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A Three-Dimensional FDTD-PML Algorithm 
Based on Piecewise-Linear Approximation for Linear Dispersive Media 

S. J. Yakura and D. Dietz 

Air Force Research Laboratory, Directed Energy Directorate 
Kirtland AFB, New Mexico 87117 

Abstract 
Starting with the unsplit-field uniaxial PML formulation, a second-order accurate FDTD-PML algorithm is 
obtained using the piecewise-linear approximation. Use of the FDTD-PML algorithm results in the proper 
long time limit behavior where the electric field value decrease exponentially to zero inside a PML medium 
long after an electromagnetic pulse is incident on the PML medium. The behavior is consistent with the 
other PML algorithm, such as Gedney's two-step approach. 

I.  INTRODUCTION 

With the advent of high power computers that provide fast execution times and great quantities of 
computer memory, we are at the stage where we can perform direct numerical calculations of Maxwell's 
equations. Out of many numerical techniques available in the computational electromagnetic community, 
one that has shown a great promise in the time domain is the well-known finite-difference time-domain 
(FDTD) method [1]. It is based on using a simple staggered differencing scheme in both time and space to 
calculate the transient behavior of electromagnetic field quantities. One of the greatest challenges of the 
FDTD methods has been the efficient and accurate formulation of electromagnetic wave interactions in 
unbounded regions. For such problems, an absorbing boundary condition must be introduced at the outer 
layer boundary to simulate the extension of the lattice to infinity. One approach that has given a great 
promise in realizing such an absorbing outer boundary inside the finite volume computational domain is the 
well-known perfectly-matched-layer (PML) algorithm that was first introduced by J. P. Berenger [2] in 
1994 for the free space boundary interface. Since that time Chew and Weedon [3] came up with the 
modified PML algorithm that is based on complex coordinate stretching, which is shown to be equivalent 
to the anistropic PML medium approach [4]. 

In this paper, we explore the formulation of a 3-dimensional PML algorithm used in outer layer 
absorbing boundary of a dispersive medium to absorb all outgoing waves out of a finite simulation volume. 
We consider the case where a plane wave propagates outwardly from a dispersive medium to the dispersive 
PML medium through a reflectionless PML interface. We start the analysis based on unsplit-field uniaxial 
PML formulation [4-8] of Maxwell's equations that are obtained in the frequency domain inside the 
dispersive PML medium. We perform the inverse Fourier transform of these equations from the frequency 
domain to the time domain to obtain a set of ordinary first-order differential equations. Then, these 
equations are finite differenced in both time and space using the usual Yee FDTD scheme while expanding 
the electric and magnetic field vectors in time using the Taylor series expansion about the current time step 
in order to evaluate next time step values of the electromagnetic field quantities. Depending on the number 
of terms kept in the Taylor series expansion, we can numerically evaluate the updated values to any desired 
accuracy we want. In Section II, we use the piecewise-linear approximation, which is equivalent to using 
only the first-order, time-dependent term of the Taylor series expansion, to show the process involved in 
obtaining a second-order accurate FDTD-PML algorithm. To obtain higher-order accurate FDTD-PML 
algorithms in time, we simply need to include higher-order, time-dependent terms in the Taylor series 
expansion and follow the same steps shown in Section II. A consequence of the higher-order accurate 
FDTD-PML algorithm is the need to solve for zeroes of the nth degree polynomials at each time step in 
order to update field values. It arises because of the use of the nth-order, time-dependent term of the Taylor 
series expansion. The numerical process involved in updating the field values is similar to the FDTD 
algorithm obtained for nonlinear dispersive media [9,10]. 



II.  PML FORMULATION FOR LINEAR DISPERSIVE MEDIA 

For a wave propagating into anisotropic, uniaxial dispersive PML media, the modified Maxwell's 
equations under the PML formulation with stretched coordinates [3] can be expressed in the frequency 
domain (e™1 convention) as 

VxE(co;x) =-icoSPML' '((0)»jio|iiRH(a);x), 

VxH(co;x) = ico SrML(co)«D(co;x), 

with 

D(a);x) = eoeRE(co;x)+eo2^Pp((o;x) , 

(2.1) 

(2.2) 

(2.3) 
p=i 

Pp (a* x) = X^ (co) E(co; x), (2.4) 

where E(co;x) is the electric field vector, H(co;x) is the magnetic field vector, D(co;x) is the displacement 

field vector, Pp(co;x) is the electric polarization vector, SPML(co) is the uniaxial anisotropic PML matrix, e0 

is the free space electric permittivity, eR is the relative permittivity, Mo is the free-space permeability, nR is 
the relative permeability, and Xp

(1)(co) is the pth term of the collection consisting of p^» frequency- 
dependent, first-order (linear) electric susceptibility functions, where p^ is the maximum number of terms 
which we choose to consider for a particular formulation of Eq. (2.3). Also seen in the above equations is 
the notation • that is used to denote a dot product. Elements of the uniaxial anisotropic PML matrix, 
S      (co), are given by 

SPML(co) = 

Sy(co)Sz(co) 

Sx(co) 

0 

0 

Sx(m)Sz(m) 
Sv(co) 

0 
Sx(co)Sy(co) 

Sz(co) 

(2.5) 

where Sx(co), Sy(co) and Sz(co) are arbitrarily defined co-dependent functions that satisfy the impedance 
matching condition at the interface of the non-PML medium and the PML medium. It is a common practice 
in the FDTD community to choose Sx(co), Sy(co) and Sz(co) in the following forms: 

Sx(co) = 1 + - 

Sv(co) = 1 + - 

Sz(to) = 1 + 

ICOEOER 

CTy 

iCOEoER 

°z 
iCOEoER 

with 

with 

with 

Ox °x 
EOER M41R 

°y 
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CTy 

EOER H4U 

oz 
* 

CTZ 

, and 

EOER U,oU£ 

(2.6-2.7) 

(2.8-2.9) 

(2.10-2.11) 

where ox . ay and az are the PML electric conductivities, and ax. o*y and <jz are the PML magnetic 

conductivities with subscripts x, y and z denoting the directions in which PML conductivities are assigned 
[2]. These PML conductivities are introduced arbitrarily in order to implement the FDTD-PML algorithm. 

We first eliminate D(co;x) in favor of expressing Maxwell's equations in terms of E(co;x) and Pp(tü;x) by 
substituting Eq. (2.3) into Eq. (2.2). Upon taking the inverse Fourier transforms of Eqs. (2.1), (2.2) and 
(2.4) and using the expressions shown in Eqs. (2.6) through (2.11), we can show after some manipulations 
Eqs. (2.1), (2.2) and (2.4) are written in the following time-dependent equations: 



HOUR     3       + ^o^*Po.H(t;x) + HoHR^i.HDelay(t;x) + VxE(t;x) = 0, 

3E(t;x)       v> 3Pp(t;x)       „,    r \-< n 
EOER   ~: ~' +eo2^ £ + eoTo.[eRE(t;x) + 2^Pp(t;x)] 

p p 
at 

with 

Pp(t;x)= JdTX®(t-T)E(T;x), 

t 

HDelay (t; x) = J dT £(t - x) • H(x; X) , 
—oo 

t 

E °^ (t; x) = f dx £(t - T) • E(x; x), 

t 

Pp*lay(t;x) = Jdx£(t-x).Pp(x;x), 
—oo 
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EOER      EOER     EOER 

V 

<D(t-x) = 
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(2.12) 

+ Eo¥i.[eRlDeiay(t;x)+X2peIay(t;^'"^xS(t;x)=o.        (2-13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

In the above, HDday(t;x), E^ta) and Pp
Delay(t;x) are introduced to handle the delayed time-response 

behavior of H(t;x), E(t;x) and Pp(t;x), respectively. These functions follow naturally from taking the inverse 
Fourier    transforms    of    convolution    functions    [l/(i(»l + A)] H(co;x),    [l/(i(OI + A)] E(co;x),    and 

[l/(i(oi + A)]Pp(co;x) by realizing the inverse Fourier transform of [l/(i(0l + A)] is given by exp(-At), 

where A is a time independent diagonal matrix expressed as diag [ ox /(E0ER), ay /(E0£R). (JZ/(EO£R)]- 

To solve Eqs. (2.12), (2.13), (2.14), (2.15), (2.16) and (2.17), we need to specify the expression for the 
linear electric susceptibility function. In this paper we consider the case in which the linear electric 



susceptibility function is expressed as a complex function that contains complex constant coefficients and 
exhibit exponential behavior in the time domain as follows: 

XP'> (t) = Re {ocp exp[-(Yp)t]} U(t), (2.21) 

where Re{ } is used to represent the real part of a complex function, U(t) is the unit step function, and dp 
and YP are complex constant coefficients. Now, Eq. (2.14) takes the form 

t 

Pp(t;x) =Re{Qp(t;x)} = Re{aP j*dTexpHYp)(t-T)]E(T;x)}, (2.22) 
—oo 

where complex function Qp (t;x) is introduced in the above equation such that the real part of the complex 
function results in Pp(t;x). 

We need to point out that by making the proper choices of complex constant coefficients and performing 
the Fourier transform of Eq. (2.21), we can readily obtain the familiar constant conductivity [i.e.,apis real 

and Yp = 0], Debye [i.e., ccp and Yp are both real] and Lorentz [i.e., ap is imaginary and Yp is real] forms of the 

complex permittivity in the frequency domain. 
To derive FDTD expressions based on Yee FDTD scheme, Eqs. (2.12), (2.13), (2.14), (2.15), (2.16) and 

(2.17) have to be solved numerically for H(t;x), E(t;x), Pp(t;x), H^frx), E^tjx) and Pp
Delay(t;x) at each 

time step by correctly carrying out the numerical integration of convolution integrals Pp(t;x), H^'^tex), 
E ay(t;x) and Pp

Delay(t;x). Therefore, the whole solution rests on the question of how to carry out the 
numerical integration of Pp(t;x),'HDelay(t;x), E^t;*) and Pp

Delay(t;x) at each successive time step. For that 
reason, the rest of this section is devoted to the numerical formulation that treats Pp(t;x), HDelay(t;x), 
E   ay(t;x) and Pp^'^tix) into the overall FDTD scheme based on the recursive convolution approach. 

We first convert the convolution integrals Pp(t;x), HDelay(t;x), E^frx) and Pp
Delay(t;x) [i.e., Eqs. (2.22), 

(2.15), (2.16) and (2.17)] into the following equivalent first-order differential equations: 

dQ (t;x) 
 Ji + (Yp)Qp(t;x) = OpE(t;x), (2.23) 

3MDe^(t:-) + *(t).HDeIay(t;x) = H(t;x) 
at — 

9EDelay(t;x) 

3t 'iwS       ...Ä,   ^.i,, (2.24) 

+£(0»EDelay(t;x) = E(t;x), (2.25) 

—p-—  +0(t).Q°elay(t;x) = Qn(t;x), (2.26) 
at —      —v —P 

where complex function Qp
Delay(t;x) is introduced in Eq. (2.26) such that the real part of the complex 

function results in Pp
Delay(t;x). 

To show how we can use Eqs. (2.12), (2.13), (2.23), (2.24), (2.25) and (2.26) to come up with a 3-D 
FDTD-PML algorithm for dispersive PML media, we integrate Eqs. (2.12) and (2.24) from t=(n-V4)At to 
t=(n+'/2)At, and Eqs. (2.13), (2.23), (2.25) and (2.26) from t=nAt to t=(n+l)At. Then Eqs. (2.23), (2.24), 
(2.25) and (2.26) are solved exactly using the integrating factor technique for a given discrete time interval 
to go forward in time by At. The result is that we need to evaluate definite integrals appearing in the 
following equations: 

(n+!4)At (n+W)At 

U4U    f   dx   —.y'-'+ HO^RYO.     fdTH(i;x) 
J dx =      J     —    ~ 

(n-'/i)At (n-V4)At 

(n+'/i)At (n+"/S)At 

+ HojiR^i.    JdtHDetay(r,x) +    JdTVxE(x;x) = 0, (2.27) 
(n-W)At (n-H)At 



(n+DAt (n+l)At        QQ   /_. x) 

>     ^^2  f ^ EOER   j    dx   -    - +eoRe{ >      I    dx 
nAt P      nAt 

(n+l)At (n+l)At 

+ eoeRYo»    fdxE(x;x) + eo¥o»Re{£    fdxQ (x; x)} 
nAt P      nAt 

(n+l)At (n+l)At 

+ EOERTI •   j"dx E™** (x; x) + e„*Fi. Re{£   Jdx Q™ay (x; x)} 
nAt P      nAt 

(n+l)At 

-    fdxVxH(x;x) = 0, (2.28) 
nAt 

(n+l)At 

Qp(nAt + At; x) = exp[-(Yp)At] [ Qp(nAt; x) + aP   Jdx exp[-(Yp)(nAt-x)] E(x; x) ], (2.29) 
nAt 

HDelay (nAt+Vi At; x) = exp(-OAt) • [ H1*1^ (nAt - ViAt; x) 

(n+'^)At 

+     f dx exp[-£(nAt - Vi At - x)] • H(x; x) ], (2.30) 
(n-"/4)At 

(n+l)At 

E061^ (nAt + At; x) = exp(-OAt) • [ E1*13* (nAt; x) +    J dx exp[-£(nAt - x)] • E(x; x) ], (2.31) 
nAt 

(n+l)At 

gDeiay(nA{ + At;^ = exp(_<j,At).[Q
061

^(nAt;X) +    f dxexp[-£(nAt-x)]• Q (x;x)] 

nAt 

(n+l)At 

= exp(-£At) • [ Qp
)elay (nAt; x) +    f dx exp[-£(nAt - x) -1 (yp)(x - nAt)] • Q (nAt; x) 

nAt 
(n+l)At   T 

+ aP   J dx J dx' exp[-£(nAt - x) -1 (yp)(x - x')] • E(x'; x) ] , (2.32) 
nAt    nAt 

where I is the identity matrix. Furthermore, some of those definite integrals that appear in Eqs. (2.27) and 
(2.28) are manipulated and cast in the following forms: 

(n+'/2)At (n+'/4)At 

J*dx HDelay (x; x) =    Jdx exp[-£ (x- nAt+ViAt)] • HDelay (nAt -VzAt; x) 
(n-W)At (n-'4)At 

(n+'/4)At        x 

+    Jdx    J"dx'exp[-J>(x-x')]»H(x';x), (2.33) 
(n-W)At  (n-V4)At 

(n+l)At (n+l)At 

JdxQp(x;x) =    Jdxexp[-(Yp)(x-nAt)]Qp(nAt;x) 
nAt nAt 

(n+l)At    T 

+ ctp   Jdx Jdx'expHYp)(i;-T')]E(x';x), (2.34) 
nAt      nAt 



(n+l)At 

JdxE 
(n+l)At 

Delay , 
(x; x) =   Jdx exp[-4> (T-nAt)]« EDehy (nAt;x) 

nAt 

(n+l)At    T 

+   J"dx Jdx'exp[-£(x-x')]»E(x';x), 
nAt      nAt 

(n+l)At 

Jdx Q*lay (T; x) =    Jdt exp[-£ (x- nAt)] • Q ™ay (nAt; x) 
nAt 

(n+l)At    T 

+   jdx Jdx'exp[-£x-I(Yp)(x'-nAt)]»Q (nAt;x) 

nAt 

(n+l)At 

nAt 

(2.35) 

nAt      nAt 

(n+l)At    T 

+ aP   Jdx Jdx'Jdx"exp[-£x-I(Yp)(x'-x")]»E(x";x). (2.36) 
nAt      nAt     nAt 

To obtain second-order accuracy in time from a finite differencing technique, H(t;x) and E(t;x) are taken 
to be piecewise-linear continuous functions over the entire temporal integration range such that H(t;x) and 
E(t;x) change linearly with respect to time over given discrete time step intervals. It is equivalent to using 
only the first-order, time-dependent terms of the Taylor series expansions for H(t;x) and E(t;x), 
respectively, expanded in time about current time step of H(t;x) and E(t;x). Mathematically, we can express 

H(t;x) and E(t;x) in the following forms in terms of (H);/", (H)ijk
n+^, (E)ijk

n and (E)ijk
n+I where superscripts 

n-Vi, n, n+Vz and n+1 are used to denote discrete time steps at t=(n-Vz)At, t=nAt, t=(n+!4)At and t=(n+l)At, 
respectively. Subscripts are used to denote discrete spatial locations, x=[iAx, jAy, kAz] for E(t;x) and 
x=[(i-Vi)Ax, (j-^)Ay, (k-!4)Az] for H(t;x), with Ax, Ay and Az being the spatial grid sizes in the x, y and z 
directions, respectively. 

M(t;x) = 

,n+ü VB-!4I 

(H) 

E(t;x) = 

ijk 

0, 

„^ .[ODSr-QDuiT] 
At 

[(E)Sk
+1-(E)Sk] 

At 

[t - (n - Vi)At] + higher order terms, 

for  0<(n-Vi)At<t<(n+Vi)At      (2.37) 

for   t < 0 

(t - nAt) + higher order terms, 

for   0 < nAt < t < (n + l)At (2.38) 

0, for   t < 0 

By keeping more than the first-order, time-dependent term in the above Taylor series expansion, it is 
possible to investigate higher than second-order accurate FDTD algorithms. 

Substituting Eqs. (2.37) and (2.38) into Eqs. (2.27) through (2.36), performing the time integration from 
t=(n-Vi)At to t=(n+Vi)At for field values that depend on the magnetic field [i.e., H(t;x) and H^tjx)], and 
from t=nAt to t=(n+l)At for field values that depend on the electric field [i.e., E(t;x), Qp(t;x), E^'^tjx) and 
Qp

Delay(t;x)] and using the usual staggered Yee FDTD scheme for spatial discretization, we obtain a 
3-dimensional FDTD-PML algorithm in Cartesian coordinates. . After some manipulations, we obtain the 
following six equations which constitute the entire set of updating expressions needed to update field 
values (E)ijk' 
medium: 

n+l 
(H), 

n+l 
'ijk (Qp)ijr', (E*"y) 

Delay \    n+l 
ijk (H1*"*)^1 and (Qp

Delay)ijk
n+1 inside a dispersive PML 

Qn •©r + ßi*(H),^+Q2 •(HDe,ay)1^ +SE=0, (2.39) 
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+1], 
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(E^)-1 =£6«[(iDelay)2k + Q,-©fc +^-(E)Sk
+1], 

(Q^)jj^1 ^-t(Q^)sk +np,0 .(Q )Hk +np4 .(E)!k +np,2 .©5«], :p       - 'j* "    •- -_ip 

where SE and SH are given by 

(2.40) 
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OioM*)Ay-   I"W_lli,)?» 

LV"y./ij(k+v4)    (.ny;ij(k-j/2)J 

(2.45) 

[(Hx) 
n+w       ctr  \n+l/2    l-i- 

x^ij(k+'/4)     *-tlx-'ij(k-44) J + 

(EOER)AZ 

At 

(EOER)AX 

At 

TCH   1n+,/2 m   1n+1/2     1 
IAn z ^ (i+'/4)jk      *.rtz ■> (i-"/4)jk J 

L(Hy)(i+V4)jk     (Hy )(U*)jk J + ,        - .     L(HX ),?(f+^)k - (Hx )^Jm J 

(2.46) 

(EOER)AX^ *'*"*■«* ' ^.--^ (EoeR)Ay. 

and ®p,0' ®p,i and ©p,2 are tne time-invariant coefficients, and Q0 , Q.1 , Q,2 , ß3 , ß4 , ß5 , Q6 , 

Q7 » ^8 >rPjo , rip0 , npl and np2 are the time-invariant matrices. Both time-invariant coefficients 

and matrices depend only on material properties ccP, Yp» o"x . oy and az, and time increment At. Shown 

in Appendix A are the explicit expressions of these coefficients and matrices expressed in terms of aP» YP» 

Ox. ay, az and At. 

Using the above FDTD-PML algorithm the computer simulation can be performed for electromagnetic 
waves that propagate inside dispersive PML media by simply going through the following steps: 

(1) First, before updating the field values, time-invariant coefficients 0pO, 0pl and 0p 2, and 

time-invariant matrices £2Q , fl^, ßj , Q3 , Q4 , Q5 , ß6 , Q7 , Q8 ,rp0 , np0 , npl 

and np 2 are calculated at the beginning of the simulation as part of the initial condition for 

given values of ocp, Yp > ax » oy, az and At. These calculated values are stored in memory 

and used at each time step to update field values (E)ijk
n+1, (H)iik

n+1, (a,)iik
n+1, (EDelay)iik

n+1, 
(HMaV+1and(Qp*n/+1. 

(2) Using Eq. (2.39), (H)ijk
n^ is calculated based on the known values of (H)ijk

n^ and (HDeIa)V"* 
and(E)ijk

n. 

(3) Using Eq. (2.42), (H^^V*»* is calculated based on the known values of (HW,VJ4, 

(H^/^anddDy^. 
(4) Using Eq. (2.40), (E)ijk

n+1 is calculated based on the known values of (E)ijk
n, (EM,V, 

(Qp^ffip^VandODi/^. 



(5) Using Eqs. (2.41), (2.43) and (2.44), (Qp)ijk
n+1, (EDe,aj')ijk

n+1 and aV^V*1 are calculated 
based on the known values of (E)ijk

n+1, (E)ijk°, (Qp)ijk
n, (E^V and (Qp

Delay)ijk
n. 

(6) Increment the time step by At. Go back to step (2) and repeat the whole process over again. 
Shown in Figure 1 is the flow chart of numerical steps required to update field values as described above. 

In the case of the PML interface to the constant conductivity medium we set yp = 0 and ap to be the 

value of the constant electric conductivity. The result is that the matrix elements simplify to the forms 

shown in Appendix B. Furthermore, if we set both ap and yp to zeroes the FDTD-PML algorithm reduces 

to the case of the simple PML algorithm for the vacuum. 

III. CONCLUSIONS 

We present in this paper the formulation of a three-dimensional FDTD-PML algorithm inside dispersive 
PML media that is used to absorb all outgoing electromagnetic waves within a finite simulation volume to 
create the notion of infinity at the outer layer boundary of the computational volume. Because of the use of 
the piecewise-linear approximation, the FDTD-PML algorithm provides second-order accuracy in time for 
the calculation of electromagnetic field quantities inside the outer absorbing layer boundary, resulting in 
less than one thousandths of the outgoing wave coming back into the main computational volume. 
Computationally, we can see that the FDTD-PML algorithm retains all the advantages of the usual first- 
order discrete recursive convolution approach, such as fast computational speed and efficient use of 
computer memory. In the limit of no PML interface, the FDTD-PML algorithm reduces to a simple FDTD 
algorithm formulated for linear dispersive media. 

Lastly, we need to point out that the exponential form of the susceptibility function is crucial in allowing 
us to implement the recursive feature in our algorithm. 
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APPENDIX A 

This appendix gives the explicit expressions of coefficients and matrices seen in Eqs. (2.39) through 
(2.44). The coefficients are 0pO, 0pl and 0p2 • The matrices are Q0 , O, , 02 » 03 • 04 • 05 » 06 • 

07 , 08 ,rp0 , rip0 , ripj and np2 . Also, to express these coefficients and matrices in more compact 

forms, additional terms, such as £p0, £pl, £p2, ?pl, ?p2, (Vo)x,  (\|/,)x,  (\|/2)x , ((p,),, (<p2)x, 

(£p,o)x ' (Cp,i)x' (%>,o)x > (ftp,i)x and (np>2)x , are defined. These additional terms are shown following the 

expressions for coefficients and matrices. 

®p,0 = Sp,0 ' 

®p,l tSp,l _Sp,2] ' 
ER 

0 P.2 
_aP, 

9,2- 

O0 = 

ER 

0 

0 

0 

V 

(O0)22 

0 
with three diagonal elements expressed as 

V 

(Oo)n =l + [Ä + (-^-)-(^-)]^+[Ä-(CT 

EOER      2 

O, = 

0 
0 

("0)33 

a 
EOER        EOER        EOER      2 EOER 

(O0)22 = Replace [x-»y, y-»z, and z-»x] in (O0)u, 

(O0)33 =Replace [x-»z, y->x, and z-»y] in (O0)u > 
r(ßi)u 0 0 

0 (Q,)22 0 

0 0        (0,)33 

)][(-^-)-(-^-)]((p2) 
EOER        EOER EOER 

2>\ 

\ 

with three diagonal elements expressed as 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

• J 

2 EOER EOER EOER        EOER        EOER 

(QJ)22 = Replace [x—»y, y—»z, and z—>x] in (Q^n, 

(Qi)33 = Replace [x-»z, y-»x, and z-»y] in (O^, , 

'(02)11       0 0    ^ 

■)][(■ )-(-^)][(<P1)x-(<P2)x]- (A.9) 
EOER        EOER 

(A. 10) 

(A.11) 

o2 = 0 
0 

(02) 2^22 0 
0      (02) 2^33 

with three diagonal elements expressed as (A. 12) 

o3 = 

(Q2)n = [(—)"(—)][(—W^Wx- 
EOER        EOER       EOER        EOER 

(02)22 = Replace [x-»y, y->z, and z->x] in (02)u, 

(02)33 = Replace [x-»z, y—»x, and z-yy] in (Q2)n > 
r(Q3)n 0 0 

0        (03)22        0 

0 0        (03)33 

with three diagonal elements expressed as 

(A.13) 

(A. 14) 

(A. 15) 

(A. 16) 



(^3)n=l + [A + (^)-(-^)}]^+tA)-(-^)][(-^)-(^)](cp2) 
EOER   EOER   EOER   2   EOER   EOER   EOER   EOER 

2>\ 

p p 

^^(-»-(-»[(-»-(-HReiyaplU,!, 
ER       EnF.» F.nF.» FnF» FnFo *—>     K    'P"1   *   ' 

1       CT 
-[(- 
ER     EOER EOER       EOER EOER 

P 

(ß3)22 = Replace [x->y, y-»z, and z-»x] in (Q3)u , 

(&3)33 = Replace [x->z, y-»x, and z-*y] in (ß3)n , 

0 0    ^ 

ß4 = 
^(04)n 

0 

0 
(ß4)22 0 

0 (ß4)33 

with three diagonal elements expressed as 

(A.17) 

(A. 18) 

(A. 19) 

(A.20) 

p p 

(Q4)22 = Replace [x-»y, y-»z, and z-»x] in (Q4)n, 

(Q4)33 = Replace [x->z, y-*x, and z-»y] in (Q4)„, 

Q5 = 

—(Q2)n       0 
ER 

ER 
■(o2) 2^22 

0 0 
ER 

0 

0 

-(Q2) 2^33 

Q6 = 

ß7 = 

ßg = 

(Vo)x      0        0 

0 (V„)y        0 
0        0     (Vo) 

KVl)x-(V2>x] 
0 

0 

0 0 

0 KV,)z-(V2)z] 

^(V2)x     o        0   ^ 

0        (V2)y       0 
0 0     (\|/2)2 

r   = 
p,0 

<rp.o) p.O-'ll 0 0 

o    (rp,o)22     o 
0        o    (rp0)33 

with three diagonal elements expressed as 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

10 



(rp.o)n =Up,o -!] + [(—) + (^2-)-(^2-)]^pl H                   H'                  EOER        EOER        EOER        
M
' 

t 
+t A-(-^)][(-^-)-(-^-)j (cP,o)x. 

EOER        EOER       EOER        EOER 
(A.29) 

(rp,o)22 = Replace [x->y, yn>z, and z->x] in (Tp0)u, (A.30) 

(rp,o)33 = Replace [x->z, y->x, and z->y] in (rp0)n, (A.31) 

— (7tp,o)x            0                    0 
ER 

np,o = 0              — (Jlp,0)y              0 » (A.32) 
ER 

0               0        ^Gtp.0), 
ER 

<                                                                    J 
( \ 

-^[(rcp,i)x-(np,2)x]               0                             0 
ER 

np,i = 0                       ^[(7tp,l)y-(7lp,2)y]                      0 (A.33) 

0                              0  [(JIp.l) z 
- (7tp,2) z ] 

ER 

np,2 = 

— VtylU 
ER 

0        ^(7rp,2)y 
ER ' 

0 

0 

0 0 3» (1*2), 
ER 

and matrix elements are defined as follows 

£p,osexp[-(YP)At], 

rl-exp[-(Yp)At] i 1 
Spjs JdTexp[-(Yp)x] = At[- 

o 
At 

SP,2 s f dx (-£-) exp[-(YP)x] = At—— [ J       At (Yp)At 

■]. 
(Yp)At 

1     rl-exp[-(Yp)At] 

o 
At T 

(Y„)At 
-exp[-(Y„)At]], 

J     J P (Y„)M (Yp)it 0        0 
At        T 

Sp.2s Jdx J"dT' (^) exp[-(Yp)(T-x')l 
O        0 

,2     1     [I        1     r    l-exp[-(Yp)At] 

(Yp)At   2    (Y )At (Y )At 
(At)2 

■]]. 

For the x component: 

(¥0)xsexpK—-)At], 
EOER 

(A.34) 

(A.35) 

(A.36) 

(A.37) 

(A.38) 

(A.39) 

(A.40) 

11 



At 'S c rl-exp[-(-^-)At] 
W,B* expH—)T] = At [ ^§5 1 f 

EOER 

At 

0|/2)x s fdT(^)exp[-(-^)T] =At 1 [ 
i     At £OER , CTx w 

l-exPH-^_)At)] 

(—)At 
EOER 

(-^)At 
EOER 

EOER expH-^)At)]], 
EOER 

(A.41) 

(A.42) 

At T 7    f             a                            i     r    l-expH—MAt], 
(cp,)x s   dx   dx'expH—2-KT-T')] = (At)2 -  1 &*E  

*        » EOER , Ov  . .    L " J 

0        0 

At       T 

(—)At (-^)At 
EOER EOER 

(<P2)x s fdt fdT'(^)exp[-(-^-)(T-T')] 
i       i At EOER 
0       0 

(A.43) 

in          1             1-cxpH—5-)At] , 
= (At)2 —1— [I L_[i §£§S ]1 

(^-)At   2    (^-)At (£*-)* 
EOER EOER EOER 

At        T 

(Cp,0)x s Jdx Jdx'exp[-(Yp)T']exp[-(—)(x-x')] 
0      0 ° R 

(A.44) 

= (At)2 1 ri-exp[-(Yp)At]    l-exp[-(|f-)At] 
[ 

K-JL)At-(Yp)At] 
EOER K 

At T T' 

(Yo)At 
 EOER 

A-)At 
EOER 

4. 

(Cp.i)x = Jdx jdx'fdx" exp[-(Y )(T'-x")]exp[-(-^-)(T-T')] 
„        _ . EOER 
0        0 0 

(A.45) 

,    i    rr    i    ir   i-exp[-(—s-)At]1 
:(At)3—L_{ [—L-][i *&—1 

<V*      (^-)At (^)At 
EOER EOER 

-[ 1 -irl-exp[-(Yp)At]    1_exp[-(ä:)Atl 

(-^)At-(Yp)At 
EOER V 

■][■ 
(Yo)At 

 EOER 

(^)At 
EOER 

4}. 
At T X' 

(CP,2)x E fdx fdt'jdx"(±-) exp[-(Yp)(x'-x")] exp[-(-^)(T-x')] 
'        *        J. At p EOER 
0        0        0 

EOER 

= (At) 
,    1    rr    i     in        i-exp[-(—^At] 

(Yp)At-(^x_)At"2 
EOER 

(^)At 
EOER 

(^*_)At    <Yp)At- 
EOER 

,[ 1 ] [     1     ] [l-exp[-(YP)At]    ^"PH^Atlj j ^ 

(-^)At-(Yp)At      (YP)At (Yp)At 
EOER 

(-^-)At 
EOER 

(A.46) 

(A.47) 
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(jtp,o)x s fdxexp[-(Yp)T]exp[(—)T] 
J M EOER 

exp[-(Yp)At]-exp[-(-^)At] 
= At exp[(^4At] [ S2§S J t (A.48) 

(-^)At-(Yp)At 
EOER 

At       x 

(np,i)x = fdt fdT'exp[-(Yp)(T-T')]exp[(-^-)T] 
J       J p EOER 0       0 

exp[(-^-)At]       l-exp[-(-^)At]       exp[-(Yp)At]-exp[-(-^)At]-1 
= (At)2 EOER J  [ EpER ]_[ > EOER ] } 

<*•>* (^-)At (^)At-(Yp)At 
EOER EOER 

At      T , 

(Jtp,2)x s fdTfdx'(^)exp[-(Yp)(T-T')]exp[(-^-)T] 
•*      J At y EOER 0      0 

exp[(-^)At]              l-exp[-<-^)At]nr     (-^)A._ 
= (At)2 ML [ i_[ §»£5 J [1+_MR_J 

t(YP)At][(-^)At] (-^)At (Yp)At 

exp[-(Yp)At]-exp[-(-^)At]1 r(-^)At-, .[    E^] [_^R_| } 
(-^4At-(Yp)At (Yp)At 

(A.50) 

EOER P 

For the y component: 
Replace [x-»y] of matrix elements defined for the x component above. 

For the z component: 
Replace [x—>z] of matrix elements defined for the x component above. 

As noted in the definition of matrix elements above, these elements depend only on known values At, ccP. 

Yp. Ox. Oy and az • 

APPENDIX B 

By letting Yp —» 0 in Eqs. (A.35) through (A.50) we can obtain the following matrix elements for the case 

of the constant conductivity. 

(B.l) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

^P,0 = 1, 

I* = At, 

Sp,2 
At 

"2 ' 

(At)2 

Spa 2 

%>x 
(At)2 

A 
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For the x component: 

(Vo)x=cxpH-^2-)At], (B6) 
EO£R V   "   ' 

rl-expH-^-)At] 
(Vl)x=At[ §2§2 J? 

(—)At 
EOER 

l-exPH-^-)At)]1 
(i|/2)x =At y- [l §°§E J, 

(-^MAt (-^)At 
EOER EOER 

l-expH^L.)At] 

((p,)x =(At)2 i [l §2§S J, 
(-^)At (-^)At 

EOER EOER 

,       in          1      r     1-<*PH—)At] 
«p2)x =(At)2—I—[i-_^-[i eoER      j 

(J^)At   2    (-^)At (^)At 
EOER EOER EOER 

l-expH-5s_)At] 
(CPi0)x = (At)2 -——[l *£»—], 

(-2-)At (-^-)At 
EOER EOER 

in 1 l~exp[-(—i-)At] ., «y. -wo'V-Ii-r—[' -«*-!]]. 
EOER EOER £0£R 

i     f i   r     i       i    I-«PK——)At] ,, (Cp,2)x =(At)3—L_{I_[_I_rJ_ —^—]]}, 
(^)At  6   (^-)At 2     (^)At 
EOER EOER £0£R 

l-exp[-{-^-)At] 
(7tp,o) x = At L &*S J, 

(—)At 
EOER 

l-exp[-(-^-)At] 
(Tip,,), =(At)2 - [l Mi 1 

(—)At      (^-)At 
EOER EOER 

l-exp[-(-^-)At] 
(np,2)x=(At)2—l_[i-_^_[1 BOER  j] 

(^•)At 2 (^-)At      (-^-)At 
EOER EOER E0£R 

For the v component: 

Replace [x-»y] of matrix elements defined for the x component above, 
For the z component: 

Replace [x-»z] of matrix elements defined for the x component above. 

(B.7) 

(B.8) 

(B.9) 

(B.10) 

(B.ll) 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

(B.16) 
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Flow Chart 

Increment to the 
next time step 

Yes (end of simulation) 

Figure 1: Flow chart of the dispersive FDTD-PML algorithm 
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