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1. INTRODUCTION 

Detecting the number of signals and estimating the parameters of the damped exponential 
signals are important problems in signal processing. We formulate the problem as follows. 
Let yi, !/*,.. •, y„ be a sample of size n, where yt is given by 

yt = ]T akexp{-skt + i2TTfkt) + et (L1) 
Jk=l 

Here afc's are unknown complex numbers called the amplitude of the *» signal, /*'s are 
distinct real numbers lying between 0 and 1, *'s are the damping factors and are positive 
real numbers, i = v/=L M is a sequence of independent identically distributed random 
variables with mean zero and finite variance for both the real and the imaginary part The 
real and imaginary part of {«} are assumed to be independent and normally distabutaL 
M, the number of signals is also assumed to be unknown. Given the sample of size n, the 
problem is to estimate the unknown parameters afcl sfc, fk for k = 1, . • • M and M aiso. 

The estimation of the parameters of a damped exponential model (11) is an old problem 
(Kay 1987) and the readers are referred to Stoica (1993) for an extensive list of references. 
Lots of methods for estimating the frequencies have been proposed by ™^™*£* 
last twentv vears Among the notables, are the methods of Ernkson et al. (1994), Kay 
KSÄ Mitra 1995), Stoica and Nehorai (1989), Stoica et al. (1989), Tufts and 
Kumaresan (1982) and Yan and Bressler (1993). All these methods of estimation assume 
that the number of signals M is known. The aim of this paper is to estimate the number of 
signals M, which is usually unknown, under the assumption that the number of signals can 

be at most K, which is known in advance. 

Wax and Kailath (1985) developed information theoretic criteria for detecting the num- 
ber of signals received by a sensor array. Fuchs (1988) developed a criterion, ba^ed on the 
perturbation analysis of the data auto correlation matrix, for detecting the number of sinu- 
soids. More recently Reddy and Biradar (1993), following the mformaüon theoretic approach 

to model selection developed a criterion for detecting the number of ^^[^^Z 
ponentials. The detection performance of these criteria were compared with that of.Pud* 
(1988) and their results showed that the Minimum Description Length (MDL) criterion as 
developed by them performs nearly same as that of Fuchs (1988). A more general infor- 
mation theoretic criterion in model selection has been proposed by Zhao, Knshnaiah and 
ÄKS^called the Efficient Detection Criterion (EDC). Rao (1988) suggested 
to use EDC to estimate the number of signals for damped or undamped case but he did 
not perform any numerical experiments. It is known (Bai et. al; 1987) that the EDC give 
consistent estimates for estimating the number of signals in undamped exponentia s gnals, 
although the same result is not applicable for damped exponential model. Kundi (1992) 
gave a detailed comparison of the different information theoretic criteria for estimating the 
number of undamped signals, but nowhere at least not known to the authors, the comparison 
of the different information theoretic criteria exist for damped exponential model. 



. Note that for the damped exponential model the data sequence is pure noise as the sample 
size goes to infinity. Therefore, one can't obtain any asymptotically consistent estimate of 
the number of signals. However, when the damping factor is not that first, it is hoped that 
some good detection criterion can surely be obtained by suitable algorithms, which should 
be able to estimate the number of signals reasonably well.   That is the main aim of this 

paper. 

For the undamped exponential models all the information theoretic criterion can be writ- 
ten in the form (2.8), where Cn represents penalty function. It has to satisfy the conditions 
given in (2.7). Note that, the penalty function C„ goes to infinity for the undamped model 
to give consistent estimate of the number of signals. For the damped model if Cn goes to 
infinity, then for large sample size any criterion will underestimate the number of signals. 
In fact,' the penalty function should go to zero as n tends to infinity. We modify Cn for the 
damped model and propose the modified information theoretic criteria where the penalty 
function depends on the amplitude as well as the damping factor. If there is no damping fac- 
tor it coincides with the information theoretic criteria for the undamped model. We obtain 
the probability of the wrong detection. The probability of wrong detection depends on the 
unknown parameters. We propose to use the bootstrap techniques to estimate the probabil- 
ity of wrong detection for a particular penalty function. Once we estimate the probability of 
wrong detection, we choose that penalty function for which the wrong detection is minimum. 
Some simulations are performed to see the effectiveness of the proposed criterion. 

The organization of the rest of the paper is as follows. In section 2 we introduce different 
information theoretic criteria and propose the modified efficient detection criteria for the 
damped model. The practical implementation procedures are provided in Section 3. In 
Section 4 we present the numerical experiments and finally we draw conclusions in Section 

5- 

2. DIFFERENT INFORMATION THEORETIC CRITERIA 

In this section we discuss the different information theoretic criteria for estimating the 
number of signals of the damped exponential signal models. We introduce the Akaike Infor- 
mation Criteria (AIC), Minimum Description Length (MDL) criteria and Efficient Detection 

Criteria (EDC). 

Let yi yn be a sample of size n from the model (1.1). Let P, be the parameter that 
ranges over all possible number of signals, i.e.   P € {1,...,K}.   Then the joint density 
function of the data set can be written as 

/MM = z^exP [-\ t \vt ~ *(°p)\2) (2-1} 

where 
OP = (ai,..., ap, si,..., sp, /i,.. •, fp) 



and p 
ßt(9P) = £ akexp{-skt + i2irfkt) 

k=l 

We now formulate the problem as follows; Given a set of n observations and a family of 
models {f(y\öp)]P = 1, ■..,#}> that is a parameterized family of probability densities 
f(y\6p), our problem is to select the true one. 

Posed this way, this problem is perfectly suited for using different information theoretic 
criteria such as AIC, MDL or the EDC. The AIC, MDL and EDC criteria are known as 
penalized likelihood method in the general statistical literature. Here a penalty function 
Is subtracted from the log-likelihood before it is maximized. This serves to penalize or 
discourage the addition of more and more parameters. In this set up the best model would 
be one for which the penalized likelihood is maximum. For the general problem on this topic 
one can refer to Akaike (1973, 1974, 1978), Hannan and Quinn (1979), Rissanen (1978), 

Schwartz (1983) arid Zhao et al. (1986a, 1986b). 

Akaike (1973, 1974) proposed the Akaike Information Criterion (AIC). The AIC suggests 
choosing M, an estimator of M, which minimizes the following expression; 

AIC{P) = -logf{y\6P) + d{0P); (2-2) 

for P = 1, • • •, K, where 8P is the maximum likelihood estimator (MLE) of 9P and d{0P) is 
the number of independent parameters of the parameter vector 9P. 

Akaike's basic idea was to choose the model that minimizes the mean of the Kullback- 
Leibler distance between the true density f(y\0P) and the estimated density fWpJ-J™* 
the distance is unknown, he proposed to estimate it by the log-likelihood of the MLE. The 
second term in (2.2) was added to make the log-likelihood at the MLE an unbiased estimator 

of the Kullback-Leibler distance. 

In the exponential signals model, with the assumption of the Gaussian error the AIC 

takes the following form; > 
AIC(P) = -nlogRp - 8P (2-3) 

(see Rao; 1988), where RP, denotes the minimum value of 

X>-MM2 <2-4) 

t=i 

and the minimization is performed with respect to au ..., ap, su ..., sP, /i,..., fr>- 

Minimum Description Length (MDL) criterion was introduced by Rissanen (1978) The 
basic idea is that the best model is the one that provides the shortest description of the 
data. It has been shown (Rissanen; 1983) that for large samples this criterion leads to the 

selection of the model that minimizes 

MDL{P) = -logf{y\6P) + -d{6P)logn (2-5) 



for P = 1,..., K", where f{y\dP) and d{9P) are as defined before. 

Schwartz (1978) suggested a model selection approach based on Bayesian arguments 
Assuming a priori probabilities for every competing model, he proposed selecting the model 
fhat maximizes the posterior probability. It has been shown that for a model belonging to an 
exponential family, the maximization of the posterior probability leads to the minimization 
of the criterion given by (2.5) asymptotically. 

The Efficient Detection Criterion (EDC) method of Zhao et al. (1986a, 1986b) consists 
of choosing as an estimator of M, the number M, which minimizes 

EDC(P) = -logf(y\eP) + Cnd(9P) (2-6) 

for P = 1,..., K, where C„'s are such that 

/rnin_oo— = 0     and     lim^oo     -" - = °° (2>7) 
n ' loglogn 

In the exponential signal model, with the assumption of Gaussian error, the EDC takes the 

following form (see Rao; 1988) 

EDC(P) = -nlogRp - Cn(8P) (2-8) 

Observe that MDL criterion is a special case of the EDC. For MDL, Cn takes the value \ 
lot n in (2 8). The estimators of M, obtained from (2.8) are strongly consistent for the 
undamped exponential model. For a detailed proof of the consistency for the undamped 
model see Bai et al. (1987). For the damped model however the consistency resultsdo-not 
Told, therefore it is important to observe the behavior of the different information theoretic 
criteria in this situation at least for small samples. 

Now we try to analyze what kind of problem we might f™^*™^*^*£ 
for estimating the number of signals for damped exponential model. Note that, (2 7) unphes 
CB tends to infinity as n tends to infinity. Suppose, M is the correct order model, then Gn 

should be such that 

EDC(M) < EDC(P); for P = 1, • ■ • ,K,P # M. (2.9) 

Now (2.9) implies 

nlogRM + Cn(8M)<nlogRP + Cn(SP); for P = 1, • • -,*,P # M.     (2.10) 

Since R1>R2>->RK ^most smel^ (2-10) implies that Cn mUSt Satisfy 

-(^-)<^<M^) (2-n) 



For undamped model 

for damped model 

,.       RM 
lim —  

n-*°° RM+1 

= 1,      and !>1 

lim -M- = 1, 
«-+°° RM+1 

and 

,.     RM- hm —— n->°°  RM 

..     RM-I      , 
hm —-— = 1 

"-+°°  R ■M 

Because of the damped factor, note that for large n, 

R\f-\ 
R M 

= l + 0(e-Jn) 

(2.12) 

(2.13) 

(2.14) 

where 5 = max {su..., sM} > 0. If we divide by loglogn in (2.11) and take the limit, we 
obtain 

n     <nlirnn^(l + O(e-,5n))=0 (2.15) oo = 8 lim ,    f n->°° loglogn 

Therefore, if Cn tends to infinity, for large n, (2.11) may not satisfy. On the other hand it 
looks more reasonable that the penalty function should be more if the amplitudes are more 
(suggested by a referee). Based on the above observations, we propose the following modified 
EDC (MEDC) for the damped model 

MEDC(P) = -nlogRp - ACne-5n{8P) (2.16) 

here A = max{Ai,..., AM} and 5 = max {Si, ...,SM}- lithe damping factor is zero, then 
MEDC coincides with the usual EDC. Note that we need to know A and 8 to implement 
MEDC in practice. We will describe that in the next section. 

3. PRACTICAL IMPLEMENTATION 

Consider the following data matrix, 

A = 
V\ 

Vn-L+l 

VL 

Vn 

Here L is any integer such that K < L < N - K. Let us denote the matrix T = £A*A, 
where '*' denotes the conjugate transpose of a matrix or of a vector. We obtain the spectral 
decomposition of the matrix T as follows: 

T = £ afLW* 
t=i 

here a\> ...> o\+x are the ordered eigenvalues of T and tVs are the normalized eigenvalues 
corresponding to <5f. 

6 



Assuming the true order of the model is K (the maximum one), we estimate ftrst to 
K damoine factors and the K amplitudes say h > •■■ > 'K and AU...,AK respectively 
t „XHhe NSD method of Kundu and Mitra (1995) from T. We use 6 = o, and A = 
max{X , 21 Note that the values of i and A depend on L, we provide some suggest 

to choose L in the next section. 

For a given choice of C. and from the estimated A and S, we can "^^J© 
for different values of P = 1,..., K and choose M an esfmate of M such that MEDC(M) 

is minimum. 

Note that we have a wide choice of C», but we would like to choose that Cn so that 
P(M # M) is minimum. First let's compute P(M # M). 

P(M^M)   =   P{M < M) + P{M > M) 
M-l " - . 

= . £ P(M = q) +   E   P(M = «) 
9=^ «7=^+1 

=    ]T P(MEDC(q) - MEDC{M) < 0) 

+     f;   P{MEDC(q)-MEDC(M)<0) 

9=0 

+ 
9=M+1 

£   P(n/o<7ÄM - nJosÄ, < ^Cne-*n8(g - M)) C3-1) 
^=M+1 

1 Infortunately PIM * M) depends on the unknown model parameters. Without knowing the 
„ri^Z^et re we cant calculate the theoretical probabilities. We would hke to estnnat 
ZÄESL with the help of the given sanrple and using ^^^^^ 
idea is as follows. From any particular realization of the model we: omputf°™™T™ 

„Main the co —^-^^^^^2^ 

variables with mean zero and variance a2, say «i 6».   We obtain 

sample as _ 
y? = yt + et, for t-l,..-,n. 

Assuming Af (C„) is the correct order model, we check for q < M(Cn), whether 

nlog(Rq) - nlog(RM(cn)) > ACne-6nS(M(Cn) - q), 

or, for q > M{Cn), check whether 

nlog(RM{cn)) - nlog(Rq) < ACne-5n8(q - M(Cn)\ 



Repeating the process, say B times, we can estimate (3.1). Finally we choose that C„ for 
which the estimated P(M ^ M) is minimum. 

Some justifications regarding this kind of bootstrap estimates of (3.1) can be given. Note 
that the realization of yf can be thought of coming from a model (1.1) with V(et) « 2a2. 
Note that for the damped exponential model -£*- for q = 1,...,K is independent of a2. 
Therefore (3.1) remains invariant if we change the error variance from a  to 2a . 

4. NUMERICAL EXPERIMENTS 

In this section we present the Monte Carlo simulations done for small samples to compare 
the different information theoretic criteria. All these computations have been done on HP - 
9000, machine at the Indian Institute of Technology, Kanpur. 

We consider four different models with different parameters and different standard devi- 
ations of the error random variables. The four models are given as follows; 

Model 1 yt = cT/4e(-0.0»+i2*(.52)0 + C*/2C<-0.02«.H2,<.42)«) + ^ 
Model 2     yt = e*/4e(-o.ou+i2,r(.52)t) + e*/2c(-o.o2t+<te(.60)0 + €t 

Model 3     yt = c*/y-o*«+*r<.6a)t> + e*l2e^m+i2*{A2)t) + « 
Model 4        yt = 1 + e*/y-0.01t-H2,r(.52)t) + e./2e(-0.02t+i2,(.50)t) + ^ 

The data are generated using the different standard deviation, viz a = 0.01, 0.1, 0.5 and 1.0 
and with different sample sizes n = 25, 50, 75 and 100. The random deviates are generated 
with the help of the IMSL random deviate generator. For each of the four models one 
hundred replications of the data set for different n and a are generated. Observe that in 
Model 1 and Model 2, the amplitudes and the damping factors are kept fixed, whereas the 
difference of the radian frequencies is more in Model 1 than in Model 2. Between Model 1 
and Model 3, the amplitudes and the radian frequencies are kept fixed, whereas the difference 
between the damping factor is more in Model 3 than in Model 1. Model 4 is a higher order 
model than Models 1,2 or 3. As far as the estimation of frequencies are concerned, it is 
known (Kundu and Mitra; 1995) that it is difficult to estimate the parameters in Model 2 
than in Model 1 and similarly in Model 1 than in Model 3. No such comparison can be made 
between Model 2 and Model 3. Between Model 4 and Model 2 it is expected that Model 2 
will be easier than Model 4 as the number of parameters are more in Model 4 than that of 
Model 2. It is expected that in estimating the number of signals also, the same pattern will 
exist. 

We compare the usual AIC and usual MDL with the proposed MEDC. Note that for AIC 
and MDL, Cn = 1 and C„ = \logn respectively in (2.8). For MEDC, we take a varied choice 
of Cn satisfying (2.7) (except when Cn = 1) but diverging to infinity at different rates from 
very slow to very fast. The different choices of Cn considered are as follows: Cn = l,Cn=n- 
, Cn = n-5, Cn = rr9 Cn = log n, Cn = (logn)\ Cn = {logn)-5,Cn = (logn)9 Cn = (nlogn)1, 



C - Moan)-5 Cn = (nlogn)* and Cn = \ log n. It is assumed that for all the four models 
£e mSum dumber of signals is 6. Firs? we assume that the model order is K =£ Now 
using the modified noise space decomposition method with L « nun {\N,20 je obtain the 
es imates of A and *. Using that A and 5, we compute MEDC(P) from (2 16) for different 
valuTof P = 1,... 6 for a particular choice of C„. We obtain an «^f^™« 
Setart (L - K) eigenvalues of A«A and also obtain an estimate of P(M * M) as the 
methot suggested in the previous section. We take B = 100, in our calculations The results 
S^aÄTUta 1-4. We report the percentage of under estimate (PUE^ percent^ 
of correct estimate (PCE) and the percentage of over estimate (POE) for AIC, MDL and 
MEDC over five hundred replications. 

5. CONCLUSIONS: 

In this paper we consider the problem of estimating the number of damped exponential 
signals. We use different information theoretic criteria for estimating the number of signals. 

We consider the AIC, MEDC and the MDL criteria for the detection problem. It is 
well known that the AIC criteria does not provide the consistent estimates in general model 
Z ction problem. This fact is well reflected in the results of the simulations given in Tables 
Tcomparing the Tables 1-4 it is observed that, although the MEDC and MDL critena 

give consistent estimates for undamped signals model, the same can not be said for the 
damped models. It is well known (Wu; 1981 and Kundu; 1994) that although it is possibl 
to estimate consistently the parameters of the undamped exponential model but it »act 
possible to obtain the consistent estimates of the parameters of the damped model. It may 
no beIrprising if we look at the damped model carefully. From the model it is clear (if the 
Slp!ng factor l negative) as the sample size n increases the signal component vanishes to 
zero and" we left with the error components only. Therefore even if we increase the sample 
sizes we may not extract any more information about the signal parameters from the sample 
"fact the inconsistency is clearly indicated in the simulation results. It is observed hat 
the number of correct selections by different methods do not increase for a fixed a as n 
increases In fact for AIC and MDL in many cases they even decrease. For nxed n, as\a 
decre-s, iUs observed that for MDL and MEDC, the performances improve. This inmates 
the consistency of the MDL and MEDC methods as a decreases to zero for fixed n It is also 
observedthatfor a fixed n as o increases the methods have a tendency to over.—k 
models 1 and 3, whereas they have a tendency to under estimat^^J^^c 
Comapring the tables, it is observed that in most of the cases, for fixed n and a, the number 
of correct detection is more in Table 1 than in Table 2, which is not very su«^ £ 
difference of the radian frequencies (\h ~ M) is more in model 1 than in model 2. This fac 
was also seen for the undamped signals by Kundu (1992). Interestingly the ^«™? 
detection in Table 3 is more or less same as that of Table 1 although the difference in the 
rmping factor (k - sa|) is more in model 3 than in model 1. The difference m performance 
t^mof marked if the two models differ significantly with respect to the frequencies. The 
performance of most of the methods is much better for model 1 than that of model 2 if a 



•.■»(IM Between Model 2 and Model 4, the behavior are qnite similar in nature for all 
^t all the c^c„» °dered, although the number of correct detection . more ,n Model 2 

compared to Model 4. 

Now comparing the three method, it MJ*.« ^"Ä^ 
particular model. Our sunulafons show that for AKtheprobab    y ^^ ^ 
never exceeds .45 also the mcons.stency of the AIC is verypromme 
reasonably well if the error variances notvery to* ™^™ ™ZTZ period, 

difference of the ^^J^JSß£^^tiance is low. It can detect 

° M
Mt 90 rXu peSnt ffalltnlmodeS considered if a < .1. » the error variance is 

hi^ h p C-e".PS significantly if the radian frequencies are dose* «* od*.B 

Although, eventually as n tends to infinity MEDC! ateo *üi giv ^^ 
least for finite sample it works reasonably well and better than tne exisuug 
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Table 1 

SS 

25 

ITC 

MEDC 
AIC 
MDL 

<T = .01 
PUE PCE POE 

50 

75 

MEDC 
AIC 
MDL 

0.0 .99 .01 
0.0 .42 .58 
0.0     .86     .14 

MEDC 
AIC 
MDL 

MEDC 
AIC 
MDL 

0.0 1.0 00 
0.0 .33 .67 
0.0     .82     .18 
0.0 .98 .02 
0.0 .15 85 
0.0     .77     .23 

a = 0.1 
PUE PCE POE 
~Ö1J     Ä9    äl~" 

0.0     .40     .60 
0.0     .86     .14 

a = 0.5 
PUE PCE POE 

0.0 1.0 00 
0.0 .16 -84 
0.0     .75     .25 

0.0 1.0 .00 
0.0 .35 .65 
0.0 .83 .17 

~Öl) ^ !Ö3 
0.0 .15 -85 
0.0 .77 .23 
0.0 1.0 -00 
0.0 .16 -84 
0.0     .77    .23 

a = 1.0 
PUE PCE POE 

.39     .00 

.20     .20 

.27     .00 
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Table 3 

SS 

25 

ITC 

MEDC 
AIC 
MDL 

50 

75 

100 

SS 

25 

50 

75 

MEDC 
AIC 
MDL 

(T=.01 
PUE PCE POE 

.00    .98    .02 

.00    .40    .60 
..00    .86     .14 

a = 0.1 
PUE PCE POE 

MEDC 
AIC 
MDL 

MEDC 
AIC 
MDL 

.00 1.0 .00 

.00 .35 .65 

.00     .84     .16 

.00 1.0 .00 

.00 .15 .85 

.00    .79     .21 

.00 1.0 

.00 .16 

.00    .77 

.00 

.84 

.23 

ITC 

MEDC 
AIC 
MDL 

MEDC 
AIC 
MDL 

a- .01 
PUE PCE POE 
~ÖÖ     Et)     äÖ~ 

.00     .38     .62 

.00    .67     .39 

MEDC 
AIC 
MDL 

100 
MEDC 

AIC 
MDL 

.00 1.0 .00 

.00 .33 .67 

.00 .78 .22 
~QQ O iÖÖ" 
.00 .13 .87 
.00 .65 .35 
.00 1.0 .00 
.00 .10 -90 
.00     .61     .39 

.00 .98 .02 

.00 .40 .60 

.00     .86     .14 

.00 1.0 .00 

.00 .33 .67 

.00     .83     .17 

a = 075 
PUE PCE POE 
1)4     ^96     äÖ~~ 

.00     .38     .62 

.00     .85     .15 

.00 1.0 -00 

.00 .15 .85 
0.0     .79     .21 
.00 1.0 .00 
0.0 .14 .86 
0.0     .77    .23 

.00 .99 .01 

.00 .33 .67 

.00     .84     .16 

.00 .96 .04 

.00 .15 .85 

.00     .77     .23 

.00 

.00 

.00 

.98 .02 

.16 .84 

.70     .30 

0 = 1.0 
PUE PCE POE 

.27 .49 .24 

.00 .41 .59 

.22 .48 .30 

.09 .70 .21 

.00 .38 .62 

.12 .75 .13 

.04 .74 .22 

.00 .18 .82 

.04 .75 .21 

Table 4 

er = 0.1 
PUE PCE POE 

.10 .78 .12 

.09 .31 .60 

.49     .29     .22 

.00 1.0 .00 

.04 .29 .67 

.49     .51     .00 

.02 .98 .00 

.00 .14 .86 

.00 .68 .32 

.05 .95 .00 

.00 .09 .91 

.00 .64 .36 

<r = 0.5 
PUE PCE POE 

.44 .56 

.77 .11 

.85     .15 

.19 .81 

.73 .10 

.58     .18 

.00 

.12 

.00 

.00 

.17 

.24 
.19 .81 .00 
.37 .11 -52 
.78 -22 .00 
39 M ^Ö" 
.81 -07 .12 
.83 .17 .00 

.03 .76 .21 

.00 .16 .84 

.04     .69     .27 

a = 1.0 
PUE PCE POE 

.71 .29 .00 

.84 .10 .06 

.82     .18     .00 

.60 .40 .00 

.88 .08 .04 

.81     .17     .02 

.63 .37 .00 

.45 .14 .41 

.79 .21 .00 

.65 .35 .00 

.93 .07 .00 

.83 .17 .00 
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