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Abstract: Detecting the number of signals and estimating the parameters of the signals are 
important problems in Statistical Signal Processing. Quite a number of papers appeared in 
the last twenty years in estimating the parameters of an exponential signal quite efficiently 
but not that much of attention has been paid in estimating the number of signals of an ex- 
ponential signal model. Recently it is observed that different Information Theoretic Criteria 
can be used to estimate the number of signals in this situation. But it is also observed that 
the choice of the penalty function is very important particularly for small sample sizes. In 
this paper we suggest to use the Cross Validation technique on estimating the number of 
signals and give its practical implementation procedures. Numerical experiments reveal that 
the new procedure performs quite comparable to the best performed Information Theoretic 
Criteria at least for small sample sizes and it has certain desirable properties also. 
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1. INTRODUCTION: 

Estimation of number, amplitude and frequency of complex sinusoids in a signal is very 
important. The model can be expressed in the following way. Let {yi,. -., yn} be a sample 
of size n, where y* can be written as 

M 

y^^V^ + efc;      for   A; = l,...,n. (1) 

The amplitudes, A'jS, are unknown complex numbers and the frequencies, u^s, are unknown 
radian frequencies, between 0 to 2n. The additive errors, e!ks, are complex valued Gaussian 
random variables and they are independent and identically distributed (i.i.d.) with zero 
means. The real and imaginary parts of dks are assumed to be independent. The number of 
signals, M, is unknown. The problem is to estimate M, A\,..., AM, and u\,...,ujf. 

In the last twenty years several iterative and non-iterative procedures were developed 
to estimate the parameters of an exponential model very efficiently, but not that much of 
attention has been paid on estimating the number of signals. See for example Stoica (1993) 
for an extensive list of references up to that point and see Kundu and Mitra (1995, 1999) 
for some of the recent references. In this paper we mainly concentrate on estimating M. 
Tufts and Kumaresan (1982) also proposed some graphical techniques to estimate M, which 
is very subjective in nature. Some of the other techniques for example Bartlett (1954) and 
Lawley (1956) can be used, but they also depend on the subjective choice of the individual 
and therefore the practical implementation becomes difficult. 

Rao (1988) proposed the Information Theoretic Criteria (ITC) following the approach 
of Zhao, Krishnaiah and Bai (1986) on estimating the number of signals for an undamped 
exponential model (1). He did not provide any numerical results regarding the performances 
of his procedure. It is observed (Kundu; 1992) that Rao's suggestion may not be implemented 
very easily in practice. A practical implementation procedure was suggested by Kundu 
(1992). It is also observed that different ITC depend very much on the penalty function 
used. Some suggestions about the penalty function were given in Kundu (1992) based on 
the extensive computer simulations. It is not very difficult to show ( as it is correctly 
mentioned by Rao; 1988) that the ITC proposed by him will give consistent estimates of 
M, in the case of an undamped exponential model (1). Bai et d. (1987) also proposed 
a method known as the EquiVariance Linear Prediction (EVLP) method on estimating M 
for an undamped exponential model and proved the strong consistency of the EVLP when 
the errors are not necessarily Gaussian. But extensive numerical simulations (Kundu; 1992) 
suggest that the EVLP does not work well for small sample sizes even when the errors are 
Gaussian. 

In this paper we estimate M, through Cross Validation (CV) approach which usually 
performs well for small and moderate sample sizes. Rao (1988) first mentioned that the 
CV technique can be used on estimating M for model (1). He provided certain CV scheme 



for practical implementation. However, he did not provide any numerical results regarding 
the performances of his proposed CV procedure. It is observed that Rao's CV approach 
for model (1) is not very easy to implement in practice as it was suggested. We propose a 
new simple CV procedure for an undamped exponential model using missing value technique 
discussed in Section 3. We perform detailed numerical experiments to compare different ITC 
and the proposed CV procedure using different models. It is observed that the performance 
of the CV approach is quite similar with that of the best performed ITC and in certain cases 
it works marginally better also. 

The rest of the paper is organized as follows. In Section 2, we give a brief description 
of the different ETC and the estimation of the different parameters in presence of missing 
value is discussed in Section 3. CV approach and its implementation are discussed in Section 
4. The results of the numerical experiments are presented in Section 5 and finally we draw 
conclusions from our work in Section 6. 

2. DIFFERENT INFORMATION THEORETIC CRITERIA: 

Let {yi,..., yn} be a sample of size n from the model (1). Let L be the parameter ranges 
over all possible number of signals, i.e. L 6 {1,..., K}, where K is some preassigned fixed 
number. We make the assumption that the number of signals can be at most equal to K. 
Then it follows that the joint density function of the observed data is given by 

/(y ^ = TJBfi?*-& £"» - "tm% (2) 

where 
9L = (Au...,AL,uu...,u}L) (3) 

and L 

MöLHEV'''*- (4) 
J'=l 

The problem can now be formulated as follows: Given the family of models 

{f(y\eL);L = l,...,K} .     (5) 

select the true one. Posed in this way the problem becomes a model selection problem and 
perfectly suited for using the different ITC such as Akaike Information Criterion (AIC) of 
Akaike (1973, 1974) or Minimum Description Length (MDL) criterion (Best Information 
Criterion (BIC)) of Schwartz (1978) or Risannen (1978) or the Efficient Detection Criterion 
(EDC) of Zhao, Krishnaiah and Bai (1986). The AIC, MDL or the EDC criteria are known as 
the penalized likelihood method in the Statistical Model selection literature. Here a penalty 



function is subtracted from the log-likelihood function before it is maximized. This serves 
to penalize or discourage the addition of more and more parameters. 

The AIC suggests to choose M, an estimator of M, which minimizes the following ex- 
pression 

AlC(L) = -logf(y\§L) + d(9L), (6) 

for L = 1,..., K, where 9L is the maximum likelihood estimator (MLE) of 6L and d{Bj) = 
3L +1, the total number of independent parameters when the model order is L. Akaike's 
basic idea was to choose the model that minimizes the mean of the Kullback-Liebler distance 
between the true density f{y\9£) and the estimated density f{y\9i)- Since the distance is 
unknown, he proposed to estimate it by the log-likelihood value at the point of the MLE. The 
second term in (6) was added to make the log-likelihood function at the MLE an unbiased 
estimator of the Kullback-Leibler distance. 

MDL criterion was introduced by Risannen (1978). The basic idea is that the best model 
is the one that provides the shortest description of the data. It is observed (Risannen; 1983) 
that for large samples this estimator leads to the selection of the model that minimizes 

MDL(L) = -logf(y\9L) + \d{9L)logn, (7) 

for L = 1,..., K, where /(y|0i) and d{§L) = 3L + 1 are same as defined before. 

Schwartz (1978) suggested a model selection criterion based on the Bayesian arguments. 
Assuming a priori probabilities for every competing models, he proposed selecting the model 
that maximizes the posterior probability. It was shown that for a model belonging to an 
exponential family, the maximization of the posterior probability leads to the minimization 
of the criterion given by (7) asymptotically. 

The Efficient Detection Criterion (EDC) of Zhao, Krishnaiah and Bai (1986) consists of 
choosing an estimator M of M, which minimizes 

EDC(L) = -logf(y\9L) + Cnd(9L), (8) 

for L = 1,..., K, where Cn's are such that 
t 

lim ^ = 0,      lim —£=— = oo (9) n-*oo n n-N» loglogn 

and d(9L) = ZL + 1 (see Rao ;1988). Observe that MDL criterion is a special case of EDC. 
For MDL, Cn takes the value \logn in (8). It has been mentioned in Rao (1988) (the 
proof is not very difficult) that for an undamped exponential model the estimators obtained 
from EDC or MDL are strongly consistent estimators of M, where as AIC estimator is not 
consistent. Although any Cn satisfying (9) gives strongly consistent estimator of M, but 
unfortunately it is observed that the small sample performances of the estimators depend 



very much on the choice of Cn (see Kundu; 1992). Kundu (1992) used a wide variety 
of penalty functions, namely, Cn = N-1, Cn = AT-2, Cn = AT-3, Cn = NA, Cn = logn, 
Cn = {logn)2, Cn = (logn)A, Cn = (logn)-6, Cn = {logn)-8, Cn = (nlogn)1, Cn = (nlogn)-3, 
Cn = {nlogn)5, Cn = (nlogn)-7, Cn = (nlogn)-9. All of them satisfy (9) and they diverge to 
infinity at different rates. Extensive numerical simulations indicate that C„ = logn can be 
used as a good choice of Cn for an undamped exponential model, although no theoretical 
justification can be given in favor of this. Experimentally it is observed that the penalty 
function \logn is relatively milder compared to logn and therefore it over estimates M. On 
the other hand the penalty function logn looks appropriate at least for Gaussian error. 

3. ESTIMATION OF THE UNKNOWN PARAMETERS IN PRESENCE OF 
MISSING VALUE FOR FIXED M 

In this section we discuss about the estimation of the unknown parameters if one ob- 
servation is missing and when the model order is known a priori. Since all the existing 
eigen decomposition methods use the fact that the data are equispaced, therefore it is not 
immediate how they can be used if one observation is missing. It is well known that the 
Modified Forward Backward Linear Prediction (MFBLP) method of Tufts and Kumaresan 
(1982) works very well with short data length and moderate signal to noise ratio. Its prac- 
tical implementation is also quite simple. In this section we observe that the MFBLP can 
be further modified and can be used even if one observation is missing and when the model 
order is known. 

Note that for known M, there exists a vector g = (gi,... ,gj) such that in the noiseless 
data, the forward backward prediction equations are as follows (Tufts and Kumaresan; 1982) 

yn-i 

Ljjn-J+I 

yi 'yj+i' 

yn-j 

yj+i 

'9i' 

.9J. 

= — 
yn 

yi 

yn . .yn-j. 

(10) 

here M < J <n — M and '-' denotes the complex conjugate of a complex number. Now if 
the 771th observation is missing, we can delete the corresponding rows from the left as well as 
from the right wherever ym is appearing. For example ifJ + l<m<n — J — l, then (10) 



can be written as 
VJ 

ym-2 

Vm+J 

yn-i 

Vm-J 
Vm+2 

yi 

ym-j 

ym+i 

Vn-J 

VJ+I 

ym-i 
Vm+J+l 

9\ 

9J 

yj+i 

ym-i 

ym+j+i 

yn 

Vm-J-l 
Vm+l 

(11) 

■Vn-j+i   • ■•     yn   J L yn-j 

For m < J + 1 or m > n — J — 1 it can be defined similarly. The system of equations can 
be written as 

Amg = -h™ (12) 

where the matrix A™ and the vector h^ depend on the value of the missing observation. 
Now the minimum norm solution of g is given by 

g=-(A£Am)   A^h™, (13) 

here 'H' and '-' denote the complex conjugate transpose of a matrix and pseudo inverse of 
a matrix respectively as given in Rao (1973). Now if we use the usual linear prediction 
notations, R = A^Am and r = — A^h, then it can be easily shown similarly as Tufts and 
Kumaresan (1982), that in the noiseless data; 

Äufr (14) 

where 7i > • • • > 7M > 7M+I = • ■ • = Jj = 0 are the eigen values of R and u<, i = 1,..., J 
are the corresponding orthonormal eigen vectors of R. Form the prediction error polynomial 
equations with the vector g as follows, 

H{z) = 1 + glZ +... + gjzJ = 0. (15) 

The equation (15) has J roots. It can be shown in the same way as Kumaresan (1982) that 
in case of noiseless data, out of J roots of (15), M of them will be at e""' for j = 1,..., M 
and J — M other roots will have magnitudes strictly less than one and will be distributed 
uniformly over the unit circle. 

In case of noisy data, first estimate g from (14), form the polynomial equation (15) and 
obtain the J roots of the prediction polynomial equation. Once we obtain the J roots, the 



estimates of Uj's can be obtained from those M roots whose magnitudes are closest to one. 
Note that once we estimate the non-linear u/s the linear Aj's can be estimated very easily 
by the linear regression technique as given below. The model (1) can be written as 

yi 

Vn 

3«W1 

Dmwi 

eWM ' M 
+ 

ei 

etnwM 
AM. .ew. 

(16) 

Let's write (16) as 
Y = fiA + E. 

If the matrix rt is completely known then the least squares estimators, A, of A can be 
written as (see Kundu; 1993) 

4. CROSS VALIDATION APPROACH: 

In this section we observe how we can use the missing value technique discussed in 
Section 2 for model order selection of the model (1). A practical and satisfactory method 
in model selection for small samples is the Cross Validation approach, originally proposed 
by Lachenbruch (1975) and Stone (1974, 1977a,b). Dawid (1974) suggested that in certain 
circumstances CV might lead to inconsistency but considerable interest has been shown 
recently in the use of cross validatory procedure because of its satisfactory performances in 
small samples. In the exponential signal model (1), Rao (1988) proposed the following CV 
technique: 

(1) For any fixed L, leave out one of the observation, say ym, and replace it by Ym(L). Then 
for any choice of L and Ym(L), compute 

R(Ym(L),L) = mm \    £ Vk ~ £ Aje^
k\2 + \Ym(L) - JT v* tu; v ml 2 (17) 

where A = (Ai,...,AL) and u = (ult...,uL). 

(2) For any given L, using a 'suitable computer program', find Ym(L) such that 

R(Ym(L),L)= min R(Ym(L),L), (18) 

which provides Ym(L) is an estimate of ym for a given L. Then comparing Ym(L) with the 
observed ym, the cross validatory error is obtained as 

R.(L)=E\ym-Ym(L)\2 for L = !,...,#. (19) 
m=l 



Finally M is chosen such that it minimizes R+{L). 

First we would like to make some comments regarding the practical implementation and 
the numerical difficulties encountered about the above mentioned CV algorithm. Observe 
that for a fixed Ym(L), (17) is a non-linear problem and it is not possible to obtain an 
explicit expression of R(Ym(L), L). Furthermore, the least squares minimization problem of 
(17) is well known for its numerical instability (see for example Kundu (1993,1994), Breslar 
and Macovski (1986), Varah (1985)). The least squares estimators often depend on the 
initial values and some times the iterative procedure may not even converge. Therefore the 
minimization of R(Ym(L), L) with respect to Ym(L) may not be as simple as it was suggested. 
We suggest the following CV procedure which is as follows; 

[1] For fixed L, leave out one of the observation, say ym. 

[2] Estimate A and u from yi,..., ym-i, ym+i, ■ • • > Vn> using the missing value technique 
discussed in the previous section. 

[3] Estimate ym, say ym(L), by 

ym(L)=jrÄje
i*im, (20) 

i=i 

where Aj and Uj are the estimates obtained from Step 2. 

[4] Obtain the cross validatory error as Rao (1988) suggested by 

*{L) = f:\Vm- Vm{L)\2 for L = 1,...,K. (21) 
m=l 

[5] Finally M is chosen such that it niinimizes R*{L). 

Observe that our method is quite easy to implement in practice. Since the method 
discussed in Section 3, is non-iterative in nature, therefore the estimators of A and u can be 
obtained quite easily in Step 2. Note that Rao's YM(L) is the best least squares predictor 
of ym for a given L. He did not require to estimate separately A/s and Wj's on estimating 
ym. Since obtaining Rao's Ym(L) is numerically difficult, we are approximating it by ym(L), 
which is much easier to obtain. Intuitively it seems 

E(IT{L)) > E(R.(L))i      for   L = l,...,üf. (22) 

Since (22) it is true for all L, on estimating M it should not make much difference. 



5. NUMERICAL EXPERIMENTS AND DISCUSSIONS: 

In this section we present some results of the numerical experiments. All the computations 
are performed in HP-9000 using the IMSL random number generator. We consider the 
following three models: 

Model 1: yk = exp(ir/A)exp(i27r(.50)k) + exp(n/4)exp{i27r(.52)k) + ek, 

Model 2: yk = exp(7r/4)exp(i27r(.50)A;) + exp(7r/4)eip(f27r(.60)A;) + ek, 

Model 3: yk   =   exp(n/4:)exp(i27r(.5Q)k) + exp(ir/A)exp{i2Tr(.60)k) 
+exp(ir/2)exp(i2T(.2Ö)k) + exp{ir/2)exp(i2Tr(.25)k) + ek. 

Note that for Model 1 and Model 2, the amplitudes are taken to be equal. The difference 
of the radian frequencies is more in Model 2 than in Model 1. It is well known that if the 
difference is more then the estimators are more accurate. Between, Model 2 and Model 3, 
two components are exactly same in both the models. Since Model 3 has more parameters 
compared to Model 2, it is expected that the estimators will be less accurate for Model 3 than 
Model 2. No such comparisons can be made between Model 1 and Model 3. The real and 
the imaginary parts of efc's are normally distributed with zero mean and finite variance o2/2 
and they are independent also. The sample sizes are taken as n = 25, 40 and 55 and SNR = 
5dB, lOdB and 15dB. It is assumed that the maximum number of signals is 6, i.e. K = 6. 
For each data set we estimate M by AIC, MDL and by EDC. For EDC we take C„ = logn, 
as suggested in Kundu(1992). We estimate M also by the proposed CV method. We use 
different order (within admissible range) J of the prediction equations in (10) to estimate the 
model parameters in presence of missing value and in turn estimating M. If the prediction 
order is J (> 6) then the corresponding CV method is denoted by CV(J). We take different 
values of J for different sample sizes. For each sample size and for each SNR and for each 
model, we replicate the process five hundred times. The results are presented in Tables 1-3. 
We present the percentage of correct estimates (PCE), percentage of over estimates (POE) 
and the percentage of under estimates (PUE). The entry in each table represents the PUE, 
the PCE and the POE for different methods over five hundred replications. 

Comparing the tables it is observed that for fixed n as SNR increases the performances 
of almost all the methods improve and for fixed SNR as n increases the performances also 
improve except for AIC. It is observed that since the difference between the two frequencies 
in Model 2 is more than in Model 1, estimators of the number of signals are more accurate 
in Model 2 than in Model 1. Between Model 2 and Model 3, since the number of parameter 
is more in Model 3, it is observed that the estimators become less accurate for Model 3. 
Among the different methods, the performance of AIC is quite poor. The percentage of 
correct estimation does not exceed 60% for AIC even at high SNR. As sample size increases 
the PCE decrease for AIC for fixed SNR. The inconsistency of the AIC is quite prominent 
in this situation. MDL works quite satisfactory at high SNR, although the percentage of 
correct estimation decreases between 80% to 85% if the SNR is low. The performance of 
EDC is quite satisfactory with Cn = logn. The consistency of MDL or EDC can be verified 



from the experiment. The performance of the CV method depends on the order of the 
prediction equations. As the prediction order J increases, the percentage of the correct 
estimate increases up to a certain point then it starts decreasing. It is observed in our 
experiment that if J « |, then the percentage of correct detection of CV( J) is maximum, 
although we cannot give any theoretical justification of this. It seems more work is needed 
in this direction. It is also observed that if J « j[, then the CV( J) works much better than 
AIC or MDL and the performance of CV( J) is quite comparable with the best performed 
EDC and in certain cases CV( J) works marginally better than the best performed EDC. 

It is well known that the usual cross validation method does not give consistent estimates 
of the model order estimation, but sometimes it might provide consistent estimates for the 
model order estimation. In this case it seems if we take J « j[, it might provide consistent 
estimates of M. 

Let's consider computational complexities of the different methods. From computational 
point of view AIC, MDL or EDC are much faster than the CV method if K is small. If the 
maximum model dimension K is large, then AIC, MDL or EDC become more complicated, 
because they need to solve non-linear equations in a 2K dimensions. The solutions may 
depend on the initial values and they may lead to a local minimum rather than a global min- 
imum. On the other hand if the sample size is large then the CV computations become more 
time consuming, although implementation is quite simple. The proposed CV computation 
does not require any initial values. 

6. CONCLUSIONS: 

In this paper we consider the estimation of the number of signals of the undamped 
exponential models, which is a very important problem in Statistical Signal Processing. We 
propose a new CV approach based on the missing value technique. It is observed that the 
proposed CV method works quite well and it performs better than the usual AIC and MDL. 
The performance is quite comparable to the best performed EDC. Another point we would 
like to point out that although, we assume that the errors are complex Gaussian random 
variables, but it is not being used except implicitly at (21). Therefore, it seems the CV 
procedure should work even if the errors are not from a complex Gaussian random variable 
but from any light tail distributions. Where as for AIC, MDL or EDC the exact distributional 
assumptions of the error random variables are very important for their implementation. 
Comparing all the points it is suggested that the CV method can be used to estimate the 
number of signals for the model (1) in many situations. 
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Table 1 
Model 1 

Sample Size 25 
SNR = 15 SNR = 10 SNR = 5 

Methods PUE PCE POE PUE PCE POE PUE PCE POE 
CV(6) 0 75 25 0 51 49 0 16 84 
CV(8) 0 96 4 0 90 10 3 85 12 
CV(10) 0 94 6 13 78 9 0 53 47 

AIC 0 55 45 0 56 44 0 56 44 
MDL 0 87 13 0 87 13 0 80 20 
EDC 0 94 6 0 90 10 0 80 20 

Sample Size 40 
SNR = 15 SNR = 10 SNR = 5 

Methods PUE PCE POE PUE PCE POE PUE PCE POE 
CV(6) 0 77 23 0 71 29 0 56 44 
CV(8) 0 93 7 0 90 10 0 88 12 
CV(10) 0 94 6 0 94 6 0 92 8 
CV(13) 0 97 3 0 95 5 0 94 6 
CV(15) 0 95 5 0 93 7 0 91 9 

AIC 0 48 52 0 46 54 0 43 57 
MDL 0 91 9 0 88 12 0 89 11 
EDC 0 97 3 0 93 7 0 94 6 

Sample Size 55 
SNR = 15 SNR = 10 SNR = 5 

Methods PUE PCE POE PUE PCE POE PUE PCE POE 
CV(6) 0 85 15 0 85 15 0 83 17 
CV(8) 0 90 10 0 90 10 0 88 12 

CV(12) 0 96 4« 0 96 4 0 95 5 
CV(18) 0 98 2 0 98 2 0 97 3 
CV(20) 0 97 3 0 96 4 0 96 4 

AIC 0 42 58 0 40 60 0 38 62 
MDL 0 87 13 0 85 15 0 85 15 
EDC 0 97 3 0 97 3 0 93 7 
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Table 2 
Model 2 

Sample Size 25 
SNR = 15 SNR = 10 SNR = 5 

Methods PUE PCE POE PUE PCE POE PUE PCE POE 
CV(6) 0 57 43 0 55 45 0 52 48 
CV(8) 0 100 0 0 100 0 0 100 0 

CV(10) 0 97 3 0 95 5 0 93 7 
AIC 0 56 44 0 53 47 0 52 48 
MDL 0 90 10 0 88 12 0 86 14 
EDC 0 99 1 0 99 1 0 99 1 

Sample Size 40 
SNR, = 15 SNR = 10 SNR = 5 

Methods PUE PCE POE PUE PCE POE PUE PCE POE 
CV(6) 0 70 30 0 69 31 0 65 35 
CV(8) 0 91 9 0 91 9 0 90 10 

CV(10) 0 93 7 0 92 8 0 93 7 
CV(13) 0 98 2 0 97 3 0 97 3 
CV(15) 0 95 5 0 95 5 0 94 6 

AIC 0 46 54 0 44 56 0 43 57 
MDL 0 87 13 0 87 13 0 86 14 
EDC 0 98 2 0 98 2 0 97 3 

Sample Size 55 
SNR = 15 SNR = 10 SNR = 5 

Methods PUE PCE POE PUE PCE POE PUE PCE POE 
CV(6) 0 86 14 0 84 16 0 83 17 
CV(8) 0 94 6 0 91 9 0 89 11 

CV(12) 0 95 5 0 93 7 0 95 5 
CV(18) 0 100 0 0 100 0 0 100 0 
CV(20) 0 98 2 0 97 3 0 96 4 

AIC 0 37 63 0 37 63 0 35 65 
MDL 0 88 12 0 88 12 0 86 14 
EDC 0 100 0 0 99 0 0 99 0 
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Table 3 
Model 3 

Sample Size 25 
SNR = 15             SNR = 10 SNR = 5 

Methods PUE PCE POE PUE PCE POE PUE PCE POE 
CV(6) 0 62 38 0 52 48 0 22 78 
CV(8) 0 97 3 0 93 7 0 88 12 

CV(10) 0 92 8 0 88 12 0 63 37 
AIC 0 53 47 0 54 46 0 54 46 
MDL 0 87 13 0 85 15 0 80 20 
EDC 0 93 7 0 89 11 0 82 18 

Sample Size 40 
SNR = 15 SNR = 10 SNR = 5 

Methods PUE PCE POE PUE PCE POE PUE PCE POE 
CV(6) 0 58 42 0 63 37 0 60 40 
CV(8) 0 88 12 0 88 12 0 85 15 
CV(10) 0 90 10 0 92 8 0 89 11 
CV(13) 0 97 3 0 96 4 0 95 5 
CV(15) 0 94 6 0 93 7 0 92 8 

AIC 0 46 54 0 41 59 0 41 59 
MDL 0 83 17 0 85 15 0 83 17 
EDC 0 94 6 0 95 5 0 91 9 

Sample Size 55 
SNR = 15                   SNR = 10 SNR = 5 

Methods PUE PCE POE PUE PCE POE PUE PCE POE 
CV(6) 0 82 18 0 82 18 0 82 18 
CV(8) 0 90 10 0 89 11 0 88 12 
CV(12) 0 93 7 0 90 10 0 90 10 
CV(18) 0 98 2 0 98 2 0 97 3 
CV(20) 0 96 4 ' 0 95 5 0 95 5 

AIC 0 41 59 0 39 61 0 37 63 
MDL 0 84 16 0 84 16 0 83 17 
EDC 0 96 4 0 95 5 0 92 8 
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