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Executive summary 

An interdisciplinary research was undertaken to understand the deformation mechanisms and model 
material instabilities and phenomena occuring at small volumes including nanoscale thin films and 
ultrafine grain bulk materials. Both theoretical and experimental studies were conducted. The theoretical 
studies were concerned with further developing the gradient theory in order to capture the occurence of 
spatio-temporal instabilities, interpret the relevant scale effects, and use the results in a number of 
advanced technology related applications. The experimental studies were concerned with the fabrication 
and mechanical testing of novel materials at various scales of observation, as well as the determination of 
the relevant deformation mechanisms. An ultimate goal would be the derivation of appropriate 
constitutive equations for each scale of observation and the determination of the extent at which 
constitutive equation at the macroscale can be used to describe the mechanical behavior at the 
microscales. For convenience, we present the results in five major sections. 

In the first section we give the background and the state of the art on gradient theory and material 
instabilities, as this field was advanced by the PI and his MTU co-workers, as well as by researchers 
elsewhere. 

In the second section we discuss fundamental aspects of gradient theory including elasticity, plasticity 
and dislocation dynamics. The simplest possible gradient models for each of these three categories are 
presented and the governing differential equations are written down. The nature and microscopic 
interpretation of the gradient coefficients are discussed and explicit expressions for them are provided. 

In the third section we discuss applications of gradient theory at the nanoscale (dislocation cores, 
crack tips, interfaces), the micro and meso scales (dislocation patterns and persistent slip bands) and the 
macroscale (shear bands in metal forming and cutting technology). In discussing the structure of the 
dislocation cores and crack tips at the nanoscale we show that gradient elasticity can eliminate the strain 
singularity in these regions and provide an estimate for the size of dislocation core and the cohesive zone 
at the crack tip. Similarly, the structure of elastic and inelastic interfaces at the nanoscale are discussed 
and the strain distribution is obtained for both hardening (transition solutions) and softening (localized 
solutions) inerfaces. In discussing the problem of dislocation patterning at the microscale, the ladderlike 
dislocation structure of persistent slip bands (PSBs) is analyzed as an example. The Walgraef-Aifantis 
model of reaction-diffusion for dislocation populations is revisited by providing further support to the 
form of the diffusive and kinetic forms adopted in terms of the underlying dislocation mechanisms. 
Moreover, the process of persistent slip band precipitation until the whole specimen is filled up by PSBs, 
is described in terms of a gradient plasticity model at the mesoscale involving also stochastic arguments. 
Finally, two applications of gradient plasticity theory at the macroscale are discussed in terms of shear 
band formation and control during sheet metal forming and cutting. 

In the fourth section we discuss the issue of size effect and the calibration of gradient theory in terms 
of simple experiments to determine the value of the gradient coefficients. We show, in particular, that 
simple gradient elasticity and plasticity models can be used for the interpretation of size effect 
experiments in torsion and bending as well as in nanoindentation. In fact, the aforementioned gradient 
models are calibrated by fitting the corresponding gradient coefficients to the experimental data. Such 
type of size effect tests can thus be used for the experimental determination of the gradient coefficients. 

Finally, in the fifth section we discuss a number of experiments performed on a class of novel thin 
film and bulk materials at the nanoscale. The nanoscopic mechanisms of deformation are revealed and 
models based on these mechanisms are developed to interpret the observed behavior. Specifically, 



experiments on thin film nanostructured metals found that deformation occurred by grain boundary 
sliding and grain rotation in nanostructured gold deformed at room temperature, with grain sizes less than 
25nm. Bulk iron-copper nanostructures with grain sizes in the lOOnm size range exhibited perfectly 
plastic behavior and intense shear banding as the primary deformation mechanism. The models developed 
are able to determine the effects of grain size on strength, and to determine the constitutive behavior of 
nanostructured metals; In particular, the shear band angles, the shear band widths and the asymmetry in 
tension and compression. 
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EXPERIMENTAL AND THEORETICAL STUDIES OF SPATIO-TEMPORAL 
INSTABILITIES IN NOVEL MATERIALS 

1. Background and State of the Art 

A gradient approach to deformation was suggested by Aifantis [1,2] in 1982 to describe plastic 
instabilities, including dislocation patterning and spatial characteristics of shear bands [3,4]. In [5] the 
theory was readily applied to deduce the wavelength of persistent slip bands in fatigued copper single 
crystals, the width of stationary shear bands in metal polycrystals, as well as the width, spacing and 
velocity of Portevin-Le Chatelier bands in Al-5% Mg alloys deformed under constant stress rate 
conditions. This initial work and subsequent articles by Walgraef and Aifantis [6], Zbib and Aifantis [7], 
Vardoulakis and Aifantis [8], and Mühlhaus and Aifantis [9] have contributed to appreciating the 
potential and applicability of the gradient approach to a variety of material instability problems ranging 
from metal fatigue and polycrystal/soil shear banding to the failure of concrete and liquefaction. 

At the same time, other researchers have contributed substantially to the gradient approach: 
Coleman and co-workers [10,11] on mathematical aspects of the theory in relation to necking and shear 
banding; Kubin and co-workers [12,13] on the physical origin of the gradient terms for both dislocation 
and strain localization problems; Kratochvil and co-workers [14,15] on formulation aspects in relation to 
dislocation patterning; Hähner and co-workers [16,17] on microscopic and probabilistic aspects; and, 
finally, de Borst and co-workers [18,19], Belytschko and co-workers [20,21] and Tomita and co-workers 
[22] made significant contributions with emphasis on numerical aspects of the theory and its 
implementation to finite element codes. In parallel, other approaches (commonly referred to as non local 
damage theories [23]) have appeared in the literature as an outgrowth of earlier works by Eringen [24,25], 
and recent works by Bazant and co-workers [26-29]. Several outstanding issues and research directions 
have emerged as an outgrowth of the gradient approach. Among them, we mention the discrete 
dislocation simulation modelling (Amodeo and Ghoniem [30], Kubin [31], Groma and Pawley [32], 
Hirth, Rhee and Zbib [33]), the derivation of microscopic expressions for the gradient coefficients in 
terms of interatomic potentials (Triantafyllidis and Bardenhagen [34]; see also Triantafyllidis and Aifantis 
[35]), and the development of gradient thermodynamics theories (Maugin [36], Maugin and Muschik 
[37], Valanis [38], Polizzotto and Borino [39]; see also Aifantis [4]). Another major research direction 
that has been evolved rapidly as an outgrowth of the gradient approach was the development of finite 
element codes where the gradient term is used as a localization limiter, i.e. as a means of preserving well- 
posedeness and mesh-size independence in boundary value problems for strain softening ductile behavior 
and damage softening brittle behavior. In addition to the pioneer contributions of Belytscko and co- 
workers, de Borst and co-workers, Tomita and co-workers mentioned earlier, one should include here the 
original work of Schreyer and Chen [40], Oka et al [41], as well as the more recent ones of Sluys and 
Wang [42], Ramaswamy and Aravas [43], Pijaudier-Cabot et al [44], Geers et al [45], Comi and 
Driemeier [46]. In this connection, the gradient thermodynamic damage models of Fremond and co- 
workers [47,48] should be mentioned. Recently, important contributions have been advanced by Estrin et 
al [49] on a dislocation based gradient plasticity model, Tvergaard and co-workers [50,51] on a gradient 
plasticity model for necking and hydroforming of thin sheets, and Molinari and co-workers [52,53] on the 
use of higher order gradients for interpreting deformation patterning. Moreover, we refer to interesting 
contributions on the gradient coefficients made by Frantziskonis [54-56], Zbib [57,58], Ning et al [59], 
and Carmeliet [60]. [In this connection, it is noted that gradient terms with specific expressions for the 
corresponding phenomenological coefficients appear in recent constitutive models for random composites 
(see, for example, Drugan and Willis [61], Buryachenko [62])]. Finally, the work of Romanov and co- 



workers [63-65] on gradient dislocation dynamics for monotonic deformation and thin film problems, as 
well as an alternative approach of discrete dislocation dynamics simulations by van der Giessen and 
Needleman [66,67] are worth noting. It may not be an exaggeration to state that the motivation for all 
aforementioned work on gradient theory with applications to dislocation and deformation patterning may 
be traced back to the original article of the author [3] (see also [5]). In particular, the strain gradient 
plasticity models employed are based on a direct modification of flow stress to include the Laplacian of 
equivalent shear strain and the stress tensor in the resulting three-dimensional constitutive equations is 
symmetric (in contrast to the "asymmetric stress" or couple-stress theory of Cosserat type advocated by 
Fleck/Müller/Ashby/Hutchinson, their co-workers and followers, as will be discussed in detail below). 
Additional aspects of the gradient approach to deformation and its implications to instability and 
singularity problems at nano, micro and macro scales have been discussed by Aifantis in [68,69], as well 
as in [70,71] where theoretical estimates for the gradient coefficients are provided, and in [72] where 
nonlinear issues are emphasized. 

As mentioned above, a couple-stress or "asymmetric stress" strain gradient plasticity theory has 
been advanced recently by Fleck and co-workers [73,74]. This theory is of Cosserat type (but for plastic 
instead of elastic deformations) and is motivated by Ashby's concept of geometrically necessary 
dislocations. Some aspects on the relation between the Fleck et al. strain gradient plasticity theory and 
Aifantis' original gradient theory with symmetric stress are discussed in [71] with respect to the capability 
of these theories in predicting size effects in torsion and smooth profiles of strain distribution across 
interfaces. In this connection, a similarly motivated strain gradient theory of plasticity based on 
incompatible lattice deformations was recently advanced by Acharya and Bassani [75,76] with a 
comparison between their formulation and the original gradient theory given in [76]. Following the 
publication of Fleck, Müller, Ashby and Hutchinson [73] a number of articles have appeared applying 
their theory to plasticity problems at the micron scale (i.e. over a scale which extends from about a 
fraction of a micron to tens of microns) as plasticity applications at this scale are of increasing interest in 
electronics and MEMS. Specific applications include indentation, wire torsion and film bending, as well 
as debonding of ceramic particles in a metal matrix, void growth in a plastically strained solid, and crack 
tip plasticity. A brief review on these issues is contained in a recent report (of the US National Committee 
on Theoretical and Applied Mechanics) by Hutchinson [77], while more detailed considerations can be 
found in recent papers by Ma and Clarke [78], Smyshlyaev and Fleck [79], Hutchinson and co-workers 
[80-82], Shu and co-workers [83,84], Huang and co-workers [85,86], Nix and Gao [87], Stolken and 
Evans [88]. 

While such renewed interest in gradient theories can be understood in view of the remedies they 
provided in determining spatial characteristics of dislocation patterns (mesoscopic scales) and shear bands 
(macroscopic scales), actual experiments for the direct measurement of the new phenomenological 
coefficients, the so-called gradient coefficients, are lacking. Since gradient theories become particularly 
useful for small volumes, where the internal length introduced by the gradient coefficient is comparable to 
the characteristic dimension of the system, it follows that such experiments would be difficult to design 
and interpret. Nevertheless, an initial effort in this direction was reported in [68] where the gradient 
coefficient was determined from four-point bending tests of aluminum bars whose microstructure was 
engineered to gradually vary the grain size along the specimen axis. Similar work is currently being 
further pursued in several laboratories by realizing pure bending and torsion conditions for rods of 
varying diameter and detecting yielding at the outer surface of the rods. Such types of tests will not only 
provide the value of the gradient coefficients, but they will also bring light into related size effect issues. 

In fact, the size effect issue and the possibility of gradient theory to capture this effect has been 
another strong reason (in addition to providing estimates for shear band widths/spacings and wavelengths 
of dislocation patterns) for the renewed interest in gradient theories. The already mentioned recent work 
of Fleck et al [73] reports observations on increased normalized torsion hardening with decreased wire 



diameter from 170 ^m to 12 urn. Analogous results are reported by Stolken and Evans [88] (see also 
Stolken [89]) who observed an increased normalized bending hardening with decreased beam thickness 
from 50 ^m to 12 \i. Similar behavior, i.e. increasing strength with decreasing size, has also been 
observed in indentation tests (e.g. [90-93]; see also [78]) for the regime of 10 - 1 urn indenter size for 
which the corresponding hardness is approximately doubled. The same has been observed in metal 
matrix composites as reported, for example, recently by Lloyd [94] for the strength of an aluminum- 
silicon matrix reinforced by silicon carbide particles which increases significantly as the particle diameter 
reduces from 16 Jim to 7 |xm for fixed volume fraction. Such size-dependent material behavior has long 
been known in several scientific fields ranging from composite engineering to geomechanics (see, for 
example, [95-97] and references quoted therein) but the current demand of understanding novel material 
behavior at small scales has revived interest in the subject and imposed the need for additional 
experimental work. Preliminary results for modeling size effects by using gradient theory are reported by 
Aifantis [95] (Vardoulakis and Aifantis [96] and references quoted therein) with emphasis on single phase 
materials and geomaterials, as well as by Zhu, Zbib and Aifantis [97] with emphasis on metal matrix 
composites. 

In addition to the size effect issue, another problem for which the gradient theory has provided 
substantial insight was the topic of understanding at the nanoscale, the structure of crack tip and 
dislocation cores, as well as the structure of solid-solid interfaces. Preliminary results in this direction 
were reported by Aifantis [68Jl], while detailed considerations can be found in more recent papers by 
Aifantis and co-workers [98-102]. These considerations, which can eliminate classical strain singularities 
or discontinuities predicted by standard theories, are especially important since they can provide direct 
theoretical support associated with the interpretation of findings from experimental procedures recently 
developed (e.g. Kim [103]) for capturing the details of material configuration and deformation 
characteristics near crack tips, dislocation cores and interfaces. 

On returning to the issue of applications of gradient theory at the macroscale, two instability 
problems in manufacturing technology have been concidered. Both problems are concerned with shear 
band formation in metal forming and metal cutting respectively. In particular, forming limit diagrams 
(FLDs) are shown to be obtained for sheet metal forming in closer agreement with experiments when a 
gradient-dependent modification of Hill's anisotropic yield criterion is used. Similarly, in metal cutting, it 
is shown that instability analysis during "discontinuous" chip formation may provide a relation between 
machine tool velocity (which controls the feeding rate or process efficiency) and shear band spacing 
(which controls the chip size). More details on both of these problems may be found in [104, 105]. 

We conclude with a brief discussion of the main experimental findings and modeling efforts on 
novel thin film and bulk nanostructured materials. This work has been conducted by the PI and his MTU 
co-workers in order to detect the deformation and fracture mechanisms at the nanoscale, and evaluate the 
applicability of macroscopic constitutive modeling and gradient theory for interpreting the experimental 
observations. 

Nanostructured materials are a new, exciting class of materials which have only recently been 
studied. They have characteristic grain sizes approximately three orders of magnitude smaller than 
traditional structural materials. In situ transmission electron microscopy was used to study deformation 
mechanisms of thin film nanostructured metals, in order to ascertain deformation mechanisms directly. It 
was found that deformation occurred by grain boundary sliding and grain rotation when thin films with 
grain sizes of 10 nm were deformed at low rates. Direct evidence of grain rotation was obtained by 
tracking angles between crystallographic planes in adjacent grains during straining. These experiments 
were conducted on gold at room temperature, and these types of deformation mechanisms would not be 
expected in coarser grain sized materials at such a low temperature. At higher loading rates, intergranular 
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fracture occurred with little plasticity. Materials with grain sizes around 100 nm deformed by traditional 
dislocation-based plasticity. Bulk nanostructured metals were prepared by ball milling and HIP or forging 
techniques; these materials deformed by intense shear banding, and behaved in a nearly perfectly-plastic 
manner. 

Several different types of modeling were accomplished for nanostructured materials. By 
considering that nanostructured metals consist of two "phases", a boundary "phase" and a bulk "phase," it 
was possible to predict the effects of grain size on strength into the nanostructured regime with a rule of 
mixtures approach. Such a model predicted that the strength of nanophase metals should deviate from 
Hall-Petch behavior at approximately 20 nm, and the strength may decrease with decreasing grain size, 
but only at grain sizes less than 5 nm. The model is in reasonable agreement with the available data, most 
of which is for grain sizes 10 nm. A model for the grain size dependence and strain rate dependence of 
dislocation generation was formulated. The model considers image forces on dislocations which may be 
grown into a polycrystalline aggregate, or pulled from a grain boundary source. This simple model 
predicted that no dislocations should be present in the 10 nm grain size material, as was experimentally 
observed. However, at 100 nm grain size the image forces were not sufficient to remove all dislocations, 
and therefore the observed dislocation-based plasticity was predicted. A gradient elasticity model was 
derived for nanostructured materials, using the same "two-phase" material assumption as in the earlier 
strength model. The model shows promise for understanding "wavy" crack paths and crack bifurcation 
behavior that was observed in nanostructured metal thin film experiments. Also, two viscoplastic 
constitutive models were derived for nanostructured materials, based closely on the observations of grain 
boundary sliding and pore evolution in the thin film experiments. Finally, a pressure-dependent yield 
condition, a zero-extension criterion, and the gradient theory prediction of shear band thickness were 
adopted to model the anisotropy in tension-compression of ultra fine grain metals and their dependence of 
strength on the grain size. 

Details on all the above issues related to thin films and bulk nanostructures can be found in Refs 
[106-119]. 

2. Fundamental Aspects 

The starting point of the gradient theory is to incorporate higher-order gradients of the relevant 
constitutive variables into the respective evolution or constitutive equations. In the simplest case, the 
resulting gradient modification of dislocation dynamics, flow stress, and Hooke's law read respectively 

ap/9t = DV2p + f(p), (2.1) 

T = K(Y)-CV
2
Y, (2.2) 

Oy =Xekk5iJ+2uE,J-cV2(>Le)dl5ij+2IaEij), (2.3) 

where p denotes the dislocation density, (T, y) denote effective stress and strain for plastic flow and 
(Ojj.Ey) denote the stress and strain tensors for elastic deformation. The quantity f(p) is the standard 

source term of dislocation dynamics , K(Y) is the standard homogeneous part of the flow stress and (k,\i) 
are the Lame constants. The gradient coefficients D in Eq.(2.1), c in Eq.(2.2) and c in Eq.(2.3) denote 
gradient phenomenological coefficients the value of which is to be determined from appropriate 
experiments and/or appropriate microscopic arguments depending on the prevailing deformation 
mechanisms and the underlying microstructure. The strain rate and temperature dependence have been 
suppressed in Eqs.(2.1-2.3) for convenience. Such dependence is particularly important in problems of 
creep and recrystallization, as well as for dynamic shear banding and strain-rate dependent materials. 
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The gradient-dependent expressions of Eqs.(2.1-2.3) have been used successfully to predict 
dislocation patterning phenomena, shear band widths and spacings, as well as to eliminate strain 
singularities from elastic crack tips (e.g. Aifantis [5,68]). The value of the gradient coefficients can be 
inferred from such dislocation pattern wavelengths and shear band widths measurements, as well as 
measurements pertaining to the extent of dislocation cores and the structure of crack tip opening profiles. 
Direct estimates for the gradient coefficients can also be obtained from properly designed experiments. 
For example, pure bending experiments of asymmetrically deforming beams (due to an inhomogeneous 
engineered microstructure - e.g. grain size distribution along the beam axis) can provide estimates of the 
gradient coefficient c in Eq.(2.2). Preliminary results have already been obtained and a brief outline of 
this possibility has been reviewed by Aifantis [68,71]. The aforementioned experimental estimates for the 
gradient coefficients seem to be in good agreement with theoretical estimates obtained by using self- 
consistent arguments as discussed, for example, by Aifantis [71] and more extensively considered by 
Ning and Aifantis [99]. The self-consistent estimate for the gradient coefficient c gives the expression 
|c|= (ß+h)(d2/10), where ß relates explicitly to the elastic constants of the material in a fashion 
depending on the self-consistent model used, while h is the plastic hardening modulus. The parameter d 
stands for the grain size. 

The above discussion suggests the need for additional work on the interpretation of the gradient 
coefficients entering in Eqs.(2.1-2.3). For example, for the diffusion-like coefficient D, various 
dislocation mechanisms can be considered to obtain special expressions for it. They all lead to an 
expression of the form D=7<v>, where 7 denotes a mean free path and <v> the average dislocation 
velocity. Research in progress suggests that 7~ < bx2^ > 1^1 S2, where < 8x2

eff > stands for the 

amplitude of effective stress fluctuations, i^ denotes the corresponding correlation length and S is the 
strain rate sensitivity. If a cross-slip mechanism is assumed then it turns out that 
? = (h-,/f,)[l + 2(h0/h) + X(h0/h)2]exp(-h0/h), where l% denotes an average distance between cross- 
slip events, h0 denotes the distance of dislocation immobilization for dipole formation 
[ h0 =nb/2rc(l-v)(T-Tf); H is the shear modulus, b is the Burgers vector, v is the Poisson's ratio, x is 

the resolved shear stress and Tf is the friction stress], and    h=JhP(h)dh   with P(h) denoting the 

probability for the cross-slip height to be h. A simpler expression for 7 has been proposed in the past of 
the form 7 = Ilyc

3/3, where n denotes the cross-slip probability per unit glide area. For a polycrystalline 
situation with the elementary volume assumed to contain a large number of grains, it turns out that £= 
d<tan:cp>/4 where d denotes the grain size and <tan2cp> is a numerical factor resulting from the averaging 
of all gliding and grain orientations. If we distinguish between mobile and immobile dislocations, write 
standard dislocation dynamics evolution equations for both of them (without including diffusion-like 
coefficients at the outset), and then adiabatically eliminate the "slow variable" of immobile dislocation 
density, we obtain a diffusion term in the corresponding evolution equation for the mobile dislocation 
density which is now of the form of Eq.(2.1) with D=7<v> with 7 = v t^e, with v being the velocity and 
ti.fc. the mean lifetime of mobile dislocations. 

Similar arguments may be employed to derive microscopic expressions for the gradient 
coefficient c in Eq.(2.2) and a self-consistent argument leading to an explicit relation for c in terms of the 
grain size and the material constants was already provided above. The self-consistent method or an 
improved averaging procedure may be employed to consider different than polycrystalline situations; for 
example, a continuous distribution of dislocations, a continuous distribution of flat cracks, a continuous 
distribution of spherical voids, etc. In each case a different expression for the gradient coefficient c would 
result depending on the geometric characteristics of the underlying microstructure and the associated 
internal  lengths  (e.g.  void  size and  spacing).  In this connection,  it is pointed  out that special 
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configurations of "geometrically necessary dislocations" have been employed recently [120] for deducing 
an expression for the strain gradient coefficient of the "asymmetric stress" strain gradient theory of Fleck 
et al [73,74]. Such static considerations are also possible for the gradient theory embodied in Eq.(2.2) and 
various types of gradient terms of different degree and order may result depending on the particular 
configurations on the dislocation arrangement assumed (e.g. Taylor lattice, tilt walls, dipolar walls, etc.). 
Instead of elaborating further on the above mentioned static dislocation considerations in producing strain 
gradient terms, we consider below a dislocation kinetics origin of Eq.(2.2). 

Instead of Eq.(2.2), one may start with a standard expression X=K(Y,OC) where a is an internal 
variable whose evolution equation contains both a rate and a flux term (Aifantis [68,69]). For example, a 
may be identified with a dislocation density evolving according to Eq.(2.1). Then, in a one-dimensional 
setting, we may assume a. = Daxx + \|/(y) - <t»(Y)a where (y,<|>) are nonlinear functions of the plastic strain 

y. By considering the Fourier transform of the linearized part of this equation and "adiabatically" 
eliminating the fast variable a (note that for the spatial scales considered, a attains steady states much 
faster than y), it turns out that a in the flow stress dependence T=K(y,a) is replaced by a second gradient 
term in y. In fact, for a linear dependence of the form x=K(y,a)-A(X, the resulting equation is of the form of 
Eq.(2.2) with c=XAD/M2. If, in addition, a cross slip diffusion mechanism is assumed for the dislocation- 
like variable a^p, preliminary research gives the estimates X = (-3x/9p), A ~ (x_1 dx/dy)<v>, D - 

h: v / ^ where h,Es and <v> have been defined earlier. Typical values of the parameters involved give a 

value for the gradient coefficient |c| = 10~3N which is of the same order of magnitude as those obtained 

from self-consistent models and size effect calibrations [71]. 

The final issue to be discussed here is an outline of research in progress on a more general 
probabilistic approach that can be employed to deduce expressions for the gradient coefficients. Thus, by 
assuming that the strain y(r) is a random field given by a function of a random microstrain variable F, an 

expansion around the mean <r> of the form y(0 = y(<T >) + yr(T- <T >) + y2yrr(r- < T>)2 yields 

the  expression   <y(r)>=y-/2[(d
2C(T)/dr2)[_0]"'yxi   where   y = y(<r>),  C(r) denotes  the  spatial 

correlation of the microstrains. For an exponential C(r)=exp[-r/>-] or Gaussian C(r)=exp[-(r/X) ] 
correlation function, we can show that < y(T) >= y + ak2yxx where X is a correlation length and a = {1/2 

or 1/4} for exponential or Gaussian correlations. Then a constitutive equation of the form x = K[< y(T) >] 
can lead through an appropriate Taylor expansion to the gradient expression of Eq.(2.2). The sign of the 
coefficient c and its relation to the internal lengths involved, depend on the type of the correlation 
functions and the corresponding microstructures, as well as on the deformation state (hardening or 
softening). 

For the gradient elasticity relation of Eq.(2.3) the value of the gradient coefficient c may be 
deduced from the resulting wave dispersion equation as compared with a corresponding dispersion 
relation of lattice dynamics (see, for example, Brillouin's book on "Wave Propagation in Periodic 

Structures", Dover, 1946). This gives the estimate <Jc = a/4 where a denotes the lattice parameter. Other 
estimates for c are possible depending on the lattice or atomic chain model used and the interatomic 
potentials assumed. 
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3. Applications 

3.1 Gradient Theory at the Nanoscale: Dislocation Cores / Crack Tips / Interfaces 

In this section we first review recent and results in progress based on the use of gradient theory to 
determine the extent of dislocation cores, the structure of the crack tip and the character of solid 
interfaces. Then we outline additional research topics that we plan to consider within the proposed 
program. 

i) Dislocation Cores: Recently we have shown that elimination of strain singularity in dislocations is 
possible by including a gradient term in Hooke's law. The derived non-singular solutions can be used to 
estimate the extent of dislocation core and the nature of short range dislocation interactions, thus 
providing information which cannot be obtained by using classical elasticity theory. The results can also 
be used to calculate the elastic energy which is found to be finite without introducing an arbitrary cut-off 
radius. The special form of the gradient elasticity theory used is given by Eq.(2.3) with -Je =a/4 where a 
denotes interatomic distance. The strain components for a screw dislocation are then obtained as 

e„ =- 
4TI r2     rVc" 

K 
( r ^ 

Vc- ;£yz    4TC 

x 
~~2 

X:Kr    ^ 
rVc    \VcJ_ 

(3-D 

where b denotes the Burgers vector and r denotes the radial coordinate from the dislocation line. The first 
term in the bracket representing the singular classical elasticity solution and the second term with the 
Bessel function Ki representing the gradient elasticity contribution. It is noted that K,(r/vcj-»vc/r as 

r —> 0 and, thus, the gradient term cancels the elastic singularity as the dislocation line is approached. It 
also follows that a dislocation core may be defined at r~rc =1.25a, and the strain achieves extreme values 
at a distance -12% within this core . 

\/ 
-©- 

b 

-®- 
>|X 

0 ») *y. 

*£ hr 
Figure 3.1: Schematics of a screw dislocation dipole with arm d and strain distribution for (a) d=2vc and (b) 

d=10-\/c . Solid lines (1) correspond to the gradient solution and dotted lines (2) correspond to the classical elasticity 
solution. 

The corresponding gradient elasticity total strain energy E can be calculated explicitly as (R »Vc » 
r->0) 

E=iÜ|„.R 

4n     2Vc ' 
(3.2) 

leading to the disappearance of the cut-off radius usually assumed for the dislocation energy expression of 
the classical elasticity solution. Preliminary results for a dipole of screw dislocations are depicted in Fig. 
3.1. They show that the strain is finite at the dislocation lines, approaching a zero value as the dipole arm 
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d increases to infinity (non-interacting dislocations). Moreover, the strain is finite at the central point 
between the two dislocations, becoming zero when the two dislocations annihilate (d = 0). It is interesting 
to observe from the sketch (b) of Figure 3.1 that the gradient and classical solutions become identical at 
d = 5-\/c = 1.25a, thus providing another independent estimate for the size of the dislocation core. 

ii) Crack Tips : The above derived non-singular solutions can be used to obtain the crack opening 
displacement for a mode III crack by representing it with a continuous distribution of virtual dislocations. 
It can be shown that, in contrast to the classical elasticity prediction, the crack faces close smoothly with 
the strain being zero, instead of infinite, at the tip. This is shown schematically in Fig. 3.2 below 

(a) 
V     i<      * 

999 9 9 

(b) 

z   />     ^     J* 

o oooo. 
n(x)   o   - K/Vc 

Figure 3.2: Schematics of a mode-Ill crack extended from -1 to £ [sketch (a)] and its representation by means of 

an array of screw dislocations with distribution n(x)=x/V^2 -x2 [sketch (b)]. Sketch (c) shows the resulting crack 
opening displacement and the srriooth closure of the crack faces for the gradient elasticity solution (curve 1), in 
contrast to the parabolic profile (curve 2) of the classical elasticity solution and the associated strain singularity at 
the crack tip. 

iii) Interfaces : Here we show that inclusion of the gradient term leads to a smooth transition of the 
strain accross the bimaterial interface, in contrast to the classical theory of elasticity or plasticity giving 
discontinuous profiles. For the interface configuration of Figure 3.3, the corresponding strain field Ey, the 
equilibrium equation Oyj = 0 and the gradient-dependent constitutive equation read 

1 \° Y" 
£„ - — 

"     2 y 0_ 
dr/dy = 0 —> T = x" T = Ki(v)-ciV

2Y , (3.3) 

here x is the shear stress, y is the space coordinate normal to the interface and T°° stands for the applied 
shear stress at infinity. The homogeneous part of the flow stress K is, in general, a nonlinear function of y 
and c denotes as usual gradient coefficient (the index i = 1, 2 designates material 1 and 2 respectively). 

(a) 
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(b) 2E-5 (C) 
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- Case 2 (li=3jim.l^3 5|im) 
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0.026 0.030 0.034 
Shear strain 

Figure 3.3: (a) Schematic of bimaterial interface, (b) strain distribution accross the interface and (c) softening type of interfacial 
stress-strain graph for an inelastic interface. 

For a linearly elastic bimaterial   K{ (y) = HJ» where (ii and |X2 denote the respective shear moduli. It then 
turns out that the solution for the strain distribution accross the interface reads 
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X 

Hi 
1- Y   H L(-ihVM^r 

Hi F 
(3.4) 

where Hi denotes a "shear modulus" for the interface which is also assumed to behave elastically 

(XI=HIYI with Xi=x,=x2=x~ and YFYi^)- For u., sji^^/c, + VM
C

2 MWM^ + M-2V^i/ci)) 

we obtain Aifantis' solution [71] , while for |x, =\ii\i2(J^ + 'Ji^FWi'Jv^2+^'Ji^i)) with 

cj = \ij] /2 we obtain the solution of Fleck and Hutchinson [73a]. The first solution was obtained for the 

boundary conditions dy{/dy = cfy2/9y at the interface, while the second solution was obtained for the 

boundary conditions i\\ixd^xldy = (\\i2d^2/dy. However, the problem of interest is to consider the 
nonlinear stress-strain behavior at the interface, as this problem relates to surface tension and crack 
nucleation. While the Fleck and Hutchinson theory is difficult to apply in this case, there is already a 
method available for considering this problem within Aifantis' theory. In fact, for nonlinear behavior Ti = 
K(YI), it turns out that the strain distribution is determined by 

■f 
dy 

m =M*-}k(Y)-Ki(Yr)J*Y. (3.5) 

where K; (y~) = x°° and the values of the strain at the interface Yi and at the two outer boundaries of the 
bimaterial y,~ and y2°° should satisfy the "equal area" or " Maxwell's rule" condition /^[K^Y)-^^ = 0, 

for a non-convex or softening type graph x = Ki(y). Thus, for an inelastic interface of the 

form x, = xm - a(y, - Ym )2, where xra denotes the maximum (taken as lOMPa) of the x - y graph depicted 

in sketch (c) of Fig. 3.3 and a is a numerical coefficient (taken as 0.002), the smooth transition profiles or 
the strain localization profiles depicted in sketches (a) and (b) of Fig. 3.4 respectively, can be obtained by 
utilizing the solution of Eq.(3.5) and the condition Yi < ym for the case (a) or the condition yi > ym for the 
case (b). 
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Figure 3.4: Strain distribution accross the interface for (a) Yi < Ym and (b) Yi > Ym- 

These qualitative plots are given for different ratios of x°7xm and the values Ci = 0.01 N and c, = 0.001 N 
respectively, while the values of u,i and u.2 are taken to be u,, = 30 GPa and \i2 = 40 GPa . Results in 
progress for the case of a real interface between a thin film and a rigid substrate can be obtained by 
utilizing atomistic calculations (J.H. Rose, J. Ferrante and J.R. Smith, Phys. Rev. Lett. 47, 675-678, 1981) 
to motivate the expression for the "homogeneous" portion of the gradient-dependent constitutive equation 
for the flow stress K(y). Research in progress suggests that the resulting expression in scaled variables 

x*=x/xme, y* = (5eq/X)y, is x* = K(Y*) = ß2Y*e"Pr , where ß is a material constant, S"1 is the equilibrium 

interface separation and X is the range over which strong forces act. In Fig. 3.5 the scaled stress-scaled 
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strain (T*V) curve and the scaled strain distribution accross the interface are depicted in sketches (a) and 
(b) respectively. 

Figure 3.5: (a) Scaled stress- scaled strain curve, (b) Scaled strain distribution accross the interface. 

3.2 Gradient Theory at the Micro / Meso Scales: Dislocation Patterning / PSBs 

In this section we first revisit (through a justification of the gradient/nonlinear terms and 
probabilistic arguments) the Walgraef-Aifantis (WA) reaction-diffusion model of gradient dislocation 
dynamics as this was first used to discuss dislocation patterning phenomena. Then a procedure is outlined 
for extending this model on wavelength prediction of the ladderlike dislocation structure within a 
persistent slip band (PSB) to consider the process of strain localization, i.e. the filling up of the specimen 
with multiple PSBs. The WA model that was developed to obtain the wavelength of the ladder structure 
of PSBs occurring in cyclic deformation distinguishes between immobile and mobile dislocations of 
densities Pi and pm which are assumed to evolve according to the reaction-diffusion equations of the form 
[51 

at 
D, 

8x2 + g(p,)-f(p,,pm) ; 
3t 

= D, 
3x2 ■ + f(pi,pm). (3.6) 

with (D„ DJ denoting the diffusion-like coefficients for the immobile and mobile dislocations, f(pi7 pj 
denoting the interaction between mobile and immobile dislocations, and g(p() denoting the production of 
immobile dislocations. The interaction term f(ps, pj has the form f(pi,pm) = bpi ~YPmPf. while the 

production term g(p,) in its simplest form reads g(pt) = ccp° - ap: , - g'(p°) = a > 0. The coefficient b, 
which plays the role of the bifurcation parameter of the problem and depends on the resolved shear stress, 
represents the freeing rate of immobile dislocations for increasing stress, while the coefficient  y 

represents the pinning rate of mobile dislocations by immobile dipoles. The coefficient a, which for 
stability purposes needs to be positive, is a constant modeling the linear creation of immobile 
dislocations, while p,° is a constant denoting a reference homogeneous solution for the density of 
immobile dislocations. 

While this initial model was the first to predict, within a nonlinear dynamic analysis, the 
wavelength of the ladder structure of PSBs and the transition between the various patterns of dislocation 
structures occurring during cyclic straining, various important issues and critical questions were not 
addressed satisfactorily. One such issue is concerned with the derivation of appropriate microscopic 
expressions for the diffusion-like coefficients D, and Dm , and the origin of the reaction-like term pmpf . 
In fact, these three terms are necessary for discussing dislocation patterning and constitute the new 
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elements of the proposed WA model as contrasted, for example, to the existing Gilman-type dislocation 
kinetics models. Research in progress shows that a justification for the diffusion term D^pj / dx2 is 

obtained by identifying pi with the density of immobile dipoles and assuming a "dipole exchange" 
reaction mechanism (K. Differt and U. Essmann, Mater. Scienc. Engng. A164, 295-299, 1993). The 
resulting expression for Dj is Ds ~Pmt»y^/4 where v is the average dislocation velocity and yd denotes 

the mean dipole height. [An expression for Dm is given in [5] on the basis of an adiabatic elimination 
procedure also discussed in Section 2.] 

Similarly, a microscopic argument for the justification of the cubic term PmPj2 can be provided by 
again identifying pi with the density of the immobile dipoles and considering the coupling of the 
dynamics with point defect agglomerates of density p0. A kinetic equation for the evolution of the point 
defect agglomerates may initially be assumed of the form 3po/dt=aoPmPr ßoPoPm, with the first term 
denoting point defect formation by edge dipole disintegration and the second term denoting agglomerate 
"clean out" by moving dislocations. It may thus be assumed that a dipole stabilization occurs as a result of 
the competition of the process of agglomerate formation by mutual annihilation of dipole and mobile 
dislocation and the process of agglomerate removal by their "sweeping" by moving dislocations. By 
further assuming that the point defect agglomerate density po may be adiabatically eliminating (9po/3t=0) 
due to the short-lifetime of these defects as compared to time-scales over which the density of 
dislocations (p„ pm) evolves, we have p0=(0(o/ßo)Pi, a relation which may be used directly in conjunction 
with the term p0pmPi that now enters into the system of equations describing the (pi, pm) - dynamics, 
instead of the originally used term PmPi2. This combination leads to the substitution PopmPi —>PmPi »i-e. to 
the appearance again of the necessary for patterning cubic term in an indirect manner. In this connection, 
it is pointed out that consideration of a quadruple configuration mechanism also leads to a cubic term of 
the form ~(pmi))pmPi2 or ~y PmPi2- Finally, it is noted that the dependence of the bifurcation parameter b 
in Eq. (3.6) on the stress x which was not elaborated upon in the original WA model, turns out to be of 
an exponential form b ~y exp[Ax] where y is the strain rate and A=jxb/16TC(l-v). 

While the above arguments apply to the ladder structure of PSBs, no mechanism or theory was 
provided for the emergence and growth of PSBs themselves as zones of strain localization which fill 
gradually the specimen during the course of cyclic deformation. A phenomenological model for this 
problem can be developed by elaborating on the occurrence of a negative slope (unstable) regime in the 
cyclic stress vs. cyclic strain graph through the use of stochastic and gradient plasticity arguments to 
capture the evolution of the plastic strain rate in this unstable regime. Preliminary results have been 
reported recently (M. Zaiser, M. Avlonitis and E.C. Aifantis, Acta Materialia 46, 4143-4151, 1998) and 
are   recast   below.   Specifically,   the   probability   distribution   of  the   local   strain   amplitude   y, 

P*   (1°?[Y/YO !)• which depends on the externally applied stress amplitude teil is given by 

Pi
S
ex((u)=Nexp[-2V(u)/Q2], (3.7) 

where u=log[Y/Y0]with Yo denoting a reference local strain amplitude, N is a normalization constant, V 
is a non-convex 'potential' associated with the ideal cyclic stress vs. local strain-amplitude graph, and Q 
is a measure of the fluctuation amplitude Q= Soo2/2xextS0 with (S„, S0) denoting the asymptotic and 

instantaneous strain rate sensitivity]. Plots of Pf
s   (logfy/Yo]) are shown in Fig. 3.6. 
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Figure 3.6: Distributions of local strain amplitudes calculated for increasing average strain amplitude. It is seen that 
in the course of cyclic deformation, as the average strain amplitude increases in the plateau region, the probability 
density for the PSBs(YreB = 10"2) increases from zero to its terminal value. The opposite is true for the vein structure 

Moreover, the following expression for the average amplitude (YK^X.) 
as a function of te 

holds 

lYKL) = JP£. (u)Y(u)du = %JPI (u)exp[u In 10]du . (3.8) 

This relation may be inverted to yield, for the case of strain-controlled deformation, the external stress 
amplitude *ext<Y„,) as a function of the imposed strain amplitude, i.e. the cyclic stress-strain curve. This 
determines the value of the plateau stress in the cyclic stress-strain curves in accordance with the 
experiment as shown in Fig. 3.7. It also turns out that a correction to Winter's rule of mixtures for the 
vein and the PSB structure is obtained as shown in Fig. 3.8. 

To model the process of the specimen filling with PSBs in the plateau regime, we replace the 
homogeneous flow stress amplitude T,(Y) with a gradient dependent expression of the form 

Ts(Y)^xs(Y)-^2Ts(Y)[32logY/ax2], (3.9) 

where £/ is an internal length. This allows the determination of the width and spacing of the PSBs. It can 

be shown that periodic layers for the strain amplitude Y(X) with wavelength X(xMt,YI) determined by the 

relation 
Mt„.f,> 1 

|Y(x)dx, (3.10) 
MT„,,Y,)    o 

can be derived on the basis of the above listed gradient expression for the cyclic flow stress. [The 
integration constant % denotes the strain amplitude associated with the vein structure (Y, = YVeinXI (Fig- 

3.9). 
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confirmed by the scatter observed in experiments. 

3.3 Gradient Theory at the Macroscale: Forming Limit Diagrams and Chip Formation 

In this section the applicability of gradient plasticity theory in predicting spatial instability phenomena in 
manufacturing related processes at the macroscale is presented. Two particular problems are discussed. 
The first is concerned with constructing forming limit diagrams (FLDs) for sheet metals and the second is 
concerned with describing discontinuous chip formation during othogonal cutting. 

a)   FLDs 

A physical picture of localized neck formation in sheet metal forming is depicted in Figure 3.10 

20 



$?! f fry yYT 

(a) Uniaxial tension 

e 

> 

■WJ 

EÖTOOTw 

"1? 

(b) 

(d) Schematics of sheet with 
inclined neck 

Uniaxial tension 

Drawing deformation region 

,i   Majorstrain (£)) 

Plane strain deformation 

Equal biaxial stretching 

iaxial stretching region 

Minor strain (E2) 

(e) Schematics of FLDs 

Figure 3.10: Localized neck formation in sheet metal forming (a-c). 

Schematics of the sheet/inclined neck and the forming limit diagram (d,e). 

A central goal is to avoid this phenomenon by operating in a safe regime of the applied strains during the 
forming process. This leads to defining corresponding forming limit diagrams (FLDs). For sheet metal 
forming processes, a vertex-type theory of plasticity (see for example Aifantis [5]) of the form 

D..=HzHCT'.+Xd'. 
"       2x2      "    2T   " 

(3.11) 

may be used to describe the deformation. The quantities (D^o^) denote the strain rate and stress 

components, (T,y) denote, as usual, the equivalent stress and strain components, a dot denotes time 
differentiation, and a prime denotes deviatoric component. A gradient-dependent flow stress expression 
is assumed, with its rate form given by 

t = hY-cV2Y (3.11a) 
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with the hardening modulus h (h = öK(Y)/cfy,K(Y) = ky") given by h = knY""1. For plane stress conditions 

(0-33=0) and proportional loading (ß = D22/D„ = const)a standard bifurcation analysis gives the 

following expressions for the shear band (or localized neck) angle 0CT and the critical strain YCT 

ß<0 

ß<0 

e^arctanV1!, YCT = 

ecr=o, YCT = 

2nf(ß) 

1 + ß 

2ß2+n(2 + ß)2 

(2 + ß)f(ß) 

(3.12) 

(3.13) 

where f (ß) = ^1 + ß + ß2 • The above relations hold for the case c=0, while more complex results are 

obtained for the case c*0 which, however do not affect greatly the results of localized neck orientation. 

The obtained forming limit diagrams (FLDs) which correspond to the two cases c=0 and c*0 are 
given in Figure 3.11. More details on this topic, the use of Hill's anisotropic yield criterion including 
gradient terms, and the effect of strain path, can be found in [104]. 
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Figure 3.12: Predicted and experimental FLDs for (a) Aluminium 2036-T4, c=0, (b) AK-steel, c=0 and (c) AK- 
steel, c*0, comparison of predicted and experimental results (Hecker 1975) of FLDs for (d) 2036-T4 Aluminium 
and (e) AK-steel using Hill's anisotropic yield criterion [104] 
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b)   Chip Formation in Orthogonal Machining 

i)A physical picture of discontinuous chip formation is given in Figure 3.13b and a schematic one in 
Figure 3.13a. The basic premise is to adopt a one-dimensional analysis for the shear zone region indicated 
in Figure 3.13b. The governing equations are 

S^A 

'..1*v-.v. 

:"'.'■  i 

i.ir . 

.*! ?vyr^< 

Figure 3.13a: Schematic of localized chip formation 
Figure 3.13b: Localized (discontinuous) chip 

ar (do .. do} 
3y 

.    3u 

ay 

_ l 

at    " v. 

911 + YP (3.14) 

f 
pc, 

ae ae 
at+ °ay 

= ßtYP + k 
a^e 
ay2 

x = K(Y
p,YP,e)-c—V- 

dy 

where the various symbols are as follows: The quantities (x, y) denote shear stress and strain, \> is the 
material velocity in the shear direction and Vn is the feed (cutting) velocity normal to this direction, p is 

the density, G denotes shear modulus, yP denotes the plastic strain rate, cv is the specific heat, ß is the 

Taylor-Quinney non-dimensional coefficient that measures the fraction of plastic work converted into 
heat, k is the heat conductivity, 6 is the temperature and c is the gradient coefficient. On neglecting 
elasticity (G—>°°) and Vn (Vn«u), we can perform a linear instability analysis. Such an analysis 
illustrating the use of gradient plasticity to predict the shear band structure (and therefore the chip size) 
depicted in the figures is contained in [121] and more details can be found in [105]. Below we list only a 
summary of the main results as follows: 
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Critical localization condition:   H = 

dx 
H = 

dy 

ks 
c +  q2

; where H is the strain hardening coefficient, 

dx 
, s is the strain rate sensitivity, s = — > 0 and q is the wave number of the perturbation 

Internal Length Scale : £ ■■ 
H 

f 
c + - 

ks 

pcv 

Shear Band Width w: w « £ 

s 

H 

mx    ~ 1        k + cvs 
Characteristic time for the formation of shear localization tc: t. = — > —— 

o)p cvH 

r) In T 
where m is the strain rate sensitivity, m =  and co is the growth rate of the perturbation It 

dlny 

follows that the shear band spacing   d = Vctccan be estimated from the relation d = %, 
mf sin<p 

A cos a 
where x,  denotes a material constant withx,>l,f is the feed rate and Ais shear localization 

parameter defined asA = = - 
x 

( 
^ + 

ide 

xdy 
, with O being the thermal softening parameter 

given by 0 = — <0 and |^ = being the normalized strain hardening coefficient. It can further 
00 xdy 

be shown [105,121] that the flow localization parameter is expressed in terms of the material 
properties and cutting conditions as 

X = - 
n 
—+ 

ßO 
Y ( Ikv ^ 

pcv(n + l) 1 + 1.328-/—L 

0.664 
n + 1 — 

1 + 1.328, 

(3.15) 

Figure 3.14 shows the effects of feed rate on the shear band spacing for AISI-304 steel and Ti- 
6AI-4V at different cutting velocities. It is found that the predicted shear band spacing is in agreement 
with the experiments [122]. 
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Figure 3.14: The effect of cutting conditions on the shear band spacing 

A more elaborate relative perturbation analysis [105] can lead to the following threshold 
wavelength prediction 

m ̂ k0    pcve^ 

V 

(3.16) 
Vr     mTo ^ 

below which the initial perturbation will not grow. This may be viewed as a lower bound of the shear 
band width and can be readily evaluated for a cutting process where the rake angle, the cutting velocity 
and the feed rate are given. A stability condition for chip formation can then be postulated by the relation 
^th >6, where 5  is the size of shear zone. Moreover, based on the experimental observations, an 

instability criterion for chip formation can be established as -^-<r', where T* is determined by 
o 

experiments. 
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4. Size Effects: Gradient Theory Interpretation 

In this section we first review recent and results in progress on the interpretation of size effects in 
torsion and bending of solid bars by using a gradient modification of the strength of materials approach. 
This modification amounts into employing a gradient-dependent flow stress of the type (which is a slight 
generalization of Eq.(2.2) with m denoting a material constant) 

T = K(Y)-c,(VY-VY)m/2-c2V
2Y (4.1) 

The rest of the arguments (i.e, strain distribution, definitions of equivalent stress and strain, Hooke's law 
for the elastic strains and moment vs. stress distribution relation) are the same as in the standard 
mechanics of materials approach. Then, on the basis of Eq.(4.1) with K(y)=o0 and an assumed elastic- 
perfectly plastic behavior, it turns out that an explicit expression for the dependence of the yield strength 
Y at the outer surface of the bar on the size (radius a or height h) of its cross-section is obtained as 
follows 

( 
Y(a) = xo 

a' 

a2+(c2/G)+(c,/G)a 
Y(h) = a0 

h/2 

(h/2) + (c,/E) 
(4.2) 

for torsion and bending respectively. Fig.4.1(a,b) shows the fitting of experimental results obtained for the 
size dependence of the yield stress Y on the radius a of cylindrical bars subjected to torsion (J.L.M. 
Morrison, Proc. of the Inst. of Mech. Eng. 142, 193-223, 1939) and on the height h of rectangular beams 
subjected to bending (C.W. Richards, Proc. Am. Soc. Testing Mats. 58, 955-970, 1958). Similarly, for 
the recent experiments on increased torsional hardening with decreased wire diameter reported by Fleck 
et al. [73], Eq.(4.1) with K(y)=T:0+kf and an assumed fully plastic behavior we obtain the following size- 
dependent torque (M) vs. surface shear strain (YS) which is graphically shown in Fig. 4.1(c) 

— = 2ii 
a 

(x Y° Y Y    ^ 

3       n + 3     '3a     2 2a2 

v 
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Figure 4.1: Quantitative comparison between theory and experiment: (a) yielding behavior in torsion, (b) yielding 
behavior in pure bending and (c) hardening behavior in torsion (-Ci =538.2-1088.1 N/m and 10 c2 = 1.35-6.76 N). 

Similarly, reference is made to a recently published article by Stolken and Evans [88] where the 
"asymmetric stress" strain gradient plasticity model of Fleck and Hutchinson is used to interpret the 
observed size effect in bending of thin foils. This problem can also be discussed by using "symmetric 
stress" strain gradient models. In fact, by employing a gradient dependent strain energy density 
formulation which allows a direct comparison of the aforementioned two approaches, one may consider 

the form w = w(e)+ c, I Vel + c21 Ve|2; w(e) = e[3E e + 4V3S0 ]/8 is the homogeneous part of the strain 
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energy density with e = (2/V3)KJV| denoting the equivalent strain and (c,,c2) being gradient coefficients. 
The assumed expression for the homogeneous part of the strain energy density is the same as in Stolken 
and Evans [88] with Ep denoting plastic modulus (hardening coefficient) and E0 effective yield strength. 

Finally, by using the relation M = dW/dK (W = Jw dA) for the applied moment, we can obtain a moment 

(M) vs. surface strain (es) relation depicted with solid lines in Fig.4.2(a). The dotted lines correspond to 
the prediction of the Fleck-Hutchinson theory employed by Stolken and Evans [88] for a value of their 
internal length lc=6.2 Jim. [There is a departure of this prediction from the one reported in the 
aforementioned article of Stolken and Evans due to an error in their procedure when rescaling the moment 
and computing the corresponding theoretical values. The internal lengths h and l2 appearing in Fig.4.2 (a) 
are defined by /!=Ci/S0 and l2 =^c2/Ep . 

A more rigorous (as contrasted to the above described mechanics of materials approach) 
boundary value problem approach implemented by FE analysis has been used by Zhu, Zbib and Aifantis 
[97] for interpreting size effects in metal matrix composites. It was found that the strength of metal matrix 
composites decreases with increasing particle size of reinforcement under constant volume fraction for all 
three materials studied: Al-Si-Mg, A1-A1202, and Al-TiB2. The results of the gradient theory were in 
agreement with both existing experimental data and available microscopic dislocation models for these 
materials, as shown in Fig.4.2(b). The solutions are cumbersome and were evaluated numerically by 
employing a gradient plasticity model based on Eq.(2.2). 

(a) - -Symmetrie BöMBT CrfcS Mm, <i=Ä5 mm) 
- "Asymmetric atrea" 0t=6.2 Wn) 

(b) 

0.04 0.06 

Figure 4.2: (a) Fitting of Stolken and Evans [88] thin foil bending experimental results with the "symmetric stress" 
and "asymmetric stress" strain gradient models, (b) Calculated yield stress (0.2% offset) vs. particle size for an Al- 
Si-Mg metal matrix composite, showing gradient plasticity solutions for different gradient coefficients c, and for a 
dislocation-based model. The values of f indicate particle volume fraction. From Zhu, Zbib and Aifantis [97]. 

In concluding this section on size effects, reference is made to an open problem of increasing 
current interest: namely, the determination of hardness and related mechanical properties from indentation 
tests where the size of the indenter varies from the micrometer to the nanometer regime. A deeper 
understanding of the mechanics and physics associated with the contact and penetration phenomena in 
such small volumes is important from both the scientific and technological points of view, with 
implications ranging from device miniaturization and computer disk drive manufacturing to magnetic 
recording and tribological effects on piston wear. Quite remarkable phenomena, including discontinuous 
yielding and size-dependent hardness, have been recorded recently in such small-volume regimes. Size 
effects, in particular, have been observed as the indenter diameter D is reduced from 20 \xm to about 2 
Urn. The gradient dependent form of the flow stress given in Eq.(4.2) can be utilized, in principle, to 
provide an explanation for the dependence of hardness on the size of the indenter. By noting that H is 
proportional to the stress a (H ~ 3cr; Tabor's relation), we have 

H = H0-CI|VY|-C2V
2
Y, (4.4) 
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where m is again taken to be equal to 1 and H0 is the hardness in the absence of gradient effects. By 

approximating y with an average value equal to 2h/D (where h is the indenter's depth and D is the 
equivalent indenter's diameter) and using the rough estimates Vy ~ 2y/D,V2Y ~ 4y/D2, we can obtain 

from Eq.(4.4) a plot of H vs. D where the values of the gradient coefficients C! and c2 are adjusted to fit 
the experimental data of Nix and Gao [87]. The results are shown in Fig.4.3 with the parameters (H0, Ci, 
c2) taking the values (0.595 GPa, -2500 N/m, 0.414 10"3 N) for Fig.4.3(a) and (0.37 GPa, -853 N/m, 0.164 
10"3N)forFig.4.3(b). 
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Figure 4.3: Fitting the experimental results of size-dependent hardness H vs. D according to the gradient-dependent 
constituive Eq.(4.4) for (a) Cu (111) and (b) Ag (110) single crystals. 

5. Nanomechanics: Experiments and Modeling 

The results listed in this section are concerned with experimental and modeling studies of 
nanostructured materials, which is an emerging class of materials exhibiting very fine structural scales 
and a great deal of promise. Experiments were conducted on thin film and bulk nanostructures, and 
Sections 5.2 and 5.3 in this report deal with these subjects. Modeling of the mechanical and constitutive 
behavior of nanostructures was also accomplished, and is reported in Section 5.4. 

5.1 Physical Aspects of Nanostructured Materials 

Nanostructured materials are a unique class of materials having ultra fine grain sizes, typically 2- 
5 orders of magnitude smaller than conventional materials. For example, a typical steel has a grain size of 
10[im (10xl0"6m), while nanostructured materials have grain sizes below lOOnm (100xl0"9m). These 
materials have been studied in detail only recently, since about the mid-1980's, when techniques were 
developed to synthesize ultra-fine, single crystalline powders. Nanostructured materials have created a 
great deal of interest, due to the potential of improved properties in comparison to conventional structural 
materials. High-toughness ceramic and intermetallic materials have been developed, along with very high 
strength metal alloys. Processing is improved due to improved diffusion in the nanostructured material. 
Increased fracture strength has been obtained in brittle materials. Physical properties, such as density and 
thermal conductivity, are vastly different in nanostructured materials, and both metastable phases and 
increased solid solubility have been reported. Several reviews of processing and properties of 
nanostructured materials are available [123,124]. These reviews and the references quoted therein should 
be consulted for further information about basic materials issues. 
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Since the science of nanostructured materials is in its infancy, many aspects of material structure 
and structure/property relations are not known. Of particular interest here are the deformation behavior of 
nanostructured materials, and the associated constitutive behavior. As already mentioned, a material may 
be considered to be "nanostructured" if the grain size is on the order of 100 nm or less, while typical 
engineering metals have grain sizes between 5 and 100 urn. Figure 5.1 shows a physical model of a 
nanostructured material. Two types of atoms are present, one representing "boundary" atoms and one 
representing "bulk" atoms. The same two species are present in conventional materials, but only as the 
grain size approaches 10 nm does the fraction of "boundary" atoms become appreciable. In this range, 
depending on the assumed thickness of the "boundary" region, simple geometrical calculations show that 
the fraction of "boundary" atoms will approach that of the "bulk" atoms. Since the boundaries are more 
open and disordered, the material may viewed as consisting of two "phases." 

Figure 5.1: Schematic depiction of a nanostructured material, showing atoms which may be 
considered to be in grain interiors (grey) and atoms which may be considered to be in grain 
boundaries (white). 

The relevant deformation and fracture mechanisms at the nanoscale have not been sufficiently 
studied, and they are not well understood. For example, while in traditional metals and alloys the strength 
increases and the ductility decreases as the grain size gets smaller, at grain sizes of 10 - 20 nm some 
studies have proposed that a "reverse phenomenon" of decrease in strength with decreasing grain size 
occurs [125]. More recent studies have cast doubt on this early result [126], but the difficulties associated 
with producing clean, reproducible nanostructured materials in bulk have made experimental studies very 
difficult and mechanical property measurements suspect. Moreover, as the grain size approaches 10 nm, 
the classical deformation mechanisms such as the operation of Frank-Read dislocation sources and the 
formation of dislocation pileups and cell walls become increasingly difficult and irrelevant (dislocation 
core size is comparable to the grain size). Most of the speculation for the pertinent deformation 
mechanisms has centered around the increase in interfacial area and grain boundary triple junction density 
leading to enhanced room temperature boundary sliding or creep, and triple junction and nanopore 
migration leading to irreversible plastic deformation. However, the effects of nanopore density and 
morphology are not known and a relevant issue is whether current theories of monolithic or composite 
material behavior may be extrapolated to systems where grain or reinforcement size and spacing approach 
the range of 10 nm or less. 

29 



5.2.     Experimental Studies on Nanostructured Metal Thin Films 

Since the deformation behavior of nanostructured materials is not known, experiments were 
conducted to determine these mechanisms and aid in constitutive modeling. A convenient means of 
studying deformation in nanostructures is to deform thin films in situ, inside a transmission electron 
microscope. In traditional grain size metals, care must be exercised when applying the results of such 
studies to bulk materials, because the film thickness is significantly smaller than the grain size. In 
nanostructured metal films, this is less of a concern, because the film thickness is the same magnitude or 
greater than the grain size. Deformation mechanisms may be observed directly, at high resolution, in an 
atomic resolution microscope fitted with a straining stage. The experimental studies accomplished direct 
observation of deformation in nanocrystalline metals and composites, with grain sizes down to 8 run. 

The geometry of the thin film experiments is shown in Figure 5.2. A substrate, which is 
aluminum, a polymer, or carbon, is coated with a nanocrystalline gold layer [108-109]. If the substrate is 
the polymer or aluminum, it deforms in a controlled, ductile fashion, as shown in the figure. If the 
substrate is carbon, the substrate is brittle and much thinner, and it tends to crack and fail at a high rate. In 
either case, the deformation in the coating can be viewed directly after the loading has been interrupted. 
By loading in steps, the sequence of deformation can be ascertained with very high resolution. The 
observer is looking down from the top of the film. 

Figure 5.2 Schematic diagram illustrating the geometry of the in situ deformation and 
fracture experiment. A nanostructured gold coating (n-Au) on an aluminum, polymer, or 
graphite substrate is deformed and observed in the transmission electron microscope. 

Such studies have been conducted with nanostructural gold coatings (to observe the deformation 
characteristics of the nanophase material), and also with brittle silica coatings (to observe the deformation 
and fracture of the aluminum substrate at high strains.) The major new findings of these studies, related 
to deformation of nanostructured gold films, may be summarized as follows: i) Nanostructured films 
deform in a ductile manner, at grain sizes down to at least 8 nm; ii) Plastic deformation occurs in the 
finest grained samples (8-25 nm) without dislocation activity; iii) Nanopores which are present in grain 
boundary triple junctions grow during deformation, by an apparently diffusive nature, even at room 
temperature. This is a very low temperature for gold, and large scale diffusion would not be expected in 
traditional grain size regimes; iv) Direct evidence of grain rotation and presumably grain boundary 
sliding during deformation of these films has been observed. Again, grain boundary sliding would not be 
expected in traditional gold until a much higher temperature; v) Nanostructured gold coatings strained at 
high rates (on a carbon substrate) exhibit undulated fracture surfaces with a wavelength much larger than 
the grain size. Details of these experimental results are presented in References [108,109,111]. Key 
features are presented below. 
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(i) General Features of Deformation and Fracture - Nanostructured Gold [108] 

Figure 5.3 shows a typical microstructure during deformation of a gold film with an average grain 
size of 8 nm. In this case the gold film was deposited on top of aluminum, and similar results were 
obtained when the gold was deposited on a thin polymer substrate (which would have little effect on the 
deformation characteristics of the gold coating.) In the micrograph, the observer is looking down, 
perpendicular to the film which is being strained in the plane of the paper. 

Figure 5.3  TEM micrograph showing extensive plasticity, ligament formation, and crack growth 
by void coalescence and link-up in nanocrystalline gold (8 nm grain diameter) on Al substrate. 

Several important observations may be elucidated. First, the nanocrystalline gold deformed in a 
very ductile manner. This is clearly observable by examining the mating gold crack faces in the 
secondary cracking region; the material adjacent to the crack faces has deformed extensively, and the 
crack faces do not "mesh" as they would in the case of brittle fracture. Additionally, one may observe 
ductile ligaments which are bridging the secondary cracks (indicated by "L's" in the figure). These 
ligaments are necking and deforming permanently as the crack tip opening displacement increases. 
Figure 5.3 also shows evidence of crack growth by microvoid coalescence and link-up. These 
"nanopores" are indicated by arrows, and appear to be growing along the grain boundaries. This leads to a 
grain boundary "grooving" effect which can be clearly observed in the nanopores in the figure. [For 
example, the pore above the uppermost "L" is not symmetric; it is semicircular on top, but a grain 
boundary groove has formed on the bottom.] It is difficult to imagine this type of void growth and grain 
boundary grooving occurring without the aid of extensive diffusion, even though the homologous 
temperature is very low. The cracks observed in Figure 5.3 grew along the grain boundaries, apparently 
due to the growth and link-up of grain boundary voids. 

This growth of grain boundary nanopores has been directly observed in atomic resolution 
microscopy. Figure 5.4 shows a sequence of micrographs taken during crack growth in a nanostructural 
gold film. Ahead of the crack tip, a nanopore nucleated, Figure 5.4(a). Under further loading, the pore 
grew until only a ligament separated the pore from the crack, Figure 5.4(b). The ligament connected two 
different grains and narrowed until it pinched off at the grain boundary. After pinching off, the ligament 
rapidly disappeared to produce a grain surface of uniform curvature, Figure 5.4(c). 
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Figure 5.4   Lattice-image micrographs of in situ crack propagation in 8 nm grain diameter gold 
on a thin carbon substrate, (a) Intergranular crack propagation and nanopore formation in the 
grain boundaries ahead of the crack tip. (b) Crack growth and ligament formation, (c) Diffusion- 
based elimination of the ligament. 

The shape changes just described occurred without any apparent dislocation activity within the 
ligament. The smoothing of the ligament after pinching off at the grain boundary is certainly a diffusive 
process, and it is proposed here that the thinning of the ligament itself is caused by mass diffusion. A 
natural question which arises is whether this ligament formation and diffusion-based deformation is a 
thin-film effect or an artifact of the TEM environment. Although surface diffusion may be a factor, 
temperature probably is not, as previous investigators have determined that beam-heating of thin foils is 
limited to about 100°C. Furthermore, in situ straining experiments on coarse-grained materials [127] 
have resulted in ligament formation during ductile fracture, but this ligament formation was always 
associated with dislocation activity. Therefore, the observations of diffusion-based deformation in these 
nanometer grain size thin films cannot be ascribed to thin film effects alone; the grain size and atomic 
structure must be significant factors. 

A final observation concerning fracture regards periodic instabilities observed in 25 nm grain size 
gold films on carbon substrates. Figure 5.5 shows that the crack path became undulated, in an almost 
sinusoidal shape, after which crack bifurcation occurred. The wavelength of the crack undulation is 
significantly larger than the grain size. 
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(a) (b) 

Figure 5.5 Plastic deformation and fracture of 25 nm grain diameter gold film on carbon, (a) TEM 
micrograph showing periodicity before crack bifurcation, (b) Higher magnification TEM micrograph 
showing periodicity of crack path and plastic thinning along crack face. 

(ii) The Mechanisms of Plasticity in Smaller (<10 nm) Grain Size Nanostructures [111] 

As noted above, there was no experimental indication of dislocation activity within individual 
grains. That is, no dislocation images were observed within the grains after straining, and no contrast 
changes associated with moving dislocations were observed on videotape during in situ straining. This 
suggests that the ductile behavior was due to grain boundary processes such as grain boundary sliding. 

The deformation behavior was studied in the thin films, in the region ahead of a growing crack 
tip. The {111} and {200} lattice fringe images are easily observed for properly-oriented grains. These 
fringes lie parallel to the trace of the respective crystal planes. Because of the small scattering angle for 
electron diffraction, fringe images are expected to be observed only for those crystal planes with normals 
approximately perpendicular to the incident beam direction. Thus, a misorientation angle is specified in 
the image plane (corresponding closely with the film plane) for two nanocrystals with observable lattice 
fringes. A change in the misorientation between two grains by rotation is then observable by a change in 
the angle between the lattice fringes. This technique works very well, as long as the axis of rotation is 
nearly parallel to the electron beam and film normal; otherwise, the lattice fringes will go out of contrast 
as the diffracting planes are rotated away from the beam. It has been our experience that during 
deformation, lattice fringe contrast may change in some grains but not others, and that the loss of lattice 
fringe contrast in a given grain may be transient. 

An example is shown in Figure 5.6, in which a crack is growing from left to right in the 
micrograph and lattice fringes are imaged in most grains. The angles between the lattice fringes among 
several grains (labelled with letters in Figure 5.6) were measured at successive straining stage 
displacements. The grain misorientation angle between most of these grains was altered during 
deformation, indicating that the grains underwent a relative rotation with respect to each other. The 
relative rotation of the of the lattice fringes from two typical grains is shown in Figure 5.7. 
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Figure 5.6: High resolution lattice image of grains ahead of a crack tip, growing from left to right in the 
top half of the photo. 8 |im macroscopic displacement. 
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(a) (b) 

Figure 5.7: High resolution lattice images in the same area as Figure 6, showing a 6 degree change in 
the angle between lattice fringes of neighboring grains during straining. The grains being measured 
are labelled 1 and 2. (a) Before straining, (b) After 25 urn macroscopic displacement. 

The rotations observed for representative grains are given in Table I and plotted in Figure 5.8(a). The 
sign convention is as follows: the lattice fringes in Grain I define a material reference axis, and a 
counter-clockwise rotation of any grain with respect to the fringes in Grain I is arbitrarily defined as a 
positive rotation. Several interesting conclusions may be drawn from this data. First, significant relative 
rotations occurred; Grains F and I, which are separated by only one grain, rotated 15 degrees with respect 
to each other. Second, the rotation was inhomogeneous; for example, adjacent Grains C and D did not 
rotate at all, while adjacent Grains D and F rotated by 7 degrees. Finally, the measurements are self- 
consistent within approximately 2 degrees; that is, the rotations of pairs CI and DI are equal, and the sum 
of the rotations of pairs DF + DI are within 2 degrees of the rotation of pair FT, as is required by 
geometry. 

Table 5.1: Relative rotations of representative grains during straining 

Relative rotation between grain pairs, degrees 
Displacement, CD DF DI CI FI 

1 * 1 -1 -1 0 
2 0 * * * -1 
6 * * * 5 4 
8 -1 4 4 5 10 

25 0 7 6 6 15 

* = insufficient lattice image contrast for accurate measurement 
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Figure 5.8 Grain rotation and plastic strain during in situ loading, (a) Relative changes in 
angle during deformation between representative pairs of grains shown in Figure 5.6, as a 
function of displacement of the straining stage. Accuracy of measurement is ±2 degrees, (b) 
Effective plastic strain measured in the same area. 

The observation of grain rotation may imply the occurrence of strain via grain boundary sliding. 
Thus, it is of interest to determine the local strain tensor and the level of plastic strain associated with the 
deformation. Tensile loading of a cracked thin film is a plane stress situation, which simplifies the 
analysis. Therefore, the 2-D strain tensor may be determined by measuring the change in shape of a 
triangle in the deforming zone. By measuring the change in length of the sides of the triangle, an 
indication of normal strain in three different directions is obtained. This is analogous to a standard 
mechanical engineering "strain gage rosette" technique for measuring strains in a plane, and elementary 
relations are available for determining the strain tensor in two dimensions from the three independent 
normal strain measurements [128]. This technique should give a good approximation of the 2-D strain 
tensor when the changes in angle between the sides of the triangle are small. If elastic strains are much 
smaller than plastic strains, constancy of volume can be assumed, requiring that the sum of the normal 
strains must be zero. This allows the calculation of the normal (Poisson) strain in the direction of the film 
normal. A simple, scalar indication of the extent of plastic deformation is the "effective strain", which 
can be easily calculated from the plastic strain tensor [129]. In uniaxial tension, the effective strain is 
equal to the plastic strain. 

The difficulty in applying the technique described above lies in identifying three material points 
which can be unambiguously tracked during displacement of the straining stage. In the first analysis, the 
triangle shown in Figure 5.6 was used to determine the strain tensor. The corners of the triangle were the 
areal center of Grain S, and the centers of identifiable twins in Grains T and R. A second triangle, using 
grain boundary triple junctions in the same general area, yielded essentially the same results. With respect 
to a Cartesian coordinate system in which the foil normal is parallel to z, the crack is propagating along x, 
and the stress is being applied along y, the following strain tensor was calculated (using the triple junction 
triangle) for the complete deformation sequence (25 urn macroscopic displacement): 
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It is difficult to access the accuracy of this strain tensor. There are inevitable errors in identifying the 
same material point from step to step, which is necessary for placing the triangle. This is the major source 
of error. The measurement of the lengths of the triangle sides and angles will introduce further error. 
Finally, there is likely a stress gradient in the zone of interest ahead of the crack tip, and the analysis 
assumes uniform strain. Due to all of these uncertainties, the above- determined strain tensor must be 
viewed as a first approximation only. At this level of accuracy, the rosette-like analysis is a reasonable 
means for measuring the strain tensor. Confidence in this approach was developed further by comparison 
with a rigorous analysis, including finite plasticity and determination of the rotation tensor, which gave 
essentially similar results. 

The effective strain associated with the above plastic strain tensor is 28%. Even with the 
uncertainties in strain determination, it is clear that large plastic strains occurred, and that the plastic strain 
was much larger than the elastic strain. The effective strain is plotted against macroscopic displacement in 
Figure 5.8(b). The trends are consistent with the observed grain rotations (Figure 5.8(a)), in that the 
relative grain rotations and the effective plastic strains both changed much more rapidly in the first 8 urn 
of macroscopic displacement than in the final 17 Jim. 

(Hi) The Mechanisms of Plasticity in Larger (>100nm) Grain Size Nanostructures [111] 

Thin films with larger grain sizes were prepared by evaporation. Due to significant advantages in 
ease of film preparation and in the quality of the films, silver was used for this portion of the research 
instead of gold. In thin films with grain sizes around 110 nm, dislocations were observed both during and 
after in situ straining. An example is shown in Figure 5.9, in which a silver film with a grain diameter 
around 110 nm was strained until the film necked and fractured. Figure 5.9(a) shows a number of 
dislocations present in the vicinity of the neck, as observed by strain contrast, while Figure 5.9(b) shows a 
single dislocation present in the neck, as observed by lattice fringe contrast. Dislocation motion was also 
evident on video images obtained during the straining process. These experiments confirm that 
dislocations will be found in the in situ straining experiments if they are present, and therefore verify that 
there was no dislocation activity in the 10 nm grain size films. 
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Figure 5.9 Dislocations present after straining a silver film with 110 nm grain size, (a) Multiple 
dislocations, observable by strain contrast, (b) A single dislocation, observable by lattice fringe 
contrast. 

(iv) Summary of the Deformation Observations of Nanostructured Metal Thin Films [111] 

Our studies on nanostructured thin film metals and composites deformed inside a transission 
electron microscope (TEM), have allowed us to directly observe deformation mechanisms while they took 
place. These experiments were the first to demonstrate that metal films deform by grain boundary sliding 
and grain rotation, even at very low temperatures, when the gain size is 25nm and smaller [108,111]. 
These are mechanisms that are normally observed in metals at much higher temperatures. We may 
summarize our observations in two parts as follows: 

a)/0 nm grain size: It is apparent that significant plastic strain occurred simultaneously with the observed 
grain rotations. These observations are similar to the behavior observed in larger-grain superplastic alloys 
deformed at elevated temperature. Investigators who study superplasticity generally believe grain rotation 
is a result of unbalanced shear stresses associated with inhomogeneous grain boundary sliding. 

The rotation axis of most of the grains was essentially parallel to the film normal. This is clear 
because the lattice fringes remained visible after large relative rotations in the film plane, implying that 
there were no significant rotations which would cause a large change in the Bragg deviation parameter for 
the lattice planes being imaged. The observation that the grain rotation axis was perpendicular to the film 
implies that these rotations occurred in response to the applied stress, not to reduce surface energy, grain 
boundary energy, or in response to some other unspecified driving force. 
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The magnitude of grain rotation was inhomogeneous, as seen in Figure 5.8. Two possible 
reasons for this behavior are that the grain boundary structure was not conducive to grain boundary 
sliding, or that the grain shapes inhibited the rotation process. In any case, the experimental observation 
suggests that strain inhomogeneities may be present to the extent that local grain boundary fracture 
processes may be induced. This is consistent with the observation of multiple crack formation in 
nanocrystalline films with 'pore' formation and growth occurring at triple junctions [108]. 

The extensive grain boundary sliding, leading to grain rotation, is an effective mechanism of 
stress relaxation. At this small rate of macroscopic displacement and small grain size, the majority of the 
plastic strain appears to occur by grain boundary processes. If the contribution of grain boundary sliding 
to the plastic strain is large, the local stress may not exceed the stress required to generate mobile 
dislocations inside the grains. The lack of experimentally observed dislocation activity certainly suggests 
that the stress never exceeded the yield point of the individual grains. 

b) Effects of grain size [111]: At 10 nm grain size, no apparent dislocation activity was observed and 
fracture was intergranular, while at 110 nm grain size significant dislocation activity occurred and 
fracture was transgranular. Further work is in progress to identify the transition grain size. The 
observation of dislocation activity in the larger-grained films is important, because it verifies that there is 
no experimental difficulty in imaging dislocations in these nanostructured thin film straining experiments 
when dislocations are present. 

It may be argued that nanostructured metals deform by very rapid dislocation activity, in which 
dislocations sweep from grain boundary to grain boundary almost instantaneously, thus precluding direct 
observation. While this may or may not be the case in bulk nanostructured metals, it is difficult to 
imagine that such a mechanism could occur in thin films like the ones studied here without significant and 
experimentally-measurable consequences. Plastic strains around 30%, along with relative grain rotations 
up to 15 degrees, were observed. The grain rotation axis was normal to the foil, and only minor changes 
in grain shape occurred. In the absence of grain boundary sliding, this deformation would require the 
motion of a large number of dislocations, with a special distribution of Burgers vectors and slip planes. 
Presumably, at least a small fraction of these dislocations would be trapped in the grains during 
deformation, due to dislocation intersection processes if nothing else. Since no evidence of dislocation 
activity has been found in numerous experiments, it is likely that no significant intragranular dislocation 
activity occurred in these 10 nm grain size, thin film specimens. 

In summary, it was found that nanocrystalline gold films with grain sizes from 8-25 nm deform at 
room temperature in a ductile manner. However, dislocation motion is not responsible for the 
deformation, as it would be in traditional grain size gold. Instead, diffusion, pore growth, grain boundary 
sliding and grain rotation appear to be responsible for the plasticity. Some question remains as to whether 
this thin film behavior is representative of bulk behavior. 

5.3.     Experimental Studies on Bulk Nanostructures 

While the thin film experiments described above are of fundamental interest for determining 
deformation mechanisms, and are of interest in the areas of microelectronics and coatings, they are not 
structural materials. The production of bulk nanostructures for load-bearing components has been 
problematic for the entire materials community. The production of nanostructures is only possible in 
processes occurring far from equilibrium, by techniques such as gas condensation, ball milling, or thin 
film deposition. The product is a powder or thin film that must be consolidated. Consolidation of powders 
generally requires time at high temperatures, which coarsens the grain size catastrophically. 
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In this research, two techniques have been utilized to avoid catastrophic coarsening during 
consolidation. First, a two-phase system (Fe/Cu) which phase-separates has been chosen for initial 
studies; this type of system allows for pinning of grain boundaries by the minor phase, resulting in less 
coarsening. Second, rapid powder forging techniques have been adopted to fully consolidate 
nanostructured powders in a very short time at high temperature. The details are reported in Refs. 
[112,114]. 

(i) Structure and Mechanical Behavior of Bulk Fe-10%Cu Nanostructures [112,114] 

Mechanical ball milling was used to produce nanostructured powder particles with grain sizes 
around 15 nm. (Smaller grain sizes, down to 4 nm, have been obtained by others with this technique.) A 
90% iron - 10% copper alloy was studied, because copper is insoluble in iron. The structure which results 
after consolidation consists of copper precipitates on the iron grain boundaries, and these precipitates 
impede grain growth during processing. Consolidation of the powders into bulk materials was 
accomplished by hot isostatic pressing (HIP) and forging. The forging technique, which is more 
promising than the HIP technique because it is faster, is under development presently and is discussed in 
the next section. 

Alloys HIP'ed at 600 and 700°C for 30 minutes at 170 MPa were fully dense. As expected, the 
grain size coarsened substantially from the original 18 nm size. The final average grain sizes were 
approximately 100 nm after a 600°C HIP and 130 nm after a 700°C HTP. While significantly coarser than 
the 10 nm grain-size materials discussed above, these materials are still much finer that traditional steels, 
and may be considered to be in the upper range of "nanostructured materials." 

The mechanical and deformation behavior of these materials were quite surprising; essentially, 
they behaved in an elastic-perfectly plastic manner. This is demonstrated in the stress strain curves of 
Figure 5.10. In this figure, the iron material had much coarser grain size than the alloys, and it exhibited 
traditional strain-hardening behavior. The nanostructured alloys, however, exhibited either no strain 
hardening or softening upon yield. 
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Figure 5.10: Stress-strain curves obtained in compression, nanostructured Fe/Cu alloys. 
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The deformation mechanisms observed were also quite surprising. The first mechanism of plastic 
deformation was intense shear banding. Shear banding at the yield point was observed at all grain sizes 
investigated, from 100 nm to around 650 nm. As the grain size increased, the strength decreased and the 
shear band width increased. Typical shear bands from representative specimens are shown in Figure 5.11. 

(a) 
2mm 

(b) 

Figure 5.11 Massive shear bands observed on surfaces of compression specimens, 
(a) 100 hour heat treatment, grain size approximately 500 nm. (b) 500 hour heat 
treatment, grain size approximately 650 nm. 

The observation of shear banding as the first mechanism of permanent deformation, at static 
strain rates, appears to be unique among metals. Shear banding is normally observed at very high strain 
rates, and/or after large amounts of cold work, but not in annealed metals at slow strain rates. This 
behavior is observed, however, in amorphous polymers and metallic glasses [112]. This commonality of 
behavior between the nanostructured metals and amorphous materials is intriguing, and is being studied 
currently. Another interesting point is that the grain sizes present in these nanostructured alloys are on the 
same order of magnitude as the sub-grain size which is typically obtained before cold-worked metals 
begin to undergo shear-banding instabilities. This similarity may be a key in understanding shear 
banding, both in nanostructured metals and heavily cold worked metals. 

The mechanism of plastic deformation inside the shear bands is a topic of continuing study. 
Transmission electron microscopy of shear-banded material has revealed that the deformation within the 
bands is intense, while there is no deformation outside the bands. Figure 5.12 shows transmission 
electron microscope photos of a nanostructured iron alloy HIP'ed at 600°C, with an average grain size 
around 100 nm. In Figure 5.12(a), the grains maintain their original structure, while in Figure 5.12(b), the 
grains have been deformed and elongated to an aspect ratio of about 10:1. These photos were taken in 
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adjacent regions of the same specimen, approximately 10 nm apart, giving lucid evidence of the localized 
deformation mechanism which is occurring. 

(a) 
150 nm 0>) 

Figure 5.12 Transmission electron micrographs of shear banding in approximately 100 
nm grain size Fe-10% Cu. (a) undeformed region, (b) highly deformed region about 10 
urn away from the region shown in (a). 

(ii )Rapid Powder Forging of Bulk Nanostructures 

The HIP techniques were not able to consolidate Fe/Cu materials to full density without 
coarsening the grain size to a minimum of 100 nm. Further, the lack of shear deformation in the isostatic 
press precludes the shear flow necessary to heal processing defects. Therefore, rapid powder forging was 
evaluated as a consolidation technique at the end of this program. 

Nanostructured iron/copper powders were cold pressed to approximately 90% density with a 
uniaxial pressure of 700 MPa at room temperature in a disposable 316 stainless steel die. The die was a 
cylinder, with a 25 mm outside diameter and a 12 mm inside diameter, along with a lower disk and a 
plunger made of a nickel-base superalloy. Cold pressing was conducted in the same argon glove, box that 
mechanical milling and storing of the powders were done in, to avoid contamination and oxidation. The 
same die was transferred quickly to an argon-filled chamber in a servohydraulic loading frame.   The 
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entire die/powder assembly was rapidly heated under argon with an induction heater to temperatures 
between 500-700°C, and then pressed at 500 MPa and quickly cooled. The time at temperature was less 
than 2 minutes, as compared to approximately 40 minutes in the HIP. The specimen processed at 700°C, 
which is the only one which has been evaluated to date, was fully dense. The hardness of this specimen 
was approximately the same as the specimen which was HBP'ed at 100°C cooler, indicating that the grain 
size was approximately 100 nm. Current research is exploring lower temperature forging processes, in 
the hopes of obtaining fully-dense materials with grain sizes in the 50 nm regime. 

(Hi) Summary of Fabrication and Deformation Behavior of Bulk Nanostructures 

A brief summary of both fabrication and deformation behavior including shear band formation 
results of bulk nanostructured metals is given below: 

^Processing: These materials are very difficult to produce in bulk form, because the typical processing 
procedures used to obtain nanostructured grains result in fine powders. These powders must be 
consolidated into bulk form by the application of pressure and temperature simultaneously. Unfortunately, 
the application of high temperature results in rapid grain growth, since the driving force for coarsening 
(reduction of grain boundary area) is high at ultra-fine grain sizes. We developed a rapid forging 
technique that resulted in fully.-dense nanostructured metals, with very high purity. Mechanics modeling 
was successfully applied, and can be used to predict the densification rate. These results are reported in 
[130]. Iron with 10% coper was the model system chosen for this work, because it is possible to prepare it 
by ball milling with limited contamination, and consolidate it with minimal grain growth. Bulk samples 
with grain sizes from 45nm to \.l\im were prepared. 

The most interesting aspect of the work has been the recently-discovered mechanical behavior. These 
nanostructured metals behave differently than any other known material. In some ways, they behave like 
amorphous materials such as metallic glasses and glassy polymers. In other ways, they behave like 
metals, and some aspects of their behavior are unique. These issues are briefly explained below. Results 
are available in our already-published papers [112,116,117,118], and a comprehensive description of the 
results can be found in [119] 

b)Deformation behavior. The defromation behavior of the nanostructured metals is different than any 
known metal. The materials are elastic-perfectly plastic; that is, there is a well-defined yield point, 
followed by plastically without strain hardening. At the finer grain sizes, a strain softening instability was 
observed. This stress-strain response is accompanied by highly localized deformation, in the form of 
macroscopic shear bands. The shear banding occurs immediately after yield, and in no case was 
homogeneous plasticity observed. Shear bands were observed in both tension and compression. Examples 
of the shear bands and shear offsets which occurred in compression are shown in figure 5.13. It is seen 
that the widths of the shear bands increases as grain size increases. 
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Figure 5.13: Optical photographs of shear bands in compression specimens. Grain sizes are 
indicated. Wavy lines are intersections of shear bands coming out of the plane of the paper at 
an angle, (d) shows shear fracture at the end of a test, while (c) shows buckling instead of 
fracture at a larger grain size. 

While metals generally require the occurrence of significant homogeneous plasticity prior to 
shear banding, metallic glasses and amorphous polymers behave in the same manner as the 
nanostructured metals. They shear band as the first and only mechanism of plastic deformation, and 
exhibit perfectly plastic response as well. At the finest grain sizes below 100 nm, it may be considered 
that the nanostructured metal is a composite consisting of a crystalline "grain" phase and an amorphous 
"boundary" phase. In such a composite, it is reasonable to postulate that the amorphous phase might 
control the mechanical behavior, and this would result in similarities between amorphous metals and 
nanostructured metals. However, in this study, amorphus-like behavior was observed at grain sizes up to 
almost 2 um; in this size regime, the fraction of boundary material is negligible, so amorphous-like 
behavior would be difficult to rationalize based on a composite model. Research is continuing to explore 
these issues. 
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c) Shear Band Angles and Tension-Compression Anisotropy: The shear bands did not occur on the plane 
of maximum shear stress, or on the plane of zero extension, as would be predicted by continuum models. 
In uniaxial compression, the shear band planes were reproducibly inclined at 49° to the stress axis, instead 
of at 45°, in plane strain tension, the angles were between 52° and 54°, instead of 55°. Further, the strength 
in compression was about 30% higher than the strength in tension. While this type of behavior has not 
been observed in metals, it has been observed in amorphous polymers and some metallic glasses. In these 
materials, the angle of the shear band and the tension-compression anisotropy have been ascribed to a 
dependence of yielding on the hydrostatic pressure or the normal stress. In this researh, we derived a 
modified von Mises yield criterion with pressure sensitivity. In conjunction with a zero extension shear 
instability criterion, this yield criterion was able to correctly predict the angle of the shear band planes and 
the tension-compression anisotropy of the yield strength. More details can be found in [116] and [117] 
where results on shear band angles and widths/spacings on bulk ultra fine grained Fe-10%Cu 
polycrystalline alloys with grain sizes in the 50-2000nm range which were deformed in tension and 
compression are reported. The experimental results clearly show a strong dependence of the yield stress 
on the hydrostatic pressure (or normal stress), as well as a perfectly plastic behavior (no hardening or 
softening) which has not previously been observed for metals. They confirm, moreover, that excessive 
spatially distributed shear banding is the mechanism responsible for the observed perfectly plastic 
behavior. In addition, the measured shear band angles and widths were in good agreement with the 
predictions of the gradient theory. 

d) Effects of Grain Size and Temperature on Strength: While the nanostructured metals behaved like 
glasses with respect to deformation behavior and an apparent pressure sensitivity of plasticity, they 
behaved like traditional metals with respect to the grain size dependence of strength. In traditional metals, 
the strength (and hardness) as a function of grain size is usually described quite well by the Hall-Petch 
relation 

a = CT0+kd-"2 

where a is the yield stress, ao and k are material constants, and d is the grain diameter. Figure 5.15 shows 
the nanostructured metal hardness data in the form of a Hall-Petch plot, demostrating clearly that the 
nanostructured metals are similar to traditional metals in this respect. Further, the material constants were 
close to those for pure, coarse-grained iron. 
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Figure 5.14: Yield strength as a function of temperature for ultra-fine grained Fe-10Cu and other 
engineering materials. 
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Figure 5.14 shows the temperature sensitivity of the strength of Fe-Cu materials heat treated to 
have a grain size near lu.m. The plot shows data mostly for temperatures below room temperature, a 
regime in which traditional steels and metallic glasses exhibit a strengthening effect. It is observed that 
the fine-grained iron-copper behaves in a way that is intermediate between iron and metallic glasses, and 
behaves almost exactly like 1080 steel. 
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Figure 5.15: Hall-Petch plot of the hardness of the ultra-fine grained Fe-10Cu alloys. Hall-Petch relation is 
obeyed, and the constants are reasonably close to those of pure iron. 

It follows from the above a)-d) that the behavior of the nanostructured and micron-size Fe-Cu 
materials is unique. They act like metallic glasses and amorphous polymers with respect to deformation 
localization, shear band angles, and the tension compression anisotropy of strength, but they behave like 
steels with respect to Hall-Petch behavior and temperature sensitivity of strength. These observations 
have given us the opportunity to full explore deformation instabilities in several classes of materials. Our 
goal is to develop a deeper understanding of the mechanical behavior of materials in general, across the 
material structure length scales spanning from subnanometer (amorphous materials) to nanometer 
(nanostructured metals) to micrometer and millimiter (traditional metals). 

5.4.     Modeling the Mechanical Properties of Nanostructures 

Modeling of nanostructured materials has been approached in an interdisciplinary environment, 
from several different points of view. In particular, we have established (i) A model for the grain size 
dependence of the yield strength of nanostructures, (ii) A model for the critical grain size and strain rate 
necessary for dislocation-based plasticity in nanostructures, (iii) A gradient elasticity model for 
nanostructures with application to predicting oscillatory crack profiles, (iv) Two plasticity models for 
nanostructures accounting for nanopore growth and coalescence and (v) A model of shear band 
inclination and thickness analysis in relation to the observed asymmetry in tension/compression of bulk 
nanostructures. Some of these results can be found in Refs [110] for (i), [131,132] for (iii), [107] and 
[113] for (iv). Results on (ii) and (v) can also be found in Refs [115] and [116,117] and these will also be 
summarized below: 
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(i) A Model for the Critical Grain Size and Strain Rate Necessary to Obtain Dislocation- Based 
Plasticity in Nanostructured Materials [115] 

As discussed earlier in Section 5.2, there was a transition in deformation mechanisms in the 
nanostructured metal thin films as a function of grain size. Below 25 nm, dislocations were not present, 
and fracture was observed to occur along the grain boundaries. However, above 100 nm grain size films 
show traditional deformation mechanisms usually observed in large grain size materials; that is, extensive 
dislocation activity which induces plastic thinning, ligament formation and ductile fracture within an 
individual grains. The strain rate in both cases was slow, -lO^/s. The purpose of this section is to 
examine the change in deformation mechanism which was observed between specimens with a 10 nm 
grain size and specimens with a 100 nm grain size. Given that the strain rates for the deformation 
experiments on the large and small grain materials are essentially the same, a key question is what role 
that grain size might play in this phenomenon. 

There are indications that the local stresses are quite high during the deformation of the 10 nm 
materials. Small pores (~ 1 nm) are observed to open up at the grain boundary triple junctions located just 
ahead (~ 50-100 nm) of the crack tip [108,115]. These pores appear to be what are referred to as r-type 
cavities [133], known to occur as a result of grain boundary sliding. Based on the usual analysis, the pore 
diameter can be related to the local stress through the relation 

a>^ (5.1) 
r 

where y is the interfacial energy and r is the pore radius. The value of n in the case of a cylindrical pore at 
a triple junction may be taken as 0.5-0.7 depending on the contact angle. The stress is therefore 
determined to be on the order of ~ 1 GPa or -102 G, where G is the shear modulus. Although this is well 
beyond the yield point of 'normal' Au or Ag, no dislocation-based plasticity was observed in the 
experiments described in Section 5.2(H). The individual crystals in the nanograin material appear to have 
a significantly higher yield point than the corresponding normal grain size material. It is proposed here 
that this is related to the lack of dislocations, and thus the lack of dislocation sources, in the interior of 
nanocrystalline grains. This points to an analogy with the mechanical behavior of a defect-free whisker. It 
should not be surprising that the behavior of a grain in the nanocrystalline material has a high yield point 
for dislocation-based plasticity if dislocation production is difficult. 

As previously noted, no dislocations were observed in the interior of the grains in the 10 nm grain 
size material. A possible explanation of this observation and the resulting implications for the mechanical 
behavior of the nanocrystalline material is the image forces on dislocations due to the close proximity of 
grain boundaries. Attractive forces between dislocations and grain boundaries arise because there are no 
long range stresses associated with the low energy dislocation structure at a grain boundary. The elastic 
energy of a dislocation is therefore less in the organization of a grain boundary structure than a 
dislocation isolated in the grain interior [134]. As a result, there will be a reduction in energy as the 
dislocation approaches the grain boundary, provided there is sufficient thermal energy to allow for 
rearrangement of the grain boundary structure. This type of thermal energy is likely present during the 
deposition process. The strain energy of a dislocation can be written in a general form applicable to the 
two limiting cases to be considered in this model 

energy Gb2. fx + D/2 

length      4TI 
■In (5.2) 
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Eq. (5.2) is applicable when x »D and when x=0, where x is the distance from grain boundary and D is 
the spacing of dislocations in the grain boundary. For these two limiting cases, Eq. (5.2) reverts to the 
relevant expressions in [134]. The magnitude of the image force per unit length is determined by the 
derivative of Eq. (5.2) with respect to x. The image force per unit length (xb) acting to move a dislocation 
in the center of a grain of diameter d to the grain boundary is thus determined as the derivative of Eq 
af (e) = afo (e)+^'{e)d'i/2 evaluated at x=d/2»D, or 

xb-^- (5.3) 
2ral 

where T is the image stress. For a dislocation to be stable in the vicinity of the grain boundary during 
processing, the image stress must be less than the stress necessary to move dislocations from their original 
(grown in) positions. It is not straightforward to determine this stress. In the case of glissile dislocations 
on the {111} glide planes, and ignoring pinning effects of the grain boundaries on the "ends" of the 
dislocations as well as line tension forces (as the dislocation bows towards the grain boundary) and solute 
strengthening, this resisting stress would be the {111}<110> CRSS of pure gold, about 1-3 MPa 
depending on the purity. However, grown-in dislocations often thread crystals on planes other than the 
glide planes, and so the resisting stress may be dominated by the CRSS on non-glide planes. Further, thin 
film deposition is an energetic process, and so climb may be important. As a first approximation, we 
assume here that the resisting stress is about equal to the "yield stress" of commercial purity gold or 
silver, about 35 MPa. For d=lO nm, the image stress is on the order of 4xlO"3G or around 300 MPa. This 
is substantially greater than the yield point of normal Au or Ag (-35 MPa). This suggests that any 
dislocations which might be present in the grain interior during processing when the material is 'hot' 
would be forced to the grain boundary, resulting in dislocation free nanocrystallites. However; if the 100 
nm grains are considered, Eq 5.3 determines an image stress on a dislocation at the grain center which is 
less than the yield stress. This suggests that the dislocations are stable at the grain center and may act as 
sources for dislocation reproduction. 

The image force approach can be extended to consider the stress required to activate a grain 
boundary source by evaluating the derivative of Eq.(5.2) with respect to x at x=0 and assuming that D=b. 
This approximates the stress required to pull a grain boundary dislocation into the grain interior as 

T .= —= 12GPa (5.4) 
8b     271 

This appears to be well above the stress determined by the pore diameter measurements. In fact, at low 
strain rates grain boundary sliding may act to keep the stress lower than Tgb. Application of the Mukherjee 
model [135] of grain boundary sliding controlled plasticity to our case where d=10 nm, the strain rate is 
10"Vs, and the grain boundary diffusion coefficient is 10"15cm2/s gives a stress which is consistent with 
the pore diameter measurement. For this diffusion coefficient, the Mukherjee model has the form for 
Au/Ag 

(5.5) 

Using Eqs (5.4) and (5.5), it is possible to determine a critical strain rate at which dislocation based 
plasticity due to grain boundary sources might occur. In other words, when the stress in Eq. (5.5) 
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approaches the value of   in Eq. (5.4), grain boundary sources may become active. Carrying out this 
algebraic manipulation determines the critical strain rate at 

(5.6) 10" 
& critical -T— 

vdJ 4TI
2 

Eq. (5.6) agrees with the experimental observations in that the strain rate present in our experiments (10" 
4/s) is too low to observe grain boundary dislocation sources in the 10 nm material. But this strain rate is 
also just below what is required to observe active grain boundary dislocation sources in the 100 nm grain 
size material. However, dislocation sources may be present in the interiors of these larger grains. Another 
limiting factor as to the operation of grain boundary sources is the consideration that the large stresses 
required to activate dislocation sources in the 10 nm grains will not occur at the head of a pile-up, for 
there are no dislocations in the grain interior. In this case, dislocation structures cannot induce a line 
source of stress at the grain boundary. Instead, the stress will be applied more uniformly to the grain 
boundary. This may cause a loss of cohesion at the grain boundary and failure by brittle fracture before 
the activation of grain boundary sources. 

(ii) Yield and Shear Band Analysis of Bulk Nanostructured Materials 

This section is devoted to the discussion of the yield behavior of pressure-sensitive ultra-fine grained Fe- 
10%Cu alloys with emphasis on shear band width and orientation in both tension and compression. For 
convenience we divide the discussion in three parts 

a) Summary on Sample Preparation and Testing: Fe-10% Cu alloys were fabricated with powder 
metallurgy techniques. Mechanical alloying of elemental powders with an attritor system resulted in an 
ultra fine grained, single phase, supersaturated solid solution powder alloy in which the copper atoms 
occupied sites on the bcc iron lattice. The grain size was estimated with x-ray diffraction techniques to be 
18 nm. Consolidation of the powders by hot-isostatic-pressing caused phase separation, nucleation and 
growth of copper particles, and coarsening of the iron grains. The copper grains were nucleated on the 
iron grain boundaries and triple junctions. The average grain size of the consolidated samples ranged from 
90 nm to 160 nm depending on the consolidation parameters. Subsequent annealing treatments effectively 
coarsened the structure such that the average grain size of the alloy (including both copper and iron 
grains) ranged from 90 nm to 1.7 nm. Average grain sizes of the coarsened structures were estimated by 
point-counting techniques with electron and optical microscopy. Mechanical testing of these alloys 
included Vickers hardness testing, uniaxial compression testing and uniaxial tension testing. The 
compression test sample geometry was rectangular with an approximately square cross-section and an 
aspect ratio of ~ 2, as shown in Figure 5.16. The tensile test samples were rectangular, dogbone-shaped 
samples, also shown in Figure 5.16. Hardness test results displayed positive grain size hardening as 
compared with the scale of the microstructure and in accordance with the Hall-Petch relationship as 
detailed by Carsley [136] and are also explained in [119]. 

(a)Uniaxial compression 

A-. 
^ x:> 

T 

4 
(b) Uniaxial tension 

£ 

7 

^ 

1 
Figure 5.16: The geometry of the test samples, with schematic representation of the shear band planes 
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Plastic deformation of these samples was not uniform, but proceeded by inhomogeneous, localized shear 
banding. Figure 5.17 shows an optical micrograph of a typical compression sample with its corresponding 
stress-strain curve. It is seen that the alloy displayed nearly perfectly plastic behavior right from the yield 
point and deformed by intense shear banding as the only mode of plastic deformation. The angle between 
the load axis and the plane of the shear band was 49° as shown in the micrograph of Figure 5.17 and the 
schematic of Figure 5.16. All compression samples shear banded at this orientation regardless of the 
structural scale. 

Results of the tension testing also indicated perfectly plastic behavior with deformation occurring 
by shear banding as shown in Figures 5.16 and 5.18. It is seen that the shear band is contained within the 
"fillet" region rather than in the gage section of the sample. This was true for all tests. The trace of the 
shear band planes on the surface of the sample shown (plane 1-2) are at ~ 90° with respect to the load axis. 
The shear band planes, however, are oriented at an angle of ~ 54° from the load axis (as seen on plane 1- 
3). This angle was measured from the trace of the shear band plane on the thin sample surface which is 
also shown in the Figure 5.18. Further, the magnitude of the tensile yield strengths were observed to be 
only about 70% of the compressive yield strengths for common grain sizes. 

1200 

0.06 

Figure 5.17: Compression test sample: stress-strain curve and optical micrograph showing the shear bands. 

As already pointed out, the aforementioned experimental details and results are contained in [136] and 
they are also reported in [119]. The yield and associated shear band angle and shear band width 
measurements can be directly used to validate the various, theoretical arguments proposed to modeling 
the mechanical behavior of these materials as discussed in [116]. 

b) Basic Theoretical Relations Employed: The main theoretical relations from [116] to be used in 
connection with the experimental results given here are the following: 
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Figure 518: Tension test sample: stress-stain curve and optical micrographs showing the shear bands. 

• Yield strength in tension: 

• Yield strength in compression: 

rr 1    vs   aCTiy$ 

VJ2+«P = -^CTr+-y- = K 

rr 1    ys   acT3S 

i       (   \—T~ 
•    Shear band angle in plane strain tension:       8 = —h—sin"1 aJ  6       * 4    2 V3-a 

71      1        _, 
•    Shear band angle in uniaxial compression:     8 = cos 

1 4 
— a- 
3       3V3 

•    Shear band width: w = 0.4. 
R2(„  7-5v 
10 15(1-v) 

+ h 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

The above relations result from a pressure-dependent yield condition, a zero-extension shear band 
criterion, and a gradient-dependent estimate of shear band width as discussed below: 

- Pressure-Dependent Yield Condition 

The pressure-dependent yield condition reads 

f = f(aij) = Vj7 + ap-K = 0 (5.12) 

where p =-ott is the pressure and   J2 =— S^Sy (s^ = 0^ -pöjis the second invariant of the deviatoric 

stress. The coefficient a is a material parameter denoting the effect of hydrostatic stress on the yield 
strength K . Moreover, Eq (5.12) indicates that plastic deformation must be accompanied by a change in 
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volume proportional to the magnitude of a which must be less than v3/2 because a greater value would 
imply expansion in three dimensions under uniaxial tension. This property, commonly known as 
dilatancy, was the initial motivation for postulating on a phenomenological basis a yield criterion of the 
form of Eq (5.12) for soils (Drucker-Prager yield condition, see also [5]). A motivation for adopting Eq 
(5.12) for the present ultra-fine grained alloys may be sought to our earlier mentioned observations on 
nanostructured thin films and ultra fine grained bulk samples revealing the possibility of plastic 
deformation via the mechanisms of void formation and growth at triple grain boundary junctions as well 
as by grain rotation in addition to the traditional mechanism of conservative dislocation glide which is the 
dominant mechanism of plastic flow at larger grain sizes. It is thus natural to expect that yielding in these 
materials would depend on hydrostatic pressure, as this has a direct effect on vacancy generation and 
motion which, in turn, facilitate dislocation climbing processes, as well as void nucleation and growth. In 
fact, the pressure-dependent yield condition given by Eq (5.12) was readily derived in [5] on the basis of 
dislocation glide and climbing processes. 

- Zero-Extension Criterion for Shear Band Orientation 

A simple zero extension criterion et =0 was proposed in [137] in conjunction with the yield 
condition (5.12) for determining shear band angles in pressure-sensitive plastic materials. This criterion, 
which proposes that the shear band occurs on the plane in which the normal strain is zero, has been 
shown [138] to be more appropriate than using the maximum shear stress as the angle criterion. It turns 
out [116,117] that for the compression and tension configurations depicted in Figure 5.16, the above 
criterion produces the following results for the shear band inclination angle 0. 

Compression Samples: In the case of compression, the deformation state is uniaxial throughout the 
sample. The stress state is a special case of plane stress (rj, = 0"2 = 0, a3 < 0) and the shear band angle on 

71     1 
the 2-3 plane is given by [137] 0 = cos 

( 

\ 

— a 
3 

Tension Samples: When shear band failure takes place in section B, the sample is in an overall state of 
uniform, uniaxial tension. Then, it turns out that the zero extension criterion gives [137] 

9B = 
71      1 
—+ -. 
4    2 

( 
-sin 

1 
■ + a. 

>\ 

Next, we consider the case when shear band failure takes place in section A. This section is in plane strain 
tension on plane 2 (de2). The shear band angle on plane 2 is determined by applying the zero extension 

7t    1        (    I    3~~ 
criterion on this plane and is found in [137] as 8A = —+—sin"1 <xJ = F 4    2 V3-a2 
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Figure 5.19: The shear band angle in the 2-3 plane and the corresponding Mohr's circle. 
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Figure 5.20: The shear band angle in the 1-3 plane and the corresponding Mohr's circle. 

In fact for the two shear band configuration depicted in Figure 5.20 the corresponding state of stress 
is such that 0A =a,B = a,. In section B the planes 2 and 3 (plane i with i=l,2,3 designates the plane 

perpendicular to the i- axis) are stress free implying that o\ =o"j =0. In section A, because of the 

influence of the fillet, we have tfA * ° > ai *■ 0 • Tne flow m^ <*£„ = dA-—, based on Eq. (5.12), reads 
OCX;, 

[5] as den = dX 
S, 

[*fc 
+—8M 

3   ,J 
where e^is the plastic strain (elastic deformation is neglected) and the 

J 
plastic coefficient A. is determined, as usual, from the yield (or consistency) condition. During the tension 
process, the fillet region constrains the deformation in section A in the 2-direction which implies that 

d£Ais very small (deA~0), i.e. plane strain approximation. Then it follows that SA =—o^JA   and, 

subsequently, a simple calculation [137]  for pressure-dependent plastic materials yields (o3=0) 

j2
A=k): 

( 

( *\ 

3 

A = 
1_ 

2V3-OL1 
SL-2L \   3 

2     6 V3-a 

leading,        finally, to the relation Ao\A = KA where 

J) 

Section B is in a state of pure uniaxial tension, so it is easily 
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concluded that Baf = KB where  B = J- + — . It is noted that KA and KB denote the stress quantity used 
V3     3 

to express the yield condition given by Eq. (5.12). 

- Shear band width analysis 

The results of the previous paragraph on the shear band angles are based on a simple but effective 
theoretical argument which, however, does not provide any information on shear band widths. An 
instability analysis for the emergence and evolution of shear bands proposed recently by Aifantis and co- 
workers [3,5,7a,7b] can provide both shear band angles and shear band widths. This analysis is based on a 
strain gradient theory of plasticity with a gradient-dependent flow stress of the form 
T = k(Y)-cV2y where     T     and     y     denote    respectively    the    effective    stress    and    strain 

(x = Jj^ = J—SySjj, Y = A/2eijeij , ) and c is the strain gradient coefficient. Based on the above mentioned 

gradient-dependent flow stress expression, an approximate relationship between the width of the shear 

band w and the gradient coefficient c has been developed in [7b], which reads w = 0.4Vc . This formula, 
which was derived for AISI 4340 steel on the basis of an exact nonlinear shear band solution first 
proposed in [3] (in analogy with a mechanical theory of fluid interfaces [139,140]), can be used to model 
shear band width trends in a variety of materials. 

While shear band width data can be used for the evaluation of the gradient coefficient c, it is 
desired to obtain independent experimental or theoretical estimates for it. A discussion on the 
determination of the gradient coefficient c can be found in a recent review article [68,71]. In particular, as 
detailed in [59] the following relation can be obtained between the gradient coefficient c and the grain 
size d = R/2 of a polycrystalline metal (a typical grain was assumed to be spherical with radius R) 

D! 
c = — (3 + h).   The   coefficient    h=dx/dy    denotes   the   plastic   hardening   modulus   and   the 

10^     ; 

7-5v 
coefficient ß depends on the elastic constants and the self-consistent model used as ß = G where 

15(1-v) 

G is the shear modulus and V is Poisson's ratio. The combination of the last three equations listed above 
lead to Eq. (5.11) 

- Comparison with Experiments 

In this final section, we use the theoretical relations provided above to describe yielding, shear band 
angles and shear band widths for the interpretation of the experimental results obtained for the 
aforementioned ultra fine grained Fe-10%Cu alloy. The details will be given in [119] (see also [136]) and 
only a brief summary will be reported here which, however, is sufficient to validate the theoretical 
arguments advanced. 

The most consistent and reproducible data obtained from the experiments was the measurement of the 
shear band angle from the uniaxial compression test samples. The plane of the shear band was oriented at 
49° to the load axis and was independent of the scale of the microstructure. Based on this shear band 
angle, the pressure-sensitive material parameter a was calculated with Eq (5.10) to be 0.25. Shear banding 
in the tensile samples occurred in the fillet area between the gage and grip sections which is undergoing 
plane strain deformation, as explained earlier. The angle between the load axis and the plane of the shear 
bands was measured on the 1-3 plane, as shown in Figures 5.16, 5.18 , to be approximately 54°. These 
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data were used to verify the calculation of the pressure- sensitive parameter. For a= 0.25, Eq (5.9) was 
used to predict a shear band angle for plane strain tension of 52.3° which compares well with the above 
experimental value. 

The observed strength differences in tension and compression (see [119, 136]) provided another 
opportunity to confirm the pressure dependence of this material. For a given grain size, the yield strength 
in tension was - 70% of the yield strength in compression as shown in Table 5.2.The yield constant k was 
estimated from Eqs (1) and (2) for both uniaxial compression and for plane strain tension with a pressure- 
sensitivity coefficient a = 0.25. In actuality, the yield constant is independent of the mode of testing. The 
calculated results for k, listed in Table 5.2, indicate that the value used for the pressure-sensitivity 
coefficient (a = 0.25) models sufficiently well the measured yield strengths S[ys and s2

ys entering Eqs (5.7) 
and (5.8). 

Table 5.2: Verification of the yield condition for cc= 0.25. 

Grain size 

(nm) 

Tensile 
yield strength (MPa) 

Compressive yield 
strength (MPa) 

k 
(tensile) 
(MPa) 

k 
(compressive) 

(MPa) 

1170 526 721 348 356 
1370 484 694 320 343 

The yield strengths were used to verify the magnitude of the pressure-sensitivity coefficient a via a 
different approach. For a given grain size, the yield constant k and the pressure sensitivity coefficient a 
were solved for simultaneously using Eqs (5.7) and (5.8) and the measured yield strengths in tension and 
compression. The calculated parameters are listed in Table 5.3. The results indicate that a has a value near 
0.25 as determined above. The values of k and a were subsequently used to calculate the shear band 
angles shown in Table 5.3 with Eqs (3) and (4). Again, the obtained values for the shear band angles 
agree very well with the experimental data. 

Table 5.3: Verification of the pressure-sensitivity coefficient. 

Grain size 
(nm) 

k 
(MPa) 

a 0° 
(compression) 

0° 
(tension) 

1170 351 0.27 48.6 53.9 
1370 329 0.308 47.8 54.1 

This close agreement among the determined parameters using two separate approaches (as shown in 
Tables 5.2 and 5.3), provides further confidence in the model used. 

The width of the shear bands was observed to broaden with increasing structural scale (or grain size) of 
the compression test samples. The widths of the most prominent shear bands were compared to the grain 
size of the alloys as shown in Figure 5.21. Also shown in the figure (with the solid line) is the obtained 
estimate of shear band width as a function of grain size given by Eq 5.11. For this purpose, the shear 
modulus and Poisson's ratio were approximated as those of pure iron as found in the literature. The strain 
hardening parameter h was assumed to be zero because these materials were nearly perfectly plastic. 

It is concluded that the ultra fine grained iron-copper alloys investigated herein, exhibited a 
mechanical behavior which suggested a strong pressure-dependence of plastic flow. Shear banding 
occurred as the only mode of plastic deformation from the yield point with nearly perfectly plastic 
behavior in both tension and compression. The experimental observations on tension/compression yield 
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strength differences, shear band orientations and shear band widths were consistently interpreted on the 
basis of a pressure-dependent yield condition and a gradient theory of plasticity with the use of only one 
additional material parameter. 
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Figure 5.21: Shear band width versus grain size for the compression test samples 

56 



6. References 

[I] E.C. Aifantis (1982) Some thoughts on degrading materials. In S.N. Atluri and J.E. Fitzerald (eds) 
NSF Workshop on Mechanics of Damage and Fracture, Georgia Tech., Atlanta, pp. 1-12. 

[2]     E.C. Aifantis (1983) Dislocation kinetics and the formation of deformation bands. In G.C. Sih and 
J.W. Provan (eds) Defects, Fracture and Fatigue (Proceedings of International Symposium held in 
May 1982, Mont Gabriel, Canada), pp. 75-84, Martinus-Nijhoff, The Hague. 

[3]     E.C. Aifantis, On the microstructural origin of certain inelastic models, J. Mater. Engng. Technol. 
(Transactions of ASME) 106, 326-330, 1984. 

[4]     E.C. Aifantis, Remarks on media with microstructures, International Journal of Engineering 
Science 22, 961-968, 1984. 

[5]     E.C. Aifantis, The physics of plastic deformation, Int. J. Plasticity 3, 211-247,1987. 
[6]     D. Walgraef and E.C. Aifantis, Dislocation patterning in fatigued metals as a result of dynamical 

instabilities, J. Appl. Phys. 58, 688-691, 1985. 
[7] a) H.M. Zbib and E.C. Aifantis, On the localization and post-localization behavior of plastic 

deformation - I,II,III, Res Mechanica 23, 261-305,1988. 
b) H.M. Zbib and E.C. Aifantis, On the structure and width of shear bands, Scripta Met. 22, 703-708, 

1988. 
[8]     I. Vardoulakis and E.C. Aifantis, Gradient - Dependent dilatancy and its implications in shear 

banding and liquefaction, Ingenieur - Archiv 59, 197-208, 1989. 
[9]     H.B. Mühlhaus and E.C. Aifantis, A variational principle for gradient plasticity, Int. J. Solids 

Struct. 28, 845-857, 1991. 
[10]   B.D. Coleman and M.L. Hodgdon, On shear bands in ductile materials, Arch. Rat. Mech. Anal. 83, 

115-137,1983. 
[II] B.D. Coleman and D.C. Newmann, On adiabatic shear bands in rigid-plastic materials, Acta 

Mechanica 78, 263-279, 1989. 
[12]   L.P. Kubin and J. Lepinoux (1988) The dynamic organization of dislocation structures. In P.O. 

Kettunen et al (eds) Strength of Metals and Alloys (1CSMA 8), vol. 1, pp. 35-59, Pergamon Press, 
Oxford. 

[13]   L.P. Kubin (1993) Dislocation patterning. In H. Mughrabi (ed) Materials Science and Technology 
(Eds. R.W. Cahn, P. Haasen, E.J. Kramer) -    Vol. 6: Plastic Deformation and Fracture of 
Materials, pp. 137-190, VCH, Weinheim-New York-Basel-Cambridge. 

[14]   J. Kratochvil and S. Libovicky, Dipole drift mechanism of early stages of dislocation pattern 
formation in deformed metal single crystals, Scripta Met. 20, 1625-1630, 1986. 

[15]   J. Kratochvil, On the dynamic origin of dislocation structures in deformed solids, Mater. Sei. 
Engng., A164, 15-22, 1993. 

[16]   P. Hähner, Modelling the spatiotemporal aspects of the Portevin-Le Chatellier effect, Mater. Sei. 
Engng. A164, 23-34, 1993. 

[17]   P. Hähner, Stochastic dislocation patterning during cyclic plastic deformation of persistent slip 
band and matrix structures, Appl. Phys. A62, 473-481, 1996. 

[18]   L.J. Sluys and R. de Borst, Dispersive properties of gradient and rate-dependent media, Mech. 
Mater. 183, 131-149, 1994. 

[19]   L.J. Sluys, R. de Borst and H.B. Mühlhaus, Wave propagation, localization and dispersion in a 
gradient-dependent medium, Int. J. Solids Struct. 30,1153-1171, 1996. 

[20]   T. Belytschko and D. Lasry, Localization limiters in transient problems, Int. J. Solids Struct. 24, 
581-597, 1988. 

[21]   T. Belytschko and M. Kulkarni, On the effect of imperfections and spatial gradient regularization in 
strain softening viscoplasticity, Mech. Res. Comm. 18, 335-343, 1991. 

57 



[22]   Y. Tomita, Simulations of plastic instabilities in solid mechanics, Appl. Mech. Rev. 47, 171-205, 
1994. 

[23]   A. Huerta and G. Pijaudier -Cabot, Discretization influence on regularization by two localization 
limiters, J. Eng. Mech. 20, 1198-1218, 1994. 

[24]   A.C. Eringen, Continuum Physics, Vols. I-TV, Academic Press, New York, 1971 (Vol. I), 1975 
(Vol. n), 1976 (Vois. m,rv). 

[25]   A.C. Eringen, Theories of nonlocal plasticity, Int. J. Engng. Sei. 21,741-751, 1983. 
[26]   Z.P. Bazant and T.P. Chang, Instability of nonlocal continuum and strain averaging, J. Engng. 

Mech. 110, 1441-1450, 1984. 
[27]   Z.P. Bazant, T.B. Belytschko and T.P. Chang, Continuum theory of strain softening, J. Engng. 

Mech. 110, 1666-1692, 1984. 
[28]   Z.P. Bazant, Mechanics of distributed cracking, Appl. Mech. Rev. 39, 675-705, 1986. 
[29]   Z.P. Bazant and G. Pijaudier-Cabot, Nonlocal continuum damage, localization instability and 

convergence, J. Appl. Mech. 55, 287-293, 1988. 
[30]   R.J. Amodeo and N.M. Ghoniem, A review of experimental observations and theoretical models of 

dislocation cells and sübgrains, Res Mechanica 23, 137-160, 1988. 
[31]   L.P. Kubin, Dislocation patterning during multiple slip of FCC crystals-A simulation approach, 

Phys. Status Sol. A 135, 433-443, 1993. 
[32]   I. Groma and G.S. Pawley, Computer simulations of plastic behavior of single crystals, Phil. Mag. 

A67, 1459-1470, 1993. 
[33]   J.P. Hirth, M. Rhee and H.M. Zbib, Modeling of deformation by a 3D simulation of multiple 

curved dislocations, J. Computer-Aided Mat. Design 3, 164-166, 1996. 
[34]   N. Triantafyllidis and S. Bardenhagen, On higher-order gradient continuum theories in 1-D 

nonlinear elasticity derivation from and comparison to the corresponding discrete models, J. 
Elasticity 33, 259-293, 1993. 

[35]   N.Triantafyllidis and E.C. Aifantis, A gradient approach to localization of deformation - I. 
Hyperelastic materials, J. Elasticity 16, 225-238, 1986. 

[36]   G.A. Maugin, Internal variables and dissipative structures, J. Non-Equil. Thermody. 15, 173-192, 
1990. 

[37]   G.A. Maugin and W. Muschik, Thermodynamics with internal variables, part I: general concepts. 
Part II: applications, J. Non-Equil. Thermody. 19, 217-249, 250-289, 1994. 

[38]    K.C. Valanis, A gradient theory of internal variables, Acta Mech. 116, 1-14, 1996. 
[39]   C.   Polizzotto  and  G.   Borino,  A  thermodynamics-based  formulation  of gradient-dependent 

plasticity, Eur. J. Mech. A/Solids 17, 741-761, 1998. 
[40]    H.L. Schreyer and Z. Chen, One-dimensional softening with localization, J. Appl. Mech.-T. ASME 

53,791-797, 1986. 
[41]   F. Oka. A. Yashima, T. Adachi and E.C. Aifantis, Instability of gradient dependent viscoplastic 

model for clay saturated with water and FEM analysis, ASME Appl. Mech. Rev. 45, 140-148, 
1992. 

[42]   L.J.  Sluys and W.M.  Wang (1998) Macroscopic  modelling of stationary and propagative 
instabilities. In R. de Borst and E. van der Giessen (eds) Material Instabilities in Solids, pp. 489- 
505, John Wiley and Sons, Chichester. 

[43]   S. Ramaswamy and N. Aravas, Finite element implementation of gradient plasticity models, Part I: 
Gradient-dependent yield functions. Part II: Gradient-dependent evolution equations, Comput. 
Methods Appl. Mech. Engrg. 163, 11-32, 33-53, 1998. 

[44]   G. Pijaudier-Cabot, B. Gerard, N. Burlion and L. Molez (1998) Localisation of damage in quasi- 
brittle materials and influence of chemically activated damage. In R. de Borst and E. van der 
Giessen (eds) Material Instabilities in Solids, pp. 441-456, John Wiley and Sons, Chichester. 

[45]   M.G.D. Geers, R.H.J. Peerlings, R. de Borst and W.A.M. Brekelmans (1998) Higher-order damage 
models for the analysis of fracture in quasi-brittle materials. In R. de Borst and E. van der Giessen 
(eds) Material Instabilities in Solids, pp. 405-424, John Wiley and Sons, Chichester. 

58 



[46]   C. Comi and L. Driemeier (1998) On gradient regularization for numerical analyses in the presence 
of damage. In R. de Borst and E. van der Giessen (eds) Material Instabilities in Solids, pp. 425- 
440, John Wiley and Sons, Chichester. 

[47]   M. Fremond and B. Nedjar, Damage, gradient of damage and principle of virtual power, Int. J. 
Solids Struct. 33, 1083-1103. 

[48]   H. Costa Mattos, M. Fremond and E.N. Namiya, A simple model of the mechanical behaviour of 
ceramic-like materials, Int. J. Solids Struct. 29, 3185-3200, 1992. 

[49]   Y. Estrin, B. Sluys, Y. Brechet and A. Molinari (1998) A dislocation based gradient plasticity 
model. In A. Bertram et al (eds) Mechanics of Materials with Intrinsic Length Scale (Proc. 
Euromech-Mecamat EMMC2), pp. 128-135, Otto-von-Guericke-Universität, Magdeburg. 

[50]   A. Benallal and V. Tvergaard, Nonlocal continuum effects on bifurcation in the plane strain 
tension-compression test, J. Mech. Phys. Solids 43, 741-770, 1995. 

[51]   L.P. Mikkelsen and V. Tvergaard (1998) A 2-D non-local analysis of hydroforming of thin sheets. 
In A. Bertram et al (eds) Mechanics of Materials with Intrinsic Length Scale (Proc. Euromech- 
Mecamat EMMC2), pp. 242-249, Otto-von-Guericke-Universität, Magdeburg. 

[52]   Y.M. Leroy and A. Molinari, Spatial patterns and size effects in shear zones: A hyperelastic model 
with higher-order gradients, J. Mech. Phys. Solids 41, 631-663, 1993. 

[53]   C.Faciu and A. Molinari, A non-local rate-type viscoplastic approach to patterning of deformation, 
Acta Mechanica 126, 71-99, 1998. 

[54]   G. Frantziskonis (1993) Heterogeneity and its implications - Micromechanical, statistical, fractal 
approach and their similarity. In G.Z. Voyiadjis (ed) Damage in Composite Materials, pp. 137-160, 
Elsevier, Amsterdam. 

[55]   H. Dai and G. Frantziskonis, Heterogeneity, spatial correlations, size effects and dissipated energy 
in brittle materials, Mech. of Materials 18, 103-118, 1994. 

[56]   G. Frantziskonis, Letter to the Editor, Discussion of "Stochastic approaches for damage evolution 
in standard and non-standard continua - Int. J. Solids Struct. 32, 1149-1160, 1995", Int. J. Solids 
Struct. 33, 2261-2265, 1996. 

[57]   H.M. Zbib, Strain gradients and size effects in nonhomogeneous plastic deformation, Scripta 
Metall. Mater. 30, 1223-1226, 1994. 

[58]   H.M. Zbib (1994) Size effects and shear banding in viscoplasticity with kinematic hardening. In 
R.C. Batra and H.M. Zbib (eds) Material Instabilities, AMD-Vol. 183 / MD-Vol. 50, pp. 19-33, 
ASME, New York. 

[59]   J. Ning and E.C. Aifantis (1996) Anisotropie and inhomogeneous deformation of polycrystalline 
solids. In A.S. Krausz and K. Krausz (eds) Unified Constitutive Laws of Plastic Deformation, 
pp.319-341, Academic Press, San Diego. 

[60]   J. Carmeliet, Optimal estimation of gradient damage parameters from localization phenomena in 
quasi-brittle materials, Mech. Coh.- Frict. Mater. 4, 1-16, 1999. 

[61]   W.J. Drugan and J.R. Willis, A micromechanics-based nonlocal constitutive equation and estimates 
of representative volume element size for elastic composites, J. Mech. Phys. Solids 44, 497-524, 
1996. 

[62]   V.A. Buryachenko, Some nonlocal effects in graded random structure matrix composites, Mech. 
Res. Comm. 25, 117-122, 1998. 

[63]   A.E. Romanov and E.C. Aifantis, On the kinetic and diffusional nature of linear defects, Scripta 
Met. Mater. 28, 617-622, 1993. 

[64]   N. Liosatos, A.E. Romanov, M. Zaiser and E.C. Aifantis, Non-local interactions and patterning of 
misfit dislocations in thin films, Scripta Materialia 38, 819-826, 1998. 

[65]   K. Cholevas, N. Liosatos, A.E. Romanov, M. Zaiser and E.C. Aifantis, Misfit dislocation 
patterning in thin films, Phys. Stat. Sol. B 209, 295-304, 1998. 

[66]   E. van der Giessen and A. Needleman (1994) On the solution of two-dimensional plasticity 
problems with discrete dislocations. In A.K. Noor and A. Needleman (eds) Computational Material 
Modeling, AD-Vol. 42 / PVP-Vol. 294, pp. 53-70, ASME, New York. 

59 



[67 

[68 

[69 

[70; 

[71 
[72 

[73 

[73 

[74 

[75 

[76 

[77 

[78 

[79 

[80 

[81 

[82 

[83 

[84 

[85 

[86 

[87 

[88 

E. van der Giessen and A. Needleman, Discrete dislocation plasticity: a simple planar model, 
Modelling Simul. Mater. Sei. Eng. 3, 689-735, 1995. 
E.C. Aifantis, On the role of gradients on the localization of deformation and fracture, Int. J. 
Engng. Sei. 30, 1279-1299, 1992. 
E.C. Aifantis, Gradient effects at macro, micro, and nano scales, J. Mech. Behavior 5, 355-375, 
1994. 
E.C. Aifantis (1994) Spatio-temporal instabilities in deformation and fracture. In A.K. Noor and A. 
Needlemann (eds) Computational Material Modeling, AD-Vol. 42 / PVP-Vol. 294, pp. 199-222, 
ASME, New York. 
E.C. Aifantis, Pattern formation in plasticity, Int. J. Engng. Sei. 33, 2161-2178, 1995. 
E.C. Aifantis, Non-linearity, periodicity and patterning in plasticity and fracture, Int. J. Non-Linear 
Mechanics 31, 797-809, 1996. 

a)N.A. Fleck and J.W. Hutchinson, A phenomenological theory for strain gradient effects in 
plasticity, J. Mech. Phys. Solids 41, 1825-1857, 1993. 

b)N.A. Fleck, G.M. Müller, M.F. Ashby and J.W. Hutchinson, Strain gradient plasticity: Theory and 
experiment, Acta Metall. Mater. 42,475-487, 1994. 
N.A. Fleck and J.W. Hutchinson (1997) Strain gradient plasticity. In J.W. Hutchinson and T.W. 
Wu (eds) Advances in Applied Mechanics, 33, pp. 295-361. 
A. Acharya and J.L. Bassani (1995) Incompatible lattice deformation and crystal plasticity. In N. 
Ghohiem (ed) Plastic and Fracture Instabilities in Materials, AMD-Vol. 200/MD- Vol. 57, pp. 75- 
80, ASME, New York. 
A. Acharya and J.L. Bassani (1996) On non-local flow theories that preserve the classical structure 
of incremental boundary value problems. In A. Pineau and A. Zaoui (eds) IUTAM Symp. on 
Micromechanics of Plasticity and Damage of Multiphase Materials (Paris, Aug. 29- Sept. 1, 1995), 
pp. 3-9, Kluwer, Netherlands. 
J.W. Hutchinson, Plasticity at the micron scale. In Research Trends in Solid Mechanics (A report 
form the US National Committee on Theoretical and Applied Mechanics), to be published. 
Q. Ma and D.R. Clarke, Size dependent hardness of silver single crystals, J. Mater. Res. 10, 853- 
863, 1996. 
V.P. Smyshlyaev and N.A. Fleck, The role of strain gradients in the grain size effect for 
polycrystals, J. Mech. Phys. Solids 44, 465-495, 1996. 
Z.C. Xia and J.W. Hutchinson, Crack tip fields in strain gradient plasticity, J. Mech. Phys. Solids 
44, 1621-1648, 1996. 
Y.  Wei  and J.W.  Hutchinson, Steady-state crack growth and work of fracture for solids 
characterized by strain gradient plasticity, J. Mech. Phys. Solids 45, 1253-1273, 1997. 
M.R. Begley and J.W. Hutchinson, The mechanics of size-dependent indentation, J. Mech. Phys. 
Solids 46, 2049-2068, 1998. 
J.Y. Shu, N.A. Fleck and W.E. King (1996) Bicrystals with strain gradient effects. In Symposium 
on Interface Engineering for Optimized Properties, MRS Proceedings, pp.295-300. 
J.Y. Shu and C.Y. Barlow (1998) Strain gradient effects in the deformation of metal-matrix 
composites. In A.S. Khan (ed) Constitutive and Damage Modeling of Inelastic Deformation and 
Phase Transformation (Plasticity '99), pp. 523-526, Neat Press, 1998. 
Y. Huang, L. Zhang, T.F. Guo and K.C. Hwang, Mixed mode near-tip fields for cracks in materials 
with strain-gradient effects, J. Mech. Phys. Solids 45, 439-465, 1997. 
Z.Y Chen and Y. Huang, Fracture analysis of cellular materials: A strain gradient model, J. Mech. 
Phys. Solids 46, 789-828, 1998. 
W.D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient 
plasticity, J. Mech. Phys. Solids 46,411-425, 1998. 
J.S. Stolken and A.G. Evans, A microbend test method for measuring the plasticity length scale, 
Acta Materialia 46, 5109-5115, 1998. 

60 



[89]   J.S. Stolken (1997) The role of oxygen in nickel-sapphire interface structure. PhD dissertation, 
University of California, Santa Barbara. 

[90]   W.D. Nix, Mechanical properties of thin films, Metall. Trans. 20A, 2217-2245, 1997. 
[91]   W.D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient 

plasticity, J. Mech. Physics Solids, 46, 411-425, 1998. 
[92]   N.A. Stelmashenko, A.G. Walls, L.M. Brown and Y.V. Milman, Microidentations on W and Mo 

oriented single crystals: An STM study, Acta Metall. Mater. 41, 2855-2865,1993. 
[93]   W.J. Poole, M.F. Ashby and N.A. Fleck, Micro-hardness of annealed and workhardened copper 

polycrystals, Scripta Metall. Mater. 34, 559-564, 1996. 
[94]   DJ. Lloyd, Particle reinforced aluminum and magnesium matrix composites, Int. Mater. Reviews 

39, 1-23, 1994. 
[95]   E.C. Aifantis (1996) Higher order gradients and size effects. In A. Carpinteri (ed) Size-scale Effects 

in the Failure Mechanisms of Materials and Structures, pp. 231-242, E. & F.N. Spon, Chapman 
and Hall, London. 

[96]   I. Vardoulakis and E.C. Aifantis (1995) Heterogeneities and size effects in geomaterials. In A. 
Misra and C.S. Chang (eds) Mechanics of Materials with Discontinuities and Heterogeneities, 
AMD-Vol. 201, pp. 27-30, ASME, New York. 

[97]   H.T. Zhu, H.M. Zbib and E.C. Aifantis, Strain gradients and continuum modeling of size effect in 
metal matrix composites, Acta Mechanica 121, 165-176, 1997. 

[98]   D.J. Unger and E.C. Aifantis, The asymptotic solution of gradient elasticity for model III, Int. J. 
Fracture 71, R27-R32, 1995. 

[99]   G. Exadaktylos, I. Vardoulakis and E.C. Aifantis, Cracks in gradient elastic bodies with surface 
energy, Int. J. Fracture 79, 107-119, 1996. 

[100] I. Vardoulakis, G. Exadaktylos and E.C. Aifantis, Gradient elasticity with surface energy: Mode III 
crack problem, Int. J. Struct. 33,4531-4559, 1996. 

[101] M.Yu. Gutkin and E.C. Aifantis, Screw dislocation in gradient elasticity, Scripta Materialia 35, 
1353-1358, 1996. 

[102] M.Yu. Gutkin and E.C. Aifantis, Edge dislocation in gradient elasticity, Scripta Materialia 36, 129- 
135, 1997. 

[ 103] K.S. Kim (1997) Nanomechanics of dislocation cores and their instability. 2nd Euroconference and 
International Symposium on Material Instabilities in Deformation and Fracture, 31 August - 4 
September, Thessaloniki. 

[104]  X.H.  Zhu, Thepretical Analysis of Sheet Metal Formability, Ph.D.  Dissertation, Michigan 
Technological University, 1999. 

[105] J.Huang, Adiabatic Shear Banding ans Shear Localized Chip Formation, Ph.D Dissertation, 
Michigan Technological University,2000. 

[106] W.W. Milligan, S.A. Hackney and E.C. Aifantis, Observations and modelling of   deformation and 
fracture in nanostructural materials, in: AFOSR Mechanics of Composites Review, pp.  1-10, 
Wright Patterson Lab, 1992. 

[107]W.W. Milligan, S.A. Hackney and E.C. Aifantis, Deformation and damage at the nanoscale: 
Preliminary observations and modelling, in: Damage Mechanics & Localization, AMD - Vol. 
142/MD-Vol. 34, Eds. J.W. Ju and K.C. Valanis, pp. 153-165, ASME, 1992. 

[108] W.W. Milligan, S.A. Hackney, M. Ke and E.C. Aifantis, In situ studies of deformation and fracture 
in nanophase materials, Nanostructured Materials 2, 267-276, 1993. 

[109J.M. Ke, W.W. Milligan, S.A. Hackney, J.E. Carsley and E.C. Aifantis, HREM study of fracture and 
deformation behavior of nanostructured thin films, in: Thin Films-Stresses and Mechanical 
Properties, MRS Proc. Vol. 308, pp. 565-569, MRS, 1993. 

[110].J.E. Carsley, J. Ning, W.W. Milligan, S.A. Hackney and E.C. Aifantis, A simple, mixtures-based 
model for the grain size dependence of strength in nanophase metals, Nanostructured Materials 5, 
441-448, 1995. 

61 



111].M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis, Observation and measurement of grain 
rotation and plastic strain in nanostructured metal thin films, Nanostructured Materials 5, 689-698, 
1995. • 

112JJ.E.   Carsley,  W.W.   Milligan,   S.A.   Hackney  and  E.C.Aifantis,   Glass-like  behavior  in  a 
nanostructured Fe/Cu alloy, Metallurgical Transactions 26A, 2479-2481, (1995). 

113].W.W. Milligan, S.A. Hackney and E.C. Aifantis, (1995) Constitutive modeling for nanostructured 
materials, in: Continuum Models for Materials with Microstructure, Ed. H.B. Muhlhaus, pp. 379- 
393, Wiley 

114]J.E. Carsley, W.W. Milligan, S.A. Hackney and E.C. Aifantis, (1996) Deformation mechanisms in 
bulk Fe - 10% Cu nanostructures, in: Processing and Properties of Nanocrystalline Materials, Eds. 
C. Suryanarayana et al, pp. 415-420, TMS, Warrendale, PA. 

115] S. Hackney, M. Ke, W.W. Milligan and E.C. Aifantis, (1996) Grain size and strain rate effects on 
the mechanisms of deformation and fracture in nanostructured metals, in: Processing and Properties 
of Nanocrystalline Materials, Eds. C. Suryanarayana et al, pp. 42M26, TMS, Warrendale, PA. 

116] X.H. Zhu, J.E. Carsley, W.W. Milligan, and E.C. Aifantis, On the failure of pressure-sensitive 
plastic materials: Part I. Models of yield and shear band behavior, Scripta Materialia 36, 721-726, 
1997. 

117] J.E. Carsley, W.W. Milligan, X.H. Zhu and E.C. Aifantis, On the failure of pressure-sensitive 
plastic materials: Part II. Comparisons with experiments on ultra fine grained Fe-10% Cu alloys, 
Scripta Materialia 36, 727-732, 1997. 

118] J.E. Carsley, G.R. Shaik, W.W. Milligan and E.C. Aifantis, (1997).Mechanical behavior of bulk 
nanostructured Fe/Cu alloys, Symp. Chemistry and Physics of Nanostructures and Related Non- 
equilibrium Materials, Eds. E. Ma et al, pp. 183-192, TMS, Warrendale, PA 

119] J.E. Carsley, A. Fisher, W.W. Milligan and E.C. Aifantis, Mechanical behavior of a bulk 
nanostructured iron alloy, Metallurgical and Materials Transactions 29A, 2261-2271 A, 1998. 

120] H. Gao, Y. Huang, W.D Nix, J.W Hutchinson, Mechanism-based strain gradient plasticity LTheory, 
Journal of Mechanics and Physics of Solids, 47,1239-1263, 1999. 

121] J. Huang and E.C. Aifantis, A note on the problem of shear localization during chip formation in 
orthogonal machining, J. Mater. Engng. & Performance 6, 25-26, (1997). 

122] A.E. Bayoumi, J.Q. Xie, Some Metallurgical Aspects of Chip Formation in Cutting, Mater. Sei. and 
Eng. A190, 173-180, 1995. 

123] R.W. Siegel, Nanostructured materials-Mind over matter, Nanostructure Materials, 3, 1-18, (1993). 
124] H. Gleiter, Prog. Nanocrystalline Materials, Progress in Materials Science, 33, 223-315, 1989. 
125] A.H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, Scripta Metallurgica, 23, 1679-1684, 1989. 
126] G.E. Fougere, J.R. Weertman, R.W. Siegel, and S. Kim, Scripta Metall. Mater., 26, 1879-1883, 

1992. 
127] S.A. Hackney and W.W Milligan, A new in situ technique for studying deformation and fracture in 

thin film ductile/brittle materials, Ultramicroscopy, 37, 79-89, 1991. 
128] E.P. Popov, Introduction to the Mechanics of Solids,, Prentice-Hall, Englewood Cliffs, NJ, 312, 

1968. 
129] G.E. Dieter, Mechanical Metallurgy, 3rd Edition, McGraw-Hill, New York, 88, 1986. 
130] G.R. Shaik, and W.W. Milligan, Consolidation of nanostructured metal poweders by rapid forging: 

processing,   modeling,   and   subsequent   mechanical   behavior,   Metallurgical   and   Materials 
Transactions A 28A, 895-904, 1997. 

131] E.C Aifantis, Gradient effects at macro, micro, and nano scales, Journal of Mechanical Behavior of 
Materials, 5, 355, 1994. 

132] E.C. Aifantis, (1993) Higher order gradients and self-organization at nano, micro, and macro scales, 
in: Continuum Models for Discrete Systems CMDS-7 (Materials Science Forum, Vols. 123-125), 
Eds. K.H. Anthony and H.J. Wagner, pp. 553-566, Trans. Tech. Publ. 

133] G.E. Dieter, Mechanical Metallurgy, 3^ Edition, McGraw-Hill, New York, 455, 1986. 
134] J. P. Hirth, and J. Lothe, (1982) Theory of Dislocations, Wiley, NY, 731-745. 

62 



[135] A. K. Mukherjee, (1975) Grain Boundaries in Engineering Materials,, Claitor Publishing, Baton 
Rouge, LA, 93. 

[136] J.E. Carsley, Mechanical Behavior of Nanostructured Metals, Ph.D. Dissertation, Michigan 
Technological University, 1996. 

[137] T.W. Webb, X.H. Zhu and E.C. Aifantis, A simple method for calculating shear band angles for 
pressure-sensitive plastic materials, Mech. Res. Comm. 24, 69-74, 1997. 

[138] R. Hill, J. Mech. Phys. Solids, 1, 19,1952. 
[139] E.C. Aifantis and J.B. Serrin, The mechanical theory of fluid interfaces and Maxwell's rule, Journal 

of Colloid and Interface Sciences 96, 517-529, 1983. 
[140]  E.C.  Aifantis  and  J.B.   Serrin,  Equilibrium  solutions  in  the  mechanical  theory  of fluid 

microstructures, Journal of Colloid and Interface Sciences 96, 530-547, 1983. 

63 


