
ARMY RESEARCH LABORATORY 

Thermal Degradation Effects 
on Consolidation and Bonding in the 

Thermoplastic Fiber-Placement Process 

by Bruce K. Fink, John W. Gillespie, Jr., and Nun B. Ersoy 

ARL-TR-2238 June 2000 

[BCBKS Q¥ALITY INEPBOT&D 4 

Approved for public release; distribution is unlimited. 

20000724 038 



The findings in this report are not to be construed as an official 
Department of the Army position unless so designated by other 
authorized documents. 

Citation of manufacturer's or trade names does not constitute an 
official endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed. Do not return 
it to the originator. 



Abstract  

Effects of elevated temperature exposure during thermoplastic fiber placement on bonding 
and consolidation are investigated experimentally for AS4/polyetherketoneketone (PEKK) 
composite. Coupons of 24 layers are consolidated on the University of Delaware Center for 
Composite Materials (UD-CCM) fiber-placement robot at deposition rates of 20 and 40 mm/s 
over a range of process temperatures (700-900 °C, with 50 °C increments). The main torch and 
preheater distances and the compaction force are held constant for all coupons. Two competing 
mechanisms governing strength buildup are considered: (1) polymer bonding and 
(2) degradation. Coupons are sectioned, and one-half of each coupon is reconsolidated in a hot 
press at conventional processing conditions (i.e., 30 min at 370 °C and 0.70-MPa pressure) in 
order to remove any effect of poor consolidation on strength. Void content of the robot- 
consolidated panels is measured. Short-beam shear (SBS) tests are performed on the specimens 
cut from each coupon. Strength and void-content measurements for robot-consolidated panels 
are presented to illustrate the effect of processing parameters on product quality. Results of the 
SBS strength tests performed on reconsolidated coupons indicate that there is significant 
decrease in the strength of coupons consolidated at 20-mm/s deposition rate and high torch 
temperatures, possibly due to polymer degradation, whereas approximately the same value of 
reconsolidated strength is measured for the 40-mm/s deposition rate, suggesting that polymer 
degradation is insignificant at that rate. Effects of void content on SBS tests are discussed. 
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1. Introduction 

The recent advances in automated manufacturing technology of composite materials resulted 

in a highly promising process called fiber placement. In the fiber-placement process, as opposed 

to filament winding, (1) the fibers are not restricted to near-geodesic paths, (2) paths can start 

and end at any point, (3) the fibers can be placed along concave mandrel sections, arid (4) the 

amount of fiber and the width of the fiber band can be changed along the width of the delivery 

path. This makes it possible to fabricate very general nonaxisymmetric shapes with varying 

thickness. 

The advantages of fiber-placement processes can be combined with the high throughputs that 

can be achieved using thermoplastic prepreg tape that can be shaped and consolidated on line. 

This is due to the chemical structure of the resin that enables melting under heat and 

consolidation before cooling. On-line consolidation technology thus eliminates the use of an 

autoclave by applying heat directly at the nip-point, welding the tape on the preceding layer 

under compaction pressure, and consolidating shortly behind the nip-point where the temperature 

is lower. 

Mechanisms governing strength buildup and consolidation during thermoplastic 

fiber-placement processes should be well understood in order to control the processing 

parameters to obtain the optimum product quality. 

2. Experimental Work 

2.1 Fiber-Placement Equipment. At the University of Delaware Center for Composite 

Materials (UD-CCM), the first experiences with thermoplastic filament winding and tape 

placement were gained by Wells and Steiner [1]. Considerable improvements to the entire 

robotic fiber-placement workcell concerning heating sources, mandrel manipulator, placement 

head capabilities, and process control have been integrated as a result of several investigations 

[2,3]. 



The centerpiece of the robotic tape-placement workcell used in this investigation was a 

Model 762 AEG-Westinghouse PUMA industrial robot. It has a repeatability of 0.02 mm, six 

axes, a maximum reach of 1,244 mm, and a payload of 200 N. The PUMA control system 

operates on the VALE high-level language. It can be linked to the environment through 

32 input/output ports and control signals. 

The prototype tape-placement head is mounted to the robot arm by a pair of linear bearings. 

As shown schematically in Figure 1, thermoplastic prepreg tape is fed from a supply spool and 

guided through several eyelets, the rollers of the tape start lever, and the cutting unit, which 

allows cutting and refeeding of the tape. The magnetic brake attached to the supply spool exerts 

a constant tape tension. After passing the cutter, the incoming tape, as well as the formerly 

placed substrate, are preheated by the first hot gas torch. The tape is then guided through the lay- 

down roller that establishes contact between the substrate and the preheated tape. The second 

torch heats through the thickness to melt the entire tape and tape-substrate interface. Passing the 

air-cooled compaction roller, the tape consolidates onto the substrate under pressure and cools 

down, while the voids within and between the tape and substrate are reduced and bonding 

develops. In this way, the tape can be placed on a flat mandrel by laying one strip next to 

another. 

The hot gas torches are fed with nitrogen. The flow rate and the temperature of the 

outcoming gas for two torches are controlled separately by a hot gas torch control system 

manufactured by Automated Dynamics Corporation. National Instruments LabVIEW-based 

process control software is linked to the robot controller and the torch controller, which allows 

for on-line setting of the process parameters such as gas flow rate, torch temperatures, and 

compaction force. 

2.2 Materials. The material used for experiments was AS4 graphite/polyetherketoneketone 

(PEKK) with 58% fiber-volume fraction. The void content of the incoming tow is measured to 

be 3.8 ± 0.8%. PEKK was developed by DuPont as a high-performance thermoplastic matrix 

system for advanced composites.     The carbon-fiber-reinforced composite laminates  with 



Substrate 

Figure 1. Schematic of Fiber-Replacement Process Showing Components. 

PEKK matrix, prepared from the propriety melt impregnated tows, show high flexural, shear, 

and compressive strengths and good environmental durability and hot-wet stability. 

23 Preparation of Test Coupons. Test coupons were consolidated on a graphite plate with 

deposition rates of 20 and 40 mm/s. Both torch temperatures were varied from 700 to 900 °C 

with 50 °C increments. The main torch and preheater distances and the compaction force were 

held constant for all test coupons. Figure 2 shows the process parameters, and Table 1 shows the 

settings used for consolidating the test coupons. For the case of 900 °C torch temperatures and 

20-mm/s deposition rate, a test coupon could not be consolidated because excessive polymer 

degradation prevents deposition of fresh tows. After consolidating on the robot, test coupons 

were sectioned, and one-half of each coupon was reconsolidated in the hot press at conventional 

processing conditions (i.e., 30 min at 370 °C under 0.70-MPa pressure) in order to remove any 

effect of poor consolidation and bonding on strength. Later, short-beam shear (SBS) specimens 

were cut from both the robot-consolidated and reconsolidated coupons. 



Torch 1 

Supply Spool 

Roller 1      Torch 2 Rollei"2. 
(Lay-Down) (Consolidation) 

Figure 2. Schematic of Fiber-Placement Process Showing Variables. 

Table 1. Process Variables and Settings 

Process Variable Abbreviation Settings 

Deposition Rate V 20 and 40 mm/s 
Compaction Force8 F2 320 N 
Preheater Temperature Ti 700-900 °C, with 50 °C increments 
Preheater Distance1 Di 20 mm 
Main Torch Temperature T2 700-900 °C, with 50 °C increments 
Main Torch Distance8 D2 4mm 

a Real-time computer-controlled process variables. 

2.4 SBS Tests. The SBS strength of test coupons was measured according to the 

American Society for Testing of Materials (ASTM) D 2344-84 [3, 4]. Accordingly, this method 

is useful for quality control and specification purposes and is also applicable for research and 

development purposes concerned with interply strength. Although the apparent shear strength 

obtained in this test cannot be used as a design criterion, it can be utilized for comparative testing 

of composite materials, if all failures are in horizontal shear. 



SBS specimens were cut from test coupons by a diamond saw to nominal dimensions of 

6.35 mm width and six times the specimen thickness. Although 24 layers were deposited for 

each test coupon, the thickness of the coupons varied with processing parameters; hence, the 

thickness of the specimens was an uncontrolled parameter. Ten specimens were used for each 

case in order to obtain a satisfactory average. The thickness and width of each specimen were 

measured to the nearest 0.025 mm at midpoint. The specimens were placed in the test fixture, as 

shown in Figure 3. The side supports of the fixture were pushed to the span of four times the 

specimen thickness. The specimens were aligned so that the midpoint was centered and the long 

axis was perpendicular to the cylindrical axis (under the loading nose). The tests were performed 

using an Instron 1125 screw-driven test frame at room temperature using 454-kg (1,000 lb) load 

cell at full scale and 1.3-mm/min (0.05 in/min) crosshead speed. The failure load was recorded 

as the first maximum load in the load-displacement diagram. The shear strength was calculated 

as 

SH=0.75^, (1) 
bd 

where SH is the shear strength, PB is the breaking load, b is the width, and d is the thickness of 

specimen. Arithmetic mean and standard deviation of values obtained for each test coupon were 

calculated. 

2.5 Microscopic Examinations. Samples for microscopic examination were prepared by 

cutting the robot-consolidated test coupons by a diamond saw perpendicular to the fiber 

direction. Samples were embedded in epoxy resin and ground using an automated fixture on 

180-, 360-, and 600-grid silicon carbide paper and then finished on 12.5-, 9.5-, 5-, 3-, and 1-um 

polishing cloths, applying the specified alumina powder/water suspension. An ultrasonic water 

bath was used to clean the samples between successive steps. The samples were examined under 

reflected light with lOOx magnification. Ten snapshots of capturing frames at the surface and 

middle of each test coupon were recorded to videotape and imported to a Macintosh Quadra 650 

workstation equipped with a video-capture board. Void-content measurements were performed 

with NIH Image 1.47 image analysis software. 



Specimen 

0.25 in dowel S-4t 

L-6t 

0.50 in dowel 

I 

D 

Figure 3. Schematic of SBS Test 

3. Results and Discussion 

The strength and void-content measurement results from the fiber-placement process are 

presented with a two-fold objective: (1) to illustrate the influence of the physical processing 

parameters on the bond-strength development and void-content reduction and (2) to delineate the 

relative effects of two competing mechanisms governing strength buildup (polymer bonding and 

degradation). 

3.1 SBS Tests. Arithmetic mean and standard deviation of values obtained from 10 SBS 

samples for each test coupon were calculated and are tabulated in Tables 2 and 3 for 20- and 

40-mm/s deposition rates, respectively. From Table 3, for 40-mm/s deposition rate, 

approximately the same value strength is obtained upon reconsolidation. Hence, the average of 

the reconsolidated strength values for that deposition rate, which comes out to be 82.6 ± 2.9 MPa 

(11.98 ± 0.42 Ksi), is used as a baseline. 

In Figures 4 and 5, SBS strength values of the robot-consolidated and reconsolidated coupons 

are plotted vs. torch temperature for 20- and 40-mm/s deposition rates, respectively. As can be 
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Table 2. SBS Data for 20-mm/s Deposition Velocity 

Torch Temperature 
(degrees Celsius) 

Robot-Consolidated SBS Strength 
(MPa [Ksi]) 

Reconsolidated SBS Strength 
(MPa [Ksi]) 

700 44.9 ± 6.1 [6.51 ± 0.89] 80.2 ±2.2 [11.63 ±0.32] 
750 56.5 ± 2.8 [8.19 ± 0.41] 80.6 ±3.2 [11.69 ±0.47] 
800 65.1 ± 2.5 [9.44 ± 0.36] 73.4 ± 2.3 [10.64 ± 0.34] 
850 67.2 ± 1.3 [9.75 ± 0.19] 59.0 ± 2.6 [8.55 ± 0.38] 

Table 3. SBS Data for 40-mm/s Deposition Velocity 

Torch Temperature 
(degrees Celsius) 

Robot-Consolidated SBS Strength 
(MPa [Ksi]) 

Reconsolidated SBS Strength 
(MPa [Ksi]) 

700 43.4 ± 5.3 [6.30 ± 0.77] 79.4 ± 1.5 [11.52 ±0.22] 
750 49.9 ± 6.0 [7.23 ± 0.87] 81.4 ±3.3 [11.80 ±0.48] 
800 55.8 ± 4.9 [8.09 ± 0.71] 82.9 ± 2.8 [12.02 ± 0.41] 
850 64.1 ± 2.2 [9.30 ± 0.32] 83.6 ± 4.7 [12.12 ± 0.68] 
900 62.5 ± 4.3 [9.07 ± 0.63] 82.8 ± 2.9 [12.00 ± 0.42] 

seen from Figure 4, there is a considerable drop in reconsolidated strength for torch temperatures 

of 800 and 850 °C, indicating that full strength represented by the baseline cannot be recoverable 

upon reconsolidation. At the deposition rate of 40 mm/s, the dwell time of the polymer at high 

temperatures under preheat and main torches is shorter, and polymer thermal degradation is 

expected to be insignificant and to not affect further strength buildup upon reconsolidation. 

The origin of polymer degradation is uncertain. It may be due to (1) decomposition of the 

polymer matrix at the surface of the tow due to exposure of high-temperature stream of nitrogen 

gas, reducing the thickness of the resin rich layer and hence unveiling the carbon fibers, or 

(2) cross-linking or cyclization of the polymer chains, reducing the chain mobility and hence, 

ability to diffuse and bond. Fourier-transform infrared (FUR) and thermal gravimetric analysis 

(TGA) characterization studies of neat PEKK films and PEKK-based composites are presented 

in the Appendices. While degradation resulting in weight loss can be monitored with these 

techniques, the temperatures at which weight-loss degradation occurs is presumed to be 
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Figure 4. Effect of Torch Temperature on SBS Strength for 20-mm/s Deposition Rate. 
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purposefully avoided in the manufacturing process.   The origin of nonweight-loss polymer 

degradation and its effect on bonding needs further investigation. 

3.2 Microscopic Examinations. Arithmetic mean and standard deviation of void content 

values in the bulk of each test coupon are calculated and tabulated in Tables 4 and 5 for 20- and 

40-mm/s deposition rates, respectively, hi Figure 6, void contents of the test coupons are plotted 

against torch temperature. For high temperatures, the difference between the surface and bulk 

void contents is higher. At these temperatures, the region at the melt state is expected to be 

deeper, and void reduction and further consolidation are expected to take place upon subsequent 

passes when fresh tows are placed on already consolidated substrates. 

Table 4. Void Content Measurements for 20-mm/s Deposition Velocity 

Torch Temperature 
(degrees Celsius) 

Void Content (bulk) 
(percent) 

Void Content (surface) 
(percent) 

700 1.60 ± 0.48 4.00 ± 0.80 
750 1.27 ± 0.25 2.48 ± 0.38 
800 1.13 ± 0.23 2.37 ± 0.30 
850 1.00 ± 0.19 3.06 ± 0.67 

Table 5. Void Content Measurements for 40-mm/s Deposition Velocity 

Torch Temperature 
(degrees Celsius) 

Void Content (bulk) 
(percent) 

Void Content (surface) 
(percent) 

700 2.58 ± 0.95 3.27 ± 0.87 
750 1.55 ± 0.37 2.16 ± 0.41 
800 0.84 ±0.24 1.07 ± 0.19 
850 0.37 ± 0.09 1.27 ± 0.40 
900 0.33 ± 0.09 1.66 ± 0.55 

Figures 7-10 show typical micrographs at the surface and in the bulk of the cross sections 

perpendicular to the fiber direction for four extreme cases. As can be seen qualitatively from 

these micrographs, most of the voids are located at the intralaminar region, and interlaminar 
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Figure 6. Effect of Processing Conditions on Void Content 

voids and regions of poor bonding can be seen for low torch temperatures at both deposition 

rates (Figures 7 and 9). Bigger voids in the topmost layer are evidence of void growth promoted 

by high torch temperatures and long dwell times. 

3.3 Effect of Voids on SBS Strength. As indicated in the previous section, most of the 

voids observed were located in the intralaminar region. These voids may generate stress 

concentrations and may promote intralaminar fracture during short-beam shear tests, 

complicating the task of obtaining true interlaminar bond strength. Hence, a study was 

conducted to evaluate the effect of voids on the measured interlaminar shear strength. 
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(a) 

(b) 

Figure 7.     Typical Micrographs of the (a) Surface and (b) Bulk of the Test Coupon 
Consolidated at 700 °C Torch Temperatures and 20-mm/s Deposition Rate. 
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(a) 

(b) 

Figure 8.     Typical Micrographs of the (a) Surface and (b) Bulk of the Test Coupon 
Consolidated at 850 °C Torch Temperatures and 20-mm/s Deposition Rate. 
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(a) 

(b) 

Figure 9.     Typical Micrographs of the (a) Surface and (b) Bulk of the Test Coupon 
Consolidated at 700 °C Torch Temperatures and 40-mm/s Deposition Rate. 
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(a) 

(b) 

Figure 10.   Typical Micrographs of the (a) Surface and (b) Bulk of the Test Coupon 
Consolidated at 850 °C Torch Temperatures and 40-mm/s Deposition Rate. 
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The effect of void fraction on mterlaminar shear strength has been analyzed by Greszczuk 

[5], Bowles and Frimpong [6], and by Olson et al. [7]. Bowles and Frimpong theoretically 

derived the following equations for two possible configurations for voids in composites— 

cylindrical and spherical: 

cylindrical: ILLS^l-^/S.l^l-Vj]"2, (2) 

spherical: BLSSr =l-0.785[6Vv/3.14(l-Vj] 2/3 (3) 

where VfC is the fiber-volume fraction of the composite with voids, Vv is the void-volume 

fraction, and ILSSr is the interlaminar shear strength of the composite with voids relative to that 

of the void-free composite. 

In Tables 6 and 7, the ILSS values calculated using equations (2) and (3) for both cylindrical 

and spherical voids, together with normalized SBS strength data, are tabulated for 20- and 

40-mm/s deposition rates, respectively. A baseline strength value of 82.6 MPa is used to 

normalize the strength data. In Figures 11 and 12, these values are plotted against the torch 

temperature. ILSSr calculated for cylindrical voids yields a more conservative estimate, and 

most of the voids observed in robot-consolidated panels were of cylindrical geometry. 

Table 6. Normalized Strength Data for 20-mm/s Deposition Velocity 

Torch 
Temperature 

(degrees Celsius) 

Robot-Consolidated 
SBS Strength 

Reconsolidated 
SBS Strength ILSSr 

(Sph. Voids) 
ILSSr 

(Cyl. Voids) 

700 0.55 ± 0.07 0.98 ± 0.03 0.78 0.86 

750 0.69 ± 0.03 0.98 ± 0.04 0.80 0.88 

800 0.79 ± 0.03 0.89 ± 0.03 0.81 0.89 

850 0.82 ± 0.02 0.72 ± 0.03 0.83 0.90 
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Table 7. Normalized Strength Data for 40-mm/s Deposition Velocity 

Torch 
Temperature 

(degrees Celsius) 

Robot-Consolidated 
SBS Strength 

Reconsolidated 
SBS Strength ILSSr 

(Sph. Voids) 
ILSSr 

(Cyl. Voids) 

700 0.55 ± 0.07 0.98 ± 0.03 0.78 0.86 
750 0.69 ± 0.03 0.98 ± 0.04 0.80 0.88 

800 0.79 ± 0.03 0.89 ± 0.03 0.81 0.89 
850 0.82 ± 0.02 0.72 ± 0.03 0.83 0.90 

0.00 

650        700        750        800 850        900        950 
Torch T (degrees Celsius) 

Figure 11. Effect of Void Content on SBS Strength for 20-mm/s Deposition Rate. 

As can be seen from Figures 11 and 12, this analysis overestimates the ILSS, except for the 

torch temperatures of 800 and 850 °C for 20-mm/s deposition rate, indicating that the main 

mechanism contributing to the strength is interlaminar bonding. In fact, Bowles-type analyses 

assumes that the composite is a homogeneous material with voids and without any weak 

interface.   For torch temperatures of 800 and 850 °C, polymer degradation occurring at the 

16 
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Figure 12. Effect of Void Content on SBS Strength for 40-mm/s Deposition Rate. 

interface is believed to be the limiting factor for full-strength development, resulting in a strength 

loss that is not recoverable upon reconsolidation. Figures 13 and 14 show a fractured SBS 

specimen manufactured with settings of 700 °C torch temperatures and 20-mm/s deposition rate 

and 850 °C torch temperature and 20-mm/s deposition rate, respectively. For the former case, a 

single crack jumping from one interface to another is observed. For the latter case, the crack 

density was higher, but the cracks were still located at the interface and were separated from 

each other with a distance of one tow thickness. 

4. Conclusions 

Effect of processing variables on the quality of the coupons consolidated by thermoplastic 

fiber-placement method is investigated experimentally, in terms of strength and void content. As 

a general rule, at higher torch temperatures and slower deposition velocities, higher SBS 

17 



Figure 13.   Micrograph of a Typical SBS Specimen Consolidated at 700 °C Torch 
Temperatures and 20-mm/s Deposition Rate. 

Figure 14.   Micrograph of a Typical SBS Specimen Consolidated at 850 °C Torch 
Temperatures and 20-mm/s Deposition Rate. 

18 



strengths were obtained. Void content decreases with increasing torch temperature. However, at 

high torch temperatures and long dwell times, the "tradeoff' of polymer degradation prevents 

full-strength development during the process. 

19 
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Appendix A: 

Thermal Gravimetric Analysis of Degradation of 
Polyetherketoneketone (PEKK) 
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Thermal gravimetric analysis (TGA) was used to determine the temperature range in which 

the weight-loss mechanism is dominant. Figure A-l shows the TGA diagrams of 

polyetherketoneketone (PEKK) films, as-received and processed at 900 °C torch temperature and 

20-mm/s deposition rate. TGA tests were run both at air and nitrogen atmosphere. The weight- 

loss mechanism is not effective until a temperature of 550 °C, and only 0.4% of the weight is 

converted at a temperature of 450 °C. In order to delineate the effect of carbon fibers on 

degradation behavior, AS4/PEKK composite is also subjected to TGA tests, both in air and 

nitrogen atmosphere. TGA diagrams of AS4/PEKK composite are shown in Figure A-2. 

Comparing Figures A-l and A-2, it can be asserted that the presence of carbon fibers does not 

affect the general behavior of degradation and the temperature at weight-loss starts. 
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Figure A-l. TGA Diagram of PEKK Neat Films. 
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Figure A-2. TGA Diagram of AS4/PEKK Composite. 

Figure A-3 shows the actual temperature profiles of the tow surface at 20-mm/s deposition 

rate for various torch temperature settings, recorded by an AGEMA Thermovision 900 thermal 

camera. Figure A-4 shows the model-predicted temperature profiles for various torch 

temperatures. Model-predicted and actual maximum temperatures are tabulated in Table A-l 

and plotted vs. torch temperature settings in Figure A-5. Comparing model-predicted and actual 

maximum surface temperatures, it can be seen that our process simulation overestimates the 

maximum temperature. The maximum recorded temperature was 454 °C, which is far below the 

temperature at which weight loss is a dominant degradation mechanism. 
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Figure A-3. Infrared Camera Readings of Surface Temperature at 
20-mm/s Deposition Rate. 
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Figure A-4. Model Predictions for Surface Temperature at 20-mm/s Deposition Rate. 

Table A-l.  Maximum Surface Temperatures for Various Torch Temperature Settings at 
20-mm/s Deposition Rate 

Torch Temperature Setting 
(degrees Celsius) 

Infrared Camera Reading 
(degrees Celsius) 

Model Prediction 
(degrees Celsius) 

700.00 373.3 553.4 
750.00 394.2 591.5 
800.00 419.8 629.6 
850.00 445.4 667.7 
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Appendix B: 

Fourier Transform Infrared Spectroscopic Study of 
Thermal Degradation of AS4/Polyetherketoneketone 

(PEKK) Composite 
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Diffused reflectance Fourier-transform infrared spectroscopy (DRFTIR) has been used by 

Cole and Casella1 to study the thermal degradation in polyetheretherketone (PEEK) carbon 

composites. Here, the same method is adopted to study the thermal degradation of 

AS4/polyetherketoneketone (PEKK) composite during the tow placement process. Although 

diffused reflection spectra provide more limited information than a.t.r. spectra, they are, 

nevertheless, useful for following changes that occur upon thermal degradation at the surface of 

the composite. 

Samples were prepared by processing tows of AS4/PEKK composite on a fiber-placement 

robot. However, for a single pass, no change in the diffuse reflectance spectra was observed and, 

therefore, the tow was forced to degrade by multiple passes of the fiber-placement head. 

Deposition velocity was held constant at 20 mm/s, and the torch temperature was varied to be 

700, 800, and 900 °C. DRFTIR spectra were measured on a Nicolet 170SX instrument equipped 

with a "diffuse reflectance" fixture. The sample was mounted with its surface in a horizontal 

plane and oriented with the fiber direction parallel to the beam direction of the instrument. For 

each spectrum, 512 scans were accumulated at a resolution of 4 cm"1. For qualitative treatment, 

the spectra were converted to Kubelka-Munk units. They were then baseline-corrected to 

remove the underlying carbon absorption. A baseline was drawn through the 1,750, 1,520, 

1,460, 1,360, 1,040, 820, and 560 cm"1 valleys. As the polymer degradation increased upon 

multiple passes, the overall intensity of the spectra decreased; hence, for qualitative comparisons, 

each spectra was integrated and scaled with respect to the reference spectrum of the undegraded 

tow. 

Diffuse reflectance spectra for 700, 800, and 900 °C torch temperatures corrected for 

baseline and overall intensity are shown in Figures B-l, B-2, and B-3. The spectra are shifted 

vertically for better visualization.  As can be seen from the figures, a new species in carbonyl 

1 Cole, K. C, and I. G. Casella.   "Fourier Transform Infra-Red Spectroscopic Study of Thermal Degradation in 
Poly(Ether-Ether Ketone)-Carbon Composites." Polymer, vol. 34, no. 4, pp. 740-745,1993. 
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Figure B-l. Diffuse Reflectance Spectra for 700 °C Torch Temperature. 

region (1,716 cm"1) grows with increasing number of passes, and the rate of growth of this peak 

is higher for higher torch temperatures. Another change occurring in the spectra is the reduction 

in the height of 500 cm"1 peak.   The origins of these species are uncertain.   Cole and Casella1 

^ole, K. C, and I. G. Casella.   "Fourier Transform Infra-Red Spectroscopic Study of Thermal Degradation in 
Poly(Ether-Ether Ketone)-Carbon Composites." Polymer, vol. 34, no. 4, pp. 740-745, 1993. 
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Figure B-2. Diffuse Reflectance Spectra for 800 °C Torch Temperature. 

found a similar growing peak at 1,711 cm" * for degradation of PEEK and proposed that this peak 

may result from cyclization of a diradicaL Cyclization may reduce chain mobility and, hence, 

the ability to bond the polymer. 
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Figure B-3. Diffuse Reflectance Spectra for 900 °C Torch Temperature. 
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