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MAIN FINDINGS 
Determination of the mechanical response and damage tolerance of stochastic fibrous networks is 

of important for a wide range of physical applications, including the design of paper, electrochemical 
substrates, and web reinforcement in polymeric composite materials. In all such cases, fibers of variable 
length and aspect ratio are placed randomly in a plane, and fused. We may thus define the microstructure 
as a two-dimensional network, with key geometric features defined by statistical distributions, rather than 
single-valued descriptors. The connectivity of the network results from the selection of network parameters, 
and thus must be calculated after a network is generated via simulation, to achieve a physically realistic 

representation. An example is shown in Fig. 1. 

Figure 1.   Network generation technique. Fibers are generated according to a known statistical distributions of length, 
orientation and location. Periodic boundary conditions are then enforced, and non-load-bearing structures are removed, 
leaving the "reduced" network for analysis. 

Several key issues were examined, including the effect of order of beam theory used (Fig. 2), bond density 
for similar volume-fraction networks (Fig. 3), and effect of preliminary investigation of 3D effects. 

Results indicated that lower order theory was appropriate for materials technologically relevant to 
batteries. However, preliminary results indicated a marked difference between peak loads in 2D versus 3D 
models. This will be a key feature of future work. 
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Figure 2. Comparison of the Euler beams and Timoshenko beams in simulations of effective network modulus, for a 
range of volume fractions and three aspect ratios (100, 50,10). 
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Figure 3. Connectivity versus effective modulus in simple bilinear networks. Schematics of the illustrative cases are 
shown in (a) wherein segments (whose lengths sum to 1) are joined by torsion springs of variable stiffness. Effective 
moduli are given for (b) a=30°. 



IMPACT AND FUTURE WORK There is great opportunity for advancement of current technologies 
for failure prediction in dynamic loads in the important area of locally heterogeneous microstructure. 
Research is needed to quantify the shortcomings of application of both quasi-static and regular structure 

assumptions to these problems. 

Determination was made of the scale at which image analysis and failure analysis can be effectively used 
to predict behavior up to failure in large volumes of materials. The materials encompassed promising 

structures in Ni/MH and Li-ion cells. 

In the longer term (-2-5 years) it is anticipated that the addition of the large deformation mechanics to the 
current models will allow guidelines for development of FE structural analysis of microstructurally-designed 
materials. This type of analysis and simulation is necessary in order to make the technological leap from 
materials selection for an application, to materials design for an application. Work initiated as a follow-on to 
this program (supported in part by the Department of Energy) has included 3D simulations of fiber-particle 
and fiber-fiber bonds. This work is being rapidly expanded to allow more general guidelines for 
microstructural design of battery materials, and other low-density structures. 


