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Abstract 

This document constitutes a final report for our research in electromagnetic scatter- 
ing during 1997. The technical research accomplishments divide conveniently into the 
areas of time-domain electromagnetics, high-frequency diffraction, and surfa.ee integral 
equations. As principal investigator, Dr. Arthur D. Yaghjian carried out the major 
portion of the research, and coordinated his efforts with those of T.B. Hansen and R.A. 
Shore of Rome Laboratory, R.A. Albanese of Brooks AFB, S.W. Lee of DEMACO, and 
R. Tolimieri, M. An and A.J. Devaney of A.J. Devaney Associates. 

1     Technical Summary of Accomplishments 

In 1997 our research accomplishments in electromagnetic scattering divide conveniently into 
three main areas: 

• Time-Domain Electromagnetics 

• High-Frequency Diffraction 

• Surface Integral Equations. 

1.1     Time-Domain Electromagnetics 

Plane-Wave Theory of Time-Domain Fields 

In the area of time-domain electromagnetics, Dr. Arthur D. Yaghjian and Dr. Thorkild B. 
Hansen have been working together to develop the "plane-wave theory of time-domain fields," 
and to apply this theory to the near-field scanning of antennas and scatterers. Previously, 
near-field measurement techniques had been formulated only for antennas and scatterers 
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operating over a narrow frequency band, that is, only in the frequency domain. The new 
time-domain formulation allows powerful near-field measurement techniques to be extended 
to pulsed radiators (antennas or scatterers) operating over arbitrarily wide bandwidths This 
time-domam near-field measurement formulation was published in the IEEE Transactions 
on Antennas and Propagation [1] and received the 1995 Schelkunoff Prize Paper Award 

During 1997 Yaghjian and Hansen expanded and refined their "plane-wave theory of 
time-domain fields, and completed about 90% of a book under this title [2] scheduled 
to be published by the IEEE/Oxford University Press in 1998. Numerous additions and 
improvements were made to the theory. For example, Yaghjian found a direct method 
of deriving the dispersion relations for general electromagnetic materials that reveals the 
natural sufficient conditions on the constitutive parameters required for the validity of the 
dispersion relations. This derivation is given here in Appendix A. 

An invited paper on the subject of time-domain far fields was submitted to Amerem- 
96, and this year an expanded version of the paper was published as a book chapter [3] 
Recently, Yaghjian has been invited by the special-issues editor of the Proceedings of the 
IEEE to submit a review article on time-domain near-field scanning. He has also been invited 
to submit a paper on ultra-wideband, short-pulse electromagnetics to Euroem-98, to be held 
in isrcLGi. 

During the year we have assisted Analytic Designs (Columbus, OH) in their implemen- 
tation of planar near-field measurements in the time domain. We have also been asked by 
Satimo  Inc. (Acworth, GA) and Supelect (Paris, France) to work with them in their com 
Dined effort to design a time-domain spherical near-field measurement system. In addition 
the numbers of the SBIR evaluation committee at Rome Laboratory chose "Time-Domain' 
Near-Field Measurements" as their top priority Phase II SBIR topic 

The table of contents of the Hansen and Yaghjian book are given in Appendix B. Final 

ft ff < A Cfapter? fnd S6Cti0ns 2-3"2-4 of ^e book have been completed. As part of 
the effort to develop and document the plane-wave theory of time-domain fields, Yaghjian 
and Hansen along with Professor A.J. Devaney, discovered and published as an IEEE APS 
Letter a profoundly simple method, using plane-wave spectra, for determining the position, 

Twl PfCt; vl^imUm P°SSibIe S°UrCe reSi0n of a sP-«ed far-field pattern [4] 
ill tl      ■ l        I Tran

k
SaCtl0nS °n AntCnnaS and Propagation has asked us to submit 

wSt      1     H     T        S,    nCVn the fUtUre-} ThC the°ry and Ration of this method, 
which is outlined m Appendix C, for determining the minimum source region, and the limits 
it gives for the smallest possible sizes of antennas that can radiate specified far-field patterns 

provide antenna engineers with a new set of practical design tools. 

Trajectories and Fields of Bound and Unbound Charges 

The 1992 book [5] by Yaghjian has received notable acclaim by the physics community. 
For example Pro essor Emeritus, Fritz Rohrlich of Syracuse University, considered by many 
Physicists as the foremost expert on the classical equations of motion for charged particles 



writes 

"This is a remarkable book.   Arthur Yaghjian is by training and profession an 
electrical engineer; but he has a deep interest in fundamental questions usually 
reserved for physicists. Working largely in isolation he has studied the relevant 
papers of an enormous literature accumulated over a centurv.   The result is a 
fresh and novel approach to old problems and to their solution. 

Physicists since Lorentz have looked at the problem of the equations of motion 
oi a charged object primarily as-a problem for the description of a fundamental 
particle typically an electron. Yaghjian considers a macroscopic object, a spher- 
ical insulator with a surface charge.  He was therefore not tempted to take the 
point limit  and he thus avoided the pitfalls that have misguided research in this 
neld since Dirac's famous paper of 1938. 

Perhaps the author's greatest achievement was the discovery that one does not 
need to invoke quantum mechanics and the correspondence principle in order 
to exclude the unphysical solutions (runaway and pre-acceleration solutions) 
Rather as he discovered, the derivation of the classical equations of motion 
from the Maxwell-Lorentz equations is invalid when the time rate of change of 
the dynamical variables is too large (even in the relativistic case). Therefore 
solutions that show such behavior are inconsistent consequences. The classical 
theory is thus shown to be physically consistent by itself. It is embarrassing-to 
say the least—that this observation had not been made before. 

This work is an apt tribute to the centennial of Lorentz's seminal paper of 1892 
in which he first proposed the Lorentz force equation." 

nJie^PAySiCf{ C°v
nSiJtent"  Classical e^™ of motion  (to use the terminology of 

Rohrhch) derived by Yaghjian can be applied to the PIC problem.   When an electron i 
accelera ed by an incoming electromagnetic pulse, the electron experiences a "radiation re- 
action   force in addition to the externally applied force. In 1997 we began work looking into 
he^version of the Lorentz-Abraham-Dirac equation of motion derived by Yaghjian [5   eq 
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where u, e and m are the velocity, charge and mass of the particle. Of course, t is the time, 
c is the speed of light, e0 is the permittivity of free space, Fext(t) is the externally applied 
force, and 7 = (1 — u2/c2)~ä. The force is applied at t — 0 and rj(t) is a function that 
increases monotonically from a value of zero to a value of unity in the time it takes light 
to traverse the diameter of the charged particle. In other words, r}(t) is close to a unit step 
function. It is this function r?(s) in (1) or 77(i) in (2) that had been previously overlooked 
and that Yaghjian found in his careful derivation of (1) and (2). This unobtrusive function 
completely eliminates the noncausal pre-acceleration that has plagued the original equations 
of motion ever since they were derived by Lorentz and Abraham about 100 years ago. 

Although (2) is a rather complicated equation of motion, our preliminary work with 
particles confined to rectilinear motion shows that closed-form solutions are indeed possible. 
In particular, for the velocity u in the x direction, that is, u = ux, we can find a general 
solution to (2) by making the change of variables 

sinh (V/c) = C7U ,    dr = dt/f (3) 

with 

to convert (2) to 

7= (l-u2/c2)   * = cosh (V/c) 

Fext(r) = mV'(r) MT)V"(T). 
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Equation (5) is a first order linear differential equation for V'(r).   Its solution for all r is 
given by 

f 0, r <0 
V'(r) = IN    d 

— /    Fext(r')~ 
m JT dr 

Ttpmc3    f T'    dr" 
? JT     irfr" l(r") dr' ,       T > 0 (6) 

where the external force is applied at r = 0 and is zero for r < 0. Integration of (6) over time 
produces the solution for the velocity of the charge that is zero for r < 0 and continuous for 
all r, even across r = 0, as long as Fext(T) is continuous or has a finite jump across r = 0. 
In other words, the inclusion of the 77 function in the equation of motion has eliminated the 
pre-acceleration from the solution to the original equation of motion without introducing 
false discontinuities in velocity across r — 0 or spurious delta functions and their derivatives 
at T = 0. 

1.2    High-Frequency Diffraction 

In the area of high-frequency diffraction, Dr. Yaghjian has been the principal investigator 
during the past ten years responsible for the development of incremental length diffraction co- 
efficients (ILDC's) that have been incorporated into production computer codes delivered to 



the Air Force. This highly successful work began with his discovery that three-dimensional 
(3-D) ILDC's could be found directly from the two-dimensional (2-D) far fields of planar 
canonical scatterers [6]. Shore and Yaghjian immediately applied this discovery to finding 
ILDC's for cracks and ridges in metal surfaces, and this led to the first accurate prediction 
of cross polarized fields from reflector antennas with cracks between their panels [7]. Sub- 
sequently, ILDC's were found for truncated wedges [8], and both the truncated-wedge and 
crack-ridge ILDC's have been included in the Air Force codes for computing scattering from 
large bodies. (The truncated-wedge work won an IEEE Best Paper Award at the 1996 IEEE 
International Symposium on Antennas and Propagation.) 

Moreover, Yaghjian has derived a theorem that removes the planar restriction on 2-D 
canonical scatterers used to find 3-D ILDC's. With this restriction removed, he has been 
able to derived (in 1996 and 1997) the first shadow-boundary ILDC's that can be used to 
significantly enhance the accuracy of bistatic as well as monostatic scattering computed from 
physical optics (PO) codes. These shadow-boundary ILDC's can be written in the form 

dESB(r\ 0, <f>) = dETTM(r', 9, <j>) + dE?M(r', 9, <f>) + dE<TE{r\ 0, <f>) + dE$E{r\ 9, <f>)       (7) 
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The TM and TE shadow-boundary electric fields required on the right hand sides of (8)-(ll) 
are given in [9]. Dr. R.A. Shore of Rome Laboratory tested these ILDC's by applying them 
to compute the high-frequency scattering from a perfectly conducting sphere of radius a 



illuminated by a plane wave. The corrections computed from the incremental fields were 
added to the PO fields of the sphere, and the results are shown in Figures 1 and 2 for the 
normalized bistatic scattering cross section (a/™2) in the E- and H-pIanes of a sphere with 
ka - 60. Figures 1 and 2 demonstrate that the incremental fields added to the PO fields 
produce a scattering cross section much closer to that of the exact eigenfunction solution of 
the sphere than that of the PO solution alone, especially for large bistatic angles. (The exact 
and PO+ILDC fields are practically indistinguishable over the range of 0 to 90 degrees not 
shown in Figures 1 and 2.) 

The combined work of Yaghjian and Shore in determining shadow-boundary ILDC's was 
published in 1997 as an invited paper to a special issue of Radio Science on electromagnetic 
theory [9]. We have been asked by Dr. V. Oliker of MATIS to help implement these shadow- 
boundary ILDC's m the near future into the production high-frequency computer codes 
which they continue to develop for the Air Force. 

1.3     Surface Integra! Equations 

In the area of surface integral equations, Yaghjian made substantial progress in 1997 toward 
solving the problem of the high condition numbers one encounters when applying the electric 
field integral equation (EFIE) to perfect conductors. These high condition numbers increase 
the number of required iterations in an iterative solution, and thus they severely limit the 
size and accuracy obtainable using the EFIE. To quote Professor W.C. Chew from his March 
1997 review article in the IEEE Transactions on Antennas and Propagation (Fast Solution 
Methods in Electromagnetics) 

"Therefore, preconditioning techniques for reducing the required number of iter- 
ations in iterative methods are urgently needed in solving electromagnetic wave 
scattering problems." 

Toward this end, Yaghjian was able to determine the root cause of the EFIE condition 
number increasing with patch density. He also found a very simple, practical preconditioner 
to stabilize the condition number of the EFIE applied to 2-D scatterers. This preconditioner 
which was presented at the 1997 IEEE/URSI International Symposium in Montreal Canada' 
is presently being tested in the 2-D EFIE computer codes of Boeing-McDonnell Douglas (St' 
Louis, MO) and Lockheed-Martin (Palmdale, CA). 

To understand why and how this EFIE preconditioner works, it helps to begin with the 
well-conditioned magnetic-field integral equation. Using the theorems on integral equations 
from [10], it was proven in [11] and confirmed numerically that the spectral condition number- 
tor the magnetic-field integral equation (MFIE) 

h x Hinc(r) = -h x j>K(r') x Vif>(r, r')dS' + ^1 (i2) 



CD 

rvj 
CÜ 

b 

40 

30 

20 

10 

0 

-10 

I I 

E - plane 

ka = 60 
Exact 
PO + ILDC 
PO 

-20 

* ^ A A •"» 

90  100  310  120  130  140  150  160  170  180 

Figure 1:   Plot of PO, PO+ILDC, and exact normalized bistatic scattering cross section of 

a perfectly conducting sphere (E-plane, ka = 60). 
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Figure 2: Plot of PO, PO+ILDC, and exact normalized bistatic scattering cross section of 

a perfectly conducting sphere (H-plane, ka = 60). 
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where H£\k\P - p>\) is the Hankel function, Ke(p) is the current tangential to the curve 
defining the boundary of the 2-D scatterer, and 8 in (16) is the length of the setf-increm n 
C6 centered on the observation point p. increment 

We have converted the conventional TE integro-differential equation corresponding to 
(14) to the pure integral equation in (16) (containing no derivatives of current^ in ofder 
to a low a clearer comparison with the TE MFIE obtained from (12). Of course the TM 
electnc-fie integral equation in (17) is identical to the conventional TM electric-he d nteg™ 
equation. Its: kerne\H^\k\P - p>\) is less singu]ar than the ^ rf the T£ ^™%* 

mtegral equation (16), and it can be solved simply and straightforwardly using fo ex mpll 
pulse basic functions and point matching. We have also solved the EFIE in 16 fo" tie' 
TE scattering from a 2-D strip using pulse basis functions and point matching   Reasonable 
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to a small fraction of the total computer time in (13). Moreover, this simple banded-matrix 
preconditioning converts the matrix representation (18) of the electric-field integral equation 
(14), (16) or (17) into a matrix representation (19) that is as well conditioned as the MFIE, 
and that can be solved iteratively in the CPU time TM given in (13). 

These conclusions have been confirmed by solving (18) and (19) iteratively for TE and 
TM scattering from 2-D strips with widths that varied from one to forty wavelengths. Ta- 
bles 1 and 2 below show spectral condition numbers and numbers of iterations for the TE 
scattering. The results for TM scattering are similar but with the number of iterations in 
the preconditioned cases growing more slowly than the (stripwidth/wavelength)1/2 growth 
exhibited in Table 2 for the TE scattering. 
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Table 1. TE scattering from 5-wavelength strip 

Increments 
per 

Wavelength 

Number of Iterations 
without Preconditioning 

(10-6 residual) 

Number of Iterations 
with Preconditioning 

(10-6 residual) 
5 22 (5.1) 12 (2.7) 

10 48 (11.1) 11 (2.4) 
15 72 (16.9) 12 (2.7) 
20 96 (22.7) 13 (2.9) 
50 did not converge (57.4) 13 (3.0) 

(Spectral condition numbers given in parentheses) 

Table 2. TE scattering from strips of different widths 
using 10 increments per wavelength 

Strip Width 
in 

Wavelengths 

10 
20 
40 

Number of Iterations 
without Preconditioning 

(1Q-6 residual) 
48 (11.1) 
70 (15.3) 

101 (21.3) 
143 (29.8) 

Number of Iterations 
with Preconditioning 

(10-6 residual) 
11 (2.4) 
14 (3.3) 
21 (4.6) 
30 (6.5) 

(Spectral condition numbers given in parentheses) 
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2     Principal Publications in 1997 
Books 

1. T.B. Hansen and A.D. Yaghjian, Plane-Wave Theory of Time-Domain Fields: Appli- 
cation to Near-Field Scanning, New York: IEEE/Oxford University Press, to appear 
in 1998. 

Book Chapters 

1. A.D. Yaghjian and T.B. Hansen, "Theorems on Time-Domain Far Fields," in Ultra- 
Wideband, Short-Pulse Electromagnetics 3, New York: Plenum Press, 1997, 165-176 
(Invited). 

Journal Articles 

1. A.D. Yaghjian, R.A. Shore and M.B. Woodworth, "Shadow-boundary incremental 
length diffraction coefficients for perfectly conducting smooth, convex surfaces," Radio 
Science, vol. 31, 1681-1695, November-December 1996 (Invited). 

2. T.B. Hansen, "Formulation of spherical near-field scanning for time-domain electro- 
magnetic fields," IEEE Trans, Antennas Propagat., vol. 45, 620-630, April 1997. 

3. A.N. Norris and T.B. Hansen, "Exact complex source representations of time-harmonic 
radiation,"  Wave Motion, vol. 25, 127-141, 1997. 

4. T.B. Hansen and A.N. Norris, "Exact complex source representations of transient 
radiation,"  Wave Motion, vol. 25, 1997. 

5. A.D. Yaghjian, T.B. Hansen and A.J. Devaney, "Minimum source region for a given 
far-field pattern," IEEE Trans. Antennas and Propagat., vol. 45, 911-913, May 1997. 

6. A.D. Yaghjian, "Banded-matrix preconditioning for electric-field integral equations," 
Digest of IEEE Antennas and Propagat. Soc. Int'l Symp. (Montreal Canada), vol. 3, 
1806-1809, July 1997. 

Citations in Science Citation Index 

Publications authored and co-authored by Dr. Yaghjian have received an average of 
40 citations per year for the past 10 years. In 1996, the last full year of Science 
Citation Index published to date, his publications received 46 citations. For every 
author who cites a publi'cation, there are usually many other people who have used 
that publication in their work but who have not published their work. Thus, this large 
number of citations each year indicates a considerable transfer of technology. 
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Appendix A: Derivation of Dispersion Relations 

Causality requires that the time-domain constitutive parameters are zero for t < 0. We can 
use this fact to relate the real and imaginary parts of each frequency-domain constitutive 
parameter by means of the Hubert transform. Consider, for example, the frequency-domain 
complex electric susceptibility xl, which can be written in terms of the Fourier transform of 
the time-domain electric susceptibility x'(t) as 

1   +r° 1    +r° / 1 +cc 

0 —oo ..   I   I 

(20) 
-oo 

The last equality in (20) can be proven valid for 8 > 0 using the theorem in [18, vol.2, sec.225] 
that allows the limit to be brought inside the integral if /+~ \xc(t)\dt < oo. Assume that 
Xl is a Holder continuous function of u, and for sufficiently large \u>\, \xeJ < C/\u\a, where 
C and a are positive constants [19, sec.43]. Then one can apply the convolution theorem to 
the last Fourier transform in (20), use the result 

+ 00 

'~   I ±-e-Ste>»tdt = ~^  (21) 
2TT J   \t\ TT(U;

2
 + 6

2
) {Zi) 

rewrite the convolution integral as a Cauchy principal value integral, and take the limit as 
S -> 0 (using [18, vol.2, sec.225] and the fact that xl is Holder continuous), to obtain 

+°°    ,t 

X I I J^-dv (22) 

where the bar through the integral sign in (22) denotes the Cauchy principal value integration 
[20, p.368]. Equating the real and imaginary parts of (22), one obtains the "dispersion 
relations" 

,       1 T ye" 2 +r  vv*" 
TC J     U — U) TV J     l>2 — U)2 K      J 

-oo 

+?°       *t ~      +oo 

xr = -i/-^^ = -^/^^^ (24) 
■KJV-U TV    J    V2-u2 {      > 

-oo 0 

Equations (23)-(24) show that the real and imaginary parts of Xl are Hilbert transforms of 
each other [20, p.372]. In fact, these dispersion relations could be obtained directly from 
the theory of Hilbert transforms, given that the first equation in (20) implies that x

e is 
an analytic function in the upper half of the complex w-plane. Here, however, we have 
derived the dispersion relations (23)-(24) straightforwardly without relying on the theory of 
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Hubert transforms or integrating in the complex w-plane. In addition, we have determined 
the conditions on the constitutive parameters, in this case xl, that assure the existence of 
the Hubert transforms and the validity of the dispersion relations. 

The corresponding dispersion relations hold, of course, for the magnetic susceptibility x™ 
and conductivity crw, provided they too are Holder continuous functions of u that approach 
zero as C/\uj\a or faster (a > 0) as \u\ —> oo. For frequency-domain functions like the 
complex permittivity eu = e'w + ie'^ = e(l + xl), which approaches the free-space value 
e as \u>\ —► oo, the dispersion relations (23)-(24) can be applied to (ew - e) to yield the 
"Kramers-Kronig dispersion relations" [21, p.311] 

<   +?■      » " +«»     Vfn 
(25) <, TV J 

—oo 

V 

V — U> 
dv -*          ^» 

TT J    V2 — U)2 

—oo 

c- 
i   +co / _ w< 

7T J    V - 
 dv 
- LÜ 

= 
2w   f   e'„-e 

■K    J    l/2 — UJ2 
du. (26) 

Formula (23) (or (25)) is especially useful because approximate values of the odd function 
Xl", such that xl" > 0 for a; > 0, can be inserted into (23) to obtain a permissible even 
function xl!■ However, approximate values of the even function xl! inserted into formula 
(24) may yield an odd function xl!' tnat does not satisfy the condition xl!' > 0 for CJ > 0 
[22, p.281], 

Each of the dispersion relations (23) and (24) (or (25) and (26)) holds exactly only if 
the imaginary and real parts, respectively, of the constitutive parameter are known and 
integrated over all frequencies. Approximate dispersion relations, corresponding to (23) and 
(24) (or (25) and (26)), can often be found, nonetheless, that produce accurate values of 
the real and imaginary parts of the constitutive parameter from the local variation of its 
imaginary and real parts, respectively [23]. 
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Appendix B: Contents of Book Entitled, "Plane-Wave Theory of 
Time-Domain Fields" 

1 Introduction , 

2 Electromagnetic and Acoustic Field Equations 6 
2.1    Time-Domain Electromagnetic Field Equations      7 

2.1.1 First-Order Differential Equations  g 
2.1.2 Second-Order Differential Equations      IQ 

2.1.3 Causality      ii 

2.1.4 Equivalence of First-and Second-Order Differential Equations   .... 12 
2.1.5 Uniqueness of Solution  . . .  i = 
2.1.6 Existence of.Solution  ig 

2.1.7 Volume Integral Expressions for the Electric and Magnetic Fields    . . 24 
2.1.8 Electric and Magnetic Fields of a Moving Point Charge  27 
2.1.9 Surface Integral Expressions for the Electric and Magnetic Fields (Huy- 

gens' Sources)                         " on 
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Appendix C: Minimum Source Region for a Given Far-Field Pat- 
tern 

A number of authors, including[24, th.26] and [25, sec.4.3], have proven that the far-field 
pattern produced by sources in a volume of finite extent is an entire analytic function of 
the complex spherical angles (6, <j>). In addition, Müller [24, th.26,27,29] has proven that the 
sources of a given analytic far-field pattern must be contained in a sphere with a radius at 
least as large as R. The value of R is determined from the spherical expansion coefficients 
of the far-field pattern, and for many far-field patterns the value of R is greater than zero 
regardless of the position of the origin chosen for the spherical expansion. Outside the sphere 
of radius R, the field of the given analytic far-field pattern is also an analytic function of the 
spherical coordinates, and this function can be uniquely continued analytically to a minimum 
source region Vmin located inside the sphere of radius R. (This can be done, in principle by 
expanding the field in a series of Bessel spherical wave functions that converges uniformly up 
to the surface of the minimum source region [24, ch.3].) Outside Vmin, which can be singly 
or multiply connected, the field obeys the homogeneous wave equation. In addition   V      is 
the smallest possible source region, in that the sources of the given far-field pattern must 
extend at least as far as the surface of Vmin, or else the field could be further analytically 
continued inside the surface. 

Here, we derive a simple method, based on the plane-wave spectrum formulation for 
determining the minimum convex closed surface Smin in which the sources of a given acoustic 
or electromagnetic far-field pattern can be located, that is, the minimum convex surface 
enclosing the minimum source region Vmin. Unlike the value of R in the method based 
on a spherical wave expansion, the shape and size of Smin found here from the plane-wave 
spectrum 1S independent of the position of the origin of the coordinate system in which the 
plane-wave spectrum is defined. 

We begin with a result derived in our book, namely, that the far-field functions FJkx, kv) 
for sources m a volume V of finite extent satisfy the asymptotic relation 

fimji^yie-bl^o,    z>zs,    for &\\ky/kx (27) hi 

where z equals the maximum (more precisely, the supremum) value of z for which the 
source function qu{x,y, z) is nonzero. Here, zs can be a negative, zero, or positive real 
number, depending on the position of the origin of the xyz coordinate system with respect 
to the source region. 

An infinite number of different source distributions can radiate the same far field, and 
thus produce the same field everywhere outside the source region. For example, any number 
of spherically symmetric source distributions produce the same constant far-field pattern 
Thus, depending on the particular source distribution qu(x,y,z), (27) may hold for z > Zl 

with zx < zs.   Moreover, unless the source distribution can be zero everywhere (and thus 

19 



not radiate at all), there must be a minimum zx for which the limit in (27) is zero. Letting 
zmin be the maximum value that z attains in Vmin, so that z < zmin when r e Vmin, 
the minimum zx is equal to :zmin. To prove this, assume that zx were less than zmin™so 
that the plane z = zx cuts through the minimum source region Vmin. Then the spectrum 
Tu(kx,ky) = {ilf)Fu{kx,ky) would decay exponentially according to (27) for z > zu and the 
field given by the plane-wave expansion 

+00 +00 

P*(r) = 2; J J Tu(kx,ky)e^
x+k^^dkxdky (28) 

would satisfy the homogeneous wave equation for z > zx and be an analytic function of the 
spatial coordinates for z > zx> Consequently, z = zx cannot cut through the minimum 
source region, and the minimum value of zx is therefore equal to zmin. 

Hence, for z < zmin, the limit in (27) is indeed not equal to zero at least for one value of 
ky/kx as |7| = |fc2 + £2 _ p|i/2 _> ^ so for any far.field function generated by sources in a 
volume of finite extent, we have 

limsupli^k.jyie-W* = ( °'     Z> *™'   for a11 kvlk* (m 
hl-00 { 00,   z < zmin}   for at least one ky/kx. 

{    } 

The infinite value occurs on the lower right side of (29) because if the value of the limit is 
nonzero for all z < zmin, the exponential factor on the left side of (29) demands that its 
value be infinite for all z < zmin. The "limit superior" [27, p.68] is necessary in (29) to allow 
for oscillating values of Fw(kx, ky) as \j\ -» 00. 

The condition (29) can be rewritten as follows in terms of a far-field pattern Tw{6, <f>) 

lim sup |^(ö,^)|e-
i2lC0SÖl = / °'     z> z™^   for a11 <f> n(]) 

e-+%-ioo { 00,   z < zmin,   for at least one (f> . ^    > 

where we have used the fact that 

Fu(9,<ß) = i^(Ä;cos^sinö,Ä;sin^sinö) (31) 

for 0 < <f> < 2TT; 0 < 6 < TT/2 and 9 = TT/2 - ia with 0 < a < 00. 

Now, suppose we are given an analytic far-field pattern and have determined the value 
of zmin such that (30) is satisfied. The minimum source region Vmin for this far-field pattern 
must extend m the z direction as far as z = zmin. If (30) holds for all orientations of the z axis 

JTo prove that the field in (28) satisfies the homogeneous wave equation for z > zlt apply the V2 operator 
to the right side of (28) and interchange the integrations and differentiations for z > z, as allowed by the 
exponential decay of the integrand [26, sec.6.2.3]. Similarly, it follows that the field in (28) is an analytic 
function of x, y, and z in domains that include the real x, y, and z axes. 
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Figure 3:  Minimum convex closed surface Smin formed by the locus of points z 
orientations of the z axis. 

■mm for all 

(with zmin and TW{B^) depending, in general, on the orientation), then the corresponding 
spectrum Tu(kx, ky) for all orientations of the z axis can be inserted into (28) to generate a 
function pu(r) that satisfies the homogeneous wave equation outside the minimum convex 
closed surface Smin formed by all the zmin, as shown in Figure 3. In other words, Smin 

will be the minimum convex surface enclosing the minimum source region. The plane-wave 
representation (28) also gives us the value of Pu,(r) and all its derivatives on Smin In 
particular, it gives the Huygens' sources (pu(r) and (d/dn)p„(r)) that generate the fields 
outside Smin. 

Consequently, we have proven that a far field satisfying the conditions (29) or (30) for 
every orientation of the z axis can be generated by sources that lie within or on the minimum 
convex closed surface Smin determined by the locus of values of zmin for all orientations of 
the z axis. Moreover, this far field cannot be generated by sources that extend to a radius 
that is less than the radius R^^ of the sphere that circumscribes Smin (see Figure 3). If 
the origin of this circumscribing sphere is chosen as the origin of the coordinate system that 
Müller [24] uses to expand the fields in spherical waves, then this Rmin equals the minimum 
R in [24, th.26,27]. For other origins, Müller's minimum R is greater than Rmm. Of course, 
the sources that generate the far-field pattern fu(0, tf>) are not unique and can be chosen to 
extend outside 5min. 
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For many far-field patterns, Smin will simply be a single point in space so that Rmin = 0. 
This means that the pressure pw(r) associated with T^iß, <f>) can be produced by a convergent 
sum of spherical multipoles located at a single point in space (Smin). If Rm,n > 0, a multipole 
expansion (located at the center of the sphere with radius Rmin) of the pressure p„(r) having 
the far-field pattern TJJ)^) will converge for radii r > Rmin. Moreover, at least for some 
spherical angles (6>,<£), it will diverge when r < Rmin- If the infinite sum of spherical 
multipoles is truncated to a finite mode number N, the resulting approximate field will 
converge, of course, for all r > 0 but will have extremely high reactive fields for r < N/k 
[28],[29]. 

For electromagnetic fields, the scalar acoustic far field is merely replaced by the vector 
electromagnetic far field, and (29) and (30) are replaced by 

limsuplF^yie-H*^   u<     *-**».■»,   ™ *u  *,/«. (32) 

3—»TT— tOO 

o, z > Zmin 5 for all  ky/kx 

oc , z < Zmin j for at least one *» /* 

/ o, z > ^min,   for all  <f> 

I cc ,   z < zmin,   for at least one * 
hmsup |^(ö, fl|c-*'l~'l =     u>     * > *->    or a 7 (33) 

Example 

We shall now use of the acoustic formula (30) to determine the minimum convex surface 
Smin for the far-field pattern of a circular-disk acoustic radiator of radius a. This far-field 
pattern as a function of spherical angles (8, <f>) measured with respect to a rectangular xyz 
coordinate system, with z axis, normal to the circular disk and passing through the center of 
the disk at z — 0, is given by 

Fu{0,<t>) = A   u \    O<0<TT (34) 

where Jy(x) is the first order Bessel function, and A is a constant independent of 6 and 
4>. For this particular orientation of the z axis, the far-field pattern is independent of the 
azimuthal angle <j>. 

Substituting the far-field pattern (34) into (30) shows that zmin = 0 for this z axis normal 
to the center of the disk. For the z axis pointed in the opposite direction, zmin also equals 
zero, because sin(7r - 6) = sin 6; that is, the far-field pattern in (34) is identical to the 
right and left of the circular-disk radiator. Thus, we have confirmed that the sources of the 
far-field pattern (34) can all lie in the plane of the circular disk that radiates this far-field 
pattern. 

To find the minimum distance that the sources must extend from the center of the 
disk in a direction in the plane of the disk, rotate the z axis 90° about the y axis and 
rewrite the far-field pattern in terms of the new spherical angles (0', <f>') measured with 
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respect to this rotated z axis, which now lies in the plane of the disk. Specifically we have 
sin# = (1 - sin2 0'cos V)1/2 and (34) shows that 

Ji \ka\J\- cosh2 a cos2 ft) 
F»{?I1 -ia,ft) = A     K \    0<Q<OO (35) 

y 1 — cosh a cos2 ft 

where we have also used sin(7r/2 - ia) - cosh a. Since 

(1-cosh2acosV)1/2~±z'|cos<^|cosha,      a -> oo,     cos ft jL 0 (36) 

the asymptotic formula 
Ji(iiix) ex 

~S~ ~ ^7S'   x~* °° <37> 
can be invoked to get 

i_   , . >     ■ , A pfco cosh otl cos 0'| ,,-kzsinha 
hmsup |^(TT/2 - ia, <*')|e-**»«*° = limsup Aj       \±  

a-°° °-°°   V2irka (cosh a| cos ft\)^ 
(38) 

when cos^' ^ 0.  For cos ^ = 0, we have ^(TT/2 _ iaj^ = AJ^kay  Combining these 
results shows that 

limsup \^(6',ft)\e-hz^os9'\ = I °'      z > G'   for a]1 ^' ,oqs 
«'-f-too [oo,   2 < a,   for at least one ft . ^    > 

t 

Comparing (39) with (30), we see that zmin = a for any orientation of the z axis in the 
plane of the disk. Therefore, the minimum convex surface Smin containing sources that can 
produce the far-field pattern of the circular-disk radiator simply coincides with the actual 
lnfmitesimally thin physical disk of radius a. Of course, the same far-field pattern could be 
excited by sources that extend outside this disk. However, the above exercise has proven 
that the physical disk comprising the circular acoustic radiator is the smallest source region 
that can exactly produce its far-field pattern. 

In summary, when an exact closed form expression for the acoustic far field is known, (29), 
or equivalents (30), determines the minimum convex closed surface in which the sources of 
the far field can reside. 
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