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Dynamic Loading of Shallow Foundations: 

Theory versus Experiment 

Thesis directed by Professor Ronald Y. S. Pak 

In soil-structure interaction problems in soil dynamics, an important sub- 

ject is the dynamic behavior of embedded foundations. Presented in this thesis 

is a basic study of the vertical and lateral vibration characteristics of shallow 

foundations. To obtain a physical understanding of the problem for granular 

soils, a series of forced vibration tests of square foundations embedded to various 

depths in sand is performed in a geotechnical centrifuge. A parallel boundary 

element analysis which can handle nonuniform soil profiles is also used to develop 

an analytical framework for the problem. By comparing the experimental results 

with the analytical solution, it is shown that the modeling of the experimental 

results from vertical vibrations with the homogeneous half-space or square-root 

half-space theory is directly feasible, while the lateral vibration case requires the 

use of appropriate Impedance Modification Factors (IMF's) to capture the ob- 

served dynamic foundation stiffnesses. Support is also shown for a power law 

dependence of the embedded foundation equivalent homogeneous shear modulus 

on the prototype footing half-width and average contact pressure. 
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Chapter   1 

Introduction 

The observed massive destruction of property and loss of life caused by 

foundation and structural failures in earthquakes have clearly demonstrated the 

need for improved design methodologies in seismic hazard mitigation. In the last 

several decades, structural dynamics and soil dynamics analysis in earthquake 

engineering have seen increasing recognition as an intrinsically coupled problem. 

Additional impetus to the field of research is also generated by related activities 

in the design of machine foundations, off-shore structures, and blast-resistant 

buildings (e.g. Stokoe and Richart [36], Gazetas [8]). 

For many applications, soil-structure interaction problems can be simplified 

by employing a suitably linearized analysis for small to moderate deformation. 

Using this method, the soil, foundation, and structure can be divided into several 

substructures which can be analyzed individually. The four basic problems which 

must be solved are (Luco [23]): (i) free-field ground motion, (ii) scattering field 

motion, (iii) forced vibration of foundations (radiation problem), and (iv) interfa- 

cial mechanics (structural dynamics problem). Among them, the scattering field 

motion problem and the forced vibration problem are often true three-dimensional 

continuum mechanics problems (Guzina [13]). Solving the scattering field motion 

problem yields the foundation input motions which describe the foundation's re- 

sponse to specified incident seismic waves in the absence of any other forces (Mita 

and Luco [28]). Solving the forced vibration problem leads to the dynamic in- 

terfacial compliances which provide the displacement per unit of forced vibration 



applied to the foundation as a function of frequency (Dominguez [6]). Recipro- 

cally related to the interfacial compliances are the interfacial impedances which 

can be obtained by inverting the compliance matrix. 

In the study of soil-structure interaction problems, much attention has been 

given to analytical modeling and experimental testing of surface footings (see 

Gazetas [8], Guzina [12], Ashlock [1]) due to its fundamental importance. A 

more challenging and practical case, however, is an embedded foundation. Be- 

cause of the side contacts and related effects, the dynamic response of embedded 

foundations must be a function of the embedment depth and the nature of the 

surrounding soil. Therefore, seeking an understanding of the characteristics of the 

problem, researchers have taken a variety of approaches to investigating the behav- 

ior of embedded foundations on soil. Some have proposed an analytical approach 

(e.g. Mita and Luco [26], Karabalis and Beskos [20]), while others have conducted 

experiments on full-scale prototypes (e.g. Novak [29], Stokoe and Richart [36], 

Crouse et. al. [5]) or centrifuge models (Hushmand [19], Guzina [12]). In this 

study, a combined analytical and experimental approach will be used to study 

the vibrations of embedded foundations in cohesionless soils. A boundary ele- 

ment method will be utilized to provide the analytical framework in the form of 

impedances for a homogeneous half-space and a square-root shear modulus profile, 

while centrifuge modeling will provide the experimental results for forced vibra- 

tion of shallowly embedded square foundations on sand. As will be illustrated in 

the following chapters, the two approaches complement each other well and lead 

to an overall understanding of the problem which would be difficult to achieve 

otherwise. 



Chapter   2 

Embedded Foundation Impedance Functions 

2.1 Interfacial Impedance Matrix 

One of the most important elements in the substructuring approach to soil- 

structure interaction problems is the determination of the foundation impedance 

matrix. Defined in the frequency domain, the interfacial impedances relate forces 

and moments to the corresponding translations and rotations at a control point 

on the soil-foundation interface as a function of frequency. With reference to 

Figure 2.1 which shows a square foundation with base dimensions 2bx2b embedded 

to depth h in a soil medium, the control point is often selected to be the point 

xre/ = x/j = (0, 0, h) at the base of the foundation. Using such a point as the 

reference, the motion of the foundation can be defined in the frequency domain 

by the generalized displacement vector 

where 

üx,üy,üz,Qx,ey,ez]T (2.i) 

are the dimensionless displacements and 

öx = ex,   ey = ey,   ez = ez (2.3) 

are the dimensionless angular rotations at xh where b is the half-width of a square 

foundation. Likewise, the generalized force vector can be written as 

F(co)= [Fx,Fy,Fz,Mx,My,Mz]
T. (2.4) 



where 
F F F 

F  = F  =     y        F  = 
x     Go2'      y     Gb2'      z     Gb2 (2.5) 

are the resultant forces and 

M* = 
G63' 

M„ = 
M„ M7 

GW    Mz     Gb3 (2.6) 

are the resultant moments at x^ where G is a chosen reference shear modulus. 

In terms of these forces and displacements, the interfacial impedance matrix for 

V X' 

©x'Mx 

UZ'
Fz 

Figure 2.1: Square footing with half-width "b" embedded in soil to depth "h". 

a general rectangular foundation at the control point xh, denoted K(w), can be 

defined as 

F(w) = K(w)Ü(w) (2.7) 



ire the components of K(w) < ire, 

JfäM 0 0 0 #£» 0 

0 *ZZ(") 0 KlU") 0 0 

K(w) = 
0 0 Kvv(w) 0 0 0 

0 KZM 0 äS»H 0 0 

^kM 0 0 0 mm 0 

0 0 0 0 0 Ktt(u) 

re 

CH = ^P,   *#M = Kh»     xkk (u) = Gb     '      niumri 
JAM 

G63 

(2.8) 

^mhK^J -      el2     '     AAmla;J -      G62     ,        Att(Wj —    G6s   ■ 

(2.9) 

The eight independent components of the impedance matrix are Kk^(co), Kvv(u>), 

Km
k
m(u), KJ

h
k

m(uj) = K^h(u) (j,k = x,y), and Ktt(u), which are the horizontal, 

vertical, rocking, coupling, and torsional stiffness functions respectively. The first 

subscript in the notation refers to the force or moment being reported while the 

second subscript refers to the translation or rotation applied. The first superscript 

refers to the direction of the force or moment and the second superscript refers to 

the direction of the translation or rotation. For example, K^h is the moment about 

the y-axis necessary to ensure a pure horizontal translation in the ^-direction. 

In the case of a square foundation, further simplifications can be made due 

to symmetry since the force-displacement relations will be the same in the x- and 

y-directions. They are 

' K%(to) = Kft(u) = Khh(u),      K%m(u) = AW» = Kmm(cv), 
(2.10) 

K^(u) = -K%(«,) = Kmh{u),   KZ(U) = -KFm(u) = Khm("), 

where K£m{u) = K%h(uj) {j,k = x,y) implies that Khm(u) = Kmh(to), and the 

negative sign for the coupling terms occurs due to the alignment of the axis system. 
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Consequently, there are now only five independent components of the impedance 

matrix 

Khh{u) 0               0               0 Khm{uj) 0 

0 Khh(co)          0 -Khm{u) 0 0 

0 0 Kvv(to)          0 0 0 

0 -Kmh{u)        0 Kmm{oo) 0 0 

Kmh(u) 0              0              0 Kmm 0 

K(w) = 

0 0 0 0 0        Ktt{u)) 

(2.11) 

In a similar manner, one can define the 6x6 compliance matrix according to 

Ü(w) = C(w)F(w), (2.12) 

where, 

C(üü) 

Chh{u) 0 0 0 Chm{w) 0 

0 Chhiu) 0 — Cftm(w) 0 0 

0 0 Cvv(u)) 0 0 0 

0 — Cmh{w) 0 Cmm(uj) 0 0 

Cmh{to) 0 0 0 ^mm 0 

0 0 0 0 0 Ctt(u) 

(2.13) 

(2.14) 

and 

Cvv = GbCvv,      Chh = GbChh-,    Cmrn = G6 Cmm, 

Cmh = Gb Cmh,    Chrri — G& C/jm,       C« = Gb3Ctt- 

To compute the impedances, the simplest method is to consider four dis- 

placement boundary value problems:   (i) a pure vertical rigid body translation 
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uz for computing Kvv (Kvv = Fz/uz), (ii) a pure horizontal rigid body trans- 

lation ux for computing Khh (Khh = Fx/ux) and Kmh (Kmh = My/ux), (iii) 

a pure rigid rocking rotation Qy about the reference point for computing Kmm 

(Kmm = My/Qy) and Khm (Khm = Fx/Qy), and (iv) a pure torsional rotation 

02 = 1.0 about the reference point for computing Ktt (Ktt = Mz/Qz). Some 

of the methods to compute the impedances analytically will be discussed in the 

following section. 

2.2 Overview of Analytical Methods 

There are four major methods which have been used to solve for the em- 

bedded foundation impedance matrix which can be categorized as follows: (i) 

simplified analytical methods, (ii) finite element methods (FEM), (iii) boundary 

element methods (BEM), and (iv) methods which combine the FEM and BEM. 

2.2.1 Simplified Analytical Methods 

Simplified analytical methods of finding the impedances for embedded foun- 

dations are often based on a modification of results from surface foundations by 

certain factors which change due to embedment. For instance, Gazetas et. al. [9] 

proposed an approximate approach in the form of empirical formulas and dimen- 

sionless graphs using numerical results from a boundary integral equation method 

for vertical vibrations of arbitrarily shaped embedded foundations. Gazetas and 

Tassoulas [10] and Hatzikonstantinou et. al. [18] used the same method to de- 

scribe horizontal and rocking vibrations respectively. The findings of these three 

papers ([9], [10], [18]) are summarized by Gazetas in [8]. Gazetas proposes the 

usage of three coefficients used to modify the surface stiffness which are based on 

three proposed stiffening effects that embedment has on a foundation. The first 

effect is based on the fact that soil at greater depths is generally suffer than soil 



a) /i ii A A | A A A | A A ii )i 
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ji n A A A A A A A )i ii )i 
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c) 

Figure 2.2: Illustration of (a) a surface footing with a stress-free surface, (b) the 
trench effect, (c) sidewall effects (Gazetas et al [9]). 
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at the surface. The second effect is called the "trench" effect and is illustrated 

in Figure 2.2b. The trench effect can best be explained by the fact that a rigid 

mat will settle less when placed in a trench of a homogeneous half-space than 

on the surface of a homogeneous half-space. For a surface mat, the soil surface 

around the rigid mat is free of traction (see Figure 2.2a). However, such tractions 

are present in the case of embedded foundations due to the normal and shear 

forces developed in the overlying soil above the rigid mat as in Figure 2.2b. The 

presence of these forces can provide a push-back effect which resists the motion of 

the rigid mat. The third effect is called the "sidewall-contact" effect and is shown 

in Figure 2.2c. When a load is applied to an embedded foundation, the sides of 

the footing are in contact with the soil and can transfer load to the soil. Thus, 

one would expect that increasing the embedment depth of a foundation would 

lead to higher impedances due to the effect of transferring load through the sides 

of the footing in contact with the soil. This method proposed by Gazetas [8] is 

one of many simplified analytical methods appearing in the literature. Due to 

the simplistic uncoupling of the three effects, the method does not have a high 

reliability as will be shown in Section 2.3. 

2.2.2 Finite Element Methods 

Although the finite element method is widely used in many areas of engi- 

neering for representing finite geometries, difficulties arise when using FEM to 

represent a semi-infinite medium such as the soil beneath a foundation, since the 

entire soil region must be discretized. This creates problems in dynamic modeling 

since some sort of finite artificial boundary must be imposed. The insertion of this 

boundary often causes errors due to the reflection of waves off of the boundaries 

and back to the foundation itself. Problems of wave reflections have been partially 

solved in FEM by means of special nonreflecting boundaries (e.g. Roesset and Et- 
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touney [34]) and infinite elements (e.g. Medina and Penzien [25]) at an increased 

computational cost. However, the method of choice for representing infinite or 

semi-infinite mediums is still the boundary element method. 

2.2.3 Boundary Element Methods 

The boundary element method has been the most popular for computing 

the interfacial impedances due to its inherent ability to deal with a semi-infinite 

medium. Among various half-space models, the homogeneous isotropic case which 

is fully characterized by elastic parameters G, u, and p, is the most widely used. 

Solutions for simple inhomogeneous soil profiles have also been developed as in 

Guzina and Pak [16]. With the use of multi-layered half-space Green's func- 

tions, more complicated variations of the soil can also be considered (Guzina and 

Pak [14], Luco and Wong [24]). Because of the need to discretize only the bound- 

ary surface, BEM has a fundamental appeal to researchers and formulations have 

been developed in both the frequency and time domains. For example, Fukuzawa 

et al.[37] and Yoshida and Kawase [38] use a frequency-domain boundary element 

technique to obtain the dynamic response of rectangular foundations embedded 

in a homogeneous elastic half-space and subjected to both external forces and 

elastic waves. Karabalis and Beskos [20] employ a time-domain boundary element 

method for a homogeneous half-space, while Dominguez [6], [7] utilizes a frequency 

domain boundary element method for a homogeneous half-space. 

The most recent development is the work of Pak and Guzina [33]. Using 

the fundamental boundary integral equation for three-dimensional elastodynam- 

ics, the authors implement a version with a rigorous multilayered Green's function 

representation of the soil medium and design a set of special singular boundary 

elements to handle the singular tractions caused by sharp foundation edges and 

three-dimensional corners (see also Guzina [13]). The existence of such singulari- 
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Figure 2.3: Distribution of normal contact tractions tz corresponding to dynamic 
stiffness KVV(UJ = 1.0) for a homogeneous half-space. (Bottom of the rigid foun- 
dation, h/b = 1.0, ^ = 0.25) 
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Figure 2.4: Distribution of shear contact tractions tx corresponding to dynamic 
stiffness Khh(Q = 1.0) for a homogeneous half-space. (Bottom of the rigid foun- 
dation, h/b = 1.0, ^ = 0.25) 
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Figure 2.5: Distribution of normal contact tractions tz corresponding to dynamic 
stiffness Kmh(cD = 1.0) for a homogeneous half-space. (Bottom of the rigid foun- 
dation, h/b = 1.0, v = 0.25) 
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Figure 2.6: Distribution of normal contact tractions tz corresponding to dynamic 
stiffness Kmm(ü = 1.0) for a homogeneous half-space. (Bottom of the rigid foun- 
dation, h/b = 1.0, ^ = 0.25) 
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Figure 2.7: Distribution of shear contact tractions tx corresponding to dynamic 
stiffness Ktt(ü = 1.0) for a homogeneous half-space. (Bottom of the rigid founda- 
tion, h/b = 1.0, v = 0.25) 



16 

Real Part 

Imaginary Part 

Figure 2.8: Distribution of shear contact tractions ty corresponding to dynamic 
stiffness Ktt(ü = 1.0) for a homogeneous half-space. (Bottom of the rigid founda- 
tion, h/b = 1.0, v = 0.25) 
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Figure 2.9: Distribution of normal contact tractions tz corresponding to dynamic 
stiffness Ktt(ü = 1.0) for a homogeneous half-space. (Bottom of the rigid founda- 
tion, h/b = 1.0, v = 0.25) 
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Figure 2.10: Distribution of shear contact tractions tz corresponding to dynamic 
stiffness Kvv(ü = 1.0) for a homogeneous half-space. (X-face of the rigid founda- 
tion, h/b = 1.0, z/ = 0.25) 
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Figure 2.11: Distribution of normal contact tractions tx corresponding to dynamic 
stiffness Khh(üj = 1.0) for a homogeneous half-space. (X-face of the rigid founda- 
tion, h/b = 1.0) 
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Figure 2.12: Distribution of normal contact tractions tx corresponding to dynamic 
stiffness Kmm(Q = 1.0) for a homogeneous half-space. (X-face of the rigid foun- 
dation, h/b = 1.0, v = 0.25) 
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Figure 2.13: Distribution of normal contact tractions tx corresponding to dynamic 
stiffness Ktt(ü> = 1.0) for a homogeneous half-space. (X-face of the rigid founda- 
tion, h/b = 1.0, i/ = 0.25) 
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Figure 2.14: Distribution of shear contact tractions ty corresponding to dynamic 
stiffness Ktt(üi = 1.0) for a homogeneous half-space. (X-face of the rigid founda- 
tion, h/b = 1.0, v = 0.25) 
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Figure 2.15: Distribution of shear contact tractions tx corresponding to dynamic 
stiffness Khh(iJj = 1.0) for a homogeneous half-space. (Y-face of the rigid founda- 
tion, h/b = 1.0, v = 0.25) 
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Figure 2.16: Distribution of shear contact tractions tx corresponding to dynamic 
stiffness Kmm(ü = 1.0) for a homogeneous half-space. (Y-face of the rigid foun- 
dation, h/b = 1.0, v = 0.25) 
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ties of the tractions can be seen in Figures 2.3 to 2.16 which show the tractions on 

each face of a rigid cavity embedded to h/b = 1.0 in a homogeneous half-space with 

a Poisson's ratio of 0.25. The homogeneous half-space Green's function derivation 

is presented in Pak [30] for an arbitrary, time-harmonic, finite, internal source. 

2.2.4 Hybrid Formulations 

An interesting approach to computing the components of the interfacial 

impedance matrix was proposed by Mita and Luco [26] and involves combining 

finite and boundary element methods. They present a hybrid formulation which 

utilizes the Green's functions for a half-space continuum in combination with a 

finite element discretization of the soil excavated for the foundation. Tabulated 

results for a variety of embedment depths and half-space characteristics are pre- 

sented in Mita and Luco [28]. Mita and Luco apply an approximate scheme where 

displacement compatibility between the foundation and the excavated portion of 

the half-space is imposed away from the soil-foundation interface to avoid the sin- 

gularities. Additional approximations are made by assuming that the unknown 

sources are located in the interior of the excavated soil region instead of on the 

soil-foundation interface. Mita and Luco compare results from their formulation 

with some of the boundary element results mentioned above ([6], [7], [20], [37], 

[38]) in a subsequent publication [27]. 

2.3 Comparison of Results 

In the present study, the analysis developed by Pak and Guzina [33] will be 

employed due to its rigor and generality. To check the degree of accuracy of past 

approaches, the results for a homogeneous half-space (u = 0.25) is computed and 

compared with the approximate approach by Gazetas [8] and the hybrid approach 

by Mita and Luco [28]. The impedances from Mita and Luco were computed for a 
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complex Poisson's ratio with a small imaginary component and a real component 

equal to 0.25, and a shear modulus with an imaginary component in the form 

G = G0(l + 0.002i). One should also note that Gazetas' formula for an arbitrarily 

shaped footing is not for a specific Poisson's ratio, although in some of the formulas 

there is a distinction between v > 0.4 and v < 0.4. In this case, the formula in 

Gazetas for v < 0.4 is used to correspond to the case of v = 0.25 in the other two 

approaches. 

Figures 2.17 to 2.20 present the impedances obtained by the three ap- 

proaches for an embedment depth of h/b = 1.0 in terms of the spring and dashpot 

coefficients. The dimensionless impedances Kij in Equation (2.9) are related to 

the spring and dashpot coefficients according to 

Kvv(uj) = kvv(cu) + iCocvv(Co), 

Khh{ü) = khh(ü) + iüchh(üi), 

Kmrn{ü}) = kmm(ü>) + iü)cmm(ü), (2.15) 

Kmh{ü) = kmh(ü) + iü)cmh(Cd), 

Ktt{Q) = ktt(Cü) + iü)Cu{ü), 

where %(ö>) and Cij(ü) are the spring and dashpot coefficients (i,j = v,h,m,t). 

The dimensionless frequency ü is defined by 

cub 
ö = —, (2.16) 

where Cs is the shear wave velocity of the medium. The plots in Figures 2.17 to 

2.20 reveal that the rigorous solution employed in this investigation and the result 

from Mita and Luco are quite close overall. The differences between the two can 

probably be attributed to the approximate method used by Mita and Luco, where 

the displacement compatibility between the foundation and the "excavated" por- 

tion of the half-space is imposed at a fictitious non-interfacial surface. Guzina [13] 
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notes that Mita and Luco underestimate the value of the dashpot coefficient in 

many cases. This can be seen clearly in the plots for chh and cmh, and for cmm 

above Co - 1.0. The impedances from Gazetas are similar to the other two sets of 

impedances and may be a good approximation in some cases. However, in general, 

the resulting dynamic impedances do not capture the true frequency dependent 

characteristics of the problem. For example, his formula predicts that the spring 

and dashpot coefficients associated with the rocking and coupling modes in Fig- 

ures 2.19 and 2.20 to be linear, whereas exact impedances show obvious frequency 

dependence which is not linear. For kvv, the error in Gazetas' solution increases 

with frequency and is over 50% at ü = 2.0. Likewise, khh differs by about 13% at 

Co = 2.0, cmm differs by more than 400% at low frequencies, and kmh differs by 80% 

at ui = 2.0. Given the rigor of the current method over the other two approaches, 

impedances presented in the remainder of this investigation are computed based 

on the formulation by Pak and Guzina [33]. 
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Figure 2.17: Dynamic vertical spring and dashpot coefficients for a rigid embedded 
square foundation (h/b=1.0). 

16.0 

I   14.0 o 
<-M 
(D 
O u 
o 
On 

CO 
«3 

Q 
-o 
Ö 
c3 
00 
a 

■c 
OH 

CO 

12.0 

10.0 

8.0 

6.0 
0.0 

"hh 

— Current 
Mita & Luco 

— Gazetas 
vhh 

1.0 2.0 
cob/C 

3.0 

Figure 2.18: Dynamic horizontal spring and dashpot coefficients for a rigid em- 
bedded square foundation (h/b=1.0). 
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Figure 2.19: Dynamic rocking spring and dashpot coefficients for a rigid embedded 
square foundation (h/b=1.0). 
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Figure 2.20: Dynamic coupling spring and dashpot coefficients for a rigid embed- 
ded square foundation (h/b=1.0). 
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2.4 Change in Impedance with Depth of Embedment for the Ho- 

mogeneous Half-Space 

As a benchmark reference for the dynamic behavior, Table 2.1 shows the 

static values of the interfacial impedances for a foundation embedded in a homoge- 

neous half-space with a Poisson's ratio of 0.25 for embedment depths of h/b = 0.0 

to 4.0 (see also Figures 2.21 to 2.23). Additionally, Figures 2.24 to 2.27 show 

the dynamic impedances for ü = 0.0 to 4.0 for embedment depths of h/b = 0.0, 

h/b = 1.0, and h/b — 2.0. The dynamic impedances in Figures 2.24 to 2.27 are 

normalized by the static values for the appropriate embedment depth given in 

Table 2.1. Even though the focus of this investigation is on vertical and lateral 

vibrations of embedded foundations, the torsional impedance Ktt is also provided 

in Table 2.1 and Figures 2.22 and 2.28 for completeness. 

Figures 2.21, 2.22 and 2.23 reveal that all impedances increase in magnitude 

with increasing embedment. One can see that Kvv and Khh increase at a more 

moderate rate for the embedment depths shown than Kmm and Kmh. One can 

also see that Kmh is positive for shallow embedment depths, but is negative for 

deeper embedments. This phenomenon will be discussed further in Section 2.5.1. 

Dynamically, the real parts of the normalized impedances show approxi- 

mately the same trends throughout the frequency range of interest, regardless 

of embedment depth, with the primary difference in dynamic impedance with in- 

creasing embedment coming as a result of the static impedance given in Table 2.1. 

The imaginary parts do show an increase with increasing embedment, even when 

normalized by the static value. This observation has significant practical implica- 

tion in that an embedded foundation can realize greater radiation damping than 

a surface footing. 
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h/b •L*-VV Khh l^-mm Kmh Ktt 

0.00 6.39 5.36 5.94 0.68 8.56 

0.10 6.85 6.28 7.07 0.50 11.85 

0.25 7.36 7.21 8.59 0.17 15.44 

0.50 8.09 8.48 11.50 -0.60 20.76 

0.75 8.76 9.58 15.05 -1.60 25.79 

1.00 9.38 10.59 19.37 -2.81 30.69 

1.25 9.97 11.53 24.55 -4.21 35.52 

1.50 10.54 12.43 30.75 -5.82 40.30 

1.75 11.09 13.28 37.94 -7.56 45.05 

2.00 11.63 14.11 46.33 -9.50 49.78 

2.25 12.16 14.91 55.94 -11.60 54.49 

2.50 12.67 15.69 66.85 -13.85 59.19 

2.75 13.17 16.45 79.17 -16.27 63.89 

3.00 13.66 17.19 92.91 -18.82 68.58 

3.25 14.15 17.92 108.20 -21.54 73.26 

3.50 14.62 18.63 125.10 -24.38 77.94 

3.75 15.09 19.34 143.70 -27.42 82.62 

4.00 15.56 20.03 164.00 -30.55 87.29 

Table 2.1: Static impedance vs. depth of embedment for a rigid cavity embedded 
in a homogeneous half-space with xre/ = (0, 0, h). 
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Figure 2.21: Static vertical (Kvv) and horizontal (K^h) impedance versus embed- 
ment depth (h/b). 
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Figure 2.22: Static rocking (Kmm) and torsional (Ktt) impedance versus embed- 
ment depth (h/b). 
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Figure 2.23: Static coupling impedance (Kmh) versus embedment depth (h/b). 
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Figure 2.24: Normalized dynamic vertical stiffness (Kvv) for a square foundation 
embedded in a homogeneous half-space, v = 0.25. 



8.0 

6.0 

o 

^4.0 
:3 

W 
2.0 

h/b=0.0 
h/b=1.0 
h/b=2.0 

...••-•""Im 

34 

2.0 

cob/C 
3.0 4.0 

Figure 2.25: Normalized dynamic horizontal stiffness (Khh) for a square founda- 
tion embedded in a homogeneous half-space, v = 0.25. 
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Figure 2.26: Normalized dynamic rocking stiffness {Kmm) for a square foundation 
embedded in a homogeneous half-space, v = 0.25. 
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Figure 2.27: Normalized dynamic coupling stiffness (Kmh) for a square foundation 
embedded in a homogeneous half-space, v — 0.25. 
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Figure 2.28: Normalized dynamic torsional stiffness (Ktt) for a square foundation 
embedded in a homogeneous half-space, v = 0.25. 
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2.5 Choice of Control Point for Impedance Computation 

2.5.1 Sign Change in Kmh 

As mentioned in Section 2.4 there is an interesting change of sign of Kmh and 

Khm as embedment depth increases. To make it easier to visualize this response, it 

is helpful to make use of the concept of compliances which is more closely related 

to the manner in which the physical experiments are conducted on a soil-structure 

system. Recall that one can express the relationship between the displacements 

and resultant interfacial forces at any control point as, 

'o,\ 

\B» I 

&hh      Chm f^ 

\My   J 
(2.17) 

where Cij are the foundation compliance functions. In this form, it is important to 

note that when the impedance coupling terms are negative, then the compliance 

coupling terms are often positive, and vice versa. Table 2.2 shows the dimension- 

less static compliances corresponding to the impedances in Table 2.1. If a unit 

force is applied in the positive x-direction without a corresponding moment, then 

(2.17) becomes 

'O 
Vs» 7 

'^ 

V ° / 

&hh      Chm 

which yields the following translation Dx and rotation Qy per unit force 

(2.18) 

Ux 
-FT — ^hh, 

F* 
a mh- (2.19) 

For a surface foundation or a foundation with very shallow embedment, Cmh is 

negative, indicating that the rotation per unit force (Qy/Fx) of the footing is clock- 

wise as illustrated in Figure 2.29a. For a square foundation with an embedment 

depth of 0.56 or greater, Cmh from Table 2.2 for a control point at (0, 0, h) is posi- 
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h/b ^vv Chh {-'mm ^mh Ctt 

0.00 0.1565 0.1891 0.1709 -0.0215 0.1168 

0.25 0.1359 0.1387 0.1164 -0.0027 0.0648 

0.50 0.1236 0.1183 0.0873 0.0062 0.0482 

0.75 0.1142 0.1062 0.0677 0.0113 0.0388 

1.00 0.1066 0.0982 0.0537 0.0143 0.0326 

1.25 0.1003 0.0925 0.0435 0.0159 0.0282 

1.50 0.0949 0.0883 0.0357 0.0167 0.0248 

1.75 0.0902 0.0849 0.0297 0.0169 0.0222 

2.00 0.0860 0.0822 0.0250 0.0169 0.0201 

2.25 0.0822 0.0800 0.0213 0.0166 0.0184 

2.50 0.0789 0.0780 0.0183 0.0162 0.0169 

2.75 0.0759 0.0763 0.0159 0.0157 0.0157 

3.00 0.0732 0.0748 0.0138 0.0151 0.0146 

3.25 0.0707 0.0734 0.0121 0.0146 0.0137 

3.50 0.0684 0.0721 0.0107 0.0140 0.0128 

3.75 0.0663 0.0709 0.0095 0.0135 0.0121 

4.00 0.0643 0.0697 0.0085 0.0130 0.0115 

Table 2.2: Static compliance vs. depth of embedment for a rigid cavity embedded 
in a homogeneous half-space with xre/ = (0, 0, h). 
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tive, indicating that the rotation per unit force of the footing is counter-clockwise 

as illustrated in Figure 2.29. 

a) Coupled rotational motion for shallow embedment under horizontal force 

b) Coupled rotational motion for deep embedment under horizontal force 

Figure 2.29: Physical implication of Cmh and Chm for (0,0,h). 

2.5.2 Relationship Between the Interfacial Impedances at Different 

Control Points 

To further clarify the issue of the sign change in Kmh with depth, it is 

useful to examine the corresponding interfacial impedances using a surface location 

as the control point. Since the impedances are calculated for a rigid massless 

foundation, they can be easily transferred from one point to another by a rigid- 

body kinematic transformation. Most of the literature reports the impedances at 

the point (0, 0, h) of the bottom of the soil-foundation interface. Unlike the case of 
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a surface foundation, this point will constantly change as a function of embedment 

depth. Figure 2.30 shows an embedded footing with a reference point located at 

*■ X 

(0,0,0) 

rigid massless block 

(0,0,h) 
Jl       -£ 

Figure 2.30: Illustration of rigid massless footing. 

0 = (0,0,0) on the top and one at xA = (0,0, h) at the base. For the former choice, 

one may denote the resultant forces and displacements as F° = (F°, F°, M°)T 

and U° = (U°, U%, 0°)T respectively. For the latter choice of reference location, 

the resultant forces and displacements are defined as Fh = (F!1, Fi\ Mh)T and 

Uh = (U£, U%, Qh
z)
T respectively. Since the block is massless, it can be shown by 



40 

the three equations of motion that 

EFZ = 0 = F° - Fi\ 

SFX = 0 = F° - FX
A, (2.20) 

where h — ^-  Additionally, the displacements at the two points can be related 

according to 

c?2 = ö* + Äev, (2.2i) 

e; = e}, 
and the impedance relationships can be written as 

F° = K°U°,     Fh = Kh\Jh (2.22) 

where 

K° 

are the impedances at 0 and 

Kh = 

Kt      0 

0        K°        Ka 

Kh 

0     Kh
hh    K

h
mh 

0      Kh      Kh 
hm mm 

(2.23) 

(2.24) 

are the impedances at xh.  Using Equations 2.20 and 2.21, the impedances at 0 

are related to the impedances at xA according to 

hr\T Ku = QKftQ (2.25) 
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where 

Q = 

1 0   0 

0 1   0 

0 h   1 

(2.26) 

In a similar manner, the compliances at 0 are related to the compliances at x^ by 

Tr*hr\-i Cu = Q1 C^Q (2.27) 

Using (2.25) and (2.26), the impedances can be transferred from xfe = (0,0, h) 

to 0 = (0,0,0). Likewise, the impedances can be transferred to any vertical 

point between xA and 0 by substituting another value for h which is between 0 

and h. The impedances at 0 are shown in Table 2.3and, for completeness, the 

compliances are shown in Table 2.4. One can see that the coupling terms (Kmh 

and Khm) are now always positive for different /i's when reported at 0 since the 

loading location 0 does not change. Physically, this makes the impedances easier 

to interpret since the magnitudes of the coupling terms at various embedment 

depths can be examined directly without having to account for the sign change. 

In an analysis, however, the point xh is generally the most convenient location for 

the impedances since it is located on the soil-foundation interface. 

Based on the kinematic relationships in Equations (2.25) and (2.26), Ta- 

ble 2.3 expectedly reveals that K°v, K%h, and K^ at 0 are the same as K%v, Kfrh, 

and K% at xh given in Table 2.1. On the other hand, both J?^m and Kü
mh are 

larger than K^m and K^h. 

2.5.3 The Concept of Principal Impedance 

Since the coupling terms are positive at 0 and negative (for h/b > 0.3) at 

xh, it is evident that there must be a point lying between (0,0,0) and (0,0, h) 

where the coupling terms are exactly zero. At such a point, which will be called 



42 

h/b K° K° mm ^■mh K° 

0.00 6.39 5.37 5.94 0.68 8.56 

0.25 7.36 7.21 9.13 1.97 15.44 

0.50 8.09 8.48 13.02 3.64 20.76 

0.75 8.76 9.58 18.03 5.58 25.79 

1.00 9.38 10.59 24.33 7.78 30.69 

1.25 9.97 11.53 32.04 10.20 35.52 

1.50 10.54 12.43 41.27 12.83 40.30 

1.75 11.09 13.28 52.15 15.68 45.05 

2.00 11.63 14.11 64.77 18.72 49.78 

2.25 12.16 14.91 79.22 21.95 54.49 

2.50 12.67 15.69 95.67 25.38 59.19 

2.75 13.17 16.45 114.09 28.97 63.89 
3.00 13.66 17.19 134.70 32.75 68.58 

3.25 14.15 17.92 157.47 36.70 73.26 

3.50 14.62 18.63 182.66 40.83 77.94 

3.75 15.09 19.34 210.02 45.11 82.62 

4.00 15.56 20.03 240.08 49.57 87.29 

Table 2.3: Static impedance vs. depth of embedment for a rigid cavity embedded 
in a homogeneous half-space with xref — (0, 0, 0). 
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h/b /it) CS 
0.00 0.1565 0.1891 0.1709 -0.0215 0.1168 

0.25 0.1359 0.1473 0.1164 -0.0318 0.0648 

0.50 0.1236 0.1339 0.0873 -0.0374 0.0482 

0.75 0.1142 0.1273 0.0677 -0.0394 0.0388 

1.00 0.1066 0.1234 0.0537 -0.0394 0.0326 

1.25 0.1003 0.1207 0.0435 -0.0384 0.0282 

1.50 0.0949 0.1185 0.0357 -0.0368 0.0248 

1.75 0.0902 0.1167 0.0297 -0.0351 0.0222 

2.00 0.0860 0.1149 0.0250 . -0.0332 0.0201 

2.25 0.0822 0.1133 0.0213 -0.0314 0.0184 

2.50 0.0789 0.1116 0.0183 -0.0296 0.0169 

2.75 0.0759 0.1100 0.0159 -0.0279 0.0157 

3.00 0.0732 0.1084 0.0138 -0.0263 0.0146 

3.25 0.0707 0.1068 0.0121 -0.0249 0.0137 

3.50 0.0684 0.1052 0.0107 -0.0235 0.0128 

3.75 0.0663 0.1036 0.0095 -0.0222 0.0121 

4.00 0.0643 0.1021 0.0085 -0.0211 0.0115 

Table 2.4: Static compliance vs. depth of embedment for a rigid cavity embedded 
in a homogeneous half-space with xrey = (0,0,0). 
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x* = (0,0,/i*), the impedance matrix becomes diagonal as there is no coupling 

between the rocking and horizontal vibration modes. For the static case, the 

location of h* as a function of embedment depth is shown in Table 2.5. For 

the dynamic problem, however, the precise location of h* must be calculated for 

each frequency point since the impedances vary with frequency. Additionally, 

only the real part of the coupling terms will be guaranteed to be zero (unless at 

oo = 0.0 where the imaginary part is always zero) since the depth h* is a real value 

and cannot have an imaginary component. This concept is likely to be a useful 

consideration in the design of physical testing. Its full exploration, however, is 

beyond the present study. 

h/b 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 
h*/b 0.429 0.734 1.032 1.327 1.617 1.905 2.191 2.475 

Table 2.5: Location of h*/b as a function of h/b. 

2.6 Load Transfer to the Soil 

In the study of embedded foundations, an item of basic interest is how the 

load is transferred through the sides and the base of the foundation to the soil. For 

fully bonded contact, the sides of the foundation will carry an increasing amount 

of the load when compared to the base as the depth of embedment increases. 

In addition to examining the case where a rigid-body translation or rotation is 

applied (corresponding to the impedance functions), it is also useful to examine 

the distribution of forces for the case where a pure force or a pure moment is 

applied (corresponding to the compliance coefficients). For this purpose, one can 

define the following eight states which can be invoked at xref = x^ or xre/ = 0, 

(1) pure rigid body vertical translation 
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(2) pure rigid body horizontal translation 

(3) pure rigid body rotation applied at the reference point about the y-axis 

(4) pure rigid body rotation about the z-axis 

(5) application of a pure vertical force 

(6) application of a pure horizontal force at the reference point 

(7) application of a pure moment at the reference about the y-axis 

(8) application of a pure torsional moment about the z-axis. 

where States 1 through 4 correspond to the impedances, and States 5 through 8 

correspond to the compliances. Furthermore, a column vector «S-7, j = 1, 2,..., 8 

for each of the eight states can be defined where the components of the S^ are 

& = {F>, F>, M>, M>, 4,4, ej, ei}T. (2.2s) 

The individual force and displacement conditions are stated fully in Table 2.6, 

where the dimensionless forces and displacements are defined in Section 2.1 and 

the Kij and C^ can be found in Tables 2.1 and 2.2 respectively for xrej = (0, 0, h). 

In Table 2.6, the imposed boundary conditions are unit displacements or loads 

and the K^ and Cij describe the response under the unit displacement or load. 

States S1, <S2, S3, and S4 are calculated by the boundary element program as the 

impedances are computed and states <S5 and Ss can be calculated directly from 

Sl and S4 since the vertical and torsional cases are uncoupled. States S6 and <S7 

can be calculated by multiplying S2 and S3 by two real parameters a and ß to 

form each of the new states according to 

«S6 = a'S2 + ß6S3,     S7 = a7S2 + ß7S3. (2.29) 
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State Fj 
z Fj 

X M> Mi uj 
^ z v> ei 

S1 
-t*vv 0.0 0.0 0.0 1.0 0.0 0.0 0.0 

S2 0.0 Khh Kmh 0.0 0.0 1.0 0.0 0.0 

<S3 0.0 Khm ■"■mm 0.0 0.0 0.0 1.0 0.0 

<S4 0.0 0.0 0.0 Ktt 0.0 0.0 0.0 1.0 

S5 1.0 0.0 0.0 0.0 ^vv 0.0 0.0 0.0 

<S6 0.0 1.0 0.0 0.0 0.0 Chh t>mh 0.0 

S7 0.0 0.0 1.0 0.0 0.0 (^hm ^mm 0.0 

S8 0.0 0.0 0.0 1.0 0.0 0.0 0.0 Cu 

Table 2.6: Force and displacement conditions for S1 to <S8 at xre/ = x/j or xrej = 0. 

The horizontal/rocking impedance sub-matrix corresponding to <S6 and S7 can be 

written as 

and 

's^ 
\M°J 

' pr\ 

\al) 

P2       p3 
a; x 

M2   M3 
y        y 

F2     F3 
x
 x       *■ X 

M2   M3 
y        v 

(    e\ 

(2.30) 

(2.31) 

The unit forces and moments desired in each case can be substituted into (2.30) 

and (2.31) which yields 

and 

<A 
K° 

^ 

IV 

rp2       F3 
x       x x 

M2   M3 
y       y 

pi     ^3 

M2   M3 
y        y 

(    „\ a 
(2.32) 

v"6/ 

(2.33) 
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Solving for (a6, ß6) and (a7, ß7) yields 

f=^    \,^    °6 = -^S (2-34) P3 _ Zjt.p2 
-1 x        M^i 

£ip2' K Ml 

and 

i7= ,-,. V,-^» a7=-^5- (2-35) 
Consequently, the forces and moments corresponding to <S5 and S6 can be cal- 

culated quite easily. Additionally, the a and ß pair for each new case can be 

multiplied by the forces on each face of the foundation to get the correspond- 

ing forces on each face for the two new cases. Figures 2.31, 2.32, and 2.33 show 

the distribution of forces between the sides and the base of the footing for both 

applied translations/rotations and applied forces/moments at both x^ = (0, 0, h) 

and 0 = (0,0,0). 

Figure 2.31 shows the contributions of vertical resistance from the base and 

the sides for the application of a vertical translation (Üz). Since the vertical case 

is not coupled with any other vibration modes, this distribution of forces also 

corresponds to the response when a vertical force Fz is applied. Probably the 

most important location on the graph is the point at which the two lines cross, 

indicating the embedment depth at which the sides and base each distribute an 

equal amount of load to the soil medium. For vertical loading, this embedment 

depth is approximately h/b = 0.75. 

Figure 2.32 shows the contributions of horizontal resistance from the base 

and sides of the footing for three cases of horizontal loading: (i) application of a 

rigid body horizontal translation (Üx), (ii) application of a pure horizontal force 

(Fx) at x/j, and (iii) application of a pure horizontal force (Fx) at 0. The sides 

and base transfer an equal distribution of load at an embedment of about h/b = 

0.3 for rigid translation and the application of a force at xfe, which is relatively 
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shallow. For a horizontal force applied at 0, this depth is even shallower and is 

approximately h/b = 0.2. 

Figure 2.33 shows the distribution of the resisting moment for four cases: 

(i) an application of a rigid body rotation 0,, about x^, (ii) application of a pure 

rotational moment My about the point x/j, (iii) an application of a rigid body 

rotation 0^ about 0, and (iv) application of a pure rotational moment My about 

the point 0. One can see from Figure 2.33 that the base resistance is mobilized 

more for a rotation or moment applied at 0 than for a rotation or moment applied 

at x/j. For 0, the base still provides 30 to 40% of the resistance versus less than 5% 

at x/i. Additionally, the sides and base each provide 50% of the total resistance at 

an embedment depth of about 0.3 for applied moment or rotation at xh, whereas 

this depth is about 0.7 for a moment or rotation at 0. 

Figure 2.34 shows the contributions of torsional resistance from the base and 

the sides of an embedded foundation for the application of a torsional rotation 

about the z-axis (Qz). The sides and base share the load equally at a very shallow 

depth of about h/b = 0.15, and the sides provide over 90% of the resistance at 

h/b = 4.0. 
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Figure 2.31:   Components of vertical resistance vs.    embedment depth for the 
homogeneous half-space. 
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Figure 2.32:  Components of horizontal resistance vs.  embedment depth for the 
homogeneous half-space. 
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Figure 2.33:  Components of rotational resistance vs.   embedment depth for the 
homogeneous half-space. 
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Figure 2.34:  Components of torsional resistance vs.   embedment depth for the 
homogeneous half-space. 



Chapter   3 

Square-Root Shear Modulus Profile Impedances for a Layered 

Half-Space 

3.1 Introduction 

While the homogeneous half-space solution is fundamentally important, it 

may or may not provide an adequate analytical model for analyzing all soil con- 

ditions. In the case of a sandy medium, for instance, the applied foundation load 

and the self weight of the soil will induce a significant spatial dependence on the 

soil modulus. By virtue of the results from Hardin and Drnevich [17], 

Gmax = 1230 {2'*™~JI)\oCR)K5ll\ (3.1) 

where e is the void ratio, OCR is the overconsolidation ratio, K is a constant that 

depends on the plasticity index and is zero for a dry sand, and ä0 is the mean 

principal effective stress in psi, the gravity effect alone will produce a square root 

type of variation in the maximum shear modulus Gmax even in a soil with uniform 

density. To model such characteristics, it has been proven to be viable to employ a 

multi-layered half-space whose piecewise constant shear modulus is taken to vary 

with depth according to the square root power, i.e. 

G = G,zl'\ (3.2) 

where z = z/b is the normalized depth and b is the half-width of the square footing 

(Guzina and Pak [14]). This model can be considered as an improvement over the 

homogeneous profile because it accounts for the variation in the shear modulus 
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with depth. Figure 3.1b shows the square root variation in shear modulus due 

to the gravity effects on the soil in the far-field. However, once a foundation 

is placed onto the ground, there will be local stiffening of the soil due to the 

presence of the footing as shown in Figure 3.1a. Thus, depending on the level of 

the footing contact pressure, the square-root profile may still fall short of capturing 

the complete problem (see Ashlock [1]). 

a) Local Shear Modulus Under Foundation b) Far-Field Shear Modulus 

Local stiffening 
caused by foundation 
contact pressure 

Square-root profile 

Figure 3.1: Local and far-field variation in shear modulus. 

3.2 Defining the Square-Root Shear Modulus Profile 

In order to model the square-root shear modulus profile, a half-space can be 

discretized into piece-wise constant layers, where the shear modulus for a given 

layer is G = G0\Jz/b, where z is the midpoint of the layer. Henceforth, this 

shear modulus profile will be referred to as a "square-root half-space" or "square- 

root shear modulus profile." In this approach, the number of layers necessary to 
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adequately capture the continuous modulus profile is of clear interest. Figure 3.2 

shows three shear modulus profiles with 64, 128, and 256 equally spaced layers to 

z = 16 (see also Ashlock [1]). For reference, a smooth curve is plotted along with 

each profile to illustrate the effect of discretization visually. 

G/Gr G/G. G/G. '0 ^'^0 ^'^0 
0.0  1.0 2.0 3.0 4.0 5.0  0.0  1.0 2.0 3.0 4.0 5.0   0.0  1.0 2.0 3.0 4.0 5.0 

20.0 

Figure 3.2:   Square-root shear modulus profiles overlaying a homogeneous half- 
space. 

As a measure of convergence, impedances were computed at h/b = 1.0 

for the three different layer profiles shown in Figure 3.2. The result is given in 

Table 3.1 where the dimensionless impedances for the square-root shear modulus 

profile are defined as 

I\VV\UJ) G .    ,        i\hh\W) —     G .    ,        J\mmyiü) —     G A    , 

Kmh{U) -     Gob2    , Ktt{UJ) -  -a^T: 

(3.3) 
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and Go is defined in Equation (3.2). As can be seen from Table 3.1, the impedances 

are reliably captured by the 64 layer profile, with the possible exception of Ktt. 

However, this is not the case for the contact tractions. To illustrate the details, 

the tractions on all faces of the foundation using the 256 layer profile for v = 0.25 

are plotted in Figures 3.3 to 3.16, which correspond to Figures 2.3 to 2.16 for 

the homogeneous half-space. Figure 3.17 shows an observable difference near 

z/b = 1.0 in the contact tractions for a 64 layer profile for the case corresponding 

to Figure 3.16 for 256 layers. With its convergence demonstrated at h/b = 1.0 

in Table 3.1, the 256 layer profile is employed for computing the impedances and 

contact tractions. 

As can be seen from Figures 3.3 to 3.16, the tractions in the square-root half- 

space solution are all singular along the sharp edges and corners. The singularity 

along the side faces of the foundation tends to increase as the depth increases, 

reflecting the increase in shear modulus with depth in the square root profile. 

Additionally, Figures 3.12, 3.13, 3.14, and 3.16 show some waviness in the real 

parts of the contact tractions which is not present in the corresponding plots for 

the homogeneous half-space (see Figures 2.12, 2.13, 2.14, and 2.16). Such waviness 

most likely illustrates the need to use a finer mesh than the 9 x 9 mesh for each face 

of the embedded foundation. However, Table 3.1 illustrates that the impedances 

have been captured reliably at h/b =1.0 even though there may be some slight 

variation in the distribution of contact tractions. 
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Layers 64 128 256 

Stiffness Real Imag Real Imag Real Imag 

J^-vv 9.72 11.08 9.68 11.05 9.71 11.05 

Khh 9.09 11.52 9.07 11.49 9.09 11.48 

■"■mm 12.74 4.98 12.63 4.93 12.61 4.89 

Kmh -1.01 -3.36 -0.99 -3.29 -0.95 -3.25 

Ktt 17.84 6.97 17.91 6.98 18.12 7.02 

Table 3.1:   Convergence of the impedances from a square-root shear modulus 
profile with increasing number of layers for h/b = 1.0, v = 0.25, ü — 1.0. 
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Real Part 

Imaginary Part 

Figure 3.3: Distribution of contact tractions tz corresponding to dynamic stiff- 
ness Kvv(fi = 1.0) for the square root profile (256 layers). (Bottom of the rigid 
foundation, h/b = 1.0, v = 0.25) 
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Real Part 

Imaginary Part 

Figure 3.4: Distribution of contact tractions tx corresponding to dynamic stiff- 
ness Khh(uj = 1.0) for the square root profile (256 layers). (Bottom of the rigid 
foundation, h/b = 1.0, v = 0.25) 
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Real Part 

Imaginary Part 

Figure 3.5: Distribution of contact tractions tz corresponding to dynamic stiffness 
Kmh(ü = 1.0) for the square root profile (256 layers). (Bottom of the rigid 
foundation, h/b = 1.0, v = 0.25) 
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Real Part 

Imaginary Part 

Figure 3.6: Distribution of contact tractions tz corresponding to dynamic stiffness 
Kmm(ü) = 1.0) for the square root profile (256 layers). (Bottom of the rigid 
foundation, h/b = 1.0, v = 0.25) 
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Real Part 

Imaginary Part 

Figure 3.7: Distribution of contact tractions tx corresponding to dynamic stiff- 
ness Ktt(u) = 1.0) for the square root profile (256 layers). (Bottom of the rigid 
foundation, h/b = 1.0, v = 0.25) 
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Real Part 

Imaginary Part 
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Figure 3.8: Distribution of contact tractions ty corresponding to dynamic stiff- 
ness Ku(0 = 1.0) for the square root profile (256 layers). (Bottom of the rigid 
foundation, h/b = 1.0, v = 0.25) 
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Real Part 

Imaginary Part 

Figure 3.9: Distribution of contact tractions tz corresponding to dynamic stiff- 
ness Ktt(Co = 1.0) for the square root profile (256 layers). (Bottom of the rigid 
foundation, h/b = 1.0, v = 0.25) 
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Real Part 

Imaginary Part 

Figure 3.10: Distribution of contact tractions tz corresponding to dynamic stiffness 
Kvv(ui = 1.0) for the square root profile (256 layers). (Positive X-face of the rigid 
foundation, h/b = 1.0, v = 0.25) 
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Real Part 

Imaginary Part 

Figure 3.11: Distribution of contact tractions tx corresponding to dynamic stiffness 
Khh(ü = 1.0) for the square root profile (256 layers). (Positive X-face of the rigid 
foundation, h/b = 1.0, v = 0.25) 
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Real Part 

Imaginary Part 

Figure 3.12: Distribution of contact tractions tx corresponding to dynamic stiffness 
Kmm{ü = 1.0) for the square root profile (256 layers). (Positive X-face of the rigid 
foundation, h/b = 1.0, v = 0.25) 
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Real Part 

Imaginary Part 

Figure 3.13: Distribution of contact tractions tx corresponding to dynamic stiffness 
Ktt{Cj = 1.0) for the square root profile (256 layers). (Positive X-face of the rigid 
foundation, h/b = 1.0, u = 0.25) 
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Real Part 

Imaginary Part 

Figure 3.14: Distribution of contact tractions ty corresponding to dynamic stiffness 
Ktt(0 = 1.0) for the square root profile (256 layers). (Positive X-face of the rigid 
foundation, h/b = 1.0, v = 0.25) 
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Real Part 

Imaginary Part 

Figure 3.15: Distribution of contact tractions tx corresponding to dynamic stiffness 
Khh{ü = 1.0) for the square root profile (256 layers). (Positive Y-face of the rigid 
foundation, h/b = 1.0, v = 0.25) 
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Real Part 

Imaginary Part 

Figure 3.16: Distribution of contact tractions tx corresponding to dynamic stiffness 
Kmm(ü) = 1.0) for the square root profile (256 layers). (Positive Y-face of the rigid 
foundation, h/b = 1.0, v — 0.25) 
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Imaginary Part 

Figure 3.17: Distribution of contact tractions tx corresponding to dynamic stiffness 
Kmm(ü = 1-0) for the square root profile (64 layers). (Positive Y-face of the rigid 
foundation, h/b = 1.0, v = 0.25) 
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3.3 Change in Impedance with Depth of Embedment for the 

Square-Root Half-Space 

Table 3.2 contains the quasi-static impedances at xrey = x/> for a square 

foundation embedded in a layered half-space with a square root profile of 256 

layers as discussed previously with a 9 x 9 mesh on each face of the embedded 

foundation (see also Figures 3.18 to 3.20). Despite the coarseness of the mesh 

at deeper embedments and the oscillation in some solutions, the trends of Kvv, 

Khh-, Kmm, Kmh and Ku with increasing embedment are clearly demonstrated. 

The impedances in Table 3.2 are the real parts of the quasi-static impedances at 

Co = 0.1 and will be labeled with a superscript s. They correspond to Table 2.1 

which contains static impedances for the homogeneous half-space. Also shown 

in Figures 3.21 to 3.25 are the dynamic impedances up to Co = 4.0 which are 

normalized by the quasi-static value at Co = 0.1 for the appropriate embedment 

depth given in Table 3.2. For the square-root profile, the dimensionless frequency 

üi is defined as 
cob 

ö = — (3.4) 

where 

Cs0 = Jß± (3.5) 

and Co is defined in Equation (3.2). 

Figures 3.18 to 3.20 show that the impedances for the square-root pro- 

file all increase with increasing embedment depth. These figures correspond to 

Figures 2.21 to 2.23 for the homogeneous half-space. Both the plots from the 

square-root shear modulus profile and the homogeneous half-space have the same 

general shape with increasing embedment for each of the five impedances. Like 

the plot of Kmh for the homogeneous half-space, the plot of Kmh with embedment 

depth for the square-root shear modulus profile in Figure 3.20 reveals that the 
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coupling terms are positive for shallow embedment depths but become negative 

as the embedment depth increases. 

The plots of the normalized dynamic impedances in Figures 3.21 to 3.25 

show that the real parts of each of the five normalized impedances are very sim- 

ilar in shape for h/b = 0.0, 1.0, and 2.0. The imaginary parts of the normal- 

ized impedances tend towards certain upper limits with increasing embedment 

depth in a similar manner to the imaginary parts for the homogeneous half-space 

impedances in Figures 2.24 to 2.28, indicating that embedment enhances radiation 

damping. 

h/b Ks 
vv Ks Ks 

mm Ks Ks 
■"■ti 

0.00 5.06 2.68 2.73 0.20 2.74 

0.25 8.09 5.66 6.08 0.14 8.51 

0.50 10.04 7.79 9.22 -0.29 13.69 

0.75 11.80 9.79 12.96 -1.02 18.96 

1.00 13.49 11.73 17.51 -2.01 24.83 

1.25 15.13 13.67 23.21 -3.44 30.19 
1.50 16.75 15.56 29.86 -4.89 37.72 

1.75 18.34 17.48 38.10 -6.91 42.04 

2.00 19.93 19.38 47.56 -8.99 51.12 

2.25 21.51 21.32 59.13 -11.59 59.67 
2.50 23.08 23.23 72.11 -14.52 60.77 
2.75 24.65 25.14 87.42 -17.48 78.44 
3.00 26.22 27.08 103.60 -21.19 76.40 
3.25 27.80 29.03 123.80 -24.92 77.74 
3.50 29.37 31.03 145.50 -29.33 92.30 
3.75 30.94 33.00 171.00 -33.60 105.90 
4.00 32.52 35.00 195.90 -39.39 101.00 

Table 3.2: Quasi-static impedance (K?j) from the square root profile 
Re {Kij(ü = 0.1)}, 256 layers to z = 16, v = 0.25. 
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Figure 3.18:  Quasi-static vertical (K^v) and horizontal impedance (K^h) versus 
embedment depth (h/b). 
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Figure 3.20:   Quasi-static coupling impedance (K^h) versus embedment depth 
(h/b). 
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Figure 3.21: Normalized dynamic vertical stiffness (Kvv) for a square foundation 
embedded in a square-root half-space, v = 0.25. 
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Figure 3.22: Normalized dynamic horizontal stiffness (Khh) for a square founda- 
tion embedded in a square-root half-space, u = 0.25. 

4.0 

3.0 h/b=0.0 
h/b=1.0 
h/b=2.0 

Figure 3.23: Normalized dynamic rocking stiffness (Kmm) for a square foundation 
embedded in a square-root half-space, v = 0.25. 
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Figure 3.24: Normalized dynamic coupling stiffness (Kmh) for a square foundation 
embedded in a square-root half-space, v = 0.25. 
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Figure 3.25: Normalized dynamic torsional stiffness (Ktt) for a square foundation 
embedded in a square-root half-space, v = 0.25. 
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3.4 Load Transfer to the Soil 

Figures 3.26, 3.27, 3.28 and 3.29 show the contributions from the sides and 

base of a rigid cavity embedded in a layered half-space with a square-root shear 

modulus profile under vertical, horizontal, rocking, and torsional loading at both 

x/j = (0,0, h) and 0 = (0,0,0). Despite the coarseness of the 9x9 mesh on each 

face, the overall trends of the solution are well illustrated. 

In comparison with Figures 2.31, 2.32, 2.33 and 2.34 for the homogeneous 

half-space, Figures 3.26, 3.27, 3.28 and 3.29 reveal that the point at which the 

sides and base carry an equal percentage of the load is deeper for the square-root 

profile than for the homogeneous half-space. This is not surprising given the small 

shear modulus near the surface for the square-root modulus profile. Additionally, 

Figure 3.28 reveals that the majority of the load is still transferred through the 

base of the foundation for a pure moment applied at (0,0,0) for the range of 

embedment depths plotted. 
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Figure 3.26:   Components of vertical resistance vs.   embedment depth for the 
square root profile. 
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Figure 3.27: Components of horizontal resistance vs.  embedment depth for the 
square root profile. 
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Figure 3.28: Components of rotational resistance vs.  embedment depth for the 
square root profile. 
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Figure 3.29:   Components of torsional resistance vs.   embedment depth for the 
square root profile. 
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M*) =   7"C°Vxr ef. (3-6) 
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3.5 Impedance Modification Factors 

To compare the impedance results for the square-root profile to the homo- 

geneous half-space, the concept of "Impedance Modification Factors" (IMF's) is a 

convenient vehicle (Pak and Ashlock [31]). The Impedance Modification Factors 

are defined by 

\KVV(Q)J 

//Ti,,-(ffl)Y 
\KVV(Q)J 

where i,j = h,m. The superscript "model" refers to either an experimental 

model or an analytical model and "ref." refers to a chosen reference or benchmark 

solution. If the vertical impedances are from the model and reference solutions 

are set to be the same, then Equation (3.6) degenerates to 

f/model 

««(a) = -f^r (3-7) 
ij 

which is a direct comparison of the rocking, horizontal, and coupling impedance 

coefficients from the model and the reference solutions. Taking the square-root 

theoretical solution as the "model" and the homogeneous half-space as the "refer- 

ence," one can determine the static values of ahh, amm, and amh as they vary with 

embedment depth (see Table 3.3 and Figure 3.31). The ratio of the dimensionless 

static vertical stiffnesses is shown in Figure 3.30 which is derived from Tables 2.1 

and 3.2. At zero embedment, the homogeneous half-space has a higher vertical 

stiffness than the square-root profile for G = G0, whereas the square-root profile 

is more than twice as stiff as the homogeneous half-space at an embedment depth 

of h/b = 4.0. 

In order to plot the dynamic a^ meaningfully, it is useful to set the quasi- 

static vertical impedances of the model and reference solutions to be equal. For 

this purpose, one can define the ratio of quasi-static vertical stiffnesses as given 
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in Table 3.3 and Figure 3.30 as 

issqrt 

_      G0b 
s-homog Tsiiuiibay \     "     / 

Gb 

If KZl = K^m°9, then 

£ (3-9) 

which affects the dimensionless frequencies. For a comparison of the square-root 

shear modulus profile to the homogeneous half-space, the ratio of the dimension- 

less frequencies is 
uib 

^--^tt (3-10) 
^homog Q 

For a comparison at the same actual frequency u) with the same footing half- 

width b 

Usqrt Cs I G 
yr = V^ (3.11) 

^homog (^s0 V ^0 

which yields 

^sqrt — ^homogyQ-v yd.LZ) 

where av is given in Table 3.3 and Figure 3.30. For example, at embedment depths 

of 1.0 and 2.0, 

h/b =1.0   —>   Qsqrt = 1.20 * ü)homog, 
(3.13) 

h/b = 2.0      >     U)sqrt = 1.31 * Ühomog- 

Figures 3.32 and Figures 3.33 show the magnitudes of the a^ as a function of 

frequency at embedments of h/b = 1.0 and h/b = 2.0, while Figures 3.34 and 3.35 

show the real and imaginary parts. Both curves show the same general shape for 

each Oiij. 

Figures 3.31, 3.32 and 3.33 reveal that both statically and dynamically, all 

three a^ are less than one, indicating that the homogeneous half-space provides 

a stiffer response in the rocking, horizontal, and coupling modes of vibration than 

the square-root half-space for shallow embedments when the K's from each 
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solution are set to be equal. This behavior can be attributed to the low value of 

the shear modulus near the surface in the square-root profile that gives weaker 

force and moment resistance to the foundation. The erratic behavior of amh 

at shallow embedment depths in Figure 3.31 may be related to the lower shear 

modulus near the surface for the square root profile as well as the small values of 

the off-diagonal terms for shallow embedment depths. 

One of the most important aspects of the static af ■ versus embedment depth 

curves in Figure 3.31 and Table 3.3 is the trend with increasing embedment. At 

deeper embedments, one would expect that the square-root profile might come 

closer to modeling an actual foundation on sand, since the local increase in shear 

modulus caused by the foundation contact pressure would have a less significant 

effect on the soil at deeper embedment depths. From Table 3.3, at h/b = 4.0, ahh 

has a magnitude of 0.84, amm has a magnitude of 0.57, and amh has a magnitude 

of 0.62. Knowledge of these variations of af • with embedment depth is helpful in 

analyzing the experimental data as will be discussed in Chapter 6. 
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Figure 3.30: Ratio of vertical stiffnesses for the square-root (Q = 0.1) and homo- 
geneous (ü = 0.0) profiles, v = 0.25. 
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Figure 3.31: Theoretical quasi-static a*, for the square-root profile as the model 
and the homogeneous half-space as the reference, v = 0.25. 
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Figure 3.32: Theoretical |a^| versus frequency for h/b = 1.0 for the square-root 
half-space as the model and the homogeneous half-space as the reference, v = 0.25. 
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Figure 3.33: Theoretical \a{j\ versus frequency for h/b = 2.0 for the square-root 
half-space as the model and the homogeneous half-space as the reference, v = 0.25. 
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Figure 3.34:   Real and imaginary parts of theoretical a^ versus frequency for 
h/b = 1.0, z/ = 0.25. 
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Figure 3.35:   Real and imaginary parts of theoretical a^ versus frequency for 
h/b = 2.0, v = 0.25. 
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h/b av Othh (%m,m ®-mh 

0.00 0.79 0.63 0.58 0.37 

0.10 0.98 0.67 0.62 0.45 

0.25 1.10 0.71 0.64 0.74 

0.50 1.24 0.74 0.65 0.39 

0.75 1.35 0.76 0.64 0.47 

1.00 1.44 0.77 0.63 0.50 

1.25 1.52 0.78 0.62 0.54 

1.50 1.59 0.79 0.61 0.53 

1.75 1.65 0.80 0.61 0.55 

2.00 1.71 0.80 0.60 0.55 

2.25 1.77 0.81 0.60 0.57 

2.50 1.82 0.81 0.59 0.58 

2.75 1.87 0.82 0.59 0.57 
3.00 1.92 0.82 0.59 0.59 

3.25 1.96 0.82 0.58 0.59 

3.50 2.01 0.83 0.58 0.60 

3.75 2.05 0.83 0.58 0.60 

4.00 2.09 0.84 0.57 0.62 

Table 3.3: Table of quasi-static afj versus embedment depth with the square-root 
profile as the model and the homogeneous half-space as the reference, v = 0.25. 



Chapter   4 

Experimental Setup and Procedure 

4.1 Centrifuge Modeling 

As demonstrated in Pak and Guzina [32] and Pak and Ashlock [31] for sur- 

face footings, theoretical continuum solutions are usually useful only if they are 

suitably calibrated with physical observations and experimental results. For the 

embedded foundation problem of interest, issues such as the effects of bearing pres- 

sure and foundation size are also likely to be critical to the dynamic responses. To 

obtain the experimental data and insight necessary to evaluate the applicability 

of the results in Chapters 2 and 3 to real soils, the geotechnical centrifuge mod- 

eling method is employed for its economy, flexibility, and capacity for accurately 

controlling the testing environment. 

In geotechnical engineering, centrifuge scaled modeling is one of the most 

powerful experimental techniques to model prototype soil behavior due to its 

ability to represent various gravity-induced responses of soil. In a geotechnical 

centrifuge, the induced gravity field resulting from the applied centrifugal force 

enables the accurate modeling of the gravity effects due to the self-weight of the soil 

and maintains the critical stress similitude with the prototype configuration. Scal- 

ing relations for different applications can be derived from dimensional analysis 

or the governing differential equations. A table of scaling relations corresponding 

to the parameters used in the centrifuge experiments in this investigation appears 

in Table 4.1. 



Quantity Prototype Model at n g 

Length 1 1/n 

Area 1 1/n2 

Volume 1 1/n3 

Mass Density 1 1 

Mass 1 1/n3 

Strain 1 1 

Displacement 1 1/n 

Velocity 1 1 

Acceleration 1 n 

Stress 1 1 

Force 1 1/n2 

Time (dynamics) 1 1/n 
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Table 4.1: Centrifuge scaling relations. 

All the experiments in this study were conducted on the 440g-ton centrifuge 

at the University of Colorado at Boulder. A schematic of the centrifuge appears 

in Figure 4.1. The centrifuge is powered by a General Electric 684 kW DC electric 

motor and is capable of spinning a payload of up to 2000kg (2.2 tons) to 200g's. 

The rotor arm is asymmetric, with a Aft x Aft x 3ft platform on one end, and 

three counterweight loading tanks on the other. The centrifuge is equipped with 

a set of slip-rings which provide a means of sending electrical data signals from 

the arm of the centrifuge to the data acquisition system in the centrifuge control 

room. A detailed description of the University of Colorado's centrifuge facilities 

appears in Ko [21]. 

4.2 Model Footing, Exciter, and Instrumentation 

With the focus being on the embedment effects, the experimental study will 

employ model footing "B" which has a square base with a half-width b = 0.0275m 
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Figure 4.1: Schematic of the 440g-ton centrifuge at the University of Colorado at 
Boulder. 

and a height of 0.1375m (see Gillmor [11] and Ashlock [1]). Footing B is made of 

high-strength 7075-T6 aluminum and has 13 holes tapped in it for the attachment 

of load cells and accelerometers. Both vertical and lateral vibration tests were 

performed on Footing B. The exciter used for the application of a vertical load 

is a Bruel and Kjaer model 4809 vibration exciter. This exciter is shown in 

Figure 4.2 in the configuration used for vertical vibration loading. A steel bolt is 

attached to the exciter armature and the head of this bolt makes contact with the 

footing attachments. Together with the armature mass of the 4809 exciter, the 

total extra mass of 665- adds to the bearing pressure of the footing when vertical 

vibration tests are conducted. Two different means of distributing a vertical or 

horizontal dynamic load to the load cell were tried in this investigation. The first 
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method is via a "stinger" which has a conical shape and is described in Brown 

[3]. The second method is via a hemispherical "button" described in Ashlock [1]. 

A diagram of both the stinger and button appear in Figure 4.3.     The exciter 

Figure 4.2: Vertical vibration testing configuration. 

used for lateral loading is a Bruel and Kjaer model 4810 mini-shaker. The exciter 

armature has a smooth steel bar bolted to it (see Figure 4.4), through which 

the lateral dynamic load is applied to the footing. Generally, only one exciter 

is used on the centrifuge at a given time, since the vertical and lateral tests are 

conducted separately. In the centrifuge control room, a Tektronix PS280 DC 

power supply provides a DC current which controls the in-and-out movement of 

the exciter armature. Consequently, the DC current can be used to control the 

static prestress that the exciter armature applies to the footing. A random AC 

current is supplied by a Tektronix 2630 Fourier analyzer which controls the actual 

vibration of the exciter. The random AC current enables the sampling of data at 
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Stinger Hemispherical Button 

Figure 4.3: Stinger and hemispherical button used to distribute load to the load 
cell. 
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Figure 4.4: Lateral vibration testing configuration. 
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approximately 1600 frequency points in the frequency range of interest. A signal 

adder combines the AC and DC signals which are sent though the centrifuge slip 

rings to the exciter. 

The dynamic load applied by the exciter is measured by one of two quartz 

load cells. Both are Kistler washer type load cells. One is a model 9001 quartz 

load washer and the other is a model 9001A quartz load washer. The load washers 

are piezo-electric force transducers which convert a force into an electric charge. 

This charge is then converted into a voltage by a charge amplifier on the arm 

of the centrifuge. The charge amplifiers used in the experiments are Kistler type 

5010 and type 5004 dual mode amplifiers. The voltage from the charge amplifier is 

then sent through the centrifuge slip-rings to the Tektronix 2630 Fourier analyzer 

in the centrifuge control room. 

Accelerometers attached to the footing measure the acceleration of the foot- 

ing at their given location. The accelerometers used are PCB Piezotronics model 

352B67 ICP accelerometers. The accelerometer signals are conditioned by a PCB 

Piezotronics model 483A signal conditioner and the signals are amplified by a 

Krohn-Hite Model 3905A multichannel filter. Then the accelerometer signals are 

sent though the slip-rings to the Fourier analyzer in the centrifuge control room. 

In the centrifuge control room, the Fourier analyzer gathers the input from 

the accelerometers and the load cell and converts the data to the frequency do- 

main via the Fast-Fourier Transform (FFT). An instrument program on a personal 

computer is used to view the data from the Fourier analyzer and to write the data 

to an output file. The most important pieces of information are the frequency 

response function (FRF), the coherence function, and the auto-spectral density 

function. The frequency response function employed in this study is the accelera- 

tion at a given point divided by the force applied at another point as a function of 

frequency. This FRF is referred to as the accelerance function, or simply accel- 
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erance. To account for the inertial and stiffness effects of various attachments, it 

is essential to determine the dynamic mass transfer function M(u) by performing 

a dynamic vibration test on the model footing at lg (see Ashlock [1]). 

4.3 Soil and Sample Preparation 

The soil used in all of the experiments is dry F-75 silica sand. According to 

tests performed at the U.S. Bureau of Reclamation, the maximum and minimum 

mass densities of F-75 silica sand are 

Pd,min = 1469-|,    pd>max = 1781-4, (4.1) 

and the corresponding maximum and minimum void ratios are 

ed,max = -^ ~ 1 = 0.8039,    edtmin = -^- - 1 = 0.4879, (4.2) 
Pd,min Pd,max 

where Gs is the specific gravity of the sand (2.65) and pw is the mass density of 

water (1000^-). The soil in all of the experiments conducted in this investigation 

had a density of 1730^- which yields a void ratio of e = 0.5318 and a relative 

density of £>r = 86.1%. 

A rectangular container with dimensions given in Figure 4.2 was used for 

all of the experiments. The rectangular geometry minimizes the concentration 

of waves reflected off of the boundaries of the container. Additionally, a layer of 

duxseal was placed on all four sides of the container to mitigate wave reflection. 

Duxseal is a clay-like material used for sealing air ducts. Previous studies (e.g. Coe 

et. al. [4] and Lenke et. al. [22]) have shown that duxseal is useful for absorbing 

the wave intensity and mitigating reflections. The duxseal in this investigation is 

placed on a grid around the sides of the container to give it support, and covered 

with plastic wrap to keep it separated from the soil. A picture of the empty 

container with the duxseal boundary is given in Figure 4.5. 



Container Dimensions Duxseal Soil Sample Dimensions 

Length 

M 
Width 

[m] 

Depth 

[m] 

Thickness 

[m] 

Length 

[m] 

Width 

[m] 

Depth 

H 
1.20 1.00 0.61 «0.035 1.13 0.93 0.46 
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Table 4.2: Centrifuge container and soil sample dimensions (Guzina [12]). 

Figure 4.5: Rectangular container with duxseal walls used for centrifuge experi- 
ments. 

In order to obtain the desired soil density, the method of pluviation through 

air or "raining" was employed. Two different pluviation methods were used to 

prepare the soil sample. The first method utilizes a wedge-shaped hopper with 

a slotted plate at the base to control the flux of soil. The slot is approximately 

0.476cm wide by 51.44cm long. When the soil is rained from a height of 1.37m, 

the desired relative density of 86% is obtained. Figure 4.6 shows a picture of this 
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Figure 4.6: Soil pluviation with the wedge-shaped hopper. 

raining method. The second method used involves a washer and a "vacuum hose" 

to control the flux of soil. The washer has an outer diameter of 3.5cm and an inner 

diameter of 1.43cm, while the vacuum hose has a diameter of 3.81cm. The washer 

and vacuum hose are attached to a cylindrical bucket with a conical base which 

feeds the soil through the washer and hose. The length of the hose is 1.14m, and 

when the distance from the end of the hose to the base of the soil is 0.74m, then 
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the desired relative density of 86% is obtained. A picture of this raining method 

is shown in Figure 4.7, while Figure 4.8 shows a diagram illustrating the relevant 

dimensions used in both pluviation methods. 

Figure 4.7: Soil pluviation with the cylinder and vacuum hose. 

When preparing a sample for testing, the hopper method is used to rain the 

soil into the bucket up to the desired level at which the footing will be placed. The 

soil is then scraped off and vacuumed out to provide a level surface for the place- 

ment of the footing on the sand. The footing is placed with the accelerometers 

and load cells already attached so as to minimize the sample disturbance if this 

is done later. However, this did create the need to monitor the instrumentation 

wires during the raining process to ensure that they did not pull on the footing 

and cause further disturbance. Figure 4.7 shows the location of the footing and in- 

strumentation wires as the soil is rained around them. After the footing is placed 

on the level surface, the hose method is employed to raise the soil level to achieve 

the intended depth of embedment, since the vacuum hose provides more precise 
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Figure 4.8: Diagram of soil preparation methods. 

control of the soil placement around the footing and transducer wires. After the 

raining of soil around the footing, the soil is scraped and leveled to the precise 

embedment depth. 

Figure 4.9 shows footing B after the soil was placed to an embedment depth 

of h/b = 2.0. In most cases, the soil was rained to a depth of h/b = 2.0 and then 

tests were conducted at this embedment depth. The soil was then scraped off 

and vacuumed out to a shallower depth, e.g. h/b = 1.5, and tests were conducted 

at this embedment depth. This procedure was then repeated progressively for 

embedment depths of 1.0, 0.5, and 0.25. This sequential procedure was adopted 

since the motion of the foundation will be the least at the deepest embedment 

depth. Thus, sample disturbance due to the application of a dynamic load was 

minimized by performing the tests at h/b = 2.0 first. Surface tests were conducted 
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mm**^ 

Figure 4.9: Footing B after soil placement to h/b = 2.0. 

at entirely new locations on the sample after the embedded tests were completed. 

Thus, including the surface case, a typical testing sequence in this investigation 

includes tests for six different embedment depths. 



Chapter   5 

Foundation Accelerance in Forced Vibration Tests 

5.1 Accelerance Matching Approach 

As mentioned in Chapter 4, the centrifuge model tests will provide data in 

the form of experimental accelerance functions. However, it is well-known from 

previous analytical and experimental studies ([1], [3], [12]) that a direct inversion 

of experimental accelerance to obtain the interfacial impedance matrix is difficult 

due to the analytical properties of the matrix system (see Guzina and Pak [15]) 

and the presence of experimental noise (see Ashlock [1]). To circumvent this prob- 

lem, the theoretical interfacial impedances discussed in the previous chapters are 

employed to generate a set of theoretical accelerances to match with the exper- 

imentally measured ones. In this method, the accelerances can be left in their 

pristine condition. In order to lay the theoretical groundwork for this approach, 

the derivation for the accelerance function by rigid-body dynamics is given in 

this chapter. Accelerance as a frequency response function from an experimental 

standpoint will be discussed in the following chapter. 

The method of accelerance matching involves varying the elastic parameters 

(G and u) of the soil medium in an appropriate continuum model (such as a ho- 

mogeneous half-space or a square-root half-space) in order to find the theoretical 

accelerance which most closely matches the experimental measurements. Usually, 

this approach involves calculating the difference between the theory and the ex- 

periment in a least squares error sense and selecting the best-fit shear modulus 
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and Poisson's ratio based on the theoretical curve with the least error. Gener- 

ally, this initial fit is done for vertical concentric loading since this loading case 

is the simplest. The best-fit shear wave speed and Poisson's ratio can then be 

used to match the lateral accelerances. Using the homogeneous half-space model, 

however, it was found ([1], [11]) that "Impedance Modification Factors" or IMF's 

were needed to achieve satisfactory agreement with the experiments (see Chapter 3 

where IMF's are introduced for this investigation). To appreciate the essence of 

the experimental data, a good understanding of the chosen theoretical framework 

is a prerequisite. An overview of the issues is presented in the following sections. 

5.2 Derivation of the Theoretical Accelerance Function 

A rigid embedded footing for the basis of the accelerance derivation is shown 

in Figure 5.1. In rigid-body dynamics, all forces and moments that are applied 

to the footing can be transferred and condensed to the centroid of the footing as 

shown. By summing the forces according to Newton's Second Law in the x- and 

z-dire'ctions and by summing the moments about the y-axis, one can state the 

following equations of planar motion for the footing in the time domain: 

E/f = müf(W) = ^(W)-/»> 

S/f = mü°(u) = q„{u) - /», (5.1) 

EmJ = JC0°{U) = qM(u>) - m» - /»ec - /»Ac, 

where m is the mass of the footing, J° is the polar moment of inertia about the 

centroid, (qv, qH, qM) are the applied external loads and moment, (/°, /°, m°) 

and (u°z, u°x, 6°) are the resultant forces and displacements at the control point '0' 

on the bottom of the rigid body, (/*, /*, mc
y) and (uc

z, uc
x, 0c

y) are the forces and 

displacements at the centroid of the footing, and ec and hc are the eccentricity and 

height of the centroid respectively. In their current state, the equations of motion 
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Figure 5.1: Free-body diagram of a square footing on a half-space. 
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above are ordinary differential equations of the second order. However, taking the 

Fourier transform of these equations yields the following algebraic equations: 

Qv(u) - F°Z{UJ) + Lü2mU?(cü) = 0, 

QH(Lü) - Fx» + Lü2mU?(to) = 0, (5-2) 

QM(co) - My» - F°(o;)ec - F°(cü)hc + OJ
2
J^S^(CO) = 0, 

where the Fourier transform is defined as, 

/oo 
f{t)e-iu}tdt. (5.3) 

-oo 

The translational and rotational accelerations üc
z(co), w£(w), and 9z(co) become 

-u)2Uz(u>), -cd2U^(uj), and -Lü
2
Q

C
Z(UJ) respectively. All other dynamic components 

of the equations of motion can be transformed similarly. In dimensionless form, 

the equations of motion can be stated as 

Qv(Q) - F?(ü) + ü2rhÜC{uj) = 0, 

QH{ü) - F°(ü) + ü2mÜ?(ü) = 0, (5-4) 

Q9(ü) - M» - F?(ü)ec - F*(Q)hc + ü2J^G^(ü) = 0, 

where the dimensionless quantities are defined as 

Ov — Ox- n„ — QJL n.. — QM. p — FZ 
^v — Gb2 ' ^H — Gb2 ' ^M — Gb2 ' Pz ~ Gfc2 ' 

p   -   Fz- M   _ MJL fjC -]h TlC _ Ux r* — G62' mV ~ G63' Uz   —   b ' Ux   — T"' 

Qc = 0 u) — — rfi — JSL Jc — J» KJy Uj,, W-Cs' 
m- pa*> Jy   - pa*' 

(5-5) 

6 ' "<- ~    6 

The accelerance function of the footing at a point j in the zth direction can be 

defined as 

pa6A\{u) = A\{UJ) = p^- = -   -  ' :/, 5.6 
QN{U) QN(U) 
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where i = z, x and j = D, F, G. Taking accelerance measurements at three non- 

colinear locations (D, F, G) on the x-z plane will allow the definitive determination 

of the rigid body motion of the footing in 2-D. 

The impedance functions at the soil-foundation interface defined in Equa- 

tion (2.11) can be re-stated as, 

F°(u)) = K(ü)\J°(ü),    or    < 

M» 

£*-vv 0 0 

0 Khh Khm 

0 Kmh ft-mm 

Ü°z(öö) 

Uli*) 

e2(ö) 
(5.7) 

where Kij are defined at xref = x.h of the soil medium. The kinematic relationships 

between the displacements at various points of interest on the footing will be 

needed to derive the accelerance function. For a rigid body, the rotation is the 

same at all points. Accordingly, one may obtain the rotation of the footing from 

6.(0) = ^gEgfe» 

np —   b ,      np —   b ■ 

(5.8) 

where C/| and U[ are the transformed displacements in the x-direction at points G 

and F respectively, and hf and hg are the heights of points G and F measured from 

the base of the footing as shown in Figure 5.1. It will also be helpful to deduce 

from the translation at the measurement locations (D, F, G) the translation at 

point 0 of the bottom of the soil-foundation interface which is used to define the 

impedances. By kinematics, the translations in the x direction at point 0 and 

point F are related according to: 

ü°x(ü) = ü^(ü) + hpey(cü). (5.9) 

Likewise, the translation I7f in the z-direction at point D can be related to the 



104 

translation U° at point 0 by virtue of 

en 
U°M = U?{ü>) + eDQy(ü),     eD = -f. (5.10) 

Using the equations of motion, the impedance functions, and the rigid body 

mechanics equations given above, the accelerance functions at points D, F, and G 

can be defined as, 

where K is the impedance matrix and 

Gi 

GiKG2 - fhüü2G3 

Qy_ 
QN 

QH_ 
QN 

QM 

I   QN   ) 

1 0 0 

0 1 0 

ec he 1 

Go = 

1     _. eP. 
hF-h,G 

en 

0     1 

hp—hc 

hp 
hG—ha      hp—ha 

o i_     .  i. 
hp—ha        hp-hG 

G, = 

1 

0 

0 

hp-hG 

_   hp-hg 
hp-ho 

Jc Jc J
y Jy 

fn(hp-hG)      m(hp-hG) 

gp-gc 
hF-hG 

hp-hg 
hp-ho 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

5.3        Theoretical Accelerances Computed (Homogeneous Half-Space 

Impedances) 

The theoretical accelerances can now be computed by inserting the dy- 

namic impedance functions from Chapters 2 or 3 into Equations 5.11, 5.12, 5.13, 
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5.14 above. Accelerances based on the homogeneous half-space impedances from 

Chapter 2 will be discussed in this section, while accelerances computed from 

square-root profile impedances from Chapter 3 will be discussed in Section 5.4. 

There are three types of loading which will be investigated in this study: a vertical 

concentric load, an eccentric vertical load, and a lateral load. Vertical loading on 

circular footings has been studied in-depth (see Guzina [12] and Pak and Guz- 

ina [32]). Lateral loading has been studied by Brown [3] and Gillmor [11]. Vertical 

eccentric and lateral loading have been studied by Ashlock [1]. All of these stud- 

ies are, however, for surface foundations. In this thesis, the effects of these three 

types of loading on embedded foundations will be examined. 

A diagram of the footing used for the theoretical accelerance calculations is 

shown in Figure 5.2. This diagram shows the actual dimensions of the footing used 

in the experiments which is discussed in Chapter 4. Without any attachments, 

the footing has a mass of m = 1.173kg and a mass-moment of inertia J0 = 

0.002146721&(? * m2. With reference to the hole numbering scheme shown in 

Figure 5.2, the accelerance at a particular hole will be denoted as A{(u), where 

i refers to the direction of the measurement (either x or z), and j is the hole 

number at which the theoretical accelerance is computed (i.e. 1, 2, 3, ..., 13) 

which correspond to the locations D, F, and G mentioned earlier. Additionally, 

the accelerance can be made dimensionless by multiplying by pb3. In all of the 

theoretical accelerance calculations, the Poisson's ratio used is u = 0.25 unless 

otherwise noted and the mass density of the soil is p = 1730.0kg/m3. 

5.3.1 Vertical Concentric (VC) Vibration 

The simplest of the three loading cases is the vertical concentric case. Con- 

sequently, this theoretical case will be discussed first. Since the loading in this 

case is concentric, there is theoretically no lateral movement.   Thus, the only 
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Figure 5.2: Diagram of model Footing "B" used in theoretical accelerance calcu- 
lations and experiments. 
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accelerance to be measured is in the vertical direction. Additionally the verti- 

cal accelerance will be the same at any point on the footing since the footing is 

modeled as a rigid body. 

5.3.1.1 Theoretical Variation of Vertical Concentric Accelerance 

with Embedment Depth 

Using the impedances for a rigid foundation embedded in a homogeneous 

half-space, Figure 5.3 shows how the dimensionless vertical centroidal accelerance 

changes with embedment depth. The primary characteristic which changes with 

embedment for the vertical concentric loading case is the decrease in the magni- 

tude of the resonant frequency peak. The frequency peak is also shifted slightly 

to higher frequencies with embedment and virtually disappears by an embedment 

ratio of 2.0. This effect is expected according to the discussion in the previous 

chapters regarding the stiffening of the footing's response with increasing em- 

bedment. It should be noted that the three curves are essentially the same after 

w = 2.0. This is due to the fact that the accelerance curve is dominated by inertial 

effects at high frequencies, and the same mass was used for all three cases. 

5.3.1.2 Theoretical Variation of Vertical Concentric Accelerance 

with Shear Wave Speed 

Recall that a homogeneous half-space is fully characterized by the elastic 

parameters G, p, and v. For a given soil, the mass density p is easily measured. 

Therefore, the primary parameters which can be varied to obtain a satisfactory 

accelerance match are G and v. The shear modulus is related to the shear wave 

speed according to 

^-v G 
Cs = «/-. (5.15) 
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Figure 5.3:  Effect of embedment on vertical centroidal accelerance for homoge- 
neous half-space impedances (h/b = 0.0,1.0, 2.0, v = 0.25). 
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Since the rotational frequency UJ is made dimensionless by utilizing the shear 

wave speed, accelerance for different shear wave speeds can be plotted versus the 

frequency to illustrate the effects of different shear wave speeds. In this manner, 

the rotational frequency to is related to the frequency in Hz according to 

/ = £. (5.16) 

For the configuration of the model footing employed, Figure 5.4 shows plots of 

the vertical centroidal accelerance versus frequency (Hz) for an embedment ratio 

of 1.0 and three different shear wave speeds, 200ra/s, 225m/s, and 250m/s which 

correspond to shear moduli of 69.2MPa, 87.6MPa, and 108.1MPa respectively. 

From these curves, it is apparent that the increase in shear modulus increases the 

resonant frequency. 

5.3.1.3 Theoretical Variation of Vertical Concentric Accelerance 

with Poisson's Ratio 

Figure 5.5 shows the dimensionless vertical centroidal accelerance at h/b = 

1.0 for Poisson's ratios of 0.10, 0.25, and 0.40. As the Poisson's ratio increases, 

one can see from Figure 5.5 that the resonant frequency increases slightly also. 

The curves also illustrate that the effect of Poisson's ratio is not as significant 

as the effect of the shear wave speed in determining the characteristics of the 

curve. The accelerance curves for v = 0.10 and v = 0.25 contain only very small 

differences, whereas the curve for u = 0.40 begins to become noticeably different 

from the other two. 

•In Pak and Guzina [32], it was found that the best approach in accelerance 

matching was to fix the Poisson's ratio and choose the best-fit shear modulus. In 

three series of tests, they found that the average of the best-fit Poisson's ratios 

were 0.277, 0.229, and 0.277 respectively.   For simplicity, a constant Poisson's 
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h/b=1.0 for homogeneous half-space impedances (v = 0.25). 
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ratio of 0.25 was adopted which will also be used in this study for all comparisons 

between theory and experiment. 

5.3.2 Vertical Eccentric (VE) Vibration 

The vertical eccentric case is similar in many ways to the vertical concentric 

case. Theoretically, the vertical vibration at the centroid of the footing is the same 

as in the vertical concentric case. Consequently, this accelerance measurement 

location does not need further discussion. However, since the loading is eccentric, 

there is lateral motion and the vertical accelerance across a horizontal plane of the 

footing will vary depending on the eccentricity of the load and the eccentricity of 

the measurement location. Thus, it is important to examine the off-center vertical 

accelerance and the lateral accelerance. 

5.3.2.1 Vertical Accelerance from Vertical Eccentric Loading 

Figure 5.6 shows the theoretical off-center vertical accelerance under vertical 

eccentric loading at three embedment depths. With reference to Figure 5.2, the 

footing is loaded at hole #6 and the accelerance is measured at hole #8 in this 

simulation. The dimensionless eccentricity of the load is eioad = ^f*1 — —0.65 and 

the eccentricity of the accelerance measurement location is emeasure = 
eme°<mre = 

0.65. In addition to the primary peak revealed in the vertical concentric loading 

case, there is now an additional peak caused by the eccentricity of the loading 

which occurs at a lower frequency than the primary vertical vibration peak. This 

peak is extremely sharp and decreases in magnitude with embedment. 

5.3.2.2 Lateral Accelerance from Vertical Eccentric Loading 

Figure 5.7 shows the lateral accelerance from footing "B" with a vertical 

eccentric load. The footing is loaded at hole #6 and the theoretical accelerance is 
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calculated for hole #5 at each embedment depth. The eccentricity of the load is 

hoad = —0.65, the same as that for the vertical accelerance shown in Figure 5.6. 

One can see that for the case of h/b = 0.0, there are two resonance peaks. 

The first peak is very sharp and has a large magnitude, while the second peak is 

much wider and lower in magnitude. Previous studies have shown that the first 

peak is primarily related to resonance in the rocking mode of vibration, while the 

second peak is due to resonance in the horizontal mode of vibration. The first peak 

decreases in magnitude and gradually increases in width with embedment. The 

frequency at which this peak is found also increases with embedment. Another 

important characteristic to note is that the second, but more gradual, peak on the 

accelerance curve is noticeable at h/b = 0.0, but diminishes as h/b increases. This 

observation is relevant to the experimental synthesis to be discussed in Chapter 6. 

5.3.3 Lateral Horizontal (LH) Vibration 

The third type of loading to be discussed in this study is lateral loading. 

Under lateral loading, there is some asymmetric vertical vibration due to the 

rocking of the foundation. However, the magnitude of this vertical acceleration is 

too small to be measured reliably for the vibration levels and footing width used 

in this investigation. Therefore, it is best to analyze just the lateral accelerances 

under lateral loading. 

Figure 5.8 shows the lateral accelerance at hole #3 for a load applied at 

hole #10 for three different embedment depths. At this measurement location, 

only the resonance peak due to rocking is noticeable, even for a surface footing. 

Generally speaking, the closer the measurement location is to the soil surface, the 

more prominent the second resonance peak is since it is primarily related to the 

horizontal translation mode of vibration. The closer the accelerance measurement 

is to the soil-foundation interface, the more dominant the horizontal translation 
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mode of vibration will be when compared to the rocking mode. Conversely, the 

rocking mode of vibration will be more prominent the farther the measurement 

location is from the soil-foundation interface. For accelerance at hole #3, the 

second peak is practically non-existent due to the location of the theoretical ac- 

celerance measurement. As embedment depth increases, the magnitude of the 

resonance peak decreases and the width of the peak increases gradually as the 

system increases in stiffness. 

Figure 5.9 shows the lateral accelerance at hole #5 for the same horizon- 

tal load applied at hole #10. For a surface foundation, the second resonance 

peak, while still small, is more pronounced than in the accelerance of hole #3 in 

Figure 5.8. This is because the measurement location (hole #5) is much closer 

to the soil-foundation interface where the horizontal mode of vibration is more 

prominent than at other measurement locations. Additionally, the magnitude of 

the rocking peak is much lower for hole #5 than for hole #3 since the contribu- 

tion by the rocking mode of vibration is less at this location. As the embedment 

depth increases, the magnitude of both peaks decrease. As the embedment gets 

to h/b = 1.0, the second peak is already difficult to distinguish. 
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5.4 Theoretical Accelerances Computed (Square-Root Half-Space 

Impedances) 

'The accelerances computed in this section are for the dynamic impedance 

functions for a rigid embedded square foundation in a square-root modulus half- 

space as given in Section 3.3. Recall that the square-root profile was chosen in 

order to model the variation in shear modulus due to the self-weight of the soil 

according to Hardin and Drnevich [17]. This type of profile should accurately 

capture the far-field effects, but may still require modifications to account for the 

local stiffening due to the presence of a massive footing on the soil. 

5.4.1 Vertical Concentric Vibration 

Figures 5.10 shows the vertical centroidal accelerance based on the square- 

root profile impedances for embedment depths of h/b = 0.0, 1.0, and 2.0, with 

the dimensionless frequency defined to be w = ^- where CSQ = J^-- All three 

curves have a higher magnitude at resonance than the curves generated by the 

homogeneous half-space impedances in Figure 5.3. For a surface footing on a 

square-root modulus half-space, the response is particularly soft which yields a 

very narrow resonance peak with a large magnitude. Such a soft behavior is not 

observed in physical surface footing experiments on sand by Ashlock [1], who has 

explored the addition of a stiffened zone under a surface foundation in conjunction 

with a square-root profile in order to account for both the increase in stiffness due 

to the weight of the footing and the far-field variation in shear modulus. 

Figure 5.11 shows the vertical centroidal accelerances for three different 

shear wave speeds at h/b =1.0 based on the square-root profile impedances. The 

effect of the shear wave speed on the square-root profile accelerances is similar to 

the effects shown in Figure 5.4 for the homogeneous half-space. 
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5.4.2 Vertical Eccentric Vibration 

Figure 5.12 shows the accelerance at hole #5 for vertical eccentric loading at 

hole #6 for square-root profile impedances. Due to the lower shear modulus near 

the surface for the square-root profile, the horizontal vibration peak for h/b = 0.0 

is large compared to Figure 5.7 for the homogeneous case. As in the case of vertical 

concentric loading, Ashlock [1] has shown that experimental accelerance of surface 

foundations on sand are less dramatic than the theoretical behavior of the square- 

root shear modulus accelerances. However, for embedment depths of h/b = 1.0 

and 2.0, the square-root profile may provide a more favorable accelerance match 

than the surface footing case. 

5.4.3 Lateral Horizontal Vibration 

Figures 5.13 and 5.14 show the lateral accelerances at holes #3 and #5 

respectively for lateral loading at hole #10 for impedances from the square-root 

profile. The accelerances shown in Figures 5.13 and 5.14 are very similar in shape 

to the accelerances in Figures 5.8 and 5.9 for homogeneous half-space impedances, 

although the magnitudes are higher due to the lower shear modulus near the 

surface for the square-root profile. 
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5.5 Impedance Modification Factors a^, amm, and otmh. 

To capture the essence of the dynamic behavior of foundations on cohesion- 

less soil, Pak and Ashlock [31] introduced the concept of "Impedance Modification 

Factors" (IMF's) defined in Equation 3.6. The IMF's were used in Chapter 3 to 

compare the square-root profile impedances with the reference homogeneous half- 

space impedances as in Table 3.3 and Figure 3.31. In terms of the impedance 

modification factors ((%■), the impedance matrix can be written as 

Kref 0 0 

K"""» =        o       ahhK-/(u)    ahmK?Ji(u,) (5-17) 

0      amhK™[(u)   ammK™l(uj) 

where Kre^ are the impedance functions for a reference theoretical solution. Due 

to its simplicity and popularity in practice, the solution for a rigid foundation 

embedded in a homogeneous half-space will be used as the theoretical reference 

in defining the a^. For a rigid surface foundation, Ashlock [1] found that the 

modification factors amm and a^h were needed in order to produce a satisfactory 

accelerance match, while amh and ahm could be set to 1.0 since the theoretical 

accelerance is insensitive to the value of Kmh and Khm. For embedded founda- 

tions, however, the coupling terms Kmh and Khm are considerably larger than in 

the surface case and are likely to influence the theoretical accelerances as embed- 

ment .depth increases. From Table 2.1 for a surface footing, the magnitude of the 

dimensionless coupling terms Kmh is only 0.68, which is about 10% of Kvv (which 

is 6.39 for zero embedment). However, at h/b = 1.0, Kmh is over 30% oiKw, and 

at h/b — 2.0, the magnitude of Kmh is over 80% of Kvv. 

To illustrate the effects of amm, ahh, and amh on the theoretical accelerances, 

Figures 5.15, 5.16, and 5.17 show the consequences of varying amm, ahh, and amh 
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at embedment depths of 0.00, 1.00, and 2.00 respectively. At each embedment 

depth, each of the modification factors is varied from 0.50 to 0.75 to 1.00, while the 

other two modification factors are kept constant at 0.75. The accelerances shown 

are for vertical eccentric loading at hole #6 while the theoretical accelerance is 

computed at hole #5. 

At each embedment depth, it is clear that amm primarily affects the fre- 

quency of the resonance peak associated with the rocking mode of vibration. 

Physically, this is easy to understand since amm modifies the rocking impedance 

Kmm. As amm decreases, the frequency of the resonant peak due to rocking also 

decreases, and vice versa. For each embedment depth, the horizontal translation 

peak is not affected greatly by a change in amm (see Figures 5.15, 5.16, 5.17). 

The primary effect that a^h has is on the second resonance peak associated 

with the horizontal mode of vibration. As ahh is reduced, the frequency of the 

horizontal translation peak is reduced while the magnitude of the peak increases. 

Conversely, an increase in ahh tends to flatten the peak and increase the frequency 

at which the peak occurs. As ahh increases, the frequency of the rocking peak also 

increases slightly at h/b = 0.0 and h/b = 1.0, although, this influence is relatively 

small, especially considering the larger effect that amm has on this peak. At 

h/b = 2.0, an increase in ahh tends to decrease the frequency of the rocking peak, 

but this influence is also very small compared to the effect of amm at the same 

embedment depth (see Figure 5.17). 

At h/b = 0.0, amh has very little effect on accelerance. A slight change 

is noticeable in both the rocking and horizontal peaks; however, this influence is 

relatively insignificant when compared to the effects of modifying amm and ahh- 

At deeper embedment depths, however, the change in the acceleration due to amh 

becomes more noticeable, for example at h/b = 2.0 (see Figure 5.17). Decreasing 

amh tends to increase the frequency of the rocking peak while decreasing the 
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frequency of the horizontal vibration peak. This effect is apparent at h/b =1.0 

and is even more pronounced at h/b = 2.0. At h/b = 2.0, amh has nearly as much 

effect on the accelerance produced as a.hh- The specific values of the a^ will be 

discussed as the data is presented in Chapter 6. 
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Chapter   6 

Experimental Results 

6.1 Introduction 

Pak and Guzina [32] have found that the equivalent homogeneous shear 

modulus for vertical vibration of circular footings on sand can be related to the 

prototype footing radius and bearing pressure by a power law according to 

1 + e      VI mj     \lkPa) K     ' 

where e is the void ratio of the soil, apr is the prototype footing radius for a circular 

footing, and ppr is the static foundation bearing pressure. Research for the case 

of a square surface footing (Ashlock [1]) also supports the power law format 

Additionally, Ashlock [1] found that a single shear modulus could be used to 

accurately capture the response of a square surface footing on sand under vertical 

eccentric and lateral loading with the use of impedance modification factors (a^). 

Up to this point, however, very little research has been conducted on embedded 

foundations. 

To examine the corresponding case of embedded foundations, over 500 em- 

bedded model footing tests and nearly 100 surface ones were performed on three 

different soil samples. At most, two embedded footing spots were used on each 

sample (although only one footing was embedded at any one time to avoid any 
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possible interaction effects between two footings embedded in the same sample) 

with two or three surface testing locations per sample. For each embedment depth, 

tests were conducted at four different g-levels which translate to four different pro- 

totype foundations. To maximize the number of tests that can be conducted in 

one spin, tests were conducted beginning with the highest g-level, working down 

to the lowest g-level, since the confining pressure, and thus the soil's strength, is 

greatest at the highest g-level. The footing was fitted with two load cells before 

placement so that both vertical and lateral tests could be conducted at a single 

location without removing the footing or disturbing the footing by adding and 

removing load cells and accelerometers after the initial footing placement. Gen- 

erally, vertical vibration tests were performed before the lateral vibration tests 

and in many cases, two sets each of vertical and lateral tests at the same loca- 

tion were repeated on successive centrifuge spins in order to check the degree of 

repeatability from test to test. 

6.2 Results from Preliminary Tests 

The first set of experiments conducted in this investigation included vertical 

centric (VC), vertical eccentric (VE), and lateral-horizontal (LH) loading tests 

using the conical stinger to distribute the load from the exciter to the load cell. 

The vertical eccentric and lateral tests from these preliminary results, however, 

indicate that the transverse frictional force at the stinger was too significant. With 

an innovative hemispherical button along with a lubricating cushion to reduce 

friction, high quality results were achieved as will be illustrated in Section 6.4. 

6.2.1 Sample 1, Series A 

The first series (Series A) in this investigation was conducted on a single soil 

sample and includes surface footing tests to confirm the results by Ashlock [1], as 
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well as embedded tests at h/b = 1.0 to explore the versatility of the homogeneous 

half-space solution in fitting experimental accelerances for embedded foundations. 

6.2.1.1 Surface Footing Tests 

Table 6.1 contains results of the best-fit shear modulus match between the 

homogeneous half-space theory and experimental results from this investigation 

for two different prototype bearing pressures at each g-level. An example file 

name-in Table 6.1 is ACB68G66.MA9, where the first digit is the series (A), the 

second digit refers to the type of loading (C for vertical concentric, E for vertical 

eccentric, and L for lateral), the third digit refers to the footing letter (footing 

B), the fourth and fifth digits refer to the acceleration locations with reference 

to the hole numbering system in Figure 5.2, the sixth, seventh, and eighth digits 

refer to the g-level at the top of the soil (66 ->• 66.45, 55 -> 54.55, 44 -► 43.64, 

33 ->• 32.73), and the final three digits refer to the test number (MAI, MA2, MA3, 

etc). One ppr is with the exciter armature in the "Up" position where a DC current 

is applied to lift up the exciter armature in order to reduce the static prestress 

applied by the exciter (which reduces the average contact pressure also). The 

higher ppr is when the exciter is in the "Down" position and the bearing pressure 

includes the weight of the exciter armature (for further discussion, see Ashlock [1]). 

As the table reveals, the correspondence between Ashlock's formula and the results 

in this investigation is quite good. The maximum difference between the two is 

5.57%, but a majority of the results are within 3%. 

Since the footing is loaded at hole #7, the vertical accelerance is found 

by averaging the accelerance from holes #6 and #8 and is denoted A*+A* (see 

Figure 6.1). The best-fit vertical accelerance is chosen by varying the shear wave 

speed of the equivalent homogeneous half-space solution across a specified range, 

and selecting the shear wave speed which provides the smallest error in a least 
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squares sense. The error is given a weighting according to 

w = < (6.3) 
2.0;   w<1.5 

1.0;   w>1.5 

since the lower frequencies of the vertical accelerance depend on the properties of 

the soil, while the higher frequencies depend primarily on the inertial properties 

of the footing. 

g-level Test Name Opr Ppr ^equivhomog (j Ashlock % diff. 

65.45 ACB68G66.MA9 1.800 256.1 106.4 107.6 1.12 

65.45 ACB68G66.M10 1.800 256.1 108.1 107.6 0.46 

65.45 ACB68G66.M11 1.800 270.1 109.0 110.5 1.34 

65.45 ACB68G66.M12 1.800 270.1 108.1 110.5 2.17 

54.55 ACB68G55.MA7 1.500 213.5 98.0 96.5 1.55 

54.55 ACB68G55.MA8 1.500 213.5 98.8 96.5 2.38 

54.55 ACB68G55.MA9 1.500 225.1 99.6 99.1 0.50 

54.55 ACB68G55.M10 1.500 225.1 98.8 99.1 0.30 
43.64 ACB68G44.MA7 1.200 170.8 88.4 84.4 4.74 
43.64 ACB68G44.MA8 1.200 170.8 89.1 84.4 5.57 
43.64 ACB68G44.MA9 1.200 180.1 89.9 86.7 3.69 
43.64 ACB68G44.M10 1.200 180.1 89.9 86.7 3.69 
32.73 ACB68G33.MA8 0.900 128.1 73.4 71.0 3.38 
32.73 ACB68G33.MA9 0.900 128.1 72.7 71.0 2.39 
32.73 ACB68G33.M10 0.900 135.1 74.1 72.9 1.65 
32.73 ACB68G33.M11 0.900 135.1 74.1 72.9 1.65 

Table 6.1: Surface footing results for Series A. 

Figure 6.1 shows a typical accelerance match between the surface footing 

test results in Series A and the homogeneous half-space. As one can see, the ho- 

mogeneous half-space impedances with an equivalent homogeneous shear modulus 

fit the experimental data quite well for the vertical centric loading case. 
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Figure 6.1: Typical results from surface footing tests in Series A. 
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6.2.1.2 Embedded Footing Tests for h/b = 1.00 

Since the homogeneous half-space solution for vertical vibrations of surface 

foundations on sand has been extensively validated by Ashlock [1] and confirmed 

in this investigation, the next step is to find out whether a model as convenient as 

the homogeneous half-space will accurately model vertical vibrations of embedded 

foundations in sand as well. Embedded footing tests in Series A were conducted 

at h/b = 1.00. Table 6.2 contains the best-fit shear moduli obtained from a fit 

between the experimental data and the impedances for a rigid cavity embedded to 

h/b = 1.00 in a homogeneous half-space. All of the experiments at this embedment 

depth were conducted with the exciter down, and the double line in Table 6.2 

denotes successive spins in the centrifuge. 

As far as embedded footings are concerned, it is difficult to assign a specific 

"average contact pressure" for a particular footing since not all of the load is 

transferred through the base of the footing.   However, for the purposes of this 

investigation on shallowly embedded foundations, the average contact pressure 

(ppr) will be used as an index parameter and will be computed in the same manner 

as for surface footings, 
n* m 

^ = IP- (6-4) 
where n is the centrifuge g-level, m is the mass of the footing and attachments, 

and bpr is the half-width of the square footing. Although this may not be the true 

average contact pressure at the base of the footing, it is helpful to have an index 

relating the weight of the footing to the area of the base. 

The data in Table 6.2 can be grouped into three different sets, since three 

consecutive spins in the centrifuge were conducted with tests at each of the four 

g-levels on each spin.  The difference between the best-fit shear moduli for each 

spin provides an indication of the repeatability of the test results. The maximum 
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Test Name g-level Opr Ppr ^equivhomog 

ACB68G66.MAT 65.45 1.800 270.1 104.69 

ACB68G66.MA2 65.45 1.800 270.1 104.69 

ACB68G66.MA3 65.45 1.800 270.1 104.69 

ACB68G55.MAT 54.55 1.500 225.1 96.35 

ACB68G55.MA2 54.55 1.500 225.1 96.35 

ACB68G44.MAT 43.64 1.200 180.1 86.03 

ACB68G44.MA2 43.64 1.200 180.1 86.03 

ACB68G33.MA2 32.73 0.900 135.1 73.41 

ACB68G66.MA4 65.45 1.800 270.1 106.40 

ACB68G66.MA5 65.45 1.800 270.1 106.40 

ACB68G55.MA3 54.55 1.500 225.1 97.17 

ACB68G55.MA4 54.55 1.500 225.1 97.99 

ACB68G44.MA3 43.64 1.200 180.1 85.26 

ACB68G44.MA4 43.64 1.200 180.1 85.26 

ACB68G33.MA3 32.73 0.900 135.1 74.13 

ACB68G33.MA4 32.73 0.900 135.1 74.85 

ACB68G33.MA5 32.73 0.900 135.1 73.41 

ACB68G66.MA6 65.45 1.800 270.1 106.40 

ACB68G66.MA7 65.45 1.800 270.1 107.26 

ACB68G66.MA8 65.45 1.800 270.1 107.26 

ACB68G55.MA5 54.55 1.500 225.1 97.99 

ACB68G55.MA6 54.55 1.500 225.1 97.99 
ACB68G44.MA5 43.64 1.200 180.1 86.03 
ACB68G44.MA6 43.64 1.200 180.1 86.80 
ACB68G33.MA6 32.73 0.900 135.1 75.57 
ACB68G33.MA7 32.73 0.900 135.1 74.13 

Table 6.2: Embedded footing results for Series A (h/b =1.0). 
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increase in shear modulus for each of the four g-levels in descending order is 2.45%, 

1.70%, 1.81%, and 2.94% respectively. Such a small increase in G from three 

consecutive spins illustrates the repeatability of the tests and provides confidence 

that each test disturbs the sample minimally. 

Figure 6.2 shows a typical accelerance match between experimental data 

and the embedded foundation homogeneous half-space impedances. As the plot 

reveals, the match is quite good, illustrating the versatility of the homogeneous 

half-space model to accurately fit embedded footing accelerances in addition to 

the surface case. 

1 

< + 

-1.0 
1000.0    2000.0     3000.0     4000.0     5000.0 

Frequency, f (Hz) 

Figure 6.2: Typical results from embedded footing (h/b = 1.0) tests in Series A. 

Table 6.2 reveals that the best-fit shear modulus at h/b — 1.00 is slightly 

lower than the best-fit shear modulus for a surface footing with a corresponding 

bearing pressure (as in Table 6.1). However, it is difficult to draw firm conclusions 

on how the shear modulus might vary with depth without conducting more tests 

at a variety of embedment depths as will be discussed next. 
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6.2.2 Vertical Tests from Series B, C, D, E, F, G 

Since the homogeneous half-space has been shown to provide a good vertical 

accelerance match for a single embedment depth (h/b = 1.0), the next step was 

to conduct tests for a variety of embedment depths. Several series of tests were 

performed at a single location on a second soil sample. Tests were conducted at 

embedment depths of h/b = 2.00, 1.50, 1.00, 0.50, 0.25, and 0.00, and denoted as 

Series B, C, D, E, F, and G respectively. Tests were first conducted at h/b = 2.0, 

after which the soil was scraped and vacuumed away as described in Section 4.3 to 

obtain the successive embedment depths. The results of the best-fit shear moduli 

in these tests are contained in Tables 6.3 and 6.4. Additionally, Figures 6.3 and 

6.4 contain typical results from the vertical centric accelerance matches in Series 

B, C, D, E, F, and G. As one can see, these figures show a good accelerance match 

between theory and experiment for all of the embedment depths tested. 

Figure 6.5 shows the change in the best-fit equivalent homogeneous shear 

modulus from the vertical concentric tests with embedment depth for Series B 

to G. Included in the plots are the individual best-fit G's from each test, along 

with a line which represents the average best-fit G for a given g-level at a given 

embedment depth. It is important to remember that the accelerance match to 

find the best-fit G is performed using the embedded homogeneous half-space 

solution. Many solution methods simply try to introduce depth modification 

factors for the surface footing solution [8]. However, in this investigation, each 

embedment depth has its own set of square foundation impedances which are 

generated by a rigorous boundary element method. Figure 6.5 shows that there is 

not much change in the best-fit equivalent homogeneous shear modulus with depth 

of embedment. Although the trend is not monotonic, there is a mild decrease in 

the best-fit G with increasing embedment depth. 
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h/b Filename g-level Opr Ppr *-*equivhomog 

2.00 BCB68G66.MAT 65.45 1.800 270.1 100.48 

2.00 BCB68G66.MA2 65.45 1.800 270.1 99.65 

2.00 BCB68G55.MAT 54.55 1.500 225.1 94.73 

2.00 BCB68G55.MA2 54.55 1.500 225.1 92.31 

2.00 BCB68G44.MAT 43.64 1.200 180.1 81.46 

2.00 BCB68G44.MA3 43.64 1.200 180.1 82.97 

2.00 BCB68G33.MAT 32.73 0.900 135.1 72.70 

2.00 BCB68G33.MA2 32.73 0.900 135.1 68.51 

1.50 CCB68G66.MAT 65.45 1.800 270.1 103.84 

1.50 CCB68G66.MA2 65.45 1.800 270.1 105.55 
1.50 CCB68G55.MAT 54.55 1.500 225.1 97.99 
1.50 CCB68G55.MA2 54.55 1.500 225.1 97.17 

1.50 CCB68G44.MAT 43.64 1.200 180.1 84.49 
1.50 CCB68G44.MA2 43.64 1.200 180.1 85.26 
1.50 CCB68G33.MAT 32.73 0.900 135.1 71.29 
1.50 CCB68G33.MA2 32.73 0.900 135.1 69.20 

1.00 DCB68G66.MAT 65.45 1.800 270.1 97.99 
1.00 DCB68G66.MA2 65.45 1.800 270.1 98.82 
1.00 DCB68G55.MAT 54.55 1.500 225.1 90.72 
1.00 DCB68G44.MAT 43.64 1.200 180.1 80.71 
1.00 DCB68G44.MA2 43.64 1.200 180.1 80.71 
1.00 DCB68G33.MAT 32.73 0.900 135.1 68.51 
1.00 DCB68G33.MA2 32.73 0.900 135.1 67.82 

Table 6.3: Best-fit shear moduli for Series B - D. 
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h/b Filename g-level Opr Ppr " equivhomog 

0.50 ECB68G66.MAT 65.45 1.800 270.1 105.55 

0.50 ECB68G66.MA2 65.45 1.800 270.1 107.26 

0.50 ECB68G55.MAT 54.55 1.500 225.1 97.17 

0.50 ECB68G55.MA2 54.55 1.500 225.1 97.99 

0.50 ECB68G44.MAT 43.64 1.200 180.1 88.36 
0.50 ECB68G44.MA2 43.64 1.200 180.1 88.36 

0.50 ECB68G33.MAT 32.73 0.900 135.1 76.29 

0.50 ECB68G33.MA2 32.73 0.900 135.1 75.57 

0.25 FCB68G66.MAT 65.45 1.800 270.1 110.74 

0.25 FCB68G66.MA2 65.45 1.800 270.1 110.74 
0.25 FCB68G55.MAT 54.55 1.500 225.1 99.65 
0.25 FCB68G55.MA2 54.55 1.500 225.1 100.48 

0.25 FCB68G44.MAT 43.64 1.200 180.1 86.80 
0.25 FCB68G44.MA2 43.64 1.200 180.1 87.58 
0.25 FCB68G33.MAT 32.73 0.900 135.1 79.23 
0.25 FCB68G33.MA2 32.73 0.900 135.1 78.49 

0.00 GCB68G66.MAT 65.45 1.800 270.1 107.26 
0.00 GCB68G66.MA2 65.45 1.800 270.1 108.12 
0.00 GCB68G55.MAT 54.55 1.500 225.1 98.82 
0.00 GCB68G55.MA2 54.55 1.500 225.1 99.65 
0.00 GCB68G44.MAT 43.64 1.200 180.1 86.80 
0.00 GCB68G44.MA2 43.64 1.200 180.1 88.36 
0.00 GCB68G33.MAT 32.73 0.900 135.1 72.70 
0.00 GCB68G33.MA2 32.73 0.900 135.1 72.00 

Table 6.4: Best-fit shear moduli for Series E - G. 



143 

OA 

<N 

< + 

3.0 

2.0 

1.0 

0.0 

-1.0 

<   -2.0 

1               1 1       ,      1      1       1      ,     .... 

Re 

Im 

1 

Test=BCB68G55.MAT, h/b=2.0   ' 
—1—  1        .        1        .        1 

0.0 1000.0      2000.0      3000.0      4000.0      5000.0 

00 

<N 

< + 
<     - 

t/3 i 
< + 

2.0 

1.0 

0.0 

1.0 

■2.0 
1 

3.0 

2.0 

1.0 

0.0 

1.0 

1000.0      2000.0      3000.0      4000.0      5000.0 

<   -2.0 
0.0   1000.0  2000.0  3000.0  4000.0  5000.0 

Frequency, f (Hz) 

Figure 6.3: Typical results from vertical concentric tests on embedded footings in 
Series B, C, and D. 
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Figure 6.4: Typical results from vertical concentric tests on embedded footings in 
Series E, F, and G. 
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6.2.3 Vertical Tests from Series H, I, J, K, L, M 

Series H, I, J, K, L, and M included vertical eccentric tests using the stinger 

at embedment depths of h/b = 2.0, 1.5, 1.0, 0.5, 0.25, and 0.0 respectively. Al- 

though the problem of the transverse frictional force is present due to the use of 

the stinger, it is helpful to look at the vertical centroidal accelerance from these 

tests. Figure 6.6 shows the best-fit equivalent homogeneous shear moduli for Se- 

ries H, I, J, K, L, M as a function of embedment depth. Although the trend is not 

monotonic except for the 33g tests, the overall trend is that Gequivhomog decreases 

with increasing embedment. 
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Figure 6.6: Change in best-fit equivalent homogeneous shear modulus with em- 
bedment depth (Series H, I, J, K, L, M). 

6.3 Computing Giat from Gvert 

Recall that the skew-symmetric vertical motion in a lateral-load test is very 

small and cannot be accurately measured. Therefore, a vertical accelerance match 
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cannot be used to determine the best-fit shear modulus for tests with lateral 

loading. However, the shear modulus can be varied in order to fit the lateral 

accelerances. Previous studies have shown that the best-fit shear modulus from 

lateral loading is significantly lower than the best-fit shear modulus from vertical 

loading for the surface case (Gillmor [11]). Furthermore, Hushmand [19] reported 

that the resonant frequencies predicted by Lysmer's analog were 15 to 55% higher 

than experimentally measured resonant frequencies for lateral excitation. Rather 

than using a different shear modulus for different types of loading (which is un- 

physical and counter-intuitive), Impedance Modification Factors were employed 

by Gillmor [11] and Ashlock [1] to fit lateral-load accelerances based on the shear 

modulus found in vertical loading. However, due to the mass of the exciter ar- 

mature, there is a slight difference in contact pressure between the vertical and 

lateral loading cases. To resolve this issue, Ashlock employed the power law for- 

mat in Equation (6.2) to calculate Giat from Gvert. Based on Equation (6.2), one 

can define, 

/      lat   \ °-5 /    vert \ 0-5 

G^ = /(e,V)(j^J     ,    G^t = f(eAr)[{^J     , (6-5) 

from which 

Giat = Gvert [-^tj     ■ (6.6) 

The power law format in Equations (6.1) and (6.2) has only been validated for 

surface foundations. Since tests in this investigation were conducted on a single 

footing, there is only one combination of bpr and the embedded foundation pressure 

parameter ppr at each g-level, and a validation of the b°? andp°r
5 exponents cannot 

be done individually by a regression analysis. However, it is possible to investigate 

the experimental support for this power law format which can be stated as, 

G = G'b%ypr
5. (6.7) 
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In centrifuge modeling, bpr and ppr are related to the g-level according to 

bpr = nbm,   ppr = npm, (6.8) 

where bm is the half-width of the scaled model, pm is the contact pressure of the 

model at lg, and n is the g-level. Substituting (6.8) into (6.7) and taking the log 

of each term yields, 

log(G) = log(G') + 0.1log(bm) + 0.5log(pm) + 0.6log{n) (6.9) 

where log(G'), 0.1log(bm), and 0.5log(pm) are constants. Therefore, performing a 

linear regression in the form of 

log(G) = a + ßlog(n) (6.10) 

could show support for the power law format if ß « 0.6. Table 6.5 shows the 

results from such a regression performed on the average G at each g-level from 

each series of tests in this investigation. The average ß is 0.54 for all embedment 

depths considered. Figure 6.7 shows the resulting ß's plotted versus embedment 

depth. Results for the regression analysis by Guzina for the original a°^ and p°f 

format for circular foundations yielded exponent pairs of (0.10, 0.51), (0.11, 0.47), 

and (0.09, 0.47), which yield sums of 0.61, 0.58, and 0.56. Thus, the average ß and 

its degree of variation for different embedment depths are very close to Guzina's 

result. Since the difference between the bearing pressure with and without the 

mass of the exciter armature is only about 5%, and the G should be reduced by 

some factor for the lateral tests with a lower ppr, it was chosen to adopt the p°f 

format for calculating the corresponding G for the lateral case as in Equation (6.6). 

6.4 Lateral and Vertical Eccentric Test Results with Button and 

Dumpling System 

Subsequent to the excellent matching of vertical accelerances, several addi- 

tional series of experiments were conducted to explore the vertical eccentric and 



VC-stinger VE-stinger VE-button VE-button 

h/b B,C,D,E,F,G H,I,J,K,L,M N,0,P,Q R,S,T,U 

0.00 0.566127 0.579618 — 0.569032 

0.25 0.487814 0.567457 — 0.618098 

0.50 0.474990 0.503990 0.575184 0.568922 

1.00 0.522451 0.581139 0.512108 0.560797 

1.50 0.573963 0.574247 0.539262 — 

2.00 0.502987 0.467341 0.502326 — 
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Table 6.5: Linear regression results of vertical tests for "/?". 
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Figure 6.7: Regression parameter ß versus embedment depth. 

lateral loading cases. Lateral tests were conducted in Series A, B, C, D, E, F, and 

G, and vertical eccentric and lateral tests were conducted on a second location 

on sample #2 from h/b = 2.0 to 0.0 and denoted as Series H, I, J, K, L, and M 

respectively. However, all of these tests were performed using the conical stinger 

shown in Figure 4.3. As shown in Ashlock [1], the conical shape of the stinger 

is conducive to the transmitting of a transverse force at the tip of the cone since 

the pointed stinger cannot slide very easily across the exciter bolt. Therefore, in 
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the application of an eccentric load, there is an additional friction force caused by 

the contact between the exciter and the stinger. This friction causes a poor cor- 

relation between the peak frequencies in the lateral accelerances from the vertical 

eccentric and lateral loading cases as discussed in Aslock [1]. 

A solution to the friction problem in the form of hemispherical "button" 

with an oil-filled dumpling is also presented in Ashlock [1] (see Figure 4.3 for 

a diagram of the button). The rounded shape of the button is less conducive 

to the transmitting of a frictional force in the application of both vertical and 

lateral loads. Additionally, the oil-filled pocket provided by the dumpling allows 

each side of the latex membrane to slide relatively frictionlessly over one another 

with lubrication provided by the oil contained inside. The only drawback to the 

dumpling design is that the latex rubber may prevent the transmission of high 

frequency vibrations applied by the exciter. Ashlock [1] found that this was not 

a problem in the vertical case since the mass of the exciter armature provided 

enough prestress to transmit the vibrations for frequencies up to 2kHz. However, 

the use of the dumpling in the lateral case yielded poor coherence at frequencies 

above 500 to 1,000Hz and was found unsuitable for use in the lateral loading tests 

(Ashlock [1]). 

As a possible improvement on the latex membrane dumpling, a thinner latex 

bag (made from a medical glove) filled with oil and tied off in order to provide 

a closed lubrication system similar to the dumpling was used. Latex gloves are 

thinner than the membrane used in the dumpling and this method was employed 

with the hope that the glove would yield better coherence at higher frequencies in 

both the vertical and lateral cases. Consequently a series of tests was conducted 

using an oil-filled latex glove for lubrication between the hemispherical button and 

the exciter. 
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6.4.1 Results from the Thin Oil-filled Latex Membrane (Series N, 

O, P, Q) 

Series N, O, P, and Q include both vertical eccentric and lateral tests at em- 

bedment depths of 2.0, 1.5, 1.0, and 0.5 respectively. These tests were conducted 

on a single location on sample #3. Vertical eccentric loading was applied at hole 

#6 and lateral loading was applied at hole #10, while accelerance was measured 

at holes #7, #3, and #4 for both types of loading. These tests will be discussed 

in the order in which they were performed, beginning with Series N. 

6.4.1.1 Series N {h/b = 2.0) 

Tables 6.6 and 6.7 contain results from the best fit vertical accelerance 

match, as well as the best-fit aij. The best-fit ay are chosen according to the 

error function defined as E(aij) = E\ + E2 similar to Ashlock [1], where 

Ei = uii - /Pr
s)2 (6.11) 

E2 = 

;   fi<f<f: 2 ££i |{ite(^h) - Re{A™as)}  + [lm{A?) - Im{A™as)} 

0; otherwise 

where ffy and f^.eas are the peak frequencies from the theoretical and experi- 

mentally measured accelerance curves and Ajh and A™eas are the individual data 

points. The frequencies fx and f2 constitute a frequency range desired for the least 

squares fit. For all of the tests in this investigation, fx = 500Hz and f2 = 2000Hz 

which constitutes the range in which the horizontal translation accelerance peak 

is generally found. 

The use of the thin latex membrane in Series N yielded good results for 

vertical eccentric loading. The accelerance had a coherence of nearly 1 for a ma- 
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jority of the frequency range. A typical lateral accelerance from vertical eccentric 

loading is shown in Figure 6.8a. However, for lateral loading, the thin membrane 

was not nearly as successful. Lateral tests with the thin membrane showed very 

poor coherence. A typical lateral accelerance curve with the thin latex membrane 

appears in Figure 6.8b. The test in Figure 6.8b is only a 1kHz test, but, tests 

beyond 1kHz showed even worse results at higher frequencies than those shown in 

Figure 6.8b. This conclusion is similar to that of Ashlock, where the latex mem- 

brane dumpling yielded good coherence for the vertical case (due to the added 

prestress of the exciter armature), but poor test results in the lateral case. As an 

alternative to the thin latex membrane or the latex membrane dumpling used by 

Ashlock [1], a commercially available synthetic oil called Tri-Flow was then used 

to lubricate the contact between the exciter and the hemispherical button in all 

remaining lateral tests which were conducted in Series N to U. A typical lateral ac- 

celerance from lateral loading with the Tri-Flow lubrication in Series N is shown 

in Figure 6.8c. Noting the large amount of noise in Figure 6.8b with the thin 

membrane when compared to Figure 6.8c with Tri-Flow shows the significance of 

the improvements made. 

For Series N with an embedment depth of h/b = 2.0, the results of the initial 

accelerance match yielded widely varying values of ahh and amh. The fact that a 

precise ahh or amh cannot be pinpointed at this embedment depth is not surprising 

given the lack of defining characteristics (other than the primary rocking peak) in 

the accelerance curves as shown in Figures 5.7 and 5.9 for the vertical eccentric 

and lateral loading cases respectively. Figure 6.9 shows a contour plot of the error 

surface as a function of amm and ahh for a typical test in Series N with amA=0.60, 

while Figure 6.10 shows a contour plot of the error as a function of amm and amh 

for the same test with 0^=0.80. One can see that although amm is very well 

defined, there is a large longitudinal trench for both ahh and amh, signifying that 
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the precise best-fit a^h and amh are not well defined. While Figures 6.9 and 6.10 

show two perpendicular planes in a three-dimensional space, Figure 6.11 shows the 

complete three-dimensional amm — a,hh — ®mh space with isosurfaces for normalized 

error values of 400, 1000, and 5000. Each of the isosurfaces has the shape of a 

"pancake" in the ahh — amh plane with the thickness of the pancake increasing 

slightly as the value of normalized error increases. This shape signifies that amm 

is very well-defined, but ahh and amh can be any value lying within the pancake 

and still yield a reasonable accelerance match. Table 3.3 revealed that ahh and 

amh when comparing the square root profile to the homogeneous half-space at 

h/b = 2.0 are 0.80 and 0.55 respectively. Since Figure 6.11 reveals that there is 

not a specific trend in the best-fit ahh and amh, the best approach may be to set 

ahh and amh to the values specified in Figure 3.3. The o^- shown in Tables 6.6 

and 6.7 are for ahh set to 0.80, amh set to 0.55, and the best-fit amm computed 

from Equation (6.11) with the other two a's specified. The best-fit amm will be 

plotted versus centrifuge g-level in Section 6.5.2. 

To illustrate the lack of sensitivity to the specific values of ahh and amh, 

Figure 6.12 shows a typical lateral accelerance (hole #4) from a vertical eccentric 

test in Series N. Also shown are two theoretical accelerances. The first theoretical 

accelerance is for a fixed ahh and amh of 0.80 and 0.55 respectively, with the best- 

fit amm of 0.54 under these conditions. The second theoretical accelerance is for 

the best-fit a^ according to Equation (6.11) when each a^ is varied from 0.30 

to 1.00. The latter approach yields amm=0.59, «^=0.54, amh=0.30. One can 

see that the difference in the two theoretical accelerance curves is very small, and 

that the curve where ahh and amh are specified may even produce a better overall 

visual accelerance match in the frequency range of interest. 
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Figure 6.8: Experimental accelerance (hole #4) from Series N: a) vertical eccentric 
loading with thin membrane, b) lateral loading with thin membrane, c) lateral 
loading with Tri-Flow. 
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Filename g-level Opr Ppr ^ equivhomog ®-mm Ot-hh Otmh 

NEB34G66.MAT 65.45 1.800 269.6 113.38 0.54 0.80 0.55 

NEB34G66.MA2 65.45 1.800 269.6 112.49 0.55 0.80 0.55 

NEB34G55.MAT 54.55 1.500 224.7 108.12 0.52 0.80 0.55 
NEB34G55.MA2 54.55 1.500 224.7 106.40 0.57 0.80 0.55 

NEB34G44.MAT 43.64 1.200 179.8 96.35 0.54 0.80 0.55 

NEB34G44.MA2 43.64 1.200 179.8 96.35 0.55 0.80 0.55 

NEB34G44.MA3 43.64 1.200 179.8 94.73 0.56 0.80 0.55 
NEB34G33.MAT 32.73 0.900 134.8 81.46 0.60 0.80 0.55 

NEB34G33.MA2 32.73 0.900 134.8 79.23 0.50 0.80 0.55 

NEB34G33.MA3 32.73 0.900 134.8 78.49 0.50 0.80 0.55 
NEB34G33.MA4 32.73 0.900 134.8 79.23 0.62 0.80 0.55 

NLB34G66.MA8 65.45 1.800 255.6 110.03 0.59 0.80 0.55 
NLB34G66.MA9 65.45 1.800 255.6 110.03 0.50 0.80 0.55 
NLB34G66.M10 65.45 1.800 255.6 110.03 0.56 0.80 0.55 
NLB34G55.MA2 54.55 1.500 213.0 104.48 0.57 0.80 0.55 
NLB34G55.MA3 54.55 1.500 213.0 104.48 0.57 0.80 0.55 
NLB34G44.MA2 43.64 1.200 170.4 93.28 0.59 0.80 0.55 
NLB34G44.MA3 43.64 1.200 170.4 93.28 0.50 0.80 0.55 
NLB34G44.MA4 43.64 1.200 170.4 93.28 0.56 0.80 0.55 
NLB34G33.MA2 32.73 0.900 127.8 77.50 0.51 0.80 0.55 
NLB34G33.MA3 32.73 0.900 127.8 77.50 0.52 0.80 0.55 
NLB34G33.MA4 32.73 0.900 127.8 77.50 0.51 0.80 0.55 

Table 6.6: Table of results from Series N, h/b = 2.0. 
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Filename g-level Opr Ppr ^ equivhomog ®mm Oihh ®-mh 

NEB34G66.MA3 65.45 1.800 269.6 118.75 0.50 0.80 0.55 

NEB34G66.MA4 65.45 1.800 269.6 119.66 0.53 0.80 0.55 

NEB34G66.MA5 65.45 1.800 255.6 118.75 0.53 0.80 0.55 

NEB34G66.MA6 65.45 1.800 269.6 119.66 0.51 0.80 0.55 

NEB34G66.MA7 65.45 1.800 269.6 119.66 0.51 0.80 0.55 

NEB34G55.MA3 54.55 1.500 224.7 113.38 0.50 0.80 0.55 

NEB34G55.MA4 54.55 1.500 224.7 114.26 0.50 0.80 0.55 

NEB34G55.MA5 54.55 1.500 213.0 111.61 0.53 0.80 0.55 

NEB34G55.MA6 54.55 1.500 224.7 111.61 0.55 0.80 0.55 

NEB34G55.MA7 54.55 1.500 224.7 112.49 0.52 0.80 0.55 

NEB34G55.MA8 54.55 1.500 224.7 112.49 0.52 0.80 0.55 
NEB34G55.MA9 54.55 1.500 224.7 111.61 0.54 0.80 0.55 
NEB34G44.MA4 43.64 1.200 179.8 102.15 0.55 0.80 0.55 
NEB34G44.MA5 43.64 1.200 179.8 99.65 0.55 0.80 0.55 

NEB34G33.MA5 32.73 0.900 134.8 83.73 0.50 0.80 0.55 
NEB34G33.MA6 32.73 0.900 134.8 83.73 0.50 0.80 0.55 

NLB34G66.M11 65.45 1.800 255.6 116.35 0.50 0.80 0.55 
NLB34G55.MA4 54.55 1.500 213.0 109.54 0.53 0.80 0.55 
NLB34G44.MA5 43.64 1.200 170.4 98.24 0.56 0.80 0.55 
NLB34G33.MA5 32.73 0.900 127.8 81.50 0.50 0.80 0.55 

Table 6.7: Table of results from Series N, h/b = 2.0. 
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0.6 0.7 

Figure 6.9: amm vs. cthh error contour plot for accelerance at hole #4 from test 
NEB34G66.MAT with amh = 0.60, h/b = 2.0. 

Figure 6.10: amm vs. amh error contour plot for accelerance at hole #4 from test 
NEB34G66.MAT with ahh = 0.80, h/b = 2.0. 
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Error = 2000 
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Error = 400 

Figure 6.11: Three-dimensional error surface plot in amm — a.hh — ®mh space for 
normalized error=400, 1000, 5000 (test NEB34G66.MAT, accelerance of hole #4, 
h/b = 2.0). 
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Figure 6.12: Theoretical accelerance with specified ahh and amh (amm = 0.54, 
ahh = 0.80, amh = 0.55), experimental data, and "best-fit" accelerance (amm = 
0.59, ahh = 0.54, amh = 0.30). 
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6.4.1.2 Series O (h/b = 1.5) 

Series O included tests at h/b — 1.5 at the same location as Series N. One set 

of vertical eccentric tests with the thin latex membrane and one set of lateral tests 

with Tri-Flow were conducted in Series O on consecutive spins in the centrifuge. 

Table 6.8 contains the tabulated results from this series of tests. Figure 6.13 shows 

the three-dimensional cn^ space with three isosurfaces drawn for normalized error 

values of 100, 500, and 2000. The error surfaces have the same "pancake" shape 

as in Series N where the optimal amm is well-defined and a.hh and amh can be any 

value lying within the thinnest pancake. The specific values of a^h and amh were 

fixed to 0.79 and 0.53 respectively in accordance with Table 3.3 for a comparison 

of the square-root profile and homogeneous half-space. Figures 6.14 and 6.15 show 

typical accelerance matches from the vertical eccentric and lateral loading cases 

respectively in Series O. 
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Filename g-level Opr Ppr *-T equivhomog ®mm Othh ®-mh 

OEB34G66.MAT 65.45 1.800 269.6 117.85 0.59 0.79 0.53 

OEB34G66.MA2 65.45 1.800 269.6 117.85 0.58 0.79 0.53 

OEB34G55.MAT 54.55 1.500 224.7 110.74 0.58 0.79 0.53 

OEB34G55.MA2 54.55 1.500 224.7 110.74 0.62 0.79 0.53 

OEB34G44.MAT 43.64 1.200 179.8 97.17 0.64 0.79 0.53 

OEB34G44.MA2 43.64 1.200 179.8 96.35 0.66 0.79 0.53 

OEB34G33.MAT 32.73 0.900 134.8 81.46 0.59 0.79 0.53 

OEB34G33.MA2 32.73 0.900 134.8 80.71 0.60 0.79 0.53 

OLB34G66.MAT 65.45 1.800 255.6 114.70 0.60 0.79 0.53 

OLB34G66.MA2 65.45 1.800 255.6 114.70 0.59 0.79 0.53 

OLB34G55.MAT 54.55 1.500 213.0 107.79 0.60 0.79 0.53 

OLB34G55.MA2 54.55 1.500 213.0 107.79 0.62 0.79 0.53 
OLB34G44.MAT 43.64 1.200 170.4 94.25 0.56 0.79 0.53 

OLB34G44.MA2 43.64 1.200 170.4 94.25 0.60 0.79 0.53 
OLB34G33.MAT 32.73 0.900 127.8 78.97 0.63 0.79 0.53 
OLB34G33.MA2 32.73 0.900 127.8 78.97 0.58 0.79 0.53 

Table 6.8: Table of results from Series O, h/b =1.5. 
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Error = 500 
Error = 2000 

Error =100 

Figure 6.13: Three-dimensional error surface plot in amm — ahh — amh space for 
normalized error=100, 500, 2000 (test OEB34G66.DAT, accelerance of hole #4, 
h/b = 1.5). 
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Figure 6.14:  Theoretical and experimental accelerance from typical vertical ec- 
centric test in Series O, thin latex membrane, h/b = 1.5. 
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Figure 6.15: Theoretical and experimental accelerance from typical lateral test in 
Series O, thin latex membrane, h/b = 1.5. 
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6.4.1.3 Series P (h/b = 1.0) 

Series P was conducted at h/b = 1.0 at the same location as Series N and 0. 

The thin latex membrane was used in the vertical eccentric loading and Tri-flow 

was used in the lateral loading just as in Series O. Five spins were conducted 

in Series P, consisting of VE, VE, LH, LH, and VE tests in the five successive 

spins.- Table 6.9 contains the results of the tests performed in Series P. Based on 

Table 3.3, ahh and am/> were set to 0.77 and 0.50 respectively. 

Figure 6.16 shows the best-fit amm versus g-level for Spins 2 and 3 in Series 

P which consisted of vertical eccentric and lateral tests respectively. Clearly, 

there is a difference in the best-fit amm from these two types of loading. Since the 

amm's from vertical eccentric tests are higher, it would appear that the latex glove 

does not offer sufficient lubrication to reduce the friction between the exciter and 

the button. The added frictional force would cause an increase in the resonance 

frequency peak due to the rocking mode of vibration in the vertical eccentric 

tests, and thus an increase in amm over the lateral vibration case, as shown in 

Figure 6.16. Support for this belief is given in Series Q at h/b = 0.5, which means 

that the vertical eccentric tests from Series P and Series Q should be ignored. 
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Filename g-level Opr Ppr "equivhomog ®mm Oihh ®-mh 

PEB34G66.MAT 65.45 1.800 269.6 107.26 0.77 0.77 0.50 

PEB34G66.MA2 65.45 1.800 269.6 107.26 0.77 0.77 0.50 

PEB34G55.MAT 54.55 1.500 224.7 99.65 0.74 0.77 0.50 

PEB34G55.MA2 54.55 1.500 224.7 99.65 0.67 0.77 0.50 

PEB34G44.MAT 43.64 1.200 179.8 87.58 0.72 0.77 0.50 

PEB34G44.MA2 43.64 1.200 179.8 88.36 0.72 0.77 0.50 

PEB34G33.MAT 32.73 0.900 134.8 74.13 0.76 0.77 0.50 

PEB34G33.MA2 32.73 0.900 134.8 74.85 0.83 0.77 0.50 

PEB34G33.MA3 32.73 0.900 134.8 76.29 0.86 0.77 0.50 

PEB34G66.MA3 65.45 1.800 268.4 110.74 0.72 0.77 0.50 

PEB34G55.MA3 54.55 1.500 223.7 102.15 0.70 0.77 0.50 

PEB34G44.MA3 43.64 1.200 179.0 89.93 0.69 0.77 0.50 
PEB34G33.MA4 32.73 0.900 134.2 76.29 0.69 0.77 0.50 

PLB34G66.MAT 65.45 1.800 254.4 104.46 0.54 0.77 0.50 
PLB34G66.MA2 65.45 1.800 254.4 104.46 0.61 0.77 0.50 

PLB34G66.MA3 65.45 1.800 254.4 104.46 0.62 0.77 0.50 

PLB34G55.MAT 54.55 1.500 212.0 96.97 0.60 0.77 0.50 
PLB34G55.MA2 54.55 1.500 212.0 96.97 0.61 0.77 0.50 
PLB34G44.MAT 43.64 1.200 169.6 85.67 0.61 0.77 0.50 
PLB34G44.MA2 43.64 1.200 169.6 85.67 0.58 0.77 0.50 
PLB34G33.MAT 32.73 0.900 127.2 73.11 0.57 0.77 0.50 
PLB34G33.MA2 32.73 0.900 127.2 73.11 0.54 0.77 0.50 

PLB34G66.MA4 65.45 1.800 254.4 104.46 0.62 0.77 0.50 
PLB34G55.MA3 54.55 1.500 212.0 96.97 0.67 0.77 0.50 
PLB34G55.MA4 54.55 1.500 212.0 96.97 0.63 0.77 0.50 
PLB34G44.MA3 43.64 1.200 169.6 85.67 0.59 0.77 0.50 
PLB34G33.MA3 32.73 0.900 127.2 73.50 0.57 0.77 0.50 

PLB34G66.MA5 65.45 1.800 254.4 104.46 0.60 0.77 0.50 
PEB34G66.MA4 65.45 1.800 269.6 111.61 0.72 0.77 0.50 
PEB34G55.MA4 54.55 1.500 224.7 103.84 0.63 0.77 0.50 
PEB34G44.MA4 43.64 1.200 179.8 91.52 0.70 0.77 0.50 
PEB34G33.MA5 32.73 0.900 134.8 76.29 0.75 0.77 0.50 

Table 6.9: Table of results from Series P, h/b — 1.0. 
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Figure 6.16: amm vs. g-level for Series P (h/b = 1.0), with 0^=0.80, am/l=0.60. 
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6.4.L4 Series Q (h/b = 0.5) 

Series Q was conducted at h/b = 0.5, subsequent to Series P, with the thin 

latex membrane employed in the vertical eccentric tests and Tri-Flow in the lateral 

tests. Table 6.10 shows the tabular results from Series Q for 0^=0.74, am/l=0.39 

in accordance with Table 3.3. Like Series P, Series Q showed a difference in the 

peak frequencies (and thus, differences in the best-fit amm) between the vertical 

eccentric and lateral loading cases. Figure 6.17 shows the clear difference in the 

best-fit amm for the thin membrane vertical eccentric and Tri-Flow lateral loading 

cases. Having the results in Series Q which show the same trend as Series P 

lends support for the fact that the difference between the best-fit amm in the two 

loading cases is due to the increased importance of the residual frictional force at 

the button. However, from Figures 6.16 and 6.17, it is clear that there is still a 

difference between the vertical eccentric tests with the latex glove and the lateral 

tests with the Tri-Flow. Thus, vertical eccentric test results from Series P and 

Series Q should be ignored. Since Ashlock [1] found good correlation between 

the two loading cases using the thicker latex membrane dumpling, a similar latex 

membrane dumpling was used in Series R, S, T, and U in place of the latex glove. 

The use of the latex glove for lubrication in the vertical eccentric loading case 

yielded similar results (amm) as those lateral tests with the Tri-Flow at embedment 

depths of h/b = 2.0 and h/b =1.5. It was not until tests were conducted at 

h/b = 1.0 and h/b = 0.5 that the problem arose. This is most likely due to 

the fact that the added stiffness due to the extra embedment at h/b = 2.0 and 

h/b = 1.5 rendered the frictional force of less importance than at embedments of 

h/b =1.0 and h/b = 0.5 where the reduced embedment provides a softer response. 

Additionally, the difference in the best-fit amm between the vertical eccentric and 

lateral loading is larger at h/b = 0.5 than at h/b = 1.0, which shows the increasing 
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effect that the frictional force plays with decreasing embedment. 

Figure 6.18 shows the change in the best-fit equivalent homogeneous shear 

moduli versus embedment depth for Series N, O, P, and Q. In contrast to Fig- 

ures 6.5 and 6.6 which show a slight downward trend in the best-fit G with in- 

creasing embedment, the best-fit G in Figure 6.18 are relatively constant from 

embedment depths of 0.5 to 2.0. 

Filename g-level Opr Ppr ^Jr equivhomog (%mm <*hh @-mh 

QEB34G66.MAT 65.45 1.800 268.4 113.38 0.91 0.74 0.39 

QEB34G66.MA2 65.45 1.800 268.4 114.26 0.90 0.74 0.39 

QEB34G55.MAT 54.55 1.500 223.7 103.84 0.95 0.74 0.39 

QEB34G55.MA2 54.55 1.500 223.7 104.69 0.92 0.74 0.39 

QEB34G44.MAT 43.64 1.200 179.0 91.52 0.97 0.74 0.39 

QEB34G44.MA2 43.64 1.200 179.0 92.31 0.94 0.74 0.39 

QEB34G33.MAT 32.73 0.900 134.2 76.29 0.79 0.74 0.39 

QEB34G33.MA2 32.73 0.900 134.2 75.57 0.86 0.74 0.39 

QLB34G66.MAT 65.45 1.800 254.4 110.89 0.68 0.74 0.39 

QLB34G66.MA2 65.45 1.800 254.4 110.89 0.72 0.74 0.39 

QLB34G55.MAT 54.55 1.500 212.0 101.54 0.75 0.74 0.39 

QLB34G55.MA2 54.55 1.500 212.0 101.54 0.73 0.74 0.39 

QLB34G44.MAT 43.64 1.200 169.6 89.47 0.69 0.74 0.39 
QLB34G44.MA2 43.64 1.200 169.6 89.47 0.68 0.74 0.39 

QLB34G33.MAT 32.73 0.900 127.2 73.99 0.71 0.74 0.39 
QLB34G33.MA2 32.73 0.900 127.2 73.99 0.69 0.74 0.39 

Table 6.10: Table of results from Series Q, h/b = 0.5. 
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Figure 6.17: amm vs. g-level for Series Q (h/b = 0.5), with 0^=0.74, «„^=0.39. 
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Figure 6.18: Change in best-fit equivalent homogeneous shear modulus with em- 
bedment depth for vertical eccentric tests with the thin latex membrane (Series 
N, O, P, Q). 
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6.4.2 Results from the Thicker Oil-filled Latex Dumpling (Series 

R, S, T, U) 

Since the latex glove was shown to be inadequate as a lubricating device 

at shallower embedments (as in Series P and Q), the oil filled latex dumpling 

was used in the remainder of the test series in this study (R, S, T, U). Vertical 

eccentric tests with the thicker latex dumpling and lateral tests with Tri-Flow were 

conducted in Series R, S, and T at a single location on sample #3 with embedment 

depths of 1.0, 0.5, and 0.25 respectively. Series U is comprised of vertical eccentric 

and lateral tests at two different locations on the same sample at h/b = 0.0. These 

tests will be discussed in the order in which they were performed, beginning with 

Series R. 

6.4.2.1 Series R (h/b = 1.0) 

Series R was conducted at an embedment depth of h/b — 1.0 at a new 

location on the same sample as Series N to Q. Vertical eccentric tests with the 

hemispherical button and latex membrane dumpling, as well as lateral tests with 

the button and Tri-Flow, were conducted. Table 6.11 contains the tabulated 

results from Series R. Figures 6.20 and 6.21 show typical results from Series R 

with the corresponding best-fit parameters for vertical eccentric and lateral tests 

respectively. From Table 6.11, the amm from the vertical eccentric and lateral tests 

show good agreement, indicating that the transverse frictional force was reduced 

by employing the thicker latex dumpling. As in Series N and O, there was not 

a clear trend as to the best-fit ahh due to the lack of defining characteristics in 

the accelerance curves at this embedment depth. Figure 6.19 shows the error 

isosurfaces in amm - ahh - amh space for normalized error values of 50, 100, and 

500. The best-fit amm versus g-level will be shown in Section 6.5.2. 
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Filename g-level Opr Ppr {j equivhomog ®-mm Oihh (%mh 

RLB35G66.MAT 65.45 1.800 255.6 106.13 0.60 0.77 0.50 

RLB35G66.MA2 65.45 1.800 255.6 106.13 0.60 0.77 0.50 

RLB35G55.MAT 54.55 1.500 213.0 98.63 0.54 0.77 0.50 

RLB35G55.MA2 54.55 1.500 213.0 98.63 0.60 0.77 0.50 

RLB35G55.MA3 54.55 1.500 213.0 98.63 0.56 0.77 0.50 

RLB35G44.MAT 43.64 1.200 170.4 86.07 0.55 0.77 0.50 
RLB35G44.MA2 43.64 1.200 170.4 86.07 0.57 0.77 0.50 

RLB35G33.MAT 32.73 0.900 127.8 72.15 0.56 0.77 0.50 

RLB35G33.MA2 32.73 0.900 127.8 72.15 0.56 0.77 0.50 

REB35G66.MA4 65.45 1.800 269.6 108.12 0.63 0.77 0.50 
REB35G66.MA5 65.45 1.800 269.6 108.99 0.63 0.77 0.50 

REB35G55.MA4 54.55 1.500 224.7 100.48 0.60 0.77 0.50 

REB35G55.MA5 54.55 1.500 224.7 100.48 0.61 0.77 0.50 
REB35G44.MA4 43.64 1.200 179.8 88.36 0.59 0.77 0.50 
REB35G44.MA5 43.64 1.200 179.8 87.58 0.59 0.77 0.50 
REB35G33.MA4 32.73 0.900 134.8 73.41 0.55 0.77 0.50 

REB35G33.MA5 32.73 0.900 134.8 73.41 0.55 0.77 0.50 
REB35G66.MA6 65.45 1.800 269.6 109.86 0.59 0.77 0.50 
REB35G55.MA6 54.55 1.500 224.7 103.00 0.61 0.77 0.50 
REB35G44.MA6 43.64 1.200 179.8 89.15 0.62 0.77 0.50 
REB35G33.MA6 32.73 0.900 134.8 75.57 0.54 0.77 0.50 

Table 6.11: Table of results from Series R, h/b = 1.0. 
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Error = 100 

Error = 500 

Error = 50 

Figure 6.19: Three-dimensional error surface plot in amm — ahh — amh space 
for normalized error=50, 100, 500 (test REB35G55.DA4, accelerance of hole #5, 
h/b= 1.0). 
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Figure 6.20:  Theoretical and experimental accelerance from typical vertical ec- 
centric test in Series R. 
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Figure 6.21: Theoretical and experimental accelerance from typical lateral test in 
Series R. 
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6.4.2.2 Series S (h/b = 0.50) 

Series S contains results using the oil-filled dumpling for the vertical eccen- 

tric tests and Tri-Flow as a lubricant in the lateral tests. Series S was conducted 

at h/b — 0.5 on the same location as Series R. In contrast to the preceding tests 

which were discussed, the error function as defined in Equation (6.11) yielded a 

decisive trend in the best-fit ahh for this shallow embedment depth. Figure 6.22 

shows a contour plot of the error function which shows a definite minimum for the 

pinpointing of both amm and a^h- Notice also that the normalized error is very 

small (« 1.5) compared to the error contours shown for Series N, O, and R (see 

Figures 6.11, 6.13, and 6.19 where the error of the best-fit curve is £=400, «100, 

and «50 respectively). Table 6.12 contains the best-fit amm and a^h for Series S, 

while Figures 6.23 and 6.24 show typical accelerance results for vertical eccentric 

and lateral loading respectively. 

At this embedment depth, amh has very little affect on the accelerance. 

Statically, Kmh at h/b = 0.5 has about the same magnitude as Kmh for a surface 

footing (see Table 2.1), while Kvv, Khh, and Kmm are larger at h/b = 0.5 than at 

the surface. Consequently, amh has less effect on accelerance at h/b = 0.5 than at 

h/b = 0.0 (see Figure 5.15). For this reason, amh was set to 1.00 as in Ashlock [1] 

for surface footings. Figure 6.25 shows the best-fit cthh and amm pairs for each 

test with amh = 1.0. 

The average best-fit ahh for these tests is 0.82 which is very close to the 

theoretical ahh given in Table 3.3 from a comparison of the square-root and ho- 

mogeneous shear modulus profiles. The static ahh and amh predicted in Table 3.3 

for an embedment depth of h/b = 0.5 are 0.74 and 0.39 respectively. 
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Filename g-level Opr Ppr *-* equivhomog C^mm Oihh Otmh 

SEB35G66.MAT 65.45 1.800 269.6 111.61 0.60 0.83 1.00 

SEB35G66.MA2 65.45 1.800 269.6 111.61 0.67 0.80 1.00 

SEB35G66.MA3 65.45 1.800 269.6 111.61 0.67 0.80 1.00 

SEB35G55.MAT 54.55 1.500 224.7 102.15 0.61 0.84 1.00 

SEB35G55.MA2 54.55 1.500 224.7 102.15 0.62 0.84 1.00 

SEB35G55.MA3 54.55 1.500 224.7 103.00 0.62 0.82 1.00 

SEB35G44.MA2 43.64 1.200 179.8 89.93 0.59 0.82 1.00 

SEB35G44.MA3 43.64 1.200 179.8 89.93 0.59 0.84 1.00 

SEB35G33.MA2 32.73 0.900 134.8 74.85 0.57 0.80 1.00 

SEB35G33.MA3 32.73 0.900 134.8 74.85 0.59 0.81 1.00 

SLB35G66.MAT 65.45 1.800 255.6 108.66 0.68 0.80 1.00 

SLB35G66.MA2 65.45 1.800 255.6 108.66 0.70 0.81 1.00 

SLB35G55.MAT 54.55 1.500 213.0 99.80 0.66 0.81 1.00 

SLB35G55.MA2 54.55 1.500 213.0 99.80 0.68 0.80 1.00 

SLB35G44.MAT 43.64 1.200 170.4 87.53 0.62 0.82 1.00 

SLB35G44.MA2 43.64 1.200 170.4 87.53 0.65 0.79 1.00 

SLB35G33.MAT 32.73 0.900 127.8 72.83 0.60 0.80 1.00 

SJ.B35G33.MA2 32.73 0.900 127.8 72.83 0.61 0.82 1.00 

SLB35G66.MA3 65.45 1.800 255.6 108.66 0.70 0.81 1.00 

SLB35G55.MA3 54.55 1.500 213.0 99.80 0.69 0.80 1.00 
SLB35G44.MA3 43.64 1.200 170.4 87.53 0.69 0.82 1.00 
SLB35G33.MA3 32.73 0.900 127.8 72.83 0.61 0.84 1.00 

SEB35G66.MA5 65.45 1.800 269.6 116.95 0.70 0.81 1.00 

SEB35G66.MA6 65.45 1.800 269.6 116.95 0.71 0.83 1.00 
SEB35G55.MA5 54.55 1.500 224.7 107.26 0.70 0.84 1.00 
SEB35G44.MA5 43.64 1.200 179.8 93.92 0.65 0.84 1.00 

Table 6.12: Table of results from Series S, h/b = 0.5. 



175 

mm 

Figure 6.22: amm vs. a^ error contour plot for accelerance at hole #5 from test 
SEB35G44.MA3 with amh = 1.00, h/b = 0.5. 
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Figure 6.23:  Theoretical and experimental accelerance from typical vertical ec- 
centric test in Series S. 
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Figure 6.24: Theoretical and experimental accelerance from typical lateral test in 
Series S. 
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Figure 6.25: ahh vs. amm for Series S (amh = 1.00, h/b = 0.50). 
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6.4.2.3 Series T (h/b = 0.25) 

Series T was conducted at h/b — 0.25 on the same location as Series R and S. 

Figure 6.13 contains tabular results for the best-fit G, amm, and othh from Series T. 

Figures 6.26 and 6.27 show typical accelerance matches from the vertical eccentric 

(button and dumpling) and lateral (button and Tri-Flow) tests respectively. Just 

as for h/b = 0.5 in Series S, the error as defined in Equation 6.11 provides an 

excellent accelerance match for both the vertical eccentric and lateral loading 

cases. Furthermore, there is not a great deal of scatter in the values of amm and 

oihh in Figure 6.28, which shows the best-fit amm and othh pairs from each test in 

Series T. 

In Series T, amh was set to 1.00. At this embedment depth, Kmh is very 

small across most of the frequency range of interest (see Figure 2.1 for the static 

value). Consequently, the accelerance shows very little dependence on amh- Since 

h/b = 0.25 is a very shallow embedment, amh was set to be 1.00 in order to be 

consistent with Ashlock [1] who set amh to 1.0 for surface tests. 
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Filename g-level OpT Ppr *-*equivhomog Q-mm Oihh ®mh 

TEB35G66.MAT 65.45 1.800 269.6 116.05 0.69 0.84 1.00 

TEB35G66.MA2 65.45 1.800 269.6 117.85 0.71 0.80 1.00 

TEB35G55.MAT 54.55 1.500 224.7 106.40 0.69 0.78 1.00 

TEB35G55.MA2 54.55 1.500 224.7 107.26 0.69 0.81 1.00 

TEB35G44.MAT 43.64 1.200 179.8 93.92 0.70 0.82 1.00 

TEB35G44.MA2 43.64 1.200 179.8 93.12 0.68 0.80 1.00 

TEB35G33.MAT 32.73 0.900 134.8 75.57 0.71 0.81 1.00 

TEB35G33.MA2 32.73 0.900 134.8 78.49 0.68 0.77 1.00 

TEB35G55.MA3 54.55 1.500 224.7 107.26 0.74 0.80 1.00 

TEB35G44.MA3 43.64 1.200 179.8 93.92 0.68 0.80 1.00 

TEB35G33.MA3 32.73 0.900 134.8 78.49 0.69 0.79 1.00 

TLB35G66.MAT 65.45 1.800 255.6 114.12 0.72 0.84 1.00 

TLB35G66.MA2 65.45 1.800 255.6 114.12 0.71 0.84 1.00 

TLB35G55.MAT 54.55 1.500 213.0 104.18 0.70 0.83 1.00 

TLB35G55.MA2 54.55 1.500 213.0 104.18 0.69 0.82 1.00 

TLB35G44.MAT 43.64 1.200 170.4 91.14 0.69 0.80 1.00 

TLB35G44.MA2 43.64 1.200 170.4 91.14 0.70 0.83 1.00 

TLB35G33.MAT 32.73 0.900 127.8 75.46 0.69 0.80 1.00 
TLB35G33.MA2 32.73 0.900 127.8 75.46 0.69 0.84 1.00 

TLB35G66.MA3 65.45 1.800 255.6 114.12 0.77 0.80 1.00 
TLB35G55.MA3 54.55 1.500 213.0 104.18 0.71 0.85 1.00 
TLB35G44.MA3 43.64 1.200 170.4 91.14 0.69 0.85 1.00 
TLB35G33.MA3 32.73 0.900 127.8 75.46 0.69 0.84 1.00 

Table 6.13: Table of results from Series T, h/b = 0.25. 
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Figure 6.26:  Theoretical and experimental accelerance from typical vertical ec- 
centric test in Series T. 
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Figure 6.27: Theoretical and experimental accelerance from typical lateral test in 
Series T. 
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Figure 6.28: ahh vs. amm for Series T (amh=1.00, h/b = 0.25). 
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6.4.2.4 Series U (h/b = 0.00) 

Series U was conducted at h/b = 0.0 on two different locations on Sample 

#3, which are labeled "Ul" and "U2." Tables 6.14 and 6.15 shows the tabular 

results from Series U, while Figures 6.29 and 6.30 show typical results from the 

vertical eccentric and lateral loading cases respectively. The best-fit shear moduli 

in Tables 6.14 and 6.15 are higher than those from Series G for h/b = 0.0. This is 

most likely due to the use of Sample #3 for many series of tests (Series N, O, P, Q, 

R, S, T, U) which may lead to a densification of the soil sample. Previous studies 

have shown that the scraping and vacuuming off of soil, as well as continued 

testing, tends to cause a slight densification of the soil and an increase in the 

best-fit shear modulus (see Guzina [12] and Ashlock [1]). 

Figures 6.31 and 6.32 show the resulting amm and ahh pairs from the two 

locations tested in Series U. Since the accelerance does not depend heavily on 

the exact value of amh, OLmh was set to 1.0 for the surface footing tests as in 

Ashlock [1]. The average ahh from all of the tests in Series U is 0.84. 

Figure 6.33 shows the change in the best-fit shear modulus with embedment 

depth from Series R to Series U. The data from these tests show support for a 

decreasing shear modulus with increasing embedment depth for shallow founda- 

tions. The results from Series B to Series G in Figure 6.5 show the general trend 

of a decreasing G with increasing embedment, although the trend is not nearly as 

uniform. 
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Filename g-level Opr Ppr ^ equivhomog Ömm Oihh ®mh 

UEB35G66.MAT 65.45 1.800 269.6 117.85 0.89 0.84 1.00 

UEB35G66.MA2 65.45 1.800 269.6 118.75 0.90 0.85 1.00 

UEB35G55.MAT 54.55 1.500 224.7 107.26 0.88 0.83 1.00 

UEB35G55.MA2 54.55 1.500 224.7 108.12 0.88 0.85 1.00 

UEB35G44.MAT 43.64 1.200 179.8 94.73 0.79 0.82 1.00 
UEB35G44.MA2 43.64 1.200 179.8 94.73 0.79 0.84 1.00 
UEB35G33.MAT 32.73 0.900 134.8 77.75 0.69 0.82 1.00 

UEB35G33.MA2 32.73 0.900 134.8 79.97 0.71 0.81 1.00 

UEB35G33.MA3 32.73 0.900 134.8 79.97 0.77 0.82 1.00 

ULB35G66.MAT 65.45 1.800 255.6 115.19 0.80 0.90 1.00 
ULB35G66.MA2 65.45 1.800 255.6 115.19 0.87 0.91 1.00 
ULB35G55.MAT 54.55 1.500 213.0 104.87 0.79 0.80 1.00 
ULB35G55.MA2 54.55 1.500 213.0 104.87 0.80 0.90 1.00 
ULB35G44.MAT 43.64 1.200 170.4 92.21 0.77 0.80 1.00 
ULB35G44.MA2 43.64 1.200 170.4 92.21 0.76 0.91 1.00 
ULB35G33.MAT 32.73 0.900 127.8 77.21 0.70 0.85 1.00 
ULB35G33.MA2 32.73 0.900 127.8 77.21 0.70 0.88 1.00 

ULB35G66.MA3 65.45 1.800 255.6 115.19 0.90 0.90 1.00 
ULB35G55.MA3 54.55 1.500 213.0 104.87 0.83 0.90 1.00 
ULB35G44.MA3 43.64 1.200 170.4 92.21 0.80 0.90 1.00 
ULB35G33.MA3 32.73 0.900 127.8 77.21 0.71 0.90 1.00 

Table 6.14: Table of results from Series Ul, h/b = 0.0. 
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Filename g-level OpT Ppr *-*equivhomog ®-mm O-hh ®mh 

UEB35G66.MA3 65.45 1.800 269.6 122.41 0.87 0.80 1.00 

UEB35G55.MA3 54.55 1.500 224.7 109.86 0.86 0.80 1.00 

UEB35G44.MA3 43.64 1.200 179.8 95.54 0.81 0.81 1.00 

UEB35G44.MA4 43.64 1.200 179.8 95.54 0.78 0.82 1.00 

UEB35G33.MA4 32.73 0.900 134.8 80.71 0.77 0.77 1.00 

UEB35G66.MA4 65.45 1.800 269.6 124.26 0.96 0.83 1.00 

UEB35G66.MA5 65.45 1.800 269.6 124.26 0.90 0.83 1.00 

UEB35G55.MA4 54.55 1.500 224.7 110.74 0.88 0.84 1.00 

UEB35G55.MA5 54.55 1.500 224.7 110.74 0.89 0.83 1.00 

UEB35G44.MA5 43.64 1.200 179.8 96.35 0.79 0.82 1.00 

UEB35G44.MA6 43.64 1.200 179.8 96.35 0.81 0.82 1.00 

UEB35G33.MA5 32.73 0.900 134.8 79.97 0.79 0.78 1.00 

UEB35G33.MA6 32.73 0.900 134.8 81.46 0.78 0.79 1.00 

Table 6.15: Table of results from Series U2, h/b = 0.0. 
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Figure 6.29:  Theoretical and experimental accelerance from typical vertical ec- 
centric test in Series U. 
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Figure 6.30: Theoretical and experimental accelerance from typical lateral test in 
Series U. 
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Figure 6.31:  ahh vs.   amm for the first testing location in Series U (afm/l=1.00, 
h/b = 0.0). 
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Figure 6.32: a^h vs. amm for the second testing location in Series U (amh=l-00, 
h/b = 0.0). 
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bedment depth (Series R, S, T, U). 
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6.5        Summary of Results for Accelerance Matching to Homogeneous 

Half-Space Solution 

Table 6.16 contains the best-fit a^ discussed so far for each embedment 

depth. The ahh and amh for embedment depths of h/b = 2.00, 1.50, and 1.00 

are from Table 3.3 which compares the square-root profile to the homogeneous 

half-space. All of the amm and the ahh for embedment depths of h/b = 0.50, 0.25, 

h/b Series ®mm Oihh Q-mfi 

0.00 U 0Ma'b 0.846 1.00d 

0.25 T 0.70a'6 0.826 1.00d 

0.50 S 0.65a'6 0.826 1.00d 

1.00 R 0.586 0.77c 0.50c 

1.50 O 0.606 0.79c 0.53c 

2.00 N 0.536 0.80c 0.55c 

Table 6.16: Summary table of the best-fit a^ ("signifies g-level dependence, 
Signifies average value, Signifies a specified value based on theoretical analy- 
sis, ^signifies setting amh to 1.0 since the accelerance is not sensitive to a specific 
value). 

and 0.00 are averages from the least squares fit conducted on each individual test. 

For embedment depths of h/b = 0.50, 0.25, and 0.00, amh was set to 1.00 since the 

accelerance is not sensitive to the specific value of Kmh. Table 6.16 reveals that 

the best-fit amm decreases with increasing embedment for every test series except 

Series' R, while the best-fit ahh is fairly constant for embedment depths of 0.00, 

0.25, and 0.50. Results from Ashlock [1] showed that the average best-fit amm 

and ahh from surface footing tests are 0.78 and 0.85 respectively with amh = 1.00, 

which correspond very well to the amm and ahh of 0.81 and 0.84 for tests on 

surface footings in this investigation for am/l=1.00. Although the ai:j values as a 

function of h/b given in Table 3.3 have been used in the data analysis so far, some 
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simplifications can be made to reflect the findings of this investigation. 

6.5.1 Summary of Best-Fit a^ 

For Series N, O, and R with embedment depths of 2.0, 1.5, and 1.0 respec- 

tively, the quality of the accelerance match is insensitive to the precise values of 

Oihh and oimh as shown in the error surface plots in Figures 6.11, 6.13, and 6.19. 

While keeping in mind that there are still three parameters which can be varied 

to obtain an acceptable accelerance match (i.e. amm, a^h, aw), the values of 

ai/j/j, and amh can be set to specified values for practical purposes. Additionally, 

it was shown that the accelerance at h/b = 0.0 to 0.50 is very insensitive to the 

precise value of amh both by Ashlock [1] and in this study (see Figure 5.15 and 

Table 2.1). Consequently, amh can be chosen to be 0.60 for all embedment depths 

which is an approximate mean value from Figure 3.31 which contains the o^- as 

a function of embedment depth for a comparison of a square-root half-space and 

a homogeneous half-space. To illustrate the feasibility of such an approach, Fig- 

ure 6.34 contains typical accelerance results with othh = 0.80 and am)l = 0.60 from 

vertical eccentric loading in Series N, O, and R, while Figure 6.35 contains typical 

accelerance matches from Series S, T, and U with amh=0.Q0. In addition, for 

Series S, T, and U, a^h has been set to a specified value at each embedment depth 

which roughly corresponds to the best-fit ahh given in Table 6.16. The resulting 

atij are shown in Table 6.17. One can see that the best-fit amm have changed 

slightly from Table 6.16 since amh and ahh are specified. Tables 6.18 to 6.25 show 

the best-fit a^ from each individual test in Series U to Series N. 
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Figure 6.35: Typical accelerance match with homogeneous half-space impedances 
for Series S, T, and U, with ahh and amh specified in Table 6.17. 
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h/b Series (%mm Othh Q-rnh 

0.00 U 0.76 0.85 0.60 

0.25 T 0.69 0.83 0.60 

0.50 S 0.66 0.82 0.60 

1.00 R 0.58 0.80 0.60 

1.50 0 0.60 0.80 0.60 

2.00 N 0.53 0.80 0.60 

Table 6.17: Average amm in Series N, O, and R, for 0^=0.80 and am/j=0.60. 

Filename g-level 0pr Ppr *-T equivhomog (%mm OLhh C^m/i 

UEB35G66.MAT 65.45 1.800 269.6 117.85 0.85 0.85 0.60 

UEB35G66.MA2 65.45 1.800 269.6 118.75 0.88 0.85 0.60 

UEB35G55.MAT 54.55 1.500 224.7 107.26 0.84 0.85 0.60 

UEB35G55.MA2 54.55 1.500 224.7 108.12 0.85 0.85 0.60 

UEB35G44.MAT 43.64 1.200 179.8 94.73 0.75 0.85 0.60 

UEB35G44.MA2 43.64 1.200 179.8 94.73 0.75 0.85 0.60 

UEB35G33.MAT 32.73 0.900 134.8 77.75 0.64 0.85 0.60 

UEB35G33.MA2 32.73 0.900 134.8 79.97 0.69 0.85 0.60 

UEB35G33.MA3 32.73 0.900 134.8 79.97 0.70 0.85 0.60 

ULB35G66.MAT 65.45 1.800 255.6 115.19 0.76 0.85 0.60 

ULB35G66.MA2 65.45 1.800 255.6 115.19 0.79 0.85 0.60 
ULB35G55.MAT 54.55 1.500 213.0 104.87 0.72 0.85 0.60 
ULB35G55.MA2 54.55 1.500 213.0 104.87 0.74 0.85 0.60 

ULB35G44.MAT 43.64 1.200 170.4 92.21 0.72 0.85 0.60 
ULB35G44.MA2 43.64 1.200 170.4 92.21 0.70 0.85 0.60 
ULB35G33.MAT 32.73 0.900 127.8 77.21 0.66 0.85 0.60 
ULB35G33.MA2 32.73 0.900 127.8 77.21 0.64 0.85 0.60 

ULB35G66.MA3 65.45 1.800 255.6 115.19 0.79 0.85 0.60 
ULB35G55.MA3 54.55 1.500 213.0 104.87 0.74 0.85 0.60 
ULB35G44.MA3 43.64 1.200 170.4 92.21 0.71 0.85 0.60 
ULB35G33.MA3 32.73 0.900 127.8 77.21 0.64 0.85 0.60 

Table 6.18:   Table of results from Series U (h/b = 0.00) for ahh = 0.85 and 
amh — 0.60. 
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Filename g-level Dpr Ppr ^J equivhomog @-mm Oihh Otmh 

UEB35G66.MA3 65.45 1.800 269.6 122.41 0.82 0.85 0.60 

UEB35G55.MA3 54.55 1.500 224.7 109.86 0.81 0.85 0.60 

UEB35G44.MA3 43.64 1.200 179.8 95.54 0.79 0.85 0.60 

UEB35G44.MA4 43.64 1.200 179.8 95.54 0.75 0.85 0.60 

UEB35G33.MA4 32.73 0.900 134.8 80.71 0.71 0.85 0.60 

ÜEB35G66.MA4 65.45 1.800 269.6 124.26 0.93 0.85 0.60 

UEB35G66.MA5 65.45 1.800 269.6 124.26 0.88 0.85 0.60 

UEB35G55.MA4 54.55 1.500 224.7 110.74 0.85 0.85 0.60 

UEB35G55.MA5 54.55 1.500 224.7 110.74 0.85 0.85 0.60 

UEB35G44.MA5 43.64 1.200 179.8 96.35 0.77 0.85 0.60 

UEB35G44.MA6 43.64 1.200 179.8 96.35 0.79 0.85 0.60 

UEB35G33.MA5 32.73 0.900 134.8 79.97 0.76 0.85 0.60 

UEB35G33.MA6 32.73 0.900 134.8 81.46 0.71 0.85 0.60 

Table 6.19:   Table of results from Series U2 (h/b = 0.00) for ahh 

amh = 0.60. 
0.85 and 
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Filename g-level Opr Ppr ^equivhomog ®-mm Ot-hh ®mh 

TEB35G66.MAT 65.45 1.800 269.6 116.05 0.70 0.83 0.60 

TEB35G66.MA2 65.45 1.800 269.6 117.85 0.72 0.83 0.60 

TEB35G55.MAT 54.55 1.500 224.7 106.40 0.67 0.83 0.60 

TEB35G55.MA2 54.55 1.500 224.7 107.26 0.67 0.83 0.60 

TEB35G44.MAT 43.64 1.200 179.8 93.92 0.68 0.83 0.60 

TEB35G44.MA2 43.64 1.200 179.8 93.12 0.66 0.83 0.60 

TEB35G33.MAT 32.73 0.900 134.8 75.57 0.71 0.83 0.60 

TEB35G33.MA2 32.73 0.900 134.8 78.49 0.65 0.83 0.60 

TEB35G66.MA3 65.45 1.800 269.6 117.85 0.76 0.83 0.60 

TEB35G55.MA3 54.55 1.500 224.7 107.26 0.73 0.83 0.60 

TEB35G44.MA3 43.64 1.200 179.8 93.92 0.66 0.83 0.60 

TEB35G33.MA3 32.73 0.900 134.8 78.49 0.67 0.83 0.60 

TLB35G66.MAT 65.45 1.800 255.6 114.12 0.72 0.83 0.60 

TLB35G66.MA2 65.45 1.800 255.6 114.12 0.71 0.83 0.60 

TLB35G55.MAT 54.55 1.500 213.0 104.18 0.69 0.83 0.60 
TLB35G55.MA2 54.55 1.500 213.0 104.18 0.69 0.83 0.60 
TLB35G44.MAT 43.64 1.200 170.4 91.14 0.66 0.83 0.60 

TLB35G44.MA2 43.64 1.200 170.4 91.14 0.69 0.83 0.60 
TLB35G33.MAT 32.73 0.900 127.8 75.46 0.67 0.83 0.60 
TLB35G33.MA2 32.73 0.900 127.8 75.46 0.67 0.83 0.60 

TLB35G66.MA3 65.45 1.800 255.6 114.12 0.75 0.83 0.60 
TLB35G55.MA3 54.55 1.500 213.0 104.18 0.72 0.83 0.60 
TLB35G44.MA3 43.64 1.200 170.4 91.14 0.69 0.83 0.60 
TLB35G33.MA3 32.73 0.900 127.8 75.46 0.67 0.83 0.60 

Table 6.20:   Table of results from Series T (h/b = 0.25) for ahh = 0.83 and 
OLjnh = 0.60. 
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Filename g-level OpT Ppr ^equivhomog ®mm Oihh ®mh 

SEB35G66.MAT 65.45 1.800 269.6 111.61 0.61 0.82 0.60 

SEB35G66.MA2 65.45 1.800 269.6 111.61 0.67 0.82 0.60 

SEB35G66.MA3 65.45 1.800 269.6 111.61 0.67 0.82 0.60 

SEB35G55.MAT 54.55 1.500 224.7 102.15 0.63 0.82 0.60 

SEB35G55.MA2 54.55 1.500 224.7 102.1.5 0.64 0.82 0.60 

SEB35G55.MA3 54.55 1.500 224.7 103.00 0.64 0.82 0.60 

SEB35G44.MA2 43.64 1.200 179.8 89.93 0.61 0.82 0.60 

SEB35G44.MA3 43.64 1.200 179.8 89.93 0.60 0.82 0.60 

SEB35G33.MA2 32.73 0.900 134.8 74.85 0.57 0.82 0.60 

SEB35G33.MA3 32.73 0.900 134.8 74.85 0.59 0.82 0.60 

SLB35G66.MAT 65.45 1.800 255.6 108.66 0.67 0.82 0.60 

SLB35G66.MA2 65.45 1.800 255.6 108.66 0.71 0.82 0.60 

SLB35G55.MAT 54.55 1.500 213.0 99.80 0.65 0.82 0.60 

SLB35G55.MA2 54.55 1.500 213.0 99.80 0.68 0.82 0.60 

SLB35G44.MAT 43.64 1.200 170.4 87.53 0.64 0.82 0.60 

SLB35G44.MA2 43.64 1.200 170.4 87.53 0.65 0.82 0.60 

SLB35G33.MAT 32.73 0.900 127.8 72.83 0.60 0.82 0.60 
SLB35G33.MA2 32.73 0.900 127.8 72.83 0.62 0.82 0.60 

SLB35G66.MA3 65.45 1.800 255.6 108.66 0.71 0.82 0.60 
SLB35G55.MA3 54.55 1.500 213.0 99.80 0.69 0.82 0.60 
SLB35G44.MA3 43.64 1.200 170.4 87.53 0.70 0.82 0.60 
SLB35G33.MA3 32.73 0.900 127.8 72.83 0.62 0.82 0.60 

SEB35G66.MA5 65.45 1.800 269.6 116.95 0.71 0.82 0.60 
SEB35G66.MA6 65.45 1.800 269.6 116.95 0.73 0.82 0.60 
SEB35G55.MA5 54.55 1.500 224.7 107.26 0.72 0.82 0.60 
SEB35G44.MA5 43.64 1.200 179.8 93.92 0.65 0.82 0.60 

Table 6.21:   Table of results from Series S (h/b = 0.50) for ahh 

amh = 0.60. 
0.82 and 
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Filename g-level Opr Ppr {* equivhomog O-mm Oihh ®mh 

RLB35G66.MAT 65.45 1.800 255.6 106.13 0.59 0.80 0.60 

RLB35G66.MA2 65.45 1.800 255.6 106.13 0.59 0.80 0.60 

RLB35G55.MAT 54.55 1.500 213.0 98.63 0.54 0.80 0.60 

RLB35G55.MA2 54.55 1.500 213.0 98.63 0.59 0.80 0.60 

RLB35G55.MA3 54.55 1.500 213.0 98.63 0.55 0.80 0.60 

RLB35G44.MAT 43.64 1.200 170.4 86.07 0.54 0.80 0.60 

RLB35G44.MA2 43.64 1.200 170.4 86.07 0.56 0.80 0.60 

RLB35G33.MAT 32.73 0.900 127.8 72.15 0.55 0.80 0.60 

RLB35G33.MA2 32.73 0.900 127.8 72.15 0.56 0.80 0.60 

REB35G66.MA4 65.45 1.800 269.6 108.12 0.63 0.80 0.60 

REB35G66.MA5 65.45 1.800 269.6 108.99 0.63 0.80 0.60 

REB35G55.MA4 54.55 1.500 224.7 100.48 0.59 0.80 0.60 

REB35G55.MA5 54.55 1.500 224.7 100.48 0.60 0.80 0.60 

REB35G44.MA4 43.64 1.200 179.8 88.36 0.58 0.80 0.60 

REB35G44.MA5 43.64 1.200 179.8 87.58 0.59 0.80 0.60 
REB35G33.MA4 32.73 0.900 134.8 73.41 0.55 0.80 0.60 
REB35G33.MA5 32.73 0.900 134.8 73.41 0.55 0.80 0.60 

REB35G66.MA6 65.45 1.800 269.6 109.86 0.58 0.80 0.60 
REB35G55.MA6 54.55 1.500 224.7 103.00 0.61 0.80 0.60 
REB35G44.MA6 43.64 1.200 179.8 89.15 0.61 0.80 0.60 
REB35G33.MA6 32.73 0.900 134.8 75.57 0.53 0.80 0.60 

Table 6.22:   Table of results from Series R (h/b = 1.00) for ahh = 0.80 and 
amh = 0.60. 
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Filename g-level Opr Ppr ^ equivhomog "ram Oihh ®-mh 

OEB34G66.MAT 65.45 1.800 269.6 117.85 0.58 0.80 0.60 

OEB34G66.MA2 65.45 1.800 269.6 117.85 0.57 0.80 0.60 

OEB34G55.MAT 54.55 1.500 224.7 110.74 0.57 0.80 0.60 

OEB34G55.MA2 54.55 1.500 224.7 110.74 0.61 0.80 0.60 

OEB34G44.MAT 43.64 1.200 179.8 97.17 0.64 0.80 0.60 

OEB34G44.MA2 43.64 1.200 179.8 96.35 0.66 0.80 0.60 

OEB34G33.MAT 32.73 0.900 134.8 81.46 0.58 0.80 0.60 

OEB34G33.MA2 32.73 0.900 134.8 80.71 0.59 0.80 0.60 

OLB34G66.MAT 65.45 1.800 255.6 114.70 0.59 0.80 0.60 

OLB34G66.MA2 65.45 1.800 255.6 114.70 0.58 0.80 0.60 

OLB34G55.MAT 54.55 1.500 213.0 107.79 0.60 0.80 0.60 
OLB34G55.MA2 54.55 1.500 213.0 107.79 0.61 0.80 0.60 
OLB34G44.MAT 43.64 1.200 170.4 94.25 0.55 0.80 0.60 
OLB34G44.MA2 43.64 1.200 170.4 94.25 0.59 0.80 0.60 
OLB34G33.MAT 32.73 0.900 127.8 78.97 0.63 0.80 0.60 
OLB34G33.MA2 32.73 0.900 127.8 78.97 0.57 0.80 0.60 

Table 6.23:   Table of results from Series O (h/b = 1.50) for ahh = 0.80 and 
amh = 0.60. 
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Filename g-level OpT Ppr "equivhomog Q-mm Oihh @-mh 

NEB34G66.MAT 65.45 1.800 269.6 113.38 0.54 0.80 0.60 

NEB34G66.MA2 65.45 1.800 269.6 112.49 0.54 0.80 0.60 

NEB34G55.MAT 54.55 1.500 224.7 108.12 0.52 0.80 0.60 

NEB34G55.MA2 54.55 1.500 224.7 106.40 0.57 0.80 0.60 

NEB34G44.MAT 43.64 1.200 179.8 96.35 0.54 0.80 0.60 

NEB34G44.MA2 43.64 1.200 179.8 96.35 0.55 0.80 0.60 

NEB34G44.MA3 43.64 1.200 179.8 94.73 0.56 0.80 0.60 

NEB34G33.MAT 32.73 0.900 134.8 81.46 0.52 0.80 0.60 

NEB34G33.MA2 32.73 0.900 134.8 79.23 0.51 0.80 0.60 

NEB34G33.MA3 32.73 0.900 134.8 78.49 0.50 0.80 0.60 

NEB34G33.MA4 32.73 0.900 134.8 79.23 0.52 0.80 0.60 

NLB34G66.MA8 65.45 1.800 255.6 110.03 0.58 0.80 0.60 

NLB34G66.MA9 65.45 1.800 255.6 110.03 0.50 0.80 0.60 
NLB34G66.M10 65.45 1.800 255.6 110.03 0.56 0.80 0.60 
NLB34G55.MA2 54.55 1.500 213.0 104.48 0.56 0.80 0.60 

NLB34G55.MA3 54.55 1.500 213.0 104.48 0.56 0.80 0.60 
NLB34G44.MA2 43.64 1.200 170.4 93.28 0.58 0.80 0.60 
NLB34G44.MA3 43.64 1.200 170.4 93.28 0.56 0.80 0.60 
NLB34G44.MA4 43.64 1.200 170.4 93.28 0.56 0.80 0.60 
NLB34G33.MA2 32.73 0.900 127.8 77.50 0.50 0.80 0.60 
NLB34G33.MA3 32.73 0.900 127.8 77.50 0.51 0.80 0.60 
NLB34G33.MA4 32.73 0.900 127.8 77.50 0.51 0.80 0.60 

Table 6.24:   Table of results from Series N (h/b = 2.00) for ahh 

amh = 0.60. 
0.80 and 
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Filename g-level Opr Ppr ^equivhomog ®mm Oihh ®-mh 

NEB34G66.MA3 65.45 1.800 269.6 118.75 0.50 0.80 0.60 

NEB34G66.MA4 65.45 1.800 269.6 119.66 0.52 0.80 0.60 

NEB34G66.MA5 65.45 1.800 255.6 118.75 0.53 0.80 0.60 

NEB34G66.MA6 65.45 1.800 269.6 119.66 0.51 0.80 0.60 

NEB34G66.MA7 65.45 1.800 269.6 119.66 0.51 0.80 0.60 

N"EB34G55.MA5 54.55 1.500 213.0 111.61 0.53 0.80 0.60 

NEB34G55.MA6 54.55 1.500 224.7 111.61 0.54 0.80 0.60 

NEB34G55.MA7 54.55 1.500 224.7 112.49 0.52 0.80 0.60 

NEB34G55.MA8 54.55 1.500 224.7 112.49 0.52 0.80 0.60 

NEB34G55.MA9 54.55 1.500 224.7 111.61 0.54 0.80 0.60 

NEB34G44.MA4 43.64 1.200 179.8 102.15 0.54 0.80 0.60 

NEB34G44.MA5 43.64 1.200 179.8 99.65 0.54 0.80 0.60 

NEB34G33.MA5 32.73 0.900 134.8 83.73 0.50 0.80 0.60 

NEB34G33.MA6 32.73 0.900 134.8 83.73 0.50 0.80 0.60 

NLB34G66.M11 65.45 1.800 255.6 116.35 0.51 0.80 0.60 
NLB34G55.MA4 54.55 1.500 213.0 109.54 0.53 0.80 0.60 
NLB34G44.MA5 43.64 1.200 170.4 98.24 0.56 0.80 0.60 
NLB34G33.MA5 32.73 0.900 127.8 81.50 0.50 0.80 0.60 

Table 6.25:   Table of results from Series N (h/b = 2.00) for ahh = 0.80 and 
®mh = 0.60. 
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6.5.2 Best-Fit amm versus g-level 

Figures 6.36 to 6.41 show the resulting amm from Series U to Series N (for a 

constant amh and the specified variation of othh in Table 6.17) plotted versus the 

centrifuge g-level. It is important to note that a specific centrifuge g-level also 

corresponds to a particular prototype footing half-width (bpr) and average contact 

pressure (ppr) since the same footing was used in all tests. All of the figures show 

that there is no distinguishable difference between the amm produced from lateral 

tests and the amm produced by vertical eccentric tests. One would expect that 

this would be the case in the absence of any differences in the response caused 

by the the two distinct methods of applying vertical or horizontal loads. One 

such problem was the transverse force caused by friction between the stinger and 

the exciter which was reduced by the use of the hemispherical button with the 

oil-filled dumpling in the vertical eccentric case and Tri-Flow in the lateral case. 

Furthermore, one can see from Figures 6.39, 6.40, and 6.41 that amm is fairly 

constant with g-level at embedment depths oih/b = 1.0, 1.5, and 2.0 respectively. 

On the other hand, Figures 6.36, 6.37, and 6.38 show that amm decreases with 

decreasing g-level at embedment depths of h/b = 0.0, 0.25, and 0.50. The decrease 

in amm with decreasing g-level is consistent with Ashlock's [1] observation for 

surface footings. 
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Figure 6.36: amm vs. g-level for Series U (h/b = 0.00), with 0^=0.85, amh=0.60. 
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Figure 6.37: amm vs. g-level for Series T (h/b = 0.25), with ahh=0.83, amh=0.60. 
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Figure 6.38: amm vs. g-level for Series S (h/b = 0.5), with 0^=0.82, 0^=0.60. 
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Figure 6.39: amm vs. g-level for Series R (h/b = 1.0), with 0^=0.80, amh=0.60. 
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Figure 6.40: amm vs. g-level for Series O (h/b = 1.5), with 0^=0.80, am/l=0.60. 
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Figure 6.41: amm vs. g-level for Series N (h/b = 2.0), with ahA=0.80, amh=0.6Q. 
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6.6 Accelerance Match for Square-Root Profile Impedances 

The next level of refinement in the data analysis is to compare the exper- 

imental results to the accelerances generated by impedances for the square-root 

profile. For the square-root profile, G0 was varied across a specified range to find 

the best-fit G0equiv for a given vertical test. Figures 6.42 and 6.43 show a typical 

vertical centroidal accelerance match using the square-root shear modulus profile 

impedances for Series R and Series N respectively. For Series R at h/b = 1.0, the 

equivalent square-root profile slightly overestimates the magnitude of the vertical 

accelerance at resonance due to the relative softness of the square root profile at 

shallow depths, while the equivalent homogeneous half-space underestimates the 

magnitude of accelerance at resonance (see Figure 6.42). However, the square- 

root profile accelerance prediction for h/b — 2.0 fits the experimentally measured 

accelerance in Series N quite well (see Figure 6.43); the lower shear modulus at 

the surface for the square-root profile in this case yields a greater magnitude at 

the resonance frequency which fits the experimental data better than the homo- 

geneous half-space theory at h/b = 2.0. 

Figure 6.44 shows the lateral accelerance of hole #5 for vertical eccentric 

loading at hole #6 for Series R (h/b = 1.0) when matched with the square-root 

profile accelerance prediction (all OL^ = 1.0). The plot reveals that the rocking 

peak predicted by the square-root profile impedances is only slightly higher than 

the location of the rocking peak in the experimental measurement without any 

modification factors. Figure 6.45 shows the lateral accelerance of hole #4 for 

vertical eccentric loading at hole #6 for Series N (h/b = 2.0) along with the square- 

root profile prediction. The primary difference in the two curves in Figure 6.45 

is the location of the main resonance peak. The square-root profile predicts that 

the peak will occur at a frequency observably higher than that measured in the 
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experimental results. However, if the theoretical accelerance peak is adjusted by 

means of an amm as in the next section, then the two curves will match very well. 
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Figure 6.42: Vertical centroidal accelerance match from Series R (h/b = 1.0) to 
square-root profile impedances. 
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Figure 6.43: Vertical centroidal accelerance match from Series N (h/b = 2.0) to 
square-root profile impedances. 
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Figure 6.44: Lateral accelerance at hole #5 for vertical eccentric loading at hole 
#6 from Series R (h/b = 1.0) compared with square-root profile accelerance. 
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Figure 6.45: Lateral accelerance at hole #4 for vertical eccentric loading at hole 
#6 from Series N (h/b = 2.0) compared with square-root profile accelerance. 
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6.6.1        Impedance Modification Factors Applied to the Square-Root 

Half-Space 

Since the square-root half-space solution is still inadequate in describing the 

experimental data, the next step is to apply a set of a^ to the square-root profile 

impedances to improve the accelerance match. Since Figures 6.42 and 6.43 reveal 

that the primary difference between the theoretical square-root profile solution is 

in the location or the rocking peak, cthh and amh were set to 1.0 while amm was 

varied across an appropriate range to find the best accelerance match. Tables 6.27, 

6.28 and 6.29 show the best-fit amrn under these conditions for Series R and Series 

N. Figure 6.46 shows typical vertical eccentric and lateral test results from both 

Series R and Series N. One can see that the choice of the appropriate amm with 

a.hh and amh set to 1.0 yields a satisfactory accelerance match for the square-root 

profile impedances. 

Table 6.26 shows the average Impedance Modification Factors needed to 

produce a satisfactory accelerance match for Series R and Series N. The average 

h/b Series ®"mm Oihh ®mh 

1.00 R 0.73 1.00 1.00 

2.00 N 0.69 1.00 1.00 

Table 6.26: Square-root half-space Impedance Modification Factors. 

amm for square-root profile impedances from Series R is 0.73, compared to 0.58 for 

homogeneous half-space impedances, while the average amm for square-root profile 

impedances from Series N is 0.69, compared to 0.53 for homogeneous half-space 

impedances. The fact that the amm are closer to 1.00 shows some improvement 

over the homogeneous half-space at these embedment depths. However, it is 

clear that the square-root profile needs some further improvement to obtain an 
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acceptable accelerance match since Impedance Modification Factors are required. 

Possible improvements would include a locally stiffened zone at the base and sides 

of the foundation. 
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Figure 6.46:  Vertical eccentric and lateral accelerance matches for square-root 
hslf-space impedances from Series R and Series N. 
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Filename g-level Opf Ppr ^equivsqrt &mm Oihh O^mh 

RLB35G66.MAT 65.45 1.800 255.6 92.21 0.76 1.00 1.00 

RLB35G66.MA2 65.45 1.800 255.6 92.21 0.75 1.00 1.00 

RLB35G55.MAT 54.55 1.500 213.0 86.07 0.59 1.00 1.00 

RLB35G55.MA2 54.55 1.500 213.0 86.07 0.75 1.00 1.00 

RLB35G55.MA3 54.55 1.500 213.0 86.07 0.70 1.00 1.00 

RLB35G44.MAT 43.64 1.200 170.4 75.75 0.68 1.00 1.00 

RLB35G44.MA2 43.64 1.200 170.4 75.75 0.70 1.00 1.00 

RLB35G33.MAT 32.73 0.900 127.8 64.07 0.68 1.00 1.00 

RLB35G33.MA2 32.73 0.900 127.8 64.07 0.69 1.00 1.00 

REB35G66.MA4 65.45 1.800 269.6 93.92 0.78 1.00 1.00 

REB35G66.MA5 65.45 1.800 269.6 93.92 0.78 1.00 1.00 

REB35G55.MA4 54.55 1.500 224.7 86.80 0.76 1.00 1.00 

REB35G55.MA5 54.55 1.500 224.7 86.80 0.77 1.00 1.00 
REB35G44.MA4 43.64 1.200 179.8 76.29 0.75 1.00 1.00 
REB35G44.MA5 43.64 1.200 179.8 76.29 0.75 1.00 1.00 
REB35G33.MA4 32.73 0.900 134.8 64.44 0.69 1.00 1.00 
REB35G33.MA5 32.73 0.900 134.8 63.77 0.69 1.00 1.00 
REB35G66.MA6 65.45 1.800 269.6 94.73 0.74 1.00 1.00 
REB35G55.MA6 54.55 1.500 224.7 88.36 0.78 1.00 1.00 
REB35G44.MA6 43.64 1.200 179.8 77.75 0.77 1.00 1.00 
REB35G33.MA6 32.73 0.900 134.8 65.78 0.68 1.00 1.00 

Table 6.27: Best-fit amm for the square-root profile impedances to Series R (h/b 
1.0) for ahh=1.00 and amh=1.00. 
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Filename g-level Opr Ppr C1 {Jr
equivsqrt ®-mm Ot-hh ®-mh 

NEB34G66.MAT 65.45 1.800 269.6 86.80 0.71 1.00 1.00 
NEB34G66.MA2 65.45 1.800 269.6 86.03 0.72 1.00 1.00 
NEB34G55.MAT 54.55 1.500 224.7 82.22 0.69 1.00 1.00 
NEB34G55.MA2 54.55 1.500 224.7 80.71 0.76 1.00 1.00 
NEB34G44.MAT 43.64 1.200 179.8 73.41 0.72 1.00 1.00 
NEB34G44.MA2 43.64 1.200 179.8 73.41 0.73 1.00 1.00 
NEB34G44.MA3 43.64 1.200 179.8 73.41 0.73 1.00 1.00 
NEB34G33.MAT 32.73 0.900 134.8 63.11 0.77 1.00 1.00 
NEB34G33.MA2 32.73 0.900 134.8 62.45 0.60 1.00 1.00 
NEB34G33.MA3 32.73 0.900 134.8 60.50 0.57 1.00 1.00 
NEB34G33.MA4 32.73 0.900 134.8 61.15 0.81 1.00 1.00 

NLB34G66.MAT 65.45 1.800 255.6 84.13 0.78 1.00 1.00 
NLB34G66.MA2 65.45 1.800 255.6 84.13 0.74 1.00 1.00 
NLB34G55.MAT 54.55 1.500 213.0 79.35 0.66 1.00 1.00 
NLB34G44.MAT 43.64 1.200 170.4 71.47 0.69 1.00 1.00 
NLB34G33.MAT 32.73 0.900 127.8 60.17 0.64 1.00 1.00 

NLB34G66.MA8 65.45 1.800 255.6 84.13 0.77 1.00 1.00 
NLB34G66.MA9 65.45 1.800 255.6 84.13 0.75 1.00 1.00 
NLB34G66.M10 65.45 1.800 255.6 84.13 0.74 1.00 1.00 
NLB34G55.MA2 54.55 1.500 213.0 79.35 0.75 1.00 1.00 
NLB34G55.MA3 54.55 1.500 213.0 79.35 0.75 1.00 1.00 
NLB34G44.MA2 43.64 1.200 170.4 71.47 0.77 1.00 1.00 
NLB34G44.MA3 43.64 1.200 170.4 71.47 0.63 1.00 1.00 
NLB34G44.MA4 43.64 1.200 170.4 71.47 0.74 1.00 1.00 
NLB34G33.MA2 32.73 0.900 127.8 60.17 0.65 1.00 1.00 
NLB34G33.MA3 32.73 0.900 127.8 60.17 0.67 1.00 1.00 
NLB34G33.MA4 32.73 0.900 127.8 60.17 0.66 1.00 1.00 

Table 6.28: Best-fit amm for the square-root profile impedances to Series N [h/b 
2.0) for ahh=1.00 and amh=1.00. 
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Filename g-level Opr Ppr "equivsqrt (%mm Oihh ®-mh 

NEB34G66.MA3 65.45 1.800 269.6 90.72 0.58 1.00 1.00 
NEB34G66.MA4 65.45 1.800 269.6 91.52 0.69 1.00 1.00 

NEB34G66.MA5 65.45 1.800 255.6 90.72 0.70 1.00 1.00 

NEB34G66.MA6 65.45 1.800 269.6 90.72 0.68 1.00 1.00 

NEB34G66.MA7 65.45 1.800 269.6 91.52 0.67 1.00 1.00 

NEB34G55.MA3 54.55 1.500 224.7 86.80 0.60 1.00 1.00 
NEB34G55.MA4 54.55 1.500 224.7 86.80 0.60 1.00 1.00 
NEB34G55.MA5 54.55 1.500 213.0 85.26 0.70 1.00 1.00 

NEB34G55.MA6 54.55 1.500 224.7 85.26 0.72 1.00 1.00 
NEB34G55.MA7 54.55 1.500 224.7 86.03 0.68 1.00 1.00 
NEB34G55.MA8 54.55 1.500 224.7 86.03 0.69 1.00 1.00 
NEB34G55.MA9 54.55 1.500 224.7 85.26 0.71 1.00 1.00 
NEB34G44.MA4 43.64 1.200 179.8 77.75 0.72 1.00 1.00 
NEB34G44.MA5 43.64 1.200 179.8 77.02 0.71 1.00 1.00 
NEB34G33.MA5 32.73 0.900 134.8 65.78 0.61 1.00 1.00 
NEB34G33.MA6 32.73 0.900 134.8 65.11 0.61 1.00 1.00 

NLB34G66.M11 65.45 1.800 255.6 88.60 0.71 1.00 1.00 
NLB34G55.MA4 54.55 1.500 213.0 83.64 0.70 1.00 1.00 
NLB34G44.MA5 43.64 1.200 170.4 75.36 0.73 1.00 1.00 
NLB34G33.MA5 32.73 0.900 127.8 63.68 0.62 1.00 1.00 

Table 6.29:  Best-fit amm for the square-root half-space impedances to Series N 
(h/b = 2.0) for ahh=1.00 and amh=1.00. 
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6.6.2 Experimental Gequivsqrt Compared with Hardin and Drnevich 

Prediction 

The formula proposed by Hardin and Drnevich [17] for computing Gmax was 

given in Equation (3.1) and is repeated here 

Gmax = 1230 {2f*~f{OCR)Köl'\ (6.12) 
(1 + e) 

Using this formula, one can compute the Gmax due to the self-weight of the soil, 

which would represent the far-field shear modulus and will be labeled Gslte. The 

mean principal effective stress for the soil model at a depth z can be written as 

(1 + 2K0)zngp 
o0 =  (6.13) 

where KQ is the coefficient of lateral earth pressure at rest, n is the centrifuge 

g-level, g is the acceleration due to gravity, and p is the mass density of the soil. 

If (f)' = 40° for a uniform fine sand as in Bardet [2], and if 

Ao = l-sin0' (6.14) 

as proposed by Jaky, then K0 = 0.357. At a depth of z/b=2.0, the mean principal 

effective stress is 

äo = 0.278lVn \psi], (6.15) 

for a footing with a half-width, b = 0.0275m = 1.0827m. as footing "B," which 

yields 

Gsite = 9.172^   [MPa] (6.16) 

for a void ratio e = 0.5318 as in the experiments in this investigation, where the 

profile produced is according to 

Gsite = Gositez
l/2. (6.17) 
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Additionally, one can compute near-field G at the base of the footing, which will 

be labeled Gnear, by taking into account the weight of the footing. In this case, 

the mean principal effective stress at a point directly under the footing is 

(1 + 2K0)^ 
On  = (6.18) 

assuming that the total footing mass is transferred to the base of the footing where 

nif is the mass of the footing. For a footing mass of 1.1965/^=2.6378/6, the mean 

principal effective stress is 

ö0 = 0.3214Vn \psi], (6.19) 

which yields 

Gnear = Jg 70^     [MPo] (6.20) 

which is over twice as large as Gszte in Equation (6.16). Table 6.30 contains Gsite 

and Gnear for an embedment depth of h/b = 2.0 along with the average exper- 

imental G in MPa (called Gexp) from the first set of vertical eccentric tests in 

Series N at each centrifuge g-level. Gexp is computed from Gexp = Geguivsqrtz
1/2, 

g-level (~<site (~<exp s~inear 

66 74.5 122.2 151.9 

55 68.0 115.2 138.7 

44 60.1 103.8 124.0 

33 52.8 86.8 107.0 

Table 6.30:  Near- and Far-field G predicted by Hardin and Drnevich [17] along 
with G from experimental data (MPa). 

where Gequivsqrt is given in Table 6.28 and z = 2.0. Figure 6.47a shows a repre- 

sentation of the three values of G at the depth of the base of the footing along 

with the proposed shear-modulus profiles described by each G. It is not surpris- 

ing that the Gexp is higher than Gsite since Gsite does not account for the local 
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stiffening due to the self-weight of the footing. Both of the Gsite and Gexp profiles 

are pure square-root profiles with differing values of Go as seen in Figure 6.47a 

and Figure 6.47b. However, the actual shear modulus profile under the footing 

most likely extends beyond the experimental shear modulus profiles, since Gnear 

is greater than Gexp. Under this scenario, Gexp is an average approximation of the 

Qnear an(j Qsite profiies an(j neither the far-field modulus nor the near-field mod- 

ulus is represented accurately since the near-field modulus is an approximation of 

the actual near-field profile (see Figure 6.47a), while the far-field modulus is over- 

estimated due to the presence of the footing in the near-field (see Figure 6.47b). 

This illustrates the need for a more elaborate continuum model which takes into 

account the local stiffening effects, and therefore, accurately captures both the 

near- and far-field shear modulus profiles. 
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Figure 6.47: Illustration of near- and far-field shear modulus profile predicted by 
Hardin and Drnevich [17] along with proposed shear modulus profile from 33g 
experiments in Series N. 



Chapter   7 

Conclusion 

In this investigation, the general behavior of shallow foundations was inves- 

tigated analytically and experimentally. Theoretical impedances were first pre- 

sented for a variety of embedment depths for both a homogeneous half-space and 

a half-space with a square-root shear modulus profile. A parallel experimental 

investigation was conducted on scale models in a geotechnical centrifuge to ex- 

plore the behavior of the soil-structure interaction problem on a sandy medium. 

Comparing the analytical results with the physical data, it was shown that the 

dynamic vertical stiffness of the embedded foundation using a homogeneous half- 

space model is satisfactory in describing the dynamic vertical response of the 

foundations. In the case of lateral or eccentric vertical loading, however, neither 

the homogeneous half-space nor the square-root modulus profile can capture the 

dynamic foundation response directly. As a practical resolution to the problem, 

a set of Impedance Modification Factors were defined for the foundation prob- 

lem as a function of embedment depth. Additionally, support was shown for the 

power law dependence of equivalent homogeneous shear modulus on the prototype 

footing half-width and average contact pressure for embedded footings. 

For further study, additional vertical excitation experiments should be con- 

ducted to gain a better resolution of the variation of the best-fit equivalent shear 

modulus with increasing embedment for a variety of prototype half-widths and 

bearing pressures. Further study could also include the implementation of a more 



217 

comprehensive continuum model which can account for the local stiffening of the 

soil at the base and sides of an embedded foundation. 
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