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ABSTRACT 

The subject of this thesis is a digital image synthesizer (DIS), which is especially 

useful as a counter-targeting signal repeater, i.e., for synthesizing the characteristic echo 

signature of a pre-selected target. The DIS has a digital radio frequency memory (DRFM) 

and associated circuitry, including digital tapped delay lines and a modulator in each 

delay line to impose both amplitude and frequency modulation in each line. A unique 

property of the digital image synthesizer is its ability to synthesize false targets using 

wideband chirp signals of any duration. The system-on-a-chip uses a scalable CMOS 

technology that increases the bandwidth and sensitivity of such a repeater over prior 

analog-based systems. The application-specific integrated-circuit reduces the noise of the 

repeated signal, reduces the size and cost of such a system and permits real-time 

alteration of operating parameters, permitting rapid and adaptive shifting among different 

types of targets to be synthesized. 
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EXECUTIVE SUMMARY 

The subject of this thesis is a digital image synthesizer (DIS), which is especially 

useful as a counter-targeting signal repeater, i.e., for synthesizing the characteristic echo 

signature of a pre-selected target. The DIS has a digital radio frequency memory (DRFM) 

and associated circuitry, including digital tapped delay lines and a modulator in each 

delay line to impose both amplitude and frequency modulation in each line. A unique 

property of the digital image synthesizer is its ability to synthesize false targets using 

wideband chirp signals of any duration. To generate the false target, the user can program 

the target extent (number of taps) and the amplitude and Doppler frequency of each 

range-Doppler cell within the image. The algorithm of the DIS has been computer 

simulated and has verified the theory behind it. A concept demonstrator has been 

developed using a field programmable gate array technique. The DIS has developed 

further toward physical implementation as an application specific integrated circuit. The 

system-on-a-chip uses a scalable CMOS technology that increases the bandwidth and 

sensitivity of such a repeater over prior analog-based systems. The application-specific 

integrated-circuit reduces the noise of the repeated signal, reduces the size and cost of 

such a system, and permits real time alteration of operating parameters, permitting rapid 

and adaptive shifting among different types of targets to be synthesized. A scan-path test 

capability is also included to allow intra-chip signal analysis and verification. 
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I. COUNTERING THE SENSOR-SHOOTER ENGAGEMENT 

Future Navy electronic warfare (EW) systems must be designed to operate in the 

RF environment to provide a layered EW defense and also to serve as a fully-integrated 

shipboard combat system sensor. The next generation EW systems must also provide 

threat identification and a complete situational awareness to allow the quick reaction 

modes required to counter the modern anti-ship cruise missile (ASCM) threat. Figure 1 

shows the sequence of events taken by the enemy sensor-shooter in order to place a 

missile on a target (hard kill). A typical sequence begins with the enemy's electronic 

support surveillance sensor detecting the target of interest (e.g., with a long range over- 

the-horizon targeting radar). After acquiring a number of hits on the target, one can 

identify the target by using an additional high-resolution sensor, such as an airborne 

inverse synthetic aperture radar (ISAR) imager. This type of radio frequency (RF) sensor 

forms an image of the target that can be used for recognition and identification. 

Surveillance 
Acquisition 

and Identification 

Counter- 
Surveillance 

Counter- 
Identification 

HARD KILL 

Engage 
Decision 

Weapon 
Selection 

and 
Launch 

Mid-Course 
Guidance 

Acquisition 

Counter- 
Targeting 

Counter 
Lock-on 

> 

Terminal 
Homing 

Counter- 
Terminal 

Figure 1. Sequence of Steps Necessary to Land a Missile on a Target 

Depending on the target identification, the decision to engage the target and 

launch a weapon (such as an ASCM) is made using the inputs, for example, from the 

1 



ISAR imager. After the ASCM is launched, acquisition and terminal homing of the 

missile is again accomplished using the missile's ISAR. Use of an ISAR in the terminal 

phase of the missile allows good aimpoint accuracy and greater probability of kill. 

To avoid the ASCM hard kill, one can use a number of countering techniques 

including counter-surveillance, counter-identification, counter-targeting, counter-lock-on 

and counter-terminal. Counter-surveillance and counter-identification include the use of 

low-radar cross-section materials, stealth and deception devices. Counter-targeting 

includes the use of active electronic attack (EA) and the use of decoy repeaters. Counter- 

lock-on and counter-terminal techniques consist of EA, distraction and seduction chaff as 

well as decoy repeaters. 

Counter-identification and counter-targeting systems can begin the electronic 

attack well before the opposition launches any missiles due to the generation of a lower 

probability of target acquisition. Since acquisition systems and future missile seekers will 

employ pulse-to-pulse spread spectrum using unfocused SAR and ISAR to improve 

target recognition and decoy rejection, the need for coherent countering of these imaging 

sensors/seekers remains a high priority for EA systems. Countering-identification and 

counter-targeting techniques employ a false target image generated or synthesized with 

the objective of deceiving the imaging radar into believing the false target is a real one. 

Imaging sensors use coherent range-Doppler processing. Consequently, various forms of 

complex modulations must be imposed on the intercepted wideband waveforms in order 

to enable the imager to integrate the false target properly. 

In this report, the design, analysis and fabrication of an all-digital image 

synthesizer for pulse-to-pulse countering of high resolution RF imaging sensors (e.g., 



SAR, ISAR) is presented. The signal processing used in the digital image synthesizer 

circuit is especially useful as a signal repeater, i.e., for synthesizing the characteristic 

echo signature of a pre-selected target. The entire system has a digital radio-frequency 

memory (DRFM) and associated circuitry, including a digital-tapped delay line and a 

modulator in each delay line to impose both amplitude and frequency modulation in each 

range-cell. The use of digital semiconductor technology (0.5/0.35um CMOS) increases 

the bandwidth and sensitivity of the repeater over prior analog-based systems and reduces 

the noise of the repeated signal. It also reduces the size and cost of such a system and 

permits real-time alteration of operating parameters, permitting rapid and adaptive 

shifting among different kinds of targets to be synthesized. The integrated circuit is 

designed so that it can easily be integrated with a number of phase-sampling DRFM 

architectures. 

For completeness, Chapter II provides a brief introduction of ISAR and ISAR 

signal processing. Chapter HI discusses the digital image synthesizer concept and how 

the false target is generated. Chapter IV describes a set of modular Matlab programs that 

is easy to use and maintain for hardware simulation and evaluation of concept 

alternatives. Chapter V presents an Altera field-programmable gate-array (FPGA) 

implementation of the image synthesizer concept. To increase the bandwidth of the 

device, Chapter VI describes the investigation into converting the FPGA design into an 

application specific integrated circuit (ASIC). In Chapter VII, the schematic of an ASIC 

design in scalable CMOS is described in detail. Chapter Vm addresses timing and 

control of the ASIC. In Chapter DC, simulation results are presented including full-scale 

simulation of a radar pulse. Comparison of the results with the Matlab simulation is also 



presented in order to verify the concept and detail the advantages of the architecture. 

Finally, in Chapter X, layout and fabrication issues are discussed. 



II. INTRODUCTION TO 

INVERSE SYNTHETIC APERTURE RADAR 

ISAR is a high-resolution technique for imaging isolated moving targets, such as 

ships and aircraft. The technique used by both targeting sensors and ASCMs closely 

parallels the SAR imaging approach in which the image (or map) is generated from the 

return signals being reflected off the target as the radar moves past the target area. In the 

ISAR technique, the target imaging is generated from the return signals being reflected 

off the target as the target rotates within the radar illumination. To illustrate this duality 

Figure 2 (a) shows a spotlight SAR in which the radar transverses a circular path about 

the target while collecting the return signals (focused spotlight) [Ref. 1]. The radar 

antenna in the spotlight SAR continually tracks the target. Note that the same signal 

returns could be collected if the radar were stationary and the target was put through a 

rotation as shown in Figure 2 (b). 
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a) 

b) 
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Figure 2. Comparison of the Geometrical Relationship between 

(a) Focused Spotlight SAR and (b) ISAR (From Ref. [1]) 



A. RANGE-DOPPLER IMAGING 

The range-Doppler image consists of resolution cells, each containing estimates 

of the target's magnitude and position of scatterers in both range and cross-range 

(Doppler). The orientation of the range-Doppler image is determined by the target's 

rotation relative to the ISAR. The range dimension within the range-Doppler image is 

oriented along the radar line of sight (LOS). Range focusing is based on the range- 

independent point target response determined by the wideband chirp waveform. The 

cross-range dimension of the range-Doppler image is the dimension lying perpendicular 

to the plane contained by the radar LOS and contains the Doppler frequency of the 

resolved scatterers in range. Determining the rotational motion during data collection and 

calculating the compressions for the sharpest focus accomplish the azimuth focusing. The 

Doppler frequency shift produced by a range resolved scatterer is proportional to the 

angular rotation rate 0) and the cross-range distance between the scatterer and the center 

of target rotation [Ref. 1]. 

B. RANGE COMPRESSION PROCESS 

High range resolution ISAR uses an analog-frequency coding technique called 

chirp. A chirp pulse waveform is shown in Figure 3. The transmitted chirp can be 

expressed as a complex narrowband signal 

5,(r)= a(t)e^ = vcct(-)ej2^'+K,2/2) (2.1) 
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where fc is the carrier frequency, A is the linear frequency sweep or bandwidth of the 

transmitted signal, K is the slope or chirp rate (K = A/7), T is the pulse width and the 

instantaneous frequency (time-dependent frequency) is obtained as: 

Instantaneous 
Frequency 

Signal 
Amplitude 

time- 

Figure 3. Chirp Pulse Waveform 

Within the pulse duration T, the instantaneous frequency changes from fc-KT/2 to 

fc+KT/2. The dispersion D or time-bandwidth product of the waveform is D = TA 

[Ref. 1]. 



1. Analog Range Compression Network Example 

The chirp pulse waveform can be compressed using an analog pulse compression 

network as shown in Figure 4. 
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Figure 4. Chirp Pulse Compressed using Analog Pulse Compression Network 

This common form of a pulse compression network is called a phase equalizer and 

equalizes the slope of the linear frequency sweep. The transfer function of the pulse 

compression network can be written as: 

H(f)=eJ2n/K(f-fJ 

The corresponding impulse response can be expressed as: 

h(t)=]H(fy**df 

(2.4) 

(2.5) 

or 

h(t)= UKeJ24f^r-/2) (2.6) 



The complex matched filter output is obtained by convolving the chirp signal with the 

impulse response as: 

S0(t) = h(t)*S(t)= ^j^le^-K^) (2>7) 

The compressed pulse duration of the envelope at the 2/n points is Tc - 1/A (Raleigh 

resolution). The corresponding range resolution is then: 

dr = — (2.8) 
2Ä 

Note the wider the bandwidth of the ISAR chirp signal transmitted, the smaller the range- 

bin size. 

2. Digital Range Compression 

If the pulse compression is performed digitally on the baseband return samples, it 

is possible to control the matched filter transfer function adaptively. The range resolution 

is determined by the ADC sampling rate. The convolution can be carried out in the 

frequency domain using the advantages of the fast Fourier transform (FFT) as: 

S0(f)=F{s(t)*h(t)}=S(f)H(f) (2.9) 

and is the time domain convolution carried out by multiplication in the frequency domain 

where S(f) is the spectrum of the returns from one transmitted pulse and H(f) is the 

transfer function (reference function) of the pulse compression, filter which is stored as a 

series of complex pairs (constant for a particular chirp waveform). The range 

compression signal processing is shown in Figure 5. 
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Figure 5. IS AR Range Compression Signal 

The number of samples required for both S(n) and h(ri) to avoid a circular convolution is 

2(R2-R1) 

(2.10) 
T + - 

N> £- 
Ar 

-1 

where i?2 and R\ are the edges of the range window to be processed and At = \lfs is the 

ADC sampling period. Zeroes must be added to the signal and to the T/At samples of the 

impulse response (common period of length A7). Also note that N = 2a (where a is an 

integer) due to the constraint on the FFT algorithm. The unambiguous range extent of the 

ISARis 

R - HrC - n'c 

U     2A     2fs 
(2.11) 

and depends on the bandwidth of the chirp signal. A two-dimensional high-resolution 

spectral analysis algorithm based on 2-D linear prediction using autoregressive estimation 

for IS AR has been presented in [Ref. 2]. This approach is superior to the FFT method 

mentioned above. 
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C. AZIMUTH COMPRESSION PROCESS 

If the target rotates at a rate of co rad/s towards the radar, a scatterer at a cross 

range distance a has an instantaneous velocity (oa toward the radar with a corresponding 

Doppler frequency shift: 

A-^ (2-12) 

Considering two scatterers in the same slant range cell separated by da then: 

dfd=^f- (2.13) 

resulting in a cross-range resolution of: 

da=^-dfd (2.14) 

The Doppler resolution is related to the inverse synthetic integration (frame) time 

dfd = — giving a cross-range resolution of (see Figure 6): 

<to = -i- = A (2.15) 
2coT    2yr 

A cross-range profile exists for each range-bin. Samples that are integrated to form a 

cross-range profile come from the same range-bin separated by a pulse repetition interval 

(PRI) as shown in Figure 6. 
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Figure 6. ISAR Azimuth Compression Processing 

The unambiguous cross-range extent corresponds to the target size in the cross-range. 

The required PRF for unambiguous sampling a target of cross-range extent Au is 

PRF = (2.16) 

and the number of range samples needed is 

2o)\T 

The cross-range extent is 

"° =    A 

\ = nada = -*— 

(2.17) 

2y/" 
(2.18) 
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A summary of the IS AR compression process is shown in Figure 7. 
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Figure 7. Summary of ISAR Compression Processing 
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III. THE DIGITAL IMAGE SYNTHESIZER CONCEPT 

A. SCATTERING PHYSICS OF A TARGET 

An object will modify any signal reflected from it according to the object's shape, 

surface material properties, and the object's velocity relative to the signal. This permits 

an enemy sensor to identify the nature of such objects, which, if the objects are military 

platforms like warships or aircraft, is not desirable. One solution is to artificially 

synthesize false characteristic echo signatures by responding to an interrogating signal. 

Figure 8 shows a ship and an aircraft, in the line of sight of an interrogating radar signal. 

As the signal hits the aircraft and the ship, it is reflected from their major scattering 

surfaces. The return signal from the ship and the aircraft will be the superposition of the 

reflections from the various surfaces such as the hull, superstructure, the aircraft wings 

and nose. 

AAJJU. 

JUUUkA. 

AAAAA. 

KAAAA. 

Interrogating 

Radar Signal 

Figure 8. A Ship and an Aircraft in the Line of Sight of an Interrogating Radar Signal 
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The reflections of these surfaces are at different places along the radar's line of sight. 

These superimposed reflections will be out of phase with one another, owing to the 

varying times of signal propagation to each reflecting surface. 

This tends to lengthen the return radar pulse by an amount equal to the round trip 

propagation time of the radar signal between the nearest and farthest major reflector and 

to make the reflection magnitude vary as dictated by the varying radar cross sections of 

the reflecting surfaces. Furthermore, movements of the aircraft or ship relative to the 

radar signal will Doppler shift the returned reflections. That is, any platform that reflects 

the radar signal will frequency-modulate the signal, so the returned reflections permit the 

radar to calculate the nature and motion of the platform. 

The most common way to detect a Doppler spectrum in the return signal is to 

compare the reflections from consecutive pulses. Thus, an imaging sensor, such as a 

search radar, SAR, or ISAR can calculate the Doppler by comparing consecutive return 

pulses on a range-bin by range-bin basis. The Doppler spectrum is conventionally 

computed using an algorithm that incorporates the discrete Fourier Transform. 

B. ANALOG IMAGE SYNTHESIS 

Any credible counter-targeting repeater decoy must synthesize the temporal 

lengthening and amplitude modulation caused by the many recessed and reflective 

surfaces, and must generate a realistic Doppler shift for each surface. Conventionally this 

has been done using analog systems that receive an interrogating signal and pass it 

through a length of cable having serial taps along its length, one tap per range-bin. Each 

tap modulates the signal in amplitude and/or frequency to synthesize the reflection from 
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the reflective surfaces within that range-bin. The delay time between taps is selected to 

correspond to the differing times of flight of the radar pulse to the respective range-bins. 

Finally, the signals from the taps are summed, and the synthesized signal is retransmitted. 

In this manner, the system returns what appears to be an echo from an object located 

within the selected range-bins having a signature indicative of the moving ship or aircraft 

object to being synthesized. 

Unfortunately, analog systems have drawbacks that limit their usefulness as 

image synthesizers. They are inherently noisy and can hold an incoming signal only a 

short time for processing before the signal deteriorates below the noise. This limits the 

system bandwidth and permits effective synthesis of only small objects. Further, analog 

systems are costly and very bulky, the latter being a particular concern for military 

platforms, where space is extremely limited. Finally, analog systems cannot readily 

change operating parameters, such as relative delays among taps, or the amount of 

modulation in the various taps. This means that analog image synthesizers cannot switch 

among different simulated objects on the fly, but rather must typically be fabricated for 

one specific type of target. 

C. DIGITAL IMAGE SYNTHESIS 

The main advantage of the all-digital image synthesizer repeater is the increase in 

bandwidth provided to the tapped delay line processors of the kind above described. In 

addition, the capability to hold the received signals as long as necessary for a given 

application is provided. Due to the all-digital architecture, modulation of the target extent 
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(number of range-bins) and Doppler frequency of each resolution cell is also a capability. 

This results in a small, low-cost and flexible counter-targeting repeater decoy processor. 

The digital image synthesizer uses a DRFM and an associated digital-processing 

circuit having a plurality of tapped delay lines, a summer in order to sum the output of the 

delay lines, and range-bin signal modulator in each of the delay lines. A DRFM is a 

semiconductor device that can rapidly and permanently record radio frequency 

information as digitized samples of the incoming signal, and read it back equally rapidly 

when needed. Because the DRFM can hold data indefinitely, the duration of the 

synthesized signal is not limited, as with analog systems, thus permitting (as in the 

example of Figure 8) simulation of larger objects by adding more taps to accommodate 

more range-bins. Because the associated circuitry is digital, and most especially because 

the circuitry can be dedicated to its processing task (rather than requiring extensive 

programming to perform its tasks), the speed of the synthesizer can be especially great. 

In an optimum hardware configuration, the associated digital image synthesizer 

circuitry is made a part of the DRFM on the same monolithic chip in order to increase the 

synthesizer speed even more. This is in contrast to a computer, or programmable 

processor, which, in conjunction with a fast and permanent memory like a DRFM, could 

in principle do the necessary processing. But the time needed to execute the large number 

of programming instructions necessary to process data makes this far less desirable than 

the current design described in this report, and, for the specific problem of counter- 

targeting decoy repeaters, largely ineffective. 
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D. FUNCTIONAL   DESCRIPTION   OF   THE   DIGITAL   IMAGE 

SYNTHESIZER 

Figure 9 shows a block diagram of the digital image synthesizer [Ref. 3]. The 

antenna receives the radar pulse from a (possibly hostile) search radar. After the down 

conversion (not shown), a set of comparators digitizes the phase of the analog signal 

producing a stream of digital samples, which are stored in the DRFM. The phase samples 

are a digital representation of the phase only. Phase sampling DRFMs have fewer 

comparators and permit coherent reconstruction of the original signal using stored 

amplitude information [Ref. 4]. The digitized samples are read serially from the DRFM 

via the tapped delay line. 

Figure 9. Block Diagram of the Digital Image Synthesizer (DIS) (From Ref. [3]) 
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The circuit of Figure 9 shows two taps, but this is illustrative, and in principle the 

device contains the largest number of taps that the particular application dictates (the 

number of major reflective surfaces of the synthesized target). The digital-phase samples 

from the DRFM are sequentially read into the taps by clocking. The signals in the 

respective taps are delayed with respect to one another by pre-selected amounts dictated 

by the delays. For simplicity, the following discussion references the first tap leg only. 

However, the function of each leg is identical. The phase signals in the tap pass through a 

phase accumulator and an associated look-up-table (contains sine and cosine values for a 

2% cycle used in constructing the I & Q components). Although the tap process could 

readily calculate cos (<t>n) and sin (())„), doing so is less computationally efficient than use 

of a look-up-table, and thus would reduce the overall system speed. At the output of the 

look-up-table, a selectable gain multiplies the signal by a pre-selected amount. Together, 

these blocks constitute a range-bin signal modulator. 

The accumulator frequency modulates the signal, traversing the tap leg by phase- 

rotation (serrodyne modulation). The phase <j> of any signal subjected to a linear 

frequency modulation, such as a Doppler shift is given by <f> = (ü>f ay)t, where cuis signal 

angular frequency, ftfe is the change in frequency due to the modulation, and t is time. 

Thus at each point in time the difference in phase between the modulated and 

unmodulated signal is ayt. For a digitally-sampled signal, the phase of the nth sample <p„ 

= n(QH-(Oti)PRI, where n is an integer counter and PRI is the period at which the signal is 

sampled. The phase difference due to the Doppler frequency is n(üdPRI. Thus one can 

shift the frequency of a digitally-sampled signal by an amount (£>d by rotating each nth 
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phase sample by ruüdPRI. That is, the frequency of a digitally-sampled signal can be 

shifted by incrementing the phase naPRI of each nth sample by nCüaPRI. 

In summary, the Doppler of a target is typically inferred by sampling target- 

echoes (within a single range-bin) at the pulse repetition rate and inspecting these 

samples for Doppler-induced phase differences between the echoes. One can simulate a 

Doppler shift of ftfe by repeating the pulses from a sensor, with each pulse phase shifted 

with respect to the next by an amount ayPRI, where PRI is the pulse repetition interval. A 

unique property of the DIS is its ability to synthesize false targets using chirp signals of 

any duration. The number of tap stages is equal to the target range-extent desired for 

synthesis. 

In operation, the phase accumulator sets nominal values of Oh and con' per 

instructions from the DRFM controller. A sensor sends a burst of AT pulses having a pulse 

repetition period of PRI. The phase samples from the first pulse (stored in the DRFM) are 

piped to the first tap leg and the accumulator rotates the phase of each sample by an 

amount (üdPRI. The resultant phase samples are converted to / and Q components and 

scaled by a gain factor A,. In the absence of output from the second tap leg shown, the 

complex signal is returned to the DRFM, and thereafter to the digital-to-analog converter 

that reconstructs the analog pulse for up-conversion and retransmission. 

The waveform of the retransmitted pulse is identical to that of the received pulse, 

except that it is a phase rotated by (OdPRI. After processing this pulse, the DRFM changes 

the phase of the first tap accumulator to 2(OdPRI, rotates each phase sample of the second 

pulse by 2(üdPRI, and, again assuming no output from the second tap, retransmits the 

reconstructed pulse. This continues through the N pulses of the burst, with the phase 
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samples of each pulse rotated by an amount niüdPRI, where n is pulse number, i.e., n = 1, 

2, ..., N. In the absence of output from the second tap, the result is a stream of analog 

pulses from the antenna that are different in phase from one pulse to the next by (üdPRI. A 

sensor detecting these echoes would interpret the constant pulse-to-pulse phase shift of 

(üdPRI as a Doppler shift from a single reflector. The second tap accomplishes the same 

task by use of a different coy. The summer then combines the output of the first and 

second taps. The complex signal that the summer returns to the DRFM is the 

superposition of the signals exiting the first and second tap legs. This means that for each 

n   pulse of the N pulses, the summer's output will be the superposition of two copies of 

the n^ pulse, delayed with respect to one another by the tap delay, scaled differently by 

the gains A,, with one phase rotated by nc^PRI, the other by n(o'dPRI. A sensor, which 

receives the corresponding N analog pulses, will interpret this as having come from two 

reflectors located in range-bins separated by the delay with reflective cross sections 

respectively proportional to the two gains. Because the pulse-to-pulse phase difference 

between these pulses is (üaPRI for the range-bin corresponding to the first delay and 

ta'dPRI for the bin corresponding to the second delay, the sensor will interpret that the 

reflectors in these two range-bins have Doppler frequencies of caw and (a'd, respectively. 

The decoder and latch shown in Figure 9 updates the phase-rotation and gain- 

coefficients for the tap legs. The controller is a process computer interfaced with the 

DRFM that permits an operator to change these parameters on the fly in real time. In 

addition to the phase and gain-coefficients, the number of taps utilized (target extent) can 

be changed. Alternatively, the controller can do this automatically. This is particularly 

important if üüa in any tap leg varies with time. In the example of Figure 8, the aircraft 
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flies directly at the sensor at a constant speed and Doppler shifts the signal by a constant, 

positive, amount. The ship, on the other hand, could be rocking back and forth in the 

water along the line of sight and thus the Doppler shift corresponding to this motion 

would oscillate in time. 
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IV. ARCHITECTURE VARIATIONS AND SIMULATION 

A. ARCHITECTURE VARIATIONS 

Two different implementations of the DIS architecture have been studied. The 

major difference between the two implementations is the placement of the time-delay 

processor. Advantages and disadvantages of the two approaches are addressed in this 

Chapter and are mainly the result of the hardware technologies used. The two different 

implementations are referred to as the "original architecture" and the "modified 

architecture." 

The "original architecture" described in Chapter III is illustrated in the block 

diagram shown in Figure 10. The intercepted chirp signal within the DRFM operating 

bandwidth is down converted into its I,Q components with a corresponding intermediate 

frequency that lies within the instantaneous bandwidth of the phase-sampling DRFM 

comparator technology. The phase-sampling DRFM digitizes the phase of the I,Q 

components with the sampling period (time between phase samples) corresponding to the 

range resolution of the DRFM. The DRFM-phase data is fed serially into the tapped 

delay processor with each delay corresponding to the range resolution of the image 

synthesizer. The phase data at each tap is processed in a pipelined range-bin signal 

processor in order to generate the selected scattering mechanism As previously 

discussed, this is done by continuously rotating the phase «A0 = ncodPRI, translating the 

phase into a complex signal I,Q that is amplitude modulated using A,-. When the complex 

I,Q data exits each tap, it is summed with available data from all the other tap processors 
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each clock cycle. The digital sum at each clock cycle is then converted to an analog 

signal for up conversion onto the carrier for retransmission. 
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Figure 10. Block Diagram of the Original DIS Architecture 

In order to show the equivalence of both architecture variations, we show the 

details of the original architecture for the in-phase processing in Figure 11 where E is the 

image extent, Afy is the phase-increment value for the ith tap processor, and At is the 

amplitude modulation. The input phase is $(n) and the output is: 

l(ji)=^Ai cos(<t>(n-i)+ A0,). (4.1) 
i=0 
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Figure 11. Original DIS Architecture for In-Phase Processing 

The "modified architecture" was developed while investigating a move from 

field-programmable gate-array (FPGA) technology (Altera's Max+Plus II) to an 

application-specific integrated-circuit (ASIC). A block diagram of the modified 

architecture is illustrated in Figure 12. The modified algorithm enables loading all tap 

processors synchronously with the DRFM-phase data. The DRFM-phase data is 

processed in parallel in all tap processors in a pipelined fashion. The results from the taps 

are then added together by partial sums (serial summation) from one tap to another. The 

major difference between the original architecture and the modified architecture is that 

the time delay processor is embedded within the summation at the output. For both of the 

approaches described above, it is essential that the individual taps be sequentially enabled 

during the start-up or initial strobing of the phase data from DRFM into the tapped delay 

line. The taps must also be sequentially disabled during shutdown as the phase data 

leaves the DIS. This avoids the problem of erroneous data from entering into the 

summation during start-up and shutdown. More details concerning the change of 

technology is addressed in Chapter VII. 
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The details for the modified DIS are shown in Figure 13. 
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Figure 13. Modified DIS Architecture for In-Phase Processing 

Proving the correctness of the modified algorithm relative to the original gives the 

following expressions: 

1M (n) = \ cos(0(n)+ A0O )+ Dl [A, cos((j>{n)+ Aft )]+•■• + DN [AN cos((j>(n)+ A<pN )] (4.2) 
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where D is a delay operator. Rewriting /w(n) gives: 

IM (n)= AQ cos(^(n)+ A<j>0 )+ A1 cos((j)(n -1)+ Aft )+• • •+ AN cos((j)(n -N)+ A$N )      (4.3) 

or 

IM W = E A- cos(0(n - /)+ A0,) (4.4) 
i=0 

which is exactly (4.1). 

B. SIMULATION OVERVIEW 

To evaluate the performance of the architecture and to compare the results of the 

hardware implementation, we constructed a Matlab simulation of both the DIS and an 

ISAR as shown in Figure 14. Some of the essential features of an ISAR are simulated 

including the wideband chirp pulse waveform that is intercepted by the DIS. The 

DRFM/DIS is also simulated. The complex outputs from the DRFM/DIS are presented to 

the ISAR signal processing for image generation. Matlab has also been used in several 

intermediate steps to compare simulation results with actual and simulated hardware 

design results. 
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Figure 14. ISAR-DIS Simulation Configuration 
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Matlab is a product from the MathWorks, Inc., and it is an integrated-technical 

computing environment that combines numeric computation, advanced graphics and 

visualization, and a high-level programming language [Ref. 5]. Matlab includes several 

useful functions for: 

• Data analysis and visualization 

• Numeric and symbolic computation 

• Engineering and scientific graphics 

• Modeling, simulation, and prototyping 

• Programming, application development, and graphical user interface (GUI) 

design. 

Matlab can be used in a variety of application areas including signal and image 

processing, control system design, financial engineering, and medical research. It features 

a family of application-specific toolboxes, containing comprehensive collections of 

functions for solving particular classes of problems in areas, such as signal processing, 

image processing, control system design, neural networks, and more. The current version 

of Matlab used in this project is version 5.3. 

In FY98, Siew-Yam Yeo developed the original set of codes during his thesis 

work at the Naval Postgraduate School [Ref. 6]. This set of codes has been modified to 

better serve the purpose of further development in the project. For example, the 

"original" code has been modified to deal with more then three taped delay lines. This set 

of codes all end with a "...vl.m" extension. Parallel to the development of the ASIC 

hardware design (modified DIS architecture), simulations were developed to emulate the 

new design. The new codes are used to verify that the newly-modified architecture is 
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giving the correct results. This set of codes all end with a "...v2.m" extension. Two 

additional set of codes has been developed to deal with multiple scatterer per range-bin. 

Version 3 ("...v3.m") varies phase modulation coefficients between radar pulses. Version 

4 ("...v4.m") varies both phase and gain modulation coefficients. 

C. SIMULATION DETAILS 

The different steps of the simulation are easily identified by using numerous 

comments within the set of simulation codes (m-files). A description of the steps, 

together with some intermediate results is given below in order to visualize the 

development process. The flowchart shown in Figure 15 together with Table 1 

summarizes the different Matlab files used during the simulation. Important text files are 

also listed. 

steps m-files plots txt-files 

<ZZ    Start  J^   r-1 ninDISvX.m 

User Inputs 

Radar Input 
Parameters 

Create Transmitted 
Radar Chirp Pulse 

Generate DRFM 
Phase Data 

DIS Algorithm 

ISAR 
Pulse Compression 

~*~ I     guivX.m GUI 

extract_para_X.m 
only vS and v4 

=fe I    sigparLdat 

mathostvX.m 5 ara.txt 

rawinttxt 

CD 
sine.txt 

i r cosine.txt 

simhwchkvX.m E 
checkvX.txt 

plothwvX.m |^Z 
imagei.txt 

fmm hnrrhmre 

Compare yJEIH 
imageq.txt 

Figure 15. Matlab Simulation Flowchart 
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m-files txt-files Remarks 

runDISvX.m To execute the simulation 

guivX.m To get user inputs of the false target to be generated 

sigparl.dat Signal parameters of the false target to be generated 

extract_para_X.m Extracts parameters for multiple scatterer per range-bin 

mathostvX.m Simulates the ISAR transmitted pulse 

Simulates the DRFM at the DIS location 

para.txt Number of range-bins of the ISAR 

Number radar pulses to be processed (integrated) 

Target extent 

Amplitude settings for each cell 

Phase values representing an increasing/decreasing 

Doppler shift 

rawint.txt DRFM-phase data samples 

simhwchkvX.m Simulates the DIS algorithm 

cosine.txt Cosine look-up table, 32 values for one period 

sine.txt Sine look-up table, 32 values for one period 

dec2two.m Matlab function that converts decimal number to 

two's complement binary representation 

two2dec.m Matlab function that converts two's complement binary 

representation to decimal number 

checkvX.txt Intermediate results through the DIS algorithm 

imagei.txt Hardware/hardware simulation results (I-channel) 

imageq.txt Hardware/hardware simulation results (Q-channel) 

plothwvX.m Pulse compresses the radar return of the false target 

generated by the DIS hardware 

Plots the final results for comparison 

Table 1. Files Used during the Matlab Simulation 

32 



A selection of the m-files mentioned in the table above, and some other important 

m-files used in this thesis (referred to in later chapters), together with the cosine.txt and 

the sine.txt files are attached in Appendix A. 

1. User Input 

To run the simulation, the user executes the runDISvl.m or the runDISv2.m file 

depending on whether the original or the modified architecture is desired (afterward the 

files are referred to as "...vXm"). The runDISvX program is a script file to execute other 

script files in a pre-defined order. The user is presented with a graphical user interface 

(GUI) of a Range/Doppler map-the Range-Doppler-Amplitude Map Entry Program 

guivX.m is shown in Figure 16 (runDISvX.m executes guivXm). 

Bangj-Oopßlsr-Amplitude Map EMty Program 

: «Bonge W 

-;poppieriäJ. 

jOopptetrf* 

3 

M&B: 

«SV*«!, ft*™ 

Figure 16. The Range-Doppler-Amplitude Map Entry Program 
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In this example the user has specified the following data to generate the false 

target using the DIS shown in Table 2. 

Target 

Cell 

Range 

CeD 

Doppler 

CeU 

Amplitude Doppler 

Shift 

Remark 

1 1 20 2 0 Tap 0-1st Tap 

2 2 20 2 1 Tapl-2naTap 

3 3 20 2 2 Tap2-3rflTap 

Table 2. User Specified Inputs of the False Target 

The values, called signal parameters of the false target, are written to an 

intermediate file that is called sigparl.dat. Examining the sigparl.dat file for this case 

will give the values shown in Table 3. The file only holds the numerical values. The 

header of the table has been applied later to explain what the different values relate to. 

Range Cell Doppler Cell Amplitude Doppler Shift 

1.0000000e+000 2.0000000e+000 2.0000000e+000 0.0000000e+000 

2.0000000e+000 2.0000000e+000 2.0000000e+000 1.0000000e+000 

3.0000000e+000 2.0000000e+000 2.0000000e+000 2.0000000e+000 

Table 3. Contents of the File sigparl.dat 

2. Defining the Radar Parameters 

The next file to be executed by the runDISvX.m file is mathostvX.m. The 

mathostvX.m file represents both the ISAR while generating the transmitted chirp pulse 

and the DRFM on the platform where the DIS is located. The radar specific parameters of 

the ISAR are coded into this program In this case the radar parameters used is shown in 

Table 4. 
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ISAR Theoretical Parameter Value 

Matlab Equivalent Variable 

Version 1 and 2       Version 3 and 4 

Uncompressed pulse width, x 500 ns pw pw 

Compressed pulse width, TC 8 ns pwc pwc 

Pulse repetition frequency, PRF 2kHz Prf Prf 

Pulse repetition interval, PRI 500 us pri pri 

Bandwidth of the chirp pulse, BW 125 MHz bw bw2 

Pulse compression rate, K 2.5 x 1014 mu=2i^bw/pw) k 

Sampling frequency, fs 125 MHz fs fs 

Sampling time step, ts 8 ns Ts Ts 

Table 4. Defined Radar Parameters (file mathostvX.m) 

3. Creation of the Intercepted Radar Signal 

The signal parameters specified by using the GUI used to create the baseband 

complex signal represented by 

Sb(t)=TCCtU\J2^PR''K,2/2) (4.5) 

where fd is the Doppler frequency of the DIS platform intercepting the chirp signal. Note 

that this expression is similar to (2.1) where the parameter K is the chirp slope-rate and T 

is the pulsewidth. The Doppler frequency fd must be taken into consideration when 

building the received chirp waveform in the DIS simulation. An approximation is used 

that assumes a constant phase change due to Doppler within a chirp pulse. This 

assumption is valid since the Doppler shift is only tens of hertz compared to the MHz 

chirp bandwidth. The wideband intercepted signal is then phase sampled and the phase is 

quantized into 5-bits or 32 different values, representing a phase between 0 and 2n 

radians. The values used are 0 to 31 as a decimal representation of a 5-bit binary word 
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(2 = 32). The DRFM-phase data is written to a text file (rawint.txt) that is read by 

simhwchkvX.m. An example of the DRFM-phase data matrix contained in the rawint.txt 

file is shown in Table 5. The file only holds the numerical values. The rows of the matrix 

represent radar pulses. The columns represent DRFM-phase data samples from a specific 

radar pulse at specific sampling times. The variable names used in Matlab are also 

shown. 

Radar Pulse 

(batchCnt) 

DRI 

1 

M-p 

2 

hase 

3 

Data 

4 

(intr 

5 

aPuls 

6 

eCnt 

7 

) 

8 9 10 62 

1 0 0 0 0 0 0 5 5 10 15 10 

2 15 15 15 15 15 15 15 20 20 25 25 

4 3 25 25 25 25 25 25 31 31 4 9 

4 10 10 10 10 10 10 10 15 15 20 20 

• 

64 25 25 25 31 31 31 31 4 4 0 9 

Table 5. Contents of the File rawint.txt 

The impulse-response waveform used in the ISAR range-compression algorithm 

is also computed when executing this file. The amplitude and Doppler frequency-shift 

values for each range-Doppler cell are also obtained from the GUI and represent the gain- 

and phase-rotation values required for the DIS. 

A number of different values are written to another text file (para.txt). The values 

are used for simulating the DIS both in Matlab and in the hardware design. The file only 

holds the numerical values. These values represent the following information (also 

exemplified in Table 6): number of range-bins of the ISAR, number radar pulses the 

ISAR is using for processing (integrating) received radar return signals, target extent 

(number of target cells/taps used), amplitude settings for each cell translated into a gain 
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value of 1, 2, 4 or 8, and set of phase values representing an increasing/decreasing 

Doppler shift due to the motion of the target cell relative to the IS AR 

Value Variable Comment 

62 nRangeCell Number of Range Cells (range-bins of the ISAR) 

64 nDopplerCell Number of Doppler Cells (Doppler-bins of the ISAR) 

3 targetExtent Target Extent 

2 gain(l) Gain modulation coefficient, target cell 1 

2 gain(2) Gain modulation coefficient, target cell 2 

2 gain(3) Gain modulation coefficient, target cell 3 

0 phi(l,batchCnt) Doppler modulation coefficient, target cell 1,1st radar pulse 

0 phi(2,batchCnt) Doppler modulation coefficient, target cell 2,1st radar pulse 

0 phi(3,batchCnt) Doppler modulation coefficient, target cell 3,1st radar pulse 

0 phi(3,batchCnt) Doppler modulation coefficient, target cell 1, 3rd radar pulse 

1 phi(3,batchCnt) Doppler modulation coefficient, target cell 2, 3rd radar pulse 

2 phi(3,batchCnt) Doppler modulation coefficient, target cell 3, 3rd radar pulse 

0 phi(l,batchCnt) Doppler modulation coefficient, target cell 1,64th radar pulse 

31 phi(2,batchCnt) Doppler modulation coefficient, target cell 2, 64th radar pulse 

63 phi(3,batchCnt) Doppler modulation coefficient, target cell 3,64th radar pulse 

Table 6. Contents of the File para.txt 

Remark: For Version 4 - Gain modulation coefficients are gain(tap,batchCnt). That is, 

the gain modulation coeffiecients are individual for each tapline (tap) and radar pulse 

(batchCnt). 

The range-Doppler image from the ISAR signal-processing simulation is plotted 

in Figure 17 to visualize the effect of the amplitude and the Doppler frequency-shift 

values shown in Figure 16. 
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a. Unmodulated Rd-Dp Map 
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Figure 17. ISAR Range-Doppler Image with (a) No Amplitude or Doppler Frequency 

Shift and (b) Amplitude and Doppler Frequency Shift as Shown in Table 2. 

Figure 17 (a) represents the ISAR range-Doppler image but contains no amplitude 

or Doppler frequency shift. Figure 17 (b) shows the ISAR range-Doppler image with 

amplitude and Doppler frequency shift as shown in Table 2. 

4. Simulation of the DIS (Original and Modified Architecture) 

To simulate the DIS algorithm, the runDISvX program executes the 

simhwchkvX.m file, which starts by reading in the values from para.txt. The number of 

Doppler cells within the range-Doppler map is used as an index for an outer for-loop in 

the program for processing phase data from one radar pulse to the next. The number of 
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range-bins within the range-Doppler map is used as an index for an inner (nested) for- 

loop and represents the number of clock pulses it takes to process the DRFM-phase data 

from one radar pulse to the next. The target extent represents the number of taps in the 

tap delay line. A target cell is also referred to as a tap in the DIS algorithm. The number 

of target cells specified in the GUI is therefore equivalent to the number of taps used to 

create a false target. The gain value selected for each tap along with the corresponding 

Doppler frequency shift are recorded and relate to the synthesized motion of each target 

cell. 

Next the DRFM-phase data from the rawint.txt file is read. The program also 

loads data from cosine.txt and sine.txt. These files hold data used as the look-up table 

(LUT) and contain one period of a cosine waveform and a sine waveform (32 values) as 

shown in Figure 18. 
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-0.8 1    -    -\- ■ -    -    *-/i    ---,«--r- 
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. 
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- </-    r    - 
i                           (                          .        ^t^—p 

Figure 18. Cosine and Sine Look-Up Table (LUT) 

Recall that the LUT translates the input phase (from the phase accumulator) into a 

complex signal. Using the for-loops, the DIS algorithm modulates the phase data to 

compute the signal that represents the return signal corresponding to the desired false 
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target. The original and the modified architecture calculate the modulation and perform 

the computation in different ways as described earlier. 

In the original DIS architecture the DRFM-phase data propagates serially from 

tap to tap during one clock-pulse time delay. The phase data at each tap is then modulated 

and the results from all taps are summed together to form the output. In the modified DIS 

architecture, the DRFM-phase data is presented to all the taps synchronously. The phase 

data in this case, is processed in parallel in all taps. The delay is implemented during 

summation of the results from each tap. The individual taps are enabled during the start- 

up and disabled during shutdown according to the reasons described earlier. 

In the Matlab simulation several sets of DRFM-phase data representing samples 

from a number of radar pulses are processed directly one after another. In an actual 

implementation, the set of DRFM-phase data will of course be separated in time by one 

PRI. 

5. Range and Azimuth Compression 

At the receiver side of the IS AR, as part of the signal processing, the radar return 

signals containing the generated false target are compressed both in range and azimuth. 

First range compression is done. Range compression is based on correlating the 

received signal, S(n) with a pre-stored reference waveform (also refer back to Chapter n, 

Digital range compression and (2.6)): 

h(n) = ^e-JnK^2. (4.6) 

The FFT is performed on the received signal. The resulting spectrum is multiplied by the 

complex conjugate  of the FFT  of the  reference  waveform (4.6)  created in the 
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mathostvX.m file. The procedure is shown in Figure 19. An inverse FFT (IFFT) is then 

performed to obtain the range-bin profiles for each PRI. 

Complex 
Range 
Profile 

Figure 19. Range Compression 

For the azimuth compression for a single range-bin, the complex range samples 

are taken from 2n pulses and integrated into an FFT (also refer back to Chapter U, 

Azimuth compression process). The magnitude of the FFT output is the Doppler profile 

for that particular range-bin as shown in Figure 20. 

Frame Wideband 
Chirp 

I 
Time 

PRI 
U PRI- 

J   iffiiniiiiiii I   iflwiuiL*—I   IQHIMI 

FFT 

l«l 

T Doppler 
Profile 

Figure 20. Azimuth Compression 

The received signal after compression can be visualized as a contour plot as 

shown in Figure 21 and is referred to in the second sub-plot below as the Matlab 

Simulation plot (Amplitude and Doppler Modulated Range-Doppler Map). 
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Figure 21. IS AR Range-Doppler Images Showing (a) the Unmodulated DIS Output 

and (b) the Modulated DIS Output (Matlab Simulation) 

6. Plot and Compare Results 

The last file to be executed by the runDISvX program is the plothwvX.m. This 

file obtains the I- and Q-values of the hardware simulation from the imagei.txt and the 

imageq.txt file (written by Altera/Visual Basic FPGA hardware program). Range and 

azimuth pulse compression is performed using the same procedure as described for the 

Matlab simulation results. The results are plotted for comparison. The DIS simulation 

results are shown in the first sub-plot of Figure 22. In the second sub-plot, the hardware 

or hardware simulation result are shown when data is available. A full comparison is 
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shown in the following chapters when the different hardware implementation techniques 

are described. 
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Figure 22. Matlab DIS Simulation vs. Hardware Result 

To better visualize the image created by the DIS (the generated false target seen 

by the ISAR), Matlab uses the same data as before to construct a 3-D mesh surface plot, 

as shown in Figure 23. The first sub-plot shows the result of the Matlab DIS simulation. 

The second sub-plot shows the hardware (or hardware simulation) result. Finally, the 

third sub-plot shows the difference between the Matlab simulation and the hardware 

results. 
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Figure 23. Matlab Simulation Result vs. Hardware Result and the Difference 

To better study the results from the DIS simulation, the IS AR image of the false 

target is exposed, as shown in Figure 24. The user defined target cells, after DIS 

modulation and ISAR signal processing (range and azimuth compression) stand out 

clearly from the background in the plot. 
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Figure 24. .Matlab Simulation Result (3-D Mesh Surface Plot) 

7. Original and Modified DIS Comparison 

To ensure that both the original and modified algorithms produce the same result, 

a series of comparisons for different test cases were conducted. The example below 

shows the ISAR output when using the different algorithms. It also shows the ability to 

modulate the extent of the false target using a large number of taps. In the test case below 

32 taps are used. Figure 25 shows the input target entry. Table 7 shows the amplitude and 

Doppler offset values selected for the 32 range-bin false target to be synthesized. 
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Figure 25. The Range-Doppler-Amplitude Map Entry Program 

Target 

Cell 

Range 

CeU 

Doppler 

Cell 

Amplitude Doppler 

Shift 

Remark 

1 1 20 2 -8 Tap 0-1st Tap 

2 2 20 2 -8 Tap 1 - 2nd Tap 

3 3 20 2 -7 Tap 2-3rd Tap 

4 4 20 2 -7 Tap 3-4th Tap 

5 5 20 2 -6 Tap 4 - 5th Tap 

6 6 20 2 -6 Tap 5 - 6th Tap 

7 7 20 3 -5 Tap 6 - T Tap 

8 8 20 3 -5 Tap 7 - 8th Tap 

9 9 20 3 -4 Tap 8 - 9th Tap 

10 10 20 3 -4 Tap 9 - 10th Tap 
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Target 

CeU 

Range 

CeU 

Doppier 

CeU 

Amplitude Doppier 

Shift 

Remark 

11 1 20 4 -3 Tap 10- llm Tap 

12 12 20 4 -3 Tap 11-12th Tap 

13 13 20 4 -2 Tapl2-13toTap 

14 14 20 4 -2 Tapl3-14ffiTap 

15 15 20 3 -1 Tapl4-15mTap 

16 16 20 3 -1 TaplS-lö^Tap 

17 17 20 2 0 Tapl6-17mTap 

18 18 20 2 0 Tap 17 - 18m Tap 

19 19 20 2 1 Tapl8-19mTap 

20 20 20 2 1 Tapl9-20mTap 

21 21 20 2 Tap 20-21st Tap 

22 22 20 2 Tap 21-22nd Tap 

23 23 20 3 Tap 22-23rd Tap 

24 24 20 3 Tap23-24mTap 

25 25 20 4 Tap24-25mTap 

26 26 20 4 Tap25-26mTap 

27 27 20 5 Tap26-27mTap 

28 28 20 5 Tap27-28mTap 

29 29 20 2 6 Tap28-29mTap 

30 30 20 2 6 Tap 29 - 30m Tap 

31 31 20 2 7 Tap 30-31st Tap 

32 32 20 2 7 Tap 31-32nd Tap 

Table 7. Amplitude and Doppler Offsets Selected for 32 Range-Bin False Target 

As observed in Figure 26 and Figure 27, the two different algorithms perform the 

same result, which also has been proven in the previous chapter. 
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Figure 27. Original vs. Modified DIS Algorithm Simulation Results and the Difference 
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8. Multiple Scatterer Per Range-Bin 

Up to this point, we have only considered one single scatterer per range-bin. The 

DIS mustbe able to deal with one more dimension. A true target will generate several 

radar returns from many different scatterers within the size of one single range-bin of the 

ISAR. The radar return in one range-bin can be treated as a sum of the individual 

scatterers radar-return signals due to superposition. The different scatterers will modulate 

the incident radar signal with a different gain and a different Doppler depending on 

factors such as shape, size, material, angle and relative motion. 

Finding the corresponding amplitude values (gain modulation) and phase values 

(phase modulation) at a certain time interval and using these values to modulate the 

DRFM-phase samples in the DIS would then represent a combined radar-return signal for 

one entire range-bin. For this, the DIS must be able to process variable gain and phase 

modulation coefficients between radar pulses. This will also be addressed in further detail 

in later chapters where different hardware implementation techniques are discussed. The 

latest developed Matlab codes (version 3 and 4) can deal with this complex situation. The 

parameters (gain and phase modulation coefficients) must first be determined for the 

shape and motion of the false target to be generated. This has been done manually by 

mapping out the shape and specifying Doppler frequencies to each scatterer. 

To illustrate the procedure, consider a simple "V" shape of a small set of 

scatterers. Each individual scatterer can be plotted in a range-Doppler map, where the 

different range-bins are on the x-axis, and the different Doppler-bins are on the y-axis. 

For this example, nine different scatterers were used, all with the same gain. The 

scatterers were assigned different initial Doppler frequencies representing differences in 
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relative motion to the ISAR. Some of the scatterers were also located in the same range- 

bin. Figure 28 shows to the left a sketch of the initial setup of the shape of the false target 

to be generated by the DIS. In the 1st range-bin there is only one scatterer located with 

zero Doppler (no relative motion to the ISAR). In the 2nd to the 4th range-bins, there are 

two scatterers per range-bin, each with different Doppler (negative or positive). Finally, 

for the 5 and the 6th range-bins, there are again only one scatterer per range-bin. The 

individual Doppler frequencies were specified in a Matlab script file 

(extract_para_VcaseX.m) and running the file produced a set of gain- and phase- 

modulation coefficients that were then used as inputs to the DIS. The Matlab simulation' 

result can be seen to the right in Figure 28 below. 
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Figure 28. DIS V-Case: Setup and Simulation Result 

The simulation results represent the modulated ISAR-return signals using 64 radar 

pulses, received by the ISAR and after performing range and azimuth pulse compression. 

The individual scatterers can clearly be identified (the bright spots) in the simulated 
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ISAR image of the false target. The following section presents simulation results of a 

more realistic false target, consisting of several scatterers per range-bins. 

D. SIMULATION RESULTS 

To verify correctness of the concept of the DIS algorithm, a set of larger scale 

simulations has also been conducted. The goal was to be able to produce a realistic ISAR 

image of a target, similar to a real ISAR image. 

The ISAR Section of the Radar Analysis Branch at the Naval Research 

Laboratory (NRL) works on developing advanced algorithms and processing systems for 

ISAR [Ref. 7]. The picture shown below in Figure 29 is a radar image generated using 

ISAR imaging. 

Figure 29. ISAR Image (From Ref. [7]) 

This image was taken by the P-3 aircraft (Figure 30). It is the image of the ship, USS 

Crockett, which is pictured in Figure 31. 

51 



Figure 30. Photo of a P-3 Aircraft (From Ref.[7]) 

'^B^^^M 

Figure 31. Photo of USS Crockett (From Ref. [7]) 

The ISAR image is a two-dimensional representation of the target, with the 

resolution in the horizontal dimension determined by the short pulse characteristic of the 

radar and the vertical dimension by the Doppler of the radar returns. 

The radar used in the P-3 aircraft is an AN/APS-137. The APS-137 family of 

radars has consistently demonstrated outstanding performance in anti-submarine warfare 

(ASW) and anti-surface warfare (ASuW). Current operational capabilities include long- 

range surface search and target tracking, periscope detection in high sea states, ship 

imaging and classification using ISAR, and SAR for overland surveillance, ground 

mapping, and targeting. The radar system is produced by Raytheon and is shown in 

Figure 32 [Ref. 8]. 
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Figure 32. AN/APS-137B(V)5 Radar System (From Ref. [8]) 

In order to create a false target that looks similar to the NRL IS AR image of the 

USS Crockett, some simplifications had to be done, due to the complexity of a real target 

(i.e. the number of scatterers, RCS of each individual scatterer, and unknown exact radar 

parameters). 

First, the necessary phase and gain modulation parameters of the false target had 

to be generated. A simplified range-Doppler map of the target is shown in Figure 33. The 

number of individual scatterers manually specified in range and Doppler was 182. 

Figure 33. Ship Case-Simulation Setup in Matlab 

Only 32 taps were used to represent the full length of the target, due to the limitations in 

the developing of the hardware equivalent circuit, and also to accelerate the simulation 
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time. The phase and gain-coefficients were thereafter extracted in a correct format by a 

Matlab script file (extract_para_ShipX.m). Most of the simulation parameters were kept 

the same as earlier, i.e. 62 DRFM-phase data were captured for each radar pulse. A series 

of seven different simulations was the conducted representing different Doppler 

resolutions of the counter-targeted ISAR (integration of 64, 128, 256, 512, 1024, 2048, 

and 4096 radar pulses respectively). 

The results are shown in the following set of figures (Figure 34). The true ISAR 

image has of course a much higher resolution than the Matlab simulated images, which is 

best observed in range. The ISAR image is also a final image for the end user. That is, the 

radar-return signals have not only been signal processed as a radar signal, but various 

filtering and image enhancement techniques have also been applied. The Matlab 

simulation images result from only pure signal processing because of pulse compression. 

No additional filtering and image enhancements have been used. 

Table 8 explains the differences of the nine sub-figures shown in Figure 34. The 

number of radar pulses referred to relates to how many radar pulses were used for the 

ISAR-image integration for that specific simulation. Seven different simulation results 

are shown. 

True ISAR image Simulation setup 64 radar pulses 

128 radar pulses 256 radar pulses 512 radar pulses 

1024 radar pulses 2048 radar pulses 4096 radar pulses 

Table 8. True ISAR Image, Simulation Setup, and Seven Different Simulations 
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(a) True ISAR Image 

(d) 128 Radar Pulses 

(g) 1024 Radar Pulses 

(b) Simulation Setup 

(e) 256 Radar Pulses 

(h) 2048 Radar Pulses 

(c) 64 Radar Pulses 

(f) 512 Radar Pulses 

(i) 4096 Radar Pulses 

Figure 34. True ISAR Image, Simulation Setup, and Seven Different Simulations 

This test case was developed to visualize the expected results of the DIS. The goal 

was to create a realistic image of a false target, though limiting the scatterers to a 

relatively small number. Other limitations were precision and dynamic range of the phase 
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and gain modulation coefficients used in the current design. In spite of that, the 

simulation results show that creating relative realistic false targets using a Digital Image 

Synthesizer as described is possible. 

An additional remark is that the simulated DIS refers to a 5-bit phase sampling 

DRFM. The phase-modulation coefficients are 4-bit binary words, and the gain 

modulation coefficients are only 2-bit binary words. The final outputs (I- and Q-channel) 

consist of a 16-bit two's complement binary word respectively. A set of different tools 

(Matlab script files and function calls) has been developed for later use in order to further 

investigate tradeoffs in number of bits used throughout the architecture, especially for the 

final stages of adders and for representing the final output words. An example of how to 

use these files and function calls are presented in Appendix A. 
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V. DIS USING FIELD PROGRAMMABLE GATE ARRAYS 

A. INTRODUCTION 

This chapter discusses the hardware implementation of the DIS by using FPGA 

technology. The hardware design is captured using the Altera Multiple Array Matrix 

Programmable Logic User System or Max+Plus II software version 9.21 (the project was 

started in 1998 using version 8.3). Max+Plus II is the design environment for Altera 

Programmable Logic Devices (PID). A brief description of the Max+Plus II software is 

given below followed by a short introduction to Field Programmable Logic Devices 

(FPLDs) [Ref. 9]. In particular, FPGAs, specifically the Altera 10K50 family is 

described. Later sections of this Chapter describe each of the modules of the DIS 

hardware design, starting from the top-level-hierarchy and progressing down. The final 

section addresses the FPGA results and the comparison to Matlab simulations. 

B. THE ALTERA MAX+PLUS II ENVIRONMENT 

The Max+Plus II software provides a multi-platform, architecture-independent 

design environment that easily adapts to specific design needs. The Max+Plus II 

development software is a fully-integrated programmable logic-design environment. This 

tool supports all Alterä programmable device families and works in both PC and UNIX 

environments. The Max+Plus II allows seamless integration with industry-standard 

design entry, synthesis, and verification tools. 
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Figure 35 shows a block diagram of the Altera Max+Plus II environment. 

Max+Plus II both reads and writes: 

• Altera Hardware Description Language (AHDL) files and standard EDIF 

netlist files 

• Verilog HDL files 

• VHDL files 

• OrCAD schematic files 

<# 
MAX+PLUS II Block Diagram 

Project Processing 

MAX+PLUS II Compiler 

Compiler Netlist 
EKirador {ind. all 

netlist readers) 

Design Doctor 

Timing, Functional, 
or Linked 

SNF Extractor 
j  MAX+PLUS II 
7      Message 

Database 
Builder 

Logic 
Synthesizer 

Partitioner Filter 

EDIF/Verilog/ 
VHDL NeUist 

Writers 
Assembler 

r. ,     Processor &     f. 
Project Verification \     Hierarchy     / 

—^    Display     £- 
Device Programming 

MAX+PLUSI 
Simulator 

MAX+PLUS II 
Waveform Editor 

MAX+PLUS II 
Timing Analyzer 

MAX+PLUS II 
Programmer 

Figure 35. Altera Max+Plus II Environment (From Ref. [10]) 

In addition, Max+Plus II reads Xilinx netlist files and writes Standard Delay 

Format (SDF) files for interface to other industry-standard CAE software. The Max+Plus 

II message processor handles the different features like design entry, project processing, 
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project verification and device programming. An overview of the Max+Plus II compiler 

interface is shown in Figure 36. The hierarchy display is a convenient way to switch 

between the different parts of the program and shows a hierarchy tree with branches, that 

represents the sub-designs. 

Design Entry 

MAX+PLUS II Graphic Editor 
MAX+PLUS II Symbol Editor 
MAX+PLUS II Text Editor 
MAX+PLUS II Waveform Editor 
MAX+PLUS II Floorplan Editor 
AHDL 
VHDL 
Verilog HDL 
Other Industry-Standard 

CAE Design Entry Tools 

Design Verification 

MAX+PLUS II Simulator 
MAX+PLUS II Waveform Editor 
MAX+PLUS II Timing Analyzer 
Other Industry-Standard 

CAE Design Verification Tools 

Device Programming 
MAX+PLUS II Programmer 
Data i/0 
Other Industry-Standard 

Programmers 

Figure 36. Max+Plus II Design Environment (From Ref. [11]) 

The complete Max+Plus II system includes 11 fully integrated applications that 

take the designer through every step of creating a design. A logic design, including all 

sub-designs, is called a "project" in Max+Plus II. The main applications are summarized 

in Table 9. 
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Application Function 

Hierarchy Display For displaying the current hierarchy of files as a hierarchy tree 

with branches that represents sub designs. 

Graphic Editor For entering a schematic logic design. Altera provides primitives, 

megafunctions, and macrofunctions, which serve as basic circuit- 

building blocks. 

Symbol Editor For adding existing symbol and creating new ones. 

Text Editor For creating and editing text-based logic design files written in 

hardware description language (AHDL, VHDL, Verilog HDL). 

Application Function 

Waveform Editor For entering test vectors and viewing simulation results. 

Floor-Plan Editor For assigning logic to physical device pins and logic cell resources 

in a graphic environment. 

Compiler For processing project, including checking for errors, synthesizing 

the logic, fitting the project into one or more Altera devices. 

Simulator For testing the logical operation and internal timing of logic 

circuits. The simulator supports functional simulations, timing 

simulations, and linked multi-device simulation. 

Timing Analyzer For analyzing the performance of the logic circuits after they have 

been synthesized and optimized by the compiler. 

Programmer For programming, configuring, verifying, examining and testing 

Altera's devices. 

Message Processor For displaying warning and information messages on the status of 

the project. It also locates the source of a message automatically in 

the original design files. 

Table 9. Max+Plus II Suite of Applications and Functions (From Ref. [10]) 
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C. FPGA TECHNOLOGY AND THE ALTERA 10K50 

Different devices are available to capture the developed FPGA design file. The 

FLEX 10K50 chip (FLEX = flexible logic element matrix architecture) for example is a 

static random access memory (RAM) with typically 70,000 gates (logic & RAM). The 

Flex 10K50 device contains an embedded array and a logic array. The logic array 

performs the same function as a sea of gates in a gate array. The FLEX 10K50 is used to 

implement general logic, such as counters, adders, state machines, and multiplexers. The 

embedded array is used to implement memory and specialized logic functions. Table 10 

describes the features and benefits of using FPGAs and Table 11 the features of the 

FLEX 10K50. 

Feature Benefit 

200 MHz and above System Performance Supports today's most demanding speed 

requirements 

Density from 10,000 to over 1.5 Million 

Gates 

Addresses 90% of all gate array design 

starts 

Embedded Array Blocks Efficient RAM, ROM, FIFO and other 

high-performance mega-functions 

Multi-Volt I/O Operation Ideal for mixed-voltage systems 

5.0V, 3.3V, 2.5V, and 1.8V Device 

Options 

Supports multiple operating voltages 

PCI Compliance Meets all specifications of the PCI local bus 

Table 10. FLEX 1 OK Highlights (From Ref. [11]) 

The Altera FLEX 10K devices are configured at system power-up with data 

stored in an Altera serial configuration EPROM device or provided by a system 

controller. A picture of the FLEX 10K50 is shown in Figure 37. 
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Figure 37. AlteraFLEX 10K50 (From Ref. [11]). 

A microprocessor interface permits the microprocessor to configure the FLEX 10K 

devices serially, in parallel, and synchronously or asynchronously [Ref. 11]. 

The features of the FLEX 10K50 device are as shown in Table 11: 

Features FLEX 10K50 

System Performance 115 MHz 

Typical Gates (logic & RAM) 50,000 

Logic Elements 2,880 

Logic Array Blocks 360 

Embedded Array Blocks 10 

Total RAM Bits 20,480 

Flip-Flops 3,184 

Maximum User I/O Pins 310 

Table 11. Altera FLEX 10K50 Device Features from [11] 
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D. DIS ARCHITECTURE USING FPGA 

1. The Concept Demonstrator 

A concept demonstrator of the DIS architecture has been developed in Field- 

Programmable Gate-Array (FPGA) technology. The concept demonstrator comprises 

three parts: 

• Matlab simulations of the ISAR signal processing architecture (described in 

Chapter IV) 

• Computer board containing hardware design using an Altera FPGA device 

(FLEX 10K50) 

• A Visual Basic program (flextest.vbp) to access the Altera FPGA computer 

board and download the image-formation parameters and raw data and to 

upload from the board processed data. The data gathered from the board are 

stored in files that are in turn read by plothwvX.m for post-processing and 

display for comparison. 

The DIS and its interface with the host computer are shown in Figure 38 as a 

block- and host-interface diagram. The host computer is an ordinary personal computer 

(PC). The DIS hardware is a FPGA (Altera 10K50 FPGA chip) mounted on a Naval 

Research Laboratory (NRL) custom designed PC I/O board. The various modules for the 

DIS are described below. 
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Figure 38. Block Diagram and Host-Interface Diagram of the DIS 

a.        Host (PC) 

Setup GUI: The setup as most of the blocks of the host refers back to the 

Matlab code discussed in Chapter IV. In the GUI the user specifies the parameters for the 

false target to be generated. 

Signal Generator. The DRFM-phase data samples are produced within 

this block and printed to a text file. This text file (rawint.txt) is used both in the Matlab 

simulation file and the Visual Basic program running the FPGA computer board. 

Processing Parameters: The processing parameters of the specified false 

target consist of a phase-increment/decrement corresponding to the selected Doppler shift 

and the gain-coefficients representing the amplitude modulation. 
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Range and Azimuth compression: These parts represent basic signal 

processing functions in the ISAR. Pulse compression is performed on the radar return 

signal from the false target generated by the FPGA DIS. 

Display: After processing, the signals will be presented to the user as an 

image. In this case, it will be done by a series of plots using Matlab (as described in 

Chapter 4). 

b.        FPGA DIS 

Buffers: "Buffer 1" is for storage of DRFM-phase data samples to be fed 

into the tapped delay lines. "Buffer 2" is for storage of modulation parameters, which are 

computed and updated by the host. These include parameters for target extent, amplitude 

modulation and Doppler shift. "Buffer 3" is for storing the outputs of the DIS (modulated 

signals). 

Tap 0 to 2: Three tapped-delay lines have been implemented using the 

FPGA technology in order to study the trade-offs involved. Each tap consists of a delay 

element, implemented in hardware using a cascaded chain of flip-flops. The phase adder 

together with the look-up table provides a Doppler modulated complex signal. The gain 

modules provide amplitude modulation to the signal, represented by the triangular 

symbols connected to the outputs of the look-up tables. 

Summer. The summer adds outputs from I- and Q-channels separately. 

The addition is accomplished by first taking a partial sum of the outputs from two last 

taps and then as an additional step, adding this result to the output of the first tap. 
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c. FPGADIS Hardware 

The hardware used for the DIS implementation and its interface with the 

host computer is shown in Figure 39 and Figure 40. Figure 39 shows a photo of the host 

computer, a PII 300 MHz with 128 MB RAM. 

Figure 39. Picture of the Concept Demonstrator-Host (PC) with FPGA Board (DIS) 

Figure 40 shows the DIS hardware consisting of a FPGA (Altera 10K50 FPGA 

chip) mounted on a Naval Research Laboratory (NRL) custom-designed computer board. 

It can be seen inserted in the lower slot of the computer. The Altera 10K50 FPGA chip is 

the large device in the center of the board. 
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Figure 40. Picture of the Customized FPGA Board Used for the DIS Prototype 

d.        Processing DRFM-Phase Data 

Processing of DRFM-phase data samples by the three-tap original DIS 

architecture can be visualized as follows. For each received radar chirp pulse, a set of 

phase samples will be provided by the DRFM. At startup, valid output data consists of 

only the output from the first tap (Tap 0). At the next clock cycle valid data will be the 

sum of processed data from Tap 0 and Tap 1. At the third clock cycle, the output will be 

the sum of processed data from all three taps. At the end of the pulse, the taps are 

shutdown in reverse order while the phase data is propagating through the delays. An 

example of 64 radar pulses and 62 DRFM-phase data samples (range-bins) per radar 

pulse are summarized in Table 12. 
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Radar 

Pulse 

DRFM 

Data 

Clk TapO Tapl Tap 2 Result 

1 D, 0 Pn(Di) 0 0 Pn(D,) 

1 D2 1 Pn(D2) Pn+i(DO 0 Pn(D2)+Pn+1(Di) 

1 D3 2 Pn(D3) Pn+l(D2) Pn+2(D0 Pn(D3)+Pn+1(D2)+Pn+2(D,) 

• • • • • • 

1 D62 61 Pn(D62) Pn+l(D6l) Pn+2(D6o) Pn(D62) + Pn+l(D61) + Pn+2(D60) 

1 - 62 0 Pn+l(D62) Pn+2(D6i) Pn+l(D62)+Pn+2(D61) 

1 - 63 0 0 Pn+2(D62) Pn+2(D62) 

• • • • • • 

2 D, 64 Pn(DO 0 0 Pn(DO 

2 D2 65 Pn(D2) Pn+i(DO 0 Pn(D2) + Pn+l(D1) 

2 D3 66 Pn(D3) Pn+l(D2) Pn+2(D0 Pn(D3)+Pn+1(D2) + P„+2(D,) 

• • • • • • 

64 D62 4093 Pn(D62) Pn+l(D61) Pn+2(D6o) Pn(D62) + Pn+l(D61) + Pn+2(D60) 

64 - 4094 0 Pn+i(D62) Pn+2(D6l) Pn+l(D62) + Pn+2(D61) 

64 - 4095 0 0 Pn+2(D62) Pn+2(D62) 

Table 12. Correct Processing of DRFM Samples (Original DIS Architecture) 

Remarks for Table 12 (notations and descriptions): 

• Radar Pulse - Represents one radar pulse. The number of radar pulses 

represents the number of Doppler cells for the ISAR, in this case 64. 

• DRFM-phase Data - 62 DRFM-phase samples per radar pulse in this case 

• Clk - Clock pulse for the DIS 

• Tap n - Output of the n* tap 

• Tap n+1 - Output of the (n+1) tap 
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• Tap n+2 - Output of the (n+2) tap (the last tap in this example) 

• Result - The output from the DIS 

• Pn+x(Dx) - Processed phase data in a tap available as valid output 

The processing of DRFM-phase data in the three taps that has been 

implemented using FPGA technology is shown in Table 13. Noted that the 

implementation of the DIS algorithm using FPGAs does not perform a correct startup and 

shutdown of the individual taps when a set of DRFM samples is processed. Instead a data 

value of zero is processed through the tap and produces an incorrect output due to the 

cosine look-up table (cos(O) =1). This adds an error at the beginning and trailing edges of 

the pulse compared with the Matlab simulation that follows the original DIS algorithm 
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Radar 

Pulse 

DRFM 

Data 

Clk Tapn Tap n+1 Tap n+2 Result 

Di 0 Pn(Di) Pn+i(0) Pn+2(0) Pn(Di) + Pn+,(0) + Pn+2(0) 

D2 1 Pn(D2) Pn+l(Di) Pn+2(0) PnCD^+Pn^CDO + Pn^O) 

D3 2 Pn(D3) Pn+l(D2) Pn+2(Di) PnCD^ + P^iCD^+Pn^CDO 

• • • • • 

D62 61 Pn(D62) Pn+l(D6l) Pn+2(Döo) Pn(D62) + Pn+i(D6i) + P„+2(D60) 

0 62 Pn(0) Pn+l(D62) Pn+2(D61) Pn(0) + Pn+i(D62) + Pn+2(D6i) 

0 63 Pn(0) Pn+l(0) Pn+2(D62) Pn(0) + Pn+1(0) + Pn+2(D62) 

0 64 Pn(0) Pn+l(0) Pn+2(0) Pn(0) + Pn+,(0) + Pn+2(0) 

• • • • • • 

2 Di 64 Pn(D,) Pn+l(0) Pn+2(0) Pn(D,) + Pn+1(0) + Pn+2(0) 

2 D2 65 Pn(D2) Pn+l(Di) Pn+2(0) Pn(D2) + Pn+1(Di) + P„+2(0) 

2 D3 66 Pn(D3) Pn+l(D2) Pn+2(Di) PnCD^ + Pn^CD^+Pn^CDO 

• • • • • • 

64 D62 4096 Pn(D62) Pn+i(D6i) Pn+2(D6o) Pn(D62) + Pn+i(D61) + Pn+2(D6o) 

64 0 4097 Pn(0) Pn+l(D62) Pn+2(D6i) P„(0) + Pn+1(D62) + Pn+2(D61) 

64 0 4098 Pn(0) Pn+i(0) Pn+2(D62) Pn(0) + Pn+1(0) + Pn+2(D62) 

64 0 4159 Pn(0) Pn+l(0) Pn+2(0) P„(0) + Pn+1(0) + Pn+2(0) 

Table 13. Processing of DRFM Samples Using FPGAs (Original DIS Architecture) 

Remarks for Table 13 (notations and descriptions): 

• Radar Pulse - Represents one radar pulse. The number of radar pulses 

represents the number of Doppler cells for the IS AR, in this case 64. 

• DRFM-phase Data - 62 DRFM-phase samples per radar pulse in this case 

• Clk-Clock pulse for the DIS 

• Tap n - Output of the n* tap 
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• Tap n+1 - Output of the (n+1) tap 

• Tap n+2 - Output of the (n+2) tap (the last tap in this example) 

• Result - The output from the DIS 

• Pn+x(Dx) - Processed phase data sample in a tap available as valid output 

• P„+x(0) - Processed "0" in a tap available as output 

2. FPGA DIS Schematic 

a.        Top-Level FPGA Hierarchy 

The top-level hierarchy of the design using FPGAs is shown in Figure 4L 

The purpose of this figure is to visualize the Altera environment at the top-level of this 

architecture. The bottom left hand block is the I/O-decode and Built-in-Test (BIT) block. 

The purpose of the I/O decode block is to provide up to 256 addressable "internal" 

address spaces for reading and writing. The other blocks have direct correspondence to 

the other modules in the DIS: 

• Tap-Delay Line (delay.gdf) 

• Doppler Modulation Coefficient Latch (phi.gdf) 

• Phase Summer (ph_acc.gdf) 

• Look-Up-Table (lut.gdf) 

• Gain Modulation Coefficient Latch (gain.gdf) 

• Gain Modulator (newgainl.gdf, shiftO.gdf, shiftl.gdf, shift2.gdf, mux2.gdf) 

• Output Summer (out_summer.gdf) 

Each of these modules is described in further detail below. 
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Figure 4L Top-level FPGA Hierarchy of the DIS (simple.gdf) 
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b.        Tap-Delay Line 

The tap-delay line schematic with 3 tap delay lines is shown in Figure 42. 

The tap-delay lines are composed of a chain of D-flip-flops and occupy four internal 

addresses, 0x30, 0x31, 0x32 and 0x33. The meaning of the data values written to these 

locations is described in Table 14 below. 

Internal Address (in hex) 

0x30 

0x31 

0x32 

0x33 

Function 

Write "1" to reset tap-delay line, "0V 

otherwise 

Write any value to this address to cause a 

propagation of the values down the delay 

line 

Write the new DRFM value to the first tap 

of the delay line 

Unused 

Table 14. Internal Address Usage in the Tap Delay Line 

Updating the tap-delay line is a 2-stage process. This is accomplished by 

writing any value into address 0x31 (to effect propagation) followed by writing a new 

value into address 0x32 (to load in a new value at the first tap of the delay line). 
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c.        Doppier Modulation Coefficient Latch 

The phase-coefficient latch (for Doppler modulation) is comprised of a 

l-of-4 decoding block and a set of flip-flops as shown in Figure 43. 
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Figure 43. Schematic of the Phase-Coefficient Latch for Doppler Modulation (phLgdf) 
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d.        Phase Accumulator 

The phase accumulator schematic is shown in Figure 44 (one for each 

tap). The inputs to the accumulator are the 5-bit DRFM-phase samples (the values from 

the tap-delay line) and the latched 5-bit phase coefficients. Furthermore, the output bit- 

width matches the input bit-width (the carry-bits are discarded) representing a modulus 

addition operation (which is desired). Due to truncation of values larger than five bits, the 

phase values above In are folded back into the principle range between zero and 2n. The 

LPM-ADD-SUB module available in the Library of Parameterized Module (LPM) is 

used to configure the adder. 
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Figure 44. Schematic of the Phase Accumulator (ph_acc.gdf) 
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e.        Look-Up Table (LUT) 

The look-up table (LUT) is indexed by the output phase from the phase 

accumulator. This phase value is mapped to an 8-bit amplitude value stored in the LUT. 

Since the LUT output is a complex number, cosine and sine tables indexed by the same 

phase are required. The schematic diagram for the LUT is given in Figure 45. For the 

LUT configuration, a text file is associated with each LPMJROM module. In Altera, this 

file is called a memory initialization file (.mif). A Matlab script file (genLUT.m), which 

is capable of automatically generating the text-file, based on the width and depth of the 

LUT desired, has been used. This file generates the memory initialization file for the 

LPM_ROM module (cos.mif and sin.mif). It calls two Matlab function files 

(genfixptvO.m and genfloat.m). These two programs perform the fix and floating-point 

conversions. The Matlab files [Ref. 6] are included in Appendix A. 
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Figure 45. Schematic Diagram of the Look-Up Table (LUT) (lut.gdf) 
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/. Gain Modulation Coefficient Latch 

The latch for the gain modulation coefficient comprises a l-of-4 decoding 

block and a set of flip-flops as shown in Figure 46. Although four DQ flip-flops are 

shown, only three of them are used (one for each tap). 
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Figure 46. Schematic of the Gain Modulation Coefficient Latch (gain.gdf) 
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g.        Gain Modulator 

The gain modulator applies a gain to the binary signal from the LUT by 

shifting the binary word toward the most significant bit position and pads zeros at the 

least significant bit position. The gain modulator is shown in Figure 47. 
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Figure 47. Schematic of the Gain Modulation (newgainl.gdf) 

The original amplitude values, as set by the user in the Matlab GUI (the 

Range-Doppler-Amplitude Map Entry Program), are "translated" into a corresponding 

number of positions for the shift according to Table 15. 

GUI Amplitude Value # of Shift Left Steps Represents Decimal Multiplication by 

1 0 1 

2 1 2 

3 2 4 

4 3 8 

Table 15. Translation of Gain Values 

Figure 48 exemplifies the results of applying different gain modulation 

coefficients. In the first sub-plot, a GUI Amplitude value of "1" was applied, representing 

a decimal gain value of "1," for a 3-target cell long target. In the next three sub-plot the 

GUI Amplitude value was increased to "2," "3," and "4" respectively, representing a 

decimal gain value of "2," "4," and "8." 
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Figure 48. A 3-Target Cell Long Target with Different Gain Modulation Coefficients 

Using only a 2-bit word for representing the gain modulation coefficient 

will limit the dynamic range to 18.1dB when using shift modules. Another limitation is 

that only four discrete amplitude levels can be used. Increasing the word size, i.e. to three 

(or four) bits will give 42.1dB (90.3dB) dynamic range and 8 (16) different amplitude 

levels. 

# of bits Shift by 

0 to 2n-l 

Multiplication by 

1.....2 2
n-l 

Dynamic Range [dB] 

201og10(2
2n-Vl) 

201og10(Vmax/Vmin) 

Table 16. Number of Bits vs. Dynamic Range 
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The schematic diagram of the shift primitive is shown in Figure 49 and the 

schematic diagram of the MUX2 building block is provided in Figure 50. 
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Figure 49. Schematic of the Shift Primitive in the Gain Modulation Block (shiftO.gdf) 
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Figure 50. Schematic of the MUX2 in the Gain Modulation Block (mux2.gdf) 
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h.        Final Summer 

The schematic of the final summer is given in Figure 51. This circuit 

implements the addition of the tap outputs in two's complement. The addition in two's 

complement involves sign-extension of the numbers to be added and discarding the carry- 

out bit. The LPM-ADD-SUB module, available in the LPM, is used to configure the 

summer. 
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Figure 51. Schematic of the Final Summer (out_summer.gdf) 
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E. SIMULATION RESULTS 

1. Simulation Setup 

Several simulations have been done to verify the expected results. Below is one 

example of a simulation ran to illustrate the steps and to visualize the results. In this case, 

the false target to be generated has the same parameters given in the example above 

(Matlab simulation) as is shown again in Figure 52. 
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83 



In this example the user has specified the data in Table 17 for the false target to be 

created by the DIS. 

Target 

Cell 

Range 

CeU 

Doppler 

CeU 

AmpHtude 

Value 

Doppler 

Shift 

Remark 

1 1 20 2 0 Tap 0-1st Tap 

2 2 20 2 1 Tap 1 - 2nd Tap 

3 3 20 2 2 Tap 2-3rd Tap 

Table 17. User Specified Inputs of the False Target 

In order to make the comparison between the Matlab simulation and the DIS 

implemented using FPGA technology, an intermediate step was added in the simulation 

flow as described in Chapter 4. After the Matlab file mathostvX.m has been executed, aU 

necessary inputs are avaüable in text files to run the hardware implementation of the DIS. 

The interface with the FPGA computer board is a set of Visual Basic files composed into 

a Visual Basic project caUed FlexTest (flextest.vbp). To compüe and run the project and 

the board properly, the necessary files must be located in a file structure with the 

foUowing path: c:\temasek\denise\thesis\final_design\vbfiles. 

To run the Visual Basic project, FlexTest, the user must open the project, open the 

the_isar.bas file, and then run the file. Another GUI wül show up on the computer display 

to visualize the signal processing taking place in the taps of the DIS. 
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2. Simulation Results 

The 2-D contour plots in Figure 53 show the results from the Matlab simulation 

and the results from running the DIS implemented on the Altera FPGA device. The 

Matlab simulation results are shown in the upper sub-plot. Both sub-plots are presented in 

a range-Doppler map. That is, Down Range (range) versus Cross Range (Doppler). The 

two results look quite similar but will be examined closer to verify if any differences are 

present or not. 
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Figure 53. Matlab DIS Simulation vs. FPGA Hardware Results 
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Figure 54 shows the 3-D mesh surface plots. The first sub-plot shows the results 

from the Matlab DIS simulation. The second shows the result from the FPGA hardware. 

Finally, the third sub-plot shows the difference between the Matlab simulation and the 

FPGA hardware results. As expected, a slight difference between the Matlab simulation 

and the hardware results can be observed (note the scale on the amplitude axis of the 

three sub-plots). 

a. ATiplitude/Doppler Modulated Rd-Dp Map (MAiTLAB Simulation Result) 
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Figure 54. Matlab Simulation Result vs. FPGA Hardware Result and Their Difference 

These differences are because the implementation of the DIS algorithm using 

FPGAs does not consider a correct startup and shutdown of the individual taps when a set 

of DRFM-phase data from one radar pulse is processed (as discussed earlier). This 
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contributes to a slight error compared to the Matlab simulation, which strictly follows the 

original DIS algorithm. 

To verify that the errors are actually due to the difference in startup and shutdown 

sequences, the Matlab simulation code was adjusted to process the phase data in the same 

manner as the FPGA hardware. The results of the modified test case are shown in 

Figure 55. 
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Figure 55. Matlab Simulation Result vs. FPGA Hardware Result and Their Difference 

As expected, there are now no differences between the Matlab simulation results and the 

hardware FPGA results. The Concept Demonstrator has therefore been proven to work 

with its known limitations. 
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VI. FPGA-TO-ASIC CONVERSION 

Since the first design was captured using the Altera Max+Plus II software, which 

targets the Altera Programmable Logic Device (PLD), several methods were investigated 

to convert this design using third-party tools. This chapter discusses the different methods 

of converting the existing design in a format for tools that target an Application Specific 

Integrated Circuit (ASIC), instead of a PLD and their related problems. This chapter 

further concludes with a summary of problems encountered and the reasons behind 

choosing the Tanner Tools environment instead of one of the discussed converting tools. 

A. FPGA LIMITATIONS 

After analyzing the original, nearly complete implementation of the original 

architecture, we realized that several limitations were being imposed on the design, solely 

because the implementation employed FPGA technology. First and foremost was the 

speed limitation. The target clock speed for the design is 500MHz (2ns clock rate). This 

is an aggressive goal for any new chip design, and although it might eventually be 

possible to meet this target with an FPGA design, in the foreseeable future, a full-custom 

IC has a higher probability of meeting this  speed requirement.  A second major 

contributing factor was the physical size of the implementation.   The initial, proof-of- 

concept design does not require a large number of taps. However, even with a small 

number of taps the design could not be implemented into a single FPGA. One of the 

goals for this initial, proof-of-concept design was to create a devise easily extendable to 

more taps. Extending the FPGA implementation to more taps would require a significant 
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increase in the number of FPGAs. This was considered a major drawback of the FPGA 

implementation. 

After realizing the limitations of the FPGA implementation, we decided to 

convert the FPGA design to an ASIC design. Several FPGA-to-ASIC conversion 

techniques were investigated. 

1. Altera-to-MOSIS Process Flow 

The Altera-to-MOSIS conversion process investigates attempts to translate the 

design from Altera's Max+Plus II implementation to a high speed ASIC fabricated by 

MOSIS. It will be shown that the conversion is highly complex, and that parts of the 

conversion process are unpredictable, since some tools do not have a common interface. 

a.        Altera to MOSIS Link Overview 

The flowchart shown in Figure 56 shows the complete conversion path 

from the current FPGA design in Max+Plus II to an ASIC fabrication at MOSIS using 

several tools in different stages of the process. Statecad in conjunction with Statebench 

provides an add-in state machine into the existing FPGA design so that the resulting 

project file can be compiled in the Max+Plus II compiler. SimGen converts the compiler 

output file (.EDO) into a .MAC file, which can be read by Nettran. Nettran is a program 

of the Tanner Tool environment and converts different formats into useable input files for 

other Tanner Tool programs, e.g., the layout editor L-Edit. L-Edit uses the resulting .TPR 

file as input and creates a physical layout based on its library elements. The layout file 

needs to be compared with the original input files to ensure that the circuit representation 

is the same as the compiler output file. After verification and post-layout simulation, the 

layout can be sent to Mosis in form of a .CIF file for fabrication. 

90 



StateCad 

StateCad generates code .§ 
for statemachine in AHDL        "« 
checked by StateBench "* 

Max+Plus II 

Develop design 
using Graphic 
Editor (.GDF) 

StateBench 

GDF 

Compiler create EDF 
Output of entire project 

MaxPlus Project Compiler .EDO File 

.VHDLFile 

|^
B

L
K

_X
T

R
K

 U
PI

 s
cr

ip
t t

o 
ex

po
rt

 .M
A

C
 SimGen 

chip 

> 

E 
u 
< 
2 

Nettran | 
u 
E 
06 

L-Edit  | 

■   Mosis Compare f 

Compare simulated FPGA 
Max+Plus II with created 
ASIC layout 

Figure 56. Flowchart-Altera to MOSIS Link 

Remarks for Figure 6.1 

• GDF is Graphic Design File and is the file format of the Graphic Editor in 

Max+Plus II 

• AHDL is Altera Hardware Description Language 

• EDO is EDIF output file 
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• MAC is Macro file, to use between SimGen and Nettran 

• TPR is Tanner Tools file type 

• CIF is Chip fabrication format for the final layout 

• VHDL is VHSIC Hardware Description Language 

Controling the data flow by a state machine was considered, however, due to a different 

approach in the later ASIC design, a state machine implementation was not deemed 

necessary. Furthermore, Nettran and L-Edit are not part of the following program 

description. They are explained in detail in the following chapter to avoid unnecessary 

redundancy. 

b.        Statecad and Statebench 

Statecad is a powerful tool to create state machines of all kinds easily. It 

is a graphical entry tool that allows the user to express ideas as state diagrams. Statecad 

has been designed for simplicity in use as a tool for digital design, documentation, and 

error analysis. The Statecad GUI is shown in Figure 57 to illustrate the graphical concept 

of the tool. After validating a diagram, the program generates, directly from the diagram, 

hardware description language (HDL) code that can be simulated and synthesized. The 

HDL is valid, consistent, maintainable, and implements the graphical diagram. The HDL 

can be VHDL-1076, Verilog, ABEL-HDL, AHDL or ANSI-C. Interactive dialog boxes 

provide an environment for intuitive work and help to eliminate syntax errors and 

incomplete portions of state diagrams. [Ref. 12] 

Once a design is completed in Statecad, it can be verified in the add-on 

software Statebench. After verification, a timing test bench can be written automatically. 

The test bench can be used for post synthesis timing verification. 
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Figure 57. Statecad Screenshot (From Ref. [13]) 

Statebench is an add-on program to Statecad and automates behavioral 

verification and VHDITVerilog test bench generation of any state diagram created in 

Statecad. Automatic test benches attempt to exercise every input, output, transition, and 

logic equation in a design. For verification the program can usually check approximately 

80% of the design automatically. The remaining 20% requires minor user inputs to 

complete the validation of the design. Statebench can generate VHDL or Verilog test 

benches for post-synthesis verification by adding time constraints that can be imported in 

third-party test programs for further validation. 
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c.        SimGen 

SimGen is an EDIF to Nettran and a FPGA to ASIC conversion utility for 

Tanner Tools EDA that improves routine operation designing within the Tanner 

environment. SimGen uses EDIF or MAC files as input and can generate VHDL files 

from a chip layout to support verifications in VHDL design flows. It automatically 

creates simulation files (.SIM and .VEC) for GateSim. For these types of files SimGen 

sets up template files with input/output lists and restores true port names. Due to its 

ability to create .MAC files, SimGen supports file import into Tanner's Nettran software. 

Since the conversion between different file formats is not unproblematic, it attempts to 

clean up and repair netlists so that they can work as expected when going from one tool 

to another. SimGen provides a Windows control shell to activate, coordinate, and 

generate command files for Tanner's remaining DOS tools, e.g., GateSim, as well as file 

editing functions and waveform viewing functions [Ref. 14]. 

The conversion process from Max+Plus II to an ASIC in form of the 

Altera-to-Mosis Link is long and in parts unpredictable. One of the major drawbacks is 

that SimGen has no direct supported interface to Max+Plus II. Another major drawback 

is the incompatibility between the library cells used in the FPGA design and the required 

library cells for an ASIC design. Therefore a significant amount of hand conversion of 

library cells is required, which is time consuming and potentially error prone. Other 

problems with this conversion approach include the efficiency of the conversion process 

with respect to speed, layout area, and power consumption of the final IC design. 

Furthermore a future chip expansions or even minor changes to the design require 
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working through the entire link again, resulting in a considerable amount of time and new 

sources of conversion errors. 

B. LEONARDO SPECTRUM 

An alternative program to create an ASIC can be found in Spectrum's Leonardo 

software [Ref. 15]. Leonardo was not chosen because of the very complicated workspace 

creation process between Max+Plus II and Spectrum's software. Also Leonardo lacks the 

capability to directly import file types, which are generated by Max+Plus II. 

Nevertheless, Leonardo has the capability to target an entered or imported design either 

as an ASIC or as a FPGA. It includes several wizards to optimize, re-target and improve 

the design. Spectrum and Altera offer the possibility to create a working environment 

between MAX+PLUS II and Leonardo, which is illustrated in Table 18 and Figure 58. 

The described data flow was never investigated in detail since the involved programs had 

to be bought and were not available for testing. Nevertheless this was not desired either 

owing to the extremly long and complicated data flow to generate the workspace between 

the two endpoints. The MAX+PLUS II read.me file provides more information about 

which versions of Mentor Graphics applications are supported by the current version of 

MAX+PLUS II. It also provides information on installation and operating requirements 

that are not mentioned in this report. 
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Max+Plus n/Mentor Graphics Software Requirements 

The following products are used to generate, process, synthesis, and verify a project 

with the Max+Plus II and Mentor Graphics Leonardo software: 

Mentor Graphics 

System_1076 

Compiler 

QuickSim II 

Design Architect 

ENRead 

ENWrite 

GEN JUB library 

Quick HDL 

Quick HDL Pro 

Quick Path 

LSJLib library 

DVE 

Exemplar 

Galileo Extreme V4.1.1 

Leonardo V4.1.3 

Altera 

Max+Plus II V.9.2 

Table 18. Workspace between Max+Plus II and Leonardo 

In more general terms, the flexibility of programs like Max+Plus II, Leonardo, 

Statecad, etc. is determined by their ability to import files of different types. The most 

common file types are EDIF, Verflog, and VDHL files. One has to strictly differentiate 

between input and output files. Output files from Altera's MAX+PLUS II software are 

not compatible to input files with the same file extension, so there is a need to examine 

the differences in more detail. The following example is based on the MAX+PLUS II 

software, but is transferable to the other above-mentioned programs: the input file types 

are VHDL, Verilog, AHDL, GDF, SCH (schematic files from ORCAD) and the EDIF 

files from third party synthesis tools. The output files produced by the Max+Plus II 

compiler are VO (Verilog output netlist file), VHO (VHDL output netlist file), 
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TOO (AHDL output netlist file), and EDO (EDIF output netlist file). Now it should be 

obvious that output files cannot easily be used as import files for other programs. Hence a 

lot of other third-party tools are required to establish a conversion path in order to create 

a link between the two main programs. 

The only VHDL, Verilog or EDIF files that can be generated by the Max+Plus II 

compiler after synthesis are post place and route netlist files. These files are normally 

used as either input to third party simulation tools like e.g., Verilog-XL from Cadence, 

Modelsim from Modeltech etc. or as input for static timing analysis tools, like Primetime 

& Motive from Synopsys. These netlists contain a gate-level description of the design 

and the timing delays, where Max+Plus II's EDIF input file is a synthesized netlist. 

Therefore extracting an input file from an output file involves an extraordinary number of 

steps since the output files are place and route netlists. 

C. AMERICAN MICROSYSTEMS INC. 

Another alternative to building an ASIC from an FPGA is to contract with a 

company that specializes in FPGA-to-ASIC conversions, e.g., American Microsystems 

Inc. (AMI). For this approach, the entire design has to be done in FPGA-oriented 

software like Max+Plus II and sent to AMI for the conversion process. AMI also 

provides customers with their software in a light version, warning, however, that they 

cannot recommend this method since the tools are very complicated and require much 

experience [Ref. 16]. 

This approach was not selected and not further investigated for several reasons. 

First, the design conversion process yields an ASIC design that is readable by a computer 
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and cannot be read, manipulated, and modified easily by a human, even with the 

appropriate CAD tools. Therefore, when the initial DIS design is eventually expanded to 

include more taps, the expanded design would have to be accomplished using the FPGA 

tools and then another design conversion would have to be performed by the contractor 

and paid for. Another drawback is the efficiency of the design conversion with respect to 

speed, layout area, and power consumption of the final IC. Although great strides have 

been made in automated optimization for design conversion, much work still needs to be 

done in this area. Moreover, chip designs that start life as an ASIC design usually wind 

up being faster, smaller, and consume less power. Finally, one of the goals at the NPS 

Center for Joint Services Electronic Warfare is to offer students the chance to research 

and to create projects while working toward a Master's degree. Hiring an outside firm to 

perform the design conversion would eliminate this opportunity in addition to being 

costly and ending up with an imperfect design. 

D. MIGRATION TO TANNER 

All the above-described processes were investigated to convert the existing FPGA 

design into an ASIC in order to achieve two goals. Most importantly, the high-level DIS 

architecture had to be fast, both with respect to high throughput and short latency. 

Second, the design had to be extensible, allowing an inexpensive prototype with fewer 

taps to be easily turned into a more finished product by just increasing the number of 

taps. After analyzing the original architecture, we realized that there were several 

limitations being imposed on the design solely because the implementation was done 

using FPGAs. 
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The major concern is the speed limitation, in view of the fact that the clock speed 

for the design should be close to 500MHz. Although it might eventually be possible to 

meet this target with an FPGA design, in the foreseeable future, a full-custom IC will 

have a higher probability of meeting this speed goal. 

A second major contributing factor is the physical size of the implementation. 

The initial, proof-of-concept design did not require a large number of taps. However, if 

more taplines are desired to build a full operational prototype, the taplines would not fit 

into a single FPGA. Extending the FPGA implementation to more taplines would require 

a significant increase in the number of FPGAs. This is considered a major drawback of 

the FPGA implementation. Furthermore, additional taps could not just be added to the 

design since the adder tree used to sum the outputs of the taps for the final output would 

have to be redesigned. Beyond this, as the number of taps increases, either the clock 

speed must be slowed down (reduced throughput) or the number of pipeline stages must 

be increased (increase in the total latency) to accommodate the extra delay in the 

additional adders in the adder tree. The total latency is the sum of the latency in the tap 

and the latency in the adder tree, which increases as the number of taps increases. 

After considering the various different alternatives for design conversion, we 

realized that a dedicated ASIC design using the Tanner Tools would be the most efficient 

approach. The original architecture and FPGA design allows, however, an in-depth 

analysis of the behavior of the algorithms to be implemented in the ASIC and also allows 

the investigation of future design concepts (for example, to counter stepped-frequency 

waveforms). 
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VII. ASIC DESIGN: SCHEMATIC 

This chapter gives an overview over the Tanner Tool environment with emphasis 

on the programs used to construct the DIS architecture. The second section discusses the 

DIS architecture in more detail as it is modified and completed based on the FPGA 

architecture. The last section melts the previous section together and presents the detailed 

design implementations in Tanner's schematic capture tool S-Edit. Additionally, ideas 

and already created circuit improvements for future development will be addressed 

briefly. These improvements reflect circuit simplifications in terms of less transistors 

used in certain modules, or redesign issues for a higher clock speed. 

A. INTRODUCTION TO TANNER TOOLS 

The Tanner Tool environment consists of five major integrated modules: S-Edit, 

T-Spice, W-Edit, L-Edit, and Nettran. The following list presents a short overview of the 

complete Tanner environment [Ref. 17]: 

Simulation Tools: 

• T-Spice-an analog/digital circuit simulator 

• GateSim-a gate-level simulator 

• W-Edit-a waveform viewer 

• L-Edit/Therm-a 3-D finite-element thermal analyzer 

Front End and Netlist Tools: 
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• S-Edit-a schematic editor 

• LVS-a layout-versus-schematic netlist comparator 

Mask-Level-Tools: 

• L-Edit-a layout editor 

• L-Edit/SPR-an automatic standard cell placement and routing package 

• L-Edit/Extract-a layout extractor 

• L-Edit/DRC-a design rule checker 

The ordered Tanner Tool package consists of: 

• L-Edit with Design Rule Checker (DRC), Extract, and Standard Place and 

Route (SPR) 

• S-Edit (Schematic Editor) 

• LVS (Layout vs. Schematic) 

• T-Spice Pro with Advanced Model Library 

• W-Edit (Waveform Viewer) 

• Tanner Tools Pro Manuals 

Figure 59 [Ref. 17] illustrates at first a schematic overview of the Tanner environment 

and at second the data flow between the different programs of the package. The main 

environment consists of the programs S-Edit, LVS and L-Edit, where L-Edit finally saves 

the layout in a GDSII or CIF file that will be send to MOSIS for chip fabrication. The 

other components may not be used but are shown for completeness. 
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Figure 59. Tanner Tools Block Diagram (From Ref. [17]) 

1. Nettran 

Nettran is a tool within the Tanner environment that has routines and libraries to 

import different file types and convert them into other Tanner programs readable formats. 

It is used as a netlist translation application to ensure file exchange between the different 

tools and other applications. Figure 60 [Ref. 17], shown below, illustrates how Nettran 

fits into the Tanner Tools environment. The use of Nettran is required to translate S-Edit 
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files into an appropriate format for the use in the logical simulator GateSim or third party 

programs. 

Third-Party Tools ^. Vendor Format Files 

Figure 60. Nettran Function Block Diagram (From Ref. [17]) 

Nettran can to translate either wirelist, netlist, or EDIF files from third party tools like 

OrCad to standard Spice format, GateSim, or L-Edit netlist formats. Due to extended 

capabilities, S-Edit is now able to export a Tanner Data Base file (.TDB) that can be 

directly imported into L-Edit so that a conversion with Nettran is not required in this step. 

2. L-Edit 

L-Edit is a physical design layout editor that creates the device level fabrication 

files necessary to realize the integrated circuit. The user has different possibilities to enter 

a layout or project into L-Edit. The first is the layout by hand. Like in CAD tools, the 

elements of transistor components, e.g., P-Well, N-Well, or different metal layers are 

drawn in the editor window. Since this process is quite time consuming, the vendor 
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provides various libraries for different layout processes. These libraries contain layouts 

for digital design components, which are called L-Edit's wizards. Using the wizards is 

the second way to generate a layout in L-Edit. Besides the Block Place and Route tool (L- 

Edit/BPR), the Standard Place and Route tool (L-Edit/SPR) is the most important wizard. 

SPR and BPR generally perform the same task, where SPR is more specialized, provides 

more sophisticated functionality, and has more constraints. 

The Standard Place and Route module generates layouts for standard cell design 

and can automatically construct entire chips. It includes cell placement and routing, pad 

frame generation, and pad routing. SPR reads netlist files produced by S-Edit and creates 

masks useable as a basis for fabrication. Nevertheless, this automatically generated layout 

needs at least to be verified with the DRC. Tests have shown that the SPR module is 

working only to a certain degree of satisfaction. Even with specified design rules for the 

target process, e.g., 0.5 micron, it can produce faulty designs. The automatic layout 

process is adjustable in many ways. The most important adjustments are the placement 

optimization factor and the routing optimization. The placement optimization factor 

determines the effort of the algorithm to reduce the size of the layout and therefore the 

size of the entire chip. Factors between 00.0 (no optimization) and 10.0 (highest level of 

optimization) can be specified. With higher factor the computation time will increase 

exponential with decreasing effect. Furthermore, tests have shown that the results with 

different factors are variable and that a higher factor does not necessarily produce better 

results. Unfortunately the only way to determine the best factor settings is through trial 

and error. The best result gives a trade off between the least possible DRC violations and 

the smallest layout area. 
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The Design Rule Checker (L-Edit/DRC) performs a design rule check for the 

intended fabrication process and can optimize the place and route. It verifies the 

generated layout with pre-defined rules, which can be edited or extended. Even with the 

automatic function of place and route with SPR or BPR, it is absolutely necessary to run 

DRC on a layout generated by these tools. Additionally, a design that passed the DRC is 

not assumed to be free from errors. A post-layout simulation in the circuit-simulator tool 

or a netlist comparison with the netlist comparison tool is crucial. 

L-Edit/Extract creates SPICE-compatible circuit netlists from L-Edit layouts. The 

output can be exported in either GDSII or CIF file format for fabrication. The extract tool 

is the way to produce a Spice code for post-layout simulation or netlist comparison. For 

netlist comparison, see the description for LVS. 

3. S-Edit 

S-Edit is a schematic capture tool to enter the electronic layout of a circuit. For 

research and prototype devices intended for MOSIS fabrication, S-Edit contains a 

complete MOSIS library of components for each of the different scheduled runs, e.g., 0.5 

micron or 0.35micron. S-Edit can directly generate netlists that are usable in the circuit 

simulator, where a direct link writes a complete schematic directly into T-Spice. S-Edit 

holds the complete DIS architecture in form of a schematic representation. To simplify 

the circuit creation, the program can use different design levels. In other words, 

repeatedly used circuits, such as a tapline in the DIS design, are assigned to a symbol. To 

accomplish this, S-Edit has two main workspaces, the schematic editor and the symbol 

editor. Besides the creation of electronic circuits in the schematic editor, the user can 

create a symbol for a circuit of any size in the symbol editor. Due to this possibility, S- 
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Edit is able to handle different levels of a project and can use custom-made circuits in the 

same manner as its own library elements on every level of the design. For the DIS 

project, S-Edit is used to construct a hierarchy consisting of five levels, where lower 

levels provide higher levels with building blocks to create more complex circuits. 

4. Layout Versus Schematic (LVS) 

LVS is a layout-versus-schematic netlist comparator. It compares the exported 

netlist from S-Edit and the extracted netlist from L-Edit/Extract. It can also compare the 

layout with any other SPICE compatible netlist and ensures that both netlists represent 

the same circuit. LVS is working on the logic gate level. It uses the pre-defined library 

element for comparison and is not able to compare on the transistor level. Therefore 

custom-made layouts on the transistor level are a potential problem. 

The goal is to compare the layout mask generated by SPR with the schematic 

circuit in S-Edit. LVS is used to compare the netlists of both representations. This will 

guarantee the equality of the layout with the tested circuit before the design is sent to 

fabrication. As shown in Figure 61, the differences after netlist comparison are used for 

editing the compared files by hand. Finally this procedure will ensure the equality of the 

circuits. 
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Figure 61. Flow for Netlist Comparison in LVS 

5. The Circuit Simulator T-Spice Pro 

T-Spice Pro is a complete circuit design and analysis system, which includes T- 

Spice, the Advanced Model Package, the waveform editor W-Edit, and S-Edit. T-Spice is 

a circuit simulator using SPICE as input language. The Advanced Model Package 

consists of the latest transmission and semiconductor device models to achieve more 

realistic simulation results that are closer to real world behavior. The Tanner Company 

claims that T-Spice simulates a circuit design with more than 300,000 elements. With 

extremely large circuits, the simulator requires an exponential increase of computer 

resources. To some extent T-Spice can handle very large circuits consisting of linear 

elements like switches or resistors. However, transistors are not linear and are 

approximated by polynomial functions. Because transistors are exclusively used in digital 

designs, the program is not capable of handling a large digital circuit with approximate 

300,000 elements. The DIS design with 32 taplines consists of almost 290,000 transistors 
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and is not simulateable with T-Spice using a transistor model. In order to test the design, 

a switch model can be used to replace the transistor model. This approach will be 

discussed in greater detail in Chapter 9. 

S-Edit (described above) provides a direct link to T-Spice, which makes the 

translation of the schematic design into a SPICE file easy. By adding parameters and bit 

pattern test vectors, the circuit logic can be tested before layout. T-Spice offers only a 

semi-usable algorithm for binary testing. The input data to the circuit are digital and 

coded in a binary form (0=OV, 1=5V), but the output will be in real voltages instead of 

binary words. Therefore the output is of limited use. 

6. The Waveform Viewer W-Edit 

W-Edit is a waveform editor acting primarily as a back-end data processor for the 

data generated in T-Spice. It is designed to display T-Spice simulation output waveforms. 

W-Edit is used to verify the functionality of small circuits like a register cell or a 2 input 

NAND gate. It is not useful for larger circuits. 

B. DIGITAL IMAGE SYNTHESIZER ARCHITECTURE 

This section focuses on the new DIS design (ASIC architecture) and discusses its 

implementation in detail. The ASIC architecture is based on a modified FPGA concept, 

where a tap and its associated range-bin processing is now called a tapline to distinguish 

between the two implementations. The general data flow within a tapline is shown in 

Figure 62. The main differences between the original architecture and the modified 

architecture as implemented in the ASIC are summarized as follows: 
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1. Parallel DRFM-phase data input into all (32) taplines simultaneously instead 

of serial inputs through a tap delay line 

2. Implementation of registers in the data flow of a tapline (pipelining 

3. Serial summation of the tapline data output in order to achieve the necessary 

delay and to add the output data in correct sequence for the final output 

4. Built-in scan-path test capability 
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Figure 62. Tapline in ASIC Architecture 
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As illustrated in Figure 62, the DRFM-phase-increment values ((|>(n)) are one of the four 

inputs for a tapline. So far, the integrated circuit is composed of 32 taplines, which 

synchronously receive (no delay) the same clocked DRFM-phase data for each tapline as 

input. The Phase Adder combines the DRFM-phase data and the phase-increment value 

(A$n). The phase-increment consists of the phase-rotation of several backscatters and is 

generated off chip for the most recent tapline version. The result of the phase addition in 

the phase adder continues to propagate into Pipeline Register 1, where it is available for 

the LUT (Look Up Table) after the first clock cycle. The LUT uses this input as a pointer 

to an address space in the LUT-ROM and stores the resulting I and Q values into Pipeline 

Register 2. After the second clock cycle, the values can penetrate the gain block, where 

the appropriate gain (An) is applied. After the third clock cycle the values can enter the 

second adder. The adder's function is to combine the phase data with the phase data from 

the next higher tapline. Figure 63 illustrates this concept of the summation in a simplified 

way. To compensate for not having delay in the input DRFM-phase data, delay 
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Figure 63. Simplified Data Flow in the ASIC Architecture 
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is automatically achieved during the second addition ("Sum" in Figure 63) by using a 

pipelined adder chain instead of an adder tree. Recall that the processed DRFM-phase 

data resulting in a tapline output are of the form Pn(D3) + Pn+i(D2) + Pa+2(Pi). In the 

original architecture, this form is achieved by delaying the DRFM-input data at the input 

because it is propagating through all available taps. The parallel summation at the end of 

the process gives the above-mentioned form. In the ASIC arcitecture, the adder chain not 

only creates the required delay, it also eliminates the two most significant problems of the 

original design. First, adder chains are easily extensible since additional adders can be 

chained together connecting output to input, as long as the adders do not overflow. If the 

adder overflows, it is a simple process to increase the number of bits for the second adder 

in the VLSI library. Second, in a pipelined ASIC architecture, the total pipeline latency 

from the first input-data to the first output-data is the pipeline latency in the tapline plus 

the pipeline delay of only one adder. Thus, as the number of taplines increases, the 

latency stays the same instead of increasing as with a growing adder tree. Of course, the 

latency from the last phase-data input sample to the last output result does increase, but 

this is inherent in the algorithm being used and occurs in both designs. 

As shown in Figure 62 and Figure 63, every tapline combines its processed data 

with the output data of the next higher tapline. The result is a chain of data between the 

first and the last used tapline. Table 19 illustrates this concept. The clock cycles used to 

describe the data flow in the tapline ignore the time necessary to load the inputs into the 

IC. The method of describing the data in Table 19 simplifies this even more and assumes, 

that no time is needed to process the data within a tapline. In this example tapline n (T„) 

is the first one in a row of three taplines. The output of Tn is the final output, consisting of 
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I and Q values. After clock one, every tapline produces an output with the same DRFM- 

phase data (£>/) as input. With clock two, the output of Tn+2 gets added to the processed 

data (Pi) in T„+j and the output of T„+i gets added to the processed data (D2) in Tn. 

Continuing with this concept, the final output is the same as the previously proven FPGA 

architecture. 

113 



Radar 

Pulse 

DRFM 

Data 

CLK tapline n tapline n+1 tapline n+2 

1 Di 0 PnCDO + 0 + 0 Pn+1(D0 + 0 Pn+2(D0 

1 D2 1 Pn(D2)  +Pn+1(D!) + 0 Pn+l(D2) + Pn+2(D!) Pn+2(D2) 

1 D3 2 Pn(D3) +P„+i(D2) + Pn+2(D1) Pn+i(D3) + Pn+2(D2) Pn+2(D3) 

1 D4 3 P„(D4) +Pn+1(D3)+Pn+2(D2) Pn+1(D4) + Pn+2(D3) Pn+2(D4) 

• • • • • • 

• • • • • • 

1 D62 61 Pn(D62) + P„+l(D6l) + Pn+2(D60) Pn+l(D62) + Pn+2(D6i) Pn+2(D62) 

1 - 62 0 + Pn+i(D62) + Pn+2(D61) 0 + Pn+2(D62) 0 

1 - 63 0 + 0 + Pn+2(D62) 0 + 0 0 

1 - 64 0 0 + 0 0 

• • • • • • 

2 D, 65 Pn(Di) + 0 + 0 Pn+1(Di) + 0 Pn+2(Dl) 

2 D2 66 Pn(D2)   +Pn+i(Di) + 0 Pn+l(D2) + P„+2(Di) Pn+2(D2) 

2 D3 67 Pn(D3) +Pn+1(D2)+Pn+2(D1) Pn+i(D3) + Pn+2(D2) Pn+2(D3) 

2 D4 68 P„(D4) +Pn+i(D3)+Pn+2(D2) Pn+i(D4) + Pn+2(D3) Pn+2(D4) 

• • • • • • 

• • • • • • 

64 D62 4093 Pn(D62) + P„+l(D6i) + Pn+2(D60) Pn+l(D62) + Pn+2(D61) Pn+2(D62) 

64 - 4094 0 + P„+i(D62) + Pn+2(D6i) 0 + Pn+2(D62) 0 

64 - 4095 0 + 0 + Pn+2(D62) 0 + 0 0 

64 - 4096 0 0 + 0 0 

Table 19. Tapline Outputs with Three Taplines 

Remarks for Table 19 

1. A radar pulse consists of 62 samples, where a sample is the DRFM-phase data 

2. Tapline n, n+1, n+2 are the outputs of the three taplines. 
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3.  Pn+x(Dy)   represents   the   processed  phase-data   sample   available   at   the 

designated tapline output. 

Table 19 ignores the time that is needed to process data within a tapline. To complete this 

discussion, Table 20 summarizes the clock cycles needed to process the data within a 

tapline. 

Clock Cycle Output available at: 

0 Phase Accumulator 

1 Output of Pipeline Register 1 (5-bit) 

2 Output of Pipeline Register 2 (8-bit) 

3 Output of Pipeline Register 3 (11-bit) 

4 Output of Pipeline Register 4 (16-bit), end of tapline 

Table 20. Clock Cycles within a Tapline 

Before data can be processed in a tapline, it must be loaded into the chip. Even 

though the loading process requires a certain number of clocks, this section considers 

only the general concept of a tapline. The loading cycles for the chip are addressed later. 

Due to the adaptation of registers between the building blocks of a tapline, a test 

path is installed to improve the testability and functionality for the entire IC. This scan- 

path test capability can be used to strobe values into the registers to produce results for 

special test cases. The test vectors within the registers can then be processed for a 

desirable number of clock cycles before they are read out again. The implemented scan 

path is also part of later discussions. 
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C. SCHEMATIC DESIGN IMPLEMENTATION 

The following section provides information about how the DIS concept is 

implemented in the schematic capture tool S-Edit. Since the program supports design 

hierarchy, the DIS architecture is divided into five design levels. In order to increase the 

signal flow control and the functionality, several control signals are introduced. These 

control signals are also used to indicate the states (valid/not valid) of the output data. 

Furthermore a scan-path test capability is installed to enhance the testability for sub- 

levels during the test phase and to verify the correct operation for the entire IC. 

1. General Design Hierarchy 

S-Edit is a schematic editor to enter an electronic layout or schematic of a circuit. 

It is capable of creating hierarchical circuits by using library elements or self-created 

modules. Tanner provides the customer with a great variety of modules and building 

blocks, but only a few of them are used to build blocks on the lower levels for the use on 

higher design levels. 

The DIS design in S-Edit consists of five levels. The first level uses transistors or 

low-level building blocks like logic gates. Using blocks from lower hierarchy levels 

allows creating higher levels in order to increase the complexity stepwise. This concept 

provides two main advantages: 

1. The logic of the design is more obvious, easier to understand, and easier to verify. 

2. The layout editor L-Edit can use the same hierarchy to synthesize the layout 

stepwise. Since the hierarchical layout process allows a slow increase in the 

complexity, the layout editing is easier, more reliable, more efficient and faster. 
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The following hierarchy tree illustrates the structure of the architecture in S-Edit: 

1. Level 1 elementary building elements from existing libraries or modified 

library elements. This includes for example, a register cell, an adder cell, a 

Mux2, transistors and all logic gates. 

2. Level 2 builds on elements from Level 1 to create: 5-to-32-bit decoder part 1, 

5-to-32-bit decoder part 2, the LUT-ROM, Gain Shift, N-bit register, and N- 

bit adder. 

3. Level 3 makes use of the elements from Level 2 and 1 to build the tapline. 

4. Level 4 holds the Supertap and the Supertap Mirror consisting of Level 3 and 

level 1 components. 

5. Level 5 consists of a 5-to32-Bit decoder and extends the concept of Level 4 

components to create the top level circuit with a data input bus, input pads, 

and output pads. 

A complete graphical representation of each building block can be found in the 

Appendix. Also listed are the symbols and schematics for all sub-circuits used for the 

design implementation. 

2. Architecture Circuit Description in Level 1 

a.        Basis Elements 

The very basic elements in a digital design are the P-FET and the N-FET 

transistors. These types of transistors are represented only by a symbolic appearance, 

which is specified by a SPICE output statement, as shown in Figure 64. The SPICE 
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Figure 64. P-FET Transistor 

output defines the transistor in ports, gate length and width. Additionally parameters are 

also defined that are not relevant for the current design and therefore are not mentioned 

here. The important parameters are multiples of the technology specific variable lambda 

(1) so that the transistor is scaleable and can be used for different layout processes. Due to 

monetary reasons and availability of certain process runs at MOSIS, we decided to target 

on HP 0.5^im process. Nevertheless, if the concept is demonstrated and the IC is fully 

operational, the target process can be easily changed to a smaller (faster) process without 

any changes to the existing design in S-Edit. 

b.        Adder Cell 

The adder cell and register cells, as shown in Figure 65 and Figure 66, are 

building blocks to create n-bit adders or n-bit registers. The adder cell can add two 1-bit 

binary input words. The input pads are labeled A and B, where the third input pad, Ci the 

carry-in bit is used to connect two or more adder cells. The carry output pad, Co and the 

output pad S define the 2-bit output word. The function of the cell is described by the 

following two equations: 
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S = invB * invCi + invA * B * invCi + invA * invB * Ci + A * B * Ci 

Co = A*B+B*Ci + A*Ci 

(7.1) 

(7.2) 

E> 

"      1IWÄ s^ invB  Ci"    invCi 

o 
QL 

Figure 65. Adder Cell 

To build an n-bit adder, Co of cell N gets connected to Ci of cell N+l. A 5-bit adder and 

a 16-bit adder are part of Level 2 in the hierarchy. 

c.        Register Cell 

The register cell, as shown in Figure 66, implements the scan-path test and 

introduces control over the data flow in the tapline logic. The control logic consists of 

hold, load, clock, and the scan path pads. Besides the clock, only one of the control 

signals is allowed to become high at the same time. If load goes high, the register 

performs normal operations and "clocks" the input to the output. A logical high for 

"hold" freezes the last processed value and ignores new input data. If all control pads are 

low at the same time, the register is forced to perform a synchronous clear (all outputs 

become low). To construct an n-bit register, Q of cell N must be connected to SRDi of 

cell N+l and Q of cell N must be connected to SLDi of cell N-l, where the register 
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control pads are connected in parallel. A 2-bit register, a 4-bit register, a 5-bit register, an 

8-bit register, an 11-bit register, and a 16-bit register are part of Level 2 of the design 

hierarchy. 

SRQL 

SLDL 

i> 

D       Q 

Figure 66. Register Cell 

The register cell in Figure 66 consists of 48 transistors for the logic gates and the D-Flip- 

Flop. By using library elements throughout a module, L-Edit can perform the layout 

process without any complication. Nevertheless, this construct has three levels of delay 

and cannot be driven at very high clock speeds. Furthermore, in a tapline there are 94 

register cells. Depending on the number of taplines used for one chip, the layout area 

could be reduced to a more compact design. ASIC designers use Transmission Gates 

(TG) for these purposes. Transmission Gates are basically one P-FET and one N-FET 

transistor connected via drain and source controlled through their gate ports. The control 

signal is spit to provide two signals, the signal itself and its complement. If the control 

signal is high, the TG lets the input data pass. If the control signal is low, the TG blocks 

the input data. The described behavior is identical to that of a simple switch controlled by 
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voltage. Figure 67 shows a register cell using TGs. The control signals in this cell are the 

same as for the register cell in Figure 66 plus their complements needed to drive the 

gates. The controls drive the column of four TG (counting from the bottom) and 

implement the basic register functions load, hold, and the scan path features. At the top of 

the figure, the row of four TGs is responsible for the data output and is basically formed 

out of two latches. The marked point "M" separates the master (left) from the slave 

(right). The clock signal and its complement with a combinational logic of inverters drive 

the gates. Due to the implementation of the clock signal, the master together with its 

slave form a positive triggered flip-flop so that its behavior is quite different from a latch. 

This means that at clock low the master gets loaded with the resulting value out of the TG 

column. If the clock switches from low to high, the loaded value gets stored in the 

master's second TG and feeds the slave, which is now in loading mode. When the clock 

changes again, the master can load new data, where the slave is in store mode and feeds 

the output. 

The D-Register cell consists of 26 transistors. This is a reduction of 45% 

in comparison to the current used register cells. For a chip with 32 taplines and 95 

registers per tapline, 66,880 transistors could be saved. Moreover, TGs are used for high- 

clock rate circuits and process data faster. In spite of these advantages, the critical factor 

is the coherence of the control signals and its complement. The phase difference for the 

clock in particular must be held at a minimum to ensure correct function at high clock 

speeds. 
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Figure 67. D-Register Cell 

3. Architecture Circuit Description in Level 2 

Level 2 elements are the building blocks for a tapline. 

a.        Look-Up Table 

The Look-up-Table (LOT), as shown in Figure 68, is a composition of 

three sub-building blocks that are listed in the Appendix: 5-to-32 bit decoder part 1, 5-to- 

32 bit decoder part 2, and the LUT-ROM. For simplicity during circuit creation, the 5-to- 

32 bit decoder was split into two parts. The two parts together use a five bit binary input 

and convert it into an address space used as input for the Look-Up-Table. A five bit 
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binary number represents 32 decimal numbers. Each of these numbers corresponds to two 

lines in the LUT module. Therefore the five-bit input triggers the corresponding address 

line in the LUT, where the LUT makes the stored value available at the output. Figure 69 

shows only a small part of the LUT-ROM to illustrate the general structure. 

5-to-32 decoder part 1 

s       "       ^      «.      a       3       a.      *K 

5-to-32 Decoder part 2 

3 a * a 3 a 3B 3 a 3 B 3 a ?o 3 s 3 a 3 a 3 a 3 a 3 a 3 a 3 a ?a 3 a 3 a 3 a 3 a ?■ 3 ' 1' i" 5 "P*  * W  ?• O  3 B  ? •  }l 

a. a ja a. B a. n * 6 o.a °,G a, n a. a 3a 30 33 3a 30 30 3a 3a |a 0, a 3a | a a, a ^ » j » ^ E ;■ 3« |» 3 « ^ » 3« $' 
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Figure 68. Look-Up-Table (LUT) Module 

The entire block is shown in the Appendix. The ROM consists of 32 double rows of 

transistors with a length of 16 transistors per row, each divided into two columns. Every 

double row represents a 2 * 8 bit value, the cos (I) and sin (Q) outputs. Placing P-FET 

and N-FET transistors at the wire crossing of row and output pad programs the desired 

output value as shown in Table 21. Recall that this is the same concept as for the FPGA 

architecture. The difference here is that the ASIC architecture combines the table look-up 

for the I and Q phase values in only one table, using the fact that I and Q are always in 

phase quadrature. 
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Figure 69. Part of theLUT-ROM 

Program a "0" Program a "1" 

Set N-FET transistor in row for 

input pad Wn 

Set P-FET transistor in row for 

input pad inv_Wn 

Table 21. LUT Programming 

b.        Gain Shifter 

The Gain Shifter "multiplies" the input by performing a shift. The binary 

input pads GainO and Gainl, as shown in Figure 70, determine the amount of shift or gain 

applied to the two's complement input word. Two rows of Mux2 perform the shift of the 

input. The first row connects its "select" input to GainO and the second one to Gainl. If 

select gets high, the Mux2 uses Port A as input otherwise Port B. Since Port A is 

connected to the input of the next lower bit, the row performs a shift of one digit to the 

left. The Mux2s of the second row connect their Port A to the next but one input bit 

performing a shift by two. The equation for a Mux2 is as follows: 

Out = MuxA * Sei + MuxB * not_Sel (7.3) 

Table 22 illustrates the gain effects on the input and summarizes the shift discussion. 
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Binary Input Gain Multiplication Effect on binary input word 

Gainl GainO Factor Factor 

0   0 0 1 No effect on input word; input = output 

0    1 1 2 Input word gets shifted by one digit to the left, 

For example: Input =1101 

Output =11010 

1    0 2 4 Input word gets shifted by two digit to the left, 

For example: Input =1101 

Output =110100 

1    1 3 8 Input word gets shifted by three digit to the left, 

For example: Input =1101 

Output =1101000 

Table 22. Gain Shift 

The gain factor in Table 22 is the integer representation of the two gain inputs. They are 

related to a multiplication factor as specified in the Matlab m-file Range-Doppler- 

Amplitude Map Entry Program described in previous chapters. 

Figure 70 illustrates the concept of the Gain Shift block. It shows the logic 

that leads to the shift of the two's complement binary input. The Gain Shift block or Gain 

Modulator requires an 8-bit two's complement input word and two gain-coefficients 

(GainO, Gainl). Due to the largest possible shift of three positions with gain-coefficients 

of Gain0=l and Gainl=l, the output word can be an 11-bit two's complement binary 

number. 
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Figure 70. Gain-Shift Block 

The dynamic range of the Gain Shifter can be calculated as follows: 

DR = 20 * log(max multiplication) (7.4) 

DR = 20 * log(8) = 18 dB (7.5) 

Since a dynamic range of 18dB is not sufficient to counter a sophisticated IS AR, a higher 

dynamic range might be desired for future design implementation. Adding another row of 

Mux2s performing a shift of four easily does the extension. The highest multiplication 

factor for a shift of seven bits is 128, which would increase the dynamic range to 42dB. 

Extending the current gain shifter by even two more rows would increase the dynamic 

range to 90dB. 
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4. Architecture Circuit Description in Level 3 

Design architecture level 3 holds only one, but the most important module, the 

tapline. The tapline combines the modules of Level 2 and Level 1 to form the data 

pipeline for processing as descried earlier. Three different taplines have been created, 

where only two are described here. The third tapline is a realization of the D-Register cell 

implementation and was not tested. 

a.        Tapline with Phase-Rotation 

A tapline as shown in Figure 71 is the central building block of the DIS 

architecture since every other block in higher design levels is a multiple of this module. 

The chip capabilities are directly related to the number of taplines implemented in the 

chip. Every additional tapline extends the possible size of a false target. In reference to 

the Range-Doppler Map Entry, one tapline in the hardware represents a single cell in the 

Range-Doppler Map. Currently the chip design contains 32 taplines. Therefore the target 

extent is 32 cells in the "Range-Doppler-Amplitude Map Entry program," which can be 

related to a physical false target extent of: 

1.2m (for each cell) * 32 taplines = 38.4m (7.6) 

The tapline module allows an unproblematic interconnect of several 

taplines so that a greater target extend can be achieved by adding taplines. A constraint 

for more than 32 taplines is the size of the second adder, as discussed in upcoming 

chapters. 
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Figure 71. Tapline with On-Board Phase-Increment 

Due to the complexity of the tapline, it is split into three sub-blocks for illustration 

purposes. The control signals and the scan-path test are not part of the discussion and are 

excluded for now. The first block is called the phase-incrementer and is shown in Figure 

72. It consists of a 4-bit register, a 5-bit register and a 5-bit adder and requires a 4-bit 

binary input word. The two's-complement binary input is the desired phase-increment 

value (oPRI that has to be added to the DRFM-phase data. The phase-incrementer 

128 



supplies integer multiples of the desired phase-increment (ncoPRI) to the phase data on a 

pulse-to-pulse basis. That is, due to the phase-rotation requirement, the output of the 

phase-incrementer must increase or decrease by the amount of the phase-increment value 

for every new pulse. The increment value supplied to the tapline may be constant over 

several radar pulses (constant Doppler frequency). To achieve this "constant," the 

increment value is added as the first input for the 5-bit adder, where the connection 
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Figure 72. Phase-Increment Block 

between bit four and five is the sign extension. The adder output goes into a 5-bit register 

that is again connected to the adder in a loop. Due to this construction, the output of the 

5-bit adder is always a n-multiple (n = 1, 2, ...) of the original input. The phase-rotation 

can be adjusted by control signals, which control the registers in this block. The master 

clock controls the overall behavior of the registers. Since a register needs one clock cycle 

to produce a valid output, the Phase-incrementer has a requirement of at least one clock 

cycle before a valid result is present at the output. Therefore the phase-increment in the 5- 

bit register needs to be activated exactly one clock cycle before a new pulse with new 

DRFM-phase data can be processed to produce a valid output. The output is a two's 
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complement binary word, which is the input to the next logical block, the LUT-Module. 

An alternative phase-increment design is described in Section B that allows even further 

flexibility in false target generation. 

The LUT-Module, shown in Figure 73, is the second sub-block of a 

tapline. It consists of a 5-bit adder, a 5-bit register, a LUT for I and Q values, and a 8-bit 

register. The adder takes the DRFM-phase data inputs and the Phase-incrementer outputs 

and adds them. Note that the addition of two 5-bit binary words could result in a 6-bit 

word. This fact can be ignored, since the Phase-incrementer output is a phase value 

repeating over a period of 2TI. Therefore the adder output, in conjunction with the cosine 

and sine LUT, can also be shown to be periodic over five bits. 
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Figure 73. Tapline LUT Module 
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In continuation with the data flow, the adder output leads into a 5-bit register (Pipeline 

Reg 1), where it is available at the output after one clock cycle. The LUT block takes the 

5-bit input word and uses it as an address to determine the corresponding I and Q values 

in the sine/cosine LUT as described earlier. From this point the signal flow is divided into 

two data channels, which are the in-phase and quadrature values (I and Q). However the 

operations performed on data within the I and Q channel will be the same up to the final 

output at the end of the first tapline. The LUT output data are inputs to an 8-bit register 

(Pipeline Reg 2) and become available at the output after the next clock cycle leads into 

the last module, the gain and adder block 

The "gain and adder block" is shown in Figure 74 and consists of a gain 

shift block with a gain register, a 16-bit adder, and a 16-bit register each for the I and Q 

channels (compare also with Figure 71). The input to the gain shift is the output of the 

LUT. As described earlier, the gain shift performs a shift of the input data in accordance 

with the specified gain-coefficients. The output results in a two's complement 11-bit 

word for each channel. After one clock cycle, the values are present at the output of the 

following 11-bit register (Pipeline Reg 3). The following 16-bit adder takes two inputs. 

One is the output of the Gain Shift block, which again requires a sign extension to the 

most significant bit achieved by the interconnection of bits 11 to 15. The second input is 

the output of the tapline that is the next higher in a cascade of 32 taplines. This illustrates 

the concept mentioned at the beginning of this chapter. To recall, imagine that the 

considered tapline is tapline #1. The next higher tapline is #2. After four clock cycles, the 

first outputs at both taplines are available at the gain and adder block output (see Table 

20), where tapline #2 presents its values to the 16-bit adder of tapline #1. With the next 
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clock cycle, tapliiie #2's incoming data is added to tapline #l's data coming out of the 

11-bit register after the gain shift. After the addition in the 16-bit adder, the values are 

presented to the input of the last register (Pipeline Reg 4) in the tapline. After one more 

clock cycle, the values in the form of 16-bit two's complement words are available at the 

tapline output. The size of the last adder determines the numbers of taplines because all 

outputs are added at the adder inside the first tapline. A 16-bit adder can be used with 32 

taplines without achieving an overload at the end of the chain. Every multiple of the 

current 32 taplines requires increasing the number of adder bits by one bit. 
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Figure 74. Tapline Gain and Adder Block 

All of the three sub-blocks that have been discussed include control and test signals 

managing the data flow to achieve the physical requirements for the DIS. These signals 

are not part of this section but are discussed in detail later on. Furthermore, there are four 
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1-bit registers on the right hand side shown in Figure 71, that were not part of the 

discussion either. These registers are used to allow particular control signals to penetrate 

the tapline synchronously with the clock. 

b.        Tapline with Double Buffering 

Figure 75 shows a modified version of a tapline with double-buffered 

phase data and gain-coefficients. The main body for DRFM-phase data treatment is still 

the same, but the application of the phase data and the gain-coefficients is different. The 

Phase-incrementer is replaced with a double register buffer consisting of two 4-bit 

registers as shown in Figure 76 (compare with Figure 72). The generation of the phase- 

increment is done off chip and can be applied on a PRI to PRI basis. Therefore the 

flexibility is increased, since generation of multiple scatterers (superposition of several 

Doppler phases) are possible within one Range-Doppler-cell. 

For this process, the phase data is stored in the second register while new 

data is loaded into the first register. The phase-increment is normally fixed for one radar 

pulse so that the loading requirements will not reduce the speed of the data processing. 

The only trade off in this design is the resolution in Doppler due to the supplied phase 

data. The phase-rotation in the other tapline design allows a controller to produce 

multiples of the original 4-bit input phase, which could result in a 5-bit output going into 

the phase accumulator. With phase buffering the input is four bits and no phase-rotation 

is done on chip. The phase data must propagate through the registers before being added 

to the DRFM-phase data in the phase accumulator. The phase accumulator requires two 

5-bit inputs to produce the different Doppler phase values. In order to avoid limitations, 
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the least significant bit for the phase-increment data leading into the phase accumulator is 

fixed at zero (grounded). This overcomes a reduction in the range of possible phase- 

increment values since the four input bits are equally spread over a range of five bits. 

Nevertheless the phase-increment data are limited to even decimal numbers loaded as 

binary words. This is considered acceptable for a concept demonstrator, since otherwise a 

major redesign of Level 4 and Level 5 would be required and would postpone the 

fabrication considerably. 

Figure 77 shows the gain-coefficients that are also double-buffered. This 

provides increased flexibility in terms of loading the chip. The gain-coefficients normally 

change together with the phase data with every radar pulse. A logic is required to change 

the new gain at exactly the same time the processed data is present at the gain shifter. 

This logic is not shown in Figure 77, but can be observed in Figure 75. To change the 

gain-coefficients, the control signal activating the phase-increment data penetrates two 
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1-bit control registers. Thus, the control signal is delayed by two clock cycles, which 

represent the time the data needs to reach the gain shifter. Once the control signal is 

present at the second gain register, the register loads the new gain-coefficient from the 

gain register buffer and the gain shifter uses the new gain to perform the shift of its input 

data. 

3ain_DatO 
3ain Datl 

">— oa; 

\    Dfl 

o   o   o   o   o 

2=     9     05     ri    3  Q| 

2-Bit Reg o: 
SLDi     SRDi 

TT 
Gain Reg Buffer 

O     Q     Q     O     0 

D2=     9     ffi     rt     ö Q( 

?»  2-Bit Reg o: 
SLDi     SRDi 

TT Gain Reg 

TTTMHT 
ConO 

Gaiil  ^ \JU-U1    iJIÜLL-     ,mnner(Mux2] 

33338333833 

AT   A6    A5    A4    A3    \2    Al    At 

Gain Shift 

odoood odddo 

Figure 77. Gain-Coefficients Double Buffer 

5. Architecture Circuit Description in Level 4 

Level 4 of the design construct in S-Edit pursues the tapline. Figure 78 shows a 

Supertap that consists of 8-taplines connecting the data pipleline in series. The Supertap 

design is not affected by the two different tapline designs mentioned in the previous 

section. The only difference is the name of a control signal that reflects the tapline used 

to construct the Supertap. Form now on, we will consider only the double-buffered 

tapline, as it is used to generate the layout in L-Edit. 

A Supertap has the same control signals and output pads as a tapline. For 

example, the gain-coefficients, the phase-increment values, and the target-extent control 

signals are different for the individual taplines. The target extent signal is discussed under 

the control signal section and will be disregarded for now. The gain-coefficients and 

phase-increment values are important data for the false target generation, as described 

earlier. 
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Figure 78. Supertap Schematics 

Due to the serial addition in the 16-bit adder for the new architecture (see Figure 74), the 

same DRFM-phase samples serve as inputs for all taplines simultaneously, as illustrated 

earlier in this Chapter. The 2* 16-bit input pads on the right hand side of Figure 78 are 

used to cascade another Supertap. Due to this concept of cascading Supertaps, in theory 

any number of Supertaps could be easily chained together almost without any need for 

modifying the existing design. The number of Supertaps is therefore limited only to the 

size of the chip and the current available technology for mask layout. If the desired false- 

target-extent is larger than the available Supertaps that could fit into an IC, several ICs 

can be "daisy-chained" together to increase the possibilities for false target generation. 

For daisy-chaining more than four Supertaps together, the 16-bit adder within a tapline 

needs to expand by one more bit. Every doubling of the used 32 taplines or four 

Supertaps requires one more bit for the adder. 

6. Architecture Circuit Description in Level 5 

Level 5 is the highest level of the current design. As shown in Figure 79, four 

Supertaps are connected to get an overall number of 32 taplines (8-taplines per Supertap). 

A 5-to-32-Decoder is used to control the target-extent control signal in the form of a truth 

table. The required target size can be smaller than the available number of taplines. The 
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decoder generates control signals to "turn on" the needed number of taplines. To 

illustrate, a five bit input word corresponds to decimal numbers between 0 and 31. These 

numbers are directly related to the tapline enumeration as shown in Figure 78. If the 

generation of a false target requires five taplines, the binary input to the decoder is 00110, 

which activates tapline zero to tapline four in Supertap A (lower left corner in Figure 79). 

The schematics of the decoder can be found in the Appendix. 

Figure 79. Toplevel Consisting of Four Supertaps 
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The input and output pads used in Level 5 are summarized as follows: 

Inputs: 

• Supertap D has two rows of 16 input pads each for I and Q values in order to 

connect Supertaps in series. For this layout, they are connected to ground to 

exclude possible side effects based on pending or floating nodes. 

• 5-bit input for the 5-to-32-Decoder to control the target size. 

• A master clock, which is connected in parallel to clock input pads throughout 

all five levels. 

• Control signals for the scan-path test (SR, SL, S_P_Test_Rin, S_P_Test_Lin). 

• 2 * 32 = 64 gain-coefficients (GainO/Gainl for each tapline). 

• 4 * 32 = 128 phase-increment values (phase_incO/1/2/3 for each tapline). 

• 5-bit DRFM-input data (same input for all tapline). 

• Several 1-bit control inputs to control the data flow in the chip (load_phase, 

delta_Phase_increment, Range_bin_valid, Load_Gain_Reg and overflow_in). 

These signals are discussed in the next section. 

Outputs: 

• Final output for I and Q channel in Supertap A representing the data for the 

false target. This data is imported into Matlab for verification. 

• Control signals for the scan-path test (S_P_Test_Rout, S_P_Test_Lout). 

• Two 1-bit control outputs to verify the output result of the chip (Overflow_out 

and Data_Processed_out)). These signals are discussed in the next section. 

With a total of two gain-coefficients, four phase-increment inputs per tapline, and 32 

taplines for the current design, a total of 192 input pins are required. Adding this many 
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pins to the number of high-speed input and output pins would greatly increase the cost of 

IC fabrication and the complexity and cost of using the finished IC in a system. 

Furthermore, if the number of taplines is increased in the future, this problem would 

become even worse. However, the gain-coefficients and the phase-increment values 

change only at the beginning of a new radar pulse, not on every sample within a radar 

pulse. Therefore, the gain-coefficient and phase-increment inputs are of relatively low 

bandwidth and can be bussed together. To maintain compatibility with off-the-shelf, 

digital signal processing microprocessors and components, a 32-bit input bus has been 

designed for the top-level design. The 64 gain-coefficient inputs for 32 taplines (two per 

tap) are loaded in two bus cycles. The 128 inputs for 32 taplines (four per tap) for the 

phase-increment are loaded in four bus cycles. Table 23 lists the bus cycles and the 

control signals and represents an example for how the inputs could be loaded into the IC. 

Bus-CLK Control Signal Function 

1 Load gain Reg Tap 0-15 Loads the gain-coefficients for tapline 0-15 

2 Load gain Reg Tap 16-31 Loads the gain-coefficients for tapline 16-31 

3 Load Phase Inc Supertap A Loads the 4-bit phase-increment value into 

taplines 0-7 

4 Load Phase Inc Supertap B Loads the 4-bit phase-increment value into 

taplines 8-15 

5 Load Phase Inc Supertap C Loads the 4-bit phase-increment value into 

taplines 16-23 

6 Load Phase Inc Supertap D Loads the 4-bit phase-increment value into 

taplines 24-31 

Table 23. Loading Example for the Bussed Inputs 
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The current design can be easily expanded to include more than 32 taplines 

without a further increase in on-chip hardware related to the bus or the number of I/O 

pins. To extend the current design, the gain-coefficient inputs and phase-increment inputs 

from each additional Supertap need to be connected to the bus. Every additional Supertap 

requires its own loading cycle so that the number of bus cycles will increase. 

In Level 5 all inputs and outputs are attached to Pad cells. A Pad consists of a 

Buf4 and a Padln or PadOut for an input or output respectively; Figure 80 shows an 

output pad. The Pads provide the interface between the chip and the outside world. Their 

primary element is a piece of metal that connects to the pins of the chip via the pad 

frame. Another important element within a pad is a buffer (Buf4). A Buf4 is a cell that 

does not perform any logic function but does provide buffering of logic signals 

(triangular symbol with number four inside in Figure 80). A Buf4 can be driven at high 

speed by a minimum-sized logic gate. It is capable of sinking and sourcing four times the 

amount of current that a minimum-sized logic gate can sink or source. Therefore it is very 

good for driving networks that have a high fan out and have large capacitive loads, such 

as clock and control signals and is used throughout the design. 

ln> Out > 

Figure 80. Output Pad 

The two types of Pads are distinguishable by their function. Padln is used to 

connect signals from outside the IC to the on-chip inputs. It provides a bond pad site for a 

wire bond, a static-discharge protection circuit, and logic signal buffering to drive high- 
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fanout and high-capacitate on-chip networks. PadOut is used to connect the IC outputs to 

the off-chip networks. It provides a high-power driver circuit, a static discharge 

protection circuit, and a bond pad site for the wire bond. 
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VIII. ASIC DESIGN: TIMING & CONTROL 

This chapter provides a detailed description of inputs controlling the IC and the 

signal-flow. Furthermore, timing control diagrams will illustrate the signal flow within 

the IC and demonstrate the use of the control signals to achieve a correct data output. 

Moreover, the concept of scan-path testing is discussed and illustrated as an example for 

the tapline implementation. 

A. CONTROL SIGNALS 

At this point it should be mentioned that the master clock exclusively controls all 

control signals. Due to this setup, the data processing can be controlled precisely in the 

data pipeline, where a pipeline is the data flow within a tapline. 

The Scan-path test consists of several inputs and outputs and will be discussed in 

more detail later. The associated ports are: Scan-path test Left Out (S_P_Test_Lout), 

Scan-path test Right Out (S_P_Test_Rout), Scan-path test Left In (S_P_Test_Lin), Scan- 

path test Right In (S_P_Test_Rin), Shift Right Data In (SRDi), Shift Left Data In (SLDi), 

Shift Right (SR), and Shift Left (SL). They are mentioned here briefly for introduction 

purposes because they are used in the following description. 

1. Clock 

The clock (CLK) is the most important control signal throughout the IC. Every D- 

Flip-Flop used passes its input data to the output when the clock signal is high. This 

concept is called "positive edge" clocking. Since the clock driven register cell is the basic 

element of a n-bit register, the entire data flow is clock controlled. With the clock 
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changing from low to high, the data transports one step further down in the tapline 

pipeline and allows total control over the internal control signals and the data processing. 

2. Load 

Load (LD) is a signal to control the behavior of the registers. Due to the structure 

of the register cell, the signals Shift Right (SR), Shift Left (SL) and Hold (HLD) have to 

be low when LD is high. Otherwise the register cell is in an undefined state and will 

produce erroneous results. Load is the mode for normal operation. If LD is high, the data 

can penetrate the pipeline controlled by the clock. If LD is low, the chip is principally in 

a special mode, where the other control signals, such as, Hold or Shift Right can be used. 

3. Hold 

Hold (HD) is one of the register cell signals that can be exclusively high for a 

certain performance within a register. If HD is high, SR, SL and LD have to be low. Hold 

is used to store or hold a value within a register that should not change over the clock 

period. The input data bits to a register with HLD high are simply ignored and the last 

data within the register are retained. This concept is used to achieve buffering for the 

gain-coefficients and the phase-increment data. Since these data bits are used within a 

period of a radar pulse, they are stored in registers and made available for subsequent 

processing using the clocked DRFM-phase data. 

Hold, Load, Shift Right and Shift Left are the key control signals for every 

operation. As mentioned earlier only one of these signals is permitted to be high within a 

clock cycle, or the IC will be in an undefined state. However, if all control signals are low 

at the same time, the register performs a special function, the synchronous clear. A 

synchronous clear forces the register to reset and sets all output bits to low (zero). This 
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function is used as initialization before data is loaded into the IC and for the two 11-bit 

registers leading its output into the 16-bit adder. The 11-bit register's LD signal is 

connected to a two-input AND gate. The gate inputs are connected to control signals in 

such a way that they signal if data is present or if data is not present at the gain shifter. If 

data is present, the register will perform a normal load. If no data is present, it will 

perform a synchronous clear and zero the output. The requirement for this operation is 

due to the way the data is summed in the 16-bit adder. The DRFM-phase data penetrate 

all taplines simultaneously. Therefore tapline 2 to 32 will still have valid data in the adder 

chain, where as tapline 1 is already finished with its data processing. The rest of the data 

is clocked through the adder chain, consisting of the 16-bit adders within the single 

taplines. No data is allowed to influence the continuing data transport at this stage. 

Therefore it is necessary for the idle tapline not to have any undefined data present at its 

16-bit adders. The synchronous clear function will guarantee that this input (A input row 

of the 16-bit adder) is zero. 

4. Load Phase Increment 

Load Phase Increment (LD Phase Inc) is a control bit that affects the two registers 

in the phase-increment block in order to signal a change for the phase-increment value. 

The signal performs the same operation for both described taplines. If LD Phase Inc and 

LD are high, a new phase value gets loaded into the first phase-increment register. For 

the rotation phase tapline, the second register performs a synchronous clear to reset the 

phase-rotation, whereas the second register in the double-buffered tapline design remains 

unchanged. If LD Phase Inc is low and LD is high, the Phase Inc Reg in both designs is 
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in a hold mode, in order to keep the phase-increment value constant over the duration of a 

radar pulse. 

The gain-coefficients and the phase-increment values are transported on a 32-bit 

bus. There are four phase-increment bits per tapline and 32 bits for a Supertap, therefore 

the chip needs to load a total of 128 phase-increment values to be able to process DRFM- 

phase data. Since the bus has a length of 32-bits, four bus cycles are needed to load the 

gain-coefficients, controlled by the signals "Load Phase inc Supertap A-D." These 

signals are equivalent to the controls to LD Phase Inc on the top level of the chip. They 

perform the same operation and trigger the tapline controls. 

5. Delta Phase Increment 

Delta Phase Increment (Delta Phase Inc) is a control signal for the Phase-Rotation 

Register (Phase Rot Reg) and is used only in the tapline with on-chip phase-rotation 

instead of double-buffered coefficients. Since a CHIRP pulse or radar pulse is divided 

into samples and the phase should only rotate once for every pulse, the phase-rotation 

value has to be incremented between pulses. If Delta Phase Inc and LD are high, the 

phase-increment can "rotate" under control by the clock. The resulting value will be 

added to the DRFM-input data. If Delta Phase Inc and LD Phase Inc are low, the Phase 

Rot Reg is in a hold mode and the phase-increment value (input for the Phase 

Accumulator) is fixed. Before processing a new Radar pulse, the phase has to rotate once 

to produce the new phase value. 

6. Use Phase Increment 

Use Phase Increment (Use Phase Inc) is the substitute for Delta Phase Inc in the 

double-buffered version of the tapline. In this case the phase-increment data has to pass 

146 



through two registers in order to arrive at the phase accumulator. With Use Phase Inc and 

LD high, the data can flow from the buffer register into the phase-increment register. 

Furthermore the same control signal propagates through two more control registers to 

adjust the loading of the gain-coefficients at the proper time, since gain and phase usually 

change collectively. Thus the controller is free from initiating the gain change to 

correspond to the phase change. 

7. Load Gain Register 

Load Gain Register (LD Gain Reg) affects the behavior of the gain register (the 

buffer for the double-buffered tapline) in order to signal a change of gain data within a 

tapline. To load new gain data, LD Gain Reg and LD must be high at the same time. If 

LD Gain Register is low and LD is high, the gain register is in a hold mode. 

The gain-coefficients and the phase-increment values are bused on a 32-bit bus. 

There are two gain-coefficients per tapline and 16 coefficients per Supertap. Therefore 

the chip needs to load 64 gain-coefficients values to be able to process DRFM-phase 

data. Since the bus has a length of 32-bits, two bus cycles are needed to load the gain- 

coefficients controlled by "Load Gain SupTap AB" and "Load Gain SupTap CD." Load 

Gain SupTap AB/CD are the equivalent controls on the top level of the chip. They 

perform the same operation and trigger the tapline controls. 

8. Target Extent 

The Target Extent (Tgt Extent) control is used to activate or deactivate taplines in 

accordance with the appropriate size of the false target. The current design is able to 

handle a false target up to 32 cells corresponding to the in Matlab constructed Range- 

Doppler map. For a small false target, less taplines are needed to create the target. In 
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design level 5 a 5-to-32-bit decoder uses a truth table to adjust the required taplines in 

dependency of the target size. If the target generation requires, for example only 12 

taplines, the Tgt Extent for the first 12 taplines is high. The Tgt Extent for the other 

taplines is low and the output values are ignored. 

9. Range Bin Vaüd 

A tapline needs four clock cycles to produce a valid output. Range bin valid goes 

high when new DRFM-phase data are presented to the input of a tapline. The bit 

penetrates through 1-bit register cells to the Data Processed Out pad. If Data Processed 

Out goes high, the output from the tapline is fully processed and the output is valid. As 

long as Data Processed Out is low, the clocked output must be ignored. 

Besides the normal function, there is an interaction between two controls at this 

point. The Range bin valid control string feeds the two input AND gate for the Pipeline 

Register 3 as mentioned in VIII.A3. If the Range bin valid is low, the register after the 

gain-shift block gets cleared with every clock cycle. Recall, that a higher tapline can 

produce valid results, even if a lower one cannot. Consequently the lower tapline is not 

allowed to add undefined data to the valid output of a higher tapline and must be cleared. 

10. Vaüd Result In 

Valid Result In performs a similar operation as Range bin Valid. It connects to the 

Valid Result Out port of the next higher tapline. If the next higher tapline produces a 

valid output that leads into the lower tapline, Valid Result In is high and the next lower 

tapline produces a valid output with the following clock, although it may not produce any 

valid data within its own gain-shift block. 
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ll.Overflow In/Out 

Overflow In is an error-checking signal from the next higher tapline. If a higher 

tapline produces an invalid output due to an overflow in the 16-Bit-Adder, the entire chip 

output will become invalid. Overflow Out is the pipelined output to flag data produced by 

a 16-bit adder overflow. 

B. TIMING CONTROL 

The clock controls the normal mode of operation. Several control signals have to 

interact in order to ensure correct DRFM-input data treatment. In other words, the 

operator needs to know the timing relationship for functions, such as bus loading, 

DRFM-phase data input, and data read out. The best method to demonstrate the 

complicated timing control is with an example. The example in Figure 81 shows the 

timing diagram for the initial loading phase and Figure 82 shows the timing constraints in 

terms of clocks for the initial loading phase and the time between two radar pulses. In the 

diagrams, the clock is set to 5nsec low and 5nsec high so that one clock cycle is lOnsec. 

Moreover, for illustration purposes, multiple input and output bits are collapsed into a 

single bit. 

1. Initial Loading Phase 

Before data processing can begin, the IC should be initialized, clock 0-10nsec, as 

shown in Figure 81. This will clear all registers with a synchronous clear and set the 

control bits to a defined state. The next six clock cycles are reserved to load the gain- 

coefficients and the phase-increment values through the 32-bit bus. From these six clock 
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cycles the first four are required to load the phase-increments for all four Supertaps. This 

involves interacting with the controls and is summarized as follows: 

1. Supertap A loads its phase-increment data during the first of the six clocks. 

For this purpose the corresponding data are presented to the 32-bit input bus 

and the control "LD Phase SuptapA" is high for this particular clock. 

2. Supertap B loads its phase-increment data during the second of the six clocks. 

For this purpose the corresponding data are presented to the 32-bit input bus 

and the control "LD Phase SuptapB" is high for this particular clock. 

3. Supertap C loads its phase-increment data during the third of the six clocks. 

For this purpose the corresponding data are presented to the 32-bit input bus 

and the control "LD Phase SuptapC" is high for this particular clock. 

4. Supertap D loads its phase-increment data during the fourth of the six clocks. 

For this purpose the corresponding data are presented to the 32-bit input bus 

and the control "LD Phase SuptapD" is high for this particular clock. 

The following last two clock cycles are used to load the gain-coefficients for the 

Supertaps and move the buffered phase-increment data into the next register: 

5. Supertap A and Supertap B loads its gain-coefficients during the fifth of the 

six clocks. For this purpose the bus pads "BusO" to "Busl5" are the inputs for 

Supertap A and "Busl6" to "Bus32" are the inputs for Supertap B. 

Additionally, the controls "LD_Gain_SupTap_AB" and "Use Phase Inc" are 

required to be high for this particular clock, where "use Phase Inc" moves the 

buffered  data  into  the  registers for data treatment.  Due to  the delay 
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propagation of the Phase Inc control, the buffered gain-coefficients move after 

two more clock cycles into the register for data treatment. 

6.   Supertap C and Supertap D loads its gain-coefficients during the sixth of the 

six clocks. For this purpose the bus pads "BusO" to "Bus 15" are the inputs for 

Supertap  C  and "Busl6" to  "Bus32"  are the inputs for Supertap D. 

Additionally, the control "LX)_Gain_SupTap_CD" is required to be high for 

this particular clock. 

Thus, seven clock cycles are needed before the first DRFM-phase data can be read into 

the taplines. Due to the pipelined structure of a tapline, the data treatment demands four 

more clock cycles before the first valid output is present at the first tapline (clock 70- 

lOOnsec). During these four clocks, the phase-increment and the gain are applied to the 

DRFM-phase data and the resulting data adds up with the output data from other taplines 

in the 16-bit adder. In summary, eleven clock cycles are required before the first valid 

output is observable at the output. The "Data Processed Out" control signal is an 

indicator for valid results.  As long as this control signal has a high output, the 

corresponding output for the I and Q channel are valid and can be used for false target 

generation. After initialization the DRFM-phase data for the first radar pulse can be 

processed within the taplines. The time between two radar pulses requires some attention 

again and is discussed in the next sub-section. The initialization for the second Radar 

pulse is the same, as it concerns the loading phase with phase-increment data and gain- 

coefficients. Nevertheless the register initialization with a synchronous clear is not 

required. 

151 



During the time of loading and data processing, LD is high except for the 

synchronous clear at the very beginning. All other register control signals like the scan- 

path controls and HLD are low, since this is the defined state for normal operation. 

Moreover, the target extent as defined through level 5's 5-to-32-bit decoder activates the 

taplines. The example in Figure 81 assumes all taplines active and shows the 

corresponding decoder inputs (Tgt Extent In 0-4) as high. 
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Figure 81. Timing Diagram for the Initial Loading Phase 
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2. Timing between Radar Pulses 

After processing all DRFM inputs for one Radar pulse, there are still valid results 

in the adder chain propagating in direction of the first tapline in the row. The time 

between two radar pulses is much greater than the time between the samples. Therefore it 

is desired to read out the rest of the data. For example, assume 62 DRFM-phase samples 

for one radar pulse and a requirement for 32 taplines, where the 62nd DRFM input is 

processed parallel in all taplines and now reside in the corresponding 16-bit registers. The 

16-bit register of the first tapline is the chip output. Therefore its output is already read 

out, but 31 outputs need to be clocked through the chain. Consequently, 31 clock cycles 

are required to read the rest of the remaining data. Figure 82 shows that the DRFM input 

is low during this time and does not contain any data for processing. As mentioned 

earlier, the 11-bit register within a tapline not containing any valid data needs to be 

cleared since it leads into the 16-bit adder. Therefore the control Range-bin valid needs to 

change from high to low after the last DRFM-phase data gets loaded into the taplines. In 

view of the fact that the taplines are basically idle during the read out of the processed 

data, the time is used to load the phase-increment data and gain-coefficients for the next 

radar pulse. 
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C. SCAN-PATH TESTING 

The design of a workable system solution for a given problem is only half of the 

work. Furthermore one must also be able to test the system to a degree, where it can be 

ensured that the system is fully functional with a high confidence level. In very small- 

scale digital systems, tests can be performed exhaustively, where the system is exercised 

over its full range of operating conditions. This method is not an economical or useful 

approach to verify the functionality. Therefore other strategies are necessary to perform 

proper testing. The scan-path methodology is probably the most widely used technique 

for testing those parts of a integrated circuit that are constructed of clocked flip-flops 

interconnected by combinational logic. As illustrated in Figure 83, the scan path can be 

implemented into a simple circuit very easily. When the circuit is put into test mode, one 

can shift an arbitrary test pattern into the register. By returning the circuit to normal mode 

for one clock period, the contents of the scan register and primary input signals act as 

inputs to the attached combinational circuitry and new values are stored in the register. If 

the circuit is then placed into test mode again, the controller can shift out the contents of 

the scan register for comparison with the correct response. 

By using test points, one can easily enhance the absorbability and controllability 

of a circuit. The scan-path register effectively provides such test points, whereas in FPGA 

design the implementation of Tristate-buffers is necessary. To control the test points in a 

scan-path test several control signals are implemented to adjust the mode of operation. 

Table 24 lists the signals used for the scan-path test in the new DIS design. 
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Figure 83. Register Cell 

Padname Function 

SR (Shift Right) Input pad to control function of register. If high, the 

data within the register will be shifted to the right with 

every clock cycle. All other control signals have to be 

low (HLD, LD, SL) 

SL (Shift Left) Input pad to control function of register. If high, the 

data within the register will be shifted to the left with 

every clock cycle. All other control signals have to be 

low (HLD, LD, SR) 

SRDi (Shift Right Data in) Test data input pad from right front end of scan-path 

test 

SLDi (Shift Left Data in) Test data input pad from left front end of scan-path test 

SRDo (Shift Right Data out) Test data output pad for a right shifted output 

SLDo (Shift Left Data out) Test data output pad for a left shifted output 

Table 24.   Scan-Path Test Control Signals 
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A scan path register is a serial cascade of scan path register cells whose inputs and 

outputs are connected to the internal logic of a chip as illustrated in Figure 84. During 

normal operation, the LD signal is asserted and the logic value at the inputs DO and Dl 

reach the outputs QO and Ql after one clock cycle. When on the other hand the SL is 

asserted during test mode, the logic value at SLDi arrives at Ql one clock cycle later and 

continues propagating to QO with the following clock cycle. When SR is asserted during 

a test, the logic value at SRDi arrives at QO one clock cycle later and continues 

propagating to Ql with the following clock cycle. If the chip is still in test mode, the 

values keep propagating in the forced direction through all the connected registers in the 

scan path. 
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HLD  LD SR   SL 

SRDi 
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Reg CellQB 
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HLD   LD SR   SL 

SRDi Q 
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Figure 84. Schematics of a 2-Bit Register 
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In summary, the scan-path test can be used for two valuable testing functions. 

First, a certain test setup can be tested, where test data is placed in every register of the 

chip. After loading the test data via the scan path, the chip is put into normal operation 

mode and the resulting outputs can be observed at the output for examination. Second, 

after normal operation all stored data in the registers can be read out by using the scan- 

path shift option to move the register data to the left or to the right. The results can be 

examined by comparing them with calculated values. The scan-path test implementation 

for a tapline with phase-rotation on-chip is shown in Figure 85. The path between the 

taplines within a Supertap and beyond is simply realized by a serial connection of inputs 

and outputs. The scan chain from the toplevel point of view connects tapline 0 to 31 in a 

long row of registers. To give an overview about the number of bits penetrating through 

the scan chain, imagine the following calculation: 90 bits are used in the registers of one 

tapline, where 32 taplines are implemented in the chip. This will result in 90 * 32 = 

2,880 values to read out for the complete scan path. A double-buffered tapline has 94 

register bits. Therefore the length of the scan path on the toplevel is even higher with 

3,040 values. 
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IX. ASIC DESIGN: SIMULATION 

This chapter is dedicated to circuit verification with simulation using the circuit 

simulator T-Spice. It provides useful information about simulation parameters and semi- 

digital simulation. Two examples are used to illustrate the testing concept. The first 

example is the two-tapline test case, where the regular transistor model is used to perform 

the simulation. The second example is the 32-tapline chip where a switch model replaces 

the transistor model to reduce simulation time and complexity. 

A. T-SPICE SIMULATIONS 

Two goals are established by doing the simulation in T-Spice. First and foremost, 

the correct logical implementation needs to be verified, which includes the check of each 

connection between elements (wire connections). The second goal is to prove the proper 

implementation of the developed algorithm within the circuit. This section describes how 

the simulation is done in T-Spice. Simulating a smaller part of the entire circuit design 

and comparing the results to the Matlab simulation achieves the verification of the circuit 

functionality. 

S-Edit supports a direct export of a schematic layout into a T-Spice readable 

SPICE format. The exported SPICE file contains only circuit information, but does not 

contain test-commands or test-vectors. Therefore several lines of code have to be added 

to create a valid simulation file that can be used in T-Spice. To illustrate the test concept 

in T-Spice a 2-bit register is used as example. Table 25 contains parts of the 2-bit-register 

SPICE file that are used for simulation. 

161 



T-Spice is not a logical circuit simulator, but can perform various analog 

simulations like DC-analysis and frequency sweeps. Nevertheless, T-Spice can make use 

of the "bit" command to push binary inputs into the input pads of the circuit 

representation. The voltages are OV for a logical zero and 5V for a logical one. By 

defining the inputs as voltage sources, T-Spice analyses the input vectors, calculates a 

DC operating point, and calculates the defined output pads in form of voltages. 
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T-Spice Code Meaning 

VddVddGndDC5 
Defines the voltages between OV 

(Ground) and +5V DC 

.include "D:\Chris\Thesis\schematics\testfiles\ 

Register\2Bit\input_table2Reg.md" 

Reads the file input_table2Reg.md, 

which is an text file containing all input 

used during simulation 

.options prtdel=80n 

The option command customizes the 

simulation. PRTDEL sets the reading for 

output pads to exact every 80nsec 

.tran lOn 800n start=70n 

Performs a transient analysis with a 

maximum step size for calculations of 

lOnsec, a simulation stop time of 

800nsec and an offset for the first output 

reading of 70nesc 

.print tran 

"D:\Chris\Thesis\Schematics\testfiles\ 

Register\2Bit\Inputs.out" V(CLK) V(SL) 

V(SR) V(SLDi) V(SRDi) V(LD) V(HLD) 

V(D0) V(D1) 

.print tran 

"D:\Chris\Thesis\Schematics\testfiles\ 

Register\2Bit\Outputs.out" V(Q0) V(Q1) 

The print tran command is used to define 

the monitored output pads and the file in 

which the records are saved. The file 

"inputs.out" records all control signals 

and the inputs of the register, whereas 

the file "Outputs.out records only the 

outputs of the register. 

.param l=0.05u Specifies the wavelength as 0.05um 

.include 

"D:\Chris\Thesis\ModelParammod.nid" 

Includes the transistor parameters for the 

target process (MOSIS - HP 0.5um) 

used for the simulation. 

Table 25. T-Spice Simulation Commands 
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Below is an example of the input vectors for the 2-bit-Register simulation. 

VinDO DO Gnd bit ({0010111111} on=5.0 off=0.0 pw=80n rt=0.In ft=0.In 

VinDl Dl Gnd bit ({0001011111} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n 

VinSRDi SRDi Gnd bit ({0000000000} on=5.0 off=0.0 pw=80n rt=0. In ft=0. In 

VinSLDi SLDi Gnd bit ({0000000011} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n 

VinHLD HLD Gnd bit ({0000100000} on=5.0 off=0.0 pw=80n rt=0.In ft=0.In 

VinLD LD Gnd bit ({0111010000} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n 

VinSR SR Gnd bit ({0000001100} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n 

VinSL SL Gnd bit ({0000000011} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n 

VinCLK CLK Gnd bit ({01} on=5.0off=0.0pw=40nrt=0.1nft=0.1n 

The input vectors are defined by name for the voltage source (input pad) against ground, 

bit pattern used as inputs for the voltages sources, the definition of zero and one, pulse 

width (pw) of the signal, rise time (it), and fall time (ft) in nano seconds. The registers are 

constructed for using a positive edge triggered clock. This means that all signals have to 

be changed and stable before the clock switches from low to high. A change of a value 

after the clock goes high cannot be processed properly. As an illustrated example in 

Figure 86, the clock starts low (zero Volts) for a time of 40nsec and switches to high (five 

Volts) afterwards. Consequently, the entire clock cycle is 80nsec, which corresponds to 

the pulse width of the input signals. 

The above-mentioned input values are used to test the behavior of the 2-bit- 

Register under normal and test-mode conditions. Table 26 illustrates the basic test 

concept and the relation between the control signals in T-Spice. 
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Figure 86. Positive Edge Triggered Clock 

DO SRDi SLDi HLD LD SR SL CLK Q0 Remark 

0/1 0 0 0 0 0-+1 0 Synchronous Clear 

0/1 0 1 0 0 0->l 0/1 Data (DO) - normal operation 

0/1 1 0 0 0 0->l 0/1 Previous data, "do nothing" 

0/1 0 0 1 0 0-»l 0/1 Right data (SRDi) 

0/1 0 0 0 1 0->l 0/1 Left Data (SLDi) 

Table 26. Test Concept of a 2-Bit-Register 

The test mode signals are in direct relationship to each other because only one input of 

SR, SL, HLD, and LD can be high at the same time to perform a legal operation in test 

mode. 
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During the transient analysis, T-Spice uses the input vectors to determine the 

voltage values for the outputs. The determined values are saved in the predefined files 

and the transient analysis results are automatically stored in a separate file. These 

transient results can be used to probe at circuit nodes of the schematic layout in S-Edit. 

Probing calls W-Edit automatically and creates a graphical output of the voltage versus 

time for the probed node. The user defined output files, which contains the simulation 

results, hold exact voltage values in the region between OV and 5V, as shown below in 

Table 27. The analog output values distinguish between one and zero. The output values 

are analog voltages and the results must be sent through a hard limiter to get a binary 

output table in order to compare the results with the correct binary output pattern 

produced by Matlab. 

Time (sec) V (QO) (Volts) V (Ql) (Volts) 

7.0000E-08 1.2408E-07 1.2414E-07 

1.5000E-07 1.4298E-07 1.4302E-07 

2.3000E-07 5.0000E+00 6.3223E-08 

3.1000E-07 8.6684E-08 5.0000E+00 

3.9000E-07 1.9326E-07 5.0000E+00 

4.7000E-07 5.0000E+00 5.0000E+00 

5.5000E-07 2.8934E-07 5.0000E+00 

6.3000E-07 1.2812E-07 -2.4128E-07 

7.1000E-07 4.3775E-08 5.0000E+00 

7.9000E-07 5.0000E+00 5.0000E+00 

8.0000E-07 5.0000E+00 5.0000E+00 

Table 27. Output Table for the Transient Analysis of a 2-Bit-Register 
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In very small-scale digital systems, tests can be performed exhaustively, where 

the system is exercised over its full range of operating conditions. This kind of test was 

used to simulate the elements of Level 1 and 2 of the design hierarchy, as exercised for 

the 2-bit-Register test case. However, for higher-level elements the input values were 

chosen more carefully to simulate only critical cases. By increasing the number of sub- 

circuits, the simulation time and the amount of required computing power increases in an 

almost exponential manner. For a Supertap simulation (level 4), a PC with Pentium IH 

processor and 768MB RAM could not satisfy the need for resources by the T-Spice 

simulation. 

B. 2-TAPLINE SIMULATION 

Due to the limitations in available computer resources, we decided to prove the 

algorithm with a 2-tapline circuit using a transistor model. The setup is shown in Figure 

87. The Matlab programs discussed earlier produces a set of input DRFM data for 10 

radar pulses with 15 samples each. After simulation, the "hard_limiter2Taps.m" Matlab 

program converts the results into a binary form. Then, the data is translated into decimals 

and plotted in Matlab. Matlab also performs the same simulation so that the outputs of 

both simulations are comparable and so the T-Spice simulation can be verified. The 

following figures and tables give an overview about the setup and the obtained results. 

This particular simulation needs a special setup in the Matlab test environment. 

The range-Doppler-amplitude map entry program is modified for the 2-tapline test case 

so that only 10 radar pulses with 15 samples per pulse (150 DRFM data) are used to 

decrease the simulation time in T-Spice. Since two taplines are used, only two cells in the 
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range-Doppler map are defined for the false target generation, as shown in Figure 88. The 

setup for the amplitude (gain-coefficients) and the Doppler Shift (phase-increment data) 

are summarized in Table 28. 

2 Tapline Test Setup 
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Figure 87. 2-Tapline Test Case 

Target Cell Range Cell Doppler Cell Amplitude Doppler Shift Remark 

1 1 1 2 2 Tap 0 - 1st Tap 

2 2 1 3 4 Tap 1-2nd Tap 

Table 28. Matlab Inputs into the Range-Doppler Map 
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Figure 88. Modified Range-Amplitude Entry Map 

The rest of the Matlab simulation follows the same path as described in Chapter 4. The 

values in Table 28 can be translated into T-Spice test vectors, which specify the input 

parameters for the gain-coefficients and the phase-increment values to the taplines. The 

corresponding values are listed in Table 29. 

Tapline Range Cell Doppler Cell Gain 

Coefficients 

Phase 

Increment 

Remark 

0 - - 01 0010 Binary Inputs 

1 - - 10 0100 Binary Inputs 

Table 29. T-Spice Inputs for Gain and Phase-Increment 

Table 30 shows only a small part of the input vectors used for this test case, but it 

explains the interaction between input control signals, input vectors and the output 
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values. Note that Phase 0-4 represents the 5-bit DRFM-phase data input to both taplines. 

Also, the first input performs a synchronous clear to zero all registers. A radar pulse 

consists of 15 samples, where sample by sample is read in controlled by the clock. Note 

also that the gap between the radar pulses is manually set and not part of the DRFM- 

phase data. This gap is required to read out the processed value in tapline 2 that is still in 

the adder chain. Therefore one clock cycle between the radar pulses is required to read 

out the last final output. Setting range-bin valid to low between the pulses clears the 11- 

bit register in the taplines to ensure that no undefined data gets added to the last valid 

output. The delay of one output produces the 16th output value for only 15 input samples. 

After the last processed phase sample in tapline 1 reaches the final output through tapline 

0, the first fully-processed sample from the next radar pulse is already present for output. 
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Input Pad 

Name 

Sync 

CLR 

Radar Pulse 1 Radar Pulse 2 Radar Pulse 3 

PhaseO 0 001101010000110 0 001101010000110 0 001101010000110 

Phase 1 0 000100000011111 0 000100000011111 0 000100000011111 

Phase2 0 001110100100110 0 001110100100110 0 001110100100110 

Phase3 0 000101010011111 0 000101010011111 0 000101010011111 

Phase4 0 000001110100010 0 000001110100010 0 000001110100010 

Delta 

Phase inc 

0 000000000000000 1 000000000000000 1 000000000000000 

LD Phase 

inc 

0 100000000000000 0 000000000000000 0 000000000000000 

LDGain 0 100000000000000 0 100000000000000 0 100000000000000 

Range- 

bin valid 

111111111111111 0 111111111111111 0 111111111111111 

Table 30. Input Data for the Three Radar Pulses as used in the 2-Tapline Test 

Table 31 shows only the first 22 clock cycles out of 171. The I and Q values are 

listed in form of most significant bit to least significant bit. The first five clock cycles are 

needed to process the first input, where the first output is a synchronous clear. Bus cycles 

are not required for a 2-tapline-test, but have to be included for a 32-tapline-test. Clock 

19 and 20 are the last outputs from radar pulse 1. Due to the delay just described, sample 

15 will produce two outputs. The phase outputs for both channels are 16-bit two's 

complement words. To verify the results, the outputs are converted into decimal numbers, 

in order to plot them in Matlab. The Matlab simulation produces similar results to 

compare both simulation output against each other. 
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CLK Valid Result I values Q values Pulse# Sample# 

1 0 0000000000000000 0000000000000000 Sync Clear 

2 0 0000000000000000 0000000000000000 

3 0 0000000000000000 0000000000000000 

4 0 0000000000000000 0000000000000000 

5 0000000011111110 0000000000000000 1 1 

6 0000001011111010 0000000000000000 1 2 

7 0000001010000010 0000000011010110 1 3 

8 0000000000010000 0000000111000100 1 4 

9 1111111010110110 0000000011101000 1 5 

10 0000000110110100 0000000010000010 1 6 

11 1 0000000000010110 1111110101011100 1 7 

12 1111111100100100 1111110110000010 1 8 

13 1 0000000110101110 1111111000100100 1 9 

14 1 0000000101100010 1111111100111000 1 10 

15 1111111001011110 1111111101010100 1 11 

16 1111111010110110 0000001010101100 1 12 

17 1111111000101000 0000000111100000 1 13 

18 1111111100000110 0000000000110000 1 14 

19 I 0000000110001110 0OOOOOOO11100100 1 15 

20 1111111100100100 0000000111001000 1 15 

21 L 0000000011101000 0000000001100100 2 1 

22 L 0000001001000100 OOOOOOOl11010100 2 2 

Table 31. T-Spice Simulation Outputs (hard limited) 

To extend the 2-tapline-test case to x-number of taplines, a controller must set the "range- 

bin valid" control bit for at least x-1 clocks to low between two radar pulses. Due to the 
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shifted read out, a similar delay as for the FPGA design is achieved. Furthermore, the 

delay requirement produces additional outputs, 

number of DRFM samples per pulse + (x-1) = number of outputs. (9.1) 

After the T-Spice simulation results are transformed into a decimal representation, 

the controller can process the results in Matlab. Figure 89 shows a two-dimensional 

contour plots for Matlab (upper plot) and T-Spice (lower plot) simulation results in 

comparison. By visual inspection there is no obvious difference in the preliminary 

simulation results. Figure 90 shows the results in a 3D view and the graphical 

representation of the difference between the two simulations. Since the difference is only 

a plane at level zero, there is no difference. Thus, the simulations produced the same 

results and the proof is complete. Figure 91 exploits the T-Spice simulation results in a 

single graph and identifies the specified gain-coefficients for the obtained results. 
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Figure 89. 2D Plot of the Simulation Results 

173 



».*T^jC«/Ot*w»»«i«)M^Pj.üt,wte.CB»i-T«« «»*»*««rwtfLw;  : 

pMttai^^ b.*x-r^'(^(!«MB<M<^*j.^i^[M*p'jd»Aft£^p.^>>iiri;Ä(pC|lf   ; 

*5—      5| 

;!: L.DMM! *fciw7c»te"^: 

Figure 90. 3D Plot of the Simulation Outputs and Their Comparison 

b. /nsikuWOlWr UaWanl Rtf-0|> Mp (HARDWARE output) 

«0. 

3*0. 

MO. 

MO. 

300., 

1»^ 

••i--''ÄmplitudeCeir2 

'■'^mplitud^''i     / 
Sidel0be6 due töi ISÄR' 

:^Ce6ts .Raoa».CÄ»:^ 
^'PiMnR::^naw; C*8i--' 

Figure 91. Exploit T-Spice Simulation Results 

174 



The 2-tapline test case illustrates the testing procedure and can be a guide for 

future testing. Transistor models, as used in this case, are non linear. Unfortunately T- 

Spice quickly reaches its limits simulating larger digital circuits. The simulation time 

increases almost exponential for large circuit simulation and often results in program 

crashes. The next section offers a method, which indicates how to partly overcome these 

problems. A simplification of the primary element in a digital circuit, the transistor, will 

reduce simulation time and increase the simulatable size of the circuit. 

C. SIMULATION OF THE 32-TAPLINE CASE 

Two approaches have been tested to find an efficient way for testing larger digital 

circuits. The first method is to replace every single logic gate with a gate definition. The 

gate definition will replace the gate circuit, e.g., 2NAND, and substitute it with a table of 

predefined output values. With this substitution the transistor layer could almost be 

completely eliminated. Unfortunately the code for the replacement is not fully developed 

and cannot be used for larger circuits. The second method tries to reduce the complexity 

of the transistor model itself. For this approach the transistors are replaced with simple 

switches. 

1. Switch Model 

The replacement of every transistor in the circuit with a simple switch reduces the 

computational requirements in the simulator tremendously. As shown earlier, the 

transistor definition is done in S-Edit. The definition for the P-FET and N-FET transistor 

calls the model in the SPICE-OUTPUT definition. By changing this line, a new model 

can be called. The new definition is: X${T} %{D} %{G} %{S) %{B} NMOSX. This 
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line defines the ports of a transistor, gate, source, drain and base. NMOSX is the new 

name for the transistor definition in switch form, e.g., definition for a N-FET switch. 

Since the definition of the transistors is changed in Level 1, the entire design circuit is 

affected by this change. Every module calling a transistor will use the switch instead. The 

schematic layout is still the same, but the mathematical behavior during the SPICE 

simulations is simplified. 

2. Test Setup 

The test setup in T-Spice is basically the same as for the two tapline test case. 

Even so, the circuit is more complex and contains approximately 16 times more nodes. T- 

Spice can handle circuits up to 300,000 elements. With 32 taplines, the circuit has 

290,604 elements. This is very close to the limit and involves a lot of adjustments and 

initialization to get the simulation to perform. 

a.        Simulation Commands 

S-Edit provides the SPICE translation of the schematic circuit 

automatically. After the SPICE definition is imported into T-Spice, it has to be modified 

with simulation commands and initialization commands. The following is an excerpt 

from a modified SPICE file ready to simulate: 

1. VddVddGndDC5 

2. .include "D:\mput_table_ship.md" 

3. .include "D:\ModelSwitch.md" 

4. .options prtdel=400n numnt=150 abstol=500n reltol=0.01 

5. .tran400n 17200n start=390n 
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Line one defines the voltage range between zero and five volts. Line two includes the test 

vectors for the simulation. The vectors are defined with the already introduced "bit" 

command. Line three is the definition for the transistor model, which defines the P-FET 

and N-FET transistors as switches. The definition is simple, but effective: 

* Switch-level model definitions for NFETs and PFETs. 

.model SWMODN S W VT=2.5 ron=lel2 roff=4000 dv=l 

.model SWMODP SW VT=-2.5 ron=4000 roff=lel2 dv=l 

.SUBCKT NMOSX D G S B 

S2 D S G B SWMODN 

.ENDS 

.SUBCKT PMOSX D G S B 

SIS DGB SWMODP 

.ENDS 

The first block defines the switch behavior in general. For both switches the threshold 

voltage in both directions is 2.5 Volts, where the resistance values are inversed between 

N-definition and P-defmition. The resistance determines the switch behavior. Since a P- 

FET pulls the output high and a N-FET pulls the output low, the resistance values have to 

be inverted. A value of lel2 correspond to an open switch, where 4000 is a closed 

switch with 4000Q resistance. The sub-circuit definitions are called by the simulator due 

to the include statement in the third line. The model's sub-circuit defines the order of the 

transistor nodes so that the switch behaves as expected. 
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Line four in the SPICE excerpt customizes the simulation. As before 

prtdel defines the readout cycle. Numnt defines the maximum number of iterations 

allowed during the solution of the Kirchhof-Current-Law (KCL) equations during a DC 

analysis. For a transient analysis, T-Spice first calculates the DC operating point of the 

circuit. This is a critical calculation for a very large circuit. The default for numnt is ten, 

which is not sufficient. If the circuit does not converge, T-Spice tries to use source 

stepping to find a DC operating point, which normally fails. A high number of iterations 

are therefore required. Curiously, T-Spice recommends decreasing numnt when the 

simulation fails. Also part of the .options commands is the definition of tolerances in 

absolute and relative form. An increasing of the tolerances results in a faster simulation. 

Nevertheless, definitions that are too loose result in wrong outputs. The values used for 

absolute tolerance and relative tolerance are very close to the acceptable limits and 

should not be further increased. 

Line five holds the command for the type of simulation. The type is a 

transient analysis with a maximum step size of 400nsec, a simulation length of 17200nsec 

and an offset for the first output reading of 390nsec. In conjunction with the prtdel 

setting, the readout is every 400nsec starting at 390nsec so that each sample (defined with 

a pulse width of 400nsec) is read out only once. The readout is at the end of the sample to 

catch the solid-state result of the pulse. 

T-Spice allows using initialization for certain nodes within a circuit. For 

the 32-tapline circuit, it is crucial to initialize the D-Flip-Flop outputs and the carry-out 

bit of the adders. Since the circuit in T-Spice has the same hierarchy as the schematic 

circuit, the initialization can be done directly in the sub-circuit definition for the D-FIxp- 
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Flop and the adder cell. This will initialize every register cell output and every adder 

carry-out to the defined values. Nodeset sets an initial guess for the iterative DC- 

operating point calculation. After the first iteration, the specified nodes are allowed to 

float. Since very large circuits need more than one iteration, the IC command should be 

used instead. IC sets node voltages for the duration of a DC operating point calculation. 

The command is inserted in the sub-circuit definition. For a DFFC sub-circuit the line is 

.ic Q=0 QB=5. This initializes the Q output port to zero volts and its complement to 5 

volts. For the adder cell sub-circuit the line is ic Co=0 and initializes the carry-out to 

zero volts. 

b.        Input and Output Pads 

The only purpose of this sub-section is to provide an overview of the input 

and output pads. Multiple bits are collapsed into one single bit, e.g., Phase 0 to Phase 4 

(five bits) corresponds to PhaseO-4. 

Outputs Function 

S_P_Test_Rout Scan path out for a shift to the right (1 bit). 

S_P_Test_Lout Scan path out for a shift to the left (1 bit). 

Tap_ouÜ0-15 Output for processed values in I channel (16 bit). 

Tap_outQ0-15 Output for processed values in Q channel (16 bit). 

Data_Processed_out Control bit flags valid output (1 bit). 

Overflow_out 

Control bit to check for overflow in a 16-bit adder 

(1 bit). 

Table 32. Output Pads for the 32-Tapline Circuit 
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Inputs Function 

S_P_Test Lin Scan path input to load test values into registers from the left. 

S_P_Test Rin Scan path input to load test values into registers from the right. 

Tgt_Extent_inO-4 
Input for the truth table to select the number of taplines used for 

false target generation (5 bits). 

LD_Phase_SupTap_A 
Select phase-increment registers in Supertap A and reads in 

from Bus 0 to 31(1 bit). 

LD_Phase_SupTap_B 
Select phase-increment registers in Supertap B and reads in 

from Bus 0 to 31 (1 bit). 

LD_Phase_SupTap_C 
Select phase-increment registers in Supertap C and reads in 

from Bus 0 to 31 (1 bit). 

LDJPhase_SupTap_D 
Select phase-increment registers in Supertap D and reads in 

from Bus 0 to 31(1 bit). 

LD_Gain_SupTap_AB 

Select gain-coefficient registers in Supertap A and B. Supertap 

A reads in the data from Bus 0 to 15, Supertap B reads in the 

data from Bus 16 to 31 (1 bit). 

LD_Gain_SupTap_CD 

Select gain-coefficient registers in Supertap C and D. Supertap 

C reads in the data from Bus 0 to 15, Supertap D reads in the 

data from Bus 16 to 31 (1 bit). 

BusO-15 First 16 bits from the 32-input bus (16 bits). 

Busl6-31 Second 16 bits from the 32-input bus (16 bits). 

PhaseO-4 Input for the DRFM-phase samples (5 bits). 

use_Phase_inc 
Makes the phase-increment and the gain-coefficient stored in 

the buffer available for data processing (1 bit). 

Range_bin_valid 
Control input bit that is required to be high when valid DRFM- 

phase data is present at PhaseO-4 (1 bit). 

Overflow_in Control bit that is used for daisy chaining of more Supertaps. 

Data_Processed_in Control bit that is used for daisy chaining of more Supertaps. 
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Tap_inI0-15 
Input for I channel that is used for daisy chaining of more 

Supertaps (16 bits). 

Tap_inQ0-15 
Input for Q channel that is used for daisy chaining of more 

Supertaps (16 bits). 

HLD Chip hold for special operation mode. 

LD Chip load for normal operation mode. 

SR Shift right for scan-path test mode. 

SL Shift left for scan-path test mode. 

CLK Master clock used throughout the chip. 

Table 33. Input Pads for the 32-Tapline Circuit 

c. Test Vectors 

For simulation every input requires a test vector, even it is zero for the 

entire simulation time. The test vectors used the bit command to define the input to the 

pads in binary form: "VinPhase2 Phase2 Gnd bit ({00110110111111101} on=5.0 off=0.0 

pw=400n)." VinPhase2 is the name of the voltage source, where the following Phase2 

Gnd is the port name measured versus ground. To prevent confusion, the names should 

be the same. The bit command contains the vectors used during simulation. As defined 

after the parenthesis one corresponds to five volts and zero to zero volts. The pulse width 

for each bit is 400nsec. The entire simulation time as specified in the .tran command in 

T-Spice is 400nsec multiplied by the number of input bits. The length of a line in the 

editor determines the length of the input vector for one input. Normally 500 input bits can 

be used without any problems. The pulse width is important to achieve a steady state for 

each input. The larger the circuit, the higher is the required pulse width. In the manual are 

no specifications about the maximum pulse width or the maximum length of the input 

vector. Tests have shown that values higher than 590nsec for the pulse width and a length 
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of more than 500 characters for a line result into a computer crash. Due to these 

constraints, it was not possible to run a complete simulation of the ship test target 

mentioned at the end of Chapter 4. Instead, certain radar pulses have been chosen to 

verify the outputs produced by T-Spice. 

A set of Matlab script files was developed to generate accurate test 

vectors. The Matlab script files convert data used in the Matlab equivalent simulation into 

a binary two's complement representation and create a simulation-input file using the 

appropriate syntax. The different files used are shown in Table 34. 

Matlab script file Output (text file) Remark 

convert2binary_rawint.m converted_rawmt.txt DRFM-phase data 

con vert2bi nary_para.m converted_para.txt Modulation parameters 

(phase and gain modulation 

coefficients) 

convert2binary_control.m converted_control.txt Control signals 

Table 34. Matlab Files to Generate a T-Spice Input File 

3. Results 

After performing the simulations, the output files have to be examined and 

checked for correctness. A procedure was developed to examine T-Spice outputs using 

Matlab. The T-Spice output files are saved as text files and edited, presenting the first set 

of valid output data in the first row of the text files. Then, the Matlab script file 

"hardjimiter.m" is used to convert the results into binary two's complement 

representation. Finally, the script file "compare.m" is used to plot and compare each 

single output data produced by T-Spice with the results from the equivalent Matlab 

simulation. An example of test results after simulating one complete radar pulse is shown 

182 



in Figure 92 and Figure 93. The simulation refers to the ship test case using 64 radar 

pulses for the ISAR image integration discussed at the end of Chapter 4. Figure 92 shows 

a comparison between the single output data for the I-channel generated in Matlab and T- 

Spice. Figure 93 illustrates the Q-channel results. As for the two-tapline case, there are no 

differences between the Matlab and the T-Spice simulations, which verify the correctness 

of the DIS architecture based on the Matlab simulation. 
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X. LAYOUT AND FABRICATION 

The cost of the DIS implementation, as with many integrated circuits, is directly 

proportional to the size of the chip. Moreover, the size of the DIS is directly proportional 

to the number of taps. In order to keep the implementation costs to a minimum and get a 

usable demonstration chip, we reduced the size of the design to 8-taplines. This Chapter 

illustrates the schematic layout of an 8-tapline chip and describes the physical layout in 

L-Edit. It points out and summarizes only the major differences of previously-discussed 

designs. 

A. 8-TAPLINE SCHEMATICS 

The 8-tapline circuit is based on the same hierarchy as the 32-tapline chip, using 

the double-buffered register tapline. As shown in Figure 94, a Supertap is used to 

implement the 8-taplines. The Supertap is connected to the 32-bit input bus and loads the 

phase values and gain-coefficient using a reduced number of control signals. The toplevel 

32-to-5-bit decoder is not part of this design. The logic for a decoder representing a truth 

table to adjust the number of used taplines would increase the size of the design 

significantly, but gains almost no value for the concept realization. Therefore the user has 

to ensure a proper setup for normal operation. Since the number of taplines determines 

the size of the generated false target, only a continuous tapline activation beginning with 

the first tapline up to the desired one is acceptable. In spite of the missing target-extent 

decoder, the circuit chosen for fabrication has the same flexibility as the 32-tapline IC. 

Even a design of 8-taplines guarantees a usable concept demonstrator; however, it 
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decreases the size of the false target. Nevertheless the fabrication costs are reduced, since 

the IC area is less than a quarter in size. The first fabrication run will supply several 

chips. Because the concept provides the capability of daisy chaining, four chips could be 

interconnected to result in a 32-tapline-chip equivalent without a decoder capability. 

Thus, the limitations are reduced to a negligible value. 
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Figure 94. 8-Tapline Chip 
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B. TIMING AND CONTROL 

The control requirements for normal chip operation are reduced due to the fact 

that only 32 phase value and 16 gain-coefficients are loaded. The corresponding output 

and input pads are listed and explained in Table 35 and Table 36, where a few pad names 

have changed in comparison to the 32-tapline IC, but these pads still perform the same 

functions. 

Outputs Function 

S_P_Test_Rout Scan path out for a shift to the right (1 bit). 

S_P_Test_Lout Scan path out for a shift to the left (1 bit). 

Tap_outI0-15 Output for processed values in I channel (16 bit). 

Tap_outQ0-15 Output for processed values in Q channel (16 bit). 

Data_Processed_out Control bit flags valid output (1 bit). 

Overflow_out Control bit to check for overflow in a 16-bit adder (1 bit). 

Table 35. Output Pads for the 8-Tapline Circuit 
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Inputs Function 

S_P_Test_Un Scan path input to load test values into registers from the left. 

S_P_Test_Rin Scan path input to load test values into registers from the right. 

Tgt_ExtentO-7 
Input to select the number of taplines used for false target 

generation (8 bits), where no decoder logic is implemented. 

LD_Phase_inc 
Select phase-increment registers in IC and reads in from Bus 0 

to 31 (1 bit). 

LD_Gain_Reg 
Select gain-coefficient registers in IC. Since there are only 16 

gain values to load, Bus 0 to 15 are used to read them in (1 bit). 

BusO-15 First 16 bits from the 32-input bus (16 bits). 

Bus 16-31 Second 16 bits from the 32-input bus (16 bits). 

PhaseO-4 Input for the DRFM-phase samples (5 bits). 

use_Phase_inc 
Makes the phase-increment and the gain-coefficient stored in 

the buffer available for data processing (1 bit). 

Range_bin_valid 
Control input bit that is required to be high when valid DRFM- 

phase data is present at PhaseO-4 (1 bit). 

Overflow_in Control bit that is used for daisy chaining of more Supertaps. 

Data_Processed_in Control bit that is used for daisy chaining of more Supertaps. 

Tap_inI0-15 
Input for I channel that is used for daisy chaining of more 

Supertaps (16 bits). 

Tap_inQ0-15 
Input for Q channel that is used for daisy chaining of more 

Supertaps (16 bits). 

HLD Chip hold for special operation mode. 

LD Chip load for normal operation mode. 

SR Shift right for scan-path test mode. 

SL Shift left for scan-path test mode. 

CLK Master clock used throughout the chip. 

Table 36. Input Pads for the 8-Tapline Circuit 
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Figure 95 shows the timing diagram for the initial loading phase. In addition to 

the reduced number of control bits for the gain and phase adjustment, the loading cycle is 

decreased by four clock cycles. Figure 96 illustrates the readout phase between two radar 

pulses. Given that the number of taplines is reduced to eight, only seven clock cycles are 

necessary to read out the processed data remaining in the adder chain after the last DRFM 

sample is processed (instead of 31 clock cycles as shown before). In general, the timing 

constraints are very closely related to the 32-tapline design as discussed in detail in 

previous chapters. 
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Figure 96. Timing Diagram between Two Radar Pulses for the 8-Tapline Chip 
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C. PHYSICAL LAYOUT GENERATION 

The IC layout is automatically generated with the layout editor, L-Edit. A wide 

range of different optimization parameters affecting both cell placement and network 

routing are tried with varying degrees of success. The final layout of the chip core with 

pad frame is shown in Figure 97 and is approximately 5.25 mm by 5.62 mm. With I/O, 

power, and ground pads and the power and ground distribution buses, the layout is 

approximately 5.71 mm by 6.07 mm with a total chip area of slightly less than 35 square 

mm. After layout generation, a design rule check revealed several DRC violations that 

had to be corrected by hand. Also, additional power and ground pads had to be connected 

by hand to the power and ground distribution buses. Layout correctness is confirmed 

using the layout versus schematic comparison tool, LVS. For layout verification the 

extracted netlist in L-Edit is compared with the netlist of S-Edits circuit representation. 

At this point of the process minor design incompatibilities are still vacant. As soon as the 

netlist comparison is passed, the extracted file will be simulated in T-Spice to confirm 

correct logical functionality.  With the T-Spice  simulation,  the developing process 

concludes and the resulting files are sent to fabrication. The finished IC will be fabricated 

through the MOSIS fabrication service at Hewlett Packard on their 0.5 micron CMOS 

line. The selection of the HP 0.5 micron process was determined to be a reasonable 

compromise between cost  and performance.  Although maximum performance will 

eventually be desired, for this initial, proof-of-concept chip, the moderate performance of 

the 0.5 micron process is sufficient.  It should be noted that the Tanner scalable CMOS 

library used is compatible with IC fabrication processes down to 0.25 micron without 
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modification and with only minor modifications it can be used with fabrication processes 

as small as 0.18 micron. Use of a 0.18 micron fabrication process would allow the DIS 

design to operate at clock rates in excess of 500 MHz, which is one of the goals for future 

work. 
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APPENDIX A. MATLAB CODES 

1.      DIS SIMULATION FILES-VERSION 4 

The DIS Simulation files presented in this appendix are the latest version of 

Matlab codes in this project. The following version of simulating the Digital Image 

Synthesizer architecture in Matlab has been developed for testing purposes. This 

modified version (v4) of the original code now represents the new architecture that has 

been developed during the process of working on the hardware layout in Tanner Tools. 

The original version (vO) was developed by Sy Yeo, 1998. 

A script file (runDISv4.m) has been developed to execute the different files in a 

more convenient way than is used to run a full simulation. This modified code includes 

flexibility in choosing the number of taps to be used, proper start-up and shutdown of the 

taps during processing, "parallel processing" of DRFM-phase data in the taps, and "serial 

summation" of the results in the taps (partial summation starting from the last taps in use, 

all the way up to the first tap, which then will be the valid output data). Compared to the 

v2- and v3-codes, this set of codes is easy to scale-up, can deal with multiple scatterers 

per range-bin (multiple Doppler that will vary both phase and gain-coefficients between 

radar pulses). The code can be set in an initial state to run in Version 2 mode (single 

scatterer per range-bin) if so desired. 

Before running the runDISv4.m file, one must extract parameters of the false 

target one wants to generate if one is working with multiple scatterers per range gate. An 

appropriate extract_XXX.m file (existing or by modifying an existing file) must be used. 

After that, the new parameter text file must be called by the simhwchkv4.m file 
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(check/modify line 33 to 40). The graphical user interface (guiv4.m) in this version only 

serves to get a Doppler offset of the whole false target. 

The code also writes data to text files that represent the functionality of the scan- 

path testing options that are included in the hardware layout, and also to separate I- and 

Q-data outputs. Minor corrections have also been made to the original code. 

a. runDISv4.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% runDISv4.m 
% This script file will help you run the Digital Image Syntesizer 
% (DIS). This is a modified version that is able to handle different 
% target extents (that is, how many taps the user would like to use 
% that will represent the radial length of the target, seen from the 
% ISAR). The user can also specify some necessary input parameters. 
% Created by: 
%   LTC Stig Ekestorm, Apr -00 
%   Naval Postgraduate School 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% set path 
% cd c:\temasek\denise\thesis\final_design\vbfiles 

% clear the workspace 
clear 

% declare global variables, used in outer m-files and functions 
global sorm 
global dp_pts 
global rg_pts 
global hda 
global printdata 

% interactive - use of a dialog box to get inputs parameters from user 
title='User Specified Parameters - Matlab DIS Simulation'; 
prompt={'Single (Version 2) or Multiple (Version 4) Scatterer per range 
gate [1 for Multiple]. If Version 4, then need to run 
extract_para_X.m first.',... 

'Number of Doppler cells in the ISAR.',... 
'Number of Range gates in the plots.', . . . 
'Hardware Data available for comparison [1 for yes].',... 
'Print Intermediate Data to text file (slows down the 

simulation) [1 for yes].'}; 
default={' 0 ' , ' 64 ' , ' 200 ' , ' 0 ' , ' 0 '_}_; 
response=inputdlg(prompt, title, 1, default); 
fields={'sorm', 'dp_pts', 'rg_pts', 'hda','printdata'}; % number of 
Doppler cells, hardware data available 
input=cell2struct(response,fields,1); 
% convert cell structure created by dialog box back to numbers 
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sorm=str2num(input.sorm) ; 
dp_pts=str2num(input.dp_pts) ; 
rg_pts=str2num(input.rg_pts) ; 
hda=str2num(input.hda); 
printdata=str2num (input.printdata); 

% run the graphical user interface (GUI) to specify target parameters 
disp('Enter the values in the Grapical User Interface') 
disp('Press any key to continue') 
guiv4 
pause 

% pre-process signal parameters, simulate ISAR 
if sorm == 0 

mathostv4 
else 

mathostv4b 
end 

% simulate the DIS in Matlab 
% This simulation does "parallel processing" and then "serial 
summation", including: 
% - correction at start-up ("initializing outputs from the taps, one 
tap after another") 
% - correction at the end ("shutting down the taps, one tap after 
another") 
if sorm == 1, 

if printdata == 1, 
simhwchkv4_write 

else 
simhwchkv4 

end 
else 

if printdata == 1, 
s imhwchkv2_wri te 

else 
simhwchkv2 

end 
end 

% plot results for visual comparison 
plothwv4 

% end of file 

b. guiv4.m 

function [dat] = guiv4(action) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% guiv4.m 
% Get inputs from screen 
% MAJ Stig Ekestorm, Feb -00 
% Modified version of guivO.m by SY YEO, Jan -98 
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global hf 
global hl 
global b.2 
global data 
global loc 
global patchsize 
global txtloc 
global count 
global ph 
global dp_pts 

if nargin<l, 
action='start'; 

end; 

if strcmp(action,'start'), 

%  initialize the figure 

set(0,'DefaultAxesFontSize', 6) ; 

hf = figure(1); elf 
set(hf, 'NextPlot' , 'add') ; 

set(hf, ... 
'NumberTitle', 'off', ... 
'Name','Naval PostGraduate School 
'backingstore','off',... 
'Units','normalized'); 

%rg_pts = 15; 
rg_pts = 62; 
%dp_pts = 64; 
data = [];  loc = []; 
count = 0; 
ph = [] ; 

hi = axes('Position',[0 0 1 1],'Visible','off'); 
h2 = axes('Position',[0.1 0.1 0.6 0.8]); 

set(hf,'currentaxes',h2); 

xa = l:rg_pts; 
ya = 0:(dp_pts-l); 

xtick = 0:l:rg_pts; 
set(gca,'XTickMode','manual'); 
set(gca,'XLimMode','manual'); 
set(gca,'XLim',[1 rg_pts]); 
set(gca, 'XTick',xtick) ,• 
set(gca,'XGrid','on'); 
set(gca,'GridLineStyle','-'); 

set(gca,'YTickMode','manual'); 
set(gca,'YLimMode','manual'); 
%set(gca,'YLim',[0 dp_pts-l]); 
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if dp_pts > 64, 
set(gca,'YLim',[0 64-1]); 

else 
set(gca,'YLim',[0 dp_pts-l]); 

end 
ytick = 0:l:dp_pts; 
set(gca,'YTick',ytick); 
set(gca,'YGrid','on'); 
set(gca,'GridLineStyle','-'); 

xh = xlabel('Range Cell'); set(xh,'FontSize',8); clear xh 
yh = ylabel('Doppler'); set(yh,'FontSize',8); clear yh 
ht = title('Range-Doppler-Amplitude Map Entry Program'); 
set(ht,'FontSize',10,'Color',[0 0 1]); 

a = uicontrol('Units','normalized', ... 
'BackgroundColor',[.9 .9 .9], ... 
'Position', [0.72 0.80 0.15 0.04], ... 
'Style','text', ... 
'FontSize',6,... 
'String','Range Cell', ... 
'Tag','aText'); 

b = uicontrol('Units','normalized', ... 
'BackgroundColor',[.9 .9 .9], ... 
'Position',[0.72 0.75 0.15 0.04], ... 
'Style','text', ... 
'FontSize',6,... 
'String', 'Doppler Cell' , ... 
'Tag','bText'); 

c = uicontrol('Units','normalized', ... 
'BackgroundColor',[.9 .9 .9], ... 
'Position',[0.72 0.65 0.15 0.04], ... 
'Style','text', ... 
'FontSize',6,... 
'String','Amplitude', ... 
'Tag','cText'); 

ell = uicontrol('Units','normalized 
'BackgroundColor',[.9 .9 .9], .. 
'Position',[0.72 0.60 0.15 0.04] 
'Style','slider','min',0,'max',4 
'SliderStep',[0.25 0.5],... 
'Callback','guiv4(''updatel'')') 

d = uicontrol('Units','normalized', ... 
"BackgroundColor',[.9 .9 .9], ... 
'Position',[0.72 0.50 .15 0.04], ... 
'Style','text', ... 
'FontSize',6,..- 
'String','Doppler shift'); 

dll = uicontrol('Units','normalized', ... 
'BackgroundColor',[.9 .9 .9], ... 
'Position', [0.72 0.45 0.15 0.04], ... 
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'Style', 'slider', 'Min',-10, 'Max',10, . . . 
'SliderStep',[0.05 0.1],... 
'Callback','guiv4(''updatel'")'); 

al = uicontrol('Units','normalized', ... 
'BackgroundColor' , [1 11], ... 
'Position',[0.9 0.80 0.05 0.04], ... 
'Style','text', ... 
'FontSize',6,... 
'String','', ... 
'Tag','alText'); 

set(gcf,'currentaxes',hl); 
bl = uicontrol('Units','normalized', ... 

'BackgroundColor',[1 11], ... 
'Position',[0.9 0.75 0.05 0.04], ... 
'Style','text', ... 
'FontSize',6,... 
'String','',... 
'Tag','a2Text2'); 

set(gcf,'currentaxes',hi); 
cl = uicontrol('Units','normalized', ... 

'BackgroundColor',[1 11], ... 
'Position',[0.9 0.65 0.05 0.04], ... 
'Style','text', ... 
'FontSize',6,... 
'Callback','guiv4(''update'')',... 
'String',''); 

dl = uicontrol('Units','normalized', ... 
'BackgroundColor',[1 11], ... 
'Position',[0.9 0.50 0.05 0.04], ... 
'Style','text', ... 
'FontSize',6,... 
'Callback','guiv4(''update'')',... 
'String',''); 

ql = uicontrol('Units','normalized', ... 
'BackgroundColor','Yellow', ... 
'Position',[0.9 0.10 0.05 0.04], ... 
'Style','pushbutton', ... 
'FontSize',8,... 
'String','SAVE', ... 
'Callback','guiv4(''savequit'')'); 

q2 = uicontrol('Units','normalized', ... 
'BackgroundColor','Yellow', ... 
'Position',[0.78 0.1 0.1 0.04], ... 
'Style','pushbutton', ... 
'FontSize',8,... 
'String','CLEAR', ... 
'Callback','guiv4(''start'')'); 

txtloc = [a al b bl c cl ell d dl dll]; 
% Assign action when mouse button is pressed 
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set(h2,'ButtonDownFcn','guiv4(''down•')'); 

elseif strcmp(action,'down'), 
% Obtain coordinates of mouse click location in axes units 

set(hf,'currentaxes',h2); 
pt=get(h2,'currentpoint'); 

x=pt(l,l); xf = floor(x); 
y=pt(l,2); yf = floor(y); 
[r,c] = size(data); 

set(txtloc(7), 'Value',0) ; 
set(txtloc(9),'Value',0); 

tmp = [x y 1 0] ; 
loc = [loc tmp]; 
tmp = [xf yf 1 0]; 
data = [data;tmp]; 
[r,c] = size(data); 
ypos = [yf yf+1 yf+1 yf]; 
xpos = [xf xf xf+1 xf+1]; 

count = count + 1; 
%disp(count); 
txt = ['Tag',num2str(count)]; 
ptr = patch(xpos,ypos,[1 1 1]*0.9); 
%disp(ptr); 
set(ptr,'ButtonDownFcn' , [ ... 

'guiv4(''update'')']); 
set(ptr,'Tag',txt); 
set(ptr,'UserData',[xf yf 1 0]); 
ph = ptr; 
set(txtloc(2),'String',xf) ; 
set(txtloc(4),'String',yf); 
set(txtloc(6),'String',1); 
set(txtloc(9),'String',0); 

elseif strcmp(action,'update'), 
% Determine the patch that is selected 
ph = gcbo; 
%set(ph,'Selected','on'); 
% Retrieve the values for that patch and display it 
% txtloc = [a al b bl c cl ell d dl dll]; 
% txtloc 2: Range cell 
% txtloc 4: Doppler cell 
% txtloc 6: Amplitude txtloc 7: Slider bar 
% txtloc 9: Doppler offset  txtloc 9: Slider bar 
ud = get(ph,'UserData'); 
set(txtloc(2),'String',ud(l)) 
set(txtloc(4),'String',ud(2)) 
set(txtloc(6),'String',ud(3)) 
set(txtloc(9),'String',ud(4)) 
set(txtloc(7),'Value',ud(3)); 
set(txtloc(10),'Value',ud(4)); 
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elseif strcmp(action,'updatel'), 
if (-isempty(ph)) 

phi = gcbo; 
if ((phi == txtloc(7)) | (phi == txtloc(lO))) 

ud = get(ph,'UserData'); 
xf = ud(l); yf = ud(2) 
ypos = [yf yf+1 yf+1 yf] 
xpos = [xf xf xf+1 xf+1] 
set(ph,'Selected',' off') 
% Update the amplitude/Doppler values 
if (phi == txtloc(7)) 

tmpl = get(txtloc(7),'Value'); 
tmpl = round(tmpl) 
set(txtloc(6),'String',tmpl); 
set(txtloc(7),'Value',tmpl); 
i f (tmpl < 1), 

set(txtloc(7),'Value',1); 
set(txtloc(6),'String',' 1' ) ; 
tmpl = 1; 

end 
col =[11 l]*(l-tmpl/10); 
set(ph,'FaceColor',col); 
set(ph,'UserData',[ud(l) ud(2) tmpl ud(4)]); 

end 
if (phi == txtloc(10)) 

tmp2 = round(get(txtloc(10),'Value')); 
set(txtloc(9),'String',tmp2); 
set(txtloc(10),'Value',tmp2); 
set(ph,'UserData',[ud(l) ud(2) ud(3) tmp2]); 

end 
%disp('HHH'); 
%disp(get(ph,'Tag')) 
%disp(get(ph,'UserData')) 

end 
end 

elseif strcmp(action,'savequit'), 
dat = []; 
for i = 1:count 

tt = findobj('Tag',['Tag' num2str(i) ] ) ; 
tmp = get(tt,'UserData') 
dat = [dat;tmp]; 
fprintf('count = %d, Tag = %s  ',count,get(tt,'Tag')); 
disp(tmp); 

end 
save -ascii sigparl dat 
close gcbf 

end 
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C.  mathostv4.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% mathostv4.m 
% MAJ Stig Ekestorm, Feb -00 
% Modified version of mathostvO.m by SY YEO, Jul-98 
% 
% Generate pri_dp map and range-Doppler map 
% - generates the files for input to hardware 
% -- file para.txt contains: 
%   line 1: number of range cells 
%   line 2: number of pulse in a batch (equals to dp_pts in this 
% program) 
%   line 3: extent of target in cells (n: integer); number of taps in 
% delay also equals n (pipeline design) 
%   line 4: gainl, gain2, ..., gain n (integer) 
%    line 4+n+l: phiO (pulse 1), 
%   line 4+n+2: phil (pulse 1), 
%    line 4+n+targetExtent: phi-targetExtent (pulse 1), 
%   line 4+n+targetExtent+l: phiO (pulse 2), 
%    line 4+n+targetExtent+2: phil (pulse 2), 
%   line 4+n+2*targetExtent: phi-targetExtent (pulse 2), 
% 
%   line 4+n+dp_pts*targetExtent: phi-targetExtent (pulse dp_pts) 

% 
% -- file raw.txt contains the instantaneous phases of simulated DFRM- 
% data (quantized to 45deg step): 
% line 1: pulse 1 (integer) 
% line 2: pulse 2 
%   
% line dp_pts: pulse dp_pts 

clear 

global sorm 
global dp_pts 
global rg_pts 
global doppler_inc 
global printdata 

set(0,'defaultAxesFontSize',8); 

noplot = 0; 
Ncontours = 20; 

% Parameters 
bw = 100e6; 
pwc = 1/(1.25*bw);   % compressed pulsewidth 
pw =0.5e-6; 
prf = 2e3;  pri = 1/prf; 
mu = 2*pi*bw/pw; 
fs = 1.25*bw;  Ts = 1/fs; 
snr = 0; 
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% set-up grid 
% x-axis(rg), y-axis(dp) 
%rg_pts = 200; 
%dp_pts = 64; 

pri_rg_map = zeros(dp_pts/rg_pts); 
pri_rg_mapq = zeros (dp_pts,rg_pts) ; 
pri_rg_map_shift = zeros(dp_pts, rg_pts) ; 
pri_rg_map_shiftq = zeros(dp_pts,rg_pts); 
pri_rg_phaseq = zeros(dp_pts,rg_pts); 

% insert waveform into grid; 
load -ascii sigparl 
sigpar = sigparl'; 
doppler_inc = sigpar(4,:); 
sigpar([2 4],:) = sigpar([2 4],:)*prf/dp_pts; 
[lxs,lys] = size(sigpar); 
%t0 = 0:Ts:pw-Ts; 
tO = Ts:Ts:pw; 

%for the reduced 2-Tap T-Spice simulation 
%TsNew=4*l/fs; 
%tnew = 0:TsNew:pw-TsNew; 
%tnew = TsNew.-TsNew:pw; 
%t0 = tnew; 

num_chirp_samples = length (tO); if ( (num_chirp_samples + lxs) > rg_pts) 
disp('Warning : Chirp is clipped - set grid size larger'); end 

% open files for writing 
fl = fopen('para.txt', 'w') ; 
fprintf (fl, '%d\r\n' ,num_chirp_sam.ples) ;     % number of range cells 
fprintf(fl,'%d\r\n',dp_pts); % number of Doppler cells 
fprintf(fl,'%d\r\n',lys); % target extent 

% adjustment to correct multiplication factors for the amplitude (gain)• 
value 
for i = 1:lys 

switch sigpar(3,i) 
case {1} 

sigpar(3,i)=l; % no shift, multiplication by 1,   hardware bit "00" 
case {2} 

sigpar(3,i)=2; % shift by 1, multiplication by 2, hardware bit 
"01" 

case {3} 
sigpar(3,i)=4; % shift by 2,   multiplication bv 4, hardware bit 

"10" 
case {4} 

sigpar(3,i)=8; % shift by 3, multiplication by 8, hardware bit 
"11" 

end 
fprintf(fl, '%d\r\n',sigpar(3, i));   % gainl, gain2, ..., gainN 

end 

nbitsph = 3; 
nbitsdop = 5; 
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nbitsamp = 8; 
b = 2*pi/(2Anbitsph); 
a = 2*pi/(2/snbitsamp) ; 
p = 2*pi/(2Anbitsdop); 
%for the reduced 2-Tap T-Spice simulation, Nov -99 
%p = 2*pi/(dp_pts); 

for idxl = l:dp_pts     % Repeat for total number of pulses within 
batch 

tl = tO + (idxl)*pri; 
%tl = tO + (idxl-1)*pri; 
for idx = l:lys 

%**** approximation used here, assume phase change due to Doppler 
within a chirp is constant 

%**** since the Doppler is tens of hertz compared to the MHz 
chirp bandwidth 

oldphase = mu*tl.*tl/2 + 2*pi*sigpar(2,idx)*tl; 
%oldphase = mu*tl.*tl/2 + 2*pi*sigpar(2,idx)*(idxl-1)*pri; 
oldphase = mod(oldphase,2*pi); 

% quantize the oldphase to 1 of 8 phases 
int_oldphase = round(oldphase/b); 
oldphaseq = b*int_oldphase;      % quantize the phase 
xc = exp(sqrt(-l)*oldphase); 
lx = (sigpar(1,idx)):(sigpar(1,idx) )+length(xc)-1; 
pri_rg_map(idxl,lx) = xc+pri_rg_map(idxl,lx); 
pri_rg_phaseq(idxl,lx) = int_oldphase; 

xcq = exp(sqrt(-l)*oldphaseq); 
xcq = p*round(xcq/p);     % quantize the phase 
pri_rg_mapq(idxl,lx) = xcq+pri_rg_mapq(idxl, lx) ; 
% phase focusing 
dopphase = 2*pi*sigpar(4,idx)*(idxl)*pri; % approximation used 

here 

here 

%dopphase = 2*pi*sigpar(4,idx)*(idxl-1)*pri; % approximation used 

newphase = oldphase + dopphase*ones(size(oldphase)); 
xl = cos(newphase); 
xQ = sin(newphase); 
xl = sigpar(3,idx)*(xl+sqrt(-1)*xQ) j; 
pri_rg_map_shift(idxl,lx) = pri_rg_map_shift(idxl,lx) + xl; 

int_dopphaseq =  rovmd(dopphase/p); 
dopphaseq = int_dopphaseq*p; 
newphaseq = oldphaseq + dopphaseq; 
xl = cos(newphaseq); 
xQ = sin(newphaseq); 
xl = round(xI/a)*a; 
xQ = round(xQ/a)*a; 
xl = sigpar(3,idx)*(xI+sqrt(-l)*xQ); 
pri_rg_map_shiftq(idxl,lx) = pri_rg_map_shiftq(idxl,lx) + xl; 

% store the dopphase value (ignore intrapulse phase change since 

it   is   small) 
%fprintf(f1,'%d\r\n',int_dopphaseq); %originals 

code,   incrementation of phase modulation coefficients 
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%fprintf(fl, '%d\r\n' ,mod(int_dopphaseq,32)); %to get 
true phase modulation coefficients each PRI 

fprintf(fl,'%d\r\n',mod(2*fix(int_dopphaseq/2),32));  %to 
represent phase modulation coefficients using 4-bits words 

end 
end 
fclose(fl); 

noise = randn(size(pri_rg_map))*c_snr(snr); noise = 0; 
pri_rg_map = pri_rg_map + noise; 
pri_rg_map_shift = pri_rg_map_shift + noise; 

%  

save pulsel pri_rg_map_shiftq 

%  

% Perform pulse compression 
% (a) for the non-quantized phase case 
disp{'Creating reference waveform'); 
ph = (mu*tl.*tl/2); 
crefc = exp(sqrt(-l)*ph); 
cref = conj(fft(crefc,2*rg_pts-l)); 
save pc_ref cref tl 
pc_ref_map = fft(pri_rg_map.',2*rg_pts-l).'; 
pc_ref_map_shift = fft (pri_rg_map_shift. ' ,2*rg_pts-l) . 

disp('Performing pulse compression') ; 
pri_rg_mapl = zeros(size(pri_rg_map)) ; 
pri_rg_map2 = zeros(size(pri_rg_map)) ; 

%  Compress the original signals 
for idx = l:dp_pts 

tmp = cref.*pc_ref_map(idx,:) ; 
tmpl = fftshift(ifft(tmp)); 
pri_rg_mapl(idx,:) =  tmpl(rg_pts:end) ; 

end 

%  Compress the Doppler shifted signals 

for idx = l:dp_pts 
tmp = cref.*pc_ref_map_shift(idx, :) ; 
tmpl = fftshift(ifft(tmp)); 
pri_rg_map2(idx,:) =  tmpl(rg_pts:end); 

end 

% Compute the rg-dop map 
disp('Plotting ... r-d map'); 

<äp_rg_map = f ft (pri_rg_mapl,dp_pts) ; 
dp_rg_map_shi ft = fft (pri_rg_map2, dp_pts) ; 

[lx,ly] = size(dp_rg_map); 
rax = 1: (length (ly)) ,- 
dax = 0:(length(lx))-l; 
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dpy = abs(dp_rg_map); 
dpy_shift = abs(dp_rg_map_shift); 

if (noplot == 0) 
figured) ; 

subplot(2,1,1); 
h = contour(dpy,Ncontours); grid 
title('a. Original Rd-DpMap'); 
axis([l 62 0 dp_pts]) 
xlabel('Down Range Cells');   ylabel('Cross Range Cells') ; 
subplot(2,1,2); 
h = contour(dpy_shift,Ncontours); grid 
axis([1 62 0 dp_pts]) 
title('b. Amplitude and Doppler Modulated Rd-Dp Map'); 
xlabel('Down Range Cells');   ylabel('Cross Range Cells'); 

% Perform pulse compression 
% (b) for the quantized phase case 
disp('Performing pulse compression for quantized phase case'); 
pc_ref_niapq = fft(pri_rg_mapq.',2*rg_pts-l).'; 
pc_ref_map_shiftq = fft(pri_rg_map_shiftq.',2*rg_pts-l).' ; 
pri_rg_map3 = zeros(size(pri_rg_mapq)); 
pri_rg_map4 = zeros(size(pri_rg_mapq)); 

%  Compress the original signals 

for idx = l:dp_pts 
tmp = cref.*pc_ref_mapq(idx,:); 
tmpl = fftshift(ifft(tmp)); 
pri_rg_map3(idx,:) =  tmpl(rg_pts:end); 

end 

%  Compress the Doppler shifted signals 

for idx = l:dp_pts 
tmp = cref.*pc_ref_map_shiftq(idx,:); 
tmpl = fftshift(ifft(tmp)); 
pri_rg_map4(idx,:) =  tmpl(rg_pts:end); 

end 

% Compute the rg-dop map 
disp('Plotting ... r-d map'); 

dp_rg_mapq = fft(pri_rg_map3); 
dp_rg_map_shiftq = fft(pri_rg_map4); 

[lx,ly] = size(dp_rg_mapq); 
rax = 1:(length(ly)); 
dax = 0:(length(lx))-l; 

dpyq = abs(dp_rg_mapq); 
dpy_shiftq = abs(dp_rg_map_shiftq); 

% -- Simulation of phase quantizing DRFM 
% Now convert amplitude to phase. 
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% Convert phase to positive numbers between 0-360deg, so do not need 
to handle 

% negative numbers in Altera. 
pri_rg_mapq_angle = mod(pri_rg_phaseq,2*pi); 
pri_rg_mapq_shift_angle = angle(pri_rg_map_shiftq); 

f2 = fopen('rawint.txt', 'w') ; 
[lx,ly] = size(pri_rg_mapq_angle); 
deltaDegrees = 2*pi/(2~nbitsdop); 
for i = l:lx 

int_raw = round (pri_rg_mapg_angle (i, 1: num_chirp_samples- 
1)/deltaDegrees); % need to store in Visual basic text file format 

fprintf(f2,'%d,',int_raw); 
int_raw = 

round (pri_rg_mapq_angle (i, num_chirp_samples) /deltaDegrees) ; 
fprintf(f2,'%d\r\n',int_raw); 

end; 
fclose(f2); 
q = 2*pi/(2~nbitsph); 
pri_rg_mapq_drfm = exp(sqrt(-1)*(round(pri_rg_mapq_angle/q))*q); 
pri_rg_mapq_shift_drfm = exp(sqrt(- 

1)*(round(pri_rg_mapq_shift_angle/q))*q); 

% Perform pulse compression 
% (c) for the quantized phase case with phase DFRM model 
disp('Performing pulse compression for quantized phase case 

(simulates phase DFRM effects)1); 
pc_ref_mapq_drfm = fft(pri_rg_mapq_drfm.',2*rg_pts-l) . ' ; 
pc_ref_mapq_shift_drfm = fft(pri_rg_mapq_shift_drfm.',2*rg_pts-l).'; 
pri_rg_map5 = zeros(size(pri_rg_mapq_drfm)); 
pri_rg_map6 = zeros(size(pri_rg_mapq_shift_drfm)); 

%  Compress the original signals 

for idx = l:dp_pts 
tmp = cref.*pc_ref_mapq_drfm(idx,:); 
tmpl = fftshift(ifft(tmp)); 
pri_rg_map5(idx,:) =  tmpl(rg_pts:end); 

end 

%  Compress the Doppler shifted signals 

for idx = l:dp_pts 
tmp = cref.*pc_ref_mapq_shift_drfm(idx,:); 
tmpl = fftshift(ifft(tmp)); 
pri_rg_map6(idx,:) =  tmpl(rg_pts rend); 

end 

% Compute the rg-dop map 
disp('Plotting ... r-d map'); 

dp_rg_mapq_drfm = fft(pri_rg_map5); 
dp_rg_map_shiftq_drfm = fft(pri_rg_map6); 

[lx,ly] = size(dp_rg_mapq_drfm); 
rax = 1:(length(ly)); 
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dax = 0:(length(lx)); 
%dax = 0:(length(lx))-l; 

dpyq_drfm = abs(dp_rg_mapq_drfm); 
dpyq_shift_drfm = abs(dp_rg_map_shiftq); 

save plot dpyq dpyq_shift_drfm 

end 

figured); print -dtiff simhostl 

d. mathostv4b.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% mathostv4b.m 
% MAJ Stig Ekestorm, Feb -00 
% Modified version of mathostvO.m by SY YEO, Jul -98 
% 
% Generate pri_dp map and range-Doppler map 
% - generates the files for input to hardware 
% -- file para.txt contains: 
%   line 1: number of range cells 
%   line 2: number of pulse in a batch (equals to dp_pts in this 
% program) 
%   line 3: extent of target in cells (n: integer); number of taps in 
% delay also equals n (pipeline design) 
%   line 4: gainl, gain2, ..., gain n (integer) 
%    line 4+n+l: phiO (pulse 1), 
%    line 4+n+2: phil (pulse 1), 
%   line 4+n+targetExtent: phi-targetExtent (pulse 1), 
%    line 4+n+targetExtent+l: phiO (pulse 2), 
%   line 4+n+targetExtent+2: phil (pulse 2), 
%    line 4+n+2*targetExtent: phi-targetExtent (pulse 2), 
% 
%   line 4+n+dp_pts*targetExtent: phi-targetExtent (pulse dp_pts) 

% 
% -- file raw.txt contains the instantaneous phases of simulated DFRM- 
%   data (quantized to 45deg step): 
%   line 1: pulse 1 (integer) 
%    line 2: pulse 2 
%      
%   line dp_pts: pulse dp_pts 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 

global sorm 
global dp_pts 
global rg_pts 
global doppler_inc 
global printdata 

set(0,'defaultAxesFontSize',8); 
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noplot = 0; 
Ncontours = 20; 

% Parameters 
%bw = 100e6; 
%pwc = 1/(1.25*bw);  % compressed pulsewidth 
%pw =0.5e-6; 
%prf = 2e3; pri = 1/prf; 
%mu = 2*pi*bw/pw; 
%fs = 1.25*bw; Ts = 1/fs; 
%snr = 0; 

bw = 100e6; 
bw2 = 1.25*bw; % bandwidth of the chirp signal, delta 
pwc = 1/(1.25*bw); % compressed pulsewidth 
pw =0.5e-6; % uncompressed pulsewidth 
prf = 2e3; % PRF 
pri = 1/prf; % PRI 
k = bw2/pw; % pulse compression rate, delta / uncompressed 
pulsewidth 
%mu = 2*pi*bw/pw; 
fs = 1.25*bw; % sampling frequency 
Ts = 1/fs; % sampling time step 
snr =0; % no extra noise added 

% set-up grid 
% x-axis(rg), y-axis(dp) 
%rg_pts = 200; 
%dp_pts = 64; 

pri_rg_map = zeros(dp_pts,rg_pts); 
pri_rg_mapq = zeros(dp_pts,rg_pts); 
pri_rg_map_shift = zeros(dp_pts,rg_pts); 
pri_rg_map_shiftq = zeros(dp_pts,rg_pts); 
pri_rg_phaseq = zeros(dp_pts,rg_pts) ; 

% insert waveform into grid; 
load -ascii sigparl 
sigpar = sigparl'; 
doppler_inc = sigpar(4,:); 
%sigpar([2 4],:) = sigpar([2 4],:)*prf/dp_pts; 
sigpar(2,:) = sigpar(2,:) * 0 + 1000-9*31.25;   %to create an 
artificial Doppler offset for the Ship Case, 32 Taps 
%sigpar(2,:) = sigpar(2,:) * 0 + 1000-5*31.25;  %to create an 
artificial Doppler offset for the Ship Case, 16 Taps 
[lxs,lys] = size(sigpar); 
%t0 = 0:Ts:pw-Ts; 
tO = Ts:Ts:pw; 

%for the reduced 2-Tap T-Spice simulation 
%TsNew=4*l/fs; 
%tnew = 0:TsNew:pw-TsNew; 
%tnew = TsNew:TsNew:pw; 
%t0 = tnew; 
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num_chirp_samples = length(tO); 
if ((num_chirp_samples + lxs) > rg_pts) 

disp('Warning : Chirp is clipped - set grid size larger'); 
end 

% open files for writing 
f1 = fopen('para.txt','w'); 
fprintf(f1,'%d\r\n',num_chirp_samples);     % number of range cells 
fprintf(fl,'%d\r\n',dp_pts); % number of Doppler cells 
fprintf(fl,'%d\r\n',lys); % target extent 

% adjustment to correct multiplication factors for the amplitude (gain) 
value 
for i = 1:lys 

switch sigpar(3,i) 
case {1} 

sigpar(3,i)=l; % no shift, multiplication by 1, hardware bit "00" 
case {2} 

sigpar(3,i)=2; % shift by 1, multiplication by 2, hardware bit 
"01" 

case {3} 
sigpar(3,i)=4; % shift by 2, multiplication by 4, hardware bit 

"10" 
case {4} 

sigpar(3,i)=8; % shift by 3, multiplication by 8, hardware bit 
"11" 

end 
fprintf(fl,'%d\r\n',sigpar(3,i));   % gainl, gain2, ..., gainN 

end 

nbitsph = 3; 
nbitsdop = 5; 
nbitsamp = 8; 
b = 2*pi/(2~nbitsph); 
a = 2*pi/(2~nbitsamp); 
p = 2*pi/(2~nbitsdop); 
%for the reduced 2-Tap T-Spice simulation, Nov -99 
%p = 2*pi/(dp_pts); 

for idxl = l:dp_pts    % Repeat for total number of pulses within 
batch 

tl = tO + (idxl)*pri; 
%tl = tO + (idxl-1)*pri; 
for idx = l:lys 

%**** approximation used here, assume phase change due to Doppler 
within a chirp is constant 

%**** since the Doppler is tens of hertz compared to the MHz 
chirp bandwidth 

oldphase = 2*pi*((k*tl.*tl)/2 + sigpar(2,idx)*tl); 
%oldphase = mu*tl.*tl/2 + 2*pi*sigpar(2,idx)*tl; 
%oldphase = mu*tl.*tl/2 + 2*pi*sigpar(2,idx)*(idxl-1)*pri; 

oldphase = mod(oldphase,2*pi); 
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here 

here 

% quantize the oldphase to 1 of 8 phases 
int_oldphase = round(oldphase/b); 
oldphaseq = b*int_oldphase;      % quantize the phase 
xc = exp(sqrt(-l)*oldphase); 
lx = (sigpar(l,idx)):(sigpar(1,idx))+length(xc)-1; 
pri_rg_map(idxl,lx) = xc+pri_rg_map(idxl,lx); 
pri_rg_phaseq(idxl,lx) = int_oldphase; 

xcq = exp(sqrt(-l)*oldphaseq); 
xcq = p*round(xcq/p);     % quantize the phase 
pri_rg_mapq(idxl,lx) = xcq+pri_rg_mapq(idxl,lx); 
% phase focusing 
dopphase = 2*pi*sigpar(4,idx)*(idxl)*pri; % approximation used 

%dopphase = 2*pi*sigpar(4,idx)*(idxl-1)*pri; % approximation used 

newphase = oldphase + dopphase*ones(size(oldphase)); 
xl = cos(newphase); 
xQ = sin(newphase); 
xl = sigpar(3,idx)*(xl+sqrt(-1)*xQ); 
pri_rg_map_shift(idxl,lx) = pri_rg_map_shift (idxl, lx) + xl; 

int_dopphaseq = round(dopphase/p); 
dopphaseq = int_dopphaseq*p; 
newphaseq = oldphaseq + dopphaseq; 
xl = cos(newphaseq); 
xQ = sin(newphaseq); 
xl = round(xI/a)*a; 
xQ = round(xQ/a)*a; 
xl = sigpar(3,idx)*(xl+sqrt(-1)*xQ); 
pri_rg_map_shiftq(idxl,lx) = pri_rg_map_shiftq(idxl, lx) + xl; 

% store the dopphase value (ignore intrapulse phase change since 
it is small) 

%fprintf(f1,'%d\r\n',int_dopphaseq); %originals 
code, incrementation of phase modulation coefficients 

%fprintf(f1,'%d\r\n',mod(int_dopphaseq,32)); %to get 
true phase modulation coefficients each PRI 

fprintfffl, '%d\r\n',mod(2*fix(int_dopphaseq/2),32) ) ;  %to 
represent phase modulation coefficients using 4-bits words 

end 
end 
fclose(fl); 

noise = randn(size(pri_rg_map))*c_snr(snr); noise = 0; 
pri_rg_map = pri_rg_map + noise; 
pri_rg_map_shift = pri_rg_map_shift + noise; 

save pulsel pri_rg_map_shiftq 

% Perform pulse compression 
% (a) for the non-quantized phase case 
disp('Creating reference waveform'); 
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ph = 2*pi*((k*tl.*tl)/2 + sigpar(2,l)*tl); 
crefc = sqrt(j*k)*exp(j*ph); 
cref = conj(fft(crefc,2*rg_pts-l)); 
save pc_ref cref tl 

%ph = (mu*tl.*tl/2); 
%crefc = exp(sqrt(-1)*ph); 
%cref = conj(fft(crefc,2*rg_pts-l)); 
%save pc_ref cref tl 
pc_ref_map = fft(pri_rg_map.',2*rg_pts-l).'; 
pc_ref_map_shift = fft(pri_rg_map_shift.',2*rg_pts-l) . ' ; 

disp('Performing pulse compression'); 
pri_rg_mapl = zeros(size(pri_rg_map)); 
pri_rg_map2 = zeros(size(pri_rg_map)); 

%  Compress the original signals 
for idx = l:dp_pts 

tmp = cref.*pc_ref_map(idx,:); 
tmpl = fftshift(ifft(tmp)); 
pri_rg_mapl(idx,:) =  tmpl(rg_pts:end); 

end 

%  Compress the Doppler shifted signals 

for idx = l:dp_pts 
tmp = cref.*pc_ref_map_shift(idx,:); 
tmpl = fftshift(ifft(tmp)); 
pri_rg_map2(idx,:) =  tmpl(rg_pts:end); 

end 

% Compute the rg-dop map 
disp('Plotting ... r-d map'); 

dp_rg_map = fft(pri_rg_mapl,dp_pts); 
dp_rg_map_shift = fft(pri_rg_map2,dp_pts); 

[lx,ly] = size(dp_rg_map); 
rax = 1:(length(ly)); 
dax = 0:(length(lx))-l; 

dpy = abs(dp_rg_map); 
dpy_shi f t = abs(dp_rg_map_shi ft); 

if (noplot == 0) 
figured) ; 

subplot(2,1,1); 
h = contour(dpy,Ncontours); grid 
title('a. Original Rd-Dp Map'); 
axis([l 62 0 dp_pts]) 
xlabeK'Down Range Cells');   ylabel ('Cross Range Cells'); 

subplot(2,1,2); 
h = contour(dpy_shift,Ncontours); grid 
axis([1 62 0 dp_pts]) 
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title('b. Amplitude and Doppler Modulated Rd-Dp Map'); 
xlabel('Down Range Cells');   ylabel('Cross Range Cells ' ); 

% Perform pulse compression 
% (b) for the quantized phase case 
disp('Performing pulse compression for quantized phase case'); 
pc_ref_mapq = fft(pri_rg_mapq.■,2*rg_pts-l).'; 
pc_ref_map_shiftq = fft(pri_rg_map_shiftq.',2*rg_pts-l).•; 
pri_rg_map3 = zeros(size(pri_rg_mapq)); 
pri_rg_map4 = zeros(size(pri_rg_mapq)); 

%  Compress the original signals 

for idx = l:dp_pts 
tmp = cref.*pc_ref_mapq(idx,:) ; 
tmpl = fftshift(ifft(tmp)); 
pri_rg_map3(idx,:) =  tmpl(rg_pts:end); 

end 

%  Compress the Doppler shifted signals 

for idx = l:dp_pts 
tmp = cref.*pc_ref_map_shiftq(idx, :); 
tmpl = fftshift(ifft(tmp)) ; 
pri_rg_map4(idx,:) =  tmpl(rg_pts:end); 

end 

% Compute the rg-dop map 
disp('Plotting ... r-d map'); 

dp_rg_mapq = fft(pri_rg_map3); 
dp_rg_map_shiftq = fft(pri_rg_map4); 

[lx,ly] = size(dp_rg_mapq); 
rax = 1:(length(ly)); 
dax = 0:(length(lx))-l; 

dpyq = abs(dp_rg_mapq); 
dpy_shiftq = abs(dp_rg_map_shiftq) ; 

% -- Simulation of phase quantizing DRFM 
% Now convert amplitude to phase. 
% Convert phase to positive numbers between 0-360deg, so do not need 

to handle 
% negative numbers in Altera. 
pri_rg_mapq_angle = mod(pri_rg_phaseq,2*pi); 
pri_rg_mapq_shift_angle = angle(pri_rg_map_shiftq) ; 

f2 = fopen('rawint.txt',' w' ) ; 
[lx,ly] = size(pri_rg_mapq_angle); 
deltaDegrees = 2*pi/(2~nbitsdop); 
for i = l:lx 

int_raw = round (pri_rg_mapq_angle (i, 1: num_chirp_samples- 
1)/deltaDegrees); % need to store in Visual basic text file format 

fprintf(f2,'%d,',int_raw); 
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int_raw = 
round (pri_rg_mapq_angle (i / num_chirp_samples) /deltaDegrees) ; 

fprintf(f2,'%d\r\n',int_raw); 
end; 
fclose(f2); 
q = 2*pi/(2Änbitsph); 
pri_rg_mapq_drfm = exp(sqrt (-1) * (round(pri_rg_mapq_angle/q) ) *q) ; 
pri_rg_mapq_shift_drfm = exp(sqrt(- 

1) * (round (pri_rg_mapq_shift_angle/q) ) *q) ; 

% Perform pulse compression 
% (c) for the quantized phase case with phase DFRM model 
disp ('Performing pulse compression for quantized phase case 

(simulates phase DFRM effects)'); 
pc_ref_mapq_drfm = fft(pri_rg_mapq_drfm. ' ,2*rg_pts-l) . ' ; 
pc_ref_mapq_shift_drfm = fft (pri_rg_mapq_shift_drfm. ' ,2*rg_pts-i; 
pri_rg_map5 = zeros(size(pri_rg_mapq_drfm)); 
pri_rg_map6 = zeros(size(pri_rg_mapq_shift_drfm)); 

%  Compress the original signals 

for idx = l:dp_pts 
tmp = cref.*pc_ref_mapq_drfm(idx, :) ; 
tmpl = fftshift(ifft(tmp)); 
pri_rg_map5(idx,:) =  tmpl(rg_pts:end) ; 

end 

%  Compress the Doppler shifted signals 

for idx = l:dp_pts 
tmp = cref.*pc_ref_mapq_shift_drfm(idx, :) ; 
tmpl = fftshift(ifft(tmp)); 
pri_rg_map6(idx,:) =  tmpl(rg_pts:end) ; 

end 

% Compute the rg-dop map 
disp('Plotting ... r-dmap'); 

dp_rg_mapq_drfm = f ft (pri_rg_map5) ; 
dp_rg_map_shiftq_drfm = fft(pri_rg_map6) ; 

[lx,ly] = size(dp_rg_mapq_drfm); 
rax = 1:(length(ly)); 
dax = 0:(length(lx)); 
%dax = 0:(length(lx))-l,■ 

dpyq_drfm = abs (dp_rg_mapq_drfm) ; 
dpyq_shift_drfm = abs (dp_rg_map_shiftq) ; 

save plot dpyq dpyq_shift_drfm 

end 

figure(l); print -dtiff simhostl 
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e. simhwchkv4.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% simhwchkv4.m 
% MAJ Stig Ekestorm, Feb -00 
% Modified version of simhwchkvO.m 
% Purpose: This program performs a architectural true simulation of the 
% Digital Image Synthesizer hardware 
% Modifications will perform "parallel processing" and then "serial 
% summation" including: 
% - correction at start-up ("initialize outputs from the taps, one tap 
%  after another") 
% - correction at the end ("shutting down the taps, one tap after 
%  another") 
% Original file: simhwchk.m by SY YEO, Jul -98 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 

global dp_pts 
global rg_pts 
global doppler_inc 

set(0, 'defaultAxesFontSize' ,8); 

noPlot = 0; 
Ncontours = 20; 

depthLUT =32; 
widthLUTFile =2; % in units of number of hex digits 
widthLUT =8;  % n bits 
ndopbits = 5; 

%***************************** 

% Read from data files 

% Read from para.dat 
%fid = fopen('para.txt','r'); %opens para.txt to be read 
%fid = fopen('paraMULTI.txt','r'); %opens paraMULTI.txt to be read 
%fid = f open ('paraMULTIq5.txt', 'r') ; %opens paraMULTIq5.txt to be read 
%fid = f open ('paraMULTIq4.txt', 'r') ,- %opens paraMULTIq4.txt to be read 
%fid = f open ('paraMULTIq4NEW.txt', 'r') ; %opens paraMULTIq4NEW.txt to be 
read 
%fid  =   fopen('paraMULTIq4Vcasel.txt', 'r');   %opens  paraMULTIq4Vcase.txt 
to  be  read 
fid =  fopen( 'paraMULTIq4Vcase2 . txt' , ' r ' ) ;   %opens paraMULTIq4Shipl. txt 
to be read 

tmp = fscanf (fid, ' %f' ) ; %reads in the values, for non-quantized test 
case 
%tmp = fscanf(fid,'%d'); %reads in the values 

nRangeCell = tmp(l); %lst value: 62, represents the number of range 
cells 
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nDopplerCell = tmp(2); %2nd value: 64, represents the number of radar 
pulses 
targetExtent = tmp(3); %3rd value: 3, represents the radial length of 
the target expressed in number of range cells 

gain = tmp(4:4+targetExtent*nDopplerCell-l); 
gainRev = reshape(gain,targetExtent,nDopplerCell); 
tmpl = tmp(4+targetExtent*nDopplerCell:end); 
phi = reshape(tmpl,targetExtent,nDopplerCell); 

%gain = tmp(4:4+targetExtent-1); %4th to 6th values: 1,2,4 - the gain 
value for each tap 
%gainRev = fliplr(gain); 
%tmpl = tmp(4+targetExtent:end); % 7th to last value: the phase- 
increment values for each tap 
%phi = reshape(tmpl,targetExtent,nDopplerCell); %3x64 matrix with zeros 
in the 1st column 
fclose(fid); 

% Read from rawint.dat 
raw = zeros(nDopplerCell,nRangeCell); %create a 64x62 matrix, 
initialized to zeros 
fid = fopen('rawint.txt','r'); %open rawint.txt to be read 
for j = l:nDopplerCell 

for k = 1:nRangeCell-1 
raw(j.k) = fscanf(fid,'%d',1); 
comma = fscanf(fid,'%c',1); 

end 
raw(j,nRangeCell) = fscanf(fid,'%d',1); 

end 
fclose(fid); 
[row,col] = size(raw); 
raw = [raw,zeros(row,targetExtent-1)]; %raw: 64x64 matrix, last 2 
columns with zeros 
%raw = [raw,zeros(row,targetExtent)]; %raw: 64x65 matrix, last 3 
columns with zeros 

% Read from the LUT files. 
load -ascii cosine.txt  % variable is cosine 
load -ascii sine.txt   % variable is sine 

% initialize some intermediate variables and vectors 
Tgt_Extent=targetExtent; 
DRFM_Phase=raw; 
GainRev = gain'; 
gainRev = gainRev'; 
Phase_inc=phi; 
phiRev = zeros(Tgt_Extent,1); 
depthLUT =32; 
phaseAdderOut = zeros(Tgt_Extent,1); 
lutOut = zeros(Tgt_Extent, 1) ; 
tapOut = zeros(nRangeCell + (Tgt_Extent-l),Tgt_Extent); 

% open files to write results to 
%fl = fopen('checkv2.txt','w');  % "scan-path test" 
f2 = fopen('lout.txt1,'w');     % I-values, final output 
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f3 = fopen('Qout.txt','w');      % Q-values, final output 
f4 = fopen('Iout_bin.txt','W);  % I-values in 2-complement binary, 
final output 
f5 = fopen('Qout_bin.txt','w');  % Q-values in 2-complement binary, 
final output 

% signal processing 
for batchCnt = lrnDopplerCell, 

disp(['Processing Pulse 'num2str(batchCnt)]); 

for intraPulseCnt = 1:(nRangeCell + (Tgt_Extent-l)), % clock cycle 

%   This part simulates the intra pulse processing in hardware 

%This part does "parallel processing" and then "serial summation" 

% "parallel processing" 

% initialize some intermediate variables and vectors 
tap=zeros(1,Tgt_Extent); 

% extraxt DRFM-phase data 
DRFM_data=DRFM_Phase(batchCnt,intraPulseCnt); 
for idx=l:Tgt_Extent, 

tap(idx)=DRFM_data; 
end 

% phase addition (add phase-increment (Doppler offset) to DFRM 
phase data) 

phaseAdderOut=tap(1:Tgt_Extent)' + Phase_inc(:,batchCnt); 

% phase-amplitude look-up (to obtain complex time signal) 
%tmp=mod(phaseAdderOut,32)/32*2*pi; %test case 

with non-quantized phase and LUT 
%lutOut = cos(tmp) + sqrt (-1) *sin(tmp) ,- %test case 

with non-quantized phase and LUT 
tmp = mod(phaseAdderOut,depthLUT) + 1; %original DIS 

code 
lutOut = cosine(tmp) + sqrt(-1)*sine(tmp);        %original DIS 

code 

% correction at the end ("shutting down the taps one tap after 
another") 

if intraPulseCnt>nRangeCell, 
for idx2=l:(intraPulseCnt-nRangeCell) , 

lutOut((idx2),:)=0; 
end 

end 

% gain modulation, and storing values in an intermediate matrix 
if intraPulseCnt<=nRangeCell, 

GainOut = gainRev(batchCnt,:)'.*lutOut; 
for idx3=0:Tgt_Extent-l, 

tapOut(intraPulseCnt+idx3,idx3+l)=GainOut(idx3+l); 
end 
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end 

% final accumulation - "serial summation" 
% - 1st: extract partial sums (I and Q) 
% - 2nd: extract final sums (I and Q) 
tapNew=tapOut; 
add=0; 
tt=Tgt_Extent; 

if tt>=2, 
while tt>=2, 

add=add+l; 
tapNew(intraPulseCnt,tt- 

1)=tapNew(intraPulseCnt,tt)+tapNew(intraPulseCnt, tt-1) ; 
partial_tapsum(intraPulseCnt,1)=tapNew(intraPulseCnt,tt-1); 

tt=tt-l; 
end 
tt=tt-l; 

end 

if tt==l, 
partial_tapsum(intraPulseCnt,1)=tapOut(intraPulseCnt,1); 

end 

Iout=real(partial_tapsum(intraPulseCnt,1)); 
Qout=imag(partial_tapsum(intraPulseCnt,1)); 

% write final results (I and Q) to separate files 
format long 
fprintf(f2,'%5.7f\n',Iout); 
fprintf(f3,'%5.7f\n',Qout); 
fprintf(f4,'%d',dec2two(lout,8,7)); 
fprintf(f4,'\r\n'); 
fprintf(f5, '%d',dec2two(Qout, 8, 7)) ; 
fprintf(f5,'\r\n'); 

end %intraPulseCnt 

finalAdderOut(batchCnt,:)=conj(partial_tapsum'); 

end %batchCnt 

% close files 
fclose(f2) 
fclose(f3) 
fclose(f4) 
fclose(f5) 

9.***************************** 

% Pulse Compression 
0. **************************** * 

%  Compress the Doppler shifted signals 
load pc_ref 
priRgMapShift = zeros(nDopplerCell,rg_pts); 

tic 
pcRefMapShift = fft(finalAdderOut.',2*rg_pts-l).' 
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for idx = l:nDopplerCell 
tmp = cref.*pcRefMapShift(idx,:); 
tmpl = fftshift(ifft(tmp)); 
priRgMapShif t (idx, 1: end-targetExtent+1) = tmpl (rg_pts+targetExtent- 

l:end); 
end 
dpRgMapShiftMOD = abs(fft(priRgMapShift)); 
%dpRgMapShift = abs (f ft (priRgMapShift) ) ,- 
toe 

dpRgMapShi ftMOD4Vcase2 =dpRgMapShi ftMOD; 
finalAdder0utVcase2=finalAdder0ut; 
save plotMOD4Vcase2 dpRgMapShiftMOD4Vcase2 
%dpRgMapShiftMOD4Ship2=dpRgMapShiftMOD; 
%save plotMOD4Ship2 dpRgMapShiftM0D4Ship2 
%%dpRgMapShi ftM0D4NEW=dpRgMapShi ftMOD; 
%save plotM0D4NEW dpRgMapShiftM0D4NEW 
%dpRgMapShiftM0D4=dpRgMapShiftM0D; 
%save plotMOD4 dpRgMapShiftM0D4 
%dpRgMapShiftMOD5=dpRgMapShiftMOD; 
%save plotM0D5 dpRgMapShiftMOD5 
%dpRgMapShiftMODnot=dpRgMapShiftMOD; 
%save plotMODnot dpRgMapShiftMODnot 
save plotMOD dpRgMapShiftMOD 

save fAddOut finalAdderOut 

% Display 
ft***************************** 

if (noPlot == 0) 
figure(2) ; 
load plot.mat 
subplot(2,1,1) ; 
h = contour(dpyg,Ncontours); grid; axis([l 64 0 dp_pts]) 
%h = contour(dpyg_shift_drfm,Ncontours); grid; axis([0 20 0 32]) 
titlef'a. Amplitude and Doppler Modulated Rd-Dp Map (unmodulated / 

MATLAB) '); 
xlabel('Down Range Cells');   ylabel('Cross Range Cells ' ) ; 
axis([l 62 0 dp_pts]) 
subplot(2,1,2); 
h = contour(dpRgMapShiftMOD,Ncontours); grid; axis([l 64 0 dp_pts]) 
%h = contour (dpRgMapShi ft, Ncontours) ,- grid; axis([l 20 0 32]) 
title('b. Amplitude and Doppler Modulated Rd-Dp Map (Bit-True, 

modulated / MATLAB) '); 
xlabeK'Down Range Cells');       ylabel ( 'Cross  Range Cells'); 
axis([l   62   0  dp_pts]) 

end 
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f.  simhwchkv4_write.m 

% simhwchkv4_write.m 
% MAJ Stig Ekestorm, Feb -00 
% Modified version of simhwchkvO.m 
% Purpose: This program performs a architectural true simulation of the 
% Digital Image Synthesizer hardware 
% Modifications will perform "parallel processing" and then "serial 
% summation" including: 
% - correction at start-up ("initialize outputs from the taps, one tap 
%  after another") 
% - correction at the end ("shutting down the taps, one tap after 
%   another") 
% Original file: simhwchk.m by SY YEO, Jul -98 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 

global dp_pts 
global rg_pts 
global doppler_inc 

set(0,'defaultAxesFontSize',8); 

noPlot = 0; 
Ncontours = 20; 

depthLUT = 32; 
widthLUTFile =2; % in units of number of hex digits 
widthLUT =8;  % n bits 
ndopbits = 5; 

p.***************************** 

% Read from data files 
9-***************************** 

% Read from para.dat 
%fid = fopen('para.txt','r'); %opens para.txt to be read 
%fid = fopen('paraMULTI.txt",'r'); %opens paraMULTI.txt to be read 
%fid = fopen('paraMULTIq5.txt','r'); %opens paraMULTIq5.txt to be read 
%fid = fopen('paraMULTIq4.txt','r'); %opens paraMULTIq4.txt to be read 
%fid = fopen('paraMULTIq4NEW.txt','r'); %opens paraMULTIq4NEW.txt to be 
read 
%fid  =   fopenCparaMULTIq4Ship64a.txt', 'r') ;   %opens  paraMULTIq4Shipl.txt 
to be read 
fid = fopen('paraMULTIq4Vcase2.txt', 'r') ; %opens paraMULTIq4Shipl.txt 

to be read 

%tmp = fscanf(fid,'%f■); %reads in the values, for non-quantized test 

case 
tmp = fscanf(fid,'%d'); %reads in the values 

nRangeCell = tmp(l); %lst value: 62, represents the number of range 

cells 
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nDopplerCell = tmp(2); %2nd value: 64, represents the number of radar 
pulses 
targetExtent = tmp(3); %3rd value: 3, represents the radial length of 
the target expressed in number of range cells 

gain = tmp(4:4+targetExtent*nDopplerCell-l); 
gainRev = reshape(gain,targetExtent,nDopplerCell); 
tmpl = tmp(4+targetExtent*nDopplerCell:end); 
phi = reshape(tmpl,targetExtent,nDopplerCell); 

%gain = tmp(4:4+targetExtent-l); %4th to 6th values: 1,2,4 - the gain 
value for each tap 
%gainRev = fliplr(gain); 
%tmpl = tmp(4+targetExtent:end); % 7th to last value: the phase- 
increment values for each tap 
%phi = reshape (tmpl, targetExtent, nDopplerCell) ,- %3x64 matrix with zeros' 
in the 1st column 
fclose(fid); 

% Read from rawint.dat 
raw = zeros(nDopplerCell,nRangeCell) ; %create a 64x62 matrix, 
initialized to zeros 
fid = fopen('rawint.txt','r') ; %open rawint.txt to be read 
for j = 1:nDopplerCell 

for k = l:nRangeCell-l 
raw(j,k) = fscanf(fid,'%d',1); 
comma = fscanf (fid, ' %c', 1) ,- 

end 
raw(j,nRangeCell) = fscanf(fid,'%d',1); 

end 
fclose(fid); 
[row,col] = size(raw); 
raw = [raw,zeros(row,targetExtent-1)] ; %raw: 64x64 matrix, last 2 
columns with zeros 
%raw = [raw,zeros(row,targetExtent)]; %raw: 64x65 matrix, last 3 
columns with zeros 

% Read from the LUT files. 
load -ascii cosine.txt  % variable is cosine 
load -ascii sine.txt   % variable is sine 

% initialize some intermediate variables and vectors 
Tgt_Extent=targetExtent; 
DRFM_Phase=raw; 
GainRev = gain'; 
gainRev = gainRev■; 
Phase_inc=phi; 
phiRev = zeros(Tgt_Extent,1); 
depthLUT =32; 
phaseAdderOut = zeros(Tgt_Extent,1); 
lutOut = zeros(Tgt_Extent,1); 
tapOut = zeros(nRangeCell + (Tgt_Extent-l),Tgt_Extent); 

% open files to write results to 
fl = fopen('checkv4.txt','w');   % "scan-path test" 
f2 = fopen('lout.txt','w');     % I-values, final output 
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f3 = fopen('Qout.txf, 'W ) ;     % Q-values, final output 
f4 = fopen('Iout_bin.txt','W);  % I-values in 2-complement binary, 
final output 
f5 = fopen('Qout_bin.txt','W);  % Q-values in 2-complement binary, 
final output 

% signal processing 
for batchCnt = l:nDopplerCell, 

f nrintf (fl l9-s' i *************************************** *'******'); 

fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s:%d\r\n', 'batchCnt (Radar Pulse) ' ,batchCnt); 
fprintf(fl,'\r\n') ; 
disp(['Processing Pulse 'num2str(batchCnt)]); 

for intraPulseCnt = 1:(nRangeCell + (Tgt_Extent-l)), % clock cycle 

fprintf(fl, '%s:%d\r\n', 'intraPulseCnt',intraPulseCnt) ; 
fprintf(fl, '\r\n'); 
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock 

Pulse',intraPulseCnt); 

%   This part simulates the intra pulse processing in hardware 

%This part does "parallel processing" and then "serial summation" 

% "parallel processing" 

% initialize some intermediate variables and vectors 
tap=zeros(1,Tgt_Extent); 

% extraxt DRFM-phase data 
DRFM_data=DRFM_Phase(batchCnt,intraPulseCnt); 
fprintf(fl,'%s\r\n','DRFM-phase Data processed:'); 
for idx=l:Tgt_Extent, 

tap(idx)=DRFM_data; 
end 
for idx=l:Tgt_Extent, 

fprintf(fl,'%s%d','   tap',idx-1); 
DRFM_bin=dec2two(DRFM_data,5,0); 
fprintf(fl,':%d\r\n',DRFM_data); 
fprintf(fl,' %d',DRFM_bin(l,2:6)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 

end 

% phase addition (add phase-increment (Doppler offset) to DFRM 

phase data) 
phaseAdderOut=tap (1: Tgt_Extent) ' + Phase_inc (: , batchCnt) ; 
fprintf(fl,'\r\n"); 
fprintf(fl,'%s\r\n','Phase-increment:'); 
for idx=l:Tgt_Extent, 

fprintf(fl,'%s%d','   tap',idx-1); 
%fprintf(fl,':%d\n',doppler_inc(idx)); 
%fprintf(fl,' %d',dec2two(doppler_inc(idx),3,0)); 
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fprintf(fl,':%d\n',Phase_inc(idx,batchCnt)); 
phase_inc=dec2two(Phase_inc(idx,batchCnt),5,0); 
fprintf(f1,' %d' ,phase_inc(1,2:5)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 

end 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s\r\n','Phase-rotation Register:'); 
for idx=l:Tgt_Extent, 

fprintf(fl,'%s%d','   tap',idx-l); 
fprintf(fl, ':%d\n',mod(Phase_inc(idx,batchCnt) ,32)); 
Pi=dec2two(mod(Phase_inc(idx,batchCnt),32),5,0); 
fprintf(fl, ' %d',Pi(l,2:6)) ; 
fprintf(fl,'\r\n'); 
fprintf (fl, '\r\n' ) ,- 

end 
fprintf(fl,'\r\n'); 
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock 

Pulse',intraPulseCnt+1); 
fprintf(fl,'%s\r\n",'After Phase Adder:'); 
for idx=l:Tgt_Extent, 

fprintf(fl,'%s%d','   tap",idx-l); 
fprintf(f1, ':%d\n',mod(phaseAdderOut(idx),32)) ; 
pAO=dec2two(mod(phaseAdderOut(idx) , 32) , 5, 0) ; 
fprintf(fl,' %d',pAO(l,2:6)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 

end 
fprintf(fl,'\r\n'); 
fprintf(fl,,\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock 

Pulse',intraPulseCnt+2); 

% phase-amplitude look-up (to obtain complex time signal) 

%  tmp=mod(phaseAdderOut,32)/32*2*pi; %test case 
with non-quantized phase and LUT 

%   lutOut = cos(tmp) + sqrt(-1)*sin(tmp); %test case 
with non-quantized phase and LUT 

tmp = mod (phaseAdderOut, depthLUT) + 1; %original DIS 
code 

code 
lutOut = cosine(tmp) + sqrt(-1)*sine(tmp);        %original DIS 

fprintf(fl,'%s\r\n','After LUT (I-values):'); 
for idx=l:Tgt_Extent, 

fprintf(fl,'%s%d','   tap',idx-l); 
fprintf(fl, ':%5.7f\n',real(lutOut(idx))) ; 
fprintf(fl,' %d',dec2two(real(lutOut(idx)),0,7)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 

end 
fprintf(fl,'%s\r\n','After LUT (Q-values):'); 
for idx=l:Tgt_Extent, 

fprintf(fl,'%s%d','   tap',idx-l); 
fprintf(fl,':%5.7f\n',imag(lutOut(idx))); 
fprintf(f1, ' %d',dec2two(imag(lutOut(idx)),0,7)) ; 
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fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 

end 

% correction at the end ("shutting down the taps one tap after 
another") 

if intraPulseCnt>nRangeCell, 
for idx2=l:(intraPulseCnt-nRangeCell), 

Iut0ut((idx2),:)=0; 
end 

end 

fprintf(fl,'\r\n'); 
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock 

Pulse',intraPulseCnt+3); 

% gain modulation, and storing values in an intermediate matrix 
fprintf(fl,'%s\r\n','Gain Value:'); 
for idx=l:Tgt_Extent, 
%   if GainRev(l,idx)==1, 
%    GainRev2=0; 
%  elseif GainRevd, idx) ==2, 
%     GainRev2=l; 
%  elseif GainRevd, idx) ==4, 
%     GainRev2=2; 
%  elseif GainRevd, idx) ==8, 
%    GainRev2=3; 
%  end 

fprintf(fl,'%s%d','   tap',idx-1); 
fprintf(fl,':%5.7f\n',gainRev(batchCnt,idx)); 
GRbin=dec2two(gainRev(batchCnt,idx),2,0); 
fprintf(fl,' %d',GRbin(l,2:3)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 

end 
if intraPulseCnt<=nRangeCell, 

GainOut = gainRev(batchCnt,:)'.*lutOut; 
for idx3=0:Tgt_Extent-l, 

tapOut(intraPulseCnt+idx3,idx3+l)=GainOut(idx3+l); 

end 
end 
fprintf(fl,'%s\r\n','After Gain Block (I-values):'); 
for idx=l:Tgt_Extent, 

fprintf(fl,'%s%d' , '   tap',idx-1); 
fprintf(fl,':%5.7f\n',real(GainOut(idx))); 
fprintf(fl,' %d',dec2two(real(GainOut(idx)) ,3,7)) ; 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 

end 
fprintf(fl,'%s\r\n','After Gain Block (Q-values):'); 
for idx=l:Tgt_Extent, 

fprintf(fl,'%s%d','   tap',idx-1); 
fprintf(fl,':%5.7f\n',imag(GainOut(idx))); 
fprintf(fl,' %d',dec2two(imag(GainOut(idx)) ,3,7)); 

fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 
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end 

fprintf(fl,'\r\n'); 
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n' 

Pulse',intraPulseCnt+4) ; 
'Clock 

% final accumulation - "serial summation" 
% - 1st: extract partial sums (I and Q) 
% - 2nd: extract final sums (I and Q) 
tapNew=tapOut; 
add=0; 
tt=Tgt_Extent; 
fprintf(fl,'%s\r\n','Final values in each tap (I- and Q- 

values):'); 

fprintf(fl,'%s%d','   Final I-value in tap',tt-1); 
fprintf(fl,':%5.7f\n',real(tapNew(intraPulseCnt,tt))); 
fprintf(fl,■ %d',dec2two(real(tapNew(intraPulseCnt,tt)),8,7)) ; 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s%d','   Final Q-value in tap',tt-1); 
fprintf(fl, ':%5.7f\n',imag(tapNew(intraPulseCnt,tt))) ; 
fprintf (fl, ' %d' ,dec2two(imag(tapNew(intraPulseCnt, tt) ) ,8,7) ) ,- 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 

if tt>=2, 
while tt>=2, 

add=add+l; 
tapNew(intraPulseCnt,tt- 

1)=tapNew(intraPulseCnt,tt)+tapNew(intraPulseCnt,tt-1); 

1)),8,7)) 

D),8,7)) 

fprintf(fl, 
fprintf(fl, 
fprintf(fl, 

fprintf(fl, 
fprintf(fl, 
fprintf(fl, 
fprintf(fl, 
fprintf(fl, 

%s%d','   Final I-value in tap',tt-2); 
:%5.7f\n',real(tapNew(intraPulseCnt,tt-1))); 
%d',dec2two(real(tapNew(intraPulseCnt,tt- 

\r\n'); 
\r\n'); 
%s%d','   Final Q-value in tap',tt-2); 
:%5.7f\n',imag(tapNew(intraPulseCnt,tt-1))); 
%d',dec2two(imag(tapNew(intraPulseCnt,tt- 

fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 
partial_tapsum(intraPulseCnt,1)=tapNew(intraPulseCnt,tt-1); 
tt=tt-l; 

end 
tt=tt-l; 

end 

if tt==l, 
partial_tapsum(intraPulseCnt, 1)=tapOut(intraPulseCnt,1); 

end 

fprintf(fl,'\r\n'); 
Iout=real(partial_tapsum(intraPulseCnt,1)); 
Qout=imag(partial_tapsum(intraPulseCnt,1)); 
fprintf(fl,'%s\r\n','Final Output values (I- and Q-values):'); 
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fprintf(fl,'%s%d',' lout - Final I-value for 
intraPulseCnt',intraPulseCnt); 

fprintf(fl,':%5.7f\n',Iout); 
fprintf(f1,' %d',dec2two(lout,8,7)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s%d',' Qout - Final Q-value for 

intraPulseCnt',intraPulseCnt); 
fprintf(fl,':%5.7f\n',Qout); 
fprintf(fl,' %d',dec2two(Qout,8,7)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s','  

'); 
fprintf(fl,'\r\n'); 

% write final results (I and Q) to separate files 
format long 
fprintf(f2,'%5.7f\n',Iout); 
fprintf(f3,'%5.7f\n',Qout); 
fprintf(f4,'%d',dec2two(lout,8,7)); 
fprintf(f4,'\r\n'); 
fprintf(f5,'%d',dec2two(Qout,8,7)); 
fprintf(f5,\\r\n'); 

end %intraPulseCnt 

finalAdderOut(batchCnt,:)=conj(partial_tapsum'); 

end %batchCnt 

% close files 
fclose(fl) 
fclose(f2). 
fclose(f3) 
fclose(f4) 
fclose(f5) 

S-***************************** 

% Pulse Compression 
s-***************************** 

%  compress the Doppler shifted signals 
load pc_ref 
priRgMapShift = zeros(nDopplerCell,rg_pts); 

tic 
pcRefMapShift = fft(finalAdderOut.',2*rg_pts-l).'; 
for idx = lrnDopplerCell 

tmp = cref.*pcRefMapShift(idx,:); 
tmpl  =  fftshift(ifft(tmp)); 
priRgMapShift (idx, 1 :end-targetExtent+l)   =    tmpl (rg_j?ts+targetExtent- 

l:end); 
end 
dpRgMapShiftMOD = abs(fft(priRgMapShift)); 
%dpRgMapShift = abs(fft(priRgMapShift)); 

toe 
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dpRgMapShi ftM0D4 Ship6 4a=dpRgMapShi ftMOD; 
finalAdderOut64a = finalAdderOut; 
save plotMOD4Ship64a dpRgMapShiftMOD4Ship64a finalAdderOut64a 
%dpRgMapShiftMOD4Ship2=dpRgMapShiftMOD; 
%save plotM0D4Ship2 dpRgMapShiftMOD4Ship2 
%%dpRgMapShiftMOD4NEW=dpRgMapShiftMOD; 
%save plotMOD4NEW dpRgMapShiftMOD4NEW 
%dpRgMapShiftMOD4=dpRgMapShiftMOD; 
%save plotMOD4 dpRgMapShiftMOD4 
%dpRgMapShiftMOD5=dpRgMapShiftMOD; 
%save plotMOD5 dpRgMapShiftMOD5 
%dpRgMapShiftMODnot=dpRgMapShiftMOD; 
%save plotMODnot dpRgMapShiftMODnot 
save plotMOD dpRgMapShiftMOD 
save fAddOut finalAdderOut 

%***************************** 

% Display 

if (noPlot == 0) 
figure(2); 
load plot.mat 
subplot(2,1,1); 
h = contour(dpyq,Ncontours); grid; axis([l 64 0 dp_pts]) 
%h = contour(dpyq_shift_drfm,Ncontours); grid; axis([0 20 0 32]) 
title('a. Amplitude and Doppler Modulated Rd-Dp Map (unmodulated / 

MATLAB)  '); 
xlabeK'Down Range Cells');   ylabel ('Cross Range Cells'); 
axis([l 62 0 dp_pts]) 
subplot(2,1,2); 
h = contour(dpRgMapShiftMOD,Ncontours); grid; axis([l 64 0 dp_pts]) 
%h = contour(dpRgMapShift,Ncontours); grid; axis([l 20 0 32]) 
title('b. Amplitude and Doppler Modulated Rd-Dp Map (Bit-True, 

modulated / MATLAB)  '); 
xlabel('Down Range Cells');   ylabel('Cross Range Cells'); 
axis([l 62 0 dpjpts]) 

end 

g. simhwchkv2.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% simhwchkv2.m 
% MAJ Stig Ekestorm, Sep -99 
% Modified version of simhwchkvO.m 
% Purpose: This program performs a architectural true simulation of the 
% Digital Image Synthesizer hardware 
% Modifications will perform "parallel processing" and then "serial 
% summation" including: 
% - correction at start-up ("initialize outputs from the taps, one tap 
%   after another") 
% - correction at the end ("shutting down the taps, one tap after 
%  another") 
% Original file: simhwchk.m by SY YEO, Jul -98 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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clear 

global dp_pts 
global rg__pts 
global doppler_inc 

set(0,'defaultAxesFontSize',8); 

noPlot = 0; 
Ncontours = 20; 

depthLUT =32; 
widthLUTFile =2; % in units of number of hex digits 
widthLUT =8;  % n bits 
ndopbits = 5; 

s.* *************************** * 

% Read from data files 
a***************************** 

% Read from para.dat 
fid = fopen('para.txt','r'); %opens para.txt to be read 
%fid = fopen('paraMULTI.txt','r'); %opens paraMULTI.txt to be read 
%fid = fopen('paraMULTIq5.txt','r'); %opens paraMULTIq5.txt to be read 
%fid = fopen('paraMULTIq4.txt', 'r'); %opens paraMULTIq4.txt to be read 
%fid = fopen('paraMULTIq4NEW.txt','r'); %opens paraMULTIq4NEW.txt to be 

read 
%fid = fopen('paraMULTIq4Shipl.txt', 'r ' ) ; %opens paraMULTIq4Shipl.txt 

to be read 

%tmp = fscanf(fid,'%f'); %reads in the values, for non-quantized test 

case 
tmp = fscanf(fid,'%d'); %reads in the values 

nRangeCell = tmp(l); %lst value: 62, represents the number of range 

cells 
nDopplerCell = tmp(2); %2nd value: 64, represents the number of radar 

pulses 
targetExtent = tmp(3); %3rd value: 3, represents the radial length of 
the target expressed in number of range cells 
gain = tmp(4:4+targetExtent-l); %4th to 6th values: 1,2,4 - the gain 
value for each tap 
gainRev = fliplr(gain); 
tmpl = tmp(4+targetExtentrend) ; % 7th to last value: the phase- 
increment values for each tap 
phi = reshape(tmpl,targetExtent,nDopplerCell); %3x64 matrix with zeros 

in the 1st column 
fclose(fid); 

% Read from rawint.dat 
raw = zeros(nDopplerCell,nRangeCell); %create a 64x62 matrix, 
initialized to zeros 
fid = fopenCrawint.txt', 'r') ; %open rawint.txt to be read 
for j = 1:nDopplerCell 

for k = l:nRangeCell-l 
raw(j,k) = fscanf (fid,'%d',D; 
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comma = fscanf(fid,'%c',1); 
end 
raw(j,nRangeCell) = fscanf(fid,'%d',1); 

end 
fclose(fid); 
[row,col] = size(raw); 
raw = [raw,zeros(row,targetExtent-1)]; %raw: 64x64 matrix, last 2 
columns with zeros 

%raw = [raw,zeros(row,targetExtent)]; %raw: 64x65 matrix, last 3 
columns with zeros 

% Read from the LUT files. 
load -ascii cosine.txt % variable is cosine 
load -ascii sine.txt   % variable is sine 

% initialize some intermediate variables and vectors 
Tgt_Extent=targetExtent; 
DRFM_Phase=raw; 
GainRev = gain'; 
Phase_inc=phi; 
phiRev = zeros(Tgt_Extent,1); 
depthLUT = 32; 
phaseAdderOut = zeros(Tgt_Extent,1); 
lutOut = zeros(Tgt_Extent,l); 
tapOut = zeros(nRangeCell + (Tgt_Extent-l),Tgt_Extent); 

% open files to write results to 
%fl = fopen('checkv2.txt','w'); % "scan-path test" 
f2 = fopen('lout.txt','w'); % I-values, final output 
f3 = fopen('Qout.txt','w'); % Q-values, final output 
f4 = fopen('Iout_bin.txt','w'); % I-values in 2-complement binary, 
final output 
f5 = fopen('Qout_bin.txt','w'); % Q-values in 2-complement binary, 
final output 

% signal processing 
for batchCnt = lmDopplerCell, 

disp(['Processing Pulse 'num2str(batchCnt)]); 

for intraPulseCnt = 1:(nRangeCell + (Tgt_Extent-l)), % clock cycle 

%   This part simulates the intra pulse processing in hardware 

%This part does "parallel processing" and then "serial summation" 

% "parallel processing" 

% initialize some intermediate variables and vectors 
tap=zeros(1,Tgt_Extent); 

% extraxt DRFM-phase data 
DRFM_data=DRFM_Phase(batchCnt,intraPulseCnt); 
for idx=l:Tgt_Extent, 

tap(idx)=DRFM_data; 
end 
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% phase addition (add phase-increment (Doppler offset) to DFRM 
phase data) 

phaseAdderOut=tap(1:Tgt_Extent)' + Phase_inc(:,batchCnt); 

% phase-amplitude look-up (to obtain complex time signal) 

%tmp=mod(phaseAdderOut,32)/32*2*pi; %test case 
with non-quantized phase and LUT 

%lutOut = cos(tmp) + sqrt-(-l) *sin(tmp) ; %test case 
with non-quantized phase and LUT 

tmp = mod(phaseAdderOut,depthLUT) + 1; %original DIS 
code 

lutOut = cosine(tmp) + sqrt(-1)*sine(tmp);        %original DIS 
code 

% correction at the end ("shutting down the taps one tap after 
another") 

i f intraPulseCnt>nRangeCell, 
for idx2=l:(intraPulseCnt-nRangeCell), 

lutOut((idx2) ,:)=0; 
end 

end 

% gain modulation, and storing values in an intermediate matrix 
for idx=l:Tgt_Extent, 

if GainRev(l,idx)==l, 
GainRev2=0; 

elseif GainRevd, idx)==2, 
GainRev2=l; 

elseif GainRevd, idx) ==4, 
GainRev2=2; 

elseif GainRevd, idx) ==8, 
GainRev2=3; 

end 
end 
if intraPulseCnt<=nRangeCell, 

GainOut = GainRev.*lutOut'; 
for idx3=0:Tgt_Extent-l, 

tapOut(intraPulseCnt+idx3, idx3+l)=GainOut(idx3 + l); 
end 

end 

% final accumulation - "serial summation" 
% - 1st: extract partial sums (I and Q) 
% - 2nd: extract final sums (I and Q) 
tapNew=tapOut; 
add=0; 
tt=Tgt_Extent; 

if tt>=2, 
while tt>=2, 

add=add+l; 
tapNew(intraPulseCnt,tt- 

1)=tapNew(intraPulseCnt,tt)+tapNew(intraPulseCnt,tt-1); 
partial_taps\om(intraPulseCnt, 1) =tapNew(intraPulseCnt, tt-1) ; 
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tt=tt-l; 
end 
tt=tt-l; 

end 

if tt==l, 
partial_tapsum(intraPulseCnt,1)=tapOut(intraPulseCnt,1); 

end 

Iout=real(partial_tapsum(intraPulseCnt,1)); 
Qout=imag(partial_tapsum(intraPulseCnt,l)); 

% write final results (I and Q) to separate files 
format long 
fprintf(f2,'%5.7f\n',Iout); 
fprintf(f3,'%5.7f\n',Qout); 
fprintf(f4,'%d',dec2two(lout,8,7)); 
fprintf(f4,'\r\n'); 
fprintf(f5,'%d',dec2two(Qout,8,7)); 
fprintf(f5,'\r\n'); 

end %intraPulseCnt 

finalAdderOut(batchCnt,:)=partial_tapsum■; 

end %batchCnt 

% close files 
%fclose(fl); , 
fclose(f2); 
fclose(f3); 
fclose(f4); 
fclose(f5); 

%***************************** 
% Pulse Compression 
%***************************** 
%  Compress the Doppler shifted signals 
load pc_ref 
priRgMapShift = zeros(nDopplerCell/rg_pts); 
tic 
pcRefMapShift = fft(finalAdderOut.',2*rg_pts-l) 
for idx = l:nDopplerCell 

tmp = cref.*pcRefMapShift(idx,:); 
tmpl = fftshift(ifft(tmp)); 
priRgMapShift(idx,l:end-targetExtent+l) =  tmpl(rg_pts+targetExtent- 

l:end); 
end 
dpRgMapShiftMOD = abs(fft(priRgMapShift)); 
%dpRgMapShift = abs(fft(priRgMapShift)); 
toe 

dpRgMapShi f tMOD4 Shiplb=dpRgMapShi f tMOD; 
save plotM0D4Shiplb dpRgMapShiftM0D4Shiplb 
%dpRgMapShi ftMOD4Ship2 =dpRgMapShi f tMOD; 
%save plotMOD4Ship2 dpRgMapShiftMOD4Ship2 

232 



%%dpRgMapShi ftM0D4NEW=dpRgMapShi ftMOD; 
%save plotMOD4NEW dpRgMapShiftMOD4NEW 
%dpRgMapShi ftMOD4=dpRgMapShiftMOD; 
%save plotMOD4 dpRgMapShiftMOD4 
%dpRgMapShiftMOD5=dpRgMapShiftMOD; 
%save plotMOD5 dpRgMapShiftMOD5 
%dpRgMapShi ftMODnot=dpRgMapShi ftMOD; 
%save plotMODnot dpRgMapShiftMODnot 
save plotMOD dpRgMapShiftMOD 

save fAddOut finalAdderOut 

%***************************** 

% Display 
%***************************** 

if (noPlot == 0) 
figure(2); 
load plot.mat 
subplot(2,1,1); 
h = contour(dpyq,Ncontours); grid; axis([l 64 0 dp_pts]) 
%h = contour(dpyq_shift_drfm,Ncontours); grid; axis([0 20 0 32]) 
titleCa. Amplitude and Doppler Modulated Rd-Dp Map (unmodulated / 

MATLAB) '); 
xlabel('Down Range Cells■);   ylabel('Cross Range Cells'); 
axis([1 62 0 dp_pts]) 
subplot(2,1,2); 
h = contour(dpRgMapShiftMOD,Ncontours); grid; axis([l 64 0 dp_pts]) 
%h = contour(dpRgMapShift,Ncontours); grid; axis([l 20 0 32]) 
title('b. Amplitude and Doppler Modulated Rd-Dp Map (Bit-True, 

modulated / MATLAB) '); 
xlabel('Down Range Cells');   ylabel('Cross Range Cells'); 
axis([l 62 0 dp_pts]) 

end 

h. simhwchkv2_write.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% simhwchkv2_write.m 
% MAJ Stig Ekestorm, Sep -99 
% Modified version of simhwchkvO.m 
% Purpose: This program performs a architectural true simulation of the 
% Digital Image Synthesizer hardware 
% Modifications will perform "parallel processing" and then "serial 
% summation" including: 
% - correction at start-up ("initialize outputs from the taps, one tap 
%  after another") 
% - correction at the end ("shutting down the taps, one tap after 

%  another") 
% Original file: simhwchk.m by SY YEO, Jul -98 

clear 

global dp_pts 
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global rg_pts 
global doppler_inc 

set(0, 'defaultAxesFontSize' , 8) ; 

noPlot = 0; 
Ncontours = 20; 

depthLUT =32; 
widthLUTFile =2; % in units of number of hex digits 
widthLUT =8;  % n bits 
ndopbits = 5; 

% Read from data files 
%****************■************* 

% Read from para.dat 
fid = fopen('para.txt','r'); %opens para.txt to be read 
%fid = fopen('paraMULTI.txt','r'); %opens paraMULTI.txt to be read 
%fid = fopen('paraMULTIq5.txt','r'); %opens paraMULTIq5.txt to be read 
%fid = fopen('paraMULTIg4.txt','r'); %opens paraMULTIq4.txt to be read 
%fid = fopen('paraMULTIq4NEW.txt', 'r') ; %opens paraMULTIq4NEW.txt to be 
read 
%fid = fopen('paraMULTIq4Ship64a.txt' , 'r'); %opens paraMULTIq4Shipl.txt 
to be read 

%tmp = fscanf(fid,'%f'); %reads in the values, for non-quantized test 
case 
tmp = fscanf(fid,'%d'); %reads in the values 

nRangeCell = tmp(l); %lst value: 62, represents the number of range 
cells 
riDopplerCell = tmp(2); %2nd value: 64, represents the number of radar 
pulses 
targetExtent = tmp(3); %3rd value: 3, represents the radial length of 
the target expressed in number of range cells 
gain = tmp(4:4+targetExtent-l); %4th to 6th values: 1,2,4 - the gain 
value for each tap 
gainRev = fliplr(gain); 
tmpl = tmp(4+targetExtent:end); % 7th to last value: the phase- 
increment values for each tap 
phi = reshape(tmpl,targetExtent,nDopplerCell) ; %3x64 matrix with zeros 
in the 1st column 
fclose(fid); 

% Read from rawint.dat 
raw = zeros(nDopplerCell,nRangeCell) ; %create a 64x62 matrix, 
initialized to zeros 
fid = fopen('rawint.txt','r'); %open rawint.txt to be read 
for j = 1:nDopplerCell 

for k = l:nRangeCell-l 
raw(j,k) = fscanf(fid,■%d',1); 
comma = fscanf(fid,'%c',1); 

end 
raw(j,nRangeCell) = fscanf(fid,'%d',1); 

end 
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fclose(fid); 
[row,col] = size(raw); 
raw = [raw,zeros(row,targetExtent-1)]; %raw: 64x64 matrix, last 2 
columns with zeros 
%raw = [raw,zeros(row,targetExtent)]; %raw: 64x65 matrix, last 3 
columns with zeros 

% Read from the LUT files. 
load -ascii cosine.txt  % variable is cosine 
load -ascii sine.txt    % variable is sine 

% initialize some intermediate variables and vectors 
Tgt_Extent=targetExtent; 
DRFM_Phase=raw; 
GainRev = gain'; 
Phase_inc=phi; 
phiRev = zeros(Tgt_Extent,1) ; 
depthLUT =32; 
phaseAdderOut = zeros(Tgt_Extent,1); 
lutOut = zeros(Tgt_Extent,1); 
tapOut = zeros(nRangeCell + (Tgt_Extent-l),Tgt_Extent); 

% open files to write results to 
fl = fopen('checkv2.txt','w'); % "scan-path test" 
f2 = fopen('lout.txt','w'); % I-values, final output 
f3 = fopen('Qout.txt','w'); % Q-values, final output 
f4 = fopen('Iout_bin.txt','w'); % I-values in 2-complement binary, 
final output 
f5 = fopen('Qout_bin.txt','w'); % Q-values in 2-complement binary, 

final output 

% signal processing 
for batchCnt = l:nDopplerCell, 

fnrintf(fl   lSts'    ■**********************************************'); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s:%d\r\n','batchCnt (Radar Pulse)',batchCnt); 
fprintf(fl,'\r\n*); 
disp(['Processing Pulse 'num2str(batchCnt)]); 

for intraPulseCnt = 1:(nRangeCell + (Tgt_Extent-l)), % clock cycle 

fprintf(fl,'%s:%d\r\n','intraPulseCnt',intraPulseCnt); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock 

Pulse',intraPulseCnt); 

%   This part simulates the intra pulse processing in hardware 

%This part does "parallel processing" and then "serial summation" 

% "parallel processing" 

% initialize some intermediate variables and vectors 
tap=zeros(1,Tgt_Extent) ; 
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% extraxt DRFM-phase data 
DRFM_data=DRFM_Phase(batchCnt,intraPulseCnt); 
fprintf(fl,'%s\r\n','DRFM-phase Data processed:'); 
for idx=l:Tgt_Extent, 

tap(idx)=DRFM_data; 
end 
for idx=l:Tgt_Extent, 

fprintf(fl,'%s%d','   tap',idx-1); 
DRFM_bin=dec2two(DRFM_data,5,0); 
fprintf(fl,':%d\r\n',DRFM_data); 
fprintf(fl,' %d',DRFM_bin(l,2:6)); 
fprintf(fl,•\r\n'); 
fprintf(fl,'\r\n'); 

end 

% phase addition (add phase-increment (Doppler offset) to DFRM 
phase data) 

phaseAdderOut=tap(1:Tgt_Extent)' + Phase_inc(:,batchCnt); 
fprintf(fl,'\r\n'); 
fprintf(fl,■%s\r\n','Phase-increment:'); 
for idx=l:Tgt_Extent, 

fprintf(fl,'%s%d','   tap',idx-1); 
%fprintf(fl,':%d\n',doppler_inc(idx)); 
%fprintf(fl,' %d',dec2two(doppler_inc(idx),3,0)); 
fprintf(fl,':%d\n',Phase_inc(idx,batchCnt)); 
phase_inc=dec2two(Phase_inc(idx,batchCnt) , 5, 0) ; 
fprintf(f1,' %d',phase_inc(1,2:5)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 

end 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s\r\n','Phase-rotation Register:'); 
for idx=l:Tgt_Extent, 

fprintf(fl,'%s%d','   tap',idx-1); 
fprintf(fl,':%d\n',mod(Phase_inc(idx,batchCnt),32)); 
Pi=dec2two(mod(Phase_inc(idx,batchCnt),32),5,0); 
fprintf(fl,1 %d',Pi(1,2:6)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 

end 
fprintf(fl,'\r\n'); 
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock 

Pulse',intraPulseCnt+1); 
fprintf(fl,'%s\r\n','After Phase Adder:'); 
for idx=l:Tgt_Extent, 

fprintf(fl,'%s%d','   tap',idx-1); 
fprintf(fl,':%d\n',mod(phaseAdderOut(idx),32)); 
pA0=dec2two(mod(phaseAdderOut(idx),32),5,0); 
fprintf(fl,' %d',pAO(1,2:6)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 

end 
fprintf(fl,'\r\n'); 
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock 

Pulse',intraPulseCnt+2); 
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% phase-amplitude look-up (to obtain complex time signal) 

%  tmp=mod(phaseAdderOut,32)/32*2*pi; %test case 
with non-quantized phase and LUT 

%  lutOut = cos(tmp) + sqrt(-1)*sin(tmp); %test case 
with non-quantized phase and LUT 

tmp = mod(phaseAdderOut,depthLUT) + 1; %original DIS 
code 

lutOut = cosine(tmp) + sqrt(-1)*sine(tmp);        %original DIS 
code 

fprintf(fl,'%s\r\n','After LUT (I-values):'); 
for idx=l:Tgt_Extent, 

fprintf(fl,'%s%d','   tap',idx-1); 
fprintf(fl,':%5.7f\n',real(lutOut(idx))); 
fprintf(fl,1 %d',dec2two(real(lutOut(idx)),0,7)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n"); 

end 
fprintf(fl,'%s\r\n','After LUT {Q-values):'); 
for idx=l:Tgt_Extent, 

fprintf(fl, 
fprintf(fl, 
fprintf(fl, 
fprintf(fl, 
fprintf(fl, 

end 

%s%d','   tap',idx-1); 
:%5.7f\n',imag(lutOut(idx))); 
%d',dec2two(imag(lutOut(idx)),0,7)); 
\r\n'); 
\r\n'); 

% correction at the end ("shutting down the taps one tap after 
another") 

if intraPulseCnt>nRangeCell, 
for idx2=l:(intraPulseCnt-nRangeCell), 

lutOut((idx2),:)=0; 
end 

end 

fprintf(fl,'\r\n'); 
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n','Clock 

Pulse',intraPulseCnt+3); 

% gain modulation, and storing values in an intermediate matrix 
fprintf(fl,'%s\r\n','Gain Value:'); 
for idx=l:Tgt_Extent, 

if GainRev(l,idx)==l, 
GainRev2=0; 

elseif GainRevd, idx) ==2, 
GainRev2=l; 

elseif GainRevd, idx) ==4, 
GainRev2=2; 

elseif GainRevd, idx) ==8, 
GainRev2=3; 

end 
fprintf(fl,'%s%d','   tap',idx-1); 
fprintf (fl, ' :%5.7f\n' , GainRevd, idx)) ; 
GRbin=dec2two(GainRev2,2,0); 
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fprintf(fl,■ %d',GRbin(l,2:3)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 

end 
i f intraPulseCnt<=nRangeCell, 

GainOut = GainRev'.*lutOut; 
for idx3=0:Tgt_Extent-l, 

tapOut(intraPulseCnt+idx3,idx3+l)=GainOut(idx3+l); 
end 

end 
fprintf(fl,'%s\r\n','After Gain Block (I-values):'); 
for idx=l:Tgt_Extent, 

fprintf(fl, 
fprintf(fl, 
fprintf(fl, 
fprintf(fl, 
fprintf(fl, 

%s%d','   tap',idx-l); 
:%5.7f\n',real(GainOut(idx))); 
%d',dec2two(real(GainOut(idx)),3,7)) ; 

\r\n'); 
\r\n'); 

end 
fprintf(fl,'%s\r\n','After Gain Block (Q-values) 
for idx=l:Tgt_Extent, 

fprintf(fl, 
fprintf(fl, 
fprintf(fl, 
fprintf(fl, 
fprintf(fl, 

%s%d",'   tap',idx-l); 
:%5.7f\n",imag(GainOut(idx))); 
%d',dec2two(imag(GainOut(idx)),3,7)); 

\r\n'); 
\r\n'); 

end 

fprintf(fl,'\r\n'); 
fprintf(fl,'\t\t\t\t\t\t\t\t\t\t%s:%d\r\n' 

Pulse',intraPulseCnt+4); 
'Clock 

% final accumulation - "serial summation" 
% - 1st: extract partial sums (I and Q) 
% - 2nd: extract final sums (I and Q) 
tapNew=tapOut; 
add=0; 
tt=Tgt_Extent; 
fprintf(fl,'%s\r\n','Final values in each tap (I- and Q- 

values):'); 
fprintf(fl,'%s%d','   Final I-value in tap',tt-l); 
fprintf(fl,':%5.7f\n',real(tapNew(intraPulseCnt,tt))); 
fprintf(fl,' %d',dec2two(real(tapNew(intraPulseCnt,tt)),8,7)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s%d','   Final Q-value in tap',tt-l); 
fprintf(fl,':%5.7f\n',imag(tapNew(intraPulseCnt,tt))); 
fprintf(fl,' %d',dec2two(imag(tapNew(intraPulseCnt,tt)),8,7)); 
fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 

if tt>=2, 
while tt>=2, 

add=add+l; 
tapNew(intraPulseCnt,tt- 

1)=tapNew(intraPulseCnt,tt)+tapNew(intraPulseCnt,tt-1); 
fprintf(fl,'%s%d','   Final I-value in tap',tt-2); 
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1)),8,7) 

1)),8,7)) 

fprintf(fl, 
fprintf(fl, 

fprintf(fl, 
fprintf(fl, 
fprintf(fl, 
fprintf(fl, 
fprintf(fl, 

:%5.7f\n',real(tapNew(intraPulseCnt,tt-1))) ; 
%d' , dec2two(real(tapNew(intraPulseCnt,tt- 

\r\n'); 
\r\n'); 
%s%d','   Final Q-value in tap',tt-2); 
:%5.7f\n',imag(tapNew(intraPulseCnt,tt-1))); 
%d',dec2two(imag(tapNew(intraPulseCnt,tt- 

fprintf(fl,'\r\n'); 
fprintf(fl,'\r\n'); 
partial_tapsum(intraPulseCnt,1)=tapNew(intraPulseCnt,tt-1); 
tt=tt-l; 

end 
tt=tt-l; 

end 

if tt==l, 
partial_tapsum(intraPulseCnt,1)=tapOut(intraPulseCnt,1); 

end 

fprintf(fl,'\r\n'); 
Iout=real(partial_tapsum(intraPulseCnt,1)); 
Qout=imag(partial_tapsum(intraPulseCnt,1)) ; 
fprintf(fl,'%s\r\n','Final Output values (I- and Q-values):'); 
fprintf(fl,'%s%d',' lout - Final I-value for 

intraPulseCnt',intraPulseCnt); 
fprintf(fl,':%5.7f\n',Iout); 
fprintf(f1,' %d',dec2two(lout,8,7)); 
fprintf(fl,'\r\n') ; 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s%d',' Qout - Final Q-value for 

intraPulseCnt',intraPulseCnt); 
fprintf(fl,':%5.7f\n',Qout); 
fprintf(fl,' %d',dec2two(Qout,8,7)); 
fprintf(fl,■\r\n'); 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s','-- 

fprintf(fl,'\r\n'); 

% write final results (I and Q) to separate files 
format long 
fprintf(f2,'%5.7f\n',Iout); 
fprintf(f3,'%5.7f\n',Qout); 
fprintf(f4,'%d',dec2two(lout,8,7)); 
fprintf(f4,'\r\n'); 
fprintf(f5,'%d',dec2two(Qout,8,7)); 
fprintf(f5,'\r\n'); 

end %intraPulseCnt 

finalAdderOut(batchCnt,:)=conj(partial_tapsum'); 

end %batchCnt 

239 



% close files 
fclose(fl) 
fclose(f2) 
fclose(f3) 
fclose(f4) 
fclose(f5); 

9-* * * * ********** * * * ********** * * 

% Pulse Compression 
%***************************** 

%  Compress the Doppler shifted signals 
load pc_ref 
priRgMapShift =  zeros(nDopplerCell,rg_pts) ; 
tic 
pcRefMapShift = fft(finalAdderOut.',2*rg_pts-l).'; 
for idx = l:nDopplerCell 

tmp = cref.*pcRefMapShift(idx,:) ; 
tmpl = fftshift(ifft(tmp)) ; 
priRgMapShift(idx,1:end-targetExtent+1) =  tmpl(rg_pts+targetExtent- 

l:end) ; 
end 
dpRgMapShiftMOD = abs(fft(priRgMapShift)) ; 
%dpRgMapShift = abs (f ft (priRgMapShift) ) ,- 
toe 

dpRgMapShi f tM0D4 Ship 6 4 a=dpRgMapShi f tMOD ; 
finalAdderOut64a = finalAdderOut; 
save plotMOD4Ship64a dpRgMapShiftM0D4Ship64a finalAdderOut64a 
%dpRgMapShiftM0D4Ship2=dpRgMapShiftM0D,- 
%save plotM0D4Ship2 dpRgMapShiftMOD4Ship2 
%%dpRgMapShiftM0D4NEW=dpRgMapShiftM0D; 
%save plotM0D4NEW dpRgMapShiftM0D4NEW 
%dpRgMapShiftM0D4=dpRgMapShiftM0D; 
%save plotM0D4 dpRgMapShiftM0D4 
%dpRgMapShiftM0D5=dpRgMapShiftM0D; 
%save plotM0D5 dpRgMapShiftM0D5 
%dpRgMapShiftMODnot=dpRgMapShiftMOD; 
%save plotMODnot dpRgMapShiftMODnot 
save plotMOD dpRgMapShiftMOD 

save fAddOut finalAdderOut 

S- * ~k *■ * k k -k k k k k k k k k k k k -k k k k k k k k k k k 

% Display 
Qzkkkkkkkrkkkkkkkkkkkkkkkkkkkkkk 

if (noPlot == 0) 
figure(2); 
load plot.mat 
subplot(2,1,1); 
h = contour(dpyg,Ncontours); grid; axis([l 64 0 dp_pts]) 
%h = contour(dpyq_shift_drfm,Ncontours); grid; axis([0 20 0 32]) 
title('a. Amplitude and Doppler Modulated Rd-Dp Map (unmodulated / 

MATLAB)  '); 
xlabeK'Down Range Cells');   ylabel ('Cross Range Cells'); 
axis([l 62 0 dp_pts]) 
subplot(2,1,2); 
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h = contour(dpRgMapShiftMOD,Ncontours); grid; axis([l 64 0 dp_pts]) 
%h = contour(dpRgMapShift,Ncontours); grid; axis([l 20 0 32]) 
title('b. Amplitude and Doppler Modulated Rd-Dp Map (Bit-True, 

modulated / MATLAB) '); 
xlabeK'Down Range Cells');       ylabel ('Cross  Range Cells'); 
axis([1  62  0 dp_pts]) 

end 

i. plothwv4.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% plothwv4.m 
% MAJ Stig Ekestorm, Feb -00 
% Modified version of plothwvl.m by Stig Ekestorm, Aug -99 
% Original file: plothwvO.m by SY YEO, Aug -98 
% This version processes the output from the LUT 
% Works in concert with mathostv4.m and simhwchkv4.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 

global hda 
global dp_pts 
global rg_pts 

set(0,'defaultAxesFontSize',7) 

noplot = 0; 

%to load data from hardware output files 
if hda==l, 

load -ascii imagei.txt 
load -ascii imageq.txt 

end 

fid = fopen('para.txt','r'); 
tmp = fscanf(fid,'%d'); 
nRangeCell = tmp(l); 
nDopplerCell = tmp (2); 
targetExtent = tmp(3); 
fclose(fid); 

%for getting the data form hardware in the right format 
if hda==l, 

image = reshape(image,nRangeCell+(targetExtent-1),nDopplerCell); 

image = imagei - j*imageq; 
image = reshape(image,nRangeCell+(targetExtent-1),nDopplerCell); 

%for ASIC simulation 
%image = reshape(image,nRangeCell+targetExtent,nDopplerCell); %for 

FPGA 3-tap simulation / 

image = image'; 
end 

load fAddOut 

241 



if (noplot == 0) 

% Pulse Compression 
%***************************** 

%  Compress the Doppler shifted signals 
figure(3); 
orient tall 

load plot.mat 
load plotMOD.mat 

Ncontours = 9; 
subplot(2,1,1); 
%h = contour(dpyq_shift_drfm,Ncontours); grid, axis([l 62 0 64]) 
h = contour(dpRgMapShiftMOD,Ncontours); grid; axis([l 62 0 dp_pts]) 
title("a. Amplitude and Doppler Modulated Rd-Dp Map (Bit and 

Architecture-True / MATLAB)'); 
xlabel('Down Range Cells');   ylabel('Cross Range Cells'); 

%to post-process data from hardware 
if hda==l, 

load pc_ref 
priRgMapShift = zeros(nDopplerCell.■,rg_pts); 
tic 
pcRefMapShift = fft(image.',2*rg_pts-l).'; 
for idx = 1:nDopplerCell 

tmp = cref.*pcRefMapShift(idx,:); 
tmpl = fftshift(ifft(tmp)); 
priRgMapShift(idx,1:end-targetExtent+1) = 

tmpl(rg_pts+targetExtent-lrend); 
end 
dpRgMapShift = abs(fft(priRgMapShift)); 
toe 

end 

subplot(2,1,2); 
if hda==l, 

h = contour(dpRgMapShi ft,Ncontours); 
grid, axis([l 62 0 dp_pts]) 

end 
title('b. Amplitude and Doppler Modulated Rd-Dp Map (from HARDWARE 

output)'); 
xlabel('Down Range Cells');   ylabel('Cross Range Cells'); 

end 

figure(3) 
print -dtiff hwres 

figure(4) 
subplot(3,1,1); 
h = mesh(dpRgMapShiftMOD); grid; 
%h = mesh(dpyg_shift_drfm); grid; 
title('a. Amplitude/Doppler Modulated Rd-Dp Map (Bit-True, modulated / 
MATLAB)'); 
xlabel('Down Range Cells');   ylabel('Cross Range Cells'); grid 
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subplot(3,1,2); 
%to plot hardware output 
if hda==l, 

h = mesh(dpRgMapShift); grid; 
end 
titleCb. Amplitude/Doppler Modulated Rd-Dp Map (HARDWARE output)'); 
xlabel('Down Range Cells');   ylabel('Cross Range Cells'); grid 
subplot(3,1,3); 
%to plot difference between Matlab simulation and hardware output 
if hda==l, 

%h = mesh(dpyq_shift_drfm/max(max(dpyq_shift_drfm))- 
dpRgMapShift/max(max(dpRgMapShift))); grid; 

h = mesh(dpRgMapShiftMOD-dpRgMapShift); grid; %plot the real 
difference, Stig Aug-99 

%h = mesh(dpyq_shift_drfm-dpRgMapShift); grid; %plot the real 
difference, Stig Aug-99 
end 
title('c. Difference'); 
xlabel('Down Range Cells');   ylabel('Cross Range Cells'); grid 
print -dtiff diffplot 

%for comparison 5 Oct -99, Stig Ekestorm 
%to plot MATLAB simulation output separately 
figure(5) 
h = mesh((dpRgMapShiftMOD/max(max(dpRgMapShiftMOD)))); grid; 
%normalized 
%h = mesh(dpRgMapShiftMOD); grid; 
titleCa. Amplitude/Doppler Modulated Rd-Dp Map (Bit-True, modulated / 
MATLAB) ' ) ; 
xlabel('Down Range Cells');   ylabel('Cross Range Cells'); grid 

figure(6); 
%to plot hardware output separately 
if hda==l, 

h = mesh(dpRgMapShift); grid; 
end 
title('b. Amplitude/Doppler Modulated Rd-Dp Map (HARDWARE output)'); 
xlabel('Down Range Cells');   ylabel('Cross Range Cells'); grid 

2.      COMMON FILES IN ALL VERSIONS (VERSION 1 TO 4) 

These files are used in all versions. The two first files (cosine.txt and sine.txt) 

represent the look-up tables. The next three files (genLUT.m, genfixptvO.m and 

genfloat.m) are used to create the look-up tables [Ref. 6]. Two Matlab functions 

(dec2two.m   and   two2dec.m)   have   been   developed   to   translate   from   decimal 
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representation to binary two's complement representation and vice versa. Two extra plot- 

files are also presented. The first plot-file (plot_like_NRL_image.m) has been used to 

plot simulation results in a comparable way to a real ISAR image. The second plot-file 

(plot_in_dB.m) can be used to examine the results in the range-Doppler map as 

normalized amplitude values in dB. 

a. cosine.txt 

9.9218750e-001 
9.6875000e-001 
9.0625000e-001 
8.1250000e-001 
6.7968750e-001 
5.2343750e-001 
3.4375000e-001 
1.4843750e-001 

-4.6875000e-002 
-2.4218750e-001 
-4.2968750e-001 
-6.0156250e-001 
-7.5000000e-001 
-8.6718750e-001 
-9.4531250e-001 
-9.8437500e-001 
-9.8437500e-001 
-9.4531250e-001 
-8.6718750e-001 
-7.5000000e-001 
-6.0156250e-001 
-4.2968750e-001 
-2.4218750e-001 
-4.6875000e-002 
1.4843750e-001 
3.4375000e-001 
5.2343750e-001 
6.7968750e-001 
8.1250000e-001 
9.0625000e-001 
9.6875000e-001 
9.9218750e-001 

244 



b. sine.txt 

O.OOOOOOOe+OOO 
1.9531250e-001 
3.9062500e-001 
5.6250000e-001 
7.1875000e-001 
8.3593750e-001 
9.2968750e-001 
9.7656250e-001 
9.8437500e-001 
9.5312500e-001 
8.9062500e-001 
7.8125000e-001 
6.4062500e-001 
4.7656250e-001 
2.9687500e-001 
9.3750000e-002 
-9.3750000e-002 
-2.9687500e-001 
-4.7656250e-001 
-6.4062500e-001 
-7.8125000e-001 
-8.9062500e-001 
-9.5312500e-001 
-9.8437500e-001 
-9.7656250e-001 
-9.2968750e-001 
-8.3593750e-001 
-7.1875000e-001 
-5.6250000e-001 
-3.9062500e-001 
-1.9531250e-001 
O.OOOOOOOe+OOO 

C. genLUT.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% genLUT.m 
% mfile to generate memory initialization file (cos and sin look-up) 
% for altera memory initialization 
% Created by: SY YEO, Jul -98 

clear 

% parameters 
depth =32; 
nbits = 8; 

del = l/(2~(nbits-D); 
amp = (1-del); 

cosine = zeros(depth,1); 
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for i = 0:depth-1 
cosine(i+1) = amp*cos(2*pi*i/(depth-1)); 

end 
[i,j] = find(abs(cosine) < 4*eps); 
p = isempty(i) + isempty (j); 
if (p == 0) 

cosine(i,j) = 0; 
end 
cosine_fixpt = genfixptvO(cosine,nbits); 
inv_cosine_fixpt = genfloat(cosine_fixpt,nbits); 

fid = fopen('cos.mif','w'); 
%fidl = fopen('cos.txt','w'); 

fprintf(fid,'— MAX+plus II : memory initialization file'); 
fprintf(fid, '\n'); 

txt = (['WIDTH = ' num2str(nbits) '\n']); 
%fprintf(fid,'WIDTH = 8\n'); 
fprintf(fid,txt); 
txt = (['DEPTH = ' num2str(depth) '\n']); 
%fprintf(fid,'DEPTH = 32\n'); 
fprintf(fid,txt); 

fprintf(fid,'ADDRESS_RADIX = HEX\n'); 
fprintf(fid,'DATA_RADIX = HEX\n'); 
fprintf(fid,'\n'); 

fprintf(fid,'CONTENT BEGIN\n'); 
tmpl = dec2hex(bin2dec(cosine_fixpt),2); 
t_cosine_fixpt = cosine_fixpt'; 
for i = 1:depth 

tmp = dec2hex(i-l,2); 
fprintf(fid,'%s\t:\t%s;\n',tmp,tmpl(i,:)'); 
%fprintf(fidl,'%s\n',t_cosine_fixpt(:,i)); 
%fprintf(fidl,'%s\n',tmpl(i,:)'); 

end 
fprintf(fid,'END;\n'); 
fclose(fid); 
%fclose(fidl); 

disp('—Check--') 
[cosine inv_cosine_fixpt] 
ddcos = std(cosine-inv_cosine_fixpt); 

%%%% Repeat for the sin LUT 
sine = zeros(depth,1); 
for i = 0:depth-1 

sine(i+l) = amp*sin(2*pi*i/(depth-1)); 
end 
[i,j] = find(abs(sine) < 4*eps); 
p = isempty(i) + isempty(j); 
if (p == 0) 

sine(i,j) = 0; 
end 
sine_fixpt = genfixptvO(sine,nbits); 
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inv_sine_fixpt = genfloat(sine_fixpt,nbits); 

fid = fopen('sin.mif','w'); 
%fidl = fopen('sin.txt','W); 

fprintf(fid,'-- MAX+plus II : memory initialization file'); 
fprintf(fid,'\n'); 

txt = (['WIDTH = ' num2str(nbits) '\n']); 
fprintf(fid,txt); 
txt = (['DEPTH = ' num2str(depth) '\n']); 
fprintf(fid,txt); 

fprintf(fid,'ADDRESS_RADIX = HEX\n'); 
fprintf(fid,'DATA_RADIX = HEX\n'); 
fprintf(fid,'\n'); 

fprintf(fid, 'CONTENT BEGINXn'); 
tmpl = dec2hex(bin2dec(sine_fixpt),2); 
t_sine_fixpt = sine_fixpt'; 
for i = 1:depth 

tmp = dec2hex(i-l,2); 
fprintf(fid,'%s\t:\t%s;\n',tmp,tmpl(i,:)'); 
%fprintf(fidl,'%s\n',t_sine_fixpt(:,i)); 

%  fprintf(fidl,'%s\n',tmpl(i,:)'); 
end 
fprintf(fid,'END;\n'); 
fclose(fid); 
%fclose(fidl); 

[sine inv_sine_fixpt] 
disp('Std in Reconstruction Errors (cos)') 
ddcos 
disp('Std in Reconstruction Errors (sin)') 
ddsin = std(sine-inv_sine_fixpt) 

cosinefp = inv_cosine_fixpt 
sinefp = inv_sine_fixpt 

save -ascii cosine.txt cosinefp 
save -ascii sine.txt sinefp 

figured) ; 
11 = 1:length(cosinefp); 
plot(11,cosinefp,11,cosine); grid; 

%end of file 
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d. genfixptvO.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% genfixptvO.m 
% Fixed point and floating conversion 
% PROGRAM in Matlab converts from FLOATING POINT to FIX POINT 
% given a number of BITS (nbits) for fix point representation 
% Note: that the decimal numbers must be scaled to +- 1.0 
% function [out] = genfixpt(in,nbits); 
% Created by: SY YEO, Jul -98 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [out] = genfixpt(in,nbits); 

del = l/(2Ä(nbits-l)); 

num = in(:); 

% Convert to binary 
len = length(num); 
numl = []; numb = []; 
for i = l:len 

if (num(i) >= 0.0) 
if num(i) == 1 

num(i) = 1 - del; 
end 
numl = [numl; fix(num(i)/del) ] ; 
numb = [numb; dec2bin(num(i)/del,nbits)]; 

else 
tmp = abs(num(i)); 
tmp = dec2bin(tmp/del,nbits) ; 
if (bin2dec(tmp) ~= 0) 

for k = 1:length(tmp) 
if (tmp(k) == '0') 

tmp(k) = ■1'; 
else 

tmp(k) = ' 0'; 
end 

end 
tmp = bin2dec(tmp)*del + del; 
tmp = dec2bin(tmp/del,nbits) ; 

end 
numb = [numb; tmp] ; 

end 
end 
out = numb; 

%end of file 
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e. genfloat.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% genfloat.m 
% Floating and fix point conversion 
% PROGRAM in Matlab converts from FIX POINT to FLOATING POINT 
% given a number of BITS (nbits) for fix point representation 
% Note: that the decimal numbers must be scaled to +- 1.0 
% function [out] = genfloat (in, nbits) ,- 
% Created by: SY YEO, Jul -98 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [out] = genfixpt(in,nbits); 

numb = in; 
del = l/(2"(nbits-D) ; 

[len,c] = size(numb); 
num2 = []; 
for i = l:len 

if (numb(i,l) == '1') 
tmp = numb(i,:) ; 
for i = l:length(tmp)   % invert all bits 

if (tmp(i) == '0') 
tmp(i) = "1'; 

else 
tmp(i) = ' 0'; 

end 
end 
tmp = -l*(bin2dec(tmp)*del + del); % add a BINARY one! 
num2 = [num2; tmp]; 

else 
num2 = [num2; bin2dec(numb(i,:))*del]; 

end 
end 
out = num2; 

%end of file 

f. dec2two.m 

% dec2two.m 
% This MATLAB function converts a number in decimal representation 
% (positive or negative) to a vector in binary 2-complement 
% representation. With a slight modification the output can be 
% presented in as a string with a "." character separating integer and 
% fractional parts. The user has to specify the number to be converted 
% and the format for the %binary presentation (number of bits used for 
% the integer part and the %fractional part). A sign bit will 
% automatically be included in the output vector (string). 
% 
% Function call: 
%  dec2two(dec,integerbits,fractionbits) 
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User inputs: 
dec - the number in decimal representation to be converted 
integerbits - # of bits to represent the integer part 
fractionbits - # of bits to represent the fractional part 

Example (1): 
type in the MATLAB Command Window: dec2two(2.75,8,4) 
returned answer: 0000000101100 
(returned answer: 000000010.1100) 

Example (2): 
type  in  the MATLAB Command Window:   dec2two(-2.75,8,4) 
returned answer:   1111111010100 
(returned answer:   111111101.0100) 

Created by: 
MAJ Stig Ekestorm, Oct -99 
Naval Postgraduate School 

% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [out] = dec2two(dec,integerbits,fractionbits); 

%binary format to be displayed 
signbit=l; 
the sign 
%integerbits 
the integer part 
%fractionbits 
the fractional part 

%initialize output vector 
aa=signbit+integerbits+fractionbits; 
vector 
bb=zeros(l,aa); 
vector to zero 

%check if the number is negative 
if dec<0, 

dec=dec*(-l); 
positive 

bb(l,l)=l; 
end 

%# of bits to represent 

%# of bits to represent 

%# of bits to represent 

%length of output 

%initialize output 

%if negative number 
%turn number into 

%set sign bit to "1" 
%end if statement 

%integer part 
mm=floor(dec) ; 
part 
for idxl=2:integerbits+l, 
not included) 

cc=2* (integerbits+1-idxl); 
representation 

bb(l,idxl)=floor(mm/cc); 
integer division 

mm=rem(mm,cc) ; 
division 
end 

%extract the integer 

%integer bits (sign bit 

%binary bit 

%set each bit after 

%extract reminder after 

%end for loop 
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%fractional part 
ff=dec-floor(dec); %extract fractional 
part 
for idx2=signbit+integerbits+l: aa, %fraction bits 

dd=l/(2~(idx2-(signbit+integerbits))) ; %binary bit 
representation 

bb(l,idx2)=floor(ff/dd); %set each bit after 
integer division 

ff=rem(ff,dd); %extract reminder after 
division 
end %end for loop 

%adjust negative value to 2-complement representation 
if bb(l,l)==l, %if negative value 

for idx3=l:aa. %index for switching 
bit values 

if bb(l,idx3)==2, 
bb(l,idx3)=0; 

end 
if bb(l,idx3)==0, %switch all "0" 

bb(l,idx3)=l; %to "1" 
else 

bb(l,idx3)=0; %and vice versa 
end %end if/else statement 

end %end for loop 
bb(l,aa)=bb(l,aa)+l; %add "1" to the LSB 

idx4=aa; %index for binary 

addition 
while bb(l,idx4)==2, %if carry (bit-to-bit) 

bb(1,idx4-l)=bb(1,idx4-l) +1; %add "1" to next higher 

bit 
bb(l,idx4)=0; %set current bit to "0" 

idx4=idx4-l; decrement index 

(higher bit) 
end , %end while loop 

bb(l,l)=l; 
end %end if/else statement 

Ireturn output in string format (integer and fractional parts separated 

by ".") 
%out=([num2str(bb(l,l:signbit+i ntegerbits)), ' . . . 
%     ,num2str(bb(l,signbit+integerbits+1:aa)) ] ) ; 

%return output in vector format 
seDaration) 

(integer and fractional parts without 

out=bb; 

%end of   file 
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g. two2dec.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% two2dec.m 
% This MATLA3 function convert vectors in binary 2-complement 
% representation to numbers in decimal representation (positive and 
% negative). The user has to specify a vector or a set of vectors in a 
% matrix to be converted, and the format for the binary presentation 
% (number of bits used for the fractional part). The first bit is 
% assumed to be a sign bit for the binarv vector. 
% 
% Function call: 
9; two2dec(two,fractionbits) 

% 

% User inputs: 
%  two -the vector/matrix of vectors in binary 2-complement 

representation to be converted to decimal number 
%   fractionbits - # of bits that represent the fractional part 
% 
% Output: 
%   number/set of numbers in decimal representation 
% 
% Created by: 
%  MAJ Stig Ekestorm, Nov -99 
%  Naval Postgraduate School 

%function call 
function [out] = two2dec(two,fractionbits); 

%determine the size of the matrix of vectors to be converted 
[row col]=size(two); 

%initialize vectors/variables used 
integer=two(:,l:col-fractionbits);  %integer part 
fraction=two(: ,col-fractionbits+l:col);   %fractional part 
total=[integer fraction]; 
[rowi coli]=size(integer); %size of integer part 
[rowf coif]=size{fraction);   %size of fractional part 
[rowt colt]=size(total);   %size of fractional part 
out=zeros(row,col/col); %output vector 

%convert bit pattern representing binary 2-complement number to decimal 
number 
for idxl=l:row,   %vector-by-vector 

%if positive number - convert 
if integer(idxl,1)==0,  %if sign bit is "0" (positive) 

testi=fliplr(integer(idxl,1:coli)); %flip integer part of vector 
testf=fraction(idxl,1:coif); %fractional part of vector 
for idx2=l:coli-l,   %integer part, bit-by-bit 

if testi(1,idx2)==1, %check for ones 
out(idxl,l)=out(idxl,l)+2'>(idx2-l) ; %add decimal value 

end  %end if 
end  %end for 
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for idx2=l:colf, %fractional part, bit-by-bit 
if testf(l,idx2)==l, %check for ones 

out(idxl,l)=out(idxl,1)+2A(-(idx2));   %add decimal value 
end  %end if 

end  %end for 

%if negative number - adjust and convert 
else  %if sign bit is "1" (negative) 

for idx4=l:colt,  %index for switching all bit values 
if total(idxl,idx4)==0, %switch all "0" 

total(idxl,idx4)=l;  %to "1" 
else 

total(idxl,idx4)=0;  %and vice versa 
end  %end if/else statement 

end  %end for loop 
if colt>l,  %must be... 

total(idxl,colt)=total(idxl,colt)+l;   %add "1" to the LSB 
idx5=colt;  %index for binary addition 
while total(idxl,idx5)==2, %if carry (bit-to-bit) 

total(idxl,idx5-l)=total(idxl,idx5-l)+l;  %add "1" to next 
higher bit 

total(idxl,idx5)=0; %set current bit to "0" 
idx5=idx5-l; %decrement index (higher bit) 
if idx5==l, %if this is the last bit 

total(idxl,idx5)=l;  %reset sign bit to "1" 
end  %end if 

end  %end while 
end  %end if 
testi=fliplr(total(idxl,1:coli));   %flip integer part of vector 
testf=total(idxl,coli+l:coli+colf); %fractional part of vector 
for idx2=l:coli-l,   %integer part, bit-by-bit 

if testi(1,idx2)==l, %check for ones 
out(idxl,l)=out(idxl,l)+2~(idx2-l); %add decimal value 

end  %end if 
end  %end for 
for idx2=l:Colf, %fractional part, bit-by-bit 

if testf(l,idx2)==l, %check for ones 
out(idxl,l)=out(idxl,l)+2^(-(idx2));   %add decimal value 

end  %end if 
end  %end for 
out(idxl,l)=out(idxl,l)*(-l); %assign a negative value 

end  %end if 

end  %end for 

%end of file 
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h. plot_Kke_NRL_image.m 

% plot_like_NRL_image.m 

% This MATLAB script file can be used to plot image in colors similar 
% to the ship case refered to at NRL homepage 

% (http://radar-www.nrl.navy.mil/Areas/ISAR) 
% Created by: 
%  MAJ Stig Ekestorm, Feb -00 
%  Naval Postgraduate School 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%load plotMOD4Shipl_64 
%load plotM0D4ShipK 

%load plotM0D4VcaseKb 
load plotMOD4Ship8_64 
%load plotMOD 

%Shipl = 

dpRgMapShiftM0D4Shipl_64(1:64,1:62)/max(max(dpRgMapShiftMOD4Shipl_64(1: 
64,1:62))); 
%Ship2 = 

dpRgMapShiftMOD4DIS2000(l:256,l:62)/max(max(dpRgMapShiftMOD4DIS2000(1:2 
56,1:62))); 
%Ship2 = 

dpRgMapShiftM0D4ShipK(1:64,1:62)/max(max(dpRgMapShiftM0D4ShipK(1:64,1:6 
2 ) ) ) ; 
%Ship2 = 

dpRgMapShiftMOD4VcaseKb(1:64,1:62)/max(max(dpRgMapShiftMOD4VcaseKb(1:64 
,1:62))); 

Ship2 = dpRgMapShiftMOD4Ship8_64(l:64- 
1,1:62) /max(max(dpRgMapShiftMOD4Ship8_64(1:64-1,1:62) ) ) ; 

colordef white 
figure(64) 
colordef black 
colormap(hot(100)) 
%contour(Ship2(:,:),20) 
contour(Ship2(:,:),100) 
title('8-Tapline Ship Target - 64 Radar Pulses') 
xlabel('Range') 
ylabel('Doppler') 
%axis([0 10 24 38]) 
axis square 

%end of file 
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i. plot_in_dB.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% plot_in_dB.m 
% This script file will help you to plot results in dB. 
% 1st run plot_like_NRL_image.m, then run this file with the 
% appropriate input matrix specified in the mesh-command line. 
% Created by: 
%  LTC Stig Ekestorm, Apr -00 
%  Naval Postgraduate School 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

colordef white 
colormap('default') 

figured) 
subplot(2,1,1) 
mesh(20*loglO(Ship2))     ^convert to normalized voltage to dB 
axis([0 62 0 64 -100 0]) 
title('8-Tapline Ship Target - 64 Radar Pulses') 
xlabel('Range') 
ylabel('Doppler') 
zlabel('Normalized Amplitude [dB] ') 
view(0,0) %view along the range axis 

subplot(2,l,2) 
mesh(20*logl0(Ship2)) .    %convert to normalized voltage to dB 
axis([0 62 0 64 -100 0]) 
%title('8-Tapline Ship Target - 64 Radar Pulses') 
xlabel('Range') 
ylabel('Doppler') 
zlabel('Normalized Amplitude [dB]') 
view(90,0) %view along the Doppler axis 

%end of file 
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3.      GENERATING        PARAMETERS        FOR        MULTIPLE 

SCATTERERS PER RANGE-GATE 

Two examples of extract files are presented. The first one for the "V"-case and 

the other for the ship simulation case. Both are discussed in the end of Chapter IV. 

a. extract_para_v4_Vcase.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% extract_phase_v4_Vcase.m 
% To extract Phase and Magnitude information to the DIS chip 
% Print modified para.txt file 
% Created by: 
%  MAJ Stig Ekestorm, Feb -00 
%  Naval Postgraduate School 
9:S;9:S:%S:äSrS:&^&9:S;S:&9;S;9r9-&9-9-9-Q;9-9-9-9-9-9-9-9-g-9-9-S-9-9'9-9-9-arC!-Q.Q, Q.Q-Q- 9-0.0,0.0.0.0-0.0.0.0.0.0.0,0.0.0,0-0,0,0. 
o o o otj OID^T3 o^> o o o^o^o15^15^o^^^^o^^^o^^^^^^oo^^^o^'o^^o^^^^'o^^:6^>^3^S'o^>t>'ot>T5'ö^5%^> 

clear 

%parameters from mathostv2.m 
rg_pts=62; 

dp_pts=64; 
pulses) 
%dp_pts=128; 
pulses) 
%dp_pts=256; 
pulses) 
%dp_pts=512; 
pulses) 
%dp_pts=1024; 
pulses) 
%dp_pts=4096; 
pulses) 

%# of range-bins 

%# of Doppler bins (same as number of radar 

%# of Doppler bins (same as number of radar 

%# of Doppler bins (same as number of radar 

%# of Doppler bins (same as number of radar 

%# of Doppler bins (same as number of radar 

%# of Doppler bins (same as number of radar 

bw = 100e6; 
pwc = l/(1.25*bw); 
pw =0.5e-6; 
prf = 2e3; 
pri = 1/prf; 
mu = 2*pi*bw/pw; 
fs = 1.25*bw; 
Ts = 1/fs; 
snr = 0; 
nbitsdop = 5; 
phase 
p = 2*pi/(2/vnbitsdop) ;  %quant factor 

%compressed pulsewidth 

%PRF = 2 kHz 
%PRI =0.5 msec 

%# of bits used for precision of the Doppler 
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%additional parameters 

dopplerbin=prf/dp_pts; 
N=dp_pts; 
NP=2*N-1; %number of points for the fft 
NP=N; 
tstop=pri*dp_pts;       %32ms for 64 radar pulses (0.5ms * 64 radar 
pulses) 
ti=linspace(0,tstop,N); 

numtaps=16,• 
numfreq=[l  111111111122211];        %#  of  Doppler   frequencies 
in each range-bin 
freq=zeros(numtaps,dp_pts); 
freq(l,l:l)=[32.25]; 
freq(2,l:2)=[5 63.5]; 
freq{3,l:2)=[-30.25 94.75]; 
freq(4,l:2)=[-61.5 126]; 
freq(5,l:l)=[-92.75]; 
freq(6,l:l)=[-124]; 
zeropad=zeros(10,dp_pts); 
freq=[zeropad;freq]; 

for idxl = l:numtaps 
for idx2 = l:dp_pts 

if freq(idxl,idx2) == 0 
%do nothing 

else 
freq(idxl,idx2) = freq(idxl,idx2) + 1000; 

end 
end 

end 

for idxl =1:10 
freq(idxl,1) = idxl*10-10; 

end 

AA=zeros(numtaps,dp_pts); 
%AA(l,l:l)=[le6]; 
%AA(2,l:2)=[le6 le6]; 
%AA(3,l:2)=[le6 le6]; 
%AA(4,l:2)=[le6 le6]; 
%AA(5,l:l)=[le6]; 
%AA(6,l:l)=[le6]; 
AA(1,1:1)=[1]; 
AA(2,1:2)=[2 2] 
AA(3,1:2)=[4 4] 
AA(4,1:2)=[2 8] 
AA(5,1:1)=[4]; 
AA(6,1:1)=[8]; 
zeropad=zeros(10,dp_pts); 
AA=[zeropad;AA]; 

targetSum = zeros(numtaps,dp_pts); 

for idxl = 1:numtaps 
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target = zeros(dp_pts,length(ti)); 
for idx2 = l:numfreq(idxl) %Doppler frequencies 

for idx3 = l:length(ti) %create each signal seperately 
fi = rand(l)*0.1; %random initial phase shift 
%target(idx2,idx3) = l*exp(-j*2*pi*freq{idxl,idx2)*ti(1, idx3) 

+ fi); 
target(idx2,idx3) = AA(idxl,idx2)*exp(- 

j*2*pi*freq(idxl,idx2)*ti(l,idx3) + fi) ; 
end 

end 
for idx4 = 1:numfreq(idxl) %create the combined 

signal for that range gate 
targetSum(idxl,:) = targetSum(idxl,:) + target(idx4,:); 

end 
end 

%amplitude values %use manual gain values since we 'can 
only do 1, 2, 4, or 8 

%gain  =[122211]; 
%gain = input('Enter gain value for each range-bin (enter values as a 
row vector): ' ) ; 
%gain=[l 1-12421181244448884421128141221 
1]; 
%gain=[4 444444444444444444444444444444 
4]; 
%gain=[2 224422282244444444422228242442 
2]; 
%gain=[4 222422284242244444444228442444 
2]; 

amp = abs(targetSum); 
ampmax = max(amp); 
ampmaxmax = max(ampmax); 
for il = l:numtaps 

for i2 = l:dp_pts 
if amp(il,i2)/ampmaxmax > 0.8 

ampq(il,i2) = 8; 
end 
if amp(il,i2)/ampmaxmax < 0.8 

ampq(il,i2) = 4; 
end 
if amp(il,i2)/ampmaxmax < 0.4 

ampq(il,i2) = 2; 
end 
i f amp(il,i2)/ampmaxmax < 0.2 

ampq(il,i2) = 1; 
end 

end 
end 

gain = ampq; 

%phase-increment values 

vphasel=zeros(numtaps,dp_pts); 
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vphase2=zeros(numtaps,dp_pts); 
vphase3=zeros(numtaps,dp_pts); 
for idx5 = 1:numtaps 

vphasel(idx5,:)=angle(targetSum(idx5, :) ) ; 
vphase2=vphasel*2~5/(2*pi); 
vphase3=round(mod(vphase2,2~5)); 

end 

phaseinc=zeros(numtaps,dp_pts); 
for idx6 = 1:numtaps 

for idx7 = l:dp_pts 
if idx7==l, 

phaseinc(idx6,idx7)=phaseinc(idx6,idx7)+vphase2(idx6,idx7); 
else 

phaseinc(idx6,idx7)=phaseinc(idx6,idx7-l)+vphase2(idx6,idx7- 
1)-vphase2(idx6,idx7); 

end 
end 

end 

for idx8 = l:dp_pts 
for idx9 = 1:numtaps 

phasecoeff(idx9,idx8)=2*fix(mod(phaseinc(idx9,idx8),32)12) ; %4- 
bit phase modulation coefficient 

end 
end 

%write modulation parameters to text file 

f4 = fopen('paraMULTIq4Vcase3.txt','w'); 
%f4 = fopen('paraMULTIq4Ship2_1024.txt', 'W ) ; 
%f4 = fopen('paraMULTIq4Shipl.txt', 'W) ; 

fprintf(f4,'%d\r\n',rg_pts); %# of range-bins 
fprintf(f4,'%d\r\n',dp_pts); %# of Doppler bins 
fprintf(f4,'%d\r\n',numtaps); %# of tap lines (target 
extent) 

for aa=l:dp_pts 
for bb=l:numtaps 

fprintf(f4,'%d\r\n',gain(bb,aa)); 
end 

end 

% adjustment to correct multiplication factors for the amplitude (gain) 
value 
%for i = 1:length(gain) 

%switch gain(l,i) 
%case {1} 
%   gain(l,i)=l;  %no shift, multiplication by 1, hardware bit "00" 
%case {2} 
%   gain(l,i)=2;  %shift by 1, multiplication by 2, hardware bit 

"01" 
%case {3} 
%   gain(l,i)=4;  %shift by 2, multiplication by 4, hardware bit 

"10" 
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%case {4} 
%  gain(l,i)=8 

"11" 
%end 
%fprintf(fl,'%d\r\n',gain(l,i)) 
%fprintf(f2,'%d\r\n',gain(l,i)) 
%fprintf(f3,'%d\r\n',gain(l,i)) 
%fprintf(f4, '%d\r\n',gain(l, i)) 

%end 

%shift by 3, multiplication by 8, hardware bit 

%gainl, gain2, . .., gainN 
%gainl, gain2, . .., gainN 
%gainl, gain2, ..., gainN 
%gainl, gain2, ..., gainN 

for aa=l:dp_pts 
for bb=l:numtaps 

fprintf(f4,'%d\r\n',phasecoeff(bb,aa)); 
end 

end 

fclose(f4); 

%end of file 

b. extract_para_v4_Ship64.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% extract_para_v4_Ship64.m 
% To extract Phase and Magnitude information of the Ship test case 

to be used for Matlab and T-Spice simulation of the DIS chip 
Prints modified para.txt file 
Created by: 

MAJ Stig Ekestorm, Feb -00 
%  Naval Postgraduate School 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%parameters from mathostv2.m 

rg_pts=62; 

dp_pts=64; 
pulses) 
%dp_pts=128; 
pulses) 
%dp_pts=256; 
pulses) 
%dp_pts=512; 
pulses) 
%dp_pts=1024; 
pulses) 
%dp_pts=4096; 
pulses) 

bw = 100e6; 
pwc = l/(1.25*bw); 
pw =0.5e-6; 
prf = 2e3; 
pri = 1/prf; 
mu = 2*pi*bw/pw; 

%# of range-bins 

%# of Doppler bins (same as number of radar 

%# of Doppler bins (same as number of radar 

%# of Doppler bins (same as number of radar 

%# of Doppler bins (same as number of radar 

%# of Doppler bins (same as number of radar 

%# of Doppler bins (same as number of radar 

%compressed pulsewidth 

%PRF = 2 kHz 
%PRI =0.5 msec 
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fs = 1.25*bw; 
Ts = 1/fs; 
snr = 0; 
nbitsdop = 5; 
phase 
p = 2*pi/(2/vnbitsdop) ;  %quant factor 

%Additional parameters 

# of bits used for precision of the Doppler 

dopplerbin=prf/dp_pts; 
N=dp_pts; 
NP=2*N-1; 
NP=N; 
tstop=pri*dp_pts ; 
pulses) 
ti=linspace(0,tstop,N); 

%# of Doppler bins 
%number of points for the fft 
%change variable 
%32ms for 64 radar pulses (0.5ms * 64 rada: 

%false target parameters 

numtaps=32; %# of taps used 

%Doppler frequencies per range-bin 

freq=zeros(32,dp_pts); 
freq(l,l:2)= 
freq(2,l:3)= 
freq(3,l:3)= 
freq(4,l:4)= 
freq(5,l:6)= 
freq(6,l:4)= 
freq(7,l:2)=  . 
freq(8,l:3)= 
freq(9,l:16)= 
440 471 505 536 
freq(10,l:4)= 
freq(ll,l:4)= 
freq(12,l:ll)= 
442 475]; 
freq(13,l:8)= 
freq(14,l:8)= 
freq(15,l:8)= 
445]; 
freq(16,l:10)= 
446 481 515]; 
freq(17,l:ll)= 
447 482 516 546 
freq(18,l:9)= 
448 483 518]; 
freq(19,l:7)= 
449 484]; 
freq(20,l:6)= 
450]; 
freq(21,l:4)= 
freq(22,l:3)= 
freq(23,l:3)= 

15 45]; 
17 47 72]; 

49 74 100] 
51 77 103 

79 105 
80 108 

111 
113 

571 601]; 

130]; 
132 160 195 231]; 
134 162]; 
137]; 
139 166]; 
141 168 199 230 260 291 321 351 379 409 

142 169 201 232]; 
171 204 234 262] ; 
173 206 236 264 294 323 353 381 411 

208 237 265 295 324 
212 238 266 296 325 

241 267 297 326 

354 382 412]; 
355 383 413]; 
356 384 414 

582]; 

242 268 298 327 357 385 415 

269 299 328 358 386 416 

270 300 329 359 387 417 

301 329 360 389 418 

302 330 361 390 419 

331 362 391 420]; 
332 363 392; ; 

364 393 422]; 
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freq(24,l:4)=  [ 365 394 423 
454]; 
freq(25,l:16)= [ 395 425 
455 491 526 556 590 620 651 681 714 741 776 808 840 869]; 
freq(26,l:3)=  [ 396 426 
456]; 
freq(27,l:6)=  [ 427 
457 493 528 558 592]; 
freq(28/l:3)=  [ 428 
458 494]; 
freq(29,l:3)=  [ 
459 495 530]; 
freq(30,l:4)=  [ 
460 496 531 560]; 
freq(31,l:2)=  [ 
497 532]; 
freq(32,l:2)=  [ 
498 533]; 

numfreq=[2  3346423   16  44  11   888  10  11  9764334  16  3633 
4 2 2];  %# of Doppler frequencies in each range-bin 

%amplitude of each scatterer 

A = ones(numtaps,dp_pts); %all amplitudes set to "1" for 
simplification, representing equal strong scatterers 

%create a combined signal per range gate 

targetSum = zeros(numtaps,dp_pts); 

for idxl = l:numtaps 
target = zeros(dp_pts,length(ti)); 
for idx2 = 1:numfreq(idxl) %Doppler frequencies 

for idx3 = 1:length(ti) %create each signal seperately 
fi = rand(l)*0.1; %random initial phase shift 
target(idx2,idx3) = A(idxl,idx2)*exp(- 

j*2*pi*freq(idxl,idx2)*ti(l,idx3) + fi) ; 
end 

end 
for idx4 = 1:numfreq(idxl) %create the combined signal for 

that range gate 
targetSum(idxl,:) = targetSum(idxl,:) + target(idx4,:); 

end 
end 

%extract gain (amplitude) coefficients 

amp = abs(targetSum); %extract magnetude 
ampmax = max(amp); %find max 
ampmaxmax = max (ampmax); %f ind max 
for il = l:numtaps %hard limit magnetude using 4 
levels 

for i2 = l:dp_pts 
if amp(il,i2)/ampmaxmax > 0.8 

ampq(il,i2) - 8; 
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end 
if amp(il,i2)/ampmaxmax < 0.8 

ampq(il,i2) = 4; 
end 
if amp(il,i2)/ampmaxmax < 0.4 

ampq(il,i2) = 2; 
end 
if amp(il,i2)/ampmaxmax < 0.2 

ampq(il,i2) = 1; 
end 

end 
end 

gain = ampq; %assign quantized magnetude values 
to gain-coefficient matrix 

%extract phase angle 

vphasel=zeros(numtaps,dp_pts); %initialize 
vphase2=zeros(numtaps,dp_pts); %initialize 
vphase3=zeros(numtaps,dp_pts); %initialize 
for idx5 = l:numtaps %for each range gate, 

vphasel(idx5,:)=angle(targetSum(idx5,:)); %extract phase angle 
vphase2=vphasel*2"5/(2*pi); %adjust value to be 

between 0 and 32 (dec) 
vphase3=round(mod(vphase2,2A5)); %round and mod32 to get a 

5-bit binary representation 
end 

%extract phase coefficients 

phaseinc=zeros(numtaps,dp_pts);     %initialize 
for idx6 = l:numtaps %turn values into phase-increments 

for idx7 = l:dp_pts 
if idx7==l, 

phaseinc(idx6,idx7)=phaseinc(idx6,idx7)+vphase2(idx6,idx7); 
else 

phaseinc(idx6,idx7)=phaseinc(idx6,idx7-l)+vphase2(idx6,idx7- 
1)-vphase2(idx6,idx7); 

end 
end 

end 

for idx8 = l:dp_pts %adjust values to represent the 
number of bits used in hardware 

for idx9 = l:numtaps 
phasecoeff(idx9,idx8)=2*fix(mod(phaseinc(idx9,idx8) ,32)/2) ; %4- 

bit phase modulation coefficient 
end 

end 

%write modulation parameters of the false target to text file 

% f4 = fopen('paraMULTIq4Vcasel.txt', ' w' ) ; 
f4 = fopen('paraMULTIq4Ship3_64.txt','w•); 
%f4 = fopen('paraMULTIq4Shipl.txt','W); 
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fprintf(f4,'%d\r\n',rg_pts); 
fprintf(f4,'%d\r\n',dp_pts); 
fprintf(f4,'%d\r\n',numtaps); 
extent) 

for aa=l:dp_pts 
for bb=l:numtaps 

fprintf(f4,'%d\r\n',gain(bb,aa)) 
end 

end 

for aa=l:dp_pts 
coefficients 

for bb=l:numtaps 
fprintf(f4,'%d\r\n'.phasecoeff(bb,aa)); 

end 
end 

fclose(f4); 

%end of file 

%# of range-bins 
%# of Doppler bins 
%# of taplines (target 

%gain modulation coefficients 

%phase modulation 

4.       CREATING TEST VECTORS IN T-SPICE 

Creating a long test vector in binary format can be tedious if it must be done 

manually and the probability of making mistakes cannot be ignored. These three files 

presented here have been used for transforming data, parameters, and control signals, 

used for Matlab simulations, into T-Spice format including appropriate T-Spice 

commands in a computer process. The outputs from these files are in text-file format, 

which can easily be added together for a complete T-Spice input file. 

a. convert2binary_rawint.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% convert2binary_rawint.m 
% To convert input values to T-Spice input vector format 
% to be used for T-Spice simulation of the DIS chip. 
% Prints modified DRFM-phase data as binary test vector. 
% Created by: 
%  MAJ Stig Ekestorm, Feb -00 
%  Naval Postgraduate School 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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set = 1; %what set of radar pulses 
norp = 1; %number of radar pulses in 
one set 
norpl = 1; %number of radar pulses in 
one set 

%nDopplerCell=8; 
%nRangeCell=10; 
nDopplerCell=64; 
nRangeCel1=62; 
pw=400; 
numzero=31; 

drfm=ones(nDopplerCell,nRangeCell); 

fid = fopen('rawintTspice.txt','r'); %open rawint.txt to be read 
for j = 1:nDopplerCell 

for k = 1:nRangeCell-1 
drfm(j,k) = fscanf(fid,'%d',1); 
comma = fscanf(fid,'%c',1); 

end 
drfm(j,nRangeCell) = fscanf(fid, '%d',1); 

end 
fclose(fid); 

fl = fopen('drfm_binl.txt' , 'W); %DRFM-phase data in bimary, 
intermediate file 
for j = 1:nDopplerCell 

%fprintf(fl,'\r\n'); 
%fprintf(fl,'%s%d','Radar Pulse: ',j); 
%fprintf(fl,'\r\n'); 
for k = 1:nRangeCell 

drfm_bin = dec2two(drfm(j,k),6,0); 
fprintf(f1,' %d',drfm_bin(1,3:7)); 
fprintf(fl,'\r\n'); 

end 
end 
fclose(fl); 

drfm2=zeros(nDopplerCell*nRangeCell,5); 
fid = fopen('drfm_binl.txt','r'); % 
for j = l:nDopplerCell*nRangeCell 

for k = 1:4 
drfm2(j,k) = fscanf(fid,'%d',1); 

end 
drfm2(j,5) = fscanf(fid,'%d',1); 

end 
fclose(fid); 

drfm3=drfm2'; 

f2 = fopen("drfm_bin2.txt','W); %DRFM-phase data in binary 
f3 = fopen('drfm_bin3.txt', 'W); %DRFM-phase data in binary, T-Spice 

format 
for j = 1:5 

for k = 1:nDopplerCell*nRangeCell 
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if j==l & k==l, 
fprintf(f3,'%s','VinPhase4 Phase4 Gnd bit      ({'); 

end 
if j==2 & k==l, 

fprintf(f3, '%s' , 'VinPhase3 Phase3 Gnd bit      ({'); 
end 
if j==3 & k==l, 

fprintf(f3,'%s','VinPhase2 Phase2 Gnd bit      ({'); 
end 
if j==4 &  k==l, 

fprintf(f3,'%s','VinPhasel Phasel Gnd bit      {{'),- 
end 
if j==5 & k==l, 

fprintf(f3, '%s' , 'VinPhaseO PhaseO Gnd bit      ({'); 
end 
drfm_bin = drfm3(j, k) ; 
fprintf(f2,'%d',drfm_bin); 
fprintf(f3,'%d',drfm_bin); 

end 
fprintf(f3,'%s','} on=5.0 off=0.0 pw=■,num2str(pw),'n)'); 
fprintf(f2,'\r\n'); 
fprintf(f3,'\r\n'); 

end 
fclose(f2); 
fclose(f3); 

drfm4 = []; 
zeropadstart = zeros(5,7);    %1 for sync clear, 6 for loading gain and 
phase mudulation coefficients 
zeropad = zeros(5,numzero);   %31 for reading out results between radar 
pulses 
for k = l:nDopplerCell 

if k==l, 
drfm4 = [drfm4,zeropadstart,drfm3(1:5,1:nRangeCell)]; 

else 
drfm4 = [drfm4,zeropad,drfm3(1:5, (k- 

1)*nRangeCell+l:k*nRangeCell)] ; 
end 

end 
drfm4 = [drfm4,zeropad]; 

f4 = fopen{'converted_rawint_l.txt',''w'); %DRFM-phase data in binary, 
padded with 31 col's of zeros after every radar pulse, T-Spice format 

start = (1+6)+(set-l)*norpl*(62+31) + 1;  %start bit of the set 
if set == 1 %lst set (special case) 

start = 1; %start bit is then the 1st 
bit 
end 
stop = (start-1) + norp*(62+31); %stop bit of the set 
if start == 1 %lst set (special case) 

stop = (1+6) + norp*(62+31); %7 bits for sync clear and 
load, then 3 radar pulses (3* (62 + 31)) 
end 

for j = 1:5 
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for k = start:stop %from start bit to stop bit 
%for k = 1:length(drfm4) 
%length(zeropadstart)+nDopplerCell*(nRangeCell+length(zeropad)) 

if j==l & k==start, 
fprintf(f4,'%s','VinPhase4 Phase4 Gnd bit    ({'); 
if k>l 

fprintf (f 4, '%s\ '0000000'); 
end 

end 
if j==2 & k==start, 

fprintf(f4,'%s','VinPhase3 Phase3 Gnd bit      ({'); 
if k>l 

fprintf(f4, '%s', '0000000 ' ); 
end 

end 
if j==3 & k==start, 

fprintf(f4,'%s','VinPhase2 Phase2 Gnd bit      ({'); 
if k>l 

fprintf(f4, •%s ' , '0000000') ; 
end 

end 
if j==4 & k==start, 

fprintf(f4,'%s','VinPhasel Phasel Gnd bit      ({'); 
if k>l 

fprintf(f4, '%s' , '0000000'); 
end 

end 
if j==5 & k==start, 

fprintf(f4,'%s','VinPhaseO PhaseO Gnd bit      ({'); 
if k>l 

fprintf(f4, '%s', '0000000'),- 
end 

end 
drfm_bin = drfm4{j,k); 
fprintf(f4,'%d',drfm_bin); 

end 
fprintf(f4, '%s','} on=5.0 off=0.0 pw=',num2str(pw),'n)'); 
fprintf(f4,'\r\n'); 

end 
fprintf(f4, '%s ', ' * ') ; 
fprintf(f4,'\r\n'); 
fclose(f4); 

save converted_rawint drfm4 

%end of file 

b. convert2binary_para.m 

% convert2binary_para.m 
% To convert input values to T-Spice input vector format 
% to be used for T-Spice simulation of the DIS chip. 
% Prints modified gain and phase modulation parameter data as binary 

267 



% test vector. 
% Created by: 
%  MAJ Stig Ekestorm, Feb -00 
%  Naval Postgraduate School 
0.0,0,0,0, 0.0.0.0.0.0.0.0.0.0.0.0,0-0.0, 0.0,0.0, o, o, c, o, o. 5.9. 0,0.0.0,0,a o, o. Q, o, p, o. o, 9,0, 0,9,9,9,9,0,0,0,9,0,0,0,0,0,0,0,0,0,0.0,0,0,0,0, 
t^M^tt^^t^^^^ti^tt^^^^^H^^to^^^^Uoo^o^^u^u^u^ o'ö'O'o-o o T> o o o o o o o o o 

set = 1; 
norp = 1; 
in the set 
norpl = 1; 
in the set 

%what set of radar pulses 
%number of radar pulses used 

%number of radar pulses used 

%simulation parameters 
pw=400; 
pulse in T-Spice 
pbit=4; 
Phase Modulation Coefficient 

%extract values - select input file 
%fid = fopen('para.txt', 'r') ; 
%fid = fopen('paraMULTI.txt' , 'r') ; 
read 
%fid = fopen('paraMULTIq5.txt', 'r') ; 
read 
%fid = fopen{'paraMULTIq4.txt' , 'r' ) ; 
read 
fid = fopen('paraMULTIq4Ship3_64n.txt' 
paraMULTIq4ShipXXX.txt to be read 

%pulsewidth of simulation 

%# of bits used to represent 

%open para.txt to be read 
%open paraMULTI.txt to be 

%open paraMULTIqS.txt to be 

%open paraMULTIq4.txt to be 

1 r');    %open 

%# of DRFM-phase samples per 

%# of Tapline used, target 

%extract scaling parameters 
for j = 1:3 

if j==l, 
nRangeCell = fscanf(fid, '%d',1); 

radar pulse, range-bins 
end 
if j==2, 

nDopplerCell = fscanf(fid,'%d',1);  %# of radar pulses, Doppler 
bins 

end 
if j==3, 

targetExtent = fscanf(fid,'%d', 1) 
extent 

end 
end 

%initialize matrices 
gain=zeros(targetExtent,1); 
phase=zeros(nDopplerCell,targetExtent); 

%extract gain modulation values 
for j = 1:nDopplerCell 

for k = 1:targetExtent 
gain(j,k) = fscanf(fid,'%d',1); 

end 
end 
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%extraxt phase modulation values 
for j = l:nDopplerCell 

for k = 1:targetExtent 
phase(j,k) = fscanf(fid,'%d',1); 

end 
end 
fclose(fid); 

%convert gain modulation coefficients 
%adjustment to correct multiplication factors for the amplitude (gain) 
value 
for j = l:nDopplerCell 

for k = 1:targetExtent 
switch gain(j,k) 
case {1} 

gain(j,k)=0;   %no shift, multiplication by 1, hardware bit 
"00" 

case {2} 
gain(j,k)=l;   %shift by 1, multiplication by 2, hardware bit 

"01" 
case {4} 

gain(j,k)=2;   %shift by 2, multiplication by 4, hardware bit 
"10" 

case {8} 
gain(j,k)=3;   %shift by 3, multiplication by 8, hardware bit 

"11" 
end 

end 
end 

f1 = fopen('para_gain_binl.txt','w');  % 
for j = l:nDopplerCell 

for k = 1:targetExtent 
gain_bin = dec2two(gain(j,k),2,0) ; 
fprintf(fl,' %d',gain_bin(l,2:3)); 
fprintf(fl,'\r\n'); 

end 
end 
fclose(fl); 

gain2=zeros(nDopplerCell*targetExtent,2); 
fid = fopen('para_gain_binl.txt','r'); % 
for j = l:nDopplerCell*targetExtent 

for k = 1:2 
gain2(j,k) = fscanf(fid,'%d',l); 

end 
end 
fclose(fid); 

gain2MOD=fliplr(gain2); 
gain3=gain2MOD'; 

f2 = fopen('para_gain_bin2.txt','w');  % 
for j = 1:2 

for k = l:nDopplerCell*targetExtent 
gain_bin = gain3(j,k); 
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fprintf(f2,'%d',gain_bin); 
end 
fprintf(f2,'\r\n'); 

end 
fclose(f2); 

f3 = fopen('para_gain_bin3.txt', 'W) ;  %in format for Toplevel input 
file 
gain4 = zeros(2,nDopplerCell*32) ; 
[row col]=size(gain3(1:2,l:nDopplerCell*targetExtent)); 

for m = l:nDopplerCell 
for j = 1:targetExtent 

for k = 1:2 
if m==l, 

gain4(k,j) = gain3(k,j); 
else 

gain4(k,j+(m-l)*32) = gain3(k,j+(m-1)*targetExtent); 
end 

end 
end 

end 

gain5=reshape(gain4,8*pbit,2*nDopplerCell); 

for j = l:8*pbit 
for k = l:2*nDopplerCell 

fprintf(f3, '%d',gain5(j,k)) ; 
end 
fprintf(f3,'\r\n'); 

end 
fclose(f3); 

%convert phase modulation coefficients 
f4 = fopen('para_phase_binl.txt' , 'w'); % 
for j = l:nDopplerCell 

for k = 1:targetExtent 
phase_bin = dec2two(phase(j , k) , 5, 0) ; 
fprintf(f4,' %d',phase_bin(l,2:pbit+l)); 
fprintf(f4,'\r\n'); 

end 
end 
fclose(f4); 

phase2=zeros(nDopplerCell*targetExtent,pbit); 
fid = fopen('para_phase_binl.txt','r'); % 
for j = l:nDopplerCell*targetExtent 

for k = l:pbit 
phase2(j,k) = fscanf(fid,'%d',1); 

end 
end 
fclose(fid); 

phase2M0D=fliplr(phase2); 
phase3=phase2MOD'; 
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f5 = fopen('para_phase_bin2.txt','w'); % 
for j = lrpbit 

for k = l:nDopplerCell*targetExtent 
phase_bin = phase3(j, k); 
fprintf(f5,'%d',phase_bin); 

end 
fprintf(f5,'\r\n'); 

end 
fclose(f5); 

f6 = fopen('para_phase_bin3.txt','W); %in format for Toplevel input 
file 
phase4 = zeros(pbit,nDopplerCell*32); 
trow col]=size(phase3(l:pbit,l:nDopplerCell*targetExtent)); 

for m = l:nDopplerCell 
for j = 1:targetExtent 

for k = l:pbit 
if m==l, 

phase4(k,j) = phase3(k,j); 
else 

phase4(k,j+(m-l)*32) = phase3(k,j+(m-1)*targetExtent) ; 
end 

end 
end 

end 

phase5=reshape(phase4,8*pbit,4*nDopplerCell); 

for j = l:8*pbit 
for k = l:4*nDopplerCell 

fprintf(f6,'%d',phase5(j,k)); 
end 
fprintf(f6,'\r\n'); 

end 
fclose(f6); 

%make one matrix of Gain and Phase Modulation Coefficients 
phasegain = []; 
zeropadstart = zeros(32,1); %1 for sync clear 
zeropad = zeros(32,nRangeCell+31-6);   %62 for processing DRFM-phase 
data, (31-6) for reading out values and loading new gain and phase 
modulation coefficients 
zeropadend = zeros(32,nRangeCell+31);  %62+31 for the last radar pulse 
and final readout 

start = set*(norpl-l); %start radar pulse of the set 
%start = set*norp + 1; %start radar pulse of the set 
%start = (1+6)+(set-l)*norp*(62+31) + 1;  %start radar pulse of the set 
if set == 1 %lst set (special case) 

start = 1; %start radar pulse is then 
the 1st radar pulse 
end 
stop = set*(norpl-l) + (norp-1); %stop radar pulse of the set 
%stop = set*norp + norp; %stop radar pulse of the set 
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if start == 1 
stop = norp; 

pulses 
end 
%stop = (start-1) + norp*(62+31; 
%if start == 1 
%  stop = (1+6) + norp*(62+31); 
%end 

%lst set (special case) 
%just the number of radar 

%stop radar pulse of the set 
%lst set (special case) 

for k = start:stop 
%for k = l:nDopplerCell 

if k==start, 
%if k==l, 

phasegain = 
[phasegain,zeropadstart, phase5(1:8 *pbit,1:4),gain5(1:8 *pbit,1:2)]; 

else 
phasegain = [phasegain,zeropad,phase5(1:8*pbit,(k- 

l)*4+l:k*4),gain5(l:8*pbit,(k-1)*2+l:k*2)]; 
end 

end 
phasegain = [phasegain,zeropadend]; 

f7 = fopen('converted_para_l.txt','W);   %gain and phase modulation 
coefficients in binary, padded zeros during every radar pulse and time 
for readout, T-Spice format 
for j = l:8*pbit 

for k = 1:length(phasegain) 
if j==l & k==l, 

fprintf(f7,'%s','VinBusO BusO Gnd bit 
end 
if j==2 Sc  k==l, 

fprintf (f7, "■ 
end 
if j==3 Sc  k==l, 

fprintf (f7, "■ 
end 
if j==4 & k==l, 

fprintf (f7, '" 
end 
if j==5 & k==l, 

fprintf(f7, " 
end 
if j==6 & k==l, 

fprintf (f7, •'■ 
end 
if j==7 Sc  k==l, 

fprintf (f 7, •' 
end 
if j==8 & k==l, 

fprintf (f 7, •'■ 
end 
if j==9 & k==l, 

fprintf (f 7, "■ 
end 
if j==10 & k==l, 

fprintf(f7,'%s','VinBus9 Bus9 Gnd bit 

'%s','VinBusl Busl Gnd bit 

'%s','VinBus2 Bus2 Gnd bit 

'%s','VinBus3 Bus3 Gnd bit 

'%s','VinBus4 Bus4 Gnd bit 

'%s','VinBus5 Bus5 Gnd bit 

%s','VinBus6 Bus6 Gnd bit 

'%s','VinBus7 Bus7 Gnd bit 

'%s','VinBus8 Bus8 Gnd bit 
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end 
if j==ll & k==l, 

fprintf(f7,'%s','VinBuslO 
end 
if j==12 & k==l, 

fprintf(f7,'%s','VinBusll 
end 
if j==13 & k==l, 

fprintf(f7,'%s','VinBusl2 
end 
if j==14 & k==l, 

fprintf(f7,'Is1,'VinBusl3 
end 
if j==15 & k==l, 

fprintf(f7,'%s','VinBusl4 
end 
if j==16 & k==l, 

fprintf(f7,'%s','VinBusl5 
end 
if j==17 & k==l, 

fprintf(f7, '%s ' , 'VinBusl6 
end 
if j==18 & k==l, 

fprintf(f7,'%s','VinBusl7 
end 
if j==19 & k==l, 

fprintf(f7,'%s','VinBusl8 
end 
if j==20 & k==l, 

fprintf(f7,'%s','VinBusl9 
end 
if j==21 & k==l, 

fprintf(f7,'%s','VinBus20 
end 
if j==22 & k==l, 

fprintf(f7, '%s ' , 'VinBus21 
end 
if j==23 & k==l, 

fprintf(f7,'%s','VinBus22 
end 
if j==24 & k==l, 

fprintf(f7,'%s','VinBus23 
end 
if j==25 & k==l, 

fprintf(f7,'%s','VinBus24 
end 
if j==26 & k==l, 

fprintf(f7,'%s','VinBus25 
end 
if j==27 & k==l, 

fprintf(f7,'%s','VinBus26 
end 
if j==28 & k==l, 

fprintf(f7,'%s','VinBus27 
end 
if j==29 & k==l, 

Bus10 Gnd bit 

Bus11 Gnd bit 

Bus12 Gnd bit 

Busl3 Gnd bit 

Bus14 Gnd bit 

Bus15 Gnd bit 

Bus16 Gnd bit 

Busl7 Gnd bit 

Bus18 Gnd bit 

Bus19 Gnd bit 

Bus20 Gnd bit 

Bus21 Gnd bit 

Bus22 Gnd bit 

Bus23 Gnd bit 

Bus24 Gnd bit 

Bus25 Gnd bit 

Bus26 Gnd bit 

Bus27 Gnd bit 
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fprintf(f7,•%s','VinBus28 Bus28 Gnd bit      ({'); 
end      '% 
if j==30 & k==l, 

fprintf(f7,'%s','VinBus29 Bus29 Gnd bit      ({'); 
end 
if j==31 & k==l, 

fprintf(f7,■%s','VinBus30 Bus3 0 Gnd bit      ({'); 
end 
if j==32 & k==l, 

fprintf(f7,'%s','VinBus31 Bus31 Gnd bit      ({'); 
end 
phasegain_bin = phasegain(j,k); 
fprintf(f7, '%d',phasegain_bin) ; 

end 
fprintf(f7,'%s','} on=5.0 off=0.0 pw=',num2str(pw),'n)'); 
fprintf(f7,'\r\n'); 

end 
fprintf(f7,'%s' , '*'); 
fprintf(f7,'\r\n'); 
fclose(f7); 

%end of file 

C.  convert2binary_control.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% convert2binary_control.m 
% To convert input values to T-Spice input vector format 
% to be used for T-Spice simulation of the DIS chip. 
% Prints chip control signals as binary test vector. 
% Created by: 
%  MAJ Stig Ekestorm, Feb -00 
%  Naval Postgraduate School 

nurp = 1; %number of radar pulses used 
in the set 
nurpl = 1; %number of radar pulses used 
in the set 
nDopplerCell=nurp; 
%nDopplerCell=64; 
nRangeCel1=62; 
numzero=31; 
pwc=200; %pulsewidth of clock pulse in 
T-Spice 
pw=2*pwc; %pulsewidth of signal pulse 
in T-Spice 
load converted_rawint %variable is drfm4 

fl = fopen('converted_control_l.txt' , 'W);   %control signals in 
binary, T-Spice format 
% 
fprintf(fl,'%s','*'); 
fprintf(fl,'\r\n'); 
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%clock 
fprintf(fl, '%s', 'VinCLK CLK Gnd bit ({01'); 
fprintf(fl,'%s','} on=5.0 off=0.0 pw=',num2str(pwc),'n)'); 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s','*' ) ; 
fprintf(fl,'\r\n'); 
%hold 
fprintf(fl, '%s' , 'VinHLD HLD Gnd bit ({0'); 
fprintf(fl, '%s' ,' } on=5.0 off=0.0 pw=',num2str(pw), 'n) '); 
fprintf(fl,'\r\n'); 
%load 
onel=ones(1,1+6+nurp*(62+31)-1); 
%onel=ones(1,length(drfm4)-1); 
for k = 1:1+6+nurp*(62+31) 
%for k = 1:length(drfm4) 

if k==l' 
fprintf(fl, '%s', 'VinLD LD Gnd bit ({0'); 

else 
fprintf(fl,'%d',onel(l,k-l)); 

end 
end 
fprintf(fl, '%s','} on=5.0 off=0.0 pw=',num2str(pw),*n) '); 
fprintf(fl,'\r\n'); 
%scan right 
fprintf(f1, '%s', 'VinSR SR Gnd bit ({0 ' ) ; 
fprintf(fl, '%s','} on=5.0 off=0.0 pw=',num2str(pw), 'n) '); 
fprintf(fl,'\r\n'); 
%scan left 
fprintf(fl,'%s','VinSL SL Gnd bit ({0'); 
fprintf(fl, '%s" ,'} on=5.0 off=0.0 pw=',num2str(pw), 'n) '); 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s','*■); 
fprintf(fl,'\r\n'); 
%scan right in 
fprintf(fl,'%s','VinS_P_Test_Rin S_P_Test_Rin Gnd bit    ({0'); 
fprintf(fl,'%s','} on=5.0 off=0.0 pw=',num2str(pw),'n)'); 
fprintf(fl,'\r\n'); 
%scan left in 
fprintf(fl,'%s','VinS_P_Test_Lin S_P_Test_Lin Gnd bit    ({0'); 
fprintf(fl,'%s','} on=5.0 off=0.0 pw=',num2str(pw),'n)'); 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s','*'); 
fprintf(fl,"\r\n'); 
%range-bin valid 
one2 = ones(1,nRangeCel1); 
zero2 = zeros(l,numzero); 
block = []; 
for k = l:nDopplerCell 

block = [block,one2,zero2]; 
end 
for k = 1:length(block)+1 

if k==l' 
fprintf(fl,'%s','VinRange_bin_valid Range_bin_valid Gnd bit 
({0000000'); 

else 
fprintf(f1,'%d',block(1,k-1)); 
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end 
end 
fprintf(fl, '%s' , '} on=5.0 off=0.0 pw=',num2str(pw),'n)'); 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s','*'); 
fprintf(fl,'\r\n'); 
%load phase A 
zero3 = zeros(l,nRangeCell+numzero-6); 
PhaseA = [1,0,0,0,0,0]; 
LoadPhaseA = [ ] ; 
for k = l:nDopplerCell 

LoadPhaseA = [LoadPhaseA,PhaseA,zero3]; 
end 
for k = 1:length(LoadPhaseA)+1 

if k==l' 
fprintf(fl,'%s','VinLD_Phase_SupTap_A LD_Phase_SupTap_A Gnd bit 
({0'); 

else 
fprintf(fl,'%d',LoadPhaseA(l,k-l)); 

end 
end 
fprintf(fl, '%s','000000} on=5.0 off=0.0 pw=',num2str(pw) , 'n) '); 
fprintf(fl,'\r\n'); 
%load phase B 
zero3 = zeros(l,nRangeCell+numzero-6); 
PhaseB = [0,1,0,0,0,0]; 
LoadPhaseB = [ ] ; 
for k = l:nDopplerCell 

LoadPhaseB = [LoadPhaseB,PhaseB,zero3]; 
end 
for k = 1:length(LoadPhaseB)+1 

if k==l' 
fprintf(fl,'%s','VinLD_Phase_SupTap_B LD_Phase_SupTap_B Gnd bit 
({0'); 

else 
fprintf(fl,'%d',LoadPhaseB(l,k-l)); 

end 
end 
fprintf(fl, '%s', '000000} on=5.0 off=0.0 pw=',num2str(pw) ,'n) ' ); 
fprintf(fl,'\r\n'); 
%load phase C 
zero3 = zeros (l,nRangeCell+numzero-6) ; 
PhaseC = [0,0,1,0,0,0]; 
LoadPhaseC = []; 
for k = l:nDopplerCell 

LoadPhaseC = [LoadPhaseC,PhaseC,zero3]; 
end 
for k = 1:length(LoadPhaseC)+l 

if k==l* 
fprintf(fl, '%s', 'VinLD_Phase_SupTap_C LD_Phase_SupTap_C Gnd bit 
({0'); 

else 
fprintf(f1,'%d',LoadPhaseC(1,k-1)); 

end 
end 
fprintf(fl, '%s','000000} on=5.0 off=0.0 pw=',num2str(pw) ,'n) '); 
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fprintf(fl,'\r\n'); 
%load phase D 
zero3 = zeros(l,nRangeCell+numzero-6); 
PhaseD = [0,0,0,1,0,0]; 
LoadPhaseD = [ ] ; 
for k = l:nDopplerCell 

LoadPhaseD = [LoadPhaseD,PhaseD,zero3]; 
end 
for k = 1:length(LoadPhaseD)+1 

if k==l' 
fprintf(fl,'%s','VinLD_Phase_SupTap_D LD_Phase_SupTap_D Gnd bit 
({0'); 

else 
fprintf(f1,'%d',LoadPhaseD(1,k-1)); 

end 
end 
fprintf (fl, ' %s" , '000000} on=5.0 off=0.0 pw=',num2str(pw),'n)'); 
fprintf(fl,'\r\n'); 
fprintf(fl,'%s','*'); 
fprintf(fl,'\r\n'); 
%use phase 
zero3 = zeros(l,nRangeCell+numzero-6); 
Phaseinc = [0,0,0,0,1,0]; 
UsePhaseinc = [ ] ;. 
for k = l:nDopplerCell 

UsePhaseinc = [UsePhaseinc,Phaseinc,zero3]; 
end 
for k = 1:length(UsePhaseinc)+1 

if k==l' 
fprintf(fl,'%s','Vinuse_Phase_inc use_Phase_inc Gnd bit 
({0'); 

else 
fprintf(fl,'%d',UsePhaseinc(1,k-1)); 

end 
end 
fprintf(fl, '%s' , '000000} on=5.0 off=0.0 pw= ' ,nura2str (pw) , 'n) ' ) ; 
fprintf(fl,'\r\n'); 
fprintf(fl, '%s' , '*'); 
fprintf(fl,'\r\n'); 
%load gain AB 
zero3 = zeros (l,nRangeCell+niamzero-6) ; 
GainAB = [0,0,0,0,1,0]; 
LoadGainAB = []; 
for k = lrnDopplerCell 

LoadGainAB = [LoadGainAB,GainAB,zero3]; 
end 
for k = 1:length(LoadGainAB)+1 

if k==l' 
fprintf(fl,'%s','VinLD_Gain_SupTap_AB LD_Gain_SupTap_AB Gnd bit 
({0'); 

else 
fprintf(f1,'%d',LoadGainAB(1,k-1)); 

end 
end 
fprintf(fl, '%s','000000} on=5.0 off=0.0 pw=',num2str(pw) , 'n) '); 
fprintf(fl,'\r\n'); 
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%load gain CD 
zero3 = zeros(l,nRangeCell+numzero-6) ; 
GainCD = [0,0,0,0,0,1]; 
LoadGainCD = [ ] ; 
for k = l:nDopplerCell 

LoadGainCD = [LoadGainCD,GainCD,zero3]; 
end 
for k = 1:length(LoadGainCD)+1 

if k==l' 
fprintf(fl,'%s','VinLD_Gain_SupTap_CD LD_Gain_SupTap_CD Gnd bit 
({0'); 

else 
fprintf(f1, '%d',LoadGainCD(1,k-1)) ; 

end 
end 
fprintf(fl, '%s' , '000000} on=5.0 off=0.0 pw=',num2str(pw), 'n) '); 
fprintf(fl,'\r\n'); 
fprintf(fl, '%s' , '*'); 
fprintf(fl,'\r\n'); 
% 
fclose(fl); 
%end of file 

5.       COMPARING MATLAB AND T-SPICE SIMULATIONS 

Examining the outputs from T-Spice simulations requires some sort of post-data 

treatment. In this case a hard-limiter script-file converts output voltage levels from 

T-Spice simulations into binary and decimal representation. These values can thereafter 

be used i.e. by the compare script-file to compare Matlab simulation results with T-Spice 

outputs. 

a. hard_limiter.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% hard_limiter.m 
% Hard Limiter 
% - reads modified text files generated from T-Spice output files 
% - extracts and assigns values to variables 
% - hard limiters values into binary representation 
% - writes results in decimal form to text files 
% - writes results in 2-complement binary form to text files 
% Created by: 
%  MAJ Stig Ekestorm, Nov -99, Modified Jan -00 
%  Naval Postgraduate School 
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% *** READ IN VALUES FROM T-SPICE OUTPUT FILES (in text file format) 
* ** 

clear %clear all variables 

%specify the number of rows and columns for the original text files 
row=207; 
%colin=6; 
input 
Colout=17; 
output 

%# of rows 
%# of columns for 

%# of columns for 

%open original text files to read values 
%fin = fopen('     .txt','r'); 
foutl = fopen('Switch_I_OutputsMODld.txt' , 'r') ; 
name 
foutQ = fopen('Switch_Q_OutputsMODld.txt' , ' r ' ) ; 
name 

^specify file name 
%specify file 

%specify file 

%initalize 
%tmpin=zeros (row, colin) ,- 
tmpoutI=zeros(row,colout); 
tmpoutQ=zeros(row,colout); 

%extract values from the original text files 
%for idx2=l:row, 
%   for idx3=l:colin, 
%      tmpin(idx2,idx3)=fscanf(fin, '%f ' ,1); 
%   end 
%end 
for idx2=l:row, 
result out 

for idx3=l:colout, 
1st column is time 

tmpoutI(idx2,idx3)=fscanf(foutl,'%f',1); 
values 

tmpoutQ(idx2,idx3)=fscanf(foutQ,'%f',1); 
values 

end 
end 

%# of rows 
%# of columns 
%reads in the values 

%# of rows of valid 

%# of columns, OBS: 

%reads in the I 

%reads in the Q 

%close original text files 
%fclose(fin); 
fclose(foutl); 
fclose(foutQ); 

% *** EXTRACT/SEPARATE VARIABLES 

%initalize 
time=zeros(row,1); 
%in=zeros(row,colin-1); 
outI=zeros(row,colout-l); 
outQ=zeros(row,colout-1) ; 
%input=zeros(row,colin-1) ; 
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Iout=zeros(row,colout-l) ; 
Qout=zeros(row,colout-1); 

%assign values to correct variable 
time=tmpoutI(:, 1) ; 
%in=tmpin(:,2:colin); 
outI=tmpoutI(:,2:colout); 
outQ=tmpoutQ(:,2:colout); 

% *** HARD LIMITER *** 

%hard limiter 
for idx4=l:row, 

%for idx5=l:colin-1, 
%  if in(idx4,idx5)<=2.5, 
%    input(idx4,idx5)=0; 
%  else 
%    input(idx4,idx5)=l; 
%  end 
%end 
for idx5=l:colout-1, 

if outI(idx4,idx5)<=2.5, 
lout(idx4,idx5)=0 ; 

else 
lout(idx4,idx5)=1; 

end 
end 
for idx5=l:colout-1, 

if outQ(idx4,idx5)<=2.5, 
Qout(idx4,idx5)=0; 

else 
Qout(idx4,idx5)=1 ; 

end 
end 

end 

%if less then 2.5V 
%set bit to "0" 
%if higher then 2.5V 
%set bit to "1" 

%if less then 2.5V 
%set bit to "0" 
%if higher then 2.5V 
%set bit to "1" 

%if less then 2.5V 
%set bit to "0" 
%if higher then 2.5V 
%set bit to "1" 

%flip matrices to get MSB to the left, and LSB to the right 
%check the order of the values in the text file to confirm if this is 
necessary 
%input=fliplr(input); 
Iout=fliplr(lout); 
Qout=fliplr(Qout); 

% *** PRINT TO MATLAB COMMAND WINDOW *** 

%print input and output matrices to MATLAB Command Window 
%disp(' ') 
%disp('Input vectors:') 
%input 
%disp(' ') 
%disp('Output vectors:') 
%Iout 
%Qout 
%disp(' ') 

% *** PRINT TO TEXT FILES *** 
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%print I- and Q-output in decimal values to two new separate text files 
fl=fopen('IoutputsDECld.txt','w');       %open text file to write I- 
results to 
f2=fopen('QoutputsDECld.txt','W);       %open text file to write Q- 
results to 
%print I- and Q-output in 2-complement binary representation to two new 
separate text files 
f3=fopen('IoutputsBINld.txt',"W);       %open text file to write I- 
results to 
f4=fopen('QoutputsBINld.txt',"W);       %open text file to write Q- 
results to 

Iout_dec=two2dec(Iout,7); ^convert to decimal values 
Qout_dec=two2dec(Qout,7); %convert to decimal values 

fprintf(fl,'%12.8f\n',Iout_dec); %write I-values as decimal 
value 
fprintf(f2,'%12.8f\n',Qout_dec); %write Q-values as decimal 
value 
%fprintf(fl,'%d\n',Iout_dec); %write I-values as decimal value 
%fprintf(f2,'%d\n',Qout_dec); %write Q-values as decimal value 

for idx=l:row, 
fprintf(f3,'%d',dec2two(Iout_dec(idx),8,7)); %write I-values as 2- 

complement binary 
fprintf(f3,'\r\n'); 
fprintf(f4,'%d',dec2two(Qout_dec(idx),8,7)); %write Q-values as 2- 

complement binary 
fprintf(f4,'\r\n'); 

end 

fclose(fl); %close text file that results 
has been written to 
fclose(f2); %close text file that results 
has been written to 
fclose(f3); %close text file that results 
has been written to 
fclose(f4); %close text file that results 
has been written to 
%end of file 

b. compare.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% compare.m 
% Compare Matlab and T-Spice outputs 
% - plots Matlab outputs for I and Q channel 
% - plots T-Spice outputs for I and Q channel 
% - plots difference between Matlab and T-Spice outputs for I and Q 

%   channel 
% Created by: 
%  MAJ Stig Ekestorm, Nov -99, Modified Jan -00 
%  Naval Postgraduate School 

281 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% *** READ IN VALUES FROM T-SPICE OUTPUT FILES (in text file format) 
•k -k -k 

%clear %clear all variables 

%specify the number of values to read from the original text files 
%num=93; %# of values, 1st radar 
pulse 
num=207; %# of values, total # of 
valid outputs from this T-Spice run 

%open original text files to read values 
fTI = fopen('IoutputsDECld.txt', 'r'); %specify file name 
£MI = fopen('lout.txt','r'); %specify file name 
fTQ = fopen('QoutputsDECld.txt', 'r'); %specify file name 
fMQ = fopen('Qout.txt','r'); %specify file name 

%extract values from the original text files 
tmpTI = fscanf(fTI, '%f ' ) ; %reads in the values 
tmpMI = fscanf(fMI, '%f') ; %reads in the values 
TI = tmpTI(l:num); 
MI = tmpMI(1:num); 
tmpTQ = fscanf(fTQ,'%f'); %reads in the values 
tmpMQ = fscanf(fMQ, '%f'); %reads in the values 
TI = tmpTI(l:num); 
MI = tmpMI(1:num); 
TQ = tmpTQ(1:num); 
MQ = tmpMQ(1:num); 

fclose(fTI); 
fclose(fMI); 
fclose(fTQ); 
fclose(fMQ); 

%plot results 
figure(1) 
subplot(2,1,1) 
plot(MI(62+32-1:2*(62+32-1)),'bo') 
hold on 
plot(TI(62+32-1:2*(62+32-1)),'rx') 
hold off 
grid 
title('Comparing Matlab and T-Spice outputs - I-Channel') 
xlabel('Data■), ylabel('Amplitude') 
legend('Matlab','T-Spice') 
axis([0 93 -100 100]) 
subplot(2,1,2) 
plot(MI(62+32-l:2*(62+32-l))-TI(62+32-1:2*(62+32-1)) , 'g') 
grid 
title('Difference (Matlab and T-Spice) - I-Channel') 
xlabel('Data') , ylabel('Amplitude') 
legend('Difference') 
axis([0 93 -11]) 
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figure(2) 
subplot(2,1,1) 
plot(MQ(62+32-1:2*(62+32-1)),'bo') 
hold on 
plot(TQ(62+32-1:2*(62+32-1)),'rx') 
hold off 
grid 
title('Comparing Matlab and T-Spice outputs - Q-Channel') 
xlabel('Data'), ylabel('Amplitude') 
legend('Matlab','T-Spice') 
axis([0 93 -100 100]) 
subplot(2,1,2) 
plot(MQ(62+32-l:2*(62+32-l))-TQ(62+32-l:2*(62+32-1)),'g') 
grid 
title('Difference (Matlab and T-Spice) - Q-Channel') 
xlabel('Data'), ylabel('Amplitude') 
legend('Difference') 
axis([0 93 -1 1]) 

%end of file 
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6.      BIT-VICE    TRUNCATION    OF    TWO'S    COMPLEMENT 

BINARY REPRESENTATION 

A script file is presented that produces an example of how one can truncate values 

in two's complement binary representation for examining different effects. 

a. truncate.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% truncate.m 
% Test of how to truncate a decimal number representing a binary word 
% Created by: 
%  MAJ Stig Ekestorm, Mar -00 
%  Naval Postgraduate School 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

format long 

%a number, 8 integer bits and 7 fraction bits 
aa_bit = zeros(1,15); 
for idx =0:7 

aa_bit(8+idx) = 2^idx; 
end 
for idx = 1:7 

aa_bit(idx) = 2A(idx-8); 
end 

%bit-by-bit value 
aa_bit 

%make the binary word into a decimal number 
aa_dec = 0; 
for idx =1:15 

aa_dec = aa_dec + aa_bit(1,idx); 
end 

%original decimal number 
aa_dec 

%convert original number from decimal to 2-complement binary 
aa_bin = dec2 two(aa_dec,8,7) 

%truncate the binary word (i.e. take out the two least significant 
bits) 
aa_bin_trunc = aa_bin(1,1:length(aa_bin)-2) 
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%convert the truncated binary word from 2-compIement to decimal 
aa_dec_trunc = two2dec(aa_bin_trunc,5) 

9.**********************+*********************************** 

%end of file 

(Example-Printout from Matlab Command Window) 

» clear 
» truncate 

aa_bit = 

1.0e+002 * 

Columns 1 through 4 
0.00007812500000 

0.00062500000000 
0.00015625000000   0.00031250000000 

Columns 5 through 8 
0.00125000000000   0.00250000000000 

0.01000000000000 

Columns 9 through 12 
0.02000000000000  0.04000000000000 

0.16000000000000 

Columns 13 through 15 
0.32000000000000   0.64000000000000 

0.00500000000000 

0.08000000000000 

1.28000000000000 

aa_dec = 
2.559921875000000e+002 

aa_bin = 
Columns  1  through 12 

0 1 1 1 

Columns  13  through 16 
1111 

aa_bin_trunc = 
Columns  1  through 12 

0 111 

Columns 13 through 14 
1 1 

aa_dec_trunc = 
2.559687500000000e+002 
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APPENDIX B. VISUAL BASIC CODES 

1.      VISUAL BASIC PROJECT TO RUN THE DIS CONCEPT 

DEMONSTRATOR 

To be able to make the comparison between the Matlab simulation of the DIS and 

the DIS implemented using FPGA technology, one must add an intermediate step to the 

simulation flow described in Chapter V. After the Matlab file mathostvX.m has been 

executed, then all the necessary inputs are available in text files to run the hardware 

implementation of the DIS. 

The interface with the FPGA computer board is a set of Visual Basic files 

composed into a Visual Basic project called FlexTest (Flextest.vbp). The files in the 

HexTest project are included below. The files are 

• file.bas 

• Flecfunc.bas 

• GlobaLbas 

• Main.bas 

• the_isar.bas 

To be able to compile and run the project and the board properly, the necessary 

files have to be located in a file structure with the following path 

c:\temaseftdenise\thesisyinal_design\vbfiles due to hard coding issues. To run the Visual 

Basic project HexTest, the user needs to open the project, open the the_isar.bas file, and 
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then run the file. A graphical user interface (GUI) will show up on the computer display 

to visualize the signal processing taken place in the taps of the DIS. 

a. file.bas 

Attribute VB_Name = "fileio" 
Public nRangeCell As Integer 
Public nDopplerCell As Integer 
Public targetExtent As Integer 
Public GainO As Integer 
Public Phi() As Integer 
Public DRFMO As Integer 
Public sine() As Double 
Public cosine() As Double 

Public Sub readParaO 
' This sub-routine reads the processing parameters generated by 

Matlab (reading from paraVB.txt) 
Dim idx As Integer 
Dim idxl As Integer 

Open "c:/temasek/denise/thesis/final_design/vbfiles/para.txt" For 
Input As #1 

' read in number of range cells (number of samples of the chirp 
signal) 

Input #1, nRangeCell 
flexform.ParaText(0) = Val(nRangeCell) 

' read in number of Doppler cells (ndop) first 
Input #1, nDopplerCell 
flexform.ParaText(1) = Val(nDopplerCell) 

' next read in the target extent 
Input #1, targetExtent 
flexform.ParaText(2) = Val(targetExtent) 

' read in gain values (number of gain values = targetExtent) 
1 ReDim Gain(targetExtent - 1) As Integer 
ReDim Gain(3) As Integer 
Gain(O) = 0 
Gain(l) = 0 
Gain(2) = 0 
For idx = 0 To targetExtent - 1 

Input #1, Gain(idx) 
' adjustment to correct multiplication factors for the 

amplitude (gain) value 
Select Case Gain(idx) 

Case Is = 1 
Gain(idx) =0   'no shift, multiplication by 1, hardware 

bit "00" 
Case Is = 2 
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Gain(idx) = 1   ' shift by 1, multiplication by 2, hardware 

Case Is = 4 
Gain(idx) = 2   ' shift by 2, multiplication by 4, hardware 

Case Is = 8 
Gain(idx) = 3   ' shift by 3, multiplication by 8, hardware 

bit "01" 

bit "10" 

bit "11" 
End Select 

Next idx 

■ read in the next nDoppler values 
ReDim Phi(nDopplerCell - 1, targetExtent - 1) As Integer 
For idx = 0 To nDopplerCell - 1 

For idxl = 0 To targetExtent - 1 
Input #1, Phi(idx, idxl) 

Next idxl 
Next idx 
Close #1 

End Sub 
Public Sub readRawO 

• This sub-routine reads the raw matlab-simulated ISAR data 

Dim idxl As Integer 
Dim idx2 As Integer 

Open "c:/temasek/denise/thesis/final_design/vbfiles/rawint.txt" For 
Input As #1 

■ Create the array dynamically 
ReDim DRFM(nDopplerCell - 1, nRangeCell + targetExtent - 1) As 

Integer 

• read in the first samples of the first pulse 
• these values are phase values from the DFRM 
For idxl = 0 To nDopplerCell - 1 

For idx2 = 0 To nRangeCell - 1 
Input #1, DRFM(idxl, idx2) 

Next idx2 
Next idxl 
Close #1 

End Sub 
Public Sub readCosineO 

• This sub-routine reads the raw matlab-simulated ISAR data 

Dim idxl As Integer 
Dim tmp As String 

Open "c: /temasek/denise/thesis/final_design/vbfiles/cosine.txt" For 

Input As #1 

■ Create the array dynamically 
ReDim cosine(32) As Double 

• read in the first samples of the first pulse 
■ these values are phase values from the DFRM 
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For idxl = 0 To 31 
Line Input #1, tmp 
cosine(idxl) = Val(tmp) 

Next idxl 
Close #1 

End Sub 
Public Sub readSine() 

' This sub-routine reads the raw matlab-Simulated ISAR data 

Dim idxl As Integer 

Open "c:/temasek/denise/thesis/final_design/vbfiles/sine.txt" For 
Input As #1 

' Create the array dynamically 
ReDim sine(32) As Double 
Dim tmp As String 

' read in the first samples of the first pulse 
' these values are phase values from the DFRM 
For idxl = 0 To 31 

Line Input #1, tmp 
sine(idxl) = Val(tmp) 

Next idxl 
Close #1 

End Sub 

b. flecfunc.bas 

Attribute VB_Name = "FlexFunc" 
Option Explicit 
U4 Flex Programming Logic Control & Status Ports 

Control 

3 

Port 380/382 - Write A/B A/B 
DO  = nConfig U4-H10/B8 Flex U27/U28 - AU1 
Dl  = nCS U4-J11/F9 Flex U27/U28 - A35 

CS Flex U27/U28 - C33 (HI) 
D2  = nClr U4-D11/F3 Flex U27/U28 - C17 
D3  = OutEn U4-K3/K10 Flex U27/U28 - C19 

Port 380/382 - Read 
D4 = Init_Done U4-L3/L2 Flex U27/U28 - R35 
D5 = Conf_Done U4-L4/K4 Flex U27/U28 - C37 
D6 = nStatus U4-L10/L9 Flex U27/U28 - AU37 
D7 = RDYnBSY U4-J2/K11 Flex U27/U28 - N35 

Port 381/383 - Write 
D0-D7  Configuration Data for Flex chip A/B 

nWS        U4-H11/E11 Flex U27/U28 - E31 

Port 381/383 - Read 
D7 -   RDYnBSY for Flex chip A/B 

nRS        U4-G9/F10  Flex U27/U28 - A33 
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Port 384 -        FLEX User Control/Status Register 
DO = Enable DATA_DIR for READ Buffers (DO on U4-A9, DATA_DIR 

on U4-B11) 
Dl = An/B Select Flex A = 0, Select Flex B = 1 
D2 = Int_CLRn 
D3 = Unused 
D4 = CFA1 Spare chip interconnect to FLEX A 
D5 = CFB1 Spare chip interconnect ot FLEX B 
D6 = TST_A Flex A circuit Test Point 
D7 = TST_B FLEX B circuit TEst point 

Port 386 -        FLEX A (left from component side) User Base 
Addr. Register 

Port 387 - FLEX B (right from component side) User Base 
Addr. Register 

Declare Function write_port Lib "in_out" (paddr%, pdata%, byteword%) As 
Integer 
Declare Function read_port Lib "in_out" (paddr%, pdata%, byteword%) As 
Integer 
Declare Function InitClicks Lib "in_out" () As Integer 
Declare Function Clicks Lib "in_out" () As Integer 
Declare Function disable_int Lib "in_outn () As Integer 
Declare Function enable_int Lib "in_out" () As Integer 

Declare Function FlexConfig Lib "altera" (ByVal file As String, ByRef 
plength As Long) As Integer 
Declare Function FlexSend Lib "altera" (ByVal Cntrl_port%, ByVal 
Status_port%, ByVal Data_port%) As Integer 
Declare Function FlexSendl0k50 Lib "altera" (ByVal Cntrl_port%, ByVal 
Status_port%, ByVal Data_port%) As Long 

'Memory Calls 
Declare Function Memorylnit Lib "memory" (ByVal Start As Long, ByVal 
Length As Long) As Integer 
Declare Function MemoryRead Lib "memory" (ByVal Location As Long, Value 
As Any) As Integer 
Declare Function MemoryWrite Lib "memory" (ByVal Location As Long, 
ByVal Value As Long) As Integer 
Declare Function MemoryReadBuffer Lib "memory" (ByVal Location As Long, 
ByVal Count As Long, ByRef Value As Integer) As Integer 
Declare Function MemoryWriteBuffer Lib "memory" (ByVal Location As 
Long, ByVal Count As Long, ByRef Value As Integer) As Integer 

'LoadTgt DLL 
Declare Function LoadTgtBuf Lib "loadtgt" (ByVal TgtNum%, ByVal param%, 
ByVal Valuefc) As Integer 
Declare Function TargetWrite Lib "loadtgt" (ByVal TgtNum%) As Integer 
Declare Function WriteTargets Lib "loadtgt" (ByVal NumTgts%) As Integer 
Declare Function InitializePorts Lib "loadtgt" () As Integer 

'*** RES added variables *** 
Public NumBds As Integer, offset As Integer 
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Public flex_user_ba_ctrl As Integer   ' set this port to determine 
user design ba 
Public user_ba(8) As Integer 
Public BoardNum As Integer 
Dim maxcount As Integer 
Public present(8) As Integer, fstatus(8) As Integer 
Public configdone{8) As Integer, Status(8) As Integer 
Public num_bds_fnd As Integer 
i *************************** 

' RMS 17 Sep 96 
' Do I need to declare Function Delay(Dwell As Double) ? 

Global filename As String 
Global MSG As Integer 
Global BoardType(8) As String    "Either "10K" or "8K" 

' 5032 or 5192 Chip Addresses 
Global FlexCtrlPortBA(8) As Integer 
Global FlexCtrlPort As Integer 
Global FlexStatusPort As Integer 
Global FlexDataPort As Integer 
Global FlexUserCtrlPort As Integer  'Used to Toggle between chips 
Global FlexUserBasePort As Integer  'Used to Set base address in Flex 
Global NumFlexes As Integer 
Global Flexlndex As Integer 
Global NumFlexFiles As Integer 
Global FlexFilelndex As Integer 
'RMS 17 Sep 96 
•These are for 8K only, and maybe not there if we change the 5192 
Global FlexONPort As Integer 
Global FlexOFFPort As Integer 

"Flex 10K50 Chip Addresses 
Global FlexUserBA(8) As Integer 

"Flex File Names and Documentation 
Global flexfilename(lO) As String 
Global FlexMaxFiles As Integer 
Global FlexFileDoc(lO) As String 

Global DP_MEM_Right_Addr_Lo As Integer 
Global DP_MEM_Right_Addr_HI As Integer 
Global DP_MEM_Right_Data As Integer 
Global DP_MEM_Right_Ctrl As Integer 

Global DP_MEM_Left_Addr_Lo As Integer 
Global DP_MEM_Left_Addr_HI As Integer 
Global DP_MEM_Left_Data As Integer 
Global DP_MEM_Left_Ctrl As Integer 

Global DP_MEM_Hand_Shake_Sim As Integer 

Global DP_MEM_Left_addr_Mux As Integer 
Global HP_Ctrl_Port As Integer    'Control Port to select HP connector 
A data 
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Global HP_Ctrl_data As Integer 
B data 

Global AttenPortLO As Integer 
Global AttenPortHI As Integer 

'Control data to Select HP connector 

' Data - HPA HPB 
0 Toggle Toggle 
1 Mem Toggle 
2 Toggle Mem 
3 Mem Mem 

Global Const nConfigLo = &H2 
Global Const nConfigHI = &H3 
Global Const nConfigHI_nCSLO = &H1 
Global Const nConfigHI_nCSHI = &H3 
Global Const nStatLO_RDYnBSYHI = &HC 
Global Const ConfDone = &H18 'Conf Done & nSatus HI 

Global alteraf100000) As Integer 
Global MaxAlteraPnts As Long 

Global Const RngDef = &H100 
Global Const PWDef = &H200 

****** internal addresses for the ISAR program ***** 
'Global Const phiAddr = &H10        ' for Doppler offset 
•Global Const gainAddr = &H20       ' for gain 
'Global Const tapAddr = &H30        ' for tap delay line 
•Global Const modPulseAddr = &H40   ' for modulated pulse readback 
•Global Const feedback = &H60        ' for reading back values 

Function Delay(Dwell As Double) 

• This routine creates a time delay that lasts untill Dwell seconds 
• elapse from the time of call. 
i 

' It uses VBasic's Timer function, which returns the number of seconds 
• since midnight on the system clock, rolling from 86400 to 0 at 
midnight. 

i 

• This routine allows delays to begin before midnight and end after, 
■ or that span several days. 

Dim SecPerDay As Double 
Dim Start As Double, Done As Double, T As Double, LastT As Double 

SecPerDay = 86400* ' = 60.0 * 60.0 * 24.0 seconds in a day 

Start = Timer 
Done = Start + Dwell 

While (Done > SecPerDay) ' Midnight will come before the delay elapses. 
LastT = Start 
T = Timer 
While (T > LastT) ' Timer has not rolled over. 

LastT = T 
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T = Timer 
DoEvents 

Wend 
' It's midnight, so deduct the previous day's waiting 
' and start a new day. 
Done = Done - (SecPerDay - Start) 
Start = 0 

Wend 

' The delay will elapse before midnight comes. 
While (Done > Timer) 

DoEvents 
Wend 

End Function 
Public Function LoadFlex(filename As String, Index As Integer) 

Dim MSG As Long 
Dim duml As Integer 
Static Status As Integer 
Dim FileDate As String 

'setup flex addresses 
FlxBaseAddr (BoardNum) 

"Reset Flex Chip 
MSG = write_port(FlexCtrlPort, nConfigLo, 1)  'Set nConfig (bit 0) LO 

'Read & Send Data' 
DoEvents 

MSG = FlexConfig(filename, MaxAlteraPnts) 

If (MSG = 1) Then 

MSG = FlexSendl0k50(FlexCtrlPort, FlexStatusPort, FlexDataPort) 
Status = GetlOKStatus() 

FileDate = FileDateTime(filename) 
If Status = True Then 

DoEvents 
MSG = write_port(FlexCtrlPort, &HF, 1)    'Set nCONFIG, nCS, 

nCLR, IO_ENB = 1 
LoadFlex = True 

Else 
LoadFlex = False 

End If 

Delay (0.2) 'Delay .2 Second for Visual Effect 

Else 
LoadFlex = False 

End If 

End Function 
Public Sub InitFlexTypeO 
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Dim i As Integer 
Dim ret As Integer 
Dim memory_length As Long 
Dim status_init As Integer 

BoardType(BoardNum) = "10K" 

Call InitBoardBase(BoardType(BoardNum))    'Get Base Address 

If BoardType(BoardNum) = "10K" Then InitFlxlOKAddr (BoardNum) 
'Set First Board as Default 

End Sub 

Function GetlOKStatus() 
Static MSG As Integer 

MSG = write_port(FlexUserCtrlPort, &H1, 1)     'Turn on Read 
Buffer Capability 

MSG = read_port(FlexStatusPort, fstatus(BoardNum), 1)       'Get 
Flex Status 

If fstatus(BoardNum) = &HFF Then 
'the board is off or not plugged in 
GetlOKStatus = False 
present(BoardNum) = False 
Status(BoardNum) = False 
configdone(BoardNum) = False 
Exit Function 

End If 

If (&H40 And fstatus(BoardNum)) <> &H40 Then 
'nSTATUS bit =0 — an error occurred 
GetlOKStatus = False 
Status(BoardNum) = False 
configdone(BoardNum) = False 
Exit Function 
Else 
End If 

If (&H60 And fstatus(BoardNum)) = &H60 Then 
'nSTATUS bit = 1 and CONF_DONE = 1 -- the FLEX programmed OK 

''     ConfigDone.Value = 1 
Else 

''     ConfigDone.Value = 0 
configdone(BoardNum) = False 
GetlOKStatus = False 
Exit Function 

End If 

present(BoardNum) = True 
Status(BoardNum) = True 
configdone(BoardNum) = True 
GetlOKStatus = True 
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End Function 
Sub get_flex_ini() 
Dim a As String, b As Integer 

On Error GoTo ini_err_handler 

Open "flex.ini" For Input As #1 
Input #1, NumBds, a 

For b = 1 To NumBds 
Input #1, BoardNum 
Input #1, FlexCtrlPortBA(BoardNum) , crystal_clk(BoardNum) 
Input #1, user_ba(BoardNum), flexfilename(BoardNum) 
Input #1, a 

Next b 
Close #1 
Exit Sub 

ini_err_handler: 
Exit Sub 

End Sub 

Function FlexSendVB(altera() As Integer, NumPnts As Long) 

Static Status As Integer 
Static j As Long 
Static ConfigData As Integer 

Debug.Print altera(5) 
Debug.Print NumPnts 

'Reset Flex Chip 
MSG = write_port(FlexCtrlPort, nConfigLo, 1) 

MSG = write_port(FlexCtrlPort, nConfigHI, 1) 

'Check for FLEX Proper Response 
j = 0 
MSG = write_port(FlexCtrlPort, nConfigHI_nCSLO, 1) 
MSG = read_port(FlexStatusPort, Status, 1) 
While Status <> nStatLO_RDYnBSYHI 

MSG = read_port(FlexStatusPort, Status, 1) 

j = j + 1 
If j > 200 Then 

FlexSendVB = -2 
Exit Function 

End If 
Wend 

For j = 1 To NumPnts 
ConfigData = altera(j) 
MSG = write_port(FlexDataPort, ConfigData, 1) 

Next j 

MSG = write_port(FlexCtrlPort, nConfigHI_nCSHI, 1) 
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Delay (0.5) 'Wait half a second before getting status 
MSG = read_port(FlexStatusPort, Status, 1) 
Status = Status And &H1C       'And out unused bits 

If Status <> ConfDone Then     'Is Conf_Done & nStatus HI 
FlexSendVB = -3 
Exit Function 

End If 

FlexSendVB = True 

End Function 

Function FlexConfigVB(filename As String) As Integer 

Dim line As String 
Static i As Long 
Static CommaLeft As Integer 
Static CommaRight As Integer 
Static Token As Integer 

'main.flexstatus.Text = "Reading Flex File " + filename 
'main.flexstatus.BackColor = LtGray 
DoEvents 

Open filename For Input As #1 
i = 1 
Do While Not EOF(BoardNum) ' Loop until 

Line Input #1, line  ' Read data into two variables. 
Debug.Print line  ' Print data to Debug window. 

CommaLeft = 1 
CommaRight = -1 
Do While True 

CommaRight = InStr(CommaLeft, line, ",", 1) 
If CommaRight = 0 Then  'If not at first character then exit 

If CommaLeft <> 1 Then Exit Do 
CommaRight =10 

End If 
Token = Mid(line, CommaLeft, CommaRight - CommaLeft) 
altera(i) = Val(Token) 
i = i + 1 
CommaLeft = CommaRight + 1 

Loop 
Loop 

Close #1   ' Close file. 
MaxAlteraPnts = i - 1 'Fix total number of bytes read 
FlexConfigVB = True 
End Function 
Function FlxlOKSetAddr(Index As Integer) 

Dim MSG As Integer, CBA As Integer, UBA As Integer 

CBA = FlexCtrlPortBA(Index) 
UBA = FlexUserBA(Index) 
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FlexCtrlPort = CBA 'Control Port 
FlexDataPort = CBA + 1 'Data Programming Port 
FlexStatusPort = CBA 'Status Port 
FlexUserCtrlPort = (CBA And &H3F0) + 4  'Flex User Control Port (A 

or B) 
FlexUserBasePort = UBA 

' RMS 17 Sep 96 
1 These do not make sense with the new (or old) U4 map.  Bob? 
DP_MEM_Right_Addr_Lo = CBA + 3 
DP_MEM_Right_Addr_HI = CBA + 5 

End Function 

Function FlexSendBuffer() 
Dim MSG As Long 

•main.flexstatus(0).Text = "Sending Data " 
MSG = FlexSendVB(altera(), MaxAlteraPnts) 
If MSG <> MaxAlteraPnts Then 
'   main.flexstatus(0).Text = "Error Configuring Flex" 
'   main.flexstatus(0).BackColor = red 

FlexSendBuffer = False 
Exit Function 

End If 

'main.flexstatus(0).Text = "Flex Configured" 
•msg = GetFlexSDatus() 

FlexSendBuffer = True 
End Function 

Sub InitFlxlOKAddr(BoardNum As Integer) 

'Set Altera 5192 Base Addresses 
FlexCtrlPort = FlexCtrlPortBA(BoardNum) + 0 
FlexDataPort = FlexCtrlPortBA(BoardNum) + 1 
FlexStatusPort = FlexCtrlPortBA(BoardNum) + 2 
'optFlxBaseAddr(Board).Value = True. 

'Set FLEX Address for Left side of Dual Port Memory 
DP_MEM_Left_Data = FlexUserBA(BoardNum) + 0 
DP_MEM_Left_Addr_Lo = FlexUserBA(BoardNum) + 1 
DP_MEM_Left_Addr_HI = FlexUserBA(BoardNum) + 2 
DP_MEM_Left_Ctrl = FlexUserBA(BoardNum) + 3 

'Set FLEX Address for Right side of Dual Port Memory 
DP_MEM_Right_Data = FlexUserBA(BoardNum) + 4 
DP_MEM_Right_Addr_Lo = FlexUserBA(BoardNum) + 5 
DP_MEM_Right_Addr_HI = FlexUserBA(BoardNum) + 6 
DP_MEM_Right_Ctrl = FlexUserBA(BoardNum) + 7 

DP_MEM_Left_addr_Mux = FlexUserBA(BoardNum) + &HC 
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End Sub 

'Note that 'FlexUserBA' is determined by .ttf design file 
'FlexCtrlPortBA(BoardNum) is the board addr. determined by wire straps 
to 5192 

'This Routine returns the number of Files read 
Public Sub InitBoardBase(BrdType As String) 
Dim i As Integer 
Dim dum As String 
Dim line As String 
Dim line2 As String 
Dim filename As String 

i************ 

Exit Sub 

filename = "Win" + BrdType + ".ini" 

Open filename For Input As #1 

Input #1, NumFlexFiles, dum 
For i = 0 To NumFlexFiles - 1 

Input #1, flexfilename(i), FlexFileDoc(i) 
Next i 

' Skip Three lines 
Line Input #1, dum 
Line Input #1, dum 
Line Input #1, dum 

i = 0 
Do Until E0F(1) 

Input #1, FlexCtrlPortBA(i), FlexUserBA(i), dum    '5192 and FLEX 
base addr 

i = i + 1 
Loop 

If (i > 8) Then 
NumFlexes = 8 
MsgBox ("File " + filename + " contains too many base addresses.") 

Else 
NumFlexes = i 

End If 

Close #1 

End Sub 
Sub init_flex_param() 

5032 or 5192 Addresses 
FlexCtrlPort = FlexCtrlPortBA(BoardNum) + 0 
FlexDataPort = FlexCtrlPortBA(BoardNum) + 1 
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FlexStatusPort = FlexCtrlPortBA(BoardNum) + 2 

FlexOFFPort = FlexCtrlPortBA(BoardNum) + 6 
FlexONPort = FlexCtrlPortBA(BoardNum) + 7 

flex_user_ba_ctrl = FlexCtrlPortBA(BoardNum) + 3 

End Sub 

'I input parameter sets the address of the right port 
'on dual port memory (0-4095) 

Function SetAddrRight(i As Integer) 
Static LoAddr As Integer 
Static HiAddr As Integer 

If i > 4095 Then 
SetAddrRight = False: Exit Function 

End If 

LoAddr = i Mod 256 
HiAddr = i \ 256 
MSG = write_port (DP_MEM_Right_Addr_Lo, LoAddr, 1) 
MSG = write_port(DP_MEM_Right_Addr_HI, HiAddr, 1) 

SetAddrRight = True 

End Function 
Private Sub FlxBaseAddr(Index As Integer) 
Dim a 
Dim MSG As Integer, CBA As Integer, UBA As Integer 

'Definition of Ports used to program and control the FLEX chip 
■on a 10K50 board 

FlxlOKSetAddr (Index) 
MSG = GetlOKStatusO 

optFlxBaseAddr(Index).Value = True 
FlexIndex = Index 

'Get and Display Status of Current Flex Chip 
MSG = GetlOKStatusO 

End Sub 

'I input parameter sets the address of the left port 
■on dual port memory (0-4095) 

Function SetAddrLeft(i As Integer) 
Static LoAddr As Integer 
Static HiAddr As Integer 
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If i > 4095 Then 
SetAddrLeft = False 
Exit Function 

End If 

LoAddr = i Mod 256 
HiAddr = i \ 256       'Be Sure to Integer divide 
MSG = write_port(DP_MEM_Left_Addr_Lo, LoAddr, 1) 
MSG = write_port(DP_MEM_Left_Addr_HI, HiAddr, 1) 

SetAddrLeft = True 

End Function 

Function usecDelay(Dwell As Integer) 
Dim initClick As Long 
Dim currentClick As Long 
Dim EndClick As Long 
Dim icnt As Long 
Dim ret As Integer 

EndClick = Dwell ./ 0.8381    "Each click represents 0.8381 usec 

ret = InitClicks 
initClick = Clicks 'Sets Down counter to max value ( about 
65,000) 
If initClick < 0 Then 

initClick = 65535 + initClick 
End If 
currentClick = Clicks      'Reads current count 
If currentClick < 0 Then 

currentClick = 65535 + currentClick 
End If 

icnt = 0 

While (EndClick > (initClick - currentClick)) 
currentClick = Clicks 
If currentClick < 0 Then 

currentClick = 65535 + currentClick 
End If 
icnt = icnt + 1 
If icnt > 1000000 Then 

usecDelay = False 
Exit Function 

End If 
Wend 

usecDelay = True 
End Function 

Sub Board_Bit() 
Dim i As Integer 
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init_flex_param 
flexform.ini_num.Text = NumBds 
num_bds_fnd = 0 

'** find # of boards that respond to ping ** 
For BoardNum = 1 To NumBds 

FlxlOKSetAddr (BoardNum) 
flexform.addr(BoardNum).Text = Hex(FlexCtrlPortBA(BoardNum)) 

ck_bd_present 
If present(BoardNum) = False Then 

flexform.present(BoardNum).BackColor = red 
Else 

flexform.present(BoardNum).BackColor = green 
num_bds_fnd = num_bds_fnd + 1 

End If 
Next BoardNum 

flexform.found_num.Text = num_bds_fnd 

End Sub 
Sub ck_bd_present() 
Static MSG As Integer 

MSG = write_port(FlexUserCtrlPort, &H1, 1)      'Turn on Read 
Buffer Capability 

MSG = read_port(FlexStatusPort, fstatus(BoardNum), 1)        'Get 
Flex Status 

If fstatus(BoardNum) = &HFF Then 
present(BoardNum) = False 

Else 
present(BoardNum) = True 

End If 

End Sub 
Sub test_boards() 
Dim dum As Integer, dly As Long, invar As Integer 

flexform.Show 
•** set initial state to gray in leds 

For dum = 1 To NumBds 
flexform.present(dum).BackColor = LtGray 
flexform.Bstatus(dum).BackColor = LtGray 
flexform.Bconfigdone(dum).BackColor = LtGray 
flexform.BBIT(dum).BackColor = LtGray 

Next dum 
'** check presence of boards *** 

get_flex_ini   ' read basic flex addrs. & pri param. from 
filename$.ini file 

reset_flexs 

Board_Bit      ' check # of boards and operational status 

'** load flex chips & display status ** 
For BoardNum = 1 To NumBds 
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If present(BoardNum) = True Then 
InitFlexType 
flexform.Bconfigdone(BoardNum).BackColor = yellow 
MSG = LoadFlex(flexfilename(BoardNum), 1) 
FlxlOKSetAddr (BoardNum) 
GetlOKStatus 

If Status(BoardNum) = False Then 
flexform.Bstatus(BoardNum).BackColor = red 

Else 
flexform.Bstatus(BoardNum).BackColor = green 

End If 
'*** write user base addr. to flex (a=3x6, b=3x7) 

offset = (0.5 * (FlexCtrlPortBA(BoardNum) And &H2) + 6) - 
(FlexCtrlPortBA(BoardNum) And &H2) 

dum = write_port(FlexCtrlPortBA(BoardNum) + offset, 
user_ba(BoardNum) \ &H4, 1) 'set Flex User BaseAddr 

If configdone(BoardNum) = False Then 
flexform.Bconfigdone(BoardNum).BackColor = red 

Else 
flexform.Bconfigdone(BoardNum).BackColor = green 

End If 
flexform.filename(BoardNum).Text = flexfilename (BoardNum) 
flexform.userBA(BoardNum).Text = Hex(user_ba(BoardNum)) 

•** check BIT register for proper load 
dum = write_data(&HFC, BoardNum * &H15A5, 2) 'write board 

(internal addr (linear addr. 0 ->255 words) , data , word) 
dum = read_data(&HFC, invar, 2) 
If invar = BoardNum * &H15A5 Then 

flexform.BBIT(BoardNum).BackColor = green 
Else 

flexform.BBIT(BoardNum).BackColor = red 
End If 
dum = write_port(user_ba(BoardNum), 0, 2)   ' zero BIT reg. 

for noninterference w/next board 
End If  'end check for board present 

Next BoardNum 

For dly = 1 To 10000: DoEvents: Next dly 
End Sub 
Sub reset_flexs()   'reset flex chips (unload) 
Dim dum As Integer 

get_flex_ini 
For BoardNum = 1 To NumBds 
MSG = write_port(FlexCtrlPortBA(BoardNum), nConfigLo, 1)  'Set 

nConfig (bit 0) LO 
MSG = write_port(FlexCtrlPortBA(BoardNum) , nConfigHI, 1)  'Set 

nConfig (bit 0) LO 
Next BoardNum 

•** set initial state to gray in leds 
For dum = 1 To NumBds 

flexform.present(dum).BackColor = LtGray 
flexform.Bstatus(dum).BackColor = red 
flexform.Bconfigdone(dum).BackColor = LtGray 
flexform.BBIT(dum).BackColor = LtGray 
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Next dum 

Board_Bit 

End Sub 
Function write_data(iaddr As Integer, idata As Integer, iword As 
Integer) As Integer 

•MSG = write_port(user_ba(BoardNum) + 2, iaddr, 2) 'internal addr 
of I/O - 256 addrs. per Flex chip 

'MSG = write_port(user_ba(BoardNum) + 0, idata, 2) 'internal data 
of I/O - always 16 bit (word) write 

MSG = write_port(FlexUserCtrlPort, &H0, 1) 
MSG = write_port(user_ba(&Hl) + 2, iaddr, 2) 'internal addr of I/O 

- 256 addrs. per Flex chip 
MSG = write_port(user_ba(&Hl) + 0, idata, 2) "internal data of I/O 

- always 16 bit (word) write 
End Function 
Function read_data(iaddr As Integer, idata As Integer, iword As 
Integer) As Integer 

MSG = write_port(FlexUserCtrlPort, &H0, 1) 
MSG = write_port(user_ba(&Hl) + 2, iaddr, 1) 'internal addr of I/O 

- 256 addrs. per Flex chip 
MSG = write_port(FlexUserCtrlPort, &H1, 1) 
MSG = read_port(user_ba(&Hl) + 0, idata, 2) 'internal data of I/O - 

always 16 bit (word) write 
End Function 

c. global.bas 

Attribute VB_Name = "global" 
Global crystal_clk(8) As Single 

'***** color definitions **** 
Global Const red = &HFF& 
Global Const blue = &HFF0000 
Global Const green = &HFF00& 
Global Const black = &H0 
Global Const yellow = &HFFFF& 
Global Const brown = &H80FF& 
Global Const ltblue = &HFFFF00 
Global Const LtGray = &H8000000F 
Global Const DkGray = &H808080 
Global Const Beige = &HC0FFFF 

d. main.bas 

Attribute VB_Name = "MainMod" 
Option Explicit 

Sub Main() 
Dim dum As Integer, cnt As Integer, invar As Integer 

• * * * open running windows * * * 
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flexform.Show  'flexform.frm 

*** check the latch values *** 
test boards ' flexfunc.has 
readPara 
readRaw 
readCosine 
readsine 
isar 

file.bas 
file.bas 
file.bas 
file.bas 
the isar.bas 

' pep_test        'peptest.bas' 
End Sub 

e. the isar.bas 

Attribute VB_Name = "the_isar" 
Option Explicit 
****** internal addresses for the ISAR program ***** 
Global Const phiAddr = &H10 ' for Doppler offset 
Global Const gainAddr = &H20 ' for gain 
Global Const tapAddr = &H30 ' for tap delay line 
Global Const modPulseAddr = &H40 ' for modulated pulse readback 
Global Const feedback = &H60 ' for reading back values 

Public Sub isar() 

Dim batchCnt As Integer 
Dim pulseCnt As Integer 
Dim intraPulseCnt As Integer 
Dim tapCnt As Integer 
Dim Tap(3) As Integer 
Dim Phase(3) As Integer 
Dim rgain(3) As Integer 
Dim Gain0utl(3) As Integer 
Dim Gain0utQ(3) As Integer 
Dim Ace(3) As Integer 
Dim Lut(6) As Integer 
Dim finalAcc(4) As Integer 
Dim tmp As Integer 
Dim dummyl, dummy2 As Double 
Dim LutI As Double 
Dim LutQ As Double 
Dim GainOutldec, GainOutQdec As Double 
Dim dummy3, dummy4 As Double 
Dim idx As Integer 
Dim suml, sumQ As Double 
Dim finalAccI, finalAccQ As Double 
Dim finalAcd_NEW, finalAccO_NEW As Double 'for test of Public Function 
numFormConv 
Dim number As Integer  'for test of Public Function 
twoComplement2Float 
Dim test As Double     'for test of Public Function 
twoComplement2Float 
Dim n As Integer       'for test of Public Function 
twoComplement2Float 
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'load data files (file.has) 
readPara 
readRaw 

'Open file for write 
Open "lets_check.txt" For Output As #1 
Open ■imagei.txt" For Output As #2 
Open "imageq.txt" For Output As #3 

test of Public Function twoComplement2Float 
Print #1, "Test of Public Function twoComplement2Float: " 
n = 4 'number of bits 
For number = 0 To (2 " n - 1) 

test = twoComplement2Float(number, n) '* 2 A (n - 1) 
Print #1, number, "=-, test 'print to lets_check 

Next number 

'Initialize gain values 
flexform.TGain(O).Text = Gain(O) 
flexform.TGain(l).Text = Gain(l) 
flexform.TGain(2).Text = Gain(2) 

■Reset tap-delay line 
MSG = write_data(tapAddr, 0, 2) 
MSG = write_data(tapAddr, 1, 2) 

1 loop for batch 
For batchCnt = 0 To nDopplerCell - 1 

t 

'loop for intra-pulse: repeat for number of range gates + target 
extent 

For intraPulseCnt = 0 To (nRangeCell + targetExtent - 1) 

'Write Phi and Gain values 
For tapCnt = 0 To targetExtent - 1 

'load Doppler offset parameters 
'MSG = write_data(phiAddr + tapCnt, Phi(nDopplerCell - 

batchCnt - 1, tapCnt), 2) 
MSG = write_data(phiAddr + tapCnt, Phi(batchCnt, tapCnt), 

2) 

Print #1, "batchCnt=", batchCnt 
Print #1, "intraPulseCnt=n, intraPulseCnt 
Print #1, "tapCnt=", tapCnt 
Print #1, "Phi(batchCnt, tapCnt)=", Phi(batchCnt, tapCnt) 
t 

'load gain parameters 
MSG = write_data(gainAddr + tapCnt, Gain(tapCnt), 2) 

i 

Next tapCnt 
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'Read back gain values 
For idx = 0 To 2 

MSG = read_data(gainAddr + idx, rgain(idx), 2) 
rgain(idx) = rgain(idx) And &H7 
flexform.TGain(idx).Text = rgain(idx) 
Print #1, "rgain=", rgain(idx) 

Next idx 

'Read back phi values 
For idx = 0 To 2 

MSG = read_data(phiAddr + idx. Phase(idx), 2) 
Phase(idx) = Phase(idx) And &H1F 
flexform.TPhi(idx).Text = Phase(idx) 
Print #1, "Phase=", Phase(idx) 
Print #1, "Phase(idx)=", twoComplement2Float(Phase(idx), 5) 

(2 Ä 7), "converted from 2-complement" 

Next idx 

• Strobe into delay line 
MSG = write_data(tapAddr +1, 0, 2) ' ripple data 
MSG = write_data(tapAddr + 2, DRFM(batchCnt, intraPulseCnt), 2) 

' Strobe in new data 
Print #1, "DRFM(batchCnt, intraPulseCnt)=", DRFM(batchCnt, 

intraPulseCnt) 
Print #1, "DRFM(batchCnt, intraPulseCnt)=", 

twoComplement2Float(DRFM(batchCnt, intraPulseCnt), 5) * (2 ~ 7), 
"converted from 2-complement" 

'Read back tap values 
For idx = 0 To 2 

MSG = read_data(tapAddr + idx. Tap(idx), 2) 
Tap(idx) = (Tap(idx) And &H1F) 
flexform.TTap(idx).Text = Tap(idx) 
Print #1, "Tap=", Tap(idx) 

Next idx 
f —„ _  _ „__ -_ — _ — — — — — — — — — — — — — — — — — — — — — _ — — — — 

'Read back ph_acc values (mod 32) 
For idx = 0 To 2 

MSG = write_data(feedback, idx, 2) 
MSG = read_data(feedback, Ace(idx), 2) 
Ace(idx) = Ace(idx) And &H1F 
flexform.TAcc(idx).Text = Acc(idx) 
Print #1, -Acc=", Ace(idx) 
Print #1, "Acc(idx)=", twoComplement2Float(Ace(idx), 5) * 

(2 A 7), "converted from 2-complement" 

Next idx 

•Read back LUT values 
tmp = 3 
'suml = 0 
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'sumQ = 0 
For idx = 0 To 2 

MSG = write_data(feedback, tmp + (idx * 2), 2) 
MSG = read_data(feedback, Lut(idx * 2), 2) 
MSG = write_data(feedback, tmp + (idx * 2 + 1), 2) 
MSG = read_data(feedback, Lut(idx * 2 + 1), 2) 
Lut(idx * 2 + 1) = (Lut(idx * 2 + 1) And &HFF) 
Lut(idx * 2) = (Lut(idx * 2) And &HFF) 
dummyl = Val(Format(twoComplement2Float(Lut(idx * 2), 8), 

■##.###■)) 

dummy2 = Val(Format(twoComplement2Float(Lut(idx * 2 + 1), 
8), "##.###»)) 

LutI = twoComplement2Float(Lut(idx * 2), 8) 
LutQ = twoComplement2Float(Lut(idx * 2 + 1), 8) 
flexform.TLut(idx).Text = Str(dummyl) & ", " & Str(dummy2) 
'Print #1, "LUT(idx*2)=", Lut(idx * 2), "dummyl=", dummyl, 

"Lutl=", LutI 
'Print #1, "LUT(idx*2+l)=", Lut(idx * 2 + 1), "dummy2=", 

dummy2, "LutQ=", LutQ 
'Yeo's output of intermediate results 
•flexform.TPhi(idx).Text = Hex(Lut(idx * 2)) & "," & 

Hex(Lut(idx * 2 + 1)) 
"suml = suml + twoComplement2Float(Lut(idx * 2), 8) * 

Gain(idx) 
'sumQ = sumQ + twoComplement2Float(Lut(idx * 2 + 1), 8) * 

Gain(idx) 
Print #1, "idx =", idx 
Print #1, "LutK"; idx; ")=", " ", Lut (idx * 2), "Lutl=", 

LutI 
Print #1, "LutQC; idx; ") = ", " ", Lutfidx * 2 + 1) , 

■,LutQ='', LutQ 
Print #1, "GainC; idx; ") = ", " ", Gain (idx) 

Next idx 
•flexform.TSum(O).Text = Str(suml) 
'flexform.TSum(l).Text = Str(sumQ) 
•flexform.TSum(2).Text = Str(O) 
•flexform.TSum(3).Text = Str(O) 
■Print.#2, suml 
■ Print #3, sumQ 

■Read back gain block outputs (I channel - 11 bits) 
tmp = 13 
For idx = 0 To 2 

MSG = write_data(feedback, (tmp + idx), 2) 
MSG = read_data(feedback, GainOutI(idx), 2) 
GainOutl(idx) = GainOutI(idx) And &H7FF 
•GainOutldec = 

Val(Format(twoComplement2Float(GainOutI(idx), 11), "##.###")) 
GainOutldec = twoComplement2Float(GainOutI(idx), 11) 
Print #1, "GainOutI("; idx; ")=", GainOutI(idx), 

"GainOutIdec=", GainOutldec 
Next idx 

■Read back gain block outputs (Q channel - 11 bits) 
tmp = 16 
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For idx = 0 To 2 
MSG = write_data(feedback, (tmp + idx), 2) 
MSG = read_data(feedback, GainOutQ(idx), 2) 
GainOutQ(idx) = GainOutQ(idx) And &H7FF 
'GainOutQdec = 

Val (Format (twoComplement2Float (GainOutQ (idx) , 11), "###.###")) 
GainOutQdec = twoComplement2Float(GainOutQ(idx), 11) 
Print #1, "GainOutQ("; idx; ")=", GainOutQ(idx) , 

"GainOutQdec=", GainOutQdec 
Next idx 

DoEvents 

■Read back sum values (modified code by Stig, 2 Aug -99) 
tmp =9 
finalAccI =0 
finalAccQ = 0 
t 

•Read back sum values (I channel - 13 bits) 
MSG = write_data(feedback, tmp + 0, 2) 
MSG = read_data(feedback, finalAcc(O), 2) 
finalAcc(O) = finalAcc(O) And &H1FFF 
dummy3 = Val(Format(twoComplement2Float(finalAcc(O), 13), 

"####.###")) 
■flexform.TSum (0).Text = Str(dummy3) 
finalAccI = twoComplement2Float(finalAcc(O), 13) 
finalAccI_NEW = numFormConv(finalAcc(0)) 
flexform.TSum(O).Text = Str(finalAccI) 
Print #1, "finalAcc(0)=", " ", finalAcc(O), "finalAccI = ", 

finalAccI 
Print #1, " - To test the new numFormConv function", 

"finalAccIN = ", finalAccI_NEW 
Print #2, finalAccI 

'Read back sum values (Q channel - 13 bits) 
MSG = write_data(feedback, tmp +1, 2) 
MSG = read_data(feedback, finalAcc(l), 2) 
'Print #1, "TTTEEESSSTTT  finalAcc(l) =  ", finalAcc(l) 
finalAcc(l) = finalAcc(l) And &H1FFF 
dummy4 = Val(Format(twoComplement2Float(finalAcc(l), 13), 

"####.###")) 
'flexform.TSum(l).Text = Str(dummy4) 
finalAccQ = twoComplement2Float(finalAcc(1), 13) 
finalAccQ_NEW = numFormConv(finalAcc(1)) 
flexform.TSum(l).Text = Str(finalAccQ) 
Print #1, "finalAcc(1)=", " ", finalAcc(l), "finalAccQ=", 

finalAccQ 
Print #1, " - To test the new numFormConv function", 

"finalAccQN = ", finalAccQ_NEW 
Print #1, "  

Print #3, finalAccQ 
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13), "## 

dummy3 

flexform.TSum(2).Text = Str(O) 
flexform.TSum(3).Text = Str(O) 

tmp = 9 
For idx = 0 To 1 

MSG = write_data(feedback, tmp + idx, 2) 
MSG = read_data(feedback, finalAcc(idx), 2) 
finalAcc(idx) = finalAcc(idx) And &H1FFF 
dummy3 = Val(Format(twoComplement2Float(finalAcc(idx), 

###■)) 

Print #1, "FINALACC(idx)=", finalAcc(idx), "dummy3=", 

flexform.TSum(idx).Text = Str(dummy3) 
finalAc = sumQ + twoComplement2Float(GainOutQ(idx) , 11) 

Next idx 
Print #2, finalAcc(0) 
Print #3, finalAcc(1) 

flexform.Clock.Text = Str(batchCnt) + ",- + Str(intraPulseCnt + 
1) 

Next intraPulseCnt   'end intra-pulse loop 
Next batchCnt   'end batch loop 
Close #1 
Close #2 
Close #3 
End Sub 
Public Function twoComplement2Float(a As Integer, nbits As Integer) As 
Double 'modified by Stig Ekestorm, 4 Aug -99 
Dim dummyl, dummy2, dummy3, dummy4 As Integer 

dummyl = 2  *   (nbits - 1) 
dummy4 = 2 A nbits 
dummy2 = dummyl - 1 
If (a >= dummyl) Then     ' negative number test 

dummy3 = dummyl - (a And dummy2) 
twoComplement2Float = -1 * dummy3 / (2^7) '/ dummyl '(divide by 

128 to put the decimal point at the right position) 
Else 

twoComplement2Float = a / (2^7) '/ dummyl '(divide by 128 to put 
the decimal point at the right position) 
End If 

If a >= 2 A nbits Then 
twoComplement2Float = -1111 

End If 
End Function 
Public Function numFormConv(a As Integer) As Double 'created by Prof. 
Fouts, 4 Aug -99 
Dim tempvar As Integer 

tempvar = &H1FFF And a 
If (tempvar >= 4096) Then     ' negative number test 

tempvar = tempvar Xor &H1FFF 
tempvar = tempvar + 1 
numFormConv = -1 * tempvar / (2 Ä 7) 

Else 
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numFormConv = tempvar / (2^7) 
End If 
End Function 
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APPENDIX C. SCHEMATICS AND SYMBOLS 

This Appendix contains all elements created in the five different design levels. 

Every Figure has two parts. The upper part shows the circuit as build in S-Edit, where the 

lower part shows the corresponding symbol. The regular Tanner library elements are not 

listed and can be found in the Tanner tools Library manual. 

1.      LEVEL 1 MODULES 

TO 

OE 

TO 

[Hte'24'11] 

|K='S«*1'] 

f\~S        I»S='66*l*n 

z+v   g [AS='66-1*1'] 

IPS='M*1'1 

K='28-l' 

■e^jP"1' 
IB=1] 

!JD='66*1*1'] 

Figure 98. P-FET and N-FET Transistor Definition 

N-Fet 
Q 

TO 

G- -^-0 

© 

P-Fet 
Q 

TO W='H*1' 

L='7-r       0.01 -e^e u'7': 
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Figure 99. P-FET and N-FET Symbols 
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Figure 100. Mux2 Circuit 

[TPR OUTPUT=] 

Figure 101. Mux2 Symbol (modified from Tanner's version) 
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Figure 102. Register Cell Circuit 
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Figure 103. Register Cell Symbol 

315 



Register Cell with CLR *«« i*ten 

i—o 
ELK>£><J£>O -j— 

ITlave Latch 

The combination of P-FET and N-FET is called a transmission gate. 
P-FET pulls output high, N-Fet pulls output low 
Point H is the transission between the master latch to the slave latch. 
This setup is a positive-edge-triggered flip-flop that gets fed by a input tree. 
The input tree produces only one valid output at a tine as described in the operational notes. 

Operational Note 
When clock changes from low to high, 
exactly one input of HLD, LD, SR, or 
SL must be high, the other 3 must be low. 
If all control inputs 
are low, the output is cleared (low). 

To Make N-Bit Register: 
* use n cells 
* connect Q of cell n to SRDi of cell ntl 
* connect Q of cell n to SLDi of cell n-1 
* connect HLD, SR, SL, LD, and CLK in parallel 
* there will be n Di inputs; one to each cell 
* there will be n Q and n QB outputs 

SRDo = shift right data out 
SLDo = shift left data out 
SLDi = shift left data input 
SRDi = shift right data in 
HLD = hold (do nothing, Q tx=Qt, notQ th=notQ tl 
SR = shift right 
SL = shift left 
Di = data input 
LD = load data 
CLK = clock (positive edge triggered 
Q = data output (consist of SLDo and SRdo] 
QB = inverted data output 

Figure 104. D-Bit Register Cell with Synchronous Clear 
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Figure 105. D-Bit Register Cell Symbol 
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Figure 106. Adder Cell Circuit 

Figure 107. Adder Cell Symbol 
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2.      LEVEL 2 MODULES 
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Figure 108. 2-Bit Register Circuit 
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Figure 109. 2-Bit Register Symbol 
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Figure 110. 4-Bit Register Circuit 
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Figure 111. 4-Bit Register Symbol 
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Figure 112. 5-Bit Register Circuit 
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Figure 113. 5-Bit Register Symbol 
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Figure 114. 8-Bit Register Circuit 
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Figure 115. 8-Bit Register Symbol 
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Figure 116. 11-Bit Register Symbol 
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Figure 117. 11-Bit Register Symbol 
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Figure 118. 16-Bit Register Circuit 
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Figure 119. 16-Bit Register Symbol 
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Figure 120. 5-Bit Adder Symbol 
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Figure 121. 5-Bit Adder Circuit 
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Figure 122. 16-Bit Adder Symbol 
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Figure 123. 16-Bit Adder Circuit 
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Figure 124. 5-to-32-Bit Decoder Part 1 Circuit 
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Figure 125. 5-to-32-Bit Decoder Parti Symbol 
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Figure 126. 5-to-32-Bit Decoder Part2 Circuit 
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Figure 127. 5-to-3 2-Bit Decc 
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Figure 129. LUT Symbol 
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Figure 130. Gain-Shifter Circuit 
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Figure 131. Gain-Shifter Symbol 
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3.  LEVEL 3 MODULES 

Clock 1 

Clock 2 

Clock 3 

Clock 4 

Figure 132. Tapline Circuit 
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Figure 133. Tapline Symbol 
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4.      LEVEL 4 MODULES 

Figure 134. Supertap Circuit 
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5.      LEVEL 5 MODULES 

( Extent_Tapl6 i— 

■— 

>— 

i— 

i— 

i— 

i— 

i— 

i— 

i— 

>— 

i— 

>— 

i— 

i— 

Extent_Tapl6 
Extent_Tapl7 
Extent_Tapl8 
Extent_Tapl9 
Extent_Tap20 
Extent_Tap21 
Extent_Tap22 
Extent_Tap23 
Extent_Tap24 
Extent_Tap25 
Extent_Tap26 
Extent_Tap27 
Extent_Tap28 
Extent_Tap29 
Extent_Tap30 
Extent_Tap31 

Extent_TapO 
Extent_Tapl 
Extent_Tap2 
Extent_Tap3 
Extent_Tap4 
Extent_Tap5 
Extent_Tap6 
Extent_Tap7 
Extent_Tap8 
Extent_Tap9 
Extent_TaplO 
Extent_Tapll 
Extent_Tapl2 
Extent_Tapl3 
Extent_Tapl4 
Extent_Tapl5 , 

CD 
T3 
O 
O 
CD 
Q 

PQ 
i 

CNI 
m 

i 
LO 

i—i 

CD 
> 
CD 
i—1 

Q< 
O 
EH 

Tgt_Extent_inO 
Tgt_Extent_inl 
Tgt_Extent_in2 
Tgt_Extent_in3 
Tgt_Extent_in4 

CExtent_Tapl7 
(Extent_Tapl8 
^Extent_Tapl9 
CExtent_Tap20 < 
^Extent_Tap21 < 
(Extent_Tap22 < 
^Extent_Tap23 < 
^Extent_Tap24 < 
C Extent_Tap25 < 
^Extent_Tap26 < 
' Extent_Tap27 < 

vExtent_Tap28 < 
^Extent_Tap29 < 
' Extent_Tap30 < 
^Extent_Tap31 < 

—e( Tgt_Extent_inO 
—«C Tgt_Extent_inl 
—«( Tgt_Extent_in2 

<fExtent_TapO < 
s— 
i— 

!  
(  
)  
)  

i  

t— 

1  

)  
>  

1  

1  

(— 
1  

—<* Tgt_Extent_in3 
<Extent_Tapl < —<Tgt_Extent_in4 
< Extent_Tap2 < 
<Extent_Tap3 « 
<Extent_Tap4 < 
<Extent_Tap5 ' 
< Extent_Tap6 < 
<Extent_Tap7 < 
<Extent_Tap8 < 
<Extent_Tap9 < 
'ExtentJTaplO « 
Extent_Tapll < 
Extent_Tapl2 « 
Extent_Tapl3 < 
Extent_Tapl4 < 

vExtent_Tapl5 « 

Figure 136. Toplevel 5-to-32 Decoder Symbol 
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