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Foreword 
The original objectives of this project were to develop the technologies and design automation 

environment for high clock-rate MCM-packaged gallium arsenide circuits which used flip-chip array I/O 
interconnect, and to demonstrate these technologies in the a prototype microprocessor. CAD tools were to 
be developed to support optimization of such systems for performance, power and cost. 

The project involved close collaboration with two subcontractors, Motorola Semiconductor for the 
complementary gallium arsenide (CGaAs) technology, and Cascade Design Automation for CAD tools. 
Motorola scaled the CGaAs process from 0.7 urn minimum dimensions to 0.5 um, improved the CGaAs 
yield significantly, conducted experiments in reducing threshold voltages, and fabricated prototype circuits. 
In the early days of the project, Motorola's Space and Systems Technology Group was a regular subcon- 
tractor, but when the budget was reduced, they agreed to continue to collaborate with us, bearing all of the 
costs themselves; most of the work was done under this arrangement. Cascade provided the physical 
design tools and support for these tools throughout the project. In addition, they developed a special tool 
for placing arrayed I/O pads on chips for flip-chip assembly. At the University of Michigan, a PowerPC 
architectural simulator was developed to evaluate cycles-per instruction for various microarchitectures, a 
CGaAs cell library was developed, and all of the design and testing of circuits was done. 

Early in the project, the goal was to design the prototype system to operate with a 1 GHz clock, 
and advances were made in complementary GaAs technology, circuits, and packaging to enable this. 
When Motorola decided that CGaAs was the technology for their proposed Celestri satellite system, they 
fixed the minimum dimensions at 0.5 urn, rather than further scaling the process, and froze the thresholds 
at +/- 0.55 V, rather than reducing them; on the positive side, they added a low-temperature GaAs buffer 
layer under the devices, which improved subthreshold slope and made the transistors extremely radiation 
hard to single-event upset. These decisions eliminated the possibility of building a fast processor in 
CGaAs, so at this point, the focus of the prototype system was shifted to space applications, which could 
take advantage of both the radiation hardness, and the excellent power-delay product of CGaAs. 

CGaAs technology was analyzed to determine the most cost-effective scaling factor for each 
design rule; the methodology and tools developed for this can be applied also to the nonlinear scaling of 
deep-submicron CMOS processes. Static, domino and dual-rail domino (CVSL) circuits were designed to 
evaluate CGaAs for use in VLSI digital circuits. Phase-Locked Loop and current-mode I/O circuits were 
designed and tested. To facilitate the design of high-performance integrated circuits, logic synthesis and 
place and route tools were written. A gold-bumping process was developed in the UM solid-state electron- 
ics laboratory which produces bumps on pitches as tight as 50 urn. A superscalar PowerPC microarchitec- 
ture was developed for implementation in CGaAs with its modest integration levels, and fabricated in 
CMOS to prove correctness of the design. The project culminated in the design and testing of the radia- 
tion-hard CGaAs PUMA PowerPC microprocessor, which incorporates an area-l/O array. 
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Statement of Problem 
Microprocessors have had a profound impact on both the scientific world and on our personal 

lives. Through astonishing advances in performance, they have replaced traditional mainframes and 
supercomputers with microprocessor-based workstations and servers [1]. The remarkable decrease in 
cost vs. performance for microprocessors has made computing ubiquitous in our society. 

Processor trends can be seen by surveying the microprocessors presented at ISSCC. Over the 
ten years before this project began, gate delays improved at 12% per year; clock frequencies increased at 
40% per year; and transistor-counts grew at 40% per year [2]. The performance of systems made from 
these processors, as measured by the integer SPEC benchmarks, improved at a compounded rate of 59% 
per year, resulting in an increase in computing power of more than 100 fold over the decade. 

The disparity in improvement between gate delay and clock frequency was due to the fact that 
some of the additional transistors made available during these years were used to pipeline processors, 
reducing the number of gates between latches. However, with processors having on the order of ten pipe- 
line stages, additional pipeline depth provides diminishing performance returns, and could not be expected 
to maintain the steep increase in clock frequency seen before. The growing transistor budget also sup- 
ported the addition of on-chip cache memory, which reduced load/store latency to memory. But again, 
with large first- and second-level instruction and data caches on chip, the performance return for enlarging 
cache memories beyond their current sizes was modest. To keep new processors on the performance 
curve, architects also invested their additional transistors in multiple functional units for concurrent instruc- 
tion execution (superscalar architectures). Unfortunately, the benefits of parallelism also diminish with 
scale in general purpose machines. 

With pipelining, on-chip cache size, and instruction issue width all at their points of diminishing 
return, semiconductor manufacturers turned to technology to keep the growth in computer performance on 
the curve. Increased attention to the scaling of CMOS, the inclusion of more fine-pitch metal interconnect 
layers, and more aggressive circuit techniques allowed vendors to increase the clock frequency and 
thereby increase processor throughput. The importance of semiconductor technology to future high-end 
computer performance warranted the evaluation of processes such as Complementary GaAs and SOI, 
which were outside of the mainstream. CGaAs has the switching speed of HEMTs with many of the circuit 
advantages of CMOS. The low-voltage operation of CGaAs, combined with the good switching speed, 
give CGaAs an excellent power-delay product. Process changes during this project made it extremely 
radiation hard. 

When this project began, CGaAs had been targeted primarily at RF applications, with little digital 
work having been done. This project aimed to explore CGaAs technology for VLSI digital circuits, and to 
provide the packaging technologies needed to make it viable in such applications. 
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Summary of Results 
This section of the report includes an overview of CGaAs technology, a list of accomplishments, 

and conclusions that can be drawn from the work in this project. 

Overview of CGaAs Technology 
CGaAs, a complementary heterostructure-insulated-gate FET technology, has been described in 

some detail in [3-5]. A sketch of the device structure is shown in Fig. 1. CGaAs integrates an enhance- 
ment-mode P-channel HFET with a high performance N-channel HFET. Historically, the primary interest in 
GaAs and other lll/V materials has derived from their high electron mobilities. While holes in lll/V materials 
do not enjoy an intrinsic mobility advantage over those in silicon, the pseudomorphic P-channel HFETs in 
this process have three to five times higher transconductance at given gate dimensions than their silicon 
counterparts. As seen in Fig. 1, the CGaAs process uses epitaxially-grown wafers, the cost of which 
includes both that of the initial GaAs wafer and of growing the additional layers. In moderate volumes, this 
can be 20 to 25 times the cost of a silicon substrate. Though the wafers are smaller and more expensive 
than silicon, the CGaAs process requires only 13 masks through three levels of interconnect, compensat- 
ing in part with process efficiency for the more costly starting material. CGaAs, however, has not enjoyed 
the efficiencies of high-volume production as has CMOS, and completed wafers from a high volume CMOS 
process line cost approximately 40% to 50% as much as completed CGaAs wafers. Considering all of 
these factors, the price of a finished complementary gallium arsenide die is approximately 4.8 times the 
price of a similar-size, high volume CMOS die. 

Standard gate lengths were scaled from 0.7 to 0.5 urn, and experimental N-channel devices at 
0.35 urn gate lengths performed well. CGaAs has a power-delay product of 0.01 mW/MHz/gate at 0.7-um 
minimum feature size. Recent improvements to the epi structure make the CGaAs process resistant to sin- 

gle-event upset (fewer than 10"9 Upsets/Bit-Day for SCFL logic and 10'10 Upsets/Bit-Day for complemen- 

tary logic), as well as to large total dose radiation (more than 108 Rads) and latchup (more than 1012 

Rads). Typical parameters for 0.7-um channel-length devices having +/- 0.55 V thresholds (measured with 
Vdd = 1.5 V) are given in Table 1. As seen in the table, both N and P channel devices have good output 
conductances and pinch-off characteristics. The original device thresholds of +/- 0.55 V were selected 
because they yielded the optimum power-delay product in complementary circuits; they produce a drain- 
current ratio between N and P devices of about 4:1. 
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Fig. 1: CGaAs process cross-section. 



r 
Final Progress Report 

Table 1: CGaAs Device Paramete rs. 

Parameter 
NFET 

(0.7x10 mm) 
PFET 

(0.7x10 mm) 

V,h(V) +0.55 -0.55 

Idss (mA) 1.8 0.5 

gm (mS/mm) 280 60 

Beta (mA/V2-mm) 270 50 

Subth slope (mV/dec) 75 90 

Subth Current (nA) (Vgs=0V) <1 <10 

The low threshold voltages and high transconductance of CGaAs result in good performance at 
low voltages. Fig. 2 shows unloaded ring oscillator delays versus supply voltage for several logic families 
(thresholds of +/- 0.55V). The delay of 1.0-u.m CGaAs is less than that of 0.5-u.m CMOS or Thin-Film Sili- 
con-on-lnsulator (TFSOI), and the 0.5-u.m CGaAs shows delays below 100 ps with a 1.2V power supply. 
Power dissipation is not indicated in the figure.  Lower threshold voltages will make the CGaAs circuits 
faster yet. 

Two key parameters of concern in complementary heterostructure FET devices are gate leakage 
and sub-threshold drain-source leakage [3, 6], which determine the stand-by power dissipation of comple- 
mentary circuits. Unlike Si CMOS, which has an Si02 gate insulator, the CGaAs gate is a Schottky diode 
to AIGaAs. Substantial gate current flows for gate voltages in excess of about one volt. Gate leakage cur- 
rent depends on the Schottky barrier height and band offsets. The large valence band offset (about 0.55 
V) of high mole-fraction AIGaAs, as used in these devices, improves the gate leakage of PFETs. Typically, 

the PFET gate-diode turn-on voltage, defined as the gate voltage resulting in 1 uA/um2 gate area at Vds = 
0, is -2V. NFETs have a turn-on voltage of 1.75 V. The gate turn-on voltages are also influenced by 
implant straggle effects. Drain-induced barrier lowering increases gate current when the drain-to-source 
voltage is high (which occurs when a logic input changes state). 
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Accomplishments 
The power efficiency and radiation hardness of CGaAs make it attractive for space and satellite 

applications. However, CGaAs presents design challenges such as reduced power-supply voltage (little 
headroom in circuits), proportionately large threshold voltages (lower speed than could otherwise be 
achieved by the HEMTs), gate and subthreshold drain-source leakage (higher power), and low integration 
levels (restrictions on architectures). CGaAs technology has been studied in this project for implementing 
large VLSI circuits such as microprocessors, in light of these challenges. 

The Motorola 0.5-um CGaAs process, which had been developed by shrinking the gate length of a 
0.7-|j,m process, was the primary technology employed in this project. It was clear from the beginning that 
the design rules were not optimal and that the process needed to be scaled. A considerable amount of 
process development work was done on CGaAs to shift the thresholds, before the decision was made that 
they would be fixed at +/- 0.55 V in order to assure that circuits could be delivered on schedule for the 
Celestri program. The yield was significantly improved on the CGaAs process through a detectivity pro- 
gram, and subthreshold leakage was reduced by adding a low-temperature GaAs buffer layer. A negative 
impact of this layer was that it reduced transistor gain, but because it is characterized by a very short car- 
rier lifetime, it provides single-event upset protection for the process, which, because it has no Si02 gate 
oxide nor device isolation, has always been intrinsically hard to total radiation dose effects. 

As CMOS processes are shrunk below 0.18 urn, the linear scaling of some design rules will be 
very difficult, so non-linear scaling will be needed for CMOS in the near future. Working with Motorola pro- 
cess engineers, we evaluated CGaAs for scaling. In doing so, we developed a general (works for any tech- 
nology) methodology for quantitatively evaluating semiconductor processes for optimal scaling. The 
methodology includes identifying the design rules which have the greatest impact on the scaling objective 
and analyzing the area, power and performance improvements as these rules are incrementally scaled. 
The improvement data is combined with die cost estimates to produce a cost/benefit ratio which can guide 
scaling decisions. The methodology is based on the automated analysis of embedded static RAMs gener- 
ated by a process-independent, optimizing SRAM compiler developed as part of this project. A cost/bene- 
fit analysis of the CGaAs design rules shows that when operating under a fixed spending cap, this 
nonlinear scaling approach can provide greater improvements in area and performance than linear scaling. 
The analysis results for the 0.5-|xm CGaAs process recommend that threshold voltages be reduced, and 
that the first of a number of recommended scaling steps should be a 30% reduction of the source drain 
area and via/metal pitch. 

Full complementary, unipolar (pseudo direct-coupled FET logic), pass-gate logic, and domino logic 
styles were evaluated in the complementary GaAs technology. A logic-evaluation test chip was fabricated 
at Motorola. Because initial evaluations of dynamic logic yielded promising results, a PowerPC ALU was 
designed in Domino logic. While this circuit was in fabrication, a yield-compromising design rule problem 
was identified; it became necessary to break gate-metal runs between n- and p-transistors to avoid leak- 
age paths. This test run did provide valuable experience with the various logic styles, but because of the 
design-rule problem, did not yield on the dynamic ALU. An environment to help circuit designers optimize 
transistor sizes in SPICE netlists over power, area and delay was developed as part of this effort. Changes 
in focus at Motorola during this time caused the project to shift from high-clock rate designs to radiation- 
hard applications. 

The original plan included implementation of a virtual memory system, and a software-managed 
in-cache translation mechanism for the processor was developed. This is an extremely low-overhead mem- 
ory management scheme which provides all the benefits of traditional schemes but removes a substantial 
amount of hardware from the critical path, enabling much faster clock speeds. When the project budget 
was reduced with a reorganization at DARPA, we dropped the virtual memory and floating-point unit. 

A trace-driven architectural simulator was developed to guide the design. To verify functionality of 
the PUMA design, we developed a random instruction generator which produces code based on a user- 
specified maximum number of loops and branches, and on flags specifying whether to use unimplemented 
instructions and misaligned memory accesses. Certain classes of instructions can be exercised, and reg- 
ister usage can be limited in order to stress forwarding interlocks. Simulation results with this code running 
on the Verilog PUMA model and on a PowerPC architectural simulator are compared to verify proper func- 
tionality. 
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Architectural methods of enhancing processor performance within the constraint of limited on-chip 
cache were explored. A method of prefetching called Vunahead' allows the processor to execute instruc- 
tions under a cache miss, exposing other loads and stores that might have also generated cache misses, 
so that these can be prefetched. A second approach we have evaluated scans the instruction stream for 
branches as the instruction cache is loaded, and uses branch-prediction information to prefetch further 
instructions. 

Development of the PUMA processor architecture was driven by the limited CGaAs integration 
level. The processor is implemented with a small on-chip primary instruction cache and a larger off-chip 
primary data cache. The instruction fetch mechanism is guided by an efficient two-level dynamic branch 
predictor and branch target buffer. Computation is performed by a small superscalar execution core com- 
prised of branch, arithmetic, and load/store units. Based on trace-driven simulations of standard bench- 
mark programs, the architecture should achieve 0.77 instructions per cycle. Out-of-order execution is 
supported by dedicated reservation stations for each functional unit and an eight-entry reorder buffer. The 
decode process translates complex PowerPC instructions into one or more simple RISC operations. A 
0.35 urn CMOS version of the architecture was first prototyped. It has 280 pins, measures 9.9 x 9.9 mm, 
and contains 830K transistors. The chip was packaged in a 391-pin ceramic PGA. The chip is not fully 
tested yet, but so far, no errors have been detected. 

The project culminated in the design and testing of the radiation-hard CGaAs PUMA PowerPC 
microprocessor, shown in Fig. 3, which incorporates an area-l/O array. This CGaAs version was further 
simplified to meet an integration limit of 400,000-transistors: the data cache was moved off chip, out-of- 
order execution was eliminated, and the architecture was modified to be single-issue. The CGaAs chips 
were fabricated at Motorola and ten of these chips were assembled (using just the peripheral I/O) in con- 
ventional PGA packages for initial testing. Of the ten microprocessors packaged, all of them passed basic 
tests but only two sequenced and executed instructions properly. 

CGaAs Power PC. 
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The two chips that passed had varying degrees of success with more advanced tests. None of the 
devices passed all the tests completely. Immediate instructions worked and program address sequencing 
worked, but instructions that manipulate register data gave bad data out. Functionality of the ALU, load/ 
store unit, and the branch unit can be inferred from these tests, however; since output data is often bad it 
is not known if errors are introduced by registers or the buses. The branch instructions did work success- 
fully. Using branches, the critical path of the FXU could be tested. The FXU operates at maximum fre- 
quencies of 42 MHz on chip one and 33 MHz on chip two. This test exercises only the critical path in the 
branch unit with certainty. There is not much difference in power dissipation between operating frequen- 
cies, indicating that most of the power is dissipated as static power. Eighteen percent of the power is dissi- 
pated in the core, the remainder in the pads. At a nominal operating voltage of 1.3 V, the FXU can be run 
optimally at 20 MHz dissipating 274 mW. 

None of the devices passed the instruction cache tests indicating non-functional caches. More 
detailed cache testing was performed on a separate 2 Kbyte SRAM chip. It used the same SRAM design 
as the FXU caches. These chips also failed. The data out always followed the data in, indicating that the 
decoder was not working correctly. The decoder uses DCFL NOR gates. The ratios of these gates were 
not sufficient to provide a low enough output low voltage over process corners. Process data showed that 
the beta values, drive currents, and leakage currents of the N and P transistors as well as the threshold 
voltage of the P devices had a much wider distribution than anticipated. The degradation of the P device 
indicated by process data could also explain the other results from the testing. Leakage currents would be 
higher and some gates may not turn off at all, adding to static power and data errors. Further testing of the 
scan path and circuit simulations with the measured process corners should help identify the exact prob- 
lems. Unfortunately, with the collapse of the Celestri project, Motorola is no longer running the CGaAs pro- 
cess, so there is no opportunity to modify the circuits for another run, and no chance of getting tighter 
process parameter control. 

The PUMA project has developed new packaging and I/O signalling capabilities which are appro- 
priate for military and aerospace applications now, as well as for future commercial CMOS systems. The 
processor chip includes a 315-pin area I/O pad array with a pad pitch of 6 mils, in addition to 288 pads in a 
staggered peripheral ring. It is designed for flip-chip assembly using gold bumps on a fine-pitch MCM-L 
board, connecting it to level-1 data cache, a memory management unit, PCI interface, and unified level-2 
cache. The gold bumping process, which makes precisely-sized bumps of the desired aspect ratios, was 
developed in the University of Michigan Solid-State Electronics Laboratory. A multichip module, fabricated 
by Micromodule Systems, is a test vehicle for exploring design issues such as flip-chip area array attach- 
ment for more than 1,000 pads, minimum feasible pad pitch, and pad yields for various pad pitches (50,75, 
100,125, and 175 (im pitch). 

The PUMA project has also contributed to high-performance signalling technology. CGaAs Gun- 
ning transceiver, differential voltage, and switched current I/O interfaces have been designed, fabricated 
and tested. Test results indicate that these circuits in CGaAs can support bit rates of at least 650 Mb/s/pin 
(limited by the test set-up). An advanced transceiver based on switched-current techniques has also been 
designed. The receiver actively terminates the input line to its characteristic impedance using an active 
current mirror. The transmitted current pulse is 1.5 mA. The receiver is biased using a feedback circuit that 
overcomes parametric variations between the transmitting and receiving chips; it compensates for pro- 
cessing variations by adjusting the bias levels of the receiving chip. Simulations indicate that the circuit 
can support 1.2 Gb/s/pin signaling while dissipating only 3.3 mW, with a 1.4 V supply. A CGaAs delay- 
locked-loop (DLL) has been designed to explore the effects of low supply voltage and headroom on phase 
noise performance. Simulations indicate that the DLL would operate at 500 MHz, with a peak jitter of 88pS. 

A CGaAs PLL clock generator was also designed and tested in this project. It operated at up to 
800 MHz with a 1.5 V supply and 120 ps phase jitter. The CGaAs design was operational at a supply volt- 
age as low as 0.8 V. A test MCM and CGaAs driver and receiver chips were designed for use with this 
PLL, to evaluate MCM signal integrity with low-voltage, high-edge-rate signals, and to test various driver 
and receiver circuits. The MCM was fabricated at MicroModule Systems (MMS), through Midas. The 
MCM included Mayo-designed passive test structures for measuring the MCM interconnect properties. 
The PLL clock generator was designed to phase lock to a low-speed input clock and produce a program- 
mable multiple of this frequency for use as the GaAs microprocessor clock. 
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An accurate phase jitter simulation method was developed, which includes the phase jitter model 
in transient simulations. Employing current-steering logic, we designed, fabricated and tested a low noise 
PLL clock generator in a 0.5 |xm CMOS process. This design, which benefited from availability of the jitter 
simulator, was also fabricated and tested. It achieves a top frequency of nearly 800 MHz with a power sup- 
ply voltage of 1.8 V, a measured absolute phase jitter of less than 60 ps, and an RMS cycle-to-cycle phase 
jitter of 10 ps. This was the best phase jitter performance at that time, and it was achieved with low-voltage 
techniques which will have direct applicability to future CMOS circuits. 

Several CAD tools were developed which support the design of advanced integrated circuits such 
as those from the PUMA project. A high-level optimization tool called GAIN (Genetic Algorithm on the 
INternet), was developed to assist a designer in judiciously allocating resources and partitioning logic onto 
chips in MCM designs. It uses a genetic algorithm to explore permutations of a baseline architecture, 
spawning trace-driven simulation jobs on a network of workstations so that many options can be evaluated 
in parallel. 

Our subcontractor, Cascade Design Automation, developed a cell library migration tool called 
MasterPort, which converts a GDSII input layout to compacted layout in a specified rule set. The tool auto- 
matically generates the constraints and solves the constraint equations. It was used in the development of 
more than 120 cells for test chips designed in the project, and was very helpful in keeping the cells updated 
in the rapidly evolving CGaAs process. Cascade also developed an area-distributed pad router, called 
Eggo, which worked with existing placement tools to minimize power and signal routing between the array 
of bumps on the surface of a chip and the modules to which they are connected. 

TEMPO is a transistor-level micro-placement tool for two-dimensional cell synthesis. It generates 
custom-quality layouts for such high-performance logic families as cascode voltage switch logic, pass tran- 
sistor logic, and domino CMOS. This is achieved through powerful transformations such as dynamic 
geometry sharing through transistor chaining and arbitrary geometry merging. TEMPO enables the quick 
migration of cell libraries to new fabrication processes. 

A constructive logic synthesis tool, called M31, was developed to interleave the traditionally sepa- 
rate technology-independent logic restructuring and technology-dependent library binding stages of circuit 
synthesis. M31 is based on Boolean decomposition strategy that ties together 1) the structural properties 
of the functions being synthesized, 2) the structural attributes of the implementation network, and 3) the 
functional content of the target library. The resulting implementations are consistently smaller and faster 
than those generated using conventional logic synthesis. In addition, they can be incrementally modified to 
create variants that achieve other area/speed trade-offs. 

A methodology and tools for minimizing the effects of capacitively-coupled crosstalk were also 
developed. By using an accurate and consistent empirical model for wiring resources and constraints, 
coupled noise and delay were made predictable, and thus avoidable. A congestion-driven placement algo- 
rithm was developed to help minimize the incidence of capacitive coupling, and a global route-embedder 
was developed to guide the detailed router to meet timing and noise constraints. 

Papers on each of these topics are included in the list of manuscripts attached. Presentations and 
project details can be found at http://www.eecs.umich.edu/UMichMP/. 

Conclusions 
Many of the characteristics of CGaAs make it an ideal technology for space-based applications. 

Unlike other GaAs technologies, it has a p-transistor, which facilitates efficient on-chip memory, and pro- 
vides most of the other benefits of CMOS. Like other GaAs technologies, CGaAs is generations behind 
CMOS in scaling, which means that it cannot compete with CMOS for speed. The power-delay product of 
CGaAs, though, is extremely good compared to a similar generation of CMOS, and its radiation hardness 
is superb. CGaAs devices do have more gate and drain leakage than CMOS. In most respects, CGaAs 
scales well; there is no gate oxide to scale, the uniformity of which will be a serious challenge for CMOS 
below a certain thickness. On the other hand, making source and drain contact to the epitaxial material is 
difficult, so scaling this contact area is a challenge. And finally, the process control was not tight enough, 
and not well enough defined to yield fully functional circuits. Nevertheless, a number of useful contribu- 
tions from this project in computer architecture, circuit design, packaging and CAD tools were generated in 
the PUMA project. 
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