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A QUANTITATIVE ANALYSIS OF THE EFFECT OF MARKET DESIGN 
AND POLICY UNCERTAINTY ON INVESTMENT IN ELECTRICITY 

GENERATION: A REINFORCEMENT LEARNING APPROACH 

By 

Capt Jeffrey H. Grobman 
(nj grobman@earthlink.net) 

Evidence exists that electric market design and policy uncertainty significantly impact long- 
run electric generation investment. This research, which is organized in three separate essays, 
quantifies this relationship and in doing so provides policy makers with insights into the long-run 
implications of several proposed policies. It utilizes an innovative modeling technique, which has 
not previously been applied to this problem domain, to address the problem of modeling sequential 
investment under uncertainty. 

The first essay introduces a general modeling framework that utilizes reinforcement learning 
(RL)—a recently developed technique for solving stochastic control problems—to model optimal 
long-run generation investment from both social welfare maximizing and monopolistic 
perspectives. This essay demonstrates that this technique can produce more realistic models of 
investment under uncertainty than other stochastic control methods because explicit definition of 
state transition probabilities is not required. Additionally, results show that models of generation 
investment that do not consider demand uncertainty may significantly over-predict investment 
levels due to the large up-front investment costs and per-period fixed costs associated with 
generation resources. 

The second essay utilizes the framework presented in the first essay to determine the effect 
of capacity subsidies and price caps on investment and prices. Results show that capacity subsidies 
act to increase overall investment while reducing spot market price volatility. However, this policy 
increases total electricity prices once capacity charges are considered. Additionally, results show 
that the effects of spot market price caps differ based upon the modeling perspective. For the social 
welfare maximizer, higher price caps always lead to higher levels of investment, while the effects of 
price caps on average price are indeterminate. In contrast, for the monopolist, price caps produce an 
indeterminate effect on overall investment and prices are always equal to the cap. 

The third essay uses the RL-based framework to investigate the manner in which policy 
uncertainty, relating to the enactment or repeal of investment tax credits (ITCs) and production tax 
credits (PTCs), impacts investment in wind power. Results show that the expectation of a potential 
ITC enactment may decrease the level of wind power investment due to the increased option value 
of waiting for the ITC. Expectation of a potential ITC removal may increase the rate of investment 
in wind power as firms speed up their rate of investment to take advantage of the ITC before it is 
removed. In contrast, expectation of a PTC will lead to an increase in wind power investment, and 
expectation of a PTC removal will result in a decrease in wind power investment. These differing 
responses to uncertain tax policy result from the fundamental characteristics of the policies. Those 
policies that reward firms based on the year of a specific investment will produce near-term 
investment results that are opposite in direction to the intended result of the proposed change. Also, 
since substitution opportunities exist between wind and classical technology investments, the 
investment postponing and enhancing effects of ITC expectation are stronger than those found in 
previous research. 
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ABSTRACT 

Evidence exists that electric market design and policy uncertainty significantly 

impact long-run electric generation investment. This research, which is organized in 

three separate essays, quantifies this relationship and in doing so provides policy makers 

with insights into the long-run implications of several proposed policies. It utilizes an 

innovative modeling technique, which has not previously been applied to this problem 

domain, to address the problem of modeling sequential investment under uncertainty. 

The first essay introduces a general modeling framework that utilizes 

reinforcement learning (RL)—a recently developed technique for solving stochastic 

control problems—to model optimal long-run generation investment from both social 

welfare maximizing and monopolistic perspectives. This essay demonstrates that this 

technique can produce more realistic models of investment under uncertainty than other 

stochastic control methods because explicit definition of state transition probabilities is 

not required. Additionally, results show that models of generation investment that do not 

consider demand uncertainty may significantly over-predict investment levels due to the 

large up-front investment costs and per-period fixed costs associated with generation 

resources. 

The second essay utilizes the framework presented in the first essay to determine 

the effect of capacity subsidies and price caps on investment and prices. Results show 

in 



that capacity subsidies act to increase overall investment while reducing spot market 

price volatility. However, this policy increases total electricity prices once capacity 

charges are considered. Additionally, results show that the effects of spot market price 

caps differ based upon the modeling perspective. For the social welfare maximizer, 

higher price caps always lead to higher levels of investment, while the effects of price 

caps on average price are indeterminate. In contrast, for the monopolist, price caps 

produce an indeterminate effect on overall investment and prices are always equal to the 

cap. 

The third essay uses the RL-based framework to investigate the manner in which 

policy uncertainty, relating to the enactment or repeal of investment tax credits (ITCs) 

and production tax credits (PTCs), impacts investment in wind power. Results show that 

the expectation of a potential ITC enactment may decrease the level of wind power 

investment due to the increased option value of waiting for the ITC. Expectation of a 

potential ITC removal may increase the rate of investment in wind power as firms speed 

up their rate of investment to take advantage of the ITC before it is removed. In contrast, 

expectation of a PTC will lead to an increase in wind power investment, and expectation 

of a PTC removal will result in a decrease in wind power investment. These differing 

responses to uncertain tax policy result from the fundamental characteristics of the 

policies. Those policies that reward firms based on the year of a specific investment will 

produce near-term investment results that are opposite in direction to the intended result 

of the proposed change. Also, since substitution opportunities exist between wind and 

IV 



classical technology investments, the investment postponing and enhancing effects of 

ITC expectation are stronger than those found in previous research. 
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Chapter 1 

INTRODUCTION 

The United States electricity industry is in a period of structural change. 

Restructuring promises to bring competition to electricity generation. Additionally, 

environmental policies such as the Clean Air Act, the proposed renewable portfolio 

standard, and the Kyoto protocol may create new constraints for firms who wish to 

compete in this industry. Restructured electricity markets must be designed so that they 

promote competition and encourage technological innovation while maintaining the 

physical integrity of the system. This market design problem is nontrivial because of the 

technical complexities of electrical systems. Additionally, evidence from regions that 

have already restructured shows that firms will attempt to game any market rules that are 

established, and it is essential to update the market rules over time (Borenstein and 

Bushnell 1998; Green and Newberry 1992; Wolak and Patrick 1996; Wolak 1997). Also, 

firms may react to a policy, such as a proposed technology-specific subsidy, or to the 

prospect of a policy change, in a manner that is unintended by policy makers (Dixit and 

Pindyk 1994; Righter 1996). 

Therefore, policy makers must carefully consider the short-run and long-run 

implications of any proposed policy prior to its implementation. Short-run policy 

concerns include mitigating market power and maintaining the physical security of the 



electrical system. Long-run issues include ensuring adequate transmission and 

generation investment as well as providing for a socially optimal mix of generating 

resources. Most academic research has focused on short-run issues such as the mitigation 

of market power and less research has examined long-run concerns. This may be due to 

the fact that short-run policy issues are more pressing; however, the difficulty of 

modeling the long run may be another factor. The determination of the long-run effects 

of a proposed policy is difficult because both uncertainty and dynamics should be 

considered (Dixit and Pindyk 1994; McDonald and Siegel 1986; Pindyk 1991). 

Modeling electricity generation investment may be more complex than modeling 

investment in other industries because electricity demand varies throughout the year and 

firms can invest from a set of several generation technologies (Wang, Jaraiedi, and 

Torries 1996). 

There is theoretical and empirical evidence that the regulated electricity industry 

did not motivate firms to invest in an efficient manner (Averch and Johnson 1962; 

Courville 1974; Gal-Or and Spiro 1992; Zajac 1970). Therefore significant opportunities 

for welfare gains may be possible through more efficient generation investment. Graves 

et al. (1998) estimate that potential cost savings from more efficient investment equal 10 

to 15 percent. These levels exceed the potential cost savings from more efficient dispatch 

which are limited to 4 percent (Graves et al. 1998). 

This research provides policy makers with a flexible framework for modeling 

generation investment that is capable of evaluating the long-run implications of proposed 



policies. The framework is used to determine the effects of several specific policies on 

generation investment. This research is presented in three separate essays. 

The first essay (Chapter 2) introduces a general modeling framework that utilizes 

reinforcement learning (RL)—a recently developed approach for solving stochastic 

control problems—to model optimal long-run generation investment from both social 

welfare maximizing and monopolistic perspectives. RL improves the ability of policy 

makers to analyze the long-run effects of proposed policies because it facilitates the 

development of realistic models that capture the effects of dynamics and uncertainty. 

Models utilizing classical stochastic control techniques, such as value iteration or policy 

iteration, have often lacked realism due to the curses of dimensionality and modeling. 

The curse of dimensionality refers to the exponential rise in computational time and 

memory required when computing a solution as the number of state and control variables 

increases (Rust 1996b).   The curse of modeling refers to the inherent difficulty in 

explicitly defining all state transition probabilities (Bertsekas and Tsitsiklis 1996). 

Research in other problem domains has shown that RL can overcome these modeling 

difficulties and thereby produce rather realistic models of complex systems (Barto, 

Bradtke, and Singh 1991; Watkins 1989). 

While RL has been applied to several other problem domains, it has not been used 

to model firm investment behavior. This research contributes to the literature by 

applying RL to the problem of modeling investment behavior. Also, this essay includes 

several novel modifications to the RL algorithm that facilitate this application. Results 



show that RL can effectively model investment behavior and that techniques that do not 

explicitly consider uncertainty are prone to overestimate generation investment levels. 

The second essay (Chapter 3) utilizes the RL-based framework presented in the 

first essay to examine the effects of capacity subsidies and price caps on generation 

investment and spot market prices. Capacity subsidies, or closely related reserve 

requirements, have been implemented in several restructured electricity markets to 

maintain system reliability and reduce price volatility (Singh and Jacobs 2000). Price 

caps have also been implemented in several markets to mitigate market power and to 

protect consumers from price spikes during peak demand periods (Wolak et al. 1999). 

These concerns of ensuring system reliability through markets, controlling price 

volatility, and controlling market power are relatively new issues for the electricity 

industry that were not present under the traditional system in which regulators dictated 

uniform reliability standards and regulated prices. 

This analysis differentiates itself from other research because it approaches these 

issues quantitatively rather than qualitatively. Results show that capacity subsidies act to 

decrease price volatility by increasing the level of investment. However, capacity 

subsidies also increase the average total price of electricity, which includes the price of 

energy plus capacity payments. Price caps are also effective in reducing price volatility. 

Their impact on investment and average price varies based upon the market structure. An 

additional negative side effect of price caps is that they may force the system operator to 

shed loads to clear the market. 



The third essay (Chapter 4) uses the RL framework to investigate the effect of 

policy uncertainty on investments in wind power. Specifically, the essay examines policy 

uncertainty relating to the enactment or repeal of investment tax credits (ITCs) and 

production tax credits (PTCs). Since the late 1970s, numerous policies such as ITCs and 

PTCs have been enacted at the state and federal level to promote investment in wind 

power as well as other renewable technologies (Cox, Blumstein, and Gilbert 1991). 

Investment in these technologies has been encouraged in order to offset investment in 

polluting fossil fuel-based technologies. An additional motivation for promoting 

renewable power is to develop a diverse fuel base for power production so that the 

economy is less vulnerable to the macroeconomic impacts of price shocks associated with 

one type of fuel. However, these state and federal policies toward wind power have 

changed regularly based upon the presidential administration, the composition of 

Congress, public attitudes toward renewable energy, and fossil fuel prices. Therefore, 

investors considering investment in wind power or other renewable energy technologies 

have faced considerable uncertainty over which policies will be in effect in the future. 

This research contributes to the literature by analyzing the effects of policy 

uncertainty applied specifically to wind power investment. This class of problem is 

different from previous research on tax policy uncertainty which has considered only tax 

policies that apply to aggregate investment. In this research, tax policy uncertainty 

applies to only one technology from a larger group of substitutable technologies. 

Solution of this multi-technology model is facilitated by the RL modeling approach. 



Results concur with those of Dixit and Pindyk (1994) and show that the expectation of an 

ITC can lead to a decrease in the rate of investment, whereas expectation of an ITC 

removal can result in an increase in the investment level. In contrast, the expectation of a 

PTC removal or addition will lead to a respective decrease or increase in investment. 



Chapter 2 

USING REINFORCEMENT LEARNING TO SOLVE FOR OPTIMAL ELECTRIC 

GENERATION INVESTMENT UNDER DEMAND UNCERTAINTY 

2.1 Introduction 

Reinforcement learning (RL) is a recently developed approach to solving infinite 

time horizon dynamic programming problems, often referred to as Markov decision 

processes (MDP) (Sutton and Barto 1998).   Traditionally, this class of problems has been 

solved via well-established methods such as value iteration or policy iteration. However, 

these classical MDP solution techniques have difficulty addressing certain realistic 

problems due to the curses of dimensionality and modeling. The curse of dimensionality, 

applied to DPs, refers to the exponential rise in computational time and memory required 

when computing a solution as the number of state and control variables increases (Rust 

1996b).   The curse of modeling refers to the inherent difficulty in explicitly defining all 

state transition probabilities (Bertsekas and Tsitsiklis 1996). 

RL, also known as neurodynamic programming, has shown promise to break the 

curses of modeling and dimensionality and thus facilitate modeling of larger and more 

complex problems (Barto, Bradtke, and Singh 1991; Watkins 1989). This is 

accomplished through an agent's "trial and error" interaction with its environment. RL 

algorithms have been applied successfully to several problem domains, including game 



playing (Tesauro 1995), robotics and control (Connel and Mahadevan 1993), and 

dispatching problems (Crites and Barto 1996; Singh and Bertsekas 1997). The 

application of RL to economic problems has been scarce, but a few examples exist. 

Moody (1996) develops a RL-based model to develop optimal trading decisions and Van 

Roy (1998) uses RL to price high-dimension exotic derivatives. 

This essay extends the reinforcement learning (RL) literature in two ways. First, 

RL is applied to a new application area, sequential investment behavior in uncertain 

environments. Additionally, several modifications to the basic tabular Q-learning RL 

algorithm are developed in order to facilitate the application of RL to the sequential 

investment problem domain. 

Specifically, a general RL-based framework is introduced that determines 

investment level and technology choice decisions for electric generation investments 

from both social welfare maximizing and monopolistic perspectives. Next, this general 

model is demonstrated using the Rocky Mountain Power Area (RMPA) for differing 

levels of demand uncertainty. 

The remainder of this essay is organized as follows: Section 2.2 provides 

background on the investment literature, and Section 2.3 provides detail on Markov 

decision processes and RL. Section 2.4 introduces a general RL-based framework for 

evaluating electric generation investment behavior, Section 2.5 applies this general 

framework to the RMPA, Section 2.6 discusses algorithmic developments for this 

implementation of RL, and Section 2.7 summarizes conclusions from this essay. 



2.2 Modeling of Electricity Generation Investment 

The complex technical realities of electrical power have motivated several 

planning models of electricity investment. This section first summarizes relevant general 

literature on modeling investment behavior in section 2.2.1 and then discusses specific 

models of investment that pertain to electricity generation in section 2.2.2. 

2.2.1 Theories of Investment 

The classical approach to modeling investment decisions, such as the decision to 

build a new electric power plant, is discounted cash flow analysis (DCF). This technique 

computes the present value of the expected cost of an investment and the present value of 

expected cash flows resulting from the investment. The differences in these values define 

the net present value of the investment and the investment is initiated if this value is 

positive (Stermole and Stermole 1996). 

While NPV-based methods have served as the traditional means of modeling 

investment behavior, recent research has shown that they can produce severely biased 

results (Dixit and Pindyk 1994). This bias results from the failure of NPV analysis to 

consider the opportunity cost of investing rather than waiting for more information. The 

combination of irreversibility and uncertainty along with the ability to postpone an 

investment decision create this bias because if a firm decides to invest, it forgoes the 

opportunity to wait and learn more information about future realizations of uncertainty 



(McDonald and Siegel 1986; Pindyk 1991). Therefore, generation investment decisions 

may be biased if NPV is used. 

Another drawback with traditional NPV analysis is that it fails to consider 

managerial control once a project has been initiated (Smith and McCardle 1999).   For 

instance, if a firm decides to invest in a coal-powered electrical plant, this plant may be 

shut down at some future date if unforeseen environmental regulations are enacted or if 

the price of coal rises to a point that makes the plant uneconomic. 

In order to overcome these inadequacies, an options approach to investment has 

emerged which explicitly incorporates uncertainty and dynamics into the analysis. This 

approach is referred to as an options approach to investment because a firm can frame its 

investment decision as if it holds a financial call option.   The firm may invest if it 

wishes, however, it is not obligated to do so (Dixit and Pindyk 1994). 

Herbolet (1992) provides an empirical example of the importance of considering 

the option value of an investment by examining the decision of electric utilities to 

respond to Clean Air Act provisions regarding S02 emissions. To meet Clean Air Act 

standards, utilities can chose either to install scrubbers, switch to low-sulfur coal, or 

purchase tradable emissions credits. Results show that when an options approach is 

considered, purchasing credits may be preferable to the other alternatives, despite their 

lower NPV. This result arises from the added flexibility that purchasing credits provide 

because of their reversibility (Herbelot 1992). 



One key difficulty in modeling firm behavior with the options approach is 

explicitly considering uncertainty and dynamics within the analysis. Available 

approaches that give explicit consideration to uncertainty are contingent claims analysis 

and decision analysis. Contingent claims analysis is implemented by replicating cash 

flows from an investment with a portfolio of tradable assets. Next, option valuation 

methods are used to value this portfolio of assets and develop the value of the investment 

(Dixit and Pindyk 1994, 94). A drawback to the contingent claims approach is that the 

technique assumes the stochastic component of assets that are being valued is perfectly 

correlated with that of a tradable asset (Dixit and Pindyk 1994, 121). This requirement 

may prohibit the modeling of certain complex problems, especially those involving 

entities that are not traded in markets. An advantage to the contingent claims approach is 

that a discount rate need not be defined exogenously, but rather is determined implicitly 

from market information (Dixit and Pindyk 1994, 121; Smith and McCardle 1999). 

In contrast, decision analysis techniques such as stochastic programming and 

probabilistic dynamic programming require an exogenously defined discount rate but do 

not make any assumptions concerning tradable securities. Stochastic programming 

extends classical mathematical programming techniques to stochastic environments by 

enumerating possible future scenarios and then maximizing or minimizing the expected 

value of the objective function across scenarios (Birge and Louveaux 1997, 3). However, 

stochastic programming is severely limited due to computational difficulties when 

solving nonlinear, multi-stage, or discrete models (Birge and Louveaux 1997, 253). 
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In contrast, probabilistic dynamic programming (DP) is a much more general 

solution method, when compared with stochastic programming, and efficiently handles 

multi-stage or nonlinear problems (Rust 1996a). DP solves a larger problem by breaking 

it into a series of smaller problems via a series of backward recursions. Markov Decision 

Processes refer to infinite time-horizon dynamic programming problems and serve as the 

focus of this essay. 

The research presented in this essay should not be confused with concurrent 

economic research by Erev and Roth in reinforcement learning which uses psychological 

learning theories to model the development of strategic behavior in repeated games (Erev 

and Roth 1998; Roth and Erev 1995). While similar, in that both areas of research 

involve reinforcement learning, two fundamental differences exist. Erev and Roth (1998) 

seek to understand how individual behavior evolves. They focus on human behaviors 

that are observed to be sub-optimal or irrational in experimental investigations. For 

example, experimental investigations in repeated games show that test subjects often act 

in a sub-optimal manner while improving toward optimal behavior with experience. 

Additionally, in some cases such as the ultimatum game, subjects exhibit behavior that 

diverges from optimality with experience (Roth et al. 1991). This use of RL contrasts 

with the application in this essay that uses RL to determine optimal or rational investment 

behavior. The second major difference between the approach used in this essay and the 

work of Erev and Roth deals with the structure of the RL model that is implemented. 

Erev and Roth (1998) update the probability that individuals will play a given game 
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theoretic strategy based upon reinforcement that they receive after playing that strategy. 

Therefore, if individuals receive a positive outcome, they are more likely to play a given 

strategy in the future. Similarly, if they receive a negative outcome, they are less likely 

to play a given strategy in the future. In contrast, the RL technique implemented in this 

essay maximizes expected discounted reward over an infinite time horizon. Therefore, in 

this essay's implementation of RL, a firm may choose to take an action with adverse 

immediate consequences provided that its long-run expected profit is maximized. 

2.2.2 Quantitative Planning Models 

The electric generation planning problem facing utilities is complex because they 

may invest in multiple technologies to meet widely varying demand. Other problem 

characteristics include the discrete nature of the control variables and uncertainty over 

future conditions at the time of the investment decision. Finally, reliability standards and 

pollution regulations further complicate the planning decision (Wang, Jaraiedi, and 

Torries 1996). 

The complexity of this problem has motivated the development of many detailed 

cost-minimization models to aid regulated utilities with their planning. Additionally, 

these models have been used as positivistic tools for economists interested in predicting 

the way in which utilities will react to different types of environmental or regulatory 

restrictions (Wang, Jaraiedi, and Torries 1996). 
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Previous dynamic programming models of this problem include Booth (1972) and 

Levin, Tishler, & Zahavi (1983). Both of these efforts modeled the electric capacity 

expansion problem at the plant level. However, neither of these approaches considered 

uncertainty associated with future demands. Sherali and Soyster (1984) did account for 

the opportunity cost of waiting by using stochastic programming to address the capacity- 

planning problem. However, their model assumed that all variables were continuous—an 

assumption which clearly differs from the reality of lumpy capital in this industry. 

One major difference between these models and the model presented in this essay 

is that this model assumes a profit or social welfare maximizing perspective rather than a 

cost minimizing perspective. The cost minimization framework may be appropriate for 

the regulated environment because franchised monopolies are obligated to serve all loads. 

Therefore, their objective is to minimize cost subject to this level of service constraint. 

This problem contrasts with the objective of a firm in a restructured environment whose 

goal is a maximization of profits. 

One regulated scenario that would be modeled in a manner identical to the social 

welfare maximization perspective would be a dynamic cost of service case. In this type 

of regulation, a regulator forces a monopoly to make its investment decisions as well as 

short-run dispatch decisions in a manner that maximizes social welfare. It is important to 

note that this type of regulation assumes a great deal about the level of control that the 

regulator has over firm decisions compared with approaches such as rate-of-return 

regulation. 
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One additional difficulty in modeling the profit or social welfare maximization 

framework that is not present in the cost minimization framework is that the problem 

becomes nonlinear when demand is not perfectly inelastic. This occurs because price is a 

function of quantity and total revenues are calculated by multiplying price by quantity. 

This nonlinearity necessitates the use of dynamic programming in place of stochastic 

programming due to the problems associated with using stochastic programming to solve 

nonlinear models. 

2.3 Markov Decision Processes and Reinforcement Learning 

This section of the essay provides background on MDPs along with classical 

MDP solution techniques. Additionally, an explanation of the tabular Q-learning 

algorithm is provided. 

2.3.1 Markov Decision Processes 

An MDP describes an agent which interacts with a system over a sequence of 

discrete time steps, t = 0 ,1, 2...oo. At each time step the agent is in a state st where s, e S, 

the set of all possible system states. The agent then chooses an action a, based upon its 

state where at e A(st), the action space available to the agent from state st. Based solely 

on the state/action pair, the agent transitions to a new state st+i, or s' based on the 

following transition probability: 
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p*"s = H^+i = s'\ s< =s,a,=a}. (2.1) 

Similarly, the agent receives a reward r, whose expected value is based solely upon the 

state action pair: 

/?;_,. =£{r, \st=s,a,=a}. (2.2) 

Equations (2.1) and (2.2) are critical criteria that must be met in order to have a 

Markovian system. If the path an agent takes to get to state s affects its transition 

probabilities or expected rewards associated with an action, the system cannot be 

modeled as an MDP (Sutton and Barto 1998). 

Actions at are chosen based upon a policy £that maps states to actions 5: S,-+At. 

Specifically, each policy S determines the probability that action at will be chosen given 

that the agent is in state st: 

5°s=p{at=a\Sl=s}. (2.3) 

Also, if the policy is not "mixed" {i.e., only one action may be chosen for a given state) 

the policy may simply associate states with the indices of actions: 

S,=arg(as). (2.4) 

The goal of an MDP system is to determine an optimal policy S* which 

maximizes the expected discounted reward Rt for the system over an infinite time 

horizon. This reward is discounted by y which is equal to l/(l+discount rate): 
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4=IA+*. (2-5) 
k=0 

Many well-established DP approaches exist for solving MDPs including policy iteration, 

value iteration, generalized policy iteration, and linear programming (Ross 1982; Sutton 

and Barto 1998; Winston 1994). The majority of these techniques revolve around 

estimating value functions for each state. The value function for state s given policy S, 

V^s), is defined as the expected discounted reward given that the agent starts in state s 

and then follows the policy Jfrom that point: 

Vs(s) = Es{Rt\st=S}=Es\$iy
krt+k\st=\. (2.6) 

Value functions can be computed for any arbitrary policy Shy solving the following set 

of recursive Bellman equations (Winston 1994): 

V(s) = £/»,,,,(/&, + yV {s'j} VseS. (2.7) 
s'eS 

These Bellman equations are useful because expected rewards over an infinite time 

horizon can be expressed in two parts. These parts include the immediate reward and the 

expected discounted value across all successor states (Winston 1994, 1091). 

Once optimal value functions are estimated, the optimal policy is simply the 

action that will transition into the successor state with the highest expected value. Thus, 

the literature often refers to the optimal policy as being "greedy" with respect to value. 

As long as immediate rewards are bounded, an optimal policy is guaranteed to exist 

(Winston 1994, 1091). 



2.3.2 Reinforcement Learning 

The RL algorithm utilized in this essay is the tabular Q-learning algorithm. 

Another RL approach is non-tabular Q-learning in which a function approximator is used 

to estimate Q-values based upon a set of features that define a state. The non-tabular 

approach is useful when the state space has too many dimensions to enumerate all 

possible combinations of features. Other variants of RL include SARSA, Actor-Critic 

methods, and Monte Carlo methods. Tabular Q-learning was selected from these 

methods because of its proven convergence properties and empirical evidence that it 

works well for many different types of problems (Jaakula, Singh, and Jordan 1994; 

Sutton and Barto 1998). 

In the tabular Q-learning algorithm an agent interacts with its environment and, 

based upon the actions it selects, transitions from state-to-state. The analog to the value 

function in classical methods is the Q-value. State-action Q-values define the expected 

discounted reward if an agent starts in state s and then initially chooses action a but 

follows policy Jfrom that point onward. The primary difference between Q-values and 

value functions is the addition of an initial action, which is independent of the policy 

under consideration. One can see this difference by contrasting equation (2.8) with 

equation (2.6) and noting that (2.8) includes the assumption that action a was chosen 

from state s: 

Qg(s,a) = Es{Rt\sl=s,al=a}=Esr£rkrt+k\sl=s,al=a[. (2.8) 



If state-action Q values are known, the optimal policy for a given state is the 

action with the largest associated Q-value. 

ös =  arg max (Q(s,a)). (2.9) 
a 

An s-greedy algorithm is one approach that is often used to select actions. This 

implies that the agent will select an action that is consistent with the agent's "current 

policy" (1-s) percent of the time. The current policy provides a state-to-action mapping 

based on equation (2.9). Using the current policy is defined as "exploitation." 

Occasionally, however, the agent will "explore" a new action that is chosen at random. 

The concept of combining both exploitation and exploration is critical for the 

convergence of most RL algorithms (Sutton and Barto 1998). 

Another approach to action selection is a softmax algorithm that uses a Gibbs or 

Boltzmann distribution to select actions. With this approach, the probability of selecting 

action a is defined by: 

gO,(a)/r 

^fl) = yeaw/r' (2-10) 
aeA 

where ris a "temperature parameter" and/7(a) is the probability that an action from the 

set of actions A will be selected. 

In this application, the distribution starts with a high temperature parameter rand 

then allows for cooling over time. This approach ensures that when the temperature is 

high, all actions have a near-equal probability of being selected. However, as the 
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temperature cools, those actions with higher Q-values have a higher chance of being 

selected. As was the case with the epsilon-greedy method, this approach to action 

selection balances exploration and exploitation. 

The parameter in this distribution is labeled the temperature parameter because 

■ this distribution is used in the field of statistical mechanics to determine the probability 

that an atom will be in a given quantum energy state which relates to an atom's 

displacement from its ideal crystal position. As is the case with this application, when 

temperature is very high, the probability of an atom being in any given non-ideal location 

is equal. The temperature cooling in this application is somewhat analogous to the 

annealing process that involves the slow cooling of a metal. If a metal is cooled too 

quickly, its molecular structure will have imperfections as many atoms "freeze" in non- 

ideal locations. In contrast, if a metal cools slowly, the final product has fewer 

imperfections (Kittel 1996, 99). 

After an action is chosen via an s-greedy or softmax approach, the agent receives 

a reward and transitions to s' where Q-values for state-action pair (s,a) are updated based 

on equation (2.11). One can observe that this algorithm only requires realizations of 

successor states s' and rewards r and thus it circumvents the "curse of modeling" because 

no explicit definition of transition probabilities and rewards is necessary. This 

characteristic has led some to classify this technique as a "model-free" method. The 

algorithm is summarized in Figure 1 (Sutton and Barto 1998). 
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Initialize Q(s,a) 
Repeat for each episode 

Initialize s to so 
Repeat for each step of episode 
Chose action (a) based on an action selection technique 
Implement action (a) and determine s' (the successor state) as well as the reward 

r + ymaxQ(s',a')-Q(s,a)| (2.11) 
a' J 

Q(s,a)<-Q(s,a) + a 

s<-s 
Until s is terminal 

Until Q-values are sufficiently close to Q 
Figure 1. Q-learning Algorithm 

In equation (2.11), the a: parameter is the learning rate and serves as the factor by 

which Q-values are adjusted following each iteration. Once optimal Q-values are found, 

the optimal policy 8 is determined based on equation (2.9). 

2.4 General Modeling Framework 

The general modeling framework in this essay develops electric generation 

investment policies that maximize expected discounted monopoly profits or social 

welfare over an infinite time horizon in an uncertain environment. Additionally, this 

framework provides mean and variance information on investment and technology choice 

from any initial condition within the state space. 

This framework can be applied to any region meeting the subsequently described 

assumptions of the model. Additionally, the framework can be modified by changing the 

reward structure, state space, or transition probabilities in order to evaluate policy issues 

relating to electrical generation investment. These analyses serve as the basis for 
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subsequent essays. The reinforcement learning approach facilitates this modeling 

flexibility because transition probabilities do not need to be defined for all states. 

The framework incorporates basic assumptions on the nature of demand growth, 

technological parameters, as well as market structure to determine an optimal investment 

policy using RL. Next, similar assumptions are used in the simulation portion of the 

model along with initial state conditions to determine realizations of simulated 

investment outcomes. Both the MDP policy and simulation results provide insights into 

optimal investment behavior under varying conditions. Figure 2 summarizes this 

conceptual framework. 

RL Model 

Basic Modeling 
Assumptions 

Policy Insights 

Simulation 

Initial Conditions 

Figure 2. Overview of Modeling Framework 
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2.4.1 General Model Assumptions 

Discrete time. The model considers time discretely rather than continuously. 

Therefore, investment decisions may only be made at evenly spaced discrete points in 

time. 

Investment Lead-times. The model assumes that investment lead-times of one 

period exist between the investment decision and the investment becoming "operational." 

The agent has no knowledge of the stochastic component of demand growth between the 

investment decision and the subsequent period. The deterministic component of demand 

growth is known with certainty. 

Irreversible and Bounded Investment. The model assumes that all investment is 

completely irreversible. Therefore, once a capacity investment is made, the agent is 

forced to pay fixed costs on this investment regardless of whether it is actually 

dispatched. Also, the model assumes that investment in each time period is bounded. 

Transmission Constraints. The framework assumes that transmission within the 

region is unconstrained and produces no loss in load. Additionally, no access charges are 

accessed for the use of transmission. 

Central Min-Cost Dispatch. The model assumes that generation units are 

dispatched based upon a min-cost dispatch from the lowest variable cost unit towards the 

highest variable cost unit until the desired total quantity of energy is dispatched. 

Market Clearing. It is assumed that a regional market exists which determines a 

market-clearing price every load duration curve segment. This price is based solely upon 
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supply and demand bids. No provisions are made for bilateral contracts between 

generators and demanders. Additionally, no provisions exist for forward contracting or 

the use of other financial derivatives. 

Load duration curve growth. The model assumes that the load duration curve 

shape remains constant from year-to-year. Additionally, it is assumed that the entire 

curve increases based upon a discrete state random walk with drift. Therefore, 

subsequent demand levels are independent of previous demand fluctuations. Finally, a 

discretized load duration curve is implemented as opposed to a continuous one. 

Market Structure. Only monopolistic and social welfare maximizing perspectives 

are considered. No provisions exist for modeling cases of imperfect competition directly. 

However, the monopolistic and social welfare maximizing cases can be considered lower 

and upper bounds on investment resulting from imperfect competition. 

Risk Neutrality. Neither maximization framework incorporates risk preferences 

other than risk neutrality. 

No Externalities. The model assumes that no positive or negatives externalities 

exist relating to generation capacity or specific plant dispatch decisions. 

2.4.2 RL Module 

The RL module determines an optimal policy mapping from the state space to the 

action space so that expected discounted rewards are maximized over an infinite time 

horizon. Since the rewards in this model represent yearly profits I7t or social welfare SWt 
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for the monopolistic and social welfare maximizing perspectives respectively, the model 

maximizes: 

T(rk-n,+k), (2.12) 
*=0 

or 

t(rk-SWl+k), (2.13) 

where, y is l/(l+discount rate) for any t. 

2.4.2.1 Indexed Sets 

In order to make the general model description clearer, the following indexed sets 

for time periods, technologies, and load duration curve segments are introduced. Time 

periods T={t| t=l,..., oo} signify the length of time between investment decisions. For 

example, if an investment were initiated in time period /=1, this investment would 

become operational in period t=2. The agent, either the social welfare maximizer or the 

monopolist, could then elect to initiate a new investment in t=2 which would become 

operational in t=3. This period also identifies the "long run" because the capacity level 

may be adjusted over this time horizon. The classic definition of the long run in which all 

inputs are variable, is not met with this model because capacity can not be varied in an 

unconstrained manner over this time horizon. The set of available technologies 

H={i|i=l,.. .,M} designates all of the generation technologies in which the agent may 
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invest. Similarly, the set of load duration curve segments J={j| j=l,.. .N} designates the 

set of loads that will be analyzed. This set is necessary when modeling electricity 

demand because demand curves are not static. Rather, market demand varies 

continuously over time. 

2.4.2.2 State Space 

The agent's state St at time t is defined by a vector: 

St=(Dt,Ku,K2n...,KMl), (2.14) 

where D, represents the value of the demand shift parameter at time t and Klt{ represents 

the capacity level for technology / in time period /.   The demand shift parameter is a state 

variable that is multiplied by demand curves from all segments of the load duration 

curve. 

The shift parameter A has an upper bound DMAX. Similarly, capacity levels for 

each technology i have an upper bound KMAX\. The upper bound on demand DMAX is 

large enough so that it is outside of the relevant range of the model. Therefore, this 

bound will have an insignificant impact on investment decisions.   This structure assumes 

that demand growth is independent of time over the model's relevant range. Upper 

bounds on capacity levels KMAX\ are set to accommodate a competitive dispatch if A 

were to equal DMAX. These upper bounds on A and Kui are necessary for application of 

the tabular Q-learning algorithm because Q-values for each state-action combination 
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must be stored in memory. If these values were unbounded, the state space would be of 

infinite size and the model would be intractable with the tabular Q-learning approach. 

2.4.2.3 Action Space 

The action space is comprised of all combinations of vectors A{ representing 

investment in each of the M technologies during period t: 

A,=(lu,I2l,...JMt), (2.15) 

where 1^ represents the quantity of investment in technology i during period t. 

Values for /ijtmust be multiples of discrete values representing efficient plant sizes for 

each technology i. 

2.4.2.4 Transition Probabilities 

The demand shift parameter evolves from year-to-year based upon a discrete state 

random walk with drift: 

D, =£>,_, +0 + Zt   \/teT, (2.16) 

where <9is a drift parameter representing growth over time and Zt is a discretized 

normally distributed stochastic parameter. 

Equations of motion for the capacity levels of each of the technologies can be 

represented by: 

K,, = KtJ_{ +1,   V/ eHyteT. (2.17) 
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Equations (2.16) and (2.17) are used to calculate state transitions unless Dt 

exceeds DMAX or K\x exceeds KMAX\ for technology /. If this occurs, the demand shift 

parameter or capacity level is set to its respective upper bound. A similar correction is 

applied if the model attempts to transition to a negative demand shift parameter value. 

Additionally, equation (2.16) is not utilized if demand is already equal to its upper bound. 

In this situation, the demand remains at the upper bound with a probability of 1. In this 

respect, the upper bound on demand acts as an absorbing boundary. These corrections 

ensure that all successor states are within the defined state space. It is necessary to define 

these boundary transitions despite their low likelihood of actual visitation, in order to 

implement the Q-learning algorithm that requires calculation of successor states from all 

states. 

2.4.2.5 Reward Structure of Monopolist and Social Welfare Maximizer 

In general form, the monopolist's profits, not including fixed costs or investment 

costs, for segment/ of the load duration curve in time period t is expressed by: 

nut{Qu) = Eu(•)-VCU(•)  VjeJyteT. (2.18) 

The social welfare maximizers reward, not including fixed costs or investment costs, for 

segmenty and time period t is defined by: 

swu(Ö,.,) = EJt(•)-VCU(•) + CSj,(■)  VjejyteT, (2.19) 
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where Q]X is the capacity that is dispatched in time period t and load duration curve 

segment y. EhU VCiX, GSj;t represent revenues from selling energy, variable costs, and 

consumer surplus during load duration curve segment y of time period / respectively. 

Ejj represents revenues from the sale of energy and is defined as: 

£„=A"'-/>,(ö,-,)-ö;,   VjeJ.VteT, (2.20) 

where p\{Qj,i) represents the inverse demand curve for load duration segment7 and time 

period / and D~x is the reciprocal of the demand shift parameter for period /. 

Variable costs for each time period and load duration segment are represented by: 

VCu = IX,,, • vc,   Y/ g J,Vt g T, (2.21) 
ieH 

where q^t represents the quantity of energy produced by technology / in load duration 

segment y during time period t and vc\ represents the variable cost of producing 1 MWh of 

energy for technology /. 

Consumer surplus for load duration segment y and time period t is defined by: 

QJ.> 

CSj, =  {[A"' -PjiQjMdQ-PjiQj^-Qj^jejyteT. (2.22) 
0 

Thus, total monopoly profits for time period t can be represented by: 

n< = I (Jy • *» <Q»)) -1 Ku ■ fct -1 ',, ■ K Vr g T, (2.23) 
jeJ ieH ieH 

and total social welfare for time period t can be expressed by: 

SW, = X(Sj ■ swj,{Qit))-2K„ ■ fc, -X/,, • ic,   VteT, (2.24) 
jeJ ieH ieH 
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where Sj represents the percentage of the year for which load duration segment y is 

realized, ic\ represents investment costs for technology /, and/c, represents the fixed costs 

associated with 1 MW of technology /'. Equations (2.23) and (2.24) imply that fixed cost 

is only a function of capacity during time period t and not output. 

Since the monopolist wishes to maximize its profits, the actual quantity of energy 

that is dispatched Q*, is defined by: 

Q]t = min 2X,,argmax;r;,(0 
k» Q 

VjejyteT. (2.25) 

This quantity is equal to the minimum of the monopolist's capacity and the quantity that 

maximizes its profits. In contrast, the social welfare maximizer dispatches g*j>t MW of 

energy which is the minimum of capacity and the quantity that maximizes social welfare. 

Q» = mm ]>]£:,.,, arg max swv(ß) 
IB« 0 

VjejyteT. (2.26) 

The actual levels of production q*ij,t, for each technology i in load duration 

segmenty during period t are selected based upon a min-cost dispatch of technologies 

from lowest to highest variable cost until Q*-]tl is met. Therefore, q*\j,i are determined 

based upon the following minimization: 

linI>^-vc. (2-27) mm 

subject to: 

öl/=2X,v VJeJyteT. (2.28) 
ieH 



31 

This minimization can be solved independently from the investment decision without 

sacrificing global optimality because this short-run dispatch problem is separable from 

the long-run investment decision. 

2.4.3 Simulation Module 

The primary purpose of the simulation is to determine the mean and variance of 

generation capacity levels across time based upon an initial starting state. This type of 

information is critical because it is difficult to directly glean insights into how firms will 

actually invest from a multidimensional MDP policy. The simulation operates by making 

an agent's investment decision based upon the initial state of the system and the RL 

derived policy. This decision is then used, along with equations of motion (2.16) and 

(2.17) as well as the upper bounds on Dt and K^ to determine a subsequent state. This 

process is continued until time exceeds a predefined limit. Next, this process is repeated 

from the initial state until stable estimates for capacity means and variances as functions 

of time are developed. In the simulation module, all actions are selected based upon their 

Q-values so that for a given state, the action with the highest Q-value is always selected. 

This approach is used because it is assumed that the policy that is passed to the 

simulation from the RL module is optimal. 

The framework can also be structured so a different stochastic parameter is used 

in the RL and simulation modules. This permits evaluation of the effects of 

misrepresenting uncertainty in policy formation. For instance, one could estimate the 



losses that result from failing to consider uncertainty when formulating investment 

policy. 

2.5 Demonstration of General Model 

In order to demonstrate the previously described modeling framework, the 

framework is applied to the Rocky Mountain Power Area (RMPA). Optimal yearly 

investment policies are derived from both the monopolistic and social welfare 

maximizing perspectives for differing levels of demand uncertainty. Additionally, mean 

investment paths based on these optimal policies are also generated to illustrate the effect 

of market structure and uncertainty on investment behavior. 

2.5.1 Current Market Description 

The RMPA includes all of Colorado as well as eastern Wyoming. Electricity 

suppliers currently in this area include two investor-owned utilities (IOUs), twenty-six 

rural electric cooperatives, twenty-nine municipal utilities, and three joint action agencies 

(Sweetser 1998). The IOUs include West Plains Energy and Public Service Company of 

Colorado (PSCO) which is part of the holding company New Century Energies. PSCO 

possesses over 65 percent of the available generation capacity in the region (Sweetser 

1998). Additionally, transmission capacity within the RMPA and between the RMPA 

and other surrounding regions is limited during peak hours. 
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Sweetser (1998) shows that the transmission restrictions of the RMPA combined 

with PSCO's large share of generation allow PSCO to exert market power, especially 

during peak load periods. Quick (2000) demonstrates that PSCO will have local 

monopoly power for up to 54 percent of the year as a result of transmission constraints. 

2.5.2 Assumptions and Methods 

First, it is assumed that all of the previously stated assumptions from Section 2.4.1 

of the general model apply to the hypothetical region. Also, it is assumed that demand 

curves are iso-elastic and assume the form: 

Lu =(Dl+D°J)-pl, (2.29) 

where LiX represents the quantity of energy demanded in load duration curve segment; of 

time period /. Dt is equal to the demand shift parameter and D° is equal to the initial 

demand shift parameter level for each segment y of the load duration curve. Therefore, as 

A increases with time, the shape of the load duration curve remains unchanged while all 

demand curves shift outward. Values for D° are set based upon the Borenstein, Bushneil, 

and Knittel (1999) "anchor point" method. For this technique, a reference price of 

$30/MWh is chosen based upon the approximate electricity wholesale price in 1998 

(Stone and Webster 1998). Next, D° is varied until the quantity demanded matches the 

actual demand for this portion of the load duration curve.   Table 1 summarizes the 

RMPA load duration curve data from 1998 that are used for these adjustments. 



Table 1. Load Duration Curve Data 
Index (/') % of year (jj) Initial Load (MW) (D°) 

0 0.0001 4,000 
1 0.0039 5,000 
2 0.2029 6,000 
3 0.2444 7,000 
4 0.3188 8,000 
5 0.1749 9,000 
6 0.0501 10,000 
7 0.0050 11,000 

A price elasticity of demand £-of 0.1 is used. This estimate is within the range 

used by Borenstein, Bushneil, and Knittel (1999) who considered elasticities ranging 

from 0.1 to 0.4 in a recent market power study of California's restructured electricity 

market. A value from the lower range of reported elasticities was chosen because many 

consumers in the RMPA do not face real-time electricity prices and therefore have no 

demand-side response to price. This inelastic demand necessitates the use of a price cap 

for the monopolistic scenarios to prevent an infinite price markup. A cap of $50/MWh is 

chosen arbitrarily. The implications of this choice are explored in Chapter 3. In addition, 

a trigger price of $1000/MWh is set for calculation of consumer surplus to ensure that 

consumer surplus values are finite. 

Combined cycle (CC) gas generation and combustion turbine (CT) gas generation 

are assumed to be the only available technologies for new investment. Capacity levels 

for these technologies along with various levels of the demand-shift parameter comprise 

the state space. These technologies are selected based upon the low cost of natural gas as 



well as the environmental concerns associated with nuclear or coal powered plants. A 

similar assumption was made by a recent State-funded study investigating the effects of 

restructuring on the Colorado market (Stone and Webster, 1999). Also, over 99 percent 

of Colorado's capacity additions in 1998 consisted of either CC or CT units (DOE 1998). 

Table 2 contains cost data for these technologies. It is assumed that the quantity of each 

technology available for dispatch at any point in time is equal to 90 percent of the total 

installed capacity of that technology to account for scheduled and unscheduled 

maintenance. The model therefore assumes that plant availability does not vary with 

load. 

Table 2. Technology Cost Data  
Combined Cycle        Combustion Turbine 

Variable Cost (vc) 17 $/MWh 26 $/MWh 
Fixed Cost (fc) 11,110$/MW 150S/MW 
Investment Cost (ic) 573,000 $/MW 384,000 $/MW 

CC generation possesses significantly higher per-period fixed costs and up-front 

investment costs than CT generation while variable costs associated with CC generation 

are significantly lower than CT generation. This difference in cost originates from their 

designs. Combustion turbine generators operate similarly to a jet engine. They first 

utilize a compressor to compress incoming air. Next, this high-pressure air is mixed with 

gas in a combustion chamber. When the ignited gas passes out of the combustion 

chamber it turns a turbine which converts the thermal and kinetic energy into mechanical 

energy. This turbine is then used to generate electricity and the hot exhaust gases are 
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passed out. Combined cycle generation works similarly to the combustion turbine, 

however, the exhaust gasses are not wasted. This approach captures the exhaust gasses 

from the CT and uses them to power a steam turbine. The excess fixed and investment 

costs associated with CC generation result from the added steam recovery equipment as 

well as the additional steam turbine and generator. The fact that these exhaust gasses are 

recovered contributes to the higher efficiency and lower variable cost of the CC generator 

(GRI 2000). 

The state space is designed so initial capacity is comprised solely of CC units. 

This assumption is made to account for the large quantity of low marginal cost coal 

plants currently in the RMPA. 

State space capacity values in 150 MW increments range from 10,000 MW to 

12,850 MW for CC, from 0 MW to 2,850 MW for CT generation and 0 MW to 2850 

MW for the demand shift parameter yielding a total of 8000 states. A grid size of 150 

MW is chosen because it is of sufficient fidelity to capture the dynamics of the problem 

while keeping run-times reasonable. Rust (1996a) discusses this trade-off between run- 

time and fidelity and suggests that even a relatively coarse grid is often sufficient to 

capture relevant economic phenomena. Another motivation for choosing 150 MW 

increments is that this value falls within the efficient plant size for both technologies that 

are under consideration (Fox-Penner 1997, 90). This state space is sufficiently large that 

upper bounds on the demand shift parameter have a negligible effect on the results. 
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The initial simulation state is determined so that the initial price is approximately 

equal to the 1998 average wholesale electricity price of $30/MWh (Stone and Webster 

1998). Simulation results are relatively invariant to this initial simulation condition after 

the first several simulated years. Also, the initial simulation state is set so that the initial 

value for the demand shift parameter is 900 MW greater than the lowest shift parameter 

value in the state space. This ensures that random downward fluctuations of the shift 

parameter will not be significantly affected by the lower "edge" of the state space. 

The action space consists of the six actions listed in Table 3. 

Table 3. General Model Action Space 
Action Index Investment in CC (MW) Investment in CT (MW) 

1 0 0 
2 0 150 
3 150 0 
4 150 150 
5 0 300 
6 300 0 

It is assumed that the drift parameter 0 is equal to 150 MW per year and the 

standard deviation of the stochastic parameter Zt is equal to 150 MW based upon 

historical RMPA demand data from 1970-1998. However, in order to demonstrate the 

flexibility of the modeling framework, standard deviations for Zt of 0, 150, and 300 are 

utilized in the RL module and a value of 150 MW is used in the simulation module for all 

cases.   This allows for analysis of the effects of uncertainty on investment behavior. 

Finally, the discount parameter ^is set to 0.9 for all cases. 
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2.5.3 Sample Results 

The optimal policies for the social welfare maximizer for standard deviations of Zt 

of 0 and 300 appear in Figures 3 and 4 respectively. These figures show a fixed CC 

capacity of 10,000 MW for illustrative purposes. Similar graphs could be generated for 

all levels of CC capacity. In these figures, the capacity of CT generation is on the x-axis 

and demand shift parameter is on the y-axis. Total combined investment in both CC and 

CT generation is shown on the z-axis. The investment region appears in the upper-right- 

hand corner of the graph where capacity is low and demand is high. 
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Figure 3. Optimal Policy (cr=0) 
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The investment region is slightly larger for the policy derived under certainty 

compared with the policy derived under uncertainty. Therefore, there are some states in 

which the agent facing certainty will invest and the agent facing uncertainty will not 

invest. This effect can be explained because of the option value of postponing the 

investment decision under uncertainty. Therefore, in the uncertain situation, the demand 

shift parameter must rise to a higher level prior to investment, compared with the certain 

situation. 

Figures 5 and 6 decompose the graph showing total investment under certainty 

into investment by technology. CC and CT investments across the state space for the 

social welfare maximizer are shown in Figures 5 and 6 respectively. 
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The CC investment dominates when there is a large investment shortage, while, the CT 

investments are used to make up smaller shortfalls. This occurs because CC is used to 

meet all loads while CT investment only contributes to meeting peak loads. Similar 

results exist for the social welfare maximizer facing uncertain demand. 

The implications of demand uncertainty on technology choice can be visualized in 

Figure 7 that plots the percentage of total additional capacity in year 15 that is comprised 

of CT units for each level of uncertainty. 
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Similar results exist for the other years. This graph illustrates that increased uncertainty 

causes the agent to prefer CT generation due to its lower fixed cost. 

Figure 8 shows total mean additional capacity from the monopolistic and social 

welfare maximizing perspectives for varying levels of demand uncertainty. The social 

welfare maximizer invests at a higher average level compared with the monopolist as 

would be expected. Since, it is assumed that no externalities or distortionary taxes exist, 

the social welfare maximization scenario can be used to back out a perfectly competitive 

outcome (Dixit and Pindyk 1994, 283). 
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-e-SW Max (Sigma=150) 

-A-SW Max (Sigma=300) 

—K—Monopolist (Sigma=0) 

—¥— Monopolist (Sigma=150) 
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Figure 8. Mean Additional Capacity by Market Structure and Level of Uncertainly 
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Therefore, the monopoly and social welfare maximizing scenarios can be used to bound 

the level of investment resulting from a case of imperfect competition for each level of 

uncertainty. As expected, investment decisions that are formulated under higher levels of 

uncertainty result in reduced total capacity levels. 

2.6 Algorithmic Modifications 

Unlike many normativistic applications of RL which only require "good" 

solutions, it is essential to achieve near-optimal solutions with this model. This is 

necessary because this framework is designed for policy analysis in which one must 

compare results among differing policy alternatives. Therefore, solutions which are 

significantly suboptimal may misrepresent the effects of certain policies or in certain 

cases produce results which are opposite in sign to the actual underlying policy effect. In 

order to achieve optimal results in reasonable time periods, several modifications to the 

basic tabular Q-learning algorithm are made. This section of the essay summarizes these 

modifications and discusses state-space sweeping in 2.6.1, learning rate decay in 2.6.2, 

softmax action selection in 2.6.3, termination criteria in 2.6.4, and implementation in 

2.6.5. 

2.6.1 State Space Sweeping 

Initially, when states were chosen for evaluation based upon the classical tabular 

Q-learning algorithm that is summarized in Figure 1, certain states were visited so 
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infrequently that the model could not learn an optimal policy in tractable run-times (less 

than 24 hours). This problem was overcome by forcing the Q-learning algorithm to 

evaluate each state by systematically sweeping the entire state space and executing one 

iteration of Q-learning on each state. Figure 9 summarizes the revised algorithm. 

Initialize Q(s,a) 
Repeat 

Evaluate sum of delta Q to consider learning rate decay 
For each seS 

Chose action (a) based on a softmax distribution 
Implement action (a) and determine s' (the successor state) as well as the reward 
Q(s,a) <- Q(s,a) + a[r + ymaxQ(s',a') - Q(s,a)J (2.30) 

End for 
Until Q-values are sufficiently close to Q 
Figure 9. Modified Tabular Q-learning Algorithm 

This algorithm is conceptually similar to one presented by Sutton and Barto 

(1998, 229) in which states are selected randomly from the state space after which one 

iteration of Q-learning is performed. However, random state selection did not work as 

well as systematic sweeps because the random approach did not visit certain states often 

enough to compute good Q-value estimates. Another key advantage of systematic sweeps 

is that the final policy for all states can be graphed to provide insights into optimal 

investment behavior. Graphs of optimal policies would not be meaningful with the 

classical implementation of Q-learning due to the poor accuracy of the policy at low- 

probability states. 

It is important to note that this method of implementing tabular Q-learning does 

not take advantage of one of the key strengths of reinforcement learning, namely, the 



45 

ability to ration computational time to states based upon the probability that they may 

actually be visited. However, since run times were still reasonable, the computational 

inefficiency of the state space sweeping approach was not a serious obstacle. 

2.6.2 Learning Rate Decay 

One initial observation when working with the tabular Q-learning algorithm with 

fixed learning rates is that higher learning rates yield more rapid initial Q-value 

convergence compared with lower rates. However, larger learning rates tend to oscillate 

around their optimal value following convergence, which leads to sub-optimal estimation 

of the policy. This outcome contrasts with smaller learning rates that do not oscillate 

significantly around their optimal values but require significant time to converge. Figure 

10 demonstrates this effect by comparing Q-values associated with 6 actions by epoch for 

learning rates equal to 0.5, 0.05, and 0.005.   This figure is organized with epoch on the 

x-axis and Q-values on the y-axis. For illustrative purposes, the Q-values in this example 

are initialized to be close to the optimal Q-values, thus, allowing for rather rapid 

convergence. 

While many other RL implementations use a "small" fixed learning rate, this 

approach is unacceptable for this application because learning rates that are small enough 

to provide sufficient accuracy, often result in intractable run-times (greater than 24 

hours). 
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Figure 10. Q-values by Epoch for Varying Learning Rates 

Because the literature does not provide much guidance concerning the design of 

learning rate decay algorithms, the following algorithm was developed. This algorithm, 

which is summarized in Figure 11, allows for learning rate decay so that initial 

convergence is rapid with a high learning rate. However, as learning progresses, the 

learning rate decreases to allow for a more accurate estimation of final Q-values. This 

inturn leads to a more accurate estimation of the optimal policy. 

The algorithm keeps track of the sum of the absolute deviations in Q-values 

across the entire state space over every k-epoch period. When this value increases across 
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successive k-epoch periods, the learning rate is decreased and the process is repeated. 

When the learning rate is decreased, it decreases based upon the following geometric 

series: 

<*„=¥", (2.31) 

where, an is the learning rate and n is the counter that is incremented every time the 

number of policy changes increases over a k-epoch period. 

Intuitively, this algorithm is effective because initially a learning rate is effective 

in improving the policy through updating all of the Q-values in the state space. As 

learning progresses for a given learning rate, the absolute deviation in Q-values 

decreases as a given learning rate becomes less effective in improving the policy. Once 

the sum of the absolute deviations in Q-values increases, it is a sign that the current 

learning rate is not improving the policy and it is necessary to reduce the learning rate 

further. 

Initialize a 
Initialze Ao to a large number 
Initialize n 
Repeat 

Run RL model for k epochs 
Ai<-Sum of the absolute deviations in Q values across all states for k epochs 
r<-(Ao-A,) 
If r<o 

n<-(n+l) 
oM^)n 

A0«-Ai 
Until termination criteria is met 
Figure 11. Learning Rate Decay Algorithm 
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Based upon experimentation, a value for k of 100,000 was selected. Results show 

that smaller values decrease the learning rate too rapidly because they result in spurious 

increases in the number of policy changes.   In contrast, larger sampling periods did not 

suffer from this drawback but did increase run times. Similarly, the geometric series 

with y/ equal to 0.1 was chosen based upon experimentation with different series. 

Experimentation also shows that ^and k can be traded off against one another. This 

implies that a lower value for k necessitates a higher value for y/.   In no way is it 

suggested that this sampling period or this geometric series maximize the rate at which 

an optimal policy may be found; however, this algorithm does provide reasonable 

solutions for the problem under investigation. 

This learning rate decay algorithm was not necessary when examining cases that 

did not involve uncertainty. For these cases, a fixed learning rate of 0.5 was used 

throughout the learning process. 

2.6.3 Softmax Action Selection 

Softmax action selection is implemented rather than the s-greedy approach. The 

drawback with s-greedy action selection is that it chooses actions other than the one with 

the highest Q-value with the equal probability sl{n-\). For this application, there are 

usually several actions that are close to being the best action and some that are far from 

optimal. Therefore, an ideal action selection algorithm should focus on evaluating the 
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better actions while spending little computational time on those actions with lower Q- 

values. However, this preference for high Q-value actions should not be initiated until 

reasonable estimates for Q-values are attained. Since the softmax action selection 

algorithm incorporates this property, run times are significantly lower with this approach 

compared with the f-greedy technique. There are situations in which the «e-greedy 

approach would be preferable to the softmax algorithm such as where only one action is a 

clear "winner" for each state and other actions are almost "equally bad." 

The drawback with softmax action selection is that if the temperature cools too 

rapidly, the algorithm may prematurely exclude certain actions that are in fact optimal. 

This problem is avoided by choosing a temperature cooling rate such that all actions 

across all states are chosen with a probability of at least 0.1 at the terminal epoch. 

The cooling rate is determined based upon the exponential decay: 

*H=eT("n, (2.32) 

where, r is the temperature at epoch n and p is a constant derived from: 

P=—JT~> (2-33) 

where, rN is the desired temperature at the terminal epoch N,  Various values for TN were 

experimented with until one was found which ensured that all actions across all states 

were sampled with a probability of at least 0.1 in the terminal epoch. 
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2.6.4 Termination Criteria 

In order to determine when to terminate the Q-learning algorithm, the policy is 

monitored rather than the set of Q-values. This is done because the critical model output 

is an optimal policy rather than an optimal set of Q-values. Also, in certain applications 

there is evidence that an optimal policy is reached long before Q-values are near-optimal 

(Sutton and Barto 1998, 108). This principal is illustrated in Figure 12 which shows 

notional Q-values for two actions plotted by epoch. One can see that the optimal policy 

of action A is reached is reached long before Q-values approach their true optimal level. 

Q-Value 

Policy 
Action A 
Action B 

Epoch 

Figure 12. Q-values vs. Policy Convergence 
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Therefore, learning is terminated after the model completes 500,000 epochs 

without a change in policy. This heuristic was compared against much longer runs and in 

all cases the 500,000 epoch policy change test was more than sufficient to provide 

optimal results. Also, as was the case with learning rate decay, this termination criteria 

was unnecessary for cases that did not involve demand uncertainty. For these cases, 

learning was terminated once there were no policy changes after 100,000 epochs. 

2.6.5 Implementation 

The 8000 state RL model described in this essay was programmed in Microsoft 

Visual C++ © version 6.0. Run-times for this model varied widely depending upon the 

variance of the stochastic parameter with longer run-times associated with higher 

stochastic parameters. Table 4 summarizes the run-times required on a 400 Mz Pentium 

II for the cases considered. The C++ code for this model is contained in Appendix A. 

Table 4. Run Times and Epochs of Learning by Scenario 
Social Welfare Maximizer Monopolist 

RunTime Epochs RunTime Epochs 
Sigma=0MW                      Ihr. 10 min. 300,000 Ihr. 10 min. 300,000 
Sigma=150MW                  9 hr. 20 min. 2,400,000 5 hr. 50 min. 1,500,000 
Sigma=300 MW 10 hr. 30 min. 2,700,000 7 hr. 47 min. 2,000,000 

2.7 Conclusions 

This essay demonstrates that RL is capable of modeling optimal investment 

behavior under uncertainty in an environment as complex as electrical power generation. 

Varying demands as well as multiple technologies from which firms may invest create 
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this complexity. This ability to model complex problems exists because the tabular Q- 

learning algorithm circumvents the curse of modeling by alleviating the need to explicitly 

define transition probabilities. 

Investment problems that are ideal for solution using RL, compared with classical 

MDP solution methods, fall into two basic categories. The first class of problem, similar 

to the one addressed in this essay, uses complex algorithms to define state transitions and 

rewards. This class of problem is difficult to model using traditional MDP approaches 

because the formulation of transition probabilities may be nontrivial when dealing with 

multidimensional state representations. 

The second class of problem that is ideal for the application of RL involves high 

dimension state representations such as investment in numerous technologies. RL has 

shown significant promise to solve those problems via use of Q-function approximators 

combined with its ability to ration computational time to high probability states. 

However, it is unlikely that optimal results could be attained via state space sweeps in 

problems with greater than three or four dimensions. Therefore, the application of Q- 

learning to high-dimension problems would most likely be limited to normativistic 

applications where sub-optimal solutions would still be quite useful. 

This essay has highlighted the degree to which models of electricity generation 

investment can be biased if they treat uncertainty improperly. These results show 

significantly differing investment outcomes for varying levels of demand uncertainty. 

Both the failure to consider uncertainty and the overestimation of uncertainty can result 
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in poor predictions concerning actual investment outcomes. This issue is especially 

relevant when forecasting investment behavior in a restructured era in which "obligation 

to serve" agreements no longer exist. Forecasts of investment behavior from 

deterministic models may significantly overestimate actual investment levels and in turn 

fail to predict potential shortages in generation capacity during periods of peak demand. 

Additionally, if individual firms fail to incorporate uncertainty into their planning 

models, the market may provide investment that exceeds an efficient level. 

Despite the strengths of RL, this essay also makes clear some of its drawbacks. 

First, although theorems exist that prove optimal RL convergence under certain 

conditions, these proofs usually guarantee optimality in infinite time. In practice, run 

times may be unreasonably long and highly sensitive to the model's reward structure. 

For instance, in this application social welfare maximizing runs required significantly 

longer run times than profit maximizing runs. Additionally, as was reported previously, 

this application required a great deal of experimentation with the RL parameters (learning 

rate decay, action selection algorithm) to achieve near-optimal results with reasonable 

run-times. Algorithmic performance is highly sensitive to these parameters and ideal 

parameter selection is highly dependent upon the particular model. Therefore, there is no 

guarantee that the algorithmic modifications presented in this essay would be ideal for the 

application of RL to model investment behavior in other industries such as mining or 

petroleum. However, these parameters should serve as a good starting point for 

researchers who want to apply this research to other industries. 
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Future extensions to the model presented in this essay should include 

incorporating other technologies into the model. This could be accomplished in two 

ways. The first involves increasing the dimensionality of the technology state space. 

This would necessitate the use of a function approximator to estimate Q-values in lieu of 

the tabular approach utilized in this essay. A second approach would involve adding 

additional technologies to the initial capacity stock. This modification would affect 

reward calculations but would not increase the size of the state space as long as the agent 

could not invest in these additional technologies. 
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Chapter 3 

THE EFFECT OF MARKET DESIGN ON ELECTRICITY GENERATION 

INVESTMENT UNDER DEMAND UNCERTAINTY 

3.1 Background and Motivation 

Most states in the United States are undergoing or considering restructuring that 

would establish some form of competition in the generation sector. One impetus for this 

change is the belief that electricity generation no longer possesses the subadditive cost 

properties of a natural monopoly due to technologically driven decreases in efficient plant 

sizes (Fox-Penner 1997). Therefore, restructuring may bring about efficiency gains 

which may lead to reduced customer prices and product innovation as was the case with 

the airline, telephone, natural gas, trucking, and railroad industries (Crandall and Eilig 

1997). 

Numerous studies have analyzed the short-run efficiency of restructured 

electricity markets (Borenstein and Bushneil 1998; Green and Newberry 1992; Wolak 

and Patrick 1996; Quick 2000). If generators can exert market power by varying the 

quantity or price of their bids, the spot price will exceed competitive levels and 

potentially offset any efficiency gains from restructuring. However, less attention has 

been paid to the long-run efficiency of restructuring—specifically, the area of investment 

in generation. This area is critical to understanding the implications of restructuring due 
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to the direct link between investment and reliability as well as the potential for 

investment-based efficiency gains. On the positive side, restructuring may bring about 

significant savings due to a more efficient investment level and a more efficient 

investment composition. However, policy makers who design markets must ensure that 

these gains are not made at the expense of reduced system reliability resulting from 

inadequate levels of generation. 

Policy makers must establish "market rules" when setting up a restructured 

electricity market that may directly or indirectly affect the quantity and mix of generation 

investment that is provided by the market. This essay investigates how two of these 

market design decisions impact generation investment and electricity spot prices. 

Specifically, the essay examines capacity subsidies and spot market price caps. Several 

authors discuss the effects of capacity subsidies and price caps on generation investment 

and electricity price qualitatively, however, none show them quantitatively (Graves et al. 

1998; Hirst, Kirby, and Hadley 1999; Singh and Jacobs 2000; Wolak et al. 1999). 

Capacity subsidies, or reserve requirements, have been justified on the grounds 

that capacity possess the properties of a positive externality and therefore will be 

underprovided by the market. Price caps have been instituted in order to protect 

consumers from high prices that result from capacity scarcity or from strategic behavior 

by market participants. The two policies are related because both act to reduce spot 

prices during peak loads, which reduces the overall volatility of spot market prices. 

Capacity subsidies affect peak prices by increasing the total level of capacity that is 
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provided by the market; whereas, price caps affect prices directly by constraining the 

market-clearing price in the spot market. Because these policies act through different 

mechanisms, they produce differing effects on average price and investment. Capacity 

subsidies result in higher total electricity prices in addition to higher levels of investment. 

In contrast, price caps may result in higher or lower levels of investment, depending on 

the market structure. Additionally, price caps may require that loads be shed because 

they prevent price from rationing scarce supplies of energy. 

The remainder of this essay is organized as follows: Section 3.2 discusses the 

restructured electricity environment, Section 3.3 discusses previous investment models 

that pertain to a restructured electricity market, Section 3.4 investigates the effect of 

capacity subsidies on investment, Section 3.5 analyzes the effect of price caps on 

investment, Section 3.6 examines the effect of the elasticity of demand on peak prices, 

and Section 3.7 provides policy suggestions and concluding remarks. Section 3.7 also 

provides a brief policy recommendation for the State of Colorado based upon these 

results. 

3.2 The Restructured Environment 

The majority of restructuring plans call for some kind of a spot market where 

generators sell to either distributors or customers directly. However, unlike other goods 

which can be bought and sold with little or no outside intervention, electricity markets 

must be closely controlled by a system operator who facilitates spot market operations 
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subject to physical system constraints (Fox-Penner 1997; Hogan 1998). These 

constraints are caused by the physical properties of electricity, most notably its inability 

to be inexpensively stored and the requirement that supply and demand must balance 

simultaneously. Another complicating factor in electricity markets is that loop flows may 

prevent power from flowing directly between a buyer and seller across transmission lines. 

Loop flows occur because electrical power obeys Kirchoffs law which will cause power 

to flow over the "path of least resistance" (Fox-Penner 1997, 27). To ensure the physical 

integrity of the system, electricity requires ancillary services which further complicate the 

design of electricity markets. Ancillary services include regulation, spinning reserves, 

non-spinning reserves, and replacement reserves. Ancillary services would be used, for 

example, if there were an unexpected supply disruption from a given plant. In this 

situation, spinning reserves could be brought online so that the supply of electricity 

remained unaffected (Fox-Penner 1997, 33). 

One of the most popular forms for power markets is the POOLCO in which a 

system operator takes bids from various plants for the price at which they are willing to 

provide power over a set time period—usually an hour. The system operator also takes 

demand bids for the same time period. Next, the system operator determines a merit 

order dispatch in which firms are ranked by marginal cost, subject to system security 

constraints. Figure 13 illustrates that a merit order dispatch forms a stepped supply curve 

for energy in a given time period. Also, Figure 13 demonstrates that the marginal plant 

(#5) sets the spot market price in the period under consideration. 
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An alternate approach is a bilateral market in which buyers and sellers directly 

contract with each other for a given price and time period that both parties agree upon. 

For example, a generator could contract with a large industrial customer to provide power 

at a fixed price for a given time period. This sort of arrangement protects the industrial 

customer from price volatility and provides the generator with a certain revenue stream 

over the period of the contract. 

Energy Price ($/MWh) Plant 7 

Spot Price P* 
Plant 5 

Plant 4 

Plant 2 

Plant 

Short-Run MC 

Plant 6 

Plant 3 

Demand 

Q' MW 

Figure 13. Short-Run Spot Market 

As is the case with the POOLCO, a system operator must ensure that trades are feasible 

with respect to system security constraints. In practice, most markets involve a 

combination of POOLCO and bilateral designs (Fox-Penner 1997). 
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3.3 Models of Generation Investment under Restructuring 

In order to investigate long-run effects of restructuring on investment, several 

studies have analyzed generation investment behavior in a restructured environment from 

both qualitative and quantitative perspectives. Orr (1988) uses an option-valuation 

approach to examine the effects of restructuring on capacity timing and technology 

choice for a monopolistic firm in both regulated and unregulated environments. He finds 

that restructuring will bring about the adoption of more fuel-efficient technologies sooner 

than remaining in a regulated environment. He also determines that the presence of 

demand uncertainty will bring about the more rapid adoption of newer technologies due 

to the added flexibility that they provide. 

Fehr and Harbod (1997) consider the effects of oligopolistic energy markets on 

investment behavior. They determine that overall investment in "most reasonable cases" 

falls short of socially optimal levels. This decrease in investment results from the 

decrease in quantity produced by strategic firms in order to exert market power. (Fehr 

and Harbord 1997). 

Hirst et al. (1999) use a hybrid optimization/simulation approach to determine the 

relationship between the reserve margin and total social costs while assuming perfectly 

inelastic short run demand. In order to ensure that energy markets clear when demand 

exceeds capacity, they implement an "unserved energy elasticity of demand" (UEED). 

This is defined as a price elasticity of demand that is activated only when demand 

exceeds capacity. Their results show that, for a UEED of 0.05, reserve margins from 2 to 
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7 percent minimize total social costs with margins outside this range leading to 

significant increases in total social costs. Their social cost calculations include the price 

of energy, any necessary capacity payments, and the social costs of not meeting demand 

due to insufficient capacity. These social costs are assessed when demand exceeds 

capacity and the UEED is utilized (Hirst et al. 1999). Because Hirst et al. do not consider 

ancillary services, they suggest that these estimated reserve margins should be increased 

by 5 percent to determine actual reserve requirements. 

3.4 The Effect of Capacity Subsidies on Generation Investment 

Several restructured electricity markets have elected to institute reserve 

requirements or capacity subsidies whereas some have not. Section 3.4.1 discusses the 

motivations behind the different approaches and provides descriptions of several actual 

market designs, Section 3.4.2 presents a reinforcement learning (RL) model of 

investment that quantifies the effects of capacity subsidies on generation investment and 

electricity spot price, and Section 3.4.3 summarizes the results from the capacity subsidy 

model. 

3.4.1 Background on Capacity Subsidies and Reserve Requirements 

A reliable electricity system can be defined as one "that allows for few 

involuntary interruptions of service to customers" (DOE 1998). This encompassing 

definition can be broken down into two components, namely adequacy and security. 
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Adequacy, which is a long-run planning concept, refers to maintaining an adequate 

quantity of generation to meet supply.   This contrasts with security, which is a short run 

planning concept that refers to the ability to respond to short-run disturbances in 

electrical supply (DOE 1998; Hirst, Kirby, and Hadley 1999). Of these concepts, 

adequacy is the focus of this essay. 

Under the regulated system, generation adequacy was assured through mandated 

reserve requirements that were established by regulators. This system paid generators 

separately for capacity and energy to ensure that all fixed costs could be recouped, 

especially on peaking plants that were used infrequently (Graves et al. 1998). 

Under restructured systems, several market designs have been implemented in 

order to ensure generation adequacy. These designs include a strict reliance on markets 

to provide for a sufficient level of generation investment or direct intervention through 

either a capacity subsidy or a mandatory reserve requirement. The market-based design 

relies solely on price signals to motivate investment. This approach is often referred to as 

an "energy-only" system because energy is the only traded commodity. Capacity 

subsidies encourage generation investment by subsidizing firms directly for their capacity 

regardless of its dispatch status. Similarly, reserve requirements mandate that all market 

participants share the responsibility for providing for excess reserves. This requirement 

is usually enforced through fines on firms that do not meet their system operator-dictated 

capacity obligations. Markets with reserve requirements often establish separate capacity 
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trading markets so that firms may meet capacity requirements through investment or 

through the purchase of tradable capacity credits. 

Some of the impetus for keeping capacity payments or reserve margins under 

restructuring may be attributed to path dependence from the regulated era. Additionally, 

many load serving entities (LSEs) favor keeping capacity payments in place because they 

provide a certain revenue stream for any new generation investment (Singh and Jacobs 

2000). 

One argument for a capacity subsidy or reserve requirement is that the inability of 

demanders to react to price in real time may prevent the market from clearing when 

demand exceeds capacity. Therefore, it is necessary for a system to possess sufficient 

reserves to meet peak loads. This argument is illustrated in Figure 14, which shows a 

perfectly inelastic demand (Q*) that exceeds total capacity (Qc). No equilibrium market- 

clearing price exists and the ISO must intervene by shedding load. When the ISO sheds 

load in this manner, it is likely that it will not be able to identify those customers who are 

most willing to curtail their load in return for some form of compensation. Therefore, it is 

likely that the allocation of scarce capacity will be inefficient. In contrast, a system that 

promotes a demand-side response to price by allowing customers to self-select their level 

of reliability will efficiently ration scarce capacity levels through increases in price. This 

sort of system also requires less information on the part of the regulator than a market 

with a perfectly inelastic demand. 



64 

Figure 14. No Market Clearing Price with Inelastic Demand 

Another argument for either a capacity subsidy or a reserve requirement is the 

belief that capacity possesses the properties of a positive externality and therefore will be 

underprovided by the market. This contention is based upon the idea that an individual 

firm's excess capacity benefits all market participants because the ISO may have to 

override economic relationships between market participants in order to maintain the 

physical security of the system. The probability of the ISO intervening in this manner 

decreases as the excess capacity in the system increases (Jaffe and Felder 1996; Ruff 

1999). 
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This argument has been criticized on the grounds that individual firms do realize 

benefits from their excess capacity as long as an efficient ancillary services market exists 

that compensates firms for their excess capacity based upon its value to the system 

(Borenstein 1999a). Therefore, opponents of the positive externality argument suggest 

that capacity subsidies or reserve requirements will lead to inefficient investment both in 

terms of technology composition and overall investment level. This results from the 

removal of price as a signal for firms to increase their capacity. Rather, firms will invest 

to meet mandatory reserve requirements in the most cost-effective manner possible 

(Graves et al. 1998). 

Another argument against capacity subsidies or reserve requirements is that, even 

if the positive externality argument is correct, these approaches assume that a regulator 

knows with certainty the efficient capacity subsidy or reserve requirement. This requires 

knowledge of the marginal cost of adding new capacity as well as the marginal social 

benefit function. While the marginal costs of adding capacity are reasonable to estimate, 

it is difficult to determine the marginal social benefit function that results from adding 

excess capacity. If this estimate is incorrect, then welfare losses from these policies 

could greatly exceed the welfare losses from imposing no subsidy or reserve requirement 

(Graves et al. 1998; Jaffe and Felder 1996). 

This principal is illustrated in Figure 15, which graphs the marginal cost to society 

of adding reserves as well as the marginal social benefits of excess reserves. For this 

example it is assumed that capacity is a positive externality and that no ancillary services 
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market exists (Jaffe and Felder 1996). Rc represents the quantity of reserves that would 

be supplied with no capacity subsidy or reserve requirement. The marginal cost to 

society increases from zero, because initial investments in reserves will possess some 

private benefits because these reserves will most likely be dispatched occasionally. This 

marginal social cost function becomes constant once reserves are being added that will 

never be dispatched. In this situation, the entire cost of reserves must be subsidized in 

order for them to be built. The marginal social benefit function takes the shape of a 

negative exponential distribution because the probability of an outage is a negative 

exponential function of available reserves (Stoll 1989, 331). 

$/MW-yr 

F 

r 

Welfare Loss From 
No Capacity Subsidy 
or Reserve 
Requirement 

Welfare Loss From 
Incorrect Subsidy or 
Reserve Requirement 

Marginal Cost to Society 

Rc  R*   R' Quantity of Reserves (MW) 

Figure 15. Welfare Loss from an Inefficient Reserve Requirement or Capacity Subsidy 
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This figure illustrates that either an optimally set subsidy P* or reserve requirement R* 

will produce an efficient outcome.   Additionally, it illustrates that the welfare loss from 

an incorrect subsidy F  or reserve requirement R' may produce a welfare loss that 

exceeds the loss from no policy at all. 

Finally, Singh and Jacobs (2000) suggest that mandatory reserve requirements 

may actually do little to augment generation adequacy because excess capacity that is 

built to meet a given standard is often bid elsewhere during peak loads. They note that 

this occurs when dispatch systems that do not implement mandatory reserve requirements 

border reserve requirement-based systems. Those systems without reserve requirements 

will likely have higher spot prices than regions with reserve requirements during peak 

loads due to their lower capacity obligations. In this situation, firms in the region with 

the reserve requirement may sell their power outside the region to take advantage of the 

higher outside price. This scenario highlights why reserve requirements may have been 

more appropriate under the regulated system, where each franchised monopoly was 

"obligated" to serve its load, than a restructured system. 

These contrasting arguments have lead different regions in the United States to 

implement systems based on either reserve requirements or energy-only markets. No 

direct capacity subsidies have been enacted in the United States, however, countries such 

as the United Kingdom, Spain and Argentina utilize capacity subsidies. Singh and Jacobs 

( 2000) note that in the United States "many capacity requirements often reduce to 

capacity payments." This occurs in some systems because fines collected due to 
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noncompliance with capacity obligations may be distributed to all firms that have 

capacity in excess of their obligations thus resulting in a subsidy to those firms. 

The next section of this essay describes the market designs in California and the 

Pennsylvania-New Jersey-Maryland Interconnection (PJM) as examples of energy-only 

and reserve requirement-based systems. The California market does contain a reserve 

market for ancillary services; however, since this market's purpose is the maintenance of 

security as opposed to adequacy, the California market will still be referred to as an 

energy only market. 

3.4.1.1 California Market Design (Energy-Only Markef) 

California has implemented one of the most progressive market designs in the 

nation. Its restructured system involves two independent institutions, the Power 

Exchange (PX) and the Independent System Operator (ISO). The PX runs a day-ahead 

spot market where supply and demand bids are accepted for each hour of the subsequent 

day. Sellers to the PX include independently owned utilities (IOUs) and distribution 

companies.   Demanders include power marketers and industrial customers. The ISO has 

two primary responsibilities. First, it ensures that supply and demand bids by the PX, as 

well as bilateral contracts that were made outside the PX, are feasible given system 

security constraints. Secondly, the ISO runs an ancillary services market for "real-time" 

generation in order to keep supply and demand in balance. Firms may bid any 

nondispatched capacity into the ancillary services market. Ancillary service costs are 
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passed onto consumers (Borenstein and Bushneil 1998). Additionally, some plants have 

been designated as must-take power plants and are exempt from bidding into the PX. 

Instead, the ISO must accept power from these plants at prearranged prices. Examples of 

must take plants include certain nuclear and hydro plants (Graves et al. 1998). 

In the California system, neither the ISO nor the PX mandate any level of 

required reserves. Similarly, no separate capacity trading market or capacity subsidy 

exists for owners of generation capacity (Hirst et al. 1999). The success of California's 

energy-only system is still being debated since the restructured marketplace has only 

been operating since April of 1998. The California ISO (1998) defends its system by 

highlighting that a sufficient quantity of capacity additions are planned to meet forecast 

demands. However, some argue that California's system will lead to adequacy problems 

as a result of its strict reliance on markets (Conkling 1998; Michaels 1997). Graves et al. 

refute that claim and state that "regulators are pursuing restructuring precisely because 

past capacity decisions based upon uniform reliability criteria have not produced an 

economical supply mix" (Graves et al. 1998). 

3.4.1.2 PJM Market Design (Reserve Requirement Market) 

The PJM design is representative of reserve requirement-based power markets in 

the northeastern United States. The ISO New York and ISO New England (NEPOOL) 

are similar in structure to the PJM. The PJM is the largest centrally dispatched electric 

control area in North America and the third largest in the world. It includes sections of 
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Pennsylvania, New Jersey, Maryland, Delaware, Virginia, and the District of Columbia 

(PJM 1999). Unlike the California system that puts no explicit requirement on capacity, 

the PJM system requires that all LSEs provide a fraction of an aggregate reserve 

requirement that the PJM Reliability Committee deems necessary (PJM 1998a).   This 

reserve requirement is based upon the amount of excess capacity that is needed to "ensure 

a sufficient amount of capacity to meet the forecast load plus reserves adequate to 

provide for the unavailability of capacity resources, load forecasting uncertainty, and 

planned maintenance outages" (PJM 1998a). Current PJM reserve requirements mandate 

reserves of at least 19.5 percent (Bhavaraju 1999). 

Additionally, the PJM Office of the Interconnection operates voluntary monthly 

and mandatory day-ahead capacity markets where capacity credits can be sold or bought 

so that individual firms can buy capacity credits if that option is cheaper than investing in 

excess capacity themselves (PJM 1998b). The system of tradable capacity permits is 

analogous to a tradable emissions permit system (Jaffe and Felder 1996). Firms may 

voluntarily provide capacity supply and demand bids to the monthly market. In contrast, 

participation in the day-ahead market is mandatory for all firms with capacity levels 

above or below their capacity obligation. Firms with excess capacity that do not submit 

bids will have bids submitted for them at $0/MW-day. Similarly, firms with deficient 

capacity positions that do not bid will have bids placed for them at the Capacity 

Deficiency Rate (CDR) of $158/MW-day (PJM 2000). The CDR is also assessed to all 

firms that do not meet their specified capacity obligations either through capacity 
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investments or the purchase of credits. All collected CDR payments are distributed to 

firms with surplus levels of capacity based on the amount of excess capacity that they 

hold, thus acting as a capacity subsidy (Singh and Jacobs 2000). 

This market design favors adequacy assurance at the expense of potential 

reductions in cost. Henney (1998) claims that the PJM reserve requirement obscures 

price signals to investors and creates barriers to entry for potential entrants by increasing 

the complexity of the system. Another criticism concerns the assumption, when 

calculating reserve requirements, that outages can be described using a Poisson 

distribution. This distribution assumes that the probability of a plant outage is 

independent of the time period under consideration. The Poisson distribution may be 

inappropriate because the high electricity spot prices during peak load periods may cause 

these periods to experience fewer outages than non-peak periods (Graves et al. 1998). 

Singh and Jacobs (2000) site the PJM as an example of a market where a reserve 

requirement does little to improve adequacy because the neighboring East Central Area 

Reliability Council (ECAR) does not possess a reserve requirement. They show that on 

hot summer days, firms in the PJM "delist" themselves as available and then sell their 

power to the neighboring ECAR. Firms exhibit this behavior despite the fact that they 

may be liable for CDR payments due to their failure to meet their capacity obligations. 
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3.4.2 Model of Capacity Subsidies 

The reinforcement learning model that is presented in Section 2.4 of the first 

essay is modified to determine the effect of capacity subsidies on generation investment 

and electricity prices. As was the case in Chapter 2, this model utilizes an iso-elastic 

demand curve with an elasticity of 0.1. All other modeling assumptions presented in 

Section 2.4.1 are applicable to this model. 

Capacity subsidies are implemented in the RL model by first calculating a 

capacity subsidy and then adding this subsidy to the previous calculated reward that is 

discussed in Section 2.4.2.5. A firm's capacity subsidy is equal to the product of its total 

capacity and the per-MW capacity payment. It is assumed that this subsidy is financed 

by consumers who pay a per-MWh capacity charge that is added to the per-MWh 

electricity wholesale price after one year of dispatch is complete. For the purposes of this 

essay, the average electricity spot price plus this capacity charge is defined as the total 

price of electricity. This total electricity price is not the actual consumer price because 

transmission, distribution, and ancillary service charges are not included. 

The model considers subsidy levels ranging from $0/MW-yr to $60,000/MW-yr 

in increments of $20,000/MW-yr for the social welfare maximizing agent. These levels 

ensure that the capacity payments are comparable with observed capacity prices in 

markets where capacity is traded. Several representative values for capacity prices are 

listed in Table 5. 
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Table 5. Observed Capacity Values 
 Market  Capacity Price ($/MW-yr) 
PJM Monthly Capacity Market for Jul 1999 43,800 
(12 month high)  
PJM Monthly Capacity Market for March 2000 1,825 
(12 month low)  
NEPOOL Capacity Price for April 1999     ~ 14,916 
(high from Apr 98 - Jan 00)  
Proposed Colorado Capacity Payment 11,110 
(Stone and Webster 1999)  
PJM Capacity Deficiency Rate 57,998 
(Penalty imposed on PJM firms not meeting capacity 
requirement)  

The first three rows show equilibrium market prices from the monthly PJM and 

NEPOOL capacity markets. The fourth row shows the value of a proposed capacity 

subsidy that was utilized in a recent study of electricity restructuring in the state of 

Colorado (Stone and Webster 1998). Finally, the last row of the table shows the PJM 

CDR rate in $/MW-yr. 

Capacity subsidies are modeled rather than reserve requirements because it is 

difficult to apply reserve requirements to demand curves with nonzero elasticities. 

Reserve requirement calculations traditionally assume that demand is perfectly inelastic 

and reserve requirements R equal: 

_    K-D 
* = —. (3-D 

where, K represents capacity and D represents demand. Under these assumptions, any 

addition to capacity will lead to a direct increase in reserves assuming that capacity 

exceeds demand. However, when demand curves with nonzero elasticities are used, 
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calculation of reserves becomes more complex because the quantity of energy demanded 

is a function of the equilibrium price. Therefore, additions to capacity do not always lead 

to increases in reserves. This principal is illustrated in Figure 16 which shows an initial 

capacity level K{ along with two augmented capacity levels K2 and K2. The increase in 

capacity from K\ to K2 with a marginal cost of P2 has no impact on reserves because the 

quantity of energy demanded increases when price falls from Pi to P2. Reserves do not 

increase until capacity is increased above K2. 

Price ($/MWh) 

P, 

Demand 

K,      K,   K3 MW 

Figure 16. Calculation of Reserve Requirement Using Price Responsive Demand Curve 
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Therefore, setting a reserve margin may result in a very large increase in overall capacity. 

In contrast, capacity subsidies result in levels of investment that are roughly proportional 

to the level of the subsidy as is shown in Figure 17 of the next section. 

The short-run efficiency of a correctly set capacity subsidy is equivalent to that of 

a capacity standard. However, capacity subsidies and capacity standards may have 

different distributional effects and thus different long-run outcomes as firms exit or enter 

the industry (Jaffe and Felder 1996; Weitzman 1974). Since demand uncertainty exists, 

the direct equivalence between standards and subsidies can not be assumed, even in the 

short-run, because the value of adding reserves varies based upon the most recent 

realization of demand. If an abnormally large increase in demand occurs, the social 

benefit of adding capacity is greater than the social benefit of adding capacity following a 

decrease in demand. However, despite this lack of a direct equivalence between the two 

mechanisms, investment behavior under capacity requirements should be similar to that 

under capacity subsidies. Also, since reserve requirements are a special case of capacity 

standards that mandate an excess quantity of capacity at peak loads, investment under a 

reserve requirement should be similar to investment under a capacity subsidy. 

3.4.3 Capacity Subsidy Results 

Mean capacity levels for varying subsidy levels are graphed in Figure 17. As expected, 

higher capacity subsidies produce higher capacity levels with the highest subsidy level of 
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$60,000/MW-yr producing more than twice the mean rate of investment compared with 

the non-subsidized level. 

5000 

- $60,000/MW-yr 

-$40,000/MW-yr 

-$20.000/MW-yr 

-No Subsidy 

Figure 17. The Effect of Capacity Subsidies 

These higher levels of capacity act to reduce peak prices by shifting the vertical 

portion of the supply curve outward, as is shown in Figure 16. This reduces the scarcity 

premium observed during peak demand periods, which in turn reduces peak wholesale 

prices. This effect is illustrated in Figure 18 which plots 10 years of mean peak prices for 

each subsidy level. 
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Figure 18. Effect of Capacity Subsidies on Peak Price 

Since peak and near-peak prices are reduced for higher capacity subsidy levels, 

higher subsidies also result in a reduction in overall spot market volatility and mean spot 

market price. The standard deviation and mean of the spot market price for year 10 are 

plotted in Figure 19. Similar results exist for the other years. 

These reductions in mean price and volatility do not come without a cost. A Per 

MWh capacity charge can be computed by dividing total capacity payments for a given 

year by the total number of MWh that were dispatched in that year. 
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Figure 19. Effect of Capacity Subsidies on Spot Price 

$60,000/MW-yr 

When this charge is added to the mean price, a total price for electricity in $/MWh can be 

computed. This total price covers both energy and capacity subsidy costs. This total 

price of electricity increases with increasing capacity subsidy levels. Singh and Jacobs 

(2000) suggest an alternate means for interpreting these results which equates capacity 

subsidies or reserve requirements with a call option on electricity. Under this 

interpretation, the increase in total electricity price associated with a capacity subsidy or a 

reserve requirement is analogous to the price of the option. This option protects 

consumers from upward price movements and is "exercised" when excess capacity, 

originating from either capacity subsidies or reserve requirements, is utilized during peak 
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demand periods. Mean spot market price and capacity charges are plotted in Figure 20 

for each of the capacity subsidy levels. Note that total electricity price increases as the 

subsidy increases. 
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Figure 20. Effect of Capacity Subsidies on Total Price 

In addition to altering the overall level of investment, capacity subsidies affect the 

composition of investment by increasing the overall percentage of investment in peaking 

generation (combustion turbine). This effect is illustrated in Figure 21 which plots the 
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mean percentage of the total additional capacity that is comprised of combustion turbine 

(CT) technology for years 2 through 10. 

120% T 

No Capacity Subsidy 

$20.000/MW-yr 

$40,000/MW-yr 

$60,0007MW-yr 

Figure 21. Effect of Capacity Subsidies on Investment Composition 

Year 1 is not plotted because no additional generation exists in year 1 as a result of the 

one year delay between the investment decision and capacity becoming operational. 

CT investment increases at higher capacity subsidy levels because this technology is 

more cost-effective for meeting peak loads than combined cycle (CC) generation because 

of its low up front investment and per-period fixed costs. CT generation is also a more 

cost-effective option for capacity that is seldom dispatched and is invested in for the sole 

purpose of receiving capacity payments. 
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3.5 The Effect of Price Caps on Generation Investment 

Another relevant market design issue is whether or not to impose price caps on 

the spot market. A secondary decision involves setting the level of the cap if a cap is 

deemed necessary. Some markets such as California and the PJM have implemented 

price caps while others such as NEPOOL have not. Section 3.5.1 provides background 

on price caps, Section 3.5.2 presents a RL-based model of investment that incorporates 

price caps, and Section 3.5.3 summarizes results from this model. 

3.5.1 Why Price Caps May be Implemented 

In a perfectly competitive market, electricity prices will be at their highest level 

during periods of peak demand for two reasons. The first is the basic economic principal 

that the plants with the highest marginal costs will be needed during these periods. The 

second reason, which further inflates prices during these peak periods, is that when 

capacity is scarce, the equilibrium price will rise above the marginal cost of the highest 

marginal cost plant so that the market will clear (Borenstein 1999b; Graves et al. 1998). 

Therefore, a capacity premium or scarcity premium emerges in these periods reflecting 

the scarcity of capacity. This capacity premium is illustrated in Figure 22. Therefore, 

supramarginal bids during peak demand periods are not necessarily signs of market 

power (Borenstein 1999b; Graves et al. 1998). As shown in Figure 14, this method of 
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rationing scarce capacity cannot take place if demand is perfectly inelastic and customers 

have no demand response to increased prices. 

Price ($/MWh) 

Spot Price 

, Short-Run MC 

Capacity 
Premium 

V^ Energy 
/"      Price 

Demand 

Capacity MW 

Figure 22. Capacity Premium during Periods of Peak Demand 

Prices may also rise above competitive levels due to strategic behavior by market 

participants. Market power at times of peak load combined with an inelastic demand 

response can lead to extremely high spot prices during peak loads. This problem can be 

exacerbated when firms strategically congest transmission lines in order to increase their 

market power (Quick 2000). In the ancillary services markets, few supply bids and a lack 

of a demand-side response to price can further exacerbate this problem. In fact, under 

certain situations, firms can receive nearly any price they bid. An example of this 
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occurred on July 13, 1998, when the California regulation ancillary services market 

cleared at a price of $9999 per MWh—the highest price that the ISO would allow. On 

this occasion especially high demand coupled with several plant failures created a 

situation where the ISO had no choice but to accept any bid price (Wolak et al. 1999). 

These high prices, whether they are efficient competitive prices or results of 

strategic behavior, have motivated several markets to institute price caps in both energy 

spot markets and ancillary services markets. Some have argued that the public must be 

protected from high prices, even if they accurately reflect the true scarcity of energy and 

capacity (Graves et al. 1998; Hirst, Kirby, and Hadley 1999). Others have argued that 

price caps only have a role for mitigating the high prices that result from strategic 

behavior. This justification has been used to explain California's use of a $750/MWh 

price cap for both its real-time energy and ancillary services markets.   Some proponents 

of these price caps have argued that they are merely necessary transitional measures that 

will not be needed once customers are exposed to real-time electricity prices (Wolak et 

al. 1999). 

3.5.2 Modeling the Effects of Price Caps 

The long-run effects of price caps are analyzed using an enhanced version of the 

RL-based model of electricity generation investment that is presented in Section 2.4 of 

the first essay. The enhanced model imposes a price cap on the energy spot market. 
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Other than the imposed price cap, this model is identical to the model described in the 

first essay with respect to its assumptions and basic structure. 

Price caps are modeled by forcing spot price to equal some specified level Pc if 

the market clearing price is greater than this value for every load duration curve segment. 

Since all price cap levels that are considered fall above the marginal cost of both CC and 

CT technologies, the price cap will only be binding in the vertical portion of the supply 

curve. Therefore, when the price cap is binding, suppliers will be producing at capacity 

and the quantity of energy that is demanded will exceed this level. The ISO will be 

forced to shed load to prevent system failure rather than allowing the market to force load 

reductions through higher prices. This scenario is illustrated in Figure 23. In this figure, 

P5 represents price without the price cap. Quantity Qpc represents the quantity that would 

be demanded under the price cap if not for the capacity constraint. Since actual output 

under the cap must be set equal to capacity by shedding load, the quantity of load that 

must be shed by the ISO is equal to öP°-capacity. 

This model is run for price caps ranging from $30/MWh to $200/MWh in 

$10/MWh increments and from $200/MWh to $800/MWh in $100/MWh increments for 

both monopolistic and social welfare maximizing perspectives. Increments are smaller 

for the lower price cap range ($30/MWh-$200/MWh) because price caps in this range 

have significant effects that differ based upon minute changes in the cap level. This 

contrasts with effects of cap movement in the higher range ($200/MWh-$800/MWh) 

where little or no changes are observed. 
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Figure 23. The Effects of a Price Cap 

3.5.3 The Effect of Price Caps—Results 

Mean monopolist capacity in year 10 for varying price cap levels and varying 

initial capacity levels is illustrated in Figure 24. This figure also plots mean spot price 

for each cap level on the right-hand axis. Simulation results for these price cap levels 

were initiated from 8,000 MW in addition to the baseline level of 10,000 MW in order to 

illustrate the differences between price cap levels. For the baseline initial capacity level 

of 10,000 MW, price caps above $300/MWh did not show any additional investment by 
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year 10. Note that the effect of the price cap on investment is bi-modal. Three separate 

effects can explain the shape of this graph. 

5 s 

u 
re 
Q. 
re 
O 
m   1500 re 
c 
o '-•-" 
■a 
^   1000 c 
re a> 

500 

Price Cap ($/MWh) 

-a—Initial Capacity 8,000 MW 

—»—Initial Capacity 10,000 MW 

~A— Mean Spot Price 

Figure 24. Effects of Price Cap on Monopolist 

Cost Effect. At very low price cap levels, investment is inhibited when the price 

cap pc is below average costs. In this case, no investment will be made because it is not 

profitable to invest in capacity that can never cover its average costs. 

Demand Effect. This effect decreases investment as the price cap is increased and 

is caused by the fact that increased cap levels lead to lower levels of investment as a 

result of the demand-side response to higher prices. This effect is observed in each load 
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duration curve segment. Since demand is inelastic and the demand curve is iso-elastic, 

the monopolist facing a price cap will always choose to produce at: 

^=(DI+D;).JP;, (3.2) 

where Ljt is the optimal production level for load duration curve segment/ and time 

period /, given a price equal to the price cap Pc. The fact that the monopolist always 

produces at a quantity so that price is equal to the price cap Pc can be seen in Figure 24. 

Dt represents the demand shift parameter in time period /, D° represents the initial 

demand shift parameter level for load duration curve segment/, and fis the price 

elasticity of demand. This production level is always optimal, because given that demand 

is inelastic, the marginal revenue of increasing output above L* t is zero. For output 

levels less thanZ,*v, the monopolist will be forced to accept the price cap price for all 

quantity levels. Therefore, for these levels of output, it always benefits the monopolist to 

increase her output to Z* r. Additionally, as the level of the price cap increases, this 

effect will reduce output level and result in a corresponding decrease in investment. 

■»0\      „e-1 -^ = s-(Dl+D)-Pr<0. (3.3) 
dpc 

This effect exerts its influence across all price cap levels and is responsible for the 

decrease in capacity as the cap moves from $60/MWh to $120/MWh as well as the 

eventual decrease in capacity as the cap exceeds $170/MWh. Total capacity will 
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approach zero as the price cap approaches infinity because the monopolist may set an 

unconstrained price on an infinitesimal quantity of energy. 

Peak Load Effect. This effect opposes the demand effect and results in higher 

levels of investment as the price cap increases. This increase exists because, at lower 

price cap levels, it is not profitable for the monopolist to invest in enough capacity to 

meet L t for peak and near-peak load duration curve segments because these levels of 

demand only occur a small percentage of the year. Therefore, total investment increases 

as the level of the price cap increases. This effect explains the second increase in 

capacity as the price cap increases from 120 to 170. The peak load effect is similar in 

direction to the cost effect; however, it is relevant for higher price cap levels than the cost 

effect. This is observed because prices greater than $120/MWh are needed to justify 

capacity investments that can only be utilized for only a small portion of the year. A 

secondary result of this effect is that as the price cap level increases, the monopolist^ 

invests in a greater percentage of peaking technologies to meet peak loads. 

The social welfare maximizer's response to price caps differs significantly from 

the monopolist's with respect to investment level and the overall effect on price. Mean 

additional capacity levels in year 10 along with the mean average yearly price for the 

social welfare maximizer are graphed in Figure 25. Mean additional capacity is listed on 

the left-hand axis and mean price is shown on the right-hand axis. Capacity levels 

increase monotonically as the cap level increases rather than bi-modally as in the 

monopolistic scenarios. 
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Figure 25. Effects of Price Cap on Social Welfare Maximizer 

This results from elimination of the demand effect, which is not applicable to the social 

welfare maximizer because he will not restrict output for the purpose of increasing spot 

price. Both cost effects and peak load effects are active, thus contributing to the 

monotonic rise in investment with the increasing cap level. In this graph we also see that 

once the price cap is above the maximum average unconstrained price of approximately 

$200/MWh, increasing the cap has a negligible effect on investment and average price. 

Figure 25 also illustrates that average prices are slightly higher for the lower price 

cap levels compared with the higher price cap levels. This results from the dynamic 
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effects of price caps on investment. Since lower cap levels inhibit investment, when 

there is a lower price cap, spot prices hit the cap a greater percentage of the year than 

when there is a higher price cap. 

This effect is illustrated in Figure 26 which compares prices across load duration 

curve segments for runs with no price cap, a price cap set to $100/MWh, and a price cap 

set to $50/MWh. The percentage of the year that each load duration curve segment is in 

effect is also plotted in Figure 26 to show the impact of each load duration curve segment 

price on the average yearly price. 
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Even though the peak price for the unconstrained scenario is significantly higher 

than the peak price in the price cap scenarios, the price at lower demand levels, most 

notably 9000 MW, is lower for the unconstrained scenario than for the price cap 

scenarios. Since this lower demand level occurs a greater percentage of the year, it has a 

relatively greater effect on average price. 

The effects of the price cap on mean investment and mean price for both the 

social welfare maximizing and monopolistic perspectives are summarized in Table 6. 

Table 6. Summary of Price Cap Effects 
Modeling Derspective 

Social Welfare Maximizing Monopolistic 
Capacity Monotonically Increasing 

with Cap Level 
Bimodal 

Price No significant effects Monotonically Increasing 
with Cap Level 

The effects of price caps on investment level and spot price vary significantly based upon 

the modeling perspective. 

3.6 Sensitivity of Peak Price to Demand Elasticity 

This section of the essay examines the sensitivity of peak price to the elasticity of 

demand. This form of sensitivity analysis is conducted rather than running the capacity 

subsidy and price cap scenarios with different elasticites because those analyses may be 

difficult to interpret. When the absolute value of elasticity increases, lower levels of 

investment do not necessarily correspond to lower levels of generation adequacy because 
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when the elasticity increases, the underlying demand curve also changes. This analysis 

provides insight into the manner in which the previous results would be affected by 

varying demand elasticity. 

The social welfare-maximizing model is run for elasticities ranging from -0.1 to 

-0.9 in increments of 0.1. For each elasticity value, demand curves are re-calculated 

using the "anchor point" technique discussed in Section 2.5.2. As in the previous 

sections, year 10 is selected for detailed analysis. Similar results exist for other years. 

Peak prices for each elasticity value are graphed in Figure 27. 
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These prices decrease as elasticity increases and load is reduced based upon a demand- 

side response. 

These results have implications for both the capacity subsidy and price cap 

results. Since peak loads can be curtailed by increasing the price elasticity of demand, 

the need for a capacity subsidy or price cap to curtail price volatility is lessened given 

more elastic demand. Similarly, the argument for capacity subsidies to ensure generation 

adequacy at peak loads is weakened if consumers can respond to price. Finally, since 

higher elasticities result in lower peak prices, the point at which price caps become 

nonbinding for the social welfare maximizer decreases as demand elasticity increases. 

This occurs because price caps above the peak price are nonbinding. These results also 

support the position of Wolak et cd. (1999) that price caps are only needed during the 

transitional period between regulation and restructured competitive markets. Once 

mechanisms for demand-side responses exist, price caps can be removed. 

3.7 Conclusions & Policy Implications 

This essay demonstrates that the design of a restructured electricity market can 

significantly impact long-run investment behavior and electricity spot prices. This essay 

analyzes both capacity subsidies and price caps and determines their effect on investment 

level and spot market prices. 

The results show that capacity subsidies act to reduce market volatility at the 

expense of increasing total electricity prices. However, as is discussed by Singh and 
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Jacobs (2000), capacity subsidies are probably not an efficient means of reducing 

volatility because they implicitly assume that all customers have similar risk preferences 

since market volatility is curtailed uniformly for all customers. 

Therefore, as is discussed by Singh and Jacobs (2000) and Graves et al (1998) 

forward markets are preferable to capacity subsidies for the purpose of reducing price 

volatility. Forward markets provide customers who prefer not to risk price spikes the 

option to pay increased premiums to insure themselves against the possibility of these 

spikes. Similarly, those customers who are willing to accept price risk are rewarded 

through lower average prices. Another alternative that allows customers to manage risks 

associated with volatile prices is the use of derivatives such as options. 

The model demonstrates that capacity subsidies increase overall levels of 

investment, which may positively impact reliability. However, this increase in reliability 

is applied uniformly to all customers despite evidence that not all customers desire the 

same level of reliability. For example, a hospital would most likely be willing to pay 

more for uninteruptible service than a residential electricity user. Additionally, hospitals 

and other large customers that require uninterrupted service may opt to achieve security 

through investments in distributed generation for use during peak periods. Therefore, an 

alternative approach that is also discussed by Graves et al (1998) involves letting 

customers self select their level of reliability by allowing some customers to sign up for 

interruptible service during peak loads in return for reduced rates. This policy would 
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create a demand-side response to price that would ensure market clearing for all levels of 

demand as well as reduce price volatility in the spot market. 

One caveat to these policy suggestions is that the added reliability provided by a 

capacity subsidy may be worth its cost during the transitional period from regulation to 

restructuring. If an inelastic demand exceeds capacity, it may be impossible to determine 

an equilibrium spot market price if mechanisms for a demand side response to price are 

not yet in effect. Furthermore, this sort of situation can result in system failure due to the 

requirement that electricity systems must instantaneously balance supply and demand. 

One drawback to instituting transitional policies is that due to path dependence they may 

become locked in place. For example, LSEs may utilize political processes to keep 

capacity subsidies in place after they are needed. 

Even though a direct equivalence does not exist between capacity subsidies and 

reserve requirements in the model presented in this essay, the investment response to 

reserve requirements likely would be similar to that seen from capacity subsidies. If so, 

reserve requirements for example as implemented in the PJM, would also increase 

investment and reduce price volatility at the expense of increasing the average total price 

of electricity. 

Price caps have significantly different effects on investment behavior compared 

with capacity subsidies. These effects differ between monopolistic and social welfare 

maximizing scenarios. In the case of social welfare maximization, which approximates a 

competitive outcome, price caps do nothing to reduce average prices and may instead 
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increase average prices because of their deleterious effect on investment. In these 

situations price volatility is curtailed; however, the reduction in volatility comes at the 

expense of the social costs associated with the need to shed load during peak demand 

periods. 

In the case of a monopoly supplier, price caps are required to limit market power. 

In the absence of price caps, the monopolist can increase prices without limit given the 

assumption of inelastic demand. While a price cap is necessary, it is difficult to 

determine the ideal cap level due to the bimodal response of investment to price. This 

bimodal outcome results from a combination of the cost and peak load effects that act to 

increase investment with higher price caps and the demand effect which inhibits 

investment for higher price cap levels. 

The results from the extreme cases of monopoly and social welfare maximization 

can be integrated to develop policy insights for the State of Colorado, which is currently 

considering restructuring. Quick (2000) shows that the dominant firm in the Denver 

metropolitan region, Public Service Company of Colorado (PSCO), may have monopoly 

power for up to 54 percent of the year. Therefore if Colorado were to restructure, some 

form of price cap would be necessary to limit PSCO's mark-ups during these periods. 

However, it is important to ensure that this cap is set high enough so that no significant 

negative effect on long-run investment is realized. Results for the social welfare 

maximizer show that any price cap over $200/MWh would have an insignificant negative 

impact on investment due to peak-load effects. Similarly, results from the monopolistic 
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perspective suggest that the cap should not be set significantly higher than $300/MWh as 

a result of the demand effect. As market power is reduced and a demand-side response to 

price develops, any instituted price cap could be raised and ultimately phased out. 

Future extensions to this research should explicitly consider cases of imperfect 

competition through the development of a multi-agent RL model. This would allow for a 

more accurate representation of the actual market structure in most locations. 

Additionally, future research could experiment with finer discretizations of the load 

duration curve to more accurately determine the effects of capacity subsidies and price 

caps. Finer load duration curve segments would be especially helpful for accurately 

measuring the effect of higher cap levels on price. These discretizations would allow 

extremely high demand days that only occur once every several years to be incorporated 

into the model. On days such as these, price caps that were nonbinding for this model 

may in fact be binding. Finally, the model could be extended to account for the social 

costs associated with load shedding and to allow the model to estimate actual system 

reliability for each load duration curve segment. This would allow the model to estimate 

the welfare implications of proposed policies rather than simply the effect of proposed 

policies on investment and price. 
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Chapter 4 

THE EFFECT OF UNCERTAIN TAX POLICY ON INVESTMENT IN WIND POWER 

4.1 Introduction 

Many economists believe that wind power possesses the attributes of a positive 

externality (Cox, Blumstein, and Gilbert 1991; Mintzer, Miller, and Serchuk 1996). This 

belief is motivated by the fact that investment in renewables can offset investment in 

traditional fossil fuel-based generation and thereby reduce the pollution related social 

costs associated with fossil fuel generation (DOE 1997; Gipe 1995, 423). Several studies 

have attempted to quantify the social costs associated with electric power fossil fuel 

emissions (Desvousges, Johnson, and Banzhaf 1994; Rowe, Bernow, and White 1995; 

Freeman and Rowe 1995). In addition, some have argued that wind power provides 

"energy security" by reducing reliance on imported oil for power production and 

diversifying the generating fuel base (Cox, Blumstein, and Gilbert 1991, 348). 

Since the market will underprovide goods that possess the characteristics of a 

positive externality, a wind power subsidy or fossil fuel emissions tax may be justified 

(Nijkamp 1977, 45). In addition to the externality justification, others have pushed for 

government support of wind power based upon the argument that wind power is an infant 

industry which needs to be fostered until it can stand on its own (Cox, Blumstein, and 

Gilbert 1991, 366). Therefore, numerous wind power subsidy programs and emissions 
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taxes have been enacted in the United States and other countries in order to encourage the 

development and use of wind power and other renewable technologies. A great deal of 

research has focused on the effects of both subsidies and taxes that are intended to 

internalize the externalities associated with electrical power generation (Bernow, 

Biewald, and Marron 1991; Burtraw, Palmer, and Krupnick 1993; Palmer and 

Dowlatabadi 1993). 

Rather than attempting to determine what level of tax/subsidy is efficient or 

analyzing the merits of a given policy, this essay focuses on the effect of policy 

uncertainty on investment in wind power. Specifically, uncertainty over the enactment or 

repeal of investment tax credits (ITCs) and production tax credits (PTCs) is investigated. 

The effect of policy uncertainty on wind power investment is relevant because public 

policy toward wind power has historically been highly variable and prospective wind 

power investors face considerable uncertainty relating what policies will be in effect in 

the future. This research extends the literature relating to the effects of uncertain tax 

policy on investment behavior by focusing on uncertain tax policies that apply to only 

one technology from a group of substitutable technologies (Dixit and Pindyk 1994; 

Hassett and Metcalf 1999). 

The remainder of the essay is organized as follows: Section 4.2 discusses the 

history of public policy relating to wind power in the United States as well as several 

proposed policies relating to wind power. Section 4.3 summarizes the relevant literature 

on the effects of policy uncertainty on investment behavior. Section 4.4 presents a 
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reinforcement learning-based model of generation investment under demand and tax 

policy uncertainty. This model is used to analyze how anticipation of the enactment or 

repeal of an investment tax credit or production tax credit will affect investment in wind 

power. Section 4.5 summarizes the results from this model and Section 4.6 provides 

concluding remarks as well as a discussion of policy implications from this work. 

4.2 Public Policy History Pertaining to Wind Power 

Prior to the 1970s, no significant federal or state policies were implemented to 

increase the rate at which wind power was adopted by the United States electric industry. 

However, concerns over reliance on imported oil, sparked by the Arab Oil Embargo of 

1973, increased the importance placed upon "energy security." This term refers to the 

public good characteristics of using a diverse set of fuels to hedge against the 

macroeconomic impacts associated with price shocks in one type of fuel. These price 

shocks are more likely for fuels that are imported from unstable regions such as the 

Persian Gulf (Fox-Penner 1997, 357). 

These concerns, along with more traditional environmental considerations, 

motivated the passage of the National Energy Act (NEA) in 1978 (Cox, Blumstein, and 

Gilbert 1991). This legislation called for a 15 percent ITC on all wind power 

investments, which supplemented an existing 10 percent federal ITC that applied to all 

classes of investments. Another provision in the NEA legislation called for $100 million 

dollars in cooperative agreements, grants, and subsidized loans to further spur 



development of the United States wind power industry (Cox, Blumstein, and Gilbert 

1991, 354). The 15 percent ITC from the NEA was phased out in 1985. 

Another related piece of legislation enacted in 1978, as a portion of the NEA, was 

the Public Utilities Regulatory Policy Act (PURPA). This legislation, which represented 

a first step toward wholesale electricity competition, created a mechanism for owning and 

operating power plants in which the owner was exempt from price regulation. Owners 

designated as qualifying facilities (QFs) could sell electricity to regulated power 

companies whom would then sell power to their customers. PURPA not only allowed for 

the sale of power to regulated firms, but also required these regulated utilities to buy 

power from QFs in their region based upon "avoided costs" to the utility. To qualify as a 

QF, plants needed to utilize either cogeneration or provide power via renewable sources 

such as wind power (Fox-Penner 1997, 15). 

In addition to this federal activity, California adopted a state ITC in 1978 which 

was applied on top of all federal tax credits resulting in an aggregate 50 percent tax credit 

for wind investors in California. This ITC was eventually phased out in 1987. 

Additionally, California's implementation of PURPA required that "avoided cost" 

calculations, which set prices between QFs and regulated utilities, were made by the 

California Public Utilities Comission (CPUC). The CPUC often set these prices under 

terms favoring the QF's (Cox, Blumstein, and Gilbert 1991, 355). The combination of 

the NEA, California's Wind Power ITC, and California's method for implementing 

PURPA caused a boom in wind power investments in California by independent 
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investors (Righter 1996, 209). From 1982 through 1985, wind power capacity in 

California grew from 7 MW to 1,141 MW. The growth in wind power capacity was so 

significant that by 1987, California produced 87 percent of the total world wind power 

(Cox, Blumstein, and Gilbert 1991, 356). 

However, by the early 1990s the California-led revolution in wind power 

investment had subsided as a result of the removal of federal and state tax incentives as 

well as falling natural gas prices resulting from deregulation of the natural gas industry. 

The fall in natural gas prices impacted the "avoided cost" calculations which directly 

affected the profitability of the QFs. In 1983, the CPUC set avoided costs in California at 

approximately 8 cents per kWh. In contrast, avoided costs during the mid-1990s were 

roughly 5 cents per kWh—a figure that motivated several turbine shutdowns (Righter 

1996, 222). The CPUC recalculated avoided costs during the mid nineties because QF 

contracts called for 10 years of fixed prices followed by floating rates for the next 20 

years. As a result of these avoided cost recalculations and numerous technical failures, 

investors deactivated over 230 MW of California's installed wind capacity (Gipe 1995, 

475; Stuebi 1999). 

Finally, negative publicity relating to wind power reduced public support for the 

technology. There were numerous reports that wind power was responsible for bird 

deaths—specifically, the death of raptors in the Altamont Pass area of California. These 

claims were somewhat exaggerated and there is little evidence that the bird death rate 

from collisions with wind turbines is significantly greater than the bird death rate 
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produced by any large structure (Benner 1992; Orloff and Flannery 1992). In addition, 

investors installed many of the least reliable turbines along Interstate 580 over Altamont 

Pass. Since these turbines were often idle, especially during the peak traffic periods, the 

public perception that wind power was an ineffective technology was reinforced (Gipe 

1995,275). 

More recently, the United States has experienced a nation-wide rebirth in wind 

power investment brought about by technological improvements in wind turbine 

technology. These technological improvements have reduced costs and improved the 

reliability of wind turbines. From 1980 to 1999 costs fell from over 25 cents per kWh to 

approximately 4 cents per kWh (Gipe 1995, 233; Steve 1999). A federal Production Tax 

Credit (PTC) of 1.5 cents per kWh from December 31, 1993 through June 30, 1999 has 

also aided this resurgence. This PTC was recently extended through December 31, 2001. 

The PTC calls for a tax credit on all generated wind power that originates from turbines 

that were commissioned while the legislation was in place. The credit remains in effect 

for the first 10 years that a wind turbine is operating and is only valid if the wind turbine 

is located within the United States and electricity is sold to an unrelated party.   The 

primary motivation for this legislation is to keep wind power competitive as more states 

convert from regulated monopolies to restructured electricity markets (Steve 1999). 

Figure 28 shows total the total installed wind capacity in the United States from 

1981 through 2000 (AWEA 2000c). The first significant increase in wind power 

investment occurs during the "California Wind Boom" from 1982 through 1987. The 
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second major increase occurs from 1997 through 1999 due to recent technological 

improvements as well as the PTC. 
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Figure 28. Total Installed United States Wind Power Capacity 

In addition to the previously described tax policies, several other types of policy 

initiatives including a renewable portfolio standard (RPS), system-benefit charges (SBC), 

and green pricing have been enacted at the state level and are currently under 

consideration at the federal level. A RPS requires that a fixed percentage of all generated 

electricity originate from renewable technologies (Awerbuch 2000). This sort of program 

may have significant advantages over technology-specific subsidies, such as the PTC or 
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ITC on wind power, because it allows for the market to determine an efficient mix of 

renewable technologies. This mix is determined based upon the technical merits and 

cost-effectiveness of each technology. Another benefit to a RPS is that it allows each 

region to invest in the technologies that are most appropriate for that region (AWEA 

2000a). Several states including Connecticut, Maine, Nevada, New Jersey, Pennsylvania, 

Texas and Wisconsin have already adopted a RPS while several federal restructuring bills 

contain provisions for a national RPS (AWEA 2000a). Proposed federal legislation 

ranges from a 3 percent to a 10 percent renewable production requirement by the year 

2010. The most stringent proposal, in Senate Bill 1369, calls for a yearly lA percent 

increase in the RPS until 2005 followed by a 1 percent yearly increase after 2005 through 

the year 2020. This would result in a 20 percent standard by the year 2020 (AWEA 

2000a). 

System benefit charges (SBCs) impose a per-MWh fee on all demanders. These 

fees are collected and then distributed to owners of renewable generation. These SBC 

policies have been implemented in California, Connecticut, Illinois, Massachusetts, 

Montana, New Jersey, New Mexico, New York, Pennsylvania, and Rhode Island. 

Advocates for SBCs suggest that they give policy makers more flexibility in allocating 

funds to support infant industries. For example, 10 percent of California's SBC funds are 

dedicated to "higher cost emerging technologies" such as photovoltaics (Wiser, Porter, 

and Clemmer 1999). Some economists do not believe that infant industries should be 

subsidized. They argue that as long as capital markets are efficient, then investors will 
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finance industries with the prospect of high returns in the future. An example of this 

behavior was observed in the biotechnology industry, which attracted hundreds of 

millions of dollars of capital years before any profits were realized (Krugman and Obstfel 

1992, 255). Another argument against government funding for infant industries is that it 

is unlikely that the government possess enough information to pick "winning" industries. 

Green pricing allows residential and industrial customers a pay premium for their 

electrical power in order to support renewable electric generation. Green pricing is 

currently being used in Arizona, California, Colorado, Florida, Hawaii, Michigan, 

Minnesota, Nevada, Oregon, Texas and Wisconsin. In California, green power from in- 

state generation is subsidized so customers can buy it at a discount. However, there is 

considerable uncertainty as to whether this particular renewable customer credit will be 

extended beyond the year 2002. Also, it is possible that the level of the subsidy may be 

reduced prior to 2002 (Byrne 1999). 

Another proposal, sponsored by the American Wind Energy Association, calls for 

a 30 percent federal tax credit for individuals and businesses that employ wind turbines 

with a total rated capacity of less than 50 kW. Agricultural and residential users who are 

geographically removed from the power grid primarily use this class of wind turbine. 

While these users are small in number, this proposal has the potential to impact overall 

pollution levels because potential users of small wind turbines currently employ highly 

polluting diesel generation (AWEA 2000b). 
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One common theme throughout these policy changes and proposed policy 

changes is that the type and duration of public policy toward wind power has changed 

over time. It is likely that public policy toward wind power will continue to change in the 

future based upon the presidential administration, the composition of federal and state 

legislatures, and volatile fossil fuel prices. Additionally, uncertainty relating to 

enactment and enforcement of environmental agreements such as the Kyoto protocol will 

indirectly affect public attitudes toward wind power investments. These factors create a 

significant source of uncertainty for investors considering wind power investments. 

Section 4.3 summarizes research related to the effect of policy uncertainty on investment 

behavior. 

4.3 Literature on Investment Under Policy Uncertainty 

A large percentage of theoretical research on policy uncertainty has focused on 

the area of ITC uncertainty. Dixit and Pindyk (1994) employ a firm level model to 

demonstrate two basic effects of tax policy uncertainty. When an ITC is in place and 

there is the probability that the credit will be removed, firms will accelerate their 

investment decisions in order to take advantage of the credit before it is removed. 

Conversely, Dixit and Pindyk show that when an ITC is not in place, but the probability 

exists that an ITC will be enacted in the future, the level of investment is decreased due to 

the increased option value of waiting for potential ITC enactment. 
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Hasset and Metcalf (1999) expand these results to determine implications for total 

capital stocks based upon differing forms of policy uncertainty. They conclude that the 

structure of the stochastic process describing tax policy uncertainty determines the 

aggregate effects of uncertainty on the total capital stock. If a nonstationary process such 

as geometric Brownian motion is assumed, they demonstrate that aggregate effects will 

be negative.   Conversely, a stationary process, such as a Poison jump process, will 

increase aggregate capital levels. However, the strength of this investment increasing 

property of stationary tax policy uncertainty is reduced if policy parameter movements 

are negatively correlated with price movements. 

Another key result of Hasset and Metcalf (1999) is that increased tax policy 

uncertainty—regardless of its form—will result in decreased tax revenue because 

uncertain tax policy acts as an "implicit subsidy" to firms. This subsidy originates from 

the intertemporal substitution of investment from time periods with lower subsidy levels 

to time periods with higher subsidy levels. Therefore, they argue that it is in the best 

interest of the government to pursue tax policy stability. Also, Bizer and Judd (1989) 

employ a general equilibrium framework to show that tax policy uncertainty will always 

lead to a reduction in social welfare. 

Other related empirical research focusing on macroeconomic policy uncertainty in 

developing countries shows that policy uncertainty is negatively correlated with 

aggregate levels of investment. However, this negative effect is somewhat mitigated by 
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policy persistence—the length of time that policies remain in effect (Aizenman and 

Marion 1993). 

Related research pertaining specifically to environmental policy uncertainty has 

looked at the effect of an uncertain transferable discharge permit policy on investment in 

wastewater treatment plants. Results show that if there is doubt over whether or not 

future discharge permit trades will be permitted, the number of trades that actually will be 

made falls. This effect results in a reduction in the benefits realized from transferable 

permit programs. The overall implications of these results are that discharge-trading 

programs may not achieve their intended objectives in environments characterized by 

high levels of policy uncertainty (Leston 1992). 

In the area of generation investment decisions, Teisberg-Olmsted (1993) 

determines that regulated utilities facing uncertainty over future allowable rates of return 

will favor smaller, shorter lead-time investments. This result stems from the added 

flexibility that this class of investment provides, given that future regulatory conditions 

are unknown at the time of the investment decision. 

The research in this essay differs from the majority of the previously described 

work on tax policy uncertainty in that its focus is on tax policy uncertainty applied to one 

specific technology rather than generic investment. This is significant because firms may 

substitute between wind power and classical investments, which may in turn exacerbate 

the effects of uncertainty. Policy uncertainty effects may be stronger when substitution 

opportunities exist between subsidized and unsubsidized technologies because firms 



anticipating an ITC enactment may defer all wind power investment until an ITC is 

enacted. A compensating or partially compensating increase in classical investments may 

be used to offset this decrease in wind power investment. Similarly, firms could reduce 

investment in classical technologies to compensate for an increase in wind power 

investment if an ITC removal is anticipated. A second unique characteristic of this essay 

is the use of reinforcement learning (RL) to model the effects of policy uncertainty. 

Using RL facilitates the multiple technology model presented in this essay since 

multidimensional state transitions would be difficult to define explicitly using classical 

techniques. 

4.4 Model 

Basic modeling assumptions are presented in Section 3.4.1, the mathematical 

structure of the model is presented in Section 3.4.2, cost and technical data are presented 

in Section 3.4.3, and Section 3.4.4 describes the various scenarios that are considered. 

4.4.1 Assumptions 

All assumptions from the basic model presented in Section 2.4.1 of the first essay 

apply to this model. Additionally, the following assumptions are added: 

Technologies. The agent may determine its investment portfolio from an action 

space comprised of two technologies. These technologies are (1) a composite technology 

comprised of a 50-50 mix of combined cycle (CC) and combustion turbine (CT) 
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generation and (2) wind power. By assumption, it is impossible for the firm to invest in 

combinations of CC-to-CT other that 1-to-l. Therefore, the agent's CC capacity will 

always equal its CT capacity. 

Social Welfare Maximization by an "Independent" Agent. This model assumes 

that an independent SW maximizing agent makes a long run investment decision every 

year concerning the level of investment in each technology. The agent also makes short- 

run dispatch decisions for each segment of the load duration curve in order to maximize 

social welfare. For the purposes of this model, social costs (e.g., fossil fuel emissions) 

resulting from dispatch of the classical technology portfolio are not considered. The 

model ignores the fact that the ITC and PTC may be financed through higher taxes that 

would reduce consumer surplus. Finally, the social welfare maximizing agent has no 

knowledge of future realizations of the stochastic component of demand uncertainty or 

tax policy uncertainty. 

Energy is a Homogeneous Good. Consumers treat power from classical and wind 

generation sources equally and there is no "green premium" or greater willingness to pay 

for wind power. 

Independence Between Demand and Policy Uncertainty. It is assumed that the 

load duration curve grows based upon a discrete state random walk with drift. Also, the 

model assumes that policy uncertainty can be modeled using a Markov Chain. Therefore, 

every period there is a discrete probability that the policy in question will be implemented 

if it is not currently implemented and there is a discrete probability that the policy in 
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question will be removed if it is currently in place. In addition, the model assumes 

statistical independence between demand and policy uncertainty. 

4.4.2 Model Structure 

The modeling framework utilized in this essay is similar in structure to the 

general modeling framework presented in Section 2.4 of the first essay. In this 

framework, a policy mapping from states to actions is determined such that expected 

discounted social welfare is maximized. Next, this optimal policy is utilized in the 

simulation module to determine mean levels of capacity across time. Only differences 

between the modeling framework presented in the first essay and the modeling 

framework used in this essay are discussed below. 

The state space is 4-dimensional, defined by the capacity of the classical portfolio, 

the capacity of wind power, the demand shift parameter, and the policy parameter. The 

state space ranges from 10,300 MW to 10,900 MW of classical technology in 150 MW 

increments and from 100 MW to 480 MW of wind power in 20 MW increments. Wind 

power capacity is discretized in 20 MW blocks rather than 150 MW blocks based upon 

the size of the majority of wind farms in the Rocky Mountain Power Area (RMPA) 

(AWEA 1999). Demand shift parameter values range from 0 MW to 750 MW in 150 

MW increments. An initial level of 100 MW is used for wind power to approximate 

actual wind power capacity in the RMPA (AWEA 1999). The initial classical capacity of 

10,300 MW is assumed to ensure that the mean price in the first year of the simulation is 
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approximately equal to $30/MWh, an approximation of the 1998 average wholesale 

electricity price (Stone and Webster 1998). 

Finally, the policy parameter is either equal to 1 indicating that the policy in 

question is in place or 0 signifying that the policy in question is not in place. ITC and 

PTC policies are considered separately to avoid adding another dimension to the state 

space. 

The action space allows for investment in 20 MW blocks of wind power and 150 

MW blocks of classical generation. The maximum per-period wind investment is 40 

MW and the maximum per-period investment in the classical portfolio is 300 MW. The 

maximum wind investment rate of 40 MW is justified based upon practical and 

computational considerations. First, engineering constraints limit the amount of total 

system capacity that can be comprised of wind power to roughly 5 percent (Putnam 

1996). Additionally, the recent worldwide increase in demand for wind turbines has 

created a significant production backlog on wind turbines (Poulsen 1999). 

Computational considerations also contribute to the decision to bound maximum 

allowable wind investment at 40 MW. Reinforcement learning requires a rather 

parsimonious action space in order to keep run-times reasonable. Therefore, the only 

means to increase the maximum allowable level of investment, without increasing the 

size of the action space, involves increasing the block size on wind power investment. 

This approach is undesirable since only a small percentage of wind farms in the United 

States are greater than 20 MW (AWEA 1999). 
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Table 7 summarizes the 9 actions in the action space. The action space is larger 

than that used in the first essay because wind investments are small enough in total 

dollars to be made independently from the classical investment decision. Even though 

wind power investment in any given year will not likely offset a significant quantity of 

classical generation investment, it is likely that wind power investment across several 

years will be able to partially offset investment in the classical technology. 

Table 7. Action Space 

Action Index       Investment in CC/CT Mix (MW)       Investment in Wind Power (MW) 
0 0 0 
1 0 20 
2 0 40 
3 150 0 
4 150 20 
5 150 40 
6 300 0 
7 300 20 
8 300 40 

Equations of motion for capacity and the demand shift parameter are identical to 

those presented in section 2.4.2.4 of the first essay. The policy parameter Pt transitions 

based upon the following Markov Chain: 

p(Pt=l\P,_l=0) = A0, (4.1) 

p(P, = 0\P,^=0) = 1-A0, (4.2) 

/>(/>, =0|/>,_,= 1) = 4, (4.3) 

p(P,=l\Pl_l=l) = \-Äl, (4.4) 
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where, A0 is the probability of transitioning from a state without the policy in effect to a 

state with the policy in effect and X\ defines the probability of transitioning from a state 

with the policy in effect to a state without the policy in effect. 

Finally, the model's reward structure is identical to that presented in section 

2.4.2.5 of the first essay with the only difference being the manner in which the various 

tax policies are represented. The ITC reduces total investment costs per MW by a fixed 

percentage. In the case of the ITC, the benefit is received without regard to the way in 

which the technology is used. In contrast, the PTC rewards firms by subsidizing them for 

each M W of wind power that they dispatch. Thus, benefits from the PTC only accrue 

from the use of wind power, rather than from the act of investing in wind power. 

This manner of implementing the PTC differs from the federal PTC that was 

enacted in 1993 because the actual PTC only provides a tax credit to firms that invest 

while the policy is active. The PTC is modeled differently from the enacted PTC for two 

reasons.   First, computational requirements prohibit modeling of a policy similar to the 

actual PTC because this sort of policy requires an additional dimension in the state space 

to account for wind power investments made under the policy vs. those made when the 

policy is not in effect. A second rationale for modeling the PTC in this manner is to 

capture the investment effects of a policy that is applied without regard to the year in 

which an investment is made. While the actual PTC does not share this property, the 

proposed RPS does operate in this manner. The RPS involves a production requirement 

that is not related to the year in which renewable investments are made. 
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4.4.3 Data 

Cost and availability data for the classical technology portfolio and wind power 

are listed in Table 8. 

Table 8. Cost and Availability Data 

 Classical Wind  
Variable Cost (vc)                    21.5 $/MWh 1 $/MWh 
Fixed Cost (/c)                        5,630 $/MW                7,550 $/MW 
Investment Cost (IQ               478,500 $/MW 1,000,000 $/MW 
Availability/Capacity Factor    0.9 0.5 

Costs for the classical portfolio are the average of the costs for the CC and CT 

technologies since a 1-to-l mix is of CC-to-CT is assumed. Cost values for wind data are 

based on discussions with representatives from New Century Energies who operate the 

Foote Creek and Ponnequin wind farms in Wyoming and Northern Colorado (Sulkko 

1999). The capacity factor of 0.5 is used based upon a range of capacity factors from 0.2 

to 0.6 that are reported in the literature (Cavallo 1995; DOE 1997). The capacity factor is 

equal to the percentage of the wind power's total rated capacity that will be available for 

dispatch over the course of a year. This factor is implemented in the model in a manner 

similar to availability and determines the total amount of capacity that is available for 

dispatch in each load duration curve segment. The term capacity factor is used in place 

of availability for wind resources because wind patterns, rather than maintenance 

requirements, are the largest determinant of the percentage of a turbine's rated capacity 

that is available for dispatch across a given load duration curve segment. 
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The capacity factor estimate of 0.5 was selected from the upper range of reported 

values to ensure that some investment in wind power technology would occur in 

scenarios with no tax subsidies in place. This assumption was made so that this study 

could evaluate both investment increasing and investment decreasing effects that 

originate from the expectation of policy addition or removal. If the agent did not invest 

in wind power without a tax subsidy in place, it would have been impossible to show the 

investment decreasing effect that originates from the expectation of an ITC. Higher or 

lower capacity factors should increase or decrease the total level of wind power 

investment; however, they should not significantly change the nature of the response to 

policy uncertainty. Also, it is important to note that capacity factors vary from site to site 

based upon wind conditions as well as turbine technologies. Therefore, assumption of a 

constant capacity factor across all new wind capacity additions is also a slight departure 

from reality. 

4.4.4 Scenarios 

Prior to determining the effect of policy uncertainty on wind power investment, 

the individual effects of the ITC and PTC on investment are established. Scenario 1 

compares investment in wind power with no ITC to investment with ITC levels ranging 

from 10 percent to 30 percent. This range is utilized since it bounds the 15 percent ITC 

that was implemented as a part of the NEA.   Similarly, Scenario 2 compares the base 



case with no policy to PTC levels of $7.5, $15 and $22.5 per MWh. These values are 

utilized to bound the current PTC of $ 15 per MWh. 

Next, Scenario 3A models investment with no ITC policy in place and no 

expectation of a transition to an ITC policy (A0 = 0,A\ = 0) and Scenario 3B models 

investment with no ITC policy in place when there is the expectation of an irreversible 

transition to a state with the ITC in place (A0 = -5, A\ = 0). Since there is strong 

expectation of an ITC in the subsequent period, we would expect that Scenario 3B would 

deter investment compared with Scenario 3A. In the simulations for Scenarios 3A and 

3B the initial state has no ITC in place and the policy is never enacted in order to 

illustrate the degree to which the expectation of an ITC can deter investment. Scenario 

3C models a situation where an ITC is in place and there is no chance of removal (A0 = 0, 

A\ = 0), and Scenario 3D investigates a situation where there is an expectation of an 

irreversible removal of the ITC (A0 = 0,A\ = .5). Scenario 3D may encourage higher 

levels of investment compared with Scenario 3C because firms expecting an irreversible 

ITC removal should invest at a higher level to take advantage of the ITC before it is 

removed. In the simulation module for Scenarios 3C and 3D, the initial state utilizes the 

ITC and all of the subsequent states also have the ITC in effect to illustrate how the 

expectation of an ITC removal can increase total investment. For both the RL and 

simulations modules, Scenarios 4A through 4D are identical to 3A through 3D except 

they examine a PTC rather than an ITC. 
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Finally, Scenarios 5 and 6 determine the impacts of the respective ITC and PTC 

policies while varying fa and X\ from 0.0 to 0.5 in increments of 0.1. Therefore, 

Scenarios 5 and 6 are each comprised of a total of 36 model runs. Scenario 5 uses an ITC 

of 10 percent and Scenario 6 utilizes a PTC of $15/MWh. Investment behavior under the 

varying levels of policy uncertainty is measured by averaging wind investment actions 

from the optimal RL policy for states with the tax policy in effect and for states without 

the tax policy in effect.   Therefore, the simulation module of the general framework is 

not utilized in Scenarios 5 and 6. This metric is used in place of the simulation module to 

interpret the results of Scenarios 5 and 6 so that the results are not sensitive to the policy 

in the initial simulation state. 

Table 9 summarizes the conditions associated with each of the Scenarios 1 - 6: 

Table 9. Summary of Scenario Conditions 

RL Module Simulation Module 
Scenario fa fa fa fa Initial 

Policy 
Comparison 

Metric 
Policy 

1 0 0 0 0 ITC Sim. 
Sim. 

0%-30 % ITC 
2 0 0 0 0 PTC $0 - $22.5 PTC 

3A 0 0 0 0 No ITC Sim. 10% ITC 
3B .5 0 0 0 No ITC Sim. 10% ITC 
3C 0 0 0 0 ITC Sim. 10% ITC 
3D 0 .5 0 0 ITC Sim. 

Sim. 
10% ITC 

4A 0 0 0 0 No PTC $15 PTC 
4B .5 0 0 0 No PTC Sim. $15 PTC 
4C 0 0 0 0 PTC Sim. $15 PTC 
4D 0 .5 0 0 PTC Sim. $15 PTC 

5 0 -.5 0-.5 N/A N/A N/A Ave. Pol. 10% ITC 
0-.5       0-.5       N/A       N/A        N/A Ave. Pol. $15 PTC 
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Figure 29. Varying ITC Level (Scenario 1) 

Figure 29 shows results from Scenario 1 that demonstrate the mean levels of wind 

power investment for ITC levels ranging from 0 to 30 percent. As expected, the mean 

investment level increases with higher levels of the ITC, however, the marginal impact of 

the ITC decreases as the ITC level increases. Figure 29 also plots the maximum rate at 

which the model could invest in wind power for comparative purposes. This maximum 

investment rate originates from the upper bound on wind power investment imposed on 

the action space. Figure 29 through Figure 32 only graph new wind power capacity 
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additions and do not include the original 100 MW of wind power included in the state 

space. 

Figure 30 shows mean aggregate wind power capacity investments from the 

simulation module for Scenario 2. These results also show increased investment at 

higher PTC levels with a decreasing marginal effect of the PTC. The maximum 

allowable investment rate is also plotted for comparative purposes. It is likely that 

investment levels for the higher PTC levels would exceed these levels if not for the upper 

bound of 40 MW imposed on the model's action space. 
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Figure 31 demonstrates the results from Scenarios 3A through 3D. In Scenario 

3B, the expectation of an ITC enactment significantly reduces investment in each period 

because the agent is waiting for the ITC to be enacted prior to investing. Similarly, in 

Scenario 3D we see an increase in investment when the ITC is in place and there is an 

expectation of a transition to a state with no ITC in effect. Note that the investment 

postponing effect from the expectation of ITC removal is stronger than the investment 

accelerating effect resulting from the expectation of ITC enactment. The differing 

strengths of these effects are consistent with the results of Dixit and Pindyk (1994). 
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Results from Scenarios 4A through 4D are shown in Figure 32. These results 

show that investment increases when the agent expects to transition permanently to a 

state with the PTC (4B) and the investment level decreases when permanent removal of 

the PTC is expected (4D). Both of these effects are opposite in direction to the effects 

seen with the ITC. This opposing result can be explained by the nature of the incentive. 

Unlike the ITC, that only benefits firms at the time of the investment decision, the PTC 

benefits firms in all periods after the investment is made provided that the capacity is 

used to generate electricity. Therefore, a firm's expectation that the PTC will be in effect 

in future periods will influence whether or not they invest in wind power. 

■ -X- - ■ max rate 

-A—$15 PTC (4C) 

-B—.5 expectation of $15 PTC (4B) 

-X—.5 expectation of $15 PTC removal (4D) 

-9—no PTC (4A) 

3 4 

Time (Years) 

Figure 32. Expectation of PTC Removal or Addition (Scenario 4A - 4D) 
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Results from Scenarios 5 and 6 further elucidate these effects for the ITC and 

PTC as well as demonstrate the interaction between AQ and A\. Results from Scenario 5 

are shown in Tables 10 and 11 for states where the ITC is not in effect and is in effect 

respectively. Similarly, results from Scenario 6 are shown in Table 12 for all states 

where the PTC is not effect and in Table 13 for states where the PTC is in effect. In all 

cases cell values, which are rounded to the nearest integer, represent the mean investment 

level from the optimal RL policy across all states with an identical policy parameter. For 

instance, Table 10 cell values are averaged across all states in the state space where the 

ITC policy is in effect. The metric utilized in these tables has little meaning in absolute 

terms because it is highly dependent on the bounds of the state space.   However, the 

metric is useful in relative terms because all state spaces are defined using identical upper 

bounds. 

In Table 10, investment in wind power remains constant when A0 is equal to zero 

and A\ varies from zero to 0.5. This is expected because if the agent is in a state without 

the ITC and the probability of transitioning out of this state is zero, the probability of 

transitioning from an ITC state to a non-ITC state should not affect the firm's behavior. 

There is a sharp decrease in investment as A0 increases above zero, due to the increased 

option value of postponing investment until the agent reaches an ITC state.   There is also 

a slight interaction between A0 and A\. For higher levels of A0t investment increases as A\ 

increases because firms will postpone a larger share of their investments in wind power 

for a permanent change in policy than for a transient change. This reaction results from 
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the capacity restrictions that limit total wind power investment each period. If an ITC 

enactment is short-lived, a firm may not be able to invest as much as it wants while the 

policy is in place due to investment capacity restrictions. It is likely that this interaction 

would be less significant for higher upper bounds on per-period wind power investment. 

Table 10. Mean Investment (MW) In Wind Power Across States without the ITC 

X -l 
AQ 0.0 0.1 0.2 0.3 0.4 0.5 
0.0 20 20 20 20 20 20 
0.1 16 17 18 18 18 18 
0.2 14 15 15 16 16 17 
0.3 13 14 14 15 15 16 
0.4 13 13 14 14 15 15 
0.5 12 13 13 13 14 14 

In Table 11, there is no effect from increasing A0 if A\ is zero, because if there is 

no chance of leaving an ITC state, the probability of transitioning from a state without the 

ITC to a state with the ITC is irrelevant. As one looks across the table, the investment 

increasing effect of expecting transition to a state without the ITC can be seen. Firms 

increase their level of investment as the probability of ITC removal (A\) increases. There 

is also an interaction between A\ and AQ at higher levels of A{. As A0 increases, the 

investment-increasing effect of A\ is mitigated. This occurs because if firms expect the 

removal of the ITC policy to be permanent, they are likely to invest at a higher level than 

if they believe that ITC removal will only be temporary. 
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Tables 10 and 11 illustrate that the investment increasing effect from the 

expectation of ITC removal is smaller than the investment inhibiting effect that results 

from the expectation of an ITC. In the case of an expected ITC addition (Table 10), the 

maximum investment decreasing effect is 40 percent (20 to 12) for A0 equal to 0.5 and A\ 

equal to 0.0. In contrast, in the case of the expected ITC removal, the maximum 

investment increasing effect is 13 percent (25 to 28) for A0 equal to 0.0 and A\ equal to 

0.5. It is possible that the differences between the effect of an addition versus a removal 

would not be as great if the upper bound on wind power investment were relaxed. Given 

the current upper bound, it is possible that the investment increasing effect from a 

pending ITC removal is diminished by the upper bound on investment in wind power. 

Table 11. Mean Investment (MW) in Wind Power across States with the ITC 

A -l 
/lo 0.0 0.1 0.2 0.3 0.4 0.5 
0.0 25 27 28 28 28 28 
0.1 25 26 27 27 28 28 
0.2 25 26 26 27 27 27 
0.3 25 26 26 26 27 27 
0.4 25 26 26 26 26 27 
0.5 25 26 26 26 26 27 

Tables 12 and 13 show results for the PTC from those states without and with the 

PTC in place respectively. In Table 12, there are constant levels of investment when A0 is 

zero due to the irrelevance of A\ when there is no chance of transitioning from a state 

without the PTC to a state with the PTC. As A0 increases, investment increases because 

of increased expectations that a PTC will be implemented in the future. This investment- 
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increasing effect is stronger at lower levels of A\ because they increase the expected time 

until an enacted PTC is removed as well as increase the probability of the system being in 

a PTC state at all future points in time. 

Table 12. Mean Wind Power Investment (MW) across States without the PTC 

X -l 
Ao 0.0 0.1 0.2 0.3 0.4 0.5 
0.0 20 20 20 20 20 20 
0.1 26 26 26 25 25 24 
0.2 28 28 27 27 27 26 
0.3 30 29 29 28 28 27 
0.4 30 30 30 29 29 28 
0.5 31 31 30 30 29 29 

Table 13 shows mean wind power investment across states in which the PTC is in 

effect. As the probability of the PTC being removed (A\) increases, investment is 

inhibited. Higher levels of A0 mitigate this effect due to the influence of AQ on the mean 

time until the agent transitions back to a state with the PTC and the probability of the 

agent being in a state with the PTC at all future time periods. 

While the results from PTC are opposite in sign to those of the ITC, similar 

differences concerning the magnitudes of the effects of potential policy addition or 

removal can be seen. Table 12 shows the maximum amount of investment increase from 

expectation of the PTC of 51 percent (20 to 31) when A0 is equal to 0.5 and Ax is equal to 

0.0. This contrasts with the maximum amount of investment decrease from an expected 

PTC removal of 21 percent (32 to 26) when AQ is equal to 0.0 and A\ is equal to 0.5. 
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Table 13. Mean Wind Power Investment (MW) across States with the PTC 

A -l 
Ao 0.0 0.1 0.2 0.3 0.4 0.5 
0.0 32 31 30 28 27 26 
0.1 32 31 31 29 28 27 
0.2 32 31 31 30 29 28 
0.3 32 32 31 30 29 29 
0.4 32 32 31 30 29 29 
0.5 32 32 31 30 30 29 

4.6 Conclusions and Policy Implications 

This research demonstrates the strong relationship between policy uncertainty and 

investment behavior. We see that anticipation of a proposed policy change may produce 

near-term investment results that are opposite in direction to the intended result of the 

proposed change. Investment Tax Credits are one example of a policy that produces this 

reverse outcome because their benefits are only realized on investments made during 

periods in which the ITC is active. This effect is not observed with the PTC, as it is 

modeled in this essay, because the benefits from the PTC in a given year do not depend 

upon the year in which an initial investment is made. Rather, the benefits from the PTC 

are only determined by the policy in place in any given year. 

Therefore, if legislation were introduced in Congress to provide a large ITC on 

wind power, investment may subside as firms wait for the credit to be enacted. These 

results show that even a very low likelihood of actual ITC enactment could motivate a 

large decrease in wind power investment. Similarly, uncertainty over whether a given 
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policy will be extended beyond its expiration date could speed up investment in wind 

power investment beyond desired levels. These effects contrast with the impact of 

expectations of a PTC, as it is modeled in this essay, which may produce an increase 

(decrease) in wind power investment prior to enactment (removal) of the PTC. 

The results from this essay extend the work of Dixit and Pindyk (1994) and 

Hasset and Metcalf (1999) by looking at a case where ITCs are only applied to a subset 

of available technologies. Since, substitution opportunities exist between wind and 

classical technology investments, the investment postponing and enhancing effects of 

ITC expectation are stronger than those previously found. 

Results from this essay also make clear that long-run policy stability is critical to 

effective management of wind power subsidy programs. However, since this is often 

impossible given the political nature of public policy in the United States, policies should 

be structured to provide benefits during the years in which the policy is in effect 

regardless of the year of investment. 

The PTC that is currently in place in the United States does not operate in the 

same way as the PTC that is modeled in this essay. Rather, the PTC's benefits are only 

realized on investments made when the policy is in effect. Therefore, the expectation of 

this PTC's addition or removal would impact investment in a manner similar to that of an 

ITC. This effect may partially explain the large increase in wind power investment in 

1998 and 1999 as investors increased their rate of investment to take advantage of the 

PTC before the extension/removal decision was made in 1999. 
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One policy recommendation stemming from this essay's results is that future 

PTCs should provide a multi-year guarantee of tax credits to all firms who invest during 

the period in which the legislation is in effect. However, these results suggest that a 

stipulation should be added allowing for firms to take advantage of the credit, while the 

policy is in effect, regardless of when their investment was made. A policy structured in 

this manner would be less prone to the strong investment decreasing effect of policy 

expectation than a policy that only rewards firms that invest while the policy is in effect, 

because firms that make their investment decision prior to policy enactment would still 

be able to realize some of the benefits of the policy. However, a policy structured in this 

manner would not prevent "over investment" upon the expectation of policy removal. 

Results from this essay also suggest that policies that are not stable across time 

may bring about suboptimal increases or decreases in the investment level. This type of 

policy stability is not being fostered by current United States legislative actions. Rather 

than either ending the PTC or granting a 5-year extension of the PTC through June 30, 

2004, a compromise two and a half year extension through December 31, 2001 was 

reached. This short extension may create another flurry of wind power investment 

activity in 2001 as investors rush to invest before the PTCs potential removal. 

These results also provide some preliminary insights on the effect of pending RPS 

legislation on current investment in renewable technologies. Since the RPS requires that 

a certain percentage of a firm's generation come from renewable power or that firms buy 

renewable power credits, anticipation of this standard should encourage firms to invest in 
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renewable technologies prior to enactment of the legislation. This result should occur 

because the proposed RPS does not differentiate between investments made prior to and 

during the period in which the legislation is in place. Therefore, the anticipation of a RPS 

creates no incentive for firms to postpone renewable investments prior to enactment of 

the RPS. The lag between the investment decision and investment completion also deters 

firms from waiting to see if a RPS will be in effect prior to investing. Renewable 

investment levels prior to the RPS should still be lower than those levels while the RPS is 

in effect. In addition, investment in renewable technologies should be lower for firms 

facing an uncertain RPS enactment compared with firms that face certain RPS enactment. 

Additionally, Several extensions to this research are suggested. First, the 

relationship between uncertain tradable pollution permits and wind power investment 

should be analyzed since this is an alternative means to encourage wind power 

investment (and renewables more generally). If firms are forced to either limit their 

fossil fuel emissions or purchase tradable permits, it should encourage investment in 

wind and other renewables by reducing the relative cost of renewable generation. It 

would also be useful to ascertain the effects of uncertain wind power ITCs, wind power 

PTCs, and tradable pollution permits on classical dispatch. This analysis would show 

how uncertainty over the aforementioned policies would affect actual pollution levels. It 

is likely that the degree of substitutability between wind power and the classical 

generation technologies would greatly impact the amount by which emissions could be 

reduced through wind power investment. Also, sensitivity analysis on the bounds of the 
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action space, the level of the ITC or PTC, and the wind power capacity factor would 

provide a better understanding of the relationship between these assumptions and the 

investment response to tax policy uncertainty. 

Finally, the model presented in this essay could be extended to examine a RPS 

rather than a single technology subsidy. An RPS may be preferable to the single 

technology subsidy addressed in this paper because substitution among renewable 

technologies is permitted. Therefore, the market determines the mix of renewable 

technologies. This contrasts with a single technology subsidy, which creates a bias in 

favor of the subsidized technology. Also, policies such a RPS give producers the greatest 

flexibility because they permit them to either purchase renewable credits or invest 

directly in renewable power depending on which alternative is most cost effective. 
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Chapter 5 

CONCLUSIONS 

This research developed a reinforcement learning (RL)-based modeling 

framework for analyzing long-run electricity generation investment and applied it to 

several relevant policy issues. The framework analyzed the effect of capacity subsidies 

and price caps on investment level and spot prices. Additionally, the framework was 

used to determine the effect of an anticipated investment tax credit (ITC) or production 

tax credit (PTC) enactment or removal on wind power investment. 

The first essay demonstrated that reinforcement learning (RL) can be used to 

develop flexible models of generation investment behavior under uncertainty. The 

flexible nature of this technique results from the fact that RL does not require the explicit 

definition of transition probabilities and thereby circumvents the "curse of modeling." 

Instead, an optimal policy is derived though a trial and error interaction between an agent 

and its environment. When RL is used to model generation investment, several general 

conclusions regarding electricity generation investment and uncertainty are demonstrated. 

First, the large up-front investment costs and per-period fixed costs associated with 

generation investment cause expected value models to significantly overestimate 

generation investment levels when demand is uncertain. This bias results from the failure 

of expected value models to account for the opportunity cost of investing when there is 



134 

the option to wait for more information. Similarly, the results showed that an 

overestimation of the level of demand uncertainty will lead to predicted investment 

outcomes that fall short of actual levels. These modeling biases are critical for policy 

makers to understand because many planning models that are currently used to forecast 

future investment do not account for uncertainty. If these models overestimate future 

levels of investment, policy makers may be surprised when actual investment levels fall 

short of these predictions. This direction of modeling bias is especially problematic 

because insufficient levels of investment could result in system reliability problems if no 

mechanisms are in effect to promote a demand-side response to price. 

The second essay exploited the flexibility of RL to show how the design of a 

restructured electricity market can impact long-run investment behavior and spot market 

prices. The results showed that capacity subsidies act to increase overall investment 

while reducing spot market price volatility. These benefits come at the expense of 

increasing average total electricity prices, where the total prices include both energy 

prices and capacity charges. 

The results suggest that capacity subsidies, or closely related reserve 

requirements, may not be the most efficient policy alternative for ensuring generation 

adequacy because they implicitly assume that all consumers have similar risk 

preferences. Additionally, this mechanism assumes that all consumers value reliability 

equally. Therefore, a forward market combined with a system in which consumers can 
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self-select the level of reliability they desire should attain the benefits of a capacity 

subsidy in a more efficient manner. 

The results also showed that price caps will not reduce average prices in the social 

welfare maximization scenario and may actually raise average electricity prices. In 

addition, they may reduce overall investment levels and result in welfare losses if the ISO 

is forced to shed load. Therefore, since social welfare maximization will approximate a 

competitive outcome, the results imply that price caps should be avoided in competitive 

markets. In contrast, for the monopoly producer, price caps produce an indeterminate 

effect on overall investment, and unequivocally lower average prices (which are 

otherwise unbounded). Therefore, price caps are necessary to prevent unlimited price 

markups. However, the ideal level of a monopolist's price cap is difficult to determine as 

a result of the bimodal response of investment to the price cap level. If the policy goal is 

to maximize the investment level, then price caps ranging from $200/MWh to 

$300/MWh appear to be ideal. Lower caps may reduce investment levels because if 

prices are too low, the monopolist will not invest to meet peaking loads. Also, if the cap 

is too high, there will be a decrease in the investment level because the monopolist will 

reduce its level of output in all periods in order to increase the market spot price to the 

price cap level. 

The third essay used RL to demonstrate how uncertainty over the enactment or 

repeal of a wind power subsidy may affect wind power investment. If the policy in 

question only rewards firms if they invest while the policy is in effect, as is the case with 
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an investment tax credit (ITC), firms will speed up their investment decisions if they 

anticipate a policy repeal. If firms anticipate a policy enactment, they will slow down 

their rate of investment due to the increased option value of waiting rather than investing. 

In contrast, if the policy in question is applied without regard to the year of investment, as 

is the case with the production tax credits (PTCs) modeled in this research, the direction 

of the effects from uncertainty will change. For this type of policy, firms will speed up 

their level of investment in anticipation of a policy enactment and slow down their rate of 

investment in anticipation of a policy repeal. 

The third essay also demonstrated that the effects of policy uncertainty may be 

stronger when substitution opportunities exist between subsidized and unsubsidized 

technologies, because firms may make compensating increases or decreases in 

investment in the nonsubsidized technology. Because of the significance of the effects of 

pending policy enactment or removal, policy makers should strive to attain policy 

stability. If this is impossible, due to political or other factors, then policies should be 

designed so that they are applied without regard to the year of investment. 

Each of the essays in this dissertation demonstrated the importance of considering 

dynamics and uncertainty when analyzing the magnitude and direction of policy effects 

on investment. A static analysis of the effects of a price cap will always lead to a lower 

average price if the cap is binding or an unchanged price if the cap is nonbinding. The 

second essay demonstrated that dynamic analysis may produce the opposite conclusion 

due to the effect of price caps on long-run investment. The criticality of considering 
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uncertainty and dynamics is also demonstrated in the third essay which evaluates the 

effects of policy uncertainty on investment. The result that a potential ITC enactment 

(removal) could lead to a decrease (increase) in the respective level of investment is 

counterintuitive and would be impossible to model statically. Even a two-period model 

could not replicate this analysis because it could not simultaneously consider a firm's 

expectations concerning the probability of policy removal (A\) and the probability of 

policy enactment (AQ). 

This research has shown that RL is a useful tool that can effectively model the 

effects of various policy issues on electricity generation investment. Future work could 

apply the RL framework to analyze investment in transmission in addition to generation. 

Future work should also focus on the development of multi-agent models that are capable 

of examining cases of imperfect competition. These multi-agent models could potentially 

capture the game theoretic aspects of oligopolistic markets. 
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APPENDIX A 

C++ CODE FOR GENERAL RL FRAMEWORK 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <iostream.h> 
//technology 1 is combined cycle 
//technology 2 is combustion turbine 

//***** CONSTANTS ***** 
#definemaxkl 19// 
#definemaxk2 19// 
#define maxd 1911 
#define numstates 8000//(maxkl+l)*(maxk2+l)*(maxd+l) 
#define maxact 6 //total number of actions available at any time step 
#define epsilon .75 
#define theta 1 
#define alpha 40 //slope of linear demand curve 
#define gamma .9 //l/(l+discount rate) 
#definevl 17 
#define v2 26 
#definefl 11110 
#defmef2 150 
#define il 573000//combined cycle 
#define i2 384000//combustion turbine 
#defme maxloads 8 
#define simtime 60//years in simulation 
#define simnum 100//replications of simulation 
#define block 150 //block size 
#define dblock 1//additional demand scaling for block 
#defme instep l//how many blocks you move each investment 
#define startkl 0 
#define startk2 0 
#define startdemand 2 
#define avail .9//plant availibility 
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//*****GLOBAL VARIABLES 
int kl,kkl,k2,kk2,d,dd; //capacity for each technology and demand shift 
int s,ss;//current state 
int a;//action chosen 
double Q[numstates][maxact]; 
double soft[numstates][maxact]; 
double rewg [maxk 1+1 ] [maxk2+1 ] [maxd+1 ] [maxact]; 
int ffnumstates]; 
int count; 
int aa; //successor action 
double loadsize[maxloads];//load duration curve sizes 
double load[maxloads];//load duration curve loads 
double sigma;//standard deviation of demand shift paramet transition 
int perspective;//l=SW max; 0=profit max 
int perspective2;//0=nothing l=price adder 2=capacity payment 
double pricecap; 
double elas; 
double sumdelta; 
double sumdeltaold;//old sumdelta 
double Qold; 
double Qnew; 
double lr;//learning rate 
double first;//first derivative; 
int showprice; 
double meanprice;//mean price to be used to simulation; 
double nondispatch;//amount of undispatched capacity at peak 
double res;//undispatched capacity as a percentage 
double peakprice; 
double pOprice; 
double pi price; 
double p2price; 
double p3price; 
double p4price; 
double p5price; 
double pöprice; 
double p7price; 
double csg; 
double prof; 
double temperatureO; 
double temperature; 
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double con,con2; 
double lolp; 
double quantity; 
double dshiftvec[simnum] [simtime+1 ]; 
int techl[]={ 0,0, U,0,2}; 
inttech2[]={0,l,0,l,2,0}; 
intlooktablel[]={-2,-2,-2,-2,-2,-2,-2, 

-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,- 
1,-1,-1, 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
Z,Z,Z,Z,Z,Z,Zj, 

int looktable2[]={-5,-5, 
-4,-4,-4, 
-3,-3,-3,-3,-3,-3, 
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, 
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
222222222222 
3 3 3 3 3 3 
4,4,4, 
5,5}; 

double seed; 
double harmonic; 
int maxcounta; 
double numpchanges; 
double nopchanges; 
double T; 
//**************************** QETZ* ************************************ 

int getz(double sigma) 
{ 

intr; 
intz; 
if (sigma==0) 
{ 

z=0; 
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else if (sigma==l) 

r=(rand()%100); 
z=looktablel[r]; 

else if (sigma—2) 

r=(rand()%100); 
z=looktable2[r]; 

return(z); 
} 

^y **************************** Qg'JV ************************************* 

//**************************** s JIO WM AX* ******************************* 

void showmax () 
{ 

int i,j;//counters 
double temp; 
int maxstate; 

maxstate^O; 
temp=0; 
for (i=0;i<numstates;i++) 
{ 

for (j=0;j<maxact;j++) 
{ 

if(soft[i][j]>temp) 
{ 

temp=soft[i][j]; 
maxstate=i; 

} 

} 
} 

printf(" %i temp - %f probabilities = %f %f %f %f 
\n",maxstate,temperature,soft[maxstate][0],soft[maxstate][l],soft[maxstate][2],soft[maxst 
ate][3]); 
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} 

//*******************************TMTTT A T JVC***************************** 

void initialize () 
{ 

int i,j; //counters 

for (i=0;i<numstates;i++) 
{ 

f[i]=0; 
for (j=0;j<maxact;j++) 
{ 

QHÜH; 
} 

} 

} 
//******************************* JNTTT AITZF ***************************** 

//****************************** * FMTTQQHTpT**************************** 

void initdshift() 
{ 

int i,t;//counters 
double d; 

for (i=0;i<simnum;i++) 
{ 

d=startdemand; 
for (t=0;t<simtime;t++) 
{ 

dshiftvec[i][t]=d; 
d=d+theta+getz(sigma); 
if(d<0){d=0;} 
if (d>maxd) {d=maxd;} 

} 
} 
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} 
/ /******************************* fMTTDSHTFT* *************************** 

//* ************************** * SOFTMAX* ******************************** 

void softmax () 
{ 

int ij; 
double total; 
double temp[maxact]; 
double max; 
intt; 

total=0; 

for (i=0;i<numstates;i++) 
{ 

max=-999999999; 
for (j=0;j<maxact;j++) 

{ 
if(Q[i][j]>max) 
{ 

max=Q[i][j]; 
t=j; 

} 

} 

for (j=0;j<maxact;j++) 
{temPD]=Q[i]ü]/max;} 

total=0; 
for (j=0;j<maxact;j++) 
{ 

total=total+po w(2.7 8 ,temp [j ] /temperature); 
} 

for (j=0;j<maxact;j++) 
{ 

soft[i] [j ]=(pow(2.78 ,temp [j ]/temperature)/total); 
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} 

} 
} 
//* *************************** SOFTMAX* ******************************** 

//*************************** * SOFTACTION* ***************************** 

void softaction() 
{ 

double temp; 
int iii; 
double r; 
double toggle; 

r=((double)rand()/(double)RAND_MAX);//generates random number between 0 
and 1 

toggle=0; 
temp=0; 

for(iii=0;((iii<maxact)&&(toggle==0));iii++) 
{ 

temp=temp+soft[s] [iii]; 
if ((temp>r)&&(toggle==0)) 
{ 

a=iii; 
toggle=l; 

} 
} 

} 
//* ************************** * SOFTMAX* ******************************** 

II****************************prMT)sS*********************************** 

void findss () 
{ 

kkl=kl+instep*techl[a]; 
kk2=k2+instep*tech2[a]; 
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dd=d+theta+getz(sigma); 

if (kkl>maxkl) {kkl=maxkl;} 
if (kk2>maxk2) {kk2=maxk2;} 
if (kkl<0) {kkl-O;} 
if (kk2<0) {kk2=0;} 
if (dd>maxd) {dd=maxd;} 
if (dd<0) {dd=0;} 

} 
//#************************** *pTMr)<s<5 **************** ******************* 

//* *************************** GETRFWARD* ***************************** 

double getreward (int kl,int k2,int d,int a) 
{ 

double qul,qu2,q;//unconstrained dispatch of each technology 
double ql,q2;//actual dispatch of each technology 
double reward,totalreward; 
double capl,cap2,acapl,acap2; 
double dtotal;//total demand parameter 
int ii;//counter 
double kl0,k20;//initial quantities of capacity 
double price,chokeprice,chokequantity;//price in this period 
double cs;//consumer surplus 
double temp2;//used in anchor point calculation 

loadsize[0]=. 00014; 
loadsize[l]=. 003871 
loadsize[2]=.202869 
loadsize[3]=.244422 
loadsize[4]=.318761 
loadsize[5]=. 174863 
loadsize[6]=. 050091 
loadsize[7]=.005009 

temp2=pow(30,elas) 

load[0]=4000/temp2 
load[l]=5000/temp2 
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load[2]=6000/temp2 
load[3]=7000/temp2 
load[4]=8000/temp2 
load[5]=9000/temp2 
load[6]=10000/temp2; 
load[7]=11000/temp2; 

chokeprice=1000; 

meanprice=0; 
quantity=0; 

totalreward=0; 

if (showprice==l) 
{csg=0; 
prof=0;} 

klO=10000; 
k20=0; 

capl=kl*block+klO; 
cap2=k2*block+k20; 

acapl=capl* avail; 
acap2=cap2*avail; 

for (ii=0;ii<maxloads;ii++) 
{ 

dtotal=load[ii]+d*block*dblock; 

chokequantity=dtotal*pow(chokeprice,elas); 

if (perspective==l) 
{ 

qu 1 =dtotal * po w( v 1 ,elas); 
qu2=dtotal*pow(v2,elas); 

} 
else if (perspective==2) 
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qul=dtotal*pow(pricecap,elas); 
qu2=dtotal * po w(pricecap,elas); 

} 

if (perspective==l)//SW MAX 
{ 

if (acapl>qul){q=qul;ql=qul;q2=0;} 
else if ((acap 1 <qu2) && ((acap 1 +cap2)>qu2)) 

{q=qu2;q 1 =acap 1 ;q2=(qu2-acap 1);} 
else if ((acapl>qu2) && (acapKqul)) 

{q=acapl;ql=acapl;q2=0;} 
else {q=acapl+acap2;ql=acapl;q2=acap2;} 

} else if (perspective==2)//mononpoly profit max 
{ 

if(acapl>qul){q=qul;ql=qul;q2=0;} 
else if ((acapl<qu2) && ((acapl+acap2)>qu2)) 

{q=qu2;ql=acapl;q2=(qu2-acapl);} 
else if ((acapl>qu2) && (acapKqul)) 

{q=acapl;ql=acapl;q2=0;} 
else {q=acap 1 +acap2 ;q 1 =acap 1;q2=acap2;} 

} 

if (q<chokequantity) {price=1000;} 
else {price=pow((q/dtotal),(l/elas));}//pow is still here 

if (price>pricecap) {price=pricecap;} 

if (showprice==l) 
{meanprice=meanprice+(price*loadsize[ii]); 
quantity=quantity+(q* loadsize [ii]);} 

here 

cs=dtotal*pow(chokeprice,(elas+1 ))/(elas+1 )- 
dtotal*pow(price,(elas+l))/(elas+l);//pow is still 

if (perspective==:: 1) 
{ 

reward=loadsize[ii]*365*24* 
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} else if (perspective=:=2) 
(q*price - vl *ql - v2*q2 +    cs); 

reward=loadsize[ii]*365*24* 
(q*price - vl*ql - v2*q2); 

totalreward=totalreward+reward; 

if (showprice==l) 
{csg=csg+cs*loadsize[ii]*365*24; 
prof=prof+loadsize[ii]*365*24*(q*price-vl*ql-v2*q2);} 

if ((showprice==l) && (ii==(maxloads-l)) ) 
{nondispatch=cap 1 +cap2-q; 

res=(cap 1 +cap2-q)/q; 

peakprice=price;} 

if ((showprice== 
if ((showprice== 
if ((showprice== 
if ((showprice== 
if ((showprice== 
if ((showprice== 
if ((showprice== 
if ((showprice== 

1) && (ii= 
1) && (ii= 
1) && (ii= 
1) && (ii= 
1) && (ii= 
1) && (ii== 
1) && (ii== 
1) && (ii= 

:0)) {pOprice= 
:1)) {plprice= 
■2)) {p2price= 
:3)) {p3price= 
:4)) {p4price= 
:5)) {p5price= 
:6)) {p6price= 
:7)) {p7price- 

:price;} 
=price;} 
=price;} 
price;} 
=price;} 
=price;} 
:price;} 
:price;} 

}//for loop 

totalreward=totalreward-fl*capl - f2*cap2- 
instep*block*techl[a]*il-instep*block*tech2[a]*i2; 
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if (showprice==l) {prof=prof-fl*capl-f2*cap2- 
instep*block*tech 1 [a] * i 1 -instep* block*tech2 [a] * i2;} 

return(totalreward); 
} 
//*************************** *GFT|?F WAR F) ********** ******************** 

//* ************************* * *T JPD ATFP* * ******************************* 

void updatep () 
{ 

int i; 
double temp; 
double temp2; 

temp2=f[s]; 
temp=-999999; 
for (i=0;i<maxact;i++) 
{ 

if(Q[s][i]>temp) 
{ 

temp=Q[s][i]; 
f[s]=i; 

} 
} 
if (temp2!=f[s]) {numpchanges++;} 

} 
//**************************** Tjpr) A TEP ********************************* 

//* *************************** QFTSTATE* ******************************* 

int getstate(int kl,int k2,int d) 
{ 

int temp; 
temped* ((maxk 1+1) * (maxk2+1 ))+k2 * (maxk 1+1 )+k 1; 
return(temp); 

} 
//**************************** QFTSTATE* ******************************* 
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//# ************************* * * ABSOLUTE* ******************************* 

double absolute(double tl,double t2) 
{ 

double temp; 
temp=tl-t2; 
if (temp<0) {temp=temp*-l;} 
return(temp); 

} 
//**************************** A r> OQT T JTp ******************************** 

//*************************** * SHO WRESULTS **************************** 

void showresults () 
{ 

int i,j,k;//counters 
int temp; 
FILE *SP; 
SP= fopen("show.dat","a"); 

for (i=0;i<=maxkl;i++) 
{ 

printf(" kl - %i \n",i); 
fprintf(SP," kl = %i \n",i); 
for (j=0;j<maxk2;j++) 
{ 

for (k=0;k<maxd;k++) 
{ 

temp=getstate(i,j ,k); 
printf(" %i ",f[temp]); 
fprintf(SP," %i ",f[temp]); 

} 
printf(" \n*'); 
fprintf(SP," \n"); 
} 

} 
fclose(SP); 
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//* ************************** * SHO WRESUI TS **************************** 

//* ************************* * *PP TMTQT IT* ******************************** 

void printout (double invar[simnum][simtime],int all) 
{ 

FILE *FP; 
FP= fopen("diss.dat","a"); 
int i,t;//counters 
double mean[simtime]; 
double stddevfsimtime]; 
double upper[simtime]; 
double lower[simtime]; 
//calcalating means 
for (t=0;t<simtime;t++) 

{ 
mean[t]=0; 
for (i=0;i<simnum;i++) 

{ 
mean[t]=mean[t]+(double)invar[i] [t]; 

} 
mean[t]=(mean[t]/simnum); 
} 

//calculating stddev, upper, and lower 95% confidence bounds 
for (t=0;t<simtime;t++) 

{ 
stddev[t]=0; 
for (i=0;i<simnum;i++) 

{ 
stddev[t]=stddev[t]+(mean[t]-invar[i][t])*(mean[t]- 

invar[i][t]); 
} 

stddev[t]=(stddev[t]/(simnum-1)); 
stddev [t] =po w(stddev [t],. 5); 
lower[t]:=mean[t]-1.96*stddev[t]; 
upper[t]=mean[t]+l .96*stddev[t]; 
} 

for (t=0;t<simtime;t++) 
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{ 
printf("%f",mean[t]); 
fprintf(FP,"%f",mean[t]); 

} 
printf(*'\n"); 
fprintf(FP,"\n"); 

if(all==l) 
{ 

for (t=0;t<simtime;t++) 
{ 

printf("%f",lower[t]); 
fprintf(FP," %f ",lower[t]); 

} 
printf("\n"); 
fprintf(FP,"\nM); 

for (t=0;t<simtime;t++) 
{ 

printf("%f",upper[t]); 
fprintf(FP," %f ",upper[t]); 

} 
printf("\n"); 
fprintf(FP,"\n*'); 

}//all 
fclose(FP); 

} 
II* ************************** *PRINX OUT* ******************************** 

y^******************************* SIMULATE* **************************** 

void simulate () 
{ 

int i,t; //counters 
int ktechl,ktech2,demand; 
int kktechl,kktech2,ddemand; 
int simstate;//simulation state 
int sucstate;//successor state 
double reward; 



double capacity[simnum][simtime];//capacity by time and simulation run 
double capacity l[simnum][simtime];//capacity of technology 1 
double capacity2[simnum][simtime];//capacity of technology 2 
double pricevec [simnum] [simtime] ;//price 
double quantityvec[simnum] [simtime] ;//mean quantity dispatched 
double nondispatchvec[simnum] [simtime] ;//amount of excess capacity at peak 
double resvec [simnum] [simtime] ;//reserve margin 
double peakpricevec [simnum] [simtime]; 
double pOvec[simnum][simtime]; 
double plvec[simnum][simtime]; 
double p2vec[simnum][simtime]; 
double p3vec[simnum][simtime]; 
double p4vec[simnum][simtime]; 
double p5vec[simnum][simtime]; 
double pövec[simnum][simtime]; 
double p7vec[simnum][simtime]; 
double csvec [simnum] [simtime]; 
double profvec[simnum][simtime]; 
double dshiftvec2[simnum][simtime]; 
double lolpvec[simnum][simtime]; 

for (i=0;i<simnum;i++) 
{ 

ktechl=startkl; //initial starting state parameters 
ktech2=startk2; //initial starting state parameters 
demand=startdemand; //initial starting state parameters 
for (t=0;t<simtime;t++) 
{ 

capacity[i][t]=(ktechl+ktech2)*block; 
capacityl [i][t]=ktechl *block; 
capacity2[i][t]=ktech2*block; 
simstate=getstate(ktechl,ktech2,demand); 
kktechl =ktechl +instep*techl [(ffsimstate])]; 
kktech2=ktech2+instep*tech2[(f[simstate])]; 
ddemand=:(int)dshiftvec [i] [t+1 ]; 

if (kktechl>maxkl) {kktechl=maxkl;} 
if (kktech2>maxk2) {kktech2=maxk2;} 
if (kktechKO) {kktechl =0;} 
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getreward 

get reward 

if (kktech2<0) {kktech2=0;} 

showprice=l; 
reward=getreward(ktech 1 ,ktech2 ,demand,f[simstate]); 

pricevec[i][t]=meanprice;//note: meanprice was calculated in 

quantityvec[i] [t]=quantity; 
nondispatchvec[i][t]=nondispatch;//nondispatch was calculated in 

resvec[i][t]=res;//res was calculated in get reward 
peakpricevec[i][t]=peakprice; 
lolpvec[i][t]=lolp; 
pO vec [i] [t] =pOprice; 
plvec[i][t]=plprice; 
p2vec[i] [t]=p2price; 
p3vec[i][t]=p3price; 
p4vec[i][t]=p4price; 
p5vec[i][t]=p5price; 
p6vec[i][t]=p6price; 
p7vec[i][t]=p7price; 

csvec[i][t]=csg; 

profvec[i][t]=prof; 

dshiftvec2[i] [t]=demand; 

showprice=0; 

sucstate=getstate(kktechl,kktech2,ddemand); 
simstate=sucstate; 
ktechl=kktechl; 
ktech2=kktech2; 
demand=ddemand: 

}//time loop 
}//i loop 

printf("total capacity"); 
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printout(capacity, 1); 
printf("technology 1  "); 
printout(capacity 1,1); 
printf("technology 2 "); 
printout(capacity2,1); 
printf("price "); 
printout(pricevec,0); 
printf("quantity"); 
printout(quantityvec, 0); 
printf("nondispatched capacity at peak "); 
printout(nondispatchvec,0); 
printf("reserve margin"); 
printout(resvec,0); 
printf("peak price "); 
printout(peakpricevec,0); 
printf("price 0 "); 
printout(pOvec,0); 
printf("price 1 "); 
printout(plvec,0); 
printf("price 2 "); 
printout(p2vec,0); 
printf("price 3 "); 
printout(p3vec,0); 
printf("price 4 "); 
printout(p4vec,0); 
printf("price 5 "); 
printout(p5vec,0); 
printf("price 6 "); 
printout(p6vec, 0); 
printout(p7vec,0); 
printf("price 7 "); 

printf("cs "); 
printout(csvec,0); 

printf("prof"); 
printout(profVec, 0); 

printf("demand "); 
printout(dshiftvec2,l); 
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printfflolp "); 
printout(lolpvec,0); 

}//simulate 
//*******************************QT\/[TJT ATp***************************** 

********* 

;/* **************************** * *r\TTTP P WQ* ***************************** 

void initrewgO 
{ 

int i,j,k,m; 

for (i=0;i<=maxkl;i++) 
{ 

for (j=0;j<=maxk2;j++) 
{ 

for (k=0;k<=maxd;k++) 
{ 

for (m=0;m<maxact;m++) 
{ 

rewg[i] [j] [k] [m]=getreward(i,j ,k,m); 
} 

} 
} 

} 
} 
//****************************** *TNITTT? p W(T* ***************************** 

//******************************* Jy[Y|yf A TM* ****************************** 

void mymain () 
{//mymain 

FILE *PP; 

PP= fopen("detail.dat","a"); 

srand(l); 
// lr=.4; 
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lr=5; 
harmonic=2;//3000 
showprice=0; 
numpchanges=0; 
nopchanges=0; 
temperature=l; 
con=-l*log(.003)/maxcounta;//for temperature decay 
con2=-1 * log(.0001 )/maxcounta; 
initialize();//initialize all variables 
initrewg(); 
softmax(); 
showmax(); 
for (count=0;nopchanges<T;count++) 
{ 

if (count== 100000) {sumdeltaold=sumdelta;} 
if (((count%100000)==0)&&(count> 100000))//1000 is baseline lr 

decay=.999 is also baseline 
{ 
first=sumdelta-sumdeltaold; 
if (first>0) {lr=lr*.l;} 
sumdeltaold=sumdelta; 
if ((count%10000)==0) {printf("it = %i numpchanges = %f 

nopchanges = %f lr = %g sumdelta = %g 
\n",count,numpchanges,nopchanges,lr,sumdelta);} 

sumdelta=0; 
if (numpchanges==0) {nopchanges++;} 
else {nopchanges=0;} 
numpchanges=0; 
} 

if (((count% 100000)==0)&&(count>0)) 
{ 
temperature=(po w(2.78,-1* con* count)); 
softmax(); 
showmax(); 
showresults(); 
} 

for (kl=0;kl<=maxkl;kl++) 
{ 
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for (k2=0;k2<=maxk2;k2++) 
{ 

for (d=0;d<=maxd;d++) 
{ 

s=getstate(kl,k2,d); 
softaction(); 
findss(); 
ss=getstate(kkl ,kk2,dd); 
aa=f[ss]; 
Qold=Q[s][a]; 
Q[s][a]=Q[s][a] 

+lr*(rewg[kl ] [k2] [d] [a]+gamma*Q[ss] [aa]-Q[s] [a]); 
Qnew=Q[s][a]; 
sumdelta=sumdelta+absolute(Qnew,Qold); 
updatep(); 

}//d loops 
}//k2 loop 

}//kl loop 
}//count loop 
printf(**\n"); 
showprice=l; 
simulate(); 
showresults(); 
FILE *FP; 
FP= fopen("diss.dat","a"); 
fprintf(FP,"total number of iterations = %i sigma= %f \n",count,sigma); 
fclose(FP); 
fclose(PP); 

}//mymain 
//******************************* ]Vf YJVf ATN* ****************************** 

//*******************************\AATM* ********************************* 

void main () 
{//main 

FILE *FP; 
FP= fopen("diss.dat","w"); 
fclose(FP); 
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FILE *SP; 
SP= fopen("show.dat","w"); 
fclose(SP); 

FILE *PP; 
PP= fopen("detail.dat","w"); 
fclose(PP); 

sigma^l; 
initdshift(); 

sigma=l; 
maxcounta=3500000; 
T=5; 
elas=-. 1; 
pricecap=1000; 
perspective^; 
printf("*********price cap = %f elasticity = %f perspective = %i simga = %i 

\n",pricecap,elas,perspective,sigma); 
FP= fopen("diss.dat","a"); 
fprintf(FP/'*********price cap = %f elasticity = %f perspective = %i sigma= %i 

\n",pricecap,elas,perspective,sigma); 
fclose(FP); 
mymain(); 

sigma=l; 
maxcounta=3500000; 
T=5; 
elas=-.l; 
pricecap=50; 
perspective=2; 
perspective2=l; 
printf("*********price cap = %f elasticity = %f perspective = %i simga = %i 

\n" ,pricecap,elas,perspective,sigma); 
FP= fopen("diss.dat",Ma"); 
fprintf(FP,"*********price cap = %f elasticity = %f perspective = %i sigma= %i 

\n",pricecap,elas,perspective,sigma); 
fclose(FP); 
mymain(); 

}//main 
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//* ****************************** MAIN* ********************************* 


