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A fully nonlinear Boussinesq model 

in generalized curvilinear coordinates 

Fengyan Shi, Robert A. Dalrymple, James T. Klrby, 

Qin Chen and Andrew Kennedy 
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University of Delaware, Newark, DE 19716, USA 

Fax: (302) 831 1228, email: fyshi@eoastal.udel.edu 

Abstract 

Based on the fully nonlinear Boussinesq equations in Cartesian coordinates, the 

equations in generalized coordinates are derived to adapt computations to irregularly- 

shaped shorelines, such as harbors, bays and tidal inlets, and to make computations 

more efficient in large nearshore regions. Contravariant components of velocity vec- 

tors are employed in the derivation instead of the normal components in curvilinear 

coordinates or original components in Cartesian coordinates, which greatly simplifies 

the equations in generalized curvilinear coordinates. A high-order finite difference 

scheme with staggered grids in the image domain is adopted in the numerical model. 

The model is applied to five examples involving irregular coordinate systems. The re- 

sults of these cases are in good agreement with analytical results, experimental data, 

and the results from the uniform grid model, which shows that the model has good 

accuracy and efficiency in dealing with the computations of nonlinear surface gravity 

waves in domains with complicated geometries. 



1    Introduction 

Boussinesq models for surface gravity waves have been proved to be effective tools 

to simulate wave propagation in coastal regions. Since the introduction of the stan- 

dard Boussinesq equations for variable water depth by Peregrine (1967), numerical 

models based on his equations have been developed by many researchers (Goring 

1978: Abbott et al. 1979, 1984; Elgar & Guza 1985; Liu, Yoon & Kirby 1985; Rygg 

1988) and have been shown to give good predictions in comparison with field data 

or laboratory data, when applied within their range of validity. Recently, extended 

forms of Boussinesq equations were derived by Madsen, Murray & Sorensen (1991) 

and Nwogu (1993), among others, to improve dispersion relationships in intermediate 

water depths and to simulate wave propagation from relatively deep to shallow wa- 

ter. Wei & Kirby (1995) developed a high-order numerical model based on Nwogu's 

equations and provided additional validation tests of the model. More recently, fully 

nonlinear Boussinesq equations were derived by Wei et al (1995). The resulting 

equations not only have improved linear dispersion properties in intermediate water 

depths but they are not limited to small amplitude waves. A time-domain numerical 

model based on the equations was then developed and verified against a broad range 

of experimental data (see Wei and Kirby, 1998; Kennedy et al., 1999 and Chen et al., 

1999a). Chen et al (1999b) applied the fully nonlinear Boussinesq model with the 

incorporation of energy dissipation by wave breaking to investigate the fully-coupled 

interaction of surface waves with rip currents and the nearshore circulation generated 

by wave breaking on a barred beach with a rip channel. 

Most of the numerical Boussinesq models are solved by the finite difference method 

using rectangular grids. However, the geometric complexity of the general coastal 

environment together with the rapid change in wavelength as waves move from deep to 



shallow water makes the use of undistorted grids in the models somewhat problematic. 

Typically, a model grid chosen to study the entire range from deep water to the 

shoreline results in problems such that waves are over-resolved in deep water and 

under-resolved in shallow water. To resolve a broad spectrum of wind waves, the time- 

domain Boussinesq model with a regular grid spacing may become too expensive to be 

used in large nearshore regions. Moreover, complicated geometries, such as harbors 

and tidal inlets, make the computation very expensive because of local resolution 

problems, and in addition, the stair-stepping boundaries associated with rectangular 

grids may decrease the computational accuracy. To deal with such problems, irregular 

grid methods are generally used through coordinate transformations, such that the 

physical irregularly shaped domain is transformed into a regular image domain where 

the finite difference computations are carried out. 

There are numerous examples of irregular grid methods in the study of waves. 

Numerical models based on the parabolic approximation of the mild-slope equation 

for linear wave propagation in a non-orthogonal coordinate system were developed 

by Tsay and Liu (1982), Isobe (1986), Liu and Boissevain (1988), Kaku and Kirby 

(1988), Kirby (1988), Kirby et at. (1994). Dalrymple et at (1994) used spectral 

methods to study forward-propagating water waves in conformally-mapped channels. 

An example of the use of a curvilinear grid system to solve Boussinesq-type equations 

is given in Wang et at (1992), who studied solitary wave scattering by a vertical 

cylinder. 

Irregular grid methods are also widely used in numerical modeling of large-scale 

oceanographic problems involving shallow water equations. Non-orthogonal boundary- 

fitted grid models were developed (e.g., Sheng 1986; Chen, Zheng and Zhu, 1999) 

for modeling coastal and estuarine processes.  Shi and Sun (1995) developed a self- 



adaptive grid model for computing the time dependent moving boundary problem of 

storm surge flooding using the shallow water equations. 

Generally, there are three coordinate transformation methods for the transforma- 

tion of hyperbolic-type equations (including Boussinesq-type equations if only con- 

sidering leading order terms).   The first method is to transform the independent 

variables only, retaining the unchanged primitive variable (u,v,r}) (see, for example, 

Häuser et aL, 1985, 1986: Raghunath et al. 1987: Borthwick and Barber, 1992). In 

this method, the transformed expressions of both equations and boundary conditions 

are more complex than their Cartesian counterparts.  It is not efficient to use the 

method to treat the fully nonlinear Boussinesq equations since the higher order dif- 

ferential terms in the equations would make the expressions very complicated.   A 

typical example is that uxx may be extended into six terms in the curvilinear coordi- 

nate and there are even more terms for higher order differentials. The second method 

is the adoption of the tangential velocity in cunilinearcoordinat.es (e.g., Chen. Zheng 

and Zhu, 1999) or the covariant component of the velocity vector (Warsi, 1998) in the 

coordinate transformation. The resulting equations from these methods are relatively 

simple compared with the equations from the former method. However, difficulties 

were found in realizing lateral slip boundary conditions in non-orthogonal curvilin- 

ear coordinates. The third method is the contravariant component method (Warsi, 

1998). The contravariant components of the velocity vector can be regarded as gener- 

alized components of velocity in the transformed image domain. Several advantages of 

using the contravariant velocity have been recognized in the derivations of hyperbolic- 

type equations, as shown by Sheng (1986), among others. Shi and Sun (1995,1997) 

introduced the contravariant components in their coordinate transformation of shal- 

low water equations and easily obtained the kinematical lateral boundary conditions, 



i.e.. the contravariant components of velocity are zero at boundaries. Furthermore 

Shi and Sun (1998) derived a new set of equations for the shallow water equations in 

terms of contravariant velocity and surface elevation in order to solve the transformed 

equations by using an alternating-direction-implicit scheme. 

In this paper, contravariant velocity techniques are used in the coordinate transfor- 

mation. Fully nonlinear Boussinesq equations in terms of contravariant components 

of velocity vector at a reference elevation za and the surface elevation are derived in 

generalized curvilinear coordinates based on the fully nonlinear Boussinesq equations 

in Cartesian coordinates. Following the work of Wei and Kirby (1995) and Wei et 

at. (1995), a fourth-order Adams-Bashforth-Moulton predictor-corrector scheme is 

employed in the numerical model to perform the time integration, unlike the spatial 

discretization in Wei et al. (1995), we use a staggered grid system in the transformed 

image domain. The first-order spatial derivative terms are discretized to fourth-order 

accuracy by using standard five-point finite-differencing, and the dispersive terms are 

discretized to second-order accuracy. This ensures that the truncation error does not 

contain terms which are mathematically similar to the actual dispersive terms. 

The numerical model is then applied to five cases involving irregular coordinate 

systems. The first is wave evolution in a rectangular basin with a computational curvi- 

linear grid. Consistency is found between the curvilinear grid model and a uniform 

rectangular grid model. The second case is wave shoaling on a sloping beach. Here, 

the element Courant number at every grid point is kept the same everywhere through 

adjustments of the grid size. The example illustrates the gains in efficiency afforded 

by the method in an open coastal application. The third case is wave propagation in 

a circular channel in which a curvilinear grid is generated. The fourth case examines 

diffraction of a solitary wave by a straight vertical wall at normal incidence. Locally 



fine grids are generated in this case around the tip of the wall to resolve the scale of 

the wall. This case shows that the present model is capable of the computation of 

the nonlinear wave propagation with good accuracy. Finally, the model is applied to 

Ponce de Leon Inlet (Florida, USA). Boundary-fitted grids with high resolution near 

structures and inside the inlet are generated and monochromatic waves are simulated. 

2    Equations in Generalized curvilinear coordinates 

The fully nonlinear Boussinesq equations in Cartesian coordinates (Wei et at, 1995) 

are written in terms of a reference velocity u = (u, v) at a reference elevation za. The 

mass conservation equation can be written as 

Vt + V-M = 0, (1) 

where M is the depth-integrated volume flux given by 

M   =   (^ + 77)u+(/i^?7)[^-i(/i2-/i?7 + ?72)3V(V-u) 

+(A + V)[z« + \{h - i7)]V(V.(Au)], (2) 

in which t) is the free surface elevation relative to the still water level and h is the 

still water depth. The associated momentum conservation equation is 

VLt + (u - V)u + gVri + Vx + V2 = 0, (3) 

where g is the gravitational acceleration and Vj and V2 are the dispersive Boussinesq 

terms: 

Vx = ^V(V-u4) + zaV[V-(hnt)} - V[^2V-u, Hh i?V-(Am)], (4) 

+^{iV-(hu)+VV.uf}. (5) 



A coordinate transformation is introduced in the general form 

&=&(s,y)>   6 = &fos/)» (6) 

where (^1,^2) are new independent variables in the transformed image domain. Re- 

ferring to Figure 1, boundaries T1.T2, F3 and I^ in the physical domain (x, y) become 

IIi, 112,113 and II4 respectively in the image domain (C15C2)- 

Instead of (u, v) in Cartesian coordinates, the contravariant components of the 

velocity vector at za are introduced as the dependent variables in the curvilinear 

coordinate. In the tensor space, a velocity vector can be expressed as two components 

of any covariant basis, i.e. 

u = u%, (7) 

where ul are the contravariant components of the covariant basis g;. As a simple 

example. (u,v) may be the contravariant components of the covariant basis (i,j) in 

Cartesian coordinates. In the present curvilinear coordinates, uz = (U,V), in which 

(U, V) are the contravariant components of the covariant basis (gi,g2)- According to 

the relationships among components in different basis: 

uk = §£t/, (8) 
dx%     ' K ; 

where ()' denotes the new basis.   (U,V) can be described by (u,v) in Cartesian 

coordinates as: 
1 

U =—(uyi2 - vxb), (9) 
V5o 
1 

V = -—{-uy^1+vxil), (10) 
\/9o 

where g0 is the determinant of the metric tensor defined by 

9n   912 
9o = , (11) 

921   922 



and where py is the covariant metric: 

Using the relations: 

dx*' dx1' 
9ij = MM' (12) 

dy _   ,—dZi      dx _ d£i 

d& dx      d& dy 
dy ^8^2      dx d£> ,.0s 

Wi=~^te'   dTi=V^°~dy~ (13) 

yields the definition of (U, V): 

d£i      ö£i     fl^i ,, A. 

V = U^-rVly- = lI- (l0) 

Equations (14) and (15) indicate that (U, V) can be regarded as generalized velocities 

in the generalized coordinates. 

From (9) and (10), we can also get the relationship between (U, V) and the velocity 

components (un,vn) normal to the curvilinear coordinates (Shi and Zheng. 1996): 

un = XßzU, (16) 
922 

To V. (17) 
\/9n 

Equations (16) and (17) show that (U, V) are stretched velocity components normal 

to the curvilinear coordinates.   The introduction of (U, V) makes it convenient to 

obtain the lateral boundary conditions as shown in Section 4. 

Equation(l) and (2) are now written in tensor-invariant forms: 



Mk   =   (Hijy + lH^-^-^ + ffl—«!!* 

+(ä + v)[za + \{h ~ *)][-^^(v»«')]**- (19) 

The tensor-invariant forms of the momentum equations (3), (4) and (5) are: 

*£ + OTi* + „*„* + ^* + y2* = o, (20) 

2 

* = %jd>{^f 
+z-[jn^hu')f 

rf    d .  _ ,. ,    57    3 
-l2^w(^M) + ^Sr(^ta°1-' (21) 

where Ä;J.m = 1 and 2, («x,«2) = (U. V), (xl,z2) = (£i,6); gf^ is the partial 

derivative, ()* represents the covariant spatial derivative (See Appendix) while !fc 

represents the contravariant spatial derivative defined as 

/!* = |>. (23) 

3      Numerical method 

Numerical analyses (Wei and Kirby 1995) of finite differencing for Boussinesq equa- 

tions show that it is necessary to adopt high-order schemes in either space or time in 

Boussinesq equations because the truncation errors of a second-order approximation 

may contaminate the real dispersive terms in the equations. It also should be noted 



that the finite differencing on irregular grids can lead to a loss of accuracy if dis- 

cretizations of the untransformed equations are performed on irregular grids. In the 

present paper, we can avoid the problem by discretizing the transformed equations 

in the image domain with regular grids. 

By using the tensor formula presented in the Appendix, the system of equations is 

rewritten in a form that makes the application of the difference procedure convenient 

as that of Wei et al. (1995). The mass conservation equations (18) and (19) may be 

expressed as: 

Th = E{r,,U,V), (24) 

where 

in which, 

E = —l—{[V%{h + vWh + [V5b(A + rj)V)^} 
\J9o 

-J-{[aih\h + V) + jW - ^)]^(2?J7)6 
y/9o o y/go 

--L{[aiA
2(A + V) + l-v(h2 - rh]^{DU)u 

Vyo b V9o 

+{a2h(h + v) - \r){h + j])]^=(DHU)^ 
* ' V9o 

+ ^={{aih\h + v) + U(h2 - ri2)]^(Db% 
\/9o o v9o 

+{a2h{h +17) - \n{h + v))£L{DHU)bhi 
* s/9o 

+-£={Ma(A + n) + lv(h2 - n2)}^(DV% 
Vyo o V9o 

+{a2h(h +17) - lv(h + V)]^(DHÜ%}^, 
* y/9o 

(25) 

DU = -^=(VfoUh + JL(V5öV) (26) 
VSo V9o 

DHU = -±=(y/gZhU)b + -L{^hV)&. (27) 
y/9o V9o 

10 



The momentum equation in £x direction can be written as 

b\   =   F(V,U,V)^{F1(V)]t + {F2(U,V)}t 

+F3(77, Ut, Vt) + F4(V, Ut, Vt) + F5fo, U, V) + Ffa U, V), (28) 

where 

ü = u+h%^[ JL (vssc/)6]ft + ^[ 4= (v»^kk>       (29) 
5o  V5o #o  V#o 

F   = (522% - 5i2%) - {kT% + ^üfc 
5o 

+£>1
i
1£/2 + 2Dl

l2UV + D\2V
2), (30) 

Fl(V)   =   -A*&ÄJL(^)6]6 5o  v^o 

in which 

-hb2
9-^i-±=(^g-0hV)ah, (31) 
5o  y/9o 

5o  V5o V5o 

9G  y/9a V5o 

F8(i7,üi,K)   =   ^ADUT)^V(DHUT)}^ (33) 
5o   2 

FtfaUuVt)   =   -^[^(£>J7T) + ^(£»J5rerr)]6, (34) 

F*{v,U,V)   =   -^[(^ - vMDHb% + (za - v)V(DHL% 
do 

+\& - V2)U(Db% + \{zl - rfiViDU)*]* 

-l^{((DHU)+v(DU))%, (35) 
^ 5o 

Fe(r?M,V)   =   ^[(^ - v)U(DHV% + (za -^(M^'k 
5o 

+^(4 - rftUiBU)* + \(z2
a - V

2)V(DU)^ 

+liH[((DHU) + v(DU))2]^ (36) 
-* 5o 

PIT = -^(v^k + -7=(V5öK)&> (37) 
V5o \/5o 

11 



DHUT = -L(^Äüi)ft + J_(^Avt) (38) 

In equation (28), we introduce F, Fi, ... , Fg to represent separately the terms with 

different properties. F includes the pressure gradient terms and convective terms; 

Fi and F2 are the linear dispersive terms, in which F2 is the additional term due to 

the non-orthogonality of the coordinate; F3 and F4 are the nonlinear dispersive terms 

with time derivatives while F4 is the additional term due to the non-orthogonality; 

F5 and F6 are the nonlinear dispersive terms with spatial derivatives while Fg is the 

term due to the non-orthogonality. Djk is the Christoffel symbol. The constants 

Gi- &25 h, &2 are defined as 

ax = ß2/2 - 1/6, a2 = ß + 1/2, &: = ß\ h = ß (39) 

where Q = za/A, /? = —0.531 in the present paper. 

Similarly the momentum equation in §> direction can be written as 

Vt   =   G(77,^y) + [Gx(t/)], + [G2(D;V-)]{ 

+Gs(r,, Ut, Vt) + G4(V, Uu Vt) + Gs(r,, U, V) + G6(Vi U, V),       ' (40) 

where. 

V   =   V + h%^[ -$= (V9^WM + hh9-^[ -$= {y/tohV)b\& (41) 
ffo  V^o £0  v 5o 

G   =   —(-gnVii+guVzJ-iUVb+VUb 
9o 

+Z& Z72 + 2I& I/K + Dl2V
2), (42) 

Gx(l7)   =   -^^[-^(vG^fc. 
£0  \/5o 

9a  y/9o 

G2(U,V)   =   ft^^f  1   (V55C0   +   1   (VS^r)   ] 

12 



+^A^L(v^W)Cl + 4=(VSöAV)6]&, (44) 

Gs(n,UuVt)   =   ^ADUT) + V(DHUT)}S2, (45) 
<?o   ^ 

G4(^üi,VJ)   =   -^[t(DUT) + V(DHUT)}^ (46) 

Gfefo, U, V)   =   -^[fe - V)U(DHU)€l 4- fe» - rfiViDHU)^ 
do 

-I^[((2?ffI0 + »7(I>C0)236, (47) 

G^üiV)   =   ^[(^-^^(DF^ + ^-^VpF^ 

-I|i[(pro) + ^))2k. (48) 

G, G\, — J ^6 have the similar meaning as F, Fi5 ... , F& as described above. 

The arrangement of cross-differentiated and nonlinear time-derivative terms on 

the right hand side of equations (28) and (40) makes the resulting set of left-hand 

sides purely tridiagonal. 

A staggered grid in & - £2 plane is employed as shown in Figure 2, where the 

crosses denote -q - points at which r\ is computed, the circles denote &r-pomts at 

which U and U are computed and the squares denote V-points at which V and V 

are computed. The separate labeling for ??, U and V in this scheme is convenient for 

the implementation of boundary conditions. The new co-ordinates (&,&) are taken 

as integer grid positions. & = 1,2. ...,m,£2 = 1,2, ...,n. Following the work of Wei 

and Kirby (1995), we discretize the first-order spatial derivative terms to fourth-order 

accuracy by using standard five-point finite-differencing, leading to truncation errors 

of 0(A£4). The dispersive terms themselves are finite-differenced only to second-order 

accuracy, leading to error terms of 0(A£2) relative to the actual dispersive terms. 

13 



The fourth-order Adams-Bashforth-Moulton predictor-corrector scheme is em- 

ployed to perform time updating. A sequence of time instants are defined by t = pAt. 

Level p refers to information at the present, known time level The predictor step is 

the third-order explicit Adams-Bashforth scheme, given by 

iß1   =   <i + ^|23{^ - leC^fJ1 + 5(S)?J2], (49) 

ÜÜ1   =   ^i + §[23(F0fji-16(F0i;-1 + 5(F')f-2]! (50) 

W   =   % + ^MGlh - 16(G%1 -r 5(G%% (51) 12 

where 

F'^F + Wt + Wt + Fs + Ft + Fs + Fe, (52) 

G' = G -h (Gt)t + (G2)t + G3 + G4 + G5 + G6. (53) 

In equations (50) and (51), {Fi)t, (F2)t, (Gi)t and (G2)t involves time derivatives and 

the calculation of F3, F4, G3 and <?4 at a certain time level requires the corresponding 

values of Ut and Vt. They can be evaluated by 

(w*   =   ^K^-KT^^+OCAt2), (54) 

(wt)!f   =   -^[3<-2-4ufJ1 + <.] + 0(At2), (56) 

where w represents U, V, Fi, F2, <?i or (?2- 

When ÜfJ"1 and t^/1 are obtained from equations (50) and (51), the contravariant 

velocity (17, V) at the new time level can be solved by a system of tridiagonal matrix 

equation, using elimination method. 

After the predicted values of (rj, U, F)f j4 are evaluated, the corresponding quan- 

tities of (E, F', G')ij at time levels (p +1), (p), (p -1), (p - 2) are obtained. Then we 

14 



use the fourth-order Adams-Moulton corrector method: 

rij1   =   €j + ^[9mi1~19(E)iJ-HE)ff + (E)?-% (57) 

%Jl   =   % + ^n^ + lHF%-HF%l + (F%% (53) 
At 

^   =   % + ^^yS1 + W(G% - HG%1 + {G%\ (59) 

Similar to the treatment in the predictor stage. Ut, Vt, (Fi)u (F2)t, (Gi)t and ((?2)t are 

evaluated in the following manner: 

M&1   =   ^(ll^fj1-18^ + 9<-1-2<T2) + o(Ai3)r (60) 

M*   =   ^(2^1-f3<i-6^J1 + <-2]-0(Ai3), (61) 

W1   =   -^(Mj' + KF'-K^ + ^l + öCAt8), (62) 
W«2   =   -^(11<"2-18<J1+Ki-2<r) + ö(At3). (63) 

The corrector step is iterated until the error between two successive results reaches 

a required'Xlimit.  The error is computed for each of the three dependent variables 

rj. U, V and is defined as in Wei et al. (1995): 

A/ = ^'^      J* -, (64) y. .jf^t1! 

where / denotes r), U or V and ()* denotes the previous results. The corrector step 

is iterated if any of the Af exceeds 10~4. 

Initial testing of the present staggered-grid scheme has shown it to be a consider- 

able improvement over the scheme of Wei and Kirby (1995), in terms of short wave 

length noise generation. A more extensive exploration of the behavior of the two 

schemes is underway and will be reported separately. 
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4    Boundary conditions 

For computations of wave propagation in domains with complicated boundaries, ap- 

propriate boundary conditions have to be specified in the numerical model. Generally, 

for a perfectly reflected vertical wall, the horizontal volume flux normal to the wall is 

zero. Wei and Kirby (1995) derived a set of boundary conditions satisfied by normal 

velocity at za, tangential velocity and surface elevation by considering only the lead- 

ing order terms in the mass conservation equation, i.e.. for the case of a vertical wall 

parallel to x axis , the boundary conditions are 

v = 0:   r\y = 0;   % = 0. (65) 

They then applied five-point off-center finite difference to the equations above. These 

boundary conditions may be adopted in curvilinear coordinates if we use the con- 

travariant component (£7, V") instead of (u,v). That is 

U = Q:   at ni,n2, (66) 

V' = 0;   at n3,n4, (67) 

7)ll = 0;   y!x = 0 at nuTL2, (68) 

t7!2 = 0;   Ul2 = 0 at IlzM4. (69) 

The boundary conditions (66) and (67) can be easily obtained in the staggered grids 

because U points are located on II i, n2 and V points on II3, II4. The symmetric or 

anti-symmetric conditions are used to apply the boundary conditions, i.e., U values 

are anti-symmetric to II1 and n2, V values are anti-symmetric to II3 and II4 according 

to (66) and (67), while U and 77 values are symmetric to II3 and n4? V and r\ values 
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are symmetric to II i and II2 according to (68) and (69). The symmetric or anti- 

symmetric conditions also make it easy to discretize equations on boundaries or in 

the vicinity of boundaries, especially for high order finite differences with five-point 

schemes. 

The sponge layer boundary condition and the wave generating boundary condition 

are also implemented in this paper following Wei and Kirby (1995). 

5    Examples 

5.1    Wave evolution in a rectangular basin 

As a simple yet efficient test case (Wei and Kirby, 1995), the evolution of waves 

in a rectangular basin was calculated by using both the uniform rectangular grid 

model and the curvilinear grid model. Though there are no corresponding nonlinear 

analytical solutions or experimental data to compare with, the comparison between 

the results from the two models can show a consistency of the solutions on curvilinear 

grids and rectangular grids. 

The basin dimensions are 20m x 20m, and the water depth is 0.5m constant over 

the basin. The initial condition is provided by a motionless Gaussian hump of water 

with its center located at the center of the basin {xc, yc): 

r}(x, y,t = 0) = H0 exp{-7[(2 - xcf + (y - yc)
2]}, (70) 

u(x,y,t = Q) = Q, (71) 

v{x, z/, t = 0) = 0, (72) 

where H0 is the initial height of the hump, 7 is the shape coefficient, and (xc, yc) 

is the coordinate at the center of the domain. We chose if0 = 0.2m, 7 = 0.4, and 
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Xc = yc = 10m. 

In the rectangular grid model, grid sizes are set to be identical everywhere as Ax = 

Ay = 0.1m. For the curvilinear grid model, a grid generation method (Brackbill, 

1982) can be used to generate the curvilinear grid. As a test, we generate a curvilinear 

grid by weighting the center point as shown in Figure 3 in which the maximum grid 

size is 0.15m near boundaries, while the minimum grid size is 0.045m at the center 

of the domain. The total number of grid points is 200 x 200, as the same as that of 

the regular grid model. 

Figure 4 shows water surface contour in the physical domain and the contour 

obtained from the rectangular model. There is very small difference between the 

dashed line and the solid line in Figure 4. The small differences are caused by the 

interpolation errors and by the different resolutions of the initial Gaussian hump. 

Numerical experiments show that the difference decreases with a reduction of grid 

sizes in both models. 

5.2    Monochromatic waves shoaling on a slope 

As a second example using the coordinate-stretching approach, we study periodic 

wave propagation over a sloping beach where there is a contraction of the wavelength 

and a resulting increase in required resolution as waves shoal towards shore. The 

previous uniform grid model generally makes the computation expensive because fine 

grids with constant grid spacing are always adopted in order to resolve short waves 

in shallow water, and further, the time step needs to be small in order to have an 

appropriate Courant number in deep water. The problem can be solved by using 

an irregular grid in which the grid spacing is adjusted according to the water depth 

so that the Courant number in each element is constant in the whole domain. The 
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idea has been used by Kasfaiyama and Okada (1992) in shallow water flow analysis. 

To show the efficiency of the present model in dealing with wave propagation over 

a sloping beach, we present a 1-D model with the stretched grid size in the present 

case. 

Figure 5 shows a mild-slope beach, where a constant depth of 8m on the left 

connects to a constant slope on the right. Waves with a period of 4s are generated 

by a wavemaker located on the left side. Two sponge layers are placed at both ends 

of the domain to absorb wave energy. The uniform grid model and the stretched grid 

model are then used respectively in this case. 

In the uniform grid model, a constant grid size of 0.4m is adopted, giving a total 

of 2500 grid points in the computation domain. According to linear theory, the 

corresponding wavelength in the deepest water is 45.2m, while shortest wavelength 

in the shallow water is 18.4m. Thus there are 46 grid points per wavelength in the 

shallowest region on the right side and 113 grid points per wavelength in the deepest 

water region on the left side. The choice of an adequate resolution in shallow water 

thus leads to an over-resolution of the wave form in deep water. In addition, for 

a given time step, the Courant number increases with the increase of water depth. 

Therefore, a time step has to be selected according to the Courant number in deep 

water. Here, the time step in the uniform grid model is chosen to be 0.025s which 

leads to the Courant number of 0.19 in the shallowest region and 0.471 in the deepest 

region. 

In the stretched grid model, gradually varying grid sizes are chosen from lm in the 

deepest region to 0.40m in the shallowest region according to the following coordinate 

transformation: 

£ = A^ (73) 
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where C is the wave celerity from the linearized Boussinesq equations and A is a 

coefficient, A = 7.52 in this case. The Courant number is constant in the whole 

computational domain. The total grid number decreases to 1420, 43% less than that 

of the uniform grid model. Even so, the resolution of the model is not reduced since 

there are 45 grid points per wavelength both in deep water and in shallow water, 

comparing to the 46 points per wavelength in shallow water in the uniform grid 

model. The time step for the stretched grid model can be much larger than that for 

uniform grid model because of the larger grid spacing in deeper water. For instance, 

the time step in this case is chosen to be 0.06s, which is 2.4 times larger than that 

in uniform grid model and gives a Courant number of 0.452. The decrease in grid 

number and increase in time step make the stretched grid model much more efficient 

in comparison with the uniform grid model. In such a case, more than a four time 

speed-up may usually be expected in view of the grid numbers and time steps used in 

the two different models. The actual computational time in the stretched grid model 

is 3.1 times faster than the uniform grid model, which is a little slower than expected 

because the stretched grid model needs a few more iterations in the calculation. In 

the computation of wave propagation on a natural beach with a relatively mild slope 

offshore and a steep slope close to the shore line, the efficiency will be more obvious. 

The surface elevations obtained from the stretched grid model are presented in 

the image domain as shown in Figure 6. It is clear that the wavelength in the image 

plane is almost constant, which illustrates that the model provides the same resolution 

when waves propagate from deep water to shallow water. The surface elevations in the 

physical domain are shown in figure 7 in comparison with the results from the uniform 

grid model. Figures 8 and 9 respectively display the comparisons of wave height and 

wave number between the two models. The wave numbers here are obtained from 
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the wave elevation distributions calculated in the two models. The comparisons show 

that the stretched grid model results are in good agreement with results from the 

uniform grid model. 

5.3    Waves in a circular channel 

The present example is a constant depth channel with vertical sidewalk laid out in 

a circular planform. Dalrymple et at (1994) used spectral methods with coordinate- 

transformed equations to analytically study linear wave propagation. In their study 

three cases with different widths of channel, namely narrow, wider and very wide 

channels, were carried out. The case of the very wide channel presents a more com- 

plicated pattern of waves with diffraction and strong reflection. Thus, this case is 

chosen for study in this paper, and comparison is made between the numerical results 

and analytic solution. 

Let n and r2 be the inner and outer radius of the channel respectively, with 

rx = 75m, r2 = 200m in this case. The depth of the channel is Am. The coordinate 

transformation can be described as: 

6   =   2£±Z (74) 
r2 - n 

£2   =   -tan-1^) (75) 
7T X 

The grid mesh in the physical domain is shown in Figure 10. The grid spacing in the 

radial direction is constant at lm, while a constant angular grid is used along the 

channel length, resulting in a maximum tangential grid size of 1.26m near the outer 

wall and a minimum of 0.47m near the inner wall. The waves propagate primarily 

counter-clockwise from the mouth of the channel. A wavemaker is located internally at 

the eastern end of the channel and two sponge layers are placed in straight channels 
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extending from the eastern and western end of the circular channel (not shown in 

Figure 10). The wavemaker produces linear waves with a period of 4s and a very 

small amplitude for comparison with the linear analytic solution. The time step is 

chosen as 0.05s in the present case. 

To illustrate the process of wave propagation in the channel, Figures 11-13 show 

the transient propagation of a wave train into the channel. It is shown that the waves 

initially propagate in a straight line, but as the channel bends, the waves start to 

diffract around the bend and simultaneously run into the curving channel sidewall 

and are reflected around the bend. The present method allows for transient, wave 

propagation while the spectral method given by Dalrymple et cd. can only describe a 

steady-state linear solution. Figures 14 and 15 depicted the comparisons of the water 

surface variation along outer wall and inner wall between the analytic solution and 

numerical solution after a periodic steady state has been achieved. Good agreements 

are found in the comparisons. 

5.4    Diffraction of a solitary wave by a straight vertical wall 

An experiment on the diffraction of a solitary wave by a straight thin wall was car- 

ried out by Perroud (1957) in a wave tank. A diffracting wall of 0.8cm thickness is 

placed in the tank to diffract the solitary wave at normal incidence. Figure 16 shows 

the experiment layout, where the measurements were made at a point (p, 9) in the 

defined polar coordinate. The tests were run at a constant water depth of 6.1cm and 

various ratios, ranging from 0.27 to 0.58, of the incident wave height to water depth. 

Measurements of wave heights and patterns of the diffracted waves were performed 

in different directions 6 from the diffracting wall and the central axis at the distance 
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Tb simulate the diffraction of waves in the experiment, it is necessary to use 

stretched grid model to resolve the thin diffraction wall. Thus a stretched rectangular 

grid mesh is generated in the computation domain with linear variation of grid sizes 

along the axis direction. The finest grids are obtained around the wall with the 

smallest grid size of 0.8cm, which is exactly the thickness of the wall The largest 

grid size in the whole domain is 2.54cm (lin) at the two sides of the domain. The 

grid size in the normal direction of the axis is identical as 2.54cm. The location of 

initial solitary wave is set at 76.2cm eastward from the wall. 

The diffraction and reflection process after an incident solitary wave impacts on 

the wall is shown in a time sequence of contour plots of the surface elevation for the 

case of ao/h = 0.42 (Figure 17). When the wave impinges on the wall (t = 0.8s). 

the wave on the upward side runs up and reflects back. The initial development of 

the diffracted wave can be clearly seen near the tip of the wall. Following the wave 

impact, the early stages of propagation of the diffracted solitary wave and the back- 

scattered reflected wave are then shown at t = 0.9s. At t = 1.4s, the initial primary 

wave separates into a forward transmitted diffracted wave and a backward scattered 

reflected wave. The newly evolved secondary backscattered and forward-scattered 

waves generated from the tip of the wall propagated outward and follow the leading 

reflected and diffracted waves, respectively. 

The numerical results and measurement data obtained from four solitary waves 

with different wave heights are compared in Figure 18 (a)- (h). The diffraction co- 

efficient k, defined as the ratio of the diffracted wave height to the incident wave 

height (a/ao), is plotted against the distance p for different values of the angle $. 

The close agreement proves that the present model is capable of simulating nonlinear 

wave propagation. 
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5.5    Application to Ponce de Leon Inlet 

To demonstrate the practicality of the present model, we use the mode! to simulate the 

propagation of monochromatic waves in Ponce de Leon Inlet, Florida, USA. Smith 

and Harkins (1997) used numerical models to estimate wave transformation over 

Ponce de Leon Inlet and comparisons were made between numerical results and mea- 

surement data from the physical model. The geometry is shown in Figure 19, which 

consists of a coastline, a jetty, an inlet leading to the Halifax and Indian Rivers, and 

a complex bathymetry. A boundary-fitted grid is generated as shown in Figure 20. In 

order to resolve structures and short waves in shallow water, finer resolution is used 

near the jetty, coastal lines and the inlet. At the offshore boundary of the domain, 

monochromatic waves are generated with a period of 15s and a small amplitude. To 

avoid wave reflections by the coastal boundaries and wave breaking in shallow water, 

sponge layers are placed in shallow water area along the coastlines. Figure 21 shows 

a snapshot of surface elevations, showing wave reflection on the upward side of the 

jetty, wave diffraction on the leeward side, refractive wave focusing in the area to the 

right of the inlet mouth, and standing waves inside the inlet. Though the numerical 

results have not been compared with measurement data as there is no consideration of 

energy dissipation by wave breaking and wave runup on sloping beaches yet, this case 

study illustrates that the present model has a potential prospect for computations in 

complicated domains, such as in harbors and tidal inlets. 

6    Conclusions 

Based on the fully nonlinear Boussinesq equations derived by Wei et al. (1995), the 

equations in generalized curvilinear coordinates are derived by using contravariant 
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velocity method. Then the numerical model is developed with a high-order finite 

difference scheme in staggered grids. To test the model, five examples involving 

curvilinear or stretched coordinate systems are applied. The computation of wave 

evolution in a rectangular basin with a curvilinear grid indicates that the model is 

consistent with the uniform grid model. In the case of wave propagation on a sloping 

beach, the same element Courant number is obtained in every grid points by adjusting 

the grid size, so that the resolutions of waves are the same both in shallow water and 

deep water. The computational efficiency is shown to be greatly improved by the 

new model. Wave propagation in a circular channel is simulated by employing the 

present model with the boundary-fitted grid. Good agreement is found between the 

numerical results and analytic solution. Then the model is used to simulate the 

diffraction of a solitary wave by a straight vertical wall at normal incidence. The 

comparison between numerical results and measurements shows that the model has 

good accuracy in dealing with the computation of nonlinear wave propagation with 

complex lateral boundaries. Finally, the model is applied to Ponce de Leon Inlet. In 

this case, monochromatic waves are simulated in the complex-shaped domain with a 

real bathymetry. 

For practical application in complicated domains, the present model needs to be 

further improved with the incorporation of energy dissipation by wave breaking and 

wave runup on sloping beaches and structures. The development will be reported on 

in the near future, in conjunction with a more complete investigation of Ponce de 

Leon Inlet. 
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Appendix: Spatial derivative in tensor forms 

The tensor-invariant forms of controlling equations (18) - (22) can be expanded 

into equations (24) - (48 ) by using the following tensor formulas. 

The gradient of a scalar / can be written as: 

where g* is the contravariant basis. According to the relationship between two differ- 

ent basis: 

g* = 9iJZi (77) 

in which g** is the contravariant metric, the gradient can be expressed on the covariant 

basis gi as 

V/ = l?^Si = /!'* (78) 

In the present paper, for example, since the contravariant velocity is introduced as 

the dependent variable, the equations have to be expended on the covariant basis g,. 
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The pressure gradient term may be expressed as 

Vrj   =   r/Pg, 

1 ,     dr) dr). 1 .        or? or;, .„. 

where #0 is the determinant of the metric tensor. In equation (79), we employed the 

following formula: 

Wfc = H (so) 

where of is the Kronecker delta. 

The divergence of a vector u can be written as 

y/gS  dx* J 

In the present paper, V-u can be expanded as 

1   dy/gjU ]    1   ay^V' 

where U and F are the contravariant components of velocity vector. 

To a vector u in a two-dimensional space, the covariant spatial derivative «j can 

be expressed in terms of the contravariant component u% of u as following 

4=1?+«'^ (83) 

where £>jfc is the Christoffel symbol. Then the connective terms in the paper can be 

expanded as follows: 

vtu^   =   u1u\ 4- u2v}2 

=   U^ + V^ + UUDl
n + 2UVDl2 + VVDl2, (84) 
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ulu2,   =   uxu% -f u2u2., 2 

=   J7^ + V— + UUE^ + 2ÜVZ& 4- VVD2
2. (85) 
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Figure 3: Curvilinear grid for rectangular basin experiment. 

Figure 4: Comparison of surface elevations (t = Ss) in the physical domain between 

regular grid model (solid line) and curvilinear grid model (dashed line). 
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Figure 5: Schematic of the wave flume. 
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Figure 6: The stretched grid model: surface elevations in the image domain. 
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Figure 7: Surface elevation comparison between the uniform grid model (solid line) 

and the stretched grid model {dashed line) in the physical domain. 
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Figure 8: Comparison of wave heights between uniform grid model (solid line) and 

stretched grid model (dashed line). 
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Figure 9: Comparison of wave numbers between uniform grid model (solid line) and 

stretched grid model (dashed line). 
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Figure 10: Calculation grid in the circular channel. 
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Figure 11: Wave propagation in the circular channel(t= 50 seconds). 
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Figure 12: Wave propagation in the circular channel(t= 100 seconds). 
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Figure 13: Wave propagation in the circular channel{t= 200 seconds). 
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Figure 14: Comparison, of the surface variation along outer wall between the analytic 

solution (solid line) and numerical solution (dashed line). 

Figure 15: Comparison of the surface variation along inner wall between the analytic 

solution(solid line) and numerical solution(dashed line). 

39 



incident 
«MX > ( -^N0/ 

wave XP 
50.8cm 

axis 

Figure 16: Experimental layout. 
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Figure 17: Contour plots of surface elevation for a^/h = 0.42 at various times. 
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Figure 18: Comprisons of diffraction coefficients between experimental data( * or x 

) and numerical results(solid or dashed lines) 
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Figure 19: Bathymetry in Ponce de Leon Inlet (mean low water in meters) 
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Figure 20: Computational grid in Ponce de Leon Inlet 
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Figure 21: A snapshot of wave surface elevations in Ponce de Leon Inlet(T = 15s) 
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