
SF 298 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE Form Approved
OMB NO. 0704-0188

Public repotting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sourcas.
gatnenng and mairtaining the oata needed, ami comr^ettng and reviewing tto
collection of rtormation, inducing suggestions for reducing Ws burdr^ to Wasrwigton Heao^uarters Services, Directorate for information Operations and Reports. 1215 Jefteran
Davis I figrr—y. Suite 1204, Atington.VA 22202-4308, and to ir« OWce of Management and Budget. Paperwork Reduction Project <0704-0188), WashngtonTEc 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 24, 2000
4. TITLE AND SUBTITLE

Support for Developing an Object-Oriented Simulat
Modeling Environment to Enhance C I Simulation/Mode

3. REPORT TYPF Awn nATES COVERED

5. FUNDING NUMBERS

on/
ing DAAH04-93-G-

6. AUTHOR(S)

Albert A. Fredericks

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESSES)

Monmouth University
West Long Branch, NJ 07764

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

0401

8. PERFORMING ORGANIZATION
REPORT NUMBER

32318-EL

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

fitdo 33 3/7./"*■*-

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the authors) and should not be construed as
an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
20000707 072

The main objective of this research was to define, design and prototype an open, object-
oriented environment consisting of a variety of integrated tools for modeling, analysis,
simulation and engineering of computer / communications and other systems such as
information systems, business operations and production systems. This environment was
to overcome certain problems seen with simulation environments that existed at the time
- and still persist today. These problems include the lack of: i) a simple to use yet
effective performance modeling tool set and ii) an open, integrated, object-oriented
performance modeling environment using a common programming language and
promoting reuse. This report summarizes the results obtained in addressing these
problems including an overview of the tools and environments that were prototyped as
part of this effort as well as their applications to the performance analysis of some
specific communications systems. Issues related to training and education in the use of
these tools and environments are also addressed.

14. SUBJECT TERMS

Modeling and simulation tools; integrated modeling
environments; distributed simulation; performance
analvsis.

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY a_ASSIRCATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER IF PAGES

 JQ>
16. PRICE CODE

20. UMITATION OF ABSTRACT

UL
NSN 754C-01-280-650fcwn rm * r i^r v-v—„~__ ~ -i

^»JUU ^tWiUu INSPECTED Enclosure Standard Form 298 (Rev. 2-89)
Prescribed by ANSI SU. 239-18
298-102

Final Report for ARO Grant Number: DAAH04-93-G-0401

(Title: Support for Developing an Object-Oriented Simulation / Modeling
Environment to Enhance C3I Simulation/Modeling)

Forward

It is well recognized that the use of appropriate tools and techniques for performance modeling, analysis
and simulation can provide quantitative insight into system performance that would otherwise be difficult,
too expensive or even impossible to obtain. The increased importance of such tools and techniques for
ensuring cost-effective performance engineering of computer / communications systems has placed an
increased premium on the ease of use of tools and on the reuse of models. While there have been many
advances and improvements in simulation environments, there still seems to be two important capabilities
that are missing: i) a simple to use yet effective performance modeling tool set and ii) an open, integrated,
object-oriented performance modeling environment using a common programming language and
promoting reuse. The former would allow systems engineers to quickly learn the important aspects of
performance modeling and to do their own quick, high-level systems modeling when needed. The later
would significantly increase the available pool of potentially contributable models as well contributors. It
would also provide an excellent environment for education and training. The main purpose of this research
was to address these two problem areas.

Table of Contents

2. Research and Prototype Development Under This Grant
2.1 Statement of Problem Studied
2.1.1 High-Level Modeling Tools
2.1.2 Open Environment
2.1.3 One of Several Tools
2.2 Summary of Most Important Results
2.2.1 QNPET
2.2.1.1 Overview of QNPET
2.2.1.2 Education and Training with QNPET
2.2.3 AMASE
2.2.3.1 Overview of AMASE
2.2.3.2 Promoting Reuse
2.2.3.3 The Maximum Allowable Error Mode for Distributed Simulation in AMASE
2.2.3.4 Other Important Results
2.2.5 Comments and Continuing Efforts
2.3 Publications and Technical Reports
2.4 Participating Personnel and Advanced Degrees earned while on project.
3. Report of Inventions
4. References

Appendices

Appendix A: Introduction to the Queueing Network Performance Engineering Tool
(QNPET - MASE) - Lecture Notes and View Graphs
Appendix B: AMASE and the High Level Architecture

Illustrations

Figure 1 - Complexity of Tool Use vs. Complexity of Model Needed
Figure 2 - High Level QNPET Model of a SINCGARS Radio Net
Figure 3 - AMASE Model with ATM Switch
Figure 4 - AMASE's Universal Editing Window
Figure 5 - AMASE's Main Simulation Control Window
Figure 6 - Window for Launching New Simulations

Tables

Table 1 - Participating Personnel

2. Research and Prototype Development Under This Grant

Performance modeling and analysis provide an important means for ensuring the cost
effective design, development, engineering and operations of computer / communications
systems as well as other systems such as manufacturing and information systems and for
process reengineering. Appropriate use of performance modeling and analysis methods
and tools can provide quantitative insight into system performance that would otherwise
be difficult, too expensive or even impossible to obtain. This is especially true for very
large, complex systems when performance under adverse conditions is extremely
important. Both DOD organizations as well as industry have used and continue to use a
diverse set of simulation tools as well as contractors to meet their growing simulation and
modeling needs. Some simulation tools are specifically geared toward communications
systems modeling, e.g., [if, [2], [3], [4] while others are more generic in nature, e.g., [5],
[6], [7]. (A discussion of the role of these and other packages in modeling
communications systems can be found in [8].) However, there are still many
shortcomings and problems associated with the current methodologies and supporting
environments for providing quantitative support for the design, development, engineering
and operations of systems; shortcomings and problems that can lead to high costs and
long lead times for model development, costly and time consuming (and often deficient)
verification / validation procedures and great difficulties in interfacing various subsystem
models to model "systems of systems" - a growing need for DOD systems as well as
those of many industries. The purpose of this research effort was to address some of these
shortcomings and needs. In addition to defining, designing and prototyping performance
modeling tools and environments that provide some solutions, the important issue of
education and training in the use of such tools and environments is also addressed.

2.1 Statement of Problem Studied
The main objective of this research was to define, design and prototype an open, object-
oriented environment consisting of a variety of integrated tools for modeling, analysis,
simulation and engineering of computer / communications and other systems such as

f Simple numbered references can be found in Section 4: References. Reference numbers preceded by PT
can be found in Section 2.3: Publications and Technical Reports.

information systems, business operations and production systems. This environment was
to overcome certain problems seen with simulation environments that existed at the time
- and still persist today. These problems include the lack of: i) a simple to use yet
effective performance modeling tool set and ii) an open, integrated, object-oriented
performance modeling environment using a common programming language and
promoting reuse. (Simulation model reusability issues have been a concern for some
time, e.g., see [9].)

2.1.1 High-Level Modeling Tools
Often during a system's life cycle, particularly in the early stages of system definition
and design, there is a need for quickly obtaining estimates of system performance
measures. Moreover, even when detailed simulation models are needed, it is highly
desirable to have the ability to quickly build independent, high-level simulation models
for verification. In today's environment, there is a relatively rapid turnaround in
employees; key personnel often leave positions in an organization either for other
positions within the organization or to join other organizations. Therefore, it is highly
desirable to have a generic, performance-modeling environment that can be quickly
learned and, in fact, one that assists in the overall performance analysis education of new
employees. One aspect of this research effort was to define, design and prototype an
environment addressing these issues - including use in the education process.

2.1.2 Open Environment
At the time that this effort was initiated, there was a heavy reliance on detailed simulation
models built with proprietary software embedded in closed simulation building
environments. This often resulted in long delays and costly overruns in model building.
Moreover, the reuse of models built in these environments was essentially nonexistent.
Since then a concerted effort has been made to try to develop and implement interface
standards that would enhance model interoperability and reuse. The High Level
Architecture (HLA) definition has been a primary factor in moving toward this end. This
certainly increases the value of using any currently available simulation modeling
environments that are HLA compliant. However, there are many cases where writing
simulation modules in an object-oriented high level language (e.g., C++) would be far
more efficient than using an existing tool. For example, some of the most used simulation
modeling tools require a considerable time to learn; by contrast, there is a very large
number of proficient C++ programmers. However, for an open, simulation modeling,
environment to be a valuable asset, it must have an adequate set of desirable features -
and be able to meet HLA requirements. Another objective of this research was to define,
design and prototype an open simulation modeling environment promoting reuse and
with a rich set of features that would make it a valuable asset in any collection of
simulation modeling tools. Such desirable features include: i) an integrated toolkit
supporting various aspects of performance modeling, analysis and engineering; ii) an
open system view supporting the addition and integration of externally developed
modules; iii) heterogeneous module support allowing integration of disparate modules;
iv) hierarchical modeling support, including support for high-level analytic models; v)
support for distributed simulation and, vi) programmable nodes. In addition, to further
promote reuse, there should be a minimal set of requirements for modules that are to be

added to the environment. (Note that while HLA compliance ensures that a model can be
reused, it does not guarantee that this will be easy to do!)

2.1.3 One of Several Tools
It is important to note that the environment and tools discussed here are not meant to be
sole replacements for all existing environments and tools. Indeed, most of the modeling
and simulation tools that exist today can be and are extremely useful. The problem as we
see it is that any major systems engineering and development organization needs a
variety of tools to meet its needs. Figure 1 illustrates this in a qualitative way - and points
out some of the inherent problems of misuse. Generally, in order to model more complex
systems, we need more complex tools, i.e., tools that are more difficult to use, costly to
purchase, etc. The curve (straight line) on the figure indicates a hypothetical "ideal"
tradeoff for these quantities. We can conceptualize various tools on this figure, hopefully
lying along or below this tradeoff curve - e.g., Q+ and OPNET as indicated for
illustrative purposes. (Q+ and OPNET, while on opposite ends of the curve, are probably
two of the better simulation modeling tools - within their region of applicability.)
However, if these tools are misused, i.e., used to model systems outside their range of
applicability, one may find that an enormous price in complexity of use might be paid.
For example, while some very complex systems can be analyzed with Q+, its use in some
such cases may be far more complex and time consuming than writing code from scratch.
On the other hand, using OPNET to model relatively simple systems - or those that don't
readily fit in OPNET's finite state machine paradigm - may also introduce unnecessary
complexity.

Complexity of Use

OPNET
Efficiency
Boundary

Model Complexity

Figure 1 - Complexity of Tool Use vs. Complexity of Model Needed

The environment and tools proposed here are meant to fall on both ends of Figure 1 - and
below the curve - i.e., be efficient. The first is a subset of the tools that, while being
powerful enough for many high-level modeling needs, is also far easier to use and
requires far less training than other existing tools. This subset of tools also provides an
ideal environment for introductory education and training in the area of performance
modeling and analysis. The second is an overall environment that can support the
integration of a variety of modules, each of which may have been custom coded, in a cost

effective, efficient manner - with a strong view toward reuse. This environment is also
ideal for more advanced education and training in performance modeling and simulation
- with an emphasis on model reuse.

2.2 Summary of Most Important Results
The most important results are, of course, the definition, design and prototype
development of the modeling and simulation tools and environments meant to fill certain
voids and to address problems and shortcomings noted with existing tools and
environments. Principle among these being the lack of: i) a simple to use yet effective
performance modeling tool set and ii) an open, integrated, object-oriented performance
modeling environment using a common programming language and promoting reuse.
The former led to the Queueing Network Performance Engineering Tool (QNPET) and
the latter to the Advanced Modeling, Analysis, Simulation and Engineering (AMASE)
environment. These are both discussed below in Sections 2.2.1 and 2.2.2 respectively.
Because of the more generic nature of a new method for parallel simulation incorporated
in AMASE, that method is briefly discussed in Section 2.2.3. In addition, certain other
generic results that also emerged from this research are noted in Section 2.2.4. (These
results were an outgrowth of applying the tools prototyped to the performance analysis of
some specific systems.) Finally, comments and discussion of continuing efforts
(including additional documentation being written) are given in Section 2.2.5.

2.2.1 QNPET
One of the key results of this effort was the definition, design and prototyping of the
Queueing Network Performance Engineering Tool (QNPET). (QNPET was initially
referred to as the Modeling Analysis Simulation and Engineering (MASE) [PT-1]
environment.) QNPET is an integrated tool set designed to provide high-level modeling
capabilities easily accessible to the novice performance analyst but yet highly effective. It
is built on a generalized queueing network paradigm similar to Q+ but differing from it in
several ways. Besides being an integrated toolset, QNPET is less abstract and much
easier for the novice to master than Q+; however it is also far less powerful - i.e., it is
below and to the left of Q+ on Figure 1.

A very brief overview of QNPET is given below. The reader may find Appendix A of
interest. It contains the lecture notes and viewgraphs used to introduce students to
QNPET. (For more details on QNPET's features and use as well as detailed design
documentation, refer to [PT-2] and other QNPET documentation references noted in
Section 2.3.)

2.2.1.1 Overview of QNPET
The key tools comprising QNPET are the Editor, Consistency Checker, Analyzer,
Simulator, Browser, Analyst's Assistant and Helper. The Editor provides a totally
graphical means for building models. There is a limited, but powerful set of constructs
that can be incorporated into models via "drag and drop". The Graphical User Interface
(GUI) is designed to minimize the possibility of errors during parameter entry - e.g.,
choosing allowable entries from lists as opposed to typing. (For example, Figure 2 - also
Viewgraph 7 of Appendix A - shows what a graphical description of a high level QNPET

model of the Army's SINCGARS communications system - including environmental
effects - looks like.) Models constructed can be saved as complete models or as
submodels or submodel templates. One of the constructs that can be dragged and dropped
is a generic submodel, which is parameterized by providing a submodel name. Once
built, models must be run through the Consistency Checker, which will identify any
errors that prohibit the model from being loaded into the Simulator or Analyzer. For
example, failing to provide a disposition - service time, routing, etc. - for transactions
that arrive at a node.

delay reI_ncol

l±jr%\

Figure 2 - High Level QNPET Model of a SINCGARS Radio Net

Once it has passed the Consistency Checker, the model can be loaded into either the
Analyzer or Simulator. The Analyzer provides some additional checks that identify
possible problems that might represent user errors. These include such conditions as
unstable nodes, lost resources, unassembled packets, etc. Generally these are conditions
that would not make sense for a simulation run seeking equilibrium solutions, but would
be acceptable for a transient analysis. The Analyzer can also provide exact or
approximate solutions for certain classes of models. (The class of models for which
approximate solutions are available is currently being enlarged - e.g., to increase the
applicability of certain infinite source approximations for finite sources [10], [11],
[PT-3].)

Models loaded into the Simulator can be run in one of three modes: i) continuous mode -
run till specified completion time; time step mode - run till the next specified time step,
or event mode - execute only the next event. The time step given also serves to specify
the times for statistics collection - independent of run mode.

In the Simulator, a monitor statistic (average total network sojourn time) allows the user
to observe the evolution of the simulation, e.g., to determine when transients have died
down. Comprehensive results are available directly from the Analyzer and Simulator in

ASCII format. However, a structured results file is also created for customized statistics
viewing via the Browser. The Browser also allows access to other files associated with
the model including the ASCII results files noted, the Consistency Checker and Analyzer
generated results and the notes file which is associated with this model. (The editable
notes file is accessible from the various tools and allows the user to keep comments about
the specific model.)

The Analyst's Assistant is a (at present small) collection of evaluation and engineering
functions for single node systems. For example, for a finite server loss system one can
specify two of the following: offered load, number of servers, maximum blocking,
minimum load on last trunk. The tool will then "engineer" the system to meet the two
specified quantities and compute the rest along with other results. There is a GUI
building tool for adding more functions, but, as we shall discuss shortly, a newer version
of an Analyst's Assistant, prototyped in Java, may be a better alternative.

At present, the Helper is essentially a somewhat more concise version of the User's
Guide - which also contains a limited amount of modeling guidance. (This aspect of the
User's Guide is being significantly enhanced along with the development of more
extensive tutorials.)

2.2.1.2 Education and Training with QNPET
As noted, QNPET has been incorporated into our introductory graduate course on
performance modeling with great success. It takes very little class time to cover the basic
use of QNPET for modeling, and after the students gain some familiarity, the most
advanced features can be covered in a two hour combined lecture - lab. (Appendix A
contains the lecture notes and viewgraphs used in a one-hour introductory lecture -
followed by a one-hour lab.) The use of QNPET has also been incorporated into some of
our more advanced performance modeling courses. Its use allows one to decouple the
modeling aspects from the details of simulation coding. While there are several excellent
products on the market that also do this, none can be mastered as rapidly and with such
little class time. These factors also give it a high potential for use in the undergraduate
curriculum - a prospect that we are currently investigating.

QNPET has also been incorporated into two of our short courses on performance
modeling. These courses are offered to employees of local industry and government
organizations. There has generally been excellent reaction to QNPET.

We are in the process of developing a more extensive tutorial for QNPET that will also
provide modeling guidance to the user. This, along with course notes which incorporated
QNPET as well as an overview of QNPET and its User's Guide and Reference manual
will be posted on the web so that others can become more familiar with its potential use
in education - as well as elsewhere.

2.2.3 AMASE
A second key result of this effort was the definition, design and prototyping of the
AMASE (Advanced Modeling, Analysis, Simulation and Engineering) environment.

AMASE is an open, object-oriented environment consisting of a variety of integrated
toolsets for modeling, analysis, simulation and engineering of computer /
communications and other systems. (Early design of some of AMASE's architecture is
given in [PT-4].) A primary objective of this environment is to promote software reuse,
particularly the reuse of simulation models that can often be extremely costly to develop,
in terms of both money and time.

AMASE, being a significantly more ambitious undertaking than QNPET is in more of a
"prototype" stage than QNPET. The vast majority of the features discussed below are
fully functional but some may require some user "hand editing" or command line entry,
i.e., their use is not totally controllable via the GUI.

2.2.3.1 Overview of AMASE
AMASE is an integrated, open, object-oriented environment for modeling, analysis,
simulation and engineering of computer / communications and other systems, designed
with reuse in mind. Some of the key distinctive features of AMASE include: i) an
integrated toolset supporting various aspects of performance analysis and engineering, ii)
an open system view supporting the addition and integration of externally developed
modules, iii) heterogeneous module support allowing integration of disparate modules,
iv) modular model development support, v) hierarchical modeling support, vi) support for
distributed simulation and vii) programmable nodes. (Hierarchical modeling support is an
important feature for reuse, e.g., see [12].) While not all of these features are
independent, their combination provides an excellent basis for fostering module reuse -
one of the primary objectives of the AMASE environment.

Figure 3 shows the graphical representation of a simple model containing an
Asynchronous Transfer Mode (ATM) switch. The ATM switch was actually one

Milli" TV
mm)»*.m im * i,*w*y*v)i i

m

•ininrwfil iTffnr r •■■■!rz- •■~&c-TBsrJ*tf-at*r<M.¥-••***.•*■i^-**:." "-Tn.iTi.r7V

iifciiiriiT TIUT—' "'■"■ "■ II aiiiin ;i IMIII '&£??*• iilTfi^nTnrn---—niirfr-^nii n-iffviitri V ——-\i*täüt^w^i**

Figure 3 - AMASE Model with ATM Switch

constructed earlier with QNPET. Such models can readily be incorporated into AMASE
as a submodel. While there are many similarities to the graphical model construction in
QNPET, there are also many differences designed for more efficient model development.
For example, Figure 4 shows the editing window that can be opened up from any node.
The tabs allow one to quickly move among the various editable items, e.g., from

m

pässa
ll

¥M%\

JSäS^äS

Figure 4 - AMASE's Universal Editing Window

specifying routing to distribution entering, etc. Also, the routing shown is global, i.e., one
can scroll to find the routing designated at any node without having to switch to an
editing window for that node. The drop down selection menu in the upper left hand
corner allows the user to switch the node being edited at any time.

The AMASE environment provides the mechanism for a user to build a "supermodel"
(federation) by making use of the combined capabilities of an integrated set of simulation
modules (federates) from its library - as well as providing a variety of tools and utilities.
AMASE specifications include minimal interface requirements for modules to be added
to the system library. Such modules are registered with AMASE at a given compliance
level and as belonging to a given communicating class. In this way, AMASE can
integrate a variety of non-homogeneous modules so that the user can make effective use
of their combined capabilities at a level commensurate with the problem at hand. (The
AMASE environment is consistent with HLA requirements - see Appendix A.)

The simulation control environment (see Figure 5) supports multiple simulation runs
simultaneously. While all may be actively rurining, one is designated as the "active"
simulation, implying that it can be actively controlled, e.g., paused, stopped, mode
changed, etc. The user may select any simulation to be active at any time. To start a new
simulation, the user opens the "new simulation" window (see Figure 6) where the new
simulation can be instrumented. Besides choosing between various modes, the user can

launch a specific number of simulations with identical parameters - but different random
number seeds- at the same time, e.g., for ensemble averaging. The Browser provides
support for viewing and some analysis of the collection of runs.

Figure 5 - AMASE's Main Simulation Control Window

sa im*

gas Sra^K^^^^^SmlBmasaBRPa §1

SEIffJijJTlO;i^j^l:j%l¥J^

Si!.;
lilil

HI
fflft

«IK« KR fei«jaijjaiiiä5 towjua»^.

Figure 6 - Window for Launching New Simulations

2.2.3.2 Promoting Reuse
Below we list, along with a brief discussion, some of the key AMASE features designed

10

to promote software reuse. (In [PT-5] specific qualitative criteria for evaluating
reusability, based on [13], [14] and taking into consideration [15], [8] are given and,
using these, AMASE is evaluated for reusability.)

Flexible Module Interface Specification:
In order to allow various externally built modules to be "plug compatible", it is necessary
to specify certain interface requirements that must be met. The challenge is to impose the
least restrictions on such modules while ensuring easy interoperability. AMASE achieves
this in a variety of ways. Interface specifications basically have two facets. One is
concerned with the services that an externally developed module will provide and the
other with the messages that the module exchanges. These are, of course related; however
they do have their separate issues.

In terms of services, AMASE supports the use of "conformance levels". At the highest
level, for a simulation module, this essentially corresponds to controllability. A
simulation module must, of course, be created and initialized; but in addition, the
simulation controller must be able to perform primary control functions such as asking
the module to simulate up to a given time, until its next external event, etc. The interface
specification that accomplishes conformance at this level consists of five well-defined
functions that provide the minimal service set at this compliance level. By supporting
more services, a module can raise its compliance level and thereby increase its
capabilities and hence its desirability for reuse. Additional functionality, for example, can
include sending statistics and animation messages for the system to display. Reusability
is also enhanced by providing certain services that externally developed modules can take
advantage of- see below.

All modules must support the basic transaction class, consisting of seven fields, which is
the main mechanism used for communications between modules. Modules that support
only this transaction class form the basic "communicating class" - all modules are
capable of exchanging information at this level. In addition, when a module is registered
with he system, it must register its communicating class. This can be one of the existing
communicating classes, or the module(s) can create a new one. A communicating class
forms a collection of modules that exchange the same transaction types, i.e., in addition
to the basic transaction fields, the derived transactions for the class have the same
supplemental part. Reusability is also enhanced by providing a mechanism for modules in
different communicating classes to communicate - see below.

With these features, externally developed modules can be used in AMASE to build
models consisting of an interconnected collection of such modules. With virtually no
effort, they can make some of their services available for use by other model developers
who wish to connect them with their own modules. By making use of AMASE utilities
(discussed below) they can further enhance the functionality that they provide to others.
Finally, with a bit more effort, they can make all of their services available to others.

Communications Facilities for Interconnecting Heterogeneous Modules
There are essentially two facets to this feature also. One is concerned with the

11

interconnection of modules of different communications classes that therefore have
derived transaction components that are not recognizable by each other - nor are they
usable. The other facet is the ability to interconnect modules on different platforms
written in different languages.

Since all modules support the basic transaction class, all modules can make use of a set of
basic services that any other module provides. However, information contained in the
supplemental part of the derived transaction that might be needed to make use of the full
services of modules in a given communicating class is preserved by the system. AMASE
recognizes the disparity between the communicating classes of a sending module and a
receiving module. The supplemental portion of a transaction that will not be recognized
(and hence cannot be used) by the receiver is removed by AMASE and stored. When that
specific transaction is again sent to a module that would recognize the supplemental part
unique to this communicating class, the derived transaction is reattached.

In addition, the user can make use of programmable adapters to allow a richer set of
services to be accessed. The adapters basically convert the incoming transaction to the
transaction class of the receiving module. Obviously, how this is done depends on the
particular model being developed - hence the support for programmability.

From AMASE's view all modules, whether a simple element or a complex full model are
viewed as submodels. There are two types of submodels, standard submodels and stubs.
From AMASE's perspective they are treated identical except that during initialization,
stubs are given the location where they are to create the intended submodel. The stub
establishes the communications facilities and initializes the remote submodel - which
could be a full model - see below. To the remote model's AMASE controller the stub
looks like the user interface while to the local AMASE controller it appears to be just
another submodel. Note that the remote machine could actually be the same platform that
the local controller is running on. In the simulation context, the stubs can currently run in
one of two modes: i) synchronous, where no potential performance gain for using
multiple processors can occur. (This is useful when it is merely platform incompatibility
that matters) and a novel mode we term ii) Maximum Allowable Error [PT-6], where the
stub allows the remote model to run asynchronously, but hides this fact from the local
controller. In this case a maximum error for time adjustments is given and enforced by
the stub. (This is usefully when it is known that errors cannot really occur or can be
prevented, or when small errors in event time rearrangement are acceptable in order to
speed up computation time. This method of distributed simulation is discussed further in
the next section.) In addition, support for a rollback mode can readily be added, however,
its usefulness would depend on the existence of modules that support rollback.

With these features, modules built on different platforms can be readily interconnected.
Also, in most cases, models that where not built with AMASE in mind can be adapted for
remote stub control. This amounts to putting a "wrapper" around the model that supports
the five basic submodel control functions. (Having been built before AMASE, QNPET's
design did not anticipate the interface requirements that AMASE would impose.
However, QNPET models can be readily "wrapped" and included in AMASE as

12

submodels - as was done with the ATM switch model discussed above.)
Automatic Submodel Creation
Any model built with AMASE (i.e., an interconnection of heterogeneous modules) can be
made to run as a submodel. This is accomplished by having a stub create the model - the
stub will then function as a submodel to the local controller. (Thus there are times when it
makes sense to have a stub create its model on the same machine as the primary
controller or even in the same process space.) This feature is important for promoting
reuse. Once a collection of modules has been put together to accomplish a specific task
(set of services) it can be saved as such and reused whenever those same sets of services
are needed.

Common Model View with Plug Compatibility
Once a model has been created (graphically) by using various modules and
parameterizing them, one may want to apply a variety of tools to e.g. evaluate a scenario.
In addition to being able to simulate the model at hand, AMASE provides analytic
approximations to evaluate performance characteristics of the system. Providers of
modules can provide analytic approximations if desired, but AMASE allows the user to
characterize the performance of modules by one of the existing stochastic service centers
for which analytic approximations already exist. This common model view, along with
the stub concept can be used to support the interconnection of actual system modules (as
opposed to simulations of them). Thus a model of a database system could be replaced at
the appropriate time with the actual database system - receiving its queries via the stub.
Indeed, one could even include a person in the loop. To view this another way, a detailed
simulation model of a key communications facility could be used in a variety of contexts,
e.g., to study the facility in isolation with inputs and outputs provided by analytic
approximations, to study a system where the facility simulation is one of several modules
or by interfacing to real system components.

Utilities
Several utilities are available which builders of modules can make use of both to help
them to accomplish their own task and also to enhance the services that they provide to
others. We list just a few here:

i) Animation of Transactions - module builders can send out transactions with their
animation bit on. AMASE highlights the module sending and receiving the transaction
and also display the entire transaction contents for the user. This can be extremely useful
for debugging and for reinforcing a potential user of a module as to its actual operations.

ii) Statistics Transactions - modules can send statistics to the system for display to the
user at regular intervals.

iii) Accessible Statistics - by making the names of a files where appropriate comma
delimited data are stored, known to the system, such statistics files can be handled as if
they were created by a library module, i.e., viewable in the Browser and subject to
statistical analysis.

13

iv) Adapters - AMASE supports the concept of adapter modules in which the user can
provide customized versions of "converters" to translate transactions from one
communicating class to another.

v) Module Library - the model library contains utilities, e.g. to manage shared
resources, complex split/join capabilities, etc.

2.2.3.3 The Maximum Allowable Error Mode for Distributed Simulation in AMASE
As noted, there are basically three ways that one can consider running AMASE in a
distributed environment. A major result obtained here was the introduction of a novel
method of running distributed simulations that has broader applicability. Methods for
achieving parallelism in discrete event simulation are generally considered to fall into
two categories: i) conservative methods where no events are allowed to take place out of
(time) order and ii) optimistic methods where events may occur out of order, but a
mechanism exists for correcting the order. The conservative methods generally rely on
being able to predict next event times in advance, or at least bound these. Optimistic
methods often employ a rollback mechanism whereby the controller (which is
responsible for simulation synchronization), after detecting an event out of order, can
cause all modules that are potentially affected to "roll back" their clocks (and states) to a
previous correctly synchronized time. There are obviously many tradeoffs involved and
various implementations have been studied in great detail. One of the main issues raised
in [16] is highly relevant here. Namely, there are a great deal of tools and expertise
available for building serial simulators, and indeed, one often finds that many of the
simulation pieces that might be needed to address a problem are currently available in
serial simulations built earlier. Indeed, as noted in [16] (with a reference to [17]) there are
many cases in government and industry where just being able to interface various
existing simulations would be a welcome advance - any parallelism would be an
unanticipated bonus. Indeed, this was the primary motivation for the development of
distributed simulation capabilities presented here.

The method introduced in [16], referred to as U.P.S. (Utilitarian Parallel Simulator) is
meant to link together serially designed simulators with minimal addition effort. Of
course, since U.P.S. is a conservative method, a mechanism must be implemented for
extracting future event time bound information from the modules. U.P.S. takes advantage
of being able to "mix" the synchronization protocols used by various modules to take
advantage of known structures. The net result is rather good speedups for a broad class of
examples - where event bounding is or can be made available.

We also want to minimize the additional effort to be imposed on serial simulations;
however, we take an approach which is quite different in nature, and, admittedly also in
its applicability. In particular, we allow events to be processed out of order (in a
controlled manner) without having a mechanism for correction, e.g. via rollback. This
clearly eliminates the need to predict future event time bounds, but obviously it can
introduce errors. Our method is designed to control such errors. The basic objective of
this new method is to coordinate the processing of various simulation modules,
distributed over a variety of processors, and keep the primary event time errors below a

14

specified value - the Maximum Allowable Error (MAE). The term "primary error" refers
to the errors that are visible to the controller, i.e., an event, Ei, that was supposed to
happen at time ti, did not make itself known to the appropriate processor's controller till
time t2 > ti. The system will ensure that the event, Ei, will actually occur no later than ti
+ MAE. Maintaining this maximum allowable error does not preclude rather large errors
from being induced into the simulation. For example, this is probably not a good protocol
to employ for studying real time control of nuclear reactors. However, there are many
cases where having small errors in arrival times of transactions has very little impact.
What is small? That of course depends on the application, and indeed, with our method,
as with many others, the most gain will occur when we can take advantage of the physics
of the problem at hand. For example, in a virtual reality simulation for a given
application, delays of less than 10 ms. for stimuli that a person in the loop sees may be
irrelevant. Note that it is perfectly acceptable to set the maximum allowable delay to 0, in
which case we would expect to run the simulation in lock step mode, i.e., totally serially
with all events processed at the correct time. The result would be no speed up at all (and
no errors); indeed there would more likely be a "slowdown" (speedup < 1) due to the
communications overhead needed to coordinate modules distributed over several
processors. As noted, this may be acceptable in certain circumstances where the
integration of two or more simulations is the primary concern, not parallelism. (The MAE
method is described in more detail in [PT-6] where some quantitative results are
included.)

2.2.4 Other Important Results
The tools noted above have been used in a variety of performance analysis studied that
have resulted in some important results in their own right. Perhaps key among these was
the discovery that holding times of connections in a communications network can have
an impact on the resulting performance characteristics of bursty traffic. It has long been
recognized that, for example, blocking in circuit switched networks depends on the
burstiness of the traffic [18]. Generally, the burstier the traffic, the larger the resulting
loss. Since blocking for Poisson traffic is known not to depend explicitly on holding
times, but only on the resulting offered load (arrival rate times holding time) the same has
generally been assumed for bursty (peaked) traffic in all standard engineering practices.
However, as shown in [PT-7], two traffic parcels with the same burstiness (peakedness)
and having the same offered load, but with different holding times, will see different
blocking. In general the parcel with the larger holding time sees less blocking! An
important application of this result is to the provisioning of circuits which are shared by
long holding time Internet traffic and standard voice calls [19].

These tools were also used in a variety of other studies. One was to investigate the impact
of using Open Shortest Path First (OSPF) in an internet environment composed of
interconnected multiple access networks (e.g., SINCGARS). The results showed that
attempting to initialize such a network too rapidly could have a significant negative
impact on performance and an impact that would repeat periodically [PT-8].

15

2.2.5 Comments and Continuing Efforts
Research and other efforts related to both QNPET and AMASE are continuing at
Monmouth University's Simulation and Modeling Lab (SIMLAB) and elsewhere in the
Center for Technology Development and Transfer. We fully expect such efforts to
continue in the foreseeable future,

As noted, we are currently enhancing QNPET documentation by adding a comprehensive
tutorial on its use for computer / communications (and other) systems modeling. The aim
is to eventually have a complete educational package that could be used asynchronously
as well as in traditional course settings. Besides traditional publications, we expect to
shortly have sufficient information on the web to promote awareness of QNPET's in
relevant communities. Because of the ease in adding functionality to AMASE's version
of the Analyst's Assistant, it will be taken as the standard for continued upgrading and
will eventually replace QNPET's current Analyst's Assistant.

Completing documentation for AMASE is an important aspect of our continuing efforts
as is publicizing both AMASE and the key concepts that it demonstrates.

2.3 Publications and Technical Reports

[PT-1] A.A. Fredericks and W. Jing, "MASE - an Integrated Environment for Modeling,
Analysis and Engineering of Computer / Communications Systems", GLOBECOM '95,
pp. 1688 -1692.

[PT-2] QNPET (MASE) User's Guide and Reference Manual

[PT-3] A. A. Fredericks, "A new Look at the Infinite Source Approximation for Finite
Sources", ", Monmouth University, Center for Technology Development and Transfer,
Technical Report.

[PT-4] W. Jing and A. A. Fredericks, "An Open Object-Oriented Simulation System for
Communications Networks", GLOBECOM '95, pp. 1847 -1951.

[PT-5] A. A. Fredericks, "Promoting Simulation Model Reuse with the AMASE
Environment", Monmouth University, Center for Technology Development and Transfer,
Technical Note.

[PT-6] A. A. Fredericks and Yan Li, "The Maximum Allowable Error Mode for
Distributed Simulation in the AMASE Environment", Monmouth University, Center for
Technology Development and Transfer, Technical Report.

[PT-7] A. A. Fredericks, "Impact of Holding Time Distributions on Parcel Blocking in
Multi-Class Networks, with Application to Internet Traffic on PSTN's", Teletraffic
Engineering in a Competitive World, Elsevier Science, B. V., Amsterdam, The
Netherlands, Volume 3b, pp. 877-886.

16

[PT-8] A.A. Fredericks and W. Bastian "Performance Impact of the Initialization Interval
for Certain Networks Employing OSPF Routing", Teletraffic Contributions for the
Information Age, Elsevier Science, B. V., Amsterdam, The Netherlands, Volume 2a, pp.
711-720.

Other QNPET Documentation
W. New, "System Overview and Design Documentation for QNPET's Simulation Tool",
Monmouth University, Center for Technology Development and Transfer, Programmer's
Note.

K. De Bose, "System Overview and Design Documentation for QNPET's Analysis
Tool", Monmouth University, Center for Technology Development and Transfer,
Programmer's Note.

Other Documentation: As noted, additional documentation for QNPET, including
tutorials and course notes, etc. - including web publication - are in preparation. Full
documentation (including submissions for publication) of the AMASE environment
together with a user's guide will also be forthcoming.

2.4 Participating Personnel and Advanced Degrees earned while on project.

Table 1 below shows participating personnel by category - full or part time researcher or
student research assistant. Note that during the time of the Grant, some persons moved
from one category to another and therefore appear in more than one place in the table.
Also note that Monmouth University does not have any PhD programs; hence a Masters
degree is the highest degree we offer.

Full Time Researchers Part Time Researchers Research Assistants

A.A. Fredericks W. Bastian P. Battista**

V.V. Basapur A. A. Fredericks J. Ding*
P. Batista Y.Li L. Kataria*
K. De Bose W.New V. Lakshmi*
Y.Li V. Sanjivi*
M.K. Moskal M. Sherman*

W.New S. Sheth
V. Vinayak*
J. Xiang*
L. Yang*
J. P. Yu*
P.Yu*

Table 1 - Participating Personnel
* Received M. S. Degree
** Received B. S. Degree

17

3. Report of Inventions

None at this time.

4. References

[I] OPNET MODELER, OPNET Technologies inc. (MIL 3, inc.), Washington, DC.

[2] NETWORK, CACI Products Company, La Jolla CA.

[3] Bones, Comdisco Systems Inc., Foster City, CA.

[4] COMNET, CACI Products Company, La Jolla, CA.

[5] SIMSCRTPT, CACI Products Company, La Jolla CA.

[6] MODSIM, CACI Products Company, La Jolla CA.

[7] Q+ (Performance Analysis Workstation), Bell Laboratories, Lucent Technologies,
Holmdel, NJ.

[8] A. M. Law and Michael G. McComas, "Simulation Software for Communications
Networks: The State of the Art", IEEE Communications Magazine, March 1994, pp. 44
50.

[9] Emilie T. Saulnier and Betty J. Bortscheller, "Simulation Model Reusability", IEEE
Communications Magazine, March, 1994, pp. 64 - 69.

[10] W. Whitt, "Open and Closed Models for Networks of Queues", AT&T BLTJ, Vol.
63, No. 9, Nov. 1984, pp. 14-31.

[II] A. Fredericks, "An Approximation Method for Analyzing a Virtual Circuit Based
LAN - Solving the Simultaneous Resource Possession Problem", Teletraffic Analysis
and Computer Performance Evaluation, O. J. Boxma et al, ed., Elsevier Science
Publishers B. V., (North Holland), 1986, pp. 63 - 74.

[12] F. E. Cellier, Q. Wang and B. P. Ziegler, "A Five Level Hierarchy for the
Management of Simulation Models", Winter Simulation Conference, 1990, pp. 55 - 60.

[13] R. Prieto-Diaz, "Implementing Facetede Classification for Software Reuse",
Communications of ACM, vol. 34, No. 5, pp. 88 - 99, May, 1991.

[14] Oryal Tanir and Suleyman Sevinc, "Defining Requirements for a Standard
Simulation Environment", IEEE COMPUTER, February 1994, pp. 28 - 34.

18

[15] Kenneth D. Shere and Rachelle A. Carlson, "A Methodology for Design, Test, and
Evaluation of Real-Timje Systems", IEEE COMPUTER, February 1994, pp. 35 - 48.

[16] Nicol, D. and P. Heidelberger, "Parallel Execution for Serial Simulators", ACM
Transactions on Modeling and Simulation, July 1996, Vol. 6, No. 3, pp. 210-242.

[17] Wilson, A. L. and R. M. Weatherly, "The Aggregate Level Simulation Protocol: An
Evolving System", 1994, Proceeding of the 1994 Winter Simulation Conference, IEEE
Computer Society Press, Los Alamitos, CA, pp781-787.

[18] R. I. Wilkinson, "Theories for Toll Traffic Engineering in the USA", BSTJ 35, pp
421, (1956).

[19] E. E. Cohen, A. A. Fredericks and C. D. Pack, "The Internet and the Switched
Telephone Network - A Troubled Marriage", Teletraffic Engineering in a Competitive
World, Elsevier Science, B. V., Amsterdam, The Netherlands, Volume 3a, pp. 23 - 32.

19

Appendix A

Introduction to the Queueing Network Performance Engineering Tool (QNPET -
MASE) - Lecture Notes and View Graphs

This appendix contains the lecture notes and view graphs used to introduce students to
QNPET. It is followed by a lab session were the students follow the example given in the
view graphs to create their first model.

Lecture 5

5. The Queueing Network Performance Engineering Tool (QNPET - MASE)

Both simulation and analytic modeling are often employed during the various phases of a
system's lifetime - e.g., definition, design, development, engineering and operations. A
primary objective of such modeling is usually to insure that performance objectives are
met in a cost-effective manner. Often a variety of simulation and analytic tools are used,
but invariably there is no relationship between any of the tools. To address this problem
(as well as others, including model reuse), an open, object-oriented environment
consisting of a variety of integrated toolkits for modeling, analysis, simulation and
engineering of computer /communications systems is being developed at Monmouth
University. QNPET, an integrated toolset built around a generalized queueing network
paradigm is the first toolset in that environment.

The earlier name for QNPET was MASE (Modeling, Analysis, Simulation and
Engineering); we will use the terms interchangeably.

5.1 Background

Performance modeling and analysis provides an important means for ensuring the cost-
effective design, engineering and operations of computer/communications systems.
Appropriate performance modeling and analysis techniques can provide quantitative
insight into system performance that would otherwise be difficult, too expensive or even
impossible to obtain by other means. This is especially true for very large, complex
systems and in particular when performance under potentially adverse conditions is
extremely important. Most organizations have used, and continue to use a diverse set of
simulation and analysis tools to meet their modeling needs. Often multiple tools are
needed to employ hierarchical modeling for addressing different performance issues. For
example, at a very early stage, one might use simple analytic formulae from queueing
theory to roughly size components of the system. For network issues, one might use Q+
[1] to do some high level modeling and turn to a more comprehensive simulation tool
such as OPNET MODELER [2] to study protocols in detail. When specialization and
additional detail are needed, a simulation language such as SIMSCRIPT II.5 [3] might be
used. (For a discussion of the state-of-the-art of communications network simulation
tools, including many available packages, see [4]; for a discussion of the importance of
hierarchical modeling see [5].) Generally, these tools do not -communicate" with each
other so that, at the very least, additional data entry (subject to user input error) is needed
to use multiple tools. More importantly, different tools usually have different basic
modeling constructs so that comparison of results is difficult and limited at best,
impossible at worst. The net result is often higher costs and longer lead times for model
development, costly and time consuming (and often deficient) verification/validation
procedures and great difficulties in interfacing various subsystem models. Under the
auspices of the Army Research Office (ARO), an effort has been undertaken at
Monmouth University's Simulation and Modeling Lab (SEVILAB) to address some of
these problems by defining and developing an integrated, open, object-oriented

environment for modeling, analysis, simulation and engineering of
computer/communications systems. QNPET (MASE) is the first toolset in that
environment. (See [6], an expanded version of these notes that includes example
applications.)
QNPET (MASE) is an integrated toolset for modeling, analysis, simulation and
engineering of computer/communications (and other) systems. QNPET (MASE) uses a
generalized queueing network paradigm to provide a high level conceptual view of the
systems to be modeled. From this perspective, its simulation tool is quite similar in
conceptual content to Q+ [1,7]. However, since QNPET (MASE) will be the "simplest"
of the toolsets in this evolving environment, it has been designed with the view of
simplicity of use over complexity of functionality. More importantly, QNPET (MASE)
is an integrated toolset that provides analytic solutions (approximations where
appropriate), engineering support tools and a variety of utilities e.g., model consistency
checking. These features make QNPET (MASE) an ideal candidate for use in a variety
of courses, both at the graduate and undergraduate levels.

5.2 Overview of the QNPET (MASE) Toolkit

The toolkit for QNPET (MASE) consists of seven "tools": Editor; Consistency Checker;
Analyzer; Simulator; Engineer's Assistant; Browser and Helper. The following gives a
brief overview of each of these tools:

Editor: The Editor provides a graphical user interface to build and parameterize a model
for analysis and/or simulation. Icons representing constructs useful for modeling
computer/communications systems are provided - these are discussed in some detail
shortly. Once built, a model can be saved as a "master" model or as a submodel. A
master model is a runnable, complete model. Submodels cannot be run independently,
but rather must be embedded in a master model via the Submodel node construct
provided by the Editor - see below. When using the Editor, the user can create a set of
"notes" for the model being worked on and record any information that might be helpful,
e.g., the purpose of the model, assumptions made, etc.

In an effort to assist the user in parameterization as well as to minimize user input errors,
whenever possible the user is shown allowable inputs to choose from. For example, for
routing, the user selects the desired transaction(s), chooses routing, and is presented with
a form for entering routing, including a list of acceptable next nodes to select from.

Consistency Checker: This tool checks models for consistency to ensure that they are
loadable by the Simulator and Analyzer. For example, it checks to see that the model is
completely specified, i.e., the system knows what to do with every transaction that can
arrive at a service center. An appropriately consistent model is "marked" and only
models so marked can be loaded into other tools. In addition, a variety of checks are
made which will not result in the model being marked inconsistent; but will result in a
warning to the user. For example, the utilization at all the nodes due to open chains is
checked (which is sufficient to determine "load' stability). Also, if passive resources are
used, checks are made to see that seized resources will be properly released by

transactions, prior to their exiting the system. Various split /join node pairs are also
checked to see if all transactions emanating from a spilt node do indeed arrive at the
designated join node. The user is only warned of any adverse conditions since it is
meaningful to study the transient effects of such systems with the Simulator.

Analyzer: The Analyzer can estimate performance measures for the queuing network
using several approximation techniques. These include enhancements to the closed chain
approximations given in [8, 9] which result in accurate predication of utilizations (which
could be 1 for closed chains in a stable system) and throughputs in addition to response
times. The Analyzer also forms the basis for many of the checks performed by the
Consistency Checker. Note that while the Analyzer will load an unstable model, it, of
course, cannot solve it, but rather must inform the user of the situation. The user can edit
many of the parameters from the Analyzer (e.g., make the model stable) and evaluate the
results. These changes are local and don't propagate to the main model.

Simulator: This tool can simulate the resulting queuing network model outputting both
transient and final (e.g., equilibrium) results. A variety of simulation controls are
provided (e.g., a "delta" time for collecting output statistics). The simulation supports a
variety of constructs useful for modeling computer/communications systems including
data multiplexing, flow control, broadcasting, process synchronization, resource
management, etc. - see below. A monitor statistic is displayed allowing the user to
observe the evolution of the simulation, e.g., to determine when transients have died
down. The simulation can be paused, restarted or stopped at any time. Like the
Analyzer, the user can make "local" edits to the model loaded in the Simulator.

Engineer's Assistant: The Engineer's Assistant provides support for a variety of single
service center queuing paradigms. For example, M/M/l queue, Erlang B etc. which are
"exact" solutions plus approximations for others, e.g., Hayward's approximations for
peaked traffic. Each of these is accessed via a common view, form entry system. In
addition to evaluation capabilities, many engineering problems are supported. For
example, for a given offered traffic, one can specify cell loss, and have the number of
buffers needed determined. A graphical interface is provided to allow users to add their
own functions to the system.

Browser: This tool allows the user to browse previously calculated results files from any
of the tools, "notes" files created for models, etc.

Helper: This tool provides access to a limited version if the user's guide and reference
manual. The latter, available via a hypertext file, provides extensive help on the use of
QNPET - it will also be upgraded to include more extensive "modeling" help.

5.3 QNPET (MASE) Constructs

As noted, QNPET (MASE) uses a standard generalized queueing network paradigm.
Under this, the fundamental element corresponding to work and/or control is the
transaction. Users only see a transaction through its user specified class name.

Source Nodes: There are two types of source nodes:

i) I-Source Node: An I-Source node represents an initialization source which is used to
initialize a given node with desired transactions, e.g., for initializing a closed chain or
"preloading" the system.

ii) C-Source Node: A C-Source node represents a "continuous source", i.e., one where
an arrival process for transactions with given classes is specified. A simple list choice
and form entry allows for the specification of routing and parameterization of source
traffic streams with the desired interarrival distributions, distribution parameters and
classes.

Server Nodes: The are two basic server nodes:

i) Delay Node: A Delay node represents an infinite server or delay node at which the
distribution for the delay is specified as well as routing from this node to other nodes.
This construct is distinct from an N-Server node to emphasis the conceptual difference
between modeling delays and actual service centers - often a point of confusion with
students.

ii) N-Server Node: An N Server node represents a set of N homogeneous servers. Non
preemptive priorities are supported at this time. In addition, the user can specify a
number of resources that a transaction needs (from a specified resource pool) in order to
proceed. Such resources can be used to represent windows in a window flow control,
memory in a computer system, a database lock, etc. Alternate routing may be specified
for transactions that do not find the needed resources available. (This can also be done for
transactions that find all buffers full.) Again, all parameterization is done via choosing
from lists and form entry to reduce the possibility of user input errors.

Routing Nodes: In addition to specifying routing at other nodes there are two nodes
where only routing is specified.

i) (Standard) Routing Node: A standard Routing node represents a node where only
routing is specified - no service. E.g., to distribute traffic from a source or other node, the
traffic can first be directed to a Routing node. The routing is probabilistic by class with
class changes allowed. (While this standard routing could be specified at other nodes, it is
sometimes advantageous to isolate the routing function.)

ii) Distributor Node: A Distributor node provides routing in a different way, totally class
independent. The user specifies a set (Nodei, Numi; ... Nodek, Numk) of nodes to route
to (Node;,) and the number of transactions (Num;) to route there. Routing is done
"cyclically" where the first Numi, arrivals are routed to Nodei, etc. Typical examples
include broadcasting/multicasting support (when combined with a Replicate node - see
below) and source traffic distribution.

Split / Join Nodes

Split nodes allow a single entering transaction class at the input to generate multiple
transactions of various classes at the output. There are three varieties of Split nodes that
are designed to meet common needs in modeling computer / communications systems,
e.g., to model multi-layer protocols in a natural way. Some of these may be combined
with an appropriate Join node to accomplish a desired task. The corresponding Join
nodes are optional. A Join node could also be used first with or without a Split node. For
simplicity of construction, a user need only choose the option of having a corresponding
Join or Split node; the system creates and parameterizes it automatically. By using Split /
Join nodes appropriately, one can obtain arbitrary point-point delays. The following
discusses the various "flavors" of Split / Join nodes, five in all.

i) Fragment / Assemble Nodes: At the arrival of a single specified class, say m, a
Fragment node generates a set of departure transactions of the form (ci, m.;.... Ck, nk)
where a pair (CJ, nj) denotes n; transactions of class Ci, are to be generated. Optionally,
one may specify that an Assemble Node should be created. At that node, when the
transactions that originated at the corresponding Fragment node arrive, they are grouped
together and "assembled" into a single
transaction, m - when all of the relevant parts are collected. It is the specific transactions
that were part of the original fragmenting that are assembled - their class name on arrival
is irrelevant A typical application is fragmenting and reassembly in data communications
networks.

ii) Fork / Synchronize Nodes: A Fork node is similar to a Fragment node except that the
arriving transaction is assumed to have "forked" the transaction set (c;, m;.... Ck, nk) and
so it itself still persists - i.e., it is routed out of the node with the other transactions that
are generated. The corresponding (optional) Synchronize node behaves like the
Assemble node described above. A typical application is the synchronization of
processes in a computer system.

There are some subtle but important implementation differences between these two Split /
Join node pairs. E.g., in the case of a Fragment / Assemble pair, the parent transaction is
"suspended" on arrival (with any resources it holds) and "revitalized" when the
appropriate transactions are reassembled. For a Fork / Synchronize pair, the original
transaction arriving at the Fork node maintains its identity, including resources that it
may hold throughout its network excursion (it may release them at any time) until it
arrives at the corresponding Synchronization node.

iii) Multiplex / Demultiplex Nodes: To some extent this pair is the complement to the
Fragment / Assemble Node pair. At a Multiplex node, one specifies a combination of
transactions, (ci, m;.... Ck, n^, to be "multiplexed" into a single transaction, say class m.
Optionally, one can specify a Demultiplex node where the arriving transactions (e.g., the
m's) that were previously multiplexed are demultiplexed resulting in a set of ^actions, (ci,
ni;.... Ck, nk), leaving this node. A typical application is multiplexing demultiplexing
communications lines.

Two Split nodes do not have corresponding Join nodes.

iv) Replicate Node: At a Replicate node, an arriving transaction is replicated into a
specified number of transactions with specified class names, e.g., for different routings.
A typical application would be multicasting/mailing lists.

v) Resource Split Node: At a Resource Split node, an arriving transaction, say m, that is
carrying a set of resources, can split off another additional transaction, say m'. The user
can then specify which resources originally with m should stay with m and which should
be transferred to m'. Typical applications are in multilevel protocol window flow
controls and other resource management schemes such as computer memory
management.

Other Construct Nodes

Sink Node: A Sink Node accepts routing to it and destroys arriving transactions - after
accumulating statistics.

Resource Node: At a Resource node one specifies the resource provisioning process for
the resource requirements given (optionally) at N Server nodes. One can have a fixed
pool of resources (that must be returned to be reused) or specify a rate to add resources.
The former are useful for modeling window flow controls and other passive resources.
The latter can be used to model rate control schemes such as a leaky bucket algorithm

Submodel: A Submodel node corresponds to a previously defined and saved submodel
built within the MASE system. It is parameterized by specifying the file name for the
submodel desired and then specifying routing for transactions that leave the Submodel
node. (One, of course, generally also routes to the Submodel node) When a standard
model is built, the user can ask to save it as a submodel, either a template or a usable
submodel. This will require the specification of a node to act as an input port and a node
to act as an output port. To include a usable submodel, the user places a system
generated Submodel node icon into the model and, as part of the parameterization
process, the user specifies the name of the submodel (a list of available submodels is
supplied). That submodel (file) is now linked to this model and cannot be reused until it
is released. If a submodel template is chosen for inclusion, the system first makes a copy
(which is then usable) and links this to the current model. Templates are reusable.

Graphics Only Constructs: Nodes can be connected with lines to show topological
information, but this is for visual guidance only. That is, one does not have to construct a
path from Node A to Node B in order to route traffic from Node A to Node B. (Enforcing
line connections can lead to a morass of lines in highly connected systems that provides
more confusion than visual help.) In addition, there is a "virtual" node that can be used
strictly for graphical presentation nothing is actually routed to / from it.

5.4 Using QNPET (MASE)

The view graphs contain details on using QNPET, and will be discussed in detail in class,
followed by hands on lab sessions. Reference [6] also contains some examples of using
QNPET (MASE) for data communications performance analysis.

Lab Exercise 5.1: Build the simple M/M/l model discussed in the viewgraphs, i.e. with
an exponential inter arrival time, mean 2 time units and an exponential service time,
mean 1 time unit.

References

[1] Q+ Users Guide, Vol. I, AT&T Bell Labs, Holmdel, NJ.
[2] OPNET MODELER External Interface Manual, Release 2.4, MIL 3, inc.,
Washington, DC, 1994.
[3] SJJV1CRIPT II.5 Reference Handbook, CACI Products Company, La Jolla, CA, 1993.
[4] A. M. Law and M. G. McComas, "Simulation Software for Communications
Networks: The State of the Arts," IEEE Communications Magazine, pp. 44 - 50, Vol. 32,
No. 3, 1994.
[5] "F. E. Cellier, Q. Wang and B. P. Zeigler, "A Five Level I-Hierarchy for the
Management of Simulation Models", Proceedings of the 1990 Winter Simulation
Conference, Piscataway, NJ, IEEE Press, pp. 55-60, 1990.
[6] A. A. Fredericks and Wen Jing, "MASE - an Integrated Environment for Modeling,
Analysis, Simulation and Engineering of Computer / Communications Systems",
Proceeding of GLOBECOM '95.
[7] B. Melamed and R-J.T. Morris, " Visual Simulation: The Performance Analysis
Workstation", IEEE Computer No. 18, 1985, pp. 87-94
[8] W. Whitt, "Open and Closed Models for Networks of Queues", AT&T BLTJ, Vol. 63,
No. 9, Nov. 1984, pp. 1431.
[9] A. Fredericks, "An Approximation Method for Analyzing a Virtual Circuit Based
LAN - Solving the Simultaneous Resource Possession Problem", Teletraffic Analysis and
Computer Performance Evaluation, O.J. Boxma et al, ed., Elsevier Science Publishers
B.V., (North Holland), 1986, pp. 63-74
[10] W. Jing and A-A. Fredericks, "An Open Object- Oriented Simulation System for
Communications Networks", Proceeding of GLOBECOM '95

Performance Evaluation - Unit 5

The Queueing Network Performance
Engineering Tool (QNPET - MASE)

QNPET Toolset

• Builder / Editor

• Consistency Checker

• Analyzer

• Simulator

• Engineer's Assistant

• Browser

• Help

QNPET Toolbar
taiuittaisiiaiisi

M&äslKl

irs3SK3«

i»ii^-i»M«.-»j^..

Builder / Editor

Build / Save / Retrieve /Edit / Output
Generalized Queueing Network Models

Build with Icons / Parameterize with Forms

Data Entry (Errors) Minimized with Use of
Lists of Choices, Automatic Creation of
Paired Nodes, etc.

Built (Consistent) Models Runnable - No
Compiling

Supports "Note Making" *

M/M/l Model on Palette

. 'fcht'*ZI'&- -: ££ --."■ /* " , -." ■>- -ft*
&

!*
1

1 :0? 1
i - j —» * i w. - x -. w-* K *- ir i M$ s

QNPET Modeling Constructs

Sources (continuous and init) and Sink

Service and Delay

Resource Provider and "Splitter"

Router and Distributor

Split / Join (Fragment / Assemble, Fork /
Synchronize, Replicate)

Multiplex / Demultiplex

Submodel and Submodel Template

QNPET Model of CSMA/CD
With Environmental Effects Consistency Checker

Ensures Model Meaningful to Load

Variety of Model Consistency Checks

Analyzer Provides Additional Checks:
- stability of network
- consistency of resource seize / release process
- consistency of split/join process

Analyzer

Supplements Consistency Checker

Exact Solution for Simple Open Networks

Approximate Solutions for More Complex
Systems

Not All Networks Can Be Analyzed

Simulator

• Event / Delta / Continuous Run Modes

• Event / Delta and Final Statistics

• Pause with Parameter Changing

• ASCII Results Available Immediately

• Browser Can Be Used To Customize
Results View

Engineer's Assistant

Collection of Analytic Tools for Single
Service Centers

Engineering as well as Evaluation
Capability

Useful for Simulation Validation and
Approximate Parameter Engineering

Other Tools

Browser
- browse results files
- customize view

Window Print
- screen dump a window (e.g., model, results,

etc.)

Help

Executing QNPET

On CSLAB
- type "mase" at prompt
- save models with .mod subscript

Remote Login
- set your display (e.g., in csh,

"setenv DISPLAY machine (or ip address):0
- continue as above

Modeling an M/M/l Queue

First Build an M/M/l Queueing Model
- exponential service times, mean = 1 (unit)
- Poisson arrivals, rate .5 (mean interarrival time

= 2 (units))
- also need a sink to destroy transactions
- save model as an mml.mod (suffix important)

Run the Consistency Checker on the Model

Run the Simulation (Validate Results)

M/M/l Model on Palette

[»««. ~«ü .•!«'

Main Source Editing Window

^Wkn fcfiX

&£&&&£ fe-]]£=^::r: H
y$?M ̂ S^.^eaSuj-'i J;
££••»••* cu»»

f&^"--". ■*■■* >
?h: t*.'?i~*,-r •'■ -^'

3~@I
J$ Auf's* ta^ ^•'SÄätÄteÄ^-i '"" 1
KTTB ^tM^ 1 r^ "■*** iH wi lö

Interarrival Time Distribution at
Source Main Server Editing Window

Server Service Time Distribution

■ to«mttfi#*

a !.*3$

IP

»H*>

Routing for Server Node

pJ!^rS»ffc?q
i«*?

I
4*0 ■

Server Options Editing Window

I
fa

äSSSJüir

B-B

iHi

Main Sink Editing Window

N»--J4J&3

l^fö^a^i&44Lüo

Consistency Checker Results
aiJUIIjllill«|l;l4' .'11/ '

■aal

"im 1Ei!ta2äi^wllt35^i*St

iSKSi&'MÄäss»*^

.1 ■ ,. .5—!■

«■^ «I--.I»«..! ■■■».I»»l»j
st

Simulation File Menu

■ u».»~ *HT|,

llPl

 t'S
M . ■>■ . <-.

p'sfci

4

Instrumenting the Simulation
m

^*HSH*§

. *•■ . ■■■ Wl.u ^rjwwjjj £j

;.~ l !T-r

;. fjgigiij:

Result at End of 1000 units
-■■— ■■■ turn ■ ;

Validating Results

• For M/M/l Queue, p = X X = .5x1 = .5
• Ts = X/(l-p) = 2(units)
• Simulation After 1000 Units Shows Ts =

1.62
• What's the Problem?
• Try Running For 10000 Units

Z7

Analyst's Assistant M/M/l Form

iJWf
mm ti**KMn*ut"'

&V\ 11 11

Additional Results for M/M/l
anszsxxsy: snRnsgasrevnmisHs:

Jii»3rfftÄSSK|

EE pi»
HP?

EE ' P
isa-SK V*-

ukt

Viewing Results with the Results
Browser

JSS^^Ä-srri'^fe'i«:^^
UIMl'MM|MfeT#»-3 ft£ »di^w «HtMWMH IhiJfaWrtfc, iwmaanw. Ml
|^:%ä-^y^i4^ ■
K^.^|jiÄ^l^ • ""}'."" ** 1.»«» .-w ii - a^f

|W^;;ji»«*^m^ ■B11 ""' Tl» .*-•».» MW* 9-a
pS^^J***!^^^J MIL j ■5» ■~1 &i9W$p; fiiÄW&p iA9HT <>ja

■ ?"v' '-S iE^^iri H 1 ■* Ja te^ssi'ss?

j^^lp^^^ «*. .1 , iji*
f|^^;^|ittti^i;:::|.*j .s
it*****]*•»—*. if w*J- ;, j <;
fe^üb?issj;^J::iä^äS! :^£&&xm-€

1 iüiii %;>SÄ?jS
k^M^&Gr^&is? * ''

i
f . .. 1

_ ...
' r. .£ T B^SiMci^ fe'*#ÄS» Ü! 30

Results After 10000 Units
it

• a «■. '«■■

?JK3*0 (l.cPHSH

•4 ■*» I *u ■ fW«VivInM<Sti9rU

M • . M*1« r^* i >.i

V!«l \M At Li I h.A»£it-r

fl ■ .Si« ■ 0.3XS17

1
■ I W*I ■* •- (WaQutfili* tStifct) ftraKaTJMf

■ •>'« * ■*, a.sssMTO.T4»2n L^esvrQ.o

U*W fea&dUi iv*s^m. - tliAu

3
■ tij- J • t .tit..

* =---~»:^^ v-.__

Appendix B

AMASE and the High Level Architecture

The AMASE modeling, analysis and simulation environment is essentially HLA
compliant in that it either currently meets all HLA rules or can be readily enhanced to do
so. The key HLA rules are divided into two categories: i) those pertaining to federations
and ii) those pertaining to federates. Both sets of rules are pertinent to AMASE since it is
both an environment for building federations and it contains a library of federates
(currently under construction). We discuss these two sets of rules below and how they
relate to AMASE. We then discuss the work planed under this task.

Rules for federations: For completeness we summarize first the five HLA rules for
federations and then comment on AMASE compliance.

Rule 1: Federations shall have a HLA Federation Object Model (FOM), documented in
accordance with the HLA Object Model Template (OMT).

AMASE Compliance: While we have not specifically used the OMT, AMASE is a
highly structured environment (all of the tenants of object-oriented design have been
followed) for building federations and as such it should take a minimal amount of effort
to build the required documentation in the appropriate OMT format.

Rule 2: In a federation, all representation of objects in the FOM shall be in federates, not
in the runtime infrastructure (RTI).

AMASE Compliance: The AMASE architecture in Figure 1 shows clearly the separation
of concerns. AMASE's RTI is purposely made as lean as possible. The Central Control
(CC) is essentially a message-processing agent. It receives messages from the Graphical
User Interface (GUI) e.g. to build, initialize, run a simulation of a confederation. In
additional to a global clock, it maintains two lists, a Pending Message list (PM list) and a
Federate Event list (FE list). It sends / receives messages from the federates (and the
GUI) coordinating the simulation timing. There are no simulation objects in the RTL

Rule 3: During a federation execution, all exchange of FOM data among federates shall
occur via the RTI.

AMASE Compliance: As shown in figure 1, all federates must communicate via the
RTL Indeed, since the federates are allowed to be in different communicating classes
(i.e., exchange different message objects) the RTI must relay messages so that it can
convert the format when appropriate.

Rule 4: During a federation execution, federates shall interact with the runtime
infrastructure (RTI) in accordance with the HLA interface specifications.

AMASE Compliance: AMASE has a highly structured interface specification that all
federates must comply with to ensure that they are plug compatible within AMASE.
These specific (HLA) interfaces are the only means for federates to communicate with
the RTL

Rule 5: During a federation execution, an attribute of an instance of an object shall be
owned by only one federate at any given time.

AMASE Compliance: If the developers of the federates adhere to this rule (all library
federates in AMASE. do) then the AMASE RTI will ensure that the federation does also.

Rules for federates

Rule 6: Federates shall have an HLA Simulation Object Model (SOM), documented in
accordance with the HLA Object Model Template (OMT).

AMASE Compliance: The specifications that AMASE provides for the addition of
library simulation modules (federates) is highly structured and can readily be translated
into the appropriate OMT format.

Rule 7: Federates shall be able to update and/or reflect any attributes of objects in their
SOM and send and/or receive SOM object interactions externally, as specified in their

SOM.

Rule 8: Federates shall be able to transfer and/or accept ownership of attributes
dynamically during a federation execution, as specified in their SOM.

Rule 9: Federates shall be able to vary the conditions (e.g., thresholds) under which they
provide updates of attributes of objects, as specified in their SOM.

AMASE Compliance: Rules 7-9 essentially provide for the capability of an orderly
exchange of data, objects, etc, during runtime via the RTI facilities. Again, the interface
specifications and parameterization of AMASE library modules is structured
appropriately for supporting these rules.

Rule 10: Federates shall be able to manage local time in a way which will allow them to
coordinate data exchange with other members of a federation.

AMASE Compliance: With AMASE the use of a Local Federate stub (LF stub - see
figure 1) not only allows for remote execution of a federate, but also allows for a variety
of simulation synchronization methods. The stub contains both the needed
communications capabilities and the simulation control for the desired mode. From the
main RTFs viewpoint, all federates reside locally and are running in a synchronous
simulation mode. The stub logic can be configured to run in a synchronous simulation
mode as well as in a bounded event time error mode (a new mode) or in rolback mode -
if the federate it is a stub for support rollback.

Figure 1 AMASE Architecture

