
06/22/00 07:48, FAX 206 5263210 ONR SEATTLE 1^] 002

Description of Projects Utilizing Equipment Purchased

under the DURIP Award

Introduction

Intrusion detection and, more recently, automated response to intrusions have been the
cornerstones of our research programs in the Computer Security Laboratory at UC Davis.
UC Davis has pioneered several novel methods for intrusion detection on large networks.
This research, however, can progress only if the laboratory's network infrastructure is
sufficiently large to realistically model that of a large organization. UC Davis is also
among the first to study cooperative automated response to intrusions. Network devices:
routers and firewalls, exchange attack information which can be used to optimally filter
the malicious traffic. This project depends heavily on having network hardware on which
to install and test our prototypes. Thanks to the generous DURIP equipment grant,crar
group was able to obtain the resources necessary for this work to proceedl

Intrusion Detection

GrIDS
The GrIDS system[25], developed at UCD under contract from DARPA,isjlesigncdlo
detect large-scale network activity such as extensive network probes (doorknob rattling),

' worm attacks, coordinated attacks from several sites, in addition to network.policy
violations. GrIDS can utilize reports from host-based TDSs, network sniffers and network
tracing and accountability tools, to build pictures of correlated network activity as .graphs.
In addition to giving a network context to attacks which can actually be detected at a
single place, GrIDS is capable of detecting attacks which are not visible at any single
place but show up on a large scale as anomalous patterns of activity.

Network based TCP connection reports

Data Sources: CIZ spurr~"^>—»CT"kanab

Aggregated graph:

Hose based Trojan horse reports

kanab

„snboeiJ.
Figure 1: GrIDS representation of the worm seen

20000712 042
"BlS"|yiMä mwmiu$8&B

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per resp
gathering and maintaining the data needed, and completing and reviewing the collection of infoi
collection of information, including suggestions for reducing this burden, to Washington Headqu
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and I

AFRL-SR-BL-TR-00-

i
188

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE >

22 Jun 00

£<M3
ing data sources,
her aspect of this
i, 1215 Jefferson
: 20503.

Final Technical Report 01 Mar 98 to 28 Feb 99
4. TITLE AND SUBTITLE
Description of Projects Utilizing Equipment Purchased under the DURIP Award

6. AUTHOR(S)
Professor Karl N. Levitt

5. FUNDING NUMBERS

F4960-98-1-0269

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of California, Davis
Department of Computer Science
1050 Engineering II, One Shield Avenue
Davis, California 95616-5294

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NM
801 N. Randolph St, Rm 732
Arlington, VA 22203-1977

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

F49620-98-1-0269

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Intrusion detection and, more recently, automated response to intrusions have been the cornerstones of our research programs
in the Computer Security Laboratory at UC Davis. UC Davis has pioneered several novel methods for intrusion detection on
large networks. This research, however, can progress only if the laboratory's network infrastructure is sufficiently large to
realistically model that of a large organization. ITC Davis is also among the first to study cooperative automated response to
intrusions. Network devices: routers and firewalls, exchange attack information which can be used to optimally filter the
malicious traffic. This project depends heavily on having network hardware on which to install and test our prototypes.
Thanks to the generous DURIP equipment grant, our group was able to obtain the resources necessary for this work to
proceed.

14. SUBJECT TERMS 15. NUMBER OF PAGES

14
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

DTIC QUALITY EXPECTED 4

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

06/22/00 07:48 FAX 206 5263210 ONR SEATTLE 1^1003

A GrIDS graph consists of nodes representing hosts or routers, and edges representing
network traffic between two nodes. Graphs are built by aggregating together activity
(either at nodes or on edges), which seem to be correlated. Correlation is flexibly defined,
but typically includes proximity of the events in time, and may also include other
measures of similarity (e.g. whether two TCP connections have the same destination
port). Each node and edge is decorated with information providing more detail about the
connection. Typical edge decorations concern type of connection, duration of the
connection, anomalous aspects of the connection, and the user if known. Node
decorations contain information such as attack reports, host OS type, and any other
information which may be passed up to the GrIDS network-wide system. The graphs are
the result of analysis of incoming reports according to rules created by the system
security officer. (Simple default rules are provided). These rules describe how graphs are
created, modified and removed, and which activity is considered dangerous or in
violation of system-wide access policies. GrIDS can represent a single connection in
many different types of graph, thereby viewing connections in different ways.
GrIDS is a hierarchically-controlled system, in that GrIDS components communicate
activity in sub-domains to components at a higher level of abstraction; the components-at
the higher level can then make inferences about activity occurring across a larger portion
of the network. These components can then direct components at lower levels-io act-or
communicate warnings to hosts in the sub-domains. GrIDS components communicate .
with each other using reduced representations of graphs which cross domain boundaries;
a component receiving one of these reduced graphs can request the full graph should it
need more information.

Commercial WS Evaluation
Intrusion detection software is now available from several commercial vendors. There is
a difficulty, however, in interpreting the true capabilities of these products-ffom-their
marketing claims. Each claims to detect similar types of computer attacks but it isn't
clear from the documentation how their algorithms differ or whether^hey-iely upon-the
same.attack signatures. We are engaged in an independent evaluation of these products
that compares the behaviors of different commercial systems when observing identical
attacks. Oftentimes the IDS is a network appliance and, rather than running as an
application on top of an independently installed operating system, the IDS runs on.as.the
system on a dedicated server. This requires an entire standalone machine.

Watchers
The goal of WATCHERS is to identify bad routers, which are routers that drop or
misroute packets, and routers that do not participate correctly in the WATCHERS
protocol.

WATCHERS Counters
Each router counts every packet that arrives or departs over its interfaces. Each router
also separately counts arriving packets that have been misrouted.

Data Byte Counters

06/22/00 07:49 FAX 206 5263210 ONR SEATTLE ^004

Henceforth we will refer to the first router in a packet's route as the packet's source, and
to the last router in a packet's route as the packet's destination. For any pair of routers, we
identify three types of packets for each direction of traffic. Each router counts the number
of data bytes in each packet, using a separate counter for each type. (WATCHERS counts
data bytes instead of entire packets because packets are sometimes legitimately
fragmented into smaller packets by routers. Thus, the number of packets that go into a
router per unit time does not necessarily equal the number of packets that come out.)
Figure 4 illustrates the three types of packets and the associated counters. Consider
traffic flowing from X to Y. The T^counter refers to packets that pass through both X
and Y. The ^counter refers to packets with source X that pass through Y. The Dxy
counter refers to packets with destination Y that pass through X. The other three counters
are similar, but for the opposite direction of flow. Routers X and Y both maintain copies
of all six counters to check each other during the WATCHERS diagnosis phase.

Counters for Packets from X to Y:

TXY
SXY

Ift,Y

Counters for Packets fromY to X:

TY.X

PY.X

SY.X

Figure 4: Packet byte counters

Misrouted Packet Counters

Each router also counts the number of times each of its neighbors misroutes traffic. For
each neighbor X of router Yr the counter MXj records the number of times router X
wrongly, with respect to the optimal path, forwards (misroutes) a packet to Y. To detect
such misrouting, each router maintains a copy of each neighbor's routing table. If an M-
counter value is larger than an acceptable threshold (possibly zero), then WATCHERS
identifies the associated neighbor as a bad router during the WATCHERS diagnosis
phase.

/

Communication in WATCHERS
Each router executes the WATCHERS protocol at regular intervals; each execution of
WATCHERS is a round. In each round, each participating router in the AS runs the
protocol concurrently. The first part of each round is devoted to communication. Each

06/22/00 07:50 FAX 206 5263210 ONR SEATTLE ^005

router records a "snapshot" of its counter values, and sends a message containing the
values to all of the other routers. When a router has received all of the counter values it
needs, it begins the diagnosis phase of WATCHERS.

Diagnosis

The WATCHERS diagnosis algorithm has three parts: preliminary checking, validation,
and conservation-of-flow analysis.

Terminology and Concepts

A testing router is a router running the diagnosis algorithm to test its neighbors (the
tested routers). A shared link is the link between a testing router and a tested router. To
test another router, a testing router needs to use its own counters, the tested router's
counters, and the counters from each of the tested router's neighbors.

Preliminary Checking

First, the testing router checks if any neighbor has misrouted too many packets, or
violated any part of the WATCHERS protocol. Each such neighbor is diagnosed
immediately as bad.

Validation

During validation, a testing router examines its neighbors' counters. Each neighbor's
counters for the shared link should match the testing router's corresponding counters. A
discrepancy between any pair of corresponding counters indicates that the tested router is
bad. (Small discrepancies can be tolerated, as explained later.)
Each testing router must also check if each neighbor's counters match the counters of
their neighbors. If a neighbor n has a discrepancy with one of its neighbors t, then the
testing router does not perform the next stage of diagnosis (conservation-of-flow
analysis) on n. Instead, the testing router assumes that n will diagnose t as bad, or vice
versa.
Validation cannot locate all bad routers. Validation identifies routersthat drop'packets
and then change their counters to conceal their behavior. To find bad routers that drop'
packets but leave their counters intact, we use conservation-of-flow analysis.

06/22/00 07:50 FAX 206 5263210 ONR SEATTLE 1^] 006

Figure 2: A sample router configuration labeled according to testing terminology.

A v A

Incoming Traffic Flow Outgoing Tra.ffic'PlDW
Figure 3: Incoming Traffic flow vs. outgoing traffic flow. X testing A from Figure 2.

Conscrvation-of-Flow. Analysis
In the second stage of diagnosis, a testing router performs conservation-of-flow analysis
on each neighbor.
For example, if router X in Figure 2 is the testing router, it performs a test on routers A
and B, its neighbors. To test the flow through A, X needs counters from A and each of A's
neighbors: C, E, and X itself. To test the flow through B, X needs counters from B, C, F,
and X itself.
Conservation-of-flow analysis is based on a simple principle: in any time interval, the
number of data bytes going into a router Qess the number of bytes destined for the router)
should match the number of data bytes that come out of the router (less the number of
bytes sourced by the router). The former quantity is the incoming traffic flow and the
latter quantity is the outgoing traffic flow.
For example, suppose X, in Figure 2, wants to test A. X can calculate A's incoming
traffic flow by using the counters for A's incoming edges (i.e., the counters tracking flow
from routers X, C, and E). The expression for A's incoming traffic flow (J^ is:

06/22/00 07:50 FAX 206 5263210 ONR SEATTLE ^007

(where the notation A^N indicates that A and N are neighbors.) The summation
does not include £>N,A> since this counter is for data bytes destined for A.

Similarly, the expression for A's outgoing traffic flow (0A) is:

The counters needed to compute the incoming traffic flow and the outgoing traffic flow
are illustrated in Figure 3. Now, to test A for conservation of flow, X simply compares A's
incoming traffic flow to its outgoing traffic flow. The difference in the two values should
be less than the fault tolerance threshold.

if (IA - 0A) > threshold then X diagnoses A as a network sink;
if (OA -h) > threshold then X diagnoses A as bad

(because A appears to be artificially generating packets).

The threshold value can be set to 0 for no fault tolerance. We discuss thresholds further
later.

Response
During a round of WATCHERS, a testing router can diagnose a neighbor as a bad router
for a number of reasons. In all cases, the testing router takes the sanae-<aotion6.-ft"fioods-£
routing update advertising the shared link as down (inoperable), which signals the other
routers in the AS to remove that link from their network maps. Also,-the4e6(Hig-r-GUter
ceases to send packets along that link and acknowledge traffic received on that link. After
all of a bad router's neighbors take these steps, the bad router is logically disconnected
from the network.

Critical Research Issues
To determine if it is practical to use WATCHERS in real networks, we are investigating
some critical issues. We describe two issues here: WATCHERS' scalability and fault
tolerance.

WATCHERS' Scalability

WATCHERS would be most valuable running in a large autonomous system, where it is
difficult to manually check and maintain the security of each router. Thus, WATCHERS'
scalability is a significant issue. Specifically, are studying WATCHERS' memory,
communication, and processing costs, and how these costs increase as the AS becomes
larger. We have demonstrated that these that these costs depend heavily on the number of
routers in the AS and the number of edges in the graph that models the AS (the router
graph). In addition, the communication and processing costs are proportional to the

06/22/00 07:51 FAX 206 5263210 ONR SEATTLE 10008

frequency of WATCHERS rounds. Table 1 shows the worst-case costs for both a ~full
AS," in which each router has a link to every other router, and for axv sparse AS," which
we define to be an AS in which each router has a maximum of three neighbors. We
analyzed costs in a full AS to show the'
a sparse AS because it is more realistic.

s absolute" worst case, and we analyzed costs in

Resource Units Cost: Sparse AS Cost: Full AS
Memory bits/router O(R') O(R')

Processing CPU cycles O(tf) O(R')
Communication bits/AS per WATCHERS round 0(R*) 0(R>)

Table 1: WATCHERS' Costs

Our analysis illustrates that WATCHERS' memory, communication, andlprocessing costs
can be expensive for a full AS but reasonable for a sparse AS. In both cases, whether or
not WATCHERS is practical depends on the frequency of WATCHERS rounds.
In our analysis, we did not include the costs of a message authentication system, which
would have added costs in all three categories.

Fault-Tolerance Thresholds

Ideally, the data byte counters of neighboring good routers should match perfectly, and
for each good router the corresponding misroutihg counter values should be zero. In
practice, though, the counter values may be different than the ideal values, even for good
routers. Three reasons why counter values may be different from the Ideal or expected
values follow.
• Typical network protocols, including several within the TCP/IP suite,"drop packets

due to errors in transmission or congestion in the network [6]. Thus routers with
extremely heavy traffic may drop packets at significant rates.

• Neighbors may not be perfectly synchronized when a new round of WATCHERS
begins due to propagation delays for the request messages. Assume'that there are??
routers in the AS, and let k = ceil(N/2). According to the RRR sub-protocol, each
router records a snapshot of its counter values as soon as the ifcth request messages
arrives. We call this instant the recording time. The difference in recording times for
two neighbors should be less than or equal to the delay on their shared link, since
flooding is used to distribute request messages. However, any difference in recording
times may cause the counter values of neighbors to disagree.

• Our misrouting detection method depends on neighboring good routers to agree on
the network topology. Since a good router sends routing updates whenever it changes
its own routing table, and its good neighbors immediately change their own tables
accordingly, any period of discrepancy between the routing tables of neighboring
good routers should be brief [8]. Moreover, in modem link-state routing protocols,
link costs are static and therefore link-state changes are infrequent [13]. Even so, a
momentary disagreement over topology may cause a router to increment an M
counter with the mistaken belief that a neighbor has misrouted a packet.

Therefore, WATCHERS should accept a counter value that is different from the ideal
value if the difference is less than a pre-selected threshold.

06/22/00 07:51 FAX 206 5263210 ONR SEATTLE ^°09

The threshold values will depend on the WATCHERS period (time between consecutive
rounds). The period should be adjusted to fit the environment. The period must be at least
äs long as the time needed by the slowest router to execute one round of WATCHERS.
The period should be short enough to avoid counter overflow. Since the threshold values
depend on the period, the period and thresholds should be adjusted together.
Setting the thresholds correctly is critical. If the threshold values are too small, too many
false alarms may occur. If they are too large, too many attacks might escape detection.
However, in some environments, choosing thresholds may be difficult, due to rapidly
changing conditions in the network (e.g., network load). Such environments may require
threshold values that change dynamically.

Automated Response to Intrusions
With current intrusion detection technology, it is possible to detect attacks in real time.
Typically, when an EDS system is triggered, a human operator is notified. The system is
then adjusted manually in response to the intrusion. Many types of attacks, however, can
only be thwarted if the response is quick. Responding quickly, without considering the
self-inflicted damage that a response might inadvertently cause, however, is equally
dangerous. Should the attacker discover the response mechanism, a willful triggering
could be a denial-of-service attack in itself.
To date, response systems have employed a multi-layered approach to the problem. A
locally controlled response layer, combining knowledge collected locally with
information sent from its immediate neighbors, is responsible for quick actions not
requiring time-consuming calculations and can stop attacks in progress. These responses
are necessarily severe and thus are deliberately limited to be short-lived to avoid massive
denial of service.
Clearly, a more intelligent response; a response that minimizes the selRffilicteoYdainage,
is possible if more time is allowed for the optimal solutions to be generated. This is
implemented as a response layer superimposed atop the local components. Local
response agents, in addition to sending messages to their neighbors, will send attack and
response information to a central processor for aggregation; response «election and
damage minimization. Damage estimates are derived from a policy that attempts to
capture the value of important system services in a parameterized model.
The Intrusion Detection and Isolation Protocol (IDD?) developed by a collaboration of
UCDavis, Boeing and NAI labs, represents a first attempt to produce this type of
cooperative response system. IDIP is a protocol whereby filtering routers, firewalls and
host-based response modules cooperate with intrusion detection systems, (IDS) to trace
the attack back to the source and stop it. An IDIP enabled network includes a centralized
Discovery Coordinator (DC). The IDIP DC operates on a global level, incorporating
information from multiple IDS reports and IDIP enabled sources. It contains a map of
network topology and a list of major services with their relative values. It recognizes
coordinated attack patterns, determines the optimal response and the placement in the
network that minimizes the impact upon critical services. If the least costly response is
worse than the potential damage due to the attack, no response is issuedJ
Considerable effort has been undertaken to produce an IDIP DC that optimizes responses
from the point of view of the entire protected network. Although the Discovery

06/22/00 07:52 FAX 206 5263210 ONR SEATTLE 1^010

Coordinator is in the best position to calculate the optimal response tactic, oftentimes the
time required to arrive at the solution makes issuance of the response irrelevant. If a site
is attacked by a self-propagating worm, for example, significant time is required to
recognize the traffic pattern, to decide how and where to respond and to issue the
response directive to the appropriate boundary controllers. The local IDIP components,
on the other hand, have direct access to the traffic logs containing the record of packets
used in worm propagation. Involving the local IDIP components in the response strategy,
then, insures that the system can react in the most timely and effective manner.
Additionally, the Discovery Coordinator represents a single point of failure, the loss of
which results in the total loss of the ability to optimize responses. Adding the capability
to optimize the global response posture to the local IDIP response component results in a
more robust fault-tolerant response system that continues to operate even with the loss of
several components. Previously, our method for response selection was based upon ad-
hoc, plausibility arguments supported by scenario based case studies. We are now
moving beyond this to a more formal model of response. Specifying response strategies
and behaviors using a state machine description allows us to analyze our responses for
arbitrary network topologies and detector locations and to prove that our responses will
be valid for any configuration.

Globally Optimized Response Using Local Control

Modeling Response - A State Machine Approach
First attempts at tackling automated response have relied upon ad-hoc response
heuristics. The IDIP protocol, for example, implements at network boundary devices the
strategy "Upon receiving an attack report, check whether relevant attack traffic was
passed. If so, filter the traffic and forward the attack report to immediate neighbors". The
goal for this strategy is twofold: to block the attack before it completes, andtolakerthe
blocking action as close as possible to the attacker's location. Evaluation of this as an
effective strategy was done heuristically, various attack scenarios and*a"varietytjf
network topologies were considered to verify that the correct response was obtained in
each case. Implementing new strategies, then, proceeds in an ad-hocmanner wilhihe
heuristic process repeated for each one. As more complex response strategies are
considered, it becomes unlikely that all pathological network configurations have, been
taken into account. With certain topologies, for example,, there may be alternate paths for
neighbor messages to propagate causing infinite IDIP message loops. Lack of a-model
strictly defining response component behavior has resulted in the implementation of only
simplistic locally controlled responses whose aggregate, network-wide response is overly
severe.
We are currently developing a state-machine model of local response agent behavior.
Nodes in the state diagram represent response postures of an enabled device. State
diagram edges represent transitions that occur when messages are received from
neighboring devices and specify messages sent to neighboring devices when making the
transition. Including more sophisticated response strategies proceed by adding additional
neighbor-to-neighbor messages (edges) and intermediate device states (filtering
postures). Local response strategies that are designed to minimize the negative impact on
normal system operation can then be built up from simpler strategies already developed

06/22/00 07:53 FAX 206 5263210 ONR SEATTLE 1^011

and proven. Rather than using case studies to argue that responses are reasonable, the
state machine description provides a specification against which proofs can be employed
verifying their validity when applied to arbitrary network topologies and detector
locations.

The Current IDIPIDIP Implementation in the State Machine Model
As an example of the state-machine model, figure 1 shows how current IDIP locally
controlled response would be specified.

c#0-'
«'«USe.^*^«-

<f a» Or-A

Figure 1: State-machine specification of the current local IDIP response. Devices
that have seen the specified attack traffic will filter to block the attack and inform
their neighbors with a "BLOCKED" message. Devices that haven't seen the
traffic will do nothing.

The aggregate result of this simple response strategy, when each local agent implements
it independently is all response-enabled devices along the attack path filtering-identical
traffic. Clearly this is an overly severe response. Only the device closest to the attacker
need filter traffic. After it implements its response, the filtering onall the-downstream
devices serves only to deny legitimate service and are clearly redundant. Current
solutions rely upon a centralized network level process to recognize ihis-aaddüsect the
downstream devices to remove their redundant filters.

State-Machine Extensions to Remove Redundant Responses
We take advantage of the state-machine model by adding additional message types and
response state nodes to produce a more complex and effective response strategies. Then,
when an attack is detected, the initiating device can request from among;a collection of
response strategies when informing its neighbors. Local devices then gain response
capabilities previously reserved for the global response component. A local response
agent knows the direction of the attack traffic that it has forwarded. If it receives a
"BLOCKED" message on the same interface as the source of the attack packet(s) it
knows that an upstream device has responded. Any further filtering, then, will be
redundant. Making simple extensions to the state diagram that specifies current IDIP
behavior implements this new response strategy that reduces the impact of aggregate
behavior on global network operations. Figure 2 shows the state diagram specifying the
new behavior.

06/22/00 07:53 FAX 206 5263210 ONR SEATTLE [£1012

#*'

Receive'NOTBLOCKED", or "BLOCKED

KI

 message m TARGET Interface

„**^
 <SC"d "BLOCKED- message> S

^ ai
§0
3§

"1 ' /

filter _

Figure 2: State-machine specification of a local response strategy that eliminates
redundant responses on the global network. Devices remove any filtering when a
closer device has responded.

Application of this response strategy locally results in a reduction in the impact on
network resources when seen from the global perspective. Rather than having multiple
identical and redundant responses to an attack, a single filtering router blocks the
malicious traffic and the downstream devices are free to route normal system traffic
unimpeded. In addition, relying only upon the interaction of local components to produce
a globally optimized response results in a more robust, fault tolerant system.

Extensions Producing Non-Localized Responses
The state-machine approach also provides a natural procedure that can be used to obtain
responses even in components not directly affected by attack activity; a taskJypically
performed by the global, central response processor. Many network topologies contain
multiple alternate paths between source and destination machines. When.oae Jink
becomes overloaded or unavailable, traffic can still continue over the alternate path(s).
When response actions that filter traffic are successful in isolating the.att'ariket„packets
could still be routed via an alternate link. Responses then would always remain one step
behind the attacker, with normal network fail-safe procedures providing access to the
target machine.
Extensions to the state-machine model can also produce a global response posture that
includes machines that haven't yet seen any of the attack traffic. Figure 3 shows a state-
machine specification of the attack strategy that will isolate the attacker on all possible
attack paths, not just paths previously taken by the attacker.

06/22/00 07:54 FAX 206 5263210 ONR SEATTLE 1^) 013

Receive "SOTBLOCKED", or "BLOCKED"
message on TARGET Interface

JioneJ ; KjfUter^

Figure 3: State-machine specification for the local response strategy that
will result in the aggregate global response of "Block along all possible
paths".

This new strategy is a simple extension of the strategy presented in the previous section.
A new state that produces a traffic filter response in devices that haven't seen any ofthe
malicious traffic has been incorporated. These devices now function as '"helpers"; when
their neighbor blocks the attack they will also block, isolating the entire neighborhood.
This alone, however, is insufficient since there is no mechanism for these filtering
devices to back off their response once the device they are "helping" «eaSees-it -is -not the
closest. Thus a new "NOT CLOSEST" message is added that tells these "helper" devices
to remove their filtering actions.

Further extensions
In this manner, a rich set of global filtering postures is generated. In addition to the
strategies described above, we have also developed a state-machine specification for.«
local response that isolates a detected self-propagating worm. Table x shows the
messages required for the strategies described above. We envision extending the response
strategies to include cost to mission critical resources. Analogous to the "NOT
CLOSEST" message, we might incorporate a "NOT CHEAPEST" neighbor-to-rieighbor
message that allows the response to be placed at the location with least cost to critical
mission resources. We also propose to incorporate trust levels into our response
strategies. A particular local device may choose not to filter based on messages from
neighbors that it doesn't trust completely, replying with a "NOT BLOCKED" message to
the untrusted device.

An Intrusion Detection and Response Test Bed
Pursuit of the previously described research projects requires a heterogeneous collection
of computers to host the intrusion detection systems, and a number of machines to serve

06/22/00 07:54 FAX 206 5263210 ONR SEATTLE 1^1014

as network infrastructure devices, such as routers and firewalls. The DURIP grant
awarded to the UC Davis Computer Security Lab has been instrumental in enabling the
purchase of the necessary hardware.

IDS 2

Router
Figure 0: Network topology of test-bed created from DURIP grant for intrusion
riatarfinn and resnnnse. research nrniertm.

To prototype our response systems and the watchers protocol, we require access to the
source code of the network devices. To this end we purchased a large collection of Intel
(1386) based machines. We configured several of these machines with multiple network
interface cards to create routers and firewalls for our ID&R research testbed. Our testbed
is composed of a single firewall offering a single interface to the Internet. Internally we
used and additional three machines to serve as routers. These are configured, as shown in
Figure 1, to create three separate LAN segments in a topology containing a possible
routing loop. On the three LANs are one or more machines running various IDS systems.
We use this to correlate the output of multiple systems reacting to the same attack
observed at different locations in the network. In addition, by running open-source
operating systems on the routers and firewalls, we have the freedom to insert our

06/22/00 07:55 FAX 206 5263210 ONR SEATTLE ^015

prototype intrusion detection and response systems into the underlying network servers.
Intrusions detected at one point in the network inform the customized routers and
firewalls which then implement a response action.

