
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A PRO-ACTIVE ROUTING PROTOCOL FOR CONFIGURATION OF

SIGNALING CHANNELS IN
SERVER AND AGENT-BASED ACTIVE NETWORK MANAGEMENT

(SAAM)

by

Hasan Akkoc

June 2000

Thesis Advisor:
Second Reader:

Geoffrey Xie
Deborah Kern

Approved for public release; distribution is unlimited.

QPAX-Y7-V INSPECTED 4

20000721 047

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate
or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 2000
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE: A PRO-ACTIVE ROUTING PROTOCOL FOR CONFIGURATION OF
SIGNALING CHANNELS IN SERVER AND AGENT BASED ACTIVE NETWORK MANAGEMENT
(SAAM).

6. AUTHOR(S) Akkoc, Hasan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA and NASA

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

G417
11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the authors and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

Statement A
13. ABSTRACT (maximum 200 words)

As networks are upgraded to provide services for streaming applications, the current way of routing is
not satisfactory. Server and Agent based Active network Management (SAAM) introduces a novel network
architecture that provides guaranteed quality of services to real-time traffic. In SAAM, the server and routers
need to establish two-way, robust, and efficient signaling channels for exchange of control and management
information. Any change in network topology must be determined and handled as they occur in order to
support guaranteed services. Local detection of topological changes and hop-by-hop dissemination of
knowledge of these changes is not optimal for SAAM architecture. A reactive method of updating routing
tables takes longer time than tolerable for real-time traffic. Therefore, a pro-active approach that reconfigures
the signaling channels in real time and without degrading services to user traffic is mandatory. This thesis
presents such a pro-active routing protocol for configuring the signaling channels of a SAAM region.

14. SUBJECT TERMS Routing Protocol, Signaling Channel Configuration, Soft-State
Approach, Pro-Active Approach, Networks

IS. NUMBER OF PAGES
243

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSD7ICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSD7I-
CATION OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18298-102

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

A PRO-ACTIVE PROTOCOL FOR CONFIGURATION OF SIGNALING
CHANNELS IN SERVER AND AGENT BASED ACTIVE NETWORK

MANAGEMENT (SAAM)

Hasan Akkoc
First Lieutenant, Turkish Army

B.S., Middle East Technical University, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2000

Author:

Approved by:

Geoffrey Xie, Thesis Advisor

DeJ?orah Kern, Second Reader

 4M-
x>an C. Bogei -,e>'-'i>

Department of ComputefScience
Boger, Chairman

in

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

As networks are upgraded to provide services for streaming applications, the

current way of routing is not satisfactory. Server and Agent based Active network

Management (SAAM) introduces a novel network architecture that provides guaranteed

quality of services to real-time traffic. In SAAM, the server and routers need to establish

two-way, robust, and efficient signaling channels for exchange of control and

management information. Any change in network topology must be determined and

handled as they occur in order to support guaranteed services. Local detection of

topological changes and hop-by-hop dissemination of knowledge of these changes is not

optimal for SAAM architecture. A reactive method of updating routing tables takes

longer time than tolerable for real-time traffic. Therefore, a pro-active approach that

reconfigures the signaling channels in real time and without degrading services to user

traffic is mandatory. This thesis presents such a pro-active routing protocol for

configuring the signaling channels of a SAAM region.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A BACKGROUND 1

B. OVERVIEW OF SAAM 2
1. The Logical Model Of SAAM 3
2. Hierarchical Organization Of SAAM Architecture 4

C. SCOPE OF THIS THESIS 6

D. MAJOR CONTRIBUTIONS OF THIS THESIS 6

E. ORGANIZATION OF THIS THESIS 6

II. RELATED TOPICS 9

A. ROUTING PROTOCOLS 9
1. Robustness 10
2. Manageable Signaling Overhead 11
3. Path Optimization 11
4. Manageable Routing Table Size 11

B. DISTINCT PROPERTIES OF SAAM ARCHITECTURE RELATED

TO SIGNALING CHANNELS 12
1. Asymetrical Flow Of Signaling Traffic 12
2. Pro-Active Response To Topological Changes 12

C. INTERIOR ROUTING PROTOCOLS 13
1. Distance-Vector Algorithm 13
2. Link-State Algorithm 15
3. Suitability Of Interior Routing Protocols For SAAM 17

D. MULTICAST ROUTING PROTOCOLS 17
1. Group-Shared Tree Approach 18
2. Source-Based Tree Approach 19
3. Why Multicast Routing Protocols Can't Be Used For SAAM 21

III. SAAM SIGNALING CHANNEL CONFIGURATION PROTOCOL DESIGN..23

A. INTRODUCTION TO SIGNALING CHANNEL CONFIGURATION

PROTOCOL 23
1. The Spanning Tree Approach 25
2. How To Make A Two -Way Spanning Tree 26

B. HOW SCCP HANDLES TOPOLOGY CHANGES AS THEY

OCCUR 30

Vll

C. MAJOR ISSUES THAT HAVE INFLUENCED DESIGN OF

SCCP 31
1. Issues Related to Server-Bound Signaling Channels 31
2. Issues Related to Router-Bound Signaling Channel 31
3. Routing Tables Used By SCCP 31

D. SCCP ALGORITHM 33

E. APPLICATION OF SCCP TO A SAMPLE TOPOLOGY 35

IV. SAAM SIGNALLING CHANNEL CONFIGURATION PROTOCOL
IMPLEMENTATION 41

A. SAAM SIGNALING MODEL BEFORE IMPLEMANTATION OF
SCCP 41

B. MESSAGES ADDED TO EXISTING SAAM EMULATION
SOFTWARE FOR DEPLOYMENT OF SCCCP 41
1. Packet Formats Used In SAAM Environment 42
2. Integration of Messages Introduced By SCCP to SAAM Packet

Format 45
3. Messages Designed To Add Flexibility To SCCP 49

C. CLASSES ADDED TO SAAM EMULATION SOFTWARE FOR
IMPLEMENTION OF SCCP 52
1. Serverinformation Class 52
2. AutoConfigurationExecutive Class 54
3. TimerHandler Class 57
4. ServerTableEntry Class 57
5. ServerTable Class 58
6. RouterBoundCtrlChTableEntry Class 57
7. RouterBoundCtrlChTable Class 58

D. MODIFIED CLASSES 58
1. ControlExecutive Class 59
2. PacketFactory Class 61
3. RoutingAlgorithm Class 62
4. ServerAgentSymetric Class 63
5. Server Class 63

V. TEST OF SCCP 65

A. DESCRIPTION OF TEST TOPOLOGY 65

B. TESTING OF SCCP 67
1. Initialization of Test-Bed 68
2. Execution of SCCP for A Single Configuration Cycle 72
3. Configured Signaling Channels 80
4. Results of Periodical Execution 81

viii

VI. CONCLUSIONS 83

A. SYNOPSIS AND CONCLUSION 83

B. LESSONS LEARNED 84
1. Importance Of Coordination 84
2. Router Id Implementation 84

C. FUTURE WORK 85
1. Determination of Refresh Interval 85
2. Determination of Local and Global Timers 85
3. Implementation Of SCCP With Different Metrics For

Configuration of Signaling Channels 85
4. Determination of Inter-Region Signaling Channels 86

APPENDIX A. DEFINITIONS OF NODES IN ROOTED TREES 87

APPENDIX B. SERVER STATE DIAGRAM. .89

APPENDIX C. ROUTER STATE DIAGRAM 91

APPENDIX D. CLASSES ADDED TO SAAM FOR SCCP DEPLOYMENT 93

APPENDIX E. CLASSES MODIFIED IN SAAM FOR SCCP DEPLOYMENT.. 138

LIST OF REFERENCES 223

INITIAL DITRIBUTION LIST 225

IX

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF FIGURES LIST OF FIGURES

Figure 1.1 Sample SAAM Network Architecture 3
Figure 1.2 Logical Model Of SAAM 4
Figure 1.3 Hierarchical Organization Of SAAM Servers 5
Figure 2.1 A Sample Group-Shared Tree 18
Figure 2.2 A Sample Source-Based Tree 20
Figure 3.1 SAAM Topology Displaying Router-bound Signaling Channels 23
Figure 3.2 SAAM Topology Displaying Server-bound Signaling Channels 24
Figure 3.3 SAAM Topology With Configured Signaling Channels (Thick lines) 28
Figure 3.4 Flow Routing Table Format 32
Figure 3.5 The Format Of RBCCT for Server with Flow Ids 'k' and 'k-1' 33
Figure 3.6 SAAM Topology For SCCP Application 35
Figure 3.7 FlowRoutingTable of Router After Server-Bound Signaling Channel Is

Configured 37
Figure 3.8. FlowRoutingTable of Router B After Server-Bound Signaling Channel Is

Configured 37
Figure 3.9 FlowRoutingTable of Router C After Server-Bound Signaling Channel Is

Configured 37
Figure 3.10 RBCCT Of The Server 38
Figure 3.11 RBCCT Of Router A 39
Figure 3.12 RBCCT Of Router B 39
Figure 3.13 RBCCT Of Router C 39
Figure 3.14 Configured Signaling Channels 39
Figure 4.1 Emulation Packet Format 43
Figure 4.2 Demo Packet Format 43
Figure 4.3 SAAM Packet Format 44
Figure 4.4 DCM Embedded In SAAM Packet 46
Figure 4.5 UCM Embedded In SAAM Packet 47
Figure 4.6 PN Message Embedded In SAAM Packet 48
Figure 4.7 Configuration Message Embedded In SAAM Packet 50
Figure 4.8 TimeScale Message Embedded In SAAM Packet 52
Figure 4.9 Sample ServerTable 57
Figure 4.10 Sample RouterBoundCtrlChTable 58
Figure 5.1 Sample Test Topology 66
Figure 5.2 Emulation Table Of Primary Server 69
Figure 5.3 Emulation Table Of Backup Server 69
Figure 5.4 Emulation Table Of Router A 69
Figure 5.5 Emulation Table Of Router B 69
Figure 5.6 Emulation Table Of Router C 70
Figure 5.7 Emulation Table Of Router D 70
Figure 5.8 ARPCache Table Of Primary Server 70
Figure 5.9 ARPCache Table Of Backup Server 71
Figure 5.10 ARPCache Table Of Router A 71
Figure 5.11 ARPCache Table Of Router B 71
Figure 5.12 ARPCache Table Of Router C 72

xi

Figure 5.13 ARPCache Table Of Router D 72
Figure 5.14 ServerTable Of Primary Server 73
Figure 5.15 ServerTable Of Backup Server 74
Figure 5.16 ServerTable Of Router A 74
Figure 5.17 ServerTable Of Router B 74
Figure 5.18 ServerTable Of Router C 75
Figure 5.19 ServerTable Of Router D 75
Figure 5.20 Server-Bound Signaling Channel Table Of Primary Server 75
Figure 5.21 Server-Bound Signaling Channel Table Of Backup Server 76
Figure 5.22 Server-Bound Signaling Channel Table Of Router A 76
Figure 5.23 Server-Bound Signaling Channel Table Of Router B 76
Figure 5.24 Server-Bound Signaling Channel Table Of Router C 76
Figure 5.25 Server-Bound Signaling Channel Table Of Router D 77
Figure 5.26 Router-Bound Signaling Channel Tables Of Primary Server 77
Figure 5.27 Router-Bound Signaling Channel Tables Of Backup Server 78
Figure 5.28 Router-Bound Signaling Channel Tables Of Router A 78
Figure 5.29 Router-Bound Signaling Channel Tables Of Router B 79
Figure 5.30 Router-Bound Signaling Channel Tables Of Router C 79
Figure 5.31 Router-Bound Signaling Channel Tables Of Router D 80
Figure 5.32 Configured Signaling Channels At The End Of First Cycle 81
Figure 5.33 Router-Bound Signaling Channel Table Of Primary Server After

Configuration Cycle Two 82
Figure 5.34 Router-Bound Signaling Channel Table Of Primary Server After

Configuration Cycle Two 82

xn

THIS PAGE INTENTIONALLY LEFT BLANK

Xlll

LIST OF TABLES

Table 5.1 Node Information Of Sample SAAM Topology 65
Table 5.2 Length Of Messages Employed By SCCP 72

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGEMENTS/DEDICATIONS

I would like to express my sincere gratitude to my thesis advisor, Professor

Geoffrey Xie. Without his constant support I would never have any chance of completing

this thesis. I will always remember the light he brought up to me by sincere support and

motivation. His style will always be my guide throughout my life. Additionally, I would

like to thank CDR Debra Kern for her contributions and support. I would also like to

thank to my parents, Emine and Mahmut Akkoc, without whose love and sacrifice I

would not have the possibility to come so far in my education. And finally, I would like

to dedicate this thesis to two very special women in my life; my fiance Alessia Deligios

and my mother Emine Akkoc for their unconditional love.

xvi

I. INTRODUCTION

A. BACKGROUND

The number of nodes connected to the Internet has grown at an explosive rate.

The volume and content of network traffic have also changed considerably. While

exclusively data twenty-some years ago, the traffic today is composed of image, audio

and video beside data.

The traditional Internet provides "best-effort" service to packets without any

guarantee of delivery. It can't provide satisfactory support for networked real time

applications such as interactive voice and video, which are very sensitive to end-to-end

network delay and the delay jitter. These applications usually generate a huge number of

bits per second, and the traffic has to be streamed, or transmitted in a smooth continuous

flow rather than in bursts [1]. Current router-centric network architectures would be over-

extended to meet the Quality of Service (QoS) requirements of real-time applications. So

the main challenge of the Next Generation Internet (NGI) is to develop feasible

networking solutions that are capable of serving diverse user traffic (i.e., capable of

integrated service).

Server and Agent based Active network Management (SAAM) is one of the

ongoing research projects under the NGI initiative. The SAAM project is sponsored by

National Aeronautics and Space Administration (NASA) and Defense Advanced

Research Projects Agency (DARPA).

B. OVERVIEW OF SAAM

Data networks today (i.e., the Internet) are built by using sophisticated stand-

alone routers. Each router is involved in routing and network management tasks in

addition to data forwarding. As networks grow to handle more and increasingly diverse

data, more processing will be required for each router. A legacy router can easily be a

performance bottleneck due to a lack of processing power [2].

SAAM is a networking architecture that addresses this problem and provides an

efficient solution to integrated services. Unlike the distributed architecture of current

networks, SAAM relieves most of routing and network management tasks from

individual routers. Instead, SAAM deploys a small number of dedicated servers to

perform these tasks on behalf of the routers (see Figure 1.1) [2].

SAAM is envisioned to be the network environment where routing, resource

reservation, network management, accounting and security can be integrated [2].

Concentrating the network management and control tasks to a small number of servers

rather than distributing them to all devices in the network, SAAM facilitates faster

development and deployment of new services. Additionally, SAAM is completely

compatible with legacy networks. It supports existing inter-domain routing protocols.

Therefore, the deployment of SAAM can be incremental, within one autonomous system

at a time.

A nisrsrcliiCS: nefworK
of SÄÄM servers;
each of which manages
QoS sensitive traffic for a
small set of renters

Lightweight routers:
let server decide how
to route QoS
sensitive traffic

Figure 1.1 Sample SAAM Network Architecture.

1. The Logical Model Of SAAM

The server deployment is the most noticeable character of SAAM architecture.

SAAM servers relieve routers from most network control tasks. With the relief provided

from the server, the routers used by SAAM can dedicate their resources to network traffic

more efficiently than legacy routers.

Each SAAM server maintains a path information base (PIB) for its region (see

Figure 1.2). Specifically, the server determines the paths that can be used to route flows

and maintains up-to-date performance parameters for these paths by processing Link

State Advertisement (LSA) packets sent by routers in its region. Using the PIB, the server

can intelligently perform network functions such as QoS routing and re-routing of real-

time flows, which are crucial to integrated services. In the logical model of SAAM, each

3

router is a client of a single SAAM server. The router does not participate in QoS routing.

It updates its flow-based routing table with route data passed from the SAAM server [2].

Path Information Base (PIB)

path-id path-parameter;

route info /

p^perforipatlce info

Managemen ;,iSef\f(My
Function ^.\L"L&' ZL ~

(e.g., QoS J

Flow Routing Table

atagram Routing Table

Figure 1.2 Logical Model Of SAAM.

2. Hierarchical Organization of SAAM Architecture

A city traffic monitoring system presents a good example for one to understand

SAAM's hierarchical organization of servers. Vehicles or helicopters can be used for

traffic monitoring in a city. A motorist or a policeman deployed along a highway or at an

intersection can only observe traffic within a small perimeter. On the other hand, an

observer on a helicopter can observe the state of traffic of a larger physical area. By

coordinating traffic state information of the larger area, the observer can provide more

reliable and more valuable information than a number of motorists operating individually.

The superior information extracted by utilization of a helicopter can also be used to take

measures to prevent probable traffic congestions. Turning back to the realm of

4

networking, stand-alone routers of today's networks react slowly to traffic fluctuations,

like individual motorists. On the other hand, each SAAM server functions like a

helicopter based observer. The server always has region-wide information to support its

decision-making. With this information, the server can allocate network resources

intelligently and adapt to changes in network conditions promptly.

;3

Source

.C

*
is

JS

a
u
X

a
Q

Destination

QJ router Q SAAM
server

K Example
data oath

jSAAM c --^Legacy
reeion "" " networks

Figure 1.3 Hierarchical Organization Of SAAM Servers.

For scalability, SAAM organizes its servers in a hierarchy (see Figure 1.3). At the

lowest level of the hierarchy, SAAM partitions the network into segments called SAAM

regions. A SAAM server is deployed for each SAAM region. Each SAAM server is

responsible for collecting network state information from routers in its own region. A

subset of routers in each region are designated border gateways to handle traffic across

multiple regions [2]. The regional SAAM server summarizes its regional information and

passes the summary to a higher-level (parent) server. The higher-level SAAM server

5

integrates data from different regions and uses the information to perform inter-regional

routing.

C. SCOPE OF THIS THESIS

The goal of this thesis is to develop a routing protocol for establishing signaling

channels between a SAAM server and its routers. The efficiency of SAAM depends

heavily on these signaling channels being fast, reliable, and cheap. The cost of a signaling

channel is measured by the amount of processing and communication overhead it

imposes on routers. The routing protocol is required to detect and respond to network

topology changes within a fraction of a second. It must be robust, efficient and scalable.

This thesis describes such a routing protocol.

D. MAJOR CONTRIBUTIONS OF THIS THESIS

The routing protocol developed in this thesis meets all specific signaling channel

requirements of SAAM. The protocol has the potential to be used in any multi-service

network architecture (e.g., bandwidth broker or ATM PNNI) that is similar to SAAM.

E. ORGANIZATION OF THIS THESIS

The remainder of this thesis is organized into the following chapters:

• Chapter II: Related Topics. States signaling channel tasks that are to be

handled in SAAM architecture. Explains the shortcomings of routing

protocols that are readily available today and why they can't be used in

SAAM networks.

• Chapter III: SAAM Signaling Channel Configuration Protocol Design.

Describes the routing protocol designed for SAAM architecture.

Chapter IV: SAAM Signaling Channel Configuration Protocol

Implementation. Explains the integration of the developed protocol and

the existing SAAM emulation software.

Chapter V: Test Of SCCP. Describes the application of SCCP to a sample

SAAM network and discusses the results.

Chapter VI: Conclusions. Summarizes the thesis study and interprets the

test results obtained from a SAAM test-bed. Also states the future work

that needs to be carried out.

THIS PAGE INTENTIONALLY LEFT BLANK

II. RELATED TOPICS

In this chapter, motivations that have led to the development of a special routing

protocol for configuration of SAAM signaling channels are introduced. In a SAAM

region, a set of signaling channels must be established so the server and routers can

exchange vital management and signaling messages. First, the general properties of

routing protocols are discussed. Next, the distinct properties of SAAM signaling traffic

that stipulates the need of a new routing protocol are explained. Then interior and

multicast routing protocols are described since these protocols address similar

requirements. The reasons for not using these protocols to configure SAAM signaling

channels are presented.

A. ROUTING PROTOCOLS

A routing protocol is a distributed application used by a network to coordinate the

task of packet forwarding at different routers. This coordination is required for the

network to adapt to changes in topology and input load without significant performance

degradations.

Traffic in a network can be divided into two major groups: signaling traffic and

user traffic. User traffic consists of all traffic that is generated by user applications. On

the other hand, signaling traffic is used to configure and manage the network in order to

keep the network functioning properly. While the user traffic is discernible by the users,

signaling traffic runs in the background and it is transparent to the users.

The network forwards user traffic using the services provided by routed and

routing protocols. IP and IPX are examples of routed protocols. These protocols provide

enough information in the network header of packets to enable a router to determine the

appropriate routing table to use and classify the packets accordingly. Routing protocols

establish and maintain one or more routing tables at each router. Each entry of a routing

table typically consists of two fields: packet classification and next hop. It dictates that all

packets with the same classification (e.g., going to the same destination) be forwarded to

the same next hop. Examples of routing protocols are Routing Information Protocol

(RIP), Open Shortest Path First (OSPF), Interior Gateway Routing Protocol (IGRP), etc.

[6]. In summary, the routed protocols provide services to the user traffic by utilizing the

routing tables established by the routing protocols.

The signaling protocols are a special subclass of routing protocols. They

establish and maintain the routing tables specifically for signaling traffic. Paths between

routers that are designated for use of signaling traffic are called signaling channels.

A routing protocol must fulfill the following requirements.

1. Robustness

The worst thing that a router can do is to misroute a packet. Misrouted packets

will never reach their destination and will waste network bandwidth. Moreover, the

routing tables that contain incorrect entries may develop formation of loops as well as

superfluous oscillation of traffic load between nodes. These are detrimental problems that

may render a network unusable. A robust routing protocol should protect itself from these

problems by periodically running consistency tests. Checksums and sequence numbers

should also be used for the signaling messages of a routing protocol to ensure the

integrity of these messages [5].

10

2. Manageable Signaling Overhead

Routing protocols establish the routing tables by exchanging signaling messages

between nodes [5]. These signaling packets share bandwidth, queue space and CPU time

with user traffic. The more a routing protocol uses these resources, the less they are

available to user traffic. Routing protocols that control the overhead resulting from

circulation of signaling messages to a manageable level are preferred since they do not

disrupt user traffic.

3. Path Optimization

It is always desirable to route a packet from source to destination using the best

available path. Determination of the best path depends on what is considered the best.

The highest priority may be assigned to the path with maximum bandwidth, minimum

delay, maximum safety, etc. [5]. When multiple paths are feasible, a good routing

protocol should select the best path according to a given metric.

4. Manageable Routing Table Size

Some routing protocols require neighbors to exchange their entire routing tables.

Maintaining a large routing table imposes significant processing overhead upon a router.

Routing protocols that use manageable routing table size are preferred [5].

No routing protocol can be the best with respect to all the requirements. For this

reason, trade-offs are inevitable between different requirements. It is the protocol

designer's responsibility to determine which requirements are more important for a given

situation.

11

B. DISTINCT PROPERTIES OF SAAM ARCHITECTURE RELATED TO

SIGNALING CHANNELS

Understanding the particular properties of SAAM signaling traffic is essential for

determination of the issues that need to be addressed by the new routing protocol for

SAAM signaling traffic. The following describes the main issues related to signaling

traffic in SAAM.

1. Asymmetric Flows of Signaling Traffic

In SAAM, signaling traffic is exchanged between the server and its routers. The

server needs to talk to all routers in its region. The signaling traffic originating from the

server and destined to routers travels from a single source to multiple destinations. Every

router also needs to talk to the server in its region. The signaling traffic destined to the

server travels from multiple sources to a single destination. Therefore, the signaling

traffic flows are asymmetric. In particular, the traffic is unevenly distributed, heavier on

the routers closer to the server. That asymmetry is one of the most distinctive properties

of SAAM architecture.

2. Pro-Active Response to Topological Changes

In SAAM, topology changes must be determined and handled as they occur to

support guaranteed services. Local detection of topological changes and hop-by-hop

dissemination of knowledge of the changes is not optimal for SAAM architecture. A

reactive method of updating routing tables takes too long for real-time traffic. In SAAM,

real-time reconfiguration of signaling channels is mandatory in order not to affect traffic

requiring hard QoS guarantees. User traffic should not experience any noticeable

degradation of services while signaling channels are re-established.

12

C. INTERIOR ROUTING PROTOCOLS

An Autonomous System (AS) is defined as a set of routers and end-systems that

are administered by a single authority [5]. Interior routing protocols determine how

packets should be routed inside an AS. A SAAM region can be considered as an

autonomous system under the administration of the server. Therefore, understanding of

interior routing protocols may contribute to development of the protocol that configures

signaling channels of SAAM.

Interior routing protocols use either distance vector or link-state algorithms. Next,

each of these algorithms is examined for its suitability for SAAM signaling channels.

1. Distance-Vector Algorithm

In a distance-vector algorithm, each node stores < destination, cost > information

for all other nodes and exchange this information with its neighbors. The distance-vector

algorithm assumes that each node knows the link cost to each of its directly connected

neighbors [3]. Initially, a router assigns an infinite cost to non-neighbor routers. Routers

periodically send their distance vectors to all their neighbors. When a router receives a

distance-vector from a neighbor, it re-evaluates the cost to reach each destination by

summing the cost advertised by the neighbor and the cost of reaching that neighbor. If the

total cost is less than what is stored at its distance vector, the router updates the distance

vector with the new cost and uses that neighbor as the next-hop for the destination.

The distance-vector algorithm is distributed, asynchronous and iterative. The

algorithm is distributed because each node distributes its distance vector information to

neighbors. It is iterative because each node recalculates the cost to reach destination

13

nodes until no more distance vectors are exchanged between nodes. It is asynchronous

because, exchanges and calculations don't have to be at the same time at all the nodes [4].

The distance-vector algorithm suffers from the problem of slow convergence

upon topological changes. Another major disadvantage of distance-vector algorithm is

the count to infinity problem that happens as a result of incorrect information exchange

between nodes. When routers update their cost of reaching a destination using the

incorrect information, cost of reaching to that destination increases continuously unless

some preventive action is taken. The packets that are sent to a destination whose cost is

continuously increasing will circle between the nodes many times without reaching the

destination. That will cause congestion and decrease throughput. A method called split

horizon has been developed to prevent the count to infinity problem. The split horizon

approach stipulates that a cost update should not be sent back to the node from which the

information triggering the update has been received. Even though split horizon prevents

two neighbor nodes from counting to infinity, it is ineffective for more than two nodes.

So it cannot guarantee problem-free operation in all cases. The most popular distance-

vector algorithm based routing protocol is the Routing Information Protocol (RIP), which

is discussed below.

Routing Information Protocol (RIP)

RIP uses hop count as the metric to measure the goodness of a route. It assigns a

cost of 1 to directly connected neighbors. On the other hand, an unreachable destination

is assigned a cost of 16. For RIP, a route with the minimum number of hops is the best

regardless of other issues. RIP routers exchanges distance vectors every 30 seconds. A

destination is concluded to be unreachable if it does not advertise its distance vector to a

14

neighbor for six consecutive advertisement intervals (6*30 =180 seconds). In addition to

regular distance-vector exchanges at every 30 seconds, a router sends its distance-vector

when a distance-vector from a neighbor causes the router to update its table. REP uses

split horizon with poisonous reverse to prevent the count to infinity problem. While in the

split horizon approach, a router does not advertise the cost of a destination to the

neighbor who just advertised it, in the split horizon with poisonous reverse approach the

router advertises infinite cost for that destination. RIP is applicable to small networks

where routes have fewer than 16 hops. It is simple to manage and configure. However, it

is inadequate in supporting multiple metrics and cannot overcome failures quickly [5].

2. Link State Algorithm

The link state algorithm assumes that each router is capable of determining the

state of its links to neighbors (up or down) and their costs [3]. Routers periodically create

Link State Packets (LSPs) that describe the current state of their links. An LSP contains

the routers ID, the neighbor's ID, the cost of the link to the neighbor, a sequence number

and a time-to-live value. Every router sends its LSPs to every other router in the

topology. LSPs are distributed via flooding. A router retransmits a received LSP to all its

neighbors except the one that has forwarded the LSP. An LSP is kept at a router for a

maximum of time-to-live amount of time. Upon expiration of that time, the associated

LSP is deleted. The sequence numbers helps a router determine whether a LSP is fresh.

Those LSPs with an invalid sequence number are dropped.

Since a router receives LSPs from all the other routers in the topology, it can have

an overall map of the network. A router calculates the best path to every other router in

the topology, constructing a spanning tree with itself being the root. Dijkstra's shortest
15

path algorithm can be used to compute the shortest-path spanning tree. The algorithm

iteratively searches for the best path from a set of nodes that are already part of the

spanning tree to the nodes that are not part of the tree yet [3].

Open Shortest Path First (OSPF)

As the size of the Internet increases, the limitations of RIP become more evident,

which has eroded the protocol's popularity. Today, Open Shortest Path First (OSPF) is

the preferred interior routing protocol for TCP/IP based networks [1].

OSPF partitions ASs into areas. As a result of the extra level of hierarchy

introduced by areas, a router does not need to know all the destinations in the AS. It

rather needs to know the routers in its area. For routers outside its area the router needs to

know the gateway router leading to that area. Dividing an AS into areas reduces not only

the amount of data stored at each router but also the amount of information that must be

exchanged between routers. The reduction facilitates efficiency and scalability.

In OSPF, a router that receives a link update message authenticates the sender.

Authentication brings robustness to OSPF, preventing the network from being shut down

by a misconfigured host. A misconfigured host may send LSPs with incorrect

information. Such LSPs may cause improper updates of routing tables at the receiving

routers. A misconfigured routing table will route the network traffic to inappropriate

destinations, which is totally undesirable. So authentication of messages ensures

formation of consistent routing tables, which is vital for proper functioning of the

network.

OSPF exchanges signaling messages much less often than RIP. As a result, it

imposes lower overhead upon the network. Additionally it can support up to five different

16

types of metric. For each metric a different shortest path tree is calculated and a separate

routing table is formed.

OSPF employs HELLO messages to detect the state of its neighbors. If a router

does not acknowledge the HELLO messages, its neighbor or neighbors will declare its

failure and send an LSP to inform others of the failure. A router re-calculates the

distance to each destination upon receiving this LSP.

The main disadvantage of OSPF is the high overhead of initial flooding of LSPs.

The amount of the overhead is directly proportional to the connectivity of the network

[1].

3. Suitability of Interior Routing Protocols for SAAM

In SAAM, topological changes must be determined and handled as they occur to

support guaranteed real-time services. Interior routing protocols are based on local

detection of topological changes and hop-by-hop dissemination of knowledge of the

changes, which are too slow for SAAM architecture. Moreover, these protocols assume a

totally distributed network architecture where each router must construct the view of the

entire region. They seem overly complex for SAAM where only the server needs to have

such a view.

D. MULTICAST ROUTING PROTOCOLS

Multicasting is the process of sending a packet from a source to multiple

destinations with a single transmit operation [4]. In SAAM, since the server needs to have

the capability of communicating with every router, the profile of server-to-router

communication is similar to multicasting. Because of this similarity, multicast routing

17

protocols are examined for their applicability to configuration of SAAM signaling

channels.

Since multicasting requires routing from a single source to multiple receivers, the

goal of multicast routing protocols is to determine the tree of links that connects all

receiving nodes to the sender. This is basically achieved either by group-shared tree

approach or by source-based tree approach [4]. Before their suitability or unsuitability to

SAAM is asserted, both approaches are briefly described next.

1. Group-Shared Tree Approach

The group-shared tree approach constructs a single routing tree to be used by all

nodes that are members of the multicast group. In figure 2.1, a network topology where

the group-shared tree is marked by dark lines is shown. A group-shared tree can be used

for bi-directional traffic flow.

Figure 2.1 A Sample Group-Shared Tree.

18

A common method to determine the group-shared multicast tree uses the notion of

a center node. A router sends a JOIN message to the center node to join the multicast

tree. The JOIN message is forwarded using unicast toward the center until it reaches the

center node or a router that already belongs to the tree. At that time, the join process is

competed, and the route traveled by the JOIN message forms a new branch of the

multicast tree [4].

The Core-Based Tree Multicast Routing Protocol that has been put into practice in

the Internet implements the group-shared tree approach. The details are presented below.

Core Based Tree Multicast Routing Protocol

The core based tree (CBT) multicast routing protocol is specified by RFC 2201

and RFC 2189. It constructs a bi-directional, group-shared tree with a core (center) node.

Routers join the tree by sending a JOIN_REQUEST message to the center. The core or

the first router that receives the join request message acknowledges the request with a

JOIN_ACK message. The multicast tree is maintained by exchanging ECHO_REQUEST

and ECHO_REPLY messages between the downstream and upstream routers [4].

2. Source Based Tree Approach

The source-based tree approach constructs a separate tree for each sender in the

multicast group. Unlike the group-shared tree approach, some links of the trees may be

used in one direction only. A sample source-based tree is shown in figure 2.2, in which

the source-based tree rooted at router B is represented by normal arrows while source-

based tree rooted at routers D is represented by dashed arrows.

19

Figure 2.2 A Sample Source-Based Tree.

Two currently standardized Internet multicast routing protocols, Distance Vector

Multicast Routing Protocol (DVMRP) and Multicast Open Shortest Path First (MOSPF)

are described below.

a) Distance Vector Multicast Routing Protocol (DVMRP)

DVMRP implements source-based trees with reverse path forwarding,

pruning and grafting. It uses the distance vector algorithm to determine the next hop for

each destination address. In DVMRP routers monitors their dependent downstream

routers for possible pruning as well. A prune message is initiated by a leaf router that no

longer has any multicast group member on its directly attached subnetworks. When a

router receives a prune message from all its dependent downstream routers, it sends a

prune message to the upstream router. Prune messages carry a life-time field with a

default value of two hours. This is the time during which the branch will remain pruned

before being restored automatically. Graft messages may be sent from routers to their

upstream routers to reactivate previously pruned branches [4].

20

b) Multicast Open Shortest Path First Protocol (MOSPF)

MOSPF can be used in autonomous systems that use OSPF for unicast

interior routing. MOSPF extends OSPF by having routers add their multicast group

membership information to the link state packets. MOSPF routers build the routing table

for multicast routing as well as unicast routing. Using MOSPF routers can build source-

based, pruned shortest path multicast routing tables [4].

3. Why Multicast Routing Protocols Can't Be Used For SAAM

Multicast protocols arrange possible receivers into groups and assign each group a

unique address. A source appends the group address to each packet that it sends to the

group. There is no protocol that allows the source to determine the addresses of the

receivers in a multicast group [4]. Basically the sender has no idea about the number and

identity of its receivers. Additionally any source can send a multicast packet to all the

receivers.

In SAAM, only the server needs to communicate with every router. The server

sends different signaling information to different routers. That is concurrent unicast rather

than multicast routing.

The core-based tree approach seems the closest match to deal with signaling

traffic of SAAM. But in that approach, a new router joins the tree simply by discovering

an existing member of the tree. In contrast, in SAAM a router's join message is required

to arrive at the server so that the server knows which next hop to use for that router.

Another problem is the use of a single group address for all the group members. SAAM

signaling messages are usually destined to one destination. The server and routers need to

21

know the unique address of each other for individual communication as well as for

security reasons. This issue is not addressed by multicast routing protocols.

For these reasons multicast routing protocols can't be used to configure the

SAAM signaling channels either. Therefore, a routing protocol that addresses the specific

requirements of SAAM signaling traffic needs to be developed.

22

III. SAAM SIGNALING CHANNEL CONFIGURATION PROTOCOL

DESIGN

It follows from Chapter II that existing routing protocols do not adequately

address the needs of signaling traffic of SAAM. In this chapter, a new routing protocol

especially designed for SAAM signaling traffic, called Signaling Channel Configuration

Protocol (SCCP), is described. It should be noted that SCCP configures the channels to

carry the signaling traffic in SAAM. The protocol itself does not carry signaling traffic.

The rest of the chapter is organized as follows. First, SCCP is briefly introduced. Then,

how SCCP achieves timely discovery and response to topological changes is explained.

Major issues affecting the design of SCCP are discussed next, followed by a detailed

description of the SCCP algorithm. SCCP has been applied to a sample topology. The

results are discussed in the last section.

A. INTRODUCTION TO SIGNALING CHANNELS CONFIGURATION

PROTOCOL

Figure 3.1 SAAM Topology Displaying Router-Bound Signaling Channels.

23

A sample SAAM topology is shown in figure 3.1. The server requires ready-to-

use channels that go to all routers in the SAAM region. These channels are required to

carry the signaling traffic originating from the server and destined to routers. They are

called router-bound signaling channels. In the sample topology, the server uses channel 1

to send signaling messages to router A, channel 2 to router C, combination of channels 1

and 3 to router D, and combination of channels 2 and 4 to router B.

On the other hand, each router needs to know the next hop to forward its

signaling traffic to the server. In figure 3.2, the topology of figure 3.1 is used to show the

signaling channels from routers to the server. This time, router A uses channel 1, router C

channel 2, router D a combination of channel 1 and 3, and router B a combination of

channels 2 and 4 to send signaling messages to the server. These channels are called

server-bound signaling channels.

Figure 3.2 SAAM Topology Displaying Server-Bound Signaling Channels.

24

The shape of channels formed by server-bound and router-bound signaling

channels connotes a tree structure. This tree formation has motivated the use of a

spanning tree algorithm as the basis for SCCP.

1. The Spanning Tree Approach

The first spanning tree algorithm was developed by Radia Perlman at Digital for

bridge routing. To avoid loops, a set of bridges may agree upon a spanning tree for a

particular extended LAN1. If an extended LAN is thought as being connected by a graph

that possibly has loops, then a spanning tree is a sub-graph of that graph that covers all

the vertices (LANs) but contains no loops. The bridges form a spanning tree by

deactivating some of their ports. They can reconfigure themselves into a new spanning

tree should some hardware failure occur [3].

The spanning tree approach used by LAN bridges addresses several issues that are

also applicable to SAAM architecture. For example, the algorithm establishes a spanning

tree that is rooted at the root bridge and covers all the bridges. It also determines those

links that should be included for establishing complete reachability. This approach is well

suited for establishing the connectivity between the server and all the routers in a SAAM

region. For this reason, the spanning tree algorithm has been taken as the starting point in

design of the SCCP.

The spanning tree algorithm employed by LAN bridges first elects the root of the

spanning tree. Then, all bridges connected to a given LAN elect a single designated

1 An extended LAN is a collection of LANs connected by bridges[4].

25

bridge that will be responsible for forwarding frames toward the root bridge. Each

LAN's designated bridge is the one that is closest to the root bridge [3].

In SAAM architecture, the server acts as a control center. It is logically the root of

the spanning tree for SAAM signaling channels. Pre-defining the root rather than

determining it with elaborate message exchange between candidate nodes enhances the

efficiency of the spanning tree algorithm implemented in SCCP.

The spanning tree algorithm may be used to configure uni-directional signaling

channels that originate from the server. However, SAAM requires bi-directional signaling

channels. As much as the server needs to send management and control information to

every router, each router needs to send its link state statistics and forward flow requests to

the server. Therefore, the spanning tree algorithm needs to be extended for SCCP. This

extension is essential for the bi-directional flow of SAAM signaling traffic.

2. How To Make A Two-Way Spanning Tree

In SCCP, the first task is the construction of a spanning tree rooted at the server

and covering all the routers by using the spanning tree algorithm. This task can be

accomplished by using a message that advertises the server to the routers. This message

is called "Downward Configuration Message (DCM)" in SCCP.

The DCM mechanism is devised in such a way that upon receiving the first DCM

a router designates the input port (interface) for that DCM to be part of the server-bound

signaling channel and generates the routing table entry to use for server-bound signaling2

traffic. Then the router forwards a copy of the DCM to all its neighbors except the one

2 At a router, signaling traffic is classified based on the flow id carried by each packet.

26

where the first DCM has come from. The router will drop all subsequent DCMs that it

receives.

a) Router-Bound Signaling Channel Problem

Even though the server-bound channels are established via DCMs, the

server cannot communicate with the routers since it does not know anything about the

routers yet. In order for the server to attain this capability, two requirements must be

fulfilled. First, the server must have the necessary entries in its routing table for all

routers in its SAAM region. Second, in order for server generated signaling messages to

reach a destination router, all routers on the branch of the spanning tree that connects the

server with the destination router must have an entry for that destination in their routing

tables. These two requirements may be accomplished by a number of different ways.

It might be possible to manually configure each router. But that is out of

the question for a dynamic network like SAAM.

Another option is to use one of the existing interior routing protocols. But,

it follows from Chapter II that these protocols do not provide the optimal solution for the

SAAM environment.

One other way might be to have each router reply to the server by a

message upon receipt of a DCM. Such a reply message will pass through all the ancestor3

routers before arriving at the server. Each visited ancestor router can then update its

routing table to include an entry for forwarding signaling messages destined to the

replying router. Indeed a reply message is basically required for each router to reveal

itself to all its ancestors including the server. Moreover, all the reply messages carry the

3 For definitions of root, parent, child, ancestor, descendant, etc., see Appendix A.
27

same header information except the source address. The redundant bits in the reply

messages introduces large amount of overhead that wastes bandwidth and CPU time.

Additionally, the routers that have many descendant routers must process many reply

messages, which reduce the throughput of those routers further. For example, in figure

3.3, router A processes as many reply messages as the server. Consequently the use of

reply messages may introduce large overhead for configuring the router-bound signaling

channels.

Figure 3.3 SAAM Topology With Configured Signaling Channels (Thick Lines).

In view of the fact that none of these approaches is optimal for SAAM,

another approach that overcomes the shortcomings of the aforementioned approaches has

been developed.

b) Designed Solution

The designed solution still uses reply messages to configure the router-

bound signaling channels, but in a different manner. The reply message used in SCCP is

28

called "Upward Configuration Message (UCM)". The details of the approach are

described next.

In this approach, the routers aggregate UCMs from their child routers

instead of forwarding them immediately towards the server. As a consequence of this

aggregation, a single UCM may be sufficient to configure the router-bound signaling

channels for the parent and all the descendant routers. The aggregation is achieved by

using one extra message, two timers and two buffers.

The extra message used to achieve UCM aggregation is called "Parent

Notification (PN)" message in SCCP. It is sent from a child router to its parent router

right after the child processes the DCM from the parent. Upon receipt of a PN message

the parent learns the existence of the child router. PN messages allow a router to know

how many UCMs to expect and where they should originate. After all expected UCMs

have been received and processed, the router will stop the aggregation process and

forward a UCM on behalf the entire branch. Each PN message is basically required to

carry the id of the child router. Consequently it is small in size and does not introduce

considerable overhead.

The two timers running on each router are intended to prevent infinite wait

for a UCM from a child router. Both timers are started right after the router forwards the

DCM to its neighbors. The first of the two timers is called local timer. It is cancelled

when the router receives the first PN message. When this timer expires, the router will

declare itself as a leaf node and send a UCM to its parent. The other timer is called global

timer. It is cancelled when the router receives UCMs from all known child routers. Upon

cancellation the router sends a UCM to its parent. Conversely if the global timer expires

29

before receipt of all UCMs from child routers, the router will stop the aggregation

process and send a UCM to its parent, assuming some of its children have failed. This

will prevent infinite wait for a UCM from a child router.

The two buffers are employed to store the ids of child routers temporarily

for the UCM aggregation process. The first buffer is called noticationBuffer and it is used

for storing the id of every router from which a PN message has been received. The other

buffer is called reachabilityBuffer. It is used for storing ids of descendant routers that are

learned from the UCMs.

B. HOW SCCP HANDLES TOPOLOGY CHANGES AS THEY OCCUR

SAAM stipulates pro-active response to topological changes. So SCCP is obliged

to actively detect and respond to changes of topology. This requirement is fulfilled by a

soft state approach where signaling channels are completely reconfigured periodically or

when there is a need. Instead of keeping the state of every channel in the topology and

waiting for a change, SCCP partitions time into fixed-length intervals called refresh

intervals and establishes new signaling channels at the beginning of each refresh interval.

The frequency of signaling channel configuration (i.e., the length of refresh interval) is an

important design parameter. While a shorter refresh interval is favorable to accommodate

topological changes, the overhead of SCCP is also larger with a shorter refresh interval.

So employing an appropriate refresh interval is crucial to the effectiveness of SCCP. The

determination of an optimum refresh interval is beyond the scope of this thesis.

SCCP make use of a sequence number field inside each message that it uses. The

sequence number is intended to uniquely identify the configuration cycle in which the

message is created. As a consequence of periodical reconfiguration, messages of previous
30

cycles may have remained in the network and surfaced in the current cycle. The sequence

number allows the routers to recognize and discard these old messages.

C. MAJOR ISSUES THAT HAVE INFLUENCED DESIGN OF SCCP

The approach that assembles a bi-directional spanning tree for configuring SAAM

signaling channels has raised some new issues. These issues are related to server-bound

signaling channels, router-bound signaling channels and routing tables. Each of these

issues is explained separately as follows.

1. Issues Related To Server-Bound Signaling Channels

In a SAAM region multiple servers may be deployed at the same time for fault

tolerance reasons [9]. Therefore, SCCP is required to configure the signaling channels for

each server. To fulfill this requirement each router must have the capability to

discriminate the servers. For this reason, the DCM that is used to advertise a server to

routers has to carry a field that is unique to each server.

2. Issues Related To The Router-Bound Signaling Channels

In order to achieve aggregation, a router that sends a UCM should declare all its

descendants as well as itself to the parent. So a UCM should carry the ids of all its

descendants. SCCP uses router id to discriminate routers.

3. Routing Tables Used By SCCP

In SAAM, traffic requiring QoS guarantees is forwarded based on the flow id. The

routing table used for this kind of traffic is called FlowRoutingTable. A

FlowRoutingTable has the format shown in figure 3.4. The flow id and service level are

31

assigned by the server. The service level field specifies the general class of service for the

flow. The highest priority is given to service level 0, assigned exclusively to signaling

traffic. Other service levels include guaranteed service, differentiated services, and best

effort service. The goodness field represents the freshness of the entry. The value of

goodness field may simply be the sequence number of the latest configuration cycle.

Flow id Next Hop Address Service Level Goodness
k IP_Address < i> Goodness value

Figure 3.4 Flow Routing Table Format.

SAAM architecture reserves flow ids 1 trough 64 for signaling traffic. Since the

messages employed by SCCP are critical for the precise functioning of SAAM, these

messages are also considered part of the signaling traffic. Accordingly they are assigned

flow id too. Different flow ids are assigned to configuration messages used by each

server since each server deployed at the same region requires its own signaling channels.

When there are multiple servers in the region, the routers distinguish the servers

from one another by a pair of unique flow ids assigned to each of them. SCCP is designed

in such a way that, all server-bound signaling traffic for one server uses the same flow id

'k', 'k' being an even integer ranging between 2 and 64, while all router-bound signaling

traffic for the same server uses the flow id 'k-1'. Tying all signaling traffic for one server

with unique flow ids ensures consistent configuration of signaling channels in the

presence of multiple servers.

The FlowRoutingTable can be directly used for server-bound signaling channels

since it is designed to hold entries of the < flow id, next hop > format. On the other hand,

32

it can't be used for router-bound signaling channels, which need to reach multiple

destinations. The router-bound signaling traffic regardless of the destination carries the

same flow id ('k-1') and the same source (the server) address. Consequently the format of

table entries for router-bound signaling channels should be < destination, next hop >.

That stipulates a routing table with capability of keeping multiple destinations for the

same flow id. For that purpose, a Router Bound Control Channel Table (RBCCT) has

been developed.

The RBCCT entries are composed of destination router id, next-hop address and

goodness members. The flow id of the server ('k-1') is used as key to link a RBCCT to

the server whose signaling traffic the RBCCT is forwarding. The RBCCT has the format

shown in figure 3.5.

Destination Router Id
IP Address

Next Hop Address
IP Address

Goodness
Goodness value

Figure 3.5 The Format Of RBCCT for Server With Flow Ids 'k' And 'k-1'.

D. SCCP ALGORITHM

The server initiates configuration of signaling channels at the beginning of each

refresh interval by sending a DCM to all of its neighboring (directly connected) routers. It

increments the sequence number each time it enters a new refresh interval. Each router in

the SAAM region stores the sequence number it has extracted from the last valid DCM.

As a result when the router receives a DCM with a higher sequence number, it knows the

server has started reconfiguration of signaling channels and the DCM is valid. The router

will discard any DCM with a sequence number that is less than or equal to the one stored.

33

SCCP is designed in such a way that, although a router receives a DCM from all

of its neighbor routers it processes only the first DCM and drops all the others. In order to

build the spanning tree, SCCP assumes the sender of the first DCM is the best next-hop

to the server. Since the DCM that experiences the least delay on its way from the server

will arrive first, SCCP effectively uses "transit delay" as the metric for route selections.

In fact, a link may not have the same delay characteristics in both directions. For example

the delay experienced by a server-bound message may be much higher than that

experienced by a router-bound message on the same link. In SCCP, link delays are

assumed to be symmetric so that a message experiences the same the delay regardless of

the direction of travel. An important future work item to investigate is extension of SCCP

for configuration of signaling channels where links have asymmetric delays

Upon receiving the first DCM a router designates the sender of this DCM as its

parent (next hop) for the server-bound signaling channel and updates its

FlowRoutingTable accordingly. Then the router sends a PN message to the parent, and

sends a DCM to all its neighbors except the parent. Broadcasting DCM that way

guarantees that all connected routers in the SAAM region will learn the servers. In the

mean time, the router also starts its local and global timers for UCM processing.

When a router receives a PN message from another router, it cancels its local

timer if it has not already done so. It places the id of the child router (the sender of the PN

message) into the notificationBuffer.

A router configures its router-bound signaling channels upon processing UCMs

from their child routers. The router sends a UCM when an event-driven or time-driven

condition occurs. The time-driven condition occurs when either the local or global timer

34

expires. The event-driven condition occurs when the router has received UCMs from all

its children registered in the notificationBuffer. The first occurring event renders the other

ineffective to prevent redundant UCMs. When a UCM triggered event occurs, the router

retrieves the router ids from the reachabilityBuffer and put them along with its own id

into a new UCM. It then sends the UCM to the parent. If the UCM is triggered by receipt

of UCMs from its registered children, the router cancels its global timer.

When a router receives a UCM, it first checks the notificationBuffer to verify that

the UCM is from a registered child. The id of the UCM sender is searched in the

notificationBuffer. If it is in the buffer, RBCCT is updated for each descendant routers

learned from the UCM. These descendant routers are added to the reachabilityBuffer.

(For the tasks performed at a server and a router see Appendix B and Appendix C

respectively).

E. APPLICATION OF SCCP TO A SAMPLE TOPOLOGY

SCCP has been applied to the sample topology shown in figure 3.6. In the sample

topology, there is a single server and three routers. It is assumed that configuration traffic

originating from the server is assigned flow id '1'.

Configuration of signaling channels is explained for the first cycle (sequence

number is 1) as follows. At the beginning of the refresh interval, the server sends a DCM

to both router A and router B. It then receives a PN message from both. Since it is the

server with no parent, it does not need to create and send any UCM. It only waits for

UCMs.

35

Server
131.120.8.1

131.120.8.2
B

131.120.8.3

Figure 3.6 SAAM Topology For SCCP Application.

On the other hand, upon processing the DCM received from the server, router A

and router B configure their server-bound signaling channels and add a proper entry to

their flow routing tables. Then router A sends a fresh copy of DCM to both router B and

router C while router B does the same for router A and router C. Router A drops the

DCM from B and router B drops the DCM from A. After sending DCM to neighbor

routers, both router A and B set their local and global timers. Meanwhile router C

receives the DCMs from router A and B. It processes the DCM that arrives first and

drops the other one. Assuming the first DCM is from router A. Router C processes that

DCM and drops the DCM from router B. It configures the server-bound signaling

channel by adding an entry into its FlowRoutingTable. At this point, the server-bound

signaling channels are configured for all the routers. The routing tables of router A, B and

C are shown in figures 3.7, 3.8 and 3.9 respectively.

36

Flow id Next Hop Address Service Level Goodness
2 131.120.8.1 0 1

Figure 3.7 FlowRoutingTable of Router A After Server-Bound Signaling Channel Is

Configured.

Flow id Next Hop Address Service Level Goodness
2 131.120.8.1 0 1

Figure 3.8 FlowRoutingTable of Router B After Server-Bound Signaling Channel Is

Configured.

Flow id Next Hop Address
131.120.8.2

Service Level
0

Goodness
1

Figure 3.9 FlowRoutingTable of Router C After Server-Bound Signaling Channel Is

Configured.

After processing the first DCM, router C first sends a PN message to router A and

then sends a DCM to router B (router B will drop that DCM). Router C also starts its

local and global timers for UCM processing.

Upon receiving the PN from router C, router A cancels its local timer and

registers the id of router C in its notificationBuffer. Meanwhile, the local timers of router

C and B will expire since they have not been canceled. The expiration of a local timer

triggers the creation of a UCM and the cancellation of the global timer. Since B and C

don't have any child router, they only put their own id into their UCM. They forward

these UCMs by using the server-bound signaling channels that are already in place.

37

When router A receives the UCM from router C, it checks whether the id of router

C is in the notificationBuffer. Finding a record for router C, router A is sure that the UCM

is from a valid child. Thus router A updates its RBCCT with an entry for router C and

stores the id of router C in the reachabilityBujfer. Router C is the only child of router A,

so its UCM triggers the even-driven UCM sending and the cancellation of the global

timer at router A. Router A retrieves the ids stored in reachabilityBuffer (which currently

contains the id of router C only), puts them along with its own id into a new UCM, and

forwards the UCM using the server-bound signaling channel.

The server receives a UCM from both router A and B. After these UCMs are

processed, signaling channels have been completely configured for the current cycle (see

figure 3.10). The server uses the entries in its RBCCT to communicate with any router in

the SAAM region.

The router-bound signaling channels for the server, router A, B and C are shown

in figures 3.10, 3.11, 3.12 and 3.13 respectively. It should be noted that since router B

and router C are the leaves of the spanning tree they have no child. Consequently their

RBCCTs are empty.

Destination Router Id Next Hop Address Goodness
131.120.8.2 131.120.8.2 1

131.120.8.3 131.120.8.3 1

131.120.8.4 131.120.8.2 1

Figure 3.10 RBCCT Of The Server.

38

Destination Router Id Next Hop Address Goodness
131.120.8.4 131.120.8.4 1

Figure 3.11 RBCCT Of Router A.

Destination Router Id Next Hop Address Goodness

Figure 3.12 RBCCT Of Router B.

Destination Router Id Next Hop Address Goodness

Figure 3.13 RBCCT Of Router C.

Server
131.120.8.1

131.120.8.2

\

V
B

131.120.8.3

131.20.8.4

Figure 3.14 Configured Signaling Channels.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

IV. SAAM SIGNALLING CHANNEL CONFIGURATION PROTOCOL

IMPLEMENTATION

In this chapter the implementation of SCCP on an existing Java based SAAM

emulation platform is described. First the signaling model used by SAAM emulation

software before incorporation of SCCP is described. Then the exact formats of all

messages employed by SCCP are defined. Classes that are added to existing software for

implementation of SCCP are explained next. Finally, the modifications made to existing

classes are described.

A. SAAM SIGNALING MODEL BEFORE IMPLEMANTATION OF SCCP

Before the deployment of SCCP, routers could only send signaling messages to

the server via hard-coded server-bound signaling channels. The address of the server and

the routing table entries for server-bound signaling channels were sent to the routers out

of band from an independent Java based application called DemoStation. Router-bound

signaling traffic was also delivered out of band via dedicated links. This approach is

similar to manual configuration of nodes in a network. It is static by nature and requires

time-consuming effort from a human administrator each time a topological change

occurs.

B. MESSAGES ADDED TO EXISTING SAAM EMULATION SOFTWARE

FOR DEPLOYMENT OF SCCCP

As described in chapter HI, SCCP uses DCM, UCM and PN messages to

dynamically configure the signaling channels. In addition to those messages, two more

messages, called Configuration and TimeScale respectively, have been developed to

41

make it easier to configure SCCP parameters in the emulation environment (see

Appendix D). In SAAM, each signaling message is carried inside standardized packet

formats that have been customized for the SAAM emulation environment (see reference

7). The DCM, UCM, PN, Configuration and TimeScale messages are also carried inside

those customized packets.

1. Packet Formats Used In SAAM Environment

A packet that carries one or more SAAM signaling messages is called a SAAM

packet. The current EPv6-based SAAM prototype is emulated at the application layer of

an IPv4 network environment. Therefore, all packets of an emulated SAAM test-bed are

encapsulated within an IPv4 header on the wire. The resulting IPv4 packets can be

classified into two groups: emulation and demo. Emulation packets carry realistic traffic

of a SAAM network and they are used after the SAAM test-bed is initialized. Demo

packets carry artificial traffic needed for initialization of the emulation environment.

They will no longer be necessary when SAAM is implemented at the network layer.

Emulation packets are transported in the IPv4 environment via TCP port 9001.

The format for emulation packets is shown in figure 4.1. A one-byte MAC field is

appended to the front of the inner IPv6 packet to simulate the link-layer address of the

receiving interface. The inner IPv6 packet could carry either a regular data payload or a

SAAM packet. However, only the format of a SAAM packet is shown in figure 4.1. A

SAAM packet can be thought as the innermost envelope inside which one or more

signaling messages can be placed. It should be noted that all SAAM packets use UDP

port 8000 to reach the SAAM control executive of their destination node. The control

executive will extract individual signaling messages and process them.
42

IPv4 packet
Physical DP varied

IPv4 TCP
9002 Pay load

1
MAC

l

Mac

!
ÖV6Packet !

40 varied [

Header Pay load j

1
!

pDPHeader l
8

Emulated
UDPHdr

1 1
1 j
ISAAMPacket !

Header

varied

Pay load

Figure 4.1 Emulation Packet Format.

IPv4 packet
Physical IP varied

IPv4
TCP
9002 Pay load

SAAMPacket
9 varied

Header Payload

Figure 4.2 Demo Packet Format.

Demo packets (see figure 4.2) are used to set up the topology for an emulated

SAAM test-bed. They are transported in the IPv4 world via TCP port 9002. They are

typically sent from the DemoStation to a SAAM node. Demo packets bypass normal IPv6

processing. The SAAM packets embedded in them are immediately delivered to the

43

SAAM control executive without going through all the layers of IPv6 network protocol.

Therefore demo packets are like out-of-band traffic.

A SAAM packet comprises of a header and a payload field. The header contains

an eight-byte time-stamp and a one-byte number of messages field. The number-of-

messages field declares how many messages are carried inside the SAAM packet. The

format of a SAAM packet is shown in figure 4.3. This format reveals the earlier signaling

model deployed in the SAAM emulation software. The SAAM emulation software before

incorporation of SCCP regarded all messages as an extension of the abstract Message

class and used one type value of T for every message carried inside a SAAM packet. As

new capabilities are incorporated into the emulation software, the necessity of creating

new messages and differentiating them has emerged. As a result, instead of using the

same type value for all messages, the type field in the payload portion of a SAAM Packet

is re-defined so that a unique type value is assigned to each signaling message type.

SAAMPacket

9 Varied

Header Payload

SAAMHeader
8 l

T
S

#of
messages

] Payload portion for Message Format

l Varied

Type Message Specific Fields

Figure 4.3 SAAM Packet Format.

44

2. Integration of Messages Introduced By SCCP to SAAM Packet

Format

All the messages used by SCCP (DCM, UCM, PN) to configure the signaling

channels and the Configuration and TimeScale messages are extended from the abstract

Message class. DCM, UCM and PN messages are integrated into the SAAM packet

format as follows.

a) DCM Class

DCM is assigned a message type value of 4. The format for DCM is

shown in figure 4.4. In the figure, the second line displays the type of data carried inside

a DCM while the first line displays the length of each data field in bytes. Each of these

fields is explained below.

• Type must be equal to "4" in order to differentiate DCM from other

messages.

• Flow Id carries the unique flow id assigned to all router-bound

signaling traffic for the server that has created the DCM.

• Server Id must equal to the router id of the server node.

• Metric Type is used to select the metric (transit delay, hop count,

etc) that should be used in configuration of the signaling channels.

• Output Interface is the IPv6 address of the interface used for

forwarding the DCM.

• Cost To Server is the cumulative cost(in terms of the selected

metric) that DCM has incurred so far starting from the server.

45

• Global Timer is the value used by a recipient of the DCM to set its

UCM global timer.

• Sequence Number is a value representing the configuration cycle

for which DCM is used. Initialized to 0, it is incremented by 1 at the server at start of

each refresh interval.

SAAMPacket

9 Varied

Header Payload

SAAMHeader

8 l
T
S

#of
messages

Payload portion for DCM Message

1 4 16 1 16 4 4 l

Type

(4)

Flow
Id

Server Id
Metric
Type

Output
Interface
Address

Cost To
Server

Global
Timer

Sequence
Number

Figure 4.4 DCM Embedded In SAAM Packet.

DCM is used for configuration of server-bound signaling channels. It

should be noted that the Cost To Server field inside the DCM is not employed by the

current version of SCCP. It is placed in the message in order to provide the flexibility for

future extensions.

46

b) UCM Class

The UCM is assigned message type five. A sample UCM is shown in

figure 4.5. In the figure, the second line displays types of data carried inside a UCM

while the first line displays the length of each information field in bytes. The information

carried by the message is used for the following purposes.

SAAMPacket
9 Varied

Header Payload

SAAMHeader
8

#0f

Payload portion for UCM Message

1 4 16 1 16 1

Type
(5)

Flow
Id

Output
Interface
Address

No Of
Descendant
Routers (N)

Descendant
Router Ids

Sequence
Number

Figure 4.5 UCM Embedded In SAAM Packet.

Type is the value assigned to UCM to differentiate it from other

messages.

• Flow Id is the value assigned to server-bound traffic that

configures router-bound signaling channels.

47

• Output Interface Address is the IPv6 address of the interface on the

router from which UCM has originated.

• Number of Descendant Routers is the number of descendant

routers to which a router serves as parent.

• Descendant Router Ids is IPv6 address of descendant routers that

are reachable from the source router of UCM.

Sequence Number is a value representing the configuration cycle in

which UCM is used.

c) PN Message Class

The PN message is assigned message type six. The PN message format is

shown in figure 4.6. The first line of figure shows the length of each field inside a PN

message in bytes while the second line displays the type of data carried inside the

message. The information carried by the message is used for the following purposes.

SAAMPacket
9 Varied

Header Payload

SAAMHeader

8 1
1
s

#of
Updates

Payload portion for ParentNotification Message
1 4 16 1

Type

(6)
Flow id Source Router Id Sequence Number

Figure 4.6 PN Message Embedded In SAAM Packet.

48

• Type is the message type value assigned to PN messages to

differentiate them from other messages.

• Flow Id is the value assigned to traffic that configures router-

bound signaling channels.

• Source Router Id is the id of the router that sends this PN message.

• Sequence Number is the value representing the configuration cycle

for which PN message is used.

3. Messages Designed To Add Flexibility To SCCP

The need for Configuration and TimeScale messages has emerged while

integrating SCCP to the existing SAAM emulation software. In order to configure

distinct signaling channels for each server, a number of parameters need to be set at each

server at initialization of a test-bed. Configuration message is developed to set these

parameters from the DemoStation instead of hard-coding them in the server code.

On the other hand, a TimeScale message is developed to fine tune the time critical

processes (i.e. local and global timers, refresh interval, etc.) to match the CPU power of

the hardware platform.

These messages make the emulation software more flexible by permitting easily

change of variables rather than changing the related part of the code each time a change is

requested. Details of these messages are as follows.

a) Configuration Message Class

The configuration message uses default message type (which is one). The

data carried by a Configuration message and length of each data fields in bytes is shown

49

in figure 4.7. Information carried inside the Configuration message is used for the

following purposes.

SAAM Packet

Varied

Header Payload

SAAM Header

8 l

T
S

#of
Updates

Payload portion for Configuration Message

1 l 4 l 4 4

Type Server Type Flow Id Metric Type
Refresh
Interval

Global
Time

Figure 4.7 Configuration Message Embedded In SAAM Packet.

• Type value for Configuration messages is "1", corresponding to the

default message type.

• Server Type field identifies whether the server that receives the

configuration message will function as primary or backup. Currently, value '0' is

assigned to primary server and '1' is assigned to backup server.

• Flow Id field represent the value assigned to router-bound

signaling traffic originating from the server. In the current implementation of SCCP,

typically value ' 1' is used with primary server and '3' is assigned to backup server.

50

• Metric Type field identifies the algorithm that will be used to

configure the signaling channels.

• Refresh Cycle Time field represents duration of time interval in

milliseconds after which signaling channels will be re-configured periodically.

• Global Time field represent the value that will be advertised by the

server to the neighbor routers in order to set their global timers.

The metric type field adds flexibility to SCCP. As different algorithms are

developed to configure signaling channels, the algorithm to run in SAAM emulation

software needs to be determined. The Configuration message specifies the algorithm to

execute eliminating any need of hard-coding.

b) TimeScale Class

The TimeScale message is assigned the default message type too. It only

carries a single data field called TimeScale. This field carries an integer factor (e.g., 100)

for scaling network time parameters (e.g., UCM global and local timers) to match the

hardware speed of the platform on which emulation software is running. One TimeScale

message is sent to each SAAM node when the topology is initialized. The ability to scale

time parameters adds great flexibility to test emulation software on a topology made of

hosts with very different hardware speeds.

51

SAAM Packet
9 Varied

Header Payload

SAAM Header

8 1
T
S

#of
Updates

Payload Of Time Scale Message
1 4

Type Time Scale

Figure 4.8 TimeScale Message Embedded In SAAM Packet.

C. CLASSES ADDED TO SAAM EMULATION SOFTWARE FOR

IMPLEMENTION OF SCCP

Besides the messages that are already discussed, a number of classes have been

added to existing SAAM emulation software for implementation of SCCP (see Appendix

D). These classes process the configuration messages in accordance with the SCCP

algorithm to establish the signaling channels for each server deployed in the SAAM

region.

1. Serverinformation Class

In a SAAM region with multiple servers it is vital not to use parameters

associated with one server for another server. For this reason Serverinformation class is

designed to store the following parameters that need to be kept per server basis at each

router.

52

• notificatonBuffer is a Vector class object that is used to store the id's of

child routers whose PN messages are received.

• reachableRoutersBuffer is a Vector class object that is used to store the

ids of descendent routers that are learned upon receive of UCMs from child routers.

• globalTimer is a Timer class object that is used to prevent infinite wait for

aUCMfrom a child router.

• localTimer is a Timer class object too. It is used to determine whether a

router is a leaf. A leaf router should not wait for a PN message. Upon expiration of local

timer the router will conclude that it is a leaf router.

• lastSqHeard field is used to store the last sequence number heard from the

server. The sequence number field inside DCM, UCM and PN messages are compared

with that stored value to determine whether they are fresh or obsolete old messages. A

router deduces that signaling channels are re-configured when it receives a DCM with a

higher sequence number value than the stored value.

• serverDCMReceived is a boolean variable. It represents whether a DCM is

or is not received from the server for the current configuration cycle.

• serverFlowId is an integer value. It holds the flow id assigned to the server

for which Serverinformation class object is created.

• numberOfChildren is an integer value. It holds the number of descendant

routers a router has.

The serverFlowId data member links a Serverinformation class object to a server.

The AutoConfigurationExecutive class accesses and manipulates data members and

methods of Serverinformation class while processing DCM, UCM and PN messages. The

53

flow id field inside these messages is used as the key to determine the appropriate

Serverinformation object to manipulate during processing.

2. AutoConfigurationExecutive Class

The majority of functions that are performed by SCCP are implemented in

AutoConfigurationExecutive class. It receives DCM, UCM and PN messages from

ControlExecutive class and processes them. The following tasks are executed during

processing of these messages.

a) Processing DCM

When a DCM is received, a router first determines whether it knows the

server sending it or not. This is accomplished by checking the flow id field inside the

DCM. If it is the first DCM heard from the server, the router creates a Serverinformation

and RouterBoundCtrlTable class objects. The Serverinformation object is used during

process of configuration messages. On the other hand, RouterBoundCtrlTable object is

used to store the router-bound signaling channel entries.

Upon checking the flow id and creating the aforementioned objects if

necessary, the sequence number inside the DCM is checked to decide whether to process

or drop it. The message is processed if it carries a higher sequence number than the

lastSqHeard data member of the Serverinformation object. Any DCM with an old

sequence number is dropped without further concern.

If a DCM satisfies the conditions to be processed, the router first places an

entry into the FlowRoutingTable of the server sending the message. That entry is

associated with the server-bound signaling channel and it is used to handle server-bound

signaling traffic. It is created using the previous node address and flow id fields inside
54

the DCM. It should be noted that as a convenience the flow id of the server-bound

signaling channel entry is set one higher than the flow id learned from the DCM. Upon

completing configuration of server-bound signaling channel, the router sends a PN

message to its parent router and DCMs to all its neighbor routers except the parent.

Process of DCM, is completed by setting the local and global timers. A

local timer value of 40 milliseconds is hard-coded in the current emulation software. It is

adjusted to the platform using the TimeScale class object discussed earlier. The value of

the local timer is basically proportional to the transmission delay between the child and

the parent routers and processing delay at the child router. On the other hand

determination of the global timer is more complex since it is related to the distance of the

parent from its farthest leaf child rather than neighboring child routers. In current

implementation, a maximum global time value of 200 milliseconds is sent to each server

inside configuration message. The server advertises this value to its neighbors inside the

DCM. From there on each router decreases the global time value by 30 milliseconds and

advertises it inside the DCM to the neighbors.

b) Processing PN Message

When a router receives a PN message, first it determines the

Serverinformation object to manipulate during processing. This is achieved by use of the

flow id field inside the message. Then, the router checks the sequence number inside the

message to be sure that the message belongs to the current configuration cycle. If the PN

message carries a sequence number that is equal to the lastSqHeard data member of

Serverinformation object, the id of child router inside the message is placed into the

notificationBujfer. A PN message with an old sequence number is dropped. Moreover,

55

the router cancels its local timer if it is receiving a PN message for the first time for the

current configuration cycle.

c) Processing UCM

Similarly to PN message processing, a router first determines the

appropriate Serverinformation object to manipulate during process of a UCM message. It

then checks the sequence number inside the UCM to make sure it is belong to the current

configuration cycle. If the sequence number inside the message is equal to the last

sequence number stored for the server for which the UCM is deployed, the id of the child

router which sent the UCM is searched for in the notificationBuffer. This is done to

ensure that UCM is received from a child router.

Upon successfully performing the sequence number and source id checks,

the router places an entry into the RouterBoundControlChannelTable for all descendant

routers it has learned of from the UCM. These entries are the router-bound signaling

channels to handle router-bound signaling traffic. After establishing the channels, ids of

descendant routers are stored in the reachability/Buffer in order to obtain them easily

should the router decides to send a UCM to its parent.

Receipt of UCMs from all children or expiration of the local or global

timer triggers sending of a UCM. Therefore, the router receives those descendant router

ids from the reachabilityBuffer and appends its own id to them. It places these ids into a

UCM and sends it to parent router.

56

3. TimerHandler Class

TimerHandler is an inner class of AutoControlExecutive that implements

ActionListener interface. It triggers UCM sending upon expiration of local or global

timer.

4. ServerTableEntry Class

A ServerTableEntry class (see figure 4.9) has flowld,

RouterBoundControlChannelTable and serverAddress data members. A

ServerTableEntry class object links a server to its RBCCT.

|[g.* Currently displaying: SecveiT able HEsIBl

File Protocol Stack Routing Tables Open Channels Active Ports

Flowtti RBCCT Serverld

■w

1 RBCCT 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1
3 RBCCT 99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2

'

Figure 4.9 Sample ServerTable.

5. ServerTable Class

ServerTable class holds the ServerTableEntry objects in a Vector type data

structure. It implements the TableResidentAgent interface and displays the entries in a

GUI (Graphical User Interface) as shown in figure 4.9.

57

6. RouterBoundCtrlChTableEntry Class

RouterBoundCtrlChTableEntry class object (see figure 4.10) corresponds to a

router-bound signaling channel. It has serverFlowId, destRouterlD, nextHop and

goodness data members. The serverFlowId data member is used as the key to determine

which RBCCT a router-bound signaling channel entry should be placed. The goodness

field is an integer value that identifies the sequence number of the configuration cycle

during which the entry is obtained.

7. RouterBoundCtrlChTable Class

RouterBoundCtrlChTable class extends Hastable and implements

TableResidentAgent classes. It holds RouterBoundCtrlChTableEntry class objects in hash

table type data structure and displays the stored entries by GUI. A sample

RouterBoundCtrlChTable class object with a number of entries is shown in figure 4.10

below.

fe* Currently displaying: Router-bound Control Channel Table (1)

Rle ProtocolStack Routing Tables Open Channels Active Ports

HEB

Destination Router ID Next hop IPv6 Address
99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1 99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2 99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.2

Goodness

99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1 ;99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.2 1
99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.1199.99.99.99.1.O.O.O.O.O.O.Q.O.Q.0.2 J1

Figure 4.10 Sample RouterBoundCtrlChTable.

58

D. MODIFIED CLASSES

In addition to creation of new classes for deployment of SCCP into the existing

SAAM emulation software, a number of new methods have been introduced and a

number of existing methods have been modified in the following classes (see Appendix

E).

1. ControlExecutive Class

a) ControlExecutive ()

The method has been modified to instantiate AutoConfigurationExecutive

class and Serverinformation class objects.

b) boolean getlsServer ()

This method is added to return whether a host in the test-bed is simulating

a server or a router. A host by default runs as a router. It is detrmined to be a server when

it receives ServerAgent class byte codes from DemoStation during initialization.

c) IPvöAddress getRouterld ()

SCCP uses router id to discriminate routers. It defines router id to be the

maximum interface address on the router. Router id is determined during the installation

of interfaces from the DemoStation. This method is added to return the id of the router.

d) ServerTable getServerTable ()

This method is added to return the ServerTable class object for other

classes that require access to it.

59

e) int getTimeScale()

Control Executive class receives a Timescale message from the

DemoStation and processes it by initializing the integer data member called

timeScale. This method is added to return the timeScale data member for the classes

that requires to access to it.

f) void processMessage (Message message)

This method processes the messages that ControlExecutive receives from

PacketFactory. It has been modifies to handle the DCM, UCM, ParentNotification and

TimeScale messages. While the method completely processes the TimeScale message it

passes DCM, UCM and ParentNotificaion messages to the AutoConfigurationExecutive

class.

g) void receiveEvent (SaamEvent se)

This method is modified to set the boolean variable isServer to true when

a packet containing ServerAgent class byte codes is received from the DemoStation.

Since only servers are sent this packet it has been used as the criteria to distinguish the

servers and routers.

h) void sendDCM(Object sender, DCM message, int flowID, short

sourcePort, IPvöAddress destHost, short destPort)

This method is added for sending a DCM.

i) void sendPN(Object sender, ParentNotification message, int

flowID, short sourcePort,IPv6Address destHost,short destPort)

This method is added for sending a ParentNotification message.

60

j) void sendUCM (Object sender, UCM message, intflowID, short

sourcePort, IPvöAddress destHost, short destPort)

This method is added for sending a UCM.

k) void standUpInterface(InterfaceID id)

The routers and servers in SAAM region learn the addresses of interfaces

on them from the DemoHello message they receive from DemoStation during

initialization. This method has been modified to determine the id of the router/server.

Initially the first received interface address is taken as the id. Later as other interfaces are

initialized they are compared to the id already in place. If the new interface has higher

IPv6 address it is designated as the id. As a consequence of interface failure id may not

be the highest IPv6 address at all times. The current implementation employs the same id

and ignores the affect of interface failures on id change.

I) IPvöAddress getServerBoundNextHop()

This method is cancelled from the existing emulation software. It was

implemented before deployment of SCCP in order to access the hard coded next hop

address for server-bound messages.

2. PacketFactory Class

a) void appendDCM(DCM downward)

This method has been added to put a DCM into byte array format.

b) void appendPN(ParentNotification pn)

This method has been added to put a ParentNotification message into byte

array format.

61

c) void appendUCM(UCM ucm)

This method has been added to put a UCM into byte array format.

d) byte [] getDCMBytes()

getDCMBytes method has been added to return the byte array that

represents a DCM.

e) byte [] getPNBytes ()

getPNBytes methods has been added to return the byte array that

represents a ParentNotification message.

f) byte U getUCMBytes()

getUCMBytes method has been added to return the byte array that

represents a UCM.

g) void processPacket()

The method has been modified in order to pass DCM, UCM and

ParentNotification messages to ControlExecutive class for further processing.

3. RoutingAlgorithm Class

a) voidforwardPacket(IPv6Packet packet)

ForwardPacket method has been modified to conform to the new routing

table formats introduced upon deployment of SCCP. In SAAM, traffic requiring QoS and

traffic used for signaling purposes carries nonzero flow id while best-effort traffic carries

flow id of zero. ForwardPacket method forwards packets based on the flow id field inside

them. It first determines which routing table to query to find out the next-hop address. If

the flow id of a packet is equal to the flow id assigned to server-bound signaling channels

the next-hop address is determined by querying FlowRoutingTable. On the other hand, if
62

the packet carries the flow id that is assigned to router-bound signaling channels, RBCCT

of the corresponding server is queried for determination of next hop address.

4. ServerAgentSymetric Class

This class is just renaming of existing ServerAgent class in existing emulation

code. It is intended to represent the situation when physical links are assumed to incur the

same delay to packets in both directions.

a) void install (ControlExecutive controlExec)

This method is modified to call the autoconfig() method of Server class.

b) void processMessage (Message message)

The processMessage method is modified to process the Configuration

message received by the server during initialization. Upon receipt of a Configuration

message, it is passed processConfiguration() method of Server class for further

processing.

5. Server Class

a) void autoConfig()

This method is added to create a Java Thread. That thread starts

configuration of signaling channels by periodic DCM sending to the SAAM region. The

thread calls run() method. Run method sleeps initially. Duration of that sleep is required

to be long enough to ensure all the routers in the SAAM region are up and ready to

receive messages used in conjunction with SCCP. After this sleep time, the server sends a

DCM to neighbor routers. It then sleeps again until the next signaling channel refresh

cycle. The refresh interval used in the current implementation of SCCP is hard-coded

63

inside Configuration message. A refresh interval cycle of 2 minutes has been used during

test runs of SCCP. This value is larger than optimal for a SAAM environment. The

precise determination of refresh interval is beyond the scope of this thesis and a topic for

follow-on thesis work.

b) void processConfiguration ()

Using the information carried inside the Configuration message, the server

initializes its type (i.e. Primary or Backup), flow id to use inside router-bound signaling

packets, metric type that represents the algorithm to employ in order to establish the

signaling channels, signaling channel refresh interval and global timer to advertise to the

directly connected routers.

c) void sendDown (IPvöAddress srcInt,IPv6Address des)

This method is implemented to send a DCM message from the server to

neighbor routers.

d) setSeguenceNumberForDcmSending ()

The setSeguenceNumberForDcmSending method increments the sequence

number by one and place the incremented sequence number inside the DCM. As a result

a DCM with a higher sequence number is sent to the neighbor routers periodically.

e) getSeguenceNumberForDcmSending ()

This method is added to return the sequence number for the current

configuration cycle.

64

V. TESTOFSCCP

SAAM emulation software has been tested on a sample two-server and four-

router topology upon deployment of SCCP. In this chapter, the resulting signaling

channels are presented using screen captures of the Graphical User Interface (GUI)

displays at the end of the test. First, the sample topology is described. Then each phase of

SCCP execution is demonstrated.

A. DESCRIPTION OF TEST TOPOLOGY

SCCP is tested on the topology shown in figure 5.1. Table 5.1 displays the IPv6

addresses, IPv4 addresses and MAC addresses of the nodes in the test topology. The IPv4

and MAC addresses are shown in figure 5.1 as well.

Node Name Router Id Ipv4Address Interface Interface IPv6 Address

Primary 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1 131.120.8.135 0 99.99.99.99.0.0.0.0.0.0.0.0.0.

Backup 99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2 131.120.8.138 13 99.99.99.99.6.0.0.0.0.0.0.0.0.

Router A 99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1 131.120.8.147

1 99.99.99.99.0.0.0.0.0.0.0.0.0.

'2 99.99.99.99.1.0.0.0.0.0.0.0.0.

3 99.99.99.99.2.0.0.0.0.0.0.0.0.

4 99.99.99.99.3.0.0.0.0.0.0.0.0.

Router B 99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1 131.120.8.139 5 99.99.99.99.1.0.0.0.0.0.0.0.0.

6 99.99.99.99.5.0.0.0.0.0.0.0.0.

Router C 99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1 131.120.9.76 7 99.99.99.99.3.0.0.0.0.0.0.0.0.

8 99.99.99.99.4.0.0.0.0.0.0.0.0.

Router D 99.99.99.99.7.0.0.0.0.0.0.0.0.0.0.1 131.120.9.73

9 99.99.99.99.5.0.0.0.0.0.0.0.0.

10 99.99.99.99.2.0.0.0.0.0.0.0.0.

11 99.99.99.99.4.0.0.0.0.0.0.0.0.

12 99.99.99.99.6.0.0.0.0.0.0.0.0.

Table 5.1 Node Information Of Sample SAAM Topology.

Each node uses the TCP/IP protocol come with the Windows NT or Windows

2000 operating system. In the figure, there is a primary server and a backup server.

65

Multiple server deployment in the same SAAM region is motivated by fault tolerance

(see reference 9) requirements.

ROUTER

B

131.120.8137 h

ROUTER

D

1311208155

SERVES

131120,8,138

ROUTER

A

1311208147

a

ROUTER

C

131120.9146

Figure 5.1 Sample Test Topology.

n
I

66

B. TESTING OF SCCP

The purpose of testing is to figure out whether SCCP accomplishes the tasks that

it is designed for or not. SCCP is required to perform the following tasks upon execution

in order to be regarded successful.

• The router-bound and server-bound signaling channels must be configured

for each server in a S AAM region.

• Signaling channels should form a spanning tree rooted at the server. Each

router in the S AAM region must be included in the spanning tree.

• Configured signaling channels must not have any loops.

• Configured signaling channels must be consistent. They must take the

packets to required destinations rather than misrouting the packets to random

destinations. For example, if router B designates router A as parent then router A should

have knowledge of router B as its child.

• The periodical re-configuration signaling channels must be performed

correctly without mixing channels that have been configured during different refresh

cycles.

SCCP has been tested in two phases. The first phase is the initialization of the

test-bed. The second phase is the actual running of SCCP that configures the signaling

channels. Furthermore, the second phase may be analyzed for a single or multiple refresh

intervals. Each of these phases is explained as follows.

67

1. Initialization of Test-Bed

In order to emulate the SAAM network environment, the nodes need to be

initialized with a number of messages and resident agents. A SAAM router is initialized

with InterfacelD, ARPCacheEntry, EmulationTableEntry and TimeScale messages as

well as Scheduler, ARPCache, FlowRoutingTable resident agents. A SAAM server is

initialized with a ServerAgent resident agent and a Configuration message in addition to

the messages and resident agents for a router.

The messages and resident agents are sent to each node from a DemoStation

program (see Appendix C) that may run on any host in the physical network. At the end

of initialization the routers and servers will have the necessary emulation tables and ARP

cache tables to exchange SAAM packets. These tables are described below.

a) Emulation Tables

In SAAM each node interface has an IPv6 address and a MAC address.

The physical transport of packets between nodes is accomplished via translation of IPv6

address to IPv4 address by the Translator class in the top-level saam package (see

reference 7). Each node has an emulation table that stores the mapping between the IPv6

and IPv4 addresses of the neighboring interfaces. Upon processing the

EmulationTableEntry messages the servers and routersupdate their emulation tables. The

results are shown below.

68

^jCuirently displaying: Emulation Table

FUe Protocol Stack Routing Tables Open Channels Active Ports
mm

IPv6 NextHop Address IPv4 Address
99.99.99.99 0.0.0.0.0.0.0.0.0.0.0.2 131.120.8.147

•' -

Figure 5.2 Emulation Table Of Primary Server.

ently displaying: Emulation Table

:::Hie!': {Protocol: Routfna Tables s^p^Btl'eirannelssB SActivci'iPorts.:''
Rgpn

slPv6 Nexthlop Address ■IPv^iAddress
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1 11 31.1 20.8.1 55

Figure 5.3 Emulation Table Of Backup Server.

£53 Currently displaying: Emulation Table

File Protocol Stack Routing Tables Open Channels Active Ports
HHB

IPv6 NextHop Address IPv4 Address
99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1 1131.1 20.8.135
99.99 J9^9J.p^q.0.0.0.q.0.0.q;0.2 :131/1 20.8,137
99j99^9j9^9"2ZaoT(DlbTÖ;Öi
99.99^!99!3!ÖZaÖ.oTÖÜÖb^Ö^2 i'Ü"3Tl'2Ö!Ü46

Figure 5.4 Emulation Table Of Router A.

File Protocol Stack Routing Tables Open Channels Active Ports
*1

IPv6 NextHoo Address IPv4 Address

■

4k.

99.99.99.99.1.0.0.0.0.0.0.0.0.0.0.1 131.120.8.147
99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.2 131.120.8.1SS

Figure 5.5 Emulation Table Router B.

69

5 Currently displaying: Emulation Table JDLS1
FBe Protocol Stack Routing Tables Open Channels Active Ports

IPv6 NextHop Address
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.2

IPv4 Address
131.120.8.147
131.120.8.155

Figure 5.6 Emulation Table Of Router C.

HJCurrently displaying: Emulation Table HM*|
File Protocol Stack Routing Tables Open Channels Active Ports

IPv6 NextHop Address IPv4 Address

99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.1 1131.120.8.147

99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.1 1131.120.8.137

99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2 1131.120.8.143

99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1 131.120.9.46

Figure 5.7 Emulation Table Of Router D.

b) ARPCache Tables

Each node has an ARPCache table that stores the mapping between the

IPv6 and MAC addresses of the neighboring interfaces. Figures 5.8 to 5.13 shows the

ARP cache tables which are initialized at the servers and the routers upon processing of

the ARPCacheEntry messages from the DemoStation.

^Currently displaying: ARPCache

Fie Protocol Stack Routing Tables OpenChamete ActwePorts

NextHop Next MAC

99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2

Figure 5.8 ARPCache Table Of Primary Server.
70

fgjCimently displaying: ARPCache HHB
File Protocol Stack Routing Tables Open Channels Active Ports

Next Hop
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1

«MAGS;
12

Figure 5.9 ARPCache Table Of Backup Server.

I^Cuirently displaying: ARPCache BHSi
Hie Protocol Stack Routing Tables Open Channels Active Ports

▼

Next Hop ^■^r^mma Next MAC
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2 \7
99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.2 110
99.99.99.99.1.0.0.0.0.0.0.0.0.0.0.2 |5
99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1 lo

Figure 5.10 ARPCache Table Of Router A.

||§3Currently displaying: ARPCache EBE3!
File Protocol Stack Routing Tables Open Channels Active Ports

1 Next Hop'' "■'■'■ ^'KW'^sSSi; Next MAC
99.99.99.99.1.0.0.0.0.0.0.0.0.0.0.1 2
99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.2 9

Figure 5.11 ARPCache Table Of Router B.

71

Recurrently displaying: ARPCache -IDI Xl
File Protocol Stack Routing Tables Open Channels Active Ports

Next Hop Next MAC
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.2

Figure 5.12 ARPCache Table Of Router C.

IH?Currently displaying: ARPCache Wj$f?"J ''"' :in| m
Hie Protocol Stack Routing Tables Open Channels Active Ports

*

Next Hop Next MAC
99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.1 I3

99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1 8
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2 !13
99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.1 6

Figure 5.13 ARPCache Table Of Router D.

2. Execution of SCCP for A Single Configuration Cycle

SCCP configures the signaling channels employing DCM, UCM and PN

messages. The overhead introduced to the network by these messages is quite low since

these messages are very short (see table 5.2 for the length of each message). While DCM

and PN messages have a fixed length, UCM messages are of variable length since the

number of descendant routers (denoted by N) varies from router to router.

Message Name Length (bytes)
DCM 50

UCM 29+(16*N)

PN 25

Table 5.2 Length Of Messages Employed By SCCP.

72

For the test runs, the local timer duration is hard-coded to 30 milliseconds at each

router. The global timer duration of 200 milliseconds is sent to each server from the

DemoStation via a server Configuration message. The server advertises that value to their

neighbor routers using DCM. Similarly, each router will reduce the global timer value it

receives by 30 milliseconds and advertise the new value to its neighbors using DCM.

At the end of SCCP execution, the server-bound and router-bound signaling

channels that are displayed in figure 5.20 to 5.31 have been formed. In addition to routing

tables in which signaling channel entries are stored, SCCP employs another table at each

node that is called server table. The routing table entries for these channels and server

tables are shown in the figures that follow.

a) Server Tables

A Server Table is used by a node to keep track of the different servers

learned via DCM. A server table entry is composed of router-bound flow id of the server,

the Router Bound Control Channels Table (RBCCT) associated with that server and

address of the server. Using the flow id as key, the node can access and modify the

appropriate RBCCT. The following server tables are formed at the routers and the

servers.

j f-3* Cuir ently displaying: SeiverTable EÜÜE3
File Protocol Stack Routing Tables Open Channels Active Ports "■-.

Flowld RBCCT | Serverld

■

A.

1 RBCCT !99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1
3 RBCCT :99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2

Figure 5.14 ServerTable Of Primary Server.

73

gg Currently displaying: ServerTable

Hie Protocol Stack Routing Tables Open Channels Active Ports
GEE

Flowld RBCCT
RBCCT
RBCCT

Serverld
199.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2
199.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1

Figure 5.15 ServerTable Of Backup Server.

fesCurrently displaying: ServerTable

Hie Protocol Stack Routing Tables Open Channels Active Ports

□am

Flowld RBCCT
RBCCT
RBCCT

Serverld
99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2

Figure 5.16 ServerTable Of Router A.

fes Currently displaying: ServerTable

Hie Protocol Stack Flouting Tables Open Channels Active Ports

sun
Flowld RBCCT

RBCCT
RBCCT

Serverld
99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2

Figure 5.17 ServerTable Of Router B.

74

feä Currently displaying: Server Table
lij&i&"iä;*ä&

File Protocol Stack Routing Tables Open Channels Active Ports

Jöjxj

Flöwlä RBCCT
RBCCT

Serverid
99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1

RBCCT I99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2

Figure 5.18 ServerTable Of Router C.

^Currently displaying: ServerTable

ffllle Protocol Stack Routing Tables Open Channels

■MKPBW

Active Ports

jnjxj

Flöttlä mem
RBCCT

RBCCT

Seiverld

99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1

99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2

Figure 5.19 ServerTable Of Router D.

b) Server-Bound Signaling Channel Tables

The server-bound signaling channel table entries are established via

DCMs and resulting routing table entries are stored in FlowRoutingTable. They are

shown below in figures 5.20 to 5.25.

ku4Currently displaying: FlowRoutingTable mm
File Protocol Stack Routing Tables Open Channels Active Ports

Flow ID 3L Next Hop
199.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2

Figure 5.20 Server-Bound Signaling Channel Table Of Primary Server.

75

mamsmBMEm
FBe Protocol Stack Routing Tables Open Channels *cOw Ports

Flow ID [SL !

0 ! 99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1

Figure 5.21 Server-Bound Signaling Channel Table Of Backup Server

&*£ Currently displaying: FlowRoutingTable

File Protocol Stack Routing Tables Open Channels Active Ports
HlsIE3

Flow ID SL Next Hop
99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.2
99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1

Figure 5.22 Server-Bound Signaling Channel Table Of Router A.

I gg£ Cunently displaying: FlowRoutingTable HHE3
Hie Protocol stack Routing Tables Open Channels Active Ports

Jkl;
Flow ID SL | Next Hop

4 0 99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.2
2 0 199.99.99.99.1.0.0.0.0.0.0.0.0.0.0.1

Figure 5.23 Server-Bound Signaling Channel Table Of Router B.

I^JIIJJJ.ULil.lU.IWWHWJIIWIJIlimHWWW^I^
File Protocol Stack Routing Tables

,|Q|J*1
Open Channels Active Ports

Flow ID I SL Next Hop
99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.2
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1

Figure 5.24 Server-Bound Signaling Channel Table Of Router C.

76

a Currently displaying: FlowRoutingTable

file Protocol Stack Routing Tables Open Channels Active Ports

-iDlxl

FlowlD SL ■Next Hop
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2
99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.1

Figure 5.25 Server-Bound Signaling Channel Table Of Router D.

c) Router Bound Signaling Channel Tables

Router-bound signaling channel tables are configured via UCM and PN

messages. Configured RBCCTs are shown in figures 5.26 through 5.31. The top table of

each figure top displays the signaling channels that are configured for the primary server.

The table at the bottom displays the signaling channels that are configured for backup

server.

| [g3 Currently displaying: Router bound Control Channel Table (1] HHE|
File Protocol Stack Routing Tables Open Channels Active Ports

Destination Router ID Next hoc IPv6 Address I Goodness
!
I

i

I

I

i^i

v

99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2 h
99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2 1
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2 1
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2 1
99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.1 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2 1

K,I.I„...I1!I.IU..|II..L1.I.II ll.l.l|..IJ..]I.IIJ..L.Iin^«T^l^»^l^1—
File Protocol Stack Routing Tables Open Channels Active Ports

umm
Destination Router ID I Next hop IPv6 Address I Goodness

Figure 5.26 Router-Bound Signaling Channel Tables Of Primary Server.

77

Is* Currently displaying: Router-bound Control Channel Table (3) HBO
Rle Protocol Stack Routing Tables Open Channels Active Ports

Destination Router ID

99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1

99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.1

Next hop IPv6 Address
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1

99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1

Goodness

99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1

E^ Currently displaying: Router-bound Control Channel Table (1)

File Protocol Stack Routing Tables Open Channels Active Ports

Destination Router ID Next hop IPv6 Address Goodness

Figure 5.27 Router-Bound Signaling Channel Tables Of Backup Server.

IHiH'HIWW'M 3EESS933EEI35S3I3ZED]
Protocol Stack Routing Tables Open Channels Active Ports

Destination Router ID
99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99. S.O. 0.0.0.0.0.0.0.0.0.1

Next HOP IPV6 Address
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2

1.99.99.99.2.0.0.0.0.0.0.0.0.0.0.2
99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.2
99.99.99.99.1.0.0.0.0.0.0.0.0.0.0.2

Goodness

£2? Currently displaying: Router-bound Control Channel Table (3)

Hie Protocol Stack Routing Tables Open Channels Active Ports

□uu
Destination Router ID Next hop IPv6 Address

99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1
Goodness

Figure 5.28 Router-Bound Signaling Channel Tables Of Router A.

78

Kj Currently displaying: Router-bound Control Channel Table (1)

File Protocol Stack Routing Tables Open Channels Active Ports
MM

Destination Router ID | Next hop IPv6 Address I Goodness

||g Currently displaying: Router-bound Control Channel Table (3) MM B j

File Protocol Stack Routing Tables Open Channels Active Ports

!J!*r"!

Destination Router ID I Next hop IPv6 Address Goodness

Figure 5.29 Router-Bound Signaling Channel Tables Of Router B.

H» Currently displaying: Router-bound Control Channel Table (I)

File Protocol Stack (touting Tables Open Channels Active Ports

Destination Router ID I Next hop IPv6 Address I Goodness

I

»Currently displaying: Router-bound Control Channel Table C3>
FUe Protocol stack Routing Tables Open Channels Active Ports

■JSlJxl

Destination Router ID | Next hop tF>V6 Address I • Goodness

Figure 5.30 Router-Bound Signaling Channel Tables Of Router C.

79

^Currently displaying: Router-bound Control Channel Table (1)

Hie Protocol Stack Routing Tables Open Channels Active Ports
2iBi2<i

Destination Router ID
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2

Next hop IPv6 Address [Goodness
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.211

^Currently displaying: Router-bound Control Channel Table (3) SBP^-' ^Jüi*!
Hie Protocol Stack Routing Tables Open Channels Active Ports

Destination Router ID
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.1

Next hop IPv6 Address
99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.1
99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.1

Goodness

Figure 5.31 Router-Bound Signaling Channel Tables Of Router D.

A complete and robust configuration of signaling channels has been observed at

the end of first SCCP configuration cycle. The servers wait until the start of the next

refresh interval to broadcast a DCM with a higher sequence number to re-configure the

signaling channels.

3. Configured Signaling Channels

The configured signaling channels upon execution of SCCP at the end of the first

cycle are displayed in figure 5.32. The signaling channels that are configured for the

primary server are displayed by dashed lines while the signaling channels that are

configured for the backup server are displayed by straight lines in the figure.

80

ROUTER
B

131.1205.137

ROUTER
D

131120.8.155

ROUTER
A

131.120.8147

Primary
SERVER

1Ü1.11-0.8.135J

■ 10

u

Backup

SERVER

131.120.8.138 j

ROUTER
C

13112a9146

Figure 5.32 Configured Signaling Channels At The End Of First Cycle.

4. Results of Periodical Execution

SCCP has been tested for periodical configuration as well. The periodical

refreshment ensures that device and link failures as well as significant load fluctuations

will be handled timely. There was no topological change for this test. Therefore the same

router and server-bound signaling channels have been configured for all the routers and

servers by SCCP at the end of the second configuration cycle. For brevity, only router-

bound signaling channels configured for the servers are displayed in figures 5.33 and

5.34 to exemplify the periodic reconfiguration. In the figures, the goodness value

81

represents the current configuration cycle number. It is set to match the sequence number

carried by the most recent DCM or UCM message.

Channels Active Ports

Destination Router ID Next hop IPv6 Address Goodness
99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2 2
99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2 2
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2 2
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2 2
99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.1 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2 2

Figure 5.33 Router-Bound Signaling Channel Table Of Primary Server After
Configuration Cycle Two.

[^Currently displaying: Router-bound Control Channel Table (3) HHE
Fie Protocol Stack Routing Tables Open Channels Active Ports

Destination Router ID I Next hoc IPv6 Address Goodness

▼ ■

99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1(99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1 2
99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1 !99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1 2
99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1 :99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1 2
99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1 199.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1 2
99.99.99.99.5 0.0.0.0.0.0.00.0.0.1 !99.gg.99.99.6.Ö.0.Ö.Ö.0.0.Ö.Ö.Ö.Ö.1 2

Figure 5.34 Router-Bound Signaling Channel Table Of Backup Server After
Configuration Cycle Two.

A close look into the tables reveals that SCCP configured signaling channels

neatly by forming the expected spanning tree rooted at the servers. All the routers were

member of the spanning tree and the signaling channels contained no loop. The parent-

child relationship between the routers confirmed that the router and server bound

signaling channels were configured consistently. The periodic re-configuration was

performed without mixing channels of different refresh cycles. Based of all these results,

SCCP is concluded to pass the test successfully.
82

VI. CONCLUSIONS

A. SYNOPSIS AND CONCLUSION

The main purpose of this thesis is to configure signaling channels within a SAAM

region. Signaling channels are required to carry signaling traffic (i.e., traffic carrying

control and management information) between the server and the routers. Robust and

reliable exchange of signaling messages is vital for successful operation of SAAM.

Available routing protocols that are used in today's networks fall short on timely

response to topological changes. Therefore the development of a new routing protocol

was inevitable. In order to configure the signaling channels in a SAAM region, SCCP is

developed and integrated into the existing SAAM emulation software. SCCP establishes

a spanning tree of bi-directional signaling channels rooted at the server. It periodically

refreshes the channels to accommodate topological changes in a timely and pro-active

manner.

Testing of SCCP support that SCCP meets the specific signaling channel

requirements of SAAM. It follows from Chapter 5 that SCCP establishes the signaling

channels for each server in a SAAM region in a consistent manner. Additionally, the

server-rooted channels add the ability to broadcast or multicast from the server to the

routers.

The protocol that has been developed in thesis study has the potential to be used

in any multi-service network architecture (e.g., bandwidth broker or ATM PNNI) that

employs a node serving a number of other nodes similar to SAAM. Another potential

83

deployment area for SCCP might be military command and control systems where a base

station manages and controls a number of subsidiary stations.

B. LESSONS LEARNED

There are several lessons learned during the thesis study. They originated from

the overall nature the SAAM project or specific topic of this thesis.

1. Importance Of Coordination

SAAM is a large-scale project and it covers diverse issues that need to be

addressed before it is put into service. Each of these issues was assigned to a team

member to investigate.

In the end, the solutions developed by different team members have to be

integrated. Therefore extreme attention was required for coordination between team

members and control of the overall system structure.

2. Router Id Implementation

To distinguish each node in SAAM, a router id definition is developed as part of

SCCP. Router id is defined as the highest interface address on the router4. Such a

definition of router id adds robustness to SCCP. For example, a router may designate a

different neighbor router as next hop to server since new channels are built periodically.

If a router informs the server with the address of the interface that it uses to forward

server-bound signaling traffic, the server and the parent router will interpret the same

router as a new router during separate channel configuration cycles. Therefore the router

4 Router id is called server id when it is used for the server

84

id that is unique for each router is declared to the parent regardless of which interface is

used to forward server-bound signaling traffic.

C. FUTURE WORK

This thesis is only an initial effort for development of a protocol that configures

the signaling channels in a SAAM region. The issues that have not been addressed by

SCCP need to be solved. Some of the issues that must be worked out are described below

1. Determination of Refresh Interval

SCCP refreshes signaling channels periodically. For testing purposes, SCCP has

been run using a refresh interval of 2 minutes. That value was just chosen to demonstrate

the execution of SCCP. Different refresh intervals may be required for SAAM regions

with different number of nodes or different hardware and software platforms. Therefore

precise rules for determining the refresh interval should be developed.

2. Determination of Local and Global Timers

Since SCCP utilizes timers to aggregate messages in order to reduce overhead,

duration of these timers need to be determined properly. Currently empirical values have

been used for local and global timers. Precise rules for determining these parameters need

to be worked out. Such work will increase the robustness and flexibility of SAAM.

3. Implementation Of SCCP With Different Metrics For Configuration

of Signaling Channels

Although SCCP has reserved a field inside a DCM to identify the cost metric, the

current implementation does not explicitly use any cost metric for determination of the

85

best route. SCCP regards a link from which the first DCM is received as the best.

Furthermore, this approach assumes that a link designated as a channel for server-bound

signaling traffic will also perform the best for router-bound signaling traffic in the other

direction. Future studies of this topic may focus on eliminating that assumption and using

different metrics (e.g., hop count, link bandwidth, etc.) to determine the best path for

signaling traffic.

4. Determination of Inter-Region Signaling Channels

Currently SCCP only constructs the signaling channels for the lowest level

SAAM region. Therefore enabling SCCP with the capability of determining the signaling

channels between different hierarchical levels of SAAM architecture needs to be

developed before SAAM can be widely deployed.

86

APPENDIX A. DEFINITIONS OF NODES IN ROOTED TREES

Figure A. 1 A Rooted Tree.

A. ROOTED TREES

A rooted tree is a tree in which one of the nodes is distinguished from the others.

The distinguished node is called the root of the tree.

Consider a node x in a rooted tree T with root r. Any node y in the unique path

from the r to x is called an ancestor of x. If y is an ancestor of x, then x is a descendant

of y.

If the last edge on the path from the root r of a tree T to a node x is (y, x), then y is

the parent of x, and x is a child of y. A node with no children is a leaf'[10].

B. CORRESPONDING DEFINITIONS IN THE SAAM ARCHITECTURE

In SAAM region the server is the root and the signaling channels are rooted at the

server.

87

The node that sends the first DCM is the parent while the node that sends the PN

message is a child. All routers that are on the same sub-tree rooted at a parent node are

descendants while the parent is ancestor of all these nodes. A router that does not receive

any PN message is a leaf router.

88

APPENDIX B. SERVER STATE DIAGRAM

Update
Sequence
Niiinhpr

Update RBCCT

 z

Yes

Put PN Sender To
notificationBuffer

Send DCM Receive PN

Drop

Receive UCM

89

THIS PAGE INTENTIONALY LEFT BLANK

90

APPENDIX C. ROUTER STATE DIAGRAM

Receive DCM

Drop

(Stop j

Stop

Update Flow Routing
Table

NO

Stop

Send PN

Set Local Timer
Set Global

Timer

Send DCM

Put PN Sender To
uotificaüonBuffer

NO

Cancel Local Timer

YES

Drop

Send UCM

Cancel Global Timer

YES

Put Children
Into

Reachability
Butter

Update
RBCCT

YES

Receive PN ©
Receive UCM

91

NO

THIS PAGE INTENTIONALY LEFT BLANK

92

APPENDIX D. CLASSES ADDED TO SAAM FOR SCCP DEPLOYMENT

//
// Filename : AutoConfigurationExecutive.Java
// Feb 2000[akkoc] - modified
// 01Aug99 [Vrable] - Created
// Project : SAAM
//

package saam.control;

import java.net.UnknownHostException;
import java.net.InetAddress;
import java.util.*;
import j ava.lang.*;

import saam.router.*;
import saam.net.*;
import saam.message.*;
import saam.residentagent.*;
import saam.residentagent.router.*;
import saam.EmulationTable;
import saam.event.*;
import saam.util.SAAMRouterGui;
import saam.util.Array;

import saam.util.PrimitiveConversions;

import j avax.swing.Timer;
import java.awt.event.ActionListener;
import j ava.awt.event.ActionEvent;

public class AutoConfigurationExecutive {

/ * *
* Value simulating router unaware of server initially
*/
private int CTS=10000;

/ **

* Values specifying timerhandler clas which timer has expired.
*/
private static final int GLOBAL_IDENTIFIER_FOR_TIMERHANDLER = 1
private static final int LOCAL_IDENTIFIER_FOR_TIMERHANDLER = 0

private Timer localTime,globalTime;
private TimerHandler localHandler, globalHandler;
private ControlExecutive controlExec;
private SAAMRouterGui gui;
private Hashtable ConfigurationTable ;

93

/ **

* Handles all work relating to autoconfiguration of control channels by
* properly processing the DCM, UCM,PN messages
*/
public AutoConfigurationExecutive(ControlExecutive ce){

controlExec = ce;
gui = new SAAMRouterGui(toString()) ;
ConfigurationTable = new Hashtable(17);

}//AutoConfigurationExecutive()

/ * *

* Sets cost of reaching server by learning it from DCM message
* ©param int cts value learned from DCM
* ©return void
*/
public synchronized void setCurrentCTS (int cts) {

CTS=cts;
}

/ **

* Returns cost of reaching server by learning it from DCM message
* ©return int value
*/

public synchronized int getCTS(){
return CTS;

}

/**
* Learning a server from DCM this methods place an entry
* in the servertable for that server and also creates a
* RouterBountControlChannel for this server
* ©param int fid flow id of server
* ©param IPv6Address si id of server
* ©return void
*/

public synchronized void createNewServerlnformationdnt fid,
IPv6Address si){

RouterBoundCtrlChTable rotBonConTable = new
RouterBoundCtrlChTable(fid,1711,controlExec);

ServerTableEntry entry = new ServerTableEntry
(fid,rotBonConTable, si) ;

controlExec.getServerTable().add(entry);
Serverinformation serlnf = new Serverinformation(fid) ,•
ConfigurationTable.put(new Integer(fid) ,serlnf);

}// end createNewServerlnformation

/ * *
* Process a DCM calling proper method dpending on the metric
* type field First server table is checked whether the server is
* known
* @param DCM dem DCM message received
* ©return void

94

*/
public synchronized void processDCM(DCM dem){

int fid = dcm.getFlowIdO ;

if(! controlExec.getServerTable().hasServer(fid)){
createNewServerInformation(fid, dcm.getServerId());

}//end if

byte metric = dcm.getMetricType();
if(metric == 0){// Symetric

processDCMSymmetric(dem);
}else{

//future work for hopcount
}

}//end processDCM

/**

* Process a UCM message, if it has proper seqence number and
* if sender of UCM has sent PN message. If this is the last
* UCM waited for, router itself
* will initiate sending UCM to its parent
* ©param UCM ucm UCM message received
* ©return void
*/

public synchronized void processUCM(UCM ucm) {

int fid = ucm.getFlowIdO ;
int sq = ucm.getSequenceNumber();
Serverinformation sin = (Serverinformation)

ConfigurationTable.get(new Integer(fid-1));

if (sq >= sln.getLastSqHeardO){
//sending router is last added to the vector or routerids
IPv6Address senderld = (IPv6Address)

ucm.getRouterlds().lastElement();
boolean contain = false;

if(sin.ExistlnNotBuffer(senderld)){ //old ta.equals(senderld)
contain = true;

}

if(contain){
gui.sendText(" Ucm sender is also PN sender ");
Vector temp = ucm.getRouterlds();
Enumeration e = temp.elements() ;
while(e.hasMoreElements()){

IPv6Address rid = (IPv6Address) e.nextElement();
gui.sendText("Updating recahability with "+rid.toStringO
sln.updateReachableRoutersBuffer(rid) ;
//update routerbound control table here
RouterBoundCtrlChTableEntry ent = new

RouterBoundCtrlChTableEntry(fid-1,
rid,ucm.getSourceInterfaceAddress(),
ucm.getSequenceNumber());

Message mes = (Message) ent;

95

MessageEvent mEvent = new MessageEvent(this.toString() ,
controlExec,controlExec.SAAM_CONTROL_PORT,mes);

controlExec.receiveEvent(mEvent);

} // end while
}//end if contain

}// if relating SQ number

if(!controlExec.getlsServer()){
if(sIn.getNoChildren()== 0){

gui.sendText("Notification Buffer is empty now ") ;
triggerUcmSending(fid-l);

}else{
gui.sendText(" Notification IS NOT EMPTY yet ") ;

}//end else-if
}// end of is isServer

//check for old entries in RBCCT
ServerTable st = controlExec.getServerTable();
st.refreshServerTable((fid-1) , sg) ;

}//end of ProcessUCM

* Process a PN message, if it has proper segence number a
* Sender o Pn is placed in a vector holding Pn sender for
* later check for consistence
* @param PN pn PN message received
* ©return void
*/

public synchronized void processPN(ParentNotification pn){

int fid = pn.getFlowIdO ;
int sq = pn.getSequenceNumber() ;
Serverinformation sin = (Serverinformation)

ConfigurationTable.get(new Integer(fid-1));

if (sg >= sln.getLastSqHeardO){

if(!controlExec.getlsServer()){
if(sin.getLocalTime().isRunning()){

sin.killLocalTime();
}

}// end of server check

IPv6Address senderld = new IPv6Address () ,-
senderld = pn.getRouterldt);
sln.addToNotificationBuffer(senderld);

}
}//end of parent notification

* Process a DCM message ccarrying symmetric metric type, if it has
* proper seqence number. Flowroutingtable entry to go

* server is placed in proper table, PN sent to sender and

96

* DCM is populated from all the interfaces other than received
* Also timers are set to prevent infinite wait
* @param DCM dem DCM message received
* ©return void
*/
private synchronized void processDCMSymmetric(DCM dem) {

int fid = dcm.getFlowIdO ;
int sq = dcm.getSequenceNumber();
ServerInformation sin =

(Serverlnformation)ConfigurationTable.get(new Integer(fid));

if (IsIn.getServerDCMReceivedO & sIn.getLastSqHeard() < sq) {
//to ensure we start with a clear notification buffer
sln.clearNotificationBuffer() ;
sln.setServerDCMReceived(true); // to ignore ones fater the first
sln.setLastSqHeard(sq) ;

IPv6Address serAd = dcm.getServerldf);
IPv6Address toServer = dcm.getSourcelnterfaceAddress () ;
byte si = Interface.CTRL_TRAFFIC_SL,■
FlowRoutingTableEntry entry = new

FlowRoutingTableEntry(fid+1, si,toServer);
// Adding to FlowRoutingTable(entry);
Message mes = (Message) entry;
MessageEvent mEvent = new

MessageEvent(this.toString () , controlExec,
controlExec.SAAM_CONTROL_PORT,mes);

controlExec.receiveEvent(mEvent);

ParentNotification pN = new
ParentNotif ication (f id+1, controlExec. getRouterld () , sq) ;

short sourcePort = (short) controlExec.SAAM_CONTROL_PORT;
short destPort = (short) controlExec.SAAM_CONTROL_PORT;
try{
controlExec.sendPN(controlExec,pN, fid+1, sourcePort,

toServer,destPort);
}catch(FlowException fe){
gui.sendText(fe.toString()+" during PN sending ") ;

}
//send DCM From Interfaces

// For server receiving DCM of other, It does NOT send it to
//anyone and it does not set a global timer
if(!controlExec.getlsServer()){

int gloTimeToSetForThisRouter = dcm.getTimer () -
(30*controlExec.getTimeScale());

populateDCMFromlnterfaces(fid, serAd, toServer,
dem.getMetricType(),
gloTimeToSetForThisRouter,sq) ;

globalHandler = new TimerHandler(fid,sin,
GLOBAL_IDENTIFIER_FOR_TIMERHANDLER) ;

globalTime = new Timer(gloTimeToSetForThisRouter,
globalHandler);

97

sln.setGlobalTime(globalTime);
sin.globalTimeStart();

}

localHandler = new
TimerHandler(fid,sIn,LOCAL_IDENTIFIER_FOR_TIMERHANDLER);
// zero for local, 1 global

localTime=new Timer(40*controlExec.getTimeScale() , localHandler
sln.setLocalTime(localTime);
sin.localTimeStart();

}else{
gui.sendText("A DCM with improper SQ") ;

}

} //end of processDCMSymetric

private void processDCMHopCount(DCM dem){
//future work

} //end of processDCMHopcount

* Method to send received DM from all the interface on
* the router except the interface from which it was received
* ©param int fid flowid of server sending this DCM
* ©param IPv6Address serverld Id of server initiating DCM
* ©param IPv6Address tser interace from which the DCM
* has been received
* ©param byte currentMetric metric used in DCM
* ©param int gloTim global timer set by this router
* ©param int seg current sequence number
* ©return void
*/

private synchronized void populateDCMFromlnterfaces(int sFid,
IPv6Address serverld, IPv6Address tSer,
byte currentMetric,
int gloTim, int seq){

byte [] networkNotToSend = tSer.getAddress() ;

for(int i=0; i< controlExec.getlnterfaces().size();i++){
Interface thislnterface =

(Interface)controlExec.getlnterfaces().get(i);

int match = 0;
byte[] outboundlnterfaceBytes =

thislnterface.getID().getIPv6().getAddress();
int bytesToCheck = 5;

for(int index=0;index<bytesToCheck;index++){
if((networkNotToSend[index]&0xFF)==

(outboundlnterfaceBytes[index]&0xFF)){
match++;

. }//if
}//for

98

// sending from unmatching interfaces
IPv6Address destv6Address = null;
if(match!=bytesToCheck){
EmulationTable eTable = controlExec.getEmulationTable();
EmulationTableEntry entry = eTable.lookByNetworkAddress(

thislnterface.getID().getIPv6()) ;
destv6Address = entry.getNextHopIPv6();
IPv6Address si = thislnterface.getID().getIPv6 ();
DCM dcmToDown = new DCM(sFid,serverId,currentMetric,si,

this.getCTSO ,
gloTim,seq);

short srPort = (short)controlExec.SAAM_CONTROL_PORT;
short dPort = (short)controlExec.SAAM_CONTROL_PORT;
try{
gui.sendText("Forwarding DCM to " +

destv6Address.toString() + "on "+

thislnterface.getID().toStringTEMP()) ;
controlExec.sendDCM(controlExec,dcmToDown,sFid,srPort,

destv6Address,dPort);
}catch (Exception fee){
gui.sendText(fee.toString());

}
}//last if

}//for

}//end of populate

/**

* Method initiates sending UCM message to the parent of the roueter
* @param int fidOfServer flowid of server
* ©return void
*/

private synchronized void triggerUcmSending(int fidOfServer){

Serverinformation sin = (Serverinformation)
ConfigurationTable.get(new Integer(fidOfServer));

//since did not set globalTime for server, need to check whether
//this is null or not
if (sln.getGlobalTimeO !=null){

if(sin.getGlobalTime().isRunning()){
sin.killGlobalTime();

}
} // end of if testing for null
try{
Message message = (Message)(new

FlowRoutingTableEntry (f idOfServer+1)) ,-
IPv6Address upToServer=

controlExec.getRoutingAlgorithm().
getFromFlowRoutingTable (message).getNextHop();

IPv6Address sinter = controlExec.getRoutingAlgorithm ().
lookByNetworkAddress(upToServer);

//finally as last element add the own router id
sin.updateReachableRoutersBuffer(controlExec.getRouterldO);

99

UCM toSendUp = new
UCM(fidOfServer+1,sinter,

sln.getReachableRoutersBuffer() .size()
, sin.getReachableRoutersBuffer(),sin.getLastSqHeard());

try{
controlExec.sendUCM(controlExec,toSendUp,

fidOfServer+1, (short)controlExec.SAAM_CONTROL_PORT,
upToServer,(short)controlExec.SAAM_CONTROL_PORT);

}catch (FlowException fee){
gui.sendText(fee.toString());

}
sin.setServerDCMReceivedffalse) ;

}catch (Exception e){
gui.sendText(" PROBLEM "+e.toString());

}
// after sending ucm clean buffer holding reachable routers
sin.getReachableRoutersBuffer().clear() ;

}// end of trigger UCM sending

/ * *

* Returns a <code>String</code> representation of this object
* ©return The <code>String</code> representation of this object
*/

public String toString(){
return ("AutoConfigurationExecutive");

} // end of toString()

/**

* Inner class to initiate UCM sending in case a timer expires
*/

class TimerHandler implements ActionListener{
int data;
Serverinformation slnfo;
int localORglobal; //to determine local or global

public TimerHandler(int fd, Serverinformation so,int lg){
data=fd;
slnfo-= so;
localORglobal = lg;

}

public void actionPerformed(ActionEvent event){

if (localORglobal == 0){
slnfo.killLocalTime();

}else if(localORglobal == 1){
slnfo.killGlobalTime();

}
triggerUcmSending(data);

}

}// end of TimerHandler
} //end of class AutoControlExecutive

100

//
// Filename : Serverinformation.Java
// Feb 2000[akkoc] - modified
// 0lAug99 [Vrable] - Created
// Project : SAAM
//

package saam.control;

import Java.util.Vector;
import Java.util.Enumeration;
import j avax.swing.Timer;
import java.awt.event.ActionListener;
import Java.awt.event.ActionEvent;

import saam.util.Array;
import saam.net.IPv6Address;
import saam.util.PrimitiveConversions;

public class Serverinformation {

private Vector notificationBuffer;
private Vector reachableRoutersBuffer;
private Timer globalTime = null;
private Timer localTime= null;
private int sequenceNumber=0;
private int lastSqHeard;
private boolean serverDCMReceived = false;
private int serverFlowId;
private short numberOfChildren = 0;

/ **

*Class to keep specific values for a server. Object of this class
*is created for each server. These values are necessary to
*properly process DCM, UCM,PN messages
*/

public Serverinformation (int fid) {
notif icationBuf fer = new VectorO;
reachableRoutersBuf fer = new VectorO;
serverFlowId = fid;

}

/ **
* Returns id of server
* ©return int value
*/

public int getServerFlowIdO{
return this.serverFlowId;

}

* Clear the Notification buffer which hold ids of pn senders
* ©return void

101

*/
public synchronized void clearNotificationBuffer(){

notificationBuffer.clear();
}

/**

* Check whether a an IPv6Address representing the router id is in
* notification buffer
* ©return boolean value
*/

public synchronized boolean ExistlnNotBuffer(IPv6Address adr){
Enumeration ec = notificationBuffer.elements();

while (ec.hasMoreElementsO) {
IPv6Address ta = (IPv6Address) ec.nextElement();
if(ta.equals(adr)){

if(numberOfChildren > 0){
numberOfChildren --;

}
return true;

}
}// end while
return false;

}

* Retruns the number of Pn senders
* ©return int value
*/

public synchronized int getNoChildrenf){
return this.numberOfChildren;

}

* Returns Notification buffer which hold ids of pn senders
* ©return Vector of router ids
*/

public synchronized Vector getNotificationBuffer(){
return notificationBuffer;

}

/ * *

*Adds an IPv6Address representing a router id to Notification
* buffer
* ©return void
*/

public synchronized void addToNotificationBuffer(IPv6Address rd) {
notificationBuffer.add(rd);
numberOfChildren ++;

}

* Checks whetrher Notification buffer is empty
* ©return void

102

*/
public synchronized boolean NotificationBufferlsEmpty(){

if (this.notificationBuf fer.isEnvpty ()) {
return true;

}else{
return false;

}
}

/ **

* Returns the vector containg the routers reachable by this router
* ©return vector holding router ids.
*/

public synchronized Vector getReachableRoutersBuffer(){
return reachableRoutersBuffer;

}

/ * *

* Add a router id reachablerouters buffer
* ©return void.
*/

public synchronized void updateReachableRoutersBuffer (IPv6Address rid) {
reachableRoutersBuffer.add(rid);

}

/* *

* Returns the last sequnce number heard from the server
* ©return int sequence number value.
*/
public synchronized int getLastSqHeardO{

return lastSqHeard;
}
/ **

* Sets the sequnce number heard from the server
* ©return void.
*/
public synchronized void setLastSgHeard(int sn){

lastSqHeard=sn;
}

/ **

* Sets the localtime value for that server
* ©return void.
*/

public synchronized void setLocalTime (Timer tm){
localTime = tm;

}

/ **

* Stops the globalTimer
* ©return void.
*/

public synchronized void killGlobalTime (){
if(globalTime != null){

103

if (globalTime.isRunningt)){
globalTime.stop();

}
}

}

* Stops the localTimer
* ©return void.
*/

public synchronized void killLocalTime (){
if(localTime != null){
if (localTime. isRunningO) {

localTime.stop();
} ■

}
}

/ **

* Starts the globalTimer
* ©return void.
*/

public synchronized void globalTimeStart(){
globalTime.start();

}

/ **

* Starts the localTimer
* ©return void.
*/

public synchronized void localTimeStart(){
localTime.start();

}

/**

* Sets the globalTimer
* ©return void.
*/

public synchronized void setGlobalTime (Timer tm){
globalTime = tm;

}

/* *

* Returns the localTimer
* ©return Timer value.
*/

public synchronized Timer getLocalTime (){
return localTime;

}

* Returns the globalTimer
* ©return Timer value.
*/

public synchronized Timer getGlobalTime (){

104

return globalTime;
}
/**

*Check whether DCM has been heard from the server for the current
* cycle
* ©return boolean value.
*/

public synchronized boolean getServerDCMReceived(){
return serverDCMReceived;

}
/ **

* Sets varibale specifying the DCM received from the server
* for the current cycle
* ©return void.
*/

public synchronized void setServerDCMReceived(boolean b){
serverDCMReceived = b;

}

/**

* Returns a <code>String</code> representation of this Message.
* ©return The <code>String</code> representation of this Message
*/

public String toString(){
return("Serverinformation");

}// end toString()

}// end of Serverinformation

105

//
// Filename : DCM.java
// Feb 2000[akkoc] - modified
// 01Aug99 [Vrable] - Created
// Project : SAAM
//

//metricType 0->"First arriving Best Aproach", l-> Hop Count

package saam.message;

import saam.control.ControlExecutive;
import saam.util.*;
import saam.net.*;
import java.io.*;
import java.net.UnknownHostException;

public class DCM extends Message{

private byte[] bytes;
private static int flowld;
private IPv6Address serverld;
private byte metricType;
private IPv6Address sourcelnterfaceAddress;
private int costToServer ;
private int Timer;
private static int seguenceNumber;

/ * *

* Constructs a Configuation message with the values provided.
* ©param int rbcFid flowid used by the server sending this DCM .
* @param IPv6Address svrid id of server sending DCM.
* @param byte mT metric type to use.
* @param IPv6Address srcIFaceAddress intercase that DCM leaves.
* @param int CTS metric value stating cost to server
* @param int Tmr to set globaltimer at router.
* @param int Snumber sequence number of the refreshment cycle.
*/

public DCM(int rbcFid, IPv6Address svrid, byte mT,
IPv6Address srcIFaceAddress,
int CTS, int Tmr,int sNumber){

super(Message.DCM_TYPE);
flowld = rbcFid;
serverld=svrid;
metricType = mT;
sourcelnterfaceAddress = srcIFaceAddress;
costToServer = CTS;
Timer = Tmr;
seguenceNumber = sNumber;

bytes = Array.concat(type,PrimitiveConversions.getBytes(flowld))
bytes = Array.concat(bytes,serverld.getAddress());
bytes = Array.concat(bytes,metricType);

106

bytes = Array.concat(bytes,sourcelnterfaceAddress.getAddress());
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(costToServer));
bytes = Array.concat(bytes,PrimitiveConversions.getBytes (Timer)) ;
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(sequenceNumber));

}

/**

* Constructs a DCM message with the byte array provided.
* ©pararn byte [] ent byte array repreesenting DCM message.
*/

public DCM(byte[] bytes) {

super(Message.DCM_TYPE);
this.bytes = bytes;
flowld = PrimitiveConversions.getlnt(

Array.getSubArray(bytes,1,5)),-

try{
serverld = new IPv6Address(Array.getSubArray(bytes,5,21));

}catch(UnknownHostException uhe){
System.out.println(uhe.toString());

}
metricType =this.bytes[21];
try {

sourcelnterfaceAddress = new
IPv6Address(Array.getSubArray(bytes,22,38));

}catch(UnknownHostException uhe){
System, out.println(uhe.toStringO);

}
costToServer =

PrimitiveConversions.getlnt(Array.getSubArray(bytes,38,42));
Timer = PrimitiveConversions.getlnt(Array.getSubArray(bytes,

42, 46));
sequenceNumber =

PrimitiveConversions.getlnt(Array.getSubArray(bytes,46,50));
}

/ **

* Returns The byte array representation of this Message.
* ©return The byte array representation of this Message.
*/

public byte[] getBytes(){
return bytes;

}
/ **

* Returns the flowid of server.
* ©return int value
*/

public int getFlowId(){
return flowld;

}

107

/ * *
* Returns the length of this Message.
* ©return The length of this Message.
*/

public short length(){
try{
return (short)bytes.length,•

}catch(NullPointerException npe){
return 0;

}
}

* Returns the cost to reach server .
* ©return int value
*/

public int getCTS(){
return costToServer ;

}
/ * *
* returns the cycle time value
* @param int value
*/

public byte getMetricType(){
return metricType;

}

/ * *

* returns the global time value
* @param int value
*/

public int getTimer(){
return Timer ;

}

/ * *
* returns the sequence number
* ©param int value
*/

public int getSeguenceNumber(){
return sequenceNumber ;

}

* returns address of interface from which DCM hhas left the router
* ©param IPv6Address value
*/

public IPv6Address getSourcelnterfaceAddress(){
return sourcelnterfaceAddress ;

}

108

* returns address of server initiating this DCM
* ©param IPv6Address value
*/

public IPv6Address getServerId(){
return serverld;

}
/ * *

* Sets address of interface from which DCM hhas left the router
* ©param void
*/
public void setSourcelnterfaceAddress(IPv6Address adr){

sourcelnterfaceAddress = adr;
}

/**
* sets the the cost to server for dem
* ©return void.
*/

public void setCTS (int cts) {
costToServer= cts;

}

/ **
* sets the the Timer of dem
* ©return void.
*/

public void setTimer (int tm) {
Timer = tm;

}

/**

* Returns a <code>String</code> representation of this Message.
* ©return The <code>String</code> representation of this Message
*/

public String toString(){
return "DCM Message ";

}//end toStringO

}//end of DCM.Java

109

//
// Filename : UCM.java
// Feb 2000[akkoc] - modified
// 01Aug99 [Vrable] - Created
// Project : SAAM
//

package saam.message;

import saam.util.*;
import saam.net.*;
import j ava.io.*;
import java.util.*;
import Java.net.UnknownHostException;

public class UCM extends Message{

private byte[] bytes;
private int flowld;
private IPv6Address sourcelnterfaceAddress;
private int noRouters ;
private Vector routerIDs= new Vector();
private int sequenceNumber;

/ **

* Constructs a UCM message with the values provided.
* ©param int fid flowid used to go server direction.
* ©param IPv6Address srcIFaceAddress address UCM leaves the router.
* ©param int noRtrs no of routers reachable downward.
* ©param Vectot rtrlds ids of routers reachable.
* ©param int Snumber sequence number of the refreshment cycle.
*/
public UCM(int fid,IPv6Address srcIFaceAddress, int noRtrs,

Vector rtrlDs, int sNumber){
super(Message.UCMJTYPE);
flowld = fid;
sourcelnterf aceAddress= srcIFaceAddress ,-
noRouters = noRtrs;
routerlDs = rtrlDs;
sequenceNumber = sNumber;

bytes = Array.concat(type, PrimitiveConversions.getBytes(flowld))
bytes = Array.concat(bytes,sourcelnterfaceAddress.getAddress());
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(noRouters));

if(!rtrlDs.isEmpty()){
byte routerlDs [] = new byte[16*noRouters] ;
byte [] temp;
for(int i= 0; i<noRtrs; i++){

IPv6Address ad = (IPv6Address) rtrlDs.elementAt(i);
temp = ad.getAddress();
//for first element

110

if(i== 0){
routerIDs = temp;

}else{
routerlDs = Array.concat (routerlDs,temp);

} //end else
}//end for

bytes = Array.concat(bytes,routerIDs);
} //end if
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(sequenceNumber));

}

/ **

* Constructs a UCM message with the byte array provided.
* ©param byte [] bytes byte array repreesenting UCM message.
*/

public UCM (byte[] bytes) {
super(Message.UCM_TYPE);
this.bytes = bytes;
flowld = PrimitiveConversions.getlnt

(Array.getSubArray(bytes,1,5));
try {
sourcelnterfaceAddress = new

IPv6Address (Array. getSubArray (bytes, 5, 21)) ,-
}catch(UnknownHostException uhe) {

System.out.println("problem getting sourcelnterface Address ");
}
noRouters =

PrimitiveConversions.getlnt(Array.getSubArray(bytes,21,25));

int startindex =25;
for (int i = 0 ; i<noRouters ; i++){

try{
IPv6Address ta = new

IPv6Address((Array.getSubArray(bytes,
startindex,startindex+16)));

routerlDs.addElement(ta);
}catch(UnknownHostException e){

System.out.println("ADDRESS PROBLEM IN UCM ");
}
startindex = startindex+16;

} // end of for

seguenceNumber =
PrimitiveConversions.getlnt(Array.getSubArray(bytes,
startindex,startindex+4));

}

* Returns The byte array representation of this Message.
* ©return The byte array representation of this Message.

Ill

public bytef] getBytes(){
return bytes;

}

/* *

* Returns the number of routers reachable by that router.
* ©return int value .
*/

public int getNoRouters(){
return noRouters;

}

* Returns vector that holds ids of routers reachable.
* ©return Vector .
*/

public Vector getRouterlds(){
return routerlDs;

}

/ * *

* Returns sequence number used in the UCM message.
* ©return Vector .
*/

public int getSequenceNumber(){
return sequenceNumber;

}
/ * *

* Returns IPv6Address that this message letf the router that
* it is originating from.
* ©return IPv6Address .
*/

public IPv6Address getSourcelnterfaceAddress(){
return sourcelnterfaceAddress;

}
/**
* Returns flowid used in UCM message.
* ©return int value .
*/

public int getFlowId(){
return flowid;

}

/ **
* Returns the length of this Message.
* ©return The length of this Message.
*/

public short length(){
try{

return (short)bytes.length;
}catch(NullPointerException npe){
return 0;

}
}

112

/ * *

* Returns a <code>String</code> representation of this Message.
* ©return The <code>String</code> representation of this Message
*/

public String toString(){
return "UCM Message ";

}//end toStringO

113

//
// Filename : ParentNotification.Java
// Feb 2000[akkoc] - modified
// 01Aug99 [Vrable] - Created
// Project : SAAM
//

package saam.message;

import saam.util. *,-
import saam.net.*;

import java.util. *;
import java.net.*;
/ **

* Message use dto inform the DCM sdender that it is chosen as parent
*/

public class ParentNotification extends Message{

private byte[] bytes;
private int flowld;
private IPv6Address sourceRouterld;
private int sequenceNumber;

/ **

* Constructs a PN message with the values provided.
* ©pararn int fid flowid to go parent node.
* @param int Snumber sequence number of the refreshment cycle.
*/
public ParentNotification (int fid, IPv6Address srcRtrld,

int sNumber){
super(Message.PARENT_NOTIFICATION_TYPE),-
flowld = fid;
sourceRouterId= srcRtrld;
sequenceNumber = sNumber;

bytes = -Array.concat(this.getType(),
PrimitiveConversions.getBytes(flowld));

bytes = Array.concat(bytes,sourceRouterld.getAddress());
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(sequenceNumber));
}

/ * *

* Constructs a PN message with the byte array provided.
* @param byte [] bytest byte array repreesenting PN message.
*/
public ParentNotification(byte[] bytes) {

super(Message.PARENT_NOTIFICATION_TYPE);
this.bytes = bytes;
flowld = PrimitiveConversions.getlnt(

Array.getSubArray(bytes,1,5));
try{

114

sourceRouterld = new IPv6Address(Array.getSubArray(bytes,
5, 21));

}catch(UnknownHostException uhe){
System.out.printlnfuhe.toString());

}
sequenceNumber =

PrimitiveConversions.getlnt(Array.getSubArray(bytes,21, 25)) ;

}//end of cons

* Returns The byte array representation of this Message.
* ©return The byte array representation of this Message.
*/

public byte[] getBytes(){
return bytes;

}

/ **

* Returns The router id sending PN.
* ©return Ipv6Addres value .
*/
public IPv6Address getRouterId(){
return sourceRouterld;

}

* Returns the flowid of used in Pn message.
* ©return int value
*/

public int getFlowId(){
return flowid;

}

/ **

* returns the sequence number
* ©param int value
*/

public int getSeguenceNumber(){
return sequenceNumber;

}

/ * *

* Returns the length of this Message.
* ©return The length of this Message.
*/

public short length(){
try{
return (short)bytes.length;

}catch(NullPointerException npe){
return 0;

115

}
}

/**

* Returns a <code>String</code> representation of this Message.
* ©return The <code>String</code> representation of this Message
*/

public String toString(){
return "Parent notification Message ";

}//end toStringO

116

//

// Filename : RouterBoundCtrlChTableEntry.Java
// Feb 2000[akkoc] - modified
// 01Aug99 [Vrable] - Created
// Project : SAAM
//__

package saam.message;

import saam.net.IPv6Address;
import saam.util.*;
import java.net.UnknownHostException;

/ **

* A RouterBoundCtrlChTableEntry object contains the destination router
* ID (IPv6 address), and an IPv6 address representing the next hop.<p>
* The entry could be either an add or a remove depending on which
* constructor is used. An add is required to have all fields, whereas
* a remove only requires the field that is used as the lookup key in
* the associated table.
* Entries can be retrieved as a byte array using the getBytes()
* method.
*/

public class RouterBoundCtrlChTableEntry extends Message{

private int serverFlowId;
private IPv6Address destRouterlD;
private IPv6 Address nextHop;
private int Goodness;

private byte[] entry;

/**

* Constructs an entry for the Router-bound Control
* Channel Table.
* ©pararn destRouterlD The IPv6 address to be stored.
* @param nextHop IPv6Address to reach router with corresponding id.
* ©param good DCM cycle value for which the entry is valid.
*/
public RouterBoundCtrlChTableEntry(int sFId,

IPv6Address destRouterlD,
IPv6Address nextHop,int good) {

serverFlowId = sFId;
this.destRouterlD = destRouterlD;
this.nextHop = nextHop;
Goodness = good;

entry =
Array.concat(PrimitiveConversions.getBytes(serverFlowId),
destRouterlD.getAddress()) ;

entry = Array.concat(entry, nextHop.getAddress());
entry = Array.concat(entry,

PrimitiveConversions.getBytes(Goodness));
}

117

* Returns the next hop as an IPv6Address object.
* ©return The next hop as an IPv6Address object.
*/

public IPv6Address getNextHop(){
return nextHop;

}

/ * *

* Returns the destination router ID associated with this Message
* ©return The destination router ID associated with this Message
*/

public IPv6Address getDestRouterID(){
return destRouterlD,-

}
/**

* Returns the goodness of the entry
* ©return int value
*/

public synchronized int getGoodness(){
return Goodness;

}

* Returns the serverflowid for which that RBCCT belongs to
* ©return int value
*/

public int getServerFlowId(){
return serverFlowId;

}

/**

* Returns The RouterBoundCtrlChTableEntry as a byte array with
* the destRouterlD in the lowest order bytes.
* ©return The RouterBoundCtrlChTableEntry as a byte array with
* the destRouterlD in the lowest order bytes.
*/

public byte[] getBytes(){
return entry;

}

* Returns a <code>String</code> representation of this entry
* ©return The <code>String</code> representation of this entry
*/

public String toStringO {
return ("Server Flowid"+serverFlowId+"Destination Router ID: "

+ destRouterlD. toStringO +
", Next Hop: " + nextHop.toString()+",Goodness "+Goodness);

}

/ **

* Returns the length of this entry.
* ©return The length of this entry.
*/

118

public short length(){
try{

return (short)entry.length;
}catch(NullPointerException npe){
return 0;

}

119

//
// Filename : Configuration.Java
// Feb 2000[akkoc] - modified
// 01Aug99 [Vrable] - Created
// Project : SAAM
//

package saam.message;

import saam.util.Array;
import saam.util.PrimitiveConversions;

/ **

* Class to send values for setting up servers from demostation
* for each server. By the help of this message server learns to have
* as primary or backup, what flowid to use, which metric type to use
* forming control channels.
*/

public class Configuration extends Message{

private byte serverType;//0-> main, l->backup
private int flowid;
private byte metricType;
private int cycleTime;
private int globalTime;
private byte[] bytes;

I **
* Constructs a Configuation message with the values provided.
* ©param byte sT value specifying server type.
* @param int fid flow id of server.
* ©param byte mT metric type to use.
* ©param int cT cycle time to refresh the region continuosly
* ©param int gT value set the globaltimer at the first router.
*/

public Configuration (byte sT,int fid,byte mT,int cT, .int gT){
serverType = sT;
flowid = fid;
metricType = mT;
cycleTime = cT;
globalTime = gT;
bytes = Array.concat(serverType,

PrimitiveConversions.getBytes(flowid));
bytes = Array.concat(bytes,metricType);
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(cycleTime));
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(globalTime));
}

/ **

* Constructs a Configuation message with the byte array provided.
* ©param byte [] ent byte array repreesenting configuration message.
*/

120

public Configuration (byte[] ent){
bytes = ent;
serverType = bytes[0] ;
flowld = PrimitiveConversions.getlnt(Array.getSubArray(ent,1,5));
metricType = ent[5];
cycleTime = PrimitiveConversions.getlnt(

Array.getSubArray(ent,6,10));
globalTime = PrimitiveConversions.getlnt(

Array.getSubArray(ent,10,14));

}

/ **

* method to return the server type.
* ©return int value.
*/

public byte getServerType(){
return serverType;

}

/ **

* Returns the flowid of server.
* ©return int value
*/

public int getFlowId(){
return flowld;

}

/ **

* Returns the metric type
* ©return byte value
*/

public byte getmetricType(){
return metricType;

}

/ **

* returns the cycle time value
* ©param int value
*/

public int getCycleTime(){
return cycleTime;

}

/ * *

* returns the global time value
* ©param int value
*/

public int getGlobalTime(){
return globalTime;

}

/ * *

* Returns The byte array representation of this Message.

121

* ©return The byte array representation of this Message.
*/

public byte[] getBytes(){
return bytes;

}

* Returns The lenght of message .
* ©return short value .
*/

public short length(){
try{
return (short)bytes.length;

}catch(NullPointerException npe){
return 0;

}
}

I **
* Returns a <code>String</code> representation of this Message.
* ©return The <code>String</code> representation of this Message
*/

public String toString(){
return("Flowld "+flowId+", metrictype "+metricType+" CycleTime

"+cycleTime+" GlobalTime "+globalTime);
}

122

//
// Filename : TimeScale.Java
// Feb 2000[akkoc] - modified
// 01Aug99 [Vrable] - Created
// Project : SAAM
//

package saam.message;

import saam.util.Arrays-
import saam.util.PrimitiveConversions;

/ **

* Class to scale running time of time specific values to platforms
*currently used.
*/
public class TimeScale extends Message{

private int scale;
private byte[] bytes;

/ **

* Constructs a TimeScale with the values provided.
* ©param int sc timescale value to use.
*/

public TimeScale (int sc){
scale = sc;
bytes = PrimitiveConversions.getBytes(scale);

}

/ **

* Constructs a TimeScale message with the byte array provided.
* ©param byte [] byte byte array repreesenting Timescale message.
*/
public TimeScale (byte [] scl){
bytes = scl;
scale = PrimitiveConversions.getlnt(Array.getSubArray(scl,0,4));

}

/**

* Returns the scale value.
* ©return int value.
*/

public int getTimeScale(){
return scale;

}

/**

* Returns The byte array representation of this Message.
* ©return The byte array representation of this Message.
*/

public byte[] getBytes(){
return bytes;

}

123

/ **

* Returns the length of this entry.
* ©return The length of this entry.
*/

public short length(){
try{
return (short)bytes.length;

}catch(NullPointerException npe){
return 0;

}
}

* Returns a <code>String</code> representation of this Message.
* ©return The <code>String</code> representation of this Message
*/

public String toString(){
return("Time scale is "+scale);

}
//end of TimeScale

124

//
// Filename : ServerAgentSymetric.Java
// Feb 2000[akkoc] - modified
// 0lAug99 [Vrable] - Created
// Project : SAAM
//

package saam.residentagent.server;

import saam.control.*;
import saam.residentagent.*;

import saam.server.*;
import saam.event.*;
import saam.message.*;
import saam.util.*;

public class ServerAgentSymetric implements ResidentAgent,
MessageProcessor{

private SAAMRouterGui gui;
private ControlExecutive controlExec;
private Server myServer;

private String[] messageTypes = {"saam.message.Hello",
"saam.message.FlowReguest",
"saam.message.LinkStateAdvertisement",
"saam.message.Configuration", } ;

public void install(ControlExecutive controlExec){
gui=new SAAMRouterGui("ServerAgentSymetric");
this.controlExec=controlExec;
controlExec.registerMessageProcessor(this);
myServer = new Server("classObject", controlExec);

// myServer = new Server("database", controlExec);

gui.sendText("\nCalling My Server method: autoconfig()")
myServer.autoConfig();

}

public void processMessage(Message message){
try{

if(message instanceof Hello){
gui.sendText("Received Message: "+((Hello)message))
gui.sendText("Calling Server method: processHello()
myServer.processHello((Hello)message);

}else if(message instanceof FlowReguest){
FlowReguest request = (FlowReguest)message;
gui.sendText("Received Message: "+ request);
gui.sendText(

"Calling Server method: processFlowRequest()");
myServer.processFlowRequest((FlowReguest)message);

}else if(message instanceof LinkStateAdvertisement){

125

gui.sendText("Received Message: "+
((LinkStateAdvertisement)message));

gui.sendText("Calling Server method: processLSA()");
myServer.processLSA(

(LinkStateAdvertisement)message);
}
//below adde by akkoc
else if(message instanceof Configuration){
gui.sendText("Received Message: "+

((Configuration)message));
gui.sendText("Calling Server method: processConfigurationf)");
myServer.processConfiguration((Configuration)message);

}

}catch(Exception e){message = null;}
}

public String[] getMessageTypes(){
gui.sendText("Server queried my message types");

// gui.sendText("Sending: "+messageTypes[0]) ;
return messageTypes;

}
public String toStringO {

String it = "ServerAgentSymetric listening for: ";
for(int i=0;i<messageTypes.length;i++){

it += "\n" + messageTypes[i];
}
return it;

}//toString()

//the following methods are stubbed out as they are not used.
public void uninstall(){
}
public Message query(Message message){

return message;
}
public void transferState(ResidentAgent replacement){
}
public void receiveState(Message message){
}
public void receiveFlowResponse(FlowResponse flowResponse){
}
public void receiveEvent(SaamEvent event){
}

}

126

//

// Filename : ServerTbale.Java
// Feb 2000[akkoc] - modified
// 01Aug99 [Vrable] - Created
// Project : SAAM
//

package saam.router;

import Java.util.Hashtable;
import Java.util.Vector;
import Java.util.Enumeration;
import Java.net.UnknownHostException;

import saam.control.*;
import saam.net.*;
import saam.event.*;
import saam.message.*;
import saam.util.*;

import saam.residentagent.*;

/**

* The Server Table stores the server flow id and server id
that
* router listens to in the SAAM region
*/

public class ServerTable implements TableResidentAgent,MessageProcessor
{

private TableGui gui;
private Vector index= new Vector() ;
private Vector names = new VectorO;
private ControlExecutive controlExec,-
private String[] messageTypes =

{"saam.message.RouterBoundCtrlChTableEntry"};

private Vector serverEntries= new VectorO;

/**

* The constructor creates a ServerTable .
*/

public ServerTable(ControlExecutive ce){
names.add("Flowld");
names.add("RBCCT");
names.add("ServerId");
int[] columnWidths = {50,150,250};
gui = new TableGui(toStringO, names, columnWidths);
controlExec = ce;
controlExec.registerMessageProcessor(this);

}

/ **

127

* Adds a new entry to the Server Table.
* @param entry The entry to be added to the table.
*/

public synchronized void add(ServerTableEntry entry){
serverEntries.add(entry);
gui.fillTable(getTable());

}

/ **

* Returns the message types processed by the class
* ©return String array represantation of message name.

*/
public String[] getMessageTypes{){
return messageTypes;

}

/ * *

* Removes an entry from the server table.
* ©param entry The entry to be removed from the table.

*/
public void remove(ServerTableEntry entry){

serverEntries.remove(entry);
gui.fillTable(getTable()) ;

}

public Message query(Message message){
return null;

}

/* *

* Retrieves an ServerTableEntry from the table.
* @param fid server id to be used as the lookup key.
* ©return The ServerTableEntry associated with flowid.
*/

public synchronized ServerTableEntry getEntryByFlowId(int fid){
Enumeration ei = serverEntries.elements();
while(ei.hasMoreElements()){

ServerTableEntry entry = (ServerTableEntry) ei.nextElement();
if(entry.getFlowIdf) == fid){
return entry;

}
}
return null;

}

/ * *
* Method to check whether server with specified flow id is in

table.
* ©param fid server flow id to be used as the lookup key.
* ©return boolean value.
*/

public boolean hasServer(int fid){
Enumeration en = serverEntries.elements();

128

while(en.hasMoreElements()){
ServerTableEntry entry = (ServerTableEntry) en.nextElement() ;
if (entry. getFlowIdO == fid) {
return true;

}
}//end of while
return false;

}

/**

* Method to check whether server with specified flow id and
server id

* is in table.
* ©param fid server flow id to be used as the lookup key.

* ©param des id os server.
* ©return boolean value.
*/

public boolean hasEntryForDestination (int fid, IPv6Address des){

Enumeration en = serverEntries.elements();
while(en.hasMoreElements()){

ServerTableEntry entry = (ServerTableEntry) en.nextElement() ;
RouterBoundCtrlChTable tb = entry.getRouterBoundCtrlChTable();
if(tb.hasEntry(des)){
return true;

}
}//end of while

return false;
}

* Method to process servertable entry message
* ©param mes servertable entry message to be processed.
* ©return void.

*/
public void processMessage(Message message){

RouterBoundCtrlChTableEntry entry =
(RouterBoundCtrlChTableEntry)message;

//first find the server to add by searching via flowld
Enumeration e = serverEntries.elements();
while(e.hasMoreElements()){

ServerTableEntry ten = (ServerTableEntry) e.nextElement();
if(ten.getFlowIdO == entry.getServerFlowId()){

ten.getRouterBoundCtrlChTable().add(entry);
}

}//end of while

} //end of process message

/ **

* Method to check and remove RBCCT asociated with that server
* so that routers dead or leaving the SAAM region no more displayed
* ©param fidOfSer server flow id.

129

* @param lsq last sequence number processed.
* ©return void.

*/
public synchronized void refreshServerTable(int fidOfSer, int lsq) {

Enumeration e = serverEntries.elements();
while(e.hasMoreElements()){

ServerTableEntry ten = (ServerTableEntry) e.nextElement();
if (ten.getFlowIdO == fidOfSer){
RouterBoundCtrlChTable tb = ten.getRouterBoundCtrlChTable();
tb.refreshRouterBoundControlTable(lsq);

}
break;

}//end'of while

}// end of refreshServerTable

/ * *

* Returns the entire contents of this RouterBoundCtrlChTable
* or null if this table is empty.
* ©return An array of all router-bound control channel entries
* currently in the table.
*/

public Vector getTable(){

if(serverEntries.isEmpty()) return null;
Vector table = new Vector(serverEntries.size());

Enumeration e = serverEntries.elements();
while(e.hasMoreElements()){

Vector oneRow = new Vector();
ServerTableEntry entry = (ServerTableEntry) e.nextElement();

oneRow.add(""+entry.getFlowId());
oneRow.add(" RBCCT");
oneRow.add(""+entry.getServerAddress());

table.add(oneRow);
}//while
return table;

}//getTable()

public void uninstall(){
serverEntries.clear();

}

/ **

* Method to get a server table enrty by as of server used as a key
* ©param ad id of server
* ©return ServerTableEntry corresponding to key.

130

*/ public synchronized ServerTableEntry
getEntryByServerId(IPv6Address ad){

Enumeration el = serverEntries.elements() ;
while(el.hasMoreElements()){

ServerTableEntry look = (ServerTableEntry) el.nextElement();
IPv6Address address = look.getServerAddress();
if(address.equals(ad)){
//considered equal when server addresses are equal;
return look;

}

}
return null;

}

public void receiveState(Message message){

}

public void receiveFlowResponse(FlowResponse flowResponse){}

public void transferState(ResidentAgent replacement){}

public void install(ControlExecutive controlExec){}
public void receiveEvent(SaamEvent se){}

/**

* Returns the String representation of this Object.
* ©return The String representation of this Object.
*/

public String toStringO {
return "ServerTable";

}//toString()
}

131

//
// Filename : ServerTbale Entry.Java
// Feb 2000[akkoc] - modified
// 01Aug99 [Vrable] - Created
// Project : SAAM
//

package saam.router;

import saam.net.IPv6Address;
import saam.router.RouterBoundCtrlChTable;
import saam.util.*;
import j ava.net.UnknownHostException;

/ **

* A RouterBoundCtrlChTableEntry object contains the destination router
* ID (IPv6 address), and an IPv6 address representing the next hop.<p>
* The entry could be either an add or a remove depending on which
* constructor is used. An add is required to have all fields, whereas
* a remove only requires the field that is used as the lookup key in
* the associated table.
* Entries can be retrieved as a byte array using the getBytes()
* method.
*/

public class ServerTableEntry {

private int flowld;
private RouterBoundCtrlChTable Table;
private IPv6Address serverAddress;

/ **

* Constructs an entry for the Router-bound Control
* Channel Table.
* ©param destRouterlD The IPv6 address to be stored.
*/

public ServerTableEntry(int fid, RouterBoundCtrlChTable table,
IPv6Address srvld) {

flowld = fid;
Table = table;
serverAddress = srvld;

}

/ **

* Returns the next hop as an IPv6Address object.
* ©return The next hop as an IPv6Address object.
*/

public IPv6Address getServerAddress(){
return serverAddress;

}

/ * *
* Returns the flow id of server.
* ©return int value.

132

*/
public int getFlowId(){

return flowld;
}

I **
* Returns RouterBoundCtrlChTable object.
* ©return TRouterBoundCtrlChTable object.
*/
public RouterBoundCtrlChTable getRouterBoundCtrlChTable (){

return Table;
}

/**

* Returns a <code>String</code> representation of this entry
* ©return The <code>String</code> representation of this entry
*/

public String toStringO {
return ("Flowld " + flowId+"ServerId " +

serverAddress.toString()) ;
}

}

133

//

// Filename : RouterBoundCtrlChTable.Java
// Feb 2000[akkoc] - modified
// 01Aug99 [Vrable] - Created
// Project : SAAM
//

package saam.router;

import Java.util.Hashtable;
import Java.util.Vector;
import Java.util.Enumeration;
import Java.net.UnknownHostException;
import saam.control.*;
import saam.net.*;
import saam.event.*;
import saam.message.*;
import saam.util.*;
import saam.residentagent.*;

/**

* The Router-bound Control Channel Table stores the
* next hop IPv6 addresses for server-emitted control traffic
* to reach a given destination router ID.<p>
*/

public class RouterBoundCtrlChTable extends Hashtable
implements TableResidentAgent {

private TableGui gui;
private int flowIdOfServer;
private Vector index= new Vector();
private Vector names = new Vector();
private ControlExecutive controlExec;

* The constructor creates an RouterBoundCtrlChTable with
* initial capacity of capacity. Initial capacity should be a

* prime number to help distribute the entries evenly
* among the hash buckets.
*/

public RouterBoundCtrlChTable(int flowS,int
capacity,ControlExecutive ce){

super(capacity, 0.5f);
flowIdOfServer = flowS;
names.add("Destination Router ID");
names.add("Next hop IPv6 Address");
names.add("Goodness"),-
int[] columnWidths = {190,190,70};
gui = new TableGui(toString(), names, columnWidths);
this.controlExec=ce;

}

/ **

* Adds a new entry in the router-bound control channel
table.

134

* @param entry The entry to be added to the table.
*/

public synchronized void add(RouterBoundCtrlChTableEntry entry){
IPv6Address destRouterlD = entry.getDestRouterlD() ;
String destID = new String(destRouterlD.toString());
put(destID,entry);
gui.fillTable(getTable()) ;

}

/ **

* Returns flowid of server
* ©return int value.
*/

public int getFlowIdOfServer(){
return flowIdOfServer;

}

* Removes an entry from the router-bound control table.
* (Jparam entry The entry to be removed from the table.

*/
public synchronized void remove(RouterBoundCtrlChTableEntry entry){

String destID = entry.getDestRouterlD().toString();
remove(destID);
gui.fillTable(getTable()) ;

}

/ **

* Retrieves an RouterBoundCtrlChTableEntry from the table.
* ©param destID The router ID to be used as the lookup key.
* ©return The RouterBoundCtrlChTableEntry associated with destID.
*/

public synchronized RouterBoundCtrlChTableEntry get(IPv6Address
destID){

return (RouterBoundCtrlChTableEntry) get(destID.toString());
}

* Returns the entire contents of this RouterBoundCtrlChTable
* or null if this table is empty.
* ©return An array of all router-bound control channel entries
* currently in the table.
*/
public Vector getTable(){

if(isEmpty()) return null;
Vector table = new Vector(size());

Enumeration e = elements();
while(e.hasMoreElements()){

Vector oneRow = new Vector();
RouterBoundCtrlChTableEntry entry =

135

(RouterBoundCtrlChTableEntry) e.nextElement();

oneRow.add(""+entry.getDestRouterlD().toString());
oneRow.add(""+entry.getNextHop().toString()) ;
oneRow.add(""+entry.getGoodness()) ;

table.add(oneRow);
}//while
return table;

}//getTable()

//since table resident agent extends resident agents following

public void uninstall(){
clear();

}

public Message query(Message message){
RouterBoundCtrlChTableEntry entry =

(RouterBoundCtrlChTableEntry)message;
IPv6Address destRouterlD = entry.getDestRouterlD();
String destID = new String(destRouterlD.toString());
RouterBoundCtrlChTableEntry look =

(RouterBoundCtrlChTableEntry)get(destID);
return look;

}
public void receiveState(Message message){

add((RouterBoundCtrlChTableEntry)message);
}
/ **

* Check RBCCT to romove entries that have old goodness value.
♦Currently a difference vale greater than 1 is used as a contidion
* for removal
* @param entry The entry to be added to the table.
*/
public synchronized void refreshRouterBoundControlTable(int lastSQ){

Enumeration et = elements();
while(et.hasMoreElements()){

RouterBoundCtrlChTableEntry entry = (RouterBoundCtrlChTableEntry)
et.nextElement();

if((lastSQ - entry.getGoodness())>=2){
remove(entry);

}//end if
}//end while

}//end refresh

/ * *

* Determine whether an entry is in tablke or not.
* ©retrun boolean value
*/

public boolean hasEntry(IPv6Address ds){
Enumeration et = elements!);
while(et.hasMoreElements()){

136

RouterBoundCtrlChTableEntry entry =(RouterBoundCtrlChTableEntry)
et.nextElement();

if(this.contains(ds)) {
return true;

}//end if
}//end while
return false;

}

public void receiveFlowResponse(FlowResponse flowResponse){}

public void transferState(ResidentAgent replacement){}

public void install(ControlExecutive controlExec){}
public void receiveEvent(SaamEvent se){}

/ **

* Returns the String representation of this Object.
* ©return The String representation of this Object.
*/

public String toStringO {
return "Router-bound Control Channel Table ("+flowIdOfServer+")";

}//toString()
}

137

APPENDIX E. CLASSES MODIFIED IN SAAM FOR SCCP DEPLOYMENT

//
// Filename : ControlExeccutive.Java
// Feb 2000[akkoc] - modified
// 01Aug99 [Vrable] - Created
// Project : SAAM
//

package saam.control;

import java.net.UnknownHostException;
import java.net.InetAddress;
import Java.util.*;
import j ava.lang.*;

import saam.Translator;
import saam.router.*;
import saam.net.*,-
import saam.message.*;
import saam.residentagent.*;
import saam.residentagent.router.*;

import saam.event.*;
import saam.util.SAAMRouterGui;
import saam.util.Array;

import saam.util.PrimitiveConversions;
import saam.EmulationTable;

public class ControlExecutive
implements MessageProcessor, SaamTalker, SaamListener{

//some well-known UDP ports
public static final int ECHO_PORT = 7;
public static final int DISCARD_PORT = 9;
public static final int DAYTIME_PORT = 13;
public static final int TIME_SERVER_PORT = 37;
public static final int DNS_PORT = 53;
public static final int WWW_HTTP_PORT = 80;
public static final int CHAT_PORT = 531;

//saam ports/channels
public static final int HIGHEST_WELL_KNOWN_PORT
public static final int MAX_PORT
public static final int SAAM_CONTROL_PORT

= 8000;
public static final int ROUTER_STATUS_CHANNEL

= 80000;

1023;
65531;

* The ControlExecutive registers with itself as a MessageProcessor

138

* capable of
* processing messages of the following types.
*/
private static final String[] messageTypes =

{"saam.message.InterfacelD",
"saam.message.ServerlD",
"saam.message.FlowResponse",
"saam. message.DemoHello",
"saam.message.DCM",
"saam.message.UCM",
"saam.message.ParentNotification",
"saam.message.TimeScale",

};

private static final boolean ROUTER_UP = true;
private static final boolean ROUTER_DOWN = false;

/ * *

* The initial status of the router is false. As key router
* are added, this status is updated to reflect the router's ability
* to route packets.
*/

private boolean routerStatus = ROUTER_DOWN;

/*
* The following boolean variables represent the status of the
* elements necessary to stand up a router.
*/
private boolean helloMessageReceived;
private boolean arpCacheReady;
private boolean fIowRoutingTableReady;
private boolean emulationTableReady;
private boolean outboundlnterfaceReady;

private int interfaceCount;
private int numberOfSchedulersPresent;
private int nextlnboundlnterface;
private SAAMRouterGui gui;
private MainGui mainGui;
private PacketFactory packetFactory;

private Transportinterface transportlnterface;
private ResidentAgent arpCache;

private static RoutingAlgorithm routingAlgorithm;

private Interface currentlnterface;

private Object theLock= new Object();//critical section lock

//below are added by akkoc
private AutoConfigurationExecutive autoConExec;
private int timeScale;
private static RouterBoundCtrlChTable rotBonConTable;

139

private IPv6Address routerId= new IPv6Address();
private static EmulationTable emTable;
private boolean isServer = false;
private ServerTable serverTable;

/* *
* If a ServerlD Message comes from the Demostation,
* the IPv6Address associated with that ServerlD will
* be set as the dest in the IPv6Header of packets sent out
* on Server-bound flow, otherwise, the default IPv6Address
* will be set as the dest.
*/

// private IPv6Address serverIP = new IPv6Address(); //Akkoc removed

/**

* The ServerlD will be sent by the DemoStation. //Akkoc removed
*/

// private ServerlD serverID; //Akkoc removed

/**

* The Vector that contains Interfaces that have been instantiated on
* this router. Default size = 4.
*/

private Vector interfaces = new Vector(4);

/ * *
* The Vector of IDs for each interface that has been instantiated on
* this router. Default size = 4.
*/

private Vector interfacelDs = new Vector(4);

/**
* The Vector of talkers that have passed the registration process
* are authorized to talk on channels.
*/

private Vector activeTalkers = new Vector();

/**
* The Hashtable of ResidentAgents that have been instantiated by the
* ControlExecutive.
*/

private Hashtable agents = new Hashtable();

/ * *
* The Hashtable of ResidentAgentCustomers that have registered to
* receive ResidentAgent replacements as they arrive.
*/

private Hashtable agentCustomers = new Hashtable();

/ * *
* The Hashtable of MessageProcessors that have registered with this
* ControlExecutive.
*/

private Hashtable messageProcessors =
new Hashtable();

140

* The Hashtable of Channels that have been instantiated by CE.
*/

private Hashtable activeChannels = new Hashtable();

I **

* The Hashtable of channels that a given SaamTalker is registered to
talk on.

*/
private Hashtable channelsTalkerHas = new Hashtable();

/ **

* The Hashtable of channels that a given SaamListener is registered
to listen on.

*/
private Hashtable channelsListenerHas = new Hashtable();

/ **

* The Hashtable of Objects that have requested flows.
*/

private Hashtable flowRequestors = new Hashtable();

/ **

* The Hashtable of Objects that have been assigned flows.
*/

private Hashtable assignedFlows = new Hashtable();

/ **

* Instantiates and sets up communication with all Objects that are
necessary

* to allow the ControlExecutive to start receiving ResidentAgents
and Messages.

*/
public ControlExecutive(){
mainGui = new MainGui(this,"SAAM Router Prototype");
gui = new SAAMRouterGui(toString());
transportlnterface = new Transportinterface(this);
//for receiving inbound packets
packetFactory = new PacketFactory(this);

emTable =new EmulationTable();
arpCache = new ARPCache();
serverTable = new ServerTable(this);
autoConExec = new AutoConfigurationExecutive(this);

//this should eventually become a ResidentAgent
routingAlgorithm = new RoutingAlgorithm(this, arpCache);

//Here is where the CE registers itself as a MessageProcessor
registerMessageProcessor(this);

/* Enable Talking on channel that Translator is listening on for
router status updates.*/

141

try{
addTalkerToChannel(this, ROUTER_STATUS_CHANNEL);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}

try{
//Get ownership of the SAAM_CONTROL_PORT so other applications
//cannot. When the Transportinterface sees a packet destined
//for this port, it will not forward the packet directly on
//the SAAM_CONTROL_PORT, rather, it will forward the packet
//to the PacketFactory on the

ProtocolStackEvent.PACKETFACTORY_CHANNEL
monitorPort(this, SAAM_CONTROL_PORT);
gui.setTextField("Monitoring emulated port "+SAAM_CONTROL_PORT);

}catch(PortAccessDeniedException pade){
gui.sendText(pade.toString());

}
mainGui.updateDisplay();

}//ControlExecutive()

/ * *

* Returns the IPv6Address of the server controlling this router
* ©return The IPv6Address of the server controlling this router.
*/

/*public IPv6Address getServerIP(){
return serverIP;

} */ // akkoc removed

/ **

* Returns the Servertable maintained by the router
* ©return ServerTable containing the entries
*/

public synchronized ServerTable getServerTable(){
return ServerTable;

}

/ **

* Returns the timesacle value for those requiring it
* ©return int timescale value
*/

public int getTimeScale(){
return timeScale;

}
/ **

* Returns the EmulationTable of the router
* ©return EmulationTable containing the entries
*/

public synchronized EmulationTable getEmulationTable(){
return emTable;

}

/ **

* To let know whether to behave as router or server for classes
* requiring that information

142

* ©return boolean value
*/

public boolean getlsServer(){
return isServer;

}

/ **

* Returns the Router idd for the router
* ©return IPv6Address of the router .
*/

public IPv6Address getRouterId(){
return this.routerld;

}

/ **

* Returns the status of the ARPCache.
* ©return The status of the ARPCache ResidentAgent. (if the ARPCache
* contains an entry that corresponds to nexthop for Server-bounded
* flow, this method returns true).
*/

public boolean getArpCacheStatus(){
return arpCacheReady;

}

/ **

* Returns the status of the EmulationTable.
* ©return The status of the EmulationTable. (if the EmulationTable
* contains an entry that corresponds to the nexthop for Server-bound
* flow, this method returns true).
*/

public boolean getEmulationTableStatus(){
return emulationTableReady;

}

/* *

*There are three tables in every SAAM router:
*ARPCache,EmulationTable,
* and the FlowRoutingTable. Each of these tables notifies the CE
* when it is ready to serve the router. When all of these tables

are ready and
* a few other conditions are met, the CE sends a notification to
* the Translator.
* ©param o The Object sending the update.
* ©param status The status of o.
*/

public void updateCoreServiceStatus(
Object o, boolean status){

String className = o.getClass().getName();
if(className.equals(

"saam.residentagent.router.ARPCache")){
arpCacheReady = status;
updateRouterStatus();

}else if (className.equals("saam.Translator")){
emulationTableReady = status;

143

updateRouterStatus();
}
//do nothing if another Object called this method

}

// methods below are modified/killed by [akkoc]
/ * *
* The FlowRoutingTable uses this method to notify the CE when it
* is ready to serve the router.
* ©param o The Object sending the update.
* ©param serverBoundNextHop The IPv6Address of nexthop
* associated with Server-bound flow.
*/

/* public void updateCoreServiceStatus(Object o, IPv6Address
serverBoundNextHop){

String className = o.getClass().getName();
this.serverBoundNextHop = serverBoundNextHop;
boolean status = (serverBoundNextHop.equals(

new IPv6Address()))? false:true;
fIowRoutingTableReady = status;
//the following logic does not work for some reason...
//I think it's the ArpCache.query method
if(iarpCacheReady){

if(routingAlgorithm.checkARPCache(
new ARPCacheEntry(serverBoundNextHop))){
arpCacheReady=true;

}
}
updateRouterStatus();

} */

/**
* Returns the IPv6Address representing the next hop associated with
* Server-bound flow.
* ©return The IPv6Address representing the next hop associated with
* Server-bound flow.
*/

/* public IPv6Address getServerBoundNextHop(){
return serverBoundNextHop;

} */

I **
* Performs a series of checks to determine the status of the router
* then updates the status accordingly.
*/

private synchronized void updateRouterStatus(){

// used only to define whether router is up or not
// displayRouterStatus();
/* String myAddress = null;
try{
myAddress = InetAddress.getLocalHost().getHostAddress();

}catch(UnknownHostException uhe){} */

144

//compare local address with the address of the server. If the
//two addresses are the same and there is at least one interface
//to process traffic, then the outbound interface for this server
//is ready.

//19Dec99[akkoc] - logic belowhas been changed ace, to new paradigm
//if there is at leat one interfce ready then out bound interface is
//ready
//OLD
/* if(myAddress.equals(serverID.getIPv4()) &&

(interfaces.size()>=1)){
outboundlnterfaceReady=true;

}else if
//otherwise, compare the network portion of the IPv6Address of the next
//hop associated with Server-bound flow to the network portions of the
//IPv6Addresses of the interfaces on this router. If there is a match,
//the outbound interface is ready.
(routingAlgorithm.determineOutboundlnterfacetinterfaces,

serverBoundNextHop)!=null){
outboundlnterfaceReady=true ;

} */
//NEW

if(interfaces.size()>=1){
outboundlnterfaceReady=true;

}
//if all the conditions are met, notify the Translator that the router
//is ready.
if(helloMessageReceived && arpCacheReady && emulationTableReady &&

outboundlnterfaceReady){

if(routerStatus==ROUTER_DOWN){
//need to bring router status up since it satisfies all criterias
routerStatus=ROUTER_UP;

//notifying Translator
RouterStatusEvent event = new RouterStatusEvent(toString(),this,

ROUTER_STATUS_CHANNEL,routerStatus);
try{

talk(event);
}catch(ChannelException ce) {
gui.sendText(ce.toString()) ;

}

gui.sendText("Router is still UP NOW...");
}else{
routerStatus=ROUTER_DOWN;
//bringRouterDown();
gui.sendText("Router is still down...") ;

}
}

}// end of method

* Displays the current status of the router.
*/

145

private void displayRouterStatus(){
gui.sendText("\nCurrent Router Status:");
gui.sendText(" helloMessageReceived: "+helloMessageReceived);
gui.sendText(" arpCacheReady: "+arpCacheReady);
gui.sendText(" fIowRoutingTableReady: "+

fIowRoutingTableReady);
gui.sendText(" emulationTableReady: "+emulationTableReady);
gui.sendText(" outboundlnterfaceReady: "+
outboundInterfaceReady+
"\n");

}

/ **

* In the SAAM architecture, traffic cannot be sent between hosts if
* hosts are not assigned flows. This method provides the mechanism
* which hosts request flows from the SAAM server. With the

information
* provided in the parameters, this method constructs a

saam.message.FlowRequest.
* It then sends that FlowRequest to the protocol stack for

transmission to
* the SAAM server. Note: If the requestor is not listening to a

port, the
* requestor should first call the listenToRandomPort method for a

port assignment.
* Sparam requestor The Object requesting the flow.
* Sparam sourcePort The local port that requestor is listening on.
* Sparam destHost The IPv6Address of the destination.
* Sparam requestedDelay The amount of delay the requestor will

tolerate.
* Sparam requestedLossRate The rate of loss the requestor will

tolerate.
* Sparam requestedThroughput The amount of throughput the requestor

will tolerate.
*/

public synchronized long requestFlow(ResidentAgent requestor,
short sourcePort, IPv6Address destHost, int requestedDelay,
int requestedLossRate, int requestedThroughput)

throws FlowException{

long timeStamp = System. currentTimeMillis () ,-
flowRequestors.put (new Long (timeStamp) ,requestor) ;
IPv6Address sourceHost =

((InterfacelD)interfacelDs.get(0)).getIPv6();
FlowRequest request = new FlowRequest(

sourceHost,destHost,timeStamp,
requestedDelay, requestedLossRate, requestedThroughput);

//FlowRequests travel on Server-bound flow.
short destPort = (short)SAAM_CONTROL_PORT;

// below needs modification after Autoconfiguration is completed
/* try{

// send(this, request, MainServerBoundCtrlFlowID,
sourcePort,serverIP,destPort);

}catch(FlowException fe){

146

gui.sendText(fe.toString());
} */
return timeStamp;

}

/ **

* Objects that have been assigned flows can send Messages with this
method.

* In order to use this method, Objects must first request a flow
using

* reguestFlow method; and then receive a flow assignment from
server

* Sparam sender The Object sending the message.
* @param message The subclass of saam.message.Message to be sent.
* @param flowID ID that has been assigned for traffic from sender
* destined for destHost.
* @param sourcePort The port on the local machine that sender is

listening on.
* @param destHost The IPv6Address of the destination.
* dparam destPort The port to which destHost is listening.
*/

public synchronized void send(Object sender, Message message,
int flowID, short sourcePort, IPv6Address destHost,
short destPort) throws FlowException{

if(sender.getClass().getName().equals(
"saam.residentagent.router.LsaGenerator")){
sender = this;

}
gui.sendText("Sending Message...");
PacketFactory packetFactory = new PacketFactory();

packetFactory.append(message);

SAAMPacket saamPacket = null;
try{

saamPacket = new SAAMPacket(
packetFactory.getBytes());

}catch(UnknownHostException uhe){
throw new FlowException(sender+

" Problem building packet "+flowID);
}

//call the send method that takes an IPv6Packet,
//using the IPv6Packet constructed by the Transportinterface
IPv6Packet v6Packet = transportlnterface.buildIPv6Packet(sender,

saamPacket, flowID, sourcePort, destHost,destPort) ,-
gui.sendText("» Message payload size = " +

v6Packet.getPayload().length);
try{

saamPacket = new SAAMPacket(v6Packet.getPayload());
}catch(UnknownHostException uhe){
throw new FlowException(sender+

" Problem building packet "+flowID);
}

147

send(sender,v6Packet);
}

* Objects that have been assigned flows can send DCM messages with
this method.

* @param sender The Object sending the message.
* @param message The DCM message to send
* @param flowID The flow ID that has been assigned for traffic from

sender
* destined for destHost.
* @param sourcePort The port on the local machine that sender is

listening on.
* @param destHost The IPv6Address of the destination.
* @param destPort The port to which destHost is listening.
*/

public synchronized void sendDCM(Object sender,
DCM message, int flowID,
short sourcePort, IPv6Address destHost,
short destPort)

throws FlowException{

PacketFactory packetFactory = new PacketFactory();
packetFactory.appendDCM(message);
SAAMPacket saamPacket = null;
long time = System.currentTimeMillis();
byte numMessages= 1;
SAAMHeader saamHeader = new SAAMHeader(time,numMessages);
try{

saamPacket = new SAAMPacket(
saamHeader, packetFactory.getDCMBytes());

}catch(Exception uhe){
throw new FlowException(sender+

" Problem building packet "+flowID);
}
//call the send method that takes an IPv6Packet,
//using the IPv6Packet constructed by the Transportinterface
IPv6Packet v6Packet = transportInterface.buildIPv6Packet(

Sender,saamPacket,flowID,sourcePort,
destHost,destPort);

gui.sendText("» DCM Message payload size = " +
v6Packet.getPayloadt).length);

gui. sendText ("» DCM Message IN IPV6 from size is = " +
v6Packet.getBytes().length);

send(sender,v6Packet);

} //end of sendDCM

* Objects that have been assigned flows can send UCM with this
method.

* @param sender The Object sending the message.
* @param message The UCM message to send

148

* ©param flowID The flow ID assigned for traffic from sender
* destined for destHost.
* ©param sourcePort The port on machine that sender is listening on.
* ©param destHost The IPv6Address of the destination.
* ©param destPort The port to which destHost is listening.
*/

public synchronized void sendUCM(Object sender,
UCM message, int flowID,
short sourcePort,IPv6Address destHost,
short destPort)
throws FlowException{

PacketFactory packetFactory = new PacketFactory();
packetFactory.appendUCM(message);
SAAMPacket saamPacket = null;
long time = System.currentTimeMillis();
byte numMessages= 1;
SAAMHeader saamHeader = new SAAMHeader(time,numMessages);
try{

saamPacket = new SAAMPacket(saamHeader,
packetFactory.getUCMBytes());

}catch(Exception uhe){
throw new FlowException(sender+

" Problem building packet "+flowID);
}
//call the send method that takes an IPv6Packet,
//using the IPv6Packet constructed by the Transportinterface
IPv6Packet v6Packet = transportInterface.buildIPv6Packet(sender,

saamPacket, flowID, sourcePort, destHost, destPort) ;
gui.sendText("» UCM Message payload size = " +

v6Packet.getPayload().length);
gui.sendText("» UCM Message IN IPV6 from size is = " +

v6Packet.getBytes().length);
send(sender,v6Packet);

} //end of sendUCM

* Objects that have been assigned flows can send PN via this method.
* ©param sender The Object sending the message.
* ©param message The PN message to send
* ©param flowID The flow ID assigned for traffic from sender
* destined for destHost.
* ©param sourcePort The port machine that sender is listening on.
* ©param destHost The IPv6Address of the destination.
* ©param destPort The port to which destHost is listening.
*/

public synchronized void sendPN(Object sender,
ParentNotification message,int flowID,
short sourcePort,IPv6Address destHost,
short destPort)
throws FlowException{

PacketFactory packetFactory = new PacketFactory();
packetFactory.appendPN(message);
SAAMPacket saamPacket = null;

149

long time = System.currentTimeMillis() ;
byte numMessages= 1;
SAAMHeader saamHeader = new SAAMHeader(time,numMessages);
try{

saamPacket = new SAAMPacket(saamHeader,
packetFactory.getPNBytes());

}catch(Exception uhe){
throw new FlowException(sender+

" Problem building packet "+flowID);
}
//call the send method that takes an IPv6Packet,
//using the IPv6Packet constructed by the Transportinterface
IPv6Packet v6Packet = transportInterface.buildIPv6Packet(sender,

saamPacket,flowID,sourcePort,destHost,destPort);
gui.sendText("» PN Message payload size = " +

v6Packet.getPayload().length);
gui.sendText(">> PN Message IN IPV6 from size is = " +

v6Packet.getBytes().length);
send(sender,v6Packet);

}//end sendPN

/ **
* Objects that assigned flows can send SAAMPackets wia this method.
* To use this method, Objects must first request a flow using the
* requestFlow method; and then receive a flow assignment from server
* ©param sender The Object sending the message.
* ©param saamPacket The SAAMPacket to be sent.
* ©param flowID The flow ID assigned for traffic from sender
* destined for destHost.
* ©param sourcePort The port on that sender is listening on.
* ©param destHost The IPv6Address of the destination.
* ©param destPort The port to which destHost is listening.
*/

public synchronized void send(Object sender, SAAMPacket saamPacket,
int flowID, short sourcePort, IPv6Address destHost,
short destPort) throws FlowException{

//call the send method that takes an IPv6Packet,
//using the IPv6Packet constructed by the Transportinterface
gui.sendText("Sending SAAM Packet...");
IPv6Packet v6Packet = transportInterface.buildIPv6Packet(sender,

saamPacket,flowID,sourcePort,destHost,destPort);
send(sender,v6Packet);

}//send()

/ **
* Objects assigned flows can send IPv6Packets with this method.
* To use this method, Objects must first request a flow using the
* requestFlow method; and then receive flow assignment from server.
* note: If packet is destined to Interface that is one this router,
* the packet will be delivered without flow id verification.
* ©param sender The Object sending the message.
* ©param ipv6Packet The IPv6Packet to be sent.
*/

public synchronized void send(Object sender, IPv6Packet ipv6Packet)

150

throws FlowException{

int flowID = ipv6Packet.getHeader().getFlowLabel();
//verify that the sender owns the flowID

// gui.sendText("Sending IPv6 Packet on flow "+flowID);
if(!routingAlgorithm.isApplicationLayerPacket(ipv6Packet)){
ResidentAgent agent = (ResidentAgent)assignedFlows.get(

new Integer(flowID));
if (sender. getClassO .getNameO .equals ("saam. server .Server")

|| (agent !=null&:&agent. equals (sender)) || sender .equals (this)) {
//Here we forward the packet to an inbound interface
//so it will be processed just as if it were an inbound
//packet.
ProtocolStackEvent event = new ProtocolStackEvent(

• sender.toString(),this,
ProtocolStackEvent.getFromNICToInterfaceChannel(
nextlnboundlnterface),
ipv6Packet.getBytes());

try{
gui.sendText("\n» Enqueuing packet for transmission at

channel" +
event. getChannel_ID ()) ;

gui.sendText(" » nextlnboundlnterface = " +
nextInboundInterface+" flowid is "+flowID);

talk(event);
}catch(ChannelException ce){
gui.sendText(ce.toString());

}
//routingAlgorithm.routelnboundPacket(ipv6Packet.getBytes());
nextlnboundlnterface++;
if(nextlnboundlnterface>=interfaces.size()){
nextlnboundlnterface=0 ;

}
}else {
gui.sendText(sender+

" doesn't own flow "+flowID),-
throw new FlowException(sender+

" doesn't own flow "+flowID);
}

}else{
//packet is destined to an Interface on this router,to go outside
//so we forward it to the Transportinterface for delivery
//on the proper emulated UDP port.

IPv6Header v6Header = ipv6Packet.getHeader();

if(v6Header.getSource().toString().equals(IPv6Address.DEFAULT_HOST)){

v6Header.setSource(((Interface)interfaces.get(0)).getID().getIPv6());
ipv6Packet.setHeader(v6Header);

}

//gui.sendText("received app. layer packet from application
layer");

gui . sendText (" \nforwarding to Transportinterface") ,-

151

SAAMPacket saamPacket = null;
try{

saamPacket = new SAAMPacket(ipv6Packet.getPayload());

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}
ProtocolStackEvent event = new ProtocolStackEvent(

sender.toString(),
//here we trick the Transportinterface into thinking this
//event came from the routingAlgorithm. Also, since the
//routingAlgorithm is already registered to talk on this
//channel, we make it past the security check that ensures
//the talker is registered on the channel.
routingAlgorithm,ProtocolStackEvent.

FROM_ROUTINGALGORITHM_TO_TRANSPORTINTERFACE_CHANNEL,
ipv6Packet.getBytes()) ;

try{

talk(event);

}catch(ChannelException tde){
gui.sendText(tde.toString());

}

}

}//send()

/**

*To send a flowReguest or any other type of traffic,
♦sending Objects must be listening to a port.This method assigns
Objects a
* random port that is higher than the highest well-known port, but no
higher than
* MAX_PORT.
* @param listener The SaamListener requesting a random port.
*/
public int listenToRandomPort(SaamListener listener){

int port = listenToRandomChannel(
listener, HIGHEST_WELL_KN0WN_P0RT+1,MAX_P0RT);
try{

//the Transportinterface must be able to talk on the new port in
//order to deliver traffic to the listener
addTalkerToChannel(transportlnterface, port);
}catch(ChannelException ce){
gui.sendText(ce.toString());

}
return port;
//also register the Transportlnterface as a talker on
//this port.

}//listenToRandomPort()

152

/ **
* Ports reside on Channels 0-MAX_PORT; any Channel higher than MAXJPORT
*is a Channel that is not associated with a port. Examples of this are
* the communications Channels within the protocol stack.
* @param listener The SaamListener requesting a random channel.
* Note: Since this method is private, only the ControlExecutive can
* assign listeners to a random channel.
* @param lowestChannel The lowest channel in the range to be selected
from.
* ©param highestChannel The highest channel in the range to be selected
from.
*/
private int listenToRandomChannel(

SaamListener listener, int lowestChannel,
int highestChannel){
int channelFound = 0;
boolean exception = true;
while(exception){

try{
channelFound = (lowestChannel+(
new RandomO).nextInt(highestChannel-lowestChannel));

addListenerToChannel(listener, channelFound);
exception = false;

}catch(Exception e){}
}//while()
return channelFound;

}//listenToRandomChannel()

/ **

* Returns the array of Strings representing the class
* names of the messages this Object will register to process.
* ©return The array of Strings representing the class names
* of the messages this Object will register to process.
*/

public synchronized String[] getMessageTypes(){
return messageTypes;

}//getMessageTypes()

/ **

* This private method is used by the ControlExecutive to perform the
* steps necessary to instantiate an Interface.
* @param id The InterfacelD that will be assigned to the interface

being
* instantiated. If an Interface with this id is already up, the

request
* will be ignored.
*/

private void standUpInterface(InterfacelD id){
boolean alreadyActive = false;
for (int i=0;i<interfacelDs.size();i++){

if(((InterfacelD)interfacelDs.get(i)).equals(id)){
alreadyActive = true;
break;

}

153

}

if (!already-Active) {
interfacelDs.add(id);
gui.sendText(" Instantiating interface!"+interfaceCount++ +"]
gui.sendText(" IPv6Address: "+id.getIPv6().toString());

Interface thislnterface = new Interface(this, id);
interfaces.add(thislnterface) ,-
updateRouterStatus();
routingAlgorithm.addlnterface(thislnterface);
try{

addTalkerToChannel(this,
ProtocolStackEvent.getFromNICToInterfaceChannel(

interfaces.size()-1));
}catch(ChannelException ce){
gui.sendText(ce.toString()) ;

}
}else{
gui.sendText("Interface already active...");

}

//[Akkoc] added for router_id determination
//to check whether this new interface can be routerld
// Highest IPv6Adress has been taken as routerld
byte[] candidate = id.getIPv6().getAddress() ;
byte[] rid = routerld.getAddress();

for(int i=0; i<rId.length; i++){
if(candidate[i] < rldfi]) {

break;
}else if(candidate[i] > rld[i]) {

routerld = id.getIPv6();
}//end else if

} // end for

gui.sendText("Now router id is "+ getRouter!d().toString());

}//standUpInterface()

/ **

* This method contains the logic needed by the ControlExecutive
* to process the Messages it is registered to process.
* @param message The subclass of saam.message.Message to be processed.
*/
public void processMessage(Message message) {

String name = message.getClass() .getName() ;
if(name.equals(messageTypes[0])){
InterfacelD id = (InterfacelD)message,•
standUpInterface(id) ;
updateRouterStatus() ;

}else if(name.equals(messageTypes[1])){
try{
// serverlD = ((ServerlD)message); // akkoc killed

154

// serverIP = serverID.getIPv6(); // akkoc killed
}catch(Exception e){
gui.sendText("Error processing serverlD: "+e.toString());

}
}else if(name.equals(messageTypes[2])){
gui.sendText("Got a FlowResponse.. ") ;
FlowResponse response = (FlowResponse)message;
long timeStamp = response.getTimeStamp();
gui.sendText("TimeStamp: "+timeStamp);
int flowID = response.getFlowId();
gui.sendText("flowID: "+flowID);
ResidentAgent requestor =

(ResidentAgent)flowRequestors.get(new Long(timeStamp));
gui.sendText("Forwarding to Requestor: "+requestor);
if(requestor!=null){
assignedFlows.put(new Integer(flowID),requestor);

requestor.receiveFlowResponse(response);
}//else do nothing

}else if(name.equals(messageTypes[3])){
//received a saam.message.DemoHello from the DemoStation
gui.sendText("received message type: " + messageTypes[3]);
//
Vector hellolnterfaces = ((DemoHello)message).getlnterfacelDs()
for(int i=0;i<hellolnterfaces.size();i++){
InterfacelD id = (InterfacelD)hellolnterfaces.get(i);
standUpInterface(id);

}
helloMessageReceived = true; //DemoHello - CRC
updateRouterStatus();
mainGui.updateDisplay();

}

// below else cases are added by [akkoc]
else if(name.equals(messageTypes[4])){

gui.sendText("received message type: " + messageTypes[4]);
DCM receivedDcm = (DCM)message;
autoConExec.processDCM(receivedDcm);

}//end of else if for DCM
else if(name.equals(messageTypes[5])){
gui.sendText("received message type: " + messageTypes[5]);
UCM ucm =(UCM) message;
autoConExec.processUCM(ucm);

}//end of elseif for ucm
else if(name.equals(messageTypes[6])){ //Parent Notification
gui.sendText("\n received message type: " + messageTypes[6]);
ParentNotification pn = (ParentNotification)message;
autoConExec.processPN(pn);

}//end of elseif for parent notification
else if(name.equals(messageTypes[7])){ //Parent Notification
gui.sendText("\n received message type: " + messageTypes[7]);

155

TimeScale ts = (TimeScale)message;
timeScale = ts.getTimeScale();

}//end of else if for parent notification

}//processMessage()

/**

* Returns the number of Interfaces that have been stood up by this CE.
* ©return The number of Interfaces that have been stood up by this CE.
*/
public int getNumberOfInterfaces(){

return interfaceCount;
}

/ **

* Makes access to RoutingAlgorithm possible for requiring classes.
* ©return RoutingAlgorithm object
*/
public synchronized RoutingAlgorithm getRoutingAlgorithm() {

return routingAlgorithm;
}

* Makes access to AutoConfigurationExec possible for requiring classes.
* ©return AutoConfigurationExecutive object
*/
public AutoConfigurationExecutive getAutoConfigurationExecutive!){

return autoConExec;
}

/ **

* This is the method MesProcessors use to register to process Messages.
* The ContExec retrieves the list of Messages from mp by calling
* mp.getMessageTypes().
* ©param mp The MessageProcessor that is registering with this ConExec.
*/
public void registerMessageProcessor(MessageProcessor mp) {

gui.sendText("Registering MessageProcessor: "+mp);
Object[] elementsIProcess = null;
//retrieve the list of Messages
elementsIProcess = mp.getMessageTypes();
for(int i=0;i<elementsIProcess.length;i++){
String element = (String)elementsIProcess[i];
if(!element.equals("saam.message.FlowResponse")){
MessageProcessor oldProcessor =

(MessageProcessorJmessageProcessors.put(element,mp);
// notify old Processor that it will no longer
// receive this type of message.

}else{
if(mp.equals(this)) {
messageProcessors.put(element,this);

}else{
gui.sendText("DENIED: "+element);

156

}
}

}

/ **

* ResidentAgentCustomers use this method to register to receive
ResidentAgent
* updates from the ControlExecutive when they arrive. If an agent is
replaced
* with a new agent, the ControlExecutive will call the customer's
replaceAgent
* method.
* @param rac the ResidentAgentCustomer requesting registration.
*/
public void registerCustomer(ResidentAgentCustomer rac) {

Object[] agentsIUse = null;
agentsIUse = rac.getAgentTypes();
for(int i=0;i<agentsIUse.length;i++){

String agent = (String)agentsIUse[i];
Vector customers = null;
synchronized(agentCustomers){

customers = (Vector)agentCustomers.get(agent);
}
if(customers == null){
customers = new Vector();
agentCustomers.put(agent,customers);

}
customers.add(rac);

// oldProcessor.
}

}

/**

* Replaces an existing ResidentAgent with an incoming ResidentAgent
* of the same class name. If there are multiple instances of the
existing
* agent, the replacement will occur instance for instance.
* @param classObject The Class of the incoming agent.
* @param className The class name of incoming ResidentAgent subclass
*/
private void replaceOldAgent(Class classObject, String className){

boolean badAgent = false;
Vector agentlnstances = new Vector();
int numberOfInstancesNeeded = 1;
if (className. equals ("saam.residentagent .router. Scheduler")) {
synchronized(interfaces){
numberOfInstancesNeeded = interfaces.size();

}
}
for (int i=0;i<numberOfInstancesNeeded;i++){

try{
// gui.sendText("About to install new agent");

ResidentAgent newAgent = (ResidentAgent)

157

classObject.newlnstance() ;
newAgent.install(this) ;
gui.sendText("New agent installed");
agentInstances.add(newAgent);
numberOfSchedulersPresent++ ;

}catch(Exception e){
gui.sendText("ResidentAgent bad: "+e.toString());
badAgent = true;

}
}
if(ibadAgent){
gui.sendText("Agent "+
"numberOfInstancesNeeded==0? "not instantiated.":"instantiated "+

(numberOfInstancesNeeded==l? "once.": numberOfInstancesNeeded+"
times")));

boolean agentAlreadylnstalled = false;
synchronized(agents){
agentAlreadyInstalled=agents.containsKey(className);

}
if(agentAlreadylnstalled){
gui.sendText(className+" already resident");
Vector previousAgents = (Vector)agents.remove(className);
gui.sendText("Uninstailing previous agent: ");
gui.sendText("Removing from channels...");
for(int i = 0;i<previousAgents.size() ;i++) {
ResidentAgent previousAgent = (ResidentAgent)
previousAgents.get(i);

if(previousAgent instanceof SaamTalker){
removeTalkerFromAllChannels(

(SaamTalker)previousAgent);
}
//every ResidentAgent is a SaamListener
removeListenerFromAllChannels(

previousAgent);
ResidentAgent replacement = (ResidentAgent)

agentlnstances.get(i);
if(previousAgent!=null){
gui.sendText("Previous agent uninstalling");
previousAgent.transferState(replacement);
previousAgent.uninstall() ;
previousAgent = null;

}else{
gui.sendText("No previous agent installed");

}
}

}
for (int i = 0;i<numberOfInstancesNeeded;i++) {
ResidentAgent replacement = (ResidentAgent)

agentlnstances.get(i);
notifyAgentCustomers(replacement, className);
gui.sendText("Notifying customers, agent: "+replacement);

}
agents.put(className,agentlnstances) ;

}

158

}

/**

* Here, the ControlExecutive iterates through the Vector of
* ResidentAgentCustomers and calls the replaceAgent method of
* each customer, passing the new agent.
*/

private void notifyAgentCustomers(ResidentAgent ra,
String className){

Vector customersOfThisAgent = (Vector)
agentCustomers.get(className);

if(customersOfThisAgent!=null){
for(int i=0;i<customersOfThisAgent.size();i++){

((ResidentAgentCustomer)
customersOfThisAgent.get(i)).

replaceAgent(ra);
}
gu i.sendText("Agent rep1aced: "+ra);
gui.sendText("Customers: "+customersOfThisAgent);

}
}

/**

* In this method we would reflect into the Class Object and perform
* a series of policy-related checks to determine whether or not the
* agent is safe to instantiate.
*/

private boolean examineAgent(Class classObject){
//future work..
return true;

}

/**

* This method is called by the Channels this Object has registered to
* monitor when a talker sends events on those Channels.
* Sparam se The SaamEvent to be communicated.
*/
public synchronized void receiveEvent(SaamEvent se){

//the ControlExecutive only listens on the Channel between itself and
//the PacketFactory. Two types of traffic are sent on this Channel,
//ResidentAgentEvents and MessageEvents

if(se instanceof ResidentAgentEvent){
Class classObject = ((ResidentAgentEvent)se).

getClassObject();
String className = classObject.getName();
gui.sendText("received residentagent : "+className);
//16 Jan 2000 akkoc added to determine the serveragent installed

if(className.equals("saam.residentagent.server.ServerAgentSymetric")){
isServer = true;

}

159

if (examineAgent(classObject)){
replaceOldAgent(classObject, className);

}else{
//notify someone that the agent failed the inspection

}
}else if (se instanceof MessageEvent){

MessageEvent me = (MessageEvent)se;
String name = me.getMessage().getClass().getName();
gui.sendText("\nreceived messageevent : n+name);

// System.out.println("received messageevent : "+name);

//call the appropriate MessageProcessor to handle this Message
MessageProcessor mp = null;
mp = (MessageProcessor) messageProcessors.get(name);

try{
gui.sendText(" Calling Processor: "+mp.getClass().toString());

mp.processMessage(me.getMessage());
}catch(NullPointerException npe){
//notify the sender that we do not have a
//processor that is capable of processing this
//Message.
gui.sendText(" No Processor Available for " + name);

}//try-catch
}//not a ResidentAgentEvent or a MessageEvent
mainGui.updateDisplay();

}//receiveEvent()

/ **

* Returns the Vector of Interfaces that have been instantiated by this
* ControlExecutive.
* ©return The Vector of Interfaces that have been instantiated by this
* ControlExecutive.
*/
public Vector getlnterfaces(){

return interfaces;
}//getlnterfaces

/ * *

* The order in which Interfaces are instantiated is preserved. Here
* an Object can retrieve a specific Interface by instance number.
* ©param interfaceNumber The instance number of the Interface to be
* retrieved.
* ©return The nth instance of Interface where n = interfaceNumber.
*/

public Interface getlnterface(int interfaceNumber){
return (Interface)interfaces.get(interfaceNumber);

}

* Returns the Vector of InterfacelDs assigned to the Interfaces
* instantiated by this ControlExecutive.

160

* ©return The Vector of InterfacelDs assigned to the Interfaces
* instantiated by this ControlExecutive.
*/

public Vector getlnterfacelDs(){
return interfacelDs;

}//getlnterfaces

/**

* Returns the Enumeration of Channels that have been instantiated
* by this ControlExecutive.
* ©return The Enumeration of Channels that have been instantiated
* by this ControlExecutive.
*/

public Enumeration getActiveChannels(){
return activeChannels.elements();

}//getActiveChannels()

/ **

* Returns true if the Channel has been instantiated by this ContExec.
* ©return True if the Channel has been instantiated by this ContExec.
*/
public boolean isActiveChannel(int channel_ID){

return activeChannels.containsKey(new Integer(channel_ID)) ;
}

/ **

* To determine whether or not a talker is allowed to talk. If
* this method returns false, the talker will not be able to talk
* on any Channels.
* ©param talker The SaamTalker to be verified.
* ©return True if the SaamTalker is allowed to talk.
*/

private boolean verifyTalker(SaamTalker talker){
return true;

}//verifyRequestor()

* To determine whether or not a listener has access to a given Channel.
* This method would be used to implement policy issues related to
access
* control.
* ©param listener The listener to be verified.
* ©param channel_ID The ID of the Channel.
*/
private boolean verifyChannelAccess(

SaamListener pi, int channel_ID){
//here, we would set the policy for channel_ID access.
//i.e. we can restrict access of certain channel_ID to a
//select list of listeners, maybe a Hashtable called
//"authorizationTable" which contains a Vector of
//"authorizedListeners" and is keyed on channel_ID.
return true;

}//verifyAccess()

/ * *

161

* To determine whether or not a talker has access to a given Channel.
* This method would be used to implement policy issues related to
access
* control.
* @param talker The talker to be verified.
* ©param channel_ID The ID of the Channel.
*/
private boolean verifyChannelAccess(

SaamTalker talker, int channel_ID){
//here, we would set the policy for channel_ID access,
//i.e. we can restrict access of certain channel_ID to a
//select list of listeners, maybe a Hashtable called
//"authorizationTable" which contains a Vector of
//"authorizedListeners" and is keyed on channel_ID.
return true;

}//verifyAccess()

/**

* As the name implies, this method removes talker from the talker
* Vectors of all Channels it has registered to talk on.
* @param talker The talker to be removed.
*/
public void removeTalkerFromAllChannels(SaamTalker talker){

if(channelsTalkerHas.containsKey(talker)){
Vector channels = null;
synchronized(channelsTalkerHas){
channels =(Vector)channelsTalkerHas.get(talker);

}
Enumeration e = ((Vector)channelsTalkerHas.get(talker)).

elements();
while(e.hasMoreElements()){

Channel thisChannel = (Channel)e.nextElement();
thisChannel.removeTalker(talker);
gui.sendText(talker.toString()+

" removed from channel "+
thisChannel.getChannel_ID());

gui.sendText("The Vector: "+channels.toString());
}
channelsTalkerHas . remove (talker) ,-

}
}

/ * *

* As the name implies, this method removes listener from the listener
* Vectors of all Channels it has registered to listen on.
* @param listener The listener to be removed.
*/
public void removeListenerFromAllChannels(

SaamListener listener){

if(channelsListenerHas.containsKey(listener)){
Vector channels = null;
synchroni zed(channelsLi s tenerHas){
channels = (Vector)channelsListenerHas.get(listener);

}

162

Enumeration e = channels.elements();
while(e.hasMoreElements()){

Channel thisChannel = (Channel)e.nextElement();
thisChannel.removeListener(listener);
gui.sendText(listener.toString()+

" removed from channel "+
thisChannel.getChannel_ID()) ;

gui.sendText("The Vector: "+channels.toString()
}
channelsListenerHas.remove(listener);

/ **

*SaamTalkers use this method to attach themselves to a Channel.If this
* method succeeds, talker will be allowed to transmit events on this
* Channel.
* @param talker The talker requesting permission to talk on a Channel.
* @param channel_ID The ID of the channel to be utilized.
*/
public void addTalkerToChannel(SaamTalker talker, int channel_ID)

throws ChannelException {

if(!verifyTalker(talker)){
throw new ChannelException("Talking Denied");

}

//now test to see whether this channel_ID is within the
//range of channel_IDs on which this requestor is authorized
//to talk (policy issue).
if (IverifyChannelAccess(talker, channel_ID)){

throw new ChannelException("Access Denied");
}
Channel channel = null;
synchronized(activeChannels){

channel = (Channel)activeChannels.get(new Integer(channel_ID));
}
if(channel==null) {
channel = new Channel(channel_ID, talker);

}
activeChannels.put(new Integer(channel_ID)»channel);

channel.addTalker(talker);
mainGui.updateDisplay();

if(channelsTalkerHas.containsKey(talker)){
synchronized(channelsTalkerHas){

((Vector)channelsTalkerHas.get(talker)).
add(channel) ;

}
}else{
Vector vectorOfChannels = new Vector();
vectorOfChannels.add(channel);
channelsTalkerHas.put(talker, vectorOfChannels);

}
}//addTalkerToChannel()

163

/ **

* Allows a SaamListener to monitor an emulated UDP port
* @param listener The listener requesting to monitor a port.
* @param port The port to be monitored.
*/

public void monitorPort(SaamListener listener, int port)
throws PortAccessDeniedException{
//presumably, the listener has already been verified
//by the Control Executive and placed on an access
//list within the Eventcontroller. There is no such
//access list at this time.

try{
if(!hasListener(port)){
addTalkerToChannel(transportlnterface,port);
addListenerToChannel(listener, port);

// gui.sendText(listener.toStringO +
// " listening to port: "+port);

}else {
gui.sendText(listener.toString()+

" denied access to port: "+port);
throw new PortAccessDeniedException("Port in use");

}
}catch(ChannelException ce){
throw new PortAccessDeniedException("Not authorized");

}//try-catch
}

/ **

*SaamListeners use this method to attach themselves to Channel.If this
* method succeeds, listener will receive all events that are sent on
this
* Channel.
* @param listener The listener requesting to monitor a Channel.
* ©param channel_ID The ID of the channel to be monitored.
*/
public void addListenerToChannel(

SaamListener listener, int channel_ID)
throws ChannelException{

if (verifyChannelAccess(listener,channel_ID)){

Channel channel = null;
synchronized(activeChannels) {

channel = (Channel)activeChannels.get(new Integer(channel_ID)) ;
}
if(channel==null) {
channel = new Channel(channel_ID,listener);

}

//no effect if the Channel is already on the active list
activeChannels.put(new Integer(channel_ID),channel);
channel.addListener(listener);

if(channelsListenerHas.containsKey(listener)){
synchronized(channelsListenerHas){

((Vector)channelsListenerHas.get(listener)).

164

add(channel);
}

}else{
Vector vectorOfChannels = new Vector{),•
vectorOfChannels.add(channel);
channelsListenerHas.put(listener, vectorOfChannels);

}

}//if
}//addListenerToChannel()

/ **

* Used to determine if any Objects are registered to listen on Channel
* with channel_ID.
* @param channel_ID The ID of the Channel to be queried.
*/
public boolean hasListener(int channel_ID){

try{
Channel channel = null;
synchronized(activeChannels){

channel = (Channel)activeChannels.get(new Integer(channel_ID));
}
return channel.hasListeners(),-

}catch(NullPointerException npe){}
return (false);

} //hasListener()

/**

* Used to determine if any Objects are registered to talk on the
Channel
* with channel_ID.
* ©param channel_ID The ID of the Channel to be queried.
*/
public boolean hasTalker(int channel_ID){

try{
Channel channel = null;
synchronized(activeChannels){

channel = (Channel)activeChannels.get(new Integer(channel_ID));
}
return channel.hasTalkers();

}catch(NullPointerException npe){}
return (false);

}//hasListener()

/**

* Once approved to communicate on a channel, a
* SaamTalker calls this method to actually broadcast
* events on the channel. A ChannelException will be
* thrown if the talker is not registered to talk on
* the channel contained in the SaamEvent.
*/
public void talk(SaamEvent event) throws

Channe1Except ion{

165

SaamTalker talker = event.getTalker();
int channel_ID = event.getChannel_ID();
Channel channel = null;

// synchronized(activeChannels){
synchronized(theLock) {

// Questions to Dean:
// (1) Is the above sufficient?
// (2) Does this support talking to multiple channels?
// (3) Why are more and more ">» Ready to ..." msgs printed out?

channel = (Channel)
activeChannels.get(new Integer(event.getChannel_ID())) ;

// }// old LOCK ENDS HERE
if(channel.isRegistered(talker)){

//order the channel to notify its listeners
gui.sendText(talker.toString()+">» is Ready to channel.talk");
channel.talk(event);
channel.setTimeLastUsed();

}else{
gui.sendText("ACCESS DENIED! Unregistered talker: " +

talker.toString() +"\n"+
"Attempted to talk on channel "+channel_ID);

throw new ChannelExceptionf
talker.toString()+" not Registered on "+
"channel "+channel_ID+".");

}
}// new LOCK ens here

}//talk()

/ **

* Displays the status of all Channels that have been instantiated by
* ContExecutive. Channels are displayed in the ControlExecutive's gui.
* @param msg The text to appear before the channels are displayed.
*/
public void displayActiveChannels(String msg){

/* gui.sendText("\n"+msg);
gui.sendText("Active channels:") ;
Enumeration e = activeChannels.keys();
while(e.hasMoreElements()){

Integer key = (Integer)(e.nextElement());
Channel channel =

(Channel)activeChannels.get(key);
gui.sendText(channel.toString()) ;

}//while(e.hasMoreElements())
*/

}//displayActiveChannels()

/ * *

* Removes a SaamListener from the Vector of listeners associated with
* Channel containing channel_ID
* @param si The SaamListener to be removed.
* @param channel_ID The ID of the desired Channel.
*/
public void removeListenerFromChannel(

166

SaamListener si, int channel_ID){

Channel channel = null;
synchronized(activeChannels){

channel = (Channel)
activeChannels.get(new Integer(channel_ID));

}
channel.removeListener(si);

}//closeChannelConnection()

* Returns a <code>String</code> representation of this object
* ©return The <code>String</code> representation of this object
*/

public String toString(){
return ("Control Executive");

}

} //end of class CONTROL EXECUTIVE

167

ti-
ll Filename : PacketFactory.Java
II Feb 2000[akkoc/xie] - modified
II 01Aug99 [Vrable] - Created
II
II...

Project : SAAM

import Java.io.File;
import java.io.FilelnputStream;
import java.io.IOException;
import java.util.Hashtable;
import java.util.Enumeration;
import java.util.Vector;
import java.util.TooManyListenersException;
import java.util.StringTokenizer;
import java.lang.reflect.Constructor;

import saam.net.*;
import saam.event.*;
import saam.message.*;
import saam.util.*;
import saam.residentagent.*;

/ •*

* A PacketFactory can be used to build SaamPackets for sending or
* to receive SaamPackets and extract their atomic elements. These
* atomic elements are currently one of two types: A subclass of
* saam.residentagent.ResidentAgent or a subclass of
* saam.message.Message.<p>
* A sender would instantiate a PacketFactory to build
* Saam Packets. The PacketFactory's append methods receive
* Message Objects, ResidentAgent Objects, or a String that represents
* the class name of a ResidentAgent as parameters and then dynamically
* construct the appropriate header based on the number of elements
* received and the current time. The getBytes method is used to
* retrieve the byte array that represents the SAAMPacket that has been
* constructed by this PacketFactory.<p>
* The ControlExecutive uses the PacketFactory to receive and parse
* SaamPackets.
*/
public class PacketFactory extends Thread

implements SaamTalker, SaamListener{

private final boolean guiActive = true;
private SAAMRouterGui gui;
private ControlExecutive controlExec;
private boolean started = false;
private boolean firstEvent = true;
private boolean bytesRetrieved;
private byte[] packet,DCMpacket,PNpacket,UCMpacket;
private byte numberOfMessages;
private Loader loader;
private Class message;
private SaamEvent currentEvent;
private Thread owner;

168

private static int instanceNumber;
private Object theLock = new ObjectO;

/**

* Use the no-args constructor to begin constructing packets
* on the sending side.
*/

//no-args constructor doesn't come for free when we have
//another constructor
public PacketFactory(){

instanceNumber++;
gui = new SAAMRouterGui(toString() + "("+ instanceNumber+")");
gui.setTextField("I construct outbound packets");

}

/**

* This constructor is not available to Objects outside the
* saam.control package. The ControlExecutive uses this constructor
* to receive and parse SAAMPackets. The PacketFactory passes the
* atomic elements (either ResidentAgents or Messages) up to the
* ControlExecutive for further processing.
* ©param controlExec The ControlExecutive that is to receive
* updates from this PacketFactory.
*/

PacketFactory(ControlExecutive controlExec){
thisO ;
gui.setTextField("I Listen for inbound packets");
this.controlExec=controlExec;
loader = new Loader();

//••a***************************

//**Listen to desired Channels**
//******************************
int channel_ID =
ProtocolStackEvent.PACKETFACTORY_CHANNEL;

try{
controlExec.addListenerToChannel(this, channel_ID);
gui.sendText("Listening to channel: "+channel_ID);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}//try-catch

//*****•**********************************

//**Register to talk on desired Channels**
//♦•••A***********************************

channel_ID = ControlExecutive.SAAM_CONTROL_PORT;
try{

controlExec.addTalkerToChannel(this,
channel_ID);

gui.sendText("Talking enabled on channel: " + channel_ID);
}catch(ChannelException ce){
gui.sendText(ce.toString());

}

169

/ **

* When instantiated to receive packets, the PacketFactory
* Thread waits until a SAAMPacket arrives, then it calls
* the processPacket method.
*/

public void run(){
while(true){

try{
if(!started){

/* synchronized(this){
gui.sendText("Waiting...");
while(!started) waitO;
started=true;

}
'/

synchronized(theLock){
gui.sendText("Waiting...");
while(!started) theLock.wait(;
started=true;

}
}

}catch(InterruptedException ie){
gui.sendText(ie.toString()) ;

}
gui.sendText("Resumed");
processPacket();

}//while(started)

/ * *

* This method is called by the Channels this Object has registered to
* monitor when a talker sends events on those Channels.
* @param se The SaamEvent to be communicated.

public synchronized void receiveEvent(SaamEvent se){
*/
public void receiveEvent(SaamEvent se){

gui.sendText("\nGot a packet");
currentEvent=se;
//check to see if the currentThread has an owner, if it
//does, notify the owner that the event has arrived.
//otherwise, just process the packet.
if(IfirstEvent){
synchronized(theLock){

theLock.notify();
}
if(!started){

synchronized(theLock){
started=true;
theLock.notify();

}

}else{

170

processPacket();
}

}else{
firstEvent=false;
started=true;
start();

}
se=null;

}
/**

* This method is used to extract the individual Class
* Objects that are represented in the packet. These Class
* Objects are either of type 0 (ResidentAgent) or 1 (Message).<p>
* If a ResidentAgent is received, a Class Object is created
* that represents the agent. That Class Object is then sent to
* the ControlExecutive for screening and agent instantiation.<p>
* If a Message is received, that Message is instantiated and sent
* to the ControlExecutive for further processing.
*/

private void processPacket() {
int channel = currentEvent.getChannel_ID();
String eventSource = (String)currentEvent.getSource();

//packet is a byte array
packet = ((ProtocolStackEvent)currentEvent).getPacket();

//see saam.util for PrimitiveConversions and Array classes
long timeStamp = PrimitiveConversions.getLong(

Array.getSubArray(packet,0,8));
numberOfMessages=packet[8];
gui.sendText("packet arrived: " +

"\n source: " + eventSource +
"\n channel: " + channel +
"\n size: " + packet.length +
"\n # of Messages: " + numberOfMessages +
"\n timeStamp: " + timeStamp);

//now we trim the packet by removing the header,
packet = Array.getSubArray(packet,9,packet.1ength);

//used to track the current position in the array,
int index = 0;

for(int i=l;i<=numberOfMessages;i++){
gui.sendText("XnProcessing Element["+i+"]:");

// int index = 0;
byte type = packet[index++];

switch(type){
case 0:
case 1:

//extract and process each atomic element of the packet
//separately. Here we assume the packet is a properly

171

//formatted SAAMPacket when it arrives, and that the
//length is less than the max allowed.

gui.sendText(" type: "+type);
//retrieve the number of bytes the class name occupies
byte nameLength = packet[index++];

//extract the name of the class file as a byte array
byte[] elementNameArray = Array.getSubArray(
packet,index, index+nameLength);
index+=nameLength;

//convert the name back into a String
String elementName = new String(elementNameArray);

gui.sendText(" Name: "+elementName);

//retrieve the length of the Object
short length = PrimitiveConversions.getShort(

Array.getSubArray(packet,index,index+2));
gui.sendText(" Length: "+length);
index+=2;

//retrieve the bytecode of the Object
byte[] bytes = Array.getSubArray(
packet,index,index+length);
index+=length;

if (type == 0){
gui.sendText("This is a ResidentAgent");
//Assume this class is of type ResidentAgent
try{
//Attempt to define the class using the current
//class loader.
loader.defClass(elementName, bytes);
}catch(LinkageError le){
//If the loader already has a definition for the class
//a LinkageError will be thrown. If this happens, we
//need to instantiate a new class loader and use it to
//define the class. A nice little trick we learned from
//page 55 of Jason Hunter's "Java Servlet Programming" book.
gui.sendText(le.toString()) ,-
gui.sendText("Class was previously loaded...");
gui.sendText("Replacing old ClassLoader...");
Loader newLoader = new Loader();

newLoader.defClass(elementName, bytes);
}

try{
//message is of type Class.
message = Class.forName(elementName, true, loader);

}catch(ClassNotFoundException cnfe){
gui . sendText (cnfe. toString ()) ,-

}
gui.sendText(message.toString());
ResidentAgentEvent rae = new ResidentAgentEvent(

eventSource,

172

this,
ControlExecutive.SAAM_CONTROL_PORT,
message);

try{
gui.sendText("Forwarding on channel "+

ControlExecutive.SAAM_CONTROL_PORT);
controlExec.talk(rae);

}catch(ChannelException tde){
gui.sendText(tde.toString());

}
}else {

gui.sendText("This is a Message");
//Assume this class is of type Message.

try{
//message is of type Class,
message = Class.forName(elementName);

}catch(ClassNotFoundException cnfe){
{gui.sendText("Bytecode for: "+elementName+

" not found.");
}
}

try{
//Call the constructor from within this Class that
//takes a byte array as its only argument
Constructor cons = message.getConstructor(

new Class[] {byte[].class});

//Create the instance of this Message
Message instance = (Message)cons.newlnstance(

new Obj ect[] {bytes});
gui.sendText(instance.toString()) ;
MessageEvent me = new MessageEvent(eventSource, this,

ControlExecutive.SAAM_CONTROL_PORT, instance)
//send this MessageEvent on the Control port.
try{

gui.sendText("Forwarding on channel "+
ControlExecutive.SAAM_CONTROL_PORT);
controlExec.talk(me);

}catch(ChannelException tde){
gui.sendText("problem occured here ");
gui.sendText(tde.toString());

}
}catch(Exception e){
//need to notify sender that we have no classfile
//with this name
gui . sendText (e. toString ()) ,-
}//try-catch

}
break;

case 4:
gui.sendText("This is a DCM Message");

try{

173

DCM dem = new DCM(packet);
gui.sendText(dem.toString()) ;
MessageEvent me = new MessageEvent(eventSource, this,

ControlExecutive.SAAM_CONTROL_PORT,dem);
//send this MessageEvent on the Control port.
try{

gui.sendText("Forwarding on channel "+
ControlExecutive.SAAM_CONTROL_PORT) ;
controlExec.talk(me);

}catch(ChannelException tde){
gui.sendText(tde.toString());

}
}catch(Exception e){
gui.sendText(e.toString()) ;

}//try-catch
break;

case 5:
gui.sendText("This is a UCM Message");
try{
UCM ucm = new UCM(packet);
gui.sendText("\n"+ucm.toString());
MessageEvent me = new MessageEvent(eventSource, this,

ControlExecutive.SAAM_CONTROL_PORT,ucm);
//send this MessageEvent on the Control port.
try{
gui.sendText("Forwarding on channel "+

ControlExecutive.SAAM_CONTROL_PORT);
controlExec.talk(me);

}catch(ChannelException tde){
gui.sendText(tde.toString());

}
}catch(Exception e){
gui.sendText(e.toString());

}//try-catch
break;

case 6:
gui.sendText("This is a ParentNotification Message");
//Assume this class is of type Message.
try{
ParentNotification pn = new ParentNotification(packet);
MessageEvent me = new MessageEvent(eventSource, this,

ControlExecutive.SAAM_CONTROL_PORT,pn)
//send this MessageEvent on the Control port.
try{
gui.sendText("Forwarding on channel "+
ControlExecutive.SAAM_CONTROL_PORT);
controlExec.talk(me);

}catch(ChannelException tde){
gui. sendText (tde. toString ()) ,-

}
}catch(Exception e){
gui.sendText(e.toString());

}//try-catch

174

break;

default:
gui.sendText("Packet type unrecognized: "+type);
//packet type is unrecognized. Here we could
//extract a channel_ID that could be embedded
//in the packet, and then send the unrecognized
//element on that channel.

}//end switch
}//for
started=false;

}//processPacket()

/ **

* This method can be used to append a Message to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getBytes method.
* Sparam me The Message to be appended.
*/

public void append(Message me){
if(bytesRetrieved){
packet=null;
numberOfMessages=0;
bytesRetrieved = false;

}
byte type = me.getType() ;

String name = me.getClass () .getNameO ;
gui.sendText("appending "+name);
byte nameLength = (byte)name.getBytes().length;
byte[] parameters = me.getBytes();

//here we could check the length of the parameter array supplied
//with the length returned from the length() method call.
short paramLength = (short)parameters.length;
//now append the Message to the packet byte array
packet = Array.concat(packet,type);
packet = Array.concat(packet,nameLength);
packet = Array.concat(packet,name.getBytes());
packet = Array.concat(packet,

PrimitiveConversions.getBytes(paramLength));
packet = Array.concat(packet,parameters);
//increment the count of messages in this packet
numberOfMessages++;

gui.sendText("Appended Message:" +
"\n Type: " + type +
"\n name: " + name +
"\n param length: " + paramLength +
"\n # of elements: " + numberOfMessages +
"\n packet length: " + packet. length+" \n") ,-

175

} //end of append

/ **

* This method can be used to append a DCM message to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getDCMBytes method.
* ©param downward The DCM message to be appended.
*/

public void appendDCM(DCM downward){
gui.sendText(" Appends a dem before sending downward with lengh");
DCMpacket = Array.concat(DCMpacket,downward.getBytes());

}//end of appendDCm

/**

* This method can be used to append a PN message to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getPNBytes method.
* ©param downward The PN message to be appended.
*/

public void appendPN(ParentNotification pn){
gui.sendText(" Appending a PN before sending downward with lengh");
PNpacket = Array.concat(PNpacket,pn.getBytes());
gui.sendText("after appending PN is "+PNpacket.length);

}//end of appendDCm

I * *
* This method can be used to append a PN message to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getPNBytes method.
* ©param downward The PN message to be appended.
*/

public void appendUCM(UCM upward){
gui.sendText(" Appending a UCM message before sending upward");
UCMpacket = Array.concat(packet,upward.getBytes());

}//end of appendUCM

/* *

* This method can be used to append a ResidentAgent to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getBytes method.
* ©param ra The ResidentAgent to be appended.
*/

public void append(ResidentAgent ra) throws IOException{
String name = ra.getClass().getName();
append(name);

}
/ * *

* This method can be used to append a ResidentAgent by name to an
* outgoing SAAMPacket. To later retrieve the entire packet
* (with header) as a byte array, call the getBytes method.
* ©param residentAgentClassName The String name of the ResidentAgent
* classfile to be appended.

176

*/
public void append(String residentAgentClassName)

throws IOException{
if(bytesRetrieved){
packet=null;
numberOfMessages=0;
bytesRetrieved = false;

}
byte type = 0;
String name = residentAgentClassName;

// String fileName =
"C:\\WINNT\\Profiles\\administrator\\Desktop\\Java\\saamjuly\\saamxpand
l"+File.separatorChar +

String fileName = "C:\\hakkoc"+File.separatorChar +
residentAgentClassName.replace('.',File.separatorChar);

fileName+=".class";
gui.sendText("File name: "+fileName);
FilelnputStream fis = null;
try{

fis = new FilelnputStream(fileName);
}catch(IOException ioe){
throw new IOException(

"Problem reading ResidentAgent: "+fileName);
}
byte nameLength = (byte)name.getBytes().length;
byte[] byteCode = new byte[fis.available()];
short length = (short)fis.read(byteCode);

packet = Array.concat(packet,type);
packet = Array.concat(packet,nameLength);
packet = Array.concat(packet,name.getBytes());
packet = Array.concat(packet,

PrimitiveConversions.getBytes(length));
packet = Array.concat(packet,byteCode);
numberOfMessages++;

gui.sendText("Appended ResidentAgent:" +
\n Type: ' + type +
\n name: ' + name +
\n byteCode length: 1 + length +
\n # of elements: ' + numberOfMessages +
\n packet length: ' + packet.length+"\n")

* Appends a header to the byte array. The header conforms
* to the structure of a SAAMHeader.
*/

private void appendHeader(){
byte[] timeStamp = PrimitiveConversions.getBytes(

System. currentTimeMillis ()) ,-
packet = Array.concat(numberOfMessages,packet);
packet = Array.concat(timeStamp,packet);
gui.sendText("Appended header:"+

177

" \n timeStamp: "+PrimitiveConversions.getLong(
Array.getSubArray(packet, 0, 8)) +

"\n # of updates: "+packet[8] +
"\n packet length: "+packet.length+"\n");

}

/ **

* Returns a byte array that conforms to the structure of
* a SAAMPacket.
* ©return A byte array that conforms to the structure of
* a SAAMPacket.
*/

public byte[] getBytes(){
appendHeader();
bytesRetrieved = true;
return packet;

}

/ **

* Returns a byte array that conforms to the structure of a DCMPacket.
* ©return A byte array that conforms to the structure of DCMPacket.
*/
public byte[] getDCMBytes(){

return DCMpacket;
}

/* *

* Returns a byte array that conforms to the structure of a PNPacket.
* ©return A byte array that conforms to the structure of PNPacket.
*/

public byte[] getPNBytes(){
return PNpacket;

}

/**

* Returns a byte array that conforms to the structure of a UCMPacket.
* ©return A byte array that conforms to the structure of UCMPacket.
*/
public byte[] getUCMBytes() {

return UCMpacket;
}

/ **

* Returns the current length of the packet.
* ©return The current length of the packet.
*/
public int length(){

try{
return packet.length;

}catch(NullPointerException npe){
return 0;

}
}

178

* Returns a <code>String</code> representation of this object
* ©return The <code>String</code> representation of this object
*/

public String toString(){
return "Packet Factory";

}

179

ti-
ll
II
II
II
II—

Filename : Demo_2.
Feb 2000[akkoc]
01Aug99 [Vrable]
Project : SAAM

.ServerS_4_RouterS.Java
- modified
- Created

package saam.demo;

import
import
import
import
import
import
import
import
import
import
import

saam.*;
saam.control.* ;
saam.message.*;
saam.residentagent.*;
saam.router.*;
saam.net.*;
saam.util.*;
java.net.*;
Java.io.*;
java.util.Vector;
java.util.Enumeration;

public class Demo_2_ServerS_4_RouterS{
private PacketFactory packet = new PacketFactory();

private InetAddress
destMai^destBackUp^estA^estB^estCdestD^estE;

private int destEmulationPort=9010; //SAAM UDP emulation port
private DemoGui gui = new DemoGui("DemoStation_2_Server_4_Routers");

Configuration cfMain = null; //FOR MAIN SERVER
Configuration cfBackup = null; //For Backup Server

//Different values may be sent to each server and router
private int timeScaleForMain = 30;
private int timeScaleForBackUp = 30;
private int timeScaleForRouter_A = 550
private int timeScaleForRouter_B = 400
private int timeScaleForRouter_C = 550
private int timeScaleForRouter_D = 400

// private int timeScaleForRouter_E = 400;

private static
private static

private static
private static

private static
//Metric Type 0-

private static
private static

private static
private static

final byte MAIN_SERVER_TYPE_ID = 0;
final byte BACK_UP_SERVER_TYPE_ID = 1;

final int MAIN_SERVER_FLOW_ID = 1;
final int BACK_UP_SERVER_FLOW_ID = 3;

final byte METRICJTYPE = 0;
->For Symmetric (first arriving best), l->For Hopcount

final int MAIN_REFRESH_CYCLE_TIME = 2000;// In msec,
final int BACK_UP_REFRESH_CYCLE_TIME = 2000;//Inmsec.

final int MAIN_GLOBALTIME_TO_WAIT = 200;// In msec,
final int BACK_UP_GLOBALTIME_TO_WAIT = 200;//In msec.

180

private String[] coreAgents =
{"saam.res identagent.router.Scheduler",
"saam.res identagent.router.ARPCache",
"saam.residentagent.router.FlowRoutingTable"

public static void main(String args[]){
Demo_2_ServerS_4_RouterS test = new
System.exit(0) ;

}

Demo_2_ServerS_4_RouterS()

public Demo_2_ServerS_4_RouterS(){
try{

gui.setTextField("My IP: "+
InetAddress.getLocalHost().getHostAddress())

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString()) ;

}

try{
destMain= InetAddress.getByName("131.120.8.135"); //server
destBackUp= InetAddress.getByName("131.120.8.138");//backup
destA= InetAddress.getByName("131.120.8.147"); //Router A
destB= InetAddress.getByName("131.120.
destC= InetAddress.getByName("131.120.
destD= InetAddress.getByName("131.120.

// destE= InetAddress.getByName("127.0.
}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}

.8.137"); //Router B
, 9.46"); //Router C
.8.155"); //Router D
0.1"); //Router E

//Initilizing interfaces on MAIN Server
Vector serverlnterfaceM = new Vector();
Vector serverEmTableM = new Vector();
Vector serverArpCacheM = new Vector();

byte serverMacM = 0;
byte serverNextMacM = 1;
try{
IPv6Address serlntAdM = new IPv6Address(

IPv6Address.getByName("99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1")
.getAddress());

IPv6Address serNextHopM = new IPv6Address(
IPv6Address.getByName("99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2")

.getAddress());
InetAddress serNextV4M = InetAddress.getByName("131.120.8.147") ;

//for demohello message
serverlnterfaceM.add(new InterfacelDf serlntAdM,serverMacM));
//for EmulationTableEntry message
serverEmTableM.add(newEmulationTableEntry

(serNextHopM,serNextV4M));
//for ARPCache
serverArpCacheM.add(new

181

ARPCacheEntry(serNextHopM,serverNextMacM));
cfMain = new Configuration(MAIN_SERVER_TYPE_ID,

MAIN_SERVER_FLOW_ID,METRIC_TYPE,
MAIN_REFRESH_CYCLE_TIME*timeScaleForMain,
MAIN_GLOBALTIME_TO_WAIT*timeScaleForRouter_A);

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString()) ;

}

//initiating BACKUP Server
//Initilizing interfaces on Server
Vector serverlnterfaceB = new VectorO;
Vector serverEmTableB = new Vector();
Vector serverArpCacheB = new VectorO;

byte serverMacB = 13;
byte serverNextMacB = 12;
try{
IPv6Address serlntAdB = new IPv6Address(

IPv6Address.getByName("99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2")
.getAddress());

IPv6Address serNextHopB = new IPv6Address (
IPv6Address.getByName("99. 99. 99. 99.6.0.0.0.0.0.0.0.0.0.0.1")

.getAddress()) ;
InetAddress serNextV4B = InetAddress.getByName("131.120.8.155");

//for demohello message
serverlnterfaceB.add(new InterfacelD(serlntAdB,serverMacB));
//for EmulationTableEntry message
serverEmTableB.add(new EmulationTableEntry (serNextHopB,serNextV4B));
//for ARPCache
serverArpCacheB.add(new ARPCacheEntry (serNextHopB,serverNextMacB));

cfBackup = new Configuration(BACK_UP_SERVER_TYPE_ID,
BACK_UP_SERVER_FLOW_ID, METRIC_TYPE,
BACK_UP_REFRESH_CYCLE_TIME
timeScaleForBackUp,BACK_UP_GLOBALTIME_TO_WAIT
timeScaleForRouter_A);

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}

//ROUTER A
Vector routerAInterfaces = new VectorO;
Vector routerAEmTable = new VectorO;
Vector routerAArpCache = new VectorO;

//interface-1
byte routerAMacs_l = 1;
byte routerANextMac_l = 0;
try{

182

IPv6Address routerAInt_l = new IPv6Address(
IPv6Address.getByName("99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2")

.getAddress());
IPv6Address routerANextHop_l = new IPv6Address(
IPv6Address.getByName("99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1")

.getAddress()) ;
InetAddress routerANextV4_l = InetAddress.getByName("131.120.8.135");
routerAInterfaces.add(new InterfaceID(routerAInt_l,routerAMacs_l));
routerAEmTable.add(new
EmulationTableEntry(routerANextHop_l,routerANextV4_l));
routerAArpCache.add(new
ARPCacheEntry(routerANextHop_l,routerANextMac_l));
}catch(UnknownHostException uhe){

gui.sendText(uhe.toString());
}

//interface-2
byte routerAMacs_2 = 2;
byte routerANextMac_2 = 5;
try{
IPvSAddress routerAInt_2 = new IPv6Address(
IPv6Address.getByName("99.99.99.99.1.0.0.0.0.0.0.0.0.0.0.1")

.getAddress()) ;
IPv6Address routerANextHop_2 = new IPv6Address(
IPv6Address.getByName("99.99.99.99.1.0.0.0.0.0.0.0.0.0.0.2")

.getAddress()) ;
InetAddress routerANextV4_2 = InetAddress.getByName("131.120.8.137");

routerAInterfaces.add(new InterfacelDf routerAInt_2,routerAMacs_2));
routerAEmTable.add(new
EmulationTableEntry(routerANextHop_2,routerANextV4_2));
routerAArpCache.add(new
ARPCacheEntry(routerANextHop_2,routerANextMac_2));
}catch(UnknownHostException uhe){

gui.sendText(uhe.toString());
}

//interface-3
byte routerAMacs_3 = 3;
byte routerANextMac_3 = 10;
try{
IPv6Address routerAInt_3 = new IPv6Address(
IPv6Address.getByName("99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.1")
.getAddress());
IPv6Address routerANextHop_3 = new IPv6Address(
IPv6Address.getByName("99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.2")
. getAddress ()) ,-

InetAddress routerANextV4_3 = InetAddress.getByName("131.120.8.155");

routerAInterfaces.add(new InterfacelDf routerAInt_3,routerAMacs_3));
routerAEmTable.add(new
EmulationTableEntry(routerANextHop_3,routerANextV4_3));

183

routerAArpCache.add(new
ARPCacheEntry(routerANextHop_3,routerANextMac_3)) ;
}catch(UnknownHostException uhe){

gui.sendText(uhe.toString());
}
//interface-4
byte routerAMacs_4 = 4;
byte routerANextMac_4 = 7;
try{
IPv6Address routerAInt_4 = new IPv6Address(
IPv6Address.getByName("99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1")
.getAddress());
IPv6Address routerANextHop_4 = new IPv6Address(
IPv6Address.getByName("99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2")
.getAddress());

InetAddress routerANextV4_4 =
InetAddress.getByName("131.120.9.46");

routerAInterfaces.add(new InterfaceID(routerAInt_4,routerAMacs_4));
routerAEmTable.add(new
EmulationTableEntry(routerANextHop_4,routerANextV4_4)) ;
routerAArpCache.add(new
ARPCacheEntry(routerANextHop_4,routerANextMac_4)) ;
catch(UnknownHostException uhe){

gui.sendText(uhe.toString());
}

//ROUTER B

Vector routerBInterfaces = new Vector();
Vector routerBEmTable = new Vector();
Vector routerBArpCache = new Vector();

//interface-1
byte routerBMacs_l = 5;
byte routerBNextMac_l = 2;
try{

IPv6Address routerBInt_l = new IPv6Address(
IPv6Address.getByName ("99.99.99.99.1.0.0.0.0.0.0.0.0.0.0.2")
.getAddress());
IPv6Address routerBNextHop_l = new IPv6Address(
IPv6Address.getByName("99.99.99.99.1.0.0.0.0.0.0.0.0.0.0.1")
.getAddress()) ;
InetAddress routerBNextV4_l = InetAddress.getByName("131.120.8.147");
routerBInterfaces.add(new InterfaceID(routerBInt_l,routerBMacs_l));
routerBEmTable.add(new

EmulationTableEntry (routerBNextHop_l,routerBNextV4_l));
routerBArpCache.add(new

ARPCacheEntry(routerBNextHop_l,routerBNextMac_l)) ;
}catch(UnknownHostException uhe){

gui.sendText(uhe.toString());
}
//interface-2
byte routerBMacs_2 = 6;
byte routerBNextMac_2 = 9;
try{

184

IPv6Address routerBInt_2 = new IPv6Address(
IPv6Address.getByName("99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.1")
.getAddress()) ;
IPv6Address routerBNextHop_2 = new IPv6Address(
IPv6Address.getByName("99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.2")
.getAddress()) ;
InetAddress routerBNextV4_2 = InetAddress.getByName("131.120.8.155");

routerBInterfaces.add(new InterfacelD(routerBInt_2,routerBMacs_2));
routerBEmTable.add(new
EmulationTableEntry(routerBNextHop_2,routerBNextV4_2));
routerBArpCache.add(new
ARPCacheEntry(routerBNextHop_2,routerBNextMac_2));

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}

// ROUTER C
Vector routerCInterfaces = new Vector();
Vector routerCEmTable = new Vector();
Vector routerCArpCache = new Vector();
//interface-1
byte routerCMacs_l = 7;
byte routerCNextMac_l = 4;
try{

IPv6Address routerCInt_l = new IPv6Address(
IPv6Address.getByName("99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2").getAddress
()) ;

IPv6Address routerCNextHop_l = new IPv6Address(
IPv6Address.getByName("99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1").getAddress
0);

InetAddress routerCNextV4_l =
InetAddress.getByName("131.12 0.8.147") ;

routerCInterfaces.add(new InterfaceID(
routerCInt_l,routerCMacs_l));

routerCEmTable.add(new
EmulationTableEntry(routerCNextHop_l,routerCNextV4_l));

routerCArpCache.add(new
ARPCacheEntry(routerCNextHop_l,routerCNextMac_l));

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString()) ;

}
//interface-2

byte routerCMacs_2 = 8;
byte routerCNextMac_2 = 11;
try{
IPv6Address routerCInt_2 = new IPv6Address(

IPv6Address.getByName("99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1").getAddress
0);

IPv6Address routerCNextHop_2 = new IPv6Address(
IPv6Address.getByName("99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.2").getAddress
0);

185

InetAddress routerCNextV4_2 = InetAddress.getByName("131.120.8.155");

routerCInterfaces.add(new InterfaceID(routerCInt_2,routerCMacs_2));
routerCEmTable.add(new
EmulationTableEntry(routerCNextHop_2,routerCNextV4_2)) ;

routerCArpCache.add(new
ARPCacheEntry(routerCNextHop_2,routerCNextMac_2));

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString()) ;

}

//ROUTER D
Vector routerDInterfaces = new Vector();
Vector routerDEmTable = new Vector();
Vector routerDArpCache = new Vector();
//interface-1
byte routerDMacs_l = 10;
byte routerDNextMac_l = 3;
try{
IPv6Address routerDInt_l = new IPv6Address(
IPv6Address.getByName("99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.2").getAddress
0);

IPv6Address routerDNextHop_l = new IPv6Address(
IPv6Address.getByName("99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.1").getAddress
0);
InetAddress routerDNextV4_l = InetAddress.getByName("131.120.8 .147");

routerDInterfaces.add(new InterfaceID(
routerDInt_l,routerDMacs_l));

routerDEmTable.add(new
EmulationTableEntry(routerDNextHop_l,routerDNextV4_l));

routerDArpCache.add(new
ARPCacheEntry(routerDNextHop_l,routerDNextMac_l));

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}
//interface-2
byte routerDMacs_2 = 9;
byte routerDNextMac_2 = 6;
try{
IPv6Address routerDInt_2 = new IPv6Address(
IPv6Address.getByName("99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.2").getAddress
()>;
IPv6Address routerDNextHop_2 = new IPv6Address(
IPv6Address.getByName("99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.1").getAddress
0);
InetAddress routerDNextV4_2 = InetAddress.getByName("131.120 . 8 .137") ;

routerDInterfaces.add(new InterfaceID(routerDInt_2,routerDMacs_2));
routerDEmTable.add(new

EmulationTableEntry (routerDNextHop_2 , routerDNextV4_2)) ,-
routerDArpCache.add(new

ARPCacheEntry(routerDNextHop_2,routerDNextMac_2));
}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

186

}
//interface-3
byte routerDMacs_3 = 12;
.byte routerDNextMac_3 = 13;
try{
IPv6Address routerDInt_3 = new IPvSAddress(

IPv6Address.getByName("99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1").getAddress
0);

IPv6Address routerDNextHop_3 = new IPv6Address(
IPv6Address.getByName("99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2").getAddress
());

InetAddress routerDNextV4_3 =
InetAddress.getByName("131.120.8.138");

routerDInterfaces.add(new InterfaceID(
routerDInt_3,routerDMacs_3));

routerDEmTable.add(new
EmulationTableEntry(routerDNextHop_3,routerDNextV4_3)) ;

routerDArpCache.add(new
ARPCacheEntry(routerDNextHop_3,routerDNextMac_3));

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}

//interface-4
byte routerDMacs_4 = 11;
byte routerDNextMac_4 = 8;
try{

IPv6Address routerDInt_4 = new IPv6Address(
IPv6Address.getByName("99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.2").
getAddress()) ;
IPv6Address routerDNextHop_4 = new IPv6Address(
IPv6Address.getByName("99. 99 .99 . 99 .4. 0 . 0.0 . 0 . 0. 0 . 0 . 0 . 0 . 0.1")
.getAddress());
InetAddress routerDNextV4_4 = InetAddress.getByName ("131.120.9.46");

routerDInterfaces.add(new InterfaceID(routerDInt_4,routerDMacs_4));
routerDEmTable.add(new
EmulationTableEntry(routerDNextHop_4,routerDNextV4_4));
routerDArpCache.add(new
ARPCacheEntry(routerDNextHop_4,routerDNextMac_4));

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}

//FIRST STAND UP Main SERVER! ! ! ! ! !
InitServer(serverlnterfaceM, serverEmTableM, serverArpCacheM,
destMain,cfMain);
try{

Thread.sleep(1000);
}catch(InterruptedException ie){
gui.sendText("problem afetr initserver therad sleep");

}

187

//Backup
InitServer(serverInterfaceB, serverEmTableB, serverArpCacheB,
destBackUp,cfBackup);

try{
Thread.sleep(1000);

}catch(InterruptedException ie){
gui.sendText("problem afetr initserver therad sleep");
}

//NOW STAND-UP THE ROUTERS!!!!!!!!!

// start Router A
InitRouter(routerAInterfaces, routerAEmTable, routerAArpCache,

destA, timeScaleForRouter_A);

try{
Thread.sleep(lOOO);

}catch(InterruptedException ie){
gui.sendText("problem afetr initrouter thread sleep");

}

// start Router B
InitRouter(routerBInterfaces, routerBEmTable, routerBArpCache,

destB , timeScaleForRouter_B);

try{
Thread.sleep(1000);

}catch(InterruptedException ie){
gui.sendText("problem after initrouter thread sleep");

}
// start Router C

InitRouter(routerCInterfaces, routerCEmTable, routerCArpCache,
destC , timeScaleForRouter_C);

try{
Thread.sleep(1000);

}catch(InterruptedException ie){
gui.sendText("problem afetr initserver thread sleep");

}

// start Router D
InitRouter(routerDInterfaces, routerDEmTable, routerDArpCache,

destD, timeScaleForRouter_D);

try{
Thread.sleep(4000) ;

}catch(InterruptedException ie){
gui.sendText("problem afetr initserver thread sleep");

}

/* // start Router E
InitRouter(routerEInterfaces, routerEEmTable, routerEArpCache,

188

specialAgents, moreResAgents, destE,
timeScaleForRouter_E);

try{
Thread.sleep(4000);

}catch(InterruptedException ie){
gui.sendText("problem afetr initserver thread sleep");

} */

} //end DemoStation() constructor

public void InitRouter(Vector routerlnterfaces,
Vector routerEmTable, Vector routerArpCache,
InetAddress dest, int tsForRouter){

//add router InterfacelDs — may have to use DemoHello messages instead

DemoHello helloMessage = new DemoHello(routerlnterfaces);
packet.append(helloMessage) ;

try{
//now append some ResidentAgents...
//first the agents that are necessary for the
//protocol stack
for(int i=0;i<coreAgents.length;i++){
packet.append(coreAgents[i]);

}

//then any additional agents for the specific host

}catch(IOException ioe){
gui.sendText(ioe.toString());
gui.sendText(" problem in initrouter coreagents for block ");

}

packet.append(new TimeScale(tsForRouter));
//add entries to the EmulationTable
Enumeration el = routerEmTable.elements();
while(el.hasMoreElements()){

packet.append((EmulationTableEntry)(el.nextElement()));

} //end of while

//add entries to the ARPCache
Enumeration e2 = routerArpCache.elements();

while(e2.hasMoreElements()){
packet.append((ARPCacheEntry) e2.nextElement());

} //end of while

//now send the packet
byte[] packetArray = packet.getBytes();
gui.sendText("#of messages: "+packetArray[8]);//peeks inside packet
try{

Socket socket = new Socket(dest,destEmulationPort);

189

socket.setTcpNoDelay(true) ;

gui.sendText("destination= "+dest+" destEmuPort= "+ destEmulationPort)
OutputStream os = socket.getOutputStream();

os.write(packetArray);
// os.flush();
os.close();
socket.close();
}catch(Exception e){
gui.sendText(e.toString());
gui.sendText(" problem in initrouter socket try block ");
}
gui.sendText("Packet sent to "+dest.getHostAddress());
gui.sendText("Length: "+packetArray.length);
}//end InitRouter()

public void InitServer(Vector serverlnterface,
Vector serverEmTable, Vector serverArpCache,
InetAddress destS,Configuration cf){

DemoHello helloMessage = new DemoHello(serverlnterface);
packet.append(helloMessage);

try{
//now append some ResidentAgents...
//first the agents that are necessary for the
//protocol stack
for(int i=0;i<coreAgents.length;i++){
packet.append(coreAgents[i]);

}
//then any additional agents for the specific host
packet. append(" saam. residentagent. server. ServerAgentSymetric")

}catch(IOException ioe){
gui.sendText(ioe.toString());

}

//add entries to the Server's EmulationTable
Enumeration el = serverEmTable.elements() ;
while(el.hasMoreElements()){

packet.appendt (EmulationTableEntry) (el.nextElement ())) ;

} //end of while

//add entries to the Server's ARPCache

Enumeration e2 = serverArpCache.elements();
while(e2.hasMoreElements()){

packet.append((ARPCacheEntry) (e2.nextElement())) ;

} //end of while

190

//To send CONFIGURATION INFORMATION
packet.append(cf);

//now send the packet
byte[] packetArray = packet.getBytes();
gui.sendText("#of messages send to server:"+packetArray[8]);

try{
Socket socket = new Socket(destS,destEmulationPort);
socket.setTcpNoDelay(true);
gui.sendText("destServer="+destS+"destEmuPort="+

destEmulationPort);
OutputStream os = socket.getOutputStream();
os.write(packetArray);
// os.flush(),•

os.close();
socket.close();

}catch(Exception e){
gui.sendText(e.toString()) ;
gui.sendText(" problem in initserver socket try block ")

}
gui.sendText("Packet sent to "+destS.getHostAddress());
gui.sendText("Length: "+packetArray.length);

}//end InitServer()

}//end class DemoStation

191

//
// Filename : RoutingAlgorithm.Java
// Feb 2000[akkoc/xie] - modified
// 01Aug99 [Vrable] - Created
// Project : SAAM
//.

package saam.router;

import java.net.UnknownHostException;
import java.util.*;
import saam.router.Interface;
import saam.router.*;
import saam.*;
import saam.control.*;
import saam.residentagent.*;
import saam.residentagent.router.*;
import saam.util.*;
import saam.event.*;
import saam.net.*;
import saam.message.*;

/**

* The RoutingAlgorithm looks in the inbound queues of all Interfaces on
* this router and extracts packets based on a round-robin
* algorithm. Dequeued packets are looked into to determine the
destination.
* If the packet is destined for any Interface on this router, the
packet
* is forwarded to the application layer; otherwise the packet is
forwarded
* to the outbound interface.
*/
public class RoutingAlgorithm implements ResidentAgentCustomer,

SaamTalker, SaamListener, Runnable{

I **

* The number of bytes in a SAAM network address. This
* variable is used in the routePacket() method to determine
* the outbound interface when ARPing.
*/

private static final int bytesToCheck = 5;

private static final int DATAGRAM_ROUTING = 0;

/ * *

* The agentTypes the RoutingAlgorithm registers to process.
*/

private static final String[] agentTypes =
{"saam.residentagent.router.ARPCache",
"saam.residentagent.router.FlowRoutingTable"} ;

private static ResidentAgent arpCache, flowRoutingTable;

192

private ControlExecutive controlExec;
private SAAMRouterGui gui = new SAAMRouterGui("RoutingAlgorithm");
private Vector interfaces = new Vector();
private int interfaceCount;
private int populatedQueues;
private Interface outboundlnterface;
private boolean started;
private long packetCounter;
private Object theLock= new ObjectO;
private Object populatedQueueLock = new ObjectO;

/**

* The ControlExecutive instantiates the RoutingAlgorithm, passing it
* a copy of the ControlExecutive so the RoutingAlgorithm can call
* methods on that ControlExecutive. The ControlExecutive instantiates
* the arpCache ResidentAgent and passes it to the RoutingAlgorithm.
* ©param controlExec The ControlExecutive this RoutingAlgorithm will
* use to perform certain operations.
* ©param arpCache The ARPCache ResidentAgent this RoutingAlgorithm will
* use to determine the MAC address of the nexthop for outbound packets.
*/
public RoutingAlgorithm(ControlExecutive controlExec,

ResidentAgent arpCache){

flowRoutingTable = new FlowRoutingTable();// creates resident agent
this.controlExec = controlExec;
this.arpCache = arpCache;

controlExec.registerMessageProcessor((MessageProcessor)flowRoutingTable
);

controlExec.registerMessageProcessor((MessageProcessor)arpCache);
controlExec.registerCustomer(this);
//add talker
int channel_ID = ProtocolStackEvent.
FROM_ROUT INGALGORI THM_TO_TRANS PORT INTERFAC E_CHANNEL;
try{

controlExec.addTalkerToChannel(this,channel_ID);
gui.sendText("Talking enabled on channel: " + channel_ID);

}catch(ChannelException ce){
gui . sendText (ce. toString ()) ,-

}
//add listener
channel_ID = ProtocolStackEvent.
FROM_TRANSPORTINTERFACE_TO_ROUTINGALGORITHM_CHANNEL;

try{
controlExec.addListenerToChannel(this, channel_ID);
gui.sendText("Listening to channel: "+channel_ID);

}catch(ChannelException ce){
gui . sendText {ce. toString ()) ,-

}//try-catch

Thread algorithmThread = new Thread(this,"Routing Algorithm");
algorithmThread.start{);

193

gui.setTextFieldC'I'm sleeping. . .") ;
}//end RoutingAlgoritnmO

/**

* The ControlExecutive calls this method to allow the RoutingAlgorithm
* to set up the means of communication between itself and this new
* Interface.
* ©param nextlnterface The Interface this RoutingAlgorithm will add
* to the list of Interfaces it monitors.
*/

public void addlnterface(Interface nextlnterface){
//add talker
gui.sendText("Adding "+nextlnterface.toString()) ;
int channel_ID = ProtocolStackEvent.
FROM_ROUTINGALGORITHM_TO_INTERFACE_START_CHANNEL+

interfaceCount;
try{

controlExec.addTalkerToChanneKthis, channel_ID) ;
gui.sendText("Talking enabled on channel: " + channel_ID);

}catch(ChannelException ce){
gui.sendText(ce.toString()) ;

}
//add listener
channel_ID = ProtocolStackEvent.

ENQUEUING_INBOUND_PACKET_START_CHANNEL+
interfaceCount;

try{
controlExec.addListenerToChannel(this, channel_ID);
gui.sendText("Listening to channel: "+channel_ID);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}//try-catch
interfaces.add(nextlnterface);
gui.sendText("Monitoring "+interfaces.size()+

" interfaces");
gui.sendText("Waiting.. . ") ;
interfaceCount++;

}//addlnterface()

/**

* Toe access an entry in the flowroutingtable
* ©param mid FlowRoutingtableEntry message formed by ONLY flow_id
* ©return FlowRoutingTableEntry object
*/

public synchronized FlowRoutingTableEntry
getFromFlowRoutingTable(Message mid){
return (FlowRoutingTableEntry) this.flowRoutingTable.query(mid) ;

}

* To access the interfaces on the router
* ©return Vector containing interfaces
*/

public Vector getlnterfaces(){
return interfaces;

194

/**

* Returns an array that contains the class names of the resident
* agents that this Object desires to be a ResidentAgentCustomer of.
* ©return An array that contains the class names of the resident
* agents that this Object desires to be a ResidentAgentCustomer of.
*/

public String[] getAgentTypes(){
return agentTypes;

}//getAgentTypes()

/**

* When the ControlExecutive receives an agent that is to replace
* an existing agent, the ControlExecutive calls the replaceAgent
* method on each of the ResidentAgentCustomers of that ResidentAgent.
* ©param agent The new ResidentAgent.
*/
public void replaceAgent(ResidentAgent agent){

if(agent.getClassf).getNameO.equals(agentTypes[0])){
gui.sendText("ARPCache is being replaced...");
this.arpCache=agent;
gui.sendText("New ARPCache installed.. .") ;
gui.sendText(arpCache.toString());

}else
if (agent. getClassO .getNameO .equals (agentTypes [1])) {
gui.sendText("FlowRoutingTable is being replaced...");
//akkoc added line below
this.flowRoutingTable = agent;
gui. sendText("New FlowRoutingTable installed.. . ") ;
gui.sendText(flowRoutingTable.toString()) ;

}else{
gui.sendText("RoutingAlgorithm is not a customer "+

"of "+agent.toString());
}

}//replaceAgent()
/ * *

* The algorithm for determining which inbound queue to select from
* next is contained here. For this version of the SAAM router, the
* algorithm merely visits the queues in round-robin fashion. When
* a packet is dequeued, it is sent to the routeInboundPacket method.
*/

public void run(){

//round-robin scheduler
gui.sendText("Monitoring "+interfaceCount+" interfaces");

while(true){
gui.sendText("Looking in inbound queue's...");
searchlnboundQueues();
gui.sendText(

ii***** A]_]_ inbound queues empty, I'm going to sleep");
try{

synchronized(theLock){
gui.sendText("Waiting...");

195

while(!started)
theLock.wait();

gui.sendText("Resumed");
}

}catch(InterruptedException ie){
gui.sendText(ie.toString());

}
}//while(started)

}//run()

/ * *

* Searches all inbound queues for a packet. Each queue is searched
* until all packets in the queue have been removed. All queues are
* repeatedly searched until two conditions are met:
* 1) All queues are empty and
* 2) No Interface has enqueued a packet during the search.
*/
private void searchlnboundQueues(){

//Continue sweeping the queues and routing packets until all queues
//are empty and no Interface sends a notification that a packet
//is being enqueued.
int queuelD = Interface.INBOUND_QUEUE;
gui.sendText("Searching... populatedQueues = "+populatedQueues);

while (populatedQueues > 0){

for (int i = 0; i < interfaceCount; i++){
Interface thislnterface = (Interface)interfaces.get(i);
// round robin to achieve fairness
if (!(thislnterface.isEmpty(queuelD))){
gui.sendText("** Number of packets in queue " + queueID+ "

is " + thislnterface.getPacketCount(queuelD));
gui.sendText("Dequeuing packet from "+

thislnterface.toString()) ;
byte [] packet = null;
synchronized (populatedQueueLock){

packet = thislnterface.getPacket(Interface.INBOUND_QUEUE);
if (thislnterface.isEmpty(queuelD))
populatedQueues—;

}
routelnboundPacket(packet) ;

gui.sendText("** Number of packets remaining in queue " +
queuelD + " is " + thislnterface.getPacketCount(queuelD));
}//end if

gui.sendText("SEARCH: Populated Queues = " + populatedQueues);

}//end for

}//while

started = false;
}//searchlnboundQueues()

196

/ **

* Receives and processes SaamEvents received on the Channel that
* has been designated as the communication Channel for traffic from
* Transportinterface to the RoutingAlgorithm.
* ©param se The SaamEvent that contains the outbound packet.
*/

public void receiveEvent(SaamEvent se){ // akkoc made sync
//this doesn't actually use the SaamEvent
Interface thislnterface = (Interface)se.getTalker();
synchronized (populatedQueueLock){
int numP = thislnterface.getPacketCount (Interface. INBOUND_QUEUE) ;
if (numP == 1){

populatedQueues++;
}

}// end of lock
// Print out debugging information

IPv6Packet packet = null;
try{
packet = new
IPv6Packet(thislnterf ace. peekPacket (Interf ace. INBOUND_QUEUE)) ;
}catch(UnknownHostException uhe){};
gui.sendText("\n Received Packet of Payload length = " +
packet.getPayload().length);
gui.sendText("Source: "+
packet.getHeader().getSource().toString());
gui.sendText("Dest: "+
packet.getHeader().getDest().toString());

gui.sendText("Number of populated queues = " + populatedQueues);

if(!started){
gui.sendText("packet arrived from : " + thislnterface+" .
Activating routing algorithm." + "\n");

synchronized(theLock){
started = true;
theLock.notify();

}
}else{

}//if(!started)

}//packetReceived

/ **

* This method answers the question - "Is this packet destined for
* an Interface on this router?".
* ©param dataPacket The packet to be tested.
* ©return True if the packet is destined for an Interface on this
router.
*/
public synchronized boolean isApplicationLayerPacket(IPv6Packet

197

dataPacket){

forfint i=0;i<interfaces.size();i++){
Interface thislnterface = (Interface)interfaces.get(i);
if (dataPacket.getHeaderO .getDestO .toStringO .equals (
thislnterface.getID().getIPv6().toString()))

return true;
}
return false;

}//isApplicationLayerPacket()

I * *
* The purpose of this method is to determine which Interface is
* connected to the Interface this packet is travelling to next.
* Compares the network portion of the nextHop provided with the
* network portions of the IPv6Addresses of each of the the Interfaces
* provided in the Vector.
* ©param interfaces The Vector of Interfaces on this router.
* @param nextHop The IPv6Address to be compared.
* ©return The Interface that is connected to the Interface this packet
* is travelling to next.
*/
public Interface determineOutboundlnterface(Vector interfaces,

IPv6Address nextHop){
byte[] nextHopBytes = nextHop.getAddress();
for(int i=0;i<interfaces.size();i++){
Interface thislnterface = (Interface)interfaces.get(i);
//cycle through all interfaces
//checking network address against nextHop.
int match = 0;
byte[] outboundlnterfaceBytes =

thislnterface.getID().getIPv6().getAddress();
for(int index=0;index<bytesToCheck;index++){
if((nextHopBytes[index]&0xFF)==

(outboundlnterfaceBytes[index]&0xFF)) {
match++;

}//if
}//for
if(match==bytesToCheck){
return thislnterface;

}//if
}//for
return null;

}//determineOutboundlnterface ()

/ **

* Method is used to determine the correspongding interface on router
* for an IPV6Address by comparing the network address portions
* ©param adr IPv6Address that we are looking for interface with the
* matching network address.
* ©return IPv6Address of interface with same network address on
router.
*/
public synchronized IPv6Address lookByNetworkAddress(IPv6Address adr){

198

byte[] nextHopBytes = adr.getAddress();
Enumeration eb = this.interfaces.elements() ;
while(eb.hasMoreElements()){

Interface thislnterface = (Interface)eb.nextElement();
byte[] interfaceBytes =

thislnterface.getID().getIPv6().getAddress() ;
int match = 0;
for(int index=0;index<bytesToCheck;index++){

if((interfaceBytes[index]&0xFF)== (nextHopBytes[index]&0xFF)){
match++;

}//if
}//inner for
if(match== bytesToCheck){
return thislnterface.getID().getIPv6() ;

}//if
}//while
gui.sendText("no interface matches to searched nexthop address ");
return null;

}

/**

* Looks into the packet to determine whether it should be sent to
* the application layer on this router or forwarded on to the next hop.
* ©param whichlnterface The inbound Interface the packet was dequeued
* from.
* ©param packet The byte array that represents the packet.
*/
public void routelnboundPacket(byte[] packet){

packetCounter++;
IPv6Packet dataPacket = null;
try{

dataPacket = new IPv6Packet(packet) ;
}catch(UnknownHostException uhe){};

gui.sendText("\nPacket#: "+packetCounter+", Size = " +
packet. length + ",- Payload length = " +

dataPacket.getPayloadO.length);
gui.sendText("Source: "+

dataPacket.getHeader() .getSource().toString()) ;
gui.sendText("Dest: "+

dataPacket.getHeader().getDest().toString()) ;
if(isApplicationLayerPacket(dataPacket)){

gui.sendText("Application layer packet.") ;
gui.sendText("Forwarding to Transport Interface.");
ProtocolStackEvent event = new ProtocolStackEvent(
toString(),this,ProtocolStackEvent.
FROM_ROUTINGALGORITHM_TO_TRANSPORTINTERFACE_CHANNEL,
dataPacket.getBytes());
try{

controlExec.talk(event);
}catch(ChannelException tde){

gui.sendText(tde.toString()) ;
}

}else{
forwardPacket(dataPacket) ;

199

}
}//routelnboundPacket()

/ **

* Checks to see whether or not an entry is in the ARPCache.
* ©param entry The ARPCacheEntry to be verified.
* ©return True if the entry is in the ARPCache.
*/

public boolean checkARPCache(ARPCacheEntry entry){
ARPCacheEntry resultEntry =

(ARPCacheEntry)arpCache.query(entry);
return resultEntry!=null;

}//checkARPCache()

//modified by [akkoc] according to new routingtables architecture

* Forwards the outbound packet to the appropriate Interface
* @param packet A byte array representation of the outbound packet.
*/

public void forwardPacket(IPv6Packet packet){
int flowID;
IPv6Address dest;
IPv6Header v6Header;

v6Header = packet.getHeader();
gui.sendText("\n Forwarding packet");

flowID = v6Header.getFlowLabel();
gui.sendText("Flow id: "+flowID);
dest = v6Header.getDest();
IPv6Address nextHop = null;
byte si = Interface.BEST_EFFORT_SL;

//GX: First determine which routing table to look up
if (flowID != DATAGRAM_ROUTING){
Message message = (Message)(new FlowRoutingTableEntry(flowID));
FlowRoutingTableEntry ent = (FlowRoutingTableEntry)

flowRoutingTable.query(message);
if(ent != null){
nextHop = ent.getNextHop();
si = ent.getSL();

}else{
ServerTable st = controlExec.getServerTable();
if (st.hasEntryForDestination(flowID,dest)) {

ServerTableEntry ste =
controlExec.getServerTable().getEntryByFlowId(flowID);

RouterBoundCtrlChTable rbt = ste.getRouterBoundCtrlChTable();
RouterBoundCtrlChTableEntry te = rbt.get(dest);
nextHop = te.getNextHop();
si = Interface.CTRL_TRAFFIC_SL;

}else {
//use destination in IPv6 header
nextHop = dest;
si = Interface.CTRL_TRAFFIC_SL;

}
}

200

}
else{

}
// Datagram routing for Best effort or DiffServ traffic

//Now ARP to determine the MAC address of the next hop.
//GX -- This part actually belongs to Interface.Java

Message message = (Message)(new ARPCacheEntry(nextHop));
ARPCacheEntry entry = (ARPCacheEntry)arpCache.query(message);

try{
byte nextMAC = entry.getNextMAC();
gui.sendText("nextMAC: "+nextMAC);
outboundlnterface = determineOutboundlnterface(interfaces,

nextHop);
gui.sendText("outboundlnterface: "+outboundInterface);

if(v6Header.getSource().toStringO.equals(IPv6Address.DEFAULT_H0ST)){
gui.sendText("Setting Source");
v6Header.setSource(outboundInterface.getID().getIPv6());
packet.setHeader(v6Header);

}

gui.sendText("Source: " + v6Header.getSource());
gui.sendText("Dest: " + v6Header.getDest());
gui.sendText("Appending next hop MAC address " + (nextMAC&Oxff));
gui.sendText("Forwarding packet to: " + outboundlnterface);

byte[] outboundPacket = Array.concat(nextMAC,packet.getBytes());

//send a SaamEvent to the appropriate outbound interface.
//This SaamEvent contains the service level among other things.
ProtocolStackEvent event = new

ProtocolStackEvent(toString(),this,

ProtocolStackEvent.getFromRoutingAlgorithmToInterfaceChannel (

interfaces.indexOf(outboundlnterface)),outboundPacket,si,nextHop);
try{
controlExec.talk(event);

}
catch(ChannelException tde){

gui.sendText(tde.toString());
}

}
catch(NullPointerException npe){
gui.sendText("Next Hop is not in the ARPCache");
gui.sendText("Packet DroppedVn");

}
}//forwardPacket()

/**

201

* Returns a <code>String</code> representation of this object
* ©return The <code>String</code> representation of this object
*/
public String toString(){

return "Routing Algorithm";
}//toString()
}

202

//
// Filename : Server.Java
// Feb 2000[akkoc] - modified
// 0lAug99 [Vrable] - Created
// Project : SAAM
//-

package saam.server;

import saam.EmulationTable;
import saam.Translator;
import saam.*;

import saam. net.*;
import saam.message.*;
import saam.control.*;
import saam.event.*;
import saam.router.*;
import saam.util.*;
import j ava.net.*;
import java.util.*;
import j ava.io.*;

/**

* The Server is an object within the SAAM architecture that
* maintains a picture of the network for use in assigning flows.
*/

public class Server implements Runnable{

/** Contains what is known about the network. */
private PathlnformationBase PIB;

/** Enables the Server to receive and send particular types of
messages. */
private ControlExecutive controlExec;

/** A maximum number of hops that a search for different paths may-
take. */
private int Hmax = 4;

/**

* Used to lookup what flow id should be used to send out control
messages
* to specified routers.
*/
private Hashtable flowLookUp = new HashtableO;

/** Used to assign the right number of service level pipes to
interfaces in
* this SAAM region. Only used during initialization
*/
private int numOfServiceLevels = 4;

203

/ **
* The value assigned to flow ids that can not be supported. This'should
* switched over to 0 as soon as routers are converted.
*/
public static int FLOWNOTSUPPORTABLE = 99;

public static int INITIALDELAY = 0;
public static int INITIALLOSSRATE = 0;
public Static int INITIAL/THROUGHPUT = 10000;

public static int RETURNFLOWDELAY = 50;
public static int RETURNFLOWLOSSRATE = 50;
public static int RETURNFLOWTHROUGHPUT = 1000;

public static int ROUTERNOTINPIB = 0;

public static int NOSUPPORTABLEPATHINPIB = 0;

public Static int SERVERNODEID = 1;

public static int FLOWTOSERVER = 0;

public static int PSUEDORANDOMSOURCEPORT = 8000;

public static int INITIALPATHID = 0;

public static int INITIALHEIGHTOFSEARCH = 1;
public static int INCREMENTATIONOFSEARCH = 1;
public static int DESTINATIONNODE = 0;

public static int INITIALZERO = 0;

/** Defines with the appropriate IPv6- address of this server. */
private String serverIPv6 = "99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.1";

/** Time when the all possible paths were found. */
private long timeOfLastPIBBuild = System.currentTimeMillis();

/ **
* The amount of time that we want to have between rebuilding of paths.
*/
private long timeBetweenPIBBuilds = 120000; // 2 minutes (or 120 sec)

/** A boolean that will allow the showing of comments. */
private boolean showComments = true;

private SAAMRouterGui gui;

// 2000 akkoc added
private int sequenceNumber = 1;
private static final int CTS = 0; //SINCE ITS SERVER BY ITSELF
private int hopCount;

204

private static byte serverType;
private static int flowld;
private static byte metricType;
private static int cycleTime;
private static int globalTime;

private IPv6Address Serverld;

/ **

* Constructs a server that use a specified type of Path Information
* Base. The PIB may be in the form of a database structure (which
* requires an existing ODBC configured local database) or a class
* object structure. The cont executive is the interface to the IPv6
* protocol stack, in order for messages to flow to and from network.
* The final step taken is the deletion of all existing data, which is
*important only in a database structure since a class object
*structure is
* volatile.
* ©param type The type of structure that the PIB is to assume.
* ©param controlExec The control executive that will exchange message
* with this server.
*/
public Server(String type, ControlExecutive controlExec){

if (type == "database")
PIB = new DatabaseStructure();

else
PIB = new ClassObjectStructuref);

this.controlExec = controlExec;
gui=new SAAMRouterGui("Server");

Serverld = controlExec.getRouterld() ;

PIB. deleteAHData () ;

//***

// These methods handle external network communications from routers
//A**

*******/

public void processHello(Hello hello) {

long start, finish;
Vector interfaces;
int node_id = INITIALZERO;
InterfacelD mylnterface;
int bandwidth = INITIALZERO;
IPv6Address address = new IPv6Address();
Vector IPv6Addresses = new VectorO;
boolean newRouter = true;
FlowRequest myFlowRequest = new FlowReguest();

205

// capture the start time of processing a hello
start = System.currentTimeMillis();

// produce a vector of IPv6Addresses
interfaces = hello.getlnterfacelDs();
for (int i = INITIALZERO; i < interfaces.size(); i++){
address = ((InterfacelD)interfaces.elementAt(i)).getIPv6();
IPv6Addresses.addElement(address);

}

//check if router exists and if so, return it's node id, else return 0
node_id = PIB.doesRouterExist(IPv6Addresses);

//if the router does not exist in PIB
if (node_id == ROUTERNOTINPIB){

// assign it a new node id
node_id = PIB.getNewNodeldf);

} else {
newRouter = false;

}

// run through all of the LSA interfaces
for (int i = INITIALZERO; i < interfaces.size(); i++) {
my Interf ace = (Interf acelD) interf aces. elementAt (i) ,-
address = myInterface.getIPv6();
// if a new interface is not found in the PIB, then ...
if (IPIB.doesInterfaceExist(address)){
bandwidth = mylnterface.getBandwidth();
address = mylnterface.getIPv6();
// if the link is not contained in the PIB, then add it
if (!PIB.doesLinkExist(address)){

PIB.addLink(address, bandwidth);
}
// now add the interface between the node and the link
PIB.addInterface(node_id, address);
// now add each service level pipe
for (int service_level = 0; service_level < numOfServiceLevels;

service_level++){
PIB.addSLP(address, service_level, INITIALDELAY,
INITIALLOSSRATE, INITIALTHROUGHPUT);

}
} // end if

} //end interfaces for

// capture the hello processing finish time
finish = System.currentTimeMillis();
gui.sendText("Server: processHello: Time required = "

+(finish-start)+" milliseconds.");

// rebuild all possible paths
findAllPossiblePaths();

// determine effective QoS of each path

206

determineEffectiveQoSForPaths();

// construct a new flow to this router
try{
myFlowRequest = new

FlowRequest(IPv6Address.getByName(serverIPv6) ,
address,System.currentTimeMillis(),
RETURNFLOWDELAY,
RETURNFLOWLOSSRATE,RETURNFLOWTHROUGHPUT) ;

} catch(UnknownHostException uhe){
System.err.println("Server: maimUnknownHostException:" + uhe);

}
processFlowRequest(myFlowRequest);

} //end processFlowRequest

/**

* Receives link state advertisement messages from router and processes
* service level pipe status information that they contain. It begins by
* checking to see if a router with the interface address described by
this
* LSA is known to the PIB. If such a router is known to exist, it then
* checks to see if the service level pipe described by this LSA is
known to
* the PIB. If the service level pipe is known, then update its status.
* Otherwise, add the SLP with the specified QoS characteristics.
Finally,
* update the effective QoS for the paths that pass over this service
* pipe by calling the determineEffectiveQoSForPaths().
* ©param router A representation of a router as defined by an LSA.
*/
public void processLSA(LinkStateAdvertisement LSA) {

long start, finish;
int node_id = INITIALZERO;
int bandwidth = INITIALZERO;
byte service_level = 0;
int delay = INITIALZERO;
int loss_rate = INITIALZERO;
int utilization = INITIALZERO;
Vector interfaces = new Vector(3,1);
Vector SLPs = new Vector(3,1);
IPv6Address link_id;
IPv6Address address;
Vector IPv6Addresses = new Vector(1,1);

// capture the start time of processing an LSA
start = System.currentTimeMillis();

// produce a one element vector of IPv6Addresses
address = LSA.getMyIPv6();
IPv6Addresses.addElement(address);

// check if router exists and if so, return it's node id, else return 0

207

node_id = PIB.doesRouterExist(IPv6Addresses) ;

// if the router does exist in PIB, then so does the interface...
if (node_id != ROUTERNOTINPIB){

service_level = LSA.getServiceLevel() ;
delay = LSA.getDelay();
loss_rate = LSA.getLossRateO ;
utilization = LSA.getUtilization();

if (showCoiranents){
gui.sendText("Server: processLSA: node_id = " + node_id

+ ", address = " + address + ", SL = "+service_level
+", D = " +delay+ ", LR = "+loss_rate
+ ", U = "+utilization);

}

//if this SLP is defined, then just update its status
if(PIB.doesSLPExist(address, service_level))
{
PIB.updateSLP(address, service_level, delay,

loss_rate, utilization);
}
// otherwise, insert it
else {

PIB.addSLP(address, service_level, delay,
loss_rate, utilization) ,-

} // end else
} // end if
else { //do nothing
}

// capture the LSA processing finish time
finish = System.currentTimeMillis();
gui.sendText("Server: processLSA: Time required = "

+(finish-start)+" milliseconds.");

// revise the effective QoS of paths made up of this SLP
determineEffectiveQoSForPaths(address,service_level);

} //end processLSA

/ * *

* Receives and processes flow requests from applications. It begins
* by finding a source and a destination router. Routers may be where
* the applications are residing themselves, which is our standard
situation.
* The application could, however, reside on some host that is not
registered
* with the PIB as a router. In this case, the appropriate source or
* destination router would be a router connected to the same link. <p>
* The PIB is checked to ensure that there is the effective QoS
available on
* some path to satisfy the request. If satisfactory path is found, new

208

* unique flow id is assigned and this new flow is associated with that
path.
* Each router in the path is retrieved and a new flow routing table
entry is
* sent to each. If no path can provide the requested level of QoS, then
* flow is assigned to zero, which will be interpreted by IPv6 as best
effort
* traffic. Finally, a flow response is sent back to the application to
* inform it of its assigned flow id. If the flow id that is return is
zero,
* it will be the application's responsibility to either lower it QoS
request
* or to send its traffic as best effort.
* ©param flow_request The message requesting the establishment of a
flow.
*/
public void processFlowRequest(FlowRequest flow_request) {

/** A vector of slp_sequence information for a path. */
Vector slps_in_path;
SLPSequence currentSLPSequence,nextSLPSequence = new SLPSequence() ;
int SLP_source_router, SLP_destination_router, service_level;
IPv6Address link_id = new IPv6Address();
IPv6Address next_hop;
IPv6Address sourceAddress;
int source_router, destination_router, path_id,

flow_id=FLOWNOTSUPPORTABLE;
long start, finish;

// capture the start time of processing a flow request
start = System.currentTimeMillis();

// find a router on the same subnet as the source host
source_router =

PIB.findARouterOnLink(flow_request.getSourcelnterface()) ;

// find a router on the same subnet as the destination host
destination_router =

{PIB.findARouterOnLink(flow_request.getDestinationlnterface()));

path_id = PIB.getPathThatCanSupportFlowRequest(source_router,
destination_router,
flow_request);

// if a path can support this request, then...
if(path_id != NOSUPPORTABLEPATHINPIB){

// assign a flow id to the request
flow_id = PIB.getNewFlowId(path_id,source_router,

destination_router,
flow_request);

// determine each router in path
// transmit Flow Routing Table Entry to it
slps_in_path = PIB.getSLPSequenceOfPath(path_id);

209

// for each router in the path, send a FRTE update
for (int index = INITIALZERO;

index < slps_in_path.size (); index++){
// assign new sip sequence object
currentSLPSequence = (SLPSequence)slps_in_path.elementAt(index);

//if not the last link..
if (index+1 != slps_in_path.size()){
nextSLPSequence =
(SLPSequence)slps_in_path.elementAt(index+1);

}

// retrieve values from this object
SLP_source_router = currentSLPSequence.getSourceRouter();
link_id = currentSLPSequence.getLinkld();
service_level = currentSLPSequence.getServiceLevel();

// if not the last link...
if (index+1 != slps_in_path.size()){
SLP_destination_router = nextSLPSequence.getSourceRouter();

} else {
// else it is the destination node of the flow
SLP_destination_router = destination_router;

}
// determine destination address for next hop
next_hop = PIB.getlnterfaceAddress(

SLP_destination_router, link_id);

// determine source address
sourceAddress = PIB.getlnterfaceAddress(

SLP_source_router, link_id);

// send the flow routing table entry update
sendFRTEUpdate(sourceAddress, flow_id,

next_hop, service_level);

} // end for

} // end if

//give routers time to finish updating tables
try{
Thread.sleep(2000);

}catch(InterruptedException ie){
gui.sendText(ie.toString());

}
// if the source of this flow is the server,

if (source_router == SERVERNODEID) {
// then add this new flow to hash table for later lookup
if (showComments){
gui.sendText("Server: processFlowRequest: use flow "+flow_id

+" to send to node "+destination_router);
}
if (destination_router == SERVERNODEID) {

flow_id = FLOWTOSERVER;

210

}

flowLookUp.put(new Integer(destination_router),new Integer(flow_id));
}

sendFlowResponse(flow_request, flow_id);

// capture the flow request processing finish time
finish = System.currentTimeMillisO;
gui.sendText("Server: processFlowRequest: Time required = "

+(finish-start)+" milliseconds.");
}

/**

* Receives flow termination from routers and then processes them.
*/

public void receiveFlowTermination() { }

II These methods handle external network communications to routers
//**+****+***************+***

I **
*Sends flow routing table entry update message to router. This message
* provides router the required information to forward packets based on
* its flow id.
* ©param sourceAddress The router that will receive the FRTE update.
* ©param flow_id The id assigned to the flow in question.
* @param next_hop The IPv6 address of the next node in the path.
* @param service_level The service level that this flow is assigned to.
*/
public void sendFRTEUpdate(IPv6Address sourceAddress, int flow_id,

IPv6Address next_hop,
int service_level) {

if(showComments){
gui.sendText("Server: sendFRTEUpdate: flowLookUp hashtable:");
gui.sendText(""+flowLookUp);

}
FlowRoutingTableEntry myFRTE = new FlowRoutingTableEntry(flow_id,

(byte)service_level,next_hop);
int sourcePort = PSUEDORANDOMSOURCEPORT;

//controlExec.listenToRandomPort(this);
short destPort = ControlExecutive.SAAM_CONTROL_PORT;
IPv6Address destHost = sourceAddress;
// take steps to determine what flow id to send the packet on
Vector interfaces = new vector();
interfaces.addElement(destHost);
int destNodeld = PIB.doesRouterExist(interfaces);
int flowIdToSendltOn = ((Integer)flowLookUp.get

(new
Integer(destNodeld))).intValue();

try{
controlExec.send(this,myFRTE, fIowIdToSendItOn,

211

(short)sourcePort,
destHost, destPort);

} catch (FlowException fe){
System.err.println(fe.toString());

}
if (showComments){
gui.sendText("Server: sendFRTEUpdate: FRTE for flow " + flow_id

+ " sent to interface n+sourceAddress);
gui.sendText(" with next hop= "+next_hop

+" on service level "+service_level+" via flow
n+flowIdToSendItOn);

}
}

* Sends a flow response to the requesting application to notify it of
* its newly assigned flow id. Flow id zero is used to indicate that
* flow cannot be supported. Once a flow response message is

instantiated and
* a source and destination port is defined, control executive's send()
* is called to send it to the destination host.
* @param flow_request The flow request message that was received.
* @param flow_id The flow id that is assigned to the flow request.
*/
public void sendFlowResponse(FlowRequest flow_request, int. flow_id){

if(showComments){
gui.sendText("Server: sendFlowResponse: flowLookUp hashtable:");
gui.sendText(""+flowLookUp);

}
FlowResponse response = new

FlowResponse(flow_request.getTimeStamp(),
flow_id);

int sourcePort = PSUEDORANDOMSOURCEPORT;

short destPort = ControlExecutive.SAAM_CONTROL_PORT;
IPv6Address destHost = f low_request .getSourceInterface() ,-
// take steps to determine what flow id to send the packet on
Vector interfaces = new vector();
interfaces.addElement(destHost) ;
int destNodeld = PIB.doesRouterExist(interfaces);
int flowIdToSendltOn = ((Integer)flowLookUp.get

(new
Integer (destNodeld))) .intValueO ;

try{
controlExec.send(this, response,
flowIdToSendltOn, (short)sourcePort,

destHost, destPort);
}catch(FlowException fe){
System.err.println(fe.toString());

}
if (showComments){
gui.sendText("Server: sendFlowResponse: Flow response "

+ response + " from SourcePort: "+sourcePort+" to "+destHost
+ " sent via flow "+fIowIdToSendItOn);

}

212

}

// These methods handle internal manipulation of data describing
network status

I **
* Determines all of the possible paths that exist between any source
* destination router in the network. This determination is based on
* physical definition of the network that is provided by the hello
* received from the routers and stored within the PIB. The paths that
* found are then recorded in the PIB for fast assignment of flows
later.<p>
* All node ids are first retrieved from PIB. For each service level, we
* build an array of parents of each node. A parent is node that is
directly
* connected. Those directly connected nodes would have service level
pipes
* that would need to be passed through to get to the child node in
question.
* This parent array is used to populate a path table. Each node id is
* assigned as the final destination of path and all of different paths
* are then found by working out from this destination. For each of
these
* destination nodes, a call is made to processPath() to find all the
valid
* paths that go to this destination node. We make the call with a
specified
* height of search of 1.
*/
public void findAllPossiblePaths() {

long start, finish;
int NumberOfRouters;
int max_slp_id = INITIALZERO;
/** A count of the highest path id assigned so far. */
int max_path_id = INITIALZERO;
int service_level = INITIALZERO;

/** A vector of the routers that are known by the db. */
Vector V = new Vector() ;

/** A vector of parent routers for each given destination router.
Hashtable parent;

// capture the start time of processing a path data
start = System.currentTimeMillisO ;

// reset the maximum path id assigned so far to zero
max_path_id = INITIALPATHID;

V = PIB.getAllRouterldsO ;

//retrieve COUNT of routers
NumberOfRouters = V.sizeO;

213

//find all possible paths for each service level
max_slp_id = (new Integer(PIB.findMaxServiceLevel())).intValue();
for (service_level = INITIALZERO; service_level <= max_slp_id;
service_level++){

//build parent array of each SLP at this service level
parent = PIB.getParents(V, service_level) ,-

//populate path table
for (int index = INITIALZERO; index < NumberOfRouters; index++){

int heightOfSearch = INITIALHEIGHTOFSEARCH;
int aPath[] = new int[Hmax + INCREMENTATIONOFSEARCH];
aPathfDESTINATIONNODE] =

((Integer)V.elementAt(index)).intValueO;
processPath(parent, aPath, heightOfSearch,service_level);

}
}

// capture the path data processing finish time
finish = System.currentTimeMillis() ;
gui.sendText("Server: findAllPossiblePaths: Time required = "

+ (finish-start)+" milliseconds.") ;

timeOfLastPIBBuild = finish;

}

'**

* Processes all valid paths that arrive at destination node within some
* range of hops. For each parent of the node at the distance of
* heightOfSearch from destination, check is made to ensure that adding
* this new parent will cause no cycle. If this checks out, then that
parent
* can be added and a new path can be assigned. The service level pipes
* this new path are identified and their sequence numbers in this path
* recorded to the PIB. Next, a check is made to see if the height of
* search is less than the server's max search height of Hmax. If it is
* the method recursively calls itself with an incremented
heightOfSearch
* variable.
* @param parent Contains each router and a list of other
* routers that are directly attached to them.
* üparam aPath[] An array contain a path from a source node,
* aPath[heightOfSearch], to a destination node, aPath[0].
* ©param heightOfSearch The number of nodes in the path so far.
* @param service_level The level of service assigned to a flow.
*/

public void processPath(Hashtable parent,
int aPath[], int heightOfSearch,
int service_level){

IPv6Address link_id;
int justARouter;
int sequence_number;

214

int path_id;
Enumeration W = ((Vector)parent.get(

new Integer(aPath[heightOfSearch-l]))).elements();
while (W.hasMoreElementsO) {

justARouter = ((Integer)W.nextElement()).intValue();
if (causeNoCycle(aPath, heightOfSearch, justARouter)) {

// assign this router as the source in this path
aPath[heightOfSearch] = justARouter;

// record the new path id, etc.
path_id = PIB.getNewPathId(justARouter,

aPath[DESTINATIONNODE]);

// run through the SLP's and record their sequence
for (int index = heightOfSearch; index >DESTINATIONNODE; index—){

// determine link_id of this SLP
link_id = PIB.getLinkBetween(aPath[index],

aPath[index-INCREMENTATIONOFSEARCH]);

// assign the SLP its sequence number
sequence_number = heightOfSearch - index;
PIB.assignSLPSequence(service_level, aPathfindex],

link_id, path_id, sequence_number);
}

if (heightOfSearch < Hmax) { processPath(parent, aPath,
heightOfSearch+INCREMENTATIONOFSEARCH,
service_level);

}
}

}
if (showComments){

gui.sendText("Server: processPath: paths at depth of
"+heightOfSearch
+" from node "+aPath[DESTINATIONNODE]+" is completed.");

}
}

/ * *

* Checks to ensure that addition of a specified new node to a specified
* path does not result in a cycle being created. This check is
completed by
* the new node is already a member of the list of nodes in the path
already.
* ©param aPath[] An array contain a path from a source node,
* aPath[heightOfSearch], to a destination node, aPath[0].
* ©param heightOfSearch The number of nodes in the path so far.
* ©param justARouter The proposed next node in for a new path.
* ©returns noCycles True if no cycles are created by the addition of
* justARouter.
*/
public boolean causeNoCycle(int aPath[], int heightOfSearch,

int justARouter){
boolean noCycles = true;

215

for (int index = INITIALZERO; index < heightOfSearch; index++){
if (justARouter == aPath[index]){

if (showComments){
gui.sendText("Server: causeNoCycle: adding "+justARouter

+" to get to "+aPath[DESTINATIONNODE]+" via "
+aPath [heightOf Search-INCREMENTATIONOFSEARCH]
+" at a height of "+heightOfSearch+" caused cycle!");

}
return noCycles = false;

}
}
if (showComments){

gui.sendText("Server: causeNoCycle: adding "+justARouter
+" as hop #n+heightOfSearch+" to get to
"+aPath[DESTINATIONNODE]
+ " via "+aPath [heightOfSearch-INCREMENTATIONOFSEARCH]
+" does not cause cycle.");

}
return noCycles;

}

/**

* Determines what effective QoS on each path in the PIB is. For each
* path, service level pipes that compose it are retrieved. Then, for
* each of these service level pipes, we total up delay and loss rate.
* The effective throughput remaining is determined by finding minimum
* difference between observed throughput and the target throughput of
* each service level pipe.
*/
public void determineEffectiveQoSForPaths(){

long start, finish;
Vector path_ids;
Integer myPathld;
Vector SLPs;
SLP mySLP;
int totalDelay = INITIALZERO, totalLossRate = INITIALZERO,

throughput = INITIALZERO, targetThroughput = INITIALZERO,
throughputRemaining = INITIALZERO,
minThroughputRemaining = INITIALZERO;

// capture the start time of processing a path data
start = System.currentTimeMillisO ;

// for each path
path_ids = PIB.getAllPathldsO ;

for (int indexl = INITIALZERO; indexl < path_ids.size(); indexl++){

// for each path
myPathld = (Integer)path_ids.elementAt(indexl);

SLPs = PIB.getSLPsOf Path (myPathld. intValueO) ,-

for (int index2 = INITIALZERO; index2 < SLPs.sizeO; index2++) {

216

mySLP = (SLP)SLPs.elementAt(index2);

// add delay to total delay
totalDelay = totalDelay + mySLP.getDelay();

// add loss rate to total loss rate
totalLossRate = totalLossRate + mySLP.getLossRatef);

// find min throughput
throughput = mySLP.getThroughput() ;

targetThroughput = mySLP.getTargetThroughput();

throughputRemaining = targetThroughput - throughput;
if (throughputRemaining < minThroughputRemaining ||

minThroughputRemaining == INITIALZERO){
minThroughputRemaining = throughputRemaining;

}

PIB.setEffectiveQoSOfPath(myPathld. intValue(),totalDelay,totalLossRate,

minThroughputRemaining);
totalDelay = INITIALZERO;
totalLossRate = INITIALZERO;
minThroughputRemaining = INITIALZERO;

}

// capture the path data processing finish time
finish = System.currentTimeMillis();
gui.sendText("Server: determineEffectiveQoSForPaths: Time required

= »

+(finish-start)+" milliseconds.");

/ **

* Determines the effective QoS for just those paths that pass over the
* specified service level pipe. For each path, service level pipes that
* compose it are retrieved. Then, for each of these service level
pipes, we
* total up delay and loss rate. The effective throughput remaining is
* determined by finding the minimum difference between the observed
* throughput and the target throughput of each service level pipe.
* @param address Address of interface containing this service level.
* dparam service_level The service level of this SLP.
*/
public void determineEf fectiveQoSForPaths (IPv6Address address, int
service_level){

long start, finish;
Vector path_ids;
Integer myPathld;

217

Vector SLPs;
SLP mySLP;
int totalDelay = INITIALZERO, totalLossRate = INITIALZERO,

throughput = INITIALZERO, targetThroughput = INITIALZERO,
throughputRemaining = INITIALZERO, minThroughputRemaining =
INITIALZERO;

// capture the start time of processing a path data
start = System.currentTimeMillis() ;

// for each path
path_ids = PIB.getAllPathIdsThatTraverseSLP(address,

service_level);

for (int indexl = INITIALZERO; indexl < path_ids.size(); indexl++){

// for each link
myPathld = (Integer)path_ids.elementAt(indexl);

SLPs = PIB.getSLPsOfPath(myPathId.intValue());

for (int index2 = INITIALZERO; index2 < SLPs.sizeO; index2++) {

mySLP = (SLP)SLPs.elementAt(index2);

// add delay to total delay
totalDelay = totalDelay + mySLP.getDelay();

// add loss rate to total loss rate
totalLossRate = totalLossRate + mySLP.getLossRate();

// find min throughput
throughput = mySLP.getThroughput() ;

targetThroughput = mySLP.getTargetThroughput();

throughputRemaining = targetThroughput - throughput;
if (throughputRemaining < minThroughputRemaining ||

minThroughputRemaining == INITIALZERO){
minThroughputRemaining = throughputRemaining;

}

PIB.setEffectiveQoSOfPath(myPathld.intValue(),
totalDelay,totalLossRate,
minThroughputRemaining);

totalDelay = INITIALZERO;
totalLossRate = INITIALZERO;
minThroughputRemaining = INITIALZERO;

}

// capture the path data processing finish time
finish = System.currentTimeMillis() ;

218

gui.sendText("Server: determineEffectiveQoSForPaths: Time required ="
+ (finish-start)+" milliseconds.") ;

}
/* *

* Returns the String representation of this Server.
* ©return The String representation of this Server.
*/

public String toString(){
return "Server";

} //

//methods below are added by akkoc
/ **

* Creates thread for dem sending from the server.
* ©return void.
*/

public void autoConfigO {
Thread configThread = new Thread(this, "AutoConfig");
configThread.start();

}//end of autoconfig

/**

* Triggers DCM sending and refreshment channels of SAAM region
* ©return void.
*/
public void run(){

gui.sendText("\n Server will send first DCM after 30 sees");
try{

gui.sendText("thread is sleeping now ");
Thread.sleep(30000);
gui.sendText("thread woke up after 30 sees so start sending ");

}catch(InterruptedException ie){}

while(true) {

try{

Vector tableEntries =
controlExec.getEmulationTable().getEmTable();

Enumeration es = tableEntries.elements();
while(es.hasMoreElements()){

EmulationTableEntry ent = (EmulationTableEntry)
es.nextElement();

//destination adress determined from emulationtable entry
IPv6Address des = new
IPv6Address(ent.getNextHopIPv6().getAddress());
gui.sendText(" Destination of DCM is "+des.toString());
byte[] nextHopBytes = des.getAddress();
Vector interfaces = new Vector();
interfaces = this.controlExec.getlnterfaces();

IPv6Address slnt;
for(int i=0;i<interfaces.size();i++){

Interface thislnterface = (Interface)interfaces.get(i);

219

//cycle through all interfaces checking network address against
//nextHop.
int match = 0;
byte[] outboundlnterfaceBytes =
thislnterface.getID().getIPv6().getAddress();
int bytesToCheck = 5;

for(int index=0;index<bytesToCheck;index++){
if((nextHopBytes[index]&0xFF)==
(outboundlnterfaceBytes[index]&0xFF)){

match++;
}//if

}//inner for

if(match== bytesToCheck){
slnt = new
IPv6Address(thislnterface.getID().getIPv6().getAddress());
sendDown(slnt,des);

}//if
}//outer for

}// end while
}catch(UnknownHostException e){
gui.sendText(e.getMessage)+"inside catch of DCM start Emtable ");

}//try-catch

try{
Thread.sleep(this.cycleTime); //from demostation

}catch(InterruptedException ie){
gui.sendText("thread sleep problem");

}

}//end of while providing continues DCM sending

}// end run()

/* *
* Retruns flowid of server.
* ©return ind serverflow id.
*/

public int getServerFlowId(){
return flowid;

}

* Returns type of server(0-> for Primary, l-> for Backup)
* ©return byte value.
*/

public byte getServerType(){
return serverType;

}

/ * *

220

* Method to send the DCM message using controlExecutive sendDCM
method

* ©return void.
*/

public void sendDown(IPv6Address srcint,IPv6Address des) {

DCM myDCM = new
DCM(flowId,ServerId,metricType,srcInt,CTS,globalTime,

getSeguenceNumberForDcmSending());
gui.sendText("DCM with SQ is sent
"+this.getSeguenceNumberForDcmSending());
setSeguenceNumberForDcmSending();
short sourcePort = ControlExecutive.SAAM_CONTROL_PORT;
short destPort = ControlExecutive.SAAM_CONTROL_PORT;

try{
controlExec.sendDCM(this, myDCM, getServerFlowId(),
sourcePort,des, destPort);
gui.sendText("DCM has been sent");

}catch(Exception fe){
System.err.println(fe.toStringO);

}

}//end sendDownO

/ **

* Method for setting proper value to put in DCM message for sequence
* number field
* ©return void.
*/

private void SetSeguenceNumberForDcmSending(){
seguenceNumber++;
if(sequenceNumber == 65535) sequenceNumber = 0;

}

/ **

* Method for returning current sequence number value
* ©return int value.
*/

private int getSeguenceNumberForDcmSending(){
return sequenceNumber;

}

/ **

* To receive required values from demosation for server settings
* Also this method is used for server to place an entry for itself
* in the servertable
* ©return void.
*/
public synchronized void processConfiguration (Configuration con){

serverType = con.getServerType();
flowld = con.getFlowIdO ;

221

metricType = con.getmetricType();
cycleTime = con.getCycleTime();
globalTime = con.getGlobalTime();

AutoConfigurationExecutive ace =
controlExec.getAutoConfigurationExecutive();

ace.createNewServerlnformation(flowld,controlExec.getRouterld(;
} // end processConfigurtaion

}//end of class

222

LIST OF REFERENCES

1. W.Stallings, "High-Speed Networks TCP/IP and ATM Design Principles",

Prentice Hall, 1998

2. Xie, G., Hensgen, D., Kidd, T., and Yarger, J., "Efficient Management of

Integrated Services Using A path Information Base,"

[http://ww.cs.nps.navy.mil/people/faculty/xie/pub]. 14 May 1998.

3. L. L. Peterson, B.S. Davie, "Computer Networks, A System Approach",Morgan

Kaufmann, 1996

4. J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach

Featuring the Internet", Addison Wesley, 1999

5. S. Keshav, " An Engineering Approach to Computer Networking", Addison

Wesley, 1997

6. T. Lammle, D. Porter, J. Chellis " CCNA Cisco Certified Network Associate

Study Guide", Network Press Sybex, 1998

7. Vrable, Dean, Yarger, John, "The SAAM Architecture: Enabling Integrated

Services", Master Thesis September 1999, Computer Science Department Naval

Postgraduate School

8. Xie, G., Hensgen, D., Kidd, T., and Yarger, J., "SAAM: An Integrated Network

Architecture for Integrated Services," paper presented at the 6th IEEE/IFIP

International Workshop on Quality of Service, Napa, CA,

[http://ww.cs.nps.navy.mil/people/faculty/xie/pub].. May 1998

223

9. Kati, E., "Fault-Tolerant Approach For Deploying Server Agent-Based Active

Network Management (SAAM) Server In Windows NT Environment To Provide

Uninterrupted Services To Routers In Case Of Server Failure(s)," Master Thesis

March 2000, Computer Science Department Naval Postgraduate School

10. Cormen, T.H., Leiserson C.E., Rivest R.L., "Introduction to Algorithms",

McGraw Hill, 1998

224

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
725 John J. Kingman Road, Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Engineering and Technology Curriculum (Code 34) 2
Naval Postgraduate School
Monterey, CA 93943-5101

4. Genelkurmay Baskanligi 1
Personel Baskanligi
Bakanliklar
Ankara, TURKEY

5. Kara Kuvvetleri Komutanligi 1
Personel Daire Baskanligi
Bakanliklar
Ankara, TURKEY

6. Kara Kuvvetleri Komutanligi 1
Kutuphanesi
Bakanliklar
Ankara, TURKEY

7. Kara Harp Okulu 2
Kutuphanesi
Dikmen
Ankara, TURKEY

8. Chairman, Code CS 1
Naval Postgraduate School
Monterey, CA 93943-5101

9. Prof.. Geoffrey Xie, Code CS/Xg 1
Naval Postgraduate School
Monterey, CA 93943-5100

225

10. CDR. Deborah Kern, Code CS/kh.
Naval Postgraduate School
Monterey, CA 93943-5100

11. lstLT Huseyin UYSAL
Genel Kurmay Baskanligi
Bilgi Sis. D. Bsk.
Ankara, TURKEY

12. lstLT Hasan AKKOC.
Kara Harp Okulu
Ogretim Baskanligi
Ankara, TURKEY

226

