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1. Aerial photograph of the Army Research Lab Facility at Blossom 
Point, MD. The MTADS Prove Out Test Field is in the area shown 
outlined in yellow 3 

2. Raw and Filtered images from Badlands Bombing Range. The filtered 
images on the bottom provide enhanced features and reduced background 
noise. LoG filter used for Mag data, while Gaussian used for EM surveys    4 

3   a. "Raw" image of EM data, 20-m square, from Badlands Bombing Range 
(BBR), full-scale range -20 to +50 mV. Large anomalies are displayed 
in saturation to accentuate small-scale noise and vehicle chatter. b.Fourier- 
filtered version of image (lowpass wavelengths of 2 m and longer—i.e., 
frequency less than 0.5 1/m—filter ramp 0.4 1/m)  5 

4. Wavelet-filtered version of Fig. 3 (Daubechies-4 wavelet, lowpass length 
scales 4 m and longer). Standard wavelets, while well suited to finding t 
he most important features of a scene (image compression), give 
discretized and squarish outlines as filters  6 

5. Results of the mPCA study displaying the image of Prove Out Site data set         7 

6    a. Badlands Image 1. Dry Hole (target 436) shown in Mag image. 
b.Badlands Image 1. Dry Hole (target 436) shown in the Mag image 
(a) is not present in PCA image (b)    9 

7. Badlands Image 3. a) PCA of all three channels has two targets missing, 
b) PCA of Mag and EMI has targets present, c) The targets are 
present plus the noise is reduced when PCA is done in two steps, first on 
the two EM surveys, then on the first principal component of both EM 
surveys and the Mag data 9 

8. An example of PCA images for both raw (a) and filtered (b) data. In this 
Badlands image enhanced features are clearly observed for the filtered data        10 

9. Autopicker results on Fig. 3 (threshold 5 mV, base fraction 0.1, minimum 
anomaly separation 1.2 m; see text for explanation). The autopicker is 
designed to trace individual anomaly shapes as best as possible, including 
closely spaced anomalies, in order to select spatially associated ungridded data 
for subsequent presentation to modeling and discrimination algorithms (note 
angular shape of bottom anomaly is due to a gridding artifact)  12 

li 



10. Autopicker results on magnetic image of same area as previous 
figure (threshold 20 nT, minimum signal 7 nT, minimum anomaly s 
eparation 1.2 m; see text for explanation). Magnetic autopicker 
must form dipoles by associating low with high anomalies   12 

11. Field of simulated 155mm projectile (filled contours) compared to best- 
fitting dipole (open contours), for projectile depth 2 m, inclination 0, 
azimuth 0. 3    15 

12. As Fig. 11, projectile inclination 0, azimuth 45    15 

13. As Fig. 11, projectile inclination 0, azimuth 90   15 

14. As Fig. 11, projectile inclination +45, azimuth 0  16 

15. As shown in Fig. 11, projectile inclination -45, azimuth 0      16 

16. As Fig. 11, projectile inclination 90  16 

17. As shown in Fig. 11, projectile depth 0.1 m, inclination 0, azimuth 0   16 

18. Quality of dipole fit for simulated 155mm projectile as functions of depth 
and orientation. Dependence on orientation is weak, but fits degrade rapidly 
for depths less than 0.5 m. Compare to projectile length 0.53 M  17 

19. Quality of dipole fit for simulated 2.75" rocket. A larger scatter due to 
orientation is evident, and fits degrade rapidly for depths less than about 1 m. 
Compare to rocket length 0.7 m  17 

20. Quality of dipole fit for simulated flat scrap. Dependence on orientation is 
evident but intermediate between projectile and rocket. Fits degrade rapidly 
for depths less than about 0.5 m. Compare to scrap width 0.4 m     18 

21. Apparent depth of objects derived from dipole model. Results are 
plotted for all orientations. Depths predicted from a dipole model 
are excellent for simulated UXO and OEW at distances form sensor 
greater than 1 meter   18 

22. Apparent volume (diameter) of objects derived from dipole model. 
Results are plotted for all orientations. Object sizes inferred from a 
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23. Computed MT ADS magnetometer response for a 200-cm cube (filled 
contours) and an equal-volume sphere (open contours) with centroids 
at ground surface. Field variances are 87.7% identical    21 

24. Schematic illustration of eddy currents in square and round plates or 
cubes and spheres. Currents required to fill corners have spatial scales 
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the characteristic late-time constant by a factor of 5 for plates and a factor 
of 25 for cubes   21 
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PI: Dr. Jim McDonald 

PARTNERING ORGANIZATION 
Blackhawk Geometries 
P.I. Dr. Robert Grimm 

3. PROJECT BACKGROUND 

Locating, identifying and disposing of buried UXO on the 10 million acres of contaminated 
lands in the continental United States is a 500 billion dollar problem. Development of new 
technologies with improved data analysis has been identified as a high priority triservice 
requirement. Using current methods, it has been shown that false alarm detections far outnumber 
correctly identified ordnance. The best performing technologies typically have a false alarm rate 
of 300-500%.2"5 The high cost of digging and disposing of targets accounts for the overwhelming 
portion of the costs of UXO remediation, therefore a substantial saving could be recognized if the 
number of false positives were reduced. Using data collected by the Naval Research Laboratory's 
MTADS, new software techniques are being developed to improve discrimination and reduce the 
false alarm rate. The program has three parts: Phase 1, Target Detection, Phase 2, Quantitative 
Modeling, and Phase 3, Target Classification. 

4. PROJECT OBJECTIVE 

The objective of this project is the development of new data analysis methods for the best 
available sensor suites. Data fusion and classifier techniques will be used to better allow 
discrimination between intact ordnance and the typical clutter associated with target and bombing 
ranges. Improved physical modeling, (to better represent three-dimensional shapes rather than 
models based on point dipoles) will be developed. Specifically, NRL will develop software 
techniques to allow discrimination of intact ordnance from Ordnance Explosive Wastes (OEW) 
using arrays of full-field magnetometers and time-domain electromagnetic sensors as the primary 
detection tools. These goals will be accomplished by developing new methods for target 
identification, physical modeling, and probabilistic classification that uses the sensor data sets 
jointly. NRL's Multi-Sensor Towed Array Detector System {MTADS) will be the primary platform 
for which the software will be designed, although the work is applicable to any magnetic and EM 
array measurements and some aspects of the development are relevant to other types of sensor data. 



5. TECHNICAL APPROACH AND RISKS 

The key goals of UXO classification and OEW discrimination can best be achieved by a 
thorough consideration of the fundamental physics of sensors and a development of classification 
schemes, based on physical understanding, that provide quantitative confidence levels. Therefore, 
we favor an approach that is model-based rather than one based upon the use of raw data. The 
latter approach performs classification directly from sensor data, whereas this approach performs 
a joint transform of data to derive physical parameters (position, depth, orientation) allowing the 
classification to be based primarily on shape information and the intrinsic variables. However, to 
improve the efficiency with which analyses can be carried out, we are adopting a threefold 
approach. Initially, raw magnetometry and EM survey data that have been preprocessed (to 
integrate navigation and sensor data) and mapped onto a two dimensional grid that can be 
automatically processed using principal component analysis to isolate targets with common 
features in the multiple data sets. Based upon initial studies with MTADS data from Twentynine 
Palms and the Badlands Bombing Range, we expect that using this data based approach, 70-90% 
of targets can be automatically selected and analyzed. Following the automatic target selection 
process, we use the model-based quantitative magnetic and EM routines to solve the inverse 
problem for target position, depth, shape, and orientation. Then a probabilistic classifier (Bayesian 
or neural net) will be trained to discriminate UXO from OEW and other clutter. The resulting 
model will identify likely UXO in the presence of other clutter. Finally, the system will be 
interactive to allow an analyst, (as a backup to the automatic target picker) to review individual 
graphical images and to pick additional targets. The latter analysis will document those targets that 
are too deep to be seen by the EM array, and shallow targets that are too small to be identified by 
the magnetometer array. All three tasks involve novel methods not in use by others. The output 
of the output of the target analysis process is a target list with probabilities associated with each 
target predicting the likelihood that is intact ordnance. 

6. PROJECT ACCOMPLISHMENTS 

6.1       TARGET DETECTION 

Target Detection is focused on automation and inclusion of all available data. Manual 
target detection is time-consuming, requires an expert operator, and is difficult to consider more 
than one channel of data at a time. Experts screen the magnetometer data and select potential UXO 
targets based on experience and intuition. Little use of the EM data is involved in the initial steps 
of this process. Ideally, the target detection step will use the all the data available, and since this 
program will have a separate classifier step, the automated target detection method need not 
include UXO classification. Subsequently, target identification, assignment of associated 
confidence levels, and classification will be done by the modeling and classification algorithms 
being developed in Phases 2 and 3 of this program. The goal of this program is to have the 
modeler-classifier operate on the maximum reasonable number of targets because computational 
power is not limited. Digital filtering and PCA methods are being developed to pre-process the 
data prior to automated anomaly picking. Digital filtering is being used to enhance important 
features and reduce noise, while principal component analysis is being used to fuse three channels 
of data and reduce noise.  Automated methods have been developed to pick targets.  For this 



program, the fundamental requirement for a successful automatic anomaly picker is that Type I 
error (missed detections) must be minimized, even if this means greater Type II error (selection of 
clutter for the modeler). The anomaly picker is designed such that minimal classification is 
imposed. 

Target detection efforts for this program have used data collected by the MTADS at two 
sites: Badlands Bombing Range in South Dakota6 and NRL's new ordnance signature test facility 
at the Army Research Lab in Blossom Point, MD. A wide variety of objects of different shapes, 
sizes and orientations are buried on the site. In addition, many items of ordnance wastes and scrap 
removed from previous survey sites have been characterized and buried on site. Finally, a range 
of inert (intact) ordnance sizes are also contained on the site. There are one and two meter pits on 
site that have been used to screen the ordnance and shape objects following degaussing. Individual 
signatures are recorded for each of these objects in a variety of orientations and at various depths. 
Because this information will be used for evaluation and refinement of fitting algorithms, the 
buried objects are placed at depths that provide good signal-to-noise signatures for both 
magnetometer and EM arrays. The Prove Out site is shown in Figure 1. 

Three data sets, one Mag and Two EM (in orthogonal directions), are being taken for all 
objects. The data are processed using the baseline MTADS DAS, written in IDL 4 (Research 
System Inc., Boulder, CO) and run on a Silicon Graphics Workstation. These data are available 
for use in both SERDP and ESTCP programs and will be made available to other developers. 

In this program development of PCA methods are being carried out using a Windows 95 version 
of IDL 5 on a PC.   Gaussian filters and multiway PCA methods are being developed  using 
MATLAB (The Math Works, Inc., Natick, MA). In this work, magnetometer and EM survey data 
are projected onto an x, y grid and the intensity of the signal are displayed in an image.  An 
example of a site is shown in Figure 2. 
Seven 50 meter square data sets or 
subsets of the sites were used for method 
development.   The Fourier and wavelet 
filters and the automated anomaly picker 
were tested on the entire Badlands site 
using the MTADS DAS. Results of these 
studies  were compared to  manually 
generated dig sheets and the remediation 
results.    The three-fold approach to 
target  detection  used  here  involves 
digital    filtering,   data   fusion,   and 
anomaly picking. 

6.1.1    Digital Filters 

We are evaluating the use of 
digital filtering methods in conjunction 
with image processing to suppress noise 

Figure 1. Aerial photograph of the Army Research Lab 
Facility at Blossom Point, MD. The MTADS Prove Out 
Test Field is in the area shown outlined in yellow. 



and enhance the spatial features of interest. As applied to image processing, digital filtering is a 
neighborhood operation and in this work consists of a two dimensional window that is passed 
across the image pixel by pixel. The pixels in the windowed region are convoluted with the filter 
function specified by the user. The product is a new value for the pixel in the center of the 
window. This type of filtering is sometimes referred to as a sliding neighborhood operation.7 These 
methods are particularly valuable to automated MTADS data processing when only one channel 
of data is available and the use of PCA is not possible. The key to using this type of digital 
filtering is choosing the appropriate filter function. Several different methods were investigated. 

Gaussian Filters 

Gaussian and Laplacian of Gaussian (LoG) filters were investigated using the MATLAB 
filtering found in the Image Processing Toolbox7. For both types of filters, various widths and 
window sizes were studied to characterize the performance of the filters on MTADS images. 
MTADS data from the Prove Out and Badlands Sites were used to examine these methods. The 
routine /special allows the user to easily compute Gaussian and LoG filters of various widths and 
windows sizes. Once a filter function is defined, an image can be filtered using the filtert routine. 

Gaussian and LoG filter were studied using sizes ranging from 5 to 50 and widths ranging 
from 3 to 20. Several trends were observed. Filtered images obtained using small widths and 
window sizes looked similar to the raw unfiltered images, while really large widths and window 
sizes completely suppressed the UXO signatures. In these initial investigations, widths of 10 and 
a window size of 25 appeared to be a good compromise. Figure 2 shows the scaled unfiltered 
image plots of Mag, EMI, and EM2 from the Badlands Site and the filtered images. The Mag 
image data was obtained using a LoG filter, while EM images were created using Gaussian filters. 
Comparing the filtered images with the unfiltered images, it is easy to see that filtering does 
enhance some of the smaller UXO signals. 
Keeping in mind that the linear filters used in 
these preliminary studies are quite primitive, better 
filters tuned to the UXO signatures should provide 
an even greater enhancement of the signal. The 
edge effects in the filtered images are an artifact of 
the linear filtering scheme used in this work and 
can be eliminated during the filtering process. 

Fourier Filters 

Fourier filtering is well established in data 
and image processing.8 A simple 2D band-pass 
technique, in which the amplitude filter is 
specified by minimum and maximum spatial 
frequencies and by a filter ramp coefficient are 
used here. The filter ramp controls the smoothness 
of the output image: when set to zero, the 
minimum and maximum frequencies are the 

«•0 HM-1 RM-2 1 
Figure 2. Raw and Filtered images from Badlands 
Bombing Range. The filtered images on the bottom 
provide enhanced features and reduced 
background noise. LoG filter used for Mag data, 
while Gaussian used for EM surveys. 



boundaries of a boxcar-frequency filter and the resulting output image shows some spatial ringing. 
As the filter ramp is increased, cosine tapers are applied to the edges of the boxcar, and the filter 
shape approaches a Hanning window, which results in a smoother output image. The specified 
frequency range always applies to the center of the filter ramp. When combined with linear 
detrending applied to the whole image, Fourier filtering allows both small-scale noise and large- 
scale geological background to be rejected in favor of anomalies with spatial scales characteristic 
of UXO as shown in Figure 3. 

Wavelet Filters 

Wavelets are more recent development that are finding applications in signal processing.9 

Although both the Fourier and wavelet transforms return the same amount of information from a 
signal of length N, there are different trade-offs between spatial and spectral content. The Fourier 
transform densely samples the transform domain at spatial frequencies 1/L, 2/L, 3/L,... where L is 
the physical length of the data. However, the sine and cosine basis functions of the Fourier 
transform are globally supported and do not spatially differentiate the signal. In contrast, the 
wavelet transform encodes spatial variations of scale length, but operates at fewer discrete 
frequencies 1/L, 2/L, 4/L.... For a 1024-sample signal, then there are 512 Fourier frequencies but 
only 9 wavelet scales. The choice of the actual length of the wavelet operator (often 4, 12, or 20 
samples) determines the trade-off between spatial resolution and smoothness. Wavelets have found 
strong application in data compression: by choosing a discrete or ramped ("soft") cutoff in 
transform-coefficient magnitude, often 90% or more of the smallest coefficients can be eliminated 
and still retain the essential features of an image. In filtering, however, selection of features of 
interest, such as UXO-scale anomalies, and not the essential features of the image as a whole, which 
could contain significant non-UXO anomalies are desired. 

Figure 3a. "Raw" image of EM data, 20-m square, 
from Badlands Bombing Range (BBR), full-scale 
range -20 to +50 mV. Large anomalies are 
displayed in saturation to accentuate small-scale 
noise and vehicle chatter. 

Figure 3b. Fourier-filtered version of image (lowpass 
wavelengths of 2 m and longer—i.e., frequency less 
than 0.5 1/m—filter ramp 0.4 1/m). 



Hence it was found that coefficient 
thresholding using Daubechies wavelets was 
not very useful in the images tested. Therefore 
bandpass filters similar to those used in Fourier 
transforms were implemented. Whereas the 
dense frequency sampling by the Fourier 
transform allows the 2D frequency-domain 
filter to be approximately represented as an 
annulus, the more limited number of spatial 
scales in the wavelet forces this filter to look 
like a rotated "L". As shown in Figure 4, the 
output signal from the wavelet bandpass looks 
squarish because wavelengths at arbitrary 
azimuths cannot be smoothly represented (the 
coordinate-axis directions are effectively 
oversampled), and because the Daubechies 
wavelets themselves are asymmetric in 2D. It 
appears that the utility of wavelet filters for 
UXO is limited, although further tests using 
smooth, zimuthally symmetric "halo" wavelets 
might yield better results. 

Principal Component Analyses 

Figure 4. Wavelet-filtered version of Fig. 3 
(Daubechies-4 wavelet, lowpass length scales 4 m and 
longer). Standard wavelets, while well suited to finding 
the most important features of a scene (image 
compression), give discretized and squarish outlines as 
filters. 

Multiway principal component analysis (mPCA) and PCA are the two methods investigated 
for data fusion of the three data channels. One goal of this research was to test PCA and the recently 
developed multiway principal component analysis (transform) algorithm, mPC A (or mPCT) for their 
ability to fuse the individual images from the MTADS. It was hypothesized that the mPCA approach 
would provide better correlation between the images because the horizontal and vertical components 
of the images are treated separately. 

Conventional PCA analysis of multivariate images is a well-understood methodology and 
is commonly used to process hyperspectral imagery data10. Each principal component, A, that is 
computed attempts to extract correlation (or variation) among the images. In terms of image 
analysis, the three MTADS images (Mag, EM-1, and EM-2) constitute a 3-dimensional matrix, M 
x N x Q, where M is the number of horizontal pixels (rows), N is the number of vertical pixels 
(columns), and Q is the number of images or sensors (in this MTADS example, Q = 3). It is 
assumed that the pixels at each x, y address in the three images refer to the same spatial location, 
otherwise fusion is not possible. The images are unfolded to a produce a two-dimensional matrix 
(M x N) x Q. Mathematically, the PCA algorithm can be written as 

X=TxP+E (1) 

where X is the unfolded image matrix, T is an (MxN)x A matrix of PC scores, P is an A x Q matrix 
of loadings or weights, and E is a matrix of residuals (variations or correlations not explained by 



the PC A model). Each column in T can be refolded back to image format to produce a PC scores 
image (M x N). The loadings for each PC are useful for interpretation. 

While the PCA-image processing methodology is well understood, the unfolding and 
refolding processes cause a loss of spatial information. The rows in the X matrix could be randomly 
scrambled and the same loadings and scores would be computed. In attempt to regain the spatial 
information, the mPCA was tested. One of the primary differences between PCA and mPCA is how 
the data is organized. In mPCA the images are reorganized to a Q x (M x N) matrix. Rather than 
decompose the data using singular value decomposition (S VD), the mPCA algorithm uses a trilinear 
decomposition. This approach uses separate SVD calculations for pixels in the horizontal and 
vertical directions. Mathematically, the mPCA image analysis can be written as 

X = TxPxxPy + E (2) 

where X is the reorganized image matrix, T is a QxA matrix of PC scores, Px is a M x A matrix of 
loadings or weights, Py is a N x A matrix of loadings or weights, and E is a matrix of residuals. To 
produce an image, the kronecker tensor product (') of Px and Py is computed and unfolded.11 

MTADS images from the Prove Out and Badlands sites were evaluated using the mPCA 
algorithm adapted for multivariate image analysis (imagempca.m) and coded in MATLAB. The 
protocol discussed above for reorganizing the data for the mPCA algorithm was used to pass the 
images to the imagempca routine. The resulting loading vectors (horizontal and vertical) were 
studied for the first PC. In both data sets, the first PC explained a majority of the variation in the 
images and no further components were computed. The loading vectors were then recombined to 
produced a fused image. Figure 5 shows a fused image from the Prove Out site. It is clear from 
this image that the mPCA algorithm is not useful for image processing. Unlike the types of data 
in which the routine was designed, images cannot be written as linear combinations of the 
horizontal and vertical pixels. This assumption is valid for many applications of mPCA such as 
chemical sensor systems where the loadings refer to spectral (or sensor) and Chromatographie 
profiles12. In image processing, the pixels in 
the horizontal and vertical directions have the 
same meaning, thus splitting them apart 
destroys the majority of the spatial information 
they contain. Based on these preliminary 
results no further experiments were conducted 
in this direction. 

Using the pcomp function in IDL 5, 
PCA of magnetometer and EM data sets from 
the Prove Out Site were investigated. 
Examination of the image from the first 
principal component reveals features from each 
data set. This confirms the merger of the three 
channels of data into one image. Using the Figure 5. Results of the mPCA study displaying the 
data sets from the Badlands site and Blossom image of Prove Out Site data set. 

100  150  200  250  300  350  400  450 



Point sites, four variations in the analysis methods have been investigated. Sample covariance and 
sample correlation matrices were used with and without standardization. Standardizing the 
variables essentially makes them all 'equally important' by creating new variables with a mean of 
zero and variance of one. Standardization is important for these data sets since the magnitude of 
magnetometer and EM 

responses are significantly different. PCA using sample covariance and sample correlation 
matrices both with standardization are equivalent. Inspection of the first-principal component 
suggests that data fusion of the magnetometer and EM data ha beens accomplished. The new 
image, which consists of circular features of varying diameters and intensities, reveals features 
from all three data channels. Data with strong magnetometer and EM signals have the greatest 
intensity. In most cases, the targets present in the PCA image contained all the targets detected 
manually for both the Mag and EM data sets. In Badlands Image 1, a "dry hole" that was identified 
in the Mag image Figure 6a is not present in the PCA image as shown in Figure 6b. In the 
Blossom Point Site, several small non-ordnance objects were not present in the PCA image that 
was detected in the EM image. These objects were small bits of wire and bottle caps. The most 
important omission in the PCA image was observed in Badlands Image 3. In this case, an M38 
bomb and Scrap present in the original Mag image was not present in the PCA image. Inspection 
of the EM images revealed that it was not present in those images either. Two EM images are used 
in the PCA application described here while only one Mag image is available. The EM results may 
be too heavily weighted for some types of data. 

The goal was to fuse the data sets equally and not have one type of data be more significant 
than another at this phase of the analysis. Therefore studies were conducted to optimize the use 
of the PCA methods. Experiments were designed to investigate how the variations in the data 
suites influence the results. Four approaches were used. In the first method, the above approach 
was used where all three data channels, Mag data plus both EM suites are combined in one PCA. 
The second method used only two channels of data, Mag plus EMI for the PCA. In the third 
approach, first principal component was generated from four channels of data, Mag added twice 
plus both EM data suites. The fourth approach calculated the first principal component for only 
the two EM surveys, then combined that image with the Mag survey, and performed PCA again. 
All of the Badlands data sets as well as the Blossom Point data were evaluated in this study and 
the performance of the methods was compared with the dig sheets manually produced and the 
actual remediation results. The results of the study vary depending on the data set used. In some 
cases, there is no difference between the approaches. Doubling the Mag signals was a poor choice 
due to numerical instabilities, which sometimes caused the system to crash. For the Blossom 
Point Site, all the PCA methods images that did not contain very small nonordnance targets, small 
bits of wire and caps. The PCA method that combined Mag with the first principal component of 
the two EM channels produced an image similar to Mag plus the first EM channel, expect the new 
image contained less noise. The same results were observed with the Badlands Image 4. The 
Badlands Image 3 provides the best evidence that the PCA method can be influenced by two EM 
channels as shown in Figure 7. All the approaches that contained an equal number of Mag data 
channels as EM reveal two targets, a M38 and Scrap, that are present in Mag while not present in 
the EM surveys. In addition, the fourth approach combining PCA of Mag data with the first 
principal component of the EM surveys provides a clearer image with less background noise, also 
shown in Figure 7. 
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Figure 6a. Badlands Image 1. Dry Hole (target 436) 
shown in the Mag image. 
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Figure 6b. Badlands Image 1. Dry Hole (target 
436) shown in the Mag image (a) is not present in 
PCA image (b). 

Figure 7. Badlands Image 3. a) PCA of all three channels has two targets missing, b) PCA of Mag and EMI has 
targets present, c) The targets are present plus the noise is reduced when PCA is done in two steps, first on the two 
EM surveys, then on the first principal component of both EM surveys and the Mag data. 



PCA was also applied to filtered data. Enhanced features are evident as shown in Figure 
8. Figure 8a shows a PCA scores plot of the raw image from Badlands Image 1, while Figure 8b 
shows a PCA scores plot of the same filtered image. It is clear from these plots that a combination 
of filtering and PCA can be beneficial for this application. 

a) Raw 
b) Filtered 

Figure 8. An example of PCA images for both raw (a) and filtered (b) data. In this Badlands image enhanced 
features are clearly observed for the filtered data. 

6.1.2   Anomaly Pickers 

The fundamental requirement for a successful automatic anomaly picker is that Type I error 
(missed detections) must be minimized, even if this means greater Type II error (selection of clutter 
for the modeler). The anomaly picker is being designed such that minimal classification is 
imposed, although defining reasonable targets requires development of a selection criterion. The 
criteria will determine the target size for transport to the modeler. The anomaly picker also 
provides a user option where the exact parameters (threshold values) are determined interactively 
by the analyst. 

Highlighting anomalies automatically in MTADS data is now possible with a tool called the 
autopicker, which uses parameters selected by the user and a set of rules to draw outlines around 
anomalies. The full outline of an anomaly is more useful than a peak position or a circular 
approximation because it contains only the data that is needed by the modeler, reducing 
computation time and error. EM anomalies are traced differently than magnetic anomalies. EM 
fitting is treated first. In the first step, the autopicker uses a minimum threshold set by the user to 
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select anomalies and anomaly groups. For an anomaly standing alone, the outer edge is determined 
by using a percentage of the peak value, providing the most efficient anomaly shape to the 
modeler. If anomalies are near enough to each other that the threshold operation groups them 
together, an uphill-walk algorithm isolates them. Every point in the group anomaly is the starting 
point for an uphill walk, following the steepest gradient until a peak is reached. The starting point 
is now associated with that peak and becomes part of a distinct anomaly. An example is shown 
in Figure 9. Groups of peaks are nearly always separable by this method. 

Picking magnetic anomalies requires additional steps due to the bimodal nature of the 
responses. The Mag responses have positive and negative lobes associated with most targets. 
After the positive peaks are found as described for EM anomalies, the nearest point to the peak at 
amplitude zero or less is found and considered the zero-crossing point. Directions closer to the 
natural magnetic declination are favored. The picker proceeds past this point to the next local 
minimum on the same line, then finds the off-line minimum, which represents the negative peak. 
An inverted uphill-walk algorithm is used to delineate the negative lobe. It is not always possible 
to isolate negative magnetic lobes that overlap, but recently we have observed that the magnetic 
auto-picker works better if the negative lobes are selected first; i.e. the method described above is 
run in reverse. An example is shown in Figure 10. Both of the EM and magnetic auto-pickers 
contain additional special-case rules; for example, it is desirable not to separate very close EM 
peaks because some EM anomalies are double-peaked due to the survey-coil geometry; the 
distance criterion is selectable by the user. 

6.2       MODEL DEVELOPMENT AND TESTING 

6.2.1    Magnetic Modeling 

Dipole Fits to an Ellipsoid Model 

An analytic solution for the magnetic response of an arbitrarily oriented, triaxial ellipsoid 
in a uniform external field was derived and programmed. The model was compared in detail to the 
well-known response of a sphere (point dipole); in particular, the applicability of fitting spherical 
models to synthetic data for ellipsoids was tested and is reported in detail here. Preliminary 
progress on inversion for the parameters of an ellipsoid is also reported. A trial version of the 
ellipsoidal model has been incorporated into the developmental MT ADS DAS; revisions will occur 
for joint inversion and model calibration. 

The baseline MT ADS DAS fits a dipole model to magnetic anomalies. In most cases this 
closely approximates the data, with goodness-of-fit parameter commonly of >99%. However, 
MTADS analysts observe that shallow or irregularly shaped objects gave lower goodness-of-fit, 
which suggested that there is additional information to be recovered beyond the dipole model. 
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Figure 9. Autopicker results on Fig. 3 (threshold 5 
mV, base fraction 0.1, minimum anomaly separation 
1.2 m; see text for explanation). The autopicker is 
designed to trace individual anomaly shapes as best 
as possible, including closely spaced anomalies, in 
order to select spatially associated ungridded data for 
subsequent presentation to modeling and 
discrimination algorithms (note angular shape of 
bottom anomaly is due to a gridding artifact). 

Figure 10. Autopicker results on magnetic image of 
same area as previous figure (threshold 20 nT, 
minimum signal 7 nT, minimum anomaly separation 1.2 
m; see text for explanation). Magnetic autopicker must 
form dipoles by associating low with high anomalies. 

Techniques to Create Synthetic Data 

This hypothesis has been tested by generating synthetic data for ellipsoids and fitting the 
results to a dipole. Three simulated objects with approximately the same volume were tested: a 
155mm projectile, a 2.75" rocket, and a piece of flat ferrous scrap. As a rule of thumb, the dipole 
fits are near-perfect when the object is distant by a few times its longest dimension ("in the far 
zone"), but degrade rapidly when the object is closer than its size ("the near zone"). Object depths 
are well estimated in the far zone by the dipole model. As the near zone is approached, depths are 
generally overestimated when targets are flat-lying and underestimated when inclined. Very shallow 
(~0.1 m) objects can have depths mis-estimated by a factor of two or more; this is of no practical 
consequence. 

Object sizes tend to be overestimated by the dipole model. For typical ordnance, such as the 
155mm projectile in the far zone, the estimated volume is about 30% greater than the size of a 
sphere with the same volume as the projectile. This factor is in good agreement with empirical 
"ordnance" corrections found by others. However, the (synthetic data) 2.75 in. rocket is 
overestimated by an average factor of 2.6 in the far zone, whereas the flat plate is overestimated by 
about 50%. 
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These results imply that there is significant additional shape information which can be 
recovered by inverting the ellipsoidal model for near-zone objects. Although dipole fits are typically 
excellent in the far zone, the estimated size still depends strongly on the dimensions of the target. 
Conversely, the quality of these far-zone fits also suggests inversion for ellipsoidal shapes will be 
under-determined using total-field magnetic data alone. 

The ellipsoidal magnetic model computes both the vector-field and the total-field response 
of a triaxial ellipsoid in a uniform magnetic field at any point external to the ellipsoid (i.e., the finite 
size of the ellipsoid is considered). A sample input file to the model is: 

1 # idipole: 1=> full form solution; 2=> dipole form solution 
0. 0. 0. # (xo,yo,zo) - object origin (meters) 

2 # 1=> read (x,y,z) station locations from file, 2=>compute (x,y,z) internally 

3. # zval (plane of observation) (meters) 
-4 0.2 41 # (xmin dx nx) on plane of observation (meters) 
-4 0.2 41 # (ymin dy ny) on plane of observation (meters) 
200 1 # target permeability rel. to muO and background permeability 
.035 .035 .7    # lengths of semi-major axes a b c (meters) 
60000 # magnitude of background field (e.g. gammas, gauss, tesla) 
8 73 # declination and dip of background field (deg) 
90 45 0 # Euler angles (alpha beta gamma) of target in degrees 

#alpha = 90-N.azimuth, beta = 90-inclination, 
#gamma=not used for rotationally symmetric objects 

Note that the two widely used orientation parameters azimuth and inclination are transformed to 
Euler angles . 

The semimajor axes a, b, c of the ellipsoid define the target shape. Here three representative 
items were selected for analysis: A 155 mm projectile (a = b = 7.8 cm, c = 26.4 cm), a 2.75 in. 
rocket (a = b =3.5 cm, c = 70 cm), and a flat disc representative of scrap (a = b = 20 cm, c = 2 cm). 
The diameters of spheres with volumes equivalent to these objects are 23.4, 19.0, and 18.6 cm, 
respectively. The objects were modeled as functions of depth, inclination, and azimuth. The 
relative permeability was fixed at 200, characteristic of steel. The background noise field was taken 
to be approximately that of the Badlands Bombing Range, South Dakota, for which extensive 
MT ADS data and ground truth will be used later to test these results. 

We compute "data" from the ellipsoidal model and solve for the best-fitting dipole 
parameters. The dipole response is widely used to model UXO and has previously been 
incorporated into the baseline MTADS-DAS. The forward model for the induced dipole is: 

B(r,q) = B0V[(nr-l)/|ir](3cos2e-l)/r3 

where B0 is the magnitude of the inducing field, V is the volume of the target, |ar is the relative 
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magnetic permeability, r is the target-observation distance and 6 is the angle between the target- 
observation vector r and the inducing magnetic field's unit vector b. The latter may be determined 
from cos6 = b-r/r. 

The dipole-inversion algorithm was modified from forward and inverse implementation of the 
EM response of a sphere. The inversion begins with a number of iterations of an evolutionary 
programming algorithm to select a starting solution, then switches to the generalized-inverse 
gradient descent to determine the final solution. If a satisfactory solution is not found, the algorithm 
restarts evolutionary programming. When the model (dipole) fits are good, the algorithm requires 
only a dozen iterations or less. When the dipole is a poor fit to the ellipsoidal solution, numerous 
iterations and restarts can be required, which sometimes converge to incorrect solutions. All cases 
were tested by running the inversion at least 2-3 times to check for consistency. 

Six parameters were allowed to vary freely for the dipole inversions: x,y,z location of the target, 
diameter of the fitted sphere, and inclination and declination of the inducing field. The magnitude 
of the inducing field was held constant at the reference value; note, however, that strong tradeoffs 
occur between the magnitude of the inducing field Nor remnant magnetism Nand the apparent size 
of the target. In other words, an object with strong remnant magnetism will appear to be larger than 
its true size. 

The computational grids were varied to maintain dimensions greater than or equal to twice the 
object depth. The data spacing was varied commensurately from 0.05-0.2 m. There is a small 
(second significant figure) dependence of the inversion results on the gridding. With the fixed 
spacing of MTADS data, we expect strong variations in the solutions for very shallow objects as a 
function of the sampling. 

The response of the 155mm projectile was studied in detail. Results for the ellipsoid and est- 
fitting dipole for a flat-lying projectile at 2-m depth are shown in Figures 3a-3b. As the projectile 
is rotated from azimuth 0° (Figure 11) to azimuth 45° (Figure 12), the magnetic-field orientation 
follows. However, as the projectile approaches azimuth 90° (Figure 13), the pattern "snaps back" 
to near the declination azimuth as the dominant polarization switches from longitudinal to 
transverse. 

The magnetic field for a projectile that is inclined against the background field (inclination 
+45°) appears to be more monopolar and lower magnitude (Figure 14), because the induced field 
partially cancels the background field. Conversely, a projectile that is inclined towards the 
background field (-45°) produces a dipole that is much more pronounced than the reference case, 
due to the addition of the fields (Figure 15). The largest magnitudes are observed for vertical 
targets (Figure 16). 
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As the target depth is reduced, the field 
pattern changes markedly from that of a dipole 
(Figure 17). The quality of the dipole fit for 
the 155mm projectile degrades rapidly for 
targets shallower than 0.5 m (Figure 18). 

This depth corresponds roughly to the 
length of the projectile. This behavior allows 
us to spatially separate the response for the 
ellipsoid into classical "near" and "far" zones. 
In the far zone, at observation distances 
greater than a few times the length of the 
object's long axis, the dipole fit is excellent. 
In the near zone, within a distance about equal 
to the object's size, the effects of ellipsoidal 
shape are strong, and the resulting field 
departs strongly that of a sphere or dipole. 

155 mm: z, oz, inc 2.00 
i i i i i i i i |  i ,1 {,-f I  I  I  I  I   |  I  I  I  I  I VjO  i  | i i i i i i i i 

Dipole Vor. Rad.  =    0.98 
y i did d*P\      dec 

-O.b 0.1 2.0 25. 51A        2.S 

Figure 11. Field of simulated 155mm projectile (filled 
contours) compared to best-fitting dipole (open 
contours), for projectile depth 2 m, inclination 0, 
azimuth 0. 5. Because the determination of the near and far 

zones depends on target size, the effects of an 
ellipsoidal shape is more pronounced at more 
extreme aspect ratios. The field of a simulated 2.75" rocket begins to be significantly misfit at 
depths less than about 1 m (Figure 19), which is consistent with this object's length nearly twice 
that of the 155mm projectile. 

155 mm: z, az, inc -  2.00      45        0 155 mm: z, az, inc = 2.00      90       0 
t i i t i i ) i { i .i i i i i i i i | i i i   i | i i i i i i 

""-J,   Oipola Var. Red. =    0.9H 
x        X^y i              dia          dip         dec 
0.1          ÖJJ 2.1 

Figure 12. As Fig. 11, projectile inclination 
0, azimuth 45. 
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Figure 13. As Fig. 11, projectile inclination 
0, azimuth 90. 
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155 mm: z, az, inc 

Figure 14. As Fig. 11, projectile inclination 
+45, azimuth 0. 

155 mm' z, oz, inc = 2.00       0 -45 
I   1   I   |   I   I   t   I   I   I   I   IL+4JJ   I.I   I   I   I   1   I   I I   I   I   k I 
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x            y        "'v' ~tfib        dip dec 11 

-JfaO_0        -0 0          2.D         34.         S2. .lie 

Figure 15. As shown in Fig. 11, projectile inclina- 
tion -45, azimuth 0. 

Figure 16. As Fig. 11, projectile inclination 90. 

E     0.0 

Figure 17.   As shown in Fig. 11, projectile depth 
0.1 m, inclination 0, azimuth 0. 

Similarly, the 0.4-m wide simulated flat scrap departs from the dipole at about 0.5 m (Figure 
20). Also note that the extreme aspect ratio of the rocket introduces greater scatter in the dipole 
fit due to target orientation. When targets lie in the far zone, the dipole model accurately estimates 
depths (Figure 21). 
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Figure 18. Quality of dipole fit for simulated 155mm projectile as functions of depth and orientation. 
Dependence on orientation is weak, but fits degrade rapidly for depths less than 0.5 m. Compare to projectile 
length 0.53 m. 

In general the dipole model infers larger apparent diameters when flat-lying targets are oriented 
parallel to the background field and smaller apparent diameters when the such objects are transverse 
to the background field. The largest apparent sizes occur for steeply inclined objects, fully parallel 
to the incident field. These results follow straightforwardly from the polarizability of an elongated 
ferrous object. 

The dipole-inferred volume of 
the 155mm projectile in the far 
zone averages about 30% larger 
than the true volume (Figure 22). 
This factor has a relatively small 
variation (92-147%) and, for this 
object, the estimated size actually 
becomes more accurate as the 
target depth is decreased. A 
correction factor of 1/1.3 is in good 
agreement with the "ordnance 
factor" derived by AETC and 
incorporated into the Geometries' 
MagMapper and NRL's baseline 
MTADS software.   However, this 
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Figure 19. Quality of dipole fit for simulated 2.75" rocket. A larger 
scatter due to orientation is evident, and fits degrade rapidly for 
depths less than about 1 m. Compare to rocket length 0.7 m. 
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Figure 20. Quality of dipole fit for simulated flat scrap. Dependence 
on orientation is evident but intermediate between projectile and 
rocket.   Fits degrade rapidly for depths less than about 0.5 m. 
Compare to scrap width 0.4 m. 

All Data- Target Depth 
Inferred from Dipole 

factor   is   not   universal:       in       -™ R3' ScraP 
particular,  the highly elongated 
rocket shows a wide scatter in 
apparent   size   which   is   more 
strongly controlled by orientation 
than by depth. Even at 3-m depth, 
the apparent size of the rocket 
varies by a factor of nearly 3 
depending on orientation.    The 
mean ratio of apparent to true 
volume appears to approach -2.6. 
With the exception of very shallow 
depths, the flat scrap appears to be 
about 50% larger than its true size, 
with little variation. Nonetheless, 
these   results   show   that   both 
elongated  and  flattened  objects 
tend to appear larger than their 
true size to the dipole model. This 
confirms  the earlier qualitative 
prediction    from    the    analytic 
formulation that far-zone effects of 
the ellipsoid's shape should be 
discernable. 

In summary, comparison of the 
induced-magnetic fields of the 
ellipsoid and the dipole (sphere) 
shows that the discrete shape of the 
ellipsoid becomes very evident in 
the near zone, or at observation 
distances less than about the 
object's longest dimension. In the 
far zone the field nearly perfectly 
matches that of a dipole and depth 
estimates are accurate, but sizes 
are variably overestimated by the 
dipole model; thus, the far-zone 
field still contains information on the the object's shape and orientation. These results indicate that 
inversion in the near zone for ellipsoid dimensions should be attainable, but, as all far-zone fields 
look like dipoles, inversion there will be strongly nonunique. Target volume, aspect ratio, and 
orientation will all trade off. Therefore, successful far-zone inversions using total-field magnetic 
data alone is doubtful, although tensor data and/or joint inversion with EM may provide additional 
constraints. 
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Figure 21. Apparent depth of objects derived from dipole model. 
Results are plotted for all orientations. Depths predicted from the 
dipole model are excellent for simulated UXO and OEW at distances 
from the sensor greater than 1 meter. 
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All Data- Target Size 
Inferred from Dipole 
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Figure 22. Apparent volume (diameter) of objects derived from dipole model. Results are plotted for all 
orientations. Object size inferred from the dipole model depend strongly on the target aspect ratio and 
orientation, even at great distances. 

Inversion for Ellipsoid 

The inverse problem has been fully implemented for the ellipsoid, in which the inferred 
parameters are : 

1) diameter 
2) aspect ratio 
3) x-position 
4) y-position 
5) z-position (depth) 
6) azimuth 
7) inclination 

We have assumed that targets are rotationally symmetric, so that only two shape and two 
orientation parameters are required. The azimuth and inclination are specified with respect to the 
target's symmetry axis. The target permeability is held fixed. 
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Preliminary tests were performed using the same synthetic objects described above, and the 
inversion code was able to recover all seven parameters accurately. However, a large number of 
iterations, including automatic restarts, were often required to find the part of the parameter space 
containing the correct solution. This follows directly from the results above: at sufficient distance 
from the sensor, all objects show a dipole response, but the strength and orientation ofthat dipole 
still depends on the target's shape and orientation. Therefore the inverse problem for these latter 
parameters becomes nonunique. It is unlikely that the true shape and orientation could be 
recovered for real targets in the far zone. Joint inversion with EM may improve this. 

6.2.2 Electromagnetic Modeling 

The electromagnetic-response model is based on the mean-field theory developed for this and 
other UXO/land-mine programs by P. Weichman. The basic assumption of the theory is that the 
electromagnetic field has fully penetrated the target so that the field may be described by a Taylor- 
series expansion about its mean value. The zero'th order is the DC or magnetic response, the first 
order is the characteristic late-time decay, and higher orders represent the early time responses. 
The theory has been explicitly evaluated for ellipsoids to second order, and higher orders will be 
determined iteratively. The numerical implementation of the EM model is being developed 
simultaneously with the magnetic model, as both share many geometrical factors relevant to the 
ellipsoid. 

6.2.3 Prism vs Ellipsoid Models 

The original proposal stated that three-dimensional modeling non-equant shapes (i.e., elongated 
or flattened) characterisic of UXO or EOW would be implemented using a rectangular prism 
model. This choice was based on the relative simplicity of the existing solution for the magnetic 
response of a rectangular prism and on preliminary evaluation in cartesian geometry of the 
extended Born approximation for electromagnetic induction. However, introduction of sharp 
corners makes the EM boundary conditions more complex, and we decided to evaluate mean-field 
EM theory in ellipsoidal coordinates in which these variations are smooth. Furthermore, objects 
with sharp corners require high-order modes to model the eddy currents there, which introduces 
substantially more computation time to get an accurate solution. As the zeroth-order EM theory 
is simply DC magnetic induction, evaluation of the mean-field theory through second order also 
provides the associated magnetic response for the ellipsoid. 

We are still evaluating the differences in the responses of the ellipsoid and prism both in theory 
and in measurement. For magnetics, we are comparing the results of the complete analytic 
solutions of the ellipsoid and prism models, whereas for EM, we are examining the approximate 
time constants contributed by sharp corners. Field data are being acquired for a cube and a sphere, 
and for a square plate and a circular plate. 

The present magnetic-field theory comparison between the two shapes is not fully consistent 
because the ellipsoid model includes demagnetization (the misalignment of internal and external 
fields due to internal self-cancellation), whereas the prism model allows the internal field to be 
specified independently, but does not explicitly compute the demagnetization. This difference is 
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maximized for flat objects perpendicular to the 
background field, which largely corresponds to the 
case of subhorizontal flat scrap (e.g., tail fins). 
Detailed comparison of such objects must await 
processing of field data for the flat plates and/or 
incorporation of demagnetization into the prism 
model. 

Equant objects are not as strongly affected by 
demagnetization, so we compared the computed 
differences between a cube (200-cm width) and a 
sphere (248-cm width - equal volume to cube). 
MTADS magnetometer-acquisition parameters 
were used. At a depth of 0.25 m, the variances of 
the cube and the sphere were 99.89% identical. 
This fell to 87.7% with the target centroids at 
ground surface (Figure 23). Because of the 
differences in computed demagnetization, these 
values are upper bounds for edge and corner effects 
in observed magnetic fields for these test objects. 

Cuba (solid) VB Sphars (contour) at Surface 

Figure 23. Computed MTADS magnetometer 
response for a 200-cm cube (filled contours) and an 
equal-volume sphere (open contours) with centroids 
at ground surface. Field variances are 87.7% 
identical. 

Direct computation of the mean-field EM responses of prisms would require a substantial 
manpower investment that would noticeably detract from other project efforts. 
However, we can readily estimate the order-of-magnitude effect of sharp-cornered objects by 
considering the spatial scale of eddy currents required to map electrical flow in such corners 
(Figure 24). It is well-known that the eddy-current decay in any arbitrary solid can be described 
by a sum of exponentials (Kaufman, 1994), with the smaller, higher-order, time constants 
describing the current flow in more spatially restricted parts of the object. The first-order time 
constant is the decay that is preserved in "late time" and is commonly measured as "the" 
exponential decay. 
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Figure 24. Schematic illustration of eddy currents in square and round plates or cubes and spheres. Currents 
required to fill corners have spatial scales about 20% of the largest current systems, and therefore decay faster 
than the characteristic late-time constant by a factor of 5 for plates and a factor of 25 for cubes. 
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Figure 25. Observed EM-61 response for square 
plate (filled contours) and circular plate (open 
contours), with plate horizontal at 0.5-m depth. 
Field variances are 98% identical. 

Figure 26. As Fig. 25, with plate vertical and 
oriented along-track (x-direction). Field variances 
are 96% identical. 

Now the first-order time constant for a thin disk is t = msah/5.51 and that of a sphere is msa2/p2, 
where m is the permeability, s is the conductivity, a is the radius, and h is the thickness (Kaufman, 
1994). These formulae also approximately apply to the decay times for the smaller current systems 
required for corner flow. As these areas have dimensions of order 20% of the first-order current 
system, it follows that the decay times for corner currents will be about 5 times faster in the square 
disk and 25 times faster in the cube than the late-time decay currents. 

Flat non-ferrous scrap with width 10 cm and thickness 1 mm, representative of a tail fin, will 
have a first-order time constant of about 0.1 ms. The eddy currents associated with the corners will 
decay on time scales -0.02 ms. This is much shorter than the MTADS time gate from 0.27-0.47 
ms and therefore the difference between round and flat plates of this size cannot be detected by the 
MTADS EM system. 

We compared the experimental measured EM response of two flat steel plates, one circular (17- 
cm diameter) and one square (15-cm diameter; both were 1.2 cm thick). The target centroids were 
0.5 m deep and a standard EM-61 was used. The plates were oriented horizontally (Figure 25), 
vertically in the along-track direction (Figure 26), and vertically in the cross-track direction 
(Figure 27). The variance similarities between the two plates in these three tests were 98%, 96%, 
and 98%, respectively. The EM-61 time gate (0.42-0.82 ms) is of the same order of magnitude 
(tenths of a millisecond) as MTADS. 

McNeill and Bosnar14measured the time-domain EM response for projectiles ranging from 80 
to 155 mm caliber. They pointed out that the magnetic polarizability of these ferrous objects adds 
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Figure 27. As Fig.25 with plate vertical and oriented 
across-track (y-direction). Field variances are 98% 
identical. 

will be of order tenths of a millisecond, which 6,,
Llnrrp, v',ri ^11^. i^ R°rif^ugr8: contour 

can be detected by MTADS given adequate 
data quality. 

6.2.4   Joint Magnetic and EM Inversions 

The joint inversion for mag and EM, as 
presently implemented, allows the user to 
select up to 14 independent parameters (target 
caliber and aspect ratio, xyz position, azimuth 
and inclination; background field strength, 
declination, and dip, target and background 
conductivity, target and background 
permeability). In practice, target and 
background conductivity and permeability are 
held constant, and the target orientation is 
specified by varying either its formal 
orientation parameters or the direction of the 
background field. Therefore 7 parameters are 
typical for inversion. The joint inversion uses the same techniques previously adopted, in which 
evolutionary programming (EP) defines the starting model and generalized-inverse (GI) gradient 
descent finalizes the solution. Alternatively, starting parameters can be read directly from a file 
or the MTADS interface and the EP step skipped. As the EP is relatively slow, we are 
experimenting with defining starting parameters from simple anomaly magnitude-width rules to 
improve the speed of solution convergence. 

The essence of the joint inversion is the combination of both mag and EM into one data vector 
and allowing the inverse methods to operate on this joint vector. Each kind of data is normalized 
by its root-mean-square value, and the user selects a relative weight for the mag data knowing that 
the effective weight of the EM is 2 (one for each channel). Therefore, a weight of zero is 
equivalent to having no mag data, whereas an infinite mag weight will discount the EM data. 

The EM model as presently implemented uses a quasi-empirical solution for the ellipsoid. This 
will be replaced by the mean-field theory within a few months. While the accuracy of this interim 
method is limited, it does allow for self-consistent simulations of joint inversion. 

Preliminary numerical experiments demonstrate that the joint inversion is functioning correctly. 
However, in these tests on synthetic data there is often no significant improvement due to the joint 
inversion because the data from each sensor is well-fit in individual inversions. One improvement 
that was noted is that the EM helps the mag to converge in the "far zone" where the mag solutions 
are not unique (Figure 28). 
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6.2.4 Joint Magnetic and EM Inversions 

The joint inversion for mag and EM, as presently implemented, allows the user to select up to 
14 independent parameters (target caliber and aspect ratio, xyz position, azimuth and inclination; 
background field strength, declination, and dip, target and background conductivity, target and 
background permeability). In practice, target and background conductivity and permeability are 
held constant, and the target orientation is specified by varying either its formal orientation 
parameters or the direction of the background field. Therefore 7 parameters are typical for 
inversion. The joint inversion uses the same techniques previously adopted, in which evolutionary 
programming (EP) defines the starting model and generalized-inverse (GI) gradient descent 
finalizes the solution. Alternatively, starting parameters can be read directly from a file or the 
MTADS interface and the EP step skipped. As the EP is relatively slow, we are experimenting with 
defining starting parameters from simple anomaly magnitude-width rules to improve the speed of 
solution convergence. 

The essence of the joint inversion is the combination of both mag and EM into one data vector 
and allowing the inverse methods to operate on this joint vector. Each kind of data is normalized 
by its root-mean-square value, and the user selects a relative weight for the mag data knowing that 
the effective weight of the EM is 2 (one for each channel). Therefore, a weight of zero is 
equivalent to having no mag data, whereas an infinite mag weight will discount the EM data. 

The EM model as presently implemented uses a quasi-empirical solution for the ellipsoid. This 
will be replaced by the mean-field theory within a few months. While the accuracy of this interim 
method is limited, it does allow for self-consistent simulations of joint inversion. 

Preliminary numerical experiments demonstrate that the joint inversion is functioning correctly. 
However, in these tests on synthetic data there is often no significant improvement due to the joint 
inversion because the data from each sensor is well-fit in individual inversions. One improvement 
that was noted is that the EM helps the mag to converge in the "far zone" where the mag solutions 
are not unique (Figure 28). 

6.2.5 Model Calibrations 

Model calibration consists both of comparing newly developed, complex models to existing, 
simple models and comparing models to data. The comparison of the magnetic response of the 
ellipsoid versus the sphere given in detail above validates the asymptotic behavior of the ellipsoid 
model as well as showing where the ellipsoid differs from the sphere. A similar analysis will soon 
be undertaken for the EM. 

6.3      DEVELOPMENTAL DAS AND RELEASE NOTES 

One of the final deliverables of the project CU-1092 is a new version of the MTADS DAS GUI 
that incorporates all the individual developmental components of this project. We have found it 
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Figure 28. Results of joint inversions using ellipsoids for Mag (left and EM (right) for a simulated 155mm 
projectile. 

expedient to begin this process earlier in the program to allow in situ testing of these new 
capabilities in the framework of the overall analysis process. There therefore currently exists a 
developmental version of the DAS GUI on SGI workstations both at Blackhawk and at NRL. 
Version control is being exercised and the two systems are being kept current by use of network 
connections. For the time being we have implemented and retain digital filter options including 
"Detrend," "Boxcar," Gaussian," "LoG," "Fourier," and "Wavelets." They are all available for 
study and evaluation using existing or new data sets. Eventually, less useful filters will be 
eliminated as options. 

Developmental GUI Release Notes 

The use of Release Notes with the developmental GUI provides documentation on new features 
or other changes made to the baseline MT ADS DAS. They are available for researchers at both 
institutions as an aid to guide in evaluation of new capabilities. Below we show the release notes 
as they apply to the Internal Version 0.5. 

The Project, Input, Auxiliary, and Report menus are unchanged. Submenus of the Input menu 
regarding survey processing have been changed to allow the selection of a grid pixel size for the 
interpolated survey image, and to allow the input of XYZ-formatted raw data. 

The bulk of the changes in the MTADS DAS to date have occurred in the Analysis tool. One 
Analysis tool (i.e. window) functions for all data types (em, mag, ...). The fundamental unit of 
analysis is a "session." Each session is associated with one target list and one or two surveys for 
viewing on the dual screen. The Analysis menu contains buttons for New and Current sessions. 
A new session contains an empty target list and no surveys, while the current session refers to the 
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most recently used target list and surveys. Sessions can be saved and restored using the "Save" and 
"Restore" buttons in the Analysis tool. 

Analysis Tool: The functions of the buttons are as follows: 

Model One: Model a single selected anomaly. Currently under implementation. 

Model All: Model all anomalies in target list. Currently under implementation. 

Clear All: Clear all anomalies from target list. 

Print: Print the target list. Not supported in version 0.2. 

Save: Save this session under a user-defined name. 

Restore: Restore a previously saved session. 

Exit: Exit the Analysis Tool. 

Define: Define the boundaries of an anomaly using the mouse. 

Delete: Delete the selected anomaly. 

Site View: View the entire site for surveys shown. 

Overlay: As in original MT ADS version, select objects to overlay on the interpolated image. 

PC A: Perform a PC A analysis of up to three images. Further information on PC A analysis is 
given below. 

UTM, Shift width, XYAxes, arrow: as in original MT ADS. 

The following buttons are specific to each of the two drawing windows and the associated survey 
for that window: 

Survey menu: Select a survey for this draw window. 

Image menu: Select an image for this draw window, generally either a gridded image of the 
raw data, a pixel view of the raw data, or a filtered or PC A image. 

Filter: Perform a filter operation on any image within this survey. 

Output: Perform PostScript or other output; these functions are not fully tested in this 
version. 
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Auto Pick: Automatically select anomalies. Further information on automatic picking is 
provided below. 

Settings: For pixel views only, define the pixel size. 

Annotate: Add annotations such as arrows, text, circles to the image. 

The functions of the buttons on the automatic anomaly picking menu are as follows: 

Mag 

Threshold: The lowest value for which an anomaly or anomaly group will be selected. 

Base Type radio button: Use either absolute or fraction-of-peak basis for determining outside 
boundary of anomalies. 

Base Value: For absolute base type, after a peak is selected by exceeding "Threshold", define 
the outside of the anomaly at a contour of this value. 

Base Fraction: For fractional base type, after a peak is selected by exceeding "Threshold", 
define the outside of the anomaly at a contour of this fraction of the peak value. 

Proximity Threshold: A dimensionless values indicating how far to reach to associate a 
positive anomaly with a negative anomaly. A lower number cause the auto-picker to reach 
farther to make associations; a higher number requires positives to be closer to negatives. 

Minimum Separation Distance: Anomalies separated by less than this distance are 
considered one anomaly. 

Magnetic Declination: Specify the declination at the survey site. 

Search Area (Entire Site or Current Window): Specify the area over which to run the 
automatic anomaly picker. 

EM 

Threshold: The lowest value for which an anomaly or anomaly group will be selected. 

Base Type radio button: Use either absolute or fraction-of-peak basis for determining outside 
boundary of anomalies. 

Base Value: For absolute base type, after a peak is selected by exceeding "Threshold", define 
the outside of the anomaly at a contour of this value. 

Base Fraction: For fractional base type, after a peak is selected by exceeding "Threshold", 
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define the outside of the anomaly at a contour of this fraction of the peak value. 

Minimum Separation Distance: Anomalies separated by less than this distance are 
considered one anomaly. 

Search Area (Entire Site or Current Window): Specify the area over which to run the 
automatic anomaly picker. 

To perform PCA analysis, two or three images are selected in the PCA Tool dialog box. PCA 
operations can be performed sequentially, so it is possible to combine two images and then combine 
a third image with the first result. For example, upper and lower coil EM61 images may be merged 
via PCA and then subsequently combined with a mag image. Since the inputs to a PCA may be 
from different surveys, the result is not considered a new image in one of the input surveys; rather, 
it is considered a new survey in and of itself. Look for the new PCA image name on the survey 
menu under either draw window. 
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