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Preface 

This final technical report contains a summary of research carried out on Grant DAAH04- 
96-1-0080 from the Army Research Office (ARO) to Texas A&M University, with Dr. J. N. 
Reddy as the principal investigator. Following Grantee data on the project on pages ii- 
v, the remainder of the report is devoted to the technical discussion. To limit the size 
of the report to a reasonable number of pages, certain topics are not covered in detail. 
Additional information on constitutive modeling of shape memory alloys, electrostrictive and 
magnetostrictive materials and associated finite element formulations can be found in the 
dissertation of Dr. Govind Rengarajan (On the Inelastic Behavior of Crystalline Solids, 
Ph.D. Thesis, by Govind Rengarajan, Department of Mechanical Engineering, Texas A&M 
University, September 1998). 
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Technical Discussion 

1. Background 

In the last two decades, the subject area of smart/intelligent materials and structures 
has experienced tremondous growth in terms of research and development. Numerous 
conferences, workshops, and journals dedicated to smart materials and structures stand 
testimony to this growth. The vastness of the literature is obvious considering the 
interdisciplinary nature of the subject. Physicists, mathematicians, and engineers from 
aerospace, chemical, civil, electrical, materials, and mechanical engineering fields are all 
involved in some part of the development of smart materials and structural systems. One 
reason for this activity is that it may be possible to create certain types of structures 
and systems capable of adapting to or correcting for changing operating conditions. The 
advantage of incorporating these special types of materials into the structure is that the 
sensing and actuating mechanism becomes part of the structure by sensing and actuating 
strains directly. These types of mechanisms are referred to as strain sensing and actuating 
(SSA). 

The technological implications of this class of materials are immense: structures that 
monitor their own health, particularly useful in remote operations, process monitoring, 
vibration isolation and control, and medical applications, to name only a few. On the 
threshold of 21st century, we are entering into research and development of the next generation 
of smart materials and structural systems. The next generation of smart material systems will 
feature thermo-electro-mechanical coupling, functionality, intelligence, and miniaturization 
(down to nano length scales). With the advent of these new generation of materials, reliability 
and integrity of these systems become central issues. These systems operate under varying 
conditions - they span the whole spectrum of magneto-electro-thermomechanical conditions. 
These conditions could vary from low to high temperatures, low to high pressures, low to 
high load levels, low to high strain levels, and low to high electric and magnetic fields. 
Such operating environments pose serious problems to the design and maintenance of the 
smart structural systems. Experimental investigations of both the smart material and the 
structural system, though possible, are prohibitively expensive, and therefore they should 
be complemented with theoretical analyses. The present study is concerned with one such 
analysis. The following review of literature provides a background for the study. 

2. Review of literature 

2.1 Smart materials and structures 

The phrase smart structural system refers to a wide variety of active material and passive 
structural systems. For instance, a sufficiently general system is a composite (beam, plate, 
shell, or any other fundamental form) with embedded or surface mounted piezoelectric or 
electrostrictive patches, or even layers of active materials in a laminated system (see Figure 
2.1). The literature contains many definitions of smart and intelligent structures. We prefer to 
follow Newnham's definitions1. The structures with surface mounted or embedded sensors and 
actuators, that have the capability to sense and take corrective action are referred to as smart 
structures. The feedback circuitry linking sensing and actuating is external to the sensor and 
actuator components. In fact, this precisely distinguishes a smart structural system from 
an intelligent structural system. Intelligent structural systems involve smart components in 



which the functions of sensing, feedback control, and actuating are all integrated. This type 
of system finds applications in aircraft wings, helicopter rotors, weapon systems, automobiles, 
and so on. 

Surface mounted active element patches 

Embedded active element wires 

Embedded active element strips 

Figure 2.1: A schematic of a laminated plate with surface mounted piezoelectric patches. 

Essentially, a smart structural system is a multi-functional unit (see Figure 2.2). It has a 
load (electrical, thermal, magnetic, or mechanical) bearing part which is usually passive, and 
an active material part that performs the operations of sensing and actuating. For example, 
vibration amplitudes in a flexible plate structure may be suppressed using the sensing and 
actuation capabilities of piezoelectric or piezoceramic films by bonding them to the surfaces 
of the plate. As the plate deforms due to external applied loads, the bonded piezoelectric 
film (sensor) also deforms, and due to its constitutive behavior, it develops a surface charge 
proportional to the applied force. The charge may be processed by a control system, which 
supplies an appropriate voltage to the piezolectric film (actuator) that induces a counteractive 
deformation to the plate structure and the amplitudes of vibrations are suppressed. 

SMART STRUCTURAL SYSTEM 

(multi-functional) 

1 

primary "to 
stru 

ad" bearing 
•tore 

Control 

Souring and Actuation 

ACTIVE ru IATER1ALS 

Vibration Control 

Shape Control 

Size Control 

Speed Control 

Precision Control 

Damage Control 

Piezoelectric Materials 

Electrostrictive Materials 

Magnetostrf ctire Materials 

Shape Memory Alloys 

Electro-Rheologlcal fluids 

Figure 2.2: Components of a smart structural system. 



Piezoelectric materials, electrostrictive materials, magnetostrictive materials, shape 
memory alloys, and electro-rheological fluids are some of the smart materials available today. 
Among the currently available sensors and actuators, the smallest ones are of the order 
of few millimeters. However, progress towards intelligent structures requires us to develop 
smart material systems that are of the order of a few microns. The reduction in size has 
tremendous technological benefits; however, clear understanding of reliability and system 
integrity are vital to the efficient and optimum use of these material systems. As dimensions 
get smaller, induced electro-thermo-mechanical fields get larger. Therefore, the convenience of 
linearity in modeling should be abandoned and material and geometric nonlinearities should 
be accounted for. 

2.2 Piezoelectric materials 

Piezoelectricity is a phenomenon in which some materials develop polarization upon 
application of strains2. This phenomenon is observed in materials that have a non- 
centrosymmetric crystal structure. Examples of piezoelectric materials are Rochelle salt, 
quartz, and the most popular one, Lead Zirconate Titanate or PZT (Pb (Zr,Ti) O3). 

Piezoelectric materials exhibit a linear relationship between the electric field and strains 
for low field values (up to 100 V/mm). However, the relationship is nonlinear for large fields, 
and the material exhibits hysteresis3. Furthermore, piezoelectric materials show dielectric 
aging and hence lack reproducibility of strains, i.e., a drift from zero state of strain is observed 
under cyclic electric field conditions4. 

2.3 Electrostrictive materials 

Electrostriction is a second-order effect observed in all dielectrics (centrosymmetric and 
non-centrosymmetric crystal structure) where an applied uniform electric field induces a 
strain, but a reversal of the field does not alter the strain2. That is, the strain is proportional 
to the square of the electric field. An electrostrictive material that is being used increasingly 
is Lead Magnesium Niobate or PMN (Pb (Mg^ Nb2/3) O3). These materials have a 
nonlinear field-strain relationship, but exhibit very little, if any, hysteresis5. Additionally, 
these materials have excellent zero strain reproducibility in cyclic electric field conditions5. 
However, strains induced by electrostriction are comparable to piezoelectricity only at large 
electric fields. But the voltage can be reduced to the piezoelectric level for an electrostrictive 
material with a high dielectric constant5. Table 2.1 summarizes the characteristics of 
piezoelectric and electrostrictive materials. 

2.4 Composites 

The active composite elements are available in two forms: multi-layered active materials 
and multi-phase active materials. The multi-layered active materials are stacks of active 
materials wherein it is possible to achieve large fields for moderate voltage input levels9-14. A 
typical multilayer piezoelectric actuator is shown in Figure 2.3. The multilayer active ceramics 
are manufactured using tape casting technology and electrodes are embedded in several 
different ways9'10. The multi-layer composite system is also amenable to miniaturization 
as it is possible to decrease the thickness of active material layers. However, accounting for 
nonlinearity in modeling is essential. Considerable research and development has been carried 
out in piezoelectric multi-layered ceramics. Active vibration control using these multi-layered 
piezoceramic configurations has been investigated15-17. 



Table 2.1. Characteristics of Piezoelectric and Electrostrictive Materials. 

Piezoelectric Materials 

• At low electric fields, the strain-electric field relationship is linear. 

• At large electric fields, the relationship is nonlinear, and hysteresis appears under cyclic 
field conditions. 

• Exhibits drift from zero strain state under cyclic field conditions due to dielectric aging. 

• In the linear regime, the piezoelectric coefficient is constant and hence cannot be 
electrically tuned with a bias field. 

• Has been studied extensively in the last few years, and several analysis tools have 
emerged; experimental characterization has been done extensively. 

• Currently still popular because of lower power requirements at high frequencies, relatively 
lower prices, and above all an understanding of the component integrity at low fields. 

Electrostrictive Materials 

• The strain-electric field relationship is nonlinear. 

• Shows very little, if any, hysteresis. 

• Has excellent reproducibility of zero strain state. 

• Requires a high dielectric constant to generate a large electromechanical coupling. 

• Nonlinear relation between the strain and field can be used to tune the dielectric constant; 
therefore, the electromechanical coefficient can be tuned over a wide range, changing from 
inactive to extremely active states. 

• While the constitutive relationship has been in existence in the literature for quite 
a while5-8, modeling and analysis of the behavior of electrostrictive materials under 
various loading conditions have not been carried out. Further understanding of reliability 
and structural integrity of smart structural systems with electrostrictive materials is 
necessary. 

Multi-phase composite systems consist of an active phase embedded in a passive matrix 
(for example, PZT rods in a polymer matrix18-20, as shown in Figure 2.4). Different 
connectivity schemes are possible in a two-phase system. The classification based on 
connectivity of active and passive phases was developed by Newnham, et al.21. Literature 
abounds with papers on piezoceramic rods (active) embedded in polymer matrix (passive), 
forming a 1-3 connectivity composite system18,19. Finite element analysis of 1-3 composite 
systems has also been carried out22,23. These multi-phase composites are most often useful 



when there are conflicting requirements on the active material system. This type of active- 
passive phase combinations helps in achieving multi-functionality. However, for reliability, 
mechanics studies relating to active/passive material bonding interactions are necessary24. 
Certain receptor cells in the cochlea of the inner ear undergo displacements five orders of 
magnitude more than what the best piezoelectric ceramic can produce at the same level of 
applied voltage and dimensionality25. 

Figure 2.3: A multi-layer actuator. 

Matrix (Polymer) 

PZT Rods 

Figure 2.4: A schematic of a 1-3 connectivity composite. 

2.5 Issues in modeling and analysis 

The mechanics of smart material systems involves coupling between electric, magnetic, 
thermal, and mechanical effects. In addition to this coupling, it may be necessary to account 
for geometric and material nonlinearities. For example, an electromechanical transducer is 
characterized by five important properties1:   the resonant frequency, acoustic impedance, 
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mechanical damping coefficient, electromechanical coupling coefficient, and the electric 
impedance. If nonlinear electroelastic equations are included in the model, some or all of these 
properties can be tuned; for instance, in an electrostrictive material, the electromechanical 
coupling coefficient can be tuned with a bias field1. In order to tune the first fundamental 
resonant frequency of the transducer, thin rubber layers are introduced in a multilayer PZT 
laminate26. The thin rubber layers necessitate the use of nonlinear elastic relations. 

Toupin27 was the first one to consider the nonlinearity in electroelastic formulations. 
Knops28 presented a two-dimensional theory of electrostriction and solved a simplified 
boundary value problem using complex potentials. However, rotationally invariant nonlinear 
thermoelectroelastic equations were derived by Tiersten and his coworkers6,7,9, and by 
Nelson8. Tiersten9 has stressed the importance of including nonlinear terms in the 
constitutive relations, particularly at large fields. Joshi29 has also presented nonlinear 
constitutive relations for piezoceramic materials. 

To our knowledge, a fully coupled, nonlinear electrothermomechanical analysis has 
not been carried out so far. Analytical studies have largely concentrated on fracture of 
piezoceramics and electrostrictive ceramics. Cracks emanating from electrode junctions, 
debonding in active/passive composite systems, and delamination in multi-layered stacking 
are some of the analytical problems that have been considered in the literature30'31. Coupled 
analyses were carried out for linear piezoelectric materials32. 

During the present research, a general formulation for laminated composite plates with 
piezoelectric/magnetostrictive actuators and/or sensors has been developed. Formulations of 
both classical and shear deformation (first-order and third-order) theories were developed, and 
they take into account the thermo-electro-mechanical coupling, von Kärmän type geometric 
nonlinearity, and time dependency. The Navier solutions for the linear cases were also derived. 
Assumed kinematics of deformation through thickness of the plate in various plate theories 
is graphically depicted in Figure 2.5. 

j TSDT| 

Figure 2.5: Kinematics of deformation of a plate edge in various plate theories. 



3. Theoretical formulation using CLPT 

3.1 Displacements and strains 

The classical laminated plate theory (CLPT) is based on the Kirchhoff assumption (see 
Reddy51-53) that straight lines perpendicular to the midsurface (i.e., transverse normals) 
before deformation remain straight after deformation, they are inextensible, and rotate such 
that they remain perpendicular to the midsurface after deformation. These assumptions 
imply that the transverse normal strain ezz and transverse shear strains exz and eyz are zero. 

Consider a plate of total thickness h composed of N orthotropic layers with the principal 
material coordinates of the kth. lamina oriented at an angle #& to the laminate coordinate, x. 
The xy—plane is taken to be the undeformed midplane ÜQ of the laminate, and the z—axis 
is taken positive upward from the midplane. The kth layer is located between the points 
z = Z]z and z = z^+i in the thickness direction. Some of the layers have the sole purpose of 
actuating or sensing deformation of the laminate (see Figure 3.1). 

Sensor/Actuator Layers 

Structural Layers 

Figure 3.1: A schematic of a laminated plate with imbedded actuating/sensing layers. 

In formulating the theory, we assume that the layers are perfectly bonded together. 
Further, restrict the formulation to linear elastic material bahavior, small strains and 
displacements, and to the case in which the temperature and electric fields are given. 

The Kirchhoff hypothesis leads to the displacement field 

dw0 u(x,y,z,t) = u0(x,y,t) -z 

v(x,y,z,t) = v0(x,y,t) - z 

w(x,y,z,t) =w0(x,y,t) 

dx 
dw0 

dy 
(3.1) 

where (UQ,VQ,WQ) are the displacements along the coordinate lines of a material point on the 
xy—plane. Once the midplane displacements (XIO,VQ,WQ) are known, the displacements of any 
arbitrary point (x,y,z) in the 3-D continuum can be determined using Eq. (3.1). 



The nonzero von Karman strains associated with the displacement field in Eq. (3.1) are 
given by 

BXx 

tyy\ = { 4y  ) + z { 4y  \ (3-2a) 
Ixy 
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i. 7*y , 292tüo 
V.        dxdy 
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where (eW, £j,y , Try) are the membrane strains and (e^x, £yj/, 7xy ) are the flexural (bending) 
strains. The transverse strains (exz,eyz,ezz) are identically zero in the classical plate theory. 
Note from Eq. (3.2b) that all strain components vary linearly through the laminate thickness, 
and they are independent of the material variations through the laminate thickness. 

3.2 Lamina constitutive relations 

The linear constitutive relations for the A;th orthotropic (piezoelectric) lamina in the 
principal material coordinates of a lamina are 

Qn Q12 0 1 w ( ei 
Q12 Q22 0 U 

0 0 Q66. l 
(3.3) 

aiAT] TO 0 e3i 
a2 AT \ - 0 0 e32 

£6 J      LO   0     0 

where QJ- are the plane stress-reduced stiffnesses and q- are the piezoelectric moduli of 
the fcth lamina, (<7j,£{,£{) are the stress, strain, and electric field components, respectively, 
referred to the material coordinate system (x\, x2, £3), OL\ and «2 are the coefficients of 
thermal expansion along the x\ and x2 directions, respectively, and AT is the temperature 
increment from a reference state, AT = T — TQ. For layers other than piezoelectric layers, 

„(*) >(*) are the part containing the piezoelectric moduli ej ■   should be omitted. The coefficients Q%. 
known in terms of the engineering constants of the A;th layer: 

«11 = ^-^—,   Q12 = T^^- = y^-   Q22 = T-^~,   Qee = G12(3Aa) 
1 — 1/12^21 1 — ^12^21        1 — ^12^21 1 — ^12^21 

and the piezoelectric stiffnesses are known in terms of the dielectric constants and elastic 
stiffnesses as 

0 
0 
0 

e3i' w 
e32 = 
0 J 

0   0   cfei] w \Qu Q12 0 "J 
0   0   d32 Qn Q22 0 
0   0     0 0 0 <?66. 

(fc) 

(3.46) 

Since the laminate is made of several orthotropic layers, with their material axes oriented 
arbitrarily with respect to the laminate coordinates, the constitutive equations of each layer 
must be transformed to the laminate coordinates (x,y,z). The transformed stress-strain 
relations relate the stresses {<Jxx,ayy,axy) to the strains (eXx,£yy,lxy) and components of the 
electric displacement vector (£x,£y,£z) in the laminate coordinates 

&xx 
Tyy 
Txy 

(fc) Qu O12 Owl (fc) 
( ( £xx } (ÖL\ 

Q12 Q22 <?26 { £yy ) ' - 1 0*2 
Qi6 Q26 Qm. \ I Ixy ) [äe 

(fc) 

AT    - 
0   0 £31 
0   0 §32 
0   0 §36 

(fc) (fc) 

(3.5) 



where 

On = Qii cos4 0 + 2(Qi2 + 2<56e) sin2 0 cos2 9 + Q22 sin4 0 

0i2 = (Qn + Q22 - 4Q66) sin2 9 cos2 9 + Qi2(sin4 9 + cos4 0) 

Q22 = Q11 sin4 0 + 2(Qi2 + 2Q66) sin2 0 cos2 0 + Q22 cos4 0 

0i6 = (Q11 - Q12 - 2Q6e) sin 9 cos3 0 + (Q12 - Q22 + 2Q6e) sin3 9 cos 0 

O26 = (Q11 - Q12 - 2Qm) sin3 0cos0 + (Q12 - Q22 + 2Qe6) sin 0 cos3 9 

Qw = (Q11 + Q22 - 2Qi2 - 2Q6e) sin2 0 cos2 0 + Q66(sin4 9 + cos4 9) (3.6) 

and <5i, 0:2, and äß are the transformed thermal coefficients of expansion 

ä\ = a.\ cos 9 + £*2 sin 0 

02 = ai sin2 9 + OL2 cos2 0 

06 = 2(ai — a2) sin 9 cos 0 (3.7) 

and e.ij are the transformed piezoelectric moduli 

£31 = e3i cos2 9 + e$2 sin2 9 = Q§Q (d^\ cos2 9 + efo sin2 0J 

£32 = e3i sin2 0 + e32 cos2 0 = Q66 (d^i sin2 0 + ^32cos2 9) 

e36 = (e3i - e32) sin9 cos 9 = Qee(d3i - ^32) sin 0 cos 9 (3.8) 

Here 0 is the angle measured counterclockwise from the x—coordinate to the x\— coordinate. 
We define 

fen(fc)   r§3ii(fc) 

{e}(fc) = I e2 \     =le32\ (3.9) 
I e6 J I e36 J 

where summation is implied on repeated subscript j over the range j = 1,2,6. 

3.3 Equations of motion 

The equations of motion can be derived using the principle of virtual displacements. 
In the derivations, we account for thermal (and hence, moisture) and piezoelectric effects 
only with the understanding that the material properties are independent of temperature 
and electric fields, and that the temperature T and electric displacement vector £ are known 
functions of position. Thus temperature and electric fields enter the formulation only through 
constitutive equations. 

The equations of motion of the classical plate theory are 

dNxx     dNxy d2u0 d2 fdw0\ 

~dx~+~d^-=h~w ~ hw y-dx-) (3-10) 

dNxy dNyy d2V0 d2     fdW0\ 

^r+2^t+^+"<?*> N-> N-»N^+q 

_    d2w0        d
2 (d2w0     d

2w0\ 
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where q is the distributed transverse mechanical load, and (Nxx,Nyy,Nxy) the total in-plane 
force resultants and (Mxx, Myy,Mxy) the total moment resultants defined by 

z dz (3.13) 
yxy ) \ uxy 

(Ioylijfy) are the mass moments of inertia 

Ä z ) podz 

and 

9i V       ox " ay 
9 /..   dwo + Bi{N"^+N' yy 

dw0\ 

dy ) 

(3.14) 

(3.15) 

Note that the force and moment resultants are related to the mechanical, thermal, and 
piezoelectric strains through the constitutive equations. We will consider the laminate 
constitutive equations in the sequel. 

The generalized displacements and forces of CLPT are 

dw0 

N, nn-) 

Un,    Us,    Wo, 

Nns,   Vn = Qn + 

dn 

dMns 

ds 

(essential) 

,   Mnn    (natural) (3.16) 

where Qn denotes the transverse shear force resultant on an edge with normal n = (nx,ny). 
In the dynamic case, it is given by 

Qn = (MXXIX + MXViy - Iiüo + h-7T- \nx + [MWI!/ + MXVjX - hvo + h~K^ ) % 

(A^+i^WfiV^ + A^U "        (3.17) 
.        dw0 dw0\ (      dwo dw0\ + (NXX—+ Nxy—) nx + [Nxy— + Nyy—J ny 

The force and moment resultants on an edge with normal n to those on edges parallel to the 
x and y coordinates by 

(Nnn\ 
\Nnsj 

[Mnn\ 
\Mns] 

nl nl LThftTly 

Tlx^y TlxTly n2
x-n2

y\ 

nl n\ ZTl$Tly 

TtjjTly T^x^y nl-nl\ 

Nx 

yy 
iVa xy 

Mx 

M, yy 

(3.18a) 

(3.186) 
Ms xy 
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3.4 Laminate constitutive equations 

Here we relate the force and moment resultants in Eq. (3.13) to the strains. By definition, 
we have 

Qn Qi2 0i6 
Qi2 Q22 <?26 
Qi6   Q26   Qm 

An   Al2   A16 

A\2     A22     A26 
Ais   A26   Aee. 

Exx 

£yy 
(o) 

k Ixy  ) 

> + 

(fc) 
(\ £xx I (< 

£yy | ~ r v k Ixy ) i< 
[Bn B\2 Bi6 

B\2 B22 #26 
B\% B26 -066. 

where {NT} and {Np} are thermal and electric force resultants 

{NT} = jr[Zk+1{ß}WATdz 
fc=iJzk 

{Np}=i:fZk+1{t}{k)£?)dz 
fc=lJz* 

Na is the number of actuating layers, and 

{£}(*> = [Q](fe){ö}W 

Similarly, we have 

Mxx 

Myy   \ = 
Mxy 

B\\    B\2   B\e r ^°) 1 C.XX 

B\2    B22    B26 < JO) £yy 1 + 
BIG   B26   BQQ (0) 

. 7xy J 

Al     Dl2     #16 
D\2     D22     D26 
Die   -D26   £>66 

£yy 

k 7zy  J 

(3.19) 

(3.20) 

(3-21) 

(3.22) 

f Mj^      j- Mil 
\-\Mvry\-{Myy 

lMjy 

where {M^"} and {Mp} are thermal and electric moment resultants 

N 

{MT} = £ r+1{ß}{k)AT z dz 
fc=i ^ 

{Mp} = Y,r+\e}W£Wzdz 
1 1 JZh 

(3.23) 

(3.24) 

(3.25) 
fc=i -^ 

Here Aij denote the extensional stiffnesses, Dij the bending stiffnesses, and Bij the bending- 
extensional coupling stiffnesses 

A,- = £ 0£Wi - zk), Ba = \ J2 Qf(4+i - 4) 
N 

I 
fe=l fe=l 
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D., v 5 £:«?'< ök=i 

zk+\ 4) (3.26) 

Note that Q's, and therefore A's, B's, and Z)'s, are, in general, functions of position (x,y). 
Equations (3.19) and (3.23) can be written in a compact form as 

\{M}j 
[A]    [B]]({e°}\({NT} 
[B]    [D] {MT} 

{ {NP} X 
I {Mp} J 

Suppose that the temperature and electric fields vary linearly within feth layer 

AT = T?(x,v,t)ift(z) + T%(x,y,t)tä(z) 

ee = £Z(x,y,t)ifi{z) + £%(x,y,t)i$(z) 

where t/>f are the linear interpolation functions of the feth layer 

tf (*) = 
Zk+i — z 

&{z) = 
Z- Zk 

Zk<Z< Zk+i 

(3.27) 

(3.28a) 

(3.286) 

(3.29) 
hk hk 

and Tf and T% denote the temperature at the bottom and top surfaces of the fcth layer. 
Similar notation is used for the electric field. Then the thermal and electrical forces and 
moments can be evaluated as 

1 1  JZk 

Zk+l 

Jfe=l JZk 

N 

( Np 

U 1   J Z'i \NP 

Zk+l 

k^\Jzk 

N Zk+l 

Zk 

Qn Qyi Qi6 

Qvi Q22 Q26 

Qie Q26 Q66 

On O12 Qi6 
Q12 Q22 Q26 

Qw Q26 Q&6. 

On Q12 O16 
Q12 Q22 Q2& 

_Qi6 Q26 Qße. 

Q11 Q12 0i6 
Q12 Q22 Q26 

Qi6 Q26 Qm (M£V)    t=i^ 

where (i = 1,2,6) 

^4E E osfäf(r"+T")^ 

(7^ + 7M)dz=^>  (3.30) 

(TM + T2V2
fc)^= i B2

T 1(3.31) 
U6

TJ 
(*) ( Ap 

(eftä + eZtädz^lAg } (3.32) 
Ur 

w r J31 1 (fc) 

{ dz2  )       (ffyl + 3fr$W* = { #2° k3"33) 
UseJ 

-l(fc) 

*£ 

fc=ljf=l,2,6 

AT 

<*)«(*> *r=iE E ^. 
" fc=lj=l,2,6 

are the thermal stiffnesses, and 

Na 

2 

l?(/ifc + 32fc)+T2
fc (2/^ + 3^) /it 

^f4E E oW («?+#>* 
1 

fc=l j=l,2,6 

ßf = ^E E oS-)4?)[^(^+3^)+^(2%+3^)]% 

(3.34a) 

(3.346) 

(3.35a) 

(3.356) 
fc=lj=l,2,6 
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are the piezoelectric stiffnesses, and Na < N is the number of actuator layers. If the electric 
field intensity is constant across each lamina, then one may approximate it as 

ck _ ck _ Vfe (3.36) 

where V& is the applied voltage across the kth. layer and h^ is the thickness of the layer. 

The  stress  resultants   (iV's   and  M's)   are  related  to  the  displacement  gradients, 
temperature increment, and electric field by the relations 

Nx 

N. 
yy 

xy 

*yy 
M. xy 

Mx 

Au   A12   A16 

A\2   Ai%   M& 
A\%     A26     AQ6 J 

Bf 

Bl 

Bii B\2 BIG 
B\2 B22 B2& < 

Bie B26 BGG. 

BU-{ 
B

B\ 
sr 

dug 
dx + 2 \ dx ) 

1 (dway 
2 V 9y J dy  + 2 

 i_ §SSL J  
dy        dx dx   dy   . 

dup   1   1 (dwi 

dvQ_   , 
«...       I 

fdwgY' 
{dx )r 

1 (dwnX 
2 V 9y J 

dxip   1   dvp   1   dwn dwg 
dy    '    dx    '    dx   dy 

Bu B\2 BIG 

B\2 B22 B2G < 

B\G B2G BG6. 

Dn    D12    D16 

D\2     D22    D26 

Die   D2G   DGG 

dx2 

9
2

WQ 
^F 

nd2wn 
dxdy 

(3.37) 

92wp 
Hi? 

nd2wn 
dxdy 

(3.38) 

4. Theoretical formulation of TSDT 

4.1. General comments 

The classical laminate plate theory and the first-order shear deformation theory are the 
simplest equivalent single-layer theories, and they adequately describe the kinematic behavior 
of most laminates52. The third-order theory of Reddy51'52,54 represents the plate kinematics 
better, does not require shear correction factors, and yields more accurate interlaminar stress 
distributions. Hence, the generalized third-order shear deformation laminate theory (TSDT) 
of Reddy52, which contains the first-order shear deformation theory (FSDT) as a special case, 
is used to develop the governing equations of laminated plates with actuating and/or sensing 
layers. 

4.2. Displacement field and strains 

The Reddy third-order plate theory is based on the displacement field 

u(x,y,z,t) = u0(x,y,t) + z(j>x(x,y,t) - ciz3 (^ + "0"^) 

w(x, y, z, t) = w0(x, y, t) (4.1) 
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where (UO,VQ,WO) and (<px,<f>y) have the same physical meaning as in the first-order theory; 
they denote the displacements and rotations of transverse normals on the plane z = 0, 
respectively. Then the displacement field of FSDT is obtained by setting c\ = 0, and for the 
Reddy third-order theory we set c\ = 4/(3/i2). 

Substitution   of the   displacements   (4.1)   into  the  von  Karman   nonlinear  strain- 
displacement relations yields the strains52 

> +z< 

+ z 

> + z° (4.2) 

(4.3) 

where 

£(0) 
c-xx 
£yy 

(0) 
Ixy 

£xx 
£yy 

(3) 
Jxy 

> = < 

cHtp   1 
dx  ~i~ 2 

dvi 

1 fdwnY' 
2\dx ) 

dy ^ 2 \ dx ) 
dup   1   dvp   1   dwg dwp 
dy    '    dx    '    dx   dy 

= -Ci < 

V dx   ^ Hx* 
(d<j>v   ,   d2wa 

fd(j>x   ,   9^; 
\ dy dx 

€xx 
£yy 

Ixy 

d2wn\ 

^Adxdy) 

= -3ca 

> = < 

d<j>x 
dx 

9<t>v 
dy 

d(j>x 1 
9y   i" 9x 

(4.4) 

(4.5) 

(4.6) 

4.3. Constitutive relations 

In addition to the constitutive relations in Eq.  (3.5), we have the following requations 
for the transverse shear stresses 

I °vz \ = 
\<?xz / 

Q44     <545 
Q45     Q55J   17: 

jnfyz H ei4    e24    0 
eis    e25    0 

(4.7) 

where 

Qu = Qu cos2 9 + Q55 sin2 9 

O45 = (Q55 - Qu) cos 0 sin 0 

Q55 = Q55 cos2 0 + Qu sin2 9 (4.8) 

ei4 = (eis — e24) sin 0 cos 0 

624 = ^24 cos2 0 + ei5 sin2 0 

ei5 = eis cos2 0 + e24 sin 9 



Also, we have 

e25 = (eis - ^24) sin 9 cos 9 

e~ii = en cos2 9 + 622 sin2 9 

?22 = en sin2 6 + 622 cos2 9 

h2 = (en - ^22) sin 9 cos 9 

"en eis' "di4 dis~ 

e24 §25 = ^24 ^25 

L 0 0 J L 0 0 J 
Q44   Q45 
Q45    Q55 

15 

(4.9) 

(4.10) 

(4.11) 

4.4. Equations of motion 

The equations of motion may be developed using the dynamic version of the principle of 
virtual displacements. 

where 

dNxx  .  dN, 
dx 

+ ■ 
xy 

dy 
= IQÜQ + J\4>x — C1I3 

dNxv . dN, + 

dw0 

dx 

dy " dy 
yy 

sxy 

dx 

öa; öy      9x örr dy        dy dx dy 
,d Pxx       d Pxy     d Px 

dx2 dxdy       dy2 
xx   ,   n"  *xy   ,   v iyy,   , r   .. 2r /^O   ,   d2Ü>0, 

ÖX2 + 
dy2 

+ ci 

dMx: 
dx 

dM 

dü0     dv0 d(f>x     d<f)y 

+ ÖM xy 

dy 
Qx = J\ÜQ + K2<t>x — C\Ji 

xy 

dx 
+ dM. yy — Qy = JlVQ + K<l4>y — C1J4 

dwp 
dx 

dwQ 

dy       -*y     " "*    -""* dy 

Maß - Maß - CiPaß,    Qa = Qa ~ SciRa 

N Czk+1 
Ii = Y,[Z^p{k)(zydz  (» = 0,1,2,-.-,6) 

fc=i •/z* 

Ji = Ii- ciIi+2, K2 = h- 2ci/4 + cxIe, c\ = -^ 

and {PXx,Pyy,Pxy) and (Rx,Ry) denote the higher-order stress resultants 

yy 

xy C£h {ft-CW 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18a) 

(4.186) 

(4.19) 
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The primary and secondary variables of the theory are 

Primary Variables :    un, us, WQ, ——, <bn, 6S on 
Secondary Variables :    Nnn, Nns, Vn, Pnn, Mnn, Mns 

where Pnn has the form similar to Mnn [see Eqs. (2.18a, b)] and 

xy 

-Ci 

Or xx       Oxx 

dx 
+ 

dy 
nx + |^ + ^|n,. 

dx dy 

I3u0 + Ji<px - c\h-£- \nx+ \hvQ + J40y - c\h-Q- I ny 

dPns + (Qxnx + QyKy) + V{WQ, NXX, Nyy, Nxy) + Ci 

V = I JV,,^Pi + JV„.^ \ru+\ N„.^- + iV„„-^ Nxx-^ + Nxy—j nx + (Nxy— + Nyy—J ny 

The stress resultants are related to the strains by the relations 

{M}\ = 
{P}\ 

[A] [B]    [E] 
[B] [D]    [F] 

[[E]    [F]    [H] 

{e{0)} )      f {NT} )      ( {Np} ) 
{sW} \-\{MT}\-\ {Mp} 
{£(3)} J      I {PT} J      I {PP} J 

[D]    [F]\\{^}) 

(Aij,Bij,Dij,Eij,Fij,Hij) —2_^j       Qij   (l,z,z ,z ,z ,z ) dz 
fc=iJzk 

N 

(Ai^D&Fij) =J2 r+10S? (1,*V) dz 
A^I-

7
** 

(4.20a) 

(4.206) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25a) 

(4.256) 

The stiffnesses Aij, Dij and Fij are defined for i,j = 1,2,6 as well as i,j = 4,5.   The 
stiffnesses Bij, Eij and Hij are defined only for i, j = 1,2,6. The coefficients Aij,Bij, and 

£>jj were given in terms of the layer stiffnesses Q\j   and layer coordinates Zf.+i and z^ in Eq. 
(2.26). The higher-order stiffness coefficients are defined by 

^ = iE0g}[(W-(**)4] 
fc=i 

^^£0S?[(W-(^)5] 
ö fc=i    L 

fe=i 

(4.26) 

Note that the stiffnesses Eij,Fij and so on of the third-order theory involve fourth or higher 
powers of the thickness, and, therefore, they are expected to contribute little to thin laminate 
solutions. Even for moderately thick laminates the contribution can be small. 
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5. Sensor and actuator equations 

5.1. Electro-mechanical coupling 

The electro-mechanical coupling is a two-way coupling. The effect of applied electrical 
field on stresses is, as indicated by Eq. (2.5), is analogous to the effect of the temperature 
field. The components Di of electrical displacement vector are related to the components of 
strains and electrical field by 

0 0 01 WM "en 0 0 1 w (S1 
0 0 0 u + 0 £22 0 u 

e3i e32 oj UJ L o 0 C33. u 
(fc) 

(5.1) 

where e^- are piezoelectric stiffnesses and e^- are dielectric coefficients.   The transformed 
equations are 

Dx 

Dy 
Dz 

(fc) 0 
0 

e3i 

0 
0 

e32 

0 
0 

e36 

en 
ei2 
0 

ei2 

€22 
0 

0 
0 

C33 

iW (fc) 

(5.2a) 

Equation (5.2a) is modified to account for the transverse shear strains in TSDT 

Dx   | u \J \J |   c-xx   I c-14      c-lö       f -i 0 0 0 
0 0 0 

C31 e32 e36 

"en §15' 

e24 S25 

L 0 0 J 

en 
ei2 
0 

ei2 

e"22 

0 

0 
0 

£33 

(5.26) 

This electromechanical equation provides the starting point for the derivation of the 
sensor and actuator equations12,13'15. 

5.2. Sensor equations 

According to the Gauss law, the closed circuit charge measured through the electrodes 
of the fcth layer is 

Qk
s{t) = \    I Dzdxdy+ f Dzdxdy 

&     JSl(z=Zk) JST(Z=ZI,±I) Si{z=Zk+x) 
(5.3) 

where Si = Sb D St is the intersection of the electrode surfaces on both sides of the lamina 
(see Figure 5.1) and subscript V denotes sensor. The electrodes are assumed to be placed 
on the transverse surfaces with the poling direction z. Hence, only the component Dz of 
the electric displacement vector is nonzero. When Eq. (5.2) is applied to sensors where the 
converse piezoelectric effect is negligible and the external applied charge is zero, the sensed 
charge can be calculated from Eq. (5.2) as 

{£xx 
£yy 

Jxy 

(5.4) 

The total charge in the laminate is calculated by summing over the number of sensor layers, 
Ns: 

Q 3(1) = HL,    I Dzdxdy + / Dzdxdy 
fc=i \ysdz=zk) JSj{z=zk+i) 

(5.5) 
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Substituting Eq. (5.4) into (5.5), we obtain 

Jfc=l JSl 

where z* = 0.5(zfc + zk+i) 

^(*) = 2 £ X [g3l£^ + g32£** + g367^ + ** (g3l£^ + g32£^ + g367ä))](fe) dxdj/ 

(5.6) 

1      s,nsb 

Sensor/Actuator Layer 

Figure 5.1: Laminate with surface electrodes (St =surface electrode in the top surface, 
Sb = surface electrode in the bottom surface. 

We note that Eq. (5.6) was obtained by setting the externally applied fields £(°) and 
£(*) to zero, because when the surface electrodes are short-circuited on both sides of the 
piezoelectric lamina, the terms containing the externally applied electric field intensities Ez 

(2) and Ez ' should be set to zero.   The resulting equation is the closed-circuit charge sensor 
equation, which relates the output signal to the plate deformation. 

The current I(t) on the surface of the sensor is given by 

dQs 
I(t) = 

dt 
(5.7) 

When the sensors are used as strain rate tensors, the current can be converted to the open 
circuit sensor voltage ouput V3 by12,39 

V,(t) = GJ(t) = G, 
dQs 

: dt 
(5.8) 

where Gc is the gain of the current amplifier. 

The sensor forces {Np} and moments {Mp} (and {Pp}) are then evaluated by using 

{£} = 
0 
0 (5.9) 
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in Eqs. (3.32) and (3.33). Here hs denotes the thickness of the sensor layer. The forces and 
moments will be determined in terms of of the strain rates in the sensor layers. 

5.3. Actuator equations 

The actuator equations for piezoelectric actuator can be derived using induced strain 
actuation. We assume that the piezoelectric actuator layer does not have any applied stress. 
Then Eq. (5.1) gives the strains developed by the electric field on the actuator layer 

{e}a = [Q]-W{S} = [Q)-1[Q]'[d\l{S} (5.10) 

or 

The stresses due to the actuator strains are 

W}a = [Q]{e}a = [QVW{£} 

(5.11) 

(5.12a) 

or 
Oi = QijdkjSk       (i,j = 1,2,6; k = 1,2,3) (5.126) 

The stress vector can be used to generate the actuator forces {Np} and moments {Mp}. 

If the voltage applied to the actuator in the thickness direction (only) is Va, then 

{€} = 
0 
0 

ha 

(5.13) 

where ha is the thickness of the actuator layer. Then we have 

Nf = QijdsjVa (5.14a) 

Mf = QahjVazl (5.146) 

where 2" is the distance from the midplane to the center of the actuator layer. 

6. The Navier solutions of CLPT 

6.1. Preliminary comments 

The equations of motion (3.10)-(3.12) can be expressed in terms of displacements 
(UO,VQ,WO), temperature field (T0,!11), and electrical field (£%,£l) by substituting for the 
force and moment resultants from Eqs.(3.37) and (3.38). For homogeneous laminates (i.e., 
for laminates with constant A's, i?'s, and £>'s) and under the assumption of small strains, 
displacements and rotations, the equations of motion (3.10)-(3.12) can be expressed as52 

Cll     C12     Ci3 

C12    C22    C23 

.C13    C23    C33. 

mn      0      mi3 

0        77122     77123 
77113     77123     "133 J 

(6.1) 
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where the coefficients c^- and m^ are 

en = And2 + 2Aiedxdy + ^66^ 

ci2 = Ai6dl + (Au + Am)dxdy + A^d2, 

C13 Bnd3
x + SBied2

xdy + (B12 + 2Bm)dxd
2

y + B26d
3

y 

C22 = AQQdx + 2A26dxdy + ^22^ 

C23 = - [-Bie4 + (#12 + 2-B66)<^ + 2>B2&dxd
2

y + £224 

C33 = Du4 + 4Diedldy + 2{D12 + 2Dm)d2
xd

2
y + 4D2edxdy + £>224 

-I0d
2 ,   m13 = hdxd

2 ,   m22 = -I0d
2 mu t > 

'2       r J2/J2 «^3 = A<V*t , m33 = I0df - I2df(dx + dy) 

d^.,dl, and d\ denote the differential operators 

<Z = JL 
dx1 y     dyi 4 = -^     (» = 1,2,3,4) 

and ff and fp are equivalent generalized thermal and piezoelectric forces 

f[ = 

dNt 
dx 

dNT 

dy 
fT- H — 

dNL 
dx 

xy   ,   >J11yy 

dy 

dNp 

dx 

'd2Ml | nfML 
dx2 

dNp 
xx    1   W1*xy 

82MT" xy   ,   w lyxyy 

dxdy dy2 

dy f? = 
dNp 

dx 

dNp 
xy   ,   lJ1,yy 

dy 

P_     (d2Mp
x      d

2Mp     d2Mp\ 
13 \  dx2 dxdy        dy2  ) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

In this section, we develop the Navier solutions of Eq. (6.1) for simply supported 
rectangular laminates with actuating and/or sensing layers. In the Navier method the 
generalized displacements and applied loads are expanded in a double trigonometric series 
in terms of unknown parameters. The choice of the functions in the series is restricted to 
those which satisfy the boundary conditions of the problem. Substitution of the displacement 
expansions into the governing equations should result in a unique, invertible, set of algebraic 
equations among the parameters of the expansion. Otherwise, the Navier solution cannot be 
developed for the problem. 

The Navier solutions can be developed only for two classes of laminates. The first class 
has the following stiffness characteristics: 

Ais = A2e = Bie = B2e = D\e = D2g = 0 

AT = Bj = Ap = Bp = 0 

and the second one has 

Ai6 = A2Q =Bn = B12 = B22 = Bee = Di6 = D2e = 0 
Al = Bj = AP = BP = 0, h=0 

(6.6) 

(6.7) 
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These restrictions necessarily require that the actuating and sensing layers should be placed 
such that the laminate stiffnesses satisfy the above requirements. The stiffness characteristics 
in Eq. (6.6) are satisfied by antisymmetric cross-ply laminates, while those in Eq. (6.7) by 
antisymmetric angle-ply laminates52. 

6.2. Antisymmetric cross-ply plates 

The simply supported (SS-1) boundary conditions used for antisymmetric cross-ply 
laminates are 

u0(x,0,t) = 0,   —— (x,0,t) = 0,   u0(x,b,t) = 0,   -g— (x,b,t) = 0 

v0(0,y,t) = 0,   -^(0,y,t)=Q,   v0(a,y,t) = 0,   -^(a,y,t) = 0 

u>o(x,0,i) = 0,   w0(x,b,t) = 0,   w0(0,y,t) = 0,   w0(a,y,t) =0 

Nxx(0,y,t) = 0,   Nxx(a,y,t) = 0,   Nyy(x,0,t) = 0,   Nyy(x,b,t) = 0 

Mxx{0,y,t)=0,   Mxx(a,y,t) = 0,   Myy(x,0,t) = 0,   Myy(x,b,t) = 0 (6.8) 

where a and b are the planform dimensions of the plate. 

The displacement boundary conditions in (6.8) are satisfied by assuming the following 
form of the displacements: 

oo     oo 

uo(x,y,t) = E E Umn(t)cosax sinßy (6.9a) 
n=l m=l 

oo     oo 

vo{x,y,t) = E E vmn{t) sin ax cosßy (6.96) 
n=l m=l 
oo     oo 

w0(x,y,t) = ^2 ^2 Wmn(t) sin ax sin/?y (6.9c) 
n=l m=l 

where a = mix /a and /? = nix/b and (Umn, Vmn, Wmn) are coefficients to be determined. 
Similarly, the applied loads are expanded in double sine series as 

q(x,y,t) = E E Qmn(t)sinax sinßy (6.10a) 
n=l m=l 

oo    oo 

{^T} = E E{<n}sinax sinßy (6.106) 
n=l m=l 
oo    oo 

{MT} = £ E{M-n}smax sin/fy (6.10c) 
71=1 771=1 

oo     oo 

{NP} = Y,Y, iC) sin ax sinßy (6.10d) 
n=l 7n=l 

oo     oo 

{Mp} = J2 E{M™>sinaa; sinßy (6.10e) 
71=1 771=1 
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where the coefficients Qmn, for example, are given by 
rb 4     rb   ra 

Qmn(t) = —r /    /   q{x,y,t) sin ax sin ßy dxdy 
ab Jo Jo 

(6.11) 

Substitution of Eqs. (6.9)-(6.11) into Eq. (6.1) yields for any m, n, x, and y, the following 
differential equations in time 

mn        0       —I\a 
0 77122       —hß 

-ha    -hß    m33 

-a 

+ < -ßNLn 
a2M?mn + ß2Mp 

Iran 

Cll     Ci2     Ci3 

Cl2     C22     C23 

.Ci3     C23     C33 

= |   0   1 + 1        -/?iVJmn 

where c^- and m^- are 

en = (^ii<*2 + Amß2),   C12 = (^12 + Am)aß 

eis = -on«3 - (-B12 + 2ß66)aj82,   c22 = (Ama2 + ,422/32) 

C23 = -(B12 + Wm)a2ß - B22ß
3 

C33 = Al«4 + 2(Di2 + 2Dm)a2ß2 + Ö22/34 

mil = io, ™22 = h, ^33 = ib + /2(a2 + ß2) 

(6.12) 

(6.13) 

Equation (6.12) must be modified to include the sensor and actuator equations. If the 
plate has only actuators, then the modification is simple; the actuator forces {Np} and 
moments {Mp} in the above equation must be replaced using Eqs. (6.14a,b). One must 
be careful to include them only for the actuator layers, and for other layers one must set 
{Np} = {Mp} = {0}. 

6.3. Antisymmetric angle-ply plates 

The simply supported (SS-2) boundary conditions for the antisymmetric angle-ply 
laminates are 

uo(0,y,t) = 0,   uo(a,y,t) = 0,   v0(x,0,t) — 0,   v0(x,b,t) = 0 
dw01    n +\      n     dw° I    u *\     n     dw® m     ^      n     dw° (        *\     n — (x, 0,i) = 0,   —(x,b,t) = 0,   — (0,y,t) = 0,   — (a,y,t) = 0 

w0(x,0,t) — 0,   w0(x,b,t) =0,   wo(0,y,t) = 0,   u;o(a,y,t) = 0 

Nxy(0,y,t) = 0,   Nxy(a,y,t) = 0,   i\rx2/(x,0,t) = 0,   Nxy(x,b,t) = 0 

Afxx(0,i/,t) = 0,   Afxa.(o,y,t) = 0,   MTO(x,0,i) = 0,   Mw(i,M) = 0 (6.14) 

The displacement boundary conditions in (6.14) are satisfied by assuming the following form 
of the displacements 

uo(x,y,t) =^2J2 Umn(t) sin ax cosßy 
n=X m=l 
00     00 

v0(x,y,t) =]T} ]C Vmn{t) cos ax sinßy 
ra=l m=\ 

oo    00 

w0(x,y,t) =Y1Y^ Wmn(t) sin ax sinßy 
n=\ m=\ 

(6.15) 

(6.16) 

(6.17) 
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Substitution of Eqs. (6.15)-(6.17) and (6.10a-d) into Eqs. (6.1) yields 

where 

Cll     Ci2 c13 

Cl2     C22 C23 

Cl3     C23     C33 + S33 

mn 

0 
0 

0 0  1 
™22 0 

0 ^33. 

0 
0 

Uin 

+ 
P*  6mn 

-OLNL. 

-ßKn Qmn 

*6mn + -ctNlL 677171 

a2Mfmn + /?2M2^ Imn 

cii = ^n«2 + A6eß
2,   C12 = (i4i2 + A66)aß 

eis = -(3S16«2 + B26/?2)/?,   C22 = A66a
2 + A22ß

2 

C23 = -(ßiea2 + SB26ß
2)a 

C33 = Al«4 + 2(D12 + 2Dee)a2ß2 + Ö22/?4 

mn=7o,   "122 = Io,   m3s = I0 + I2(a
2 + ß2) 

(6.18) 

(6.19) 

7. The Navier solutions of TSDT 

7.1. Preliminary comments 

The five equations of motion, Eqs.(4.12)-(4.16), admit the Navier solutions for simply 
supported antisymmetric cross-ply and angle-ply laminates52,56'57. For antisymmetric cross- 
ply laminates the following stiffnesses are zero: 

A\e = A2e = A45 — B\e = -B26 = Dw = D2e — h — 0 

Eie = E26 = F16 = F26 = Hie = #26 = #45 = ^45 = h = h = h = 0 (7.1) 

and for antisymmetric angle-ply laminates the following stiffnesses are zero: 

A\§ = A2Q = A45 = B\\ = Bn = B22 = i?66 = Die = D2e = h = 0 

#11 = B12 = B22 = #66 = -^16 = i*26 = #16 = #26 = D45 = F45 = I3 = I5 == I7 = 0     (7.2) 

The Navier solutions of the linear equations for these two cases are presented next. 

7.2. Antisymmetric cross-ply plates 

The SS-1 boundary conditions for the third-order shear deformation plate theory are 

it0(a;,0,t) = 0,   <f>x(x,0,t) = 0,   u0(x,b,i) = 0,   <f>x(x,b,t) = 0 

v0(0,y,t) = 0,   <j)y(0,y,t) = 0, v0(a,y,t) = 0,   (py(a,y,t) = 0 

w0(x, 0, t) = 0,   WQ(X, b, t) = 0, w0(0, y, t) = 0,   w0(a, y, t) = 0 

^x(0,y,«) = 0,   iVxx(a,y,t) = 0, Nyy(x,0,t) = 0,   Nyy(x,b,t) = 0 

Mxx(0,y,t)=0,   A4s(o,y,t) = 0, Mro(x,0,t) = 0,   Mw(x,6,t) = 0 (7.3) 
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The boundary conditions in Eq. (7.3) are satisfied by the following expansions: 

OO      oo 

u0(x,y,t) = ^2^2 Umn(t) cos ax sin ßy (7.4a) 

oo     oo 

vo(x, 2/> 0 = X2 ]C Vmn{t) sin ax cosßy (7Ab) 
n=\ m=l 
oo     oo 

w0(x,y,t) = ^2^2 Wmn(t) sin ax sin ßy (7.4c) 
n—l m=\ 

oo    oo 

<ßx(x, y,t) = ^2Yl xmn(t) cos ax sin ßy (7 Ad) 
n=l m=l 

oo     oo 

<j)y(x, y,t) = Yl'52 Ymn{f) sin ax cos ßy (7.4e) 
n=l m=l 

The transverse load g, thermal forces and moments ({NT},{MT},{PT}), and electrical 
forces and moments ({Np}, {Mp}, {Pp}) are also expanded in double Fourier sine series 
[see Eqs.(6.10a-e)]. 

Substitution of Eqs.(7.4a-e) and applied load expansions into Eqs.(4.12)-(4.16), we obtain 
a 5 x 5 system of the following differential equations in time 

|"«n S12 Sl3     «14 t   «15" f TJ '-'mn ' 'mn 0 0 0 0  1 <-Jmn 

«12 «22 S23     «24 t     «25 'mn 0         77122 0 0 0 Vmn 

S13 «23 S33     «34 I     S35 < Wmn [ + 0        0 m33 m34 W35 < wmn 
«14 «24 S34     «44 I     «45 ■X-mn 0        0 m43 77144 0 -X-mn 

Jl5 «25 «35     «45     «55. .  *mn  1 L 0    0 ™53 0 ™55. -  *mn  1 

(   0   ] 
0 

r «<n 1 
An An 

0 
I   0   J H C 

u 
0 
Mmn 

■'2Trin - 

> — < 

* 

0 ► (7.5) 

where s^- and m^- are defined by 

«11 = -4iia2 + Amß2,   S12 = {A12 + A66)aß 

«13 = -ci [Sua2 + (£12 + 2£66)/?
2] a 

aw = Bna2 + Bmß2,   sis = (B12 + B66)aß 

«22 = A66a
2 + A22ß

2,   «24 = «15 

«23 = -ci [E22ß
2 + (Ei2 + 2Em)a2] ß,   % = Bma2 + B22ß

2 

«33 = Ä55a
2 + Äuß2 + 4 [HII<X* + 2(#i2 + 2Hm)a2ß2 + H22ß*] 

«34 = -455« - ci [Pna3 + {F12 + 2F66)aß2 

«35 = Äuß - a faß3 + (F12 + 2F66)a
2ß 

su = ^55 + Dna2 + D66ß
2,   «45 = (#12 + Ä>e)a/3 
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«55 = ÄU + Dma2 + D22ß
2 (7.6a) 

rnn-Io,   m22 = Io,   ro33 = J0 + cf/6 (a
2 +/r) ,   m34 = -ci J4a 

rfi35 --ciJiß,   mu = K2,   rh55 = K2 (7.66) 

-Ay = j4jj - ci Aj,   -Bij = -ßij - ciEjj,   Dy = Dij - ciFij    (i,j = 1,2,6) 

■Fij = Fij - ciHij,   Äij = Äij - ciDij = Aij - 2ciDij + c\Fij    (i,j = 1,2,6) 

Dij = D^ - ciFij = Dij - 2ciFij + c\Hij    (i, j = 1,2,6) 

Äij = Ä^ - 3ciDij = A^ - QciDij + 9c2Fij    (i, j = 4,5) (7.6c) 

The ordinary differential equations (7.5) in time can be solved for transient response using 
the Newmark integration procedure. 

7.3. Antisymmetric angle-ply plates 

The SS-2 boundary conditions for the third-order shear deformation plate theory are 

u0(0,y, t) = 0,   u0(a,y, t) = 0, v0(x,0, t) = 0,   v0(x, b,t) = 0 

<f>x(x,0,t) = 0,   (f>x(x,b,t) = 0, (f>y(0,y,t) = 0,   </>y(a,y,t) = 0 

wo(x,0,t) =0,   wo(x, 6, t) = 0, tuo(0,y,i) = 0,   ty0(a, y, t) = 0 

Nxy(0,y,t) = 0,   Nxy(a,y,t) = 0, Nxy(x,0,t) = 0,   Wx„(x,M) = 0 

Mxx(0,y,t) = 0,   MXI(a,y,t) = 0, M^x.O.t) = 0,   Myy(x,b,t) = 0 (7.7) 

The simply supported (SS-2)  boundary conditions in Eq.(7.7)  are satisfied by the 
displacement expansions 

oo     oo 
uo(x, y, t) = Yl 5Z ^"(0cos aa; sin ßy (7-8a) 

n=l m=l 
oo     oo 

vo(x, y,t) = ^2^2 Vmn(t) sin ax cos /?y (7.86) 

and the expansions of (wo, <f>x, <j)y) in Eqs.(7.4c,d,e). Substituting these expansions along with 
the load expansions into Eqs. (4.12)-(4.16), we obtain equations of the form in (7.5) 

[S\{A} + [M]{Ä} = {F} (7.9) 

with the following definition of the coefficients: 

sn=Aua2 + A6eß2,   s12 = (A12 + A^)aß,   s13 =-ci (SE16a
2 + E26ß

2^j ß 

su = ZBieaß,   §i5 = Bi6a
2 + B26ß

2,   s22 = A6ea2 + A22ß
2 

§23 = -ci (E16a
2 + SE26ß

2^j a,   s24 = «is,   «25 = 2B2ha.ß 

«33 = Ä55a
2 + Äuß2 + 4 [HnaA + 2{H12 + 2H66)a

2ß2 + H22ß*] 

«34 = ^55« - ci [Al«3 + (A2 + 2F66)a/?2] 

S35 = Äua - ci [A2/53 + (A2 + 2Fee)a2ß\ 

S44 = Ä55 + Dna2 + Deeß2,   «45 = (Ä2 + Aw)aft   «55 = ^44 + ö66a
2 + D^ß^ÄO) 
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The mass coefficients are the same as those denned in Eq. (7.6b), except for 77134 = ^35 = 0. 
The vector {F} is given by 

{F} = 

f  °  ] r OJVL 1 r «C1 
0 «T

mn ßNLn 
^emn f _ 1 0 -       0     S 

0 «<mn «<mn 
I   0  J • ß^2mn < l Ä» J 

(7.11) 

8. Finite element formulation of CLPT 

8.1. Weak forms 

In this section, finite element models of Eqs.(3.10)-(3.12) governing the motion of 
laminated plates with piezoelectric layers are developed for the linear case first. Then the 
nonlinear finite element model will be discussed. The finite element model is based on the 
weak forms of Eqs.(3.10)-(3.12). The weak forms are (see Reddy52, Chapter 10) 

0 
d8u0 dSuQ 

■L* XX     I dx dy 
AT      _L T A      92U°        T A       °2   (dW°\ dxdy 

- f   {Nxxnx + NxyUy) 8u0 ds (8.1a) 

= / 

f Ja* 

dSvp dSvp Ar d2v0 d2 fdw0\ 
-d7N»y+ ~dy-Nyy+h8va~w ~ h6v°dT2 VW) dxdy 

I - f   (Nxynx + NyyUy) 8VQ ds (8.16) 

d28w0 

dx2 Mx 
d28w0            d

26w0 
2-z—z—MXv TT-z-Myy - 8w0q 

dxdy 
'xy dy2 

d2wQ fdSw0 d3w0   , d6w0 d
3w0 \ 

+ IoSwo-Qp- + h \-teQrip + -dy-dyW) 

(d8wod2uo     dSwod2vo^ 
1 ^ dx    dt2 +   dy    dt2 dxdy — <p   VnSwo ds 

+ 
JT£ {Mxxnx + Mxyny) + —— {Mxynx + Myyny) 

dx dy 
ds (8.1c) 

where (nx,ny) denote the direction cosines of the unit normal on the element boundary Te 

of the element, (6UQ,SVO,8WO) are the virtual displacements, which take the role of weight 
functions, and Vn is the effective shear force defined in Eq. (2.16). The stress and moment 
resultants NXX,MXX, etc. are known in terms of the displacements (uo,vo,wo) and thermal 
and piezoelectric forces and moments through Eqs. (3.30)-(3.33). 

8.2. Spatial approximations 

First, we note that the stress and moment resultants contain first-order derivatives 
of (UQ,VQ) and second-order derivatives of WQ with respect to the coordinates x and y. 
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Second, the primary variables UQ, VQ, WO, du>o/dx, and dwo/dy must be carried as the nodal 
variables in order to enforce their interelement continuity. Thus, the displacements (UQ,VO) 

must be approximated using the Lagrange interpolation functions, whereas u»o should be 
approximated using Hermite interpolation functions over an element Qe. Let 

u0(x,y,t) » 5^«|(i)V>|(x,y) 
3=1 
m 

v0(x,y,t) « 53u|(t)V|(aJ,y) 
3=1 

n 

w0(x,y,t) » £ A|(t)y>|(x,y) 
jfc=i 

(8.2a) 

(8.26) 

(8.2c) 

where (upv?) denote the values of (UO,VQ) at the jth node of the Lagrange elements, A| 
denote the values of WQ and its derivatives with respect to x and y at the fcth node, and 
{4>j,<p%) are the Lagrange and Hermite interpolation functions, respectively. 

There exists vast literature on triangular and rectangular plate bending finite elements 
of isotropic or orthotropic plates based on the classical plate theory52. Here we discuss 
rectangular C1 plate bending elements. There are two kinds of C1 plate bending elements. 
A conforming element is one in which the interelement continuity of WQ, 9X = dwo/dx, and 
9y = dwo/dy (or dwo/dn) are satisfied, and a nonconforming element is one in which the 
continuity of the normal slope, dwo/dn, is not satisfied (see Figure 8.1). 

1£ *.5=# 

»Hr/.T     -*■ 
dwp 

ay 

y» ii= 

x &=■£- 

9wp    9wo    d WQ 

dx       dy ' dxdy 

Figure 8.1:  (a) Nonconforming and (b) conforming finite elements for plate bending 
based the classical plate theory. 
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A nonconforming rectangular element has WQ, 6X, and 9y as the nodal variables (see 
Figure 8.1a). The normal slope varies cubically along an edge whereas there are only two 
values of dwo/dn available on the edge. Therefore, the cubic polynomial for the normal 
derivative of WQ is not the same on the edge common to two elements. The interpolation 
functions for this element can be expressed compactly as 

¥>? = #! (* = 1,4,7,10);   ¥>? = 5i2(* = 2,5,8,11);   </>f = gi3 (i = 3,6,9,12) (8.3a) 

where 

gn = \(1 + &)(i + %)(2 + Co + m - f - n2) 

9ii = g&(& - 1)(1 + r7o)(l + Co)2,   9i3 = ^Vi(Vo - 1)(1 + &)(1 + Vo)2 

t = (x- xc)/2, n = {y- vc)/b, Co = £6, vo = m (8.36) 
where 2a and 26 are the sides of the rectangle, and (xc,yc) are the global coordinates of the 
center of the rectangle. 

A conforming rectangular element with wo, dwo/dx, dwo/dy, and d2wo/dxdy as the 
nodal variables is shown in Figure 8.1b. The interpolation functions for this element are 

<Pi =9n(i = h 5,9,13);   ifi = gi2 (i = 2,6,10,14) 

<Pi = 9i3 (i = 3,7,11,15);   <pf = gu (i = 4,8,12,16) (8.4a) 

where 

9n = -£(£ + &)2(6> - 2)(r? + Vifino - 2),   9i2 = ^£i(£ + 6)2(1 - £o)(v + Vifivo - 2) 

gi3 = ^Viti + &)2(£o - 2)(T7 + Vi)
2(i - vo), 9iA = JQZMZ + &)2(i - &)fo + m?{i - vo) 

(8.46) 

The conforming element has a total of six degrees of freedom per node, whereas the 
nonconforming element has a total of five degrees of freedom per node. For the conforming 
rectangular element (ra = 4 and n = 12) the total number of nodal degrees of freedom per 
element is 24, and the nonconforming element the total number of degrees of freedom per 
element is 12. 

8.3. Semidiscrete finite element model 

Substituting approximations (8.2) for the displacements and the ith interpolation 
function for the virtual displacement (6uo ~ ipi,6vo ~ ipi,6wo ~ <ft) into the weak forms, we 
obtain the ith equation associated with each weak form 

m n 
0 = E (^Xe+*"v*+MUüi) + E (K%*%+Ml^i) -Ft- FP - FP 

j=\ k=i 
771 n 

o = E (*§Xe + *%*i + M^i) + E {Kf^t + M£ä%) -Ff- FP - Fp 
j=\ k=l 
m n 

3=1 &=1 

-Fl-FP-FP (8.5) 
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where i = 1,2, • • •, m; k = 1,2, • • •, n.  The coefficients of the stiffness matrix K°f = K^, 

mass matrix M^   = M^   (symmetric), and force vectors F", F^a, and FPa are defined as 
follows: 

K}} = AnSf* + AW (sxj> + SJ6) + 4>6Sf 
K\2 = A12S

xj> + A16S
XX + A26Sfy + AseSg* 

kg = AmSxx + A26 (sy + sy) + yl22Sf 
'13 Kik = -BnRfk 

JXQL 

Hk 

Bi2B%y B16RTkX - Baflg» - 2566flr 
if23 

33 
■B26i?W 

tt - 2ß66i?^ - B12äJT - B22Ryyy - 2B26R
yxy 

K§ = DnTgr* + D12 {T™yy + T^yxx) + 2Die {Txxxy + T$xx) 
+ 2L>26 (T*f * + Ttfxy) + 4A>67™ + D22T%yyy 

Mil = f  Ioißf^ dxdy,   Mg = - [  hiß 

Mff = j^ JoVlV'i dxdV'   Mi = - /  M 

-ddxdy 
d(

Pk    A    A —LA dxdy 

Mil = hv\v\ + h + 
n<= dy 

MM)] dxdy 
dx  dx       dy   dy 

F} = f   {Nxxnx + NxyUy) tj>f ds,   F2 = /   (Nxynx + Nyyny) rpf ds 

F* = lwtdxdy + l(vnrt+Tx
d£+TyM 

k* V dx 'xx N£„ + WlNT 
8y    xy 

ds 

)  dxdy,   FP = Jae ( dtf ,rT 
dx    xy      dy    yy 

FP 

?PI = [ Jü 
■P     ,    WiATP 

M' +2^- 
dx2     xx       dxdy 

M£y + d\\ 

\ dx    xx ^ 
N 

dy    xy 

FP = <MM
p+2^-Mp + 

dx2     xx       dxdy    xy 

dy2 

)  dxdy,   Ff2 

d2<P% 

Ml    dxdy 

L\dx"xy + 
dJlNP 
dy    yy 

Mp 

dy2     yy dxdy 

dxdy 

dxdy 

(8.6a) 

and 

5^ Wi Wj dxdy , 
fa* d£   drj 

B& = I   m*!& teäy 
ik = / d£ dr)dC, 

(8.66) 

and £, rj, ^, and fj, can be equal to x or y. In matrix notation, Eq. (8.5) can be expressed as 

[K12]T 

[K13]T 

[K12] 
[K22] 

[K23}T 
[K23] 
[if33] 

[M11] [0]       [M13]- 
[0] [M22]     [M23] 

[M13]T [M23]T    [M33] 
( {F1} ) ( {Fn} )      ( {Fpi} ) 

I {F3} J I {FT3} J      I {F™} J 
(8.7) 
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8.5. Nonlinear finite element model 

The nonlinear finite element model has the form 

[Ke}{Ae} + [Me]{A} = {Fe} 

[Ke} = [Kl + Ke
NL + Ke

NT + K£
NP] 

(8.8a) 

(8.86) 

where [Kf] is the linear stiffness matrix, and [KffL] is the geometric nonlinear part, [KffT] 
the thermal nonlinear part, and [Ä^p] the piezoelectric nonlinear part of the stiffness matrix 
due to the nonlinear terms in the equations of motion. The elements of the linear stiffness 
matrix [Kf) and mass matrix [Me], which is linear, were given in Eqs.(8.6a,b). The nonzero 
nonlinear stiffness coefficients [Ka3] (a = 1,2,3) are 

^ ' »J       I Ja 

\
KNL

)ü - 2 

dx "lj + dy    6j dxdy 

n<= V dx 
Nej + ^N2j] dxdy 

dy 

M + ^Ä 
dx 

N6, Wi + fi^ 
dy 

dipj 

dxdy = IK. 13 

wv=i[% 

Na = 

\KNT).. — \ 

dx 

dwo dip 

dx  dx 

\dx) 

T d<pi d(fj 

dy 

OX 

dxdy = 2Kf I* 

d<Pj\     dip, 

dy)      dy 
Ne ox dy 

dxdy       (8.9a) 

„„„„y, dw0 dipj (dw0 dipj     dwo d<pj\ 

J A„  A„ oy  oy V dx  oy       oy  ox) 

A la 
(dwp\ 

\dy) 
+ A2a ( V1 )    + 2^6a 

2 dwo dwo 

N, xx dx dx   ' "yy dy  dy   ' "X2/ 

AT; 
pd<pid<pl + Npdcpid<pl ,  ATP 

dx dx yy Ph. F>„ ^iy*yy 

dx  dy 

(dipi d(fj 

\ dx dy 
dipi d<pj 

dy dy 

+ 

+ 

dipt d<pj 

dy dx 
dipj dipj 

dx dy      dy dx 

(8.96) 

dxdy (8.10) 

dxdy (8.11) 

for a = 1,2,6. The same expressions hold for the first-order plate theory with ipi replaced 
by t/»j, because WQ is also approximated by the Lagrange functions tpi in FSDT. We note that 
the nonlinearity of the coefficients [K13], [K23], [K31], [K32], and [K33] is solely due to the 
transverse deflection, WQ, as can be seen from Eqs. (8.9a, 6). In addition, the stiffness matrix 
[Ke] is not symmetric for the nonlinear case because 

3a K-- a 1,2 (8.12) 

The nonlinear algebraic equations of the bending problem or fully discretized transient 
problem must be solved by an iterative method. In iterative methods, the nonlinear equations 
are linearized by evaluating the nonlinear terms with the known solution from preceding 
iteration(s). Two commonly used iterative methods are: (1) the Picard method, and (2) the 
Newton-Raphson method. While the Picard method is simple both in concept and computer 
implementation, the method uses the stiffness matrix [Ke], which is unsymmetric.   The 
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Newton-Raphson method is based on the Taylor series expansion, and it uses the tangent 
stiffness matrix, which is symmetric for all structural problems. Also, the method has faster 
convergence for most applications than the Picard method. Here a brief discussion of these 
two iterative methods is presented. For the sake of discussion, we use the fully discretized 
equation 

[Ke({Ae})]{Ae} = {Fe} (8.13) 

is used. 

In the Picard method, also known as the direct iteration method, the solution vector 
from the previous iteration is used to evaluate the stiffness matrix, and the solution at the 
subsequent iteration is determined by solving the assembled equations after the imposition 
of boundary and initial conditions. At the element level, the Picard iteration scheme may be 
expressed as 

[Ke({Ae}r)]{Ae}r+1 = {Fe} (8.14) 

where {Ae}r denotes the solution vector at the rth iteration. Thus, in the direct iteration 
method, the coefficients Kfj are obtained by evaluating them with wo(x,y,t) from the rth 
iteration. At the beginning of the iteration (i.e., r = 0), we assume that {Ae}° = {0} so that 
the solution at the first iteration is the linear solution, because the nonlinear stiffness matrix 
reduces to the linear one. The iteration process is continued until the difference between 
{Ae}r and {Ae}r+1 reduces to a preselected error tolerance. The global error criterion is of 
the form   

\ 

N 
r+l Ar

7|
2 

IX+1I2 

7=1 

< e  (say KTd) (8.15) 

where N is the total number of nodal generalized displacements in the finite element mesh, 
and e is the error tolerance. All quantities in Eq. (8.15) are understood to be at the global 
level. 

The Newton-Raphson iterative method is based on Taylor's series expansion of the 
nonlinear algebraic equation (8.13) about the known solution. Suppose that the solution 
at the rth iteration, {Ae}r, is known. Let 

{R6} = [Ke]{Ae} - {Fe} = 0 (8.16) 

where {Re} is called the residual, which is a nonlinear function of the unknown solution {Ae}. 
Expanding {Re} in Taylor's series about {Ae}r, we obtain 

{0} = {Re} = {ReY + 

1 

d{Re} 

+ 
2! 

d{Ae} 

d2{Re} 
d{A*}d{Ae} 

({Ae}r+1 - {Ae}r) 

({Ae}r+1 - {Ae}r)2 + ... (8.17a) 

or 
0 = {tfy + {[Ke]r)

tan {6Ae} + 0({SAe}2) (8.176) 
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where O(-) denotes the higher-order terms in {<5Ae}, and [jfe]tan is the tangent stiffness 
matrix (or geometric stiffness matrix) 

d{Re} 
{[Ke}r) aU = U^     evaluated at  {Ae} = {Ae}r (8.18) 

and the increment of the solution vector is defined by 

{<5Ae} = {Ae}r+1 - {Ae}r (8.19) 

Equation (8.17b) is approximated by neglecting terms of order 2 and higher in the solution 
increment {<5Ae}. We obtain 

([^e({Ae}r)])'an {6Ae} = -{Re}r (8.20) 

The assembled equations are then solved after imposing the boundary and initial conditions 
of the problem. We have 

{6A} = -([k({AY)}tanY1{RY 

= ([k({AY)]tany1 ({F} - [K({AY)]{AY) (8.21) 

and the total solution at the (r + l)th iteration is given by 

{A}r+1 = {A}r + {6 A} (8.22) 

The iteration process is continued by solving Eq. (8.20) until the convergence criteria in Eq. 
(8.15) is satisfied or the residual {R}, measured in the same way as the solution error in Eq. 
(8.15), satisfies the error criterion. Note that at the beginning of each iteration the tangent 
stiffness matrix and residual vector must be updated using the latest available solution {A}. 
If the tangent stiffness matrix is kept constant for a preselected number of iterations but the 
residual vector is updated during the iteration, there can be a computational saving. Such 
an approach is called the modified Newton-Raphson method. 

9. Finite element model of TSDT 

9.1. Introduction 

The primary variables of the third-order theory are (un,us,wo,WQtn = dwo/dn,^)n,(ps), 
where (un,us) denote in-plane normal and tangential displacements, and (cj)n,(f>s) are the 
rotations of a transverse line about the in-plane normal and tangent. A displacement 
finite element model based on Eqs. (4.12)-(4.16) requires the Lagrange interpolation of 
(UQ,VQ, <l>x, <f>y) and Hermite interpolation of wo. A conforming element will have eight degrees 
of freedom {uo,vo,wo,WQjX,WQ,y,wo,xy,<l>x,<l>y) whereas a nonconforming element will have 
(uo,vo,wo,woiX,WQiy,<px,(l)y) seven degrees of freedom per node. In view of the detailed 
discussion of finite element models of the classical plate theory presented in Section 8, only 
the salient features of the model are discussed here52. 
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9.2. Finite Element Model 

The generalized displacements are approximated over an element fle by the expressions 

m 

uQ(x,y,t) = ^2uf(t)i>f(x,y) 
i=l 
m 

v0(x,y,t) = ^2vf(t)ipl(x,y) 
i=l 
m 

w0{x,y,t) = J2Äei{t)(pl{x,y) 
i=\ 
m 

cj>x(x,y,t) = Y/Xf(t)^(x,y) 
i=l 
m 

<f>y(x,y,t) = J2YfWf(x,y) (9.1) 
i=i 

where ipf denote the Lagrange interpolation functions and (pf are the Hermite interpolation 
functions. Here we chose the same approximation for the in-plane displacements (uo,i>o) and 
rotations (<f)x,(f>y), although one could use different approximations for these two pairs. In 
the case of the conforming element, the four nodal values associated with WQ are 

Ai = w0,   A2 = 
dwo 
dx A3 = dy Ä4 = 

d2wo 
dxdy 

(9.2) 

For the nonconforming element, the cross derivative is omitted. The conforming rectangular 
element with linear interpolation of the in-plane displacements and rotations has eight degrees 
of freedom per node. The corresponding nonconforming element has seven degrees of freedom 
per node. 

Substitution of Eq. (9.1) into the weak form of Eqs. (3.12)-(3.16) yields the finite element 
model 

[Kn]      [K12]      [K13]      [Ku]     [K15] 
[K12}T     [K22]      [K23]      [K2A]     [K25] 
^13jT     [K23}T      [K33]        [^34^       ^35| 

[KU]T    [K2Y    [K3i]T     [Ku]     [Ki5] 
l[K15}T    [K25]T    [K35)T    [Ki5]T    [K55] 

[Mn]        [0] [M13]     [M14]      [0] 
[0] [M22]      [M23]       [0]      [M25] 

+    [M13]T    [M23)T     [M33]     [M34]    [M35] 
[MU]T       [0]       [M34]T    [M44]      [0] 

[0]       \M2Y    [M35]T      [0]      [M55] 

{F2} 
{F3} 
{F4} 

I {F5} J 

> + 
{FT2} 

< {FT3} 
{F™} 

I {FT5} J 

> + < 

r {^P1> i 
{Fp2} 
{Fp3} \ 
{F™} 

I {F**}J 

(9.3a) 
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or, in compact form, we can write 

5    riß 

E £ {KifA? + Km + S?fA?) - Ft = 0,   i = 1,2,..., na (9.36) 
/3=1 J=l 

where a = 1,2,3,4,5; ni = n2 = n4 = ns = 4 and 713 = 16 for the conforming element. The 
nodal values A^, the linear stiffness coefficients K°f, and mass coefficients M°f are defined 
by 

A1- —u-    A2 — v ■    A3- — A •    A* = X •     A^ = Y2 (9.4) 

ipa   ,   " fi pa 
dxdy  6j      By2    2\ 

dxdy 

K%=L (t^-+^^-+^^ (9.5) 

M}}=I0St?j,   M% = 0,   M}f v -cx/sSgS   Ml? = J1Sfj,   Ml? = 0 

M% = hS%,   M2? = -c1hS°?,   M?/ = 0,   JWg^JiSg 

Mf? = I0S£ + c2/6 (S^ + Sf) ,   Mf = J4S^, M?/ = J4S°f 

Mff = K2S?j,   M?? = 0,   Mg = K2S$j (9.6) 

Fl = i   (Nxxnx + Nxyny) fa ds,   F2 = j>   (Nxynx + Nyyny) fa ds 

Ff = j>   {Mxxnx + Mxyny) fa ds,   Ff = j>   (Mxynx + Myyny) fa ds 

Fi   =   I    Wi dxdy + f e [VnVi + Pnn-Q^ J   ds 

&=I {%*•+1<») **• V -1 (f <+f o ** 
, I dxdy ^=L(f^+f<)d*^5 

F« = 
ne 

V0x 
dfa 
dx 

Jsf V dx    xy     dy    yy 

^(MMI + MMJ 'MMT + M 
ftr    *»     dy 

f^ + MjyP) ^ F« = ^(M^Mjyp) ** 

^4=X. (f <-+f <) <**• ^=/, (f <+f <) ** <9-7> 
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where Vn is defined in Eq. (3.21), and Pnn is related to Pxx,Pxy, and Pyy in the same way 
Mnn related to Mxx,Mxy, and Myy [see Eq. (2.186)]. The following notation is used in 
defining the above coefficients: 

S°- - j e Wj dxdy,   S% = f  tßi^ dxdy 

Si? =   Ifa-p- dxdy>   Sh = I e <Pi<Pjdxdy 

3      , ftp aVj , „j g2w , „ sVj 

^=-(^—S + ^) 
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P3 
M5j <^— &+*> ^) 

Qij = Ä55ipj,   Qlj = Q% = ÄA54>j,   Q\j = Ä^j (9.10) 

The nonlinear stiffness matrices remain the same as given in Eqs. (9.9)-(9.11). 

Note that the stiffness matrix evaluation requires the computation of the second 
derivatives of the interpolation functions used for the transverse deflection. The isoparametric 
elements are used for (uo,vo,<t>x,<f>y) and subparametric formulation is used for wo- The 
transformation equations required to numerically evaluate the stiffness coefficients can be 
found in the textbooks by Reddy52,53. The discussion presented there on shear locking 
with the shear deformable displacement finite element model also applies to the present 
element in evaluating the shear stiffness coefficients, which should be evaluated using reduced 
integration. 

In the case of the first-order shear deformation plate theory, the resulting finite element 
models require only C°-continuity of all generalized displacements (uo,vo,WQ,(f)x,(j)y), and 
they are the most economical while accounting for the transverse shear deformation. The 
theory is discussed in the next section. However, the finite element models will not be 
discussed51    53. 
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10. Analysis of magnetostrictive plates using FSDT 

10.1. Introduction 

The grains of certain materials consist of numerous small, randomly oriented magnetic 
domains that can rotate and align under thew influence of an external magnetic field. The 
magnetic orientation brings about internal strains in the material. This is known as the 
magnetostriction. This magneto-elastic response is non-linear. A commercially available 
magnetostrictive material Terfenol-D is an alloy of terbium, iron, and dysprosium. 

Laminated composite plates containing magnetostrictive layers are modelled as 
distributed parameter systems and the magnetostrictive layers are used to control the 
vibration suppression56-60. Velocity feedback with constant gain distributed controller is 
chosen to achieve vibration suppression. 

10.2 Governing equations 

Consider a symmetrically laminated composite plate of n layers with the mth and 
(n — m + l)th layers being made of magnetostrictive material, and the remaining n — 2 layers 
made of a fiber-reinforced material and having varying fiber orientation 6 and symmetrically 
disposed about the center plane of the plate (see Figure 10.1). The displacement field of the 
first-order shear deformation theory (FSDT) is of the form 

u(x,y,z,t) = u0(x,y,t) + z(j)x(x,y,t) 

v(x,y,z,t) = v0(x,y,t) + z<f>y(x,y,t) 

w{x,y,z,t) = wQ(x,y,t) (10.1) 

where (uo,vo,wo,(f)x,<f)y) are unknown functions to be determined, (UQ,VO,WO) denote the 
displacements of a point on the plane z = 0, and which indicate that (f>x and (f>y are the 
rotations of a transverse normal about the y— and x—axes, respectively. 

^       isfl        ivn       &a        c»n        rgi \    i«i        re 

«th Layer        (n-m+1 )th (magnetostrictive)Layer 

-*► x 

vnivn        e»q        üKU        ivn.tvn        ixi IX 

1st Layer mth (magnetostrictive)Layer 

Figure 10.1: Symmetrically laminated plate with magnetostrictive layers. 
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The linear strains associated with the displacement field (10.1) are 

e{0) 
t-xx 

£yy 

-$ 

(o) k Ixy 

> +Z < 

£xx 

£yy 
0 
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. Ixy , 

dive 
dy 

dwn 
dx 

dun 

dun 
dx 
dvg 
dy 

+ <t>y 

+ <t>X 
+ dvp 

dx 

> + z { 

d<t>x 
dx 

d<j>y 

dy 

0 
0 

d4>*   |   f 

dy dx 

(10.2) 

The constitutive relations of the kih lamina are 

Qn    Qi2    Qi6 
Qi2 Q22    <?26 

. Q16 Q26    Qm 

<?44 <?45](fc)r7yz 
Q45 <?55 J        I Ixz 

(10.3a) 

(10.3b) 

,(*) where Q\A   are the plane stress-reduced stiffnesses and e£' are the magneto-mechanical 
coupling moduli of the feth lamina [see Eqs. (3.6)-(3.8) and (4.8)]. 

The governing equations of the first-order theory can be derived using the dynamic 
version of the principle of virtual displacements. The equations of motion are 

dNx, 
dx 

dN, 

+ • dN. xy 

dy 
_ d2uo      d% 

xy 

dx 
+ ■ 

dN, yy 

dy h 

dt2 

dt2     * dt2 

dt2 

dHy 

dQx  { dQy 

dx       dy h 
d2w0 

dt2 

dMx. + dMc xy 

dx 
dMxv     dM, 

dy 
_ T d2<j>x d2U0 

Lxy + yy Qy = h 

dt2 

92<t>y   ,   , 
~dW+h 

dt2 

d2v0 

dt2 dx dy 

The natural boundary conditions are of the form 

Nnn ~ Nnn = 0 ,    Nns - Nns = 0 ,    Qn - Qn = 0 

Mn Mn 0 ,   Mns - Mns = 0 

where 
Qn — Qx^x   i  QyTly 

Thus the primary and secondary variables of the theory are 

primary variables:       un, us, wo, <f>n-> 4>s 

secondary variables:  Nnn, Nns, Qn, Mnn, Mn 

(10.4a) 

(10.4b) 

(10.4c) 

(10.4d) 

(10.4e) 

(10.5) 

(10.6) 

(10.7) 
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The initial conditions of the theory involve specifying the values of the displacements 
and velocities at time t = 0: 

un =u°, us = u°s, w0 = w%, <f)n = 0°, 4>s = <jps 

(10.8) 

for all points in QQ. 

10.3 Velocity feedback control 

Considering  velocity  proportional  closed-loop  feedback  control,   the  magnetic  field 
intensity Hz is expressed in terms of coil current I(x,y,t) as 

H(x,y,t) = kcI(x,t) 

and I(x, y, t) is related the velocity WQ by 

BWQ 
I(x,y,t) = c(t)- 

at 

(10.9) 

(10.10) 

where kc is the coil constant, which can be expressed in terms of the coil width bc, coil radius 
rc, and number of turns nc in the coil by 

Kr. 
n. 

and c(t) is the control gain. 

10.4 Laminate constitutive equations 

The force and moment resultants are related to the strains by 

\{M}J-[[B}    [D}\\{e'}j     {{Mr 

(10.11) 

\QX) [Ai5   A55\\jyZj ^45     Mf> 

where K is the shear correction factor and 

N 

(10.12a) 

(10.12b) 

A^^IWi-^) 
fc=i 

(^44,^45,^55) = ECO&W.OSWl - **) (10.13) 
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and the magnetostrictive stress resultants {NM} and {MM} are defined by 

fc=m,n—m+l 

fc=m,n—m+l   Zfc 

_ f £31 \ ^o 
~ I ^32 j at 

(10.15) 

10.5 Analytical solution 

Here we seek the Navier solutions for the case of simply supported, symmetric laminates. 
Towards this end, we write the governing equations in terms of the generalized displacements 
(w0,(j)x,^y): 

f (D„^ + A2^) + < (f* + %*■) yx \       ox oy ) ox \ oy       oxJ 

_**,(£+,.)_**. = „<£ (1„,7) 

oy \       oy oy J ox \ oy       ox J 
'dw0      ,\     P   dw0 _    d2<f>y 

KAU (f^)-&f=4£ ^ 
The simply supported boundary conditions for the first-order shear deformation plate 

theory (FSDT) are 

<j>x(x,0,t) = 0,   <j)x(x,b,t) = 0,   (f)y(0,y,t) = 0,   ,   (j)y(a,y,t) = 0 

wo(x,0,i) =0,   w0(x,b,t) = 0,   w0(0,y,i) = 0,   w0(a,y,i) = 0 

MM(0,y,t) = 0,   Mxx(a,y,t) = 0,   Myy{x,0,t) = 0,   Myy(x,b,t) = 0 (10.19) 
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The boundary conditions in (10.19) are satisfied by the following expansions 

oo     oo 

w0(x,y,t) = ^2Y1 Wmn(t) sin ax sin ßy (10.20a) 

(10.20b) 

(10.20c) 

n=l m=\ 
oo     oo 

<f>x(x,y,t) = X! X! Xmn(t)cosaxsinßy 
ra=l m—1 
oo    oo 

<j>y(x,y,t) = X! X! Ymn(t) sin ax cos ßy 
rc=l 77i=l 

The mechanical load and magnetostrictive moments are also expanded in double Fourier 
sine series 

where, for example, 

q(x,y,t) = X! X! Qmn(t) sin ax sin ßy 
n=\ m=l 
oo    oo 

M%(x,y,t) = Y, X) M^n(t)sinaxsin/3y 
n=\ 77i=l 

oo    oo 

M™(x,y,t) = X) X) Mln(t) sin ax sin ßy 
n=l J7i=l 

ra    rb 

(10.21a) 

(10.21b) 

(10.21c) 

^     /.N      4   fa f   ,        .    .   Trara;    .   rary   ,   , 
Qmn{t) = —r /    /   q{x,y,t) sin  sm— dxdy 

ao A)  ./o ab 

ao Jo JO a o 

(10.22a) 

(10.22b) 

Substitution of Eqs. (10.20)-(10.22) into Eqs. (10.16)-(10.18) yields the equations 

«33    «34    S35 "I  r Wmn. 
534 S44    S45    < Xmn > + 

535 «45    S55J  I Ymn 
rh33      0        0 

+      0      7TI44      0 
0 0        m55 

0     0   0" 
C12     0     0 

Lßi3  0 0. 

Vymn j I v(mn 
Xmn   > = <      0 
£n»  J I     0 

Wrr 
Xrr, 

(10.23) 

where s^, c^, and rhy are defined by 

533 = K(A55a
2 + Auß2) 

534 = -K^ss«,   S35 = KAuß,   «44 = (öna2 + D66ß
2 + KA55) 

S45 = (D12 + Dm)aß,   S55 = (Deea2 + £>22/?2 + KA44) 
C12 = a5i2,   C13 = ßSia 

rhss = h,   mu = h,   ™55 = h 

(10.24a) 

(10.24b) 

where the magnetostrictive coefficients £12, and £13 are defined in Eq. (10.18). 
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For vibration control, we assume q = 0 and solution of the ordinary differential equations 
in Eq. (10.26) in the form 

Wmn(t) = W0e
xt,    Xmn(t)=XQext,    Ymn(t) = Y0e

Xt 

and obtain, for non-trivial solution, the result 

«35 
= 0 

(10.25) 

S33 S34 S35 

543 S44 S45 
£53 £54 S55 

where 
&ij — iJij  1 AGjj + A M.% y 

(10.26) 

(10.27) 

where i, j = 3,4,5. This equation gives three sets of eigenvalues. The lowest one corresponds 
to the transverse motion. The eigenvalue can be written as A = — a+iu>d, so that the damped 
motion is given by 

. .       1   _„* . .   rrnxx  .   nixy 
wo(x,y,t) = —e      sinapism sin—r— (10.28) 

ujd ab 

In arriving at the last solution, the following initial conditions are used: 

w0(x,y,0) = 0,    wo(x,y,0) = l,    <t>x(x,y,Q) = 0,    <j>x(x,y,0) = 0 

<j>y(x,y,0) = 0,    <j>y(x,y,0) = 0 (10.29) 

10.6. Numerical results and discussion 

Numerical studies were carried out to analyze damped natural frequencies, damping 
coefficients, and the vibration suppression time, using the three theories. Different lay-ups 
were used to show the influence of the position of magnetostrictive layer on the vibration 
suppression time. A time ratio relation between the thickness of the layers and the distance 
to the neutral axis of the laminated composite beam is found. All values of the material and 
structural constants are indicated in the tables. 

The numerical values of various coefficients (namely, the inertial and magnetostrictive 
coefficients) based on different lay-ups and material properties [CFRP, Graphite-Epoxy (AS), 
Glass-Epoxy and Boron-Epoxy] are listed in Tables 10.1 and 10.2. Table 10.2 also shows the 
damping coefficients and natural frequencies for different materials and lay-ups. The damping 
and frequency parameters for transverse modes n = 1 to n = 5 are shown in Table 10.3, and 
they are compared with the results obtained by Murthy et al. [56] using the Euler-Bernoulli 
beam theory (EBT). Only in the higher modes there is some difference between the numerical 
results predicted by the three theories. Table 10.4 shows the influence of the position of the 
magnetostrictive layer in the z-direction and the influence of the lamination scheme in the 
damping and frequency parameters. The value of a increases when the magnetostrictive layer 
is located further away from the x-axis, indicating faster vibration suppression. The lay-up 
[771/904] s represents the softest beam and the lay-up [m/04]s the stiffest beam. 
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Table 10.1. Coefficients for different Lay-ups and materials. 
Material Lay-up Du do3) F„ (Kr2) H„ (io-7) AssdO9) DS5(102) FssüO-3) 

CFRP 

[±45/m/0/90]s 3.739 5.246 9.333 6.620 5.185 6.902 
[45/m/-45/0/90]s 3.552 4.891 8.793 6.620 6.179 8.792 

[m/±45/0/90]s 3.303 4.069 6.679 6.620 7.506 13.168 
[m/904]s 1.432 2.567 5.063 6.620 7.506 13.168 
[m/04]s 7.015 7.927 11.189 6.620 7.506 13.168 

Gr.-Ep (AS) [145/m/0/90]s 3.954 5.629 10.053 7.974 6.399 8.881 
Gl.-EP [±45/m/0/90]s 2.535 3.700 6.589 7.614 6.173 8.384 
Br.-Ep [±45/m/0/90]s 5.730 8.259 14.865 7.066 5.634 7.569 

Data: CFRP:                       En=138.6Gpa    E22=8.27 Gpa      G)3=G23=0.6 E22        Gi2=4.12Gpa     vi2=0.26       p=1824kg.m_3 

Graphite-Epoxy (AS) :E„=137.9 GPa    E22=8.96 Gpa      G12=G13=7.10Gpa     G23=6.21 Gpa     v,2=0.30      p=1450 kg.m'3 

Glass-Epoxy:             En=53.78 Gpa    £22=17.93 Gpa    Gi2=GB=8.96 Gpa     0^=3.45 Gpa     v12=0.25       p=1900kg.m'3 

Boron-Epoxy:            En=206.9 Gpa    £^=20.69 Gpa    G]2= Gi3=6.9 Gpa      G23=4.14Gpa     v]2=0.30      p=1950kg.m3 

Table 10.2. Inertial and magnetostrictive coefficients and the parameters a and 
COdn 

Material Lay-up Io I2U0-4) I4OO-9) I6(10-14) -u -e (IO"1) -a ± <ödn(rad/s) 

CFRP 

[+45/m/0/90]s 33.092 2.461 2.907 4.508 22.128 1.438 3.30±104.85 
[45/m/-45/0/90]s 33.092 3.352 4.600 7.084 30.979 3.872 4.62±102.15 

[m/+45/0/90]s 33.092 4.540 8.521 17.171 39.830 8.165 5.94+98.42 
[m/904]s 33.092 4.540 8.521 17.171 39.830 8.165 5.94164.65 
[m/04]s 33.092 4.540 8.521 17.171 39.830 8.165 5.94±143.57 

Gr.-Ep [±45/m/0/90]s 30.100 2.196 2.471 3.696 22.128 1.438 3.63±113.06 
Gl.-EP [±45/m/0/90]s 33.700 2.514 2.995 4.674 22.128 1.438 3.24±85.54 
Br.-Ep [±45/m/0/90]s 34.100 2.550 3.054 4.782 22.128 1.438 3.20+127.90 

Table 10.3. Damping and frequency parameters due to the transverse modes. 
-a 1 COdn (rad/s) -   Lay-up [+45/m/0/90]s 

Mode Murty et al EBT TBT RBT 
1 3.29+104.88 3.30+104.85 3.301104.82 3.301104.82 
2 13.19+419.50 13.20+419.37 13.171418.90 13.161418.80 
3 29.70+943.88 29.681943.40 29.531941.05 29.481940.52 
4 52.86±1678.83 52.7311676.72 52.2711669.32 52.10+1667.68 
5 82.59+2621.87 82.3412619.02 81.2212601.04 80.8012597.09 

Data:     CFRP : En=138.6 Gpa    £22=8.27 GPa      GJ2=4.12GPa     Gi3=G23=0.6 En 
Magnetostrictive layer : Em=26.5GPa      pm=9250 kg.rn"'  dk=1.67xlO"8m/A 

Vi2=0.26       p= 
c(t).Rc=104   v„,= 

1824kg.m-3 

=0     a=lm 

Table 10.4. Damping and 1 Tequency parameters for different lay-ups. 
-a 1 COdn (rad/s) - mode 1 

Lay-up Murty et al EBT TBT RBT 
[45/m/-45/0/90]s 4.601102.17 4.621102.15 4.621102.12 4.621102.11 

[m/145/0/90]s 5.90+98.44 5.94198.42 5.94198.39 5.93198.38 
[m/904]s 5.90164.65 5.94164.65 5.94164.64 5.94164.64 
[m/04]s 5.901143.58 5.941143.57 5.931143.49 5.931143.44 
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A comparision of the fundamental transverse and axial modes, obtained using the 
Timoshenko beam theory (TBT) and Reddy third-order beam theory (RBT) show (results 
are not included here due to space limitations) that the Reddy third-order beam theory 
give lower values for natural frequency. The comparision of the uncontrolled and controlled 
motion at the mid point of the beam is shown in Figures 10.2-10.5 for the first mode. These 
figures show that the vibration suppression time decreases when the distance to the neutral 
axis is increased, and it remains nearly the same in the laminates with different stiffness. 
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Figure 10.2: Comparison of original and controlled 
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