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STATEMENT OF PROBLEM STUDIED 

Background 

The Department of Defense (DOD) has thousands of sites with subsurface contamination. 
The Army is charged with the responsibility of coordinating DOD's technical efforts toward 
cleanup of these sites. It is well understood that efficient, accurate computer models of 
subsurface flow and transport are vital tools in site characterization and in assessment of 
remediation strategies. Also important, but perhaps less widely realized, is the role that such 
models can be expected to play in fundamental understanding of field-scale phenomena, by 
numerically upscaling smaller-scale experimental results through a hierarchy of scales of 
heterogeneity. 

The objective of this research was to design and implement new numerical techniques that 
will be particularly efficient and accurate for simulation of groundwater flow and transport. 
The prototypical problem considered was two- and three-dimensional solute transport in the 
saturated zone, to be followed in future research by extensions to vadose-zone transport and 
multiphase flow. Simultaneously, model development efforts with more conventional methods 
were carried forward by the staff at the Waterways Experiment Station (WES). The research 
of this project offers the potential of substantially greater efficiency and accuracy, but with 
less certainty of success owing to the newness of the approaches. The products are theoretical 
understanding of and practical experience with faster, better methods for flow and transport, 
and more tangibly, code modules (still under development) fitting into the structure of the 
WES model that will offer the new techniques as choices to the user. 

Field groundwater modeling problems are physically three-dimensional and usually ex- 
hibit significant heterogeneity in hydraulic conductivity, porosity, and other properties. Nev- 
ertheless, models often assume that a lower-dimensional or more homogeneous representation 
is adequate. This is frequently the result of practical constraints, namely the inability of 
available software to solve the real problem accurately within available computing resources. 
One would like to come closer to a state of affairs in which decisions to simplify a model 
could be based on scientific validity rather than practical necessity. 

Transport 

Difficulties with Eulerian methods. Serious troubles occur in approximations of transport 
equations when advection dominates diffusion and dispersion. Standard Eulerian numerical 
methods, such as centered finite differences or Galerkin finite elements, perform well when 
the grid size is sufficiently small. In many practical situations, this is not feasible, and such 
methods produce nonphysical oscillations in concentration. The usual remedy is to remove 
them by employing an upstream finite difference or finite element method. Resulting con- 
centration profiles do not oscillate, but they are seriously dispersed relative to their physical 
counterparts. The dilemma is a choice between spurious oscillations and numerical disper- 
sion. In practical nonlinear problems, oscillations will cause serious distortions and cannot 
be allowed if accuracy is to be maintained. The same is true of numerical dispersion. Addi- 
tionally, one of the principal objectives in fundamental understanding of field-scale transport 
is to properly upscale dispersive phenomena to account for a hierarchy of heterogeneities; 



a model is clearly useless in this regard if it overwhelms physical dispersion with numerical 
dispersion. The dilemma is not the result of the physical process; the grid needed to avoid 
oscillations is at a finer scale than that of the traveling advection fronts, and other methods 
can be more efficient. 

Advection domination also leads to large time-truncation errors for Eulerian methods. 
When a steep front passes by, as typically happens when advection dominates, errors will 
be large unless time steps are very small. A more appropriate method would reduce these 
errors by time stepping in a Lagrangian manner that would follow the flow, permitting larger 
but still accurate time steps. Thus, the methods on which almost all existing public-domain 
transport codes are based are ill-suited for advection-dominated transport, both spatially 
and temporally. 

Lagrangian methods. Pure advection problems, in which diffusion and dispersion are absent, 
can be solved efficiently and accurately by Lagrangian schemes based on the method of char- 
acteristics. Such methods normally build on propagation of discontinuities (sharp fronts), 
explicitly tracking front positions. Being explicit, these methods usually require that the 
Courant stability condition be satisfied, and they are difficult to adapt to problems with sig- 
nificant dispersion. For subsurface contaminant flow and transport, fronts can be steep but 
will not be discontinuous because of dispersion, and advection- and dispersion-dominated 
regimes will both be important, often in different portions of the same computation. The 
research of this project combined Eulerian and Lagrangian concepts in order to obtain the 
advantages of both, as described in the results section. 

Flow 

Difficulties with anisotropy and heterogeneity. The principal challenge with flow equations 
is to obtain accurate fluid velocity fields (or, equivalently, accurate streamlines) when the 
subsurface formation is highly anisotropic and/or heterogeneous in its hydraulic conductivity, 
and/or geometrically irregular in its geology. This situation is typical in field cases, where 
a hierarchy of length scales of heterogeneity can be expected. Since desirable methods for 
transport should have a Lagrangian component, accuracy in transport calculations depends 
on accurate flow velocities as input to the transport methods. 

At interfaces between geological layers or other features, large spatial discontinuities 
in the hydraulic conductivity are routine. Across such an interface, the pressure gradient 
is discontinuous, but the velocity or flux is comparatively well-behaved, having continuous 
normal component. Thus, procedures that solve for the flux directly, and whose errors depend 
on appropriate smoothness of the flux rather than the pressure, would be advantageous. 
Irregular (non-rectangular) geology adds another layer of complexity that typical models do 
not treat rigorously. 



SUMMARY OF THE MOST IMPORTANT RESULTS 

Formulation and implementation of transport codes 

ELLAM. For transport equations, the project studied Eulerian-Lagrangian localized adjoint 
methods (ELLAM). These methods, which are based on space-time finite elements whose 
temporal faces follow space-time streamlines, generalize earlier Eulerian-Lagrangian meth- 
ods and overcome their disadvantages. A major one is that such procedures are not mass- 
conservative, and though the errors are usually small they sometimes grow to troublesome 
magnitudes greater than 1%. In contaminant transport calculations, where small concen- 
trations related to regulatory levels are important, such mass losses cast doubt on otherwise 
useful results. A further vexing difficulty is the treatment of backtracked streamlines that 
cross an inflow boundary under certain types of boundary conditions; it is not at all clear 
how to even formulate earlier Eulerian-Lagrangian methods under some such circumstances. 

The ELLAM formulation was suggested by Celia, Russell, Herrera, and Ewing in 1990. 
ELLAM multiplies a conservation equation by a space-time finite-element test function and 
integrates over the space-time domain. The key is to choose this test function to be con- 
stant, or nearly so, on space-time streamlines, and to define space-time finite elements whose 
temporal faces follow streamlines. The integral formulation is naturally mass-conservative 
and adapts to any boundary condition in a systematic way. Prior to this project, ELLAM 
had been implemented and tested for model transport equations in one and two dimensions. 
On the theoretical side, for relatively simple one- and two-dimensional cases, Reference 1 
contained convergence proofs that verified that ELLAM will preserve the efficiency and accu- 
racy advantages of earlier Eulerian-Lagrangian methods. These proofs account for all types 
of boundary conditions and for temporal discretization of the outflow boundary. 

Code development. For solute transport with variable velocity field in two dimensions, Ref- 
erence 8 documented an implementation in the USGS code VS2D. This version is a control- 
volume formulation, with piecewise-constant test functions, that has local conservation prop- 
erties and is well-suited for incorporation in existing finite difference codes (such as VS2D). 
It has performed very well in heterogeneous linear and homogeneous quarter five-spot tracer 
flows. 

The accuracy of the method depends on the accuracy of the Lagrangian tracking algo- 
rithm that defines the space-time streamlines. The tracking algorithm developed for this 
code (References 12, 19, 26) is exact for velocity fields that have the lowest-order Raviart- 
Thomas form (rr-component is continuous piecewise-linear in x and t, piecewise-constant in 
y; analogous for y-component). The flow-equation methods discussed below deliver accurate 
velocities of precisely this form. This tracking scheme has proved to be particularly impor- 
tant in velocity fields in which a particle can reverse direction, where other tracking methods 
are prone to significant errors. 

Source terms were later added to this code (References 14, 21). Then the formulation was 
extended to three space dimensions and implemented in the USGS method-of-characteristics 
package MOC3D (References 15, 22, 24, 29). The greatest difficulties lay in the integration 
of solute concentrations over potentially irregular regions of three-dimensional space. The 
ELLAM transport code was linked to the USGS MODFLOW flow code, and tested on 



a suite of sample problems developed for MOC3D. The code obtains accurate results with 
long time steps. The velocity information provided by the flow code developed in this project 
is of the same form as that provided by MODFLOW, so the link to the new flow code will 
be a straightforward modification of the link to MODFLOW. The input data structure is 
compatible with MODFLOW inputs. 

Computational results. In some cases the improvements over other methods were spectacular; 
for one sample problem, ELLAM obtained in seven time steps a solution similar to those that 
a standard finite-element code and earlier MOC3D codes needed hundreds or thousands of 
steps to compute. To summarize the results briefly, ELLAM can treat advection-dominated 
transport with coarser grids and longer time steps than other methods, without suffering 
from nonphysical oscillations in the results. Additionally, ELLAM results are relatively 
insensitive to the orientation of the grid with respect to the direction of the flow velocity. 
This means that one can obtain accurate simulations on simple rectangular grids that are 
much easier to handle than irregularly-shaped grids. 

Theory. Advances were also made in the theoretical convergence analysis of the control- 
volume ELLAM. It can be viewed as a Lagrangian finite-volume element method, and the 
groundwork for analysis of time-dependent Eulerian methods of this type was laid in Ref- 
erence 5. Reference 25, in preparation, is the first extension of these ideas to the Eulerian- 
Lagrangian framework. 

Formulation and implementation of flow codes 

Mixed finite element methods. The procedures investigated for flow equations in this project 
were mixed finite element methods (MFEM). The ELLAM transport algorithm depends for 
its accuracy on accurate streamlines. As shown by several investigators, the MFEM produces 
better streamlines in groundwater applications than standard approaches, particularly when 
hydraulic conductivity is heterogeneous. 

Raviart- Thomas method. The first MFEM considered in this work was introduced by Raviart 
and Thomas in 1976. The fundamental idea is to decompose the flow equation into Darcy's 
law and conservation of mass, multiply each equation by its own test function, and solve 
the resulting system for the velocity (flux) and the pressure. To discretize the system, 
elements (rectangles, triangles, or parallelograms) are chosen and shape and test functions 
are specified. This is done in such a way that the velocity vector field is determined by its 
normal fluxes, which are continuous across edges or faces. 

The advantages of this approach are considerable. The velocity field conserves mass lo- 
cally, so that it can be used in the ELLAM transport algorithm, with the exact tracking used 
there, without creating or destroying mass. Another major advantage is that the accuracy 
of the approximate velocity can be shown theoretically to depend on the smoothness of the 
velocity, not that of the pressure. As discussed previously, in heterogeneous media this favors 
MFEM over standard methods and justifies theoretically the computational observations of 
many investigators, including some in which flow was coupled to transport. Still another 
advantage is that the discrete unknowns are defined as edge or face fluxes, which are finite 



and bounded even as a point source or sink is approached, so that the MFEM is able to 
handle injection and pumping wells more accurately than other methods. 

Solution of discrete equations. A major obstacle to three-dimensional applications of MFEM 
is the difficulty of solving the discrete linear equations iteratively. The system is indefinite, 
and the usual iterative methods are unreliable. The quest for efficient, reliable solvers has 
been active for many years. A successful two-dimensional algorithm originated by Chavent 
et al. in 1984 uses a local basis for the subspace of divergence-free functions to decompose the 
problem into three parts, each of which can be computed efficiently. Most of the computation 
is a positive-definite projection into this subspace, and the algorithm's efficiency derives in 
part from the fact that the subspace dimension is substantially less than that of the full 
velocity space. 

References 9 and 17 document the theory behind an extension of this solver to three 
dimensions. Unlike some other algorithms, this works when the hydraulic conductivity is 
anisotropic, resulting in cross-derivative terms that create additional non-zero coefficients 
in the linear equations. Numerical results, in References 16, 17, 23, and 31, show that the 
convergence rate of this solver is independent of the grid size, as predicted theoretically. In 
a pleasant surprise, the convergence rate in most cases is also independent of the magnitude 
of variations in hydraulic conductivity. 

Distorted grids. Another restriction on the applicability of the Raviart-Thomas MFEM de- 
scribed above is that, for optimal accuracy, the elements must be rectangles, triangles, or 
parallelograms (some of each is permissible). Existing finite difference grids and data struc- 
tures are primarily based on a logically rectangular connectivity pattern. To the extent 
possible, it would be desirable to treat distorted logically rectangular grids, of quadrilater- 
als in two dimensions and hexahedra in three, designed to conform to the irregularities of 
subsurface geology. 

Control-volume mixed finite element method. With this in mind, this project designed and 
implemented in two (References 7, 11, 18, 30) and three (References 13, 16, 20, 23, 31) 
dimensions a variant of MFEM, called the control-volume mixed finite element method 
(CVMFEM), that preserves optimal-order accuracy on distorted grids. In this procedure, 
the velocity test functions are altered from those of the MFEM, in such a way as to be 
distortions of piecewise constants on control volumes. The result is is a discrete Darcy 
law for a distorted grid: the pressure difference between two adjoining cells is, instead of 
a multiple of the flux across their common edge or face, a linear combination of the fluxes 
across all of their edges or faces. 

The reputation of MFEMs is that they provide more accurate velocities and streamlines 
in problems with heterogeneous hydraulic conductivity; for CVMFEM, Reference 7 showed 
this with both mathematical theory and two-dimensional numerical computations that in- 
cluded anisotropy and grid distortions. Other methods have particular difficulties with large 
discontinuous jumps in conductivity, which are of obvious importance for subsurface flow, but 
MFEMs do not. CVMFEM computed fluxes to the accuracy of the square of the grid size, 
i.e., second-order accuracy. Subsequently, similar results were found for three-dimensional 
CVMFEM in References 13, 20, and 31. The efficient equation solver was adapted to MFEM 



and CVMFEM with distorted grids (References 16, 23, 31). The essential structure of the 
solver is the same as for rectangular grids, but the determination of the equation coeffi- 
cients is more complicated. A CVMFEM-based flow code is currently under development 
in collaboration with USGS, and it may eventually become a successor to the widely-used 
MODFLOW. 

Justification of model equations 

An important issue in modeling of contaminant transport at DOD sites is justification of 
the manner in which the model equations represent the physical processes. Subsurface 
formations are heterogeneous at a multitude of length scales, including heterogeneities at 
scales finer than a computational grid. The effects of such properties must be represented 
indirectly in models, through such concepts as dispersivity in solute transport. References 
3 and 10 report on a formulation, implemented with stochastic finite element methods, 
designed to compute effective dispersivities for real data. Such data may violate the idealized 
assumptions that underlie analytical approaches to this problem. Reference 2, an invited 
review paper, discusses the physical assumptions made by various models of multiphase 
multicomponent transport, with particular attention to the local equilibrium assumption 
and the implications for practical modeling when it is valid or invalid. 

Other research 

References 4 and 6 document investigations into biased interpretations of field measurements. 
A mathematical model consisting of a diffusion equation with a discontinuous piecewise- 
constant coefficient, together with analytical and numerical solutions, showed that the usual 
calibrations used by field scientists could be substantially in error in some cases of practical 
interest. Reference 27 studied operator-splitting techniques for reactive transport, delin- 
eating types of cases in which it was advantageous or disadvantageous to iterate, based 
on stability analysis. Reference 28 described a robust incomplete-LU (ILU) preconditioner 
for conjugate-gradient solution of linear equations arising from flow problems with varying 
anisotropy and heterogeneity. The idea was to minimize the directional sensitivity of the 
speed of convergence by performing the ILU decomposition in a zigzag fashion through the 
grid. 
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