Processing and Deposition of Nanocrystalline Oxide Composites for Thermal Barrier Coatings

Technical Report on ONR Grant No. N00014-95-1-0626 for the period of April 1, 2000-June 30, 2000

> Jackie Y. Ying Department of Chemical Engineering Massachusetts Institute of Technology Room 66-544, 77 Massachusetts Avenue Cambridge, MA 02139-4307 Tel: (617) 253-2899 Fax: (617) 258-5766

1. Electrophoretic Deposition of NiCrAlY Bond Coat and Oxide Nanocomposite

As described in a previous report [1], electrophoretic deposition was used as the method in coating substrate materials for thermal barrier coating applications. In this report, we used electrophoretic deposition to deposit a NiCrAlY bond coat, and a nanocomposite Al_2O_3 -YSZ coating, onto a Ni substrate. The bond coat forms a protective oxide scale that inhibits oxidation of the alloy substrate. The NiCrAlY interlayer can also provide good diffusion stability between the metallic substrate and the ceramic coating layer. We examined the thermal stability of the Al_2O_3 -YSZ coatings when applied on top of the NiCrAlY-based bond coat. In particular, the effect of alumina content on the thermal stability of the nanocomposite coatings was examined.

For deposition of the bond coat, a coating solution consisting of ethanol, water, nitric acid, and the NiCrAIY powder was used. The coating composition was similar to that reported previously [1]. NiCrAIY powder was first mechanically milled for 24 hr to decrease particle size and then added to the coating solution to form a slurry. The slurry was then ultrasonicated for 15 min and aged for 24 hr. Ni electrodes were then lowered into the slurry and a DC voltage (~ 40 V/cm) was applied for 120 sec, resulting in a ~ 50 μ m-thick coating of the cathode with the NiCrAIY powder. The electrodes were then removed from the slurry, and the coated Ni electrode was dried at 110 °C for 2 hr.

Next, Al_2O_3 -YSZ nanocomposites were coated onto NiCrAlY-coated substrates using electrophoretic deposition. A DC voltage (~ 40 V/cm) was applied for 300 sec, resulting in a ~ 50 µm-thick Al_2O_3 -YSZ coating on top of the NiCrAlY bond coat. Following drying, the coatings were cold isostatically pressed at 50,000 psi to increase mechanical stability.

2. Thermal Stability of Alumina-Zirconia Thermal Barrier Coatings

Oxide nanocomposite coatings with various Al_2O_3 contents were prepared and tested for thermal stability in the presence and absence of a bond coat (Table 1). Following electrophoretic deposition, the Al_2O_3 -YSZ/NiCrAlY-coated Ni substrates were pretreated in argon at 1150 °C for 1 hr (ramp = 10 °C/min). They were then tested for long-term thermal stability by heating to 1150 °C in air (ramp =10 °C/min). In addition, the coatings were also subjected to thermal cycles of 25 °C-1150 °C-25 °C (with ramping and cooling rates of ~ 300 °C/min) to examine any failure modes due to thermal shock. The samples were inspected visually every hour for spallation of the coating and oxidation of the Ni substrate. All experiments were repeated three times.

The addition of the bond coat did not significantly increase the thermal stability of the thermal barrier coatings. Coatings prepared with and without the intermediate bond coat layer had similar thermal stability, in both coating lifetime and thermal cycling studies (Tables 1 and 2).

The addition of a small amount of Al_2O_3 to the coatings had a positive effect on the coating lifetime in the presence and absence of a bond coat (Table 1). The coating without Al_2O_3 began to crack and spall after 3-4 hr of heat treatment. The most stable compositions were 5 wt% Al_2O_3 -95 wt% YSZ and 10 wt% Al_2O_3 -90 wt% YSZ, which lasted for 6 hr before significant spallation occurred. Coatings with higher Al_2O_3 contents (20 wt% and 100 wt%) had poor thermal stability, lasting only 2 hr and 1 hr, respectively, at 1150 °C before spallation occurred.

The reduced thermal stability when using > 10 wt% Al₂O₃ could be attributed to a difference in the thermal expansion coefficients of Al₂O₃ and YSZ, which could induce stress and subsequent failure of the coating. Thermal stabilization with the addition of 5-10 wt% Al₂O₃ could be explained by a decrease in oxygen conductivity [2].

For the thermal cycling studies, Al_2O_3 addition also had a positive effect on the stability of the coatings with and without the NiCrAlY bond coat (Table 2). The most stable compositions were 5 wt% Al_2O_3 -95 wt% YSZ and 10 wt% Al_2O_3 -90 wt% YSZ, which lasted 3 thermal cycles before significant spallation occurred. Other Al_2O_3 compositions lasted ≤ 1 thermal cycle before failure.

Coatings were examined with X-ray diffraction (XRD) to determine their crystal phase before and after the thermal shock treatment. Figure 1 shows the XRD patterns of 5 wt% Al₂O₃-95 wt% YSZ before and after 3 thermal cycles at 1150 °C. Prior to the thermal cycling, ZrO_2 was present in the tetragonal phase. Ni peaks were noted from the Ni substrate, after the powder was deposited onto the Ni substrate. After 3 thermal cycles, ZrO_2 retained 100% tetragonal phase. NiO peaks were observed after the heat treatment, due to cracking of the coating and oxidation of the Ni substrate. Other Al₂O₃-YSZ nanocomposite coatings had similar phases present as this system before and after thermal shock treatment at 1150 °C.

3. Future Work

Plasma Spraying of NiCrAlY Bond Coat and Coating of the Oxide Nanocomposites

NiCrAlY bond coats will be applied onto the Ni substrates using plasma spraying. Following the deposition of the plasma-sprayed NiCrAlY coatings, electrophoretic deposition will be used to deposit oxide nanocomposite coatings with various Al_2O_3 contents. The thermal barrier coatings will be subjected to several pretreatments prior to coating lifetime and thermal shock studies. Following thermal stability studies, the coatings will be examined with XRD and SEM to determine the failure mechanisms responsible for the spallation of the oxide composite and NiCrAlY bond coat. The effect of Al_2O_3 in coating stability will also be investigated.

4. References

[1] Ying, J.Y., Technical Report on ONR Grant No. N00014-95-1-0626 for the period of October 1, 1999-December 31, 1999.

[2] Ying, J.Y., Technical Report on ONR Grant No. N00014-95-1-0626 for the period of January 1, 2000-March 31, 2000.

Coating Composition	Coating lifetime without bond coat (hr)	Coating lifetime with bond coat (hr)
100 wt% YSZ	3	4
5 wt% Al ₂ O ₃ -95 wt% YSZ	6	6
10 wt% Al ₂ O ₃ -90 wt%YSZ	6	6
20 wt% Al ₂ O ₃ -80 wt% YSZ	1	2
$100 \text{ wt}\% \text{ Al}_2\text{O}_3$	1	1

Table 1. Coating lifetime for various alumina-zirconia nanocomposite coatings. The coating lifetime was given by the duration before spallation was first observed for a coating heat treated at 1150 °C in air.

Table 2. Thermal shock stability for various alumina-zirconia nanocomposite coatings. The number of cycles to failure was given by the number of thermal cycles prior to the observation of spallation. A thermal cycle involved heating the sample in air from 25 °C to 1150 °C, holding at 1150 °C for one hour, and then cooling to 25 °C, with ramping and cooling rates of ~ 300 °C/min.

Coating Composition	Cycles to failure without bond coat (hr)	Cycles to failure with bond coat (hr)
100 wt% YSZ	1	1
5 wt% Al ₂ O ₃ -95 wt% YSZ	3	3
10 wt%Al2O3-90 wt%YSZ	3	3
20 wt% Al ₂ O ₃ -80 wt% YSZ	1	1
100 wt% Al ₂ O ₃	<1	<1

4

Figure 1. X-ray diffraction patterns of 5 wt% Al_2O_3 -95 wt% YSZ (a) powder, (b) as deposited on Ni substrate with NiCrAlY bond coat, and (c) following 3 thermal cycles at 1150 °C.

5

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
Public reporting burden for this collection gathering and maintaining the data needed collection of information, including sugges Davis Highway, Suite 1204, Arlington, VA 22	of information is estimated to average 1 hour 1, and completing and reviewing the collection tions for reducing this burden, to Washington 2202-4302, and to the Office of Management and	per response, including the time of information. Send comments Headquarters Services, Directorat Budget, Paperwork Reduction Proj	for reviewing instructions, searching existing data source regarding this burden estimate or any other aspect of e for Information Operations and Reports, 1215 Jeffer ect (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE 1 July, 2000	3. REPORT TYPE AND DA Progress Report: 1 April	ATES COVERED 2000 - 31 June 2000
4. TITLE AND SUBTITLE Processing and Deposition of N	anocrystalline Oxide Composites for Th	ermal Barrier Coatings	5. FUNDING NUMBERS G - N00014-95-1-0626
6. AUTHORS Jackie Y. Ying Justin T. McCue			
 PERFORMING ORGANIZATION Department of Chemical Engine Massachusetts Institute of Tech 77 Massachusetts Avenue, Roo Cambridge, MA 02139-4307 	N NAME(S) AND ADDRESS(ES) ering nology m 66-544		8. PERFORMING ORGANIZATION REPOR NUMBER
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research 800 North Quincy Street Ballston Tower One Artington, VA 22217-5660		10. SPONSORING / MONITORING AGENO REPORT NUMBER	
12a. DISTRIBUTION / AVAILABILI	TY STATEMENT		12b. DISTRIBUTION CODE
Approved for pulbic release; dist	ibution unlimited		
 ABSTRACT (Maximum 200 wc This report describes the therma long-term and thermal shock stabilit NiCrAIY bond coat was also coated addition of alumina (5 wt%) enhance not significantly enhance the therma via EPD. 	ards) I stability of nanocrystalline oxide comp y. Electrophoretic deposition (EPD) wa onto the Ni substrates prior to deposition and the thermal stability of the coatings. I stability of the coatings. Future work w	osites for thermal barrier coa s used to coat the nanocomp in of the nanocrystalline oxid The NiCrAIY bond coat, whe will combine plasma-sprayed	ting applications. The coatings were tested foosite powders onto nickel substrates. A e composites. It was found that a small on coated using electrophoretic deposition did bond coats with oxide composites deposited
4. SUBJECT TERMS Nanocrystalline, Electrophoretic Deposition, Thermal Barrier Coatings		15. NUMBER OF PAGES 5 16. PRICE CODE	
7. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIF OF ABSTRACT UNCLASSIFIED	ICATION 20. LIMITATION OF ABSTRACT UL
ISN 7540-01-280-5500	DTIC QUALITY I	NEPROTED 4	Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-1
