OFFICE OF NAVAL RESEARCH

GRANT N0001400AF00002

PR Number 00PR01464-00

Technical Report No. 22

Effect of high pressure on the electrical conductivity of ion conducting polymers

Prepared for publication in Electrochim. Acta

by

J.J. Fontanella,^a J.T. Bendler,^b M. F. Shlesinger, ^c M.C. Wintersgill,^a

 ^aPhysics Department, U.S. Naval Academy, Annapolis, MD 21402-5026, USA
 ^bDepartment of Chemistry and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701
 ^cPhysical Sciences Division, Office of Naval Research, 800 N. Quincy St., Arlington, VA 22217

1 July 2000

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale, its distribution is unlimited.

20000724 058

DIEC QUALITY INSPECTED 4

Electrical Conductivity, Complex Impedance, 19 Sodium Electrolytes, High Pressure 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 20. LIMITATION OF ABST		REPORT DOCUMENTATION PAGE		
July 1, 2000 Technical Report 6/1/9 to 5/ L. THLE AND SUBTILE Effect of high pressure on the electrical conductivity of ion conducting polymers S. FUNDING NUMBERS Effect of high pressure on the electrical conductivity of ion conducting polymers Nouber: Nouber: NOUL4 00APRODUC J. J. Fontanella, J. T. Bendler, M.F. Shlesinger Nouber: 00PRO1464-00 J. J. Fontanella, J. T. Bendler, M.F. Shlesinger S. FERORMING ORGANIZATION NAME(S) AND ADDRESS(S) J. France Market States Naval Academy Physics Department Annapolis, MD 21402 Technical Report #J J. SPONSORIG/MONITORING AGENCY NAME(S) AND ADDRESS(S) 10. SPONSORIG/MONITORING AGENCY NAME(S) AND ADDRESS(S) Office of Naval Research Physical S&T Div ONR 331 BOO N. Quincy Street Arlington, VA 2217-5660 IL SUPPLEMENTARY NOTES TR#22 Prepared for publication in Electrochin. Acta 12b. DISTRUCTION VALUEY STATEMENT Lass document has been approved forpublic release and sale; its distribution is unlimited. 11. ABSTACT (Meanum 200 word) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glyce) Min a average molecular weight of 130, both containing NACTS/S0, in an approximately 201 ratio of polymer to sal. The impedance sudies were carried out over arange of frequencies, tem	Aughter reporting oursen for this tollection of gathering and maintaining the data needed, a collection of information, including suggestion Dave Highway, Swite 1204, Arlington, VA 222	stormation in estimated to average 1 hour per ri nd completing and reviewing the collection of in is for reducing this burden, to Washington Head 32-4302, and to the Office of Management and 8	esponse, including the time for re formation. Send comments regain liquarten Services, Directorate for udget, Paperwork Reduction Proj	viewing Instituctions, searching existing data source ding this burden estimate or any other aspect of t information Operations and Reports, 1215 Jetters ect (0704-0188), Washington, DC 20503.
4. THE AND SUBTICE 5. FUNCING MUMBERS Effect of high pressure on the electrical S. FUNCING MUMBERS conductivity of ion conducting polymers NOD14 00APRO0002 7. AUTHOR(5) UPR Number: J.J. Fontanella, J.T. Bendler, M.F. Shlesinger OPR01464-00 Y.F. KORMMUG ORGANIZATION NAME(S) AND ADDRESS(5) I. FEFORTHING ORGANIZATION NAME(S) AND ADDRESS(5) United States Naval Academy Feror Number Physics Department Annapolis, MD 21402 S. SPONSCRING/MONICOMMA AGENCY NAME(S) AND ADDRESS(15) ID. SPONSCRING/MONITORING AGENCY NAME(S) AND ADDRESS(15) Office of Naval Research Physical S&T Div ONR 301 BOO N. Quincy Street Arlington, VA 22217-5660 H. SUPPLEMENTAAY NOTES TR#22 Prepared for publication in Electrochim. Acta 12. OISTRUETION TAVAILABELTY STATEMENT Reproduction in whole or in part is permitted fc* any purpose of the United States Government. his document has been approved forpublic release and sale; its distribution is unlimited. 11. ASSTRACT (Mummun 200 word) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PFO) with an average molecular weight of 1023 and poly(e		nk) 2. REPORT DATE	3. REPORT TYPE AND	D DATES COVERED
Effect of high pressure on the electrical conductivity of ion conducting polymers N00014 00APR00002 PR Number: 6. AUTORSS DOPRO1464-00 J.J. Fontanella, J.T. Bendler, M.F. Shlesinger OOPRO1464-00 1. FistorMung ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERCENNING CREANIZATION REPORT NUMBER United States Naval Academy Physics Department Annapolis, MD 21402 Technical Report #1 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 0 office of Naval Research Physical S6T Div ONR 331 800 N. Quincy Street Arlington, VA 22217-5660 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPEMENTARY NOTES Prepared for publication in Electrochim. Acta 120. DISTRIBUTION CODE 11. SUPPEMENTARY NOTES Its distribution is unlimited. 120. DISTRIBUTION CODE 11. ABSTRACE (Mammu 200 word) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on nethyl-therh (PEG) with a average molecular weight of 1025 and poly(chylene glycol mono- methyl-therh (PEG) with a average molecular weight of 500, bot do ontaining NACF,SO0, in an approximately 201 ratio of polymer to salt. The impedance data for PFO/NACF,SO, so in an approximately 201 ratio of polymer to salt. The impedance data for PFO/NACF,SO, on an approximately 201 ratio of polymer to salt. The impedance of To, is similar to the pressure dependence of T ₆ for structurally related polymer sontain ing out. The fit to the zaro pressure dependence of T ₆ for structurally related polymere sontain ing	4. TITLE AND SUBTITLE			
6. AUTNON(5) 00PR01464-00 J. J. FONTANELLA, J.T. Bendler, M.F. Shlesinger 00PR01464-00 J. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) United States Naval Academy Physics Department Annapolis, MD 21402 Technical Report #2 9. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(ES) 0 Office of Naval Research Physical S6T Div ONR 331 800 N. Quincy Street Arlington, VA 22217-5660 11. SUPPLEMENTARY NOTES TR#22 Prepared for publication in Electrochin. Acta Ib. DISTRIBUTION CODE 11. SUPPLEMENTARY NOTES Ib. DISTRIBUTION CODE 12. ASSTRACT (Maximum 200 word) Ib. DISTRIBUTION CODE Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propyleme glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol monomethyl-ether) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol monomethyl-ether) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol monomethyl-ether) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol monomethyl-ether) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol monomethyl-ether) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol monomethyl-ether) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol monomethyl	Effect of high pre conductivity of i	ssure on the electr	ical	N00014 00AF00002
J.J. Fontanella, J.T. Bendler, M.F. Shlesinger M.C. Wintersgill A. FENDAMING ORGANIZATION NAME(S) AND ADDRESS(ES) United States Naval Academy Physics Department Annapolis, MD 21402 9. SPENSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research Physical S&T Div ONR 331 800 N. Quincy Street Arlington, VA 22217-5660 11. SUPPLEMENTARY NOTES Prepared for publication in Electrochim. Acta 12. DISTRIBUTION /AVAILABILITY STATEMENT Reproduction in whole or in part is permitted fis document has been approved forpublic release Ind sale; its distribution is unlimited. 13. ASTRACT (Maximum 200 words) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on pob(propyleng glycol) (PEG) with an average molecular weight of 1025 and poly(dthylene glyco) mono- methyl-tehry (PEG) with an average molecular weight of 1025 may approximately 20:1 ratio of polymer to salt. The impedance studies were carried out or organize dependence, studies were carried out or on pob(propyleng glycol) (PEG) with an average molecular weight of 1025 and poly(dthylene glyco) is a glas-forming fluid. The fit to the zero pressure data for PCNACF_SO, using a recently developed generalized Vogel equation is better than that for the standard VTF equation while for PEG-NACF_SO, is a glas-forming fluid. The fit to the zero pressure data for PCNACF_SO, using a recently devel			.1.3	
United States Naval Academy Physics Department Annapolis, MD 21402 REPORT NUMBER Technical Report #2 9. \$PONSORING/MONITORING AGENCY NAME(\$) AND ADDRESS(E\$) Office of Naval Research Physical S&T Div ONR 331 800 N. Quincy Street Arlington, VA 22217-5660 10. \$PONSORING/MONITORING AGENCY REPORT NUMBER TR#22 11. SUPPLEMENTARY NOTES TR#22 Prepared for publication in Electrochim. Acta 12. DISTRIBUTION/AVAILABILTY STATEMENT Reproduction in whole or in part is permitted fcr any purpose of the United States Government. his document has been approved forpublic release ind sale; its distribution is unlimited. 12. DISTRIBUTION CODE 11. ABSIRACT (Maximum 200 words) Complex impedance and differential scaning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PFC) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEC) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEC) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEC) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEC) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEC) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEC) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEC) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEC) NaCF_SO; etherware studies were carried out over a range of frequencies, temperatures and pressures. As expected, PEG:NaCF_SO; etherware and the therma and the therma and the therma and the therma and pressure. The detacoffect effect separation is assumed to follow	J.J. Fontanella, J	.T. Bendler, M.F. S	hlesinger	
United States Naval Academy Physics Department Annapolis, MD 21402 Technical Report #2 9. \$FONSGRING/MONITORING AGENCY NAME(\$) AND ADDRESS(ES) Office of Naval Research Physical S&T Div ONR 331 800 N. Quincy Street Arlington, VA 22217-5660 10. \$FONSGRING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES TR#22 Prepared for publication in Electrochim. Acta 12. 12. DISTRIBUTION/AVAILABUTY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. his document has been approved forpublic release nd sale; its distribution is unlimited. 12. 12. DISTRIBUTION CCOE 11. ASSTAACT (Maximum 200 wered) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ther) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ther) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ther) (PEG) with an average molecular weight of TDS, but containing NACF;SO; is a glass-forming liquid. The fits the zero pressure data for PPG:NACF;SO; using a recently developed generalized Vogel equation is better than that for the standard VTF equation while for PEG:NACF;SO; is a glass-forming liquid. The fits the zero pressure data for PPG:NACF;SO; is a glass-forming liquid. The fits the zero pressure doendence of T ₈ for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of T ₈ of structurally related polymer containing no salt. Thus, the difference in the pressure dependence of T ₈ . The details of the relationship between T ₈ and T ₈ remain to be determined. 15. NUMABER O	7. PERFORMING ORGANIZATION I	AME(S) AND ADDRESS(ES)		
Annapolis, MD 21402 Rechical Report #2 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research Physical S&T Div ONR 331 800 N. Quincy Street Arlington, VA 22217-5660 TR#22 11. SUPPLEMENTARY NOTES TR#22 Prepared for publication in Electrochim. Acta 12. DISTRIBUTION/AVAILABULTY STATEMENT Reproduction in whole or in part is permitted fc# any purpose of the United States Government. his document has been approved forpublic release nd sale; its distribution is unlimited. 12. DISTRIBUTION CODE 13. ASSTRACT (Meximum 200 werst) 12. DISTRIBUTION CODE generatives and pressures and offerential scanning calorimetry (DSC) studies have been carried out on poly(proylene glycol) (PFG) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEG) with an average molecular weight of 1025 Molecular weight of 920 werst) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(proylene glycol) (PFG) with an average molecular weight of 1025 Molecular weight of 920 were array of the Vero array of frequencies, temperatures and pressures. As expected, PEG:NACF,SO, exhibits the tendency to crystalize while PPG:NACF,SO, is a glass-forming liquid. The fit to the zoro pressure data for PPG:NACF,SO, using a recently developed generalized Vogel equation is better than that for the standard VTF equation while for PEG:NACF,SO, is a functional the dimensions of the material. It is found empirically that the pressure dependence of T ₆ is allowed to vary with pressure. The defect-defect segreseration is asume dependence of T ₆ is allowed to vary with pressu	United States M	laval Academy		REPORT NUMBER
10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 0 Office of Naval Research Physical S&T Div ONR 331 800 N. Quincy Street Arlington, VA 22217-5660 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES TR#22 Prepared for publication in Electrochim. Acta 122. OISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted fcr any purpose of the United States Government. his document has been approved forpublic release nd sale; its distribution is unlimited. 13. ASSTRACT (Maximum 200 words) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ethy (PEG) With an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ethy (PEG) With an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ethy (PEG) With an average molecular weight of 1025 onto poly(chylene glycol mono- methyl-ethy (PEG) With an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ethy (PEG) With an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ethy (PEG) With an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ethylene glycol) (PCG) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ethylene glycol) (PCG) with an average molecular weight of POC:NACF,SO, una approximately 20:1 ratio of polymer to salt. The impedance y to crystalize while PC:NACF,SO; is a glass-forming liquid. The fit to the zero PPC:NACF,SO, SU, una recently developed generalized Vogel equation is bette				Technical Report #22
Office of Naval Research Physical S&T Div ONR 331 800 N. Quincy Street Arlington, VA 22217-5660 AGENCY REPORT NUMBER II. SUPPLEMENTARY NOTES TR#22 Prepared for publication in Electrochim. Acta 125. DISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. his document has been approved forpublic release and sale; its distribution is unlimited. 126. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propyleng lyco) (PFG) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol) mono- methyl-ether) (PEG) with an average molecular weight of regranic or systallize while PFG:NaCF_SO; is a glass-forming liquid. The fit to the zero pressure data for PPG:NaCF_SO; using a recently developed generalized Vogel equation is better than that for the standard VTF equation while PFG:NaCF_SO; a to expression give about the same level of fit to the data. In the theory, the critical temperature, T, is allowed to vary with pressure. The defect-defect separation is assumed to follow the difference in the pressure dependence of T _g for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of T _g for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of the conductivity for PEG:NaCF_SO; and PPG:NaCF_SO; is a stributed primarily to the difference in the pressure dependence of T _g . The details of the relationship between T _g and T _g remain to be determined 19. 16. PRICE CODE 14. SUBJECT TEAMS Electrical Conductivit	Annapolis, MD 2	1402		reennical Report #22
Office of Naval Research Physical S&T Div ONR 331 800 N. Quincy Street Arlington, VA 22217-5660 AGENCY REPORT NUMBER II. SUPPLEMENTARY NOTES TR#22 Prepared for publication in Electrochim. Acta 125. DISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. his document has been approved forpublic release nd sale; its distribution is unlimited. 126. DISTRIBUTION CODE 11. ABSTRACT (Maximum 200 word) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylem glyco) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol mono- metryl-ether) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol) mono- metryl-ether) (PEG) with an average molecular weight of regrammed bile PPG:NaCF ₂ SO ₃ is a glass-forming liquid. The fit to the zero pressure data for PPG:NaCF ₂ SO ₃ using a recently developed generalized Vogel equation is better than that for the standard VTF equation while PPG:NaCF ₂ SO ₃ is a glass-forming liquid. The fit to the zero pressure data for PPG:NaCF ₂ SO ₃ is a glass-forming liquid. The fit to the data. In the theory, the critical therefore, is allowed to vary with pressure. The defect-defect separation is assumed to follow the dimensions of the material. It is found empirically that the pressure dependence of T ₆ is similar to the pressure dependence of T ₆ for Structurally related polymers containing no salt. Thus, the difference in the pressure dependence of the conductivity for PEG:NaCF ₃ SO ₃ and PPG:NaCF ₃ SO ₃ is attributed primarily to the difference in the pressure dependence of T ₆ . If a SUGLY TEAMS Electrical Conductivity, Complex Impedance, Sodium Electrolytes, High Pressure 15. NUMBER OF PAGES 19.		•		• •
Office of Naval Research Physical S&T Div ONR 331 800 N. Quincy Street Arlington, VA 22217-5660 TR#22 11. SUPPLEMENTARY NOTES Prepared for publication in Electrochim. Acta 12. DISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted fcr any purpose of the United States Government. 12b. DISTRIBUTION CODE 13. DISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted fcr any purpose of the United States Government. 12b. DISTRIBUTION CODE 14. SUBJECT (Maximum 200 word) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEG) with an average molecular weight of 50, both containing NACF_SO, in an approximately 201 ratio of polymer to salt. The impedance studies were carried out over a range of frequencies, temperatures and pressures. As expected, PEG:NaCF_SO_3 exhibits the tendency to crystallize while PPG:NaCF_SO_3 is a glass-forming liquid. The fit to the zero pressure develoa to ver a range of the optical Veoled equation is better than that for the standard VTF equation while for PEG:NaCF_SO_3 the two expressions give about the same level of fit to the data. In the theory, the critical temperature, Te, is allowed to vary with pressure. The defect-defect separation is assumed to follow the dimensions of the material. It is found empirically that the pressure dependence of Tg. Tors tructurally related polymers containing no salt. Thus, the difference in the pressure dependence of Tg. The details of the relationship between Te, and Tg remain to be determined. 14. SUBL	9. SPONSORING/MONITORING AC	ENCY NAME(S) AND ADDRESS(ES)		
800 N. Quincy Street Arlington, VA 22217-5660 TR#22 11. SUPPLEMENTARY NOTES Prepared for publication in Electrochim. Acta 12. DISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted fcr any purpose of the United States Government. his document has been approved forpublic release ind sale; its distribution is unlimited. 12. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) 13. ABSTRACT (Maximum 200 words) 13. ABSTRACT (Maximum 200 words) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PCG) with an average molecular weight of 350, both containing NACF,SSO, in an approximately 20:1 ratio of polyme to salt. The impedance studies were carried out over a range of frequencies, temperatures and pressures. As expected, PEG:NACF,SO, exhibits the tendency to crystallize while PPG:NACF,SO, is a glass-forming liquid. The fit to the zero pressure data for PPG:NACF,SO, using a recently developed generalized Vogel equation is better than that for the standard VTF equation while for PEG:NACF,SO, is for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of T, is sallowed to vary with pressure. The defect-defect separation is assumed to follow the dimensions of the material. It is found empirically that the pressure dependence of T, is similar to the pressure dependence of T, estimating no salt. Thus, the difference in the pressure dependence of T, estimating no salt. Thus, the difference in the pressure dependence of T, estimation of the relationship between T, and T, remain to be determined. 15. NUMBER OF PAGES 14. SUBJECT TEAMS Electrical Conductivity, Complex Impedance, OF REPORT COVERESTICATION 18. SECURITY CLASSIFICATION OF ABSIT				AGENCT REPORT NUMBER
Arlington, VA 22217-5660 IRW22 II. SUPPLEMENTARY NOTES Prepared for publication in Electrochim. Acta 12.0. DISTRIBUTION/AVAILABULITY STATEMENT I2.0. DISTRIBUTION/AVAILABULITY STATEMENT Reproduction in whole or in part is permitted fcr any purpose of the United States Government. his document has been approved forpublic release I2.0. DISTRIBUTION CODE 13. ASSTRACT (Maximum 200 words) I2.0. Distribution is unlimited. Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol monomethyl-thetr) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol monomethyl-thetr) (PEG) with an average molecular weight of 130, both containing NaCF ₃ SO, is a glass-forming liquid. The fit to the zero pressure data for PPG:NaCF ₃ SO, is a glass-forming liquid. The fit to the zero pressure data for PPG:NaCF ₃ SO, is a glass-forming liquid. The fit to the zero pressure data for PPG:NaCF ₃ SO, is a glass-forming liquid. The fit to the zero pressure data for PPG:NaCF ₃ SO, is a glass-forming liquid. The detect-defect separation is assumed to follow the dimensions of the material. It is found empirically that the pressure dependence of T _e is similar to the pressure dependence of T _e is allowed to vary with pressure. The defect-defect separation is assumed to follow the dimensions of the conductivity for PPG:NaCF ₃ SO, is atributed polymers containing no salt. Thus, the difference in the pressure dependence of T _e for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of T _e . Solis APG PEG:NaCF ₃ SO, and PPG:NaCF ₃ SO, and				
11. SUPPLEMENTARY NOTES Prepared for publication in Electrochim. Acta 12a. DISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. 'his document has been approved forpublic release ind sale; its distribution is unlimited. 13. ASSTRACT (Maximum 200 word;) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol mono-methyl-ther) (PEG) with an average molecular weight of 1025 and poly(ethylene glycol mono-methyl-ther) (PEG) with an average molecular weight of 300, both containing NACF;SO, in an approximately 20:1 ratio of polymer to salt. The impedance studies were carried out over a range of frequencies, temperatures and pressures. As expected, PEG:NACF;SO, schibits the tendency to crystallize while PPG:NACF;SO; is a glass-forming liquid. The fit to the zero pressure data for PPG:NACF;SO; as a generalized Vogel equation is better than that for the standard VTF equation while for PEG:NACF;SO; is a caption of effect-defect separation is assumed to follow the dimensions of the material. It is found empirically that the pressure dependence of T _e is similar to the pressure dependence of T _e for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of T _e for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of T _e for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of T _e . 14. SUBJECT TERMS 15. NUMARER OF PAGES	-			TR#22
Prepared for publication in Electrochim. Acta 12a. DISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. his document has been approved forpublic release nd sale; its distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) 13. ABSTRACT (Maximum 200 words) 13. ABSTRACT (Maximum 200 words) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEG) with an average molecular weight of 350, both containing NaCF ₃ SO ₃ in an approximately 20:1 ratio of polymer to salt. The impedance studies were carried out over a range of frequencies, temperatures and pressures. As expected, PEG/NACF ₃ SO ₃ exhibits the tendency to crystallize while PPG/NACF ₃ SO ₃ the two expressions give about the same level of fit to the data. In the theory, the critical temperature, T ₆ is allowed to vary with pressure. The defect-defect separation is assumed to follow the dimensions of the material. It is found empirically that the pressure dependence of T ₆ is similar to the pressure dependence of T ₈ for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of T ₈ for structurally PEG:NACF ₃ SO ₃ and PPG:NACF ₃ SO ₃ is attributed primarily to the difference in the pressure dependence of T ₈ . The details of the relationship between T ₆ and T ₈ remain to be determined. 15. NUMBER OF PAGES 19 16. PRICE COO2 14. SUBJECT TERMS 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF THIS PAGE 19. SEC	_	2217-3000		:
12b. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION (AVAILABILITY STATEMENT Reproduction in whole or in part is permitted 12b. DISTRIBUTION (CODE fc# any purpose of the United States Government. 12b. DISTRIBUTION (CODE his document has been approved forpublic release 12b. DISTRIBUTION (CODE 13. A3STRACT (Maximum 200 words) 13b. A3STRACT (Maximum 200 words) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEG) with an average molecular weight of 350, both containing NACT_SO3 in an approximately 20:1 ratio of polymer to salt. The impedance studies were carried out over a range of frequencies, temperatures and pressures. As expected, PEG:NACF_SO3 exhibits the tendency to crystallize while PPG:NACF_SO3 is a glass-forming liquid. The fit to the zero pressure data for PPG:NACF_SO3 using a recently developed generalized Vogel equation is better than that for the standard VTF equation while for PEG:NACF_SO3 the two expressions give about the same level of fit to the data. In the theory, the critical temperature, Te, is allowed to vary with pressure. The defect-defect separation is assumed to follow the dimensions of the matterial. It is found empirically that the pressure dependence of Te is similar to the pressure dependence of Tg for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of Tg. 14. SUBJECT TERMS<	11. SUPPLEMENTARY NOTES			
Reproduction in whole or in part is permitted fc# any purpose of the United States Government. his document has been approved forpublic release nd sale; its distribution is unlimited. 13. A3STRACT (Maximum 200 word:) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEG) with an average molecular weight of 350, both containing NaCF ₃ SO ₃ in an approximately 20:1 ratio of polymer to salt. The impedance studies were carried out over a range of frequencies, temperatures and pressures. As expected, PEG:NaCF ₃ SO ₃ exhibits the tendency to crystallize while PPG:NaCF ₃ SO ₃ is a glass-forming liquid. The fit to the zero pressure data for PPO:NaCF ₃ SO ₃ using a recently developed generalized Vogel equation is better than that for the standard VTF equation while for PEG:NaCF ₃ SO ₃ the two expressions give about the same level of fit to the data. In the theory, the critical temperature, Te, is allowed to vary with pressure. The defect-defect separation is assumed to follow the dimensions of the material. It is found empirically that the pressure dependence of Te is similar to the pressure dependence of Tg or structurally related polymers containing no salt. Thus, the difference in the pressure dependence of Tg. The details of the relationship between Te and Tg remain to be determined 15. NUMMER OF PAGES 19. 14. SUBJECT TERMS Electrical Conductivity, Complex Impedance, Sodium Electrolytes, High Pressure 19. SECURITY CLASSIFICATION OF REPORT 20. UMITATION OF ABST 20. UMITATION OF ABST 20. UMITATION OF ABST 20. UMITATION OF ABST	Prepared for pu	blication in Electr	ochim. Acta	
fcf any purpose of the United States Government. his document has been approved forpublic release nd sale; its distribution is unlimited. 13. ASSIRACT (Maximum 200 words) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol mono-methyl-ether) (PEG) with an average molecular weight of 350, both containing NaCF ₃ SO ₃ in an approximately 20:1 ratio of polymer to salt. The impedance studies were carried out over a range of frequencies, temperatures and pressures. As expected, PEG:NaCF ₃ SO ₃ exhibits the tendency to crystallize while PPG:NaCF ₃ SO ₃ is a glass-forming liquid. The fit to the zero pressure data for PPG:NaCF ₃ SO ₃ using a recently developed generalized Vogel equation is better than that for the standard VTF equation while for PEG:NaCF ₃ SO ₃ the two expressions give about the same level of fit to the data. In the theory, the critical temperature, T _e , is allowed to vary with pressure. The defect-defect separation is assumed to follow the dimensions of the material. It is found empirically that the pressure dependence of T _e is similar to the pressure dependence of T _g for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of T _g . The details of the relationship between T _e and T _g remain to be determined. 14. SUBJECT TERMS 15. NUMMEER OF PAGES 14. SUBJECT TERMS 18. SECURITY CLASSIFICATION OF ABSIFICATION OF ABSIF	12a. DISTRIBUTION / AVAILABILITY	STATEMENT		126. DISTRIBUTION CODE
his document has been approved forpublic release nd sale; its distribution is unlimited. 13. A3STRACT (Maximum 200 word) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol mono- methyl-ether) (PEG) with an average molecular weight of 350, both containing NaCF ₃ SO ₃ in an approximately 20:1 ratio of polymer to salt. The impedance studies were carried out over a range of frequencies, temperatures and pressures. As expected, PEG:NaCF ₃ SO ₃ exhibits the tendency to crystallize while PPG:NaCF ₃ SO ₃ is a glass-forming liquid. The fit to the zero pressure data for PPG:NaCF ₃ SO ₃ using a recently developed generalized Vogel equation is better than that for the standard VTF equation while for PEG:NaCF ₃ SO ₃ the two expressions give about the same level of fit to the data. In the theory, the critical temperature, T _c , is allowed to vary with pressure. The defect-defect separation is assumed to follow the dimensions of the material. It is found empirically that the pressure dependence of T _c is similar to the pressure dependence of T _g for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of T _g . The details of the relationship between T _c and T _g remain to be determined. 15. NUMMER OF PAGES 19 16. PRICE CODE	Reproduction in	whole or in part i	s permitted	
nd sale; its distribution is unlimited. 13. A3STRACT (Maximum 200 words) Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol monomethyl-ether) (PEG) with an average molecular weight of 350, both containing NaCF ₃ SO ₃ in an approximately 20:1 ratio of polymer to salt. The impedance studies were carried out over a range of frequencies, temperatures and pressures. As expected, PEG:NaCF ₃ SO ₃ exhibits the tendency to crystallize while PPG:NaCF ₃ SO ₃ the two expressions give about the same level of fit to the data. In the theory, the critical temperature, T _e , is allowed to vary with pressure. The defect-defect separation is assumed to follow the dimensions of the material. It is found empirically that the pressure dependence of T _e is similar to the pressure dependence of T _g for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of T _g for structurally related polymers containing between T _e and T _g remain to be determined 14. SUBJECT TERMS 15. NUMBER OF PAGES 14. SUBJECT TERMS 15. NUMBER OF PAGES 14. SUBJECT TERMS 15. NUMBER OF PAGES 14. SUBJECT TERMS 16. PRICE CODE 14. SUBJECT TERMS 11. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 11. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 11. SECURITY CLASSIFICATION 12. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 11. SECURITY CLASSIFICATION 13.	for any purpose of his document has h	the United States	Government.	
Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol monomethyl-ether) (PEG) with an average molecular weight of 350, both containing NaCF ₃ SO ₃ in an approximately 20:1 ratio of polymer to salt. The impedance studies were carried out over a range of frequencies, temperatures and pressures. As expected, PEG:NaCF ₃ SO ₃ exhibits the tendency to crystallize while PPG:NaCF ₃ SO ₃ is a glass-forming liquid. The fit to the zero pressure data for PPG:NaCF ₃ SO ₃ using a recently developed generalized Vogel equation is better than that for the standard VTF equation while for PEG:NaCF ₃ SO ₃ the two expressions give about the same level of fit to the data. In the theory, the critical temperature, T _c , is allowed to vary with pressure. The defect-defect separation is assumed to follow the dimensions of the material. It is found empirically that the pressure dependence of T _c is similar to the pressure dependence of T _g for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of T _g . The details of the relationship between T _c and T _g remain to be determined. 14. SUBJECT TERMS 15. NUMBER OF PAGES 21. security CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABST 17. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABST	nd sale; its distr	ibution is unlimite	d	
poly(propylene glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol monomethyl-ether) (PEG) with an average molecular weight of 350, both containing NaCF ₃ SO ₃ in an approximately 20:1 ratio of polymer to salt. The impedance studies were carried out over a range of frequencies, temperatures and pressures. As expected, PEG:NaCF ₃ SO ₃ exhibits the tendency to crystallize while PPG:NaCF ₃ SO ₃ is a glass-forming liquid. The fit to the zero pressure data for PPG:NaCF ₃ SO ₃ using a recently developed generalized Vogel equation is better than that for the standard VTF equation while for PEG:NaCF ₃ SO ₃ the two expressions give about the same level of fit to the data. In the theory, the critical temperature, T _c , is allowed to vary with pressure. The defect-defect separation is assumed to follow the dimensions of the material. It is found empirically that the pressure dependence of T _c is similar to the pressure dependence of T _g for structurally related polymers containing no salt. Thus, the difference in the pressure dependence of T _g . The details of the relationship between T _c and T _g remain to be determined 14. SUBJECT TERMS 15. NUMBER OF PAGES 21. Assumption to the relationship between T _c and T _g remain to be determined 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABST	13. ABSTRACT (Maximum 200 woi	G1)		· · · · · · · · · · · · · · · · · · ·
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABST OF REPORT OF THIS PAGE OF ABSTRACT	poly(propylene glycol) (PPG) v methyl-ether) (PEG) with an av	vith an average molecular weight of erage molecular weight of 350, bot	f 1025 and poly(ethylen	e glycol mono-
OF REPORT OF THIS PAGE OF ABSTRACT	and pressures. As expected, PE glass-forming liquid. The fit to generalized Vogel equation is b expressions give about the same vary with pressure. The defect- found empirically that the press related polymers containing no PEG:NaCF ₃ SO ₃ and PPG:NaCF The details of the relationship b	G:NaCF ₃ SO ₃ exhibits the tendency the zero pressure data for PPG:Nate etter than that for the standard VTF e level of fit to the data. In the theo defect separation is assumed to foll ure dependence of T_c is similar to t salt. Thus, the difference in the pre F_3SO_3 is attributed primarily to the etween T_c and T_g remain to be dete	out over a range of frequencies of the presence of the presence of the presence of the presence of the pressure dependence of the difference in the pressure dependence of the difference in the pressure dependence of the pressure dependence of the pressure dependence of the difference in the pressure pressure dependence of the pressure dependence of the difference in the pressure	sencies, temperatures $G:NaCF_3SO_3$ is a developed $G:NaCF_3SO_3$ the two ure, T_c , is allowed to se material. It is of T_g for structurally conductivity for e dependence of T_g . 15. NUMBER OF PAGES
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED	and pressures. As expected, PE glass-forming liquid. The fit to generalized Vogel equation is b expressions give about the same vary with pressure. The defect- found empirically that the press related polymers containing no PEG:NaCF ₃ SO ₃ and PPG:NaCI The details of the relationship b	C:NaCF ₃ SO ₃ exhibits the tendency the zero pressure data for PPG:Nad etter than that for the standard VTF e level of fit to the data. In the theo defect separation is assumed to foll ure dependence of T_c is similar to t salt. Thus, the difference in the pre F ₃ SO ₃ is attributed primarily to the etween T_c and T_g remain to be dete ivity, Complex Imped s, High Pressure	out over a range of frequencies of the presence of the presence of the presence of the presence of the pressure dependence of the difference in the pressure dependence of the difference in the pressure dependence of the pressure dependence of the pressure dependence of the difference in the pressure pressure dependence of the pressure dependence of the difference in the pressure	Lencies, temperatures $G:NaCF_3SO_3$ is a developed $G:NaCF_3SO_3$ the two tree, T_c , is allowed to the material. It is of T_g for structurally e conductivity for the dependence of T_g . 15. NUMBER OF PAGES 19

Effect of high pressure on the electrical conductivity of ion conducting polymers

J. J. Fontanella,^a J. T. Bendler,^b M. F. Shlesinger,^c M. C. Wintersgill,^a

 ^aPhysics Department, U.S. Naval Academy, Annapolis, MD 21402-5026, USA
 ^bDepartment of Chemistry and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701

^cPhysical Sciences Division, Office of Naval Research, 800 N. Quincy St., Arlington, VA 22217

Abstract--Complex impedance and differential scanning calorimetry (DSC) studies have been carried out on poly(propylene glycol) (PPG) with an average molecular weight of 1025 and poly(ethylene glycol mono-methyl-ether) (PEG) with an average molecular weight of 350, both containing NaCF₃SO₃ in an approximately 20:1 ratio of polymer to salt. The impedance studies were carried out over a range of frequencies, temperatures and pressures. As expected, PEG:NaCF₃SO₃ exhibits the tendency to crystallize while PPG:NaCF₃SO₃ is a glass-forming liquid. The fit to the zero pressure data for PPG:NaCF₃SO₃ using a recently developed generalized Vogel equation (based on a defect diffusion model) is better than that for the standard VTF equation while for PEG:NaCF₃SO₃ the two expressions give about the same level of fit to the data. In the theory, the effect of pressure is due to a pressure dependent critical temperature, T_e, and a defect-defect separation that follows the dimensions of the material. It is found empirically that the pressure dependence of T_e is similar to the pressure dependence of T_g for structurally related polymers containing no salt. However, the details of the relationship between T_e and T_g remain to be determined.

Keywords: Electrical Conductivity, Complex Impedance, Sodium Electrolytes, High Pressure **Chemical Compounds**: poly(propylene glycol), poly(ethylene glycol) mono-methyl-ether, NaCF₃SO₃ **Corresponding Author**: Prof. John Fontanella, Physics Department, U.S. Naval Academy, Annapolis, MD 21402-5026, USA; PH: 410-293-5507, FAX: 410-293-3729; email: <u>jif@usna.edu</u>

INTRODUCTION

Two polymer electrolytes which have received a great deal of attention are poly(propylene glycol) (PPG) and poly(ethylene glycol). There have been a great many experimental studies of various properties of these materials. In the past, two of the authors have reported the results of differential scanning calorimetry (DSC) and high pressure complex impedance studies on the solid (or rubbery) forms of these materials [1-2]. More recently, results have been reported for PPG:Li CF₃SO₃ [3]. The purpose of the present paper is to extend the more recent work to a larger cation (sodium vs. lithium) and to carry out high pressure measurements at temperatures nearer the glass transition temperature, T_g . The results make it possible to further evaluate a recently developed theory of glass-forming materials [4].

EXPERIMENT AND RESULTS

PPG (hydroxyl groups at both ends of each chain) of average MW 1025 and poly(ethylene glycol mono-methyl ether) (hydroxyl group at one end and a methyl ether group at the other end of each chain) of average molecular weight 350 (PEGMME 350 will be referred to in this paper simply as PEG.) were obtained from Polysciences Inc. NaCF₃SO₃ was obtained from Johnson Mathey Catalog Company and was added to the polymers to form a 1M solution (1 mole Na+ per liter of solution) which gives an approximately 20:1 repeat unit:sodium ion ratio, using techniques described elsewhere [2]. The equipment and techniques used to measure the electrical conductivity and its variation with pressure and temperature are also described there, together with the details of the DSC measurements.

In all cases, the electrical experiments gave a complex impedance diagram consisting of a slightly depressed semicircular arc and/or slanted line. Those features are usually observed in

ion conducting polymers with blocking electrodes and an example for a closely related material, PPG:LiCF₃SO₃, is shown in Fig. 1 of Ref. 2. The bulk resistance, R, was obtained from the intercept of the arc and/or slanted line with the Z' axis. All of the data for PPG:NaCF₃SO₃ exhibited a sufficient arc so that a Cole-Cole equation could be fit to it [2]. The resistance was transformed to the electrical conductivity, σ , at all temperatures using procedures described elsewhere [2]. It was found that the atmospheric pressure, room temperature conductivities of the as-received PPG and PEG were about 1.2×10^{-10} and 2.2×10^{-7} S/cm, respectively, while those for PPG:NaCF₃SO₃ and PEG:NaCF₃SO₃ were about 1.07×10^{-5} and 4.4×10^{-4} S/cm, respectively. The results for the variation of the zero pressure (vacuum) conductivity with temperature for PPG:NaCF₃SO₃ and PEG:NaCF₃SO₃ are shown in Fig. 1. The DSC data for these materials are shown in Fig. 2.

DISCUSSION

Formalism

All electrical conductivity data were analyzed using a generalized Vogel equation [4]:

$$\sigma(T,P,) = \frac{A_{\sigma}}{T\delta} \exp\left(-\frac{BT_c^{3/2}}{\left(T-T_c\right)^{3/2}\delta}\right)$$
(1)

where

$$\delta = 1 - \chi(T)P + f(T)P^{2} + g(T)P^{3}$$
⁽²⁾

and

$$T_{c} = T_{co} + \left(\frac{\partial T_{c}}{\partial P}\right)P + \frac{1}{2}\left(\frac{\partial^{2}T_{c}}{\partial P^{2}}\right)P^{2}$$
(3)

 A_{σ} and B are constants. $\delta = V(T,P)/V_o(T)$ where V(T,P) is the volume of the sample and $V_o(T)$ is the volume of the sample at zero pressure. Unfortunately, no PVT data appear to exist for the polymer electrolytes. As an approximation, PVT data for the host polymers were used and the values of δ were obtained by best-fitting eq. (2) to the data given by Zoller and Walsh [5]. T_c is a critical temperature which is assumed to be pressure dependent according to eq. (3). The form of eq. (3) is a result of the fact that T_g is known to be pressure dependent, exhibiting strong curvature, and it is likely that T_g and T_c are related.

Temperature dependence

Fig. 1 shows that the electrical conductivity for PEG:NaCF₃SO₃ exhibits smooth, non-Arrhenius behavior at high temperatures but that there is a large decrease in the conductivity for temperatures below about 265K. This discontinuity is attributed to crystallization, and it is correlated with the DSC results in Fig. 2. The DSC data exhibit a glass transition, with a midpoint glass transition temperature, T_g , of about 204K, as well as a crystallization exotherm at about 228K, followed by a melting endotherm at about 268K.

Fig. 1 also shows that the electrical conductivity of PPG:NaCF₃SO₃ varies smoothly over the entire range of temperatures. This is also consistent with the DSC results shown in fig. 2, where a glass transition is observed for PPG:NaCF₃SO₃ with a midpoint T_g of about 219K, but no signs of crystallization or melting are observed. (PPG containing no salt exhibits a midpoint T_g at about 206K.)

Eq. (1) was best-fit to the zero pressure data shown in Fig. 1. For those data, of course, $\delta = 1$ and $T_c = T_{co}$. The values of the best-fit parameters along with the rms deviations are given in Table I. For comparison, the standard Vogel-Tammann-Fulcher (VTF) [6] equation:

$$\sigma(T, P,) = \sigma_o \exp\left(-\frac{B}{(T - T_o)}\right)$$
(4)

was also best-fit to the data. The resultant best-fit VTF parameters for PPG:NaCF₃SO₃ are $log_{10}\sigma_0=0.324$, B=1587K and T₀=166.3K and those for PEG:NaCF₃SO₃ are $log_{10}\sigma_0=-0.222$, B=825K and T₀=182.5K and the rms deviations are listed in Table I. The rms deviation for the generalized Vogel equation is lower than that for the VTF equation for PPG:NaCF₃SO₃. On the other hand, the goodness of fit (as measured by the rms deviation) is about the same for the two formalisms in the case of PEG:NaCF₃SO₃. This is not surprising since the temperature range over which the data were taken is closer to T_g in the case of PPG:NaCF₃SO₃ and this is the region that the theory is meant to describe. This result is consistent with previous findings [2,7,8] where fits to the data using an equation similar to eq. (1) known as the BENSH equation [7,9-11] are

better for glass-forming liquids, particularly near T_g . (Eq. (1) and the BENSH equation differ by the constant in the exponent and the temperature dependence of the pre-exponent.)

Pressure dependence

In all cases, the pressure variation of the electrical conductance, G, is similar to Fig. 3 of Ref. 2 and is reasonably well-represented by:

$$\ln G = \ln G_0 + aP + bP^2 \tag{5}$$

The best-fit values of a and b are listed in Table II.

The coefficients in eq. (5) were transformed to the pressure variation of the electrical conductivity at P=0 via:

$$\left(\frac{\partial \ln \sigma}{\partial P}\right)_T = a + \frac{\chi(T)}{3} \tag{6}$$

and

$$\left(\frac{\partial^2 \ln \sigma}{\partial P^2}\right)_T = 2b - 2f(T) + \chi(T)^2 \tag{7}$$

The results are listed in Table II.

First Pressure Derivative

In most previous work, the pressure variation of the electrical conductivity has been analyzed in terms of an activation volume [1-3,12,13]. However, as has been pointed out several times [2,4,12], that formalism does not apply to processes for which a Gibbs energy cannot be identified, and that is the case for most glass-forming liquids, where the non-Arrhenius behavior is observed. Nonetheless, for lack of an applicable theory, the concept of the activation volume has been used anyway. However, the generalized Vogel equation allows a direct calculation of the pressure dependence of the ionic conductivity. It can be shown that eq. (1) leads to the following theoretical expression for the first pressure derivative of the ionic conductivity [4]:

$$\left(\frac{\partial \ell n\sigma}{\partial P}\right)_{T} = \chi - \frac{\chi B T_{co}^{1.5}}{\left(T - T_{co}\right)^{1.5}} - \frac{1.5 B T T_{co}^{0.5}}{\left(T - T_{co}\right)^{2.5}} \left(\frac{\partial T_{c}}{\partial P}\right)$$
(8)

Following the procedure given in ref. 4, eq. (8) was best fit to the data using (dT_c/dP) as an adjustable parameter. The best-fit values of (dT_c/dP) are listed in Table I. The theoretical best fit curves are shown in fig. 3 together with the experimental values.

The agreement between the theory and the experiment is quite good except at the highest temperatures for PPG:NaCF₃SO₃. Similar behavior has been observed for the same polymers containing LiCF₃SO₃ [3]. One possible explanation for the difference at high temperature is that the theory is only expected to describe behavior near T_g . However, it is also clear from Eq. (8) that the compressibility dependent terms become more important at high temperatures, and the values of the compressibility are only approximate as they are for the host polymers without salt. Consequently, the reason for the difference between the theory and experiment at high temperature for PEG:NaCF₃SO₃ is good at high temperature. However, the data do not extend to low temperatures and thus do not represent a test of the ability of the theory to describe data both near and far from T_g .)

It would be interesting to compare the values of (dT_c/dP) with those of (dT_g/dP) since there may be some relation between T_c and the T_g . However, values for (dT_g/dP) do not exist for the ion containing polymers. The only data that appear to exist are for materials that are structurally related to the host polymers [12,14,15] and those values are listed in Table I. It is interesting that the values of (dT_c/dP) are about half the values of (dT_g/dP) and thus both quantities are larger for PPG:NaCF₃SO₃ than for PEG:NaCF₃SO₃. The fact that (dT_c/dP) (and presumably (dT_g/dP)) is larger for PPG:NaCF₃SO₃ than for PEG:NaCF₃SO₃ is partly responsible for the difference in the first pressure derivative of the ionic conductivity between the two materials.

The difference between (dT_g/dP) (related material without ions), and (dT_c/dP) (material with ions) could, of course, be due to the effect of the ions i.e. the ions could change the effect of pressure on T_g in which case (dT_c/dP) could be the same as (dT_g/dP) . That possibility needs to be checked and such experiments are currently underway. On the other hand, it may be that the T_c

is fundamentally different from T_g. Certainly, the value of T_{co}, itself, is much lower than the value of T_g so that it will not be surprising if (dT_c/dP) is less than (dT_g/dP). Interestingly, the value of $1/T_{co}(dT_c/dP)$ for PPG:NaCF₃SO₃ is about 0.61, which is close to the value for PPG:LiCF₃SO₃ (0.62) and for dielectric relaxation in structurally related PPO (high molecular weight (10⁶) ParelTM elastomer) containing no ions (0.65) [4]. However, none of these values is close to the experimental value of $1/T_g(dT_g/dP)=0.89$ for pure PPO. Further, the value of $1/T_{co}(dT_c/dP)$ for PEG:NaCF₃SO₃ is about 0.35, which is the same as is observed for PEG:LiCF₃SO₃ [4]. Both of these latter values are smaller than the value of $1/T_g(dT_g/dP)$ of about 0.44 obtained for structurally related PEO (high molecular weight (10⁵) poly(ethylene oxide)) containing no ions [14]. Again, the relationship between (dT_c/dP) and (dT_g/dP) remains to be determined.

Second Pressure Derivative

The curvature, as represented by b in Eq. (5), is also of interest. In particular, it has been noted that all of the previously reported values for PPG-based materials [1-3,16,17] are negative. On the other hand, all of the previously reported results for PEG-based materials, to date, are positive [3,18]. In addition, other recent data for a PEG-based electrolyte also show positive curvature [Fig. 2 of Ref. 13].

The results of the present work are slightly different. First, the highest temperature values of b for PPG:NaCF₃SO₃ are positive and the lowest temperature value for PEG:NaCF₃SO₃ is negative. Of more fundamental importance are the values of $(\partial^2 \ln \sigma / \partial P^2)_T$ calculated using eq. (7). As can be seen in Table II, those values are all negative for PPG:NaCF₃SO₃ and become increasingly negative as temperature decreases. The values for PEG:NaCF₃SO₃ are positive at high temperatures and become negative at the lowest temperatures. This behavior is predicted by the generalized Vogel equation. It has been shown that the curvature is given by [4]:

$$\left(\frac{\partial^2 \ln \sigma}{\partial P^2}\right)_T = +\chi^2 - 2f - \frac{1.5BTT_{co}^{0.5}}{(T - T_{co})^{2.5}} \left(\frac{\partial^2 T_c}{\partial P^2}\right) + R\left(\frac{\partial T_c}{\partial P}\right) + Q\left(\frac{\partial T_c}{\partial P}\right)^2 + \frac{2fBT_{co}^{1.5}}{(T - T_{co})^{1.5}} - \frac{2B\chi^2 T_{co}^{1.5}}{(T - T_{co})^{1.5}} (9)$$
where

$$R = -\frac{1.5\chi BTT_{co}^{0.5}}{\left(T - T_{co}\right)^{2.5}} - \frac{1.5\chi BT_{co}^{0.5}}{\left(T - T_{co}\right)^{1.5}} - \frac{1.5\chi BT_{co}^{1.5}}{\left(T - T_{co}\right)^{2.5}}$$
(10)

and

$$Q = -\frac{0.75BTT_{co}^{-0.5}}{(T - T_{co})^{2.5}} - \frac{3.75BTT_{co}^{0.5}}{(T - T_{co})^{3.5}}$$
(11)

The value of $(\partial^2 T_c / \partial P^2)$ was adjusted to give approximately the correct value for the curvature at the lowest temperature for each set of data and the resultant values of $(\partial^2 T_c / \partial P^2)$ are listed in Table I. The values of $(\partial^2 T_g / \partial P^2)$ for the structurally related host polymers containing no salt are also listed there. As can be seen in Table I, the values of $(\partial^2 T_c / \partial P^2)$ follow the trend for $(\partial^2 T_g / \partial P^2)$, the values of $(\partial^2 T_c / \partial P^2)$ being about one third the values of $(\partial^2 T_g / \partial P^2)$. Thus, both quantities are larger for PPG:NaCF₃SO₃ than for PEG:NaCF₃SO₃. This reinforces the earlier suggestion that there is a relation between T_c and T_g though once again the final determination of its form awaits high pressure experiments on T_g in polymer electrolytes.

The theoretical values for the curvature and the experimental results are plotted in Fig. 4. It is clear that the temperature variation of $(\partial^2 \ln \sigma / \partial P^2)_T$ is reproduced very well by the theory. As was the case for the first derivative, the theory for PPG:NaCF₃SO₃ deviates from the experimental values at the highest temperatures. This is not unexpected as was discussed for the case of the first pressure derivative.

Ionic Conductivity vs. Pressure

As a final test of the generalized Vogel equation, eq. (1) was used to generate the ionic conductivity for PPG:NaCF₃SO₃ over the pressure range of the data at various temperatures. In addition, the ionic conductivity was calculated from the experimental data using:

$$\sigma = \frac{Gl_o}{A_o \delta^{1/3}} \tag{12}$$

The results of the theory and the experiment are shown in Fig. 5. It is important to realize that this approach is different from that used above. Earlier in the paper, both the data and the theory were analyzed using a quadratic approximation. This was done primarily because that is the form of most of the data in the literature. However, the theory and experiment shown in fig. 5

represent an exact calculation, though some of the input PVT data are approximate. It is seen that the agreement between the theory and experiment continue to be quite good.

SUMMARY and CONCLUSIONS

In summary, several results have been obtained via DSC and complex impedance studies of PEG and PPG containing sodium salts. The melting process identified in the DSC data for PEG:NaCF₃SO₃ is correlated with a substantial rise in the electrical conductivity of the material. It is confirmed that a generalized Vogel equation gives a better fit to the experimental data for cases where the data are taken over a temperature range that is close to the glass transition temperature. It is also shown that this equation reproduces pressure dependent conductivity data extremely well. In the present application of the theory three adjustable parameters are used for the zero pressure data and two more are used to reproduce the pressure variation. However, the results suggest that there may be a relationship between the fitting parameters T_c , $(\partial T_c / \partial P)$, $(\partial^2 T_c/\partial P^2)$, and the values of T_g , $(\partial T_g/\partial P)$ and $(\partial^2 T_g/\partial P^2)$ which can be measured directly. Consequently, it will probably be possible to reduce the number of parameters empirically. In fact, it has been shown that the dielectric relaxation times in poly(vinyl acetate) can be reproduced by the generalized Vogel equation using only one or two adjustable parameters [4]. More importantly, each of the adjustable parameters has a theoretical basis (and corresponding physical interpretation) and thus, in principle, can be calculated [4]. Work toward predicting the adjustable parameters is currently underway.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation Grant DMR-9815957 and the Office of Naval Research.

REFERENCES

[1] J. J. Fontanella, M. C. Wintersgill, M. K. Smith, J. Semancik and C. G. Andeen, J. Appl. Phys. 60 (1986) 2665.

[2] J. J. Fontanella, J. Chem. Phys., 111 (1999) 7103.

[3] M. C. Wintersgill, J. J. Fontanella, P. E. Stallworth, S. A. Newman, S. H. Chung and S.G. Greenbaum, Solid St. Ionics, to be published.

[4] M. F. Shlesinger, J. T. Bendler, J. J. Fontanella, Letter, submitted.

P. Zoller and D. J. Walsh, *Standard Pressure-Volume-Temperature Data for Polymers*,
 Technomic Publishing Co., Inc., Lancaster, PA (1995).

[6] H. Vogel, Physik Z. 22 (1921) 645; V. G. Tammann and W. Hesse, Z. Anorg. Allg.
Chem. 156 (1926) 245; G. S. Fulcher, J. Amer. Ceram. Soc. 8 (1925) 339.

[7] J. J. Fontanella, M. C. Wintersgill, C. S. Coughlin, P. Mazaud and S. G. Greenbaum, J. Polymer Science, 29 (1991) 747.

[8] J. J. Fontanella, M. C. Wintersgill and J. J. Immel, J. Chem. Phys. 110 (1999) 5392.

[9] J. T. Bendler and M. F. Shlesinger, J. Stat. Phys. 53 (1988) 531;

- [10] J. T. Bendler and M. F. Shlesinger, Nuc. Phys. 5A (1988) 82;
- [11] J. T. Bendler and M. F. Shlesinger, J. Mol. Liquids 36 (1987) 37.
- [12] J. J. Fontanella, M. C. Wintersgill, J. P. Calame, M. K. Smith and C. G. Andeen, Solid St. Ionics 18 & 19 (1986) 253.
- [13] F. Alloin, J. Bolton, J. L. Souquet and M. Duclot, Solid St. Ionics 110 (1998) 15.
- [14] M. C. Wintersgill, J. J. Fontanella, P. J. Welcher and C. G. Andeen, J. Appl. Phys. 58 (1985) 2875.
- [15] S. P. Andersson and O. Andersson, Macromolecules 31 (1998) 2999.
- [16] S. G. Greenbaum, Y. S. Pak, M. C. Wintersgill, J. J. Fontanella, J. W. Schultz and C. G. Andeen, J Electrochem. Soc. 135 (1988) 235.

- [17] J. J. Fontanella, M. C. Wintersgill, J. P. Calame, F. P. Pursel, D. R. Figueroa and C. G. Andeen, Solid St. Ionics 9 & 10 (1983) 1139.
- [18] M. C. Wintersgill, J. J. Fontanella, Y. S. Pak, S. G. Greenbaum, A. Al-Mudaris and A. V. Chadwick, Polymer 30 (1989) 1123.

Table I. Quantities relevant to the defect diffusion model.

	PPG: NaCF ₃ SO ₃	PEG: NaCF ₃ SO ₃
Log ₁₀ (D) (D is S-K/cm)	1.72	2.12
В	10.98	8.11
T _c (K)	142.3	140.5
T _g (K)	219	204
Temp Range of Data (K)	228-300	289-351
rms dev (generalized Vogel)	0.004	0.004
rms dev (VTF)	0.007	0.004
$\left(\frac{\partial T_c}{\partial P}\right)_T$ (K/GPa)	86.9	48.5
$\left(\frac{\partial T_g}{\partial P}\right)_T$ (K/GPa)	(196) ^a	(90) ^b
	(142, 172) ^c (192, 184) ^d	
$\left(\frac{\partial^2 T_c}{\partial P^2}\right)_T (\text{K/GPa}^2)$	-135	-42
$\left(\frac{\partial^2 T_g}{\partial P^2}\right)_{-}$ (K/GPa ²)	(-390) ^a	(-146) ^b
	(-207.6, -342) (-433, -355) ^d	c

a. Determined from a graphical analysis of the data for high molecular weight ($\approx 10^6$) PPO (ParelTM elastomer) shown in fig. 4 of ref. 12.

b. Results for high molecular weight ($\approx 10^5$) PEO from ref. 14. c. Results for PPG 400 from ref. 15. d. Results for PPG 4000 from ref. 15.

Table II.	Effect of pressure	on the electrical	conductivity	for PEG:NaCF ₃ SO ₃ and
PPG:NaC	F3SO3 .			

Т	a	b	X/3a	$\left(\frac{\partial \ell n\sigma}{\partial P}\right)_{T}$	$\left(\frac{\partial^2 \ell n\sigma}{\partial P^2}\right)_T$		
(K)	(GPa) ⁻¹	(GPa) ⁻²	(GPa) ⁻¹ (GPa)) ⁻¹ (GPa)-2		
PPG:NaCF ₃ SO ₃							
248.1	-45.6	-20.3	0.156	-45.4	-42		
257.1	-38.1	-21.2	0.160	-37.9	-44		
275.1	-28.85	-8.25	0.171	-28.7	-18		
294.8	-22.83	-1.35	0.185	-22.6	-5.0		
314.1	-18.0	+0.11	0.202	-17.8	-2.5		
334.1	-14.0	+0.36	0.223	-13.8	-2.6		
353.3	-11.0	-0.70	0.246	-10.8	-5.3		
PEG:NaCF ₃ SO ₃							
00/ 1	0.00	0.24	0.124	0.07	1.6		
296.3	-9.00	-0.34	0.134	-8.87	-1.6		
315.1	-7.43	+0.59	0.146	-7.29	-0.03		
335.3	-6.82	+1.72	0.161	-6.66	+1.9		
355.2	-5.99	+1.74	0.179	-5.81	+1.5		
375.2	-5.40	+2.52	0.200	-5.20	+2.6		

a. Reference 5.

.

FIGURE CAPTIONS

Figure 1. Electrical conductivity vs. reciprocal temperature at zero pressure for PEG:NaCF₃SO₃ and PPG:NaCF₃SO₃. The solid lines are the best-fit generalized Vogel equation (eq. 1).

Figure 2. DSC thermograms for PPG:NaCF₃SO₃ and PEG:NaCF₃SO₃. The heating rate is 10 K/min.

Figure 3. $(d \ln \sigma/dp)_T$ vs. temperature for PEG:NaCF₃SO₃ and PPG:NaCF₃SO₃. The concentration is approximately 20:1 repeat units per sodium for each material. The solid lines are the best-fit of eq. (8) (based on the generalized Vogel equation) to the data.

Figure 4. $(\partial^2 \ln \sigma / \partial p^2)_T$ vs. temperature for PPG:NaCF₃SO₃ and PEG:NaCF₃SO₃. The solid and dotted lines are the theoretical values calculated using eq. (9).

Figure 5. Electrical conductivity vs. pressure for PPG:NaCF₃SO₃. The solid lines are the bestfit generalized Vogel equation (eq. 1).

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5