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3.   Scientific Progress and accomplishments 

In a supply chain, a manufacturing company on certain occasions needs to decide the 
suppliers from whom the raw materials must be obtained, and the manufacturing sites 
where the final products must be manufactured, to cater to the needs of specific types of 
customers. This decision-making problem is termed as procurement problem. Under 
certain assumptions, such as cost and quality of the raw materials and the final product 
are independent of the suppliers and the manufacturing sites, the solution of the 
procurement problem mainly consists of the least cost means of transportation between 
the suppliers and the manufacturing sites, and between the manufacturing sites and the 
customer locations. In this research, we address how to solve a procurement problem 
when the manufacturing company seeks freight companies as the means of third party 
transportation. The fundamental issues that are addressed in this work are: 
(1) minimization of bid (transportation cost) for the manufacturing company, (2) 
maximization of payoff to the freight companies, (3) cost-optimal and cost-reliable 
estimation of the task-to-vehicle assignments by the freight companies, and (4) reliable 
fulfillment of the orders by the drivers of the vehicles. Based on these issues, we define 
three research objectives. (1) To develop a distributed problem-solving model, define the 
decision-making entities and formalize their interactions. (2) To model a transportation 
task selection and distribution procedure that minimizes the transportation cost to the 
manufacturing company and increases the payoff to the freight companies, compared to 
the current practice. (3) To develop a distributed collaborative algorithm to generate 



reliable vehicle routes under the assumption that there exists an opportunity for the 
drivers of the vehicles to transfer goods among each other. 

The problem-solving model developed in this work is a multi-agent computational model, 
in which each freight company is comprised of a master agent and several slave agents. A 
master agent of a freight company represents a computational entity, which negotiates 
with the master agents of other freight companies for transportation tasks, and assigns 
sub-tasks to the drivers of its vehicles. A salve agent is a computational decision making 
unit on the behalf of a driver of a vehicle that generates robust routes for the driver of that 
vehicle. The agents are modeled using a Belief-Desire-Intention (BDI) logical model and 
interact using (modified) KQML based messages. 

The task selection and distribution procedure consists of a discounted bargaining game 
model with alternating offers which is similar to a multi-commodity reverse English 
auction. We conduct a simulation to study how masters of the freight companies can 
improve their payoffs by adopting (1) strategic bargaining procedure and (2) deploying 
different (complete) real-time cost information acquisition systems. The primary result is 
that masters do not always require expensive cost information acquisition systems, if they 
can predict the cost of the tasks accurately and follow a strategic bargaining procedure. 

A distributed Collaborative Robust Vehicle Route (CRVR) algorithm is presented for 
reliable and optimal cost estimation of the tasks in real-time. The CRVR algorithm solves 
a single vehicle stochastic pickup and delivery problem (PDP). The important 
contribution of this algorithm is that it uses the driver's local behavior along with travel 
time and service time acquired in real-time to determine the bottlenecks on a feasible 
route, and announce collaboration requests to delegate certain orders created to eliminate 
the bottlenecks. The algorithm presented solves a stochastic PDP with ten transportation 
orders within reasonable time. Furthermore, the results also report that the cost of the 
tasks can reduce due to collaboration under certain circumstances. 

The results of this research can be extended to build an integrated supply chain 
infrastructure in any logistics scenario, in the e-commerce world. Real-time sensors can 
be incorporated with the problem-solving model to implement real-world system. 

The major new accomplishments are: 

1. A multiagent based problem solving model for logistics 
2. An ontology for logistics 
3. A Game theory based algorithm for collaboration 
4. A stochastic programming based collaborative robust vehicle route generation model. 
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Foreword 

In the Multiagents in Logistics Project funded by the ARO we have performed two 
research tasks. These are: 
1. a theoretical investigation into the application of multi-agents in logistics, with 

specific reference to the procurement problem in which we have developed a 
stochastic programming and game theory based approach for solving the problem, 
and 

2. a practical implementation of multi-agents to a problem of logistics systems 
integration posed by the United States Logistics Integration Agency at New 
Cumberland, PA. We have built and deployed a system, Distributed Intelligent 
Agents in Logistics(DIAL). 

In this final report we give a brief, yet a technical overview of the above two. In the first 
part of the document we discuss the Procurement Problem and in the second part. 
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PART-I: Multiagents in Procurement Problem Solving 



1.0    Procurement Problem 

A manufacturing company, say GE, has refrigerator manufacturing plants at three 
locations: 

1. Schenectady, NY 
2. Erie, PA 
3. York, PA 

Based on the demand by a certain distributor at Pittsburgh, PA (who is the customer to 
GE) GE wants to manufacture 50 refrigerators that can be delivered at the distributor by 
July 20, 1999 (the current date being July 13, 1999). Assume that the refrigerators 
manufactured at these three locations meet the distributor's quality criteria and the 
manufacturing cost at each of these plants is same (or comparable). The decision of 
where to manufacture these refrigerators depends on (1) the final cost (sum of the parts 
cost, manufacturing cost and transportation cost), and (2) the quantity, which can be 
manufactured at each plant that meets the delivery time requirement. Assume that the 
plants (after looking at their current schedule) present the following requirement. 

1. Schenectady, NY: Refrigerators in the multiples of 10 up to 40 can be 
manufactured that will meet the delivery requirement given that following parts 
are delivered by this time 
a. Compressors for all refrigerators are delivered by July 16,1999 
b. Defrosters for all refrigerators are delivered by July 17, 1999 

2. Erie, PA: Refrigerators in the multiples of 5 up to 35 can be manufactured that 
will meet the delivery requirement given that following parts are delivered by 
this time 
c. Compressors for all refrigerators are delivered by July 18, 1999 
d. Defrosters for all refrigerators are delivered by July 18,1999 

3. York, PA: Refrigerators in the multiples of 15 up to 45 can be manufactured that 
will meet the delivery requirement given that following parts are delivered by 
this time 
e. Compressors for all refrigerators are delivered by July 15,1999 
f. Defrosters for all refrigerators are delivered by July 16, 1999 

Assume that all other parts are manufactured locally by GE or are available in stock. The 
compressor and defroster suppliers of GE are located at the following locations: 

1. Albany, NY 
2. Scranton, PA 
3. Cleveland, OH 



Assume that the suppliers provide following information: 

1. Albany, NY: 40 defrosters will be available for pickup by 15 July 1999. It cannot 
supply compressors on time. 

2. Scranton, PA: 20 compressors will be available for pickup by 14 July 1999 and 
40 defrosters will be available for pickup by 15 July 1999 

3. Cleveland, OH: 30 compressors will be available for pickup by 15 July 1999. It 
cannot supply defrosters on time 

Assume that the cost of the compressors and the defrosters are same (or comparable) 
from all suppliers. Also all suppliers meet the quality standards. Now the procurement 
problem for GE consists of: from where should it obtain the compressors and the 
defrosters, and where should those parts be delivered for the manufacture of the 
refrigerators so that refrigerators are delivered at the Pittsburgh distributor by July 20 
and the cost is remains minimum. Since the cost of the parts is same at all suppliers, the 
manufacturing cost is same at all plants, and the quality standards are met, the problem 
reduces to how cheaply can GE transport the parts from suppliers to the plants that 
meets the time requirements. 

Schenectady |§)^_ ~^f)  Albany Schenectady €L. ® Albany 

Erie ^4t      /      J>% Scranton Erie       €NL     X     >^# Scranton 

York        fp« ©Cleveland Scranton   W4f- -^g)   Cleveland 

Defroster supply lines Compressor supply lines 

It must be noted that these two supply lines are dependent. That means, the compressors 
cannot be delivered to a plant where the defrosters are not supplied. But in our formalism, 
they are independent. This can be incorporated by eliminating some of the agreements 
(explained in the ontology) that violates this dependence. 

Assume that GE has contracts with the following freight companies who would transport 
any parts required by GE plants. 

1. Consolidated Freightways, Inc. (CF) 
2. ABF Freight System, Inc (ABF) 
3. RPS,Inc(RPS) 



The traditional (contemporary) method is to request for bids from these freight companies 
for each supply line. The GE will determine (by solving a simple optimization problem) 
the best task (i.e. supply line) distribution to these freight companies. However, due to 
one time submission of bids, the following drawbacks are experienced: 

1. GE sometimes pays more for the transportation than the correct or market-accurate 
cost 

2. GE although sometimes pays less, it does not necessarily results in timely delivery by 
the freight company. (This happens when a freight company has bidden over- 
optimistically) 

3. A freight company is often charged with penalties for lack of timely delivery. 
4. A freight company sometimes bear transportation cost more than the bid it has 

offered for transportation (thus it incurs loss) 
5. A freight company sometimes bids pessimistically. Thereby, it looses to other freight 

companies during the bidding process. 

In order to remove these drawbacks using the emerging information infrastructure such as 
web, internet, EDI, GIS, GPS, cellular/satellite communication, we propose an auction 
based mechanism to solve the procurement problem. In this mechanism, the freight 
companies negotiate to distribute the tasks (thereby select the supplier and the 
manufacturing plant for each part) using the cost information gathered in real-time. This 
is the heart of the problem that we are addressing. 

In order to distribute the tasks (i.e. supply lines), the freight companies require a set of 
agreements to bargain with. Now using our product notations described in our 
formalism, we combine 5 refrigerator as one product1. That means, distributor requires 10 
(10x5) different products. Similarly, Schenectady, NY can manufacture 8 (8x5) products, 
Erie, PA can manufacture 7 (7x5) products and so on. Since each refrigerator requires 
one compressor and one defroster, we extend the notations. Schenectady, NY requires 8 
parts (ci - eg) [ci to eg mathematically denote different parts, but they are of compressor 
part type] and 8 parts (di - dg) [di to dg mathematically denote different parts, but they 
are of defroster part type]. Using these notations, we formulate the set of agreements, X. 

2.0    Breif Overview of the Approach 

The procurement problem consists of deciding the plants where the final product i.e. the 
refrigerators can be manufactured, and the supplier who can supply the part compressors 
and defrosters to those plants. Assuming the plants and the suppliers of each part is 
determined, the second step is to decide how to distribute the transportation orders of the 
parts to the freight companies so that the total price (bids) paid by the manufacturing 
company is minimized. Assuming that a freight company, say ABF Freightways Inc, is 
awarded with one or more transportation order(s), the third and the final step is to decide 

A product to transported is a part in this case i.e. compressors and defrosters. These parts are nothing but 
products from the freight companies point of view. That is why, we use the term "product" in general. 
f The number 5 can be derived by determining GCF of the quantities required, quantities that can be 
manufactured and supplied 



which vehicle* to assign with the transportation orders so that the freight company incurs 
minimum cost and maximum profit. These three steps depend on each other. The 
decision at each of these steps cannot be taken independently or sequentially. Therefore, 
we need to address the concurrent problem solving process, assuming that the auction 
based mechanism is the solution framework. 

The problem solving process consists of the manufacturing company throwing the 
problem to a group of freight companies who will enter into an auction based 
negotiation/bargaining to select and distribute the tasks (thereby select the supplier and 
the manufacturing plant for each part). In order to offer bids for tasks, a freight company 
must know the expected payoff from each of the task. Determining the expected payoff 
from each task is tantamount to determining the expected cost of each task. Therefore, in 
the problem solving process, the freight company (i.e. the computational entity called 
master agent) presents the sub-tasks to different vehicles (i.e. a computational entity 
called slave agent which represents the drivers of a vehicle) in real-time. The slaves in 
turn collaborate with each other to determine a least cost reliable path, and replay back 
with the expected cost of fulfilling the task. Masters use this information for bidding until 
no master can reduce their bid any further based on the cost and reliability information 
provided by their slaves (and the company's strategic business practice). If the result of 
bargaining dictates that a freight company has been awarded to complete a task, then the 
freight company assign the sub-task to the vehicles which corresponds to one set of sub- 
tasks presented to the slaves/vehicles during the bidding cycle. The drivers of those 
vehicles execute the plans to fulfill the sub-tasks, which where generated by the slaves 
during the collaboration phase. During the execution, if the plan of a vehicle fails then the 
remaining tasks are delegated to the driver of another vehicle, according to the 
contingency plan that was generated during collaboration. It is possible that if we use 
accurate sensor information, and sensor reliability data, then we can avoid re-planning by 
predicting the failure apriori and drawing collaborative contingency plans. 

3.0     Ontology 

The agents use KQML based messages for communication. This has the following 
structure: 

(<performative>    :sender < word > 
receiver < word > 
:reply-with < word > 
:in-reply-to < word > 
language < word > 
:ontology < word > 
:illocutionary_act < AnlllocutionaryAct > 
rcontent < expression >) 

We assume a driver as the owner of a vehicle and hence a vehicle is already assigned with a driver 



The <expression> in the content uses a language which is a derivative of predicate logic 
and we call it as Logistics Language (LogL). The BNF grammar of LogL is: 

<predicate>({<type> <r|w|rw|> <arg> <val>}) 

<predicate> is similar to a directive of a message. <arg> are the arguments required for 
either understanding the message or executing the directive. <type> indicates the 
structure or class (similar to OOP) of the argument. The types are predefined and part of 
ontology. <arg> can be <word> or <predicate> itself. <val> is the value of a <arg> 
expressed in the format of its <type> i.e. class defined. The following is a minimal set of 
the terms used by the master and slave agents to solve procurement problem: 

N List of nodes. A node indicate a location e.g. city name 
J Set of part indices 
O List of orders. An order, 0 is specified by a pickup node, pickup time window, 

a delivery node, delivery time window, and the part index. 
T List of tasks. A task, T is a list of orders that observes two order non- 

conflicting constraints (not explained here) 
P Set of freight companies 
V A group of vehicles/slaves of a freight company 
b Bid for transportation of a part 
X An agreement. An agreement is the list of parts such that each part is 

associated with freight company who is transporting the part, the task that the 
freight company is following, and the bid it has offered for transportation 

X The set of agreements 
CMNP A term that encapsulates bargaining rules (not explained here) 
P Probability of completing a task 
c Cost of completing a task 
SCENE 
_ID 

A scenario id. An expression used by master while presenting tasks to the 
slaves 

The following table is the set of predicates and their <args>s used by master and slaves to 
communicate with each other. 

SI. 
No. 

Syntax From 
(speaker) 

To 
(receiver) 

Implications or Outcome or 
Action taken by the receiver 

1 Performative: 
ask-one 

Predicate: 
NegotiateTasks 

User 
(Mfg. 
Company) 

Masters The arguments of 
NegotiateTasks contain 
CMNP, T, X, P. (Task T is 
output) The masters unpon 
receiving this message enter a 
negotiation phase 

2 Performative: 
subscribe 

Predicate: 
KQML, 
GetAgreement 

Master-I 
Master-II 

Master-II 
Master-I 

Masters subscribe to each other 
for receiving offers and counter- 
offers 



3 Performative: 
ask-one 

Predicate: 
GetCostnProb 

Master-I Slaves Master presents a Task to a set of 
slaves. The arguments of 
GetCostnProb is a task T, V, c, 
p, SCENEJD (c and p are 
ouputs). V is the set of 
slaves/vehicles with whom it can 
collaborate. 

4 Performative: 
ask-one 

Predicate: 
GetCostnProb 

Slave-I 
Slave-n 

Slave-n 
Slave-I 

Using the planning algorithm, a 
slave (I) asks another slave (H) 
to complete a part of task. The 
argument of GetCostnProb 
contains order 0, null, c, p, 
SCENEJD. null implies that the 
slave to whom it request cannot 
collaborate with others. Slave (I) 
can also receive similar request 
from other slaves (H) 

5 Performative: 
tell 

Predicate: 
CostnProb 

Slave-n 
Slave-I 

Slave-I 
Slave-n 

The requested slaves (H) submit 
their      estimated      cost      and 
probability. The arguments of 
CostnProb contains same with c 
and p completed. 

6 Performative: 
insert 
delete 

Predicate: 
ToBeAssigned 

Slave-I 
Slave-n 

Slave-n 
Slave-I 

The slave (I) requests one slave 
(H) to know that it will be 
assigned with an order in future. 
The arguments of 
ToBeAssigned contains a task 
T and SCENE_ED. 

7 Performative: 
tell 

Predicate: 
CostnProb 

Slave-I Master-I Slave (I) reports the cost c and 
probability p of the collaborative 
plan to the master. 

8 Performative: 
tell 

Predicate: 
AnAgreement 

Master-I 
Master-H 

Master-H 
Master-I 

Masters use the information 
provided by slaves to determine: 
the best agreement and offer and 
counter-offer each other. It must 
be noted that the steps 3-7 may 
be repeated during each offer and 
counter-offer. 

9 Performative: 
unsubscribe 

Predicate: 
KQML, 
GetAgreement 

Master-I 
Master-H 

Master-H 
Master-I 

Masters unsubscribe when they 
finalize on an agreement. 

10 Performative: 
tell 

Master-I User The masters tell the users their 
individual  tasks  based  on  the 



Predicate: 
ATask 

final agreement. 

11 Performative: 
achieve 

Predicate: 
Atask 

User Master-I User (if approves, else 
reformulate the arguments of 
NegotiateTasks) directs the 
masters to execute the tasks 

12 Performative: 
achieve 

Predicate: 
ATask 

Master-I Slave-I Each master then directs the 
salves to execute the tasks that 
they had presented during 
repetition of step 3-7 

13 Performative: 
achieve 

Predicate: 
APIan 

Slave-I Execution Slave directs the execution 
environment to execute a plan 
determined during step 3-7. The 
arguments of APIan is the 
departure time at each node of a 
sequence of nodes. 

14 Performative: 
tell 

Predicate: 
ATask 

Slave-I Master-I Slave replies to the master that it 
has committed to the task 

15 Performative: 
tell 

Predicate: 
ArrivalTime 

Execution Slave-I The execution environment 
keeps reporting the arrival times 
of the vehicle. If the slave 
determines that it needs to stop 
execution (to declare failure or 
delegate tasks) it sends 
unachieve message similar to 
step 13. 

16 Performative: 
achieve 

Predicate: 
ATask 

Slave-I Slave-H If the salve needs to delegate a 
task, it will direct the task to the 
slave to whom it had sent a 
message      earlier      (step      6) 

17 Performative: 
tell 
untell 

Predicate: 
ATask 

Slave-n Slave-I Slave II replies that it commits to 
the task. Slave II can also reply 
telling it cannot fulfil the task 
(untell) 

18 Performative: 
untell 

Predicate: 
ATask 

Slave-I Master-I If a slave observes that it cannot 
fulfill a task assigned by its 
master, then it replies back to 
message in step 12, by declaring 
failure of an assigned task. 

19 Performative: Master-I Master-I! A. master tries to subcontract the 



äsk-one 
Predicate: 
NegotiateTasks 

failed task to another' master. 
Therefore, this message is 
similar to the message in step 1. 
After several steps similar steps 
1-10, the Master-I directs the 
Master II to execute the failed 
task, which is similar to step 11 
(user directing the Master I) 

20 Performative: 
untell 

Predicate: 
ATask 

Master-I User Master I, which has a failed task, 
informs the user of the failure. It 
does not de-commit. It cannot 
de-comit by the rules of the 
business. It just informs that 
another Master II will fulfill the 
task. 

21 Performative: 
tell 

Predicate: 
ATask 

Master-II User Master II commits to fulfill the 
failed task by sending a message 
to the user. This information is 
required for user to know that 
vehicles of another company will 
be served at a delivery node. 

4.0    Bargain Model 

Assume there is a set of 10 agreements denoted by [xj, X2, X3, X4, X5, X6, X7, xs, X9, Xio]. 
Remember that each agreement specifies the freight company that will be transporting 
each of the products (i.e. parts), the task (i.e. supply line) chosen by the freight company, 
and the bid offered by the company. For example, Xj may be specified as: 

10 compressors are 
10 compressors are 
10 compressors are 
20 compressors are 
10 defrosters are to 
20 defrosters are to 
10 defrosters are to 
10 defrosters are to 

to be transported from Scranton, PA to Schenectady, NY by ABF ($200) 
to be transported from Scranton, PA to York, PA by CF ($180) 
to be transported from Cleveland, PA to Erie, PA by RPS ($170) 
to be transported from Cleveland, PA to York by CF ($420) 
be transported from Albany, NY to Schenectady, NY by RPS ($140) 
be transported from Albany, NY to York by ABF ($290) 
be transported from Scranton, PA to York by ABF ($145) 
be transported from Scranton, PA to to Erie, PA by CF($130) 

Total =   $ 1675 

This is a valid agreement that meets the distributor's requirement of 50 refrigerators, the 
quantity requirement of the plants, and quantity available at the suppliers. Similarly, other 
agreements can be specified. (Please note that there are more than 10 agreements for our 
problem. We are just citing 10 to explain the bargain model). An agreement say Xi is 
agreeable by all the freight companies, if (1) the freight companies has resources i.e. 
vehicles/trucks that can meet all the timing requirements specified in xi and (2) there 
does not exist another agreement (e.g. X3 or X7) from which they can get more payoff. If a 
company decides to counter-offer the currently offered agreement then it must 
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observe certain rules. The notions of these rules are consistent with the auction based 
business practices and also leads to convergence. The rules are: 

Rulel: Customer oriented: If ABF decides to counter-offer Xi with x3 then the total bid 
value of X3 should be less than or equal to Xi (i.e. $1675). In other words, 
customer i.e. the manufacturing company must not pay more than the currently 
prevailing agreement i.e. Xi 

Rule2: Deadlock free: If ABF decides to counter-offer Xi with X3 then the total bid 
value of X3 should not be equal to Xi (i.e. $1675). Else the companies would 
enter a deadlock in negotiation. 

Rules3: No enmity: If ABF decides to counter-offer xj with X3 then the counter-offer X3 
cannot reduce the bid/payment to another freight company (e.g. CF, $730 or 
RPS, $310) specified in Xi, while ABF does not get any additional bid/payment 
from X3 over Xi (i.e. $635). In other words, there does not exist any enmity. 

Total Bid 
&ABF's 
payoff 

Total Bid 

ABFs payoff 

Deterministic Payoff 

Total Bid 
&ABF's 
payoff 

^Total Bid 

V/" 
ABF's payoff 

Stochastic Payoff 

Negotiation Time Negotiation Time 

These rules together lead to a property called monotonic decrement of the total bid- 
value of the agreements with negotiation (or time). This property along with the finite set 
of agreements, leads to the convergence. For example, as shown in the figure the total 
bid value keeps decreasing with the time/negotiation step. That means, the payment that 
will be made to a freight company (e.g. ABF) by the manufacturing company (e.g. GE) 
decreases with time, if ABF prolongs the negotiation. So eventually there occurs a stage, 
when ABF cannot find another agreement left in the set of agreements, from which it can 
expect a higher payoff. This is also mathematically proven. The agreement, to which all 
freight companies finalize, is unique, if the expected payoff from each agreement to each 
freight company is deterministic (Although there is not a unique way to arrive at the final 
agreement. In terms of game theory, it is called non-unique sequential equilibrium). 
However, in real world, the expected payoff from each agreement is stochastic. 
Therefore, we conduct a simulation to study the losses that will occur to freight company 
due to stochasticity of the expected payoff (payoff is obtained from solving task by using 
a vehicle route planning algorithm), and thereby improve the company's negotiation 
strategies (i.e. which agreements to offer and counter-offer) 
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5.0    Practical Issues 

1. How can we incorporate, some of the customer (i.e. manufacturing company 
imposed) constraints such as convenience to deal with a freight company? 
a. For instance, the freight company CF does not deliver parts at the plant door 
b. For instance, the freight company RPS does not handle parts very well (i.e. 

breakage) 
c. For instance, the freight company ABF does not deliver parts on time. 
d. For instance, the freight companies CF and ABF require minimum number of 

parts for transportation to strike a deal (i.e. agreement) 
Answers: 
a. This can be handled in two ways. First, if GE knows the cost of transporting from the 

delivery point of CF to its plants, then this cost can be added in the bids of the 
agreement formalization. That means, if CF offers a bid for $170 for a supply line 
between Scranton, PA to York, PA, and the cost of transporting parts from the delivery point 
(near York, PA) to the plant in York, PA is $40, then the actual bid of CF is $210. 

The second way to handle is that CF can sub-contract the transportation of parts from its 
delivery point to the door of GE's plant to another local freight company, and use that sub- 
contract cost information in offering or counter-offering. 

b. If RPS does not handle some parts very well, then the loss to GE due to the past breakage can 
be incorporate as a penalty to RPS, while formulating the bids of the agreements. This 
penalty can be done at a strategic level between the GE and RPS, which is beyond the scope 
of this approach. 

c. Similar to the above approach, the losses due to untimely delivery in past by ABF can 
be incorporated as penalty to ABF, while formulating the bids of the agreements. 

d. The minimum number/weight of parts/goods/product transportation requirement by a freight 
company can be easily incorporated by eliminating some of the infeasible agreements from 
the set of agreements at the very outset of negotiation. 
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PART-II: Distributed Intelligent Agents in Logistics 
(DIAL) 
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1   Introduction 

The agent in DIAL (Distributed Intelligent Agents in Logistics) is perceived as a 
logistician's or commander's assistant. The agent assists the logistician to take appropriate action 
in the event of a logistics plan detected to be unsuccessful. In our case, a plan will be called as 
unsuccessful if it does not meet the timing requirements as specified in TPFDD (Time Phased 
Force Deployment Data). The agent is intended to be integrated with DIAS (Dynamic 
Information Architecture System, developed by Argonne National Lab, Chicago) and a 
customized Java based graphical user interface, together is called as DIAL. The agent interacts 
with the logistician and the integrated simulation system i.e. DIAS to arrive at an appropriate 
action. The complete system is summarized in figure 1.0. 

Pennsylvania State University t To User Interface 

Input 
Interface 

Inputs > f 

Key Unit Data 

<- 
/^~>K   Agent(s) Criterions m Java / C++ 

Communication: CORBA 

JFORCEGEN, '-;-■. 
-^CONUS/ELSn;:   l 

iPORTSIM in DIAS1 

Output 
Interface 

..     Key Unit Data 
{ 
ysgam 

Movement Data 
w 

Database 

DIAS, Argonne National Lab 

Figurel.O DIAL architecture: DIAS, Agent and GUI 

In figure 1.0, following steps are followed: 
1. DIAS simulates end-to-end movement of equipment and forces through FORCEGEN, 

CONUS/ELIST and PORTSM using (real-time and legacy) data. 

2. DIAS creates an object from the subset of output data of simulations, called Key Unit Data 
(KUD) (and movement data). This object(s) is generic and independent of simulation 
programs. 

DIAS sends the object to the agent through CORBA method invocation. 3. 

4. The agent uses KUD and movement data and its reasoning scheme to suggest an action or 
strategy, in case KUD indicates failure in maintaining TPFDD requirement. The agent also 
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suggests the parameters that need to be modified if the suggested strategy is applied. The 
suggested strategy is offered through a graphical user interface, built in Java. 

5. The logistician may either accept or request for another alternative strategy. 

6. After several interactions with the logistician, and upon acceptance of a strategy, the agent 
modifies the KUD based on the accepted strategy and sends it back to DIAS. 

7. DIAS uses the modified KUD to simulate appropriate parts of the end-to-end movement. 

8. The iterative process between DIAS and agent continues until the logistician approves the 
logistics plan. 

In the light of the above iterative decision making procedure, the following are the key aspects in 
the development of agent and GUI by Pennsylvania State University. 

1. An agent structure was developed which separates communication, message interpreting and 
reasoning as separate layer. This helps in developing different agents with different reasoning 
abilities, but with same communication and message understanding abilities. 

2. Agent's strategies are implemented in the form of method invocations that use only KUD 
data and agent's past state to arrive at suggestive action. This form of implementation helps 
to add more strategies, though not dynamically. 

3. Agent supports CORBA method invocation and string based communication (which is 
similar to KQML form of communication) between DIAS and GUI respectively. 

4. GUI implementation in Java enables multiple logisticians to access DIAL simultaneously 
through Internet. GUI also lets the logistician to examine only relevant data rather than 
complete TPFDD, KUD, or simulation output. 

In the following sections, we shall briefly describe the structure of the agent, strategies, and GUI 
developed as a part of the current proposal. 

2   Agent Structure 

The agent is composed of three layers: 
1. Communication layer consisting of Server object and Client object. Bot these objects 

supports socket-based communication and CORBA based method invocation or 
implementation. 

2. Message understanding layer consisting of Message object. Message object contains 
procedures to parse strings received via socket and insert them to the knowledge base. 
The knowledge base in the case of agent is unit information, predicted timing 
information, the asset information, the state of the agent etc. Message object also 
contains methods to verify if the a string to be sent is of correct format. Finally, 
Message object also inherits CORBA object (or implementation stub) generated from 
DDL . The implementation stub contains procedures to extract CORBA defined data and 
maps them to knowledge base. 
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3. Reasoning Layer consists of various methods to process knowledge base and take 
appropriate action. The action in this case could be reply to a message, or send a request 
to another entity or agent, or access a data base etc. In our case, the external entities are 
DIAS and GUI. 

Observer Sneakei 

Server 
Object 

; Client 
: Object 

**—^ 
' Message 
[   Object 

Action 
Executor | 

YJ< Reasoning 
I   Object 

,n The relationship between the 
objects are shown in the 
form of 'uses-a' relationship 

(1) (2) 0) 

Figure 2:0: Structure of the agent 

Figure 2.0 shows the relationship between Server & Client objects, Message Object and 
Reasoning object. The agent structure is developed in the spirit of the agent being a persistent 
object, which can receive, process and send messages autonomously. However, from the 
implementation standpoint, it may happen that while processing a message, the agent may ignore 
receiving another message which may affect processing of the previous message. Similarly, 
processing of a message might delay the dispatching of another message which could not be 
accomplished before. Similarly, waiting for a message may delay certain reasoning task. 
Therefore, the agent must bear with task controller that must allocate certain time for receiving, 
processing and sending of messages. These three tasks are indicated as (1), (2) and (3) in figure 
2.0. Currently, the task controller of the agent structure is implemented in the form of invoking 
these three tasks in a cyclical manner without allocating any time for each task. 

2.1    Communication 

The communication layer is composed of two objects. The role of Server object is to either 
receive messages from a socket or wait for CORBA method invocation. It implements both 
activities as non-blocking. 

Message arriving at a socket: 
If a message arrives at the socket (in our case, the message at the socket arrives from one of 
GUIs), the Server object passes the string to the Message object which contains methods to 
parse the string, extract relevant elements and insert them to the knowledge base. 
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Figure 3.0 Message interpretation by the Message object 

CORBA method invocation: 
In order for another entity (say DIAS) to perform CORBA method invocation, the agent must 
have exported those methods. The Server object, which inherits the CORBA object generated 
from IDL, exports its methods. The underlying CORBA library while waiting for CORBA 
method invocation automatically invokes these methods. Waiting for CORBA method 
invocation is implemented in a non-blocking fashion. 

The second object of the communication layer is Client object that allows the agent to 
send string messages and import CORBA methods. Client object uses methods Message 
object to check the parsing error in string message before it sends the message. The Client 
object also imports CORBA methods, which could be used by the Reasoning object. When the 
Reasoning object invokes the imported methods contained in Client object, the underlying 
CORBA library performs the request (i.e. method invocation) and delivery (i.e. return arguments 
of the method) of CORBA defined data from remote method implementation. The Client object 
uses methods of Message object to extract CORBA defined data and insert then in the 
knowledge base. In our case, since agent does not initiate any communication (because other 
external entities are not server), the Client object is not used in the current implementation of 
agent. 
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2.2 Message Interpretation 

The Message object contains procedures for (1) parsing a string given a grammar, (2) 
extract the semantics of it and insert them into a given knowledge base, (3) extract CORBA 
defined data and insert them in the knowledge base. The procedures for parsing a string is 
usually generated using lexical analyzer and parsing tool such as flex and bison. However, in this 
implementation of agent we developed our own the parsing procedures (which efficient for small 
grammar, but may not be efficient for complicated grammar such as KQML, SQL etc.). The 
procedures scan the string and arrange the token/key (along with its semantics i.e. the value) in 
the form of a tree object. A tree object1 is also created while extracting CORBA defined data. 
This tree object is used by another set of procedure to copy the data into the knowledge base. 
These methods are summarized in figure 3.0. 

2.3 Reasoning 

Reasoning object contains various methods mapped to process different types of 
messages. For example, when a string message arrives, the Message object invokes 
Reasoning object to 'act on the message', after it has parsed and inserted them in the 
knowledge base. The Reasoning object reads the knowledge base to determine which methods 
need to be invoked. In our case, these methods correspond to list of strategies. For example, a 
message concerning a strategy 'replacing of unit' will lead various methods such as (1) suggest 
replace units or (2) reverse replaced units or (3) analyze the impact of replacing units (which will 
lead to invocation of simulation in DIAS) etc. Similarly, when a CORBA method is invoked by 
another external entity (say DIAS), the Message object calls methods of Reasoning object, 
which invariantly leads to comparison of KUD received with existing KUD and presenting the 
difference to the logistician. 

If we remove the communication and message layer, then the link between GUI and 
DIAS is illustrated in figure 4.0. 

2.3.1   List of strategies 

Following are the list of strategies implemented in the agent as logistician's assistant2 

1. Suggest change of g-date that may make units arrive at theater that meet the TPFDD 
requirement. 

2. Suggest replacement of similar units in terms of type of unit, passenger and equipment 
strength, (and mission and training level which we are not using currently) which may make 
units meet TPFDD requirement with little alteration in mission or unit. 

1 A tree object contains node and several child nodes. Similarly each child node branches out to several other child 
nodes. In our case, each contains a key and its value. For example, a key of a node can be 'assetlnfo' and the value 
could be a complete string of asset information. Its child nodes will contain asset name, model and quantity 
information in separate nodes. 
2 It must be noted that agent only suggests the following actions. It does not implements or simulate the impact of 
these actions unless logistician approves them. 
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Figure 4.0 Interaction between GUI, Reasoning object and DIAS 

3. Suggest addition of certain critical or bottleneck transportation assets, which may make 
movement of cargo faster. 

4. Suggest acceptance of lateness of certain (less important) units and thereby changing TPFDD 
requirement, which may cause other units to arrive sooner. 

5. Suggest abandoning mission of some units or halt deployment of certain units (which we call 
as deletion of units) which may cause deployment and movement of other units faster. 

The impact of these suggestions is not guaranteed. However, it could be verified to certain extent 
through the usage of the simulation. 

2.4   Other features 

Various other features of the agent as logistician's assistant are (1) collaboration among 
multiple logisticians and (2) allowing the logisticians to backtrack certain strategies (i.e. strategy 
rollback scheme). We implement the collaboration in a primitive manner, where the agent sends 
notices to all the logisticians, if one of logistician makes change to the unit information that may 
cause strategy selection of rest of the logistician. We would like to implement the collaboration 
through conflict resolution based on hierarchy of the logisticians. 

The rollback feature assumes that the result of the simulation is deterministic i.e. the 
simulation uses stochastic parameters, but the result of several repetition of simulation is same. 
Therefore, the agent stores only the type of strategy, rather than the results of applying the 
strategy (this improves inefficiency in terms of storing large amount of KUD information). 
Agent can reverse a strategy by applying the inverse of the strategy in the simulation. 
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3   Graphical User Interface (GUI) 

Graphical user interface helps the logistician to view only relevant part of KUD, TPFDD or 
simulation results. The reader may access the web page 
http://www.iddr.ie.psu.edu/~dial/Restricted to view current implementation of GUI. GUI 
presents list of units that are late when compared to TPFDD, along with the unit name and ULN 
information. GUI lets the logisticians to either chose a strategy or select the automatic mode 
where agent offers the current best strategy based on a primitive meta-reasoning scheme. The 
GUI is implemented in Java that enables logistician to connect to the agent via web. The GUI is 
fairly simple to use as has been reported from several past demonstrations to logisticians. 

4   Future Work 

The logistician's assisting agent offers an exhaustive list of embedded strategies to the logistician 
irrespective of the scenario (i.e. crisis type or combat type), sequence of past strategies and 
expected impact of the application of a strategy. It is observed that a logistician chooses only a 
specific set of strategies based on a scenario and the past choice of strategies. We propose 
learning schemes to be incorporated in the agent to enable it to learn logistician's choice of 
strategies and thus, offer only a subset of strategies. The learning schemes could be either 
supervised neural network model or a stochastic automaton model. For example, a neural 
network could be trained to learn the choice of logisticians' strategy based on following inputs: 

1. Simulation input parameters such as resources and their status. 
2. Simulation output parameters such as time of arrival and departure of units (Forces and 

equipment) at various nodes of a logistics graph. 
3. TPFDD date (schedule) violations i.e. the delays of estimated dates from the scheduled dates. 
4. The sequence of strategies that have been applied in the past. 
5. Recommended modifications of simulation input parameters corresponding to each 

embedded strategy. 
6. Scenario description. 
7. Expected effect / impact of the modifications on the simulation output, if the recommended 

modifications are approved. This assumes that the agent bears a meta-model of simulations to 
determine expected effects. 

A trained network will offer strategies that the logistician is most likely to accept. 
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