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Abstract 

The flow of marker particles in a two dimensional source/sink and a two 

dimensional potential vortex are theoretically calculated.  The flow is 

considered to be defined by a complex potential and is limited to steady, . 

inviscid, incompressible, irrotational flow. The particles are assumed to 

be spherical and not to interact with each other. The gas and dust stream- 

lines are determined for two cases; one, the particles follow the gas stream- 

lines, analogous to no dust in the gas, and secondly, when the particles are 

free to move independently. 
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Introduction 

Following the work of Saffman,   Catalano   took the equations of motion 

of a dusty gas given by Saffman as 
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and developed the equations of motion in a general sense for a first order 

perturbation of a dusty gas. The concentration of dust is considered to be 

small, i.e. to first order. The resulting equation for the velocity of the 

dusty gas is written as 

V = grad ($ - | (grad <j>)2) C5) 

where <J> is the potential of the flow and T is the time relaxation parameter 

defined as 

M is the mass of the dust particle and K is the Stokes coefficient of re- 

sistance where Stokes flow requires that the particle Reynolds number be £ 1 

based on particle size and the relative velocity between the dust and gas. 

T has the physical significance that as x-K), the gas and dust particle motion 

becomes more identical. 

Based on this development and the previously stated assumptions, the 

motion of a dusty gas may be calculated for any flow where a potential function 



may be defined. In most applicable fluid flow situations, this potential is 

mathematically complicated and the solution requires numerical integration 

to determine the streamlines of the flow.  Catalano   calculated the case 

for a dusty gas jet impinging against a two dimensional wall normal to the 

flow. This note will calculate the flow pattern for 2 simple types of flow; 

namely a source/sink flow and a potential vortex. 



Case Studies 

Case 1.  Source/Sink Flow 

For the case of a source/sink flow the complex function defining this 

flow is 

F = T§ £n z (6) 

where    z = re i6 

Then 

F = ^| [An r + 19], (r = /x2 + y2) 

with the equipotential lines 

$ - Re F(z) = ^f in r = const (7) 

which are concentric circles, and the streamlines 

xp = Im F(z) = Y~ =  const, (9 = arg z) (8) 

are straight lines through the origin.  z=0 is a singular point of the flow 

where the solution is not valid, the fluid "disappearing" in the case of a 

sink (c negative real) and "emanating" in the case of a source (c positive 

real). 

For the case of a dusty gas we consider the dust velocity equation given 

by Michael   and derived formally by Catalano   as 

V = grad (<j> - j T (grad 4>)2)  (5) 

Then 

grad (J) = |^ [^2 e1 + % ^ 

and 
2   2   2 
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then 

and 
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The equation of the streamline is defined as: 

V 
iz - -L 
dx  V 

x 

and substituting for V and V gives 
y     x 
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then 

iz = y 
dx  x 

and the equation of the streamline is just 

y = Ax. 

The streamline of the dusty gas is independent of T and, as expected, 

identical to the original streamline of a gas with no dust. From the case 

with no dust where the streamfunction is given by 



,       cö 
* " 2i " const 

we determine the constant A to be 

A = tan 2TTTJJ 
c 

and the equation for both the gas and dust streamline becomes 

y = (tan 2wj>)  X (11) 
c 

This equation is shown in figure 1. The magnitude of the dust velocity along 

the streamlines is 

M " 2iF d + 7%1 (12> 

As T-*0, this reduces to the velocity of the dust free gas. 

From Marble^  who defined the "velocity range" of a particle as 

X = TU where U is the local characteristic velocity of the system, 
o      o 

we write 

Ü = Ü   = •£- o   gas  2irr 

then 

A  27rr 

and equation 12 may be written as 

|V| = U   [1 +-] (13) 1 '   gas u   rJ 

For the Stokes flow assumption to be valid — « 1 in which case the 

particle motion depends on the local gas flow conditions. When — ^ 1, the 

particle has a "memory of events" that took place prior to its transition 

into the Stokes flow regime, i.e. conditions where significant flow changes 

took place. For the source/sink flow example to be considered here this 

region is close to the origin and the critical radius is shown in Figure 1. 



For the case where — » 1, the particle is not influenced by the local gas 
r 

flow conditions (analogous to a bullet fired from a rifle). Equation 13 for 

the particle velocity is not valid in this case; however, in any system where 

the velocity range, X, if the particle is much greater than the characteristic 

dimension, r, of the system, the particle will pass through the system 

virtually unaffected, regardless of the form of the drag on the particle. 

For c positive real (source flow) with r>0, the dust velocity exceeds the 

gas velocity for any finite r with the velocity -»-0 as r-*=° where the dust 

velocity exactly "equals the flow velocity". 

For the particular case of a 1 ym dust particle in air with T=520 R, the 

Re<l limitation allows a relative velocity of M.5m/sec between the dust and 

gas before the Stokes' flow assumption becomes invalid. 

Using a value of C = + 10 m /sec for the source/sink flow the initial 

values of — were calculated. For r>0 (^0) the deviation between the gas and 

dust velocity decreases until at r=1.25 cm (— = .12) the Stokes flow limitation 

is reached. This illustrates that the dust in the flow from the source 

achieved its velocity from other than Stokes flow effects. The difference 

between the gas and dust velocity is M.2% at this point decreasing to less than 

X -3 
a 1% difference at r=5 cm (-^ 7.6 x 10 ). 

For a sink of the same strength the dust velocity lags the gas velocity 

by the same ratio as it exceeded the gas velocity from the source. A change 

in the strength c will shift the applicable Stokes flow region closer to or 

farther from the origin. 

Depending on the strength + c any LV measurement errors in a source/sink 

type flow would be limited to regions where — > 1, outside the Stokes flow 

regime. 



Case 2. Potential Vortex 

A potential vortex is, in general, irrotational except for a singularity 

at the origin where the rotation is infinite, therefore the original limita- 

tion that the flow be irrotational is not violated. 

The complex potential function for this flow may be written as 

F(z) - |p An z (14) 

where T  is the circulation around the vortex. 

Then 

F(z) = |£ [in z  + 19] 

and the equipotential lines 

<j> = ReF(z)  = g (15) 

are straight lines through the origin. 

The streamlines of the flow are given by 

ty  = Imag F(z) =^£nr (16) 

which are concentric circles around the origin. 

Recalling the dust velocity equation; 

V - grad (<|> - j (grad <j>)2)   (5) 

and writing the grad in cylindrical polar coordinates gives; 

grad $ = ä7 %> e1 + ? ^ (^) e£ - ^ e2 

2  r2 (grad $r = 
4TT r 

then 

V. - grad (g - i i-J-f  ) 
4TT r 



where T is defined as before. 

Then 

Vi - 9? [(2?"2  (^T2)] el + 7 36  C(2? " 2   <;^2>J e2 

i "      2 3 el      2TTr e2 
4TT r 

or 

TT
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V    --lij (17) 
r      4irr 

VQ = ^- (18) 
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and the streamlines of the flow are 

1 dr = jc_ 
r d@      V, 

and 

dr m _rT 
de      2irr 

or 

r = /xre  + c 
It 

Returning to equation of streamline with no dust,   (Eq 16) 

*S"^nr 

where 

r 
r=  L 

with L a unit length gives 

r = L e   r  = const. 

for given streamline and circulation T. 

Therefore, the equation of the dust streamline becomes 



        2TT£ 
r = /rT9~ + L e " F (19) 

TT 

with r having the dimensions consistent with the circulation and unit length L. 

L2 
The dimensions on T  are as — .  When T-K), the equation reduces to the stream- 

line for a dust free gas. 

Equation 19 is plotted in Figure 2 for the 1 ym diameter dust particle 

considered in the source/sink flow with ip and T  chosen to simplify the calcula- 

tion. The potential increases by the value V  each time we travel around the 

vortex» therefore we will consider the range of 0 from 0 to 2ir only. 

The magnitude of the dust velocity is given by 

V = '   A^ 
27rr      .2 4 

4TT r 

reducing to the gas speed as x-HD. 

Analogous to the development for the source/sink flow, we may cast the 

dust speed equation for the potential vortex flow as 

h 
|v| = U  (l + (-f)2) C20> 

'   gas      r 

For — » 1 (close to the origin of the vortex) the particle speed will be much 

greater than the gas speed, and the Stokes flow solution will not be valid. 

2 
For the 1 ym particle in air with V  = 10m /sec and ty  chosen for convenience, 

— may be calculated defining the region where the Stokes flow solution is 

valid. The Stokes limit for this case is reached when — = .37 (—^1) and is r      r 

shown in Figure 2. Practically speaking, the dust speed quickly adjusts to 

the gas speed and the Stokes flow solution governs the flow pattern for r>r 

where for — ^ .04 (— «1) the relative speed difference is less than 1%. The 

region where — "V 1 governs a region of the vortex flow where the particle 

motions are influenced by their previous history, in this case the vortex 



"start" since T  is an instantaneous, constant value at any 9. Figure 2 shows 

this effect as the particle radius is increased by the component of particle 

velocity in the r direction as 9 increases from zero. This motion would not 

be the case for flow where the particle was translating uniformly with the gas 

and the flow suddenly turned; the particle would continue in a straight line 

reacting to the flow as a function of K    Thus with this solution, we can not 

simulate a flow with entrained dust particles traveling with zero velocity 

relative to the gas and then turning into a vortex. This solution would be 

valid for a vortex generating source flow under the constraints of the original 

assumptions. 
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Conclusions 

The solution for the dust streamlines for two related, potential, fluid 

flows is presented in closed form, considering a first order solution to the 

equations of motion with dust concentration small (i.e. no collisions between 

particles) and the Stokes flow approximation valid. It is seen that the 

relative velocity difference between the particles and gas is dependent on 

their history prior to the Stokes flow evaluation. This is a constraint of 

the solution since both flows are required to exist at the start of the 

solution imposing a prior history. The parameter — defines the interaction of 

the particles and the gas, characterizing the entire flow regime, with X 

defining the relaxation parameter and local characteristic velocity and r 

a characteristic length for the flow. 

LV measurements of similar flows would give accurate velocity measure- 

ments where the Stokes solution was valid becoming increasingly suspect when 

— >_ 1. For the potential vortex, the particles spiral radially outward but 

in the Stokes flow regime they match the local gas velocity at any point in 

the flow. If particles were not continually added at the vortex center, 

however, the "core" region would not be measurable with an LV system. 
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