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Photorefractive Spatial Solitons: Fundamentals and Applications 

Abstract 

In this program, we have studied, experimentally and theoretically, the fundamental properties of 

photorefractive spatial solitons and the features of the interactions between and among them. We 

brought the topic of photorefractive solitons to the very front of soliton science and of nonlinear 

optics. In our work, we have put much emphasis on studying properties and features that are 

universal to all solitons in nature, even to those in fields that are very remote from optics. We 

have discovered a family of entirely new solitons: Incoherent Solitons, which can exist in any 

non-instantaneous nonlinear media in nature. We have shown that solitons interacting in full 3D 

media manifest particle properties (such as conservation of angular momentum) which a decade 

ago were thought to be absurd with respect to solitons. Finally, we have demonstrated the 

feasibility of a list of applications that are unique to photorefractive solitons, the most important 

ones being (1) nonlinear frequency conversion in soliton-induced waveguides, and (2) fixing 2D 

solitons into the crystalline lattice of the nonlinear medium: Integrated Optics in 3D. At the 

beginning of this program, there were not more than 3-4 additional groups in the US studying 

optical spatial solitons, and not more than 10 world wide. Today, much of it following our work, 

optical spatial solitons have become a platform for studies of all soliton phenomena, and have 

attracted more than 50 groups world wide. The best evidence for that in the number of 

participants in the last Conference on Nonlinear Guided Waves and Their Applications, which 

was doubled between from the 1996 and 1998 conferences to the 1999 conference. 
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Photorefractive Spatial Solitons: Fundamentals and Applications 

Summary 

Throughout this program, we have studied, experimentally and theoretically, the fundamental 

properties of photorefractive spatial solitons and the features of the interactions between and 

among them. We first summarize the highlight achievements of our research program and list the 

main achievements. Then, we provide a list of published papers classified, item by item, 

according to the various tasks we have proposed in our original Work Plan, 4 years ago. 

Research Highlights 

1. Incoherent solitons: Self-trapping of incoherent "white" light beams 

Prior to our research, all soliton experiments and theories in nature (including all types of 

nonlinearities such as in fluids, plasma, and electromagnetic radiation) employed a coherent 

"pulse" (either a temporal pulse or a narrow beam in space). In other words, given the phase at a 

given location on the pulse (space or time) one can predict the phase anywhere on that self- 

trapped pulse. During the past year, we were able to self-trap a fully incoherent light beam 

that originates from an incandescent light bulb. In other words, we have taken a beam (a 

"pulse" in space) upon which the phase varies randomly in time/space, yet it is still self- 

trapped. This discovery became new milestone in Nonlinear Science: self-trapping of an 

incoherent wave-packet (pulse, in either space or time or both). It has opened the door for many 

new concepts, such as Coherence Control, "Cooling and Condensates" of optical fields, inducing 

single-mode waveguides using light from incoherent sources, etc. 

For applications, this work brings about the possibility of using self-trapped beams from 

incoherent sources (such as Light Emitting Diodes: LEDs) for reconfigurable optical 

interconnect, beam steering, etc. 

2. Three Dimensional Interactions between Spatial Solitons 

Over the last 30 years much has been said about the similarity between solitons and 

particles. It is now well accepted that interacting solitons conserve energy and linear momentum. 

However, particles interacting in 3D can possess also angular momentum. Until 1992, all 

solitons demonstrated (either in time or in space, in ANY nonlinear media in which solitons can 

form, including fluids, plasma, etc.) have been one-dimensional. This is because all known 

solitons at that time were Kerr-like solitons, which fundamentally cannot support 2D self- 



trapping (they become unstable). Since we have demonstrated (1993) that 2D optical beams can 

self-trap and form solitons in photorefractive media, we have had a unique opportunity to study 

full 3D interactions between solitons. In a series of experiments, we have shown that interacting 

2D photorefractive solitons conserve energy, linear momentum and angular momentum. We 

have shown that when two such solitons collide (intersect) with initial trajectories that do not lie 

in the same plane, they attract and "bend" towards each other. The attraction between the solitons 

is simply due to the increased optical intensity in the region between the solitons, where their 

wave functions overlap, which increases (via the optical nonlinearity) the refractive index in that 

region. More light is then attracted (guided) in that region and the solitons attract each other. The 

solitons "capture" each other into orbit and spiral about each other when the attraction force 

between them exactly balances the "centrifugal" force. In other words, we have demonstrated 

that two 2D spatial solitons interacting in a 3D system behave as a two-body system, very 

similar to celestial objects or to moving charged particles. At the time (1997), this was the 

first demonstration of this principle in any system that supports solitons. Since then 

numerous groups have followed our footsteps and 3D soliton interactions now became a "hot 

topic". 

3. Tunable nonlinear frequency conversion in soliton-induced waveguides 

Several years ago we have proposed a fundamentally new application that is unique to 

photorefractive solitons: tunable nonlinear frequency conversion in soliton-induced waveguides. 

In general, waveguides induced by photorefractive solitons offer a large degree of tuning of all 

the waveguide parameters, so one can have high efficiency frequency conversion (due to a 

waveguide configuration) along with tunability. One method of tuning is mechanical: launching 

the solitons in different directions induces waveguides in different crystalline orientations and 

varies the phase matching condition. Therefore, one can simply rotate the crystal and tune the 

wavelength, just as if the nonlinear interaction is taking place in a bulk medium. Because the 

waveguide is not a fabricated waveguide, but rather is induced by the soliton, one simply rotates 

the waveguide as it is conventionally done with a bulk crystal. A more sophisticated method 

involves no mechanical movements: the propagation constants of the guided modes in 

waveguides induced by photorefractive solitons are tunable by varying the intensity ratio. Thus, 

one can hold the soliton beam at a fixed direction and position, and vary only its intensity while 

adjusting the applied voltage, so that one "walks" along the soliton existence curve, that is, the 

curve that describes all fundamental solitons in parameter space. This means that the phase 

matching condition, whether it is achieved by birefringence or by periodic poling, is tunable, 



with a very large degree of accuracy. During 1998, we have preformed a series of preliminary 

experiments in our lab and were able to demonstrate a significant improvement in the conversion 

efficiency (in a short crystal) of second harmonic generation, over the same process with a 

diffracting beam, i.e., when the soliton induced waveguide is absent. The first paper on this 

project has appeared in 1999, and it presented an experimental demonstration of highly efficient 

SHG in soliton-induced waveguides. This seems to be the first real application of optical 

spatial solitons. 

4. Photorefractive solitons at optical communication wavelengths (in InP) 

Photorefractive semiconductors, such as InP and GaAs, offer fast nonlinear response, 

typically 100-1000 times faster than photorefractive oxides or silenites. Furthermore, some of 

them (InP) operate at optical communication wavelengths. However, their nonlinearity (electro- 

optic effect) is typically weak: their electro-optic coefficient is ~ 1.5 pm/v as compared to 1340 

in SBN:75. In fact, until 1995 we believed that it was going to be very hard to generate solitons 

in photorefractive semiconductors. Despite the inherently small nonlinearity, during the past 

year we were able to demonstrate self-trapping of optical beams in photorefractive InP. What 

enables solitons in such materials is a fundamentally interesting intensity-resonance effect that 

give rise to a factor 10 (or larger) enhancement of the space charge field, over the externally- 

applied electric field (V/L). This intensity-resonance is driven by bipolar charge excitation, and 

it occurs when the density of photoexcited holes is roughly equal to the density of thermally- 

excited electrons. Using the intensity-resonance, we have demonstrated self-trapping of ID and 

of 2D optical beams in Fe doped InP, at optical communication wavelength (A,=1.3 ^m) and 

microsecond response time (see seventh transparency). These preliminary experiments pave the 

way to 2D reconfigurable optical interconnects using solitons. We have also investigate 

collisions of self-trapped beams in InP and found the necessary conditions for two such beams 

going through each other without exchanging energy (as we did for SBN), a task that is a pre- 

requisite for soliton interconnects. 

5. Permanent "fixing" of photorefractive solitons 

Recently, we have demonstrated a method of transforming the electronic space charge field is 

transformed into a crystalline lattice deformation, which results in permanent 2D waveguides 

impressed in the volume of a bulk nonlinear crystal. We have followed up on that by 

demonstrating permanently-fixed Y-junctions (beam splitter waveguides). This method, along with 



other methods we are currently investigating, relies on reversing the crystalline polarity in selected 

regions. This technique enables one to design intricate 3D optical "circuitry" in the volume of a 

nonlinear crystal. One can envision numerous applications and devices for such 3D integrated 

optics: 3D interferometers, phase shifters, 2D Photonic Band-Gap structures, 2D waveguide arrays 

for Gap Solitons and many other exciting new ideas. 

6. Photorefractive solitons with nanosecond formation time 

Since the photorefractive response time for solitons scales with the dielectric relaxation, it 

is inversely proportional to the optical intensity. It is therefore logical that a large increase in 

the optical intensity and pulsed operation will shorten the response time considerably. 

However, high intensity short pulses can deplete the photorefractive dopant levels and forbid 

the existence of solitons in a high intensity regime. In 1996 we have shown theoretically that 

photorefractive solitons should exist also in the high intensity regime and should be observed 

on nanosecond time scales for oxides or silenites, and on sub-nanosecond scales for 

photorefractive semiconductors (InP and GaAs). During 1998, we have demonstrated short 

pulse (in the nanosecond range) operation of photorefractive solitons in SBN. We now plan to 

perform similar experiments with InP, in which the mobility is -1000 times higher and thus the 

response time is -1000 shorter, and attempt to observe sub-nanosecond photorefractive 

solitons. 
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