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Abstract 

A one-dimensional fluid model for a coupled system of klystron output 
cavities is developed. The model is exercised for both realistic and opti- 
mized beam current modulation waveforms, and the rf conversion effi- 
ciency is calculated. An optimized second harmonic velocity modulation 
and associated current modulation are calculated and inputted into the cav- 
ity simulation. Optimum bunching lengths and rf conversion efficiencies 
are determined. 
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1.    Introduction 

Klystron-like (klystron, multibeam klystron, reltron, RKA) rf (radio fre- 
quency) sources are very suitable for high-peak and average-power 
microwave applications, including directed energy warfare (DEW). This 
suitability is due to a configuration in which the electron beam collector is 
separate from the rf generation cavities (unlike the magnetron or crossed 
field amplifier (CFA)). Because of this separation, heating in the rf cavities 
is due only to conduction currents flowing in the cavity wall and not to 
electrons impinging on the walls of the rf cavities (if the tube is correctly 
designed). The major deficiencies of klystron-like rf sources (compared to 
magnetrons and CFAs) are a relatively high operating voltage and a sig- 
nificantly lower efficiency. In this report, I address the problem of high 
voltage in a klystron-like device by using a high perveance (>10 //perv) 
electron beam as is done in the multibeam klystron amplifier. The prob- 
lem of increasing the klystron efficiency centers on the particular current 
modulation impressed upon the electron beam. To determine an achievable 
electron beam modulation that will maximize the klystron efficiency while 
minimizing the number of cavities and hence the length of the klystron, I 
have developed a fast one-dimensional fluid simulation of a klystron out- 
put cavity. This simulation will allow me to perform a comprehensive para- 
metric study on the beam modulation required to maximize the rf conver- 
sion efficiency of the klystron. After the optimum current modulation is 
determined, a realizable velocity modulation that will produce an approx- 
imation to the optimum current modulation is derived, and the rf conver- 
sion efficiency for such a current modulation is determined with the fluid 
simulation. In particular, the optimum ballistic bunching distance for the 
derived velocity modulation is determined with the fluid simulation from 
a parametric study. 



2.   Klystron Output Cavity System 

2.1    Multiplet Output Cavity System 

Figure 1. Doublet 
output cavity. (Variable 
will be explained later 
in report.) 

The purpose of the klystron output (or multiplet output) cavity system is 
to efficiently convert the kinetic energy in the current-modulated electron 
beam into rf power. An example of an output cavity system that is analo- 
gous to the doublet buncher cavity [1] is shown in figure 1. The only dif- 
ferences in the configuration of the buncher and the output cavities is that 
in the output cavity, no generator is in series with the load impedance and 
the electron beam entering the cavity is highly current modulated. 

As in a previous paper that analyzed the buncher cavity [1], I will analyze 
the general case of a multiplet output cavity system. Unlike the buncher 
cavity, a single-harmonic time analysis would not be useful for the output 
cavity. First, because of the nature of ballistic focusing, the current modu- 
lation of the electron beam entering the output cavity system is very rich 
in higher harmonics. Second, since current gains (over the current injected 
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into the buncher cavity) of greater than 20 are achievable, the peak current 
in the output cavity system could approach the static-limiting current for 
the cavity gap. In the output cavity system, the effects of both space-charge 
and higher-order cavity modes must be considered. The space-charge ef- 
fects may increase the efficiency of the output cavity by transferring energy 
from the higher-current harmonics to the fundamental frequency 

2.2    Driven-Mode Equations 

In the output cavity system, the current distribution driving the cavity is 
not guaranteed to be sinusoidal in time. To account for this situation, I 
must use the general expression for the amplitude c^k{t) of the Zth driven 
mode in the fcth cavity of an N cavity output cavity system. The following 
equation (1) is the same as equation (7) in a previous paper [1], but with 
Vgen = 0, Zgen replaced by Zioad/ and the gap and loop voltages in each cav- 
ity being the sum of the gap and loop voltages of the fundamental cavity 
mode (I = 0) and the higher harmonic modes (1 < I < Nk) in the fcth cavity: 

ci,k{t) + wlkcilk(t) = 1^l,k 

eof   dV\£ltk(xk)\' 
Jnk 
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2Jm=l  / , 
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■"^load n=Q   ^n»m 
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(1) 

Now I introduce the phase variable <p = cut, where u is the drive frequency 
of the buncher cavity. While I cannot expect c^k (£) to be sinusoidal in time, 
I can assume that it will achieve a periodic equilibrium with period 2-K/OJ. 

With this change of variable, let zk = zk/Dk and ü>ik = LOI^/UJ, SO that the 
driven mode equations become 
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The system of J2k=i^Tk equations described by equation (4) is of a second 
order and thus is not suitable for a solution (when coupled to the electron 
fluid) by standard ordinary differential equation solvers (Runge-Kutta, etc). 
I will convert equation (4) to a system of 2J2k=\Nk- first order differential 
equations by introducing the variables Vi.k- These variables are the driven 
gap voltages for the Ith mode of the kth gap in the multiplet output cavity 
system. The relationship between Vi.k and q.k is given by 
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The additional J2k=iNk first order equations required to complete the sys- 
tem are 

~j-(Vi.kgapQ.k) = iÜLkVl.k   ■ (6) 

Using equation (6) to eliminate the second derivative from equation (4) 
gives 
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Now I introduce the dimensionless variables Vi.k and cLk defined by 
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so that the dimensionless first order driven-mode equations become 

dci,k 
dip 

dVi,k 

dp 

= -üi.kVik,    and 

=  ÜlkQ,k ~ Aw;,fc < 

N    N„ 

%EE Vn.r, 

= ln=0Gn>m 

+   Tr
b   oa \Gik\2 \   dzkpk(zk,ip)uZk(zk,ip) 

> . 

VT nornifc 

(11) 

(12) 

I shall leave the normalization constant Vnormk undefined for now so that I 
can select a value for it later that will lead to the greatest simplification of 
the fluid equations. Note that for a lossless cavity, Co^kl Aw;^; and Gi:k will 
be real and the system of equations describing the electron beam cavity 
system will be real. 

2.3    Space-Charge Fields 

For the fcth planar gap, Poisson's equation is 
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The same equation with a normalized position variable (zk) becomes 

d2ipk _    D\pk{zk,p) 

dz\ eo 

(13) 

(14) 

with boundary conditions ipk(0) = p>k (1) = 0- Equation (14) can be directly 
integrated, giving 
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Equation (20) gives the contribution of the space charge electric field to the 
total electric field. 

2.4   Fluid Equations 

The fluid equations for the fcth planar cavity gap (Ith. cavity mode excited) 
are 
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Transforming equations (21) and (22) into ones that will use the dimension- 
less variables p and zk gives 
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Substituting equation (20) into equation (24) gives 
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Making equation (23) dimensionless requires that 
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and then equation (23) becomes 
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The form of equation (27) allows pk to be normalized in any way to simplify 
equation (25). First I write equation (25) with the chosen uZk normalization 
(eq (26)) to show how to normalize pk: 
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By inspecting equation (28), I see the correct normalizations are 
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and the system that must be solved for determining the performance of the 
output cavity consists of equations (11), (31), (32), and (34). 

2.5    Finite Element Expansion 

To solve the output cavity equations with the use of finite element method, 
the first step is to expand üZk(zk, if) and äk(zk, p) as a set of at least once 
differentiable axial basis functions s^ (zk). Note that in subsequent formu- 
las, NZk denotes the number of axial basis functions for the kth gap. The 
basis functions must be differentiable at least once, since I am solving a 



system of first-order equations. I am also restricting the basis functions to 
be real to speed up the numerics of the solution process. The finite element 
expansions for the velocity and charge density fields are 

üZk(zk,<p) =  J2ü;k.r,Af)sm(zk)    and (35) 
m=l 

m = l 

In the following equations, prime when applied to a function will denote 
differentiation. Second, I define the auxiliary basis functions as 
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Then the third step is to reduce equation (34) by noting that the finite ele- 
ment expansion allows me to substitute 
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This is the only effect of the finite element expansion upon the cavity equa- 
tions. Now I will reduce the charge conservation equation to its finite ele- 
ment equivalent. First I rewrite equation (31) as 

ft + %M = 0. (45) 
<3y> OZk 



Next I multiply equation (45) by sf (zk) and integrate from 0 to 1 by 

Substituting equations (35) and (36) and integrating by parts give 
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Using the definitions for A\m and C\mn reduces the finite element approxi- 
mation of the charge conservation equation to 

,lm dip m=l r 

df>k: =  E   ECL,nPk,mÜZk,n + si (0) Jk (0, p) = 0 (48) 
m=\77=1 

The reduction of equation (32) (fluid equation) proceeds in a like manner: 
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Treating each part of equation (49) separately gives the following finite ele- 
ment expansions: 
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Substituting equations (50), (51), (52), and (53) into equation (49) gives the 
finite element form of the fluid equation, 
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Finally, the boundary conditions on the beam velocity and current density 
fields are given by equations (55) and (56) for k > 1: 

AVi 
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For k = 0, the beam modulation functions üZo (0, ^) and J0 (0. tp) are either 
assumed or calculated from the ballistic bunching equations. 

2.6    Basis Selection for Finite Element Formulation 

The basis functions selected for the finite element formulation should allow 
for efficient evaluation of the derivatives in equations (11), (44), (48), and 
(54) so that a standard differential equation solver, such as Runge-Kutta, 
can be used to solve the system. Additionally, the basis functions should 
be in a form such that relatively few functions are required to approximate 
the velocity and charge distributions. Since some of the current modula- 
tion waveforms that will be used to model the electron beam injected into 
the output gap have large derivatives, the basis functions must be able to 
model charge densities that have a rapid spatial variation. Because of this 
property, basis functions consisting of e±27ri'5 were not considered, since 
large values of I would be required to model rapidly varying functions. In 
the end, I selected the basis set for the piecewise linear functions. If the in- 
terval [0.1] of the kth output gap is partitioned into N~k intervals by the 
grid {zko, ...,zkl,..., zkNzk }, where zka = 0 and zkNz = 1, the NZk piece- 
wise linear basis functions defined by this grid are 

4(4) = 
i_iL 

0 4, 

0 < 4 < ~zkl 

< 4 < 1 
(57) 
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0 0 < % < %_! 
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so that an arbitrary function fk (zk) that takes on the values fk (hi) = ft 
in the kth output gap may be represented by 

Nz 

f(h) = i2tfsHh) fk (z, \   \ ' fknk (z. 

1=1 

(60) 

This choice of basis results in sparse arrays for A^ and C\mn and a trian- 
gular array for D^n. All arrays are evaluated using a C++ class library for 
piecewise polynomial functions. First the basis set 

{sk(h),   l<l<NZk} (61) 

is defined as an array of piecewise linear functions. This array of functions 
is then integrated (one of the standard operations for the class) to generate 
the associated array 

{*?(**),   l<l<NZk} (62) 

of piecewise quadratic functions. Then the functions in the arrays are 
appropriately multiplied to form the piecewise polynomial functions 
(quadratic and cubic) that are the integrands in equations 38 through 42. 
Multiplication of piecewise polynomial functions is also a standard class 
operation. The integrals are then analytically evaluated (another standard 
class operation). The piecewise polynomial class library simplifies evalu- 
ating the required arrays for any set of basis functions that are piecewise 
polynomials. 

From a computational point of view, the selected basis set is very attrac- 
tive since the array Ak

mn is a tridiagonal matrix. This property allows rapid 
evaluation of the derivatives in the finite element equations with the use 
of standard algorithms [2, p 50], even though the basis functions are not 
orthogonal (Ak

nn is not diagonal). 
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Once I selected the basis functions and evaluated the finite element ar- 
rays, the next step was to solve the system of coupled nonlinear differential 
equations defined by the equations (11), (44), (48), and (54). The method se- 
lected was the Cash-Karp variation of the Runge-Kutta method, with adap- 
tive step size control [2, p 717]. This method is very robust, can deal with 
rapidly varying functions, and will optimize the step size of the integra- 
tion. This method was implemented as a C++ virtual base class, with the 
derived class supplying the required derivative functions to the differential 
equation solver base class. 

2.7   Calculation of rf and Beam Kinetic Power 

The whole purpose of the klystron is to produce rf power. The output cavity 
is where the rf is extracted from the klystron. To calculate the rf power 
extracted, one needs to calculate the load current, which is also the loop 
current, iioop (t). This is given by 

Nk 
^.k(t), 

I\oop(t)   =    ^ Y2!L,~ Vn.k loop   • (63) 
•^load ,._-, „_n   ^n.k 'k=ln=0 

I\00p{<p) = T}—mZ- r^^a-ioop ,    and (64) 
dCn.k 

m,c2   *{u;D,\2 Ä V, 

The rf power averaged over one rf cycle is then 

(Prf)  =  ^2^f^dtI      {tf    and (66) 

(Prf>  =  ^f/^W*>)2   ■ (67) 

Since the load current can have significant harmonic content, I performed 
a Fourier expansion of iioop (<p) and calculated the power associated with 
each harmonic to determine the harmonic power spectrum of the klystron 
for each drive frequency, UJ. 

Since I used approximate models to determine the behavior of the out- 
put cavity system, I needed to implement diagnostic tests to determine if 
the fundamental conservation laws are being obeyed by our approximate 
model. To do this, I needed to calculate the average electron beam kinetic 
power at the exit of the output gap. The kinetic power density of a one- 
dimensional fluid is given by 

dPire      1 fm\       o 
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For a beam of radius Rb, the instantaneous beam kinetic power at the out- 
put of the fcth output gap is 

^e(l) = ^ (-) P*(1K>(1)3 = £- (koRbf (koDkf 1*4- )  Pk(l)üZk(l)
3 ,        (69) 

where ko — u/c. Define 

pN = i_ ( — )   = 0.69313 GW (70) 
Zi o 

as the power normalization. The average beam kinetic power during one rf 
cycle is then 

PAT /"27r 

(^ke(l)) = "f (^o^)2 (feo^fc)3 /   dwpk{\,ip)üZk{l,<pf- (71) 4 Jo 

With the use of the normalizing power defined in equation (70), the rf 
power becomes 

and the conservation law is 

<i&(0)> = Jim {(Prf> + <P£(1)>}. (73) 

Equation (73) states that after oscillatory equilibrium is reached, the aver- 
age kinetic power of the beam entering the multiplet output cavity is equal 
to the sum of average rf power to the multiplet output cavity load and 
the average kinetic power of the beam exiting the multiplet output cavity. 
This is a statement of conservation of energy. Averages over equilibrium rf 
cycles must be used because of the energy stored in the cavity and space 
charge fields. 

2.8    Output Cavity Operation with Specified Current Modulation 

After being coded, the fluid simulation of the output cavity was run for 
the modulation and electron beam parameters shown in table 1. The bal- 
listic current modulation referenced in table 1 is for a standard two-cavity 
klystron, where a buncher gap imparts a small (5 percent) velocity mod- 
ulation to the electron beam, and the beam is then drifted over a distance 
that will provide optimum beam bunching. The equations describing this 
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Table 1. Summary of 
output cavity simulation 
results for 10-/zperv 
electron beam. No ballistic 
drift length associated 
with 25 percent gate 
modulation. A 5 percent 
velocity modulation is 
assumed for a ballistically 
generated current 
modulation. 

Modulation 
Drift len 

(cm) 
gth Beam 

power 
Voltage 

(kV) 
Current 

(A) Efficiency 

Ballistic 25 20 kW 5.25 3.8 0.560 

Ballistic 63 2MW 33.14 60.3 0.565 

25% gate — 20 kW 5.25 3.8 0.894 

25% gate — 2MW 33.14 60.3 0.896 

type of current modulation and the numerical equivalent of the treatment 
[3, p 300] are given in section 3.1 of this report. The 25 percent gate current 
modulation is simply imposed on the electron beam entering the output 
cavity with the peak beam current normalized so that the average beam 
power for both types of current modulation is the same. The modulation 
is trapezoidal in time with rise and fall times that are 5 percent of the full- 
width-half-maximum (FWHM) duration of the pulse while the FWHM du- 
ration is 25 percent of an rf cycle. For all the cases treated in this report, the 
rf frequency is 1 GHz with an rf cycle time of 1 ns. Once I selected the mod- 
ulation and the beam parameters (voltage and perveance), I ran the code 
for several instances of beam loading (combination of gap gain and load 
impedance). For each run, the system was stepped forward in time until 
it achieved oscillatory equilibrium or until the electron velocity field be- 
came negative at some location leading to electron trajectory crossing. This 
criterion was used because the fluid model was only applicable if the elec- 
tron trajectories within the buncher cavity gap did not cross. If oscillatory 
equilibrium was achieved, the beam loading was increased until oscillatory 
equilibrium was no longer possible; then the beam loading was slightly de- 
creased until oscillatory equilibrium returned. This value of beam loading 
is considered to be optimum—it results in the maximum efficiency for the 
conversion of beam kinetic energy to rf power. 

A summary of the code runs is shown in table 1 with the detailed results 
displayed in figures 2 through 9. Figures 2,4, 6, and 8 show both the input 
beam current and velocity modulations (If, (0) and ßz (0) in the small graph 
on the right side of the figures), the average (over one rf cycle) rf power 
(Prf) and beam kinetic power {Pue), and the minimum value of the velocity 
field in the cavity gap during the rf cycle, min (ßz). Currently, the cavities 
are assumed to have a simple transmission line geometry as in figure 1 so 
that the eigen modes can be calculated with a simple analytic expression. 
Figures 3, 5, 7, and 9 show the detailed behavior of the beam current Ib{\) 
and beam velocity ßz (1) modulation at the output of the cavity gap. Ad- 
ditionally, the voltages across both the load Vjoad and cavity gap Vgap are 
shown. 
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The most striking of the results shown in table 1 is that a simple 25 percent 
duty factor trapezoidal beam current modulation produces a significantly 
higher conversion of electron beam kinetic power to rf power than the stan- 
dard ballistic electron beam current modulation. This effect is independent 
of beam power. The 2-MW beams have the same conversion efficiencies as 
the 20-kW beams with the same modulation waveforms. The explanation 
of this effect can be found by comparing the beam current and velocity 
fields in figures 3 and 7. In figure 3 when (TT/2 < (p < 3TT/2), the current at 
the cavity output is small, and the beam velocity is large. When the velocity 
is small, the beam current is large. However, if I compare the beam current 
under similar conditions as shown in figures 3 and 7, the beam current in 
figure 7 is much closer to zero for large values of beam velocity compared to 
the beam current in figure 3. The modulation used in figure 7 gives a much 
higher efficiency than the standard optimum ballistic modulation, because 
the modulated beam current entering the output cavity is zero for almost 
75 percent of an rf cycle. For the trapezoidal modulation, all the electrons 
in the beam slow down and give up energy to the rf field. For the ballistic 
modulation, the beam current is never truly zero and a significant number 
of the electrons entering the output cavity will have a phase that causes 
them to be accelerated by the rf field in the cavity, reducing the rf output 
power. To increase the efficiency of the klystron, I must decrease the modu- 
lated beam current for those phases that allow acceleration of the electrons. 
The next section of this report develops a method for implementing such a 
modulation. 

Before moving on, one numerical aspect of the fluid simulation requires 
some commentary. Note that on the trailing edges of the modulated current 
Ib (0) exiting the output cavity (figs. 3,5,7, and 9), the current changes sign. 
Since I do not allow the velocity field to become negative, the only way for 
the current to change sign is for the charge density field to change sign. But 
this cannot physically happen since I have a fluid consisting only of elec- 
trons. The current changes sign because of the limitations of the approx- 
imating functions in the finite element expansion (a Gibbs phenomenon). 
If the number of approximating functions is increased, the frequency of 
the negative current oscillations is also increased, and the oscillations de- 
cay more rapidly. Also note that the oscillations for the trapezoidal current 
modulation are not as great as for the optimum sinusoidal velocity modula- 
tion. This is because the dlb/dip entering the output cavity is smaller for the 
trapezoidal current modulation. One should not worry about this discrep- 
ancy, since the fluid simulation is only one step in a multilayer approach 
to klystron design and analysis. After achieving a fluid model optimized 
klystron, one should use the optimized fluid model as a starting point for 
the more detailed particle-in-cell (PIC) model of the electron beam. 
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Figure 2. Power 
convergence for 20-kW 
beam with sinusoidal 
velocity modulation. 
Equilibrium efficiency 
is 77 = 0.56. 

2x10" 

1.5 

0.15 

Power (kW) 

 <Pkc>        1.0 

0.5 

Velocity 
min(ß-) - 

0.05 
10 

10 20 30 40 

Time (rf periods) (tlT) 

.-«0) 
-ß.(0) 

1.2 

0.9 

0.6    § 

u 0.3 

0      it/2     r 371/2    2it 

Figure 3. Diagnostics 
for efficiency-optimized 
buncher cavity with 
sinusoidal velocity- 
modulated 20-kW 
beam. Rf power is 
11.311 kW. 
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convergence for 2-MW 
beam with sinusoidal 
velocity modulation. 
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Figure 5. Diagnostics i.5xio3 
for efficiency-optimized 
buncher cavity with 
sinusoidal velocity- 
modulated 2-MW 
beam. Rf power is 
1113 kW. Current (A) 
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Figure 8. Power 
convergence for 2-MW 
beam with 25 percent 
duty factor gate 
current modulation. 
Equilibrium efficiency 
is r\ = 0.896. 
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current-modulated 
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3.   Efficiency Enhancement by Harmonic Bunching 

3.1   Current Modulation for Arbitrary Velocity Modulation 

To determine the velocity modulation required to generate an efficient cur- 
rent modulation, one must develop a way to calculate the current modu- 
lation produced by an arbitrary velocity modulation. One way is to use an 
analytic method based on the ballistic transport equations (74) and (75): 

*    =   to + —7TT >      and (74) 
uo (to) 

,     .v Po (to) ,__. 

1 - zu0/«o 

The problem with this approach is the multivalued nature of the function 
that maps electrons at the input of the drift section to electrons at the output 
of the drift section (electrons with many different input phases can have 
identical output phases). Another way to calculate the current modulation 
that is simple but effective is to divide the input phases of the electrons 
entering the drift region into Nm uniform phase intervals and the output 
phases into iVout uniform phase intervals so that 

V = ^ > (76) 
9-7T 

<pf = lAip™ ,    and (78) 

y>?ut = lAipout . (79) 

In equation (74), t is the time that an electron requires to propagate a dis- 
tance z if it enters the system (z = 0) at time to and with velocity UQ (to). 
Equation (75) relates the charge density contribution at location z and time 
t, p (z, t), to the charge density, p0 (to)/ of the electrons entering the system 
at time to- 

I can use equation (74) to map the phase grid defined by equation (78) into a 
grid of output phases for a drift distance of z. The required phase mapping 
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$ (p) is calculated by renormalizing equation (74) to get (remember that 
ip = uit, where ui is the modulation frequency) 

In equation (80), fco is the wave number of the modulation frequency (fco = 
ui/c), z is the drift distance (k^z is dimensionless), and ß (p) is the nor- 
malized velocity modulation ß (p) = u0(p)/c. Since ß (2n) = ß (0), I have 
$ (27r) = $ (0). Please note that having the endpoints of the interval map 
into themselves does not imply that the interior points of the input phase 
interval will map into interior points of the output phase interval. How- 
ever, if a point interior to the input phase interval maps to a point exterior 
to the output phase interval, there will always be a corresponding point 
exterior to the input phase interval that will map to a point interior to the 
output phase interval. Because of the periodic nature of 5> (p), the point ex- 
terior to the input interval will be related to the original point interior to 
the input interval by a modulus of 2TT. NOW I denote 

$z = $ (^jn) .    and (81) 

A$;   = $(^])-*(v}n)|. (82) 

The relative current modulation can now be calculated for the output phases 
pfut as follows: 

1. Initialize a relative current modulation array J°ut, 0 < I < Nout to 
zero. 

2. Calculate the output phase array $/, 0 < I < Nm. 

3. Determine if any of the output current density phases ip°ut lie in the 
phase interval [3>/+i, $/]. 

4. For those p°ui in the interval [$/+1,$/], add A^m/A<l>/ to the corre- 
sponding J°ut. 

5. If any part of the interval [$/+], $/] is outside the interval [0.2n), bring 
it inside the interval [0. 2TT) by translating modulo 2ir. 

6. Then test the translated interval as in step 3 with any appropriate ip°nt 

being treated as in step 4. 

7. Repeat steps 3 through 6 for all remaining mapped phase intervals 

[*/+i,$z]- 

This procedure automatically accounts for the mapping of multiple input 
phases to a single output phase. The expression Apm/A^i in step 4 results 
from the requirement of charge conservation in the system. 
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The first test of this procedure will be for a simple sinusoidal velocity vari- 
ation of the form 

ß(<p) = {ß)(l + ösm(<p)), (83) 

where the optimum drift distance z0 satisfies the standard klystron rela- 
tionship for the optimum bunching parameter x [3, p 305]: 

X (ß) 
= 1.84 (84) 

Figure 10. Current 
modulation for electron 
beam with sinusoidal 
velocity modulation at 
z = 0.7, 0.8, 0.9, and 1.0 
of optimum drift 
distance ZQ. 

The results of the procedure are shown in figure 10 for the beam and simu- 
lation parameters in table 2. 

The current modulation waveform shown in figure 10 is in agreement with 
those shown in the standard references [3, p 303]. 

0.5 

Table 2. Parameters for 
bunching calculations. Variable Value 

E0 35keV 

h 1GHz 

zo 35 cm 

(ß) 0.37 

koZo 7.33 

Nin 256 

jyout 1024 
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3.2    Optimized Velocity Modulation 

One can determine the optimum velocity modulation waveform for ballis- 
tic bunching by examining equation (75). In dimensionless form, the bunch- 
ing equation is 

p(z^ou{) = 1 

Po^m)    ~ 1        .   /?Vn)  ' (85) 

1 ~ zkoWW) 
with ifout given by equation (80). If optimum ballistic bunching is defined 
as a repetitive delta function current modulation at frequency ui, the re- 
quirement is that all input phases pin are mapped to a single output phase 
for each rf cycle for a given z = z0. This condition is met if the denominator 
on the r.h.s. of equation (85) is zero for all ipin £ [0. 2TT], so that the defining 
equation for optimum velocity modulation is 

6' (Vn) 1 -^V(^)  °- (86) 

The solution to equation (86) is 

>M=r§w-- (87) 
1 _ LLLpm 

To compare different types of velocity modulation, I wish to parameterize 
them in terms of the average drift velocity (0) and some modulation index 
5. For sinusoidal modulation (eq (83)), the modulation is simply character- 
ized by (ß) and S, where 6 = 1.84 (ß) /z0k0. For optimized velocity modula- 
tion, the situation is more complicated. I must integrate equation (87) from 
0 to 2ir to compute (ß) and then solve the resulting equation for ß (0), which 
is then back substituted into equation (76) for elimination. If one defines 8 
tobe 

6 = —T1 > (88) 

the optimum velocity modulation function becomes 

-S iß) 1-e- 

e"   , 
2vr 

ß(^) = f        X""    „■■• (89) 
l-d-e-*)* 

For the beam and simulation parameters in table 2, the result of the op- 
timum bunching calculation is shown in figure 11. The delta function be- 
havior of the optimized velocity modulation as z -> z0 is clearly shown in 
figure 11. The main problem associated with the optimum velocity mod- 
ulation is determining a way to produce it. Since velocity modulation is 
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usually imparted to an electron beam, by having the beam transverse a 
driven oscillating cavity, one is limited to a sinusoidal velocity modulation. 
One solution is to have multiple bunching cavities driven at frequencies to, 
2w, 3u, etc, and perform a Fourier synthesis to approximate the optimum 
velocity modulation. Figure 12 shows the current density modulation pro- 
duced by a two-term Fourier approximation (u and 2LO modulation terms 
present) at the optimum drift length for the exact optimum velocity modu- 
lation. From figure 12, it is not obvious why such a modulation waveform 
would be an improvement over the optimum sinusoidal waveform shown 
in figure 10. One can argue why the second harmonic bunching waveform 
is superior by comparing the two current modulation waveforms for those 
phases where the current is small. This comparison is made in figure 13, 
where the J axis has been expanded to accentuate the difference between 
Jsin and Jopt[2]. For <p 0 [3TT/4, 5TT/4], Jopt[2] « 1/2 Jsin. If the the electrons en- 
tering the klystron output cavity are classified according to their entrance 
phase, approximately half the phases are accelerated and half are deaccel- 
erated. The efficiency of the output cavity is critically dependent on mini- 
mizing the total kinetic energy (per rf cycle) imparted to the electrons and 
on maximizing the total kinetic energy extracted from the electrons. One 
would expect that during half an rf cycle, electrons would be deacceler- 
ated and during the other half, accelerated. During the accelerated part of 
the rf cycle, Jopt[2] (fig-13) would contain half as many electrons as the Jsin 

bunching waveform. I will now use the output cavity model developed 
in section 2 to quantitatively evaluate the properties of each modulation 
waveform. 

Figure 11. Current 
modulation for electron 
beam with optimized 
velocity modulation at 
z = 0.7,0.8, 0.9, and 0.99 of 
optimum drift distance ZQ. 
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Figure 12. Current 
modulation for electron 
beam with second 
harmonic approximation 
/?[2] (f) to optimized 
velocity modulation at 
drift length 2o- 

Figure 13. Comparison of 
current modulation at z0 

for sinusoidal velocity 
modulation JSj„ and 
second harmonic 
approximation to 
optimized velocity 
modulation Jopt[2]. 

3.3    Effect of Harmonic Bunching Upon Output Cavity Efficiency 

The results of driving a simple (single) output cavity with the current mod- 
ulation derived from a second harmonic approximation to the optimum 
velocity modulation are shown in figures 14 to 17. Both 20-kW and 2-MW 
electron beams are simulated. Figures 14 and 16 show both the input beam 
current and velocity modulations (Ib (0) and ßz (0) in the small graph on 
the right side of the figures), the average (over one rf cycle) rf power (Prf), 
and beam kinetic power (P^), and the minimum value of the velocity field 
in the cavity gap during the rf cycle, min (ßz). Figures 15 and 17 show the 
detailed behavior of the beam current Ib(l) and beam velocity ßz (1) mod- 
ulation at the output of the cavity gap. Additionally, the voltages across 
both the load, Vjoad, and cavity gap, V^p, are shown. The results of the sim- 
ulations shown in figures 14 to 17 are summarized in table 3. 
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Note that since the second harmonic ballistic bunching is approximate to 
the ideal ballistic velocity modulation shown in figure 11, the optimum 
bunching distance for the second harmonic approximation may not be the 
distance implicitly defined by equation (88). For the simulations in fig- 
ures 14 to 17, the parameter z/z0 was varied in value near 1, until the rf 
conversion efficiency was maximized. Table 3 shows that using the second 
harmonic approximation ß^\ (<£>) to the ideal bunching velocity modulation 
yields a significant increase in the klystron output cavity rf conversion ef- 
ficiency for both the 20-kW and 2-MW electron beams. The explanation for 
this is evident from the comparison of figures 15 and 3 (20-kW beam) or 
figures 17 and 5 (2-MW beam). In comparing the beam velocity ßz (1) and 
current h (1) at the exit of the output cavity for sinusiodal velocity modula- 
tion Jsin (figs. 3 and 5) versus second harmonic velocity modulation Jopt[2] 
(figs. 15 and 17), the major difference is in the value of beam current outside 
of the main current bunch. The exit velocity of the beam for the two types 
of modulation is quite comparable (maximum value, minimum value, and 
alignment with respect to current bunch); however, the beam current out- 
side of the current bunch is significantly lower for the second harmonic 
velocity modulation. Since this is the phase region (ip) where the beam ve- 
locity is high (for both modulations), the beam with second harmonic ve- 
locity modulation will exit the output cavity with significantly less kinetic 
power than the optimum sinusiodal velocity modulation. Thus, the second 
harmonic velocity modulation will give a significantly higher rf. 

Figure 14. Power 
convergence for 20-kW 
beam with optimized 
second harmonic velocity 
modulation and output 
cavity gap located at 
z = zo- Equilibrium 
efficiency is r\ = 0.713. 
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Figure 15. Diagnostics for 
efficiency-optimized 
buncher cavity with 
optimized second 
harmonic velocity- 
modulated 20-kW beam 
and output cavity gap 
located at 2 = zo- 
Conserved power is 
(Prt) + (Pke) = 20.04 kW. 
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Figure 16. Power 
convergence for 2-MW 
beam with optimized 
second harmonic velocity 
modulation and output 
cavity gap located at 
z = 0.920- Equilibrium 
efficiency is r\ = 0.706. 

2x106 

Power (kW) 

 Crl)       1 

,\ 

1               1            "T  1  

Space charge on 

\ \ 
V 

V 

'^\ 

/          1 

\ "~- _ 

1            1            1            7 

Velocity 
0.2     min(P-). 

10 20 30 40 50 60 
Time (rf periods) (i/7) 

8x102 

6 

I4 

2 

0 

-W0) 
-p.(0) 

0    JI/2    rr   3n/2   2B 

0.4 

• 0.3 

0.2?. 

0.1 

0 

Figure 17. Power 
convergence for 20-kW 
beam with optimized 
second harmonic velocity 
modulation and output 
cavity gap located at 
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2003 kW. 
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Table 3. Summary of 
output cavity 
simulation results for 
10-^perv electron beam 
with second harmonic 
ballistic bunching. 

*The efficiency increase is with respect to simple sinusoidal velocity modulation. 
fThe maximum percent value of ((Pit) + (Pke))/Pbeam - 1. This value indicates 
the degree to which fluid simulation does not conserve energy because of various 
numerical errors. 

Modulation 
Beam 
power 

Cavity 
position Efficiency 

Efficiency 
increase* 

Power 
error1. 

2nd harmonic 

2nd harmonic 

20 kW 

2MW 

15 cm (zo) 

27 cm (0.9z0) 

0.713 

0.706 

0.153 

0.141 

+0.20% 

+0.15% 
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4.    Conclusions 

I have presented an efficient fluid model for the output cavity of a klystron, 
tested the model for both realistic and optimized beam bunching, derived 
the optimum velocity modulation for ballistic bunching, derived a realistic 
approximation to optimum velocity modulation, and compared the oper- 
ation of a klystron output cavity for optimized sinusoidal velocity beam 
modulation with that for optimized second harmonic velocity beam modu- 
lation. I have shown that optimized second harmonic velocity beam modu- 
lation will significantly enhance the rf conversion efficiency of the klystron 
output cavity at the cost of a more complex beam bunching system (in the 
simplest case, two driven buncher cavities instead of one). 

In general, I have developed an efficient method of performing a first or- 
der self-consistent optimization of the klystron output cavity. Specifically, 
I can calculate the cavity parameters (for a given electron beam and beam 
modulation), such as loaded Q (in my analysis, I determine the rf load and 
the cavity gap gain), that would maximize the rf conversion efficiency. This 
analysis would be the starting point of a multilevel approach for the design 
of a klystron. The next step would be to verify the fluid optimization with 
a parametric (cavity modes are given) PIC code. The design would be then 
optimized with the parametric PIC code. The final design level would be 
to simulate the improved optimization with a full finite difference time do- 
main (FDTD) PIC code, such as MAGIC or ICEPIC, before any hardware is 
fabricated. 
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