exemplified in Table 6): number of range-bins of the ISAR, number radar pulses the
ISAR is using for processing (integrating) received radar return signals, target extent

(number of target cells/taps used), amplitude settings for each cell translated into a gain

36

value of 1, 2, 4 or 8, and set of phase values representing an increasing/decreasing

Doppler shift due to the motion of the target cell relative to the ISAR

Value | Variable Comment

62 nRangeCell Number of Range Cells (range-bins of the ISAR)

64 nDopplerCell Number of Doppler Cells (Doppler-bins of the ISAR)

3 targetExtent Target Extent

2 gain(1) Gain modulation coefficient, target cell 1

2 gain(2) Gain modulation coefficient, target cell 2

2 gain(3) Gain modulation coefficient, target cell 3

0 phi(1,batchCnt) | Doppler modulation coefficient, target cell 1, 1¥ radar pulse
0 phi(2,batchCnt) | Doppler modulation coefficient, target cell 2, 1% radar pulse
0 phi(3,batchCnt) | Doppler modulation coefficient, target cell 3, 1 radar pulse
0 phi(3,batchCnt) | Doppler modulation coefficient, target cell 1, 3" radar pulse
1 phi(3,batchCnt) | Doppler modulation coefficient, target cell 2, 3" radar pulse
2 phi(3,batchCnt) | Doppler modulation coefficient, target cell 3, 3" radar pulse
0 - | phi(1,batchCnt) | Doppler modulation coefficient, target cell 1, 64™ radar pulse
31 phi(2,batchCnt) | Doppler modulation coefficient, target cell 2, 64" radar pulse
63 phi(3,batchCnt) | Doppler modulation coefficient, target cell 3, 64" radar pulse

Table 6. Contents of the File para.txt

Remark: For Version 4 — Gain modulation coefficients are gain(tap,batchCnt). That is,
the gain modulation coeffiecients are individual for each tapline (tap) and radar pulse

(batchCnt).
The range-Doppler image from the ISAR signal-processing simulation is plotted

in Figure 17 to visualize the effect of the amplitude and the Doppler frequency-shift

values shown in Figure 16.

37

Figure 17. ISAR Range-Doppler Image with (a) No Amplitude or Doppler Frequency

Shift and (b) Amplitude and Doppler Frequency Shift as Shown in Table 2.

Figure 17 (a) represents the ISAR range-Doppler image but contains no amplitude
or Doppler frequency shift. Figure 17 (b) shows the ISAR range-Doppler image with

amplitude and Doppler frequency shift as shown in Table 2.

4. Simulation of the DIS (Original and Modified Architecture)

To simulate the DIS algorithm, the runDISvX program executes the
simhwchkvX.m file, which starts by reading in the values from para.txt. The number of
Doppler cells within the range-Doppler map is used as an index for an outer for-loop in

the program for processing phase data from one radar pulse to the next. The number of

38

range-bins within the range-Doppler map is used as an index for an inner (nested) for-
loop and represents the number of clock pulses it takes to process the DRFM-phase data
from one radar pulse to the next. The target extent represents the number of taps in the
tap delay line. A target cell is also referred to as a tap in the DIS algorithm. The number
of target cells specified in the GUI is therefore equivalent to the number of taps used to
create a false target. The gain value selected for each tap along with the corresponding
Doppler frequency shift are recorded and relate to the synthesized motion of each target -
cell.

Next the DRFM-phase data from the rawint.txt file is read. The program also
loads data from cosine.txt and sine.txt. These files hold data used as the look-up table
(LUT) and contain one period of a cosine waveform and a sine waveform (32 values) as

shown in Figure 18.

Figure 18. Cosine and Sine Look-Up Table (LUT)

Recall that the LUT translates the input phase (from the phase accumulator) into a
complex signal. Using the for-loops, the DIS algorithm modulates the phase data to

compute the signal that represents the return signal corresponding to the desired false

39

target. The original and the modified architecture calculate the modulation and perform
the computation in different ways as described earlier.

In the original DIS architecture the DRFM-phase data propagates serially from
tap to tap during one clock-pulse time delay. The phase data at each tap is then modulated
and the results from all taps are summed together to form the output. In the modified DIS
architecture, the DRFM-phase data is presented to all the taps synchronously. The phase
data in this case, is processed in parallel in all taps. The delay is implemented during
summation of the results from each tap. The individual taps are enabled during the start-
up and disabled during shutdown according to the reasons described earlier. |

In the Matlab simulation several sets of DRFM-phase data representing samples
from a number of radar pulses are processed directly one after another. In an actual
implementation, the set of DRFM-phase data will of course be separated in time by one
PRI.

S. Range and Azimuth Compression

At the receiver side of the ISAR, as part of the signal processing, the radar return
signals containing the generated false target are compressed both in range and azimuth.

First range compression is done. Range compression is based on correlating the
received signal, S(n) with a pre-stored reference waveform (also refer back to Chapter II,

Digital range compression and (2.6)):

h(n) = \/i;A:e"f"K (nan)? (4.6)

The FFT is performed on the received signal. The resulting spectrum is multiplied by the

complex conjugate of the FFT of the reference waveform (4.6) created in the

40

o

mathostvX.m file. The procedure is shown in Figure 19. An inverse FFT (IFFT) is then

performed to obtain the range-bin profiles for each PRI

EFT FET o Complex
Range
Profile

FFT

h(n)= ’A e'm«nm)z
T

Figure 19. Range Compression

Sin)

For the azimuth compression for a single range-bin, the complex range samples
are taken from 2" pulses and integrated into an FFT (also refer back to Chapter II,

Azimuth compression process). The magnitude of the FFT output is the Doppler profile

for that particular range-bin as shown in Figure 20.

Wideband =
Chirp PRI

Doppler
Profile

Figure 20. Azimuth Compression

The received signal after compression can be visualized as a contour plot as

shown in Figure 21 and is referred to in the second sub-plot below as the Matlab

Simulation plot (Amplitude and Doppler Modulated Range-Doppler Map).
41

Figure 21. ISAR Range-Doppler Images Showing (a) the Unmodulated DIS Output

and (b) the Modulated DIS Output (Matlab Simulation)

6. Plot and Compare Results

The last file to be executed by the runDISvX program is the plothwvX.m. This
file obtains the I- and Q-values of the hardware simulation from the imagei.txt and the
imageq.txt file (written by Altera/Visual Basic FPGA hardware program). Range and
azimuth pulse compression is performed using th;: same procedure as described for the
Matlab simulation results. The results are plotted for comparison. The DIS simulation
results are shown in the first sub-plot of Figure 22. In the second sub-plot, the hardware

or hardware simulation result are shown when data is available. A full comparison is

42

shown in the following chapters when the different hardware implementation techniques

are described.

Hardware Result

*
t
Ed
]
i
€

i - -

Figure 22. Matlab DIS Simulation vs. Hardware Result

To better visualize the image created by the DIS (the generated false target seen
by the ISAR), Matlab uses the same data as before to construct a 3-D mesh surface plot,
as shown in Figure 23. The first sub-plot shows the result of .the Matlab DIS simulation.
The second sub-plot shows the hardware (or hardware simulation) result. Finally, the
third sub-plot shows the difference between the Matlab simulation and the hardware

results.

43

Difference
{Matlab Simulation Result — Hardware Result)

Figure 23. Matlab Simulation Result vs. Hardware Result and the Difference

To better study the results from the DIS simulation, the ISAR image of the false
target is exposed, as shown in Figure 24. The user defined target cells, after DIS
modulation and ISAR signal processing (range and azimuth compression) stand out

clearly from the background in the plot.

. Cross'Range Cells

Figure 24. .Matlab Simulation Result (3-D Mesh Surface Plot)

7. Original and Modified DIS Comparison

To ensure that both the original and modified algorithms produce the same result,
a series of comparisons for different test cases were conducted. The example below
shows the ISAR output when using the different algorithms. It also shows the ability to
modulate the extent of the false target using a large number of taps. In the test case below
32 taps are used. Figure 25 shows the input target entry. Table 7 shows the amplitude and

Doppler offset values selected for the 32 range-bin false target to be synthesized.

45

Figure 25. The Range-Doppler-Amplitude Map Entry Program

Target Range Doppler Amplitude |Doppler Remark

Cell Cell Cell Shift

1 1 20 2 -8 Tap 0 — 1™ Tap
2 2 20 2 -8 Tap 1 —2" Tap
3 3 20 2 -7 Tap 2 — 3™ Tap
4 4 20 2 -7 Tap 3 — 4™ Tap
5 5 20 2 -6 Tap 4 — 5" Tap
6 6 20 2 -6 Tap 5 — 6™ Tap
7 7 20 3 -5 Tap 6 — 7" Tap
8 8 20 3 -5 Tap 7 — 8" Tap
9 9 20 3 -4 Tap 8 - 9" Tap
10 10 20 3 -4 Tap 9 — 10" Tap

46

Target Range Doppler Amplitude |Doppler Remark

Cell Cell Cell Shift |
11 1 20 4 -3 Tap 10 — 11® Tap
12 12 20 4 -3 Tap 11 — 12" Tap
13 13 20 4 2 Tap 12 — 13" Tap
14 14 20 4 2 Tap 13 — 14" Tap
15 15 20 3 -1 Tap 14 — 15" Tap
16 16 20 3 -1 Tap 15 - 16™ Tap
17 17 20 2 0 Tap 16 — 17" Tap
18 18 20 2 0 Tap 17 — 18" Tap
19 19 20 2 1 Tap 18 — 19® Tap
20 20 20 2 1 Tap 19 — 20® Tap
21 21 20 1 2 Tap 20 — 21¥ Tap
22 22 20 1 2 Tap 21 — 22 Tap
23 23 20 1 3 Tap 22 — 23" Tap
24 24 20 1 3 Tap 23 — 24" Tap
25 25 20 1 4 Tap 24 — 25" Tap
26 26 20 1 4 Tap 25 — 26" Tap
27 27 20 1 5 Tap 26 — 27" Tap
28 28 20 1 5 Tap 27 — 28" Tap
29 29 20 2 6 Tap 28 — 29" Tap
30 30 20 2 6 Tap 29 — 30™ Tap
31 31 20 2 7 Tap 30 - 31% Tap
32 32 20 2 7 Tap 31 — 32% Tap

Table 7. Amplitude and Doppler Offsets Selected for 32 Range-Bin False Target

As observed in Figure 26 and Figure 27, the two different algorithms perform the

same result, which also has been proven in the previous chapter.

47

¥

e Ll
1
ol -

1
¥
1

1
1

T e e o o e nbon . o

- e T - e he e o

i
;

e

e

e = am e e e s - e e e . -

pomm

'

A e R

e g - g

b o

- o oo e o o e v

e

——— -l -

1
1

1
1

e it

[
1

- -y —

T

¥

é.c::‘.""“"-ﬂ

- -

al vs. Modified DIS Algorithm Simulation Results

.

gin

Figure 26. Ori

ifference

thm Simulation Results and the D

inal vs. Modified DIS Algori

ng

Figure 27. O

48

8. Multiple Scatterer Per Range-Bin

Up to this point, we have only éonsidered one single scatterer per range-bin. The
DIS mustbe able to deal with one more dimension. A true target will generate several
radar returns from many different scatterers within the size of one single range-bin' of the
ISAR. The radar return in one range-bin can be treated as a sum of the individual
scatterers radar-return signals due to superposition. The different scatterers will modulate
the incident radar signal with a different gain and a different Doppler depending on
factors such as shape, size, material, angle and relative motion.

Finding the cofresponding amplitude values (gain modulation) and phase values
(phase modulation) at a certain timq interval and using these values to modulate the
DRFM-phase samples in the DIS would then represent a combined radar-return signal for
one entire range-bin. For this, the DIS must be able to process variable gain and phase
modulation coefficients between radar pulses. This will also be addressed in further detail
in later chapters where different hardware implementation techniques are discussed. The
latest developed Matlab codes (version 3 and 4) can deal with this complex situation. The
parameters (gain and phase modulation coefficients) must first be determined for the
shape and motion of the false target to be generated. This has been done manually by
mapping out the shape and specifying Doppler frequencies to each scatterer.

To illustrate the procedure, consider a simple “V” shape of a small set of
scatterers. Each individual scatterer can be plotted in a range-Doppler map, where the
different range-bins are on the x-axis, and the different Doppler-bins are on the y-axis.
For this example, nine different scatterers were used, all with the same gain. The

scatterers were assigned different initial Doppler frequencies representing differences in

49

relative motion to the ISAR. Some of the scatterers were also located in the same range-
bin. Figure 28 shows to the left a sketch of the initial setup of the shape of the false target
to be generated by the DIS. In the 1™ range-bin there is only one scatterer located with
zero Doppler (no relative motion to the ISAR). In the 2™ to the 4% range-bins, there are
two scatterers per range-bin, each with different Doppler (negative or positive). Finally,
for the 5™ and the 6% range-bins, there are again only one scatterer per range-bin. The
individual ~ Doppler frequencies were specified in a Matlab script file
(extract_para_VcaseX.m) and running the file produced a set of gain- and phase-
modulation coefficients that were then used as inputs to the DIS. The Matlab simulation’

result can be seen to the right in Figure 28 below.

1T 2 2 2 1 1 #ofscatterers

A4 A
3 ©
2 oy
£
@ ks
2
g a
(o]
0
D
5 ,@
123458678910
|
Range-Bin Range
Setup Simulation Result

Figure 28. DIS V-Case: Setup and Simulation Result

The simulation results represent the modulated ISAR-return signals using 64 radar
pulses, received by the ISAR and after performing range and azimuth pulse compression.

The individual scatterers can clearly be identified (the bright spots) in the simulated

50

ISAR image of the false target. The following section presents si:thu}ation results of a

more realistic false target, consisting of several scatterers per range-bins.

D. SIMULATION RESULTS

To verify correctness of the concept of the DIS algorithm, a set of larger scale
simulations has also been conducted. The goal was to be able to produce a realistic ISAR
image of a target, similar to a real ISAR image.

The ISAR Section of the Radar Analysis Branch at the Naval Research
Laboratory (NRL) works on developing advanced algorithms and processing systems for
ISAR [Ref. 7]. The picture shown below in Figure 29 is a radar image generated‘ using

ISAR imaging.

Figure 29. ISAR Image (From Ref. [7])

This image was taken by the P-3 aircraft (Figure 30). It is the image of the ship, USS

Crockett, which is pictured in Figure 31.

51

Figure 30. Photo of a P-3 Aircraft (From Ref. 7D

Figure 31. Photo of USS Crockett (From Ref. [7])

The ISAR image is a two-dimensional representation of the target, with the
resolution in the horizontal dimension determined by the short pulse characteristic of the
radar and the vertical dimension by the Doppler of the radar returns.

The radar used in the P-3 aircraft is an AN/APS-137. The APS-137 family of
radars has consistently demonstrated outstanding performance in anti-submarine warfare
(ASW) and anti-surface warfare (ASuW). Current operational capabilities include long-
range surface search and target tracking, periscope detection in high sea states, ship
imaging and classification using ISAR, and SAR for overland surveillance, ground
mapping, and targeting. The radar system is produced by Raytheon and is shown in

Figure 32 [Ref. 8].

52

Figure 32. AN/APS-137B(V)5 Radar System (From Ref. [8])

In order to create a false target that looks similar to the NRL ISAR image of the
USS Crockett, some simplifications had to be done, due to the complexity of a real target
(i.e. the number of scatterers, RCS of each individual scatterer, and unknown exact radar
parameters).

First, the necessary phase and gain modulation parameters of the false target had
to be generated. A simplified range-Doppler map of the target is shown in Figure 33. The

number of individual scatterers manually specified in range and Doppler was 182.

Bl sttt
i
+

Figure 33. Ship Case-Simulation Setup in Matlab

Only 32 taps were used to represent the full length of the target, due to the limitations in

the developing of the hardware equivalent circuit, and also to accelerate the simulation

53

time. The phase and gain-coefficients were thereafter extracted in a correct format by a
Matlab script file (extract_para_ShipX.m). Most of the simulation parameters were kept
the same as earlier, i.e. 62 DRFM-phase data were captured for each radar pulse. A series
of seven different simulations was the conducted representing different Doppler
resolutions of the counter-targeted ISAR (integration of 64, 128, 256, 512, 1024, 2048,
and 4096 radar pulses respectively).

The results are shown in the following set of figures (Figure 34). The true ISAR
image has of course a much higher resolution than the Matlab simulated images, which is
best observed in range. The ISAR image is also a final image for the end user. That is, the
radar-return signals have not only been signal processed as a radar signal, but various
filtering and image enhancement techniques have also been applied. The Matlab
simulation images result from only pure signal processing because of pulse compression.
No additional filtering and image enhancements have been used.

Table 8 explains the differences of the nine sub-figures shown in Figure 34. The
number of radar pulses referred to relates to how many radar pulses were used for the

ISAR-image integration for that specific simulation. Seven different simulation results

are shown.
True ISAR image Simulation setup 64 radar pulses
128 radar pulses 256 radar pulses 512 radar pulses
1024 radar pulses 2048 radar pulses 4096 radar pulses

Table 8. True ISAR Image, Simulation Setup, and Seven Different Simulations

54

(a) True ISAR Image (b) Simulation Setup (c) 64 Radar Pulses

(d) 128 Radar Pulses (e) 256 Radar Pulses (f) 512 Radar Pulses

(g) 1024 Radar Pulses (h) 2048 Radar Pulses (i) 4096 Radar Pulses

Figure 34. True ISAR Image, Simulation Setup, and Seven Different Simulations

This test case was developed to visualize the expected results of the DIS. The goal
was to create a realistic image of a false target, though limiting the scatterers to a

relatively small number. Other limitations were precision and dynamic range of the phase

55

and gain modulation coefficients used in the current design. In spite of that, the
simulation results show that creating relative realistic false targets using a Digital Image
Synthesizer as described is possible.

An additional remark is that the simulated DIS refers to a 5-bit phase sampling
DRFM. The phase-modulation coefficients are 4-bit binary words, and the gain
modulation coefficients are only 2-bit binary words. The final outputs (I- and Q-channel)
consist of a 16-bit two’s complement binary word respectively. A set of different tools
(Matlab script files and function calls) has been developed for later use in order to further
investigate tradeoffs in number of bits used throughout the architecture, especially for the
final stages of adders and for representing the final output words. An example of how to

use these files and function calls are presented in Appendix A.

56

V. DIS USING FIELD PROGRAMMABLE GATE ARRAYS

A. INTRODUCTION

This chapter discusses the hardware implementation of the DIS by using FPGA
technology. The hardware design is captured using the Altera Multiple Array Matrix
Programmable Logic User System or Max+Plus II software version 9.21 (the project was
started in 1998 using version 8.3). Max+Plus II is the design environment for Altera
Programmable Logic Devices (PLD). A brief description of the Max+Plus II software is
given below followed by a short introduction to Field Programmable Logic Devices
(FPLDs) [Ref. 9]. In particular, FPGAs, specifically the Altera 10K50 family is
described. Later sections of this Chapter describe each of the modules of the DIS
hardware design, starting from the top-level-hierarchy and progressing down. The final

section addresses the FPGA results and the comparison to Matlab simulations.
B. THE ALTERA MAX+PLUS II ENVIRONMENT

The Max+Plus II software provides a multi-platform, architecture-independent
design environment that easily adapts to specific design needs. The Max+Plus II
development software is a fu]ly;integrated programmable logic-design environment. This
tool supports all Altera programmable device families and works in both PC and UNIX
environments. The Max+Plus II allows seamless integration with industry-standard

design entry, synthesis, and verification tools.

57

Figure 35 shows a block diagram of the Altera Max+Plus II environment.
Max+Plus II both reads and writes:
® Altera Hardware Description Language (AHDL) files and standard EDIF
netlist files
e Verilog HDL files
e VHDL files

e OrCAD schematic files

m MAX+PLUS Il Block Diagram

Design Entry ' Project Processing
MAX+PLUS Il MAX+PLUS 11 MAX+PLUS Il Compiler
TextEditor GraphicEditor - -
Compiler Netlist .
Exbtractor (ind. all Database Loglq

MAX+PLUS Il MAX+PLUS I netist readers) Buider | | Syrthesizer

Waveform Editor Symbol Editor
Design Doctor Partitioner Fitter
MAX+PLUS I
Floorplan Editor Timing, Functional, | |EDIFVerilog/
—L | of Linked VHDL Nellist | | AssemHber
/ \ SNF Extractor Whiters
5 MAX+PLUS I :
Message
; ' Processor & |
" Project Verification \ Hierarchy /" Device Programming
Display
MAX+PLUS Il MAX+PLUS [} MAX+PLUS Il
Simulater Waveform Editor Programmer
MAX+PLUS Il
Timing Analyzer

Figure 35. Altera Max+Plus II Environment (From Ref. [10])

In addition, Max+Plus IT reads Xilinx netlist files and writes Standard Delay
Format (SDF) files for interface to other industry-standard CAE software. The Max+Plus

IT message processor handles the different features like design entry, project processing,

58

project verification and device programming. An overview of the Max+Plus II compiler
interface is shown in Figure 36. The hierarchy display is a convenient way to switch

between the different parts of the program and shows a hierarchy tree with branches, that

represents the sub-designs.

Design Verification
MAX+PLUS 1l Simulator
MAX+PLUS 1l Waveform Editor
MAX+PLUS 1l Timing Analyzer
Other Industry-Standard
') CAE Design Verification Tools

" Design Entry
~ MAX+PLUS i Graphic Editor
MAX+PLUS i Symbol Editor
MAX+PLUS 1} Text Editor
MAX+PLUS H Waveform Editor
MAX+PLUS U Floorplan Editor
AHDL

MAX+PLUS 1l
Compiler

VHDL

Verilog HDL

Other Industry-Standard])

CAE Design Entry Tools Device Programming
MAX+PLUS il Programmer
Data 1/0
Other Industry-Standard
Programmers

Figure 36. Max+Plus II Design Environment (From Ref. [11])

The complete Max+Plus II system includes 11 fully integrated applications that
take the designer through every step of creating a design. A logic design, including all

sub-designs, is called a “project” in Max+Plus II. The main applications are summarized

in Table 9.

59

Application Function

Hierarchy Display | For displaying the current hierarchy of files as a hierarchy tree
with branches that represents sub designs.

Graphic Editor For entering a schematic logic design. Altera provides primitives,
megafunctions, and macrofunctions, which serve as basic circuit-
building blocks.

Symbol Editor For adding existing symbol and creating new ones.

Text Editor For creating and editing text-based logic design files written in
hardware description language (AHDL, VHDL, Verilog HDL).

Application Function

Waveform Editor | For entering test vectors and viewing simulation results.

Floor-Plan Editor | For assigning logic to physical device pins and logic cell resources
in a graphic environment.

Compiler For processing project, including checking f(;r errors, synthesizing
the logic, fitting the project into one or more Altera devices.

Simulator For testing the logical operation and internal timing of logic
circuits. The simulator supports functional simulations, timing
simulations, and linked multi-device simulation.

Timing Analyzer For analyzing the performance of the logic circuits after they have
been synthesized and optimized by the compiler.

Programmer For programming, configuring, verifying, examining and testing

Altera's devices.

Message Processor

For displaying warning and information messages on the status of
the project. It also locates the source of a message automatically in

the original design files.

Table 9. Max+Plus II Suite of Applications and Functions (From Ref. [10])

C. FPGA TECHNOLOGY AND THE ALTERA 10KS50

Different devices are available to capture the dcveloped FPGA design file. The
FLEX 10K50 chip (FLEX = flexible logic element matrix architecture) for example is a
static random access memory (RAM) with typically 70,000 gates (logic & RAM). The
Flex 10K50 device contains an embedded array and a logic array. The logic array
performs the same function as a sea of gates in a gate array. The FLEX 10K50 is used to
implement general logic, such as counters, adders, state machines, and multiplexers. The
embedded array is used to implement memory and specialized logic functions. Table 10
describes the features and benefits of using FPGAs and Table 11 the features of the

FLEX 10K50.

Feature Benefit

200 MHz and above System Performance | Supports today's most demanding speed

requirements

Density from 10,000 to over 1.5 Million Addresses 90% of all gate array design

Gates starts

Embedded Array Blocks Efficient RAM, ROM, FIFO and other
high-performance mega-functions

Multi-Volt I/O Operation Ideal for mixed-voltage systems

5.0V, 3.3V, 2.5V, and 1.8V Device Supports multiple operating voltages

Options

PCI Compliance Meets all specifications of the PCI local bus

Table 10. FLEX 10K Highlights (From Ref. [11])

The Altera FLEX 10K devices are configured at system power-up with data
stored in an Altera serial configuration EPROM device or provided by a system

controller. A picture of the FLEX 10K50 is shown in Figure 37.
61 ’

EPFIOKI0GC03—4

R9822

Figure 37. Altera FLEX 10K50 (From Ref. [11]).

A microprocessor interface permits the microprocessor to configure the FLEX 10K
devices serially, in parallel, and synchronously or asynchronously [Ref. 11].

The features of the FLEX 10K50 device are as shown in Table 11:

Features FLEX 10K50
System Performance 115 MHz
Typical Gates (logic & RAM) 50,000

Logic Elements 2,880

Logic Array Blocks 360
Embedded Array Blocks 10

Total RAM Bits 20,480
Flip-Flops 3,184
Maximum User I/O Pins 310

Table 11. Altera FLEX 10K50 Device Features from [11]

62

D. DIS ARCHITECTURE USING FPGA

1. The Concept Demonstrator
A concept demonstrator of the DIS architecture has been developed in Field-
Programmable Gate-Array (FPGA) technology. The concept demonstrator comprises
three parts:
e Matlab simulations of the ISAR signal processing architecture (described in
Chapter IV)

e Computer board containing hardware design using an Altera FPGA device
(FLEX 10K50) |

e A Visual Basic program (ﬂextgst.vbp) to access the Altera FPGA computer
board and download the image-formation parameters and raw data and to
upload from the board processed data. The data gathered from the board are
stored in files that are in turn read by plothwvX.m for post-processing and
display for comparison.

The DIS and its interface with the host computer are shown in Figure 38 as a
block- and host-interface diagram. The host computer is an ordinary personal computer
(PC). The DIS hardware is a FPGA (Altera 10K50 FPGA chip) mounted on a Naval
Research Laboratory (NRL) custom designed PC I/O board. The various modules for the

DIS are described below.

63

Host (PC) Customized Designed FPGA Computer Board (DIS)

Setup GUI Tap0 Tap1 Tap 2
' 5 ‘
Signal |) :% Delay Delay Delay
Generator | |
==
Prm';s. NE o PhaseAdder | |1 Phase Adder | [Phase Adder
ng i g
Paramet vElS ‘
. Look-Up Table | | | | Look-Up Table | | | | Look-Up Table
ge
Compression d': &_‘ y < 3 y < [Y
(|| T 9 [P Y [Hy Sy
Compression
I YVYYV rlﬁ
Surmmer
Display Q

Figure 38. Block Diagram and Host-Interface Diagram of the DIS

a. Host (PC)

Setup GUI: The setup as most of the blocks of the host refers back to the
Matlab code discussed in Chapter IV. In the GUI the user specifies the parameters for the
false target to be generated.

Signal Generator: The DRFM-phase data samples are produced within
this block and printed to a text file. This text file (rawint.txt) is used both in the Matlab
simulation file and the Visual Basic program running the FPGA computer board.

Processing Parameters: The processing parameters of the specified false
target consist of a phase-increment/decrement corresponding to the selected Doppler shift

and the gain-coefficients representing the amplitude modulation.

Range and Azimuth compression: These parts represent basic signal
processing functions in the ISAR. Pulse compression is performed on the radar return
signal from the false target generated by the FPGA DIS.

Display: After processing, the signals will be presented to the user as an
image. In this case, it will be done by a series of plots using Matlab (as described in
Chapter 4).

b. FPGA DIS

Buffers: “Buffer 1 is for storage of DRFM-phase data samples to be fed
into the tapped delay lines. “Buffer 2” is for storage of modulation parameters, which are
computed and updated by the host. These include parameters for target extent, amplitude
modulation and Doppier shift. “Buffer 3” is for storing the outputs of the DIS (modulated
signals).

Tap 0 to 2: Three tapped-delay lines have been implemented using the
FPGA technology in order to study the trgde-offs involved. Each tap consists of a delay
element, implemented in hardware using a cascaded chain of flip-flops. The phase adder
together with the look-up table provides a Doppler modulated complex signal. The gain
modules provide amplitude modulation to the signal, represented by the triangular
symbols connected to the outputs of the look-up tables.

Summer: The summer adds outputs from I- and Q-channels separately.
The addition is accomplished by first taking a partial sum of the outputs from two last

taps and then as an additional step, adding this result to the output of the first tap.

65

c. FPGA DIS Hardware

The hardware used for the DIS implementation and its interface with the
host computer is shown in Figure 39 and Figure 40. Figure 39 shows a photo of the host

computer, a PII 300 MHz with 128 MB RAM.

Figure 39. Picture of the Concept Demonstrator—Host (PC) with FPGA Board (DIS)

Figure 40 shows the DIS hardware consisting of a FPGA (Altera 10K50 FPGA
chip) mounted on a Naval Research Laboratory (NRL) custom-designed computer board.
It can be seen inserted in the lower slot of the computer. The Altera 10K50 FPGA chip is

the large device in the center of the board.

66

Figure 40. Picture of the Customized FPGA Board Used for the DIS Prototype

d. Processing DRFM-Phase Data

Processing of DRFM-phase data samples by the three-tap original DIS
architecture can be visualized as follows. For each received radar chirp pulse, a set of
phase samples will be provided by the DRFM. At startup, valid output data consists of
only the output from the first tap (Tap 0). At the next clock cycle valid data will be the
sum of processed data from Tap 0 and Tap 1. At the third clock cycle, the output will be
the sum of processed data from all three taps. At the end of the pulse, the taps are
shutdown in reverse order while the phase data is propagating through the delays. An
example of 64 radar pulses and 62 DRFM-phase data samples (range-bins) per radar

pulse are summarized in Table 12.

67

Radar |DRFM (Clk |Tap 0 Tap 1 Tap 2 Result

Pulse | Data

1 D, 0 PyDy) |0 0 Py(Dy)

1 D, PuD2) [Poa(Dy) [0 Po(D2) + Pn+1(Dy)

1 D; 2 Py(D3) |Pui(D2) |Poa(D1) |Pu(Ds) + Pov1(D2) + Pria(Dy)

1 D |61 |Pu(De2) |Pu+1(De1) |Pus2(Dso) |Pu(Ds2) + Povi(Ds1) + Pas2(Deo)

1 - 62 |0 Pp.1(De2) | Pri2(De1) Pr.1(De2) + Pns2(De1)

1 - 63 0 0 Pp2(De2) Ppi2(Ds2)
D, 64 |PyD;) |0 0 Pu(Dy)

2 D, 65 - |Pu(D2) |Pua(Dy) |0 Py(D2) + Pus1(Dy)

2 D; 66 |Pu(D3) [Pui(D2) (Pua(D1) [Pu(Ds) + Poyi(D2) + Poia(Dy)

64 Ds2 |4093 |Pu(De2) |Pnri(De1) |Pus2(Dso) |Pa(De2) + Por1i(Ds1) + Prs2(Deo)

64 - 4094 |0 Po1(De2) | Pov2(De1) Pu1(De2) + Pos2(De1)

64 - 4095 |0 0 Pox(De2) | Pr.2(De2)

Table 12. Correct Processing of DRFM Samples (Original DIS Architecture)

Remarks for Table 12 (notations and descriptions):

e Radar Pulse — Represents one radar pulse. The number of radar pulses

represents the number of Doppler cells for the ISAR, in this case 64.

¢ DRFM-phase Data — 62 DRFM-phase samples per radar pulse in this case

e Clk — Clock pulse for the DIS

e Tap n- Output of the n™ tap

e Tap n+1 — Output of the (n+1) tap

68

e Tap n+2 — Output of the (n+2) tap (the last tap in this example)

e Result - The output from the DIS

e P...(Dy) — Processed phase data in a tap available as valid output

The processing of DRFM-phase data in the three taps that has been

implemented using FPGA technology is shown in Table 13. Noted that the
implementation of the DIS algorithm using FPGAs does not perform a correct startup and
shutdown of the individual taps when a set of DRFM samples is processed. Instead a data
value of zero is processed through the tap and produces an incorrect output due to the
cosine look-up table (cos(0) = 1). This adds an error at the beginning and trailing edges of

the pulse compared with the Matlab simulation that follows the original DIS algorithm.

69

Radar (IDRFM |CIk |Tapn Tapn+l |Tapn+2 |Result

Pulse | Data

1 D, 0 PuD1) |Pu1(0) [Pui2(0) [Po(Di) + Pre1(0) + Ppia(0)

1 D, 1 Po(D2) |Paet(D1) [Pus2(0) [Po(D2) + Pps1(D1) + Puin(0)

1 D; 2 Py(D3) |Poi(D2) |Pui2(D1) |Po(Ds) + Poii(D2) + Posa(Dy)

1 Dz |61 [PuDg2) |Pue1(De1) |Prs2(Doo) | Pa(De2) + Prs1(Ds1) + PasoDeo)
1 0 62 [Py(0) Pui1(De2) |Pos2(Ds1) | Pu(0) + Prs1(De2) + Pos2(De1)
1 0 63 |Py(0) Pp1(0) | Puea(Dg2) Py(0) + Pu1(0) + Poy2(Ds2)
1 0 64 | Py(0) Puii(0) [Pni2(0) Pu(0) + Pns1(0) + Ppy2(0)
2 D, 64 |Pu(D1) |Pu1(0) |Pu2(0) |Py(Dy) + Ppi1(0) + Ppia(0)

2 D, 65 |PuD2) |Pui(D1) |Pw2(0) |Pu(D2) + Poui(D1) + Pria(0)

2 Ds 66 [Py(D3) [Pui(D2) [PuaD1) [Pa(Ds) + Puii(D2) + Pova(Dy)
64 |Ds; [4096 (Pu(De2) |Pus1(De1) |Par2(De0) |Po(Ds2) + Par1(De1) + Pusa(Deo)
64 |0 4097 | Py(0) Po1(Dg2) |Pus2(De1) | Pu(0) + Povi(De2) + Pri2(De1)
64 |0 4098 [Py(0) Ppi1(0) | Pni2(De2) Pi(0) + Pp.1(0) + Prsa(De2)
64 4159 (Pu(0) Puii(0) |Pns2(0) P1(0) + Pn+1(0) + Pyi2(0)

Table 13. Processing of DRFM Samples Using FPGAs (Original DIS Architecture)

Remarks for Table 13 (notations and descriptions):

Radar Pulse — Represents one radar pulse. The number of radar pulses

represents the number of Doppler cells for the ISAR, in this case 64.

Clk — Clock pulse for the DIS

Tap n - Output of the n™ tap

70

DRFM-phase Data — 62 DRFM-phase samples per radar pulse in this case

e Tap nfl — Output of the (n+1) tap

e Tap n+2 — Output of the (n+2) tap (the last tap in this example)

o Result — The output from the DIS

o P...(Dy) — Processed phase data sample in a tap available as valid output

e P...(0) - Processed “0” in a tap available as output

2. FPGA DIS Schematic

a. Top-Level FPGA Hierarchy
" The top-level hierarchy of the design using FPGAs is shown in Figure 41.

The purpose of this figure is to visualize the Altera environment at the top-level of this
architecture. The bottom left hand block is the I/O-decode and Built-in-Test (BIT) block.
The purpose of the /O decode block is to provide up to 256 addressable “internal”
address spaces for reading and writing. The other blocks have direct correspondence to
the other modules in the DIS:

e Tap-Delay Line (delay.gdf)

Doppler Modulation Coefficient Latch (phi.gdf)

e Phase Summer (ph_acc.gdf)

e Look-Up-Table (lut.gdf)

e Gain Modulation Coefficient Latch (gain.gdf)

e Gain Modulator (newgainl.gdf, shift0.gdf, shift1.gdf, shift2.gdf, mux2.gdf)
e Output Summer (out_summer.gdf)

Each of these modules is described in further detail below.

71

Plex 10K80 Output Pins '

Dual Flox 10K50 Template

LR R

Plesc 10030 Input Plas

T

e
| B

Figure 41. Top-level FPGA Hierarchy of the DIS (simple.gdf)

72

b. Tap-Delay Line

The tap-delay line schematic with 3 tap delay lines is shown in Figure 42.
The tap-delay lines are composed of a chain of D-flip-flops and occupy four internal
addresses, 0x30, 0x31, 0x32 and 0x33. The meaning of the data values written to these

locations is described in Table 14 below.

Internal Address (in hex) Function

0x30 Write “1” to reset tap-delay line, “0”
otherwise

0x31 Write any value to this address to cause a

propagation of the values down the delay

line

0x32 Write the new DRFM value to the first tap
of the delay line

0x33 Unused

Table 14. Internal Address Usage in the Tap Delay Line

Updating the tap-delay line is a 2-stage process. This is accomplished by
writing any value into address 0x31 (to effect propagation) followed by writing a new

value into address 0x32 (to load in a new value at the first tap of the delay line).

73

Base addr of modnis =
Base addr of beard + this constant

LPM_CVALQE=H56"
M_WIDTH=g :

lof4 ! R 13
1 1ADDRL7?..©] ROL3.. o) 0
o:2] : Wi{3..01
IBRASEL?. . 2] WRI 3. . O ei————
:_probe
ino rROBE—
198 :

Figure 42. Schematic of the Tap-Delay Line (delay.gdf)

74

c. Doppler Modulation Coefficient Latch

The phase-coefficient latch (for Doppler modulation) is comprised of a

1-of-4 decoding block and a set of flip-flops as shown in Figure 43.

Base addr of module x
Base addr of beard + this constant
e, APMLMABTHES
gLF‘M_CONSTANT :

! Tievey result]] | BaseAddr7..0]
i H

IRD

1UR

I1ADDRILT. . O] RRL3. . ©

rfz..0] :
BaseAddr{7..2] -
lBeAsSEC?. .23 URE2..®

Rd0

Phi Latch
“b Dﬂa
Wrg :
o Data
wrt N
wez :
wrs H
 Rg3.01
TWIS.0]
prebs

Figure 43. Schematic of the Phase-Coefficient Latch for Doppler Modulation (phi.gdf)

75

d. Phase Accumulator

The phase accumulator schematic is shown in Figure 44 (one for each
tap). The inputs to the accumulator are the 5-bit DRFM-phase samples (the values from
the tap-delay line) and the latched 5-bit phase coefficients. Furthermore, the output bit-
width matches the input bit-width (the carry-bits are discarded) representing a modulus
addition operation (which is desired). Due to truncation of values larger than five bits, the
phase values above 2 are folded back into the principle range between zero and 27. The
LPM-ADD-SUB module available in the Library of Parameterized Module (LPM) is

used to configure the adder.

IEPIT AT KINe WNT IGHED" |
AP DN B N
XTI NP _ 15 CONT CANFa

[P LPM‘_"—‘UD_SUB . : REL AN ‘

AU s ‘““‘“

R DR RS

IPM PPEL NG~ :

AP REPRESENT AT NN KGREDT -

APM W OrHa 3 :

............ T et Ut o sl or S
AN ADD $UE
L Jazesd

B e xevre s S S
230!
o

. :
LPMFEPFLIENT AT QN LT IGHRD |
LWMWDIH 3 :
TRE REUF_ [T COINGFANT s

o LPM_)'-"DQ_SUB‘ DB Lt AL S

. R SARTELIIY sedsew

Figure 44. Schematic of the Phase Accumulator (ph_acc.gdf)

76

e. Look-Up Table (LUT)

The look-up table (LUT) is indexed by the output phase from the phase
accumulator. This phase value is mapped to an 8-bit amplitude value stored in the LUT.
Since the LUT output is a complex number, cosine and sine tables indexed by the same
phase are required. The schematic diagram for the LUT is given in Figure 45. For the
LUT configuration, a text file is associated with each LPM_ROM module. In Altera, this
file is called a memory initialization file (.mif). A Matlab script file (genLUT.m), which
is capable of automatically generating the text-file, based on the width and depth of the
LUT desired, has been used. This file generates the memory initialization file for the
LPM_ROM module (cos.mif and sin.mif). It calls two Matlab function files

(genfixptv0.m and genfloat.m). These two programs perform the fix and floating-point

conversions. The Matlab files [Ref. 6] are included in Appendix A.

ARAUAOCRE S ERIN S L R G Y e .
LPMF w‘ew-‘;n—»w:
o ad 2] :

R T
[F 1o - S) :

M DrUDe 3

£ B

o PRTE O TR

4 : A OUTOAT A NS 13 DD

proaresc]) M i odie M
S e g e MDA D e -

- CTUCPWCRDR T

. -Jﬂ“ﬂ———-: hacaress)

Figure 45. Schematic Diagram of the Look-Up Table (LUT) (lut.gdf)

77

[Gain Modulation Coefficient Latch
The latch for the gain modulation coefficient comprises a 1-of-4 decoding
block and a set of flip-flops as shown in Figure 46. Although four DQ flip-flops are

shown, only three of them are used (one for each tap).

Gain Latch

win L

Base addr of medule =
Base addr of board ¢ this constant

LPM (‘ONSTANT
Cvae) result[] BaseAddr[7..0)

IAddr]7..0) :
- tADDRE?. .91 RD[3.. Q) —————
BaseAdlrE..g :
IRd " 'BASEL?. . 2] WRE3. .0]‘:_rm
1 I RD Pnoas—-:—'———
v :
TUR N

Figure 46. Schematic of the Gain Modulation Coefficient Latch (gain.gdf)

78

g Gain Modulator
" The gain modulator applies a gain to the binary signal from the LUT by
shifting the binary word toward the most significant bit position and pads zeros at the

least signjﬁcaht bit position. The gain modulator is shown in Figure 47.

......................... M Shi"'e N A ¥ gk # 8 RN R R e NN RN ma e mmnkE
i g 00 R —ar7. 01 ovTrie. . a3 PRI Shit oufi0. 0] ;
B e
HE—
.................................... St 7.0 O ———{nrz..0) ouTLi0..olf= IR Shi o{i0.1)
28

Figure 47. Schematic of the Gain Modulation (newgainl.gdf)

The original amplitude values, as set by the user in the Matlab GUI (the
Range-Doppler-Amplitude Map Entry Program), are “translated” into a corresponding

number of positions for the shift according to Table 15.

GUI Amplitude Value | # of Shift Left Steps | Represents Decimal Multiplication by
1 0 1
2 1 2
3 2 4
4 3 8

Table 15. Translation of Gain Values

Figure 48 exemplifies the results of applying different gain modulation
_ coefficients. In the first sub-plot, a GUI Amplitude value of “1” was applied, representing
a decimal gain value of “1,” for a 3-target cell long target. In the next three sub-plot the
GUI Amplitude value was increased to “2,” “3,” and “4” respectively, representing a

decimal gain value of “2,” “4,” and “8.”

79

e

wwendedsnadaanen

ERTTR P

mrmdemanmd

'
.-_.é.-.-...l_....--.

Figure 48. A 3-Target Cell Long Target with Different Gain Modulation Coefficients

Using only a 2-bit word for representing the gain modulation coefficient

ion is

range to 18.1dB when using shift modules. Another limitat

will limit the dynamic

to three

£

, 1

that only four discrete amplitude levels can be used. Increasing the word size

2.1dB (90.3dB) dynamic range and 8 (16) different amplitude

give 4

(or four) bits will

levels.

Dynamic Range [dB]

20log;o(2*'/1)

min)

20logio(ViV,

Multiplication by

",
22 1

seey

b

Shift by

-1

Oto2"

of bits

£e

Table 16. Number of Bits vs. Dynamic Ran

80

The schematic diagram of the shift primitive is shown in Figure 49 and the

schematic diagram of the MUX2 building block is provided in Figure 50.

m L]] Pl oL r] pril

gainb0

snzn
anxm

el
snun
[y

T2 L2 5 P
srxm
or)
wnxn
vusa

oaxa |l o

X2 :

-
LT IRY §
Zi::::.::::i::_,,'
TV EET
-
4
>
=

T2

TRIRS

(2113 :
-

TOXE

LY P
PRI
mxa2
oznoT o
XS
xpuT
xnmn
mzanT

gain01

° - * . ° °

REE T :‘[Rl FREE ErRE o UL e =1
I KIS LI R XTI R I e] REE] R 2 R

I [N B [R RN R B (BRI R R (R R (I B -
xR EE)IREE G REE i REE| i sl o wsE{ i sEE]ci oz i rEE] o
As TP EEp i frEE] s EE] G REEL R B s [BEE{ ;v leEEl e BA i 3R]
O R EF B RER R bR R E
NP Bl e BE Ly BEL OBl Bl s By Bl Bl BE
b E P e P 8 e eebe Pslog [s (0108 0] 8 |
B M b - i‘ ! : u I }_' B ! . : P » . ! ..

Figure 49. Schematic of the Shift Primitive in the Gain Modulation Block (shift0.gdf)

Figure 50. Schematic of the MUX2 in the Gain Modulation Block (mux2.gdf)

81

h. Final Summer

The schematic of the final summer is given in Figure 51. This circuit
implements the addition of the tap outputs in two’s complement. The addition in two’s
complement involves sign-extension of the numbers to be added and discarding the carry-
out bit. The LPM-ADD-SUB module, available in the LPM, is used to configure the

summer.

LM FORTIRNT RF KINS " IGARLT:
Gy B
TIE_EUF_ 13 CONGEANE WD |

TR MWD
mumm’: ey pe e THERERULEC
IR IENAA? IR SRR B LFM_AUU_«UB :
LALRDMY :

DS NRUT_ 15 CONGFANFANO® |

S PN RDDIUBT

Figure 51. Schematic of the Final Summer (out_summer.gdf)

82

E. SIMULATION RESULTS

1. Simulation Setup

Several simulations have been done to verify the expected results. Below is one
example of a simulation run to illustrate the steps and to visualize the results. In this case,
the false target to be generated has the same parameters given in the example above

(Matlab simulation) as is shown again in Figure 52.

£18$ 01U RBUBIT 32

Figure 52. The Range-Doppler-Amplitude Map Entry Program

83

In this example the user has specified the data in Table 17 for the false target to be

created by the DIS.

Target Range Doppler Amplitude Doppler Remark

Cell Cell Cell Value Shift

1 1 20 2 0 Tap 0 — 1* Tap
2 2 20 2 1 Tap 1 - 2™ Tap
3 3 20 2 2 Tap 2 — 3" Tap

Table 17. User Specified Inputs of the False Target

In order to make the comparison between the Matlab simulation and the DIS
implemented using FPGA technology, an intermediate step was added in the simulation
flow as described in Chapter 4. After the Matlab file mathostvX.m has been executed, all
necessary inputs are available in text files to run the hardware implementation of the DIS.
The interface with the FPGA computer board is a set of Visual Basic files composed into
a Visual Basic project called FlexTest (ﬂexteét.vbp). To compile and run the project and
the board properly, the necessary files must be located in a file structure with the
following path: c:\temasek\denise\thesis\final_design\vbfiles.

To run the Visual Basic project, FlexTest, the user must open the project, open the
the_isar.bas file, and then run the file. Another GUI will show up on the computer display

to visualize the signal processing taking place in the taps of the DIS.

84

2. Simulation Results

The 2-D contour plots in Figure 53 show the results from the Matlab simulation
and the results from running the DIS implemented on the Altera FPGA device. The
Matlab simulation results are shown in the upper sub-plot. Both sub-plots are presented in
a range-Doppler map. That is, Down Range (range) versus Cross Range (Doppler). The

two results look quite similar but will be examined closer to verify if any differences are

present or not.

‘wl--

Figure 53. Matlab DIS Simulation vs. FPGA Hardware Results

Figure 54 shows the 3-D mesh surface plots. The first sub-plot shows the results
from the Matlab DIS simulation. The second shows the result from the FPGA hardware.
Finally, the third sub-plot shows the difference between the Matlab simulation and the
FPGA hardware results. As expected, a slight difference between the Matlab simulation
and the hardware results can be observed (note the scale on the amplitude axis of the

three sub-plots).

e s s g e . s

. Ampitude/Doppler Noduiated Rd:Dp ep GMATLAB Simuiation Resuk) |

-

Figure 54. Matlab Simulation Result vs. FPGA Hardware Result and Their Difference

These differences are because the implementation of the DIS algorithm using
FPGAs does not consider a correct startup and shutdown of the individual taps when a set

of DRFM-phase data from one radar pulse is processed (as discussed earlier). This

86

contributes to a slight error compared to the Matlab simulation, which strictly follows the

original DIS algorithm.

To verify that the errors are actually due to the difference in startup and shutdown
sequences, the Matlab simulation code was adjusted to process the phase data in the same

manner as the FPGA hardware. The results of the modified test case are shown in

Figure 55.

Figure 55. Matlab Simulation Result vs. FPGA Hardware Result and Their Difference

As expected, there are now no differences between the Matlab simulation results and the

hardware FPGA results. The Concept Demonstrator has therefore been proven to work

with its known limitations.

87

THIS PAGE INTENTIONALLY LEFT BLANK

88

VI. FPGA-TO-ASIC CONVERSION

Since the first design was captured using the Altera Max+Plus II software, which
targets the A}tera Programmable Logic Device (PLD), several methods were investigated
to cbnvert this design using third-party tools. This chapter discusses the different methods
of converting the existing design in a format for tools that target an Application Specific
Integrated Circuit (ASIC), instead of a PLD and their related problems. This chapter
further concludes with a summary of problems encountered and the reasons behind

choosing the Tanner Tools environment instead of one of the discussed converting tools.
A. FPGA LIMITATIONS

After analyzing the original, nearly complete implementation of the original
architecture, we realized that several limitations were being imposed on the design, solely
because the implementation employed FPGA technology. First and foremost was the
speed limitation. The target clock speed for the design is S00MHz (2ns clock rate). This
is an aggressive goal for any new chip design, and although it might eventually be
possible to meet this target with an FPGA design, in the foreseeable future, a full-custom
IC has a higher probability of meeting this speed requirement. A second major
contributing factor was the physical size of the implementation. The initial, proof-of-
concept design does not require a large number of taps. However, even with a small
number of taps the design could not be implemented into a single FPGA. One of the
goals for this initial, proof-of-concept design was to create a devise easily extendable to

more taps. Extending the FPGA implementation to more taps would require a significant

89

increase in the number of FPGAs. This was considered a major drawback of the FPGA
implementation.

After realizing the limitations of the FPGA implementation, we decided to
convert the FPGA design to an ASIC design. Several FPGA-to-ASIC conversion

techniques were investigated.

1. Altera-to-MOSIS Process Flow
The Altera-to-MOSIS conversion process investigates attempts to translate the
design from Altera’s Max+Plus II implementation to a high speed ASIC fabricated by
MOSIS. It will be shown that the conversion is highly complex, and that parts of the
conversion process are unpredictable, since some tools do not have a common interface.
a. Altera to MOSIS Link Overview
The flowchart shown in Figure 56 shows the complete conversion path
from the current FPGA design in Max+P1us II to an ASIC fabrication at MOSIS using
several tools in different stages of the process. Statecad in conjunction with Statebench
provides an add-in state machine into the existing FPGA design so that the resulting
project file can be compiled in the Max+Plus II compiler. SimGen converts the compiler
output file (.EDO) into a .MAC file, which can be read by Nettran. Nettran is a program
of the Tanner Tool environment and converts different formats into useable input files for
other Tanner Tool programs, e.g., the layout editor L-Edit. L-Edit uses the resulting .TPR
file as input and creates a physical layout based on its library elements. The layout file
needs to be compared with the original input files to ensure that the circuit representation
is the same as the compiler output file. After verification and post-layout simulation, the

layout can be sent to Mosis in form of a .CIF file for fabrication.

90

StateCad

(2]
StateCad generates code K|
for statemachine in AHDL
checked by StateBench >
StateBench
Compiler create EDF
1 Output of entire project
a
£
Max+Plus II GDF MaxPlus Project’ Compil er .EDO File l
ngelop dcs'lgn .VHDL File
using Graphic < ,
Editor (GDF) P SimGen
g
= ©
S € =
<)
, g o
% @ <
2o =1 =
3 z :
& =
7]
= Nettran
2 2
=
= o
><I &
M .
a
L-Edit
4— Mosis |«¢ .CIF File Compare q_ﬂ.—

Compare simulated FPGA
Max+Plus II with created
ASIC layout

Figure 56. Flowchart—Altera to MOSIS Link

Remarks for Figure 6.1

e GDF is Graphic Design File and is the file format of the Graphic Editor in

Max+Plus 11

e AHDL is Altera Hardware Description Language

e EDO is EDIF output file

91

e MAC is Macro file, to use between SimGen and Nettran
* TPR is Tanner Tools file type
e CIF is Chip fabrication format for the final layout
* VHDL is VHSIC Hardware Description Language
Controling the data flow by a state machine was considered, however, due to a different
approach in the later ASIC design, a state machine implementation was not deemed
necessary. Furthermore, Nettran and L-Edit are not part of the following program
description. They are explained in detail in the following chapter to avoid unnecessary
redundancy.
b. Statecad and Statebench
Statecad is a powerful tool to create state machines of all kinds easily. It
is a graphical entry tool that allows the user to express ideas as state diagrams. Statecad
has been designed for simplicity in use as a tool for digital design, documentation, and
error analysis. The Statecad GUI is shown in Figure 57 to illustrate the graphical concept
of the tool. After validating a diagram, the program generates, directly from the diagram,
hardware description language (HDL) code that can be simulated and synthesized. The
HDL is valid, consistent, maintainable, and implements the graphical diagram. The HDL
can be VHDL-1076, Verilog, ABEL-HDL, AHDL or ANSI-C. Interactive dialog boxes
provide an environment for intuitive work and help to eliminate syntax errors and
incomplete portions of state diagrams. [Ref. 12]
Once a design is completed in Statecad, it can be verified in the add-on
software Statebench. After verification, a timing test bench can be written automatically.

The test bench can be used for post synthesis timing verification.

92

{ Serial in, Parallel out, Adding Unit ;

§ T
i s=s20.s0di

; reli;
¥ o

Figure 57. Statecad Screenshot (From Ref. [13])

Statebench is an add-on program to Statecad and automates behavioral
verification and VHDL/Verilog test bench generation of any state diagram created in
Statecad. Automatic test benches attempt to exercise every input, output, transition, and
logic equation in a design. For verification the program can usually check approximately
80% of the design automatically. The remaining 20% requires minor user inputs to
complete the validation of the design. Statebench can generate VHDL or Verilog test
benches for post-synthesis verification by adding time constraints that can be imported in

third-party test programs for further validation.

93

c. SimGen

SimGen is an EDIF to Nettran and a FPGA to ASIC conversion utility for
Tanner Tools EDA that improves routine operation designing within the Tanner
environment. SimGen uses EDIF or MAC files as input and can generate VHDL files
from a chip layout to support verifications in VHDL design flows. It automatically
creates simulation files (.SIM and .VEC) for GateSim. For these types of files SimGen
sets up template files with input/output lists and restores true port names. Due to its
ability to create .MAC files, SimGen supports file import into Tanner’s Nettran software.
Since the conversion between different file formats is not unproblematic, it attempts to
clean up and repair netlists so that they can work as expected when going from one tool
to another. SimGen provides a Windows control shell to activate, coordinate, and
generate command files for Tanner’s remaining DOS tools, e.g., GateSim, as well as file
editing functions and waveform viewing functions [Ref. 14].

The conversion process from Max+Plus II to an ASIC in form of the
Altera-to-Mosis Link is long and in parts unpredictable. One of the major drawbacks is
that SimGen has no direct supported interface to Max+Plus II. Another major drawback
is the incompatibility between the library cells used in the FPGA design and the required
library cells for an ASIC design. Therefore a significant amount of hand conversion of
library cells is required, which is time consuming and potentially error prone. Other
problems with this conversion approach include the efficiency of the conversion process
with respect to speed, layout area, and power consumption of the final IC design.

Furthermore a future chip expansions or even minor changes to the design require

94

working through the entire link again, resulting in a considerable amount of time and new

sources of conversion errors.
B. LEONARDO SPECTRUM

An alternative program to create an ASIC can be found in Spectrum’s Leonardo
software [Ref. 15]. Leonardo was not chosen because of the very complicated workspace
creation process between Max+Plus II and Speétrum’s software. Also Leonardo lacks the
capability to directly import file types, which are generated by Max+Plus IL
Nevertheless, Leonardo has the capability to target an entered or imported design either
as an ASIC or as a FPGA. It includes several wizards to optimize, re-target and improve
the design. Spectrum and Altera offer the possibility to create a working environment
between MAX+PLUS II and Leonardo, which is illustrated in Table 18 and Figure 58.
The described data flow was never investigated in detail since the involved programs had
to be bought and were not available for testing. Nevertheless this was not desired either
owing to the extremly long and complicated data flow to generate the workspace between
the two endpoints. The MAX+PLUS II read.me file provides more information about
which versions of Mentor Graphics applications are supported by the current version of
MAX+PLUS II It also provides information on installation and operating requirements

that are not mentioned in this report.

95

Max+Plus II/Mentor Graphics Software Requirements

with the Max+Plus II and Mentor Graphics Leonardo software:

The following products are used to generate, process, synthesis, and verify a project

Mentor Graphics Exemplar Altera
System_1076 Quick HDL Galileo Extreme V4.1.1 {Max+Plus II V.9.2
Compiler Quick HDL Pro |Leonardo V4.1.3

QuickSim IT Quick Path

Design Architect ~ LS_Lib library

ENRead DVE

ENWrite

GEN_LIB library

Table 18. Workspace between Max+Plus II and Leonardo

In more general terms, the flexibility of programs like Max+Plus II, Leonardo,
Statecad, etc. is determined by their ability to import files of different types. The most
common file types are EDIF, Verilog, and VDHL files. One has to strictly differentiate
between input and output files. Output files from Altera’s MAX+PLUS II software are
not compatible to input files with the same file extension, so there is a need to examine

the differences in more detail. The following example is based on the MAX+PLUS II

software, but is transferable to the other above-mentioned programs: the input file types

files from third party synthesis tools. The output files produced by the Max+Plus II

‘are VHDL, Verilog, AHDL, GDF, SCH (schematic files from ORCAD) and the EDIF

compiler are VO (Verilog output netlist file), VHO (VHDL output netlist file),

96

Xal o
“I0H Bopaa,
“TaHA

ey

Q

opleunaT o4d TaH Bojaa, pm

A0 SWBIK g B TOHPIND dQ 8

oajed 10 TaHYIND JAHA 2]

0]

Q

<

WISHIND 0 o

i .mvw Dol m

(214 Japd wion %

Buidcle : Aseidry I SNd+RTI iop3 P

Adeidr SEAUWAS 8] W) Miockaa A g

: elally ubsag S

IAQ o

alld nding =

1QH + 2

Jaduwo s - Lammma} w.m
I m:.aw%m | e |—] g | pajpy m
(s)ald =

BUaN —— 2

Bjdwion N £
Il SMId+xvI —] P | &
a0} oy | P A
uBag b m

m

&

&

8D

a9

97

TDO (AHDL output netlist file), and EDO (EDIF output netlist file). Now it should be
obvious that output files cannot easily be used as import files for other programs. Hence a
lot of other third-party tools are required to establish a conversion path in order to create
a link between the two main programs.

The only VHDL, Verilog or EDIF files that can be generated by the Max+Plus II
compiler after synthesis are post place and route netlist files. These files are normally
used as either input to third party simulation tools like e.g., Verilog-XL from Cadence,
Modelsim from Modeltech etc. or as input for static timing analysis tools, like Primetime
& Motive from Synopsys. These netlists contain a gate-level description of the design
and the timing delays, where Max+Plus II’s EDIF input file is a synthesized netlist.
Therefore extracting an input file from an output file involves an extraordinary number of

steps since the output files are place and route netlists.
C. AMERICAN MICROSYSTEMS INC.

Another alternative to building an ASIC from an FPGA is to contract with a
company that specializes in FPGA-to-ASIC conversions, e.g., American Microsystems
Inc. (AMI). For this approach, the entire design has to be done in FPGA-oriented
software like Max+Plus I and sent to AMI for the conversion process. AMI also
provides customers with their software in a light version, warning, however, that they
cannot recommend this method since the tools are very complicated. and require much
experience [Ref. 16].

This approach was not selected and not further investigated for several reasons.

First, the design conversion process yields an ASIC design that is readable by a computer

98

and cannot be read, manipulated, and modified easily by a human, even with the
appropriate CAD tools. Therefore, when the initial DIS design is eventually expanded to
include more taps, the expanded design would have to be accomplished using the FPGA
tools and then another design conversion would have to be performed by the contractor
and paid for. Another drawback is the efficiency of the design conversion with respect to
speed, layout area, and power consurﬁption of the final IC. Although great strides have
been made in automated optimization for design conversion, much work still needs to be
done in this area. Moreover, chip designs that start life as an ASIC design usually wind
up being faster, smaller, and consume less power. Finally, one of the goals at the NPS
Center for Joint Services Electronic Warfare is to offer students the chance to research
and to create projects while working toward a Master’s degree. Hiring an outside firm to
perform the design conversion would eliminate this opportunity in addition to being

costly and ending up with an imperfect design.
D. MIGRATION TO TANNER

All the above-described processes were investigated to convert the existing FPGA
design into an ASIC in order to achieve two goals. Most importantly, the high-level DIS
architecture had to be fast, both with respect to high throughput and short latency.
Second, the design had to be extensible, allowing an inexpensive prototype with fewer
taps to be easily turned into a more finished product by just increasing the number of
taps. After analyzing the original architecture, we realized that there were several

limitations being imposed on the design solely because the implementation was done

using FPGAs.
99

The major concern is the speed limitation, in view of the fact that the clock speed
for the design should be close to 500MHz. Although it might eventually be possible to
meet this target with an FPGA design, in the foreseeable future, a full-custom IC will
have a higher probability of meeting this speed goal.

A second major contributing factor is the physical size of the implementation.
The initial, proof-of-concept design did not require a large number of taps. However, if
more taplines are desired to build a full operational prototype, the taplines would not fit
into a single FPGA. Extending the FPGA implementation to more taplines would require
a significant increase in the number of FPGAs. This is considered a major drawback of
the FPGA implementation. Furthermore, additional taps could not just be added to the
design since the adder tree used to sum the outputs of the taps for the final output would
have to be redesigned. Beyond this, as the number of taps increases, either the clock
speed must be slowed down (reduced throughput) or the number of pipeline stages must
be increased (increase in the total latency) to accommodate the extra delay in the
additional adders in the adder tree. The total latency is the sum of the latency in the tap
and the latency in the adder tree, which increases as the number of taps increases.

After considering the various different alternatives for design conversion, we
realized that a dedicated ASIC design using the Tanner Tools wéuld be the most efficient
approach. The original architecture and FPGA design allows, however, an in-depth
analysis of the behavior of the algorithms to be implemented in the ASIC and also allows
the investigation of future design concepts (for example, to counter stepped-frequency

waveforms).

100

VII. ASIC DESIGN: SCHEMATIC

This chapter gives an overview over the Tanner Tool environment with emphasis
on the programs used to construct the DIS architecture. The second section discusses the
DIS architecture in more detail as it is modified and completed based on the FPGA
architecture. The last section melts the previous section together and presents the detailed
design implementations in Tanner’s schematic capture tool S-Edit. Additionally, ideas
and already created circuit improvements for future development will be addressed
briefly. These improvements reflect circuit simplifications in terms of less transistors

used in certain modules, or redesign issues for a higher clock speed.
A. INTRODUCTION TO TANNER TOOLS

The Tanner Tool environment consists of five major integrated modules: S-Edit,
T-Spice, W-Edit, L-Edit, and Nettran. The following list presents a short overview of the
complete Tanner environment [Ref. 17]:

Simulation Tools:

e T-Spice—an analog/digital circuit simulator

e GateSim-a gate-level simulator

. W—Edif—a waveform viewer

e L-Edit/Therm-a 3-D finite-element thermal analyzer

Front End and Netlist Tools:

101

e S-Edit-a schematic editor

¢ LVS-a layout-versus-schematic netlist comparator
Mask-Level-Tools:

e L-Edit-a layout editor

¢ L-Edit/SPR-an automatic standard cell placement and routing package

e [-Edit/Extract—a layout extractor

¢ L-Edit/DRC-a design rule checker
The ordered Tanner Tool package consists of:

e L-Edit with Design Rule Checker (DRC), Extract, and Standard Place and

Route (SPR)

e S-Edit (Schématic Editor)

e LVS (Layout vs. Schematic)

e T-Spice Pro with Advanced Model Library

e W-Edit (Waveform Viewer)

e Tanner Tools Pro Manuals
Figure 59 [Ref. 17] illustrates at first a schematic overview of the Tanner environment
and at second the data flow between the different programs of the package. The main
environment consists of the programs S-Edit, LVS and L-Edit, where L-Edit finally saves
the layout in a GDSIH or CIF file that will be send to MOSIS for chip fabrication. The

other components may not be used but are shown for completeness.

102

GateSim

Gate-level Timing Sim

Technology
Independant &

. SEdit
Schematic Editor:

R PR

Library

LS
= Netlist
| _NetlistTool__ | _____ . _____. omparator.
Mask Level Tools Advanced b
v Model

Viewer

R

Package _J

N T

Y

L-Edit/SPR | L-Edit/Extract
Standard Cell | General Device
L Place&Route Extractor

MOSIS
L-EditYDRC
On-line Design
Rule Checker

Cross Section
Viewer

Figure 59. Tanner Tools Block Diagram (From Ref. [17])

1. Nettran

Nettran is a tool within the Tanner environment that has routines and libraries to
import different file types and convert them into other Tanner programs readable formats.
It is used as a netlist translation application to ensure file exchange between the different
tools and other applications. Figure 60 [Ref. 17], shown below, illustrates how Nettran

fits into the Tanner Tools environment. The use of Nettran is required to translate S-Edit

103

files into an appropriate format for the use in the logical simulator GateSim or third party

programs.

Third-Party Tools __> “+——> Vendor Format Files

BT

L-Edit/SPR

GateSim

Figure 60. Nettran Function Block Diagram (From Ref. [17])

Nettran can to translate either wirelist, netlist, or EDIF files from third party tools like
OrCad to standard Spice format, GateSim, or L-Edit netlist formats. Due to extended
capabilities, S-Edit is now able to export a Tanner Data Base file ((TDB) that can be
directly imported into L-Edit so that a conversion with Nettran is not required in this step.

2. L-Edit

L-Edit is a physical design layout editor that creates the device level fabrication
files necessary to realize the integrated circuit. The user has different possibilities to enter
a layout or project into L-Edit. The first is the layout by hand. Like in CAD tools, the
elements of transistor components, e.g., P-Well, N-Well, or different metal layers are
drawn in the editor window. Since this process is quite time consuming, the vendor

104

provides various libraries for different layout processes. These libraries contain layouts
for digital design components, which are called L-Edit’s wizards. Using the wizards is
the second way to generate a layout in L-Edit. Besides the Block Place and Route tool (L-
Edit/BPR), the Standard Place and Route tool (L-Edit/SPR) is the most important wizard.
SPR\and BPR generally perform the same task, where SPR is more specialized, provides
more sophisticated functionality, and has more constraints.

The Standard Place and Route module generates layouts for standard cell design
and can automatically construct entire chips. It includes cell placement and routing, pad
frame generation, and pad routing. SPR reads netlist files produced by S-Edit and creates
masks useable as a basis for fabrication. Nevertheless, this automatically generated layout
needs at least to be verified with the DRC. Tests have shown that the SPR module is
working only to a certain degree of satisfaction. Even with specified design rules for the
target process, €.g., 0.5 micron, it can produce faulty designs. The automatic layout
process is adjustable in many ways. The most important adjustments are the placement
optimization factor and the routing optimization. The piacement optimizatioh factor
determines the effort of the algorithm to reduce the size of the layout and therefore the
size of the entire chip. Factors between 00.0 (no optimization) and 10.0 (highest level of
optimization) can be specified. With higher factor the computation time will increase
exponential with decreasing effect. Furthermore, tests have shown that the results with
different factors are variable and that a higher factor does not necessarily produce better
results. Unfortunately the only way to detérmine the best factor settings is through trial

and error. The best result gives a trade off between the least possible DRC violations and

the smallest layout area.

105

The Design Rule Checker (L-Edit/DRC) performs a design rule check for the
intended fabrication process and can optimize the place and route. It verifies the
generated layout with pre-defined rules, which can be edited or extended. Even with the
automatic function of place and route with SPR or BPR, it is absolutely necessary to run
DRC on a layout generated by these tools. Additionally, a design that passed the DRC is
not assumed to be free from errors. A post-layout simulation in the circuit-simulator tool
or a netlist comparison with the netlist comparison tool is crucial. |

L-Edit/Extract creates SPICE-compatible circuit netlists from L-Edit layouts. The
output can be exported in either GDSII or CIF file format for fabrication. The extract tool
is the way to produce a Spice code for post-layout simulation or netlist comparison. For
netlist comparison, see the description for LVS.

3. S-Edit

S-Edit is a schematic capture tool to enter the electronic layout of a circuit. For
research and prototype devices intended for MOSIS fabrication, S-Edit contains a
complete MOSIS library of components for each of the different scheduled runs, e.g., 0.5
micron or 0.35micron. S-Edit can directly generate netlists that are usable in the circuit
simulator, where a direct link writes a complete schematic directly into T-Spice. S-Edit -
holds the complete DIS architecture in form of a schematic representation. To simplify
the circuit creation, the program can use different design levels. In other words,
repeatedly used circuits, such as a tapline in the DIS design, are assigned to a symbol. To
accomplish this, S-Edit has two main workspaces, the schematic editor and the symbol
editor. Besides the creation of electronic circuits in the schematic editor, the user can

create a symbol for a circuit of any size in the symbol editor. Due to this possibility, S-

106

Edit is able to handle different levels of a project and can use custom-made circuits in the
same manner as its own library elements on every level of the design. For the DIS
project, S-Edit is used to construct a hierarchy consisting of five levels, where lower

levels provide higher levels with building blocks to create more complex circuits.

4. Layout Versus Schematic (LVS)

LVS is a layout-versus-schematic netlist comparator. It compares the exported
netlist from S-Edit and the extracted netlist from L-Edit/Extract. It can also compare the
layout with any other SPICE compatible netlist and ensures that both netlists represent
the same circuit. LVS is working on the logic gate level. It uses the pre-defined library
element for comparison and is not able to compare on the transistor level. Therefore
custom-made layouts on the transistor level are a potential problem.

The goal is to compare the layout mask generated by SPR with the schematic
circuit in S-Edit. LVS is used to compare the netlists of both representations. This will
guarantee the equality of the layout with the tested circuit before the design is sent to
fabrication. As shown in Figure 61, the differences after netlist comparison are used for

editing the compared files by hand. Finally this procedure will ensure the equality of the

circuits.

107

T-Spice L-Edit

>l

. Lvs

Fmmmmmmm e = 3
I
I
I
|

Difference p= = == = =

Figure 61. Flow for Netlist Comparison in LVS

5. The Circuit Simulator T-Spice Pro

T-Spice Pro is a complete circuit design and analysis system, which includes T-
Spice, the Advanced Model Package, the waveform editor W-Edit, and S-Edit. T-Spice is
a circuit simulator using SPICE as input language. The Advanced Model Package
consists of the latest transmission and semiconductor device models to achieve more
realistic simulation results that are closer to real world behavior. The Tanner Company
claims that T-Spice simulates a circuit design with more than 300,000 elements. With
extremely large circuits, the simulator requires an exponential increase of computer
resources. To some extent T-Spice can handle very large circuits consisting of linear
elements like switches or resistors. However, transistors are not linear and are
approximated by polynomial functions. Because transistors are exclusively used in digital
designs, the program is not capable of handling a large digital circuit with approximate

300,000 elements. The DIS design with 32 taplines consists of almost 290,000 transistors

108

and is not simulateable with T-Spice using a transistor model. In order to test the design,
a switch model can be used to replace the transistor model. This approach will be
discussed in greater detail in Chapter 9.

S-Edit (described above) provides a direct link to T-Spice, which makes the
translation of the schematic design into a SPICE ﬁle easy. By adding parameters and bit
pattern test vectors, the circuit logic can be tested before layout. T-Spice offers only a
semi-usable algorithm for binary testing. The input data to the circuit are digital and
coded in a binary forrri (0=0V, 1=5V), but the output will be in real voltages instead of
binary words. Therefore the output is of limited use.

6. The Waveform Viewer W-Edit

W-Edit is a waveform editor acting primarily as a back-end data processor for the
data generated in T-Spice. It is designed to display T-Spice simulation output waveforms.
W-Edit is used to verify the functionality of small circuits like a register cell or a 2 input

NAND gate. It is not useful for larger circuits.
B. DIGITAL IMAGE SYNTHESIZER ARCHITECTURE

This section focuses on the new DIS design (ASIC architecture) and discusses its
implementation in detail. The ASIC architecture is based on a modified FPGA concept,
where a tap and its associated range-bin processing is now called a tapline to distinguish
between the two implementations. The general data flow within a tapline is shown in
Figure 62. The main differences between the original architecture and the modified

architecture as implemented in the ASIC are summarized as follows:

109

S

Parallel DRFM-phase data input into all (32) taplines simultaneously instead
of serial inputs through a tap delay line

Implementation of registers in the data flow of a tapline (pipelining

Serial summation of the tapline data output in order to achieve the necessary
delay and to add the output data in correct sequence for the final output

Built-in scan-path test capability

DRFM-Phase

AIIRIIAILILY,

v Data
Phase InCTemEHrtbl Phase Adder

Values @

: Pipé[i’ne Igégistq;_ 1

¥

- Pipeline Register 2’

 Pipeline Register3
1 Tapline N+1

.................. £ 1 and Q Output

v v

Pipeline Regis_te‘jfli‘\‘.g Pipeline Register 4 -

To Tapline N-Lg. % @'

or Final Output Tapline N - I and Q Output

Figure 62. Tapline in ASIC Architecture

110

As illustrated in Figure 62, the DRFM-phase-increment values (¢(n)) are one of the four
inputs for a tapline. So far, the integrated circuit is composed of 32 taplines, which
synchronously receive (no delay) the same clocked DRFM-phase data for each tapline as
input. The Phase Adder combines the DRFM-phase data and the phase-increment value
(A¢y). The phase-increment consists of the phase-rotation of several backscatters and is
generated off chip for the most recent tapline version. The result of the phase addition in .
the phase adder continues to propagate into Pipeﬁne Register 1, where it is available for
the LUT (Look Up Table) after the first clock cycle. The LUT uses this input as a pointer
to an address space in the LUT-ROM and stores the resulting I and Q values into Pipeline
Register 2. After the second clock cycle, the values can penetrate the gain block, where
the appropriate gain (A,) is applied. After the third clock cycle the values can enter the
second adder. The adder’s function is to combine the phase data with the phase data from
the next higher tapline. Figure 63 illustrates this concept of the summation in a simplified

way. To compensate for not having delay in the input DRFM-phase data, delay

DRFMPhase Data Bus R
Tapn Tap n+1 Tap n+2 Tap n+3
A 4 A 4
Pipe- Pipe- Pipe- Pipe-
lined lined lined lined
Process Process Process Process From
next
j——‘L—L !_L"L Tap
Sum ¢ {_Sum e 1 Sum e Sum —
v
Result

Figure 63. Simplified Data Flow in the ASIC Architecture

111

is automatically achieved during the second addition (“Sum” in Figure 63) by using a
pipelined adder chain instead of an adder tree. Recall that the processed DRFM-phase
data resulting in a tapline output are of the form Py(Ds) + Ppi(D2) + Puia(Dy). In the
original architecture, this form is achieved by delaying the DRFM-input data at the input
because it is propagating through all available taps. The parallel summation at the end of
the process gives the above-mentioned form. In the ASIC arcitecture, the adder chain not
only creates the required delay, it also eliminates the two most significant problems of the
original design. First, adder chains are easily extensible since additional adders can be
chained together connecting output to input, as long as the adders do not overflow. If the
adder overflows, it is a simple process to increase the number of bits for the second adder
in the VLSI library. Second, in a pipelined ASIC architecture, the total pipeline latency
from the first input-data to the first output-data is the pipeline latency in the tapline plus
the pipeline delay of only one adder. Thus, as the number of taplines increases, the
latency stays the same instead of increasing as with a growing adder tree. Of course, the
latency from the last phase-data input sample to the last output result does increase, but
this is inherent in the algorithm being used and occurs in both designs.

As shown in Figure 62 and Figure 63, every tapline combines its processed data
with the output data of the next higher tapline. The result is a chain of data between the
first and the last used tapline. Table 19 illustrates this concept. The clock cycles used to
describe the data flow in the tapline ignore the time necessary to load the inputs into the
IC. The method of describing the data in Table 19 simplifies this even more and assumes,
that no time is needed to process the data within a tapline. In this example tapline n (T})

is the first one in a row of three taplines. The output of T, is the final output, consisting of

112

I and Q values. After clock one, every tapline produces an output with the same DRFM-
phase data (D;) as input. With clock two, the output of T, gets added to the processed
data (D2) in T,+; and the output of T,.; gets added to the prdcessed data (D7) in T,.
Continuing with this concept, the final output is the same as the previously proven FPGA

architecture.

113

Radar |DRFM |CLK |tapline n tapline n+1 tapline n+2
Pulse |Data ’

Py(Dy)+0+0 Poi(D1) + 0 Pyi2(D1)

D, Py(D3) +Pri(D1) +0 Pu1(D2) + Poi2(D1) | Pria(D2)

0
1 1
1 Ds 2 Py(D3) + Pp1(D2) + Poe2(D1) | Poii(D3) + Ppa2(D2) | Prsa(Ds)
1 D, 3 Pu(Ds) +Poii(D3)+ Pae2(D2) | Poii(Da) + Pria(D3) | Pria(Ds)

1 Dg; 61 | Pu(De2) + Pus1(De1) + Pos2(De0) | Pos1(De2) + Poia(De1) |Povz(De2)
1 - 62 |0 + Pyy1(D62) + Poi2(De1) 0 + Ppy2(De2) 0

1 - 63 |0+ 0+ Pu2Ds) 0+0 0

1 - 64 |0 0+0 0

2 D, 65 |P.(D))+0+0 Ppai(Dy) +0 Poi2(D1)
2 D, 66 |Pu(D2) +Ppui(D1)+0 Py1(D2) + Ppi2(D1) | Poe2(D2)
2 Ds; 67 |Pu(D3) +Pp1(D2) +Pni2(D1) | Poe1i(D3) + Poia(D2) | Pria(Ds)
2 D, 68 |Pu(Ds) + Pusi(D3)+ Pnia(D2) Py1(Da) + Pria(D3) | Pas2(Ds)

64 De¢2 4093 | Py(Ds2) + Pus1(Ds1) + Poi2(Deo) | Pos1(De2) + Prv2(Ds1) | Pas2(Ds2)

64 - 4094 | 0 + Pp.1(Ds2) + Ppe2(De1) 0 + Ppi2(Ds2) 0
64 - 4095 |0 + 0 + Ppy2(Ds2) 0+0 0
64 - 4096 {0 0+0 0

Table 19. Tapline Outputs with Three Taplines

Remarks for Table 19
1. A radar pulse consists of 62 samples, where a sample is the DRFM-phase data

2. Tapline n, n+1, n+2 are the outputs of the three taplines.

114

3. Pnx(Dy) represents the processed phase-data sample available at the
designated tapline output.
Table 19 ignores the time that is needed to process data within a tapline. To complete this

discussion, Table 20 summarizes the clock cycles needed to process the data within a

tapline.

Clock Cycle Output available at:

0 Phase Accumulator

Output of Pipeline Register 1 (5-bit)

1

2 Output of Pipeline Register 2 (8-bit)

3 : Output of Pipeline Register 3 (11-bit)

4 Output of Pipeline Register 4 (16-bit), end of tapline

Table 20. Clock Cycles within a Tapline

Before data can be processed in a tapline, it must be loaded into the chip. Even
though the loading process requires a certain number of clocks, this section considers
only the general concept of a tapline. The loading cycles for the chip are addressed later.

Due to the adaptation of registers between the building blocks of a tapline, a test
path is installed to improve the testability and functionaliiy for the entire IC. This scan-
path test capability can be used to strobe values into the registers to produce results for
special test cases. The test vectors within the registers can then be processed for a
desirable number of clock cycles before they are read out again. The implemented scan

path is also part of later discussions.

115

C. SCHEMATIC DESIGN IMPLEMENTATION

The following section provides information about how the DIS concept is
implemented in the schematic capture tool S-Edit. Since the program supports design
hierarchy, the DIS architecture is divided into five design levels. In order to increase the
signal flow control and the functionality, several control signals are introduced. These
control signals are also used to indicate the states (valid/not valid) of the output data.
Furthermore a scan-path test capability is installed to enhance the testability for sub-
levels during the test phase and to verify the correct operation for the entire IC.

1. General Design Hierarchy

S-Edit is a schematic editor to enter an electronic layout or schematic of a circuit.
It is capable of creating hierarchical circuits by using library elements or self-created
modules. Tanner provides the customer with a great variety of modules and building
blocks, but only a few of them are used to build blocks on the lower levels for the use on

higher design levels.

The DIS design in S-Edit consists of five levels. The first level uses transistors or
low-level building blocks like logic gates. Using blocks from lower hierarchy levels
allows creating higher levels in order to increase the complexity stepwise. This concept
provides two main advantages:

1. The logic of the design is more obvious, easier to understand, and easier to verify.
2. The layout editor L-Edit can use the same hierarchy to synthesize the layout
stepwise. Since the hierarchical layout process allows a slow increase in the

complexity, the layout editing is easier, more reliable, more efficient and faster.

116

The following hierarchy tree illustrates the structure of the architecture in S-Edit:
1. Level 1 elementary building elements from existing libraries or Iﬁodiﬁed
| library elements. This includes for example, a register cell, an addcr cell, a
Mux2, transistors and all logic gates.

2. Level 2 builds on elements from Level 1 to create: 5-to-32-bit decoder part 1,
5-to-32-bit decoder part 2, the LUT-ROM, Gain Shift, N-bit register, and N-
bit adder.

3. Level 3 makes use of the elements from Level 2 and 1 to build the tapline.

4. Level 4 holds the Supertap and the Supertap Mirror consisting of Level 3 and
level 1 components.

5. Level 5 consists of a 5-to32-Bit decoder and extends the concept of Level 4
components to create the top level circuit with a data input bus, input pads,
and output pads.

A complete graphical représentation of each building block can be found in the
Appendix. Also listed are the symbols and schematics for all sub-circuits used for the
design implementation.

2. Architecture Circuit Description in Level 1

a. Basis Elements

The very basic elements in a digital design are the P-FET and the N-FET
transistors. These types of transistors are represented only by a symbolic appearance,

which is specified by a SPICE output statement, as shown in Figure 64. The SPICE

117

[A $=%6*11]
[PS=24+1)

T0 Ww=28¢T
=740
M =1)
A D=%6+11)

[PD=24%1

Figure 64. P-FET Transistor

output defines the transistor in ports, gate length and width. Additionally parameters are
also defined that are not relevant for the current design and therefore are not mentioned
here. The important parameters are multiples of the technology specific variable lambda
(1) so that the transistor is scaleable and can be used for different layout processes. Due to
monetary reasons and availability of certain process runs at MOSIS, we decided to target
on HP 0.5um process. Nevertheless, if the concept is demonstrated and the IC is fully
operational, the target process can be easily changed to a smaller (faster) process without
any changes to the existing design in S-Edit.

b. Adder Cell

The adder cell and register cells, as shown in Figure 65 and Figure 66, are
building blocks to create n-bit adders or n-bit registers. The adder cell can add two 1-bit
binary input words. The input pads are labeled A and B, where the third input pad, Ci the
carry-in bit is used to connect two or more adder cells. The carry output pad, Co and the
output pad S define the 2-bit output word. The function of the cell is described by the

following two equations:

118

S =invB * invCi + invA * B * invCi + invA * invB * Ci+ A * B * Ci (7.1)

Co=A*B+B*Ci+A*Ci (7.2)

B
2
D,
DD—

©

E

A[: inva B[invB Ci[: invCi

Figure 65. Adder Cell

To build an n-bit adder, Co of cell N gets connected to Ci of cell N+1. A 5-bit adder and
a 16-bit adder are part of Level 2 in the hierarchy.

c. Register Cell

The register cell, as shown in Figure 66, implements the scan-path test and
introduces control over the data flow in the tapline logic. The control logic consists of
hold, load, clock, and the scan path pads. Besides the clock, only one of the control
signals is allowed to become high at the same time. If load goes high, the register
performs normal operations and “clocks” the input to the output. A logical high for
“hold” freezes the last processed value and ignores new input data. If all control pads are
low at the same time, the register is forced to perform a synchronous clear (all outputs
become low). To construct an n-bit register, Q of cell N must be connected to SRDi of

cell N+1 and Q of cell N must be connected to SLDi of cell N-1, where the register

119

control pads are connected in parallel. A 2-bit register, a 4-bit register, a 5-bit register, an
8-bit register, an 11-bit register, and a 16-bit register are part of Level 2 of the design

hierarchy.

—
_%
3

o

T

Figure 66. Register Cell

The register cell in Figure 66 consists of 48 transistors for the logic gates and the D-Flip-
Flop. By using library elements throughout a module, L-Edit can perform the layout
process without any complication. Nevertheless, this construct has three levels of delay
and cannot be driven at very high clock speeds. Furthermore, in a tapline there are 94
register cells. Depending on the number of taplines used for one chip, the layout area
could be reduced to a more compact design. ASIC designers use Transmission Gates
(TG) for these purposes. Transmission Gates are basically one P-FET and one N-FET
transistor connected via drain and source controlled through their gate ports. The control
signal is spit to provide two signals, the signal itself and its complement. If the control
signal is high, the TG lets the input data pass. If the control signal is low, the TG blocks

the input data. The described behavior is identical to that of a simple switch controlled by

120

voltage. Figure 67 shows a register cell using TGs. The control signals in this cell are the
same as for the register cell in Figure 66 plus their complements needed to drive the
gates. The controls drive the column of four TG (counting from the bottom) and
implement the basic register functions load, hold, and the scan path features. At the top of
the figure, the row of four TGs is responsible for the data output and is basically formed
out of two latches. The marked point “M” separates the master (left) from the slave
(right). The clock signal and its complement with a combinational logic of inverters drive
the gates. Due to the implementation of the clock signal, the master together with its
slave form a positive triggered flip-flop so that its behavior is quite different from a latch.
This means that at clock low the master gets loaded with the resulting value out of the TG
column. If the clock switches from low to high, the loaded value gets stored in the
master’s second TG and feeds the slave, which is now in loading mode. When the clock
changes again, the master can load new data, where the slave is in store mode and feeds
the output.

The D-Register cell consists of 26 transistors. This is a reduction of 45%
in comparison to the current used register cells. For a chip with 32 taplines and 95
registers per tapline, 66,880 transistors could be saved. Moreover, TGs are used for high-
clock rate circuits and process data faster. In spite of these advantages, the critical factor
is the coherence of the control signals and its complement. The phase difference for the

clock in particular must be held at a minimum to ensure correct function at high clock

speeds.

121

> Master Latci’ . Flave Latch > =
T W @] .
T o 5T
T CLKB T D
B
i

Figure 67. D-Register Cell

3. Architecture Circuit Description in Level 2
Level 2 elements are the building blocks for a tapline.
a. | Look-Up Table
The Look-up-Table (LUT), as shown in Figure 68, is a composition of
three sub-building blocks that are listed in the Appendix: 5-to-32 bit decoder part 1, 5-to-
32 bit decoder part 2, and the LUT-ROM. For simplicity during circuit creation, the 5-to-
32 bit decoder was split into two parts. The two parts together use a five bit binary input

and convert it into an address space used as input for the Look-Up-Table. A five bit

122

binary number represents 32 decimal numbers. Each of these numbers corresponds to two
lines in the LUT module. Therefore the five-bit input triggers the corresponding address
line in the LUT, where the LUT makes the stored value available at the output. Figure 69

shows only a small part of the LUT-ROM to illustrate the general structure.

YYYYY
5-to-32 decoder part 1
H - 3 E] a), k-]]] a q 3 F] T
| | [| [| [1]
w H } : a 3 g. § 5 L] ! a q q E] L]

: & L 8 2 L 8 w9 i L] g v L) ° 3 i a g# b 3 2

IRIR NN RN RN RN AR

:.! g.ﬂ g.ﬁ §! :.E %l g,ﬁ ;d g.ﬂ g.u :.9 §= g.a gﬁ ?E §a g.a g.a il!.i g,a l; 2

Figure 68. Look-Up-Table (LUT) Module

The entire block is shown in the Appendix. Thé ROM consists of 32 double rows of
transistors with a length of 16 transistors per row, each divided into two columns. Every
double row represents a 2 * 8 bit value, the cos (I) and sin (Q) outputs. Placing P-FET
and N-FET transistors at the wire crossing of row and output pad programs the desired
output value as shown in Table 21. Recall that this is the same concept as for the FPGA
architecture. The difference here is that the ASIC architecture combines the table look-up
for the I and Q phase values in only one table, using the fact that I and Q are always in

phase quadrature.

123

A\
—{cos7>
—{cost>
[es5>
cosd
{cos3>

{cos2 >
cosl

o U o>
—{sin7>

— (5>

{sin5 > -
{sind >
{sin3 >

sin2

{sinl >
{sin0>

o
'ILL 'ILL(ﬁ:I

Figure 69. Part of the LUT-ROM

Program a “0”

Program a “1”

Set N-FET transistor in row for

Set P-FET transistor in row for
input pad Wy

input pad inv_W,

Table 21. LUT Programming

b. Gain Shifter

The Gain Shifter “multiplies” the input by performing a shift. The binary

input pads Gain0 and Gainl, as shown in Figure 70, determine the amount of shift or gain
applied to the two’s complement input word. Two rows of Mux2 perform the shift of the
input. The first row connects its “select” input to Gain0 and the second one to Gainl. If
select gets high, the Mux2 uses Port A as input otherwise Port B. Since Port A is
connected to the input of the next lower bit, the row performs a shift of one digit to the

left. The Mux2s of the second row connect their Port A to the next but one input bit

performing a shift by two. The equation for a Mux2 is as follows:

Out = MuxA * Sel + MuxB * not_Sel (1.3)

Table 22 illustrates the gain effects on the input and summarizes the shift discussion.

124

Binary Input Gain Multiplication | Effect on binary input word
Gainl Gain0 | Factor | Factor
0 0 0 1 No effect on input word; input = output
01 1 2 Input word gets shifted by one digit to the left,
For example: Input = 1101
Output = 11010
1 0 2 4 Input word gets shifted by two digit to the left,
For example: Input = 1101
Output = 110100
11 3 8 Input word gets shifted by three digit to the left,

For example: Input = 1101
Output = 1101000

Table 22. Gain Shift

The gain factor in Table 22 is the integer representation of the two gain inputs. They are

related to a multiplication factor as specified in the Matlab m-file Range-Doppler-

Amplitude Map Entry Program described in previous chapters.

- Figure 70 illustrates the concept of the Gain Shift block. It shows the logic

that leads to the shift of the two’s complement binary input. The Gain Shift block or Gain

Modulator requires an 8-bit two’s complement input word and two gain-coefficients

(Gain0, Gainl). Due to the largest possible shift of three positions with gain-coefficients

of GainO=1 and Gainl=1, the output word can be an 11-bit two’s complement binary

number.

125

= r I T <

Mux_out=A*Sel+nSel*B

B T T] 1] Tl <&

= F B|(22 3||z22)1=2838|i=28||=238[|z22||z223|[z33|lz22

X faz Rax_fan LS X

ol
ot
(3
ot

PRy o tan

& & & & & &
2 3
= =

Figure 70. Gain-Shift Block

Mul
<0 —

CHull |
@— =
Mus
Mu?

The dynamic range of the Gain Shifter can be calculated as follows:
DR = 20 * log(max multiplication) (7.4)
DR =20 * Jog(8) = 18 dB (7.5)
Since a dynamic range of 18dB is not sufficient to counter a sophisticated ISAR, a higher
dynamic range might be desired for future design implementation. Adding another row of
Mux2s performing a shift of four easily does the extension. The highest multiplication
factor for a shift of seven bits is 128, which would increase the dynamic range to 42dB.

Extending the current gain shifter by even two more rows would increase the dynamic

range to 90dB.

126

4. Architecture Circuit Description in Level 3
Design architecture level 3 holds only one, but the most important module, the
tapline. The tapline combines the modules of Level 2 and Level 1 to form the data
pipeline for processing as descried earlier. Three different taplines have been created,
where only two are described here. The third tapline is a realization of the D-Register cell
implementation and was not tested.
a Tapline with Phase-Rotation
A tapline as shown in Figure 71 is the central building block of the DIS
architecture since every other block in higher design levels is a multiple of this module.
The chip capabilitigs are directly related to the number of taplines implemented in the
chip. Every additional tapline extends the possible size of a false target. In reference to
the Range-Doppler Map Entry, one tapline in the hardware represents a single cell in the
Range-Doppler Map. Currently the chip design contains 32 taplines. Therefore the target
extent is 32 cells in the “Range-Doppler-Amplitude Map Entry program,” which can be
related to a physical false target extent of:
1.2m (for each cell) * 32 taplines = 38.4m (7.6)
The tapline module allows an unproblematic interconnect of several
taplines so that a greater target extend can be achieved by adding taplines. A constraint
for more than 32 taplines is the size of the second adder, as discussed in upcoming

chapters.

127

>t
=B S ST
HHHT
It :

................

T
T

.................

Figure 71. Tapline with On-Board Phase-Increment

Due to the complexity of the tapline, it is split into three sub-blocks for illustration
purposes. The control signals and the scan-path test are not part of the discussion and are
excluded for now. The first block is called the phase—incrernentér and is shown in Figure
72. Tt consists of a 4-bit register, a 5-bit register and a 5-bit adder and requires a 4-bit
binary input word. The two’s-complement binary input is the desired phase-increment

value @PRI that has to be added to the DRFM-phase data. The phase-incrementer
128

supplies integer multiples of the desired phase-increment (n@wPRI) to the phase data on a
pulse-to-pulse basis. That is, due to the phase-rotation requirement, the output of the
phase-incrementer must increase or decrease by the amount of the phase-increment value
for every new pulse. The increment value supplied to the tapline may be constant over
several radar pulses (constant Doppler frequency). To achieve this “constant,” the

increment value is added as the first input for the 5-bit adder, where the connection

Phase Rotation Reg
8

hase Inc Reg

L
5-Bit Reg
11

o
o

1L

3 &

I I =2 Increment
output

=

=z X V
5-Bit + Adder

BB

Phase Inc Act l | —

Figure 72. Phase-Increment Block

between bit four and five is the sign extension. The adder output goes into a 5-bit register
that is again cor;nected to the adder in a loop. Due to this construction, the output of the
5-bit adder is always a n-multiple (n = 1, 2, ...) of the original input. The phase-rotation
can be adjusted by control signals, which control the registers in this block. The master
clock controls the overall behavior of the registers. Since a register needs one clock cycle
to produce a valid output, the Phase-incrementer has a requirement of at least one clock
cycle before a valid result is present at the output. Therefore the phase-increment in the 5-
bit register needs to be activated exactly one clock cycle before a new pulse with new

DRFM-phase data can be processed to produce a valid output. The output is a two’s

129

complement binary word, which is the input to the next logical block, the LUT-Module.
An alternative phase-increment design is described in Section B that allows even further
flexibility in false target generation.

The LUT-Module, shown in Figure 73, is the second sub-block of a
tapline. It consists of a 5-bit adder, a 5-bit register, a LUT for I and Q values, and a 8-bit
register. The adder takes the DRFM-phase data inputs and the Phase-incrementer outputs
and adds them. Note that the addition of two 5-bit binary words could result in a 6-bit
word. This fact can be ignored, since the Phase-incrementer output is a phase value
repeating over a period of 27t. Therefore the adder output, in conjunction with the cosine

and sine LUT, can also be shown to be periodic over five bits.

2999229
T =R % %

v: a 2 = o
5-Bit < Adder

Phase Acc

ipeline Reg 1

i Swi

—e
|—e

1

5-Bit Reg

sin-table-output cos-table-output
585 & & 2s3 3¢ T 22 X2z 2=

Pipeline Reg it tmns

o7 B¢ Dy Dt DIDZ D1 DO

8-Bit Reg ®
for I-Block =

7 06 08 o 0 02 ol 00

8-Bit Reg *[°
for Q-Block g

@ 0 0t 0 02 ot 00

fifete

qub b B oo
oD 10 5t S ocu

[slzigisEis

Figure 73. Tapline LUT Module
130

In continuation with the data flow, the adder output leads into a 5-bit register (Pipeline
Reg 1), where it is available at the output after one clock cycle. The LUT block takes the
5-bit input word and uses it as an address to determine the corresponding I and Q values
in the sine/cosine LUT as described earlier. From this point the signal flow is divided into
two data channels, which are the in-phase and quadrature values (I and Q). However the
operations performed on data within the I and Q channel will be the same up to the final
output at the end of the first tapline. The LUT output data are inputs to an 8-bit register
(Pipeline Reg 2) and become available at the output after the next clock cycle leads into
the last module, the gain and adder block

The “gain and adder block” is shown in Figure 74 and consists of a gain
shift block with a gain register, a 16-bit adder, and a 16-bit register each for the I and Q
channels (compare also with Figure 71). The input to the gain shift is the output of the
LUT. As described earlier, the gain shift performs a shift of the input data in accordance
with the specified gain-coefficients. The output results in a two’s complement 11-bit
word for each channel. After one clock cycle, the values are present at the output of the
following 11-bit register (Pipeline Reg 3). The following 16-bit adder takes two inputs.
One is the output of the Gain Shift block, which again requires a sign extension to the
most significant bit achieved by the interconnection of bits 11 to 15. The second input is
the output of the tapline that is the next higher in a cascade of 32 taplines. This illustrates
the concept mentioned at the beginning of this chapter. To recall, imagine that the
considered tapline is tapline #1. The next higher tapline is #2. After four clock cycles, the
first outputs at both taplines are available at the gain and adder block output (see Table

20), where tapline #2 presents its values to the 16-bit adder of tapline #1. With the next

131

clock cycle, tapline #2’s incoming data is added to tapline #1’s data coming out of the

11-bit register after the gain shift. After the addition in the 16-bit adder, the values are

presented to the input of the last register (Pipeline Reg 4) in the tapline. After one more

clock cycle, the values in the form of 16-bit two’s complement words are available at the

tapline output. The size of the last adder determines the numbers of taplines because all

outputs are added at the adder inside the first tapline. A 16-bit adder can be used with 32

taplines without achieving an overload at the end of the chain. Every multiple of the

current 32 taplines requires increasing the number of adder bits by one bit.

PO o] e

Shift N

R O B B 3

11-Bit Reg [~
for Q-Block?

-
o=
- L £
s

N R

11-Bit Reg ¥
for I-Block*

rreee

fFr3szzzxisazxz

16-Bit Reg

233288 rzszeE3 s 883

T

Pipeline Reg 4

rreee

22833358

11

Figure 74. Tapline Gain and Adder Block

All of the three sub-blocks that have been discussed include control and test signals

managing the data flow to achieve the physical requirements for the DIS. These signals

are not part of this section but are discussed in detail later on. Furthermore, there are four

132

1-bit registers on the right hand side shown in Figure 71, that were not part of the
discussion either. These registers are used to allow particular control signals to penetrate
the tapline synchronously with the clock.

b. Tapline with Double Buffering

Figure 75 shows a modified version of a tapline with double-buffered
phase data and gain-coefficients. The main body for DRFM-phase data treatment is still
the same, but the application of the phase data and the gain-coefficients is different. The
Phase-incrementer is replaced with a double register buffer consisting of two 4-bit
registers as shown in Figure 76 (compare with Figure 72). The generation of the phase-
increment is done off chip and can be applied on a PRI to PRI basis. Therefore the
flexibility is increased, since generation of multiple scatterers (superposition of several
Doppler phases) are possible within one Range-Doppler-cell.

For this process, the phase data is stored in the second register while new
data is loaded into the first register. The phase-increment is normally fixed for one radar
pulse so that the loading requirements will not reduce the speed of the data processing.
The only trade off in this design is the resolution in Doppler due to the supplied phase
data. The phase-rotation in the other tapline design allows a controller to produce
multiples of the original 4-bit input phase, which could result in a 5-bit output going into
the phase accumulator. With phase buffering the input is four bits and no phase-rotation
is done on chip. The phase data must propagate through the registers before being added
to the DRFM-phase data in the phase accumulator. The phase accumulator requires two

5-bit inputs to produce the different Doppler phase values. In order to avoid limitations,

133

pe toc Mam e B (lte i ot a1

Tapline New

2] 9} v
s g oot tor (TS Raen s
o])
e - . = - PR
monnmsmmsE. Tt Sy
[RRNG
e
=
& . g] L&
iz . T 2]
IEEREI
IRERE]
s T S
l i 3 5]
AR aehe g - | ’
1-81¢ Rog ..pf..n.w M I oyt ‘:h :E:
T T L=
JUS— D'."11 TrT; I nnnglk
bl L EED s -=HE——B'E"- =5 e =3, PiRr o
[BRINEREREEL HHHH L
¥ T Apel o by) N
r H - LR
4t nu-at Reg | M)) o
for Q-Block "I o for 3-Block " D
4 Regaster Bits for the Saan Fath =
] 9]
ceraad
.............................. ORI G I
- sesrm. kUL, - I W e

Figure 75. Tapline with Double-Buffered Phase and Gain

134

Clock 1

Clock 2

Clock 3

Clock 4

Phase_incDat3 |
Phase_incDat2
Phase_incDat1
Phase_incDat(

Phase_inc Register Buffer
Si - SROi
0 [y
o N “ Input for DRFM
4-Bit Reg N N 4-Bit Reg ¢ Phase Data
D3 [+:] 0 o
(X S S i HD X S KR L W
Phase_inc Register

::zz:\/aamzs

5-Bit < Adder

Phase Acc

Figure 76. Phase Buffering

the least significant bit for the phase-increment data leading into the phase accumulator is
fixed at zero (grounded). This overcomes a reduction in the range of possible phase-
increment values since the four input bits are equally spread over a range of five bits.
Nevertheless the phase-increment data are limited to even decimal numbers loaded as
binary words. This is considered acceptable for a concept demonstrator, since otherwise a
major redesign of Level 4 and Level 5 would be required and would postpone the
fabrication considerably.

Figure 77 shows the gain-coefficients that are also double-buffered. This
provides increased flexibility in terms of loading the chip. The gain-coefficients normally
change together with the phase data with every radar pulse. A logic is required to change
the new gain at exactly the same time the processed data is present at the gain shifter.
This logic is not shown in Figure 77, but can be observed in Figure 75. To change the

gain-coefficients, the control signal activating the phase-increment data penetrates two

135

1-bit control registers. Thus, the control signal is delayed by two clock cycles, which
represent the time the data needs to reach the gain shifter. Once the control signal is
present at the second gain register, the register loads the new gain-coefficient from the

gain register buffer and the gain shifter uses the new gain to perform the shift of its input

data.

1109 f19e¢? 799979779
Gain_Dat(>>:Dﬂ§ R RT wf 86 4 3 Gano A7 Aé}iifk(A3 A2 A1 A
fain Datl ” Z-SE)];t SRRf?lg v Gain Reg Buffer " 2-5'}} 51359 ! Gm% Z‘Ge';a]::.ng glztz h%ne(%m]%

(L l ‘L J; Gain Reg Elii
Figure 77. Gain-Coefficients Double Buffer

5. Architecture Circuit Description in Level 4

Level 4 of the design construct in S-Edit pursues the tapline. Figure 78 shows a
Supertap that consists of 8-taplines connecting the data pipleline in series. The Supertap
design is not affected by the two different tapline designs mentioned in the previous
section. The only difference is the name of a control signal that reflects the tapline used
to construct the Supertap. Form now on, we will consider only the double-buffered
tapline, as it is used to generate the layout in L-Edit.

A Supertap has the same control signals and output pads as a tapline. For
example, the gain-coefficients, the phase-increment values, and the target-extent control
signals are different for the individual taplines. The target extent signal is discussed under
the control signal section and will be disregarded for now. The gain-coefficients and
phase-increment values are important data for the false target generation, as described

earlier.

136

Figure 78. Supertap Schematics

Due to the serial addition in the 16-bit adder for the new architecture (see Figure 74), the
same DRFM-phase samples serve as inputs for all taplines simultaneously, as illustrated
earlier in this Chapter. The 2*16-bit input pads on the right hand side of Figure 78 are
used to cascade another Supertap. Due to this concept of cascading Supertaps, in theory
any number of Supertaps could be easily chained together almost without any need for
modifying the existing design. Tﬁe number 6f Supertaps is therefore limited only to the
size of the chip and the current available technology for mask layout. If the desired false-
target-extent is larger than the available Supertaps that could fit into an IC, several ICs
can be “daisy-chained” together to increase the possibilities for false target generation.
For daisy-chaining more than four Supertaps together, the 16-bit adder within a tapline
needs to expand by one more bit. Every doubling of the used 32 taplines or four
Supertaps requires one more bit for the adder.

6. Architecture Circuit Description in Level 5

Level 5 is the highest level of the current design. As shown in Figure 79, four
Supertaps are connected to get an overall number of 32 taplines (8-taplines per Supertap).
A 5-to-32-Decoder is used to control the target-extent control signal in the form of a truth

table. The required target size can be smaller than the available number of taplines. The

137

decoder generates control signals to “turn on” the needed number of taplines. To
illustrate, a five bit input word corresponds to decimal numbers between 0 and 31. These
numbers are directly related to the tapline enumeration as shown in Figure 78. If the
generation of a false target requires five taplines, the binary input to the decodér is 00110,
which activates tapline zero to tapline four in Supertap A (lower left corner in Figure 79).

The schematics of the decoder can be found in the Appendix.

J——— E +
TH ! owd ugnm net o ownowown
Super Tap, C

H F e gt et st e i s
Super Tap D

Figure 79. Toplevel Consisting of Four Supertaps

138

The input and output pads used in Level 5 are summarized as follows:

Inputs:

Outputs:

Supertap D has two rows of 16 input pads each for I and Q values in order to
connect Supertaps in series. For this layout, they are connected to ground to
exclude possible side effects based on pending or floating nodes.

5-bit input for the 5-to-32-Decoder to control the target size.

A master clock, which is connected in parallel to clock input pads throughout
all five levels.

Control signals for the scan-path test (SR, SL, S_P_Test_Rin, S_P_Test_Lin).
2 * 32 = 64 gain-coefficients (Gain0/Gain1 for each tapline).

4 * 32 = 128 phase-increment values (phase_inc0/1/2/3 for each tapline).

5-bit DRFM-input data (same input for all tapline). |

Several 1-bit control inputs to control the data flow in the chip (load_phase,
delta_Phase_increment, Range_bin_valid, Load_Gain_Reg and overflow_in).

These signals are discussed in the next section.

Final output for I and Q channel in Supertap A representing the data for the
false target. This data is imported into Matlab for verification.

Control signals for the scan-path test (S_P_Test_Rout, S_P_Test_Lout).

Two 1-bit control outputs to verify the output result of the chip (Overflow_out

and Data_Processed_out)). These signals are discussed in the next section.

With a total of two gain-coefficients, four phase-increment inputs per tapline, and 32

taplines for the current design, a total of 192 input pins are required. Adding this many

139

pins to the number of high-speed input and output pins would greatly increase the cost of
IC fabrication and the complexity and cost of using the finished IC in a system.
Furthermore, if the number of taplines is increased in the future, this problem would
become even worse. However, the gain-coefficients and the phase-increment values
change only at the beginning of a new radar pulse, not on every sample within a radar
pulse. Therefore, the gain-coefficient and phase-increment inputs are of relatively low
bandwidth and can be bussed together. To maintain compatibility with off-the-shelf,
digital signal processing microprocessors and components, a 32-bit input bus has been
designed for the top-level design. The 64 gain-coefficient inpﬁts for 32 taplines (two per
tap) are loaded in two bus cycles. The 128 inputs for 32 taplines (four per tap) for the
phase-increment are loaded in four bus cycles. Table 23 lists the bus cycles and the

control signals and represents an example for how the inputs could be loaded into the IC.

Bus-CLK | Control Signal Function

1 Load gain Reg Tap 0-15 Loads the gain-coefficients for tapline 0-15

2 Load gain Reg Tap 16-31 Loads the gain-coefficients for tapline 16-31

3 Load Phase Inc Supertap A | Loads the 4-bit phase-increment value into
taplines 0-7

4 Load Phase Inc Supertap B | Loads the 4-bit phase-increment value into
taplines 8-15

5 Load Phase Inc Supertap C | Loads the 4-bit phase-increment value into
taplines 16-23

6 Load Phase Inc Supertap D | Loads the 4-bit phase-increment value into
taplines 24-31

Table 23. Loading Example for the Bussed Inputs

140

The current design can be easily expanded to include more than 32 taplines
without a further increase in on-chip hardware related to the bus or the number of /O
pins. To extend the current design, the gain-coefficient inputs and phase-increment inputs
from each additional Supertap need to be connected to the bus. Every additional Supertap
requires its own loading cycle so that the number of bus cycles will increase.

In Level 5 all inputs and outputs are attached to Pad cells. A Pad consists of a
Buf4 and a PadIn or PadOut for an input or output respectively; Figure 80 shows an
output pad. The Pads provide the interface between the chip and the outside world. Their
primary element is a piece of metal that connects to the pins of the chip via the pad
frame. Another important element within a pad is a buffer (Buf4). A Buf4 is a cell that
does not perform any logic function but does provide buffering of logic signals
(triangular symbol with number four inside in Figure 80). A Buf4 can be driven at high
speed by a minimum-sized logic gate. It is capable of sinking and sourcing four times the
amount of current that a minimum-sized logic gate can sink or source. Therefore it is very
good for driving networks that have a high fan out and have large capacitive loads, such

as clock and control signals and is used throughout the design.

In | < D— Out

PadOut_SCMOS

Figure 80. Output Pad

The two types of Pads are distinguishable by their function. PadIn is used to
connect signals from outside thé IC to the on-chip inputs. It provides a bond pad site for a

wire bond, a static-discharge protection circuit, and logic signal buffering to drive high-
141

fanout and high-capacitate on-chip networks. PadOut is used to connect the IC outputs to
the off-chip networks. It provides a high-power driver circuit, a static discharge

protection circuit, and a bond pad site for the wire bond.

142

VIIL. ASIC DESIGN: TIMING & CONTROL

This chapter provides a detailed description of inputs controlling the IC and the
signal-flow. Furthermore, timing control diagrams will illustrate the signal flow within
the IC and demonstrate the use of the control signals to achieve a correct data output.
Moreover, the concept of scan-path testing is discussed and illustrated as an example for

the tapline implementation.
A. CONTROL SIGNALS

At this point it should be mentioned that the master clock exclusively controls all
control signals. Due to this setup, the data processing can be controlled precisely in the
data pipeline, where a pipeline is the data flow within a tapline.

The Scan-path test consists of several inputs and outputs and will be discussed in
more detail later. The associated ports are: Scan-path test Left Out (S_P_Test_Lout),
Scan-path test Right Out (S_P_Test_Rout), Scan-path test Left In (S_P_Test_Lin), Scan-
path test Right In (S_P_Test_Rin), Shift Right Data In (SRDj), Shift Left Data In (SLDi),
Shift Right (SR), and Shift Left (SL). They are mentioned here briefly for introduction
purposes because they are used in the following description.

1. Clock

The clock (CLK) is the most important control signal throughout the IC. Every D-
Flip-Flop used passes its input data to the output when the clock signal is high. This
concept is called “positive édge” clocking. Since the clock driven register cell is the basic

element of a n-bit register, the entire data flow is clock controlled. With the clock

143

changing from low to high, the data transports one step further down in the tapline
pipeline and allows total control over the internal control signals and the data processing.

2. Load

Load (LD) is a signal to control the behavior of the registers. Due to the structure
of the register cell, the signals Shift Right (SR), Shift Left (SL) and Hold (HLD) have to
be low when LD is high. Otherwise the register cell is in an undefined state and will
produce erroneous results. Load is the mode for normal operation. If LD is high, the data
can penetrate the pipeline controlled by the clock. If LD is low, the chip is principally in
a special mode, where the other control signals, such as, Hold or Shift Right can be used.

3. Hold

Hold (HD) is one of the register cell signals that can be exclusively high for a
certain performance within a register. If HD is high, SR, SL and LD have to be low. Hold
is used to store or hold a value within a register that should not change over the clock
period. The input data bits to a register with HLD high are simply ignored and the last
data within the register are retained. This concept is used to achieve buffering for the
gain-coefficients and the phase-increment data. Since these data bits are used within a
period of a radar pulse, they are stored in registers and made available for subsequent
processing using the clocked DRFM-phase data.

Hold, Load, Shift Right and Shift Left are the key control signals for every
operation. As mentioned earlier only one of these signals is permitted to be high within a
clock cycle, or the IC will be in an undefined state. However, if all control signals are low
at the same time, the register performs a special function, the synchronous clear. A

synchronous clear forces the register to reset and sets all output bits to low (zero). This

144

function is used as initialization before data is loaded into the IC and for the two 11-bit
registers leading its output into the 16-bit adder. The 11-bit register’s LD signal is
connected to a two-input AND gate. The gate inputs are connected to control signals in
such a way that they signal if data is present or if data is not present at the gain shifter. If
data is present, the register will perform a normal load. If no data is present, it will
perform a synchronous clear and zero the output. The requirement for this operation is
due to the way the data is summed in the 16-bit adder. The DRFM-phase data penetrate
all taplines simultaneously. Therefore tapline 2 to 32 will still have valid data in the adder
chain, where as tapline 1 is already finished with its data processing. The rest of the data
is clocked through the adder chain, consisting of the 16-bit adders within the single
taplines. No data is allowed to influence the continuing data transport at this stage.
Therefore it is necessary for the idle tapline not to have any undefined data present at its
16-bit adders. The synchronous clear function will guarantee that this input (A input row
of the 16-bit adder) is zero.

4. Load Phase Increment

Load Phase Increment (LD Phase Inc) is a control bit that affects the two registeré
in the phase-increment block in order to signal a change for the phase-increment value.
The signal performs the same operation for both described taplines. If LD Phase Inc and.
LD are high, a new phase value gets loéded into the first phase-increment register. For
the rotation phase tapline, the second register performs a synchronous clear to reset the
phase-rotation, whereas the second register in the double-buffered tapline design remains

unchanged. If LD Phase Inc is low and LD is high, the Phase Inc Reg in both designs is

145

in a hold mode, in order to keep the phase-increment value constant over the duration of a
radar pulse.

The gain-coefficients and the phase-increment values are transported on a 32-bit
bus. There are four phase-increment bits per tapline and 32 bits for a Supertap, therefore
the chip needs to load a total of 128 phase-increment values to be able to process DRFM-
phase data. Since the bus has a length of 32-bits, four bus cycles are needed to load the
gain-coefficients, controlled by the signals “Load Phase inc Supertap A-D.” These
signals are equivalent to the controls to LD Phase Inc on the top level of the chip. They
perform the same operation and trigger the tapline controls.

5. Delta Phase Increment

Delta Phase Increment (Delta Phase Inc) is a control signal for the Phase-Rotation
Register (Phase Rot Reg) and is used only in the tapline with on-chip phase-rotation
instead of double-buffered coefficients. Since a CHIRP pulse or radar pulse is divided
into samples and the phase should only rotate once for every pulse, the phase-rotation
value has to be incremented between pulses. If Delta Phase Inc and LD are high, the
phase-increment can “rotate” under control by the clock. The resulting value will be
added to the DRFM-input data. If Delta Phase Inc and LD Phase Inc are low, the Phase
" Rot Reg is in a hold mode and the phase-increment value (input for the Phase
Accumulator) is fixed. Before processing a new Radar pulse, the phase has to rotate once
to produce the new phase val;le.

6. Use Phase Increment

Use Phase Increment (Use Phase Inc) is the substitute for Delta Phase Inc in the

double-buffered version of the tapline. In this case the phase-increment data has to pass

146

through two registers in order to arrive at the phase accumulator. With Use Phase Inc and
LD high, the data can flow from the buffer register into the phase-increment register.
Furthermore the same control signal propagates through two more control registers to
adjust the loading of the gain-coefficients at the proper time, since gain and phase usually
change collectively. Thus the controller is free from initiating the gain change to
correspond to the phase change.

7. Load Gain Register

Load Gain Register (LD Gain Reg) affects the behavior of the gain register (the
buffer for the double-buffered tapline) in order to signal a change of gain data within a
tapline. To load new gain data, LD Gain Reg and LD must be high at the same time. If
LD Gain Register is low and LD is high, the gain register is in a hold mode.

The gain-coefficients and the phase-increment values are bused on a 32-bit bus.
There are two gain-coefficients per tapline and 16 coefficients per Supertap. Therefore
the chip needs to load 64 gain-coefficients values to be able to process DRFM-phase
data. Since the bus has a length of 32-bits, two bus cycles are needed to load the gain-
coefficients controlled by “Load Gain SupTap AB” and “Load Gain SupTap CD.” Load
Gain SupTap AB/CD are the equivélent controls on the top level of the chip. They
perform the same operation and trigger the tapline controls.

8. Target Extent

The Target Extent (Tgt Extent) control is used to activate or deactivate taplines in
accordance with the appropriate size of the false target. The current design is able to
handle a false target up to 32 cells corresponding to the in Matlab constructed Range-

Doppler map. For a small false target, less taplines are needed to create the target. In

147

design level 5 a 5-to-32-bit decoder uses a truth table to adjust the required taplines in
dependency of the target size. If the target generation requires, for example only 12
taplines, the Tgt Extent for the first 12 taplines is high. The Tgt Extent for the other

taplines is low and the output values are ignored.

9. Range Bin Valid

A tapline needs four clock cycles to produce a valid output. Range bin valid goes
high when new DRFM-phase data are presented to the input of a tapline. The bit
penetrates through 1-bit register cells to the Data Processed Out pad. If Data Processed
.Out goes high, the output from the tapline is fully processed and the output is valid. As
long as Data Processed Out is low, the clocked output must be ignored.

Besides the normal function, there is an interaction between two controls at this
point. The Range bin valid control string feeds the two input AND gate for the Pipeline
Register 3 as mentioned in VIII.A.3. If the Range bin valid is low, the register after the
gain-shift block gets cleared with every clock cycle. Recall, that a higher tapline can
produce valid results, even if a lower one cannot. Consequently the lower tapline is not |
allowed to add undefined data to the valid output of a higher tapline and must be cleared.

10.Valid Result In

Valid Result In performs a similar operation as Range bin Valid. It connects to the
Valid Result Out port of the next higher tapline. If the next higher tapline produces a
valid output that leads into the lower tapline, Valid Result In is high and the next lower
tapline produces a valid outpht with the following clock, although it may not produce any

valid data within its own gain-shift block.

148

11.0verflow In/Out

Overflow In is an error-checking signal from the next higher tapline. If a higher
tapline produces an invalid output due to an overflow in the 16-Bit-Adder, the entire chip
output will become invalid. Overflow Out is the pipelined output to flag data produced by

a 16-bit adder overflow.
B. TIMING CONTROL

The clock controls the normal mode of operation. Several control signals have to
interact in order to ensure correct DRFM-input data treatinent. In 'other words, the
operator needs to know the timing relationship for functions, such as bus loading,
DRFM-phase data input, and data read out. The best method to demonstrate the
complicated timing control is with an example. The example in Figure 81 shows the
timing diagram for the initial loading phase and Figure 82 shows the timing constraints in
terms of clocks for the initial loading phase and the time between two radar pulses. In the
diagrams, the clock is set to 5nsec low and Snsec high so that one clock cycle is 10nsec.
Moreover, for illustration purposes, multiple input and outpﬁt bits are collapsed into a
single bit.

1. Initial Loading Phase

Before data processing can begin, the IC should be initialized, clock 0-10nsec, as
shown in Figure 81. This will clear all registers with a synchronous clear and set the
control bits to a defined state. The next six clock cycles are reserved to load the gain-

coefficients and the phase-increment values through the 32-bit bus. From these six clock

149

cycles the first four are required to load the phase-increments for all four Supertaps. This
involves interacting with the controls and is summarized as follows:
1. Supertap A loads its phase-increment data during the first of the six clocks.
For this purpose the corresponding data are presented to the 32-bit input bus
and the control “LD Phase SuptapA” is high for this particular clock.
2. Supertap B loads its phase-increment data during the second of the six clocks.
For this purpose the corresponding data are presented to the 32-bit input bus
and the control “LD Phase SuptapB” is high for this particular clock.
3. Supertap C loads its phase-increment data during the third of the six clocks.
For this purpose the corresponding data are presented to the 32-bit input bus
and the control “LD Phase SuptapC” is high for this particular clock.
4. Supertap D loads its phase-increment data during the fourth of the six clocks.
For this purpose the corresponding data are presented to the 32-bit input bus
and the control “LD Phase SuptapD” is high for this particular clock.
The following last two clock cycles are used to load the gain-coefficients for the
Supertaps and move the buffered phase-increment data into the next register:
5; Supértap A and Supertap B loads its gain-coefficients during the fifth of the
six clocks. For this purpose the bus pads “Bus0” to “Bus15” are the inputs for
Supertap A and “Busl6” to “Bus32” are the inputs for Supertap B.
Additionally, the controls “LD_Gain_SupTap_AB” and “Use Phase Inc” are
required to be high for this particular clock, where “use Phase Inc” moves the

buffered data into the registers for data treatment. Due to the delay

150

propagation of the Phase Inc control, the buffered gain-coefficients move after
two more clock cycles into the register for data treatment.
6. Supertap C and Supertap D loads its gain-coefficients during the sixth of the
six clocks. For this purpose the bus pads “Bus0” to “Bus15” are the inputs for
Supertap C and “Busl6” to “Bus32” are the inputs for Supertap D.
Additionally, the control “LD_Gain_SupTap_CD” is required to be high for
this particular clock.
Thus, seven clock cycles are needed before the first DRFM-phase data can be read into
the taplines. Due to the pipelined structure of a tapline, the data treatment demands four
more clock cycles before the first valid output is present at the first tapline (clock 70-
100nsec). During these four clocks, the phase-increment and the gain are applied to the
DRFM-phase data and the resulting data adds up with the output data from other taplines
in the 16-bit adder. In summary, eleven clock cycles are required before the first valid
output is observable at the output. The “Data Processed Out” control signal is an
indicator for valid results. As long as this control signal has a high output, the
corresponding output for the I and Q channel are valid and can be used for false target
generation. After initialization the DRFM-phase data for the first radar pulse can be
processed within the taplines. The time between two radar pulses requires some attention
again and is discussed in the next sub-section. The initialization for the second Radar
pulse is the same, as it concerns the loading phase with phase-increment data and gain-
coefficients. Nevertheless the register initialization with a synchronous clear is not

required.

151

During the time of loading and data processing, LD is high except for the
synchronous clear at the very beginning. All other register control signals like the scan-
path controls and HLD are low, since this is the defined state for normal operation.
Moreover, the target extent as defined through level 5°s 5-to-32-bit decoder activates the
taplines. The example in Figure 81 assumes all taplines active and shows the

corresponding decoder inputs (Tgt Extent In 0-4) as high.

152

jininEpininiaiginininininls

OO0~ ~— — O

- 0O 0O 0O «~ — «~ 0 0 0 «— 0 0 0 0o o

IN0”MOBAD) S
G1-0Dino de] &
Gl-0iino” de| @@

N0 passannld ejeq &
PleA”uIq BBuey mgil
y-gaseld —@1

o
de)dnguieq o) | -9} sng —d
de LdnSuieS 10} Gi-0SNG =k
godeLdng Bay uleg g —at
gvdeldngBay ulen Q7 —4l
aUl”8skld asn gl
aseyqd 10§ ¢e-gsng —@

gde 1 dng oul eseyd g —@x
adejdng oui aseyq (] sl
gde) dng oul aseyq (17 =&k
ydedng oul aseyd (] ~EE
P-OUI UBIXT 10|~

Q" =

upuImIsa) T d S e

AS/YS =S

QH -

H30JQ ==EI¥

sup'sz) sup'00l sug'sy sup'0g sug'sz

Figure 81. Timing Diagram for the Initial Loading Phase

153

2. Timing between Radar Pulses
After processing all DRFM inputs for one Radar pulse, there are still valid results
in the adder chain propagating in direction of the first tapline in the row. The time
between two radar pulses is much greater than the time between the samples. Therefore it
is desired to read out the rest of the data. For example, assume 62 DRFM-phase samples
for one radar pulse and a requirement for 32 taplines, where the 62* DRFM input is
| processed parallel in all taplines and now reside in the corresponding 16-bit registers. The
16-bit register of the first tapline is the chip output. Therefore its output is already read
out, but 31 outputs need to be clocked through the chain. Consequently, 31 clock cycles
are required to read the rest of the remaining data. Figure 82 shows that the DRFM input
is low during this time and does not contain any data for processing. As mentioned
earlier, the 11-bit register within a tapline not containing any valid data needs to be
cleared since it leads into the 16-bit adder. Therefore the control Range-bin valid needs to
change from high to low after the last DRFM-phase data gets loaded into the taplines. In
view of the fact that the taplines are basically idle during the read out of the processed
data, the time is used to load the phase-increment data and gain-coefficients for the next

radar pulse.

154

N0 AMO[BAQ 45X
gl-poIN0” de | AN
GL-gino” de| &%

N0~ passaold” ejeQ &3

| plieA”ulq 8buey —~a
_ y-geseud —d

"$8NUIU03 Blep aseyd4y Q) mau yim Buissaaeid ayl '$§202 |E 10 23sn| Iy ‘IN0 Peal S| Uleyd 1apPY BY) sejduses Zg isye o

OO~ - - ©

de dnguies 10} LE-g)8NG ~@
dej dnguieq 10} G1-(sNg =<
aodedng ey uien"ay —A
gde dng Boy wen (1 ~@
U BSBY SN =B
8SeYd 10} ZE-0sNg —@

ade dng ou"eseyd Q] =&
ade|dng au"aseyd Q] —@
gde)dng aul aseyd Q] =&
yvdejdng oul aseyq Q1 =@
p-Ou e 18] —a

Q1 -~

upgmImsey d S ~a@

IS/S =B

aH~-a

430]3 =&

- 0 0O 0O -~ -~ — 0 0 0 -~ 0 0 0 o o

UL LA e e L e e gl

Su('G.8 sug'gse sug'szg sug'ooB sup'GLL sup'a5. sup'sz/ sUQ'00/ sup'G/9

155

Diagram between Two Radar Pulses

iming

Figure 82. T

C. SCAN-PATH TESTING

The design of a workable system solution for a given problem is only half of the
work. Furthermore one must also be able to test the system to a degree, where it can be
ensured that the system is fully functional with a high confidence level. In very small-
scale digital systems, tests can be performed exhaustively, where the system is exercised
over its full range of operating conditions. This method is not an economical or useful
approach to verify the functionality. Therefore other strategies are necessary to perform
proper testing. The scan-path methodology is probably the most widely used technique
for testing those parts of a integrated circuit that are constructed of clocked flip-flops
interconnected by combinational logic. As illustrated in Figure 83, the scan path can be
implemented into a simple circuit very easily. When the circuit is put into test mode, one
can shift an arbitrary test pattern into the register. By returning the circuit to normal mode
for one clock period, the contents of the scan register and primary input signals act as
inputs to the attached combinational circuitry and new values are stored in the register. If
the circuit is then placed into test mode again, the controller can shift out the contents of
the scan register for comparison with the correct response.

By using test points, one can easily enhance the absorbability and controllability
of a circuit. The scan-path register effectively provides such test points, whereas in FPGA
&esign the implementation of Tristate-buffers is necessary. To control the test points in a
scan-path test several control signals are implemented to adjust the mode of operation.

Table 24 lists the signals used for the scan-path test in the new DIS design.

156

Figure 83. Register Cell

Padname Function

SR (Shift Right) Input pad to control function of register. If high, the
data within the register will be shifted to the right with
every clock cycle. All other control signals have to be
low (HLD, LD, SL)

SL (Shift Left) Input pad to control function of register. If high, the
data within the register will be shifted to‘the left with
every clock cycle. All other control signais have to be
low (HLD, LD, SR)

SRDi (Shift Right Data in) Test data input pad from right front end of scan-path
test

SLDi (Shift Left Data in) Test data input pad from left front end of scan-path test

SRDo (Shift Right Data out) | Test data output pad for a right shifted output

SLDo (Shift Left Data out) Test data output pad for a left shifted output

Table 24. Scan-Path Test Control Signals

157

A scan path register is a serial cascade of scan path register cells whose inputs and
outputs are connected to the internal logic of a chip as illustrated in Figure 84. During
normal operation, the LD signal is asserted and the logic value at the inputs DO and D1
reach the outputs QO and Q1 after one clock cycle. When on the other hand the SL is
asserted during test mode, the logic value at SLDj arrives at Q1 one clock cycle later and
continues propagating to QO with the following clock cycle. When SR is asserted during
a test, the logic value at SRDi arrives at Q0 one clock cycle later and continues
propagating to Q1 with the following clock cycle. If the chip is still in test mode, the
values keep propagating in the forced direction through all the connected registers in the

scan path.

aelcich
ARAM- 3

e

HID LD SR SL HLD LD SR SL
SRD: 0 J L{ sroi 0
Reg Cellgsr—e Reg Cellosf—
i i

D SLDi— D sLDil SIDL

CLK CLK

Figure 84. Schematics of a 2-Bit Register

158

In summary, the scan-path test can be used for two valuable testing functions.
First, a certain test setup can be tested, where test data is placed in every register of the
chip. After loading the test data via the scan path, the chip is put into normal operation
mode and the resulting outputs can be observed at the output for examination. Second,
after normal operation all stored data in the registers can be read out by using the scan-
path shift option to move the register data to the left or to the right. The results can be
examined by comparing them with calculated values. The scan-path test implementation
for a tapline with phase-rotation on-chip is shown in Figure 85. The path between the
taplines within a Supertap and beyond is simply realized by a serial connection of inputs
and outputs. The Scan chain from the toplevel point of view connects tapline 0 to 31 in a
long row of registers. To give an overview about the number of bits penetrating through
the scan chain, imagine the following calculation: 90 bits are used in the registers of one
tapline, where 32 taplines are implemented in the chip. This will result in 90 * 32 =
2,880 values to read out for the complete scan path. A double-buffered tapline has 94
register bits. Therefore the length of the scan path on the toplevel is even higher with

3,040 values.

159

(o

Oyl
H |-
=1
A sl
.
-
-

——11
. |1

Adder

5-Bit

Adder

5-Bit

Right In

1113

>

%

o
a y ®
[S ugy

@
aw

1T

t

Left

®esevssnzascsevvosnransaena

R T Y PP T Y PP PR OT ey
.

-y
o
[
-
o

csssom

~|Boygng-1 »

o® ww
: |
werarasy
.
.
.
.
N
H
.
.
.
.
.
.
.
.
aesfocomms
. .
11 o
o
o “ W%LA 31%¢e o
g o 'g les o
o =n Sl-es o
-2 BL.mlonnl
3 3 3l o
W“ ho PREN - i e
b e s
£n T |}
el ol .
.
=50 :
= H
el :
Bo I goofrasecce
gt { o
L L i
B | e wm a] o
4 pa LA s
Sl o 2% i
» j—e o] L = m 8l Mu
i BIi s
o [l 3le o
o—d2 oo.MmloT
o—{& sl o
o = w o eu H
.
IRRRE! :
.
.
.
.
.
.
.
-+

YL
1

=1+ 4R Phift; 5

=

AN M A A

=3 1 99 Phift; ;

i

—f ox = g,
—1o

oo o 1

L1 Q w L o S

— 1o S e

.

4 A e .

F— Mwl e o

] v .

o Loy

—4 — e .

1 e

— “-e 3

—a [o

'y w waam +

.

IARY! :

.

.

N

H

Iy

:J.

IR EREREXL

esnecrvsene

IRENERARERN

9 N A N I D e |
Tt T TS T T g
S

Srerseacs s

¥
-1y
oy
P
—{2

Shift Right

: Shift Left

.
.
tsecvvssven

.
sssescen

MALLLAEEENLLEANA]

v g

LR EEEEEKEEEXKKEK

$229232223222°eV

AAALEALALEEEEALE
332

] =

731rreeeeerITYLIOYIY
H 2

$22331222222VE2:
EiiilQiB!(: +a ‘Agldaer'l.
EEEEEEEKEEEEREEKX]

17332

Ot

RALLALEEALEAENARN

3

-y

ERITREILTIDPTRIAL O

~—{= o o
o{w »
-y »n
o—{w »
o—in 80w
o—{m ms
©

b I I
o= B’
T
o—{ne -
o—{va "
—ue w
&l w
mi -
na oo
> = wa
1T

asssse

o= ®
o—u »
o w
*o— e ®
—in 80 »
—n o
o % t&
o =
ou A,
o—{= 65
o—fwe —w
o "»
o—{txa m
o]

o

o—

I Il J 1 1 1 1 J J 1 l l 1 *---.---c'---.n--no-o---

Li ght Out

ﬁ,eft In

Figure 85. Scan Path in a Tapline with Phase-Rotation On-Board

160

IX. ASIC DESIGN: SIMULATION

This chapter is dedicated to circuit verification with simulation using the circuit
simulator T-Spice. It provides useful information about simulation parameters and semi-
digital simulation. Two examples are used to illustrate the testing concept. The first
example is the two-tapline test case, where the regular transistor model is used to perform
the simulation. The second example is the 32-tapline chip where a switch model replaces

the transistor model to reduce simulation time and complexity.
A. T-SPICE SIMULATIONS

Two goals are established by doing the simulation in T-Spice. First and foremost,
the correct logical implementation needs to be verified, which includes the check of each
connection between elements (wire connections). The second goal is to prove the proper
implementation of the developed algorithm within the circuit. This section describes how
the simulation is done in T-Spice. Simulating a smaller part of the entire circuit design
and comparing the results to the Matlab simulation achieves the verification of the circuit
functionality.

S-Edit supports a direct export of a schematic layout into a T-Spice readable
SPICE format. The exported SPICE file contains only circuit information, but does not
contain test-commands or test-vectors. Therefore several lines of code have to be added
to create a valid simulation file that can be used in.T-Spice. To illustrate the test concept
in T-Spice a 2-bit register is used as example. Table 25 contains parts of the 2-bit-register

SPICE file that are used for simulation.
161

T-Spice is not a logical circuit simulator, but can perform various analog
simulations like DC-analysis and frequency sweeps. Nevertheless, T-Spice can make use
of the “bit” command to push binary inputs into the input pads of the circuit
representation. The voltages are OV for a logical zero and 5V for a logical one. By
defining the inputs as voltage sources, T-Spice analyses the input vectors, calculates a

DC operating point, and calculates the defined output pads in form of voltages.

162

T-Spice Code

Meaning

Vdd Vdd Gnd DC 5

Defines the voltages between 0V
(Ground) and +5V DC

.include "D:\Chris\Thesis\schematics\testfiles\
Register\2Bit\input_table2Reg.md"

Reads the file input_table2Reg.md,
which is an text file containing all input

used during simulation

.options prtdel=80n

The option command customizes the
simulation. PRTDEL sets the reading for
output pads to exact every 80nsec

.tran 10n 800n start=70n

Performs a transient analysis with a
maximum step size for calculations of
10nsec, a simulation stop time of
800nsec and an offset for the first output

reading of 70nesc

.print tran
"D:\Chris\Thesis\Schematics\testfiles\
Register\2Bit\Inputs.out" V(CLK) V(SL)
V(SR) V(SLDi) V(SRDi) V(LD) V(HLD)
V(Do) V(D1)

.print tran
"D:\Chris\Thesis\Schematics\testfiles\
Register\2Bit\Outputs.out" V(Q0) V(Q1)

The print tran command is used to define
the monitored output pads and the file in
which the records are saved. The file
“inputs.out” records all control signals '
and the inputs of the register, whereas
the file “Outputs.out records only the

outputs of the register.

.param 1=0.05u

Specifies the wavelength as 0.05um

Jnclude
"D:\Chris\Thesis\ModelParammod.md"

Includes the transistor parameters for the
target process (MOSIS — HP 0.5um)

used for the simulation.

Table 25. T-Spice Simulation Commands

163

Below is an example of the input vectors for the 2-bit-Register simulation.

VinDO0 DO Gnd bit ({0010111111} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n
VinD1 D1 Gnd bit ({0001011111} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n
VinSRDi SRDi Gnd bit ({0000000000} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n
VinSLDi SLDi Gnd bit ~ ({0000000011} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n

VinHLD HLD Gnd bit ({0000100000} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n

VinLD LD Gnd bit ({0111010000} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n
VinSR SR Gnd bit ({0000001100} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n
VinSL SL Gnd bit ({0000000011} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n

VinCLK CLK Gnd bit ({01} on=5.0 off=0.0 pw=40n rt=0.1n ft=0.1n
The input vectors are defined by name for the voltage source (input pad) against ground,
bit pattern used as inputs for the voltages sources, the definition of zero and one, pulse
width (pw) of the signal, rise time (rt), and fall time (ft) in nano seconds. The registers are
constructed for using a positive edge triggered clock. This means that all signals have to
be changed and stable before the clock switches from low to high. A change of a value
after the clock goes high cannot be processed properly. As an illustrated example in
Figure 86, the clock starts low (zero Volts) for a time of 40nsec and switches to high (five
Volts) afterwards. Consequently, the entire clock cycle is 80nsec, which corresponds to
the pulse width of the input signals.

The above-mentioned input values are used to test the behavior of the 2-bit-
Register under normal and test-mode conditions. Table 26 illustrates the basic test

concept and the relation between the control signals in T-Spice.

164

LD

5V=1)~ = ~" — ~ 1>
ov=0
Clock
5v=1
ov=0
40nsec 80nsec 120nsec 160nsec
Figure 86. Positive Edge Triggered Clock
DO | SRDi | SLDi { HLD {LD | SR | SL [CLK | QO | Remark
0/1 0 0 [0 [0 [0—1 [0 |Synchronous Clear
0/1 0 1 0 {0 |0—>1 |0/1 | Data (DO) - normal operation
0/1 1 0 0 0 |0—1 |0/1 | Previous data, “do nothing”
0/1 0 0 1 [0 |0—1 |0/1 |Right data (SRDi)
0/1 0 0 [0 |1 |0—1 |0/1 |Left Data (SLDi)

Table 26. Test Concept of a 2-Bit-Register

The test mode signals are in direct relationship to each other because only one input of

SR, SL, HLD, and LD can be high at the same time to perform a 'legal operation in test

mode.

165

During the transient analysis, T-Spice uses the input vectors to determine the
voltage values for the outputs. The determined values are saved in the predefined files
and the transient analysis results are automatically stored in a separate file. These
transient results can be used ‘to probe at circuit nodes of the schematic layout in S-Edit.
Probing calls W-Edit automatically and creates a graphical output of the voltage versus
time for the probed node. The user defined output files, which contains the simulation
results, hold exact voltage values in the region between 0V and 5V, as shown below in
Table 27. The analog output values distinguish between one and zero. The output values
are analog voltages and the results must be sent through a hard limiter to get a binary

output table in order to compare the results with the correct binary output pattern

produced by Matlab.

Time (sec) V (Q0) (Volts) V (Q1) (Volts)
7.0000E-08 1.2408E-07 1.2414E-07
1.5000E-07 1.4298E-07 1.4302E-07
2.3000E-07 5.0000E+00 6.3223E-08
3.1000E-07 8.6684E-08 5.0000E+00
3.9000E-07 1.9326E-07 5.0000E+00
4.7000E-07 5.0000E+00 5.0000E+00
5.5000E-07 2.8934E-07 5.0000E+00
6.3000E-07 1.2812E-07 -2.4128E-07
7.1000E-07 4.3775E-08 5.0000E+00
7.9000E-07 5.0000E+00 5.0000E+00
8.0000E-07 5.0000E+00 5.0000E+00

166

Table 27. Output Table for the Transient Analysis of a 2-Bit-Register

In very small-scale digital systems, tests can be performed exhaustively, where
the system is exercised over its full range of operating conditions. This kind of test was
used to simulate the elements of Level 1 and 2 of the design hierarchy, as exercised for
the 2-bit-Register test case. However, for higher-level elements the input values were
chosen more carefully to simulate only critical cases. By increasing the number of sub-
circuits, the simulation time and the amount of required computing power increases in an
almost exponential manner. For a Supertap simulation (level 4), a PC with Pentium III
processor and 768MB RAM could not satisfy the need for resources by the T-Spice

simulation.
'B. 2-TAPLINE SIMULATION

Due to the limitations in available computer resources, we decided to prove the |
algorithm with a 2-tapline circuit using a transistor model. The setup is shown in Figure
87. The Matlab programs discussed earlier produces a set -of input DRFM data for 10
radar pulses with 15 samples each. After simulation, the “hard_limiter2Taps.m” Matlab
program converts the results into a binary form. Then, the data is translated into decimals
and plotted in Matlab. Matlab also performs the same simulation so that the outputs of
both simulations are comparable and so the T-Spice simulation can be verified. The
following figures and tables give an overview about the setup and the obtained results.

This particular simulation needs a special setup in the Matlab test environment.
The range-Doppler-amplitude map entry program is modified for the 2-tapline test case
so that only 10 radar pulses with 15 samples per pulse (150 DRFM dafa) are used to

decrease the simulation time in T-Spice. Since two taplines are used, only two cells in the

167

range-Doppler map are defined for the false target generation, as shown in Figure 88. The
setup for the amplitude (gain-coefficients) and the Doppler Shift (phase-increment data)

are summarized in Table 28.

;|

2 Tapline Test Setup

[y iah-e]
s
<piped)

ﬁf;_wﬁw

H= L E B PR Y PR F R we 1) og; i3 o1y rninl

i iy o f 0 amm Lol ot @ ' dnn | peem

bt v B—¥B OV BN B

e £ 5

= ¢ Tap Line 0 = Tap Line 1

e — ol s tm

1" e g [e

kel e bt [w= = 1 Tome Rt

H= ® x srz N

H= - =t s

=R . B .

- - HEE -

EE Snmhte E E E bt

= ={SS oo e Su §§gl
M T
2L
g @ —
[==
Figure 87. 2-Tapline Test Case

Target Cell | Range Cell | Doppler Cell | Amplitude | Doppler Shift | Remark
1 1 1 12 2 Tap 0 — 1* Tap
2 2 1 3 4 Tap 1 - 2" Tap

168

Table 28. Matlab Inputs into the Range-Doppler Map

Figure 88. Modified Range-Amplitude Entry Map

The rest of the Matlab simulation follows the same path as described in Chapter 4. The

values in Table 28 can be translated into T-Spice test vectors, which specify the input

parameters for the gain-coefficients and the phase-increment values to the taplines. The

corresponding values are listed in Table 29.

Tapline |Range Cell | Doppler Cell |Gain Phase Remark
Coefficients |Increment

0 - - 01 0010 Binary Inputs

1 - - 10 0100 Binary Inputs

Table 29. T-Spice Inputs for Gain and Phase-Increment

Table 30 shows only a small part of the input vectors used for this test case, but it

explains the interaction between input control signals, input vectors and the output

169

values. Note that Phase 0-4 represents the 5-bit DRFM-phase data input to both taplines.
Also, the first input performs a synchronous clear to zero all registers. A radar pulse
consists of 15 samples, where sample by sample is read in controlled by the clock. Note
also that the gap between the radar pulses is manually set and not part of the DRFM-
phase data. This gap is required to read out the processed value in tapline 2 that is still in
the adder chain. Therefore one clock cycle between the radar pulses is required to read
out the last final output. Setting range-bin valid to low between the pulses clears the 11-
bit register in the taplines to ensure that no undefined data gets added to the last valid
output. The delay of one output produces the 16™ output value for only 15 input samples.
After the last processed phase sample in tapline 1 reaches the final output through tapline

0, the first fully-processed sample from the next radar pulse is already present for output.

170

Input Pad | Sync | Radar Pulse 1 - Radar Pulse 2 Radar Pulse 3
Name CLR

Phase0 0 001101010000110 {0 {001101010000110 | 0 | 001101010000110
Phasel 0 000100000011111 | 0 | 000100000011111 | O | 000100000011111
Phase2 0 001110100100110 |0 | 001110100100110 | 0 | 001110100100110
Phase3 0 000101010011111 |0 | 000101010011111 | O | 000101010011111
Phase4 0 000001110100010 | 0 | 000001110100010 | 0 { 000001110100010
Delta 0 000000000000000 | 1 | 000000000000000 | 1 | 000000000000000
Phase inc |

LD Phase | O 100000000000000 { 0 | 000000000000000 | O | 000000000000000
inc

LD Gain |0 100000000000000 | 0 | 100000000000000 100000000000000
Range- 111111111111111 111111111111111 111111111111111
bin valid

Table 30. Input Data for the Three Radar Pulses as used in the 2-Tapline Test

Table 31 shows only the first 22 clock cycles out of 171. The I and Q values are

listed in form of most significant bit to least significant bit. The first five clock cycles are

needed to process the first input, where the first output is a synchronous clear. Bus cycles

are not required for a 2-tapline-test, but have to be included for a 32-tapline-test. Clock

19 and 20 are the last outputs from radar pulse 1. Due to the delay just described, sample

15 will produce two outputs. The phase outputs for both channels are 16-bit two’s

complement words. To verify the results, the outputs are converted into decimal numbers,

in order to plot them in Matlab. The Matlab simulation produces similar results to

compare both simulation output against each other.

171

CLK Valid Result [[values Q values Pulse# Sample#
1 0 0000000000000000 10000000000000000 Sync Clear
2 0 0000000000000000 VOO0000000000000

3 0 0000000000000000 VO00000000000000

4 0 0000000000000000 PO00000000000000

5 1 0000000011111110 POO0000000000000 |1 1
6 1 0000001011111010 0000000000000000 |1 2
7 1 0000001010000010 0000000011010110 |1 3
8 1 0000000000010000 0000000111000100 |1 4
9 1 1111111010110110 0000000011101000 |1 5
10 1 0000000110110100 0O00000010000010 |1 6
11 1 0000000000010110 (1111110101011100 {1 7
12 1 1111111100100100 (1111110110000010 |1 8
13 1 0000000110101110 {1111111000100100 {1 0
14 1 0000000101100010 |1111111100111000 {1 10
15 1 1111111001011110 {1111111101010100 |1 11
16 1 1111111010110110 (0000001010101100 {1 12
17 1 1111111000101000 0000000111100000 (1 13
18 1 1111111100000110 ©O00000000110000 |1 14
19 1 0000000110001110 P0O00000011100100 |1 15
20 1 1111111100100100 (0000000111001000 (1 15
21 1 0000000011101000 0O00000001100100 2 1
22 1 0000001001000100 0000000111010100 2 /

To extend the 2-tapline-test case to x-number of taplines, a controller must set the “range-

bin valid” control bit for at least x-1 clocks to low between two radar pulses. Due to the

Table 31. T-Spice Simulation Outputs (hard limited)

172

shifted read out, a similar delay as for the FPGA design is achieved. Furthermore, the
delay requirement produces additional outputs,
number of DRFM samples per pulse + (x—1) = number of outputs. 0.1
After the T-Spice simulation results are transformed into a decimal representation,
the controller can process the results in Matlab. Figure 89 shows a two-dimensional
contour plots for Matlab (upper plot) and T-Spice (lower plot) simulation results in
comparison. By visual inspection there is no obvious difference in the pré]iminary
simulation results. Figure §0 shows the results in a 3D view and the graphical
representation of the difference between the two simulations. Since the difference is only
a plane at level zero, there is no difference. Thus, the simulations produced the same
results and the proof is complete. Figure 91 exploits the T-Spice simulation results in a

single graph and identifies the specified gain-coefficients for the obtained results.

SR
s

Figure 89. 2D Plot of the Simulation Results

173

arison

r Comp

lation Outputs and Thei

1mu

90. 3D Plot of the Si

gure

Fi

R

Results

101

. Exploit T-Spice Simulati

gure 91

i

174

The 2-tapline test case illustrates the testing procedure and can be a guide for
future testing. Transistor models, as used in this case, are non linear. Unfortunately T-
Spice quickly reaches its limits simulating larger digital circuits. The simulation time
increases almost exponential for large circuit simulation and often results in program
crashes. The next section offers a method, which indicates how to partly overcome these
problems. A simplification of the primary element in a digital circuit, the transistor, will

reduce simulation time and increase the simulatable size of the circuit.

C. SIMULATION OF THE 32-TAPLINE CASE

Two approaches have been tested to find an efficient way for testing larger digital
circuits. The first method is to replace every single logic gate with a gate definition. The
gate definition will replace the gate circuit, e.g., 2NAND, and substitute it with a table of
predefined output values. With this substitution the transistor layer could almost be
completely eliminated. Unfortunately the code for the replacement is not fully developed
and cannot be used for larger circuits. The second method tries to reduce the complexity
of the transistor model itself. For this approach the transistors are replaced with simple
switches.

1. Switch Model

The replacement of every transistor in the circuit with a simple switch reduces the
computational requirements in the simulator tremendously. As shown earlier, the
transistor definition is done in S-Edit. The definition for the P-FET and N-FET transistor
calls the model in the SPICE-OUTPUT definition. By changing this line, a new model

can be called. The new definition is: X${T} _%{D} %{G} %{S} %{B} NMOSX. This
175

line defines the ports of a transistor, gate, source, drain and base. NMOSX is the ﬁew
name for the transistor definition in switch form, e.g., definition for a N-FET switch.
Since the definition of the transistors is changed in Level 1, the entire design circuit is
affected by this change. Every module calling a transistor will use the switch instead. The
schematic layout is still the same, but the mathematical behavior during the SPICE

simulations is simplified.

2. Test Setup
The test setup in T-Spice is basically the same as for the two tapline test case.
Even so, the circuit is more complex and contains approximately 16 times more nodes. T-
Spice can handle circuits up to 300,000 elements. With 32 taplines, the circuit has
290,604 elements. This is very close to the limit and involves a lot of adjustments and
initialization to get the simulation to perform.
a. Simulation Commands
S-Edit provides the SPICE translation of the schematic circuit
automatically. After the SPICE definition is imported into T-Spice, it has to be modified
with simulation commands and initialization commands. The following is an excerpt
from a modified SPICE file ready to simulate: |
1. vdd VddGndDCS5
2. .include "D:\input_table_ship.md"
3. .include "D:\ModelSwitch.md"
4. .options prtdel=400n numnt=150 abstol=500n reltol=0.01

5. .tran 400n 17200n start=390n

176

Line one defines the voltage range between zero and five volts. Line two includes the test
vectors for the simulation. The vectors are defined with the already introduced “bit”
command. Line three is the definition for the transistor model, which defines the P-FET
and N-FET transistors as switches. The definition is simple, but effective:

* Switch-level model definitions for NFETs and PFETs.

.mode]l SWMODN SW VT=2.5 ron=1e12 roff=4000 dv=1

.model SWMODP SW VT=-2.5 ron=4000 roff=1el2 dv=1

SUBCKTNMOSXDGSB
S2 D S GB SWMODN

.ENDS

.SUBCKTPMOSXDGSB

S1S D G B SWMODP

.ENDS
The first block defines the switch behavior in general. For both switches the threshold
voltage in both directions is 2.5 Volts, where the resistance values are inversed between
N-definition and P-definition. The resistance determines the switch behavior. Since a P-
FET pulls the output high and a N-FET pulls the output low, the resistance values have to
be inverted. A value of lel2 correspond to an open switch, where 4000 is a closed
switch with 4000 resistance. The sub-circuit definitions are called by the simulator due
to the include statement in the third line. The model’s sub-circuit defines the order of the

transistor nodes so that the switch behaves as expected.

177

Line four in the SPICE excerpt customizes the simulation. As before
pridel defines the readout cycle. Numnt defines the maximum number of iterations
allowed during the solution of the Kirchhof-Current-Law (KCL) equations during a DC
analysis. For a transient analysis, T-Spice first calculates the DC operating point of the
circuit. This is a critical calculation for a very large circuit. The default for numnt is ten,
which is not sufficient. If the circuit does not converge, T-Spice tries to use source
stepping to find a DC operating point, which normally fails. A high number of iterations
are therefore required. Curiously, T-Spice recommends decreasing numnt when the
simulation fails. Also part of the .options commands is the definition of tolerances in
absolute and relative form. An increasing of the tolerances results in a faster simulation.
Nevertheless, definitions that are too loose result in wrong outputs. The values used for
absolute tolerance and relative tolerance are very close to the acceptable limits and
should not be further increased. |

Line five holds the command for the type of simulation. The type is a
transient analysis wzth a maximum step size of 400nsec, a simulation length of 17200nsec
and an offset for the first output reading of 390nsec. In conjunction with the predel
setting, the readout is every 400nsec starting at 390nsec so that each sample (defined with
a pulse width of 400nsec) is read out only once. The readout is at the end of the sample to
catch the solid-state result of the pulse.

T-Spice allows using initialization for certain nodes within a circuit. For
the 32-tapline circuit, it is crucial to initialize the D-Flip-Flop outputs and the carry-out
bit of the adders. Since the circuit in T-Spice has the same hierarchy as the schematic

circuit, the initialization can be done directly in the sub-circuit definition for the D-Flip-

178

Flop and the adder cell. This will initialize every register cell output and every adder
carry-out to the defined values. Nodeset sets an initial guess for the iterative DC-
operating point calculation. After the first iteration, the spéciﬁed nodes are allowed to
float. Since very large circuits need more than one iteration, the IC command should be
used instead. IC sets node voltages for the duration of a DC operating point calculation.
The command is inserted in the sub-circuit definition. For a DFFC sub-circuit the line is
ic Q=0 QB=5. This initializes the Q output port to zero volts and its complement to 5
volts. For the adder cell sub-circuit the line is .ic Co=0 and initializes the carry-out to
zero volts.

b. Input and Output Pads

The only purpose of this sub-section is to provide an overview of the input
and output pads. Multiple bits are collapsed into one single bit, e.g., Phase 0 to Phase 4

(five bits) corresponds to Phase0-4.

Outputs Function

S_P_Test_Rout Scan path out for a shift to the ‘right (1 bit).
S_P_Test_Lout Scan path out for a shift to the left (1 bit).
Tap_outl0-15 Output for processed values in I channel (16 bit).
Tap_outQ0-15 Output for processed values in Q channel (16 bit).

Data_Processed_out | Control bit flags valid output (1 bit).

Control bit to check for overflow in a 16-bit adder

Overflow_out (1 bit).

Table 32. Output Pads for the 32;Tapline Circuit

179

Inputs Function
S_P_TestLin Scan path input to load test values into registers from the left.
S_P_TestRin Scan path input to load test values into registers from the right.

Tgt_Extent_in0-4

Input for the truth table to select the number of taplines used for

false target generation (5 bits).

LD_Phase_SupTap_A

Select phase-increment registers in Supertap A and reads in
from Bus 0 to 31 (1 bit).

LD_Phase_SupTap_B

Select phase-increment registers in Supertap B and reads in
from Bus O to 31 (1 bit).

LD_Phase_SupTap_C

Select phase-increment registers in Supertap C and reads in

from Bus 0 to 31 (1 bit).

LD_Phase_SupTap_D

Select phase-increment registers in Supertap D and reads in
from Bus 0 to 31 (1 bit).

LD_Gain_SupTap_AB

Select gain-coefficient registers in Supertap A and B. Supertap
A reads in the data from Bus O to 15, Supertap B reads in the
data from Bus 16 to 31 (1 bit).

LD_Gain_SupTap_CD

Select gain-coefficient registers in Supertap C and D. Supertap
C reads in the data from Bus 0 to 15, Supertap D reads in the
data from Bus 16 to 31 (1 bit). |

Bus0-15 First 16 bits from the 32-input bus (16 bits).
Bus16-31 Second 16 bits from the 32-input bus (16 bits).
Phase0-4 Input for the DRFM-phase samples (5 bits).

use_Phase_inc

Makes the phase-increment and the gain-coefficient stored in

the buffer available for data processing (1 bit).

Range_bin_valid

Control input bit that is required to be high when valid DRFM-
phase data is present at Phase0-4 (1 bit).

Overflow_in

Control bit that is used for daisy chaining of more Supertaps.

Data_Processed_in

Control bit that is used for daisy chaining of more Supertaps.

180

) Input for I channel that is used for daisy chaining of more
Tap_inl0-15
Supertaps (16 bits).
) Input for Q channel that is used for daisy chaining of more
Tap_inQO0-15
Supertaps (16 bits).
HILD Chip hold for special operation mode.
LD Chip load for normal operation mode.
SR Shift right for scan-path test mode.
SL Shift left for scan-path test mode.
CLK Master clock used throughout the chip.

Table 33. Input Pads for the 32-Tapline Circuit

c. Test Vectors

For simulation every input requires a test vector, even it is zero for the
entire simulation time. The test vectors used the bi‘t command to define the input to the
pads in binary form: “VinPhase2 Phase2 Gnd bit ({00110110111111101} on=5.0 off=0.0
pw=400n).” VinPhase2 is the name of the voltage source, where the following Phase2
Gnd is the port name measured versus ground. To prevent confusion, the names should
be the same. The bit command contains the vectors used during simulation. As defined
after the parenthesis one corresponds to five volts and zero to zero volts. The pulse width
for each bit is 400nsec. The entire simulation time as specified in the .tran command in
T-Spice is 400nsec multiplied by the number of input bits. The length of a line in the
editor determines the length of the input vector for one input. Normally 500 input bits can
be used without any problems. The pulse width is important to achieve a steady state for

each input. The larger the circuit, the higher is the required pulse width. In the manual are

no specifications about the maximum pulse width or the maximum length of the input

vector. Tests have shown that values higher than 590nsec for the pulse width and a length

181

of more than 500 characters for a line result into a computer crash. Due to these
constraints, it was not possible to run a complete simulation of the ship test target
mentioned at the end of Chapter 4. Instead, certain radar pulses have been chosen to
verify the outputs produced by T-Spice.

A set of Matlab script fi]és was developed to generate accurate test
vectors. The Matlab script files convert data used in the Matlab equivalent simulation into
a binary two’s complement representation and create a simulation-input file using the

appropriate syntax. The different files used are shown in Table 34.

Matlab script file Output (text file) _ Remark
convert2binary_rawint.m converted_rawint.txt DRFM-phase data
convert2binary_para.m converted_para.txt Modulation parameters

(phase and gain modulation

coefficients)

convert2binary_control.m converted_control.txt Control signals

Table 34. Matlab Files to Generate a T-Spice Input File

3. Results

After performing the simulations, the output files have to be examined and
checked for correctness. A procedure was developed to examine T-Spice outputs using
Matlab. The T-Spice output files are saved as text files and edited, presenting the first set
of valid output data in the first row of the text files. Then, the Matlab script file
“hard_limiter.m” is used to convert the results into binary two’s complement
representation. Finally, the script file “compare.m” is used to plot and compare each
single output data produced by T-Spice with the results from the equivalent Matlab

simulation. An example of test results after simulating one complete radar pulse is shown

182

in Figure 92 and Figure 93. The simulation refers to the ship test case usiz;g 64 radar
pulses for the ISAR image integration discussed at the end of Chapter 4. Figure 92 shows
a comparison between the single output data for the I-channel generated in Matlab and T-
Spice. Figure 93 illustrates the Q-channel results. As for the two-tapline case, there are no

differences between the Matlab and the T-Spice simulations, which verify the correctness

of the DIS architecture based on the Matlab simulation.

Figure 93. Comparing Matlab and T-Spice Outputs—-Q-Channel

183

THIS PAGE INTENTIONALLY LEFT BLANK

184

X. LAYOUT AND FABRICATION

The cost of the DIS implementation, as with many integrated circuits, is directly
proportional to the size of the chip. Moreover, the size of the DIS is directly proportional
to the number of taps. In order to keep the implementation costs to a minimum and get a
usable demonstration chip, we reduced the size of the design to 8-taplines. This Chapter
illustrates the schematic layout of an 8-tapline chip and describes the physical layout in
L-Edit. It points out and summarizes only the major differences of previously-discussed

designs.
A. 8-TAPLINE SCHEMATICS

The 8-tapline circuit is based on the same hierarchy as the 32-tapline chip, using
the double-buffered register tapline. As shown in Figure 94, a Supertap is used to
implement the 8-taplines. The Supertap is connected to the 32-bit input bus and loads the
phase values and gain-coefficient using a reduced number of control signals. The toplevel
32-to-5-bit decoder is not part of this design. The logic for a decoder representing a truth
table to adjust the number of used taplines would increase the size of the design
significantly, but gains almost no value for the concept realization. Therefore the user has
to ensure a proper setup for normal operation. Since the number of taplines determines
the size of the generated false target, only a continuous tapline activation beginning with
the first tapline up to the desired one is acceptable. In spite of the missing target-extent
decoder, the circuit chosen for fabrication has the same flexibility as the 32-tapline IC.

Even a design of 8-taplines guarantees a usable concept demonstrator; however, it

185

decreases the size of the false target. Nevertheless the fabrication costs are reduced, since
the IC area is less than a quarter in size. The first fabrication run will supply several
chips. Because the concept provides the capability of daisy chaining, four chips could be
interconnected to result in a 32-tapline-chip equivalent without a decoder capability.

Thus, the limitations are reduced to a negligible value.

I

5 i
Tap0 Tapl Tap2 Tap3 Tapd TapS Tapb Tap?

Super Tap

9 tant

CEECEEERECEaRaRt Copteaattegttiit

----- Data flow

Qourr
A

rreerereecBRRYT crcerrven

Thase Dcromme for T 0 to 7

ﬁiiiiimmiiiiiiimiiiiiﬁﬁ | H!!!!i: e

PLARRREIR OO et iagiigit

!i TITTERIRDCROREET opeqounuougusett

Figure 94. 8-Tapline Chip

186

B. TIMING AND CONTROL

The control requirements for normal chip operation are reduced due to the fact
that only 32 phase value and 16 gain-coefficients are loaded. The corresponding output
and input pads are listed and explained in Table 35 and Table 36, where a few pad names

have changed in comparison to the 32-tapline IC, but these pads still perform the same

functions.
Outputs Function
S_P_Test_Rout Scan path out for a shift to the right (1 bit).

-S_P_Test_lLout Scan path out for a shift to the left (1 bit).

Tap_outl0-15 Output for processed values in I channel (16 bit).
Tap_outQO0-15 Oufput for processed values in Q channel (16 bit).
Data_Processed_out | Control bit flags valid output (1 bit).
Overflow_out Control bit to check for overflow in a 16-bit adder (1 bit)-

Table 35. Output Pads for the 8-Tapline Circuit

187

Inputs

Function

S_P_Test_Lin

Scan path input to load test values into registers from the left.

S_P_Test_Rin

Scan path input to load test values into registers from the right.

Tgt_Extent0-7

Input to select the number of taplines used for false target

generation (8 bits), where no decoder logic is implemented.

Select phase-increment registers in IC and reads in from Bus 0

LD_Phase_inc

to 31 (1 bit).

Select gain-coefficient registers in IC. Since there are only 16
LD_Gain_Reg)

gain values to load, Bus 0 to 15 are used to read them in (1 bit).
Bus0-15 First 16 bits from the 32-input bus (16 bits).
Bus16-31 Second 16 bits from the 32-input bus (16 bits).
Phase0-4 Input for the DRFM-phase samples (5 bits).

use_Phase_inc

Makes the phase-increment and the gain-coefficient stored in

the buffer available for data processing (1 bit).

Range_bin_valid

Control input bit that is required to be high when valid DRFM-
phase data is present at Phase0-4 (1 bit).

Overflow_in

Control bit that is used for daisy chaining of more Supertaps.

Data_Processed_in

Control bit that is used for daisy chaining of more Supertaps.

Input for I channel that is used for daisy chaining of more

Tap_inI0-15
Supertaps (16 bits).
Input for Q channel that is used for daisy chaining of more
Tap_inQO0-15 .
Supertaps (16 bits).
HLD Chip hold for special operation mode.
LD Chip load for normal operation mode.
SR Shift right for scan-path test mode.
SL Shift left for scan-path test mode.
CLK Master clock used throughout the chip.

Table 36. Input Pads for the 8-Tapline Circuit

188

Figure 95 shows the timing diagram for the initial loading phase. In addition to
the reduced number of control bits for the gain and phase adjustment, the loading cycle is
decreased by four clock vcycles. Figure 96 illustrates the readout phase between two radar
pulses. Given that the number of taplines is reduced to eight, only seven clock cycles are
necessary to read out the processed data remaining in the adder chain after the last DRFM
sample is processed (instead of 31 clock cycles as shown before). In general, the timing
constraints are very closely related to the 32-tapline design as discussed in detail in

previous chapters.

189

IN0” MOBAD) i
G1-00I0 de| @i
Gl-0ino de| gt

N0 P8ss8lnid ele(] e
o

pijea ulg abuey «gm
p-paseyd —&Em

ueg Ioj |g-glsng —am
g

UleS 10} G|-Qsng —&E
Bay ule Q7 —cm

JUI 8SeYd 8SN =@l
8SeYd 10} ZE-0SNY &8
Ul aseld (] =ER
g-OweIxg 10| —gm
(7~
URuIISe d S —E
1SS —am

aH ~e

330]Q) =Gl

0

_ 0

| 0

_ 0

_ 0

. _ 0

| 0

L] 0

| 0

| 0

[0

T o

|

[] o

0

0

— 0

LU LT LT LT o
sUpO0L SUD'SZ suQ0§ SuD'Se

Figure 95. Timing Diagram for the Initial Loading Phase of the 8-Tapline Chip

190

‘8s|nd Jepes 1xau 4o} A 4HQ PEO} 'IN0 Pe8I S| UIBYD J8Yy "UIBYD I8PPE JO N0 pesy

L
L |
L
||
L]

LA L L A L,

o o o o o

o

c 0o 0O 0 o« 00 0 o o

0™ MOHBA) &=
Gl-00Ino de| &
Gl-gnno”de| @@
jno_passadoid eje(&&=
o

pieA”ulq ebuey —&l
p-geseyd =&

uleg 10)” 1g-gjsng —&d
e

uiee) 10} G|-Osng =B
Bay ueg Q] —~a

U aseyd asn G
aseyd 10§ Ze-0sng =&
Jul sseyd Q] ~&8
g-Oamg 16—l
al—&
uRguIIse) d S =&
IS/YS =&

QH =&

30010 =Tl

SU0SE SUD'GZ8 SUD'ODS SUD'GZZ SUDOSZ SUDGZZ SUD00Z SUD'GL9

sug'059

Figure 96. Timing Diagram between Two Radar Pulses for the 8-Tapline Chip

191

C. PHYSICAL LAYOUT GENERATION

The IC layout is automatically generated with the layout editor, L-Edit. A wide
range of differenf optimization parameters affecting both cell placement and network
routing are tried with varying degrees of success. The final layout of the chip core with
pad frame is shown in Figure 97 and is approximately 5.25 mm by 5.62 mm. With /O,
power, and ground pads and the power and ground distribution buses, the layout is
approximately 5.71 mm by 6.07 mm with a total chip area of slightly less than 35 square
mm. After layout generation, a design rule check revealed several DRC violations that
had to be corrected by hand. Also, additional power and grdund pads had to be connected
by hand to the pbv&er and ground distribution buses. Layout correctness is confirmed
using the layout versus schematic comparison tool, LVS. For layout verification the
extracted netlist in L-Edit is compared with the netlist of S-Edits circuit representation.
At this point of the process minor design incompatibilities are still vacant. As soon as the
netlist comparison is passed, the extracted file will be simulated in T-Spice to confirm
correct logical functionality. With the T-Spice simulation, the developing process
concludes and the resulting files are sent to fabrication. The finished IC will be fabricated
through the MOSIS fabrication service at Hewlett Packard on their 0.5 micron CMOS
line. The selection of the HP 0.5 micron process was determined to be a reasonable
compromise between cost and performance. Although maximum performance will
eventually be desired, for this initial, proof-of-concept chip, the moderate performance of
the 0.5 micron process is sufficient. It should be noted that the Tanner scalable CMOS

library used is compatible with IC fabrication processes down to 0.25 micron without

192

modification and with only minor modifications it can be used with fabrication processes
as small as 0.18 micron. Use of a 0.18 micron fabrication process would allow the DIS
design to operate at clock rates in excess of 500 MHz, which is one of the goals for future

work.

e N =,
- ¢ 13

T

Figure 97. Layout for the 8-tapline Chip Showing Enlarged Pad-Area Region

193

THIS PAGE INTENTIONALLY LEFT BLANK

194

APPENDIX A. MATLAB CODES

1. DIS SIMULATION FILES-VERSION 4

The DIS simulation files presented in this appendix are the latest version of
Matlab codes in this project. The following version of simulating the Digital Image
Synthesizer architecture in Matlab has been developed for testing purposes. This
modified version (v4) of the original code now represents the new architecture that has
been developed during the process of working on the hardware layout in Tanner Tools.
The original version (v0) was developed by Sy Yeo, 1998.

A script file (runDISv4.m) has been developed to execute the different files in a
more convenient way than is used to run a full simulation. This modified code includes
flexibility in choosing the number of taps to be used, proper start-up and shutdown of the
taps during processing, "parallel processing” of DRFM-phase data in the taps, and "serial
summation" of the results in the taps (partial summation startihg from the last taps in use,
all the way up to the first tap, which then will be the valid output data). Compared to the
v2- and v3-codes, this set of codes is easy to scale-up, can deal with multiple scatterers
per range-bin (multiple Doppler that will vary both phase and gain-coefficients between
radar pulses). The code can be set in an initial state to run in Version 2 mode (single
scatterer per range-bin) if so desired.

Before running the runDISv4.m file, one must extract parameters of the false
target one wants to generate if one is working with multiple scatterers per range gate. An
appropriate extract_XXX.m file (existing or by modifying an existing file) must be used.

After that, the new parameter text file must be called by the simhwchkv4.m file
195

(check/modify line 33 to 40). The graphical user interface (guiv4.m) in this version only
serves to get a Doppler offset of the whole false target.

The code also writes data to text files that represent the functionality of the scan-
path testing options that are included in the hardware layout, and also to separate I- and

Q-data outputs. Minor corrections have also been made to the original code.

a. runDISv4.m

R AR AL R R e R T R E R o L PN DR R R R P DD DD T DO A8 S
runbISv4.m
This script file will help you run the Digital Image Syntesizer
(DIS). This is a modified version that is able to handle different
target extents (that is, how many taps the user would like to use
that will represent the radial length of the target, seen from the
ISAR). The user can also specify some necessary input parameters.
Created by:

LTC Stig Ekestorm, Apr -00

Naval Postgraduate School
R R EE R R R R R R R R R R R R L L R R R T R R R R R A A T L 1)

P 00 00 P IO Jd° of O° OP o° oP

iy

% set path
% cd c:\temasek\denise\thesis\final_design\vbfiles

% clear the workspace
clear

% declare global variables, used in outer m-files and functions
global sorm

global dp_pts

global rg_pts

global hda

global printdata

% interactive - use of a dialog box to get inputs parameters from user
title='User Specified Parameters - Matlab DIS Simulation';
prompt={'Single (Version 2) or Multiple (Version 4) Scatterer per range
gate [1 for Multiple]. If Version 4, then need to run
extract_para_X.m first.',...

'Number of Doppler cells in the ISAR.',...

'‘Number of Range gates in the plots.', ...

'Hardware Data available for comparison [1 for ves].',...

'Print Intermediate Data to text file (slows down the
simulation) [1 for ves].'};
default={'0','64','200','0','0'};
response=inputdlg (prompt, title, 1, default);
fields={'sorm', 'dp_pts', 'rg_pts', 'hda', 'printdata'}; % number of
Doppler cells, hardware data available
input=cell2struct (response, fields,1);
% convert cell structure created by dialog box back to numbers

196

sorm=str2num{input.sorm) ;
dp_pts=str2num(input.dp_pts);
rg_pts=str2num({input.rg_pts);
hda=str2num(input.hda);
printdata=str2num({input.printdata) ;

% run the graphical user interface (GUI) to specify target parameters
disp('Enter the values in the Grapical User Interface')

disp('Press any key to continue‘')

guiv4

pause

% pre-process signal parameters, simulate ISAR
if sorm ==
mathostv4
else
mathostv4b
end

% simulate the DIS in Matlab
% This simulation does "parallel processing” and then “serial
summation”, including:
% - correction at start-up ("initializing outputs from the taps, one
tap after another")
% - correction at the end ("shutting down the taps, one tap after
another")
if so == 1,
if printdata == 1,
simhwchkv4_write
else
simhwchkv4
end
else
" if printdata == 1,
simhwchkv2_write
else
simhwchkv2
end
end

% plot results for visual comparison
plothwv4

% end of file
b. guivd.m

function [dat] = guiv4(action);

%
%
% Get inputs from screen

% MAJ Stig Ekestorm, Feb -00

% Modified version of guiv0.m by SY YEO, Jan -98
%%

197

global hf

global hl

global h2

global data
global loc
global patchsize
global txtloc
global count
global ph

global dp_pts

if nargin<l,
action='start';
end;

if strcmp(action, 'start'),

Q.

% initialize the figure
set (0, 'DefaultAxesFontSize',6);

hf = figure(l); clf
set (hf, 'NextPlot', 'add’');

set (hf,
‘NumberTitle', 'off"',
'Name', 'Naval PostGraduate School®, ...
‘backingstore', 'off"’, ...
'Units', 'normalized');

$rg_pts = 15;
rg_pts = 62;

%$dp_pts = 64;

data = []; 1loc = [];

count = 0;

ph = [1;

hl = axes('Position', {0 0 1 1], 'Visible', 'off');

h2

axes('Position',[0.1 0.1 0.6 0.8]);
set (hf, 'currentaxes' , h2);

l:rg_pts;
0: (dp_pts-1);

Xa
ya

xtick = 0:1:rg_pts;

set (gca, 'XTickMode', 'manual’);
set (gca, 'XLimMode', 'manual');
set (gca, 'XLim', [1 rg_pts]):
set (gca, 'XTick',xtick);

set (gca, 'XGrid', '‘on');
set{gca, 'GridLineStyle', '-');

set{(gca, 'YTickMode', 'manual');
set (gca, 'YLimMode', 'manual'});
%$set(gca, 'YLim', [0 dp_pts-11]);

198

if dp_pts > 64,
set(gca, 'YLim', [0 64-1]);
else
set(gca, 'YLim', [0 dp_pts-11);
end
ytick = 0:1:dp_pts;
set (gca, 'YTick',ytick);
set(gca, 'YGrid', ‘on');
set (gca, 'GridLineStyle', '-"');

xh xlabel ('Range Cell'); set(xh, 'FontSize',8); clear xh
vh = ylabel ('Doppler'); set(yh, 'FontSize',8); clear yh
ht = title('Range-Doppler-Amplitude Map Entry Program'});
set (ht, 'FontSize',10, 'Coloxr', [0 0 1]);

a = uicontrol('Units', ‘normalized’,
‘BackgroundColor',[.9 .9 .9], .
'‘Position',[0.72 0.80 0.15 0.04],
'Style', ‘text’',

‘FontSize',6,...
'String', ‘Range Cell',
‘Tag', 'aText');

b = uicontrol ('Units', 'normalized’,
'BackgroundColor',[.9 .9 .9],
‘Position', [0.72 0.75 0.15 0.04],
'Style', 'text',

'FontSize',6, ...
‘String', ‘Doppler Cell',
'Tag', 'bText');
¢ = uicontrol('Units', 'normalized’',

'BackgroundColor',[.9 .9 .9],
"Position', [0.72 0.65 0.15 0.04],
'Style', 'text',

"FontSize',6,...

‘String', 'Amplitude’,

‘Tag', 'cText');

cll = uicontrol('Units', 'normalized’',
‘BackgroundColor',[.9 .9 .91, ...
‘position', [0.72 0.60 0.15 0.04],
'Style', 'slider’, 'min',0, 'max',4, ...
'SliderStep', [0.25 0.5]1,...
‘Callback', '‘guivd (' ‘updatel’ *}*');

d = uicontrol('Units', 'normalized’,
'BackgroundColor',[.9 .9 .9],
'position', [0.72 0.50 .15 0.04],
'Style', 'text’,

‘FontSize',6, ...
'String', 'Doppler shift');

dll = uicontrol('Units', 'normalized’,
‘BackgroundColor',{.9 .9 .91, ...
‘position', [0.72 0.45 0.15 0.04],

199

'Style','slider', 'Min',-10, 'Max',10, ...
'SliderStep', [0.05 0.1], ...
‘Callback', 'guiv4 (' ‘updatel'')');

al = uicontrol('Units', '‘normalized’,
| 'BackgroundColor',[1 1 11, .
| 'Position', [0.9 0.80 0.05 0.04],
| 'Style', 'text’',
i 'FontSize',6, ...
‘ ‘String’,'', ...

‘Tag', 'alText');

set (gcf, 'currentaxes',hl);

bl = uicontrol('Units', 'normalized',
'BackgroundColor', {1 1 1],
‘Position', [0.9 0.75 0.05 0.04],
'Style', 'text",
'FontSize',6, ...
'String','"', ...
‘Tag', 'a2Text2"');

set (gcf, 'currentaxes',hl);

cl = uicontrol('Units', '‘normalized’,
'BackgroundColor',[1 1 17, ...
'Position', [0.9 0.65 0.05 0.04],
'Style', 'text', '
'FontSize',6,...
‘Callback', 'guiv4 (' ‘update' ') "', ...
'String','');

dl = uicontrol('Units', '‘normalized’,
'BackgroundColor',[1 1 117,
'Position', [0.9 0.50 0.05 0.04],
‘Style', 'text!',

'FontSize',6, ...
‘Callback', 'guivd (' 'update'') "', ...
'String', '');

gl = uicontrol('Units', '‘normalized',
'BackgroundColor', 'Yellow',
‘Position', [0.9 0.10 0.05 0.047,
'Style', 'pushbutton',
'FontSize',8, ...
'String', 'SAVE',
'Callback', ‘guiv4 (' 'savequit'')');

g2 = uicontrol('Units’', 'normalized’',
'BackgroundColor', 'Yellow',
'Position',[0.78 0.1 0.1 0.04],
'Style', 'pushbutton’,
‘FontSize',8, ...
'String', 'CLEAR',
‘Callback', '‘guivd (' 'start'')');

txtloc = [a al b bl ¢ ¢l ¢11 4 d1 4d11];
% Assign action when mouse button is pressed

200

e

set (h2, 'ButtonDownFcn', 'guiv4 (' ‘down'')"');

elseif strcmp(action, 'down'),
% Obtain coordinates of mouse click location in axes units

set (hf, 'currentaxes', h2);
pt=get (h2, 'currentpoint');

x=pt(1,1); x£f floor(x):;
y=pt(1,2); vf floor(y):
[r,c] = size(data);

set (txtloc(7), 'value',0);
set (txtloc(9), 'value',0);

tmp = [xy 1 0];
loc = [loc tmp];
tmp = [xf yE 1 0];

data = [data;tmp];
[r,c] = size(data);
ypos = [yf yf+l yf+1 yfl];
xpos = [xf xf xf+1 x£+1];

count = count + 1;

%$disp (count) ;

txt = ['Tag',num2str(count)];

ptr = patch(xpos,ypos,[1 1 11*0.9);

$disp(ptr);

set (ptr, 'ButtonDownFcn', [
‘guivd (' 'update'')'1);

set (ptr, 'Tag', txt);

set (ptr, 'UserData’, [xf yf 1 0]);

ph = ptr;

set (txtloc(2), 'String',xf);

set (txtloc(4), 'String’',yf);

set (txtloc(6), 'String',1);

set {txtloc(9), 'String*‘,0);

elseif strcmp(action, 'update'),
% Determine the patch that is selected
ph = gcbo;
%set (ph, ‘Selected', 'on'};
% Retrieve the values for that patch and display it

% txtloc = [a al b bl ¢ ¢l ¢l1 4 d1 d1l}l;

% txtloc 2: Range cell

% txtloc 4: Doppler cell

% txtloc 6: Amplitude txtloc 7: Slider bar

% txtloc 9: Doppler offset txtloc 9: Slider bar

ud = get(ph, 'UserData’');

set (txtloc(2), 'String',ud(1l));
set (txtloc(4), 'String',ud(2));
set (txtloc(6), 'String',ud(3));
set (txtloc(9), 'String',ud(4));
set(txtloc(7),'Value',qd(3));
set (txtloc(10), 'Value',ud(4));

201

elseif strcmp(action, 'updatel'),
if (~isempty(ph))

phl = gcbo;

if ({phl == txtloc(7)) | (phl == txtloc(10)))
ud = get(ph, 'UserbData');
xf = ud(1); vE = ud(2);

ypos = [yf yf+l yf+1 yfl;
xpos = [xf xf xf+1 xf+1};
set (ph, 'Selected', 'off');
% Update the amplitude/Doppler values
if (phl == txtloc(7))
tmpl = get(txtloc(7), 'Value');
tmpl = round(tmpl)
set (txtloc(6), 'String’', tmpl);
set(txtloc(7), 'Value',tmpl);
if (tmpl < 1),
set (txtloc(7), 'value',1);
set (txtloc(6), 'String','1');
tmpl = 1;
end
col = [1 1 11*(1-tmpl/10);
set (ph, 'FaceColor',col);
set (ph, 'UserData', [ud(l) ud(2) tmpl ud(4)]);
end
if (phl == txtloc(10))
tmp2 = round(get (txtloc(10), 'Vvalue'));
set (txtloc(9), 'String', tmp2);
set (txtloc(10), 'value', tmp2);
set (ph, 'UserData', [ud(l) ud(2) ud(3) tmp2]l);
end
%disp('HHH') ;
%$disp (get (ph, 'Tag'))
%disp(get (ph, 'UserData'))
end
end

elseif strcmp(action, 'savequit'),
dat = [];
for i = l:count
tt = findobj{('Tag', ['Tag' num2str(i)]);
tmp = get(tt, '‘UserData')
dat = [dat;tmp];
fprintf('count = %4, Tag = %s ', count,get(tt, 'Tag'));
disp (tmp) ;
end
save -ascii sigparl dat
close gcbf
end

202

¢. mathostv4d.m

I A R R IR IR R AR R E L R LR PR R R LR R R R R R R L LRt R kAR
mathostv4.m

MAJ Stig Ekestorm, Feb -00

Modified version of mathostv0.m by SY YEO, Jul-98

o0 0 00 o0

Generate pri_dp map and range-Doppler map
- generates the files for input to hardware
-~ file para.txt contains:
line 1: number of range cells
line 2: number of pulse in a batch (equals to dp_pts in this
program)
line 3: extent of target in cells (n: integer); number of taps in
delay also equals n (pipeline design)
line 4: gainl, gain2, ..., gain n (integer)
line 4+n+1: phi0 (pulse 1), '
line 4+n+2: phil (pulse 1),
line 4+n+targetExtent: phi-targetExtent (pulse 1),
line 4+n+targetExtent+1l: phi0 (pulse 2),
line 4+n+targetExtent+2: phil (pulse 2),
line 4+n+2*targetExtent: phi-targetExtent (pulse 2),

o o0 00 o of

ol d® of

oe of

0@ of dP 0P oP

oeP

line 4+n+dp_pts*targetExtent: phi-targetExtent (pulse dp_pts)

-- file raw.txt contains the instantaneous phases of simulated DFRM-
data (quantized to 45deg step):
line 1: pulse 1 (integer)
line 2: pulse 2

00 J0° of oP P 0P P 0 of

global sorm

global dp_pts
global rg_pts
global doppler_inc
global printdata

set (0, 'defaultAxesFontSize', 8);

noplot = 0;
Ncontours = 20;

% Parameters

bw = 100e6;
pwec = 1/(1.25*bw); % compressed pulsewidth
pw =0.5e-6;

prf = 2e3; pri = 1l/prf;
mu = 2*pi*bw/pw;

fs = 1.25*bw; Ts = 1l/fs;
snr = 0; ‘

203

% set-up grid
% x-axis(rg), y-axis(dp)
$rg_pts = 200;
$dp_pts = 64;

pri_rg_map = zeros(dp_pts,rg_pts);
pri_rg _mapqg = zeros(dp_pts,rg pts);
pri_rg_map_shift = zeros(dp_pts,rg_pts);
pri_rg _map_shiftqg = zeros (dp_pts, rg_pts);
pri_rg phaseq = zeros(dp_pts,rg_pts);

% insert waveform into grid;

load -ascii sigparil

sigpar = sigparl';

doppler_inc = sigpar(4,:);

sigpar([2 4],:) = sigpar([2 4],:)*prf/dp_pts;
[1xs,lys] = size(sigpar);

$t0 = 0:Ts:pw-Ts;

t0 = Ts:Ts:pw;

%for the reduced 2-Tap T-Spice simulation
%TsNew=4*1/fs;

%tnew = 0:TsNew:pw-TsNew;

Stnew = TsNew:TsNew:pw;

%$t0 = tnew;

num_chirp_samples = length(t0); if ((num_chirp_samples + lxs) > rg_pts)
disp('Warning : Chirp is clipped - set grid size larger'); end

% open files for writing

f1 = fopen('para.txt', 'w');

fprintf (£1, '$d\r\n',num_chirp_samples);
fprintf (f1, '$d\r\n',dp_pts);
fprintf (£1, '$d\r\n',lys);

df 0P P

% adjustment to correct multiplication factors
value
for i = 1:1lys

switch sigpar(3,1i)

number of range cells
number of Doppler cells
target extent

for the amplitude (gain):

gain2, ..., gainN

case {1}
sigpar(3,i)=1; % no shift, multiplication by 1, hardware bit "00"
case {2}
sigpar(3,i)=2; % shift by 1, multiplication by 2, hardware bit
IlOln
case {3}
sigpar(3,i)=4; % shift by 2, multiplication by 4, hardware bit
"10"
case {4}
sigpar(3,i)=8; % shift by 3, multiplication by 8, hardware bit
llllll
end
fprintf (£1, '$d\r\n',sigpar(3,i)); % gainl
end
nbitsph = 3;

nbitsdop = 5;

204

nbitsamp = 8;

b = 2*pi/ (2”nbitsph);

a = 2*pi/(2”nbitsamp) ;

p = 2*pi/(2"nbitsdop);

$for the reduced 2-Tap T-Spice simulation, Nov -99
%p = 2*pi/(dp_pts);

for idxl = 1l:dp_pts % Repeat for total number of pulses within
batch
tl = t0 + (idxl)*pri;
%tl = t0 + (idx1-1)*pri;
for idx = 1l:lys
grx** gpproximation used here, assume phase change due to Doppler
within a chirp is constant
$**** gince the Doppler is tens of hertz compared to the MHz
chirp bandwidth
oldphase = mu*tl.*tl/2 + 2*pi*sigpar(2,idx)*tl;
%$oldphase = mu*tl.*tl/2 + 2%pi*sigpar (2,idx) * (1idx1l-1) *pri;
oldphase = mod(oldphase,2*pi);

% quantize the oldphase to 1 of 8 phases

int_oldphase = round(oldphase/b);

oldphaseq = b*int_oldphase; % quantize the phase
xc = exp(sqgrt(-1)*oldphase);

1x = (sigpar(l,idx)): (sigpar(1l,idx))+length(xc)-1;
pri_rg map(idxl,1x) = xc+pri_rg_map(idxl,1x);
pri_rg_phaseq(idxl,1lx) = int_oldphase;

pidele] exp (sart (-1) *oldphaseq) ;

xcq = p*round(xcq/p); % quantize the phase
pri_rg_mapg(idxl,1lx) = Xcq+pri_rg_mapq(idxl, 1x);

% phase focusing

dopphase = 2*pi*sigpar(4,idx)*(idxl)*pri; % approxXximation used

here

%dopphase = 2*pi*sigpar(4,idx)* (idx1l-1)*pri; % approximation used
here

newphase = oldphase + dopphase*ones (size(oldphase)) ;

xI = cos(newphase);
xQ = sin{(newphase);
x1 = sigpar(3,idx)* (xI+sqrt(-1)*xQ);

pri_rg_map_shift(idxl, 1x) = pri_rg map_shift (idxl,1x) + x1;

int_dopphaseq = round(dopphase/p);

dopphaseq = int_dopphaseq*p;

newphaseq = oldphaseqg + dopphaseq;

xI = cos(newphaseq);

xQ = sin(newphaseq);

xI = round(xI/a)*a;

xQ = round(xQ/a)*a;

x1 = sigpar(3,idx)* (xI+sqrt(-1)*xQ);
pri_rg_map_shiftqg(idxl, lx) = pri_rg map_shiftqg(idxl,1lx) + x1;

% store the dopphase value (ignore intrapulse phase change since

it is small)
%fprintf(fl,‘%d\r\n’,int_dopphaseq); %originals
code, incrementation of phase modulation coefficients

205

%fprintf(fl,‘%d\r\n’,mod(int_dopphaseq,BZ)); %$to get
true phase modulation coefficients each PRT

fprintf(fl,'%d\r\n',mod(2*fix(int_dopphaseq/2),32)); %to
represent phase modulation coefficients using 4-bits words

end
end
fclose(fl);

noise = randn(size(pri_rg_map))*c_snr(snr); noise = 0;
pri_rg map = pri_rg map + noise;
pri_rg _map_shift = pri_rg map_shift + noise;

% Perform pulse compression

% (a) for the non-quantized phase case

disp('Creating reference waveform');

ph = (mu*tl.*tl/2);

crefc = exp(sqrt(-1)*ph);

cref = conj(fft(crefc,2*rg pts-1));

save pc_ref cref tl

pc_ref_map = fft(pri_rg _map.',2*rg _pts-1).';
pc_ref_map_shift = fft(pri_rg map_shift.',62*rg pts-1).';

disp('Performing pulse compression');
pri_rg_mapl = zeros(size(pri_rg_ map));
pri_rg_map2 zeros (size(pri_rg map));

%~~~ Compress the original signals
for idx = 1l:dp_pts

tmp = cref.*pc_ref map(idx, :);

tmpl = f£ftshift(ifft(tmp));

pri_rg mapl(idx,:) = tmpl(rg pts:end);
end

%~-- Compress the Doppler shifted signals

for idx = 1:dp_pts
tmp = cref.*pc_ref map_shift(idx,:);
tmpl = fftshift(ifft(tmp));
pri_rg_map2(idx,:) = tmpl{rg pts:end);
end

% Compute the rg-dop map
disp('Plotting ... r-d map');

dp_rg_map = fft(pri_rg_mapl,dp_pts);
dp_rg_map_shift = fft(pri_rg_map2,dp_pts);

[1x,1ly] = size(dp_xrg_map);
rax = 1l:(length(ly));
dax 0: (length(lx))-1;

206 -

dpy = abs(dp_rg_map);
dpy_shift = abs(dp_rg_map_shift);

if (noplot == 0)
figure(l);

subplot(2,1,1);

h = contour(dpy,Ncontours); grid

title('a. Original Rd-Dp Map');

axis([1l 62 0 dp_ptsl])

xlabel ('Down Range Cells'); ylabel ('Cross Range Cells');
subplot(2,1,2);

h = contour (dpy_shift,Ncontours); grid

axis([1l 62 0 dp_pts])

title('b. Amplitude and Doppler Modulated Rd-Dp Map');
xlabel ('Down Range Cells'); ylabel ('Cross Range Cells');

% Perform pulse compression

% (b) for the quantized phase case

disp('Performing pulse compression for quantized phase case');
pc_ref_mapqg = fft(pri_rg mapq.',2*rg_pts-1).';
pc_ref_map_shiftq = f£ft(pri_rg_map_shiftg.',62*rg_pts-1)."';
pri_rg_map3 = zeros(size(pri_rg _mapq));

pri_rg map4 = zeros(size(pri_rg_mapq));

%~-- Compress the original signals

for idx = l:dp_pts

tmp = cref.*pc_ref_mapg(idx,:);

tmpl = fftshift(ifft(tmp));
pri_rg_map3(idx,:) = tmpl(rg pts:end);
end :

%--- Compress the Doppler shifted signals

for idx = 1l:dp_pts
tmp = cref.*pc_ref map_shiftg(idx, :);
tmpl = fftshift(ifft(tmp));
pri_rg_map4d (idx,:) = tmpl (rg_pts:end) ;
end

% Compute the rg-dop map
disp(‘Plotting ... r-d map');

dp_rg_mapq = fft(pri_rg map3):;
dp_rg_map_shiftq = fft(pri_rg_map4);

[1x,1ly) = size(dp_rg_mapq);
rax = 1:(length(ly));
dax = 0:(length(lx))-1;

dpyq = abs(dp_rg_mapq) ;
dpy_shiftqg = abs (dp_rg_map_shiftq);

% —- Simulation of phase quantizing DRFM
% Now convert amplitude to phase.

207

% Convert phase to positive numbers between 0-360deg, so do not need
to handle

% negative numbers in Altera.
pri_rg_mapg angle = mod(pri_rg_phaseq,2*pi);

pri_rg_mapqg shift_angle = angle (pri_rg_map_shiftq);

f2 = fopen('rawint.txt',6 'w');
[1x,1ly] = size(pri_rg_mapqg angle);
deltaDegrees = 2*pi/(2"nbitsdop);
for i = 1:1x
int_raw = round(pri_rg_mapgq angle(i,l:num_chirp_samples-
1) /deltaDegrees); % need to store in Visual basic text file format
fporintf(£2, '%4, ', int_raw);
int_raw =
round (pri_rg_mapq angle(i,num_chirp_samples)/deltaDegrees);
fprintf(£2, '$d\r\n', int_raw) ;
end;
fclose(£2);
q = 2*pi/(2”nbitsph);
pri_rg mapqg drfm = exp(sqrt(-1)* (round(pri_rg_mapqg angle/q))*q);
pri_rg_mapq shift_drfm = exp(sqgrt(-
1) *(round(pri_rg_mapqg shift_angle/q)) *q);

% Perform pulse compression

% (c) for the quantized phase case with phase DFRM model

disp('Performing pulse compression for quantized phase case
(simulates phase DFRM effects)');

pc_ref_mapqg drfm = fft(pri_rg_mapg drfm.',2*rg pts-1).';

pc_ref _mapg shift_drfm = fft(pri_rg_mapqg shift_drfm.',62*rg pts-1).';

pri_rg map5 zeros (size(pri_rg mapg drfm));

pri_rg mapé zeros (size(pri_rg mapqg shift_drfm));

%--- Compress the original signals

for idx = 1l:dp_pts
tmp = cref.*pc_ref mapqg drfm(idx, :);
tmpl = fftshift(ifft (tmp));
pri_rg_map5(idx,:) = tmpl(rg_pts:end);
end

%--- Compress the Doppler shifted signals

for idx = 1l:dp_pts
tmp = cref.*pc_ref_mapg shift_drfm(idx,:);
tmpl = fftshift(ifft(tmp)):
pri_rg_map6(idx,:) = tmpl(rg_pts:end);
end

% Compute the rg-dop map
disp(‘'Plotting ... r-d map');

dp_rg mapqg drfm = fft(pri_rg map5);
dp_rg_map_shiftg drfm = fft(pri_rg_mapé6) ;

[1x,1ly] = size(dp_rg mapqg drfm);
rax = 1:(length(ly));

208

dax = 0:(length(lx));
$dax = 0:{(length{lx))-1;

dpyqg drfm = abs(dp_rg _mapqg drfm);
dpyqg _shift_drfm = abs(dp_rg _map_shiftq):;

save plot dpyq dpyqg_shift_drfm
end

figure(l); print -dtiff simhostl

d. mathostvdb.m

mathostv4db.m
MAJ Stig Ekestorm, Feb -00
Modified version of mathostv0.m by SY YEO, Jul -98

Generate pri_dp map and range-Doppler map
- generates the files for input to hardware
-- file para.txt contains:
line 1: number of range cells
line 2: number of pulse in a batch (equals to dp_pts in this
program)
line 3: extent of target in cells (n: integer); number of taps in
delay also equals n (pipeline design)
line 4: gainl, gain2, ..., gain n (integer)
line 4+n+1: phi0 (pulse 1),
line 4+n+2: phil (pulse 1),
line 4+n+targetExtent: phi-targetExtent (pulse 1),
line 4+n+targetExtent+l: phi0 (pulse 2),
line 4+n+targetExtent+2: phil (pulse 2),
line 4+n+2*targetExtent: phi-targetExtent (pulse 2),

line 4+n+dp_pts*targetExtent: phi-targetExtent (pulse dp_pts)

file raw.txt contains the instantaneous phases of simulated DFRM-
data (quantized to 45deg step):

line 1: pulse 1 (integer)

line 2: pulse 2

|
{

line dp_pts: pulse dp_pts
FEEEILIEFELLLBLELLLLEBLIEBTE8955%58%%

00 P 00 I P OO O JC P P O I O IO O O IO O I I P R I O 0 I o of o o°
oe
o0
oe
oe
of
o
o
o0
oe
0P
o0
do
oe
oP
e
o0
oP
o0
oe
oP
4
of
oP
o
oP
oP
oP
o
0
oP
oe

oe

clear

global sorm

global dp_pts
global rg_pts
global doppler_inc
global printdata

set(O,'defaultAxesFontSize',8);

209

noplot = 0;
Ncontours = 20;

% Parameters
bw = 100e6;
gpwc = 1/(1.25*bw); % compressed pulsewidth
gpw =0.5e-6;

$prf = 2e3; pri = 1l/prf;

smu = 2*pi*bw/pw;

%$fs = 1.25*bw; Ts = 1/fs;

$snr = 0;

bw = 100e6;
bw2 = 1.25%bw;

oe

bandwidth of the chirp signal, delta

pwc = 1/(1.25*bw) ; % compressed pulsewidth

pw =0.5e-6; % uncompressed pulsewidth

prf = 2e3; % PRF

pri = 1/prf; % PRI

k = bw2/pw; % pulse compression rate, delta / uncompressed
pulsewidth

smu = 2*pi*bw/pw;
fs = 1.25*bw;

Ts = 1/fs;

snr = 0;

a0

sampling frequency
sampling time step
no extra noise added

o0 oo

Sy

set-up grid
x-axis(rg), yv-axis(dp)
rg_pts 200;

$dp_pts 64;

o0 of

pri_rg _map = zeros(dp_pts,rg_pts);
pri_rg mapg = zeros(dp_pts,rg_pts);
pri_rg map_shift = zeros(dp_pts,rg pts);
pri_rg map_shiftqg = zeros(dp_pts,rg_pts);
pri_rg_phaseq = zeros(dp_pts,rg_pts);

% insert waveform into grid;

load -ascii sigparl

sigpar = sigparl';

doppler_inc = sigpar(4,:);

$sigpar ({2 4],:) = sigpar([2 41,:)*prf/dp_pts;

sigpar(2,:) = sigpar(2,:) * 0 + 1000-9*31.25; %to create an
artificial Doppler offset for the Ship Case, 32 Taps
%$sigpar(2,:) = sigpar(2,:) * 0 + 1000-5*%31.25; %to create an
artificial Doppler offset for the Ship Case, 16 Taps
[1xs,1lys] = size(sigpar);

%0 = 0:Ts:pw-Ts;

t0 = Ts:Ts:pw;

%for the reduced 2-Tap T-Spice simulation
%$TsNew=4*1/fs;

$tnew = 0:TsNew:pw-TsNew;

$tnew = TsNew:TsNew:pw;

%$t0 = tnew;

210

num_chirp samples = length(t0);
if ((num_chirp_ samples + lxs) > rg_pts)

disp('Warning : Chirp is clipped - set grid size larger');
end

% open files for writing

fl1 = fopen('para.txt','w');

fprintf (£1, '%d\r\n',num_chirp_samples) ;
fprintf (£1, '%d\r\n',dp_pts);
fprintf (£1, '%d\r\n',lys);

number of range cells
number of Doppler cells
target extent

oP o0 o0

% adjustment to correct multiplication factors for the amplitude (gain)
value
for i = 1:1lys

switch sigpar(3,i)

case {1}
sigpar(3,i)=1; % no shift, multiplication by 1, hardware bit "00"
case {2}
sigpar(3,i)=2; % shift by 1, multiplication by 2, hardware bit
llolll
case {3}
sigpar(3,i)=4; % shift by 2, multiplication by 4, hardware bit
||10||
case {4}
sigpar(3,i)=8; % shift by 3, multiplication by 8, hardware bit
Illlll
end
fprintf (£1, '%d\r\n’',sigpar(3,i)); % gainl, gain2, ..., gainN
end :

nbitsph = 3;
nbitsdop = 5;
nbitsamp = 8;

b = 2*pi/(2”nbitsph);
a = 2*pi/(2"nbitsamp) ;
p = 2*pi/(2”nbitsdop);

%for the reduced 2-Tap T-Spice simulation, Nov -99
%p = 2*pi/(dp_pts);

for idxl = 1l:dp_pts % Repeat for total number of pulses within
batch
tl = t0 + (idx1)*pri;
$tl = t0 + (idx1l-1)*pri;
for idx = 1l:lys
g**%* approximation used here, assume phase change due to Dopplexr
within a chirp is constant
g*%*** gince the Doppler is tens of hertz compared to the MHz
chirp bandwidth

oldphase = 2*pi*({k*tl.*tl)/2 + sigpar(2,idx)*tl);
$oldphase = mu*tl.*tl/2 + 2*pi*sigpar(2,idx)*tl;
$oldphase = mu*tl.*tl/2 + 2*pi*sigpar(2,idx)* (idx1l-1) *pri;

oldphase = mod(oldphase,2*pi);

211

% quantize the oldphase to 1 of 8 phases

int_oldphase = round(oldphase/b);

oldphaseq = b*int_oldphase; % quantize the phase
Xc = exp(sqgrt(-1)*oldphase);

1x = (sigpar(1l,idx)): (sigpar(1,idx))+length (xc)~-1;
pri_rg_map(idxl,1lx) = xc+pri_rg_map (idxl,1x);
pri_rg_phaseqg(idxl,1x) = int_oldphase;

xcq exp (sgrt(-1) *oldphaseq) ;
xXcq p*round (xcq/p) ; % quantize the phase
pri_rg_mapg(idxl,lx) = xcqg+pri_rg_mapg(idxl, 1x);

% phase focusing
dopphase = 2*pi*sigpar(4,idx)*(idxl)*pri; $ approximation used

here

%dopphase = 2*pi*sigpar(4,idx)*(idx1-1)*pri; % approximation used
here

newphase = oldphase + dopphase*ones (size(oldphase));

XxI = cos(newphase);

xQ sin(newphase) ;

x1 = sigpar(3,idx)* (xI+sqrt(-1)*xQ);

pri_rg_map_shift(idxl,1lx) = pri_rg map_shift (idx1l,1x) + x1;

int_dopphaseq = round(dopphase/p);
dopphaseq = int_dopphaseq*p;
newphaseq = oldphaseq + dopphaseq;

xI = cos (newphaseq);

XQ = sin(newphaseq);

xI = round(xI/a) *a;

xXQ = round(xQ/a)*a;

x1 = sigpar(3,idx)* (xI+sqrt(-1)*xQ);

pri_rg _map_shiftq(idxl,lx) = pri_rg_map_shiftqg(idxl,1lx) + x1;

% store the dopphase value (ignore intrapulse phase change since
it is small)

$fprintf (£1, '$d\r\n', int_dopphaseq) ; %$originals
code, incrementation of phase modulation coefficients

Sfprintf (£1, '$d\r\n',mod (int_dopphaseq,32)) ; %$to get
true phase modulation coefficients each PRI

fprintf (£1, '$d\r\n',mod (2*fix (int_dopphaseq/2),32)); %to

represent phase modulation coefficients using 4-bits words

end
end
fclose(£fl);

noise = randn(size(pri_rg_map))*c_snr(snr); noise = 0;
pri_rg_map = pri_rg_map + noise;
pri_rg map_shift = pri_rg map_shift + noise;

$ Perform pulse compression
% (a) for the non-quantized phase case
disp('Creating reference waveform');

212

ph = 2*pi*((k*tl.*tl)/2 + sigpar(2,1)*tl);
crefc = sqgrt(j*k)*exp(j*ph);

cref = conj(fft(crefc,2*rg pts-1));

save pc_ref cref tl

$ph = (mu*tl.*tl/2);

$crefc = exp(sgrt(-1)*ph);

gcref = conj (fft(crefc,2*rg_pts-1));

$save pc_ref cref tl

pc_ref_map = fft(pri_rg_map.',62*rg_pts-1).';
pc_ref_map_shift = fft (pri_rg_map_shift.',2*rg _pts-1).';

disp('Performing pulse compression');
pri_rg_mapl = zeros (size(pri_rg_map});
pri_rg_map2 = zeros(size(pri_rg_map));

%--- Compress the original signals
for idx = l:dp_pts
tmp = cref.*pc_ref map(idx,:);
tmpl = fftshift(ifft (tmp));
pri_rg_mapl(idx,:) = tmpl(rg_pts:end);
end :

%--- Compress the Doppler shifted signals

for idx = l:dp_pts
tmp = cref.*pc_ref_map_shift(idx,:);
tmpl = fftshift(ifft(tmp));
pri_rg map2(idx,:) = tmpl(rg_pts:end);
end

% Compute the rg-dop map
disp('Plotting ... r-d map'};

dp_rg_map = fft (pri_rg_mapl,dp_pts);
dp_rg_map_shift = fft (pri_rg_map2,dp_pts);

[1x,1ly] = size(dp_rg map);

rax = 1:(length(ly)):
dax = 0:(length(lx))-1;
dpy = abs(dp_rg_map);

dpy_shift = abs (dp_rg_map_shift);

if (noplot == 0)
figure(l);

subplot(2,1,1);

h = contour (dpy,Ncontours); grid
title('a. Original RA-Dp Map');
axis([1 62 0 dp_ptsl)

xlabel ('Down Range Cells'); ylabel ('Cross Range Cells');

subplot(2,1,2);
h = contour (dpy_shift,Ncontours); grid

axis([1 62 0 dp_ptsl])
213

title('b. Amplitude and Doppler Modulated RA-Dp Map');
xlabel ('Down Range Cells'}; vlabel ('Cross Range Cells');

% Perform pulse compression

% (b) for the guantized phase case

disp('Performing pulse compression for qguantized phase case');
pc_ref _mapg = fft(pri_rg mapqg.',2*rg_pts-1).';
pc_ref_map_shiftg = fft (pri_rg map_shiftqg.',2*rg_pts-1)."';
pri_rg_map3 zeros (size(pri_rg_mapq));

pri_rg_map4 zeros (size(pri_rg mapq));

%--- Compress the original signals

for idx = 1l:dp_pts

tmp = cref.*pc_ref_mapg(idx,:);

tmpl = fftshift(ifft(tmp));

pri_rg map3(idx,:) = tmpl(rg_pts:end);
end

%--- Compress the Doppler shifted signals

for idx = 1l:dp_pts
tmp = cref.*pc_ref_map_shiftqg(idx,:);
tmpl = fftshift(ifft(tmp));
pri_rg_map4(idx,:) = tmpl(rg pts:end);
end

% Compute the rg-dop map
disp('Plotting ... r-d map');

dp_rg_mapq = fft(pri_rg_map3);
dp_rg _map_shiftq = fft(pri_rg_map4);

[1x,1y] = size(dp_rg_mapdqg):;
rax = 1l:(length(ly));
dax = 0:(length(1lx))-1;

dpyq = abs(dp_rg_mapq) ;
dpy_shiftqg = abs(dp_rg_map_shiftq);

% -- Simulation of phase quantizing DRFM
% Now convert amplitude to phase.

% Convert phase to positive numbers between 0-360deg, so do not need

to handle
% negative numbers in Altera.
pri_rg_mapq_angle = mod(pri_rg_phaseq, 2*pi);
pri_rg_mapqg _shift_angle = angle(pri_rg _map_shiftq);

f2 = fopen('rawint.txt',K6 'w');
[1x,1ly] = size(pri_rg_mapg angle);
deltaDegrees = 2*pi/(2”nbitsdop);
for i = 1:1x
int_raw = round(pri_rg_mapqg _angle(i,l:num_chirp_samples-
1) /deltaDegrees); % need to store in Visual basic text file format
fprintf (£2, '%4, ',int_raw);

214

int_raw =
round (pri_rg_mapq angle(i,num chirp_samples)/deltaDegrees) ;
fprintf (f2, '$d\r\n',int_raw);
end;
fclose(£2);
g = 2*pi/(2”"nbitsph);
pri_rg _mapqg drfm = exp (sqgrt (-1) * (round(pri_rg_mapqg angle/q)) *q};
pri_rg mapqg_shift_drfm = exp(sqrt(-
1) * (round (pri_rg_mapqg shift_angle/q))*q);

% Perform pulse compression

% (c) for the quantized phase case with phase DFRM model

disp('Performing pulse compression for quantized phase case
(simulates phase DFRM effects)');

pc_ref_mapg drfm = fft (pri_rg_mapqg drfm.',2*rg pts-1)."';

pc_ref_mapg_shift_drfm = fft (pri_rg mapqg shift_drfm.',62*rg_pts-1).';

pri_rg_map5 zeros (size(pri_rg_mapqg drfm));

pri_rg_mapé zeros (size(pri_rg_mapqg _shift_drfm));

%~-- Compress the original signals

for idx = 1l:dp_pts
tmp = cref.*pc_ref_mapg drfm(idx,:);
tmpl = fftshift(ifft(tmp));
pri_rg_map5(idx,:) = tmpl(rg_pts:end);
end

%--- Compress the Doppler shifted signals

for idx = 1l:dp_pts
tmp = cref.*pc_ref_mapqg shift_drfm(idx, :);
tmpl = fftshift(ifft(tmp));
pri_rg map6 (idx,:) = tmpl (rg_pts:end) ;
end

% Compute the rg-dop map
disp('Plotting ... r-d map');

dp_rg_mapg drfm = fft(pri_rg_mapb);
dp_rg_map_shiftq drfm = fft(pri_rg_mapé);

[1x,1ly] = size(dp_rg_mapg drfm);
rax = 1:(length(ly)):

dax = 0: (length(lx));

2dax = 0:(length(lx))-1;

dpyq drfm = abs (dp_rg_mapqg_drfm) ;
dpyq shift_drfm = abs(dp_rg_ma _shiftaq);

save plot dpyq dpyq shift_drfm
end

figure(1l); print -dtiff simhostl

215

€. simhwchkv4.m

B R R R R R R R L L e L A A A N AN NN A
simhwchkv4.m

MAJ Stig Ekestorm, Feb -00

Modified version of simhwchkv0.m

o of dP oP

% Purpose: This program performs a architectural true simulation of the
% Digital Image Synthesizer hardware

% Modifications will perform "parallel processing"” and then "serial

% summation" including:

% - correction at start-up ("initialize outputs from the taps, one tap
% after another")

% - correction at the end ("shutting down the taps, one tap after

% another") '

% Orlglnal file: simhwchk.m by SY YEO, Jul -98

R R R R R R R R R R R R L R T A R A T A T AR N
clear

global dp_pts
global rg_pts
global doppler_inc

set (0, 'defaultAxesFontSize', 8);

noPlot = 0;
Ncontours = 20;

depthLUT = 32;

widthLUTFile = 2; % in units of number of hex digits
widthLUT = 8; % n bits

ndopbits = 5;

%***************************7’:*

% Read from data files

%***7’:*************************

% Read from para.dat

%$fid = fopen('para.txt','r'); %opens para.txt to be read

%$fid = fopen('paraMULTI.txt',6'r'); %opens paraMULTI.txt to be read

%fid = fopen('paraMULTIgS.txt','r'); %opens paraMULTIgS5.txt to be read

%$fid = fopen('paraMULTIg4.txt', 'r'); %opens paraMULTIg4.txt to be read

%$fid = fopen('paraMULTIQ4NEW.txt', 'r'); %opens paraMULTIQ4NEW.txt to be
read

%$fid = fopen('paraMULTIg4Vcasel.txt','r'); %opens paraMULTIg4Vcase.txt

to be read
fid = fopen('paraMULTIg4Vcase2.txXt','r'); %opens paraMULTIg4Shipl.txt

to be read

tmp = fscanf(fid, '$f£'); %reads in the values, for non-quantized test
case

stmp = fscanf(fid, '%d'); %reads in the wvalues

nRangeCell = tmp(l); %1lst value: 62, represents the number of range
cells

216

nDopplerCell
pulses
targetExtent = tmp(3); %3rd value: 3, represents the radial length of
the target expressed in number of range cells

tmp(2); %2nd value: 64, represents the number of radar

gain = tmp(4:4+targetExtent*nDopplerCell-1);
gainRev = reshape(gain, targetExtent,nDopplerCell);
tmpl = tmp(4+targetExtent*nDopplerCell:end);

phi = reshape (tmpl, targetExtent,nDopplerCell);

$gain = tmp(4:4+targetExtent-1); %4th to 6th values: 1,2,4 - the gain
value for each tap

%gainRev = fliplr(gain);

$tmpl = tmp{4+targetExtent:end); % 7th to last value: the phase-
increment values for each tap

$phi = reshape(tmpl, targetExtent,nDopplerCell); %$3x64 matrix with zeros
in the 1st column

fclose(fid);

% Read from rawint.dat
raw = zeros (nDopplerCell,nRangeCell); %create a 64x62 matrix,
initialized to zeros
fid = fopen('rawint.txt','r'); %open rawint.txt to be read
for j = l:nDopplerCell
for k = l:nRangeCell-1
raw(j,k) = fscanf(fid, '%d4d',1);
comma = fscanf (fid, '%c',1);

end

raw(j,nRangeCell) = fscanf (fid, '%d',1);
end
fclose(£fid);
[row,col] = size(raw);

raw = [raw, zeros (row, targetExtent-1)]; %raw: 64x64 matrix, last 2
columns with zeros :

$raw = [raw,zeros(row,targetExtent)]; %raw: 64x65 matrix, last 3
columns with zeros

% Read from the LUT files.
0.

load -ascii cosine.txt % variable is cosine
load -ascii sine.txt % variable is sine

% initialize some intermediate variables and vectors
Tgt_Extent=targetExtent;

DRFM_Phase=raw;

GainRev = gain';

gainRev = gainRev';

Phase_inc=phi;

phiRev = zeros (Tgt_Extent,1);

depthLUT = 32;

phaseAdderOut = zeros (Tgt_Extent,1);

1utOut = zeros (Tgt_Extent,1);

tapOut = zeros (nRangeCell + (Tgt_Extent-1),Tgt_Extent);

% open files to write results to
%f1 = fopen('checkv2.txt',6 'w'); % "scan-path test"
f2 = fopen('Iout.txt','w'); % I-values, final output

217

£3 fopen('Qout.txt', 'w'); % Q-values, final output

f4 = fopen('Iout_bin.txt','w'); % I-values in 2-complement binary,
final output

£5 = fopen('Qout_bin.txt', 'w');
final output

oe

Q-values in 2-complement binary,
% signal processing
for batchCnt = l:nDopplerCell,
disp(['Processing Pulse 'num2str (batchCnt)]);
for intraPulseCnt = 1:(nRangeCell + (Tgt_Extent-1)), % clock cycle
% --- This part simulates the intra pulse processing in hardware
%This part does "parallel processing" and then "serial summation"”
<

% "parallel processing” .

% initialize some intermediate variables and vectors
tap=zeros (1, Tgt_Extent) ;

% extraxt DRFM-phase data
DRFM_data=DRFM_Phase (batchCnt, intraPulseCnt) ;
for idx=1:Tgt_Extent,

tap (idx)=DRFM_data;
end

% phase addition (add phase-increment (Doppler offset) to DFRM
phase data)
phaseAdderOut=tap(l:Tgt_Extent)' + Phase_inc(:,batchCnt);

% phase-amplitude look-up (to obtain complex time signal)

$tmp=mod (phaseAdderOut, 32) /32*2*pi; $test case
with non-quantized phase and LUT

$1lutOut = cos(tmp) + sgrt(-1)*sin(tmp); %test case
with non-quantized phase and LUT

tmp = mod(phaseAdderOut,depthLUT) + 1; %original DIS
code

lutOut = cosine(tmp) + sqgrt(-1)*sine(tmp); $original DIS
code

% correction at the end ("shutting down the taps one tap after
another")
if intraPulseCnt>nRangeCell,
for idx2=1: (intraPulseCnt-nRangeCell),
lutOut ((idx2),:)=0;
end
end

% gain modulation, and storing values in an intermediate matrix
if intraPulseCnt<=nRangeCell,
GainOut = gainRev(batchCnt,:)'.*lutOut;
for idx3=0:Tgt_Extent-1,
tapOut (intraPulseCnt+idx3, 1dx3+1)=GainOut (idx3+1) ;
end

218

end

% final accumulation - "serial summation”
% - 1lst: extract partial sums (I and Q)

% - 2nd: extract final sums (I and Q)
tapNew=tapOut;

add=0;

tt=Tgt_Extent;

if tt>=2,
while tt>=2,
add=add+1;

tapNew (intraPulseCnt, tt-
1)=tapNew(intraPulseCnt,tt)+tapNew(intraPulseCnt,tt—l);
partial_tapsum(intraPulseCnt,1)=tapNew(intraPulseCnt,tt—l);

tt=tt-1;
end
tt=tt-1;
end
if tt==1,
partial_tapsum(intraPulseCnt,1)=tapOut(intraPulseCnt,l);
end :

Iout=rea1(partial_tapsum(intraPulseCnt,1));
Qout=imag(partial_tapsum(intraPulseCnt,1));

% write final results (I and Q) to separate files
format long
fprintf (£2, '$5.7f\n"', Iout);
fprintf (£3, '$5.7£\n"',Qout) ;
fprintf(f4,'%d',dethwo(Iout,S,?));
fprintf (£4, '\r\n');
fprintf(fS,'%d‘,dec2two(Qout,8,7));
fprintf (£5, '\r\n');

end %intraPulseCnt
finalAdderOut(batchCnt,:)=conj(partial_tapsum');
end %$batchCnt

% close files
fclose(£2);
fclose(£3);
fclose(f4);
fclose(£5);

%*******7‘:*********************

% Pulse Compression
_%***‘7’(*************************

%--- Compress the Doppler shifted signals

load pc_ref

priRgMapShift = zeros (nDopplerCell, rg_pts);

tic

pcRefMapShift = fft (finalAdderOut.',2*rg_pts-1)."';

219

for idx = l:nDopplerCell
tmp = cref.*pcRefMapShift (idx, :);
tmpl = fftshift(ifft(tmp));
priRgMapShift (idx, 1:end-targetExtent+l) = tmpl (rg_pts+targetExtent-
l:end);
end
dpRgMapShiftMOD = abs (fft (priRgMapShift));
%dpRgMapShift = abs(fft (priRgMapShift));
toc

dpRgMapShiftMOD4Vcase2=dpRgMapShi ftMOD;
finalAdderOutVcase2=finalAdderQut;

save plotMOD4Vcase2 dpRgMapShiftMOD4Vcase?2
%$dpRgMapShiftMOD4Ship2=dpRgMapShi ftMOD;
%save plotMOD4Ship2 dpRgMapShiftMOD4Ship?2
%%dpRgMapShi f tMOD4ANEW=dpRgMapShi f tMOD;
%save plotMODANEW dpRgMapShiftMOD4ANEW
%dpRgMapShi ftMOD4=dpRgMapShi ftMOD;

$save plotMOD4 dpRgMapShiftMOD4
$dpRgMapShi ftMOD5=dpRgMapShiftMOD;

$save plotMOD5 dpRgMapShiftMOD5
%$dpRgMapShi ftMODnot=dpRgMapShi ftMOD;
$save plotMODnot dpRgMapShiftMODnot

save plotMOD dpRgMapShiftMOD

save fAddOut finalAdderOut

%*****************************

% Display
%*****************************
if (noPlot == 0)

figure(2);

load plot.mat

subplot(2,1,1); :

h = contour (dpyq,Ncontours); grid; axis([1l 64 0 dp_pts])

%h = contour (dpyg _shift_drfm,Ncontours); grid; axis([0 20 0 32])

title('a. Amplitude and Doppler Modulated RA-Dp Map (unmodulated /
MATLAB) '});

Xlabel ('Down Range Cells'); ylabel ('Cross Range Cells');

axis([1l 62 0 dp_pts])

subplot (2,1,2);

h = contour (dpRgMapShiftMOD,Ncontours); grid; axis([1 64 0 dp_ptsl)

%h = contour (dpRgMapShift,Ncontours); grid; axis([1 20 0 32])

title('b. Amplitude and Doppler Modulated RA-Dp Map (Bit-True,
modulated / MATLAB) ');

xlabel ('Down Range Cells‘'); ylabel ('Cross Range Cells');

axis([1 62 0 dp_ptsl)
end

220

f. simhwchkv4_write.m

FEEEBEBLELTELLLEISELLELLELLLLL3T255T225%22555%8%%%%%% %%%%%%%%%%%%%%%%
% simhwchkv4d_write.m

% MAJ Stig Ekestorm, Feb -00

% Modified version of simhwchkvO.m

$ Purpose: This program performs a architectural true simulation of the
% Digital Image Synthesizer hardware

$ Modifications will perform "parallel processing"” and then "serial

% summation" including:

% - correction at start-up ("initialize outputs from the taps, one tap
% after another")

% - correction at the end ("shutting down the taps, one tap after

% another")

% Original file: simhwchk.m by SY YEO, Jul -98

D A L D DD T PR L R PR AR L LR bk LR R R ik A A

clear

global dp_pts
global rg_pts
global doppler_inc

set (0, 'defaultAxesFontSize', 8);

noPlot = 0;
Ncontours = 20;

depthLUT = 32;
widthLUTFile = 2; % in units of number of hex digits
%

widthLUT = 8; s n bits
ndopbits = 5;

%****************************'k

Read from data files
%***************************‘k*

o9

% Read from para.dat

%fid = fopen('para.txt','r'); %opens para.txt to be read

%fid = fopen('paraMULTI.txt','r'); %opens paraMULTI.txt to be read
%fid = fopen('paraMULTIQ5.txt', '*'), %opens paraMULTIg5.txt to be read
$fid = fopen('paraMULTIg4.txt', ")y %opens paraMULTIg4.txt to be read
$fid = fopen('paraMULTIQ4NEW. txt' ‘y'); %opens paraMULTIQ4NEW.txt to be
read '

$fid = fopen('paraMULTIg4Ship64a.txt','r'); $opens paraMULTIg4Shipl.txt

to be read
fid = fopen('paraMULTIq4Vcase2.txt‘,'r'); $opens paraMULTIg4Shipl.txt

to be read

stmp = fscanf (fid, '%£'); %reads in the values, for non-quantized test

case
tmp = fscanf(fid, '%d'); %reads in the values

nRangeCell = tmp(1l); %lst value: 62, represents the number of range
cells

221

L}

nDopplerCell
pulses
targetExtent = tmp(3); %3rd value: 3, represents the radial length of
the target expressed in number of range cells

tmp (2); %2nd value: 64, represents the number of radar

gain = tmp(4:4+targetExtent*nDopplerCell-1);
gainRev = reshape(gain, targetExtent,nDopplerCell) ;
tmpl = tmp(4+targetExtent*nDopplerCell:end);

phi = reshape (tmpl, targetExtent,nDopplerCell) ;

%gain = tmp(4:4+targetExtent-1); %4th to 6th values: 1,2,4 - the gain
value for each tap

%gainRev = fliplr(gain);

gtmpl = tmp(4+targetExtent:end); % 7th to last value: the phase-
increment values for each tap

%phi = reshape(tmpl, targetExtent,nDopplerCell); %3x64 matrix with zeros’
in the 1st column

fclose(fid);

% Read from rawint.dat
raw = zeros(nDopplerCell,nRangeCell); %create a 64x62 matrix,
initialized to zeros
fid = fopen('rawint.txt',6 'r'); %open rawint.txt to be read
for j = l:nDopplerCell ‘
for k = l:nRangeCell-1 i
raw(j,k) = fscanf(fid, '%d',1);
comma = fscanf(fid, '%c',1);
end
raw(j,nRangeCell) = fscanf(fid, '$d',1);
end
fclose(fid);
[row,col] = size(raw);
raw = [raw, zeros(row,targetExtent-1)]; %raw: 64x64 matrix, last 2
columns with zeros
%raw = [raw,zeros(row, targetExtent)]; %raw: 64x65 matrix, last 3
columns with zeros

% Read from the LUT files.
load -ascii cosine.txt % variable is cosine
load -ascii sine.txt % variable is sine

% initialize some intermediate variables and vectors
Tgt_Extent=targetExtent;

DRFM_Phase=raw;

GainRev = gain';

gainRev = gainRev';

Phase_inc=phi;

phiRev = zeros(Tgt_Extent,l);

depthLUT = 32;

phaseAdderOut = zeros(Tgt_Extent,1l);

lutOut = zeros(Tgt_Extent,1);

tapOut = zeros(nRangeCell + (Tgt_Extent-1),Tgt_Extent);

% open files to write results to

fl = fopen('checkvid.txt','w'); % "scan-path test"
f2 = fopen('Iout.txt','w'); % I-values, final output
222

£3 fopen('Qout.txt','w');
f4 fopen('Iout_bin.txt','w'};
final output

O-values, final output
I-values in 2-complement binary,

f5 = fopen('Qout_bin.txt','w'); % Q-values in 2-complement binary,
final output
% signal processing
for batchCnt = 1:nDopplerCell,
fprintf(fll 1 OS' , l***********7'(*************’k**************'******l);

fprintf (£1, '\r\n');
fprintf (£1, '\r\n');

fprintf (£1, '%s:%d\r\n', 'batchCnt (Radar Pulse) ',batchCnt) ;

fprintf (£1, '\r\n"');

disp(['Processing Pulse ‘num2str(batchCnt)]);

for intraPulseCnt = 1:(nRangeCell + (Tgt_Extent-1)), % clock cycle

fprintf(fl,'os:%d\r\n','intraPulseCnt',intraPulseCnt);

fprintf(£f1l, ‘\r\n');

fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n',‘Clock

Pulse',intraPulseCnt);

% --- This part simulates the intra pulse processing in hardware

%This part does "parallel processing" and then "serial summation"

% "parallel processing"

% initialize some intermediate variables and vectors

tap=zeros (1, Tgt_Extent);

% extraxt DRFM-phase data

DRFM_data=DRFM;Phase(batchCnt,intraPulseCnt);
fprintf (f1, '$s\r\n', 'DRFM-phase Data processed: ') ;

for idx=1:Tgt_Extent,
tap (idx)=DRFM_data;

end

for idx=1:Tgt_Extent,
fprintf (£f1, '%s%d’, '

tap',idx-1);

DRFM_bin=dec2two (DRFM_data,5,0);
fprintf (£1, ' :%d\r\n',DRFM_data);
fprint£(£f1,' %4d',DRFM_bin(1,2:6));

fprintf(£1, '‘\r\n');
fprintf (fl, '\r\n'});
end

% phase addition (add phase-increment (Doppler offset) to DFRM

phase data)

phaseAdderOut=tap(1:Tgt_Extent)' + Phase_inc(:,batchCnt);

fprintf (f1, ‘\r\n');

fprintf(fl,'%s\r\n','Phase-increment:’);

for idx=1:Tgt_Extent,
fprintf (£1, '%s%4d’', "’

tap',idx-1);

$fprintf (f1,':%d\n"',doppler_inc(idx));
$fprintf(£1," %d',dec2two (doppler_inc(idx),3,0));

223

fprintf(£f1, ' :$d\n', Phase_inc(idx,batchCnt)) ;
phase_inc=de02two(Phase_inc(idx,batchCnt),5,0);
fprintf(£fl,’ %4d',phase_inc(1,2:5));
fprintf(£f1, '\r\n');
fprintf (£1, '\r\n');

end

fporintf (f1, ‘\r\n");

fprintf (£f1, '%s\r\n', 'Phase-rotation Register:');

for idx=1:Tgt_Extent,
fprintf (£1, '%s%d’, " tap',idx-1);
fprintf(fl,':%d\n',mod(Phase_inc(idx,batchCnt),32));
Pi=dec2two (mod(Phase_inc (idx,batchCnt),32),5,0);
fprintf£(£f1,' %4',Pi(1,2:6));
fprintf (£1, '\r\n');
fprintf (£1, '\r\n');

end

fprintf (f1, ‘\r\n');

fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n',’Clock

Pulse',intraPulseCnt+1);

fprintf (£f1, '$s\r\n', 'After Phase Adder:');

for idx=1:Tgt_Extent,
fprintf (£1, '%s%4d’," tap',idx-1);
fprintf (£1, ' :%d\n',mod (phaseAdderOut (idx),32));
pPAO=dec2two (mod (phaseAdderOut (idx),32),5,0);
fprintf (£1,' %4',pA0(1,2:6));
fprintf (£1, '‘\r\n');
fprintf(£f1, ‘\r\n');

end

fprintf(£1, '‘\r\n');

fprintf (£1, '\t\c\t\eneneNe\e\t\t%s:2d\r\n"', 'Clock

Pulse',intraPulseCnt+2);

% phase-amplitude look-up (to obtain complex time signal)

% tmp=mod (phaseAdderQut, 32) /32*2*pi; $test case
with non-quantized phase and LUT
% lutOut = cos(tmp) + sgrt(-1)*sin(tmp); Stest case
with non-quantized phase and LUT
tmp = mod (phaseAdderOut,depthLUT) + 1; %original DIS
code
lutOut = cosine(tmp) + sqrt(-1)*sine(tmp); %original DIS
code

fprintf (£1, '$s\r\n', 'After LUT (I-values):');
for idx=1:Tgt_Extent,
fprintf (£1, '%s%4', " tap',idx-1);
fprintf (£f1, ':%5.7f\n"',real (lutOut (idx)));
fprintf (£f1,' %d4d',dec2two(real (lutOut (idx)),0,7));
fprintf (£f1, '\r\n');
fprintf (£1, ‘\r\n');
end
fprintf (£f1, '$s\r\n', 'After LUT (Q-values):');
for idx=1:Tgt_Extent,
fprintf (£f1, '%s%4', " tap',idx-1);
fprintf (£1, ':%5.7f\n', imag(lutOut (idx)));
fprintf (£1, ' %d4',dec2two (imag(lutOut(idx)),0,7));

224

fprintf (£1, '‘\r\n');
fprintf(£1, '\r\n"');
end

% correction at the end ("shutting down the taps one tap after
another")
if intraPulseCnt>nRangeCell,
for idx2=1: (intraPulseCnt-nRangeCell),
lutOut ({(idx2),:)=0;
end
end

fprintf(£1, '\r\n');
fprintf (£1, '\t\t\t\t\t\t\e\e\t\t®s:%d\r\n', 'Clock
Pulse',intraPulseCnt+3);

% gain modulation, and storing values in an intermediate matrix
fprintf (£1, '$s\r\n', 'Gain Value:');
for idx=1:Tgt_Extent,

% if GainRev(1l,idx)==1,
% GainRev2=0;
% elseif GainRev(l,idx)==2,
% GainRev2=1l;
$ elseif GainRev(l,idx)==4
% GainRev2=2;
% elseif GainRev(l,idx)==8,
% GainRev2=3;
$ end
fprintf (£1, '%s%4"', "' tap',idx-1);

fprintf(fl,':%5.7f\n',gainRev(batchCnt,idx));
GRbin=dec2two (gainRev(batchCnt, idx),2,0);
fprintf(£1,' %d',GRbin(1,2:3));
fprintf (£1, '\r\n"');
fprintf (£1, '\r\n');
end
if intraPulseCnt<=nRangeCell,
GainOut = gainRev(batchCnt,:)'.*lutOut;
for idx3=0:Tgt_Extent-1,
tapOut (intraPulseCnt+idx3, idx3+1)=GainOut (idx3+1);

end
end
fprintf (£1, '%s\r\n', 'After Gain Block (I-values):');
for idx=1:Tgt_Extent,

fprintf (£f1, '%s%4"', ' tap',idx-1);

fprintf(fl,':%5.7f\n',real(GainOut(idx)));
fprintf (£1, "' %d',dec2two (real (GainOut (idx)),3,7));
fprintf (£1, '\r\n');
fprintf (£1, '\r\n"');
end
fprintf(f1, '$s\r\n', ‘After Gain Block (Q-values):');
for idx=1:Tgt_Extent,
fprintf (£1, '959d' tap',idx-1);
fprintf (£1, ':%5.7f\n"’ ,imag (GainOut (idx)));
fprintf(£1,' %4’ ,dec2two (imag (GainOut (idx)), 3, 7)),
fprintf(£f1, '\r\n');
fprintf (£f1, '\r\n');

225

end

fprintf(£1, '\r\n');
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock
Pulse',intraPulseCnt+4);

% final accumulation - "serial summation"
% - lst: extract partial sums (I and Q)
- 2nd: extract final sums (I and Q)
tapNew=tapOut;
add=0;
tt=Tgt_Extent;
fprintf(f1, '$s\r\n', 'Final values in each tap (I- and Q-
values):');
fprintf (£f1, '%s%4',: Final I-value in tap',tt-1);
fprintf(f1,':%5.7f\n',real (tapNew(intraPulseCnt,tt)));
fprintf(f1l,' %d',dec2two(real (tapNew(intraPulseCnt,tt)),8,7));
fprintf (f1, '\r\n');
fprintf (£1, '‘\r\n');
fprintf (£1, '%$s%4', Final Q-value in tap',tt-1);
fprintf (f1, ':%5.7f\n"', imag(tapNew(intraPulseCnt, tt)});
fprintf (£f1,' %d',dec2two (imag(tapNew(intraPulseCnt,tt)),8,7));
fprintf (£1, '‘\r\n');
fprintf (£1, '\r\n');

o

if tt>=2,
while tt>=2,
add=add+1;

tapNew (intraPulseCnt, tt-

1l)=tapNew(intraPulseCnt, tt)+tapNew(intraPulseCnt,tt-1);
fprintf (£1, '%s%4', " Final I-value in tap',tt-2);
fprintf(£f1, ' : %5.7f\n"',real (tapNew(intraPulseCnt, tt-1)));
fprintf(£f1l, ' %d',dec2two(real (tapNew(intraPulseCnt, tt-

1)).8,7));
fprintf (£1, '\r\n");
fprintf (£1, '\r\n');
fprintf(£f1, '%s%4d’, Final Q-value in tap',tt-2);
fprintf (£1, ':%5.7f\n"', imag (tapNew (intraPulseCnt,tt-1)));
fprintf(f1,' %d',dec2two(imag(tapNew(intraPulseCnt, tt-
1)).8,7));
fprintf (£1, ‘\r\n"');
fprintf (£1, '\r\n"');
partial_tapsum(intraPulseCnt,1l)=tapNew(intraPulseCnt,tt-1);
tt=tt-1;
end
tt=tt-1;
end
if tt==1,
partial_tapsum(intraPulseCnt,l)=tapOut (intraPulseCnt,1);
end

fprintf (£1, '\r\n');

Jout=real (partial_tapsum(intraPulseCnt,1l));
Qout=imag(partial_tapsum(intraPulseCnt,l));
fprintf (f1, '‘$s\r\n', 'Final Output values (I- and Q-values):'});

226

fprintf (£1, '%s%d’', ' Tout - Final I-value for
intraPulseCnt',intraPulseCnt);

fprintf(£f1,':%5.7f\n"',Iout);

fprintf (£f1,* %d',dec2two(Iout,8,7));

fprintf (f1, ‘\r\n');

fprintf (f1, '\r\n');

fprintf (f1l, '$s%d’, "’ Qout - Final Q-value for
intraPulseCnt',intraPulseCnt);

fprintf(£f1, ':%5.7f\n",Qout);

fprintf(£f1,* %d4',dec2two(Qout,8,7));

fprintf (£1, '\r\n');

fprintf (f1, ‘\r\n');

fprintf(fl, '$s', ' =——=----=m----s-o--s o —mo oo oooom oo
')

fprintf (f1, ‘\r\n');

% write final results (I and Q) to separate files
format long
fprintf(£2, '%5.7f\n"', Iout};
fprintf (£3,'%5.7f\n"',Qout);
fprintf (£4, ‘%d',dec2two(Iout,8,7));
fprintf(f4, '\r\n');
fprintf(fS,'%d',dec2two(Qout,8,7));
fprintf (£5, '\r\n');

end %intraPulseCnt
finaladderoOut (batchCnt, :) =conj (partial_tapsum') ;
end %$batchCnt

% close files
fclose(fl);
fclose(£2);
fclose(£3);
fclose(£f4);
fclose(£5);

%*****************************

% Pulse Compression
%****‘k************************

%--- Compress the Doppler shifted signals
load pc_ref

priRgMapShift = zeros (nDopplerCell,rg_pts);
tic

pcRefMapShift = fft (finaladderoOut.',2*xrg_pts-1).';
for idx = l:nDopplerCell
tmp = cref.*pcRefMapShift (idx, :);
tmpl = fftshift(ifft(tmp));
priRgMapShift(idx,1:end-targetExtent+1) = tmpl (rg_pts+targetExtent-
l:end);
end
dpRgMapShiftMOD = abs (fft (priRgMapShift));
%dpRgMapShift = abs (fft (priRgMapShift)):
toc

227

dpRgMapShi ftMOD4Ship64a=dpRgMapShi ftMOD;
finaladderOuté4a = finalAdderOut;

save plotMOD4Shipé64a dpRgMapShiftMOD4Shipé64a finalAdderOuté64a
%dpRgMapShiftMOD4Ship2=dpRgMapShi ftMOD;
%save plotMOD4Ship2 dpRgMapShiftMOD4Ship2
%%dpRgMapShi ftMODANEW=AdpRgMapShi ftMOD;
%$save plotMODANEW dpRgMapShiftMOD4ANEW
%dpRgMapShi ftMOD4 =dpRgMapShi ftMOD;

%save plotMOD4 dpRgMapShiftMOD4
%$dpRgMapShiftMOD5=dpRgMapShiftMOD;

$save plotMOD5 dpRgMapShi ftMODS
$dpRgMapShiftMODnot=dpRgMapShi ftMOD;
%save plotMODnot dpRgMapShiftMODnot

save plotMOD dpRgMapShiftMOD

save faddOut finalAdderOut

%*****************************

% Display
%*****************************
if (noPlot == 0)
figqure(2);
load plot.mat
subplot(2,1,1);
h = contour (dpyg,Ncontours); grid; axis([1l 64 0 dp_ptsl)
%h = contour (dpyag_shift_drfm,Ncontours); grid; axis([0 20 0 32])
title('a. Amplitude and Doppler Modulated RA-Dp Map (unmodulated /
MATLAB) '};
xlabel ('Down Range Cells'); vlabel ('Cross Range Cells');
axis([1 62 0 dp_ptsl])
subplot(2,1,2);
h = contour (dpRgMapShiftMOD,Ncontours); grid; axis([1 64 0 dp_ptsl])
%h = contour (dpRgMapShift,Ncontours); grid; axis([1 20 0 32])
title('b. Amplitude and Doppler Modulated RA-Dp Map (Bit-True,
modulated / MATLAB) ');
xlabel ('Down Range Cells'); ylabel ('Cross Range Cells');
axis([1l 62 0 dp_pts])
end

v

g. simhwchkv2.m

B EEE 5553555550555 5555555555555 59%%%5%%%%%
% simhwchkv2.m

% MAJ Stig Ekestorm, Sep -99

% Modified version of simhwchkvO.m

% Purpose: This program performs a architectural true simulation of the
% Digital Image Synthesizer hardware

% Modifications will perform "parallel processing" and then "serial

% summation" including:

% - correction at start-up ("initialize outputs from the taps, one tap
% after another")

% - correction at the end ("shutting down the taps, one tap after

% another")

%

oe

Original file: simhwchk.m by SY YEO Jul -98
R R R R R R R E R R R LR R R L R R R R R R L LR R R R R R R L A LR R AR L]

228

clear

global dp_pts

global rg_pts

global doppler_inc

set (0, 'defaultAxesFontSize', 8);

noPlot = 0;
Ncontours = 20;

depthLUT = 32;

widthLUTFile = 2; % in units of number of hex digits
widthLUT = 8; % n bits

ndopbits = 5;

%****************************‘k

% Read from data files

%*****************************

% Read from para.dat

fid = fopen('para.txt','r'); %opens para.txt to be read

%fid = fopen('paraMULTI.txt',6'r'); %opens paraMULTI.txXt to be read
$fid = fopen('paraMULTIGS.txt', 'r'); %opens paraMULTIg5. txt to be

%fid = fopen('paraMULTIg4.txt',6 'r'); %opens paraMULTIg4.txt to be

%fid = fopen('paraMULTIGQ4NEW.txt',6 'r'); %opens paraMULTIg4NEW. tXt

read

%fid = fopen('paraMULTIg4Shipl.txt', ‘r'); %opens paraMULTIg4Shipl.
to be read

stmp = fscanf(fid, '%f'); %reads in the values, for non-quantized t
case

tmp = fscanf(fid, '3¥d'); %reads in the values

nRangeCell = tmp(l); %lst value: 62, represents the number of rang
cells

nDopplerCell = tmp(2); %2nd value: 64, represents the number of ra
pulses .
targetExtent = tmp(3); %3rd value: 3, represents the radial length

the target expressed in number of range cells

gain = tmp(4:4+targetExtent-1); %4th to 6th values: 1,2,4 - the ga
value for each tap

gainRev = fliplr(gain);

tmpl = tmp(4+targetExtent:end); % 7th to last value: the phase-
increment values for each tap

phi = reshape(tmpl,targetExtent,nDopplerCell); %$3x64 matrix with z
in the 1lst column

fclose(£id);

% Read from rawint.dat
raw = zeros (nDopplerCell,nRangeCell); %create a 64x62 matrix,

initialized to zeros
fid = fopen('rawint.txt',6'r'}; $open rawint.txt to be read
for j = l:nDopplerCell
for k = l:nRangeCell-1
raw(j,k) = fscanf(fid, '%d',1):

229

read
read
to be

txt

est

e

dar

of

in

eros

comma = fscanf(fid, '$c',1);

end

raw(j,nRangeCell) = fscanf(fid, '%d',1);
end
fclose(£fid); .
[row,col] = size(raw);

raw = [raw,zeros(row, targetExtent-1)]; %raw: 64x64 matrix, last 2
columns with zeros

%raw = [raw, zeros(row, targetExtent)]; %raw: 64x65 matrix, last 3
columns with zeros

% Read from the LUT files.
load -ascii cosine.txt % variable is cosine
load -ascii sine.txt % variable is sine

% initialize some intermediate variables and vectors
Tgt_Extent=targetExtent;

DRFM_Phase=raw;

GainRev = gain‘';

Phase_inc=phi;

phiRev = zeros (Tgt_Extent,1);

depthLUT = 32;

phaseAdderOut = zeros(Tgt_Extent,1);

lutOut zeros (Tgt_Extent,1);

tapOut zeros (nRangeCell + (Tgt_Extent-1),Tgt_Extent);

% open files to write results to
%$f1l = fopen('checkv2.txt',6 'w');
£f2 fopen('Iout.txt', 'w')

£3 fopen('Qout.txt"', ‘w’)
f4 = fopen('Iout_bin.txt', 'w');
final output

£f5 = fopen('Qout_bin.txt', 'w');
final output

[

"scan-path test®"

I-values, final output

Q-values, final output

I-values in 2-complement binary,

a0

.
’
.
’

e @

a0

Q-values in 2-complement binary,

% signal processing
for batchCnt = 1l:nDopplerCell,

disp(['Processing Pulse 'num2str(batchCnt)]);

for intraPulseCnt = 1:(nRangeCell + (Tgt_Extent-1)), % clock cycle
% --- This part simulates the intra pulse processing in hardware
%This part does "parallel processing" and then "serial summation”
o

5 "parallel processing”

% initialize some intermediate variables and vectors
tap=zeros (1, Tgt_Extent);

% extraxt DRFM-phase data
DRFM_data=DRFM_Phase (batchCnt, intraPulseCnt) ;
for idx=1:Tgt_Extent,

tap(idx)=DRFM_data;
end

230

% phase addition (add phase-increment (Doppler offset) to DFRM
phase data)
phaseAdderOut=tap{l:Tgt_Extent)' + Phase_inc(:,batchCnt);

% phase-amplitude look-up (to obtain complex time signal)

$tmp=mod (phaseAdderOut,32) /32*2*pi; %test case
with non-quantized phase and LUT

$lutOut = cos(tmp) + sgrt(-1)*sin(tmp) ; %test case
with non-quantized phase and LUT ’

tmp = mod(phaseAdderOut,depthLUT) + 1; %original DIS
code

lutOut = cosine(tmp) + sqgrt(-1)*sine(tmp); %original DIS
code

% correction at the end ("shutting down the taps one tap after
another")
if intraPulseCnt>nRangeCell,
for idx2=1: (intraPulseCnt-nRangeCell),
lutOut ((idx2), :)=0;
end
end

% gain modulation, and storing values in an intermediate matrix
for idx=1:Tgt_Extent,
if GainRev(1l,idx)==1,
GainRev2=0;
elseif GainRev(l,idx)==2,
GainRev2=1;
elseif GainRev(1l,idx)==4,
GainRev2=2;
elseif GainRev(l,idx)==8,
GainRev2=3;
end
end
if intraPulseCnt<=nRangeCell,
GainOut = GainRev.*lutOut';
for idx3=0:Tgt_Extent-1,
tapOut(intraPulseCnt+idx3,idx3+1)=GainOut(idx3+1);
end
end

% final accumulation - "serial summation”
% -]lst: extract partial sums (I and Q)

% - 2nd: extract final sums (I and Q)
tapNew=tapOut;

add=0;

tt=Tgt_Extent;

if tt>=2,
while tt>=2,
add=add+1;

tapNew (intraPulseCnt, tt-
1)=tapNew(intraPulseCnt,tt)+tapNew(intraPulseCnt,tt-l);
partial_tapsum(intraPulseCnt,1)=tapNew(intraPulseCnt,tt—l);

231

tt=tt-1;
end
tt=tt-1;
end

if tt==1,
partial_tapsum(intraPulseCnt,1l)=tapOut (intraPulseCnt,1);
end

Iout=real (partial_tapsum(intraPulseCnt,1));

Qout=imag(partial_tapsum{intraPulseCnt,1));
% write final results (I and Q) to separate files

format long

fprintf(£2,'%5.7f\n"', Iout);

fprintf (£3, '%5.7f\n',Qout) ;

fporintf(f4, '%4d',dec2two (Iout,8,7));

fprintf (f4, '\r\n');

fprintf (£5, '%d',dec2two (Qout,8,7));

fprintf (£5, '\r\n');

end %$intraPulseCnt
finalAdderOut (batchCnt, :) =partial_tapsum';
end $batchCnt

% close files
$fclose(£f1l);
fclose(£2);
fclose(£f3);
fclose(f4);
fclose(£5);

%*****************************

% Pulse Compression
%*****************************
$--- Compress the Doppler shifted signals
load pc_ref
priRgMapShift = zeros (nDopplerCell,rg pts);
tic
pcRefMapShift = fft(finalAdderOut.',62*rg pts-1).';
for idx = l:nDopplerCell
tmp = cref.*pcRefMapsShift (idx, :);
tmpl = fftshift(ifft(tmp)); .
priRgMapShift (idx, l:end-targetExtent+1l) = tmpl{(rg_pts+targetExtent-
l:end);
end
dpRgMapShiftMOD = abs(fft (priRgMapShift));
$dpRgMapShift = abs(fft(priRgMapShift));
toc

dpRgMapShiftMOD4Shiplb=dpRgMapShi ftMOD;
save plotMOD4Shiplb dpRgMapShiftMOD4Shiplb
$dpRgMapShiftMOD4Ship2=dpRgMapShi ftMOD;
$save plotMOD4Ship2 dpRgMapShiftMOD4Ship2

232

$%dpRgMapShi £tMOD4ANEW=dpRgMapShi £tMOD;
$save plotMODANEW dpRgMapShiftMOD4ANEW
$dpRgMapShi ftMOD4=dpRgMapShi ftMOD;
$save plotMOD4 dpRgMapShiftMOD4
$dpRgMapShi ftMOD5=dpRgMapShiftMCOD;
$save plotMOD5 dpRgMapShiftMODS5S
$dpRgMapShi £ tMODnot=dpRgMapShi ftMOD;
$save plotMODnot dpRgMapShiftMODnot
save plotMOD dpRgMapShiftMOD

save fAddOut finalAdderOut

%*****************************

% Display
%*****************************
if (noPlot == 0)

figure(2);

load plot.mat

subplot(2,1,1);

h = contour (dpyq,Ncontours); grid; axis([1 64 0 dp_pts])

$h = contour (dpyq _shift_drfm,Ncontours); grid; axis([0 20 0 32])

title('a. Amplitude and Doppler Modulated RA-Dp Map (unmodulated /
MATLAB) ');

xlabel ('Down Range Cells'); ylabel ('Cross Range Cells');

axis([1 62 0 dp_ptsl)

subplot(2,1,2);

h = contour (dpRgMapShiftMOD,Ncontours); grid; axis([1 64 O dp_ptsl)

$h = contour (dpRgMapShift,Ncontours); grid; axis({1l 20 0 32])

title('b. Amplitude and Doppler Modulated RA-Dp Map (Bit-True,
modulated / MATLAB) ');

xlabel ('Down Range Cells'); ylabel ('Cross Range Cells');

axis ({1 62 0 dp_pts])
end

h. simhwchkv2_write.m

%%%
simhwchkv2_write.m
MAJ Stig Ekestorm, Sep -99
Modified version of simhwchkvO.m
Purpose: This program performs a architectural true simulation of the
Digital Image Synthesizer hardware
Modifications will perform "parallel processing" and then "serial
summation" including:
_ correction at start-up ("initialize outputs from the taps, one tap
after another")
- correction at the end ("shutting down the taps, one tap after
another”)
Original file: simhw

C S
FEEEBEELES253L55%55%%%% %

o0 <

Y
$%%%%

%

o0 0° 0P 0° 0P O° of JC OO OP IP 00 P of

hk.m by
%5%%%%%

clear

global dp_pts

233

global rg_pts
global doppler_inc

set (0, 'defaultAxesFontSize!, 8);

noPlot = 0;
Ncontours = 20;

depthLUT = 32;

widthLUTFile = 2; % in units of number of hex digits
widthLUT = 8; % n bits

ndopbits = 5;

%*****************************

% Read from data files
%*****************************

% Read from para.dat

fid = fopen('para.txt','r'); %opens para.txt to be read

$fid = fopen('paraMULTI.txt', 'r'); %opens paraMULTI.txt to be read
%fid = fopen('paraMULTIgQ5.txt', 'r'); %opens paraMULTIQ5.txt to be read
%fid = fopen('paraMULTIg4.txt', 'r'); %opens paraMULTIq4.txt to be read
%fid = fopen('paraMULTIg4NEW.txt',6 'r'); %opens paraMULTIQ4NEW.txt to be
read

%fid = fopen('paraMULTIg4Shipé64a.txt','r'); %$opens paraMULTIg4Shipl.txt
to be read

%tmp = fscanf(fid, '%f'); %reads in the values, for non-quantized test

case
tmp = fscanf (fid, '$d'); %reads in the values

nRangeCell = tmp(l); %lst value: 62, represents the number of range
cells

nDopplerCell = tmp(2); %2nd value: 64, represents the number of radar
pulses

targetExtent = tmp(3); %3rd value: 3, represents the radial length of
the target expressed in number of range cells

gain = tmp(4:4+targetExtent-1); %4th to 6th values: 1,2,4 - the gain
value for each tap

gainRev = fliplr(gain);

tmpl = tmp(4+targetExtent:end); % 7th to last value: the phase-
increment values for each tap

phi = reshape (tmpl, targetExtent,nDopplerCell); %3x64 matrix with zeros
in the lst column

fclose(fid);

% Read from rawint.dat
raw = zeros (nDopplerCell,nRangeCell); %create a 64x62 matrix,
initialized to zeros
fid = fopen('rawint.txt','r'); %open rawint.txt to be read
for j = l:nDopplerCell
for k = 1l:nRangeCell-1
raw(j,k) = fscanf(fid, '%4',1);
comma = fscanf(fid, '%c',1);
end
raw(j,nRangeCell) = fscanf (f£id, '%d',1);
end

234

fclose(fid);

[row,col] = size(raw);

raw = [raw, zeros (row,targetExtent-1)]; %raw: 64x64 matrix, last 2
columns with zeros

%raw = [raw,zeros (row,targetExtent)]; %$raw: 64x65 matrix, last 3
columns with zeros

% Read from the LUT files.
load -ascii cosine.txt % variable is cosine
load -ascii sine.txt % variable is sine

% initialize some intermediate variables and vectors
Tgt_Extent=targetExtent;

DRFM_Phase=raw;

GainRev = gain';

Phase_inc=phi;

phiRev = zeros(Tgt_Extent,1l);

depthLUT = 32;

phaseAdderOut = zeros(Tgt_Extent,1l);

lutOut = zeros (Tgt_Extent,1l);

tapOut = zeros(nRangeCell + (Tgt_Extent-1),Tgt_Extent);

% open files to write results to

f1 = fopen('checkv2.txt','w'); % "scan-path test"
f2 = fopen('Iout.txt', 'w'); % I-values, final output
£f3 = fopen('Qout.txt', 'w'); % Q-values, final output
f4 = fopen('Iout_bin.txt','w'); % I-values in 2-complement binary,
final output
£S5 = fopen('Qout_bin.txt','w*'); % Q-values in 2-complement binary,
final output
% signal processing
for batchCnt = 1l:nDopplerCell,
fprintf(fl, l%sl , l** ') ;

fprintf(£f1, '\r\n');

fprintf (£1, '\r\n');

fprintf (£f1, '$s:%d\r\n’, 'batchCnt (Radar Pulse) ' ,batchCnt) ;
fprintf (£1, '\r\n');

disp(['Processing Pulse ‘num2str (batchCnt) 1) ;

for intraPulseCnt = 1:(nRangeCell + (Tgt_Extent-1)), % clock cycle

fprintf(fl,'%s:%d\r\n','intraPulseCnt',intraPulseCnt);

fprintf (£1, ‘\r\n');

fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock
Pulse',intraPulseCnt);

% --- This part simulates the intra pulse processing in hardware
$This part does "parallel processing" and then "serial summation”

% "parallel processing”

% initialize some intermediate variables and vectors
tap=zeros (1, Tgt_Extent);

235

% extraxt DRFM-phase data
DRFM_data=DRFM_Phase (batchCnt, intraPulseCnt) ;
fprintf (£1, '$s\r\n', 'DRFM-phase Data processed:');
for idx=1:Tgt_Extent,
tap (idx) =DRFM_data;
end
for idx=1:Tgt_Extent,
fprintf (£1, '$s%4’, " tap',idx-1);
DRFM_bin=dec2two (DRFM_data,5,0);
fprintf (£1, ' :%d\r\n',DRFM_data) ;
fprintf (£1,' %4',DRFM_bin(1,2:6));
fprintf (£1, '‘\r\n');
fprintf(£f1, ‘\r\n');
end

% phase addition (add phase-increment (Doppler offset) to DFRM
phase data)
phaseAdderQut=tap(1l:Tgt_Extent)' + Phase_inc(:,batchCnt);
fprintf (£1, '\r\n');
fprintf(£f1, '$s\r\n', 'Phase-increment: ') ;
for idx=1:Tgt_Extent, '
fprintf (£1, '%s%4d"', " tap',idx-1);
$fprintf (£1, ':%d\n"',doppler_inc(idx));
$fprintf(fl,' %d4',6 dec2two (doppler_inc(idx),3,0));
fprintf (£1, ' :%d\n', Phase_inc (idx,batchCnt)) ;
phase_inc=dec2two (Phase_inc (idx,batchCnt),5,0);
fprintf(fl,' %d',phase_inc(1,2:5));
fprintf (£1, '\r\n');
fprintf (£1, ‘\r\n');
end
fprintf(f1, '\r\n"');
fprintf (£1, '$s\r\n', 'Phase-rotation Register:');
for idx=1:Tgt_Extent,
fprintf (£1, '$s%4d', "' tap',idx-1);
fprintf (£1, ' :%d\n',mod (Phase_inc(idx,batchCnt),32));
Pi=dec2two (mod (Phase_inc (idx,batchCnt),32),5,0);
fprintf(£f1,' %4',Pi(1,2:6));
fprintf (£1, '\r\n');
fprintf(£1, ‘\r\n');
end
fprintf (£1, '\r\n');
fprintf (£1, "\t\chenehehehe\eNe\t%s:%d\r\n', 'Clock
Pulse',intraPulseCnt+l);
fprintf (£f1, '$s\r\n', 'After Phase Adder:');
for idx=1:Tgt_Extent,
fprintf (£f1, '%s%4d:', " tap',idx-1);
fprintf (£1, ' : 3d\n',mod (phaseAdderOut (idx),32));
pAO=dec2two (mod (phaseAdderQut (idx),32),5,0);
fprintf(£1,' %4',pA0(1,2:6));
fprintf (£f1, '\r\n');
fprintf (f1, '\r\n');
end
fprintf(£1, '\r\n');
fprintf (£1, '\c\e\c\ehehe\e\te\e\e%s:%$d\r\n', 'Clock
Pulse',intraPulseCnt+2);

236

% phase-amplitude look-up (to obtain complex time signal)

% tmp=mod (phaseAdderOut, 32) /32*2*pi; %test case
with non-quantized phase and LUT
% lutOut = cos(tmp) + sgrt(-1)*sin(tmp); %test case
with non-quantized phase and LUT
tmp = mod(phaseAdderOut, depthLUT) + 1; %$original DIS
code
lutOut = cosine(tmp) + sqrt(-1)*sine(tmp):; %original DIS
code

fprintf (fl, '$s\r\n', 'After LUT (I-values):');
for idx=1:Tgt_Extent,
fprintf (£1, '%s%d', ' tap',idx-1);
fprintf (£1, ':%5.7£f\n"',real (lutOut(idx)));
fprintf(£f1,' %d',dec2two(real (lutOut(idx)),0,7)};
fprintf (£1, '\r\n"');
fprintf (£f1, '\r\n"');
end
fprintf (£1, '$s\r\n', ‘After LUT (Q-values):');
for idx=1:Tgt_Extent,
fprintf (£1, '%s%4d’, tap',idx-1);
fprintf (£1, ':%5.7f\n"',imag(lutOut (idx)));
fprintf (£1,' %4',dec2two (imag(lutOut(idx)),0,7));
fprintf (£1, '\r\n');
fprintf (£1, '\x\n"');
end

% correction at the end ("shutting down the taps one tap after
another")
if intraPulseCnt>nRangeCell,
for idx2=1:(intraPulseCnt-nRangeCell),
lutOut ((idx2),:)=0;
end :
end

fprintf(£1, '\r\n');
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock
Pulse', intraPulseCnt+3); ’

% gain modulation, and storing values in an intermediate matrix
fprintf(£1, '%s\r\n', 'Gain Value:'};
for idx=1:Tgt_Extent,
if GainRev(l,idx)==1,
GainRev2=0;
elseif GainRev(l,idx)==2,
GainRev2=1;
elseif GainRev(l,idx)==4,
GainRev2=2;
elseif GainRev(1l,idx)==8,
GainRev2=3;
end
fprintf (£1, '%s%4d’', tap',idx-1);
fprintf(£f1, ':%5.7f\n"',GainRev(1l,idx));
GRbin=dec2two (GainRev2,2,0);

237

fprintf (£f1,' %d4',GRbin(1,2:3));
fprintf (£1, ‘\r\n');
fprintf (£1, '‘\r\n');
end
if intraPulseCnt<=nRangeCell,
GainOut = GainRev'.*lutOut;
for idx3=0:Tgt_Extent-1,
tapOut (intraPulseCnt+idx3, idx3+1)=GainOut (idx3+1) ;
end
end
fprintf (£f1, '$s\r\n', 'After Gain Block (I-values):');
for idx=1:Tgt_Extent,
fprintf(£1, *%s%d4’', ' tap',idx-1);
fprintf(£f1l, ':%5.7f\n"',real (GainOut (idx)));
fprintf(£f1,' %d4d',dec2two(real (GainOut (idx)),3,7));
fprintf (£1, '\r\n");
fprintf (£1, '\r\n');
end
fprintf (£1, '%s\r\n', 'After Gain Block (Q-values):');
for idx=1:Tgt_Extent,
fprintf(£f1, '%s%4a:', " tap',idx-1);
fprintf(£1, ':%5.7f\n"', imag(GainOut (idx)));
fprintf (£f1,' %d4',dec2two (imag(GainOut (idx)),3,7));
fprintf (£f1, ‘\r\n'"); ‘
fprintf (£1, '\r\n');
end

fprintf (£1, '\r\n');
fprintf (£1, *\t\c\e\e\e\e\t\t\t\t%s:%d\r\n', 'Clock
Pulse', intraPulseCnt+4);

% final accumulation - "serial summation"

% - 1lst: extract partial sums (I and Q)

% - 2nd: extract final sums (I and Q)

tapNew=tapOut;

add=0;

tt=Tgt_Extent;

fprintf (£1, '$s\r\n', 'Final values in each tap (I- and Q-
values):");

fprintf (£1, '%s%4d"', "' Final I-value in tap',tt-1);

fprintf(£1, ' :%5.7f\n"',real (tapNew (intraPulseCnt, tt)));

fprintf (f1,' %d',dec2two(real (tapNew(intraPulseCnt,tt)),8,7));

fprintf (£1, '\r\n');

fprintf(£f1, '‘\r\n');

fprintf (£1, '%$s%d', ' Final Q-value in tap',tt-1);

fprintf(£f1l, ':%5.7f\n"', imag(tapNew(intraPulseCnt,tt)));

fporintf(£f1,' %d',dec2two(imag(tapNew(intraPulseCnt,tt)),8,7));

fprintf (£1, '‘\r\n');

fprintf (£1, '\r\n*);

if tt>=2,
while tt>=2,
add=add+1;
tapNew (intraPulseCnt, tt-
1l)=tapNew(intraPulseCnt, tt)+tapNew(intraPulseCnt, tt-1);
fprintf (f1, '%s%d’', ' Final I-value in tap',tt-2);

238

fprintf(f1, ':%$5.7£\n’,real (tapNew(intraPulseCnt, tt~1)));
fprintf (f1,' %d',dec2two (real (tapNew(intraPulseCnt, tt-

1)),8,7));
fprintf (£1, '‘\r\n"');
fprintf(£1, '\r\n"');
fprintf (£1, '%$s%d’', "’ Final Q-value in tap',tt-2);
forintf(f1, ':%5.7f\n', imag(tapNew(intraPulseCnt, tt-1)});
forintf(fl, ' %d',dec2two (imag(tapNew (intraPulseCnt, tt-
1)).,8,7)):
fprintf (£1, '\r\n');
fprintf (£1, '\r\n');
partial_tapsum(intraPulseCnt,1l)=tapNew(intraPulseCnt,tt-1);
tt=tt-1;
end
tt=tt-1;
end
if tt==1,
partial_tapsum({intraPulseCnt,1l)=tapOut (intraPulseCnt,1);
end

fprintf (£1, '\r\n');
Iout=real (partial_tapsum(intraPulseCnt,1l));
Qout=imag (partial_tapsum(intraPulseCnt,1));
fprintf (£f1, '%s\r\n', 'Final Output values (I- and Q-values):');
fprintf (f1, '%s%d’, "’ Iout - Final I-value for
intraPulseCnt', intraPulseCnt) ;
fprintf (f1, ':%5.7f\n',Iout);
fprintf (£1, ' %4',dec2two(Iout,8,7));
fprintf(£f1, '\r\n');
forintf (£1, '\r\n');
fprintf (£1, *%s%d"', Qout - Final Q-value for
intraPulseCnt', intraPulseCnt);
fprint£ (£f1, ' :%5.7£\n"',Qout) ;
fprintf (£1,' %4',dec2two(Qout,8,7));
fprintf (£1, '\x\n"');
fprintf (£1, '\r\n");
fprintf£(fl, '$s', '~——==-—----------------—-ooSomo oo o —eso oo
)i
fprintf (£1, '‘\r\n');

% write final results (I and Q) to separate files
format long
fprintf (£2, '$5.7f\n"', Iout);
fprint£ (£3,'%5.7f\n',Qout);
fprintf (£4, '%d',dec2two(Iout,8,7));
fprintf (£4, '\r\n');
fprintf(fS,'%d',dethwo(Qout,8,7));
fprintf (£5, '\xr\n'});

end %$intraPulseCnt

finalAdderoOut (batchCnt, :) =conj (partial_tapsum');

end %batchCnt

239

% close files
fclose(£fl);
fclose(£f2);
fclose(£f3);
fclose(£f4);
fclose(£f5);

%**********************’k****7’:*

% Pulse Compression
%*****************************
%--- Compress the Doppler shifted signals
load pc_ref
priRgMapShift = zeros(nDopplerCell,rg pts);
tic
pcRefMapShift = fft(finalAdderOut.',2*rg_pts-1).';
for idx = l:nDopplerCell

tmp = cref.*pcRefMapShift (idx, :);

tmpl = fftshift(ifft(tmp));

priRgMapShift (idx,1l:end-targetExtent+l) = tmpl (rg_pts+targetExtent-
l:end); :
end
dpRgMapShiftMOD = abs (fft (priRgMapShift));
$dpRgMapShift = abs(fft (priRgMapShift));
toc

dpRgMapShiftMOD4Ship64a=dpRgMapShiftMOD;
finaladderOut64a = finalAdderOut;

save plotMOD4Ship64a dpRgMapShiftMOD4Ship64a finalAdderOuté4a
$ApRgMapShiftMOD4Ship2=dpRgMapShi ftMOD;
%$save plotMOD4Ship2 dpRgMapShiftMOD4Ship?2
$%dpRgMapShi ftMOD4ANEW=dpRgMapShiftMOD;
%$save plotMOD4NEW dpRgMapShiftMODANEW
$dpRgMapShi ftMOD4=dpRgMapShi ftMOD;

$save plotMOD4 dpRgMapShiftMOD4
$dpRgMapShi ftMOD5=dpRgMapShi ftMOD;

$save plotMODS5 dpRgMapShiftMOD5
%$dpRgMapShi ftMODnot=dpRgMapShiftMOD;
$save plotMODnot dpRgMapShiftMODnot

save plotMOD dpRgMapShiftMOD

save faddout finalAdderOut

%*****************************
% Display
%**:‘r**************************
if (noPlot == 0)
figure(2);
load plot.mat
subplot(2,1,1);
h = contour (dpyqg,Ncontours); grid; axis([1 64 0 dp_pts])
$h = contour(dpyg shift_drfm,Ncontours); grid; axis([0 20 0 32])
title('a. Amplitude and Doppler Modulated RA-Dp Map (unmodulated /
MATLAB) ');
xlabel (‘Down Range Cells'); yvlabel ('Cross Range Cells');
axis([1 62 0 dp_pts])
subplot(2,1,2);

240

h = contour (dpRgMapShiftMOD, Ncontours); grid; axis([1l 64 0 dp_ptsl])
$h = contour (dpRgMapShift,Ncontours); grid; axis([1 20 0 32])
title('b. Amplitude and Doppler Modulated RdA-Dp Map (Bit-True,
modulated / MATLAB) ');
xlabel ('Down Range Cells'); ylabel ('Cross Range Cells');
axis([1 62 0 dp_pts])
end

i. plothwvd.m

A I I R R AR PR L L PR R R PR R R R R R R T L kA £ £
plothwvé.m
MAJ Stig Ekestorm, Feb -00
Modified version of plothwvl.m by Stig Ekestorm, Aug -99
Original file: plothwv0O.m by SY YEO, Aug -98
This version processes the output from the LUT

Works in concert with mathostv4.m and simhwchkv4.m
T T L L L R R R R PR AT R LA T LR R R R R R R R R R b ok Rk A A

oP
o

0 0P 0 P o oP of o0

clear

global hda
global dp_pts
global rg_pts

set (0, 'defaultAxesFontSize',7)
noplot = 0;

$to load data from hardware output files
if hda==1,

load -ascii imagei.txt

load -ascii imageq.txt
end

fid fopen('para.txt','r');
tmp fscanf(fid, '%d');
nRangeCell = tmp(l);
nDopplerCell tmp(2) ;
targetExtent tmp (3) ;
fclose(fid);

%for getting the data form hardware in the right format
if hda==1,
image = reshape(image,nRangeCe11+(targetExtent—l),nDopplerCell);
image = imagei - j*imageq;
image reshape(image,nRangeCell+(targetExtent—l),nDopplerCell);
$for ASIC simulation
$image = reshape(image,nRangeCell+targetExtent,nDopplerCell); $for
FPGA 3-tap simulation
image = image';
end

7

load fAddOut

241

if (noplot == 0)

%*****************************

% Pulse Compression
%*****************************

%--- Compress the Doppler shifted signals
figure(3);

orient tall

load plot.mat
load plotMOD.mat

Ncontours = 9;

subplot (2,1,1);

%h = contour(dpyqg shift_drfm,Ncontours); grid, axis([1l 62 0 64])

h = contour (dpRgMapShiftMOD,Ncontours); grid; axis([1 62 0 dp_pts])

title('a. Amplitude and Doppler Modulated RA-Dp Map (Bit and
Architecture-True / MATLAB)');

xlabel (‘Down Range Cells'); yvlabel ('Cross Range Cells');

%$to post-process data from hardware
if hda==1,
load pc_ref
priRgMapShift
tic
pcRefMapsShift = fft(image.',62*rg pts-1)."';
for idx = l:nDopplerCell
tmp = cref.*pcRefMapShift(idx, :);
tmpl = fftshift(ifft(tmp));
priRgMapShift (idx, 1l:end-targetExtent+1l) =
tmpl (rg_pts+targetExtent-1l:end);
end
dpRgMapShift = abs(fft (priRgMapShift));
toc
end

zeros (nDopplerCell. ', rg_pts);

subplot(2,1,2);

if hda==1,
h = contour (dpRgMapShift,Ncontours) ;
grid, axis([1 62 0 dp_pts])

end :
title('b. Amplitude and Doppler Modulated RA-Dp Map (from HARDWARE
output) ') ;
xlabel ('Down Range Cells'); ylabel ('Cross Range Cells');
end
figure(3)

print -dtiff hwres

figure(4)
subplot(3,1,1);

h = mesh(dpRgMapShiftMOD); grid;

%h = mesh(dpyg shift_drfm); grid;

title('a. Amplitude/Doppler Modulated RA-Dp Map (Bit-True, modulated /

MATLAB) ') ;
xlabel ('Down Range Cells'); ylabel('Cross Range Cells'); grid

242

subplot(3,1,2);
%$to plot hardware output

if hda==1,
h = mesh(dpRgMapShift); grid;
end
title('b. Amplitude/Doppler Modulated RA-Dp Map (HARDWARE output)');
xlabel ('Down Range Cells'); ylabel ('Cross Range Cells'); grid

subplot(3,1,3);
$to plot difference between Matlab simulation and hardware output
if hda==1,

%h = mesh(dpyqg_shift_drfm/max (max (dpyq _shift_drfm))-
dpRgMapShift/max (max (dpRgMapShift))); grid;

h = mesh(dpRgMapShiftMOD-dpRgMapShift); grid; %plot the real
difference, Stig Aug-99

$h = mesh(dpyq shift_drfm-dpRgMapShift); grid; %plot the real
difference, Stig Aug-99

end
title('c. Difference'});
xlabel ('Down Range Cells'); ylabel ('Cross Range Cells'); grid

print -dtiff diffplot

$for comparison 5 Oct -99, Stig Ekestorm

$to plot MATLAB simulation output separately

figure(5)

h = mesh((dpRgMapShiftMOD/max (max (dpRgMapShiftMOD)))); grid;
$normalized

$h = mesh(dpRgMapShiftMOD); grid;

title('a. Amplitude/Doppler Modulated RA-Dp Map (Bit-True, modulated /
MATLAB) ');

xlabel ('Down Range Cells'); ylabel ('Cross Range Cells'); grid
figure(6);
$to plot hardware output separately
if hda==1,
h = mesh(dpRgMapShift); grid;
end
title('b. Amplitude/Doppler Modulated RA-Dp Map (HARDWARE output) ');
xlabel ('Down Range Cells'); ylabel ('Cross Range Cells'); grid

2. COMMON FILES IN ALL VERSIONS (VERSION 1 TO 4)

These files are used in all versions. The two first files (cosine.txt and sine.txt)
represent the look-up tables. The next three files (genLUT.m, genfixptv0.m and
genfloat.m) are used to create the look-up tables [Ref. 6]. Two Matlab functions
(dec2two.m and two2dec.m) have been developed to translate from decimal

243

representation to binary two’s complement representation and vice versa. Two extra plot-
files are also presented. The first plot-file (plot_like_NRL_image.m) has been used to
plot simulation results in a comparable way to a real ISAR image. The second plot-file
(plot_in_dB.m) can be used to examine the results in the range-Doppler map as

normalized amplitude values in dB.

a. cosine.txt

.9218750e-001
.6875000e-001
.0625000e-001
.1250000e-001
.7968750e-001
.2343750e-001
.4375000e-001
.4843750e-001
.6875000e-002
-2.4218750e-001
-4.2968750e-001
~-6.0156250e-001
~-7.5000000e-001
-8.6718750e-001
-9.4531250e-001
-9.8437500e-001
-9.8437500e-001
~-9.4531250e-001
-8.6718750e-001
-7.5000000e-001
-6.0156250e-001
-4.2968750e-001
-2.4218750e-001
.6875000e-002
.4843750e-001
.4375000e-001
.2343750e-001
.7968750e-001
.1250000e-001
.0625000e-001
.6875000e-001
.9218750e-001

i
WOy 0 W0 WO W

|
WWOWWORARULWE

244

o

W PRGOANO0OWOWOVWWOWWOJUWEko

[N T S A R Y S T T B I B B |
OFRPrWWUMJ0oWWWWOION N

]

b. sine.txt

.0000000e+000
.9531250e-001
.9062500e-001
.6250000e-001
.1875000e-001
.3593750e-001
.2968750e-001
.7656250e-001
.8437500e-001
.5312500e-001
.9062500e-001
.8125000e-001
.4062500e-001
.7656250e-001
.9687500e-001
.3750000e-002
.3750000e-002
.9687500e-001
.7656250e-001
.4062500e-001
.8125000e-001
.9062500e-001
.5312500e-001
.8437500e-001
.7656250e-001
.2968750e-001
.3593750e-001
.1875000e-001
.6250000e-001
.9062500e-001
.9531250e-001
.0000000e+000

c. genLUT.m

B LI LR PR P R R L PR TR TR R R R AR L R R R b R

genLUT.m
mfile to generate memory initialization file (cos and sin look-up)
for altera memory initialization

Created by: SY YEO, Jul -98
%%%

o@ 0P o o o o

clear

% parameters
depth = 32;
nbits 8;

1/ (2~ (nbits-1));
(1-del);

del
amp

cosine zeros (depth, 1) ;

245

for i = 0:depth-1
cosine(i+l) = amp*cos(2*pi*i/ (depth-1));
end
[i,j] = find(abs(cosine) < 4*eps);
p = isempty(i) + isempty(j);
if (p == 0)
cosine(i,j) = 0;
end
cosine_fixpt = genfixptv0 (cosine,nbits);
inv_cosine_fixpt = genfloat{cosine_fixpt,nbits);

fid = fopen('cos.mif','w');
$fidl = fopen('cos.txt', ‘'w');

fprintf(fid, '-- MAX+plus II : memory initialization file');
fprintf(fid, '‘\n');

txt = (['WIDTH = ' num2str(nbits) '‘\n']);
$fprintf (£id, 'WIDTH = 8\n');
fprintf (fid, txt);

txt = (['DEPTH = ' num2str(depth) '\n']);
$fprintf (£id, 'DEPTH = 32\n');
fprintf (fid, txt);

fprintf(fid, 'ADDRESS_RADIX = HEX\n');
fprintf (£fid, 'DATA_RADIX = HEX\n');
fprintf (£id, '\n');

fprintf(fid, 'CONTENT BEGIN\n');

tmpl = dec2hex(bin2dec(cosine_fixpt),2);

t_cosine_fixpt = cosine_fixpt';

for i = 1l:depth
tmp = dec2hex(i-1,2);
fprintf (fid, '$s\t:\t%s;\n',tmp, tmpl(i,:)"*');
$fprintf (£idl, '$s\n',t_cosine_fixpt(:,1));’
$fprintf (£idl, '$s\n',tmpl(i,:)');

end

fprintf(£fid, 'END;\n"');

fclose(£id) ;

%fclose(fidl);

disp('--Check--")
[cosine inv_cosine_fixpt]
ddcos = std(cosine-inv_cosine_fixpt);

%%%% Repeat for the sin LUT
sine = zeros(depth,l);
for i = 0:depth-1
sine(i+l) = amp*sin(2*pi*i/(depth-1));
end _
[i,j] = find(abs(sine) < 4*eps);
p = isempty (i) + isempty(j);
if (p == 0)
sine(i,j) = 0;
end
sine_fixpt = genfixptv0(sine,nbits);

246

inv_sine_£fixpt = genfloat(sine_fixpt,nbits);

fid = fopen('sin.mif','w');
%$fidl = fopen('sin.txt','w');

fprintf(fid, '-- MAX+plus II : memory initialization file');
fprintf(£id, '\n");

txt = (['WIDTH = ' num2str(nbits) '\n']l);
fprintf (£id, txt);
txt = (['DEPTH = ' num2str(depth) '\n']);

forintf (fid, txt);

fprintf (fid, 'ADDRESS_RADIX = HEX\n');
fprintf(fid, 'DATA_RADIX = HEX\n');
fprintf (£fid, '\n"');

fprintf (fid, 'CONTENT BEGIN\n');
tmpl = dec2hex(bin2dec(sine_fixpt),2);
t_sine_fixpt = sine_fixpt';
for i = 1l:depth
trap = dec2hex(i-1,2);
fprintf (£id, '$s\t:\t%s;\n',tmp, tmpl(i,:)"');
$fprintf (£fidl, '$s\n',t_sine_ fixpt(:,1));

% fprintf (£id1, '$s\n"',tmpl (i, :)"');
end

fprintf (fid, 'END;\n');

fclose(fiqd);

$fclose(£idl);

[sine inv_sine_fixpt]

disp('Std in Reconstruction Errors (cos)')
ddcos .

disp('Std in Reconstruction Errors (sin)')
ddsin = std{(sine-inv_sine_fixpt)

cosinefp = inv_cosine_£fixpt
sinefp = inv_sine_f£fixpt

save -ascii cosine.txt cosinefp
save -ascii sine.txt sinefp

figure(l);
11 = 1:length(cosinefp);
plot (11, cosinefp,1ll,cosine); grid;

$end of file

247

d. genfixptv0.m

R R R R e L b L L R L R SR AT XSS
genfixptv0.m

Fixed point and floating conversion

PROGRAM in Matlab converts from FLOATING POINT to FIX POINT

given a number of BITS (nbits) for fix point representation

Note: that the decimal numbers must be scaled to +- 1.0

function [out] = genfixpt(in,nbits):;

Created by: SY YEO, Jul -98

% AR R R R R R R R ot bk L LR TR L R R I D D A 118

ooopopo\odpopo\odP

function [out] = genfixpt(in,nbits);

del

1/{2” (nbits-1));

1}

num in(:);
% Convert to binary
len = length(num);
numl = []; numb = [];
for i = 1:1en
if (num(i) >= 0.0)
if num(i) == 1
num(i) 1 - del;
end
numl = [numl; fix(num(i)/del)];
numb [numb; dec2bin(num(i)/del,nbits)];
else
tmp = abs{num(i));
tmp = dec2bin(tmp/del,nbits);
if (bin2dec(tmp) ~= 0)
for k = 1l:length(tmp)

if (tmp(k) == '0')
tmp(k) = '1°';
else
tmp (k) = '0';
end
end
tmp = bin2dec (tmp) *del + del;
tmp = dec2bin(tmp/del,nbits);
end
numb = [numb; tmp];
end
end
out = numb;

%end of file

248

€. genfloat.m

A TR TR R R R R TR T T R L LA TR R T LT TR R R L R R R T L R R R R L
% genfloat.m

% Floating and fix point conversion

% PROGRAM in Matlab converts from FIX POINT to FLOATING POINT

% given a number of BITS (nbits) for fix point representation

% Note: that the decimal numbers must be scaled to +- 1.0

% function [out] = genfloat(in,nbits);

% Created by: SY YEO, Jul -98

I A AR R R T AL LR LR LR R R L LR L LR R P R L R R R R LR R e R LR R LR R R A LA R

function [out] = genfixpt(in,nbits);

numb = in;
del = 1/(2" (nbits-1));

[len,c] = size(numb);

num2 = [];
for i = 1l:1en
if (numb(i,1) == '1')

tmp = numb(i,:);
for i = 1l:length(tmp) % invert all bits

if (tmp(i) == '0"')
tmp(i) = '1';
else
tmp(i) = '0';
end
end

tmp = -1*(bin2dec(tmp)*del + del); % add a BINARY one!
num2 = [num2; tmpl;
else
num2
end
end
out = num2;

[num2; bin2dec(numb(i,:))*dell;

%$end of file

f. dec2two.m

P L I R LR DL DR R R R R R R R AR R R A R R A R R R]

oe

dec2two.m

This MATLAB function converts a number in decimal representation
(positive or negative) to a vector in binary 2-complement
representation. With a slight modification the output can be
presented in as a string with a ".* character separating integer and
fractional parts. The user has to specify the number to be converted
and the format for the %binary presentation (number of bits used for
the integer part and the %fractional part). A sign bit will
automatically be included in the output vector (string) .

Function call:
dec2two (dec, integerbits, fractionbits)

00 O P P O° OP OP OP OP of of JC oP

249

User inputs:

Example (1):

returned answer: 0 0 0 0 0
(returned answer: 0 0 0 0 0

Example (2):

returned answer: 1 1 1 1 1
(returned answer: 1 1 1 1 1

Created by:
MAJ Stig Ekestorm, Oct -99
Naval Postgraduate School

00 0P O P P P O O P I 0 I° P J° P J° G° dP P OO

SRR R R R R L R T R R R R R L R T T T

0 0

0 0

1 1

i1

dec - the number in decimal representation to be converted
integerbits - # of bits to represent the integer part
fractionbits - # of bits to represent the fractional part

type in the MATLAB Command Window: dec2two(2.75,8,4)

1 1 0 0O
1 1 0 0)

type in the MATLAB Command Window: dec2two(-2.75,8,4)

0 1 0 0
0 1 0 0)

BT ETLVELLLBLLLDL%3%3%%

function [out] = dec2two(dec, integerbits, fractionbits);

$binary format to be displayed
signbit=1;

the sign

$integerbits

the integer part

$fractionbits

the fractional part

%initialize output vector
aa=signbit+integerbits+fractionbits;
vector

bb=zeros (1,aa);

vector to zero

$check if the number is negative

if dec<0,
dec=dec* (-1);
positive
bb(1,1)=1;
end

%$integer part

mm=floor (dec) ;

part

for idxl1l=2:integerbits+1,

not included)
cc=2" (integerbits+1-idxl);

representation
bb(l,idxl)=£floor (mm/cc) ;

integer division
mm=rem (mm, cc) ;

division

end

250

%# of bits to represent
%# of bits to represent

$# of bits to represent

$length of output

%$initialize output

%1f negative number
%turn number into

%$set sign bit to "1"
%end if statement
$extract the integer
ginteger bits (sign bit
$binary bit

%$set each bit after
$extract reminder after

%$end for loop

$fractional part

ff=dec-floor(dec); %$extract fractional
part
for idx2=signbit+integerbits+l:aa, $fraction bits

dd=1/ (2~ (idx2- (signbit+integerbits))); $binary bit
representation

bb(l,idx2)=floor(f£/d4d); %set each bit after
integer division

ff=rem(£f£f,dd); %$extract reminder after
division
end : %end for loop

%$adjust negative value to 2-complement representation
if bb(1,1)==1, %1if negative value
for idx3=1:aa, . %$index for switching
bit values
if bb(1l,idx3)==2,
bb(1,idx3)=0;

end
if bb(1l,idx3)==0, %switch all "0O"
bb(l,idx3)=1; $to "1°
else
bb(l,idx3)=0; %and vice versa
end %end if/else statement
end %end for loop
bb(l,aa)=bb(l,aa)+1; %add "1l" to the LSB
idx4=aa; %$index for binary
addition)
while bb(l,idx4)==2, %if carry (bit-to-bit)
bb(1,idx4-1)=bb(1l,idx4-1)+1; %add "1" to next higher
bit
bb(1l,idx4)=0; %$set current bit to "0"
idx4=1idx4-1; $decrement index
(higher bit)
end , %end while loop
bb(l,1)=1;
end $end if/else statement

%return output in string format (integer and fractional parts separated

by u.u)
$out=([num2str (bb(1l,l:signbit+integerbits)), ' !
% ,num2str (bb(l,signbit+integerbits+l:aa))]};

%return output in vector format (integer and fractional parts without

separation)
out=bb;

%$end of file

251

g. two2dec.m

R L L L T ey Ly

o
t o0
s oe
O of
N o

o

o0

o

%
ec.m
This MATLAB function convert vectors in binary 2-complement
representation to numbers in decimal representation (positive and
negative). The user has to specify a vector or a set of vectors in a
matrix to be converted, and the format for the binary presentation
(number of bits used for the fractional part). The first bit is
assumed to be a sign bit for the binaryv vector.

Qs o0

Function call:
two2dec (two, fractionbits)

G0 P 0P P O° OP O I O Of o of

% User inputs:

% two - the vector/matrix of vectors in binary 2-complement
% representation to be converted to decimal number

% fractionbits - # of bits that represent the fractional part

%

% Output:

% number/set of numbers in decimal representation

%

% Created by:

% MAJ Stig Ekestorm, Nov -99

% Naval Postgraduate School

SRR R o e R R R R R R L R R R o e A L R LR
%$function call

function [out] = two2dec(two, fractionbits);

%determine the size of the matrix of vectors to be converted
[row coll=size(two);

$initialize vectors/variables used
integer=two(:,l:col-fractionbits); %integer part
fraction=two(:,col-fractionbits+l:col); $fractional part
total=[integer fraction];

[rowi colil=size(integer); %size of integer part

[rowf colf]=size(fraction); %$size of fractional part
[rowt colt]=size(total); %$size of fractional part
out=zeros (row,col/col); %output vector

%convert bit pattern representing binary 2-complement number to decimal

number
for idxl=1l:row, %$vector-by-vector

%1f positive number - convert
if integer(idxl,1)==0, %if sign bit is "0" (positive)
testi=fliplr(integer(idxl,l:coli)); %flip integer part of vector
testf=fraction(idxl,l:colf); %fractional part of vector
for idx2=l:coli-1, $integer part, bit-by-bit
if testi(l,idx2)==1, %check for ones
out (idxl, 1)=out (idx1l,1)+2~(idx2-1); %add decimal value
end $end if
end $end for

252

for idx2=1:colf, %fractional part, bit-by-bit
if testf(l,idx2)==1, %check for ones
out (idx1l,1)=out(idxl,1)+2~(-(idx2)); %add decimal value
end %$end if
end %$end for

%$if negative number - adjust and convert
else %if sign bit is "1" (negative)
for idx4=1:colt, %index for switching all bit values
if total(idxl,idx4)==0, %switch all "O0"
total (idxl,idx4)=1; %to "1°
else
total (idx1l,idx4)=0; %and vice versa
end %end if/else statement
end %$end for loop
if colt>1, %must be...
total (idx1l, colt)=total (idxl,colt)+1; %add "1" to the LSB
idx5=colt; %index for binary addition

while total (idxl,idx5)==2, %if carry (bit-to-bit)
total (idx1l, idx5-1)=total (idxl,idx5-1)+1; %add "1" to next
higher bit
total (idx1,idx5)=0; %set current bit to "0"
idx5=1idx5-1; %$decrement index (higher bit)

if idxS5==1, %if this is the last bit
total (idxl,idx5)=1; %reset sign bit to "1"
end %$end if
end %$end while
end $end if

testi=fliplr(total(idxl,l:coli)); %$flip integer part of vector
testf=total (idx1l,coli+l:coli+colf); %fractional part of vector
for idx2=1:coli-1, %$integer part, bit-by-bit

if testi(l,idx2)==1, %check for ones
out (idxl,1)=out (idxl,1)+2"(idx2-1); %add decimal value
end $end if : '
end %$end for
for idx2=1:colf, %fractional part, bit-by-bit
if testf(l,idx2)==1, %check for ones
out (idxl,1)=out (idxl,1)+2" (- (idx2)); $add decimal value
end %send if
end $end for
out (idxl,1l)=out (idxl,1)*(-1); %assign a negative value

end %$end if
end %end for

%end of file

253

h. plot_like_NRIL,_image.m

R R R L T R R R R T S N AN AN S
% plot_like_NRL_image.m

% This MATLAB script file can be used to plot image in colors similar
% to the ship case refered to at NRL homepage

% (http://radar-www.nrl.navy.mil/Areas/ISAR)

% Created by:

% MAJ Stig Ekestorm, Feb -00

% Naval Postgraduate School

R R R R R R R R R R R R R R T L R D LT AN DL AT

%load plotMOD4Shipl_64
%load plotMOD4ShipK
%$load plotMOD4VcaseKb
load plotMOD4Ship8_64
%$load plotMOD

$Shipl =
dpRgMapShiftMOD4Shipl_64(1:64,1:62)/max(max(dpRgMapShiftMOD4Shipl_64(l:
64,1:62)));

$Ship2 =
dpRgMapShiftMOD4DIS2000(1:256,1:62) /max (max (dpRgMapShi ftMODADIS2000(1:2
56,1:62))) ; '

%$Ship2 =
dpRgMapShiftMOD4ShipK(1:64,1:62) /max (max (dpRgMapShiftMOD4ShipK(1:64,1:6
2)));

%$Ship2 =
dpRgMapShiftMOD4VcaseKb(1l:64,1:62) /max (max (dpRgMapShiftMOD4VcaseKb(1:64
:1:62)));

Ship2 = dpRgMapShiftMOD4Ship8_64(1:64-

1,1:62) /max(max (dpRgMapShiftMOD4Ship8_64(1:64-1,1:62)));

colordef white
figure(64)

colordef black
colormap (hot (100))
$contour (Ship2(:,:),20)
contour (Ship2(:,:),100)
title('8-Tapline Ship Target - 64 Radar Pulses')
xlabel ('Range')

ylabel ('Doppler')

$axis ([0 10 24 38}1)
axis square

%$end of file

254

i. plot_in_dB.m

EEEE TR R EE R TR L L LR R R R R R LR R A R R R LR LR R R R L R R Rk R R R R R R
% plot_in _dB.m

% This script file will help you to plot results in dB.

% 1lst run plot_like NRL_image.m, then run this file with the

$ appropriate input matrix specified in the mesh-command line.

% Created by:

% LTC Stig Ekestorm, Apr -00

% Naval Postgraduate School

I L AR IR AR TR P T T TR LR R R R R R L R R R LR R R R R R R R R L R R A R R]

colordef white
colormap('default')

figure(l)

subplot(2,1,1)

mesh(20*1ogl0(Ship2)) %convert to normalized voltage to dB
axis([0 62 0 64 -100 01]) v

title('8-Tapline Ship Target - 64 Radar Pulses')

xlabel ('Range') :

ylabel ('Doppler ‘)

zlabel ('Normalized Amplitude [dB]')

view(0,0) $view along the range axis
subplot(2,1,2)
mesh(20*1ogl0(Ship2)) . %convert to normalized voltage to dB

axis ([0 62 0 64 -100 01])

%title('8-Tapline Ship Target - 64 Radar Pulses')
xlabel ('Range’)

ylabel ('Doppler')

zlabel ('Normalized Amplitude [dB]')
view(90,0) gview along the Doppler axis

%$end of file

255

3. GENERATING PARAMETERS FOR MULTIPLE

SCATTERERS PER RANGE-GATE

Two examples of extract files are presented. The first one for the “V”-case and

the other for the ship simulation case. Both are discussed in the end of Chapter IV.

a. extract_para_v4_Vcase.m

oe

CEEE AR R R R R R R R R R R R R L LR R T R E RS T TR TR
extract_phase_v4_Vcase.m
To extract Phase and Magnitude information to the DIS chip
Print modified para.txt file
Created by:
MAJ Stig Ekestorm, Feb -00
Naval Postgraduate School
B R R R e R E R R R R R R LR LR L R TR R TR T TR T T S S T T)

oC @ o of

o0 P 0P of

clear

$parameters from mathostv2.m

rg_pts=62; %$# of range-bins

dp_pts=64; %# of Doppler bins (same as number of radar
pulses)

$dp_pts=128; %% of Doppler bins (same as number of radar
pulses) '

$dp_pts=256; %# of Doppler bins (same as number of radar
pulses)

%$dp_pts=512; $# of Doppler bins (same as number of radar
pulses)

$dp_pts=1024; %$# of Doppler bins (same as number of radar
pulses)

$dp_pts=4096; $# of Doppler bins (same as number of radar
pulses)

bw = 100e6;

pwc = 1/(1.25*%bw); scompressed pulsewidth

pw =0.5e-6;

prf = 2e3; $PRF = 2 kHz

pri = 1/prf; %$PRI = 0.5 msec

mu = 2*pi*bw/pw;

fs = 1.25*bw;

Ts = 1/fs;

snr = 0;

nbitsdop = 5; $# of bits used for precision of the Doppler
phase

p = 2*pi/(2”nbitsdop); %$qguant factor

256

$additional parameters

dopplerbin=prf/dp_pts;

N=dp-pts;

NP=2*N-1; $number of points for the fft

NP=N;

tstop=pri*dp_pts; %$32ms for 64 radar pulses (0.5ms * 64 radar
pulses)

ti=linspace(0, tstop,N);

numtaps=16;

numfreg={1 1 111121111122211]; %# of Doppler frequencies
in each range-bin
freg=zeros (numtaps, dp_pts) ;
freq(l,1:1)=[32.25];
freq(2,1:2)=[5 63.5];
freq(3,1:2)=[-30.25 94.75];
freq(4,1:2)=[-61.5 126];
freg(5,1:1)=[-92.751;
freq(6,1:1)=[-124];
zeropad=zeros (10,dp_pts) ;
freg=[zeropad; freq];

for idxl = l:numtaps
for idx2 = 1l:dp_pts

if freg(idxl,idx2) == 0
%$do nothing
else
freq(idxl,idx2) = freqg(idxl,idx2) + 1000;
end '
end

end

for idxl = 1:10
freqg(idxl,1) = idx1*10-10;
end

AA=zeros (numtaps, dp_pts) ;
$AA(1l,1:1)=[1eb];
$AA(2,1:2)=[1leb6 leb];

)
$AA(3,1:2)={1leb6 leb];
%$AA(4,1:2)=[1le6 leb];
$AA(5,1:1)=[1eb];

$ARA(6,1:1)=[1eb];
AA(1,1:1)=[1];
AA(2,1:2)=[2 2];
AA(3,1:2)=[4 4];
AA(4,1:2)=[2 8];
AA(5,1:1)=[4];
AA(6,1:1)=[8];
zeropad=zeros (10,dp_pts) ;
AA=[zeropad;AA];

targetSum = zeros (numtaps, dp_pts) ;
for idxl = 1l:numtaps

257

target = zeros(dp_pts,length(ti));

for idx2 = l:numfreqg(idxl) %Doppler frequencies
for idx3 = l:length(ti) %create each signal seperately
fi = rand(1)*0.1; %$random initial phase shift
Starget (idx2, idx3) = l*exp(-j*2*pi*freq(idxl,idx2) *ti (1, idx3)
+ fi);

target (idx2,idx3) = AA(idx1l,idx2) *exp(-
j*2*pi*freq(idxl, idx2) *ti (1,idx3) + fi);
end
end
for idx4 = l:numfreqg(idxl) %create the combined
signal for that range gate
targetSum(idxl, :) = targetSum(idxl,:) + target (idx4,:);
end
end

$amplitude values $use manual gain values since we ‘can
only do 1, 2, 4, or 8

$gain = [1 2 2 2 1 17;

%gain = input('Enter gain value for each range-bin {(enter values as a
row vector): ');

%gain=[1 11 2 4 2 1 1812 ¢ 44488844211281412271
1}

%gain=(4 4444444
4];

¥gain=[2 2 2 4 4 2 2 2 8 2 2 4 4 4 4 4 4 4 4 4222282424402
2];

%gain=(4 2 2 2 4 2 2 2 8 4 2 4 2 2 44 444 444228442444
2];

amp = abs{targetSum);
ampmax = max(amp) ;
ampmaxmax = max (ampmax) ;
for il = l:numtaps
for i2 = 1:dp_pts
if amp(il,i2) /ampmaxmax > 0.8
ampg(il,i2) = 8;
end
if amp(il,i2)/ampmaxmax < 0.8
ampg(il,i2) = 4;
end
if amp(il,i2) /ampmaxmax < 0.4
ampg(il,i2) = 2;
end
if amp(il,i2) /ampmaxmax < 0.2
ampg(il,i2) = 1;
end
end
end

gain = ampq;
$phase-increment values
vphasel=zeros (numtaps, dp_pts);

258

vphase2=zeros (numtaps, dp_pts) ;

vphase3=zeros (numtaps,dp_pts);

for idx5 = 1:numtaps
vphasel (idx5, :) =angle(targetSum(idx5,:));
vphase2=vphasel*275/(2*pi);
vphase3=round (mod (vphase2,275));

end

phaseinc=zeros (numtaps, dp_pts) ;
for idx6 = l:numtaps
for idx7 = 1l:dp_pts

if idx7==1,
phaseinc (idx6, idx7)=phaseinc (idx6,idx7) +vphase2 (idx6,idx7) ;
else

phaseinc (idx6, idx7)=phaseinc(idx6,idx7-1)+vphase2 (idx6, idx7-
1) -vphase2 (idx6,idx7);
end
end
end

for idx8 = 1l:dp_pts
for idx9 = l:numtaps
phasecoeff (idx9, idx8)=2*fix (mod (phaseinc (idx9,idx8),32)/2); %4-
bit phase modulation coefficient
end
end

$write modulation parameters to text file

f4 = fopen('paraMULTIg4Vcase3.txt','w'});
$f4 = fopen('paraMULTIqg4Ship2_1024.txt','w'};
%f4 = fopen('paraMULTIg4Shipl.txt','w');

fprintf(£4, '$d\r\n',rg_pts); %# of range-bins
fprintf (£4, '$d\r\n',dp_pts); %# of Doppler bins
fprintf (£4, '$d\r\n',numtaps) ; %# of tap lines (target
extent)

for aa=1l:dp_pts
for bb=1:numtaps
fprintf (£4, '3d\r\n',gain(bb,aa));
end
end

% adjustment to correct multiplication factors for the amplitude (gain)

value
$for i = l:length(gain)
$switch gain(l,i)
$case {1}
% gain(1,i)=1; %no shift, multiplication by 1, hardware bit "00"

]

$case {2}
$ gain(1,1i)=2; %shift by 1, multiplication by 2, hardware bit

o
" 01 "
%$case {3}
% gain(1,i)=4; %shift by 2, multiplication by 4, hardware bit

o

IIlOll

259

%case {4}
% gain(l,i)=8; &shift by 3, multiplication by 8, hardware bit
!lllu

%end

Ffprintf (f1, '$d\r\n',gain(l,1i)); %gainl, gain2, ..., gainN
$fprintf (£2, '3d\r\n',gain(1,1i)); %gainl, gain2, ..., gainN
Sfprintf (£3, *$d\r\n',gain(l,i)); %gainl, gain2, ..., gainN
$fprintf (£4, '$d\r\n',gain(l,1)); %gainl, gain2, ..., gainN

%end

for aa=1l:dp_pts
for bb=1l:numtaps
fprintf (£f4, '%d\r\n',phasecoeff(bb,aa));
end
end

fclose(£f4);

%$end of file

b. extract_para_v4_Ship64.m

R R R R R R R R R R R R R R R R R R R L R R R T R R T)
% extract_para_v4_Ship64.m
% To extract Phase and Magnitude information of the Ship test case
% to be used for Matlab and T-Spice simulation of the DIS chip
Prints modified para.txt file
Created by:
MAJ Stig Ekestorm, Feb -00
Naval Postgraduate School

CER R E R R R R R R R R R R R R R R R R R R R L R R R R R R R R R R R R L R R R ok R e R]

0P ® P o of

$parameters from mathostv2.m

rg_pts=62; %# of range-bins

dp_pts=64; %# of Doppler bins (same as number of radar
pulses)

$dp_pts=128; %# of Doppler bins (same as number of radar
pulses)

%dp_pts=256; %# of Doppler bins (same as number of radar
pulses)

%dp_pts=512; %# of Doppler bins (same as number of radar
pulses)

$dp_pts=1024; %# of Doppler bins (same as number of radar
pulses)

%dp_pts=4096; %# of Doppler bins (same as number of radar
pulses)

bw = 100e6;

pwc = 1/(1.25*%bw) ; $compressed pulsewidth

pw =0.5e-6;

prf = 2e3; $PRF = 2 kHz

pri = 1/prf; $PRI = 0.5 msec

mu = 2*pi*bw/pw;

260

fs 1.25*%bw;

Ts 1/fs;

snr = 0;

nbitsdop = 5; %# of bits used for precision of the Doppler
phase

p = 2*pi/(2”nbitsdop); %quant factor

$Additional parameters

dopplerbin=prf/dp_pts;

N=dp_pts; %# of Doppler bins

NP=2*N-1; snumber of points for the fft

NP=N; $change variable

tstop=pri*dp_pts; %$32ms for 64 radar pulses (0.5ms * 64 radar
pulses)

ti=linspace(0,tstop,N);

$false target parameters

numtaps=32; %# of taps used
$Doppler freguencies per range-bin

freqg=zeros(32,dp_pts):

freg(l,1:2)= [15 45];
freq(2,1:3)= [17 47 721;
freg(3,1:3)= [49 74 100];

freg(4,1:4)= [51 77 103 1301;
freg(5,1:6)= [79 105 132 160 195 231];

freq(6,1:4)= [80 108 134 162]:

freqg(7,1:2)= [111 137]);

freq(8,1:3)= [113 139 166];

freqg(9,1:16)= [141 168 199 230 260 291 321 351 379 409
440 471 505 536 571 6011;

freq(10,1:4)= [142 169 201 232];

freq(ll,1:4)= [171 204 234 262];

freg(12,1:11)= [173 206 236 264 294 323 353 381 411
442 4751;

freq(13,1:8)= [: 208 237 265 295 324 354 382 412];
freq(14,1:8)= [212 238 266 296 325 355 383 413];
freq(15,1:8)= [241 267 297 326 356 384 414
4457 ;

freqg(l6,1:10)= [242 268 298 327 357 385 415
446 481 515];

freq(17,1:11)= [269 299 328 358 386 416
447 482 516 546 582];

freq(18,1:9)= [270 300 329 359 387 417
448 483 518];

freqg(19,1:7)= [301 329 360 389 418
449 484];

freq(20,1:6)= | 302 330 361 390 419
450]; ,

freq(21,1:4)= [331 362 391 420];
freq(22,1:3)= [332 363 392];
freqg(23,1:3)= [364 393 422];

261

freq(24,1:4)= | 365 394 423
454]; '

freg(25,1:16)= [395 425
455 491 526 556 590 620 651 681 714 741 776 808 840 869];
freq(26,1:3)= [396 426
456];

freq(27,1:6)= [427
457 493 528 558 592};

freq(28,1:3)= [428
458 494];

freqg(29,1:3)= [
459 495 530];
freq(30,1:4)= |
460 496 531 560];
freq(31,1:2)= [
497 532];
freqg(32,1:2)= [
498 533];

numfreqgq=[(2 3 3 4 6 4 2 3 16 4 4 11 8 8 810 119 7 6 4 3 3 416 3 6 3 3
4 2 2]; %# of Doppler frequencies in each range-bin

%amplitude of each scatterer

A = ones (numtaps,dp_pts); %all amplitudes set to "1" for
simplification, representing equal strong scatterers

%create a combined signal per range gate
targetSum = zeros (numtaps,dp_pts);

for idxl = 1l:numtaps
target = zeros(dp_pts,length(ti));

for idx2 = l:numfreqg(idxl) %Doppler freguencies
for idx3 = 1l:length(ti) %$create each signal seperately
fi = rand(1)*0.1; $random initial phase shift

target (idx2,idx3) = A(idxl,idx2)*exp(-
j*2*pi*freq(idxl,idx2)*ti(1,idx3) + £i);

end
end
for idx4 = 1l:numfreqg(idxl) %create the combined signal for
that range gate
targetSum(idxl, :) = targetSum(idxl,:) + target(idx4,:);
end

end

$extract gain (amplitude) coefficients

amp = abs(targetSum); %extract magnetude

ampmax = max(amp) ; gfind max

ampmaxmax = max(ampmax) ; %find max

for il = 1l:numtaps $hard limit magnetude using 4
levels

for i2 = 1l:dp_pts
if amp(il,i2)/ampmaxmax > 0.8
ampg(il,i2) = 8;

262

end
if amp(il,i2)/ampmaxmax < 0.8

ampg(il,i2) = 4;
end
if amp(il,i2) /ampmaxmax < 0.4
ampg(il,i2) = 2;
end
if amp(il,i2)/ampmaxmax < 0.2
ampg(il, i2) = 1;
end
end
end
gain = ampqg; $assign quantized magnetude values

to gain-coefficient matrix

%$extract phase angle

vphasel=zeros (numtaps,dp_pts); $initialize

vphase2=zeros (numtaps,dp_pts); %$initialize

vphase3=zeros (numtaps,dp_pts) ; $initialize

for idx5 = l:numtaps %$for each range gate,
vphasel (idx5, :) =angle (targetSum(idx5, :)); %extract phase angle

vphase2=vphasel*2°5/(2*pi); %adjust value to be
between 0 and 32 (dec)

vphase3=round (mod (vphase2, 2"75)) ;
5-bit binary representation

end

$round and mod32 to get a

%$extract phase coefficients

phaseinc=zeros (numtaps, dp_pts) ; $initialize

for idx6 = 1l:numtaps gturn values into phase-increments
for idx7 = 1l:dp_pts
if idx7==1,
phaseinc(ide,idx7)=phaseinc(idx6,idx7)+vphase2(idx6,idx7);
else

phaseinc(idx6,idx7)=phaseinc(idx6,idx7—1)+vphase2(idx6,idx7—
1) -vphase2 (idx6,idx7) ;
end
end
end

for idx8 = l:dp_pts %adjust values to represent the
number of bits used in hardware
for idx9 = l:numtaps
phasecoeff(ide,idx8)=2*fix(mod(phaseinc(idx9,idx8),32)/2); %4-
bit phase modulation coefficient
end
end

swrite modulation parameters of the false target to text file

$f4 = fopen('paraMULTIg4Vcasel.txt',' YY)
f4 = fopen(‘paraMULTIq4Ship3_64.txt',’w');
$f4 = fopen('paraMULTIg4Shipl.txt', 'w');

263

fprintf(f4, '3d\r\n',rg_pts); %# of range-bins

fprintf (f4, '3d\r\n',dp_pts); %# of Doppler bins
fprintf(£4, '$d\r\n',numtaps) ; %# of taplines (target
extent)

for aa=1:dp_pts ‘ %gain modulation coefficients

for bb=1l:numtaps
fprintf (£4, '$d\r\n',gain(bb,aa));
end
end
for aa=1:dp_pts $phase modulation
coefficients
for bb=1l:numtaps
fprintf (f4, '$d\r\n',phasecoeff (bb,aa));
end
end
fclose(f4):;

%$end of file

4. CREATING TEST VECTORS IN T-SPICE

Creating a long test vector in binary format can be tedious if it must be done
manually and the probability of making mistakes cannot be ignored. These three files
presented here have been used for transforming data, parameters, and control signals,
used for Matlab simulations, into T-Spice format including appropriate T-Spice
commands in a computer précess. The outputs from these files are in text-file format,

which can easily be added together for a complete T-Spice input file.

a. convert2binary_rawint.m

oe

EE R R R e R e R R R L R e R R R E
convert2binary_rawint.m

oP

% To convert input values to T-Spice input vector format

% to be used for T-Spice simulation of the DIS chip.

% Prints modified DRFM-phase data as binary test vector.

% Created by:

% MAJ Stig Ekestorm, Feb -00

% Naval Postgraduate School

R R R L R R LR P R R R L LR EE R R L R R R E R bRt R L T L s

264

set = 1; $what set of radar pulses

norp = 1; $number of radar pulses in
one set
norpl = 1; gsnumber of radar pulses in
one set

$nDopplerCell=8;
$nRangeCell=10;
nDopplerCell=64;
nRangeCell=62;
pw=400;
numzero=31;

drfm=ones (nDopplerCell,nRangeCell) ;

fid = fopen('rawintTspice.txt', 'r'); %open rawint.txt to be read
for j = l:nDopplerCell
for k = 1l:nRangeCell-1
drfm(j,k) = fscanf(fid, '%d',1);
comma = fscanf(fid, '%c',1);
end
drfm(j,nRangeCell) = fscanf(£fid, '%d',1);
end
fclose(£fid);

f1 = fopen('drfm_binl.txt',‘'w'); %DRFM-phase data in bimary,
intermediate file
for j = 1l:nDopplerCell
$fprintf (£1, '\r\n');
$fprintf(fl, '$s%d', 'Radar Pulse: ',Jj);:
$fprintf (fl, '\r\n');
for k = 1:nRangeCell
drfm_bin = dec2two(drfm(j,k),6,0);
fprintf(£1,' %4',drfm bin(1,3:7));
fprintf (£1, '\r\n');

end
end
fclose(fl);
drfm2=zeros (nDopplerCell*nRangeCell,5);
fid = fopen('drfm binl.txt','r'); %
for j = 1l:nDopplerCell*nRangeCell

for k = 1:4

drfm2(j,k) = fscanf(fid,'%d',1});

end

drfm2(3,5) = fscanf(fid, '%d',1);
end

fclose(£id);

drfm3=drfm2"';

f2 = fopen('drfm bin2.txt','w'); $DRFM-phase data in binary

f3 = fopen('drfm bin3.txt','w'); %DRFM-phase data in binary, T-Spice
format

for j = 1:5

for k = 1:nDopplerCell*nRangeCell

265

if j::l & k==1,

fprintf(£3, '%s', 'VinPhase4 Phased Gnd bit ({");
end
if j==2 & k==1,

fprintf(£3, '%s', 'VinPhase3 Phase3 Gnd bit ({");
end ’
if j==3 & k==1,

fprintf (£3, '%s', 'VinPhase2 Phase2 Gnd bit ({");
end
if j==4 & k==1,

fprintf (£3, '$s', 'VinPhasel Phasel Gnd bit {({");
end
if j==5 & k==1,

fprintf (£3, '%s', 'VinPhase0 Phasel Gnd bit ({");
end

drfm_bin = drfm3(j,k);

fprintf (£2, '%d',drfm_bin);

fprintf (£3, '%d4d',drfm_bin);
end
fprintf(£3, '%s','} on=5.0 0ff=0.0 pw=',num2str(pw), 'n)"');
fprintf (£2, '\r\n'); '
fprintf (£3, '\r\n');

end
fclose(f2);
fclose(£3);
drfm4 = [];
zeropadstart = zeros(5,7); %1 for sync clear, 6 for loading gain and
phase mudulation coefficients
zeropad = zeros(5,numzero); %31 for reading out results between radar
pulses
for k = 1:nDopplerCell

if k==1,

drfm4 = [drfm4, zeropadstart,drfm3(1:5,1:nRangeCell)];

else
drfm4 = [drfm4, zeropad,drfm3(1:5, (k-

1) *nRangeCell+1l:k*nRangeCell)];

end

end

drfmd4d = [drfm4,zeropad];

f4

= fopen('converted _rawint_1.txt','w'); %DRFM-phase data in binary,

padded with 31 col's of zeros after every radar pulse, T-Spice format

start = (1+6)+(set-1)*norpl*(62+31) + 1; %start bit of the set

if set == $1lst set (special case)
start = 1; $start bit is then the 1lst

bit

end

stop = (start-1l) + norp*(62+31); %stop bit of the set

if start == $1lst set (special case)
stop = (1+6) + norp*(62+31); %7 bits for sync clear and

load, then 3 radar pulses (3*(62+31))

end

for j = 1:5

266

for k = start:stop %from start bit to stop bit
%for k = l:length(drfm4)
%length(zeropadstart)+nDopplerCell*(nRangeCell+length(zeropad))

if j==1 & k==start,

fprintf(f4, '%s', 'VinPhase4 Phased Gnd bit ({");
if k>1
fprintf (£4, '%s', '0000000"');
end
end
if j==2 & k==start,
fprintf(f4, '%s', 'VvinPhase3 Phase3 Gnd bit ({");
if k>1
fprintf(£f4, *%s', '0000000');
end
end
if j==3 & k==gtart,
fprintf (£4, '%s', 'VinPhase2 Phase2 Gnd bit ({");
if k>1
fprintf(£4, '%s', '0000000");
end
end
if j==4 & k==start,
fprintf (£f4, '%s', 'VinPhasel Phasel Gnd bit ({");
if k>1
fprintf (£4, '%s', '0000000");
end
end
if j==5 & k==start,
fprintf (£4, '%s', 'VinPhase0 Phasel Gnd bit ({");
if k>1
fprintf (£f4, '%s', '0000000"');
end
end

drfm _bin = drfmd (j,k);
fprintf(£f4, '$4',drfm_bin);

end)

fprintf(£4, '%s','} on=5.0 off=0.0 pw=',num2str(pw), 'n)');
fprintf (f4, '\r\n');

end

fprintf(f4, '%s','*');

fprintf (£4, '\r\n');

fclose(f4);

save converted_rawint drfm4

gend of file

b. convert2binary_para.m

o0
oe

PR R R R R R R R R R R R R R R LR R A R R L L A R S R L R P A L R e R R R T R o bk]
convertl2binary_para.m '

To convert input values to T-Spice input vector format

to be used for T-Spice simulation of the DIS chip.

Prints modified gain and phase modulation parameter data as binary

P P 0 o of

267

test vector.

Created by:
MAJ Stig Ekestorm, Feb -00
Naval Postgraduate School

P oP @ oo

$53LTLLLLBITLILIBLLILITLILTLTLBLTLLLLHLDLS

VP00V00V0D000VQC0000 000

set = 1;
norp = 1;
in the set
norpl = 1;

in the set

$simulation parameters
pw=400;

pulse in T-Spice

pbit=4;

Phase Modulation Coefficient

$extract values - select input file
%$fid = fopen('para.txt',6'r');

%$fid = fopen('paraMULTI.txt', 'r');
read

$fid = fopen('paraMULTIgS.txt','r'):
read .

$fid = fopen{'paraMULTIg4.txt',K6 'r');
read

fid = fopen('paraMULTIg4Ship3_64n.txt','r’
paraMULTIg4ShipXXX.txt to be read

%$extract scaling parameters
for j = 1:3
if j==1,
nRangeCell = fscanf (fid, '%d',1);
radar pulse, range-bins
end
if j==2,

nDopplerCell fscanf (fid, '%d',1);

fl

bins
end
if §==3,
targetExtent
extent
end
end

fscanf (fid, '%d',1);

%initialize matrices
gain=zeros (targetExtent, 1l);
phase=zeros (nDopplerCell, targetExtent) ;

$extract gain modulation values
for j = l:nDopplexCell
for k = l:targetExtent
gain(j, k) = fscanf (fid, '%d',1);:
end
end

268

525555232 LH2IBIBLITLTLILEBLS

%what set of radar pulses
g$number of radar pulses used

$number of radar pulses used

$pulsewidth of simulation

%# of bits used to represent

%open para.txt to be read
$open paraMULTI.txt to be

%open paraMULTIQS.txt to be

%open paraMULTIg4.txt to be

) sopen

%# of DRFM-phase samples per

%# of radar pulses, Doppler

$# of Tapline used, target

$extraxt phase modulation values
for j = l:nDopplerCell
for k = l:targetExtent
phase(j,k) = fscanf (fid,'%d',1);
end
end
fclose(fid);

$convert gain modulation coefficients
%adjustment to correct multiplication factors for the amplitude (gain)
value
for j = l:nDopplerCell
for k = l:targetExtent
switch gain(j,k)

case {1}
gain(j,k)=0; $no shift, multiplication by 1, hardware bit
HOO"
case {2}
gain(j,k)=1; $shift by 1, multiplication by 2, hardware bit
nOl n
case {4}
gain(j,k)=2; %shift by 2, multiplication by 4, hardware bit
ulOu
case {8}
gain(j,k)=3; %shift by 3, multiplication by 8, hardware bit
ulln
end
end
end
f1 = fopen('para_gain_binl.txt','w'}; %

for j = l:nDopplerCell
for k = l:targetExtent
gain_bin = dec2two(gain(j.,k),2,0);
fprintf£(£f1,' %d',gain_bin(1,2:3));
" fprintf(£f1, ‘\r\n');

end
end
fclose(fl);
gain2=zeros (nDopplerCell*targetExtent, 2);
fid = fopen('para_gain _binl.txt','r'); %
for j = l:nDopplerCell*targetExtent
for k = 1:2
gain2(j,k) = £scanf(fid,'%d',1);
end
end
fclose(fid);

gain2MOD=£fliplr (gain2);
gain3=gain2MOD';

£2 = fopen('para_gain_bin2.txt','w'); %
for j = 1:2
for k = l:nDopplerCell*targetExtent
gain_bin = gain3(j.,k);

269

fprintf (£2, '%d',gain_bin);

end
fprintf(£2, ‘\r\n');
end
fclose(£2);
f3 = fopen('vara_gain_bin3.txt','w'); %in format for Toplevel input
file

gaind = zeros(2,nDopplerCell*32);
[row coll=size(gain3(1:2,1:nDopplerCell*targetExtent)) ;

for m = 1:nDopplerCell
for j = l:targetExtent

for k = 1:2
if m==1,
gaind (k,3j) = gain3(k,j);
else
gaind (k,j+(m-1)*32) = gain3(k,j+(m-1)*targetExtent) ;
end
end
end

end
gainS5=reshape (gain4, 8*pbit, 2*nDopplerCell);

for j = 1:8*pbit
for k = 1:2*nDopplerCell
fprintf (£3, '%d',gain5(j,k)) ;
end
fprintf (£3, '\r\n');
end
fclose(£3);

$convert phase modulation coefficients
f4 = fopen('para_phase_binl.txt', 'w'); %
for j = l:nDopplerCell
for k = 1l:targetExtent
phase_bin = dec2two(phase(j,k),5,0);
fprintf(f4,' %d',phase_bin(l,2:pbit+1));
fprintf(£4, '‘\r\n');
end
end
fclose(f4);

phase2=zeros (nDopplerCell*targetExtent,pbit);
fid = fopen('para_phase_binl.txt','r'); %
for j = l:nDopplerCell*targetExtent

for k = l:pbit

phase2(j,k) = fscanf(fid, '%d',1);

end
end
fclose(£fid);

phase2MOD=fliplr (phase2);
phase3=phase2MOD' ;

270

£f5 = fopen('para_phase_bin2.txt','w'); %
for j = 1l:pbit
for k = l:nDopplerCell*targetExtent
phase_bin = phase3(j,k);
fprintf (£5, '%d4',phase_bin) ;
end
fprintf (£5, '\r\n"');
end
fclose(£5);

f6 = fopen('para_phase_bin3.txt','w'); %in format for Toplevel input
file

phased4 = zeros(pbit,nDopplerCell*32);

[row col]=size(phase3 (1:pbit,1l:nDopplerCell*targetExtent)):

for m = 1:nDopplerCell
for j = l:targetExtent
for k = l:pbit

if m==1,
phased (k,j) = phase3(k,j):

else
phase4 (k,j+(m-1)*32) = phase3 (k,j+(m-1) *targetExtent);

end

end
end
end

phaseS5=reshape (phase4, 8*pbit, 4*nDopplerCell) ;

for j = 1:8*pbit
for k = 1:4*nDopplerCell
fprintf(£6, '$d' ,phase5(j,k));
end
fprintf (£6, '\r\n');
end
fclose(£6);

¢make one matrix of Gain and Phase Modulation Coefficients

phasegain = [];

zeropadstart = zeros(32,1); %1 for sync clear

zeropad = zeros(32,nRangeCell+31-6); %62 for processing DRFM-phase
data, (31-6) for reading out values and loading new gain and phase
modulation coefficients

zeropadend = zeros(32,nRangeCell+31); %62+31 for the last radar pulse
and final readout

start = set* (norpl-1); gstart radar pulse of the set
$start = set*norp + 1; %start radar pulse of the set
gstart = (1+6)+(set-1)*norp*(62+31) + 1; %$start radar pulse of the set
if set == 1 %1st set (special case)

start = 1; %$start radar pulse is then
the 1st radar pulse
end
stop = set*{norpl-1) + (norp-1}; %stop radar pulse of the set
$stop = set*norp + norp; %stop radar pulse of the set

271

if start == 1 %lst set (special case)

stop = norp; %just the number of radar
pulses
end
¥stop = (start-1) + norp*(62+31); %stop radar pulse of the set
$if start == %lst set (special case)
% stop = (1+6) + norp*(62+31); %
$end

for k = start:stop
%for k = l:nDopplerCell
if k==start,
%1if k==1,
phasegain =
[phasegain,zeropadstart,phaseS(1:8*pbit,l:4),gain5(1:8*pbit,1:2)];
else
phasegain = [phasegain, zeropad,phase5 (1:8*pbit, (k-
1)*4+1:k*4),gain5(1:8*pbit, (k~1)*2+1:k*2)];
end
end
phasegain = [phasegain, zeropadend];

£7 = fopen('converted_para_l.txt', 'w'); %gain and phase modulation
coefficients in binary, padded zeros during every radar pulse and time
for readout, T-Spice format
for j = 1:8*pbit
for k = 1l:length(phasegain)
if j==1 & k==1,

fprintf (£7, '%s', 'VinBus0 Bus0 Gnd bit ({");
end ’
if j==2 & k==1,

fporintf(£7, '%s', 'VinBusl Busl Gnd bit ({");
end
if j==3 & k==1,

fprintf (£7, '$s', 'VinBus2 Bus2 Gnd bit ({");
end
i1f j==4 & k==1,

fprintf(£f7, "%$s', 'VinBus3 Bus3 Gnd bit ({");
end
if j==5 & k==1,

fprintf(£7, '%$s', 'VinBus4 Bus4 Gnd bit ({");
end
if j==6 & k==1,

fprintf(£7, '%$s', 'VinBus5 Bus5 Gnd bit ({*);
end
if j==7 & k==1,

fprintf (£7, '%s', 'VinBusé Busé Gnd bit {({"):
end
if j==8 & k==1,

fprintf (£7, '%$s', 'VinBus7 Bus7 Gnd bit ({");
end
if j==9 & k==1,

fprintf (£7, '$s', 'VinBus8 Bus8 Gnd bit ({');
end
if j==10 & k==1,

fprintf (£7, '%s', 'VinBus9 Bus9 Gnd bit ({");

272

end
if j==11 & k==1,

fprintf(£f7, '$s', 'VinBus10 Busl0 Gnd bit ({');
end
if j==12 & k==1,

fprintf (f7, '%s', 'VinBusll Busll Gnd bit ({');
end
if j==13 & k==1,

fprintf(£7, '%$s', 'VinBusl2 Busl2 Gnd bit ({");
end ’
if j==14 & k==1,

‘fprintf (£7, '$s', 'VinBusl3 Busl3 Gnd bit ({");
end
if j==15 & k==1,

fprintf (£f7, '%s', 'VinBusl4 Busl4 Gnd bit ({"):
end
if j==16 & k==1,

fprintf (£7, '$s', 'VinBusl5 Busl5 Gnd bit ({");
end
if j==17 & k==1,

forintf(£7, '$s', 'VinBuslé Buslé Gnd bit ({"'):
end
if j==18 & k==1,

fprintf(£7, '%s', 'VinBusl7 Busl7 Gnd bit ({");
end
if 3==19 & k==1,

fprintf(£7, '$s', 'VinBusl8 Busl8 Gnd bit ({');
end
if j==20 & k==1,

fprintf(£7, '%s', 'VinBusl9 Busl9 Gnd bit ({");
end
if j==21 & k==1,

fprintf(£7, '%s', 'VinBus20 Bus20 Gnd bit ({*):
end
if j==22 & k==1,

fprintf(£7, '$s', 'VinBus2l Bus2l Gnd bit ({'):
end .
if j==23 & k==1,

fprintf (£7, '$s', 'VinBus22 Bus22 Gnd bit ({"):
end '
if j==24 & k==1,

fprintf (£7, '%s', 'VinBus23 Bus23 Gnd bit ({"):
end
if j==25 & k==1,

fprintf (£7, '%s', 'VinBus24 Bus24 Gnd bit ({");
end
if j==26 & k==1,

fprintf (£7, '%s', 'VinBus25 Bus25 Gnd bit ({"):
end
if §==27 & k==1,

fprintf (£7, '%s', 'VinBus26 Bus26 Gnd bit ({"):
end
if j==28 & k==1,

fprintf (£7, '$s', 'VinBus27 Bus27 Gnd bit ({');
end
if §==29 & k==1,

273

fprintf(£7,'%s','VinBus28 Bus28 Gnd bit ({');

end 3
if j==30 & k==1,

fprintf£(£7, '%s', 'VinBus29 Bus29 Gnd bit ({'):
end
if j==31 & k==1,

fprintf (£7, '%s*, 'VinBus30 Bus30 Gnd bit ({"):
end
if j==32 & k==1,

fprintf£(£7, '$s', 'VinBus31 Bus3l Gnd bit ({"):
end

phasegain_bin = phasegain(j,k);
fprintf (£7, '3d',phasegain_bin);
end
fprintf (£7, '%s', '} on=5.0 off=0.0 pw=',num2str(pw), 'n)');
fprintf(£7, '\r\n');
end
fporintf(£7, '$s','*');
fprintf (£7, '\r\n');
fclose(£7);

%$end of file

C. convert2binary_control.m

R R R R R R R R R R R e R R R R R R R R R R L LR L R L e T
% convertlbinary_control.m

% To convert input values to T-Spice input vector format

% to be used for T-Spice simulation of the DIS chip.

% Prints chip control signals as binary test vector.

% Created by:

% MAJ Stig Ekestorm, Feb -00

% Naval Postgraduate Schocol

EE R R R S R R R R R T R R R E R R R PR R R R R SRR PR R R R R R R bR R R e
nurp = 1; gnumber of radar pulses used
in the set

nurpl = 1; gnumber of radar pulses used

in the set
nDopplerCell=nurp;
$nDopplerCell=64;
nRangeCell=62;
numzero=31;

pwc=200; $pulsewidth of clock pulse in
T-Spice

pw=2*pwc; : $pulsewidth of signal pulse
in T-Spice

load converted_rawint . $variable is drfm4

f1l = fopen('converted_control_1l.txt',6 ‘w'}); %$control signals in
binary, T-Spice format

%

fprintf(£1, '%s','*');
fprintf(£f1, '\r\n");

274

%$clock

fprintf(f1, '%s', 'VinCLK CLK Gnd bit ({01');
fprintf(£f1, '%s','} on=5.0 o0ff=0.0 pw=',num2str(pwc), 'n)"');
fprintf (£1, '\r\n');

fprintf (f1, '%s', "*');

fprintf (£1, '\r\n"');

$hold

fprintf (f1, '%s', 'VinHLD HLD Gnd bit ’ ({0");
fprintf (f1, '%s', '} on=5.0 0ff=0.0 pw=',num2str(pw), 'n)');
fprintf (£1, '\r\n'");

$load

onel=ones (1,1+6+nurp*(62+31)-1);

$onel=ones (1, length(drfm4)-1);

for k = 1l:1+6+nurp*(62+31)

%$for k = l:length(drfmd)

if k==1"
fprintf(f1l, '%s', 'VinLD LD Gnd bit ({0');
else ' ’
fprintf(f1l, '%4',onel(1,k-1));
end
end

fprintf(fl, '%s','} on=5.0 off=0.0 pw=',num2str(pw),'n)"');
fprintf (£1, '\r\n');
%$scan right
fprintf (£f1, '%s', 'VinSR SR Gnd bit ({0');
fprintf (f1, '%s','} on=5.0 0ff=0.0 pw=',num2str(pw), 'n)‘);
fprintf (£1, '\r\n"');
$scan left
fprintf(fl, '%s', 'vinSL SL Gnd bit (£{0');
fprintf(fl,'%s', '} on=5.0 off=0.0 pw=',num2str(pw),'n)');
fprintf (£1, '‘\r\n');
fprintf (£f1, '%s’,'*');
fprintf (£1, '\x\n');
%scan right in
fprintf (£f1, '%s', 'VinS_P_Test_Rin S_P _Test_Rin Gnd bit ({0');
fprintf(£f1, '%s','} on=5.0 off=0.0 pw="',num2str{pw), ‘'n)');
fprintf (£1, ‘\r\n');
%$scan left in
fprint£ (£f1, '%s', 'VinS_P_Test_Lin S_P_Test_Lin Gnd bit ({0");
fprintf (f1, '%s', '} on=5.0 off=0.0 pw=',num2str (pw), 'n)');
fprintf (f1, '\r\n');
fprintf (f1, '%s', '*');
fprintf(£f1, '\r\n');
$range-bin valid
one2 = ones (1l,nRangeCell);
zero2 = zeros(l,numzero);
block = [];
for k = 1l:nDopplerCell
block = [block,one2,zero2];
end
for k = 1l:length(block)+1l
if k==1'
fprintf(fl,'%s','VinRange_bin_valid Range_bin_valid Gnd bit
({0000000"') ;
else
fprintf(£1, '%d',block(l,k-1));

275

end
end
fprintf(f1, '%s', '} on=5.0 off=0.0 pw=',num2str(pw), 'n)‘);
fprintf(£f1, '\r\n');
fprintf(£f1, *%s','*');
fporintf(£f1, '\r\n"');
%load phase A
zero3 = zeros(l,nRangeCell+numzero-6) ;
PhaseA = [1,0,0,0,0,0};
LoadPhaseA = [];
for k = 1:nDopplerCell
LoadPhaseA = [LoadPhasel,PhaseA, zero3];

end
for k = 1l:length(LoadPhaseA)+1
if k==1"
fprintf(£f1, '%s', 'VinLD_Phase_SupTap_A LD_Phase_SupTap_A Gnd bit
({0");
else
fprintf (£1, '$d',LoadPhaseaA(1,k-1));
end
end

forintf (£1, '%s','000000} on=5.0 off=0.0 pw=',num2str(pw), 'n)');
fprintf (£1, '\r\n"');
%load phase B
zero3 = zeros (l,nRangeCell+numzero-6) ;
PhaseB = [0,1,0,0,0,0];
LoadPhaseB = [1];
for k = 1l:nDopplerCell
LoadPhaseB = [LoadPhaseB, PhaseB, zero3];

end
for k = l:length(LoadPhaseB)+1
if k==1"'
fprintf(£f1, '$s', 'VinLD_Phase_SupTap_B LD_Phase_SupTap_B Gnd bit
({0");
else
fprintf (£1, '$d',LoadPhaseB(1l,k-1));
end
end

fprintf (£1, '%s', '000000} on=5.0 off=0.0 pw=',num2str(pw), ‘n)');
fprintf (f1, '\r\n'});
%$load phase C
zexo3 = zeros(l,nRangeCell+numzero-6) ;
PhaseC = [0,0,1,0,0,0];
LoadPhaseC = [];
for k = 1:nDopplerCell
LoadPhaseC = [LoadPhaseC, PhaseC, zero3];
end
for k = 1l:length(LoadPhaseC)+1
if k==1'
fprintf(fl, '%s', 'VvinLD_Phase_SupTap_C LD_Phase_SupTap_C Gnd bit
({0");
else
fprintf (fl, '%4',LoadPhaseC(1l,k-1));
end
end
fprintf(£f1, '$s','000000} on=5.0 off=0.0 pw=',num2str(pw),'n)"');

276

fprintf(£1, '\r\n');
%load phase D
zero3 = zeros(l,nRangeCell+numzero-6});
PhaseD = [0,0,0,1,0,01;
LoadPhaseD = []:
for k = 1:nDopplerCell
LoadPhaseD = [LoadPhaseD, PhaseD, zero3];

end
for k = 1l:length(LoadPhaseD)+1
if k==1"'
fprintf(fl, '%s', 'VinLD_Phase_SupTap_ D LD_Phase_SupTap D Gnd bit
({0');
else
fprintf (£1, '%4"', LoadPhaseD(1,k-1));
end
end

fprintf (f1l, '%s', '000000} on=5.0 off=0.0 pw=',num2str(pw), 'n)');
fprintf (£1, '\r\n'); :
fprintf(£f1, '%s','*');
fporintf (£1, '‘\r\n');
$use phase
zero3 = zeros (1l,nRangeCell+numzero-6);
Phaseinc = [0,0,0,0,1,0];
UsePhaseinc = [];
for k = l:nDopplerCell
UsePhaseinc = [UsePhaseinc, Phaseinc, zero3];

end
for k = 1l:length(UsePhaseinc)+1
if k==1"
fprintf (£1, '$s', 'Vinuse_Phase_inc use_Phase_inc Gnd bit
({0");
else
fprintf(£1, '3d',UsePhaseinc(1l,k-1));
end
end .

fprintf (£1, '%s', '000000} on=5.0 of£f=0.0 pw=',num2str(pw), 'n)"');
fprintf(£1, '\r\n');
fprintf(£f1l, '%s', '*');
fprintf (£1, '\r\n');
%$load gain AB
zero3 = zeros{l,nRangeCell+numzero-6);
GainAB = [0,0,0,0,1,0];
LoadGainaB = [];
for k = l:nDopplerCell
LoadGainAB = [LoadGainAB,GainAB, zero3];

end
for k = 1l:length(LoadGainAB)+1
if k==1"'
fprintf(£1, '%s', 'VinLD_Gain_SupTap_AB LD_Gain_SupTap_AB Gnd bit
({0");
else
fprintf (£1, '%d',LoadGainAB(1l,k-1));
end
end

fprintf (£f1, '%s', '000000} on=5.0 off=0.0 pw=',num2str(pw), 'n)');
fprintf(£1, '\r\n');

277

%load gain CD
zero3 = zeros (1,nRangeCell+numzero-6) ;
GainCD = [0,0,0,0,0,1];
LoadGainCD = [];
for k = 1l:nDopplerCell
LoadGainCD = [LoadGainCD,GainCD, zero3];

end
for k = 1:length(LoadGainCD)+1
if k==1"
fprintf(fl,'%s'k'VinLD_Gain_SupTap_CD LD_Gain_SupTap_CD Gnd bit
({0"); :
else
fprintf (£f1, '%d',LoadGainCD(1,k-1));
end
end

fprintf(£f1, '%s', '000000} on=5.0 off=0.0 pw=',num2str(pw), 'n)');
fprintf (f1, '\r\n"');

fprintf(£f1, '%s','*');

fprintf (f1, ‘\r\n');

%

fclose(£fl);

$end of file

5. COMPARING MATLAB AND T-SPICE SIMULATIONS ‘

Examining the outputs from T-Spice simulations requires some sort of post-data
treatment. In this case a hard-limiter script-file converts output voltage levels from
T-Spice simulations into binary and decimal representation. These values can thereafter
be used i.e. by the compare script-file to compare Matlab simulation results with T-Spice

outputs.

a. hard_limiter.m

B e R R R R R R R R R R R R R R L LR R R R R T e R R L R LR T T T T 1
hard_limiter.m
Hard Limiter
- reads modified text files generated from T-Spice output files
- extracts and assigns values to variables
- hard limiters values into binary representation
- writes results in decimal form to text files
- writes results in 2-complement binary form to text files
Created by:
MAJ Stig Ekestorm, Nov -99, Modified Jan -00
Naval Postgraduate School

o0 o dP o 0P o°

P o0 00 oP of

278

o

R R R R R R T R L R R R R R R R L LR R R R LR R R L L R L L LR R T LA LA AR A A

% *** READ IN VALUES FROM T-SPICE OUTPUT FILES (in text file format)

* % %
clear %$clear all variables

$specify the number of rows and columns for the original text files

row=207; %# of rows
%$colin=6; %# of columns for
input

colout=17; %$# of columns for
output

%open original text files to read values

%$fin = fopen (' .txt', 'rt); $specify file name
foutI = fopen('Switch_I_OutputsMODld.txt', 'r'); $specify file
name

foutQ = fopen('Switch_Q OutputsMODld.txt','r'); $specify file
name

$initalize

%$tmpin=zeros (row, colin) ;
tmpoutI=zeros (row, colout) ;
tmpoutQ=zeros (row, colout) ;

$extract values from the original text files

$for idx2=1l:row, %# of rows
% for idx3=l:colin, %# of columns
% tmpin(idx2, idx3)=£fscanf (fin, '%£',1); g$reads in the values
% end
$end
for idx2=l1l:row, %$# of rows of valid
result out .
for idx3=1l:colout, %$# of columns, OBS:
1st column is time
tmpoutI (idx2,idx3)=£fscanf (foutI, '$£f*,1); %$reads in the I
values
tmpoutQ (idx2,idx3)=fscanf (foutQ, '%£f',1); %reads in the Q
values
end
end

%close original text files
$fclose(fin);
fclose(foutI);

fclose (foutQ) ;

g #%* EXTRACT/SEPARATE VARIABLES ***

%initalize

time=zeros (row,1);
%$in=zeros (row,colin-1);
outI=zeros (row,colout-1);
outQ=zeros (row,colout-1);
$input=zeros (row,colin-1);

279

Tout=zeros (row, colout-1);
Qout=zeros (row, colout-1);

%$assign values to correct variable
time=tmpoutI(:,1);
gin=tmpin(:,2:colin);
outI=tmpoutI(:,2:colout);
outQ=tmpoutQ(:,2:colout);

<

% *** HARD LIMITER ***

$hard limiter
for idx4=1:row,
%$for idx5=1:colin-1,

% 1f in(idx4, idx5)<=2.5, %$1f less then 2.5V
% input (idx4, 1dx5)=0; %set bit to "O0O"
% else %$if higher then 2.5V
% input (idx4,idx5)=1; %set bit to "1"
% end
%end
for idx5=1:colout-1,
if outI(idx4,idx5)<=2.5, %if less then 2.5V
Iout (idx4,idx5)=0; %set bit to "0
else . %$1f higher then 2.5V
Iout(idx4,idx5)=1; $set bit to "1"
end
end
for idx5=l1l:colout-1,
if outQ(idx4,idx5)<=2.5, %1if less then 2.5V
Qout (idx4,idx5)=0; %$set bit to "0"
else %$1if higher then 2.5V
Qout (idx4,idx5)=1; %$set bit to "1"
end
end
end

%$flip matrices to get MSB to the left, and LSB to the right

%check the order of the values in the text file to confirm if this is

necessary
$input=fliplr (input);
Iout=£fliplr(Iout);
Qout=£fliplr (Qout) ;

§ x*% PRINT TO MATLAB COMMAND WINDOW ***

$print input and output matrices to MATLAB Command Window
$disp (' ')

$disp('Input vectors:')

$input

%disp (' ')

$disp('Output vectors:')

$Iout

%Qout

gdisp (' ')

% *** PRINT TO TEXT FILES ***

280

o

$print I- and Q-output in decimal values to two new separate text files

fi=fopen('IoutputsDECld.txt"', 'w'); %open text file to write I-
results to
f2=fopen('QoutputsDECld.txt', 'w'); %open text file to write Q-

results to
$print I- and Q-output in 2-complement binary representation to two new
separate text files

f3=fopen(‘IoutputsBINld.txt',6 'w'); %open text file to write I-
results to
fa=fopen('QoutputsBINld.txt', 'w'); %open text file to write Q-

results to

Iout_dec=two2dec(Iout,7); %convert to decimal values
Qout_dec=two2dec (Qout, 7); %convert to decimal values
fprintf(f1l, '$12.8f\n',Iout_dec); swrite I-values as decimal
value

fprintf(£2, '$12.8f\n"',Qout_dec); swrite Q-values as decimal
value

$fprintf (£f1, '%d\n', Iout_dec); swrite I-values as decimal value
sfprintf (£2, '%d\n',Qout_dec) ; $write Q-values as decimal value

for idx=1l:row,

fprintf (£3, '$d',dec2two (Iout_dec(idx),8,7)); $write I-values as 2-
complement binary

fprintf (£3, '\r\n');

fprintf (£f4, '%d',dec2two (Qout_dec(idx),8,7)); $write Q-values as 2-
complement binary

fprintf (£4, '\r\n');

end

fclose(fl); %close text file that results
has been written to

fclose(£f2); sclose text file that results
has been written to

fclose(£3); ' %close text file that results
has been written to

fclose(f4); %close text file that results

has been written to
$end of file

MAJ Stig Ekestorm, Nov -99, Modified Jan -00
Naval Postgraduate School

%%%%%%6%%%
% compare.m

% Compare Matlab and T-Spice outputs

% - plots Matlab outputs for I and Q channel

% - plots T-Spice outputs for I and Q channel

% - plots difference between Matlab and T-Spice outputs for I and Q

% channel

% Created by:

%

%

281

% *** READ IN VALUES FROM T-SPICE OUTPUT FILES (in text file format)

$clear %$clear all variables

$specify the number of values to read from the original text files

$num=93; $# of values, 1lst radar
pulse
num=207; %% of values, total # of

valid outputs from this T-Spice run

$open original text files to read values

fTI = fopen('IoutputsDECld.txt','r'); $specify file name
fMI = fopen('Iout.txt','r'); $specify file name
fTQ = fopen('QoutputsDECld.txt',‘r'); $specify file name
fMQ = fopen('Qout.txt','r'); %specify file name

$extract values from the original text files
topTI = fscanf (fTI,'$f'); %reads in the values
tmpMI = fscanf(fMI, '%$f'); %reads in the values
TI = tmpTI(1l:num);

MI = tmpMI(l:num);

tmpTQ = fscanf(£TQ, '%$f'); %reads in the values
tmpMQ = fscanf(fMQ, '$f'); %reads in the values

TI = tmpTI(l:num);
MI = tmpMI (1l:num);
TQ = tmpTQ(1l:num);
MQ = tmpMQ(1:num);

fclose(fTI);
fclose (fMI) ;
fclose(fTQ) ;
fclose (fMQ) ;

$plot results

figure(1l)

subplot(2,1,1)

plot (MI(62+32-1:2*(62+32-1)), 'bo"')
hold on

plot (TI(62+32-1:2*(62+32-1)), 'rx"')
hold off

grid

title('Comparing Matlab and T-Spice outputs - I-Channel')
xlabel ('Data'), ylabel('Amplitude’)
legend('Matlab', 'T-Spice’)

axis ([0 93 -100 100])

subplot(2,1,2)

plot (MI(62+32-1:2*(62+32-1))-TI(62+32-1:2*(62+32-1)),'g")
grid

title('Difference (Matlab and T-Spice) ~ I-Channel')

xlabel('Data'), ylabel('Amplitude')
legend('Difference’)
axis ([0 93 -1 13])

282

o

figure(2)

subplot(2,1,1)

plot (MQ(62+32-1:2*(62+32-1)), 'bo ")

hold on

plot (TQ(62+32-1:2*(62+32-1)), 'rx")

hold off

grid

title('Comparing Matlab and T-Spice outputs - Q-Channel')
xlabel ('Data'), ylabel('Amplitude')

legend('Matlab', 'T-Spice')

axis ([0 93 -100 100])

subplot(2,1,2)

plot (MQ(62+32-1:2%(62+32-1))-TQ(62+32-1:2*(62+32-1)),"'g")
grid

title('Difference (Matlab and T-Spice) - Q-Channel')
xlabel ('Data'), ylabel('Amplitude')

legend('Difference"')

axis([0 93 -1 11)

$end of file

283

6. BIT-VICE TRUNCATION OF TWO’S COMPLEMENT

BINARY REPRESENTATION

A script file is presented that produces an example of how one can truncate values

in two’s complement binary representation for examining different effects.

a. truncate.m

oe

R R R R R R R R R R R e e PR TR T
truncate.m
Test of how to truncate a decimal number representing a binary word
Created by:

MAJ Stig Ekestorm, Mar -00

Naval Postgraduate School
ERE R R R R R R R R R R R R L R R R R R R R R R L R R R T L R

o0 00 P P o0 JP oP

o
o0
oy
o
o
oP
o0

0

O

format long

%a number, 8 integer bits and 7 fraction bits
aa_bit = zeros(1l,15);
for idx = 0:7
aa_bit (8+idx) = 27idx;
end
for idx = 1:7
aa_bit(idx) = 2~(idx-8);
end

%bit-by-bit value
aa_bit

%make the binary word into a decimal number
aa_dec = 0;
for idx = 1:15
aa_dec = aa_dec + aa_bit(l,idx);
end

%**********-k'k**

%$original decimal number
aa_dec

%$convert original number from decimal to 2-complement binary
aa_bin = dec2two(aa_dec,8,7)

$truncate the binary word (i.e. take out the two least significant

bits)
aa_bin_trunc = aa_bin(l,1l:length(aa_bin)-2)

284

%$convert the truncated binary word from 2Z2-complement to decimal
aa_dec_trunc = two2dec(aa_kin_trunc,5)

%*********-k**
g$end of file
(Example-Printout from Matlab Command Window)

» clear
» truncate

aa_bit =
1.0e+002 *

Columns 1 through 4
0.00007812500000 0.00015625000000 0.00031250000000

0.00062500000000

Columns 5 through 8
0.00125000000000 0.00250000000000 0.00500000000000

0.01000000000000

Columns 9 through 12
0.02000000000000 0.04000000000000 0.08000000000000

0.16000000000000

Columns 13 through 15
0.32000000000000 0.64000000000000 1.28000000000000

aa_dec =
2.559921875000000e+002

aa_bin =
Columns 1 through 12
0 1 1 1 1 1 1 1. 1 1

Columns 13 through 16
1 1 1 1

aa_bin_trunc =
Columns 1 through 12
0 1 1 1 1 1 1 1 1 1

Columns 13 through 14
1 1

aa_dec_trunc =

2.559687500000000e+002

»

285

THIS PAGE INTENTIONALLY LEFT BLANK

286

APPENDIX B. VISUAL BASIC CODES

1. VISUAL BASIC PROJECT TO RUN THE DIS CONCEPT

DEMONSTRATOR

To be able to make the comparison between the Matlab simulation of the DIS and
the DIS implemented using FPGA technology, one must add an intermediate step to the
simulation flow described in Chapter V. After the Matlab file mathostvX.m has been
executed, then all the necessary inputs are available in téxt files to run the hardware

implementation of the DIS.

The interface with the FPGA computer board is a set of Visual Basic files
composed into a Visual Basic project called FlexTest (Flextest.vbp). The files in the
FlexTest project are included below. The files are

e file.bas

e Flecfunc.bas

e Global.bas

e Main.bas

° thé_isar.bas

To be able to compile and run the project and the bdard properly, the necessary
files have to be located in a file structure with the following path
c\temaseR\denise\thesis\final_design\vbfiles due to hard coding issues. To run the Visual

Basic project FlexTest, the user needs to open the project, open the the_isar.bas file, and

287

then run the file. A graphical user interface (GUI) will show up on the computer display

to visualize the signal processing taken place in the taps of the DIS.

a. file.bas

Attribute VB_Name = "fileio"
Public nRangeCell As Integer
Public nDopplerCell As Integer
Public targetExtent As Integer
Public Gain() As Integer
Public Phi() As Integer

Public DRFM() As Integer
Public sine() As Double

Public cosine() As Double

Public Sub readPara()

' This sub-routine reads the processing parameters generated by
Matlab (reading from paraVB.txt)

Dim idx As Integer

Dim idxl As Integer

Open "c:/temasek/denise/thesis/final_design/vbfiles/para.txt" For
Input As #1

' read in number of range cells (number of samples of the chirp
signal)

Input #1, nRangeCell

flexform.ParaText (0) = Val (nRangeCell)

' read in number of Doppler cells (ndop) first
Input #1, nDopplerCell
flexform.ParaText (1) = Val (nDopplerCell)

' next read in the target extent
Input #1, targetExtent
flexform.ParaText (2) = Val (targetExtent)

' read in gain values (number of gain values = targetExtent)
' ReDim Gain(targetExtent - 1) As Integer

ReDim Gain(3) As Integer

Gain(0) = 0

Gain(l) = 0
Gain(2) =0
For idx = 0 To targetExtent - 1

Input #1, Gain(idx)
' adjustment to correct multiplication factors for the
amplitude (gain) value
Select Case Gain(idx)
Case Is = 1
Gain(idx) = 0 ' no shift, multiplication by 1, hardware
bit 00"
Case Is = 2

288

Gain(idx) = 1 ' shift by 1, multiplication by 2, hardware
bit "01"

Case Is = 4

Gain(idx) = 2 ' shift by 2, multiplication by 4, hardware
bit *10"

Case Is = 8

Gain(idx) = 3 ' shift by 3, multiplication by 8, hardware
bit 11"

End Select
Next idx

' read in the next nDoppler values
ReDim Phi (nDopplerCell - 1, targetExtent - 1) As Integer
For idx = 0 To nDopplerCell - 1

For idxl = 0 To targetExtent - 1

Input #1, Phi(idx, idxl)

Next idxl
Next idx
Close #1

End Sub

Public Sub readRaw()
' This sub-routine reads the raw matlab-simulated ISAR data

Dim idxl As Integer
Dim idx2 As Integer

Open nc:/temasek/denise/thesis/final_design/vbfiles/rawint.txt" For
Input As #1

' Create the array dynamically
ReDim DRFM(nDopplerCell - 1, nRangeCell + targetExtent - 1) As

Integer

' read in the first samples of the first pulse
' these values are phase values from the DFRM
For idxl = 0 To nDopplerCell - 1

For idx2 = 0 To nRangeCell - 1

Input #1, DRFM(idxl, idx2)

Next idx2
Next idxl
Close #1

End Sub

Public Sub readCosine()
+ This sub-routine reads the raw matlab-simulated ISAR data

Dim idxl As Integer
Dim tmp As String

Open “c:/temasek/denise/thesis/final_design/vbfiles/cosine.txt" For
Input As #1

* Create the array dynamically
ReDim cosine(32) As Double

' read in the first samples of the first pulse
' these values are phase values from the DFRM

289

For idxl = 0 To 31
Line Input #1, tmp
cosine(idxl) = Vval (tmp)

Next idxl
Close #1
End Sub

Public Sub readSine()
' This sub-routine reads the raw matlab-simulated ISAR data

Dim idxl As Integer

Open "c:/temasek/denise/thesis/final_design/vbfiles/sine.txt" For
Input As #1
' Create the array dynamically
ReDim sine(32) As Double
Dim tmp As String
' read in the first samples of the first pulse
' these values are phase values from the DFRM
For idxl = 0 To 31
Line Input #1, tmp
sine(idxl) = val (tmp)
Next idxl
Close #1
End Sub

b. flecfunc.bas

Attribute VB_Name = "FlexFunc"
Option Explicit
'U4 Flex Programming Logic Control & Status Ports

! Control

! Port 380/382 - Write A/B A/B

! DO = nConfig U4-H10/B8 Flex U27/U28 - AUl

! Dl = nCs U4-J11/F9 Flex U27/U28 - A35

! Cs Flex U27/U28 - C33 (HI)
! D2 = nClr U4-D11/F3 Flex U27/U28 - C17

! D3 = OutEn U4-K3/K10 Flex U27/U28 - C19

' Port 380/382 - Read

' D4 = Init_Done U4-~-L3/L2 Flex U27/U28 - R35
! D5 = Conf_Done U4-L4/K4 Flex U27/U28 - C37
! D6 = nStatus U4-L10/LS Flex U27/U28 - AU37
' D7 = RDYNnBSY U4-J2/K11 Flex U27/U28 - N35
' Port 381/383 -~ Write

! DO-D7 Configuration Data for Flex chip A/B

! nws U4-H11/E1l Flex U27/U28 - E31
' Port 381/383 - Read

! D7 - RDYnBSY for Flex chip A/B

! nRS U4-G9/F10 Flex U27/U28 - A33

290

' Port 384 - FLEX User Control/Status Register

' D0 = Enable DATA_DIR for READ Buffers (D0 on U4-A9, DATA_DIR
on U4-Bl1l) '

' D1 = An/B Select Flex A = 0, Select Flex B =1

' D2 = Int_CLRn

' D3 = Unused

' D4 = CFAl Spare chip interconnect to FLEX A

' D5 = CFB1 Spare chip interconnect ot FLEX B
! D6 = TST_A Flex A circuit Test Point
' D7 = TST B FLEX B circuit TEst point

' Port 386 - FLEX A (left from component side) User Base
Addr. Register
' Port 387 - FLEX B (right from component side) User Base

Addr. Register

Declare Function write_port Lib "in_out" (paddr%, pdata%, byteword%) As

Integer

Declare Function read_port Lib "in_out" (paddr%, pdata%, byteword%) As
Integer

Declare Function InitClicks Lib "in_out" () As Integer

Declare Function Clicks Lib "in_out" () As Integer

Declare Function disable_int Lib "in_out" () As Integer
Declare Function enable_int Lib "in_out" () As Integer

Declare Function FlexConfig Lib "altera®" (ByVal file As String, ByRef
plength As Long) As Integer

Declare Function FlexSend Lib "altera" (ByVal Cntrl_port%, ByVal
Status_port%, ByVal Data_port%) As Integer

Declare Function FlexSendl0k50 Lib "altera" (ByVal Cntrl_port%, ByVal
Status_port%, ByVal Data_port$%) As Long :

'Memory Calls
Declare Function MemoryInit Lib "memory" (ByVal Start As Long, ByVal

Length As Long) As Integer

Declare Function MemoryRead Lib "memory" (ByVal Location As Long, Value
As Any) As Integer

Declare Function MemoryWrite Lib "memory" (ByVal Location As Long,

ByVal Value As Long) As Integer

Declare Function MemoryReadBuffer Lib "memory" (ByVal Location As Long,
ByVal Count As Long, ByRef Value As Integer) As Integer :
Declare Function MemoryWriteBuffer Lib "memory" (ByVal Location As

Long, ByVal Count As Long, ByRef Value As Integer) As Integer

'LoadTgt DLL
Declare Function LoadTgtBuf Lib "loadtgt" (ByVal TgtNum$, ByVal param¥,

ByVal Value&) As Integer

Declare Function TargetWrite Lib "loadtgt" (ByVal TgtNum¥) As Integer
Declare Function WriteTargets Lib "loadtgt®" (ByvVal NumTgts$) As Integer
Declare Function InitializePorts Lib "loadtgt" () As Integer

r*x** RES added variables ***
Public NumBds As Integer, offset As Integer

291

Public flex_user_ba_ctrl As Integer ' set this port to determine
user design ba

Public user_ba(8) As Integer

Public BoardNum As Integer

Dim maxcount As Integer

Public present(8) As Integer, fstatus(8) As Integer

Public configdone(8) As Integer, Status(8) As Integer

Public num_bds_fnd As Integer

Vhhkdkdhkkhkdhhhdhhkhhdhdhhkhkrhdhkhkkhk

' RMS 17 Sep 96
' Do I need to declare Function Delay(Dwell As Double) ?

Global filename As String
Global MSG As Integer
Global BoardType(8) As String 'Either "10K" or "8K"

' 5032 or 5192 Chip Addresses

Global FlexCtrlPortBA(8) As Integer

Global FlexCtrlPort As Integer

Global FlexStatusPort As Integer

Global FlexDataPort As Integer

Global FlexUserCtrlPort As Integer 'Used to Toggle between chips
Global FlexUserBasePort As Integer 'Used to Set base address in Flex
Global NumFlexes As Integer

Global FlexIndex As Integer

Global NumFlexFiles As Integer

Global FlexFileIndex As Integer]
'RMS 17 Sep 96

‘These are for 8K only, and maybe not there if we change the 5192
Global FlexONPort As Integer

Global FlexOFFPort As Integer

'Flex 10K50 Chip Addresses
Global FlexUserBA(8) As Integer

‘Flex File Names and Documentation
Global flexfilename(10) As String
Global FlexMaxFiles As Integer
Global FlexFileDoc(10) As String

Global DP_MEM Right_Addr_Lo As Integer
Global DP_MEM_ Right_Addr_HI As Integer
Global DP_MEM _Right_Data As Integer
Global DP_MEM Right_Ctrl As Integer

Global DP_MEM_Left Addr_lLo As Integer
Global DP_MEM Left_Addr_HI As Integer
Global DP_MEM Left_Data As Integer
Global DP_MEM Left_ Ctrl As Integer

Global DP_MEM Hand_Shake_Sim As Integer

Global DP_MEM Left_addr_Mux As Integer

Global HP_Ctrl_Port As Integer '‘Control Port to select HP connector
A data

292

|
D
Global HP_Ctrl_data As Integer ‘Control data to Select HP connector

B data
' Data - HPA HPB
! 0 Toggle Toggle
! 1 Mem Toggle
' 2 Toggle Mem
' 3 Mem Mem
Global AttenPortLO As Integer
Global AttenPortHI As Integer
Global Const nConfiglLo = &H2
Global Const nConfigHI = &H3
Global Const nConfigHI_nCSLO = &H1
Global Const nConfigHI_nCSHI = &H3
Global Const nStatLO_RDYnBSYHI = &HC
Global Const ConfDone = &H18 '‘Conf_Done & nSatus HI

Global altera(100000) As Integer
Global MaxAlteraPnts As Long

Global Const RngDef = &H100
Global Const PWDhef = &H200

tx++%* jnternal addresses for the ISAR program **x**

'‘Global Const phiAddr = &H10 * for Doppler offset

'Global Const gainAddr = &H20 ' for gain

'Global Const tapAddr = &H30 ' for tap delay line

‘Global Const modPulseAddr = &H40 ' for modulated pulse readback

'Global Const feedback = &H60 + for reading back values

Function Delay(Dwell As Double)

' This routine creates a time delay that lasts untill Dwell seconds
' elapse from the time of call.

' Tt uses VBasic's Timer function, which returns the number of seconds
' since midnight on the system clock, rolling from 86400 to 0 at

midnight.
' This routine allows delays to begin before midnight and end after,
' or that span several days.

Dim SecPerDay As Double
Dim Start As Double, Done As Double, T As Double, LastT As Double

SecPerDay = 86400# ' = 60.0 * 60.0 * 24.0 seconds in a day

Start = Timer
Done = Start + Dwell

While (Done > SecPerDay) ' Midnight will come before the delay elapses.

LastT = Start
T = Timer
While (T > LastT) ' Timer has not rolled over.

LastT = T

293

T = Timer
DoEvents
Wend
' It's midnight, so deduct the previous day's waiting
' and start a new day.
Done = Done - (SecPerDay - Start)
Start = 0
Wend

' The delay will elapse before midnight comes.
While (Done > Timer)

DoEvents
Wend

End Function
Public Function LoadFlex(filename As String, Index As Integer)

Dim MSG As Long

Dim duml As Integer
Static Status As Integer
Dim FileDate As String

'setup flex addresses
FlxBaseAddr (BoardNum)

'Reset Flex Chip :
MSG = write_port(FlexCtrlPort, nConfigLo, 1) 'Set nConfig (bit 0) LO

'‘Read & Send Data'

DoEvents
MSG = FlexConfig(filename, MaxAlteraPnts)
If (MSG = 1) Then

MSG = FlexSendlOk50(FlexCtrlPort, FlexStatusPort, FlexDataPort)
Status = GetlOKStatus()

FileDate = FileDateTime (filename)
If Status = True Then
DoEvents
MSG = write_port (FlexCtrlPort, &HF, 1) *Set nCONFIG, nCS,
nCLR, IO_ENB = 1
LoadFlex = True

Else
LoadFlex = False
End If
Delay (0.2) ‘Delay .2 Second for Visual Effect
Else
LoadFlex = False
End If

End Function
Public Sub InitFlexType()

294

Dim i As Integer

Dim ret As Integer

Dim memory_length As Long
Dim status_init As Integer

BoardType (BoardNum) = "10K"
Call InitBoardBase (BoardType (BoardNum)) '‘Get Base Address

If BoardType{BoardNum) = "10K" Then InitFlx10KAddr (BoardNum)
‘Set First Board as Default

End Sub

Function GetlOKStatus()
Static MSG As Integer

MSG = write_port(FlexUserCtrlPort, &H1, 1) ‘Turn on Read
Buffer Capability

MSG = read_port (FlexStatusPort, fstatus(BoardNum), 1) 'Get
Flex Status

If fstatus(BoardNum) = &HFF Then
‘the board is off or not plugged in
Getl10KStatus = False

present (BoardNum) = False
Status (BoardNum) = False
configdone (BoardNum) = False
Exit Function
End If
If (&HA0 And fstatus(BoardNum)) <> &H40 Then
'nSTATUS bit = 0 -~ an error occurred
Getl1l0KStatus = False
Status (BoardNum) = False
configdone (BoardNum) = False
Exit Function
Else
End If
If (&H60 And fstatus(BoardNum)) = &H60 Then

'mSTATUS bit = 1 and CONF_DONE = 1 -- the FLEX programmed OK
v ConfigDhone.Value = 1

Else
v Configbhone.Value = 0

configdone (BoardNum) = False

Getl0KStatus = False

Exit Function

End If

present (BoardNum) = True
Status (BoardNum) = True
configdone (BoardNum) = True
Get1l0KStatus = True

295

End Function
Sub get_flex_ini ()
Dim a As String, b As Integer

On Error GoTo ini_err_handler

Open "flex.ini" For Input As #1
Input #1, NumBds, a
For b = 1 To NumBds
Input #1, BoardNum
Input #1, FlexCtrlPortBA(BoardNum), crystal_clk(BoardNum)
Input #1, user_ba(BoardNum), flexfilename (BoardNum)
Input #1, a
Next b
Close #1
Exit Sub

ini_err_handler:
Exit Sub

End Sub
Function FlexSendVB(altera() As Integer, NumPnts As Long)

Static Status As Integer
Static j As Long
Static ConfigDhata As Integer

Debug.Print altera(5)
Debug.Print NumPnts

'Reset Flex Chip
MSG = write_port(FlexCtrlPort, nConfiglLo, 1)

MSG = write_port(FlexCtrlPort, nConfigHI, 1)

‘Check for FLEX Proper Response
j =0
MSG = write_port (FlexCtrlPort, nConfigHI_nCSLO, 1)

MSG = read_port (FlexStatusPort, Status, 1)

While Status <> nStatLO_RDYnBSYHI
MSG = read_port (FlexStatusPort, Status, 1)

=3 +1
If j > 200 Then
FlexSendvB = -2
Exit Function
End If
Wend

For j = 1 To NumPnts

Confighata = altera(j)
MSG = write_port (FlexDataPort, ConfigData, 1)

Next j

MSG = write_port(FlexCtrlPort, nConfigHI_nCSHI, 1)

296

o

Delay (0.5) 'Wait half a second before getting status

MSG = read_port (FlexStatusPort, Status, 1)

Status = Status And &HI1C 'And out unused bits
If Status <> ConfDone Then 'Is Conf_Done & nStatus HI
FlexSendvB = -3
Exit Function

End If

FlexSendvB = True

End Function

Function FlexConfigVB(filename As String) As Integer

Dim line As String

Static i As Long

Static Commaleft As Integer
Static CommaRight As Integer
Static Token As Integer

'main.flexstatus.Text = "Reading Flex File " + filename
'‘main.flexstatus.BackColor = LtGray
DoEvents

Open filename For Input As #l1

i=1
Do While Not EOF (BoardNum) ' Loop until
Line Input #1, line ' Read data into two variables.
' Debug.Print line ' Print data to Debug window.
Commaleft = 1
CommaRight = -1

Do While True
CommaRight = InStr(CommaLeft, line, ",", 1)
If CommaRight = 0 Then ‘'If not at first character then exit
If CommaLeft <> 1 Then Exit Do
CommaRight = 10
End If
Token = Mid(line, Commaleft, CommaRight - CommaLeft)
altera(i) = Val(Token)
i=1i+1
Commaleft = CommaRight + 1
Loop
Loop

Close #1 ' Close file.
MaxAlteraPnts = i - 1 'Fix total number of bytes read

FlexConfigVB = True
End Function
Function F1x10KSetAddr (Index As Integer)

Dim MSG As Integer, CBA As Integer, UBA As Integer

FlexCtrlPortBA (Index)
FlexUserBA (Index)

CBA
UBA

297

FlexCtrlPort = CBA '‘Control Port
FlexDataPort = CBA + 1 ‘Data Programming Port
FlexStatusPort = CBA *Status Port

FlexUserCtrlPort = (CBA And &H3F0) + 4 'Flex User Control Port (A
or B)
FlexUserBasePort = UBA

' RMS 17 Sep 96

' These do not make sense with the new (or old) U4 map. Bob?
DP_MEM_Right_Addr Lo = CBA + 3

DP_MEM_Right_Addr HI CBA + 5

End Function

Function FlexSendBuffer ()
Dim MSG As Long

'main. flexstatus(0) .Text = "Sending Data "
MSG = FlexSendVB(altera(), MaxAlteraPnts)
If MSG <> MaxAlteraPnts Then
' main. flexstatus(0).Text = "Error Configuring Flex"
! main.flexstatus (0) .BackColor = red
FlexSendBuffer = False
Exit Function
End If

'‘main. flexstatus (0).Text = "Flex Configured"
'‘msg = GetFlexSDhatus()

FlexSendBuffer = True
End Function

Sub InitFlx10KAddr (BoardNum As Integer)

‘Set Altera 5192 Base Addresses
FlexCtrlPort = FlexCtrlPortBA(BoardNum) + 0
FlexDataPort = FlexCtrlPortBA(BoardNum) + 1
FlexStatusPort = FlexCtrlPortBA (BoardNum) + 2
'optFlxBaseAddr (Board) .Value = True

‘Set FLEX Address for Left side of Dual Port Memory
DP_MEM_Left_Data = FlexUserBA(BoardNum) + 0
DP_MEM_Left_Addr_Lo = FlexUserBA(BoardNum) + 1
DP_MEM_Left_Addr_HI = FlexUserBA(BoardNum) + 2
DP_MEM_Left_Ctrl = FlexUserBA (BoardNum) + 3

'Set FLEX Address for Right side of Dual Port Memory
DP_MEM_Right_Data = FlexUserBA (BoardNum) + 4
DP_MEM_Right_Addr_Lo = FlexUserBA(BoardNum) + 5
DP_MEM_Right_Addr_HI = FlexUserBA(BoardNum) + 6
DP_MEM_Right_Ctrl = FlexUserBA (BoardNum) + 7

DP_MEM Left_addr_Mux = FlexUserBA (BoardNum) + &HC

298

End Sub

'Note that 'FlexUserBA' is determined by .ttf design file
'‘FlexCtrlPortBA (BoardNum) is the board addr. determined by wire straps
to 5192

'This Routine returns the number of Files read
Public Sub InitBoardBase(BrdType As String)
Dim i As Integer

Dim dum As String

Dim line As String

Dim line2 As String

Dim filename As String

thkhkkkhkhkhkkdkk

Exit Sub
filename = "Win" + BrdType + ".ini"
Open filename For Input As #1

Input #1, NumFlexFiles, dum
For i = 0 To NumFlexFiles - 1

Input #1, flexfilename(i), FlexFileDoc (i)
Next i’

' Skip Three lines
Line Input #1, dum
Line Input #1, dum
Line Input #1, dum

i=0
Do Until EOF (1)
Input #1, FlexCtrlPortBA(i), FlexUserBA(i), dum '5192 and FLEX
base addr
i=1i+1
Loop

If (i > 8) Then

NumFlexes = 8

MsgBox ("File " + filename + " contains too many base addresses.")
Else

NumFlexes = 1
End If

Close #1

End Sub
Sub init_flex param()

' 5032 or 5192 Addresses :

FlexCtrlPort = FlexCtrlPortBA(BoardNum) + 0
FlexDataPort = FlexCtrlPortBA(BoardNum) + 1

299

FlexStatusPort = FlexCtrlPortBA (BoardNum) + 2

FlexOFFPort = FlexCtrlPortBA(BoardNum) + 6
FlexONPort = FlexCtrlPortBA(BoardNum) + 7

flex_user_ba_ctrl = FlexCtrlPortBA (BoardNum) + 3

End Sub

'I input parameter sets the address of the right port
‘on dual port memory (0-4095)

Function SetAddrRight (i As Integer)
Static LoAddr As Integer
Static HiAddr As Integer

If i > 4095 Then
SetAddrRight = False: Exit Function
End If

LoAddr = i Mod 256

HiAddr = i \ 256

MSG = write_port (DP_MEM Right_Addr_ Lo, LoAddr, 1)
MSG = write_port (DP_MEM Right_Addr_HI, HiAddr, 1)

SetAddrRight = True

End Function
Private Sub FlxBaseAddr (Index As Integer)

Dim a
Dim MSG As Integer, CBA As Integer, UBA As Integer

'‘Definition of Ports used to program and control the FLEX chip
‘on a 10K50 board

F1x10KSetAddr (Index)
MSG = GetlOKStatus()

' optFlxBaseAddr (Index) .Value = True

FlexIndex = Index

'Get and Display Status of Current Flex Chip
MSG = GetlOKStatus()

End Sub

'I input parameter sets the address of the left port
‘on dual port memory (0-4095)

Function SetAddrLeft (i As Integer)
Static LoAddr As Integer
Static HiAddr As Integer

300

If i > 4095 Then
SetAddrLeft = False
Exit Function

End If

LoAddr = i Mod 256

Hiaddr = i \ 256 ‘Be Sure to Integer divide
MSG write_port (DP_MEM_Left_Addr_Lo, LoAddr, 1)

MSG write_port (DP_MEM_Left Addr_HI, HiAddr, 1)

SetAddrLeft = True .

End Function

Function usecDelay(Dwell As Integer)
Dim initClick As Long

Dim currentClick As Long

Dim EndClick As Long

Dim icnt As Long

Dim ret As Integer

EndClick = Dwell / 0.8381 ‘Each click represents 0.8381 usec

ret = InitClicks

initClick = Clicks 'Sets Down counter to max value (about
65,000)

If initClick < 0 Then
initClick = 65535 + initClick
End If
currentClick = Clicks ‘Reads current count
If currentClick < 0 Then
currentClick = 65535 + currentClick
End If

icnt = 0

While (EndClick > (initClick - currentClick))
currentClick = Clicks
If currentClick < 0 Then
currentClick = 65535 + currentClick
End If
icnt = icnt + 1
If icnt > 1000000 Then
usecDelay = False
Exit Function
End If
Wend

usecDelay = True
End Function

Sub Board_Bit()
Dim i As Integer

301

' init_flex_param
flexform.ini_num.Text = NumBds
num bds_fnd = 0

'** find # of boards that respond to ping **
For BoardNum = 1 To NumBds
F1x10KSetAddr (BoardNum)
flexform.addr (BoardNum) . Text = Hex (FlexCtrlPortBA (BoardNum))
ck_bd_present
If present (BoardNum) = False Then

flexform.present (BoardNum) .BackColor = red
Else
flexform.present (BoardNum) .BackColor = green
num_bds_fnd = num _bds_fnd + 1
End If
Next BoardNum
flexform. found_num.Text = num_bds_fnd
End Sub
Sub ck_bd_present ()
Static MSG As Integer
MSG = write_port(FlexUserCtrlPort, &H1l, 1) '‘Turn on Read
Buffer Capability
MSG = read_port(FlexStatusPort, fstatus(BoardNum), 1) 'Get

Flex Status

If fstatus(BoardNum) = &HFF Then

present (BoardNum) = False
Else
present (BoardNum) = True
End If
End Sub

Sub test_boards ()
Dim dum As Integer, dly As Long, invar As Integer

flexform. Show
'** get initial state to gray in leds
For dum = 1 To NumBds
flexform.present (dum) .BackColor = LtGray
flexform.Bstatus (dum) .BackColor = LtGray
flexform.Bconfigdone (dum) .BackColor = LtGray
flexform.BBIT (dum) .BackColor = LtGray

Next dum
'** check presence of boards ***
get_flex_ini ' read basic flex addrs. & pri param. from

filename$.ini file
reset_flexs

Board_Bit ' check # of boards and operational status

'** Joad flex chips & display status **
For BoardNum = 1 To NumBds

302

If present (BoardNum) = True Then
InitFlexType
flexform.Bconfigdone (BoardNum) .BackColor = yellow
MSG = LoadFlex{flexfilename(BoardNum), 1)
Flx10KSetAddr (BoardNum)
GetlO0KStatus
If Status(BoardNum) = False Then

flexform.Bstatus (BoardNum) .BackColor = red
Else

flexform.Bstatus (BoardNum) .BackColor = green
End If

tx%* write user base addr. to flex (a=3x6, b=3x7)

offset = (0.5 * (FlexCtrlPortBA(BoardNum) And &H2) + 6) -
(FlexCtrlPortBA (BoardNum) And &H2)

dum = write_port (FlexCtrlPortBA (BoardNum) + offset,
user_ba (BoardNum) \ &H4, 1) 'set Flex User BaseAddr

If configdone (BoardNum) = False Then
flexform.Bconfigdone (BoardNum) .BackColor = red
Else
flexform.Bconfigdone (BoardNum) .BackColor = green
End If

flexform. filename (BoardNum) . Text = flexfilename (BoardNum)
flexform.userBA (BoardNum) .Text = Hex(user_ba (BoardNum))
+** check BIT register for proper load
dum = write_data(&HFC, BoardNum * &H15A5, 2) 'write board
(internal addr (linear addr. 0 ->255 words) , data , word)
dum = read_data(&HFC, invar, 2)
I1f invar = ‘BoardNum * &H15A5 Then

flexform.BBIT (BoardNum) .BackColor = green
Else
flexform.BBIT (BoardNum) .BackColor = red
End If
' dum = write_ port (user_ba (BoardNum), 0, 2) ' zero BIT reg.
for noninterference w/next board :
End If '‘end check for board present

Next BoardNum

For dly = 1 To 10000: DoEvents: Next dly
End Sub
Sub reset_flexs() ‘reset flex chips (unload)

Dim dum As Integer

get_flex_ini
For BoardNum = 1 To NumBds
MSG = write_port (FlexCtrlPortBA (BoardNum), nConfiglLo, 1) 'Set

nConfig (bit 0) LO
! MSG = write_port (FlexCtrlPortBA (BoardNum), nConfigHI, 1) 'Set
nConfig (bit 0) LO

Next BoardNum

'*%* get initial state to gray in leds
For dum = 1 To NumBds
flexform.present (dum) .BackColor LtGray
flexform.Bstatus (dum) .BackColor = red
flexform.Bconfigdone (dum) .BackColor = LtGray
flexform.BBIT (dum) .BackColor = LtGray

303

Next dum
Board_Bit

End Sub
Function write_data(iaddr As Integer, idata As Integer, iword As
Integer) As Integer

'MSG = write_port (user_ba (BoardNum) + 2, iaddr, 2) ‘'internal addr
of I/0 - 256 addrs. per Flex chip

'MSG = write_port(user_ba(BoardNum) + 0, idata, 2) 'internal data
of I/0 - always 16 bit (word) write

MSG = write_port (FlexUserCtrlPort, &HO, 1)

MSG = write_port(user_ba(&H1l) + 2, iaddr, 2) 'internal addr of I/0
- 256 addrs. per Flex chip

MSG = write_port (user_ba(&H1) + 0, idata, 2) 'internal data of I/0
- always 16 bit (word) write
End Function
Function read_data(iaddr As Integer, idata As Integer, iword As
Integer) As Integer

MSG = write_port (FlexUserCtrlPort, &HO, 1)

MSG = write_port(user_ba(&H1l) + 2, iaddr, 1) ‘'internal addr of I/O
- 256 addrs. per Flex chip

MSG = write_port (FlexUserCtrlPort, &H1l, 1)

MSG = read_port(user_ba(&H1l) + 0, idata, 2) ‘internal data of I/0 -
always 16 bit (word) write
End Function

C. global.bas

Attribute VB_Name = "global"
Global crystal_clk(8) As Single

txkkk* color definitions ****
Global Const red = &HFF&
Global Const blue = &HFF0000
Global Const green = &HFF00&
Global Const black = &HO
Global Const yellow = &HFFFF&
Global Const brown = &H80FF&
Global Const ltblue = &HFFFF00
Global Const LtGray = &H8000000F
Global Const DkGray = &H808080
Global Const Beige = &HCOFFFF

d. main.bas

Attribute VB_Name = "MainMod"
Option Explicit

Sub Main()
Dim dum As Integer, cnt As Integer, invar As Integer

t*%%* open running windows ***

304

o

flexform.Show ‘flexform. fxrm

'**%%* check the latch values ***

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

test_boards ' flexfunc.bas

readPara * file.bas

readRaw ' file.bas

readCosine ' file.bas

readSine ' file.bas

isar ' the_isar.bas

' pep_test 'peptest.bas'
End Sub

e. the_isar.bas

Attribute VB_Name = "the_isar"
Option Explicit
vkx*%%%* jnternal addresses for the ISAR program **x**

Global Const phiAddr = &H10 * for Doppler offset

Global Const gainAddr = &H20 * for gain '

Global Const tapAddr = &H30 ' for tap delay line

Global Const modPulseAddr = &H40 ' for modulated pulse readback
Global Const feedback = &H60 ' for reading back values

Public Sub isar()

batchCnt As Integer
pulseCnt As Integer
intraPulseCnt As Integer
tapCnt As Integer

Tap(3) As Integer
Phase(3) As Integer
rgain(3) As Integer
GainOutI(3) As Integer
GainOutQ(3) As Integer
Acc{(3) As Integer

Lut{(6) As Integer
finalAcc(4) As Integer
tmp As Integer

dummyl, dummy2 As Double
LutI As Double

LutQ As Double
GainOutIdec, GainOutQdec As Double

Dim dummy3, dummy4 As Double

Dim idx As Integer '

Dim sumI, sumQ As Double

Dim finalAccI, finalAccQ As Double

Dim finalAccI_NEW, finalAccQ NEW As Double 'for test of Public Function
numFormConv

Dim number As Integer 'for test of Public Function
twoComplement2Float

Dim test As Double 'for test of Public Function
twoComplement2Float

Dim n As Integer ‘for test of Public Function
twoComplement2Float

305

‘load data files (file.bas)
readPara
readRaw

‘Open file for write

Open "lets_check.txt" For Output As #1
Open "imagei.txt" For Output As #2
Open "imageq.txt" For Output As #3

‘test of Public Function twoComplement2Float

‘Print #1, "Test of Public Function twoComplement2Float: "
‘n = 4 'number of bits

'For number = 0 To (2 “ n - 1)

! test = twoComplement2Float (number, n) '* 2 ~ (n - 1)
! Print #1, number, "=", test 'print to lets_check
‘Next number

‘Initialize gain values

flexform.TGain(0) .Text = Gain(0)
flexform.TGain(1l) .Text = Gain(1)
flexform.TGain(2) .Text = Gain(2)

‘Reset tap-delay line
MSG = write_data(tapaAddr, 0, 2)
MSG write_data(tapaddr, 1, 2)

'loop for batch
For batchCnt = 0 To nDopplerCell -~ 1
‘loop for intra-pulse: repeat for number of range gates + target

extent
For intraPulseCnt = 0 To (nRangeCell + targetExtent - 1)

‘Write Phi and Gain values
For tapCnt = 0 To targetExtent - 1
'load Doppler offset parameters
'MSG = write_data(phiAddr + tapCnt, Phi(nDopplerCell -
batchCnt - 1, tapCnt), 2)
MSG = write_data(phiAddr + tapCnt, Phi(batchCnt, tapCnt),
2)
Print #1, "batchCnt=", batchCnt
Print #1, "intraPulseCnt=", intraPulseCnt
Print #1, "tapCnt=", tapCnt
Print #1, "Phi(batchCnt, tapCnt)=", Phi(batchCnt, tapCnt)
'load gain parameters
MSG = write_data(gainAddr + tapCnt, Gain(tapCnt), 2)

Next tapCnt

{—ﬁ |

'‘Read back gain values

For idx = 0 To 2
MSG = read_data(gainAddr + idx, rgain(idx), 2)
rgain(idx) = rgain(idx) And &H7
flexform.TGain(idx) .Text = rgain(idx)
Print #1, "rgain=", rgain(idx)

Next idx

‘Read back phi values
For idx = 0 To 2
MSG = read_data(phiAddr + idx, Phase(idx), 2)
Phase(idx) = Phase(idx) And &H1F
flexform.TPhi (idx) .Text = Phase (idx)
Print #1, "Phase=", Phase(idx)
Print #1, "Phase(idx)=", twoComplement2Float (Phase(idx), 5)
* (2 ~ 7)), "converted from 2-complement"

' Strobe into delay line

MSG = write_data(tapAddr + 1, 0, 2) ' ripple data

MSG = write_data(tapAddr + 2, DRFM(batchCnt, intraPulseCnt), 2)
* Strobe in new data

Print #1, "DRFM(batchCnt, intraPulseCnt)=", DRFM(batchCnt,
intraPulseCnt)

Print #1, "DRFM(batchCnt, intraPulseCnt)=",
twoComplement2Float (DRFM(batchCnt, intraPulseCnt), 5) * (2 © 7),
"converted from 2-complement”

[

‘Read back tap values
For idx = 0 To 2
MSG = read_data(tapAddr + idx, Tap{idx), 2) i
Tap(idx) = (Tap(idx) And &HI1F) |
flexform.TTap (idx) .Text = Tap (idx)
Print #1, "Tap=", Tap(idx)
Next idx

'‘Read back ph_acc values (mod 32)
For idx 0 To 2
MSG write_data (feedback, idx, 2)
MSG = read_data(feedback, Acc(idx), 2)
Acc(idx) = Acc(idx) And &H1F
flexform.TAcc (idx) .Text = Acc(idx)
Print #1, "Acc=", Acc(idx)
Print #1, "Acc(idx)=", twoComplement2Float (Acc (idx), 5) *
(2 ~ 7), "converted from 2-complement”

'Read back LUT values
tmp = 3
‘sumI = 0

307

‘sumQ = 0

For idx = 0 To 2 .
MSG = write_data(feedback, tmp + (idx * 2), 2)
MSG = read_data(feedback, Lut(idx * 2), 2)
MSG = write_data(feedback, tmp + (idx * 2 + 1), 2)
MSG = read_data(feedback, Lut(idx * 2 + 1), 2)
Lut(idx * 2 + 1) = (Lut(idx * 2 + 1) And &HFF)
Lut (idx * 2) = (Lut(idx * 2) And &HFF)

dummyl = Val (Format (twoComplement2Float (Lut (idx * 2), 8),
"H#.#H#E))

dummy2 = Val (Format (twoComplement2Float (Lut(idx * 2 + 1),
8), "H#.###"))

LutI = twoComplement2Float (Lut (idx * 2), 8)

LutQ = twoComplement2Float(Lut(idx * 2 + 1), 8)

flexform.TLut (idx) .Text = Str(dummyl) & "," & Str(dummy?2)

‘Print #1, "LUT(idx*2)=", Lut(idx * 2), "Qummyl=", dummyl,
"LutI=", Lutl

'Print #1, "LUT(idx*2+1l)=", Lut(idx * 2 + 1), "dummy2=",
dummy2, "LutQ=", LutQ

‘Yeo's output of intermediate results

‘flexform.TPhi (idx) .Text = Hex(Lut(idx * 2)) & "," &
Hex(Lut({(idx * 2 + 1))

'sumI = sumI + twoComplement2Float (Lut(idx * 2), 8) *

Gain (idx)

'sumQ = sumQ + twoComplement2Float (Lut(idx * 2 + 1), 8) *
Gain (idx)

Print #1, "idx =", idx

Print #1, "LutI("; idx; ")=", " ", Lut(idx * 2), "LutI=",
LutI .

Print #1, "LutQ("; idx; ")=", " ", Lut(idx * 2 + 1),

"LutQ=", LutQ
Print #1, "Gain("; idx; ")=", " ", Gain(idx)
Next idx

‘flexform.TSum(0) .Text = Str(sumI)
'flexform.TSum(1l) .Text = Str(sumQ)
'‘flexform.TSum(2) .Text = Stxr(0)
‘flexform.TSum(3) .Text = Str(0)

‘Print #2, sumI
'Print #3, sumQ

'‘Read back gain block outputs (I channel - 11 bits)

tmp = 13

For idx = 0 To 2
MSG = write_data(feedback, (tmp + idx), 2)
MSG = read_data(feedback, GainOutI (idx), 2)

GainOutI (idx) = GainOutI(idx) And &H7FF
‘GainOutIdec =
vVal (Format (twoComplement2Float (GainQutI (idx), 11), "##.###"))
GainOutIdec = twoComplement2Float (GainOutI(idx), 11)
Print #1, "GainOutI("; idx; ")=", GainOutI(idx),
*"GainOutIdec=", GainOutIdec
Next idx
‘Read back gain block outputs (Q channel - 11 bits)
tmp = 16

308

For idx 0 To 2
MSG write_data(feedback, (tmp + idx), 2)
MSG = read_data(feedback, GainOutQ(idx), 2)
GainOutQ(idx) = GainOutQ(idx) And &H7FF
'GainOutQdec =
Val (Format (twoComplement2Float (GainOutQ (idx), 11), "###.###"))
GainOutQdec = twoComplement2Float (GainOutQ(idx), 11)
Print #1, "GainOutQ("; idx; ")=", GainOutQ(idx),
*GainOutQdec=", GainOutQdec

‘Read back sum values (modified code by Stig, 2 Aug -99)

tmp = 9
finalAccI = 0
finalAccQ = 0

'Read back sum values (I channel - 13 bits)

MSG = write_data(feedback, tmp + 0, 2)

MSG = read_data(feedback, finalAcc(0), 2)

finalAcc(0) = finalAcc(0) And &H1FFF

dummy3 = Val (Format (twoComplement2Float (finalAcc(0), 13),
"HEHE L HEHE)) :

'flexform.TSum(0) .Text = Str (dummy3)

finalAccI = twoComplement2Float (finalAcc(0), 13)

finalAccI_NEW = numFormConv({finalAcc(0))

flexform.TSum(0) .Text = Str(finalAccI)

Print #1, "finaldcc(0)=", " ", finalAcc(0), "finalAccI = ",
finalAccI ' ,
Print #1, " - To test the new numFormConv function®,
"finalAccIN = ", finalAccI_NEW

Print #2, finalAccI

'Read back sum values (Q channel - 13 bits)

MSG = write_data(feedback, tmp + 1, 2)

MSG = read_data (feedback, finalAcc(l), 2)

‘Print #1, "TTTEEESSSTTT finalAcc(l) = ", finalAcc(l)

finalAcc(l) = finalAcc(l) And &H1FFF

dummy4 = Val (Format (twoComplement2Float (finalAcc (1), 13),
"REHE . HHEE))

'flexform.TSum(l) .Text = Str(dummy4)

finalAccQ = twoComplement2Float (finalAcc(l), 13)

finalAccQ_NEW = numFormConv (finalAcc(l))

flexform.TSum(1l) .Text = Str(finalAccQ)

Print #1, "finalAcc(l)=", " ", finalAcc(l), "finalAccQ=",
finalAccQ

Print #1, " - To test the new numFormConv function®,
"finalAccQN = ", finalAccQ NEW

Print #1, "-—-—=-~-——--——mm e e e s e oo oo — oo oS mmomoo e

Print #3, finalAccQ

309

'flexform.TSum(2) .Text = Str(0)
'flexform.TSum(3) .Text = Str(0)

‘tmp = 9

'For idx = 0 To 1

! MSG = write_data(feedback, tmp + idx, 2)

! MSG = read_data(feedback, finalAcc(idx), 2)

! finalAcc(idx) = finalAcc(idx) And &H1FFF

' dummy3 = Val (Format (twoComplement2Float (finalAcc (idx),
13), "##.###"))

' Print #1, "FINALACC(idx)=", finalAcc(idx), "dummy3=",

dummy3
! flexform.TSum(idx) .Text = Str (dummy3)
! finalAc = sumQ + twoComplement2Float (GainOutQ(idx), 11)
‘Next idx
'‘Print #2, finalAcc(0)
'Print #3, finalAcc(1)
flexform.Clock.Text = Str(batchCnt) + "," + Str(intraPulseCnt +
1)
Next intraPulseCnt 'end intra-pulse loop
Next batchCnt ‘end batch loop
Close #1
Close #2
Close #3
End Sub

Public Function twoComplement2Float(a As Integer, nbits As Integer) As (
Double 'modified by Stig Ekestorm, 4 Aug -99 }
Dim dummyl, dummy2, dummy3, dummy4 As Integer

dummyl = 2 ~ (nbits - 1)
dummy4 = 2 ~ nbits
dummy2 = dummyl - 1
If (a >= dummyl) Then ' negative number test
dummy3 = dummyl - (a And dummy2)
twoComplement2Float = -1 * dummy3 / (2 ~ 7) '/ dummyl ' (divide by
128 to put the decimal point at the right position)
Else

twoComplement2Float = a / (2 ~ 7) '/ dummyl '(divide by 128 to put
the decimal point at the right position)

End If

If a >= 2 *~ nbits Then
twoComplement2Float = -1111

End If

End Function

Public Function numFormConv(a As Integer) As Double 'created by Prof.
Fouts, 4 Aug -99

Dim tempvar As Integer

tempvar = &H1FFF And a

If (tempvar >= 4096) Then ' negative number test
tempvar = tempvar Xor &H1FFF
tempvar = tempvar + 1
numFormConv = -1 * tempvar / (2 ~ 7)

Else

310

numFormConv = tempvar / (2 ~ 7)
End If
End Function

311

THIS PAGE INTENTIONALLY LEFT BLANK

312

APPENDIX C. SCHEMATICS AND SYMBOLS

This Appendix contains all elements created in the five different design levels.
Every Figure has two parts. The upper part shows the circuit as build in S-Edit, where the
lower part shows the corresponding symbol. The regular Tanner library elements are not

listed and can be found in the Tanner tools Library manual.

1. LEVEL 1 MODULES

[PD="24*1") (AS=66*1*1"]
[AD="66%11"] [ps='24*1"]

T0 PRTEY T0 w2800
_I1t]l : ='7.1|
(4=1] 1)

(B5="24%1°] {AD="66141")

ms='660101) {m="24%1')

Figure 98. P-FET and N-FET Transistor Definition

N-Fet P-Fet

T0 ‘ R TEY 70 W='2801
L=t 9‘(% L='741"

Figure 99. P-FET and N-FET Symbols

313

PuxB >

™
iy
ki)

Lt E .t
e Ei :::: > v
sr 0 wan
v G vt

Logic Equation = (MuxA*notSelect + MuxB*Select)

Figure 100.

Sel

Mux2 Circuit

[TPR OUTPUT=]

Figure 101. Mux2 Symbol (modified from Tanner’s version)

314

ki

=
—

I

Figure 102. Register Cell Circuit

Iome

HLD LD SR SL

SRDi »— SRDi
Di »—

@

Reg Cell 0B[— QB
SLDi—e(SLDi]

D1

CLK

;

Figure 103. Register Cell Symbol

315

Reg iSter Cell Wi th CLR aster Latch—l I_Slave Latch

— Do, D

CLE ™
-/
N &
~ Y
T
LT | R e T
{©
The combination of P-FET and N-FET is called a transmission gate.
e P-PET pulls output high, N-Fet pulls output low
Point M is the transission between the master latch to the slave latch.
{::3——4 This setup is a positive-edge-triggered flip-flop that gets fed by a input tree.
The input tree produces only one valid output at a time as described in the operational notes.
N
Operational Note To Make N-Bit Register:
o When clock changes from low to high, * use n cells
exactly one input of HLD, LD, SR, or * connect Q of cell n to SRDi of cell n+l
SL must be high, the other 3 must be low. * connect Q of cell n to SIDi of cell n-1
T If all control inputs * connect HLD, SR, SL, LD, and CIX in parallel
are low, the output is cleared (low}. * there will be n Di inputs; one to each cell
* there will be n Q and n QB outputs
! SRDo = shift right data out
SLDo = shift left data out
1_\"":\3—4 SIDi = shift left data input
SRDi = shift right data in
I HLD = hold (do nothing, Q tx=Qt, notQ th=notQ t)
SR = shift right
SL = shift left
Di = data input
- LD = load data
H‘_’::}—« CLK = clock (positive edge triggered
Q = data output {consist of SLDo and SRdo)
T QB = inverted data output

Figure 104. D-Bit Register Cell with Synchronous Clear

i

= a w w

SRDL Yo sui I
D Reg = =08
ni N ;

-]
2 3 5 B
O\ QAQ

LDB

/m (M
a 'q
=] TR L2

Figure 105. D-Bit Register Cell Symbol

[TPR OUTPUT=]

316

D & -
2

A{: invA B[invB Cil: invCi

Figure 106. Adder Cell Circuit

> ©

LY Yo
:

Figure 107. Adder Cell Symbol

317

LEVEL 2 MODULES

g 99

v

|

HLD LD SR SL HLD LD SR SL
SRDi 0 " LsrDi Q]
Reg Cellosi— Reg Cellgr—
D1 SLDi— > SLDi
CLK CLK

{o1>

[an
—
ja s

/N @
Bl

Figure 108. 2-Bit Register Circuit

—
—l

[a 4
(@5}

— |
wm o

HLD

D1 >®——— Dil

[=]
-

o
w2

DO J>—{> 2-Bit Reg ool

K

8 9 Q0)QO

M

Figure 109. 2-Bit Register Symbol

318

< SLDi

>

HID LD SR SL HLD LD SR SL
SRD ¢
_Reg Cello— Reg Cellosf—
Di Di
SLDi—
ax .

SLDil—

HID LD SR §

SRDL
_Reg Celle
Di

L

Q

SLD

D

Figure 110. 4-Bit Register Circuit

b 00

o

@4

b Q1

b 02

SLDi SRDi
DO D0 Q0
D1 Dl , o1
¥) 4-Bit Reg
D3 03 03
CLK SL SR LD HLD
= HEEE

D03

Figure 111. 4-Bit Register Symbol

319

<&z

B DX W e 8 R DR S
- Q P [} =1 0 - 0
_ Reg Cell @t Reg Cell @t Reg Cell®m Reg Cell ®
o i f— o s |- u o & o
QK GX X ax
| | |]

e e

- | [-=
3|2
n||lwm
D0 D0 SLDi SRDi Q0
D1 D1 01
D2 >—H-B1t Reg
D3 D3 03
D4 D4 CLK SL SR ID HD (4

A=
LN TN

CLK »—
HLD »—

Figure 113. 5-Bit Register Symbol

320

L__ - -
@E @ s S TG 1 T 0T 45 7 A s |
s 0 s 0 1048 o oS °
1180 boyed|-+ 1180 Hoyed—= 1180 baysdl-e 1180 Dayw
w ! w 10 w 1o W W
n n m mn
]] |

Figure 114. 8-Bit Register Circuit
321

D7 D6 D5 D4 D3ID2 DI DO

CLK

S S
SLDi

8-Bit Reg

LD
SRDi

Q7 06 05 o4 03 Q2 Q1 Q0

N IJ\ D). o o) D).

O[O
Ot O Ot O Ot O O Ot

>

O

v

>

o

-

>,

v

~

v

b10 a—o 010

E
37,

Figure 116. 11-Bit Register Symbol

322

SLDi
SRD1

Figure 117. 11-Bit Register Symbol

323

e eew LIRS
.

LIS weww e e e e e e e o wwes e LLIE
pen - M =~ — o .,JIIJ:- e i . s [= . o d—l o o H—oe] 3 s ' - g . .
110 Gaxe 170 tapgs 10 o] 150 G 110 Gax] 10 g~ 100 Gapy 150 g~ 10 Gagep~ 1RO Gagege 170 Bage 1RO Ggop 10 tae TR0 Gaged 10 tand 1O gl
d —... P e _.. paa _.:. ol _1.. pa e _.. M _.. N e 10 ~... o S T T - o
w o Y e P n P P o ’ @ n ®» P w
1 l 1 i 1 1 1] i !] |)| | 1 | 1]
3 & 8 3 3) b ¢ 3 [& 6 8 8 ¢

324

Figure 118. 16-Bit Register Circuit

v

)

C

"

C

o)

N

>

v

16-Bit Reg

LILLI AL LTl]

Figure 120. 5-Bit Adder Symbol

325

Y
B
C

X
1AX

Y
B A \/
7 |

S H{82)

0 s
Ik

Y

50>

A,
A \/ B A \/
T

Figure 121. 5-Bit Adder Circuit

326

j

L s G()
o §1

Adder
®’! B ¥ B 8 \u g

) N P N N N S P

16 Bit
B BB B A
55 5 &

8

EEE‘Eggaaazazzg\/EEE*EEEmmgmmEBmm
w&lzs

Overflow

A4

Overflow ¢

" Figure 122. 16-Bit Adder Symbol

327

Eo{® ©

t o {50
Eo—< 3§
ET-{7 ©

» LED
ED< §
Ez>-{7 0

v LT
B 8
g[8 ©

v HE3>
B §
Ea>{7 U

@ 5o
B~ 3§
g7 0

v 55>
B¢ 3
Ee>{8 ©

A X
< o
g% 0

v HE7D
E><
g7 0

v 58
Ee—{< §
ES>® ©

{55
< §
Eio® O

» HE1o>
EIo—< §
gz ©

o T
EID-< §
g7 ©

» 532>
ETz>< §
g7 ©

v HEI>
E—< 8
ETo—® 0

v 512>
Eio—¢ 8§
gis>-@ O

wi{sis
EIe—< §

Figure 123. 16-Bit Adder Circuit

328

O inv_a4l

O— inv_A42

T

O— inv_A3l

O A3l

@_(_I>O o232

O— inv_A21

-
=
|<:
b
o
S

O— inv_A22

By

O
&

O
S

g

O~ inv_All

ot
=
'<
o
—_
8O-

O Al2

g

O— inv_A01

[
(=]
I<
oo
o
[

é

O— AQ1

Figure 124. 5-to-32-Bit Decoder Part 1 Circuit

329

ma ¢ inv_Adl >
:
imm [—4 inv_A32

Bl

o
e
5
Q
. @
S
g
()]
T
&
g =
]
R
.
.
we —q inv A02 >
:
Ml A0l

Figure 125. 5-to-32-Bit Decoder Partl Symbol

330

(%Y

mmmmmmwmmmmmwzmm mmmmm?mmmmmmmm

\.f 0

331

| .ﬁ r*. mnBnnlnnlin nEnnBnulnulinnBin I*..
w|..._ l.i. .

ov A4l
fiov A1 >
Erv A31 >-
v A21
01
B>
2D
ED
TR
v A1l
B
1
01
BID>
B>
B>
D>
ATz >
>
2
02
2>
B>
D>
>
Brv A12 >
B
2
2
B>
B>
>

Figure 126. 5-to-32-Bit Decoder Part2 Circuit

"o
T
v
X
vi

v ¥

3]

v)

0 D
il)
W
timiz >
w3 >
:
ST o FET D
s D
il
By A w v -
ve 48 D
RE D ra ey
o 4 D
I B
vio -4 Wl0 >
EREH ﬁ ne ¥y v W10
8‘ v
(OB TV
B> g i T AT
vl 4W3 >
@—- e 8 vk
N D
a2 ‘T’ e w1 v WIG
-
r wie 4 WlE >
Sl o EX D,
- v VO
@ it P Tov W18
- v 4320 >
va [—4 Wl >
. vui Tov W21
G weats L
- [T = T7 e
Bz o
vas 4 W5 D
vy
vae 6

i

G

:

Figure 127. 5-to-32-Bit Decoder Part2 Symbol

332

-4 4 Y ™] N N ~ Nyl ' N R
7 ¥ A r ﬂx.tvl \é..lﬁ o Y _._\Lu_y ~ m
A" g 7 7 1 7 X I
. F. h o 5 1 o =
~ b 3 - < o 4 - - < 4 ~ L - o = - < - ~ o < - e
N k 3 l o i 4 o 4 I ™ o E b y -3 > < - 9 A 4 = o
b . 7 P - - - o i - - a . o & ~3 - ~} =} < < N < 4
A AT ™ N N 4 ‘.ﬁ.L K2l A] o I i\ N
S Ny - o r] g I o I I N o L H ~ - b ~} < >
7 - - o & ~ - e < > P - b b o o - ~ o pr ~ o i ~ ... &
7 ol ™ o ~ = -~ - ~ ~ ™ N o J ™ B e - -~ u - . ¢ -~ 4 -
[- - Y N - N .. o . < < 5 - . 7 5 " - b . ~ L 4 tr
\- u ™ i ™ ™ o ¥ -~ ™ 4 o - " ™ b - of ¥ - - \ ™ ¥ -
- A SRR R ;i Y i a
7 of ¥ A1) N o B | b W N .. 1 ' ol J | a3 o
ﬂcﬁ K g SV T P LN Y yﬂ vé\ 1 1 _z.c\. 1 ﬂ\m_v, M.t? ?ﬂ f E.. ¥ ..mf_p‘.f .:f_o.. Ty

Figure 128. Programmed LUT Module Circuit

333

w4 sin) >

inl >
wl—4sin2 >
wl—sind >

st [

w[—4dsind >
sind
siné

ey f—
prrt Gy a4 sin?

=

04 -I0T

8 a2 s & g 8

334

inv_W21
Env_W25

inv.

Figure 129. LUT Symbol

Baind

ot
ot
ot
ot

ot

3 3)|z3 3|23 2|=3 2[z32 8|z

xex_fan

ot

ERF I AN RN I

ozt

ot

Mux_out=A*Sel+nSel*

je 3

ainl * + » + +
e amnpnnyiynppipiyanliE
33 8|23 8|f{z32 8[[z3 3f[z335||=3 3f[z3 2f|z3 3[f=32|z373
:7 e N2 B ha oz s By hn o e Xox,tas ox B fan Xx tin x has
H F 4 H F - F £ &

Figure 130. Gain-Shifter Circuit

Gainl | Gaind AT A6 A5 A
@gggiiigml Galn Shi

out9

Figure 131. Gain-Shifter Symbol

335

3. LEVEL 3 MODULES

1o b e Lae LS P o oM

o o ot
K2
=2 Clock 1
Jy v | £
o dhte :h B Clock 2
Syninine=Ry -
— — LU
=EERT lus =5 P -51 '..?‘"-“’i'rr;l
TTHITT T 1
= - , =l e B
: }u;!:am '] R ;u;l;':l:;(" - E Clock 3
8¢ Registzr Bits for the Scan Path L=
= S ' AL e |15
.-_;:;: N .-] : letitng 4 5 Clock 4

E —— G

- == |

S+
o —
A= ee—
E—

Figure 132. Tapline Circuit

336

SEEE)

in_valid

2
=
o
=
-3
<
3

Range_b:

Pt Tap lowxlS g a s a a i b1 - Top_anils
El
1 m lowié g g‘ g é g E 3 E L E,,p_mm
—| o 1wy : 1 o013
- Gain DRFYM Phase
LSB ----> MSB §
p—oi Tm lowell Tap_alll
P Tap lowel0 Tap_anil0
—] T lows Tap_anld
—{ o lous o Teann
] 2
i T 2?7 a 24 Tap_inl?
A mowes B Al Syt
b o 1oy & : Y e
-)..in]
o Tap Line o
— o o Tp_anD
—1 T low2 T2
@ @
| mea @ Phase Data £ mam
— Tplowd A A Teann
! |
'
b 0 owts a‘__. Phase Increment ala To_u1s
b Tooen 92 K2 e
31 T ouen T Top_angt3
1 mo a2 Top_ann2
1 o et : . Tt
e} Gain Shift >
p—et Tap (P20 a =1 Tp_anQie
b o ey ‘S“ B o
-t
b o ot Top_8
[=] (=]
bl T 7 Adder T
P o tues T8
] o s Register T
et T ot Tap_1nQé
— T o Top_an
b o 2 o
—1 T w1 To_inl
= O - Scan Pat.h Test fomd
3 5 - q
valid_result_out ¢— wiid rwicow ' L5 X alid et in valid_result_in
Overflow_out overtion Out e oW Overtion.In o Overflow_in

S P_Test. Lout §

S_P_Test_Rout

Figure 133. Tapline Symbol

337

LEVEL 4 MODULES

4.

338

SN TN TR = S T T TR LR TR T TR = T I TR = O L T = T TR = S N TR N TR
B 135 E ! ! Iz 113 1313, 1
e 2urg dego ot 2u1n des g o durt dery - aut desg - aur dery e = ot aury degg i v deyg ot o= it aury deyyg
a3 AT 5 o] R 5 i — ! . SR B 5 it RS & i R i .
=i - s - 1= - B - PG - s - iH: - {:Ha -
= - 1 Ha w E:=H . 1 HD - 1H3 - 13 z I = el - 13H3) - '
= i pre == [il oot = food i 5 = == e = g 1t s = ol Tt =R i "

%

JOT

Figure 134. Supertap Circuit

wopm

=

N
e
ore
[
oy
sxro
e
oo
ey
T
ey
e
fnren
e
e
swnrey

orw
Ty
e
nrey
mrm
ro
v
v
et
infe
nrm
e
L
aore
Moy
s

LS8 > ¥SB Q Imput

I Input

Juajxg jebrey

1

389 e

£ 03 ¢ deg 103 3 uo_: aseyq

de] xadng

SN <---- 851
28°YJ WA

11111

T M wild

. 1SB ----> MSB Q Output

1 Output

T
et by
iy
2wy g
Siwet oy

nge_bin valid

gelta_Phase_inc

D Phase_inc

Supertap Symbol

Figure 135.

339

5.

LEVEL 5 MODULES

o

Extent_Tapl6
Extent_Tapl7
Extent_Tapl8
Extent_Tapl9
Extent_Tap20
Extent_Tap2l
Extent_Tap22
Extent_Tap23
Extent_Tap24
Extent_Tap25
Extent_Tap26
Extent_Tap27
Extent_Tap28
Extent_Tap29
Extent_Tap30
Extent_Tap3l

Extent_Tapl6
Extent_Tapl7
Extent_Tapl8
Extent_Tapl9
Extent_Tap20
Extent_Tap2l
Extent_Tap22
Extent_Tap23
Extent_Tap24
Extent_Tap25
Extent_Tap26
Extent_Tap27
Extent_Tap28
Extent_Tap29
Extent_Tap30
Extent_Tap31

P

[TTT

[TTTTTTTTIfY

Tgt_Extent_in0
Tgt_Extent_inl
Tgt_Extent_in2

Tgt_Extent_in0
Tgt_Extent_inl
Tgt_Extent_in2

Toplevel 5-32-Bit Decoder

Extent_Tap0 ¢— Extent_Tap0 Tgt_Extent_in3 Tgt_Extent_in3
Extent_Tapl ¢— Extent_Tapl Tgt_Extent_ind Tgt_Extent_ind
Extent_Tap2 ¢— Extent_Tap2
Extent_Tap3 ¢— Extent_Tap3
Extent_Tap4 ¢— Extent_Tap4
$— Extent_Tapb
Extent_Tap6 ¢—{ Extent_Tapé
Extent_Tap7 $— Extent_Tap7
— Extent_Tap8
Extent_Tap9 ¢— Extent_Tap9
Extent_Tapl0 ¢— Extent_Tapl0
Extent_Tapll ¢~ Extent Tapll
Extent_Tapl2 ¢— Extent_Tapl2
Extent_Tapl3 ¢— Extent_Tapl3
Extent_Tapl4 ¢— Extent_Tapld
Extent_Tapl5 ¢— Extent_Tapl5

Figure 136. Toplevel 5-to-32 Decoder Symbol

340

X
.
Bl f——
W p—
»r_L) pr—
. 0)}——f
PETR w—
13 fmd

-t

a v,

8 .

b=

o3

P o f—

o

vy

v v] pe—
v an——
PYTR S—
RTR e—
uray
ar_) pe——
A0 fe—
TR —

WAt

wad

I

PURYH

avan

5t

an

wan

an

an

PURYH

a

3t}

aan

wan

I

%

Tl

5-t0-32 Decoder part 2

Y0 |—0

1ip—o

o

|

-‘.
;.
-‘.
|

W

D
|)

|
D
)
-A'
|)1
.‘.
[
)
-“
)
i
D
D:
|)

D
D

W
D

.‘ :
-"
D
)

LK
g g B #

i
g

1]

¥
3

Extent_Tepld

Extent_Tepl5

- Tapl6

Extent Tapl7

RUMELL

JIMBIL

Tap3l

Figure 137. Toplevel 5-to-32 Decoder Circuit

341

Toplewd $-32-ht Dacoder

it B

namnyl sl R HH
Rg Al U -
=1 =
=1 e =
— i ‘§
ey =
=] & =

- —

LIS
= 3 o .
= w it
= 3 & Ty
= gy i
=i 5 -
=37 &
= 3 ;
|
S1isieselerarer 1833333 9800neee}
iy gy
= 1
=1

3 3
=1 E =
::. B

& .
= & Q!
= []
= g SRR
= ~ i

: 2 i
= i E
= - e 2

N i

{1
!

T g
= T
= & =
= # =
- gm
P § 8
PET 0,
s d
—- & =

B T I N EE R T T
- Mpasse [T

BRpnla D Wigsea

LR L
LU EOR]

V-
raiaanaagare AN

1

[af™

free o

05 Oct 1999

— ;g
) B =
1 =
<
L
‘183 S
., e =
zj & =
= ® =
i!!l;;:!!H!I;.E—II:HNH;.H.J‘IH]:

Figure 138. Toplevel Circuit

342

10.
11.
12.
13.
14.
15.
16.

17.

LIST OF REFERENCES

Donald R. Wehner, “High Resolution Radar,” 2™ Edition.

R. M. Nuthalapathi, “High Resolution Reconstruction of ISAR Images,” IEEE
Transactions on Aerospace and Electronic Systems,” Vol. 28, No. 2, p. 462ff, April,
1992.

P. E. Pace, Surratt, R. E., Yeo, S.-Y., “Signal Synthesizer and Method Therefore,”
Patent File Attorney Docket No. 79,429, Sept. 1, 1999.

T. T. Vu, et al.,, “A GaAs Phase Digitizing and Summing System for Microwave
Signal Storage,” IEEE Journal of Solid State Circuits, Vol. 24, p. 104, February,
1989.

Mathwork Inc., Homepage for MATLADb, http://www.mathworks.com.

Yeo, Siew-Yam, “A Digital Image Synthesizer for ISAR Counter-Targeting,”
Master’s Thesis, Naval Postgraduate School, Monterey, September 1998.

Naval Research Laboratory (NRL), http://radar-www.nrl.navy.mil/Areas/ISAR.
Raytheon Homepage, http://www.ueci.com/es/esproducts/ses137/ses137.htm.
MAX+PLUS II Getting Started version 8.1 (5.4 MB).

Altera Max+Plus IT Online-manual.

Altera Homepage, http://www .altera.comy/.

Visual Softwaré Inc., Statecad 5.0 and Statebench printed manuals.

Visual Software Solutions Inc. Homepage, http://www.statecad.com.

SimGen Online manual.

Mentor Graphics Homepage, http://www.mentor.com.

AMI FPGA/ASIC Design Techniques Seminar, April 16, 1999.

Tanner Tools, printed manuals for LVS 8.02, Nettran, General Instructions for
Tanner Tools.

343

THIS PAGE INTENTIONALLY LEFT BLANK

344

INITIAL DISTRIBUTION LIST

Defense Technical INformation CENLETuuvvuieererrmeireereremrereiessrreerennesssseseesessaes 2
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox LIDIaryccccceeveieceiicrniinireiiinnitinnntinnsencisnsessissesesssessssesssensses 2
Naval Postgraduate School

411 Dyer Road

Monterey, CA 93943-5101

Chairman, Code ITWi.ue eeeceieeeeeirerieiserreeerertnneseeeseersnnssessssesesnsssseresessssasssssssrenssnn 1
Information Warfare Academic Group

Naval Postgraduate School

Monterey, California 93943-5121

Chairman, Code EC.........uiiiriiniiiiiitiiceincitrec ettt 1
Department of Electrical and Computing Engineering

Naval Postgraduate School

Monterey, California 93943-5121

Dr. Phillip Pace, Code EC/PCcovivimiiiiiiierectiennnccnenercsnse s s senans 2
Department of Electrical and Computing Engineering

Naval Postgraduate School

Monterey, California 93943-5121

Dr. Douglas J. Fouts, Code EC/ES.........cooiieteree et 1
Department of Electrical and Computing Engineering

Naval Postgraduate School

Monterey, California 93943-5121

Commanding Officer Naval Research Laboratoryc.eoooeiiiiiiinieninnninnen. 1
Attn: Dr. John Montgomery

Code 5700.00

4555 Overlook Avenue, S.W.

Washington, D.C. 20375-5339

Commanding Officer Naval Research Laboratorycooveeveereiecceneccncnniccnn 1
Attn: Mr. Alfred DiMattesa

Code 5701.00

4555 Overlook Avenue, S.W.

Washington, D.C. 20375-5339

345

10.

11.

12.

13.

14.

15.

Commanding Officer Naval Research Laboratory
Attn: Dr. Joseph Lawrence

Code 5740.00

4555 Overlook Avenue, S.W.

Washington, D.C. 20375-5339

Commanding Officer Naval Research Laboratory
Attn: Mr. Gregory Hrin

Code 5742.00

4555 Overlook Avenue, S.W.

Washington, D.C. 20375-5339

Commanding Officer Naval Research Laboratory
Attn: Mr. Dan Bay

Code 5742.01

4555 Overlook Avenue, S.W.

Washington, D.C. 20375-5339

Commanding Officer Naval Research Laboratory
Attn: Mr. Jon Uffelman

Code 5740.00

4555 Overlook Avenue, S.W.

Washington, D.C. 20375-5339

Commanding Officer Naval Research Laboratory
Attn: Mr. Brian Edwards

Code 5760.00

4555 Overlook Avenue, S.W.

Washington, D.C. 20375-5339

Commanding Officer Naval Research Laboratory
Attn: Mr. Robert E. Surratt

Code 5760.00

4555 Overlook Avenue, S.W.

Washington, D.C. 20375-5339

Commanding Officer Naval Research Laboratory
Attn: CDR Dan Gahagan

ONR-313EW

Code ONR-313

800 North Quincy Street

Arlington VA. 22217-5660

346

16.

17.

18.

19.

20.

21.

22.

Commanding Officer Naval Research Laboratoryccoeeecieeeniiienneinncecnnnnne 1
Attn: Dr. Harry Hurt

ONR-313EW

Code ONR-313

800 North Quincy Street

Arlington VA. 22217-5660

German Ministry 0f DEfencecocuveiiimininniieniinientntesttnne et 2
FuSIS

Postbox 1328

D-53003 Bonn

Germany

Amt fiir Studien und Ubungen der Bundeswehr.........ccouvceeiniierrencucnennenenenenene, 2
Postbox 3191

D-51531 Waldbrdl

Germany

Universitit der Bundeswehr MUNCheno.ueeiiiiiiiiiiiiieeecciiniecn 1
Werner-Heisenberg-Weg 39

D-85577 Neubiberg

Germany

Universitit der Bundeswehr HAmbUrgccoovveviiieimnentieniiceeccneecieniicene 1
Holstehofweg 85

D-22043 Hamburg

Germany

German Ministry Of DEfencecuvieneenrenienieneninenetntsicicnnciciinnencienens 1
Naval Staff III 1

Plans & Policy, International Cooperation

Captain Heinrich Lange

Postbox 1328

D-53003 Bonn

Germany

German Navy / Fleet Command — OP 3....cooriirininiinciiniiniiinniniinecieinenennes 2
Captain Axel Seemann

Postbox 1163

D-24956 Gliicksburg

Germany

347

23.

24.

25.

26.

27.

28.

Swedish Armed Forces HeadqUartersoccuveueeeervevseresseesesesessssessossss 1
HKV/KRIL LED

107 85 Stockholm

Sweden

Swedish Army Technical SChOOL..........ccuviveeieereereeeereeeeeee e es e e e 1
ATS

831 85 Ostersund

Sweden

Swedish National Defense COLEZEuvurrrrrmemmniieieeeeeeeeeeeeseeresesssessesesesens 1
Forsvarshogskolan
Box 27805

115 93 Stockholm
Sweden

Swedish National Research EstabliShment.oveveeeeveveeeeeeeeeieeeeeeeeeeeee, 1
Forsvarets Forskningsanstalt (FOA 7)

Institutionen for telekrig (71)

Box 1165

581 11 Linkdping

Sweden

LTC Stig R.T EKESIOM.......cueetrirrererreteneereserescncoseseseeneseseseeseseseesssssesssneseseens 2
601 Pine Street
Monterey, CA 93940

LCDR ChriStOpPher Karow..........ccecevueerueemeeesresereesseesessissssesesssscesesessssssssssssnns 2

1065 Harrison Street
Monterey, CA 93940

348

