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FINAL REPORT 

MULTISTRATEGY LEARNING FOR COMPUTER VISION 

GRANT NUMBER F49620-95-1-0424 

PI:   BirBhanu 

UC Riverside 

1. SUMMARY 

This final report describes the work that has been performed under the 

DARPA/AFOSR grant F49620-95-1-0424 on "Multistrategy Learning for 

Computer Vision," during the period from July 1, 1995 to June 30, 1998. In the 

following we present a summary of objectives and accomplishments achieved 

during the course of the program. Selected papers published during the course of 

the program are attached with this report. 

2. OBJECTIVES 

Current IU algorithms and systems lack the robustness to successfully process 

imagery acquired under most real-world scenarios. They do not provide the 

necessary consistency, reliability and predictability of results. Robust 3-D object 

recognition remains one of the important but elusive goals of IU research for 

practical applications. With this goal of achieving robustness, our research at the 

University of California at Riverside (UCR) is directed towards learning 

parameters, feedback, contexts, features, concepts, and strategies of IU algorithms 

for model-based object recognition. 

Our multistrategy learning-based IU approach selectively applies machine 

learning techniques in innovative ways at multiple levels to achieve robust 

recognition performance. At each level, appropriate evaluation criteria are 

employed to monitor the performance and self-improvement of the system. 

The results of our research are being applied in automatic target recognition, 

autonomous navigation, and image and video databases. 



3.      MAJOR ACCOMPLISHMENTS/NEW FINDINGS 

A.     CLOSED-LOOP IMAGE UNDERSTANDING SYSTEMS 

(Documents #2, 3 & 7) 

Robustness of an IU system can be enhanced using feedback. However, 

how to control feedback in a multi-level IU system has been a long-standing 

problem in the field of computer vision and pattern recognition. We have 

developed reinforcement learning-based techniques that show promise in 

approaching this problem [please see attached documents 2 and 3]. 

Our theoretically sound approaches to control feedback use the results of 

recognition to learn segmentation and feature extraction parameters for 

robust model-based recognition. They are based on the use the team of 

learning automata algorithm and the delayed reinforcement learning 

algorithm. 

The closed-loop object recognition system evaluates the performance of 

segmentation and feature extraction by using the recognition algorithm as 

part of the evaluation function. Recognition confidence is used as a 

reinforcement signal to the image segmentation or feature extraction 

processes. By using the recognition algorithm as part of the evaluation 

function, the system is able to develop recognition strategies automatically, 

and to recognize objects accurately in newly acquired images. As com- 

pared to the genetic algorithm based techniques that we have developed 

earlier which simply search a set of parameters that optimize a prespecified 

evaluation function, here we have a recognition algorithm as part of the 

evaluation function. 

Using the Phoenix algorithm for the segmentation of color images, a 

clustering-based algorithm for the recognition of occluded 2-D objects and a 

team of learning automata algorithm, or a delayed reinforcement learning 

algorithm, we show that in simple real scenes with varying environmental 

conditions and camera  motion, effective  low-level   image   analysis    and 



feature extraction can be performed. We show the performance 

improvement of an IU system combined with learning over an IU system 

with no learning. 

The results of this research are being used for model-based recognition of 

targets in SAR images acquired under extended operating conditions (please 

see "Adaptive Target Recognition Using Reinforcement Learning," by 

Bhanu, Lin, Jones, and Peng (DARPA IUW98)). They have also been 

applied to the problem of autonomous navigation (please see attached 

document #7). 

B.     LEARNING BASED INTEGRATED RECOGNITION AND SEGMENTATION 

(Document #4) 

We have developed a general approach to image segmentation and object 

recognition that can adapt to the changing environmental conditions. It 

allows the automated acquisition of recognition strategies in dynamic 

environments. The learning paradigm used here is reinforcement 

learning, same as in A. above. Incorporation of domain knowledge into a 

reinforcement learning paradigm and its efficient implementation are 

important challenges posed by computer vision applications. We have used 

the edge-border coincidence for both local and global segmentation 

evaluation. However, since this measure is not reliable for object 

recognition, it is used in conjunction with model matching in a closed-loop 

object recognition system. Segmentation parameters are learned using a 

reinforcement learning algorithm that is based on a team of learning 

automata and uses edge-border coincidence or the results of model 

matching as reinforcement signals. The performance improvements are 

shown in the attached document #4. 



C. SCALABILITY OF GENETIC LEARNING FOR ADAPTIVE SEGMENTATION 

(Document #8) 

The problem is to learn algorithm parameters, develop algorithms and 

evaluation criteria for multisensor image segmentation and recognition 

from images acquired under varying environmental conditions. We have 

developed techniques based on genetic learning and other hybrid methods 

such as a combination of genetic algorithms and hill climbing. 

Our initial research using outdoor video imagery and the Phoenix 

algorithm has demonstrated that (a) adaptive image segmentation can 

provide over 30% improvement in performance, as measured by the quality 

of segmentation, over non-adaptive techniques, and (b) learning from 

experience can be used to improve the performance over time. In our 

current work, we show that our approach scales with respect to the number 

of parameters and the size of the search space. Genetic learning combined 

with a hill-climbing technique is able to adaptively select good 

segmentation parameters and to generate the best result using the least 

number of segmentations. In experiments designed to evaluate the 

scalability of our approach we find that for the case of a four Phoenix 

parameter set we only search about 0.5% of the (1 million size) search space. 

D. LEARNING TO INTEGRATE CONTEXT WITH CLUTTER MODELS 

(Document #10) 

The problem is to integrate contextual information with clutter models for 

target detection and recognition. Current image metrics commonly used to 

characterize images do not correlate well with the performance of target 

recognition systems. 

The contextual parameters, which describe the environmental conditions 

for each training example, are used in a reinforcement learning paradigm 

to improve the clutter models and enhance target detection performance 

under multi-scenario situations.   New Gabor transform-based features and 



other statistical image features are used to capture the statistical properties of 

natural backgrounds in visible and FLIR images. The non-incremental self- 

organizing map approach commonly used in an unsupervised mode is 

extended, by the addition of a near-miss injection algorithm, and used as an 

incremental supervised learning process for clutter characterization. 

A fast algorithm to compute the Gabor transform of a given image has been 

implemented. We have implemented two new Gabor transform-based 

feature groups and tested their classification performance on natural 

backgrounds. Experimental results show that the two feature groups could 

capture certain characteristics of the backgrounds, which are consistent with 

our theoretical expectations based on the physical meaning of each attribute 

within the feature group. Using second generation FLIR images, four 

contextual parameters (time of the day, depression angle, range to the target 

and air temperature) and 5 feature groups, we find 100% detection rate, 10% 

false alarm rate and significant improvement in the confidence for 

classifying a feature cell (rectangular regions in an image) as a clutter or a 

target. 

E.     INPUT ADAPTATION USING MODIFIED HEBBIAN LEARNING 

(Document #9) 

The problem is to improve the performance of an IU algorithm by adapting 

its input data to the desired form so that it is optimal for the given algorithm. 

The two general methodologies for the performance improvement of an IU 

system are based on optimization of algorithm parameters and adaptation of 

the input. Unlike the genetic learning case for adaptive image 

segmentation, here we focus on the second methodology and use modified 

Hebbian learning rules to build adaptive feature extractors which transform 

the input data into the desired form for a given algorithm. Learning rules 

are based on different loss functions and are suitable for extracting 

expressive or discriminating features from the input. 



The feasibility of the approach is shown by designing an input adaptor for a 

thresholding algorithm for target detection using SAR and FLIR images. 

The results are excellent with the input adaptor, compared to the case with 

no input adaptor. 

F. SYSTEM FOR AIRCRAFT RECOGNITION 

(Documents #6 & 5) 

We developed an IU system for aircraft recognition. The complete report on 

the system with its capabilities and limitations are described in document 

#6. Document #5 describes a multistrategy learning based system for 

aircraft recognition. We also investigated the development of a case-based 

reasoning approach for learning strategies for model-based recognition. 

G. COMPREHENSIVE PAPER 

(Document #1) 

Wrote and refined a comprehensive paper on applying learning techniques 

to computer vision problems. 
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