
Changing Mass Applications in an Advanced Time Domain 

Ship Motion Program 

by 

Paul Richard Wynn 

B.S., Virginia Tech (1986) 

Submitted to the Department of Ocean Engineering 
in partial fulfillment of the requirements for the degree of 

Naval Engineer 

at the 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

June 2000 

© 2000 Paul R. Wynn. All rights reserved. 

The author hereby grants to MET permission to reproduce 
and to distribute publicly paper and electronic 

copies of this thesis document in whole or in part. 

Signature of Author 

Certified by 

Accepted by 

20000717 M 

Department of Ocean Engineering 
22 May 2000 

AÜC ^J2^ 
Dick K.P. Yue 

Professor of Hydrodynamics and Ocean Engineering 
Thesis Supervisor 

Nicholas M. Patrikalakis 
Kawasaki Professor of Engineering 

Chairman, Committee on Graduate Students 
Department of Ocean Engineering 

DTIC QUALITY INSPECTED 4 



in 

044 
in 
H 
UJ 
_l 
o 
(0 a> 
o 

iUI 

«* 
<" z 
o 
p 
Q 
III 

(0 
3 
O 
> 
111 
DC 
Q. 

si 
eon 

1- 2« z °^ =3 
1U oc ■» s 
IU 

Dg 
IX. O 

H ot: 
< uj 2 
1- > CD 
(0 

z o PP
RO

 
IS

TR
I 

<Q 
t- O Z3 in m 
DC F» 
co So 

U. Ill 
Q Q 



Changing Mass Applications in an Advanced Time Domain Ship Motion 

Program 

by 

Paul Richard Wynn 

Submitted to the Department of Ocean Engineering 
on 22 May 2000, in partial fulfillment of the 

requirements for the degree of 
Naval Engineer 

Abstract 

Models are developed for a state-of-the-art time-domain ship motion program to predict ship 
motions during flooding and green water on deck events. Water mass from the flooding and 
green water is incorporated into the dynamic equations of motion using time-dependent mass 
and moment of inertia terms. 

Green water on deck includes three subproblems: the problem of water shipping on deck, 
the problem of motion of water trapped on the deck, and the problem of water escaping off 
the deck. This research looks at the first two suproblems, both of which involve shallow water 
wave theory. Glimms method, also called the Random Choice Method, and the Flux Difference 
Splitting Method are both investigated as solution techniques for the motion of water on deck. 

This work provides a tool to estimate ship damaged stability and examine the effects of 
progressive flooding. 

Thesis Supervisor: Dick K.P. Yue 
Title: Professor of Hydrodynamics and Ocean Engineering 
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Chapter 1 

Introduction 

1.1    Background 

There are many hazards to ships that can result in hull damage and subsequent flooding. 

Depending on the extent of a ship's damaged condition, flooding may cause a loss of buoyancy, 

a loss of transverse stability, and significant changes in trim and list. Adverse buoyancy and 

trim conditions can lead to sinking by foundering, while the loss of transverse stability can lead 

to capsizing. Significant trim and list changes may also result in water on the weatherdeck due 

to shipping water as freeboard is lost. The water on deck, often referred to as green water or 

the green water problem, can further harm a damaged ship's stability condition and also affect 

the main hull girder loads, and deck and superstructure loads. 

The state of stability, list, and trim in a damaged ship is dynamic; it varies over time as 

the flooding event progresses and also depends strongly on environmental conditions such as 

sea state and wind. Current naval standards, however, take a static approach in specifying 

stability requirements for a damaged ship. For example, the naval standard DDS-079, reference 

[5], requires that stability be analyzed on the equilibrium position of the damaged ship based 

purely on static geometry after the flooding event is complete. This analysis is similar in 

many respects to intact stability calculations except with characteristics such as metacenter, 

center of gravity, and righting arm curves adjusted due to the weight of water in the flooded 

compartments. Reference [5] makes use of wind speed and wave height for damaged stability 

analysis, but these environmental conditions are also applied to the analysis in a static sense 



through applying steady wind healing moments and placing limitations on bulkhead opening 

locations.   Reference [9] refers to such bulkhead locations as "V-lines." 

In [31] Surko points out limitations due to the static approach of current damaged stability 

analysis procedure and criteria. Of these limitations, two are becoming more salient as the US 

Navy shifts to performance based requirements. First, in 1987 the Chief of Naval Operations 

(CNO) [24] endorsed a series of operational characteristics to be incorporated into surface 

combatants of the year 2010. Included in these characteristics is that a ship has the capability 

to fight, even though it may have sustained hull damage and be flooded, with whatever weapons 

systems are available. To assess whether a ship could employ weapons while fighting hurt would 

require analyzing ship motions which is well beyond the scope of reference [5] procedures. In fact 

references [14], [15], and [16] report there is no information in the literature and no appropriate 

computer prediction tools to assess ship motion performance of partially flooded or flooding 

ships in waves and wind. The second significant limitation in current damaged stability criteria 

pointed out by Surko is that moderate wind and sea conditions are assumed. In reference [31] 

Surko shows there is a considerable probability of experiencing wave action that exceeds the 

moderate 8 foot wave height assumed in reference [5]. 

As a first step in addressing these limitations, model tests have been performed to assess 

the dynamic stability of current fleet combatants in a damaged condition. These tests were 

reported in references [14], [15], and [16]. The term "dynamic stability" in these model tests 

is meant in its true sense: actual ship motions and ability to withstand sinking under a variety 

of environmental and flooding conditions. 

Model testing can be costly due to production of scale models and the use of large labora- 

tory facilities for the experiments. Also, the time requirements to prepare and conduct model 

tests make it difficult to use testing early in the design process to predict damaged dynamic 

stability for immature designs and design variants. Development of damaged stability computer 

prediction tools, especially for early in the design process, would be ideal as a supplement or 

replacement to model testing. 

Computational fluid dynamic (CFD) codes that predict ship motion would provide a good 

foundation for development of damaged stability prediction tools. Of the two general categories 

of CFD codes that predict ship motion, frequency domain and time domain, the time domain 



approach is better suited for damaged stability analysis. Frequency domain codes only consider 

the mean underwater hull form and linearize by assuming small wave and motion amplitudes. 

The linear prediction would breakdown under high sea states and large amplitude responses 

that need to be considered for a damaged stability analysis. On the other hand, state of the 

art CFD codes that predict wave-induced ship motions and loads in the time domain solve 

the non-linear three-dimensional ship motion problem and can handle large wave and motion 

amplitudes. 

Also, inherent in use of a time domain code as a damage stability prediction tool is the 

ability to predict motions during the entire flooding event. Such a tool would be useful 

at assessing the effects of progressive flooding. Progressive flooding occurs when water in 

flooded compartments floods into adjacent compartments by overflowing watertight bulkheads 

or leaking through damaged bulkheads. The R.M.S. Titanic sank as a result of progressive 

flooding which flooded compartments beyond those originally opened to the sea by the iceberg- 

caused damage. Progressive flooding is of special concern in warships where hull damage from 

combat is likely to cause the watertight bulkheads surrounding the affected compartments to 

suffer some damage from shock or fragmentation. The US Navy has an interest in progressive 

flooding but the published work to date, an example of which is in reference [2], has been simple 

quasistatic models that do little more than determine the damaged ship hydrostatic position 

throughout the progressive flooding event. 

1.2    Research Objectives 

This research investigates the addition of a compartment flooding model and green water model 

to a CFD code that predicts ship motions in the time domain so that it can be used as a 

damaged stability prediction tool. There is no effort made by the author to perform damaged 

stability analysis. The specific CFD code used for these purposes is the Large Amplitude 

Motions Program (LAMP) developed by the Ship Technology Division of Science Application 

International Corporation (SAIC). The theory and some results of the LAMP code have been 

presented in several papers including references [7], [26], and [19]. A brief review of the theory 

and formulations of LAMP is given in Chapter 2. 
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Green water and compartment flooding can be considered as events that, at each instant, 

are part of the ship and change the total rigid body mass and mass distribution. Sloshing and 

water motion will also affect the mass distribution. Both events are fundamentally the same 

process that can be modeled as a time-rate-of-change of ship mass in the rigid body motion 

problem. The approach in this thesis, then, is to calculate the affect on ship motions from green 

water and flooding by incorporating time-dependent mass and mass moment of inertia into the 

LAMP dynamic equations of motion solver. 

The green water problem includes three subproblems: water shipping; motion of water on 

deck; and water escaping off deck. This research looks at the first two subproblems in some 

detail.   Water escaping is treated by simply letting water fall off the weatherdeck edges. 

The water motion on deck subproblem involves shallow water wave theory.     There are 

several solution techniques that have been developed to solve the shallow water wave problem. 

Two of the techniques, Glimms method (also called the Random Choice Method) and the Flux 

Difference Splitting Method, are robust in the sense that they can handle dicontinuities such as 

shocks and bores in the solution.   This research investigates implementation of both solution 

techniques.   As a result, the flux difference splitting method is selected as the solution technique 
t 

for shallow water flow in the green water model. 

11 



Chapter 2 

LAMP Description and 

Development of Equations of Motion 

2.1    LAMP Description 

This description of LAMP is primarily based on information from reference [21]. LAMP com- 

putes a time domain solution for a general three-dimensional body floating on a free surface. 

Six degree-of-freedom motions are permitted. LAMP obtains a potential flow solution to the 

body-wave interaction problem using the boundary-element (or panel) method where the sub- 

merged body surface is divided into a number of panels. The incoming waves can take any 

form. At each time step the hydrodynamic pressure forces on the hull, which are computed 

from the complete velocity potential solution, are combined with body forces and any external 

forces to solve the equations of motion. The hull pressure forces may also be used to calculate 

hull bending and torsional moments and shear forces. 

In order to balance computation requirements with physics correctness and complexity, 

LAMP has three methods of calculation. The user selects a specific calculation method for a 

LAMP run through control variables specified in the input. The LAMP calculation methods 

are compared in Table 2.1. 

12 



Method 

LAMP-1 

LAMP-2 

LAMP-4 

Hydrodynamic, Restoring, and Froude-Krylov Wave Forces 

Free Surface Boundary Condition on Mean Water Surface 

3-D Linear Hydrodynamics 

Linear Hydrostatic Restoring and Froude-Krylov Wave Forces 

Free Surface Boundary Condition on Mean Water Surface 

3-D Linear Hydrodynamics 

Nonlinear Hydrostatic Restoring and Froude-Krylov Wave Forces 

Free Surface Boundary Condition on Incident Water Surface 

3-D Nonlinear Hydrodynamics 

Nonlinear Hydrostatic Restoring and Froude-Krylov Wave Forces 
Table 2.1: LAMP Calculation Methods and Description 

The LAMP-4 method is the complete large-amplitude method where the 3-D velocity po- 

tential is computed with the linearized free-surface condition satisfied on the surface of the 

incident wave. Both the hydrodynamic and hydrostatic pressure are computed over the in- 

stantaneous hull surface below the incident wave surface. The incoming wave slope must be 

small. Small slope generally indicates that the wave height is one order of magnitude less than 

the wavelength. LAMP-4 has large computational requirements and has traditionally been 

run on a supercomputer. However, the mixed-source formulation now used in LAMP to solve 

the potential flow problem provides enough computational savings for LAMP-4 to be run on a 

workstation.   The mixed source formulation is discussed later in this chapter. 

The LAMP-2 method is an approximate nonlinear method which retains many of the ad- 

vantages of both LAMP-1 and LAMP-4. It uses a linear 3-D approach like LAMP-1, where 

the potential flow problem is solved over the mean body boundary position, to compute the 

hydrodynamic (radiation, diffraction, and forward speed) part of the pressure forces. The 

hydrostatic restoring and Froude-Krylov wave forces are calculated on the portion of the ship 

beneath the incident wave surface. The requirements for computer resources are about the 

same as LAMP-1. Note that the LAMP-2 and LAMP-4 nonlinear methods are based on the 

approach that both the ship motions and the waves may have large amplitudes. 

The LAMP-1 method is the linearized version of the LAMP-4 method with the free surface 

boundary conditions satisfied on the undisturbed free surface location.   The linear hydrostatic 

13 



restoring forces axe computed from waterplane quantities while the Froude-Krylov wave forces 

are calculated with pressure below the undisturbed free surface location. Like LAMP-2, the 

mean body boundary position is used for the potential flow problem. 

LAMP uses two approaches toward solving the hydrodynamic problem for the potential 

function $(t) at each time step: a direct solution of the hydrodynamic potentials in the time 

domain and a solution using pre-computed impulse response functions. Both solutions are based 

upon a mixed-source formulation that is briefly described in the remainder of this section. 

In the mixed-source formulation, both the Rankine source and the transient Green function 

are used. The fluid domain is divided into an inner domain I and an outer domain II as shown 

in figure 2-l.The inner domain is enclosed by the wetted body surface Sb, a local portion of the 

free surface Sf, and the matching surface Sm. The free surface Sf intersects the body surface 

and is truncated by the matching surface Sm.at the water line Tm. The outer domain is the 

rest of the fluid region enclosed by Sm, an imaginary surface Soo, and the remaining free surface 

intersected by S'm.and Soo- 

Figure 2-1: Domain Definitions in the LAMP Mixed-Source Formulation 

The fluid motion is described by a velocity potential, 

&r{-#,t) = $wO?,t) + $("?,*) (2.1) 

14 



where $w is the incident wave potential and $ is the total disturbance potential due to the 

presence of the ship. "^ is a position vector and t is time. In the inner domain I, the initial 

boundary value problem for $ = <&/ can be expressed as, 

V2$/ = 0      in    I (2.2) 

The inner domain potential must satisfy the free surface and body boundary conditions. The 

free surface boundary condition is linearized in all three formulations, such that 

*>jL + g°*l = 0        on        Sf(t),t>0 (2.3) 

where g is the gravitational acceleration. The body boundary condition is next applied on the 

instantaneous underwater body for LAMP-4 and the mean underwater body for LAMP-1 and 

LAMP-2, 

|S = ?n-^ on Sb(t),t>0 (2.4) 
dn on 

where it is a unit normal vector to the body out of the fluid and V n is the instantaneous 

body velocity in the normal direction.   Sb(t) is constant for LAMP-1 and LAMP-2.    Finally, 

the initial conditions require a zero disturbance potential on the free surface at t = 0, 

*7 = ^i = 0 at i = 0 (2.5) 
ot 

The corresponding boundary integral equation in terms of the Rankine source is, 

2TT$/(P) + / ($/G„ - ®mG)dS = 0 (2.6) 

where G = 1/r = 1/ \P -Q\. P = (x,y,z) and Q = (£,r),0 are the field point and source 

point on Sj = Sf U Sj, U Sm. 

In the outer domain II, the initial-value boundary problem for $ = $// can be written as, 

V2$z/ = 0      in   II (2.7) 

^I + /|! = 0        on 5/(t),*>0 (2-8) 

15 



<f,n = ?l!l = 0 at t = 0 (2.9) 

The corresponding boundary integral equation in terms of the Rankine source is, 

2TT$/J(P) + /   ($//G° - $IInG°)dS = M(P, t) (2.10) 
J Srn 

where the memory function M(P, t) is defined as, 

M(P,t)= fdril  ($iiGfn-$IInGfT)dS + ± [   ^nGf
TT-^nrGf

T)VNdL)       (2.11) 

where rm is the water line of the matching surface, VN is the normal velocity of Tm, and G° 

and Gf are associated with the transient Green function. Reference [29] provides a detailed 

description of the transient Green function. 

The matching surface is treated as a control surface and moves with the body. To complete 

the problem statement, the matching conditions require that the total disturbance velocity 

potential and the normal velocity across the matching surface are continuous, thereby producing 

$, = *,/     on      Sm (2.12) 

fi = ^     on      Sm (2.13) 
on        an 

The solution is obtained at each time step.   Using the panel method, the above equations 

are used to solve for $/ on Sh, ^ on Sf, and $/ and ^ on Sm.   Bernoulli's equation is used 

to compute the pressure on the hull surface, which is integrated to get the hydrodynamic forces 

on the ship.   Then the linearized free surface boundary condition can be used in domain I to 

integrate in time and update the values of the total disturbance wave elevation and $/ at the 

next time step. 

16 



2.2    LAMP Rigid Body Dynamics 

This section outlines the solution in LAMP to the rigid body dynamic problem. Several 

coordinate systems, illustrated in figure 2-2, are used to describe the six-degree-of-freedom 

motion of a ship in a seaway. The global system ,Og, is fixed on earth. A second system is 

the local system, Of, which is fixed at the ship's center of mass, eg, and rotates with the ship. 

The relation between these two systems is by the position vector, R, and a set of euler angles, 

Jl = (<&r,0, \P), measured in the global system and following the sequence of rotation \P, 0, 

and $r, respectively, fromOg to O/.   The angles O can be thought of in common terms: $ is 

Figure 2-2: Coordinate Systems for LAMP Dynamic Solver 

the ship's yaw , © is the ship's pitch, and <&r is the ship's roll.   The matrix L is the euler angle 

transformation matrix between Og and.O/. 

L = 

cos \I> cos © sin * cos © — sin © 

-sin^cos^r + cosi'smösin^     cos * cos <£>r + sin # sin © sin <&r     cos© sin $r 

sin * sin $r + cos $ sin © cos $r     — cos \P sin $r + sin $ sin © cos <&r   cos© cos $r 

(2.14) 

A third coordinate system, Og',has the same orientation as Og but is initially centered at eg 

and moves with steady ship speed, Us hip.   There are other coordinate systems used in LAMP 

17 



to define the rigid body geometry, for example the input and initial static systems, but these 

are not necessary in describing the solution to the dynamic equations of motion. 

Velocities for the dynamic problem are defined as follows. All linear velocities are referred 

to the global coordinate system unless indicated. Vo is the velocity of a point on the rigid 

body, or extended rigid body, that coincides with Og at time t; V is the rigid body velocity at 

eg; Vg is the rigid body velocity at eg referred to the O^ system, CJ is the absolute angul 

velocity and . ~ut is the angular velocity in local system, O/. 

The velocities are related by 

V=Vo + ü?xR 

lar 

"Vg = Vo — Uship 

.     —r   ) ,      d __>.     —T d _► 
a? -L  Ut     and     -w=I -w/ 

dt dt 

The rate of change of Tt in terms of the angular velocity of the ship, ~ut, is given by 

d 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

dt 
ft = [W] w / (2.20) 

where [W] is defined as 

[W} = 

V sin 0/ cos ©   cos <&r sin ©/ cos © 

— sin 3v 

cos 3>r/ cos © 

1   sin $, 

0 cos <&r 

0       sin $r/ cos© 

(2.21) 

To determine R and it the dynamic equations for the rigid body motion must be solved. 

The equation of motion for translation can be written as 

fb = jt((Mo)(V0 - Uship)) (2.22) 

where lb is the total force acting on the rigid body at eg and Mo is the rigid body mass matrix. 

18 



The equation of motion for rotation about eg in the local coordinate system can be written as 

(2.23) Mo* = LTI/—(uf) + LT(Hi x 1/w/) 
at 

where Mo is the total moment acting on the rigid body about eg in the Og or Og' coordinate 

system and 1/ is the rigid body mass moment of inertia tensor in the local coordinate system. 

fb and Mo are calculated from the instantaneous total force including hydrodynamics and 

external contributions.   Equations 2.22 and 2.23 can be formulated into a coupled system of 

equations 

d_ 
dt E 

V0 

Hi 
(2.24) 

Combining equations 2.24, 2.16, and 2.20 yields 

' Vo' -l 1 

d Hi 
E 

—► 

q 

dt R 
V 

Ti 
[W] Hi 

(2.25) 

Equation 2.25 is solved by the fourth order Runge-Kutta method. 

2.3    LAMP Rigid Body Dynamics With Time-Dependent Mass 

The solution to the rigid body dynamic problem requires some modification to account for 

time-dependent mass and mass moment of inertia tensor due to water added to a ship from 

flooding or shipping water. Also, water motion will change the* mass moment of inertia tensor 

over time. This section provides a detailed formulation of the rigid body dynamics solution 

with time-dependent mass and mass moment of inertia tensor. 

2.3.1    Infinite Frequency Added Mass and Moment of Inertia 

The solution to the rigid body dynamic equations of motion in LAMP makes use of the ship's 

infinite frequency added mass and moment of inertia.    This section defines these terms and 
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explains why they are used. 

LAMP calculates the total instantaneous force, Fo, and moment, Mo, for the ship rigid 

body dynamic equations. Force and moment contributions from hydrostatics, the incident 

wave, hydrodynamics, external forces, and body forces are used to calculate Fo and Mo. Due 

to the total nature of the force and moment calculation the infinite frequency added mass and 

moment of inertia for the ship are not required in the dynamic equations. However, they are 

used in the LAMP rigid body dynamic solution for numerical stability. 

The added mass and added moment of inertia terms are referred to the global coordinate 

system when calculated. This causes them to be time-varying as the rigid body orientation 

changes with respect to the global system. The added mass and added moment of inertia terms 

are defined at an each time instant as 

ay = p jj^dS i,j = 1,2,...,6 (2.26) 

where ^ = m,i = 1,2,3 and ^ = (7^ x "ra );-3, i = 4,5,6. Vector rt is the position vector 

on the body, B, in the local coordinate system and ~n the outward normal of the fluid on B. 

The global added mass matrix, A~o, is a 6x6 matrix constructed with term i, j of Ao equal to 

a,ij.   The terms in Ao are defined as 3x3 submatrices 

Ao = 
illO     -^120 

i210     -^220 

(2.27) 

2.3.2    Translation: 

By replacing the rigid body mass matrix, Mo, with Mo + Am(t), the equation of motion for 

translation can be written as, 

Fo" = 4((Mo + Ä^(i))(Vo - Uship)) (2.28) 
at 

20 



For stability in the Runge-Kutta numerical integration scheme, added mass terms are added to 

both sides of equation 2.28 to obtain 

Tb+Ä^(V^) +Ä^~oft(") = jt((Mo +Ä^(t))(V0 - Uship)) +Ä^jt(V0) +Ä^-(-a) 
(2.29) 

Rewrite equation 2.29 by substituting F for the left hand side where F = Fo + ^iioJj(V0) + 

F" = jt((Mo+~K^(t))(V0 - Uship)) + ~Ä^-^(V0) +7toH—(&) (2.30) 

then group terms and carry out differentiation to get the final form of the translation equation 

of motion 

F = (Mo + Ä^(t) +Ä^)jlöK)+Ä^LT^(uf) + (V0- Uship)jt(Am(t))       (2.31) 

2.3.3    Rotation: 

The rotation equation of motion is expressed in the local frame Of. The local frame is used so 

that derivatives of I and X do not have to be calculated. 

Definitions and relations: 

Some terms need definition prior to developing the rotation equation of motion. I is the rigid 

body mass moment of inertia tensor in the Og or Og/ frame. H is the angular momentum 

about eg in the Og or Og/ frame. H/ is the angular momentum about eg in the O/ frame. 

The following equations relate the rotational terms: 

H=H? (2.32) 

%I = V13I (2.33) 

MoV = LMo" •                       (2.34) 

I=XTI/X (2.35) 
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Formulation: 

The equation of motion for rotation about eg in the Of coordinate system can be written as, 

Mo/ = 4(H/) (2.36) 
at 

In order to expand the term ^(H/),the following equation, which is a standard result from any 

dynamics textbook for vector derivatives in rotating systems, is used, 

l(A) = 4(A), + ^xA (2.37) 
at at 

In equation 2.37, ■%(£) is the absolute rate of change of A written terms of the unit vectors 

in the rotating system, ft{ A)r is the rate of change of A as viewed from the rotating system, 

and ~u is the absolute angular velocity of the rotating system. Placing the angular momentum 

vector H/ into equation 2.37 gives, 

4(H/) = 4(H')r + "^>xH/ (2.38) 
at at 

The angular momentum as viewed from the rotating (local) system is, 

(H/)r = I/w/ (2.39) 

inserting equations 2.33, 2.36, and 2.39 into 2.38 gives, 

Mo/ = — (I/Ztr) + üjfx I/w7) (2.40) 
(XL 

Due to time varying mass, the rigid body mass moment of inertia tensor,!/, is replaced by 

To/ + Al/(i). Applying equation 2.34 to 2.40 and making the substitution for the time varying 

inertia results in 

IMS = 4((Io' + AI/(i)) w/) + w/ x (To/ + AI/(t)) w/) (2.41) 
at 
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Then, by performing differentiation and moving L to the right hand side equation 2.41 becomes 

—V —T 
Mo = L (Io/ + AI/(t))^ w/ + —(AI/(i)) w/ + w/ x (Io/ + AI/(£))w7 (2.42) 

Similar to equation 2.29, for stability of the numerical scheme, added mass terms are added to 

both sides of the equation 2.42. Also, the substitution of M = Mo + ^2io^(V0) + A22o^(^) 

is made so that 

M = LT (Lor + AI/(i))-| w/ + -(AIf(t))uf + u/ x [(To/ + AI/(t))«?/ 
dfc «ft 

■ d ■ d 
+A2l0—(Vo)+A220—( W ) 

(2.43) 

Finally, grouping terms gives the final form of the rotation equation of motion 

'dt' 

d TT, M = A^^(V0)+ \1^LT + LTßof + AI/(i))] ^/+LT^(AI/(f))l?/+Z/ '(c?/x [(Io/ + AI/(t))üf/ 

(2.44) 

2.3.4    Coupled Rotation and Translation Equations: 

The translational and rotational equations of motion, equations 2.31 and 2.44, are a coupled 

system 

E 
d_ 
dt 

V„ 

uf 

where 

E 
Ana + Mo + Am(t) 

-A210 

A120L 

A220L   + L1 (lof + AI/(t)) 

(2.45) 

(2.46) 

and 

(2.47) 
F -(V0-Uship)ft(Am(t)) 

M - LT(u 1 x (Io/ + AI/(t))^/)) - LT£t(AIf(t))Z?r 

The details of [E], and [q] were not shown in equation 2.24. They contain terms similar to 

equation 2.45 except that there are some new terms in equation 2.45 due to the time-dependent 

mass and mass moment of inertia. The new terms are (V0-Uship)-^(Am(t)) in the translation 

equation and T^UJ/-^ (AI/(i)) in the rotation equation. Also, mass and mass moment of inertia 

vary with time in equation 2.45 but are constant in 2.24. 
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Chapter 3 

Models for Flooding 

3.1    Compart mentation 

Watertight internal subdivision using bulkheads to form compartments within a ship has been 

the primary means of limiting the extent of flooding in a damaged ship. During ship design, 

various bulkhead arrangements are evaluated against operational and damaged stability re- 

quirements to determine an optimal ship subdivision. In general, improved damaged stability 

performance with increased subdivision must be balanced against drawbacks to compartmen- 

tation such as weight, interference with arrangements, and access to systems. 

The capability to compartmentalize hull geometry had to be added to LAMP in order to 

model flooding for damaged stability analysis. Since this thesis is concerned with the basic 

changes necessary to LAMP for it to be used as a damaged stability prediction tool, it was 

considered adequate that the compartmentation model only use transverse bulkheads. If 

required for a specific ship configuration or damaged scenario, more detailed compartmentation 

model with longitudinal bulkheads and damage control decks could be added. 

A LAMP program module was written to accept arbitrary transverse bulkhead locations 

as input. The bulkhead locations are specified by their distance from the ship bow. The 

distance is normalized through dividing by the overall hull length. Any number of bulkheads 

can be created. The bulkhead locations are then automatically spliced into the hull geometry 

description to form compartments that are bounded by forward and aft bulkheads, the hull, and 

the weatherdeck.   Compartments at the bow or stern of the ship use the hull geometry to serve 
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the place of a forward or aft bulkhead as applicable.   Figure 3-1 illustrates compartmentation 

of the bow of a DDG51 Class hull.   In this figure the intersection of each line with other lines 

Figure 3-1: Compartmentation Model of a DDG51 Class Bow 

is described by an three dimensional coordinate point. 

Consistency between the flooded volume calculation and the LAMP hydrostatic calculation 

is important for an accurate representation of the ship's mean body position. Because the 

compartmentation module uses the detailed LAMP hull geometry description to define the 

majority of a compartment, the model provides excellent consistency between the compartment 

flooded volume calculation and the hydrostatic calculation. Results were obtained for a ship's 

final hydrostatic position after a flooding event. A comparison of the flooded volume against 

the resulting change in ship displaced volume showed the two agreed to within 99%. 

Finally, the compartmentation module is only used for calculations on the internal flooded 

water and does not affect the hull geometry description. This is important because the hull 

geometry description defines the body on which the hydrodynamic calculations are performed. 
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3.2    Calculations For a Compartment's Flooded Volume 

For sloshing of a flooded volume of water it was conservatively assumed the water within a 

rolling compartment maintains a horizontal surface. In actual ship compartments there are 

generally some solid objects that will project through the surface of the water to reduce free 

surface motion.   Ship designers account for this effect through the surface-permeability factor. 

The horizontal surface assumption produces a first order approximation for sloshing. For 

simplicity, pitch motion was not considered in the flooded water sloshing calculations. Damaged 

stability criteria mainly look at transverse stability while in a damaged condition and sloshing 

due to pitch would have little-to-no effect on this stability. Ignoring pitch motion also made it 

easier to check the accuracy of the flooded volume calculations. 

Numerical solution techniques for calculating the instantaneous dynamic free surface in a 

flooded compartment are an alternative to assuming a horizontal surface but they provide a 

relatively small increase in accuracy compared to the significant increase in complexity and 

calculation time. An actual ship compartment is outfitted and filled with equipment so even if 

the instantaneous free surface were calculated it probably would not reflect the actual conditions 

in the flooded compartment. Efforts to accurately calculate a free surface are better suited for 

the shallow water flow problem that arises when shipping water. 

Figure 3-2 illustrates the instantaneous position of a flooded compartment volume with the 

ship undergoing a roll to starboard with roll angle, $r. The roll is made through the ship's 

center of gravity, eg. The unprimed coordinate system in the figure, the YZ system, is the 

LAMP initial static system which is used as the reference to describe the hull and compartment 

geometry through position vector Rxyz. The primed coordinate system has been introduced 

for the flooded volume calculation and rotates to maintain the Yl axis parallel with the water 

surface. 

Flooded compartment volume is calculated in the YiZl system by summing the rectangular 

parallelepipeds of length delyf and height dzf. These are indicated in figure 3-2 and have a depth 

dx along the hull's longitudinal axis. The parallelepiped geometry was selected to simplify 

moment of inertia calculation. The flooded volume calculation is initiated by converting the 

compartment geometry, R, to the primed coordinate system, Rf, where C is the rotation matrix 
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Figure 3-2: Compartment Flooded Volume Model 

between YZ and YlZi, 

Ri = C(Rxyz — Rgrav) (3.1) 

Since only roll motion is considered, the x and xf values are the same. If it were desired to 

include pitch motion in the sloshing model, the pitch angle could be included in C and the 

calculation proceed in the same manner as described here. The summation for volume is made 

over x using j = jmax intervals and over zl with k = fc^x intervals where x spans the flooded 

compartment length and zl ranges from the minimum value to the waterline wl 

Vcmpt = ]C S telyl&zldx 
Xj    Z/k 

(3.2) 

At a fixed roll angle, the waterline value wl serves to determine compartment flooded volume. 

If a specific instantaneous flooded volume is desired for a particular flooding scenario, wl can 

be adjusted through an iteration process until the desired volume is reached. 

The center of mass of a flooded compartment, CGcmpt = (xfi,xf2,x/3), can be calculated 

where 

Xli = 
Ex,- Dz/,, xfjdelyfdz/dx 

Vcmpt 
« = 1,2,3 (3.3) 

Equation 3.1 is then used to refer CGcmpt to the YZ coordinate system.    With the flooded 
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volume and center of mass known, forces, moments, and the time-dependent mass terms can 

be calculated due to the flooded water and added to the dynamic equations of motion 2.45. If 

the flood rate is specified it is used directly as the |(Am(t)) term in the equations of motion. 

Otherwise |(Am(t)) needs to be calculated based on the flooded volume time history. 

The calculation for flooded water mass moment of inertia is made by summing the mass 

moment of inertia of each parallelepiped about the flooded volume center of mass. Appendix 

A outlines the method for doing this. After calculating the flooded volume mass moment of 

inertia tensor about the center of mass, SMIcmpt, the parallel axis theorem and a rotational 

transformation must be applied to refer SMIcmpt to the ship's eg in the local coordinate system. 

The instantaneous flooded volume mass moment of inertia tensor is used for the AI/(i) term 

in the dynamic equations of motion. The ^(AI/(t)) term must be calculated based on the 

flooded volume mass moment of inertia time history. 

To better model an actual ship, compartment permeability could be used in the calculations 

for a compartment's flooded volume. It would be a trivial matter to add permeability to the 

calculations above. 

3.3    Flooding Simulation 

With the compartment flooded volume model established there are several approaches to run- 

ning a time domain flooding simulation. First, the simulation can start with the initial condition 

that the flooding event is complete and the ship is in its final flooded static condition. A com- 

puter module was written to run this type of simulation. The module solves for a ship's final 

static position after a flooding event in any specified compartments is complete. The module 

uses an iterative procedure to calculate the final ship position and then revises the ship mass, 

moment of inertia tensor, and eg location to account for the added water. Alternatively, the 

module can maintain the ship intact and provide the total water that would be added if specific 

compartments were flooded. This information can be used as an upper bound on flooded 

compartment volume if it is desired to flood the ship as time advances in the simulation. 

The second approach for a time domain flooding simulation is to start with either an intact 

condition or some fully flooded compartments and then flood additional compartments as the 
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Simulation time progresses. This approach is what is referred to as progressive flooding in 

Chapter 1. The mass addition rate from flooding would need to be specified in this type of 

simulation. One technique to specify this rate is to specify a hull opening location due to 

damage and let water enter the compartment when the instantaneous free surface is above the 

hole. The flow through the hole of area A and at static head h would be governed by the 

short tube orifice equation, Q = CdAy/2gh. Tables may be obtained for the coefficient Cd from 

textbooks on hydraulics such as LeConte [18]. In [6] Dillingham states Cd may be taken as 

0.60 with very good accuracy. 

3.4 Wind 

LAMP is configured to include external forces in its calculation and currently has modules 

that calculate external forces for items such as appendages, viscous roll damping, and moving 

weights. It is a simple matter to include a heeling moment caused by beam winds using an 

equation such as the following from reference [17] 

Mw = K{Vw?Al^r)Y {3A) 

In equation 3.4 Vw is the wind velocity, A is the ship sail area, I is level arm from centroid of sail 

area to half draft, $r is the roll angle, and A is the ship displacement. K is a constant whose 

value can vary depending on units used in the equation and on assumptions on values for wind 

drag coefficient. Reference [17] contains a discussion on calculating wind heeling moments. 

Equation 3.4 could be expanded to include the wind heading angle so that three dimensional 

wind forces and moments on the ship are included in the LAMP calculation. 

3.5 Causes of Loss of Accuracy in LAMP Flooding Simulations 

When linear hydrodynamics are used in LAMP to solve the potential flow problem (LAMP-1 and 

LAMP-2) the initial mean body boundary position is used for the duration of the calculation. 

However, due to sinkage and trim from flooding the actual mean body boundary position will 

change.   As the flooding ship's mean body position diverges from the initial position a loss of 
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accuracy in the calculated ship motions will result. 

One strategy to limit the loss of accuracy in a flooding simulation using linear hydrodynamics 

is to select an intermediate body position between the intact and final flooded conditions. 

Another approach would be to run the linear hydrodynamics LAMP simulation at the intact 

body position and then at the final flooded body position and use the worse case ship motions 

as the motion estimate. Of course, non-linear hydrodynamics (LAMP-4) could be used for 

the flooding simulation but the penalty is that much more time is required to perform the 

calculation. 

As water floods into the ship it causes a time-dependent shift in the ship's center of gravity, 

eg. This shift is not accounted for in the LAMP dynamic equations of motion solution. For a 

small amount of flooding in a massive ship the shift in eg will be trivial. Under these conditions 

the calculated ship motions would be reasonably accurate. However, as the magnitude of the 

eg shift increases, the calculated angular ship motions will be wrong because the rigid body 

moment determined at each time step grows in error. 

Finally, when simulating significant hull damage such as a compartment size hole, consid- 

eration should be given as to whether complete body panelization that assumes an intact hull 

will provide an accurate enough hydrodynamic solution. A more accurate method may be to 

re-panelize the hull around the physical damage. 
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Chapter 4 

Models for the Green Water 

Problem 

4.1    Background and Scope of Green Water Model 

As a flooding ship loses freeboard, the likelihood of shipping water increases. The water on 

deck, in turn, can further degrade the ships stability condition. This is of special concern for 

smaller vessels. A review paper on the subject of water on deck and stability of has been 

published in reference [3]. Also, in reference [6], Dillingham provides calculations to show that 

instabilities caused by excessive deck water may cause capsizing of small fishing vessels. The 

green water problem can be decomposed into three subproblems: shipping water, water escaping 

off deck, and the motion of water on deck. For adequate modeling of the green water problem 

in a time domain ship motion program each subproblem must be addressed. 

Most work reported on the green water problem has focused on the water motion on deck 

subproblem. This emphasis over the other two subproblems is primarily due to water-motion- 

on-deck sharing the same basic theory as that for flow of compressible gases. Specifically, 

the equations governing water motion on deck, equation 4.13, are derived from the theory for 

waves in shallow water, covered in detail in reference [29], and are of the same form as the 

compressible gas dynamics equations. The necessity in industry for dealing with the flow of 

gases has resulted in numerical solution methods that can be directly applied to the water- 

motion-on-deck problem.   The objective in solving the shallow water equations is to solve for 
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the water depth and horizontal particle velocity. Solutions to the governing equations can 

involve discontinuities such as shocks, bores, and hydraulic jumps. Any numerical methods 

used to solve the equations must be capable of treating discontinuities. Most of the numerical 

methods fall into two general categories characterized by the scheme used to solve the governing 

equations: the flux difference splitting method and the random choice method, also known as 

Glimms Method. Both schemes handle discontinuities in the solution without any special 

treatment and were evaluated in this thesis. The Random Choice method involves looking 

at solution curves, called characteristics, to the governing differential equations. The flux 

difference splitting method combines a finite difference method with characteristics. A different 

approach to solving the water on deck problem is in reference [13] where the authors solve for 

wave motion in a rolling tank using a finite difference scheme coupled with analytical techniques. 

This approach illustrates the special care that must be taken with discontinuities with which 

the numerical scheme is incapable of handling. 

This chapter develops a green water model for the LAMP program in head seas. The two 

main methods for solving the water-on-deck subproblem are evaluated for use in the model using 

a two-dimensional free surface. A method for incorporating water shipping into LAMP is also 

devised. The water escaping off deck subproblem is not formulated because a proper calcination 

would require a three-dimensional free surface solution to the shallow-water problem. Three 

dimensions would introduce transverse water velocities so that as the green water travels aft on 

the weatherdeck it also moves towards the port and starboard deck edges and then over board. 

The green water model used for this thesis only calculates longitudinal water velocities so green 

water mass is removed from the weatherdeck by letting it fall off the after end of the portion 

of the weather deck included in the computation. This is accomplished by setting boundary 

conditions for the water-on-deck calculation to zero at the aft end of the weatherdeck 

4.2    Flux Difference Splitting Method for Water Motion on Deck 

The flux difference splitting method was developed based on the flux vector splitting method 

originally introduced by Steger and Warming in [28]. Steger and Warming developed a basic 

theory of the flux vector splitting method to compute the shock wave for the gas dynamic equa- 
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tions. Because of differences between the non-homogeneous governing equations for shallow 

water flow on deck and gas dynamics, it is better when solving the shallow water equations 

to split flux differences instead of the flux vector. In reference [1] Alcrudo presents the flux 

difference splitting method to solve problems for open channel hydraulics. In references [12] 

and [11] the flux difference splitting method is applied to solve the shallow water flow on deck 

problem. 

The flux difference splitting method is a an upwind (one-sided) finite difference scheme that 

solves the shallow water wave propagation problem for a two dimensional free surface. For 

supercritical flow, wave information can only travel downstream. In the case of subcritical 

flow, wave information will travel in both directions. In order to construct an upwind scheme 

valid for all regimes and directions of flow, a decomposition of the flux related to positive 

and negative propagation speeds is needed. The flux decomposition is devised so that wave 

information can not travel upstream in supercritical flow. For flux difference splitting methods 

the flux difference operator, A F and ARHS in the equations below, is split based on the 

characteristic directions. 

Reference [12] can be used to formulate the shallow water flow governing equations for a 

two-dimensional free surface with the geometry illustrated in Figure 4-1. Many of the variables 

in the governing equations are not defined in the figure. Of these, «i is the ship surge velocity, 

u3 is the ship heave velocity, © is the pitch angle, u5 is the angular velocity, and g is acceleration 

due to gravity. Note that u is the water particle velocity in the x-direction. The governing 

equations in vector form is 

™+^ = {D]?JL+c> 

where W = 

{ 

9< 

^ u9( 

and C = 

They are defined as 

0 

ugC, 

u29C + ^902 

( 0 0 

The variables q\ through 94 are functions of deck motion and geometry. 

91 -(?)' 
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Figure 4-1: Coordinate System for Two-Dimensional Free Surface 

/^\     du31 , dv*x     (us) ZG 03   =   1 - cos(O) — h —  
* K   '      dt g      dt g g 

qA   =   5sm(0)- — + (U6) s + —ZG 

Equation 4.1 is derived by applying the shallow water assumptions to the continuity equation 

and Eulers equations of motion. 

The derivatives of the flux vector F and H can be expressed in terms of W 

8F      TT,dW ,     dH      [T]dW 
= [Ji] -sr    and    "ST = [J2J dx dx dx dx 

(4.2) 

where [Ji] and [J2] are the Jacobian matrices.   The eigenvalues of [Ji] are 

Xi=u+ VffC     and     A2 = « - V^C (4.3) 

with the eigenvectors 

et=(l,u + v
/5C)        and     £2 = (l,u- VsCj (4.4) 
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The difference of W^ and flux vector F are approximated as 

AW = J2 a*ek     and    A? = ^ Afcafcefc (4.5) 
fc=i fc=i 

The right hand side of equation 4.1 equal to zero corresponds to water sloshing for a given 

initial water surface profile and the ship stationary. With the right hand side zero, the finite 

difference scheme with the split flux difference can be expressed in the following form 

W (n+l) «t'+s^j-W 

where 
1 -+ -►        1   2 

2 

3  2     2 lk=\ 
Ki-h 

fc,i+i 

*j-* 

(4.6) 

(4.7) 

(4.8) 

The scheme in equation 4.6 is of the first order. 

When the right hand side of equation 4.1 is not equal to zero, it is treated as another flux 

difference term and projected into the eigenvector space as follows 

—► 2 

dx Ax 
(4.9) 

fc=i 

The right hand side flux difference, where the flux difference is related to equation 4.9 by 

ARHS = RHSAx, is then split 

A^_, = E7fcJ-lA+._^fc>j_:      and     A^^^I^l^f   (4"10) 
fc=l fc=l 

where 

Aw-i = 5(V-i + hw-il>   and   A
fc"i+i=:2(A^^"lAfc^l) (4.11) 

The split flux difference is then included in the finite difference scheme of equation 4.6 

B>**D _ j?(») + "(t.   _ F; ) - £(AM3+  + Ät|)      (4.12) 
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The minus sign in equation 4.12 prior to the RH& term is due to the minus sign in equation 

4.9.   In [28] Steger shows that flux splitting schemes are stable if and only if Afc   s < 1. 

Shallow water first-order schemes suffer from numerical dissipation (the shock front will be 

smeared). Reference [12] shows how a flux limiter, which is a correction term for the numerical 

flux, can be applied to the first order scheme to make the scheme higher order. 

The flux difference splitting method can be used to solve the shallow water equations for a 

three-dimensional free surface. Reference [12] formulates a technique using the flux difference 

splitting method, together with the Fractional Step Method [32], so that solutions to the shallow 

water equations can be obtained by solving two sets of two-dimensional free surface problems. 

The three-dimensional solution works as follows. Two sets of vector equations similar to 

equation 4.1 are devised. One set is for flow in the ship longitudinal direction (x - axis) 

where each specific equation holds for a certain deck strip of thickness Ay. The other set of 

vector equations is for flow in the transverse direction ( y - axis) where each equation is for a 

certain deck strip of thickness Ax. Then the Fractional Step Method advances the solution in 

time. At each time step the sets of equations along the x - axis are solved for an intermediate 

solution assuming no y dependency. Then, in the same time step, the sets of equations along 

the y - axis are solved from the intermediate solution assuming no x dependency. Instead 

of solving the three-dimensional free surface governing equation on (m x n) nodes, a total of 

(m+n) two-dimensional free surface equations are solved along the x and y directions separately 

using the Fractional Step Method. 

The difference schemes of equations 4.6 and 4.12 for a two-dimensional free surface were 

programmed in a computer so that the method could be compared with Glimms method. 

4.3    Glimms Method (Random Choice Method) for Water Mo- 

tion on Deck 

For a two-dimensional free surface, Glimms Method is performed by dividing the physical 

domain into intervals, z = 1,2,3,..., i max. In each interval at time nAt the solution is approxi- 

mated by piecewise constant depth, Q, and particle velocity, ti*. At the boundary between each 

interval, the depth and velocity are therefore discontinuous which gives a sequence of Riemann 
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problems which may be solved to advance the solution to time (n + l)At. The solution to 

the Riemann problem is outlined below and the full solution is developed in Appendix B. The 

Riemann problem is also known as the dam breaking problem. Projn the time (n + 1) At Rie- 

mann solutions, it is desired to construct another piecewise solution. This is done by randomly 

sampling the solution in each interval and then using the sampled value as an approximation for 

that interval's constant piecewise solution. In [10] Glimm showed the random sampling scheme 

converges to a weak solution. The disturbance resulting from the solution for each individual 

Riemann Problem must not be able overlap with the disturbance from the adjacent Riemann 

Problem. No disturbance must be allowed to propagate further than Amt^val in a time At. 

Thus the resulting Courant condition that must be satisfied is Ain$t
val > (\u\ + y/g£). The 

solution obtained is unconditionally stable. 

Glimms Method is used to solve the water motion on deck problem in references [6], [22], 

and [23].    References [27] and [4] illustrate use of the Glimms Method to solve gas dynamic 

problems. 

Appendix C contains a MATLAB program that solves a Riemann Problem using Glimms 

Method. 

4.3.1    Solution of the Riemann Problem 

Glimms method requires solution of the Riemann Problem, also known as the dam breaking 

problem, at each spatial interval in the computational domain at each time interval. A summary 

of the Riemann Problem solution procedure, taken from Dillingham [6] follows. Appendix B 

provides details of the calculations. In keeping with Dillingham's notation, the y axis is used 

as the coordinate axis for the Riemann Problem, v is the horizontal velocity, and A is used for 

the water depth. 

The Riemann Problem, illustrated in figure 4-2, consists of solving a system of nonlinear 

hyperbolic equations, called the shallow water wave equations, 

dv       dv       8X     n , 8X       dX       dv ,      . 
—• + v— + 5— = 0 and -5- + v— + A— = 0 (4. Id; 
dt       dy       dy 8t        dy       dy 

for a two-dimensional free surface where g is gravity acceleration, subject to initial conditions 
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on the right-hand and left-hand sides 

► y < 0     and 
A = A2 

v = Vo 

A = A0 

►y>0 (4.14) 

A 
*2 V2 

> 

V 

Initial Dam 
Position 

Xo 
/\ 

y = 0 
->y 

Figure 4-2: Initial Conditions for the Riemann Problem 

It is assumed that the water is initially higher on the left side of the dam. The dam is then 

removed at time t = 0. Depending on initial conditions, the Riemann problem solution falls into 

different categories, identified as Cases I through V. The variable c as used below represents the 

wave propagation speed; it is the local speed of propagation of "small disturbances" relative 

to the moving stream.   In shallow water theory, c is related to the water height by c = y/gX. 

Solution to the Riemann Problem: Case I 

If V2 + 2c2 > V0 + 2CQ and 

V2 - V0 < 
gtAo + AxXAq-Ao)2 

2 AIAQ 
(4.15) 

then the solution consists of a single shock and a single rarefaction as indicated in figure 4-3Let 

co = V^Äo", a = v^.and c2 = VgM-    Also, let R = ^- where £ is the shock speed, then 
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Figure 4-3: Solution for Riemann Problem Case I 

solve the following equation for R 

R-*R 
1 + V8R2 + 1 + 2 UV8WTT-1) *     V2-VQ + 2C2 

CO 
(4.16) 

then we have 

CQR + VQ 

C0\R-J^(I + VSR
2
 + I)^+VO 

l 2 

i(v/8Ä2~+T-l) I*      and     Ai = ^ 

(4.17) 

(4.18) 

(4.19) 

In zone 3 we have 

u = |(£_y0 + ll^ + C2)+y0     and     A = ± (V2 + 2c2 - \)' 

where zone 3 is bounded by (V2 - c2) t < y < (Vi - ci) t. 

(4.20) 

Solution to the Riemann Problem: Case II 

If equation 4.15 is not satisfied then the solution consists of two shocks as indicated in figure 

4-4 
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Figure 4-4: Solution for Riemann Problem Case II 

Solve the following equation for Ai 

V2-Vo 
g(Ao + Ai)(Ai-A0)2 

2 AiAo 

g(Ai+A2)(A2-A1)
2 

2 A2Ai 
= 0 

then 

Vi =   ^o + 
<7(A0 + Ai)(Ai-A0)2 

2 AiAo 

AiVi - A0Vb 
Ai — Ao 

and     £2 = 
A2y2 - AiVi 

A2 —Ai 

(4.21) 

(4.22) 

(4.23) 

Solution to the Riemann Problem: Case III 

IfVo-V2>2|c0-c2| then the solution consists of two rarefaction waves as in figure 4-5The 

solution for zone 1 is 

Vi = — h c2 - co     and     Ai = g ( ; h (4.24) 

In zone 3 we have 

2 (v     V2 and     A = ^- (V2 + 2c2 - If 
9g \ t 

(4.25) 
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Figure 4-5: Solution for Riemann Problem Case III 

where zone 3 is bounded by (V2 - c2) t < y < (Vi - cj) t.   In Zone 4 

where zone 4 is bounded by (Vj. + ci) t < y < (Vb + Co) i. 

Solution to the Riemann Problem: Case IV 

If A0 = 0 then the solution is a single rarefaction wave as in figure 4-6. 

(4.26) 

1 
1 
1 

V2 
\i 

*2 ]\ 
V3  1     \ 
A3   1         \^ 

Figure 4-6: Solution for Riemann Problem Case IV 

The solution in Zone 3 is 

H(!+T+C2) and A=^(2c2+F2-f) (4.27) 
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where zone 3 is bounded by (V2 - C2) t < y < (V2 + 2c2) t. 

Solution to the Riemann Problem: Case V 

If in case IE there is the additional condition that V2 + 2c2 < V0 - 2co then the water depth 

will be equal to zero in Zone 1 and the problem must be treated similarly to Case IV. 

4.4    Selection of Water Motion on Deck Method 

Computer programs for the flux difference splitting method and for Glimms method were gen- 

erated to solve a Riemann problem. The goal of this effort was to compare the methods to 

see which is most suitable for incorporation into the LAMP water on deck model. Figure 4-7 

illustrates the solution to a Riemann problem using a first order flux difference splitting method 

scheme without flux limiters. The solid line is the exact solution, the other two lines are the 

numerical solutions. The line with the shorter dashes is for $ = %gjp and the line with the 

longer dashes is for ^ = jffif. The scheme converges to the exact solution as Ay is made 

smaller. 
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Figure 4-7: Riemann Problem Solution Using Flux Difference Splitting Method 

Figure 4-8 illustrates the solution to the same Riemann problem using the Random choice 

method.   The solid line is the exact solution, the other two lines are the numerical solutions. 
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The line with the shorter dashes is for At = %§g and the line with the longer dashes is for 

At _ Mgi    This scheme also converges to the exact solution as Ay is decreased. 
Ay        0.01 

Due to the random interval sampling required in this procedure, the results vary each time 

the calculation is run. For example, for constant At, Ay, and initial conditions, a set of 

calculations will produce a unique solution curve for each calculation. Figure 4-9 shows three 

different solutions to a Riemann problem, the dashed lines, using the Random Choice Method. 

For each solution the initial conditions and calculation parameters were the same. 

Other Riemann problems were investigated to compare the Random Choice and first order 

flux difference splitting methods. Table 4.1 summarizes a comparison of the two methods. 

An "X" entered in the Table means that method is superior to the other method in the given 

category. 

Comparison Category Random Choice Method Flux Splitting Method 

Ease of Programming X 

Accuracy for Given Discretization X 

Repeatability of Solution X 

Ability to Capture Discontinuities X 

The flux difference splitting method was selected, primarily due to ease of programming, as 

the numerical method to be used for the for LAMP green water model. 

4.5    Water Shipping Model 

The difficulties in creating a realistic water shipping model are best framed by Dillingham in 

[6]. He states, 'In general the flow over the bulwark is very complicated since it results from 

the unsteady interaction between shallow water waves on the deck and deep water waves off 

the deck. In addition, direct observations of models indicate that the deck water may regularly 

impinge on the bulwark with considerable velocity and be thrown over the side in what amounts 

to a spray.   To refer to this process as either turbulent or nonlinear is an understatement." 

For water shipping to occur, the height of the free surface at the ship side must exceed the 

height of the bulwark (or deck edge if there is no bulwark) and the relative velocity of the water 

above the top of the deck edge must be directed inward onto the deck.    The height of the free 
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Figure 4-8: Riemann Problem Solution Using Random Choice Method 

Figure 4-9: Solution Randomness in Random Choice Method 
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surface above the bulwark or deck edge is referred to as the relative elevation, TJR. This thesis 

makes use of a ship model with no bulwark so hereafter only the deck edge will be mentioned 

in the water shipping discussion. Figure 4-10 illustrates some geometries and variables used 

in the water shipping model. The XZ coordinate system represents the global system which 

maintains a fixed orientation. The primed system, XfZf, is the local coordinate system that 

moves with the ship. The variable 77 represents the free surface elevation and Zd represents the 

height of the deck edge. Each is referred to the global system as a value along the z axis. The 

instantaneous relative elevation would be r)R(t) = r/(i) - Zd(t). The vectors VWx and VWy 

are components of the water particle velocity V w. The vectors V dx and V dy are components 

of the deck edge velocity Vd.   All vectors are referred to the global system. 

Figure 4-10: Geometry and Variables for the Water Shipping Model 

4.5.1      Free Surface Elevation for Water Shipping 

A basic description of the instantaneous free surface, r)(t), can be made by considering only the 

incident wave potential. However, for a more accurate description of the free surface around the 

ship hull the complete incident, diffracted, forward speed, and radiated wave system potentials 

should be used.   The hydrodynamic potentials cause an increase in free surface elevation which 
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is commonly referred to as "pile-up" in the wave-body interaction. For a more complete 

estimation of pile-up the jet motion of the free surface from water-entry and slamming should 

be considered. In reference [8] a numerical technique for predicting the occurrence of water 

shipping is presented and it is concluded that the radiation and diffraction terms play important 

roles in the water shipping analysis and cannot be neglected. 

For the water shipping model presented here, the incident wave potential is used for calcu- 

lating the free surface height at the ship side. An elevation correction is then made to account 

for the forward speed, radiation, and diffraction potentials. The hull surface hydrodynamic 

pressure at the body panel adjacent to the waterline and nearest the desired deck location is 

used to compute an elevation which is added to the relative elevation computed from the ship 

motion and incident wave potential. 

For a LAMP-2 calculation of the CG-47 hull in storm seas case, this elevation correction did 

not prove to be particularly large most of the time. It is probable that the correction would 

be larger for a LAMP-4 calculation, as the hydrodynamic calculation would include some hull 

flare effects. 

4.5.2    Relative Velocity for Water Shipping 

Several terms must be considered to determine the relative velocity, V r, of the water above the 

deck edge. The water particle velocity, Vw, and ship velocity at the deck edge, Vd, must be 

known. Also, an additional velocity due to the effect of hydraulic flow, Vh, must be included. 

Hydraulic flow occurs due to energy conservation from converting the static head from the 

relative elevation into a velocity according to Bernoulli's equation. Referring to figure 4-11, 

where the variable zl is the local height off the weatherdeck, the static head height is {r]-Zd) -zl 

and the hydraulic velocity is Vh{zi) = y/2g{rjR- zf). The hydraulic velocity is assumed to be 

directed onto the ship parallel with the xi axis. The dependency that Vh has on zl can be 

removed by averaging Vh over the static head. This is done with the following integral to 

obtain mass flow rate, Q, 

Q = J"~Zdj29(VR-z')dz; (4.28) 

In [6] Dillingham uses a technique similar to equation 4.28 to integrate for the mass flow rate 

onto a ship's weatherdeck.   Carrying out the integration in 4.28 and then dividing by the static 
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head height to obtain an average hydraulic flow, Vhave, gives 

V/w = 3 V2OTH (4.29) 

The water shipping model, then, uses Vhave, Vw, and Vd for the relative velocity calculation. 

The calculation for Vhave is a simplification made for this thesis. In reference [11] the 

hydraulic flow contribution to water shipping is treated within a more general calculation for 

mass of the wave shipped on deck. The mass calculation is performed by integrating around 

the edge, L, of the weatherdeck as follows, 

Mass = pf I C0 \f
R(Vw - Vd)dzl + £R Vh{zl)dzl dldt (4.30) 

The constant C0 in equation 4.30 was determined experimentally by Grochowalski to be 0.55. 

Figure 4-11: Water Shipping 

Because ~VW and V d are vector quantities, the calculation for V r can be performed several 

different ways depending on the assumptions made. These calculations will be referred to as 

Methods I, II, and III. In any case, since shallow water theory assumes all fluid velocity is 

parallel with the deck surface, the direction for V r, shown in figure 4-11, is always considered 

to be parallel with the weatherdeck.   For Method I, the calculation will use only the horizontal 
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components of the wave and particle velocities so that 

VT = Vdx-VWx+Vhave (4.31) 

For Method II, the calculation will consider the ship's instantaneous pitch angle, 0, and use 

the components of the vectors VWx, VWy, Vdx, and Vdy that are parallel with the xi axis. 

The calculation for Vr in this case is 

Vr = Vdx cos(0) - Vdy sin(0) - (VWx cos(0) - VWy sin(0)) + Vhave (4.32) 

The Method HI calculation will be performed by conserving the momentum of the water particle. 

For long crested head seas there are only two wave particle velocity components so that 

Vr = Vdx cos(0) - Vdy Bin(e) ± JVI+VI + Vhave (4.33) 

where the plus (+) is used when (VWx cos(0) - VWy sin(©)) < 0 and the minus (-) is used when 

Oncost©) -^ysin(0))>O. 

The relative velocity and elevation must be calculated at each time step. As indicated in 

figure 4-11, the velocity is considered to be a constant from the deck edge to the top of the free 

surface. With the relative velocity and elevation of the water at the deck edge known, they 

can be considered as boundary conditions for a water on deck problem. When the relative 

elevation becomes negative, the boundary conditions are set to zero. Evolving the water- 

on-deck problem through time, with the relative velocity and elevation boundary conditions 

updated at each time step, will result in mass flow onto the deck. Water shipping, therefore, 

is treated as a boundary condition to the water on deck problem. 

4.6    Green Water Model in LAMP 

To create a green water model in LAMP for head seas, a weatherdeck was included in the hull 

geometry description. The deck was modeled as a surface projecting aft from the ship bow 

a distance approximately 25% of the overall ship length. The weather deck is divided into 

strips of width dely.   At the center of each strip is a deck edge reference point at which data 
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needed for the water shipping problem is calculated.   Figure 4-12 illustrates this setup.   The 

Figure 4-12: Weatherdeck Division for LAMP Green Water Model 

model uses the flux difference splitting method to solve the shallow water problem in each strip 

as a two-dimensional free surface.    Transverse water flow (from one strip to another) is not 

calculated. 

A LAMP subroutine was provided by SAIC to calculate, at each time step, the deck edge 

motion, deck edge location, free surface height, and incident wave particle velocity for each 

reference point shown in figure 4-12. With this data, the relative elevation and velocity can be 

determined for each deck edge point. 

After solution of the shallow water problem for each strip at each time interval, the forces, 

moments, and the time-dependent mass and mass moment of inertia terms in the dynamic 

equations of motion can be calculated that result from the water on deck. Because of the time- 

dependent mass terms in the dynamics equations of motion, the green water on deck is treated 

as part of the rigid body. Thus the only green water induced forces and moments that need to 

be calculated for rigid body motion are those due to gravity acceleration. For the local loads 

on the weatherdeck and superstructure, however, the absolute green water fluid acceleration in 

the local coordinate system must be calculated.   Let a.Gw be the absolute acceleration of the 
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green water in the local ship coordinate system.    As defined previously V is the rigid body 

velocity at eg and "w the rigid body rotation.   Then from simple dynamics 

» = ^ + ^xf/+^x(^xf/)+2^xV/ + ^ (4.34) 
aow=  dt   •   dt 

where T*7 and v*7 is the position and velocity, respectively, of the green water referred to the 

local coordinate system. The vector ä^i is the acceleration of a point in the green water 

measured relative to the local frame by an observer attached to the local frame. This quantity 

is zero for the green water problem. The vertical acceleration component of aow is defined as 

azf. At each time step a2/ can be calculated for the green water on deck as a function of the 

x axis in figure 4-12. The total deck pressure, Pdeck, is then be calculated by including the 

gravity static head, which must include pitch angle, and the depth of the green water, C, so 

that 

P<j«* = pC(a*/ + <7Cos(e)) (435) 

Forces from green water on large superstructure, where the water particle velocity at the struc- 

ture boundary can be approximated as zero over a wide area, can be calculated from equation 

4.35 by integrating the pressure through the water column. For smaller weatherdeck structures 

a better estimate of the local green water loads may be made by considering the green water 

particle velocity. 

Figure 4-13 visualizes a solution to the green water problem by plotting the water depth for 

one strip over a series of time steps with a sinusoidal incident wave. In this case the ship is 

moving to the right into the sea, the bow is on the right, and time is increasing with the higher 

curves.   The horizontal portion of each curve is an area where the deck is dry. 
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Figur e 4-13: Flow Visualization of Green Water on Deck 
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Chapter 5 

Validation and Results 

5.1    Validation 

5.1.1    Validation of Dynamic Equation of Motion Solver 

The changes to the LAMP dynamic equations of motion to include time-dependent mass and 

moment of inertia were validated using the model shown in Figure 5-1. The model is a body 

with two lumped masses, M0, at the ends of a massless rod.   The body has initial linear velocity 

Figure 5-1: Model Used to Validate Dynamic Equations of Motion Solver 

V0 and initial angular velocity w whose vector representation is pointed along the x axis.   The 
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solution for linear and angular velocity over time was calculated as the mass was reduced at a 

constant rate. At time t = 0.5 the mass reduction was ceased. The results in figures 5-2 and 

5-3 show linear momentum, P, and angular momentum, H, is conserved in the calculation. 

In each figure, the horizontal line is the constant momentum and the slanted line is either the 

mass (figure 5-2) or the moment of inertia (figure 5-3). The parabolic line is either the linear 

velocity (figure 5-2) or the angular velocity (figure 5-3). 
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Figure 5-2: Conservation of Linear Momentum 

5.1.2    Validation of Compartment Flooded Volume and Moment of Inertia 

Calculation 

The flooded compartment module added to LAMP calculates volume, mass center, and moment 

of inertia. The module also calculates a final hydrostatic position after flooding is complete in 

any number of specified compartments. These calculations were validated by running them with 

a rectangular hull geometry input. Separate calculations were made with the same rectangular 

hull using different calculation methods and software. Results from the LAMP module agreed 

with results from the independent method to within 99%. 
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Figure 5-3: Conservation of Angular Momentum 

5.1.3    Validation of Flux Difference Splitting Method 

A bore propagation problem is solved to validate the flux difference splitting method used for 

the water motion on deck problem. In particular, this problem validates the homogeneous 

form of the difference scheme, equation 4.6.   The initial conditions are a Riemann Problem 

v = 0.2667 

A = 10.8 
> y < 0     and 

v = 1.6 

A = 1.8 
y>0 (5.1) 

where the velocity units are m/s and the water height units are m. The exact solution to the 

problem for water depth has been given by Stoker in [30]: 

A(y,*)=< 

10.8 for        y < -10.0t 

8^(20.84 - f )2     for      - 10.0* < y < 0.45* 

4.716 

1.8 

for     0.45* < y < 10.7* 

for       y > 10.7* 

The exact solution shows that a bore travels in the positive y-direction with a velocity of 10.7 

m/s, and a rarefaction wave propagates in the negative y-direction at a speed of 10.0 m/s. 
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Figure 5-4 shows the numerical results (dashed line) and the exact solution (solid line) for the 

water depth. The numerical results match well with the exact solution. Because the numerical 

scheme is first-order, it has some difficulty handling the shock front. This is evident in lost 

resolution and that the shock front travels slightly faster than the exact speed. This can be 

corrected with a higher order scheme. 

Figure 5-4: Bore Propagation at t = 0.5 seconds 

A second problem was used to validate the flux difference splitting method when the ship is 

undergoing motion. Mathematically this is the condition where the right hand side of equation 

4.1 is non-zero. This problem, then, is a test on the numerical scheme used for equation 4.12. 

The problem is one solved by Huang and Hsiung in [12] for sloshing inside a deck well. The 

computations are carried out for the deck flow excited by roll motion. The deck is 1 meter 

wide, oscillating about a pivot which is 0.522 meters above the deck, and the roll amplitude is 

0.067 rad. The mean water depth is 6 cm. The primary resonant frequency of the shallow- 

water motion inside the deck well is u0 = 2.41 rad/ sec. The numerical results in figure 5-5 

are for a rolling frequency of w = 0.9 rad/ sec, well below resonance, to show the water behaves 

as a "horizontal surface." The rolling frequency was then increased to twice the resonance 

frequency and results plotted in figure 5-6. At this frequency, standing waves are formed with 

the wave length approximately equal to the deck width.   In each figure, plots were made of the 
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free surface at several time instances to illustrate the motion. 
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Figure 5-5: Shallow Water Sloshing Below Resonant Frequency 

5.2    Results for Flooding Models 

This section provides some results from the compartment flooding model that was added to 

LAMP. In all cases, unless noted otherwise, the LAMP-2 formulation was used. The results 

include effects on roll and pitch motions from a flooded volume and examples of inaccuracies 

that arise due to a shifting eg and due to a changing mean body boundary position when linear 

hydrodynamics are used. The ship model that was run in LAMP for these results is a CG47 

Class Cruiser. A steady forward speed of 10 knots was used for all the calculations. This ship 

model was used on the recommendation of SAIC due to its excellent past performance. 

All plots of ship motion were made in non-dimensional units. If the ship has length L then 

linear motions are made non-dimensional by dividing by L and time is made non-dimensional 

by dividing by J&.   Angular motions are plotted in radians. 
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Figure 5-6: Shallow Water Sloshing, Twice Resonance Frequency 

5.2.1    Roll Motion Results 

The first results, figures 5-7 and 5-8, show the effect of flooding and sloshing on roll motion. 

Beam seas with a single sinusoid wave component were used to induce ship roll motions. A 

large amidships compartment with length equal to 20% of ship length was created for flooding. 

The bulkhead locations were at 0.4 and O.6.. Figure 5-7 illustrates roll motion of the intact hull 

(solid line) and of the flooded ship (dashed line). For the flooded ship, the problem was started 

with the ship in its final flooded position from uncontrolled flooding into the compartment and 

sloshing was not included in the calculation. The linear hydrodynamics and sinusoid seaway 

cause the motion to reach steady state after the starting transients pass. The roll motions of 

the flooded ship are much reduced compared to the intact ship due to the flooded mass having 

lowered the ship's eg. Sloshing effects were then added to the calculation. Figure 5-8 compares 

roll motion of the flooded ship without sloshing (solid line) and with sloshing (dashed line). 

The sloshing causes a roll moment, the effects of which can clearly be seen in the increased roll 

amplitude. 
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5.2.2 Vertical Motion Results 

The next set of results, figures 5-9 and 5-10, show the effect of flooding on vertical motion and 

relative elevation at the bow. Head seas with a single sinusoid wave component were used 

to induce pitch and heave motions. The wavelength was set at 1.5 times the ship length to 

excite pitch motion. Wave amplitude was 17 feet to approximate about a sea state 6. These 

extremely harsh conditions were intentional to create a large- relative elevation at the bow for 

water shipping. A forward compartment with bulkhead locations 0.1 and 0.25 was created for 

flooding. Figure 5-9 illustrates pitch motion of the intact hull (solid line) and of the flooded 

ship (dashed line). For the flooded ship, the problem was started with the ship in its final 

flooded position from uncontrolled flooding into the compartment. The trim of the flooded 

ship is indicated in the initial pitch angle. Sloshing was not included in any of the pitch 

calculations. The effects from the longitudinal moment induced by the flooded water and its 

moment of inertia can be seen in the flooded ship motions. Notice that the flooded ship spends 

a greater amount of time than the intact ship with the bow pitched downwards (positive pitch 

angle). In such a condition shipping water is more likely to occur which is why a green water 

model is also necessary for LAMP to be used as a damage stability prediction tool. There 

is little difference in the intact and flooded ship heave motions for the same flooding scenario. 

Figure 5-10 illustrates this motion for the intact ship (solid line) and flooded ship (dashed line). 

The motions are similar but the flooded ship's vertical position is offset due to its lower eg. 

The relative height of the bow deck edge above the instantaneous free surface l is calculated 

for water shipping and can be plotted for the pitch motions in figure 5-9 This relative bow 

height is shown in figure 5-11 for the intact ship (solid line) and the flooded ship (dashed line). 

Shipping water occurs during a negative relative bow height (positive relative elevation). The 

time duration and magnitude of each shipping water event is greater for the flooded ship. 

5.2.3 Loss of Accuracy Examples 

Possible causes for loss of accuracy in the LAMP flooding simulation calculation have been 

discussed and examples are now provided.   The next set of results shows that a changing mean 

lThe term "relative elevation" was used in the green water model discussion as meaning the free surface 
height minus the deck height, the relative bow height is just the negative value of the relative elevation. 
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Figure 5-8: Sloshing Effects on Roll Motion 
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Figure 5-10: Heave Motion Intact and Flooded Ship 
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body boundary position affects linear calculation accuracy and also that a shifting eg introduces 

errors in the angular motion calculation. Figure 5-12 plots pitch motion to illustrate loss of 

linear calculation accuracy. For each curve in the figure the problem was started with the ship 

in its final flooded position from uncontrolled flooding in the forward compartment bounded 

by the 0.1 and 0.25 bulkheads. The seaway conditions were the same as the conditions for the 

figure 5-9 simulation. The solid curve is the accurate linear hydrodynamic calculation; it used 

the final flooded hydrostatic position as the mean body boundary position. The dashed curve 

used the ship's intact (non-flooded) mean body position for the linear hydrodynamic calculation. 

This example shows the calculation with the incorrect mean body position overestimates the 

peak positive pitch by approximately 0.5 degrees. 

Figure 5-13 illustrates the effect on angular motion calculation due to a shift in eg. For 

each plot the problem was started with the ship in its final flooded position from uncontrolled 

flooding in the forward compartment bounded by the 0.1 and 0.25 bulkheads. This flooded 

condition moves eg forward by 3.8% and down 0.23% of ship length from its initial intact 

position. The seaway conditions were the same as the conditions for the figure 5-9 simulation. 

The solid curve is the pitch motion where the ship's eg was moved prior to the start of the 

calculation to account for the flooded water. The dashed curve is the same calculation except 

that the ship's eg was only moved longitudinally to account for the flooded water. It was not 

moved vertically. 

5.2.4    Progressive Flooding Results 

The last flooding simulation result is an example of progressive flooding. The seaway conditions 

were the same as the conditions for the figure 5-9 except that the wave amplitude was reduced 

by two thirds. The problem was started with the ship in its final flooded position from 

uncontrolled flooding in the forward compartment bounded by the 0.1 and 0.25 bulkheads. At 

time equal to 12, indicated by "start" in figure 5-14, flooding at a constant rate was initiated 

into a compartment bounded by bulkheads 0.25 and 0.4. At time equal to 24, indicated by 

"stop" in figure 5-14, flooding ceased. Figure 5-14 plots the pitch and heave motions, the 

heave motion is the lower curve in the figure. Figure 5-15 plots the relative bow height during 

the progressive flooding simulation.    Note that shipping water events do not occur until the 
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progressive flooding commences. 

As a comparison, this progressive flooding simulation was run a second time using the fully 

non-linear LAMP-4 formulation. The linear and non-linear calculation results for pitch motion 

and relative bow height are plotted in figures 5-16 and 5-17. The non-linear calculation results 

are plotted as solid fines, the linear as dashed lines. The results for the two calculation methods 

have close agreement. As before, however, the calculation with the less accurate mean body 

boundary position (linear calculation) overestimates the pitch motion. 

5.3    Results for Green Water 

This section provides some results from the green water model that was added to LAMP. In 

all cases the LAMP-2 formulation was used. The results include effects on vertical motions 

from green water and plots of green water mass and local deck loads. A CG47 Class Cruiser at 

a steady forward speed of 10 knots was used for the calculations. Plots of ship motion, mass, 

and mass centers are made in non-dimensional units. Because the CG47 is such a massive ship, 

the density of the green water used in calculations for all of the results below was increased by 

a factor of five.    This was done to make the green water mass and its effects on ship motion 

stand out. 

Head seas with a single sinusoid wave component were used . The wavelength was set at 

1.5 times the ship length to excite pitch motion. Wave amplitude was 14 feet. This amplitude 

was determined through trial and error to provide about a 10 foot relative elevation for the 

water shipping problem. Relative elevations higher than this required increased calculation 

time because smaller time steps were needed to solve the shallow water problem. Also, for 

relative elevations much larger than 10 feet it was found that large time-dependent mass and 

moment of inertia terms were calculated that caused the dynamic equations of motion solution 

to break down. 

Figure 5-18 shows the effect of green water on pitch motion This figure plots the relative 

bow height and pitch motion of a LAMP calculation with no green water effects (solid lines) 

and with green water effects (dashed lines). The relative bow height is the curve with smaller 

negative amplitudes.    The increased angular inertia of the ship with the green water delays its 
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Figure 5-12: Effects of Linear Hydrodynamics and Flooding 
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Figure 5-13: Effect of Center of Gravity Shift on Pitch Motion 

Figure 5-14: Progressive Flooding Pitch and Heave Motion 
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Figure 5-15: Progressive Flooding Relative Bow Height 
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Figure 5-16: Linear and Nonlinear Progressive Flooding Pitch Motion Calculation 
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motion response to the incoming waves and slightly increases the maximum amplitude of the 

positive pitch motion. Figure 5-19 shows the effect of green water on heave motion. Heave 

motion is slightly increased in the motion calculation that includes green water (dashed line). 

Again, the green water density was artificially increased by a factor of five for these results. 

For smaller ships and craft the green water would have a much larger effect on pitch motion. 

Green water simulations were not run for beam seas but roll amplitudes would probably also 

be enhanced due to a greater tendency of a ship to roll than pitch. 

The calculation for V T in the water shipping problem was performed using Methods I, II, 

and III. Figure 5-20 plots relative bow height (the sinusoidal curve) and green water mass on 

deck for two water shipping events using Method I for water shipping problem. The green water 

mass was normalized by dividing it by the ship mass. A second calculation using Method II 

for the water shipping problem showed no discernible differences from the Method I calculation 

results.   The amount of green water mass shipped on board in each calculation was the same. 

The Method III calculation for shipping was based on conserving momentum of the incoming 

wave. Figure 5-21 plots the green water mass on deck using Method III (dashed line) and the 

green water mass using Method I (solid line). The Method III calculation for shipping water 

velocity should be the method normally used because it results in the most green water mass 

on deck; it provides the most conservative estimate of water shipping. 

The green water model solved the water-motion-on-deck problem in strips of width dely 

assuming a two-dimensional free surface. This approach prevents transverse water flow so that 

no green water is able to fall off the port and starboard sides of the weatherdeck. Therefore 

the time-duration that the green water mass is calculated to be on the weatherdeck is longer 

than the time-duration if a three-dimensional free surface were solved. For three-dimensional 

calculations, the green water mass curve would have about the same peak value but would go 

to zero after each water shipping event in a shorter amount of time. It would have more of a 

spiked appearance. 

The green water mass center location and local deck loads are also presented. Figure 5- 

22 plots mass and mass center for two water shipping events. The weatherdeck longitudinal 

coordinate between 0.4 and 0.5 corresponds to the bow area. The aft end of the weatherdeck 

has coordinate 0.25.   Figure 5-23 plots local deck pressure due to green water and pitch angle 
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(sinusoidal plot). The dashed line is pressure for a location at the bow, the solid line is pressure 

for a location aft of the bow a distance 0.06 (non-dimensional). The green water pressures are 

normalized by dividing them by the hydrostatic head of the green water, pgC,, where C is the 

green water depth. This figure shows that the green water deck pressure increases by almost 

a factor of two over hydrostatic during peak accelerations in pitch motion. 
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Figure 5-18: Effects of Green Water on Pitch Motion 
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Figure 5-20: Relative Bow Height and Green Water Mass on Deck 
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Figure 5-21: Mass on Deck Using Different Shipping Water Velocities 

Figure 5-22: Green Water Mass on Deck and Mass Center 
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Figure 5-23: Pitch Motion and Local Green Water Deck Loads 
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Chapter 6 

Conclusions 

6.1    Discussion and Recommendations 

This research investigated the addition of models for compartment flooding and green water to 

the LAMP time-domain ship motion program so that it could be used as a damaged stability 

prediction tool. The approach was to treat both events, the flooded water and the green 

water on the weatherdeck, as a change in the ship rigid body mass. Time-dependent mass 

and mass moment of inertia terms were calculated for the water and incorporated into the 

dynamics equations of motion. The results from calculations with the models showed that ship 

motions are indeed affected by the flooding and green water events and that these motions can 

be estimated with the time-domain program. It was also found that for a large ship green 

water has little effect on ship motions but that it can cause a significant increase in local loads 

on the weatherdeck and superstructure. In short, the models developed by this thesis along 

with the LAMP program can be used as a damaged stability prediction tool. 

A major problem with running the LAMP 3-D nonlinear formulation (LAMP-4) is the 

extensive computation time, especially to run a full flooding simulation over a long timeline. 

Unless ship motions are very large, however, the nonlinear calculation is probably unnecessary. 

A comparison of calculation results using the nonlinear LAMP-4 formulation and the linear 

LAMP-2 formulation shows that the LAMP-2 results provide adequate accuracy in the ship 

motion calculation for estimating damaged stability. For best results with the linear calculation 

for a flooding simulation, an appropriate mean body boundary position needs to be selected 
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by careful consideration of the ship's initial and final flooded position. Experience with the 

hydrodynamic properties of the hull in question would help in determining what body position 

to linearize about. 

Several methods of calculating the relative velocity for the water shipping problem were 

attempted. It was concluded that the best method was Method III which conserved the, wave 

particle momentum. 

6.2    Problems Encountered 

6.2.1 Computational Difficulties During Rapid Changes in Mass and Mass 

Distribution 

Time-dependent mass and mass moment of inertia was included in equation 2.45 for the 

dynamics equations of motion. A backward difference scheme was used to calculate the time- 

derivative terms. Say Q(t) stands for either the mass matrix or the mass moment of inertia 

tensor then dfH^nAt) = n(t,j,nAt)-n(ij,(n-i)At) represents the time-derivative for the ith,jth 

component of the matrix or tensor. During simulations where these derivative terms were 

large, for example water shipping with relative elevations greater than about 10 feet or a large 

flooded volume undergoing sloshing with roll amplitudes greater than 25 degrees, it was found 

the dynamic solution method became unstable. Changing the time derivative to —(''j;n = 

n{i,j,nAt)-n{i,j,(n-2)At) pVOVided more 0f an averaged estimate for the derivative and sometimes 

kept the dynamic solution method stable. Still, some calculations with large mass and mass 

moment of inertia time-derivative values of were unable to be completed due to instability. 

More elaborate methods of estimating the derivatives were not investigated. 

6.2.2 Selection of the Time Discretization for the Flux Difference Splitting 

method 

For a given discretization, the stability of the flux difference splitting method used to solve the 

water motion on deck problem is a function of the water depth and particle velocity. As either 

of these quantities becomes too large the scheme can become unstable unless the length of the 

time step is decreased.   Smaller time steps, however, slow the LAMP calculation and make it 
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computationally expensive to get through a complete damaged scenario or flooding timeline. 

Also, the maximum relative elevation for water shipping, which governs the green water depth, 

may not be known prior to completing the calculation. If in this case the maximum relative 

elevation is underestimated during calculation setup then the calculation may be unstable; if 

the elevation is overestimated during setup then the time step will be smaller than necessary. 

For a large ship where green water has little effect on ship motions, the LAMP calculation 

could be uncoupled from the green water calculation by running the green water calculation as 

a post process using data generated by the main LAMP calculation. The LAMP generated 

data could be analyzed in order to optimally setup the green water post process calculation. 

Of course, for a small ship in large seas green water will affect motions and the green water 

calculation should remain coupled with the main LAMP calculation. 

6.2.3    Calculating Relative Velocity for the Water Shipping Problem 

Accurate calculation of relative velocity for the water shipping problem requires more research. 

Sea spectrum are typically described using a summation of gravity waves each of which solves 

the linearized free surface boundary condition and with the wave particle velocities specified 

on the undisturbed plane of the free surface and below. To accurately calculate the relative 

velocity when shipping water, the wave particle velocity for the portion of the wave that is 

instantaneously higher than the ship bulwark or deck edge must be known. 

If the water shipping event occurs when the deck edge or bulwark is above the undisturbed 

free surface, or with large amplitude waves, then linear wave theory may not provide an accurate 

value for water particle velocity. Shipping water is inherently a nonlinear problem but has been 

modeled in this thesis with linear assumptions. Stokes expansions, which are nonlinear solutions 

for plane waves based on systematic power series in the wave amplitude, may be a method of 

describing the seaway to introduce nonlinear water particle velocity into the water shipping 

calculation. 

Finally, hydraulic flow was used in the relative velocity calculation but this also an approx- 

imation of the actual velocities that occur at the wave and deck edge interface. Some water 

shipping calculations were performed by omitting the hydraulic velocity term but the results 

did not look very physical.    Too little green water mass entered onto the weatherdeck.   It is 
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concluded that in addition to the terms for particle and deck edge velocity a third term such 

as the hydraulic term is need for accurate relative velocity calculation. However, the hydraulic 

method may not be the correct way to calculate the term. Use of wave phase or group velocity, 

or applying dam-breaking results from [29], may provide an alternate method of calculating 

the third term to give a more accurate water shipping model. Theoretical uncertainties in 

calculating the relative water velocity explain why the constant C0 must be used in equation 

4.30 to adjust theoretical estimates to match experimental results. 

6.3    Recommendations for Future Research 

Although this research has demonstrated including models for flooding and green water into 

LAMP so that it can be used as a damaged stability prediction tool, much more work should 

be done to develop the models.   Recommendations include: 

• The green water model currently consists of longitudinal strips on the weatherdeck where 

two-dimensional free surface calculations are performed to solve the water flow on deck 

problem. This method prevents transverse flow of water which does not allow water to fall 

off the sides of the weatherdeck. The result is that the calculated green water mass on the 

ship becomes artificial and remains on the ship longer than it should. A three-dimensional 

free surface green water model should be developed to correct this condition. 

• Some experimentation has been performed on water shipping such as that reported by 

Grochowalski in [11]. These experiments should be repeated in a computer simulation 

with the LAMP models in order to validate the models. This work would also help 

in determining a proper value for the constant in the water shipping mass introduction 

equation 4.30. 

• A rich area for future work is to examine the nonlinear aspects of the water shipping 

problem and formulate a more theoretical approach for calculating relative velocity in the 

water shipping problem. The scope of this work should also look at calculation of the 

free surface elevations when considering the pile-up that occurs from slamming. 
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Damaged model testing was reported in references [14], [15], and [16]. Work should be 

performed to see if these results can be repeated in LAMP simulations. 

Finally, structural loads on the ship while in a damaged condition have not been addressed 

in this thesis except for illustrating that the local deck loads will increase in the green 

water problem. The flooding and green water models should be expanded to include 

effects on main girder and local structural loads. 
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Appendix A 

Moment of Inertia Tensor 

Calculations 

This appendix provides notes on the moment of inertia tensor calculations for a flooded com- 

partment volume. Figure A-l shows a parallelepiped with sides of length a, b, and c as 

indicated. 

Figure A-l: Parallelepiped 

The volume moment of inertia of the parallelepiped about its center is,Ixx = ^(b2 +c ), 
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Iyy = j^p(a2 + ^ and jzz = <^(a
2 + b2).   The moment of inertia tensor,/, is written as, 

J-xx 0 0 

0 Iyy 0 

0 0 hz _ 

The parallel axis theorem can be used to refer 7 to the primed coordinate system in figure 

A-l. The coordinates (A, B, C). are the center of the parallelepiped in the primed frame. The 

equation for the parallel axis theorem is 

I/ = I + abc 

B2 + C2 -AB -AC 

-AB A2 + C2 -BC 

-AC        -BC     A2 + B2 

If the parallelepiped moment of inertia, 7, was obtained about a point other than its center, 

then there would be additional terms in the parallel axis equation. 

The rotational transformation of the moment of inertia tensor refers the tensor to a co- 

ordinate system that is related to the first through a rotational transformation matrix, C. 

This matrix performs the sane function as the euler angle transformation matrix, L, discussed 

in Chapter 2. Say the moment of inertia tensor of a body 7 is referred to the unprimed 

coordinate system in figure A-2 and C is the rotational transformation matrix between the 

twocoordinate systems.   The transformation of / is performed by, 

ll = CICT 
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Figure A-2: Rotation of Coordinate Systems 
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Appendix B 

Details of Riemann Problem 

Calculations 

In reference (stoker), Stoker demonstrates how the Riemann problem may be solved when the 

fluid is initially at rest on the right-hand side of the dam. In order to use some of the Stoker 

results in the below calculations, an axis system will be adopted that moves at constant velocity. 

Use of the Stoker results is justified by showing that the solution to the dam breaking problem 

is invariant with respect to the moving axis system. 

Moving Axis System 

Figure B-l illustrates initial conditions for the Riemann problem in stationary frame y while 

figure B-2 illustrates the same problem in reference frame y' translating at steady velocity, V0. 

The two reference frames are related as follows, where c, the wave propagation speed, equals 

y/gX. 

y = yf + V0t (B.l) 

Vt(yt,t) = V(y/ + V0t,t)-V0 (B.2) 

A/(j//,i)   =   A(i// + VbM) (B-3) 
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Figure B-l: Initial Conditions for the Riemann Problem 

d{yl,t)   =   c(yf + V0t,t) (B.4) 

From reference (stoker) the shallow water wave equations can be formulated in terms of the 

velocity, V, and propagation speed, c.   These equations for the stationary frame are 

dV        8V     29c_ 
dt dy dy 

(B.5) 

Be        Sc      av    n 
2m+2Vo-y+c^ = ° 

which can be added or subtracted from each other to form characteristic equations 

(B.6) 

{l + (y + C^k + 2c> = ° (B.7) 

{l + (y-C)|h-2c> = ° (B.8) 

Equations B.7 and B.8 state that the function (V + 2c) is constant for a point moving 

through the fluid with the velocity (V + c) and that the function (V - 2c) is constant for a 

point moving through the fluid with the velocity (V - c).   There are two sets of curves, C\and 
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C2 called characteristics, which are the solution curves of the ordinary differential equations 

Ci    : 

C2   : 

dy 

dt 
dy_ 

dt 

= V + c 

= V-c 

(B.9) 

(B.10) 

Along characteristic C\, V + 2c is constant and along C2, V + 2c is constant.   Similarly, the 

shallow water wave equations for the translating frame are 

dt dyi dyt 
(B.ll) 

der    nrr del       dVi     n 

dt dyf        dyf 

substituting equations B.2 and B.3 into equations 

(B.12) 

:<+£*<"-<+»* y=y'+Vot 
(B.13) 

dy     dt dy       dy, 2/=2/'+Vot 
(B.14) 
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Equations B.13 and B.14 can be simplified to 

8V     „dV , 0 dc 
dt dy dy y=y/+Vot 

y=yl+Vot 

=   0 

=   0 

(B.15) 

(B.16) 

which are the same equations as B.5 and B.6. Thus the translating frame has the same 

solution curves, characteristics, as the stationary frame which shows the solution to B.5 and 

B.6 are invariant with respect to axes moving with constant velocity. 

Relations From Stoker 

The following results from reference (stoker) will be used in the details of the Riemann Problem 

calculation.   Referring 

to Figure B-3, for a bore advancing at velocity £, the equations for mass and momentum 

conservation are 

Figure B-3: Advancing Bore 

pXi(V1-0 = p\0(V0-0 (B.17) 

pXiVi (V! - £) - p\0V0 (Vb - £) = -pg{Xi - \() (B.18) 
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equation B.17 can be solved for the shock speed, £ 

AiVi - XQV0 

1 = Ai — Ao 
(B.19) 

equations B.17 and B.18 can be combined to solve for V\ 

Vi = 
g(Ao + A1)(A1-A0)2 

2 AQAI 

_ i 
2 

+ V0 (B.20) 

When V0 = 0, the following relations can be derived from equations B.17 and B.18 

co      co     4£ +'(£)' (B.21) 

co 
a + i ay (B.22) 

Calculations for Case I 

When V2 + 2c2 >V0 + 2co, the values for the Cx characteristics of the high side of the dam and 

the low side of the dam are discontinuous which forms a shock, represented by f / in figure B-4. 

Velocity and water height values are primed in figure B-4 due to the coordinate translating at 

steady velocity Vb- 

Curved characteristic C\, indicated in figure B-4, is the solution curve where V3/ + 2c3/ is 

constant. Since Cx intersects dashed line I in zone 1, then C\ = V\i + 2cj/ . Therefore 

y3f + 2c3/ = V\l + 2c\i. Also, since C\ intersects dashed line II in zone 2, then C\ = V2f + 2c2/. 

Therefore V3/ + 2c3/ = V2/ + 2c2/.   Then 

Vit + 2ci/ = V2t + 2c2/ (B.23) 

substituting equation B.21 for V\i and equation B.22 for cxl, equation B.23 can be written 
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Figure B-4: Case I, Coordinate System Translating at Vo 

as 

&- l + A/8 
\CQf) 

+ 1 + 2CQ/ 
\cof) 

+ 1-1 = y2/ + 2c2/        (B.24) 

next substitute R=%: into equation B.24 
CO 

R~m 1 + V8R2 + l] +2 [i (v^i?2 + 1 - l) 
2      VV + 2c2/ (B.25) 

After solving equation B.25 for R, the solution for zone 1 can be determined for the fixed 

axis system by substituting £/ = £ — VQ, and VV = Vi — VQ. 

Fl    =   C°[Ä"4^(1 + %/8Ä2 + 1)]+y° 
d   =   co[|(>/8^ + T-l) 

*-4 

, i 
2 

There are a fan pattern of straight line characteristics, not shown in figure B-4, that fan 
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between characteristic I and characteristic II and pass through characteristic C\.   On C\ 

V3f + 2c3f = V2f + 2c2f (B.26) 

Also, on the fan of straight characteristics in zone 3 

djL = yl = Vz,-c„ (B.27) 
at      t 

combining equations B.26 and B.27 to eliminate c3l gives 

*-§(?^+*) (B28) 

finally determine the zone 3 velocity solution in the fixed axis system by substituting V2f = 

V2-V0, V3/=V3-V0, and f = f - V0. 

V3 -§(!-*+^-)+^ 
Similar to the solution for V3, c3 can be solved for by combining equations B.26 and B.27 

to eliminate V3f giving 

c3r = l(v2r + 2c2,-yf) (B.29) 

substituting A3/ = &£- into B.29 gives 

i       / ur   i 

A3/ -*{*>+**-?) (R30) 

finally determine the zone 3 height solution in the fixed axis system by substituting V2f = 

V2 - V0, and % = \ - VQ. 

A3 = ^(y2 + 2C2_|)2 

Zone 3 is bounded by characteristic I and characteristic II.   For characteristic I, -$ = 

Viz - cif, and for characteristic II, &£ = V2i - c2l.   Therefore the zone 3 solution is bounded 
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by 

(V2f - oil) t<y'< (Vi/ - cxf) t 

or converting to the fixed axis system, the zone 3 solution is bounded by 

(V2-c2)t<y<(V1-ci)t 

(B.31) 

(B.32) 

The above solution for the zone 3 velocity are for a velocity that increases with increasing y. 

Thus, the Case I results are only good when V2 < Vi to allow for an increasing. V3 If V2 > Vi, 

a velocity step-down between zones 2 and 1 would form a shock on the left side of the dam. 

Therefore, after solving for Vi make the following check to see if V2 < Vi.    Equation B.20 is 

substituted for Vi , 

"^(Ao + AiHV-Aof 
2 AoAi 

If equation B.33 is not met, then shocks form on the left and right-had sides of the dam 

and the Riemann problem solution is of Case II, as indicated in figure B-5. 

V2< + V0 (B.33) 

Calculations for Case II 

->*1 

^2   ! 

VI        | 

1 

V2 
X2 

Ye 

Figure B-5: Case II, Fixed Coordinate System 
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To solve Case II, equation B.20 must be used for each shock, £x and £2. 

Vi = 
p(Ao + Ai)(A1-Ao)2 

2 A0Ai 
+ V0 (B.34) 

Vo 
g(Ai+A2)(A2-A!)2 

2 AiA2 

+ V1 (B.35) 

substituting equation B.34 into equation B.35 for Vi results in an equation that can be 

solved for Ai 

V2 - V0 - 
g(X0 + Xi)(Xi-Xor 
2 AQAI 

l, 

g(Ai+A2)(A2-A1)
3 

2 AiAa 
= 0 (B.36) 

once Aiis determined then equation B.34 can be used to calculate Vi.   The two shock speeds 

are found using equation B.19 

„      AiVi-AoVo ,     ,      X2V2-X1V1 
^1 = —T ^        and      ^2 Ai — Ao A2 —Ai 

(B.37) 

Calculations for Case III 

The entering argument for case I was that V2 + 2c2 >V0 + 2CQ. When this condition is not 

met, rarefaction waves instead of shock waves occur. For case III, V2 + 2c2 < V0 + 2co which 

can be re-written as VQ — V% > 2 (c2 — CQ) or 

V0-V2>2\c0-c2\ (B.38) 

The solution to case III can be found by analyzing characteristics / through IV, C\, and 

C2 as illustrated in figure B-6. 

On characteristic C\, V3 +2c3 is constant.   Since this characteristic intersects zones 1 and 2 

V2 + 2c2 = Vi+ 2ci (B.39) 
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On characteristic C2, V4 - 2c4 is constant.   Since this characteristic intersects zones 1 and 0 

V0-2c0 = V1-2c1 (B.40) 

adding equations B.39 and B.40 gives 

„      ^0 + ^2  , 
Vl = 1- C2 - Co (B.41) 

subtracting equations B.39 and B.40 gives 

C2 + C0     V2-V0 
c\ = + ■ (B.42) 

since Ai = ^-, equation B.42 can be written as 

Ai = - 
9 

1 [c2 + Co   ,   Vi-Vo l2 

+ ■ (B.43) 

Zone 3 is solved similarly to the zone 3 solution in case I.   There are a fan pattern of 

straight line characteristics, not shown in figure B-6, that fan between characteristic III and 
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characteristic IV and pass through characteristic C\.   On C\ 

V3 + 2c3 = V2 + 2c2 (B.44) 

Also, on the fan of straight characteristics in zone 3 

^ = f = y3-C3 (B.45) 
dt      t 

combining equations B.44 and B.45 to eliminate c3 gives 

H-f (? + £ + «) <*«> 
Similarly, solve for c3 by combining equations B.44 and B.45 to eliminate V3 giving 

c3 = l(v2 + 2c2-fj (B.47) 

substituting A3 = ^f- into B.47 gives 

* = Tg(
Wc*-l) (R48) 

Zone 3 is bounded by characteristics III and IV. For characteristic III, $ = V\ - ci, and 

for characteristic IV, ^ = V2-c2.   Therefore the zone 3 solution is bounded by 

(V2-c2)t<y<(V1-c1)t (B.49) 

For Zone 4 there are a fan pattern of straight line characteristics, not shown in figure B-6, that 

fan between characteristics I and II. All pass through characteristic C2.   On C2 

Vi - 2c4 = VQ - 2co (B.50) 

Also, on the fan of straight characteristics in zone 4 

$ = ? = T/4 + c4 (B.51) 
dt      t 
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combining equations B.50 and B.51 to eliminate c4 gives 

Similarly, solve for c3 by combining equations B.50 and B.51 to eliminate VA giving 

(B.52) 

c4 = i(f-Vo + 2co 

substituting A4 = ^- into equation B.53 gives 

(B.53) 

^vg(l-
Vo+2co)' (B.54) 

Zone 4 is bounded by characteristics I and II. For characteristic I, ^ = V0 + co, and for 

characteristic II, ^ = Vi + cx.   Therefore the zone 4 solution is bounded by 

(V1 + c1)t<y<(V0 + c0)t (B.55) 

Calculations for Case IV 

If A0 = 0 then the solution consists of solving the single rarefaction illustrated in figure B-7. 

P 1 
\ 1 

\v 
V2 \ \ 

V3\l 
X3^ 

^1 

Figure B-7: Case IV, Fixed Coordinate System 

The solution to case IV can be found by analyzing characteristics 7, II, and C\.    There 

is a fan pattern of straight line characteristics, not shown in figure B-7, that fan between 
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characteristics I and II and pass through characteristic C\.   On C\ 

V3 + 2c3 = V2 + 2c2 (B.56) 

On characteristic I, the depth at the water boundary is zero, c3 = 0, so that V3 = V2 + 2c2. 

This means that the boundary of the water moves to the right on the y axis at velocity V2+2c2. 

Also, on the fan of straight characteristics in zone 3 

<k = l = V3-c3 (B.57) 
dt      t 

combining equations B.56 and B.57 to eliminate c3 gives 

*-!(? + £ + *) CBiS) 

Similarly, solve for c3 by combining equations B.56 and B.57 to eliminate V3 giving 

as = ± (v2 + 2c2 - |) (B.59) 

substituting A3 = ^f- into equation B.59 gives 

A.-£(*+**-!)' <B-60> 
Zone 3 is bounded by characteristics / and //.  For characteristic II, $L = V2 - c2, and 

for characteristic /, on the y axis, the water boundary moves at V2 + 2c2 Therefore the zone 3 

solution is bounded by 

(V2 -c2)t<y<(V2+ 2c2)t (B.61) 

Calculations for Case V 

Case V occurs when the conditions for case III are met but the result for Ai in equation B.43 

is less than zero.   The situation is illustrated in figure B-8.     To determine when Ax < 0, use 
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.!  y™ 

V2 

X2 vo 

Figure B-8: Case V, Fixed Coordinate System 

equation B.43 

which can be rewritten as 

ci + co     Vi - Vo l2 

g[   2 
<o 

V2 + 2c2 < Vb - 2co 

(B.62) 

(B.63) 

The solution for zone 3 in this case is identical to the solution for zone 3 in case IV. The 

solution for zone 4 can be developed from characteristics similar to equations B.57 through 

B.61.   The results are 

v      2 fy a- Vo     A y4=3U + T"C0J (B.64) 

^-hii-**2*)' 
The zone 4 solution is bounded by 

(B.65) 

(V0 -2co)t<y<(V0 + co)t (B.66) 
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Appendix C 

MATLAB Program to Solve 

Riemann Problem Using the 

Random Choice Method 

% MATLAB Program to Solve Riemann Problem Using 

% the Random Choice Method 

% gravity acceleration constant 

g=9.8; 

% wave form for testing 

ymax=.5; 

ymin=-.5; 

dely=.01; 

jmax=(ymax-ymin)/dely; 

% time stuff 

delt=0.001; 

tfmal=.08; 

tmax==tfinal/delt; 

% Boundary Conditions (the Riemann Problem Initial Conditions) 

vleft=.8: 
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hleft=.6; 

vright=l; 

hright=.2; 

% set initial values 

for jj=l:jmax 

yplot(jj)=ymin+jj*dely-dely/2; 

h(jj)=hleft; 

v(jj)=vleft; 

ifyplot(jj)>=0 

h(jj)=hright; 

v(jj)=vright; 

end 

end 

for tt=l:tmax 

y=(-l)~tt*dely*rand/2; 

% each interval 

% do random choice 1 cycle 

% loop for time (t) evolution 

% this is the random number for sampling 

ify<=0 

for jj=2:jmax+l 

v2=vleft; 

lambda2=hleft; 

vO=v(jj); 

lambdaO=h(jj); 

end 

if jj == jmax+1 

v2=v(jj-l); 

lambda2=h(jj-l); 

vO=vright; 

lambdaO=hright; 

% if random number less than zero, sample to left 

% Right hand side BC 
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end 

if jj > 1 

if jj < jmax+1 

v2=v(jj-l); 

lambda2=li(jj-l); 

vO=v(jj); 

lambdaO=h(jj); 

end 

end 

% get solution for the intervals Riemann problem 

soln=riemann(lambda0,lambda2,v0,v2,y,delt,g); 

vnew(jj-l)=soln(2); 

hnew(jj-l)=soln(l); 

end 

end 

if y > 0 % if random number > 0, sample to right 

for jj=l:jmax 

if jj == 1 

v2=vleft; 

lambda2=hleft; 

v0=v(jj); 

lambdaO=h(jj); 

end 

if jj == jmax+1 

v2=v(jj-l); 

lambda2=h(jj-l); 

v0=vright; 

lambdaO=hright; 

end 

if jj > 1 
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if jj < jmax+1 

v2=vQj-l); 

lambda2=h(jj-l); 

vO=v(jj); 

lambdaO=h(jj); 

end 

end 

% get solution for the intervals Riemann problem 

soln=riemann(lambda0,lambda2,v0,v2,y,delt,g); 

vnew(jj)=soln(2); 

hnew(jj)=soln(l); 

end 

end 

% set up for next time step 

for jj=l:jmax 

v(jj)=vnew(jj); 

h(jj)=hnew(jj); 

end 

end % end time evolution 

% This program returns height and velocity for the Riemann problem with 

% the initial conditions provided as calling arguments. The height and 

% velocity are returned for location y at time t. 

function soln=riemann(lambda0,lambda2,v0,v2,y,time,g) 

% soln(l)=height, soln(2)=velocity 

% Riemann Problem solver 

% these are set so that numbers are always returned 

soln(l)=lambda2; 

soln(2)=v2; 

done=0; 

if Iambda0==lambda2 
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if vO == v2 

done=l; 

soln(l)=lambdaO; 

8oln(2)=v0; 

end 

end 

cO=sqrt (g*lambdaO); 

c2=sqrt(g*lambda2); 
0/ „„-„ A ******************************************** 

if lambdaO < O.Ol* lambda2 

done=l; 

soln(l)=(l/(9*g))*(v2+2*c2-y/time)-2; 

soln(2)=(2/3)*(y/time+v2/2+c2); 

if y <= (v2-c2)*time 

soln( 1) =lambda2; 

soln(2)=v2; 

end 

ify >= (v2+2*c2)*time 

soln(l)=0; 

soln(2)=0; 

end 

end 

w *****     ^ case 4 ***************************** 

if done == 0 

V ra<*p 3 anH *> *************************************** 

if (v0-v2)> 2*abs(c0-c2) 

if (v2+2*c2)>=(v0-2*c0) % case 3 

done=l; 

vl=(v0+v2)/2+c2-c0; 

lambdal=((v2-v0)/4+(c2+c0)/2)~2/g; 
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cl=sqrt(g*lambdal); 

if y >=(vO+cO)*time 

soln(l)=lambdaO; 

soln(2)=v0; 

end 

if y <=(v2-c2)*time 

soln( 1) =lambda2; 

soln(2)=v2; 

end 

ify > (v2-c2)*time 

if y <= (vl+cl)*time 

soln(l)=lambdal; 

soln(2)=vl; 

end 

if y <= (vl-cl)*time % in zone 3 

soln(l)=(l/(9*g))*(v2+2*c2-y/time)-2; 

soln(2)=(2/3) * (y/time+v2/2+c2); 

end 

end 

if y < (vO+cO)*time 

if y > (vl+cl)*time % in zone 4 

soln(l)= (l/(9*g))*(2*c0-v0+y/time)~2; 

soln(2)=(2/3)*(y/time+v2/2-c0); 

end 

end 

else % case 5 

done=l; 

ify <= (v2+2*c2)*time 

soln(l)=(l/(9*g))*(v2+2*c2-y/time)~2; 

soln(2)=(2/3)*(y/time+v2/2+c2); 
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if y <= (v2-c2)*time 

soln( 1) =lambda2; 

soln(2)=v2; 

end 

end 

ify >= (v0-2*c0)*time 

soln(l)=(l/(9*g))*(v0-2*c0-y/time)^2; 

soln(2)=(2/3)*(y/time+v0/2-c0); 

if y >= (vO+cO)*time 

soln( 1) =lambdaO; 

soln(2)=v0; 

end 

end 

ify > (v2+2*c2)*time 

if y < (v0-2*c0)*time 

soln(l)=0; 

soln(2)=0; 

end 

end 

end 

end 

% end case 3 and 5 

end 

lambdal=0; 

if done == 0 

9/ nnssihle rase 1 or 2 ******************************************** 

R=rootfind(v0,v2,c0,c2); 

for n=l:2 

if R(n)>0 

r=R(n); 
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root=sqrt(8*r~2+l); 

zee=cO*r+vO; 

vl=cO*(r-l/(4*r)*(l+root))+vO; 

cl=c0*sqrt(0.5*(root-l)); 

lambdal=cl~2/g; 

end 

end 

% test diUingham eq 49 

if lambdal ~=0 

rhs=sqrt(g*(lambdal+lambdaO)*(lambdal-lambdaO)"2/(2*lambdal*lambdaO)); 

end 

if (v2-v0) < rhs 

vl=c0*(r-l/(4*r)*(l+root))+v0; 

if y <= (v2-c2)*time 

soln( 1) =lambda2; 

soln(2)=v2; 

end 

if y > (v2-c2)*time 

if y <= (vl-cl)*time 

soln(l)=(l/(9*g))*(v2+2*c2-y/time)-2; 

soln(2)=(2/3)*((y/time)-v0+(v2-v0)/2+c2)+v0; 

end 

if y > (vl-cl)*time 

if y <= zee*time 

soln(l)=lambdal; 

soln(2)=vl; 

end 

if y > zee*time 

soln(l) =lambdaO; 

soln(2)=v0; 
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end 

end 

end 

% case 2 

else 

% L returns lambda 1 (Dillingham eq (55)) 

lambdal=rootfindl (v0,v2,c0,c2,g); 

vl=vO+sqrt (g* (lambdaO+lambdal) * (lambdal-lambdaO) ~ 2/ (2*lambda0*lambdal)); 

zeel=0; 

if lambdal~=lambdaO 

zeel=(lambdal * vl-lambdaO*vO) / (lambdal-lambdaO); 

end 

zee2=0; 

if lambda2~=lambdal 

zee2=(lambda2*v2-lambdal*vl)/(lambda2-lambdal); 

end 

if y >= zeel*time 

soln( 1) =lambdaO; 

soln(2)=v0; 

end 

if y < zeel*time 

if y > zee2*time 

soln(l)=lambdal; 

soln(2)=vl; 

end 

end 

if y <= zee2*time 

soln(l)=lambda2; 

soln(2)=v2; 

end 
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end 

0/ **     A „ooQ 1 ™. o *********************************************** /o      end case i or ^ 

end 
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