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DEDICATION 

RODNEY J. CLIFTON, Rush C. Hawkins University Professor and Professor of 
Engineering at Brown University, reached sixty years of age in July 1997. In rec- 
ognition of his more than thirty years of distinguished contributions to teaching, 
research and leadership in the field of solid mechanics, a special symposium on 
Dynamic Deformation and Failure Mechanics of Materials was held in May of 1997 at 
the California Institute of Technology. His students, colleagues and friends from 
around the world joined his family in a tribute to the distinguished record of excellence 
he has established. The speakers were invited to submit papers based on their lectures 
to the Journal of the Mechanics and Physics of Solids, which kindly agreed to publish 
this special issue marking the occasion. A copy of the complete program appears in 
this issue. 

This issue is dedicated to Rod Clifton, with the gratitude, admiration and affection 
of his many friends and colleagues, with their hope that he will enjoy a long and 
healthy life, and continue to lead his field for many years to come. 

G. Ravichandran 
A. J. Rosakis 

M. Ortiz 
Y. D. S. Rajapakse 

K. Iyer 
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Preface 

RODNEY JAMES CLIFTON 

Rodney James Clifton was born on 10 July 1937 in Orchard, Nebraska, a small town 
in the northeastern corner of the state. His parents were descended from Europeans 
who had immigrated to the region in the latter part of the 19th century. His early 
education was received in small rural schools where he excelled in science, mathematics 
and athletics. Following secondary school, he enrolled in the program in civil engin- 
eering at the University of Nebraska in Lincoln, where he received his B.Sc. degree 
in 1959. 

Upon his graduation from Nebraska, Rod was employed as a structural engineer 
by the Paxton and Vierling Steel Co. of Omaha. However, his interests were in the 
fundamental precepts of structural mechanics, and he decided to pursue graduate 
study in the field. In the fall of 1960, taking advantage of opportunities for graduate 
study in the U.S.A. created as a consequence of the launch of the Soviet satellite 
sputnik in 1957, he enrolled in the department of civil engineering at Carnegie Institute 
of Technology, now part of Carnegie Mellon University. He received his Ph.D. in 
1964. 

Rod's thesis was concerned with the numerical solution of the partial differential 
equations which describe the propagation of stress waves in solids. The general 
approach for two space dimensions and time was based on integration of the system 
of hyperbolic equations along bi-characteristic strips, tangent to characteristic cones. 
The second-order-accurate method was applied for both elastic and elastic-plastic 
waves in solids. This work marked the beginning of his long and productive interest 
in wave propagation in solids. 

While at the University of Nebraska, he met Mercadee Bonde and they were 
married in December of 1958. Their first son Brad was born in 1960, followed by Jeff 
in 1962, Greg in 1966 and, finally, daughter Ann, born in 1970. Rod and Merc 
presently have two grandchildren. 

Upon completion of his dissertation, Rod inquired at Brown University about the 
prospects for continuing his research in the Division of Engineering, having become 
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aware of the research tradition there in both plasticity and stress waves. At the 
time, Brown was the site of one of the national interdisciplinary Materials Research 
Laboratories, which provided excellent opportunities for short term research visits. 
(As will be noted below, Rod currently serves as the director of Brown's Materials 
Research Science and Engineering Center, the direct descendant of the original MRL 
program.) The senior faculty at Brown concerned with filling research positions were 
at first curious, and then totally delighted, upon discovering this young person who 
had written a thesis of consequence in an area of great current interest at Brown, and 
that he had done so working largely on his own. This work has become broadly 
known in the area and is still cited frequently today. 

Rod and his young family arrived in providence in January of 1964, and he began 
a very productive period of research which established the framework for much of 
the work done subsequently in the area which has become known as dynamic plas- 
ticity. He developed solution procedures for analyzing plastic wave propagation, 
especially combined-stress plastic waves. A beautiful discussion entitled 'An analysis 
of combined longitudinal and torsional plastic waves in a thin-walled tube' appeared 
in the proceedings of the 5th U.S. National Congress of Applied Mechanics held in 
Minnesota in 1966. Then, with his first Ph.D. student, Joel Lipkin, he carried out the 
corresponding experiment. This work was reported in 'An experimental study of 
combined longitudinal and torsional plastic waves in a thin-walled tube' which 
appeared in the proceedings of the 12th International Congress of Theoretical and 
Applied Mechanics in 1968. This blend of creative experimental investigation with 
sound analysis was to become the hallmark of his work in the field. Among the many 
innovations in experimental dynamic plasticity which were developed in his laboratory 
are the pressure-shear plate impact configurations, which opened the way for the 
broad study of combined-stress plastic waves of one-dimensional strain on the basis 
of interpretable experiments, and the transverse displacement interferometer for 
detecting lateral motion of a specimen surface in the plate impact apparatus. Both 
the standard and the pressure-shear configurations of the plate impact apparatus were 
also modified to measure plane strain fracture toughness of steels under high rates of 
loading, the nucleation and propagation of shear bands in metals, the pressure-shear 
characteristics of lubricants at high rates of deformation, the high-rate response of 
fragmented brittle materials, and nucleation of failure in brittle polycrystalline 
ceramics. In each of these situations, novel experimental procedures supported by 
sound analysis or numerical modeling led to significant advances. 

Largely through his association with Terra Tek Inc. of Salt Lake City, first as a 
consultant and subsequently as a member of the Board of Directors, he also made 
important contributions to the area of hydraulic fracture of geological materials and 
secondary oil recovery technology. His contributions included both fundamental 
studies on applications of fracture mechanics and the development of commercial 
software for prediction of hydraulic fracturing patterns around bore holes. 

Over the years at Brown, more than twenty-five graduate students have completed 
their Ph.D. thesis research under his direction. He is well-known for the close personal 
attention given to the work of each student and for fostering an independent and 
discriminating point of view within each student over the course of his or her work. 
These former students, who now contribute at leading universities, research lab- 
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oratories and industrial laboratories throughout the U.S.A. and abroad, are having 
a major impact on the area of experimental mechanics. 

In addition to his research contributions, Rod has been very generous with his 
time in service to his university and profession. Through his leadership and sound 
judgement, he has had a profound influence on the programs in the Division of 
Engineering at Brown over the years. He served as Chair of the Engineering Executive 
committee (1974-79), as Director of the Central Facility for Mechanical Testing 
(1980-86), on the University Research Council (1987-91), as Principal Investigator 
and Director of the NSF Materials Research Group (1989-96), as Principal Inves- 
tigator and Director of the NSF Materials Research Science and Engineering Center 
(1996-date), and on many other committees and panels. He has also served as 
Associate Editor of the Journal of Applied Mechanics (1981-88), on the Board of 
Directors of the Society of Engineering Science (1977-83), president of the Society of 
Engineering Science (1982-83), on the editorial advisory board of the Journal of the 
Mechanics and Physics of Solids (1982-date), on the Board of Directors of the NSF 
Institute for Mechanics and Materials (1992-date), on the mechanical engineering 
peer committee of the national Academy of Engineering (Vice Chair 1995, Chair 
1996), and on advisory boards of several federal agencies. 

For his many contributions in both research and service, Rod has been recognized 
by election as a Fellow of the American Academy of Mechanics, through receipt of 
the ASME Melville Medal (joint with K. S, Kim), the SES Prager medal, the best 
paper award of the ASME Tribology Division, (joint with K. T. Ramesh), by the 
Distinguished Alumni Award of Carnegie Mellon University, and by election to 
membership in the National Academy of Engineering. 

Most of the foregoing information has been drawn from the public record, where 
Rod's impressive professional accomplishments are evident for all to see. However, 
the full dimension of Rod Clifton is most appreciated by those who have had the 
privilege of a direct association. He is devoted to his family and has been tireless in 
quest of their happiness and interests. He has been active in his church and generous 
on behalf of its causes, including Habitat for Humanity and others. Within the 
Division of Engineering at Brown, he has had a long-standing interest in the under- 
graduate programs of instruction, often volunteering for the most difficult teaching 
assignments in an effort to improve the educational experiences of the students. The 
door of his office has always been open to students who require extra help to surmount 
some barrier, and it is not unusual to find students waiting their turn outside his office 
door long after closing hours in the department. Those who have had the good 
fortune of having been a faculty colleague have benefited immeasurably from Rod's 
leadership, sound judgement and enormous efforts for the common good, and have 
appreciated his good humor and collegiality. He is a model of integrity and dedication. 
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ABSTRACT 

A very large number of technologically important liquids, including lubricants, undergo a glass transition 
under increasing pressure, decreasing temperature, or increasing rate of deformation (one may consider 
the glassy solid to be a supercooled liquid). The compressibility of glass-forming lubricants has a strong 
influence on the modeling of elastohydrodynamic (EHD) contacts, where pressures (as high as several 
GPa) are sufficient to induce the glass transition. This paper presents both experimental and analytical 
studies of the compressibility of a low-molecular-weight synthetic organic lubricant known as 5P4E, which 
has a simple molecular structure amenable to molecular modeling. The experimental results are obtained 
using the compression Kolsky bar and pressure-shear plate impact techniques, and show that this lubricant 
has substantial compressibility under high pressures. 

An analytical and computational investigation of the nonlinear compressibility of this simple material 
based on estimates of the molecular structure and intermolecular interactions is then presented. The 
molecular structure and the various molecular conformations of the material are examined using relatively 
simple "molecular mechanics" calculations. An intermolecular interaction energy potential is obtained by 
examining the interactions of a molecule pair, and the molecular structure and interaction potential 
estimates are used together to provide a prediction of the material's nonlinear compressibility (although 
thermal effects are not completely accounted for in the model). All but one of the parameters in the model 
are obtained directly from the molecular mechanics computations; the one parameter that must be 
independently specified is the volume at room temperature and atmospheric-pressure, obtained from a 
simple density measurement. The predicted compressibility is found to be in remarkably good agreement 
with the experimental data. © 1998 Elsevier Science Ltd. All rights reserved. 

Keywords: A. thermomcchanical processes, B. constitutive behavior, glass material, C. Kolsky bar, 
molecular structure. 

1. INTRODUCTION 

A very large number of technologically important liquids, including lubricants, 
undergo a glass transition under increasing pressure, decreasing temperature, or 
increasing rate of deformation. This transition to a glass state can occur under the 
typical operating conditions of devices and machinery, and so the mechanical proper- 
ties of the glassy solid are of great interest. For example, lubricants are commonly in 
the glassy state within typical elastohydrodynamic contacts such as meshing gear 
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teeth, ball and roller bearings, and precision mechanical devices. Biological liquids 
such as synovial fluid may be forced into the glassy state within animal joints. And 
recent work (Prosperetti, 1997) suggests that the phenomenon of sonoluminescence 
in single water bubbles may be the result of the impact of a water jet (developed 
during bubble collapse) on the bubble wall, where the water has been rendered glassy 
by the very short times and high rates of the interaction. 

The organic substances that form glassy solids may be separated into two classes 
with substantially different behaviors: low-molecular weight organics such as oils and 
hydrocarbons, and high-molecular weight organics such as polymers. Low-molecular 
weight organics (Mw < 103) undergo a direct liquid-to-glass transition; high molecular 
weight organics (Mw > 104) develop an intermediate rubbery phase (liquid-to-rubber- 
to-glass). This difference in behavior reflects an important distinction in mechanism 
for large molecular weight organics, the statistics of chain entanglements are extremely 
important, whereas such entanglements are rare at low molecular weights. This paper 
focuses on a low-molecular-weight organic glass-forming material, so that chain 
entanglements are not an issue. Inorganic glasses such as metallic glasses evince 
peculiarities in their behavior that require special treatment, and will not be considered 
here. 

Low-molecular-weight organic glassy solids are interesting from a continuum view- 
point, since such solids are real examples of isotropic homogeneous media with the 
added benefit that the internal molecular mechanisms are directly manifested in the 
continuum properties. For most traditional engineering materials, it is extremely 
difficult to properly make the connection between atomic or molecular structure and 
the macroscopic properties, because intermediate microstructural variables (such as 
grain size and dislocation substructure in metals or degree of polymerization in 
polymers) control the behavior. However, in the case of low-molecular-weight organic 
glasses, there are no intermediate microstructural features to obscure the molecular 
mechanisms. At the same time, these materials (generally hydrocarbons) are 
sufficiently simple that their molecular structures can be studied, and understanding 
the molecular mechanisms that determine macroscopic mechanical behavior will 
provide a theoretical basis for the molecular design of new materials. 

This paper focuses on the characterization of the compressibility of a glass-forming 
synthetic lubricant that is a low-molecular-weight hydrocarbon. The choice of 
material is dictated by the technological importance of lubrication within today's 
mechanized civilization. Proper lubrication is required for the satisfactory operation of 
all contacting machine elements with relative motion. Within these machine elements, 
especially in elastohydrodynamic (EHD) contacts, lubricants are subjected to pres- 
sures as high as several GPa (at these pressures, most lubricants are glassy solids). 
The compressibility of the lubricant influences the oil film shape and thickness and 
thus has a strong influence on the functioning of the contact. Thus, knowledge of the 
compressibility is of great importance for the accurate modeling of lubrication. At 
the same time, the compressibility is the macroscopic property most amenable to 
simple mechanistic modeling in terms of molecular structure. 

The next section reviews some of the literature on the compressibility of glassy 
solids and simple liquids. A section describing the specific lubricant investigated 
follows. The basic experimental techniques used to measure compressibility and their 



Glass forming lubricant 1701 

results are then reviewed. Next, the molecular structure of the lubricant is estimated 
using simple molecular mechanics computations, and the computed intermolecular 
interactions are used to estimate the compressibility of this synthetic lubricant. Finally, 
the predicted compressibility is compared to the experimental data on this material. 

2. BACKGROUND 

The compressibility of materials has been extensively studied in the context of the 
pressure-volume-temperature (PVT) relation known as the Equation of State (EOS). 
The characterization of the EOS is of interest to a number of fields, including geophys- 
ics, condensed matter physics, and mechanics. A large fraction of the literature, driven 
by geophysics, focuses on the EOS of minerals and ceramics. A substantial amount 
of work has been performed on metallic materials from a shock physics viewpoint, 
and some work has also been done on the compression of liquids such as benzene 
under extremely high pressures through shock waves (e.g. Dick, 1970; Nellis, 1994). 
Progress in describing the equation of state has proceeded along two fronts. A very 
large effort has been expended on the experimental characterization of material 
behavior, and a number of empirical models have been constructed to describe the 
observed behavior. A substantial literature has recently evolved on the theoretical 
(and even first principles) development of equations of state. 

The experimental effort has been driven by the availability of techniques for high- 
pressure measurements, beginning with the early work of Bridgman (1940) using full- 
scale quasistatic compression. The advent of shock loading techniques, especially with 
the two-stage gas gun, significantly accelerated the characterization of the EOS of 
materials. More recently, the development of the diamond anvil cell and associated 
instrumentation has allowed the independent measurement of material parameters 
for comparison with the shock physics data. Measurement of the variation of moduli 
with pressure using ultrasonics has also been a potent experimental tool. Put together, 
these techniques have provided a fairly clear picture of the volumetric behavior of 
solids under large compressions, but comparatively few results are available for 
liquids. 

Theoretical developments in the understanding of the compressibility on the equa- 
tion of state can be broadly classified within two categories: those approaches that 
are based on an atomistic or molecular understanding of the microphysics, and those 
approaches that examine the behavior from a macroscopic viewpoint. A very large 
activity currently exists in the development of models of material behavior from a 
first-principles or a quantum mechanical viewpoint. These models generally involve 
vast computations, and while fascinating from a purely scientific viewpoint, are not 
yet sufficiently advanced to provide general utility. At one level up in scale, models 
have been developed based on interatomic pair potentials, with parameters based on 
other experimental measurements or obtained from first principles calculations. A 
large variety of potentials has been used, with the most common being the Lennard- 
Jones and Born-Mayer forms; a number of these are semi-empirical functions. Since 
such potential-based models typically are only valid at zero K, thermal corrections 
are typically incorporated in the Mie-Gruneisen form through the Gruneisen 
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parameter. At the macroscopic scale, models for the EOS have been developed in 
terms of finite elastic deformations, such as the Birch-Murnaghan equation, and on 
an essentially empirical basis, such as the Murnaghan equation. Vinet (1986) provides 
a succinct review of such equations of state. A more recent review of several of these 
topics (and an outstanding exposition of the physics) is provided by Anderson (1995). 

In a series of papers (Rose et al., 1984, Vinet et al, 1987, 1989), a number of 
researchers have proposed a universal scaled energy relation for all classes of solids 
(metallic, covalent, ionic, van der Waals). The form of this universal relation was 
inferred from analysis of energetics and determined by fittings to experimental iso- 
thermal compression data. Vinet et al. (1989) have shown that compressibility 
relations derived from this universal form can be fitted fairly well to a great variety 
of materials (e.g., Ne, Kr, H2, NaCl, KI and silicone). These "universal" relations are 
discussed more completely later in the modeling section of the paper. 

2.1. The compressibility of simple organic liquids 

The EOS for the liquid state of matter is not as well characterized as that for the 
solid state, and this is even more so when one considers organic liquids rather than 
atomic or simple inorganic liquids. Several hard sphere and soft sphere models have 
been proposed for the liquid state, and have found some success in dealing with liquid 
metals, but are generally unable to handle organic liquids (larger, more complex 
molecules generally lead to flaws in the sphere assumption). There is as yet no simple 
theoretical equation of state for liquids, although some of the empirical models 
previously mentioned for solids have been used to describe their behavior. Indeed, a 
common assumption is that models applied to solids can also be applied to liquids, 
ignoring the intrinsically disordered nature of the liquid state. Sanchez et al. (1993) 
found universal aspects of the compression of liquids and solids; their interaction 
potential was approximated by a series expansion with parameters determined from 
fittings to experimental data. Similar work can be found in Baonza et al. (1994). Of 
the empirical relationships, the Murnaghan equation appears to provide a reasonable 
description of the real behavior of liquids at low pressures. A theoretical basis for this 
fact has been presented by Song et al. (1993) in terms of a statistical mechanics-based 
equation of state. 

Extensive experimental research has been performed on the compression of liquids 
under extremely high pressures through shock waves (e.g. Dick, 1970; Nellis, 1994). 
Experimental work at lower pressures is scattered widely in the literature, depending 
on the materials studied (e.g. Linton, 1920; Wahid, 1993). Computational studies of 
liquid compressibility are largely limited to very simple liquids such as water (e.g. 
Motakabbir and Berkowitz, 1990). 

The focus of this paper is on the compressibility of lubricants, which are simple 
organic liquids at room temperature and atmospheric pressure. The compressibility of 
lubricants is critical to the understanding of elastohydrodynamic (EHD) lubrication, 
which is one of the most significant problems in tribology. Unfortunately, none of 
the studies mentioned above provide information on the compressibility of such 
materials. The materials studied to date in the literature generally have molecular 
weights that are either too high (as in polymer solids) or too small (as in simple 
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liquids, although benzene and the alkanes come close). Moreover, the pressures in 
the majority of the studies are not in the range 1-5 GPa developed within ela- 
stohydrodynamic contacts. Most liquid and polymer data to date has been obtained 
under pressures below 300 MPa, while most data for solids are for pressures above 
10 GPa. Thus, despite the rich literature on the compressibility and the equation of 
state of solids and liquids, it is necessary to obtain both experimental data on the 
compressibility of lubricants and to develop a model to describe their volumetric 
behaviors. 

2.2.  The compressibility of lubricants 

Almost all of the literature on lubricant compressibility is experimental (e.g. Barlow 
et ed., 1972). Dowson and Higginson (1977) measured the compressibility of a mineral 
oil at pressures up to 400 MPa and suggested an empirical compressibility equation 
based on their data: 

p 0.6P 

where the unit of pressure P is GPa, p is the density of the oil in kg/m3, and p0 is the 
density at atmospheric pressure. This relation has been widely used in simulations of 
EHD lubrication (e.g., Jacobson and Hamrock, 1984). However, its validity under 
high pressure is questionable, since eqn (1) was obtained by fitting data from measure- 
ments that were only made at relatively low pressures, and pressures over 1 GPa are 
commonly encountered within elastohydrodynamic contacts. Hamrock et al. (1987) 
performed a series of quasistatic measurements of the compressibility of several 
hydrocarbons up to pressures of 2.2 GPa; they observed that the Dowson-Higginson 
relationship was not valid at higher pressures for synthetic lubricants, and suggested 
another empirical pressure-volume relation that was parabolic in the liquid state and 
linear in the glassy state. Measurements of the high frequency longitudinal and bulk 
moduli of the polyphenyl ether 5P4E were made by Bezot et al. (1986) over a small 
range of pressures (up to 400 MPa) and over a range of temperatures using a light 
scattering technique. A very strong dependence of the moduli on pressure and tem- 
perature was observed. Jacobson and Vinet (1987) were able to fit an equation of 
state developed by Vinet et al. (1987) to the data published by Hamrock et al. (1987) 
for pressures as high as 2.2 GPa. 

Ramesh (1991) and Feng and Ramesh (1993) measured the dynamic compressibility 
of two lubricants for pressures as high as 5 GPa and (at lower pressures) over a range 
of temperatures using the compression Kolsky bar (Feng and Ramesh, 1993) and 
pressure-shear plate impact techniques (Ramesh and Clifton, 1987; Ramesh, 1991; 
Zhang and Ramesh, 1996). Based on these results, Feng and Ramesh (1993) presented 
a model for the pressure-volume relationship derived from a linear shock-velocity/ 
particle-velocity Hugoniot: 

p = „. .r,T,„;/„12 (2) U+a{(V/V0)-l}] 

Here K and a are material constants related to the low-pressure bulk modulus and 
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the slope of the Hugoniot respectively. The current paper will make extensive use of 
the experimental compressibility measurements from the Ramesh (1991) and Feng and 
Ramesh (1993) papers; the experimental techniques themselves are briefly described in 
the interests of completeness. 

This paper develops an analytical prediction of lubricant compressibility based on 
a characterization of molecular interactions. A P-Frelation (similar to that developed 
by Vinet et al., 1989) is established for a simple synthetic lubricant based largely on 
molecular mechanics calculations, and the predictions of this model are compared 
with experimental data on the material. A brief description of the material itself 

follows. 

3. A MODEL MATERIAL: THE SYNTHETIC LUBRICANT 5P4E 

The material examined in this paper is a synthetic lubricant, a five-ring polyphenyl 
ether known as 5P4E. 5P4E is a polyphenyl ether of molecular weight 446. Because 
of this simple structure, the range of isomers is limited and the possible forms are 
very similar. One form is known as bis- (m- (m-phenoxy phenoxy) phenyl) ether or 
bis- (phenoxy phenoxy) benzene. Figure 1 is a schematic drawing of this molecular 
structure. Note the five phenyl rings and the four ether linkages—hence the name 

5P4E. 
There are three reasons for the choice of 5P4E as a model material for this work: 

• it has been widely studied, and so there is extensive experimental data on its 
properties available in the literature; 

• as a synthetic, it has relatively uniform properties from batch to batch, so that a 
comparison of several experimental results is appropriate (a particular issue with 
lubricants); 

• it has a relatively simple molecular structure, amenable to molecular mechanics 
computations. 

At room temperature and ambient pressure 5P4E is a viscous, clear, light yellow 
liquid with the consistency of a thin shampoo. This material undergoes a transition 
to the glassy state on cooling at a temperature of about -40°C at ambient pressure. 
As is the case with most simple organic liquids, the glass transition can also be 
developed by increasing the pressure at constant temperature: in the case of 5P4E, 
the glassy state is achieved on increasing the pressure to above 160 MPa at room 
temperature. The glass transition itself is not discussed in this paper, and most of 

CH CH CH CH 
Fig. 1. Schematic diagram of the chemical structure of an isomer of 5P4E. 
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LIQUID 

Fig. 2. The modified compression Kolsky bar experiment for compressibility measurement. The inset shows 
the specimen assembly used for the experiments. 

the pressures that are considered are above the glass transition pressure at room 
temperature (thus the properties of the glassy solid are being discussed, rather than 
those of the liquid). The fact that the glass transition can be achieved either by cooling 
at constant pressure or by pressurizing at constant temperature indicates that a 
volume-driven molecular mechanism is involved. A molecular basis for the evaluation 
of the glass transition itself is presented in a separate paper (Zhang and Ramesh, 
1998). 

4. EXPERIMENTAL TECHNIQUES AND RESULTS 

Two experimental techniques are briefly described for measurement of the dynamic 
compressibility: the compression Kolsky bar technique and pressure-shear plate 
impact experiments. Both of these techniques employ stress waves to induce com- 
pression in the specimen; they can achieve high pressure levels in very short times 
and therefore measure the adiabatic compressibility. 

4.1.  The compression Kolsky bar technique for measurement of the compressibility 

The traditional Kolsky bar (Kolsky, 1949) or split-Hopkinson pressure bar was 
modified to be able to measure the compressibility of lubricants (details may be found 
in Ramesh, 1991; Feng and Ramesh, 1993). The Kolsky bar itself consists of an input 
bar, an output bar and a specimen assembly (Fig. 2). A projectile fired from a gas 
gun impacts one end of the input bar and generates a compressive stress pulse 
propagating down the bar into the specimen. The specimen assembly is a thick-walled 
cylinder containing a thin layer of the material to be studied confined between two 
pistons. The incident pulse reverberates within the lubricant layer until the layer 
reaches an equilibrium stress state. The pulse transmitted into the output bar carries 
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Fig. 3. Schematic diagram of the experimental configuration used for pressure-shear plate impact experi- 

ments on simple organic liquids and glasses. 

information about the magnitude of this stress, and the pulse reflected into the input 
bar carries information about the displacement of the bar-specimen interfaces. The 
bars are designed to remain elastic throughout the test. 

Since the cylinder is nearly rigid, essentially uniaxial strain conditions are generated 
so that the volume ratio is related to the relative displacement of the two bar-specimen 
interfaces. Detailed analysis (Ramesh, 1991) shows that the axial stress in the specimen 
approaches a uniform hydrostatic pressure (essentially the difference between the 
axial and transverse stress is proportional to a shear stress, and this shear stress relaxes 
if the material has a viscous response). Thus the pressure-volume response of the 
lubricant can be determined from the strain gauge measurements of the incident, 
reflected and transmitted pulses. By changing the initial temperature of the specimen, 
the pressure-volume-temperature behavior can be determined. The technique is 
limited to pressures of about 1.2 GPa because of yielding in the bars and cylinder. 

4.2. Plate impact experiments 

Pressure-shear plate impact experiments have been used in the study of both the 
compressibility and the shear rheology of liquids under high pressures and high shear 
rates (e.g. Ramesh and Clifton, 1987; Ramesh, 1991; Zhang and Ramesh, 1996). The 
experimental configuration is shown in Fig. 3. A projectile carrying a two-inch diam- 
eter plate (the "flyer") is accelerated down the barrel of a light gas gun and impacts 
a parallel stationary target. Impact occurs at a known projectile velocity vQ and at a 
skew angle 6 in an evacuated chamber. The target consists of two flat plates which 
confine a thin ( ~ 25 /mi) layer of the lubricant sealed into the assembly by means of 
an O-ring. The thickness of the lubricant layer is determined by a ring of aluminium 
shim stock. All of the plates remain elastic during the test, so that stresses at the 
interface between the lubricant and the rear plate can be computed from measured 
particle velocities at the rear surface of the target. Laser interferometers are set up to 
measure the transverse particle displacement and normal particle velocity at the rear 
surface of the target. The experiments are designed such that no unloading waves 
from the periphery of the specimen arrive at the point of observation during the time 
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Fig. 4. Experimental compressibility data obtained from Kolsky bar and plate impact experiments. The 
dotted line is the Dowson-Higginson relation, eqn (1) extrapolated to these pressures (the original Dowson- 
Higginson parameters were obtained up to 400 MPa), and the solid line is the Hugoniot relation, eqn (2). 

of data acquisition, thus ensuring that the experimental results can be interpreted 
entirely in terms of the propagation of plane waves. This is thus a truly one-dimen- 
sional problem, and the specimen is subjected to very well-characterized loading 
conditions. 

Upon impact, both longitudinal and transverse waves are sent into the flyer and 
front plates. Since the longitudinal wave travels faster than the transverse wave, it 
arrives at the lubricant first and reverberates within the lubricant layer. Because of 
the finite compressibility of the layer, and because the lubricant is surrounded by 
higher impedance materials, the longitudinal stress in the lubricants rings up to a 
constant value. Eventually a nearly hydrostatic state of compression is developed in 
the lubricant (Ramesh and Clifton, 1992). A series of tests at different pressures gives 
the compressibility of the lubricant over a range of pressures. Shearing information 
is obtained from the transverse waves, but is not of interest to this paper. 

4.3. Experimental results 

The experimental data presented by Feng and Ramesh (1993) on the compressibility 
of 5P4E are shown in Fig. 4 (all of the tests were performed at room tem- 
perature, ~ 30°C). Although not shown in Fig. 4, the compressibility results at low 
pressures are very consistent (Feng and Ramesh, 1993) with the results obtained 
(using completely different techniques) by Barlow et al. (1972), Alsaad etal.{\ 978) and 
Bezot et al. (1986). It is obvious that this material exhibits substantial compressibility, 
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especially in the high-pressure regime; this is of importance to the modeling of 
elastohydrodynamic contacts, where pressures of 2-3 GPa may be developed. Note 
that the traditional Dowson-Higginson relation, eqn (1), underestimates the com- 
pressibility of this lubricant at high pressures. Note also that most of this data is well 
above the glass transition pressure, and represents the compressibility of the glassy 
solid. The error bands on this data at low pressures are such that the change in 
compressibility through the glass transition cannot be captured through these tech- 
niques. A fit obtained using eqn (2) is also presented in Fig. 4. Clearly such a two- 
parameter model can describe the observed behavior, but the parameters, while 
physically motivated, must be determined from the data. 

In the remainder of this paper, a model is developed that is able to capture the 
experimental behavior shown in Fig. 4. The model is based on a fundamental analysis 
of the molecular structure of the material and the corresponding intermolecular 
interactions. Note that the experimental techniques presented here are essentially 
adiabatic, since the timescales of the experiments ( ~ 102^s for the Kolsky bar and ~ 1 
/is for plate impact) are so short that there is no time for a significant heat flux. Thus, 
the measurements are of the adiabatic pressure-volume behavior rather than of the 
isothermal behavior. 

5. A MOLECULAR BASIS FOR THE COMPRESSIBILITY 

For adiabatic deformations that involve only the volume changes considered here, 
the pressure can be obtained directly from the internal energy E: 

I' 
For isothermal deformations the corresponding relation would be 

where F is the Helmholtz free energy of the glass solid and: 

F=E-TS. (5) 

Here is is the internal energy, Tis the temperature and S is the entropy. The traditional 
approach to the equation of state (Anderson, 1995) for glasses would consist of 
separating the Helmholtz free energy into two parts: F= E0 + ETn, where E0 is the 
internal energy at absolute zero and ETH is the thermal contribution to the Helmholtz 
free energy of the molecules (for these organic materials, the contribution due to the 
free electrons is negligible). The use of eqn (4) would then provide the isothermal 
pressure-volume response. However, the experimental data of Fig. 4 in fact represents 
the adiabatic response, and so eqn (3) is the appropriate approach to developing the 
compressive response of the material. Once the form of the internal energy E has been 
determined, the compressibility can be obtained directly from eqn (3). 

Previous researchers have used several different ways to establish E. For example, 



Glass forming lubricant 1709 

Sanchez et al. (1993) used a series expansion to approximate E with all of the 
parameters determined by curve-fitting to experimental data. Porter (1995) used group 
interaction modeling theory to relate E to the "cohesive energy," which is also 
obtained from experiments. However, most of these methods rely on experimental 
measurements of the compressibility to determine the free parameters, and thus are 
not truly predictive. 

The intent here is to provide a molecular basis for the prediction of compressibility. 
E is viewed as the internal energy of a system consisting of a collection of 5P4E 
molecules. The internal energy at absolute zero (£"„) of a system of molecules of the 
type shown in Fig. 1 is first computed, and then a correction for the thermal effects is 
employed to obtain E. Equation (3) is then used to estimate the adiabatic com- 
pressibility of the material. Note that at absolute zero the Helmholtz free energy 
reduces to just the internal energy, and the adiabatic and isothermal compressibilities 
are identical. 

A well-developed branch of computational chemistry known (in that literature) as 
"molecular mechanics" provides the information needed for the computation of E0. 
Thus, the potential E0 is obtained directly from molecular level information rather 
than from macroscopic mechanical measurements. A brief description of this branch 
of computational chemistry is provided below, and a much more detailed description 
can be found in Zhang (1997). 

5.1.  The molecular mechanics approach and associated assumptions 

The basic ideas of "molecular mechanics" are the following (Allinger, 1992). A 
molecule is described in terms of a collection of nuclei distributed on a potential 
energy field provided by the electrons. The potential surface can be described by a 
series expansion about the point of minimum energy; in the typical approximation, 
only the first and second-order terms in the expansion are used. The typical bond 
energies used may be expressed as follows (e.g. Gelin, 1994): 

stretching:    Ebond = Kb(R-R0)
2 (6) 

bending:    £ang,c = K0(0-60)
2 (7) 

torsion:    £lorsion = Kv{ 1 + cos {ncp - 3)} (8) 

A       B 
van der Waals:    E)f"y = -^ - -^ (9) 

1        R'lj     R'lj 

electrostatic:    Ejj = -^ (10) 

In these equations R is the bond length, R0 is the bond length at the equilibrium 
position, 9 is the bending angle, 90 is the bond angle at the equilibrium position, q> is 
the torsion angle, Ry is the bond length between atoms / and j, and q, is the electric 
change corresponding to atom /. The force constants Kb, K„, Kv, Ay and so forth in 
eqns (6-10) are usually obtained by either curve-fitting to non-mechanical exper- 
imental data, such as spectroscopic and X-ray diffraction measurements, or from ab 
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initio calculations. Note that the energy approximations represented by eqns (6-10) 
are by no means unique; other (generally similar) approximations exist and are used. 
The collection of parameters required for each set of approximations is called a "force 
field" within the computational chemistry literature, and specific force fields have 
been established for particular types of compounds. Spectroscopists have shown 
(Allinger, 1992) that the force parameters obtained from one kind of molecule can be 
transferred to another with a high degree of precision if both kinds of molecules form 
part of a series of closely related compounds. The particular parameter set used here, 
corresponding to eqns (6-10), is a variant of the Amber force field (Weiner et al, 
1984) which was developed specifically for modeling complex organic compounds. 
The parameters in Amber were chosen so that computations on simple organic 
compounds (e.g. ethane, propane, and dimethyl ether) will yield results consistent 
with experimental observations (the molecular structure of 5P4E is similar to that of 
the calibration compounds). 

The total energy of one conformation of a single molecule can be calculated by 
summing all of the energy terms in eqns (6-10): 

£l01al = S£bond + Z£anglc + E£torsjon + E L^dw + £?J (H) 

Note that the thermal vibration energy term is not included in the above equation. 
Physically, this means that the total energy calculated in eqn (11) is essentially the 
energy at absolute zero (the small quantum mechanical vibration term at zero tem- 
perature is also ignored). One may therefore view these calculations as molecular 
statics rather than molecular dynamics; the thermal effects are incorporated in due 
course. Different molecular conformations will have different energies through eqn 
(11), and the most stable conformations will be those with the lowest total energies. 
In order to obtain a qualitative idea of the size and shape of individual molecules, the 
next step is to find the low-energy conformations of the molecule (at zero K). This is 
achieved by a process of energy minimization. 

The molecular mechanics computations in this work were performed using Macro- 
Model (V5.0) developed by Mohamadi et al. (1990). The total energy of the collection 
of atoms and bonds constituting a single 5P4E molecule is minimized by exploring 
configuration changes that lower the energy. The numerical approach consists of 
applying the method of steepest descent, followed by Polak-Ribiere conjugate gradi- 
ent minimization, followed by a full-matrix Newton-Raphson algorithm (in that 
sequence, with increasing algorithmic efficiency as one approaches the minimum). 
Using these techniques for the energy minimization, one obtains the minimum-energy 
conformation (at zero K) of a single 5P4E molecule presented in Fig. 5. While there 
is no way of proving that this is an absolute minimum, an extensive Monte-Carlo 
conformational search about this minimum was unable to find other minima. The 
molecular conformation of Fig. 5 will henceforth be referred to as the minimal 
conformation. Note that this minimal conformation is quite different from the linear 
chain conformation evoked by the schematic of Fig. 1. Instead, the minimal con- 
formation closely resembles a rounded tetrahedron with a 10 A base to vertex height, 
and with insufficient space within the conformation to accommodate even another 
hydrogen atom. Of course, other higher energy conformations of the molecule will 
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(a) (b) 

Fig. 5. Computed minimal conformation of the 5P4E molecule: (a) in ball-and stick mode, showing the 
relationship to Fig. 1 ; (b) with atomic radii shown at 70% of the known van der Waals radii. The darkest 
atoms are oxygen atoms, the gray atoms arc carbon, and the light gray atoms are hydrogen. There is 
insufficient space between the atoms to incorporate even another hydrogen atom, so that all of the space 

within an envelope surrounding the molecule is effectively excluded. 

also exist in the real material at room temperature, with a probability distribution 
largely determined by Boltzmann statistics. 

The material compressibility, however, is a function of the interactions between 
molecules rather than solely of the molecular conformations themselves. Consider the 
simple case of the interactions of a pair of molecules, and for the moment, assume 
that those interactions are indicative of the response of the entire material (for 
hydrostatic compressions). When the two molecules are sufficiently far apart, neither 
feels the influence of the other, and the single molecule solutions hold. However, as 
the two molecules are brought closer together the total energy of the system becomes 
dependent on more than just the internal energies of each individual molecule, since 
the interaction energies begin to contribute strongly to the energy of the system. Of 
particular importance is the fact that each molecule will change its conformation 
because of the interactions with the other molecule, in order to minimize the total 
energy (the system is most stable when the energy is a minimum). Therefore, com- 
putations of the total energy E of the two-molecule system should include the effects 
of conformational changes. 

The total energy E(d) as a function of the intermolecular distance d is obtained 
through the following procedure. Initially two 5P4E molecules (each in the minimal 
conformation) are placed far apart so that the interactions between them are negli- 
gible, and the total energy of this system is calculated. The total system energy is now 
minimized by allowing the two molecules to approach each other and simultaneously 
change their conformations. Computational estimates of E and d are obtained by 
evaluating these quantities repeatedly during the minimization process. The inter- 
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Fig. 6. The internal energy of a two-molecule 5P4E system as a function of intermolecular separation, as 
computed through the energy minimization process discussed in the text. The dashed line is a fit to a 
Lennard-Jones potential, eqn (14), and the solid line is the fit to the Vinet/Rose et al. potential, eqn (16). 

molecular distance d is strictly the distance between the centers of the molecules as 
computed from the instantaneous positions of all atoms in the molecule. However, 
an approximate molecular center is defined in terms of the positions of the oxygen 
atoms in the molecule; this approximation is found to be very good (error < 1 %) for 
the extremal (i.e. initial and final) molecular conformations developed. The energy 
minimization is continued until the two-molecule system reaches a minimum; the 
gradient at the minimum is as close to zero as can be achieved with the available 
computing capacity (an SGI Power Challenge with six processors). The resulting E(d) 
is the function used to derive the P-V relation using eqn (3). 

However, energy minimization processes starting with different initial positions or 
orientations of the two molecules may develop different E(d) relations, since the 5P4E 
molecule does not possess spherical symmetry. An extensive computational evaluation 
of such intermolecular interactions was performed over a representative range of 
possible initial orientations (discretized in terms of Euler angles). While the form of 
the E(d) relation did not change significantly, the depth of the energy well at the 
minimum does change with varying initial relative orientations of the molecules in 
each molecular pair. The question arises: what is the appropriate E(d) that represents 
the average interactions among molecule pairs, each of which may have a range of 
initial orientations? In this work, it is assumed that the E(d) relation that provides the 
lowest energy in the equilibrium position is the appropriate representation of the 
average interactions among molecule pairs, and the resulting computed data are 
presented in Fig. 6 (this data includes the output of two separate minimizations to 
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show the consistency of the results of the search algorithm). Note that this E(d) 
relation still represents behavior at zero K: the configurational space that has been 
explored at this point is entirely an orientational space, not a conformational space 
(which could reflect thermal effects). Conformational changes are necessarily 
developed as the two molecules approach each other and individual atoms in the 
molecules begin to interact: one (2D) view of the final conformations of the two 
molecules in the equilibrium (lowest energy) state of the two-molecule system is 
presented in Fig. 7. 

The important idealizations and assumptions used so far are summarized below: 

(i) Thermal vibrations are ignored within the computations. 
(ii) No statistical distribution of molecular conformations is considered, 

(iii) Entropie changes are neglected. 
(iv) It is assumed that the macroscopic compressibility can be determined by examin- 

ing the pair-wise interactions between molecules. 

Furthermore, all the computations reported here were performed on the isomer 
shown in Fig. 1. However, less extensive computations on some of the other isomers 
show that very similar results are obtained. While the above restrictions correspond to 
a very strong idealization, this approach will be shown to capture the most significant 
physics for the hydrostatic compressive state considered. 

5.2. Computation of the compressibility from E(d) 

Since E(d) has been obtained for this material (Fig. 6), a direct application of eqn 
(3) should give us the pressure-volume relation for 5P4E. However, the application 

Fig. 7. One view (in ball-and-stick mode) of the final conformations of the two molecules in the two- 
molecule system at equilibrium. Note the substantial change in conformation from Fig. 5(a). 
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of eqn (3) requires the use of a derivative, so it is convenient first to develop an 
analytical form for E(d) that provides a good fit to the computed data. Two analytic 
forms for E(d) are examined et seq: the Lennard-Jones form and the Vinet form. In 
each case, the corresponding functions are fit to the computed data of Fig. 6, so that 
in effect the parameters within these energy forms are determined on the basis of 
molecular-level computations. 

It is important to recognize that there are both attractive and repulsive parts to the 
interactions between molecules. When the molecules are very far apart and are then 
brought together, the interactions are primarily attractive, and the internal energy of 
a two-molecule system decreases as the molecules approach (this is the part that has 
been computed in Fig. 6). Once the minimum in the internal energy is reached (defining 
the equilibrium separation of the two molecules), further attempts to bring the mol- 
ecules together results in a repulsive interaction, with the internal energy increasing 
as the molecules approach. These repulsive interactions may be due, for instance, to 
an effective interpenetration of electronic orbits and thus a manifestation of the Pauli 
exclusion principle. Note that similar repulsive interactions would exist for all classes 
of materials, whether one considers inert gases, ionic crystals, metals, or simple 
organic molecules (conformational stiffnesses would also contribute in the case of 
large-molecule systems). Compression away from the equilibrium state would cor- 
respond to climbing up the repulsive side of the interaction energy curve; the increase 
in pressure required to attain this compression is a macroscopic consequence of the 
repulsive mechanisms at the molecular level. The molecular mechanics approach used 
here is unable to directly compute the repulsive side of the interaction energy curve, 
since only energy minimization is feasible and the initial conformations of the highly 
compressed molecules are unknown. However, the molecular mechanics com- 
putations of the attractive side of the interaction energy curve are sufficient to deter- 
mine the parameters in the analytic forms (Lennard-Jones and Vinet) that are used, 
and the forms then determine the repulsive interactions. 

One should expect that the decohesion of materials (which is strongly determined 
by the attractive side of the interaction) will be very different depending on the 
material type (e.g. inert gas, metal or ionic crystal). However, Vinet (1986) espouses 
the idea of a "universal" equation of state for solids (based on the Rose et al., 
1984 model but applying only to the compressive behavior) by assuming that the 
compressibility of materials is determined primarily by short-range electronic forces. 

Since eqn (3) involves a derivative with respect to the volume V, while E(d) is a 
function only of the intermolecular separation d, one must first determine the con- 
nection between the separation d of two molecules and the volume occupied by a 
collection of molecules. This connection is developed as follows: the intermolecular 
separation d is identified as being twice the average radius r of the coordination cell 
occupied by each molecule within a collection of such molecules, so that r = d/2. The 
coordination cell referred to here is that polyhedron formed by the planes which are 
the perpendicular bisectors of the line joining the centers of any two nearest-neighbor 
molecules (Fig. 8); a collection of such coordination cells is space-filling and gener- 
ates the total volume occupied by the material. The specific volume per molecule is 
then assumed proportional to the cube of the average radius of the coordination 
cell: 
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Coordination Cell 

Molecule B 

Fig. 8. Schematic diagram of a coordination cell, defined as that polyhedron developed by the perpendicular 
bisectors of every line drawn between the centers of two nearest neighbor molecules (an example is shown). 
A collection of such coordination cells (of various sizes and shapes in an amorphous medium) fills the 

volume occupied by the material. 

V=ar3 = 0L\^ (12) 

where a is a proportionality constant related to cell/molecule shape (e.g., if the cell is 
spherical, then a = Anß). The zero-pressure volume (i.e., the equilibrium volume) is 
then 

V0 = mi = a 
d0 

(13) 

Using eqns (12-13) in E(d) provides a function of the volume that is suitable for use 
in eqn (3). 

5.2.1. The Lennard-Jones approximation. If E(d) is assumed to be in the Lennard™ 
Jones form, then: 

E(d) = e 
d)      \d (14) 

where d0 is the equilibrium molecular separation; the parameters £ and d0 are deter 
mined by fitting the molecular mechanics results shown in Fig. 6. 

Using eqns (12-14) in eqn (3): 

p = 
dE 
dV' 

4s 

V 
(15) 

This is the pressure-volume equation with parameters obtained solely from the molec- 
ular mechanics computations. The parameter e has already been determined directly 
by fitting eqn (14) to the data of Fig. 6; however, the zero-pressure volume V0 must 
still be determined (since it incorporates both d0 and a). The obvious way to estimate 
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pressure. 

V0 is to obtain it from eqn (13) using the molecular mechanics calculations for d0 and 
an estimate of molecular shape to determine a. The corresponding V0 would be the 
zero-pressure volume at zero K, and then eqn (15) would give us the P-V relation at 

zero K. . ,    , , 
However, the desired comparison is of the predictions with the measured com- 

pressibility at room temperature. Therefore, the zero-pressure volume V0 is instead 
estimated using the known room temperature density of the material (5P4E) at 
ambient pressure. A discussion of the implications of this choice of V0 is presented in 
the discussion section; essentially this procedure lumps all of the thermal effects into 
a single parameter that then scales the compressibility relation. Using this room- 
temperature normalized value for V0, eqn (15) can now be used to predict the room 
temperature pressure-volume behavior of 5P4E. This prediction (the dashed line) is 
compared with the experimental results on 5P4E in Fig. 9. Note that eqn (15) provides 
a much better description of the actual behavior than the traditional Dowson~Hig- 

ginson relation does (Fig. 4). 

5 2 2 The Vinet approximation. Vinet et al. (1989) developed a "universal" equa- 
tion of state in which all classes of solids (metallic, covalent, ionic, van der Waals) 
can be described by a universal scaled energy relation. The Vinet EOS is based on the 
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Rose et al. (1984) binding energy model but is applied only to the compressive 
behavior. Universality is claimed by assuming that the compressibility of materials is 
determined primarily by short-range electronic forces, which do not vary significantly 
across the classes of materials of interest. The corresponding binding energy relation 
(initially developed for metals) is: 

E{a*)= -AE{\+CI*)Q-"' (16) 

where E(a*) is the binding energy per atom, AE scales the energy, and a* is a scaled 
atomic separation given by: 

a — a„ 

I 
(17) 

where a itself is the separation between atoms (here molecules), a0 is the equilibrium 
separation between two atoms (molecules), and / is a scaling length. Note that this 
form has been found to be good for the binding energies between atoms or small 
molecules (the materials on which this approach has been tested include hydrogen, 
Ar, Ne, Kr, Mo, K, Cu, Li, MgO and SiC). The 5P4E molecule has a molecular 
weight of 446, and so conformational stiffnesses may contribute to the compressibility, 
but the applicability of the Vinet approach is assumed for our analysis. Equation (16) 
is applied to the molecular-level data on the interaction energy by associating the 
separation a with the separation d and a0 with the equilibrium molecular separation 
d0. The corresponding fit of eqn (16) to the computed energy-distance data is shown 
in Fig. 6 as the solid line (note that the Vinet relation provides a marginally better fit 
than the Lennard-Jones form). The corresponding value of the scaling length par- 
ameter is 1.17 Ä. 

Following the same procedures used previously, eqns (12-13), a pressure-volume 
equation based on the Vinet potential can be derived using eqn (3), with parameters 
determined solely from the molecular mechanics computations: 

A£^-(K/K1,)«'V.._l"j!n    ,„,„,./.. 

AE and / are obtained directly from the curve fit of Fig. 6. One additional parameter 
(a) must be specified in order to use eqn (18): as a first approximation, the cell is 
assumed to be spherical, so that a = 47i/3. Given a, then, 

r.-(±V.)". 0» 

If the r0 (and hence V0) computed from the molecular mechanics results of Fig. 6 are 
used, the resulting eqn (18) will provide the pressure-volume response of the material 
at zero K. However, the interest is in comparison with room-temperature pressure- 
volume data, and so for V0 the volume corresponding to each molecule at room 
temperature is again used (computed using the room temperature density and Avo- 
gadro's number). Use of this V0 (and the corresponding ;-0) in eqn (18) then provides 
a relation for the room temperature pressure-volume behavior of the material, with 
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all of the parameters obtained either directly from the molecular-level computations 
or from a simple density point at room temperature. Using these parameters, the 
predictions of eqn (18) are compared with the experimental room-temperature pres- 
sure-volume results in Fig. 9 (the solid line). The agreement is remarkably good, and 
appears to be a significant improvement over the Lennard-Jones approximation 
(given the error bars on the data). 

One must distinguish the model prediction developed here from the compressibility 
equation provided by Jacobson and Vinet (1987) for lubricants. Although the form 
of the compressibility relation (18) is exactly the same in their work, the process by 
which they determine the parameters is completely different, since Jacobson and Vinet 
obtain the parameters simply by fitting their experimental compressibility data. In 
contrast, in this work the parameters in the compressibility relation are obtained 
independently from molecular-level computations and from the room-temperature 
density. Thus molecular-level information, and one macroscopic density data point 
that accounts for the thermal effects, are sufficient to predict completely the macro- 
scopic compressibility of this simple organic substance in the glassy state. 

6. DISCUSSION 

Our approach to the modeling of the compressibility of this simple organic sub- 
stance is to compute the interactions between a pair of molecules, using bond par- 
ameters (a "force field") obtained from computational chemistry. Each molecule is 
in fact a collection of atoms, and the total intermolecular interaction is a result of all 
of the interatomic interactions (both within one molecule and with atoms in the other 
molecule). However, the interactions between the molecule pair are then consolidated 
within a single potential of either the Lennard-Jones or Vinet types (such con- 
solidation is a common idealization, e.g. Smith and Srolovitz, 1995). This two-body 
interaction is then idealized as representative of the interactions within the bulk of 
the material. The latter approximation, while acceptable for the study of compression 
under hydrostatic pressures, would be a very poor approximation if any deviatoric 
behaviors were considered. Consideration of shearing itself may require both a full 
incorporation of the kinetics and an evaluation of the statistical distributions of 
molecular shapes, energies and orientations. 

Note that in reality the material is in a glassy state over most of the pressure range 
presented in Fig. 9. The modeling approach presented here is unable to capture 
a change in compressibility through the glass transition, since the intermolecular 
interaction is idealized in terms of a single overall potential. The glass transition itself 
can be predicted using these computations and Cohen-Turnbull theory (Zhang and 
Ramesh, 1998), but this amounts to a prediction of a point in pressure-temperature 
space rather than prediction of material response through the glass transition. An 
accurate characterization of material behavior through the glass transition would 
require a true molecular dynamics calculation, since it is the loss of mobility associated 
with a reduction in volume that leads to the glassy behavior. Further, an entire 
ensemble of molecules would have to be considered rather than the single pair of 
molecules within our molecular micromechanics approach. Molecular dynamics com- 
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putations of material response through a glass transition have been presented in the 
literature, although generally on much simpler molecules (or on polymers, where the 
statistical mechanics dominates the problem). 

The "molecular mechanics" computations themselves were performed without 
consideration of the thermal energies of the molecules, and therefore correspond to 
an evaluation of intermolecular interactions at zero K. In contrast, the experimental 
data were obtained under near-adiabatic conditions with an initial temperature of 
300 K (room temperature). The direct use of the parameters for each potential 
obtained by fitting the molecular-level calculation would give us the compressibility 
at zero K, and this is of course a much stiffer response than is observed at room 
temperature. The model uses the idealization that all of the thermal effects can be 
incorporated into a single scaling parameter represented by VQ, the effective volume 
occupied by a molecule at the equilibrium state at any given temperature. In essence, 
it is assumed that the V0 corresponding to room temperature contains all of the major 
thermal effects, including the statistical distribution of various molecular confor- 
mations, the thermal vibration and the expansion of the coordinate cells up to room 
temperature. All these are effects that were not taken into account in the molecular 
mechanics computations. Such effects can only be fully incorporated into the model 
by performing full-scale molecular dynamics computations. Instead, this single scalar 
parameter is used to scale the entire behavior, and the approach seems to work 
remarkably well. The parameter V0 itself is obtained very simply from the known 
room-temperature density of the material under ambient pressure. 

It should also be noted that the experimental data in Fig. 4 is obtained from 
compression Kolsky bar and pressure-shear plate impact experiments, in which com- 
pression is near-adiabatic, so that the temperature will rise during compression. This 
is thus not an isothermal compressibility curve. Further, the error of the measurement 
of volume ratio is not negligible (Ramesh, 1991). Given all of these approximations, 
the fact that the theory is very primitive, and the assumptions made in the development 
of eqn (18), the quality of the model's prediction of the measured compressibility is 
considered to be good. 

7. CONCLUSION 

Experimental data from two different experimental techniques (the compression 
Kolsky bar and pressure-shear plate impact) are presented, describing the com- 
pressibility of a simple organic glass-forming liquid (the lubricant 5P4E) under pres- 
sures ranging from 100 MPa to 5 GPa. 5P4E is observed to exhibit substantial 
compressibility over this range of pressures. In an effort to determine the molecular 
basis for this large compressibility, the branch of computational chemistry known as 
"molecular mechanics" is used to obtain the interaction energy potential between two 
molecules, with all of the interatomic interactions described through parameters that 
are obtained independent of the experimental compressibility data. The resulting 
estimate of the intermolecular potential at 0 K is used to estimate the compressibility 
of the material; correction to room temperature is performed by incorporating all of 
the thermal effects into a parameter representing the average size of the coordination 
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cell in a collection of such molecules. The resulting predicted room-temperature 
compressibility provides a very good comparison to the experimental compressibility 
data. The model prediction is independent of compression experiments, with all of 
the parameters obtained from the molecular mechanics computations except for the 
room-temperature zero-pressure coordination cell volume (which is a macroscopic 
quantity). 
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ABSTRACT 

Experimental results are presented on the dynamic plastic response of OFHC copper at strain rates of 10s- 
106 s-' and temperatures up to 700°C. Measurements in this previously unexplored regime of high 
temperatures and very high strain rates are made possible by recent extensions of the pressure-shear plate 
impact methodology to allow testing at high temperatures. A thin foil of the specimen material is sandwiched 
between two pure tungsten carbide plates which have sufficient high temperature strength to remain elastic 
under the temperature and loading conditions of the experiment. This target assembly is heated by an 
induction heating coil. To overcome possible misalignment of the impact face of the target due to thermal 
expansion of the target supports, a laser beam reflected from the rear surface of the target is used as an 
optical lever to detect changes in the orientation of the target. Remote controls are used to make the 
necessary adjustments in the orientation of the target assembly to maintain its original alignment with the 
impact face of the flyer plate. To withstand the high temperatures, the photoresist gratings which normally 
provide the diffracted beams used in recording the transverse velocity of the target assembly are replaced 
by titanium phase gratings produced by SEM lithography. Over temperatures from 300 to 700°C and 
strain rates from 105 to 106 s"1 the flow stress of OFHC copper increases with increasing strain rate, 
and decreases with increasing temperature. Numerical simulations of the experiments, based on popular 
constitutive models, exhibit lower flow stresses than those measured in the experiments. The models also 
fail to predict the softening that is observed at large strains in the tests at strain rates of 10* s"1. © 1998 
Elsevier Science Ltd. All rights reserved. 

1.    INTRODUCTION 

Measurements of the plastic response of materials at high temperatures and high 
strain rates are important for the development of constitutive models for flow in this 
regime—especially for applications in which shear bands occur under high strain rates 
as in high-speed machining, automotive crash tests, dynamic fracture, and terminal 
ballistics. For such so-called adiabatic shear bands, the localization of deformation 
into a narrow band occurs as a thermoplastic instability in which thermal softening 
allows both strain rate and temperature to increase sharply within the band. For 
martensitic steels, temperatures within the bands have been measured to be over 
600°C (e.g. Marchand and Duffy, 1988; and Zhou, Rosakis and Ravichandran, 
1996); strain rates in the range of 10-106 s"1 are often inferred (e.g. Marchand and 
Duffy, 1988; and Giovanola, 1987). 

* To whom correspondence should be addressed at Intel Corporation, 5000 West Chandler Boulevard, 
Chandler, Arizona, 85226, U.S.A. 
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The pressure-shear plate impact experiment, because of the high strain rates 
obtained and the comparatively straightforward interpretation made possible by the 
plane wave loading, is well-suited for measuring the plastic response of materials at 
shear strain rates of 105-106 s_1 and large shear strains (~ 100%). The new high- 
temperature capability of the experiment allows the constitutive response of materials 
to be measured at high strains rates and high temperatures. OFHC copper was chosen 
as the first material to be tested in the high-temperature pressure-shear configuration 
because of its well documented response under other loading conditions. Also, the 
low melting point of copper makes possible the measurement of the high-strain rate 
flow stress of a solid near its transition to liquid. 

This paper presents experimental results for three temperatures, at each of two high 
strain rates, as a means of characterizing independently the effects of temperature and 
strain rate. Probably the most striking feature of the observed response is the high 
shearing resistance that copper maintains as its temperature approaches the melting 
point. 

2.    EXPERIMENTAL APPROACH 

The basic pressure-shear plate impact experiment for high strain rate deformation 
of a thin foil has been described by Clifton and Klopp (1985). The time-distance 
diagram for such experiments, adapted for the experiments to be reported here, is 
shown in Fig. 1. The specimen foil is sandwiched between the center and right tungsten 
carbide plates which are heated prior to impact. The heating is provided by an 

flyer plate 

, = 6.35 mm 

t 

pureWC 
(22 °C) 

pressure 
wave 

Cu foil 

d,=    + 
3.18 mm 

pureWC 
(heated) 

d2 = 6.35mm 

pureWC 
(heated) 

3790 (2400) 
3240 (1850) 

2220 (830) 

1390 (0) ns 

■>X 

Fig. 1. Time/distance diagram for high-strain rate, high temperature experiment. 
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Fig. 2. Impact schematic for high-temperature, pressure-shear experiment. 

induction heater (Frutschy and Clifton, 1997); the induction heating coil is wrapped 
around the circumference of the target sandwich as shown in Fig. 2. The target 
sandwich is supported by a machinable ceramic holder and attached to the frame of 
the target holder with alumina pins that eventually break away. The inner diameter 
of the induction heating coil is larger than the diameter of the projectile tube to ensure 
that the coil is untouched throughout the experiment. The target holder (not shown) 
is shielded from the heat of the target sandwich and the electromagnetic field of the 
induction heating coil by a water-cooled copper housing that surrounds the target 
sandwich. The flyer plate on the left is at room temperature. 

Upon impact, a pressure wave and a shear wave are generated in both the flyer and 
the central tungsten carbide plates. The pressure wave arrives at the specimen first 
and induces a small amount of longitudinal plastic deformation (~2% according to 
simulations). More importantly, the pressure wave subjects the specimen/tungsten 
carbide interfaces to a large normal pressure so that sufficient frictional resistance is 
generated to allow the shear wave to be transmitted across the specimen without slip. 
The principal plastic deformation comes from the shear wave which arrives after the 
specimen is under pressure. The experiment is regarded as completed once the pressure 
wave—after reflecting from the rear surface of the target sandwich—returns to the 
specimen. At this time, the normal pressure drops to zero, and shear stress can no 
longer be transmitted. Clifton and Klopp (1985) describe how the stress and strain in 
the specimen foil are calculated from the measured free surface velocities. Briefly, the 
shear stress and normal stress in the specimen are given by 

i = \pc2vk,    0 = \pC\Uk (1) 

where pc2, pc{ are, respectively, the elastic shear wave impedance and the elastic 
longitudinal wave impedance of the rear target plate; the quantities t;fs, u[s are the 
transverse and normal components of the velocity measured at the traction-free rear 
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Table 1. Material properties from literature 

Property Copper WC 
(at 22°C) (OFHC) (pure) 

c1(mm//is) 4.978 6.858 
c,(mm/jus) 2.322 4.300 
p(g/cm3) 8.96 15.4 
pc] (GPa/(mm/|is)) 44.6 107.0 
pc2 (GPa/ (mm/fis)) 20.8 67.1 
E(GPa) 129.8 609.1 
/x(GPa) 48.3 287 
V 0.343 0.20 
ffyield(MPa) 40 4460 
TmC]t(°'K.) 1356 3058 
k(W/m°K) 399.0 102 
Cp(J/kg°K) 386.0 204 
a(°K-'xlO- ") 18 5.9 

surface of the target assembly. The room temperature properties of the OFHC copper 
and the pure tungsten carbide plates (manufactured by Cercom Inc.) are given in 
Table 1. Data for this table was given by Cercom Inc. and taken from Smithells and 
Brandes (1976), Exner (1979), and Storms (1967). The experiment is described more 
fully by Frutschy (1997) and Frutschy and Clifton (1997). 

Because of the 1 GHz frequency response of the latest photodiodes, the normal 
displacement interferometer (NDI) can now be used to measure normal free surface 
velocities up to 0.2 mm/^s. A transverse displacement interferometer (TDI) (Kim, 
Clifton and Kumar, 1977) is used to measure the transverse free surface velocity. The 
diffraction gratings used for these experiments consist of titanium strips put on the 
rear surface of the target assembly by means of electron-beam lithography together 
with a standard "lift-off' procedure. Figure 3 is an SEM photo of the final grating. 

3.    EXPERIMENTAL RESULTS 

Experiments were conducted at two nominal strain rates: y = 2.5 x 105 s"1 and 
y = 1.2x 106 s'1, and at three initial temperatures: 298°C, 495°C and 691°C. The 
normal free surface velocities for the experiments at y = 2.5 x 105 s"1 are shown in Fig. 
4 and those for y = 1.2 x 106 s"1 are shown in Fig. 5. The normal component of the 
free surface velocity for all of these tests jumps to 0.06 mm/,us and quickly ramps to 
roughly 0.14 mm//zs. For the cases involving the highest shear strain rates, shown in 
Fig. 5, the risetime increases significantly with increasing temperature. However, even 
the risetime of approximately 0.4 /is at the highest temperature is much less than the 
0.74 fis required for the incident shear wave to reach the specimen. Thus, the specimen 
is under a nearly uniform state of stress before the shear wave arrives. The arrival of 



mpact experiments on OFHC copper 1727 

Fig.  3.  600 lines/mm grating on rear surfaceof tungsten carbide plate  (narrow strips are 200 Ä 
Ti/800 Ä Au). 

0.16 

■ T = 298°C o 

•To=495°C 

T = 691°C 

J i_ 

0 1 .      .    ,    2 3 
time (|is) 

Fig. 4. Normal free surface velocity from 105 s'' tests on OFHC Cu. 

the shear wave can be identified on some of the normal velocity records by the 
appearance of a small wiggle in the record at approximately 0.83 /is after the arrival 
of the longitudinal wave, as expected from the t-X diagram, Fig. 1. The sharp dip 
in the velocity around 1.8 [is is the arrival of the longitudinal wave that reflected off 
the rear surface of the flyer plate (see Fig. 1). The sharp dip arrives later for one shot 
at each of the nominal strain rates because thicker pure-WC loading plates were used. 
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Fig. 5. Normal free surface velocity from 106 s"' tests on OFHC Cu. 

The normal velocity profiles are almost identical to those for the symmetric impact 
tests on pure-WC (see Frutschy, 1997; or Frutschy and Clifton, 1997). Because for 
uniaxial strain the longitudinal strain in the copper foil is small, say less than 3%, 
and the thickness of the foil is small, the effect of the deformation of the specimen on 
the curvature in the upper part of the normal velocity profile is small. 

The transverse free surface velocities corresponding to the experiments for which 
the normal free surface velocities are shown in Figs 4 and 5 are shown in Figs 6 and 
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Fig. 6. Transverse free surface velocity from 105 s'1 tests on OFHC Cu. 
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7, respectively. The difference in arrival times of the shear wavefronts in these figures 
is due primarily to differences in thicknesses of the WC loading plates. Prior to the 
arrival times the transverse free surface velocity is shown to be zero, indicating that 
the small transverse velocity corresponding to the small tilt-induced inclination of the 
longitudinal wavefront is being neglected. Tilt effects are neglected throughout the 
data reduction leading to these velocity-time profiles because Klopp and Clifton 
(1990) have shown tilt effects to have negligible effect on the inferred shearing resist- 
ance of the material for tilts up to 4 mrad which is approximately an order of 
magnitude larger than the tilts (i.e. the values of a in Table 2) obtained in the reported 
experiments. These velocity-time profiles have been smoothed to remove noise associ- 
ated with the data reduction—primarily noise introduced through differentiation of 
the corresponding displacement-time profiles. 

The nominal shear strain rates for these tests, is obtained from the relation (e.g. 
Clifton and Klopp, 1985) 

y = • 
Vo-Vk (2) 

where ;;0 is the transverse component of the projectile velocity and h is the specimen 
thickness. From eqn (2) and Figs 6 and 7 it is evident that the shear strain rate varies 
somewhat during the test, becoming larger when the transverse velocity becomes 
smaller. However, the variation is not more than about 10% over most of the time 
interval of interest so the experiments can be regarded as conducted at approximately 
constant strain rates at the nominal rates reported in Table 2. 

For the experiments at shear strain rates of 105 s'1 shown in Fig. 6 the transverse 
velocity increases essentially monotonically until unloading occurs due to the 
reduction of the normal pressure on the faces of the specimen. From eqn (1), the 
shear stress T is proportional to the transverse component of the free surface velocity 
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Fig. 7. Transverse free surface velocity from lO6 s"1 tests on OFHC Cu. 
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Table 2. OFHC copper experiment summary 

Parameter KF9707 KF9611* KF9709 KF9612* KF9609* KF9708 

% 300 500 700 300 500 700 
r„(°c) 298 495 691 298 495 691 
U°c) 319 518 709 466 634 846 
Vnom(S    ') 2.2 xlO5 2.6 xlO5 2.5 xlO5 1.1 xlO6 1.1 xlO6 1.4 xlO6 

Tpcak(MPa) 340 280 280 500 440 360 
p(GPa) 7.8 7.4 7.8 8.0 7.7 7.8 

7t« 0.26 0.34 0.28 1.4 1.5 1.8 
h{ßm) 102 95 102 28 28 25 
F0(mm/^s) 0.155 0.152 0.159 0.163 0.158 0.163 
0(deg.) 12.0 12.5 12.0 16.0 16.0 16.0 
a(mrad) 0.35 0.40 0.39 0.75 0.22 0.42 
«(deg.) 20 37 11 86 90 27 
d, (mm) 3.05 3.18 3.05 3.18 3.18 3.05 
A (mm) 5.46 6.35 5.44 6.35 6.35 7.62 

* Denotes 1.9 inch dia. plate shots. All others were 2.0 inch dia. 
t Foil annealed for 20 min at 495°C. 

and is therefore also essentially monotonically increasing. On the other hand, for the 
experiments at the higher shear strain rates and larger shear strains shown in Fig. 7, 
the transverse velocity and the shear stress show a peak followed by a reduction to a 
plateau-like region before the unloading waves arrive. 

Figure 8 shows the dynamic stress-strain curves inferred from the velocity-time 
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T0 = 495°C: b B 
T = 691°C: c C 

0 0.5 1 1.5 
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Fig. 8. Shots on OFHC copper. 
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profiles of Figs 6 and 7. The shear strains y are obtained by integrating the shear 
strain rates obtained from eqn (2). The shear stresses are obtained from the transverse 
velocity-time profiles by means of eqn (1). For the three tests conducted at a nominal 
shear rate of 2.5 x 105 s"1 the copper hardens to a steady flow stress within a shear 
strain of 0.1 for all three tests. With the exception of the last portion of the 691°C 
test, the flow stress decreases with increasing temperature. It is important to note that 
the curves represent the intrinsic constitutive response of the material only after 
the stress becomes uniform across the thickness of the specimen. From numerical 
simulations, such a uniform state of stress is reached at strains of y « 0.04 — 0.1. 

For the three tests conducted at a nominal shear rate of 1.2 x 106 s"' the flow stresses 
at a given temperature and shear strain are substantially higher. The copper hardens, 
as for the lower strain rates, but then softening occurs around a shear strain of y = 0.5. 
This softening continues for a significant period, and then the copper stabilizes (or 
rehardens as in the 691°C test). The black circles in Fig. 8 correspond to the times at 
which a longitudinal wave arrives at the free surface of the target sandwich (see Fig. 
1). If there is any tilt at impact, this wave will induce a small transverse velocity to 
the free surface. Hence, the late strain behavior in the plots—especially in the 691°C 
test—may be inaccurate due to this offset. From numerical simulations, the curves 
for the high strain rate experiments represent the inherent constitutive response of 
copper after a strain of approximately y = 0.3 when the stress has become nominally 
uniform through the thickness of the sample. 

4.    FINITE DIFFERENCE SIMULATIONS OF OFHC COPPER 
EXPERIMENTS 

Complete numerical simulations of the experiments were carried out using a finite 
difference method introduced by Ranganath and Clifton (1972), applied to the pres- 
sure-shear impact problems by Gilat and Clifton (1985), and extended to the case of 
finite deformation by Ramesh and Clifton (1992). The difference method is explicit, 
second order accurate, and conditionally stable. Stability of the method for the 
governing system of hyperbolic PDEs is ensured by taking the time step At to be less 
than the time required for an elastic longitudinal wave, with wavespeed ct, to cross a 
mesh spacing Ax. That is, the Courant-Friedrichs-Levy number, (CFL = c,A?/Ax) 
must be less than unity; the value CFL = 0.95 was used for the calculations. Stability 
of the parabolic equations governing heat flow places an additional restriction on the 
time step. The composite stability condition was taken to be (e.g. Shawki and Clifton, 
1989), 

A^mmt?2£J (3) 

where D is the thermal diffusivity. With CFL = 1, the smallest mesh spacing for stable 
heat flow calculations for copper is 49 nm which is well below the spacing used in the 
calculations. 

For the computations, the flyer plate and the heated pure-WC target plates on each 
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side of the copper foil were assumed to respond linear elastically. This assumption 
appears valid given the measured response of the pure-WC plates in high-temperature 
symmetric impact experiments (see Frutschy and Clifton, 1997). 

The copper foils are modeled as elastic/viscoplastic with thermal softening. Due to 
the large strains measured during these experiments, finite deformation kinematics 
are used in the computations. Ramesh and Clifton (1992) describe in detail the 
modeling of the finite deformation of elastic visco-plastic materials. The only differ- 
ence for this calculation is in the form of the plastic strain rate function: 

®(f,7p,T,...)=ip=(2DVjDljyi2 (4) 

which—in the current modeling of copper—is a function of the effective shear stress 
(T), the effective plastic shear strain (yp = $'0jpdt), and the temperature (T). The 
plastic rate of deformation tensor (Dp) is denned by 

DP=D-De (5) 

where De is the elastic rate of deformation. The total rate of deformation, D, is equal to 
the symmetric part of the spatial velocity gradient (FF ~') where F is the deformation 
gradient. Dp is related to stress through the flow law 

D' = (s>- (6) 

where f2 = jSy-S,-,- is the effective shear stress, S = a-\ (trace a) I is the deviatoric 
stress, and a is the Cauchy stress tensor. 

4.1.    Follansbee/Kocks model 

Complete numerical analyses were carried out using three popular constitutive 
models for the function O for OFHC copper. The first is the Mechanical Threshold 
Stress (MTS) model developed by Follansbee and Kocks (1988). This model describes 
the current hardened state of the copper in terms of an internal state variable called 
the mechanical threshold stress which is the extrapolated flow stress of the material 
as the temperature approaches 0°K. Dislocation/dislocation interactions (i.e. hard- 
ening), and dynamic recovery (i.e. softening) are included in the evolution of the 
MTS. For this model the hardening rate 0„—proposed initially as increasing linearly 
with increasing strain rate—increases too strongly with strain rate; therefore, a modi- 
fied hardening rate suggested by Johnson and Tonks (1991) was used; the latter 
hardening rate increases with the square root of the strain rate. The resulting consti- 
tutive law (cf. eqn (5) from Follansbee and Kocks, 1988), written for shearing 
deformation becomes 

<D = ?1 =y„exp(     kT 1 (7) 

where y0 = y/3e0, f = ff/^/3, im = CT/,/3 is the mechanical threshold stress, 
ta = öa/\/3 is the long range internal back stress, ß is the shear modulus, b is the 
Burgers vector, g0 is the normalized activation energy, k is the Boltzmann constant; 
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Fig. 9. Applied shear strain rate for Follansbee/Kocks model. 

p and q are constants that characterize the shape of the dislocation obstacle profile. 
Because the strain rate for this model grows exponentially with the applied shear 
stress, a limiting strain rate had to be imposed to handle the high stresses due to the 
initial elastic response. The limiting strain rate is introduced while maintaining a 
continuous slope in the stress/strain-rate relation by combining the model's strain 
rate, yu with a limiting strain rate, y2 = y0, according to 

(8) 

so that the lowest shear strain rate dominates. The resulting dependence of the shear 
strain rate on the shear stress is shown as the solid curve in Fig. 9. This strain-rate 
limited approximation of the MTS model agrees well with the MTS model up to 
approximately the highest nominal strain rates (i.e. 106 s_1) of the experiments being 
simulated. The evolution of the mechanical threshold stress, im, with strain follows 
from (cf. eqn (17) of Follansbee and Kocks, 1988), 

dxm ^ \dam = 60 

dy ~ 3 de  ~ 3 
l-tanh|2^T

Tll)/tanh(2) (9) 

where TS is the saturation stress, and 90 evolves according to (cf. eqn (19) of Johnson 
andTonks, 1991), 

60(Pa) = Cl+C2ln(y) + C3yfi. (10) 

The saturation stress, TS, is a function of shear strain rate (cf. (11) of Follansbee and 
Kocks, 1988): 

y a = 
kT 

Aßb3 (11) 
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Table 3. Definition of experimental parameters 

Parameter        Definition 

fT;C average thermocouple temperature measurement 
T0 calculated initial temperature of foil 
7} estimated final temperature in foil (see eqn (16) 
yuom average strain rate during test 
T   k peak shear flow stress measured during test 
p longitudinal normal stress in foil during test 
ylol total shear deformation in foil 
h foil thickness 
V0 impact velocity 
0 impact angle 
a calculated tilt angle 
O. calculated closure angle 
dx pure-WC front plate thickness 
d2 pure-WC back plate thickness 

( = pure-WC flyer plate thickness 

Table 4. Parameters for Follansbee/Kocks model with Johnson/Tonks modification 

Value Value 

p 2/3 Ta 23.1(MPa) 

q 1 c, 2.37(GPa) 

to 1.73xl07l/s c, 8.30MPa-ln{sec) 

#0 1.6 c3 2.67 MPaysec 

n 44.0 GPa Tso 519.6 MPa 
b 0.25 nm ?so 10.74 xl0'° 1/s 
k 1.38xl0"23J/c K A 0.312 

In the simulation of shot KF9609, constants used for this model are those, from 
(Follansbee and Kocks, 1988), listed in Table 4. 

4.2.    ZerillijArmstrong model 

Another constitutive model that was used in simulations of the experiments on 
OFHC copper is that of Zerilli and Armstrong (1987). For f.c.c. metals, their eqn 

(21) has the form 

a = A(j'a+kr,l2 + C2e"
2exp(-C3T+C4T\ns) (12) 

where Aa'G is the contribution to the flow stress from solute atoms and/or the original 
dislocation density. The dislocation pileups at grain boundaries add to the flow stress 
through kl ~1/2 where k is the microstructural stress intensity factor, and / is the average 
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Table    5.    Parameters   for    Zerillij 
Armstrong model 

Value 

1735 

Ao-G 
k 
I 
C, 
C, 
c4 
to 

46.5 MPa 
5 MPa mm"2 

5 ßm 
890 MPa 

2.8 xl(T3 1/K 
1.15xl0-4 1/K 

107 1/s 

grain diameter. Rearranging eqn 12 and expressing it in terms of shear stress and 
shear strain one obtains 

3E = y/3exp 
3f~-(A<j'a + kr112)' 

C2[(y + y0)I^V12 . 

i/(c4r> 
(13) 

Because the original model has a strain singularity at y = 0 which causes com- 
putational difficulties, a small offset strain, y0, was introduced. Only positive strains 
are present during the calculation, and the small exponential, 1/(C4T), allowed a 
minuscule offset (y0 = 1(T8) to be used. Parameter values for the Zerilli/Armstrong 
model are given in Table 5. 

4.3.    Johnson/Cook model 

The third copper model considered was that of Johnson and Cook (1985). Their 
model—like the Zerilli/Armstrong model—is a constitutive relation for OFHC copper 
that predicts accurately the final shapes of rods deformed in Taylor impact tests. 
Their constitutive law (cf. eqn (1) of Johnson and Cook, 1985) is 

a=(a0 + Ben) 1+Cln (l-0m),    © 
T-T0 

Tm — T0 

(14) 

where a = ^/3 f, s = y/y/3, is the temperature, T0 is the ambient temperature, Tm is 
the melting temperature, and the rest of the parameters are constants. Rearranging 
equation 14 one obtains 

Vi =V3« 3e0 exp 
3rr 1 

C(<To + ß£n)(l-0m)     C 
(15) 
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The constants for this model are given in Table 6. A limiting strain rate, y2, was 
imposed as discussed earlier (see eqn 8). 

4.4.    Numerical results 

The computed stress-strain curves for all simulations of KF9609 and KF9611 are 
shown in Figs 10 and 11, respectively. The calculated stress on the front surface of 
the foil is large initially due to the instantaneous elastic response of the foil when the 
shear wave first arrives at the front surface. This overstress is quickly attenuated as 
shown by the lack of a stress spike at the back of the foil. The deformation becomes 
nominally uniform after y = 0.2 in Fig. 10 and y = 0.05 in Fig. 11. The flow stresses 

Table 6. Parameters for Johnson/Cook 
model 

Value 

Co 
B 
C 
n 
e0 

To 
Tm 

h 

90.0 MPa 
292.0 MPa 

0.25 
0.31 

10-M/s 
298°K 
1356°K 
107 1/s 

450 

experiment 

Follansbee/Kocks with Johnson/Tonks 

Zerilli / Armstrong 

Johnson/Cook 

front surface of foil 
back surface of foil 

0.5 1 1.5 
shear strain (y) 

Fig. 10. Computed responses for experiment KF9609 (1.2 x 106 s\ 495°C) with 400 mesh points. 
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0 0.1        0.2        0.3        0.4 
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Fig. 11. Computed responses for experiment KF9611 (2.8 x 105 s"', 495°C) with 1000 mesh points. 

predicted by the various models are lower than those measured in the experiments. It 
appears that all of the models overestimate the thermal softening at very high strain 
rates and elevated temperatures. Additionally, none of the current models predict 
the softening and rehardening observed at larger strains. The predictions of the 
Follansbee/Kocks model are not shown for the simulation of KF9611 because of 
excessive numerical oscillations—even with 1600 mesh points. 

The plastic work done on a foil during a test increases the temperature of the foil 
because a large percentage of the plastic work is converted into heat, and there is 
insufficient time for this heat to be conducted into the neighbouring tungsten carbide 
plates. An estimate of the final temperature in the foil, Tf, can be found by assuming 
adiabatic heating, and that 90% of the plastic work is converted to heat: 

Tn+0.9 
T
7P \ (16) 

where T0 is the initial temperature, f is the average effective flow stress, yp is the final 
effective plastic strain, p is the mass density, and Cp is the specific heat of the material. 
Values for the estimated final temperatures using eqn 16 are included in Table 2. The 
experimental record, not a computed simulation, is used to obtain the average flow 
stress for these estimates. 

The evolution of the temperature field in a foil is computed concurrently with the 
mechanical fields, including heat transfer within the foil and into the neighboring WC 
plates. Figures 12 and 13 show temperature as a function of position in the foil during 
the simulation of shot KF9609 for two of the models. The field eventually becomes 
symmetric about the centerline once the predicted strain rate in the foil becomes 
homogeneous. The temperature gradients at 0 and 25 /im arise from heat conduction 
into the neighboring plates. The peak in the final temperature plot for the Zerilli/ 
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Fig. 12. Zerilli/Armstrong model temperature field prediction for KF9609 (1.2 x 106 s"1, 495°C). 

600 

"0 10 20 
distance from front of foil (|im) 

Fig. 13. Johnson/Cook model temperature field prediction for KF9609 (1.2 x 106 s"1, 495°C). 

Armstrong model in Fig. 12 is 580°C which is lower than the 634°C prediction of 
eqn 16 when using f = 363 MPa and yp = 1.4. A lower value is obtained from the 
simulation because the computed flow stress is less than that observed and because 
the simulation accounts for heat loss to the neighboring WC plates. The temperature 
rise predicted by the Johnson/Cook model is still smaller because the simulation for 
this model results in an even lower flow stress. 
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Fig. 14. Zerilli/Armstrong model strain rate profiles for K.F9609 (1.2 x 10' s~\ 495°C). 
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Fig. 15. Johnson/Cook model strain rate profiles for KF9609 (1.2 x 106 s\ 495°C). 

The strain rate profiles through the foil are plotted in Figures 14 and 15 for the 
simulations of KF9609. For the Zerilli/Armstrong model a steady-state profile is 
obtained after approximately 600 ns as shown by the dark band of profiles at 1.3 x 106 

s"1. On the other hand, it is evident that for the Johnson/Cook model a constant, 
uniform strain rate is never obtained. The continued fluctuation of the strain rate for 
the simulation using the Johnson/Cook model reflects the weaker strain rate sensitivity 
of this model relative to the Zerilli/Armstrong model (cf. Figs 10 and 11). The 
weaker the strain rate sensitivity the stronger the fluctuation in strain rate for a given 
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fluctuation in stress. Or, in computational terms, the weaker the strain rate sensitivity 
the smaller the time step required to obtain an accurate, stable solution. For the 
simulation using the Johnson/Cook model, reducing the time step did not change the 
solution significantly. Thus, the fluctuations appear to be those expected of an exact 
solution of the equations, not an artifact of the numerical methodology. The modest 
fluctuations in strain rate in Fig. 15 are not viewed as having a substantial effect on 
the reported principal features of the stress and temperature histories for the specimen. 

Clifton (1971) developed a stability condition for the finite difference simulation of 
elastic/visco-plastic waves of uniaxial strain (cf. eqn (102) of Clifton, 1971): 

A?<~^ r2-^ rrrr- (17) 
2 

V.." 
1    8cj) 

p0c] dXx 

2 5<A 

~ K dX\) 

where Ar is the time step in the simulation, c/> is the effective plastic strain rate, Tn is 
uniaxial compressive stress, Xx and X\ are the total and plastic axial stretches (respec- 
tively), and K is effectively a shear modulus for finite deformations. The first term in 
the denominator of eqn 17 illustrates the effect just described: If cj> has a strong 
sensitivity to stress, the model is less stable and small time steps must be used to avoid 
instability. From the remaining terms in the denominator, one can see that if <f) 
increases as the compression increases, even smaller time steps must be used. Strain 
hardening in the Follansbee/Kocks model acts to make these derivatives with respect 
to the stretches positive (thus helping to increase the time step), but thermal softening 
counteracts the effect. The model may be exceptionally sensitive to changes in stress 
under the particular conditions of KF9611, and an extremely small time step may 
have to be used for a stable finite-difference simulation. For 1600 mesh points, the 
Follansbee/Kocks simulation of KF9611 was also unstable with the original hardening 
rate (ö0) that scaled linearly with strain rate. A full stability analysis of this model 
including thermal softening is warranted. 

5.    DISCUSSION 

Two particularly interesting features of the reported response of OFHC copper at 
elevated temperatures and very high strain rates are the relatively strong rate sensitivity 
and the relatively weak thermal softening. The latter is especially striking in that at 
absolute temperatures approaching 83% of the melting point the flow stress («340 
MPa) is not only as high or higher than measured values at room temperature at 
comparable strains and strain rates, but it appears to be either constant or increasing 
with further straining. One possible explanation for this behavior is that, at these 
elevated temperatures and very high strain rates, the thermally activated motion of 
dislocations past obstacles is no longer the only important rate controlling mechanism 
for plastic flow. In particular, the results suggest that phonon drag on the motion of 
dislocations may be playing an increasingly important role as this mechanism can be 
expected to lead to enhanced rate sensitivity and to increased resistance to dislocation 
mobility with increasing temperature. Also, the high shear stresses and high tern- 
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peratures should make it possible for dislocations to glide past a larger fraction of the 
obstacles with less need for thermal activation to overcome the potential barriers. A 
pilot TEM study of samples cut from the specimens used in the higher strain rate, 
higher temperature experiments appears to support this possibility in that dislocation 
cell structures commonly observed at lower temperatures (e.g. Staker and Holt, 1972; 
Jarrell, 1988; Tong, et al, 1992; Anadrade et al, 1994) either are not observed or 
occur on a much larger length scale. 

Tong et al. (1992) attributed the major part of the rate sensitivity to the rate 
sensitivity of the hardening rate, not the rate sensitivity of the flow stress at constant 
dislocation structure in their high strain rate experiments on OFHC copper. The 
explanation given for the relatively strong rate sensitivity of the strain hardening was 
that without time for recovery, the dislocation density for a given strain increases 
quite significantly with applied strain rate. Whether or not such an explanation 
remains valid at elevated temperature requires further investigation as the elevated 
temperature can be expected to facilitate the dynamic recovery processes. 

The peak flow stress in the higher strain rate experiments is higher than that 
measured in room temperature pressure-shear plate impact experiments done on 
similar copper specimens by Tong et al. (1992). For example, for a room temperature 
test (Shot 89-02) at y « 1.5 x 106 s"1, Tong et al. (1992) reported a flow stress of 318 
MPa which is comparable to the flow stress, at large strains, for the highest tempera- 
ture highest strain rate experiment reported here. The reason for the relatively large 
shearing resistance at elevated temperatures is not yet known. One difference between 
the current tests and the earlier tests is that for the higher impedance plates used in 
the elevated temperature experiments the initial loading pressure («8 GPa) is roughly 
twice that in the room-temperature experiments of Tong et al. (1992). At room 
temperature   shock wave pre-compression can be expected to cause greater pre- 
hardening of the specimens (e.g. Rajendran et al., 1990); whether or not such pre- 
hardening continues to have a significant effect on the flow stress at the large strains 
that are obtained in the experiments reported here is questionable. Another difference 
between the current tests and the former tests is that in the former tests the samples 
were diffusion bonded to the front face of a hard steel target plate. Annealing during 
the diffusion bonding as well as the introduction of residual stresses during cooling 
could have affected the initial state of the samples. Also, the loading path is different 
for the two types of tests since in the former tests the pressure and shear loading begin 
simultaneously whereas in the current tests the pressure loading has equilibrated at 
its final level before the shear loading begins. While the interpretation of the com- 
parison with the earlier room temperature experiments remains unclear, the series of 
elevated temperature experiments appear to show consistent trends. 

Andrade et al. (1994) deformed OFHC copper at room temperature and high strain 
rates using hat-shaped specimens in the split Hopkinson bar. The copper specimens 
were first shock-loaded at 50 GPa leaving a longitudinal residual strain of -0.05. 
The final shear strains in the geometrically induced shear bands were of the order 3- 
4 Their transmission electron microscopy study of the deformed material indicated 
that the microstructure evolves in three stages: An initial large dislocation cell struc- 
ture breaks down into long, narrow dislocation cells which then break down into 
smaller equiaxed cells as the deformation continues. Dynamic recrystallization finally 
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occurs when the angular mismatch between the cells becomes sufficiently large. This 
qualitative argument appears to be consistent with the TEM observations made by 
Jarrell (1988) on the samples from the experiments from Tong et al. (1992). Pilot 
TEM analysis of samples cut from the central region of the specimen for KF9612 
(298°C, 1.1 x 106 s"') supports this sequence of events. However, such dislocation 
patterns are not nearly as well defined in the higher temperature shots (495°C, 691°C) 
at this same strain rate. Dynamic recovery processes may play a greater role in these 
high temperature tests. Static recovery is also possible since the foil takes a few 
seconds to cool after the pressure-shear test is done and the plates are being caught 
in the room-temperature catcher tank. Full static recovery is not evident since the 
dislocation cell walls are ragged and not sharp (as in the work of Staker and Holt 
(1972) on copper). 

6.    CONCLUSIONS 

The high-temperature pressure-shear plate impact experiment has been established 
as a viable technique for measuring the shearing resistance of materials at high strain 
rates and high temperatures. The major obstacles overcome for this project include: 
producing metallic diffraction gratings, developing an in situ alignment technique, 
and establishing the elastic response of pure-WC loading plates at high temperature 
over a large stress range. Symmetric impact experiments on the pure tungsten carbide 
loading plates confirm that their response is characterized adequately by linear elas- 
ticity over the stress and temperature ranges of the tests on OFHC copper (Frutschy, 
1997; Frutschy and Clifton, 1997). OFHC copper exhibits strain rate sensitivity and 
thermal softening over the temperature range of 300-700°C and strain rate range of 
2.5-14 x 105 s1. Current constitutive models predict lower flow stresses than those 
measured at high strain rates and high temperatures. More modeling work is needed 
not only to account for the higher flow stresses, but also to capture the evolution of 
flow stress with plastic strain. 
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ABSTRACT 

A new experimental strategy for measuring the tensile strength of ice coatings to structural surfaces is 
presented. In this experiment, a laser-induced compressivc stress pulse travels through a 1 mm-thick 
substrate disc that has a layer of ice grown on its front surface. The compressive stress pulse reflects into a 
tensile wave from the free surface of the ice and pulls the ice/interface apart, given a sufficient amplitude. 
The interface strength was calculated by recording the free surface velocity of an Al substrate using a 
Doppler interferometer and calculating the stress at the interface using a finite-difference elastic wave 
mechanics simulation with the free surface velocity as an input. The test procedure was used to study ice 
adhesion on 6061 aluminum alloy sheets. It was found that the adhesion strength of ice to unpolished 
aluminum substrates was 274 MPa at - 10"C. This value decreased with temperature, down to 179 MPa 
at -40C. Interestingly, this decrement in the tensile strength could be directly related to the existence of 
a liquid-like layer that is known to exist on the surface of solid ice till ~30°C. The interface strength was 
also shown to decrease by polishing the Al substrate surface or by adding thin polymer coatings on the 
unpolished Al substrate. The sensitivity of the technique to such microstructural changes in the interfacial 
region is indicative of the experiments ability to provide basic adhesion data, which in turn, can be used to 
solve the deicing problem from a fundamental standpoint. © 1998 Elsevier Science Ltd. All rights reserved. 

Keywords: A. adhesion and adhesives, A. fracture, B. ice and snow, B. stress waves, C. optical 
interferomctry. 

1.    INTRODUCTION 

In cold climates all over the world, icing on structural surfaces is a common phenom- 
enon. Examples include, ice build-up on power and high-tension lines, radio and 
television transmitting and receiving towers, offshore oil platforms in cold environ- 
ments, roads and foot paths, automobile windshields and headlights, and airplane 
fuselages and wings, among many others. Removal of ice coatings from these struc- 
tures is usually necessary for their safe and reliable operation. 

Most research related to deicing has focused on mechanical ice removal strategies 
because of practical considerations, and very little has been directed towards gaining 
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a fundamental understanding of the ice adhesion process. In this regard, this paper is 
different from the rest and provides a quantitative measurement of basic adhesion 
and its influence on such variables as the ice microstructure, temperature, and the 
type (metal, polymer, etc.) and quality (polishing, roughness) of the structural surface. 
Before presenting the results, some terms related to adhesion are introduced and the 
available literature is reviewed. 

Basic adhesion is an intrinsic property of the interface and is solely determined by 
the atomic structure and chemistry of the interfacial region. It can be characterized 
by either the intrinsic tensile strength (ö-;) or the intrinsic toughness (G;) of the 
interface, both of which are related to each other via the fundamental interface stress- 
separation curve (Gupta et al, 1994; Mittal, 1978). In contrast, the total toughness 
of the interface or the energy consumed in propagating a unit area of a crack along 
an ice/structure interface (or in its vicinity) as may occur during any ice removal 
process, depends upon many extrinsic parameters such as the specimen geometry, 
loading rate, temperature, substrate roughness, adsorbed impurities, interface flaw 
density, and the ratio of the tensile to shear stress ratio separating the interface. Each 
of these extrinsic parameters influence the inelastic (creep) dissipative mechanisms in 
the vicinity of the crack tip; and consequently, the fracture resistance or the total 
toughness of the interface becomes larger than the basic adhesion by two orders of 
magnitude and higher. 

Ice literature is replete with studies that have measured directly or indirectly the 
total interface toughness. Jellinek (1957a, b, 1962, 1960, 1967), examined the adhesive 
properties of snow-ice sandwiched between stainless steel, optically flat quartz plates, 
and various polymers and block copolymers applied to aluminum substrates under 
both tensile and shear loading. His tensile experiments were essentially a direct pull- 
type test and only cohesive breaks through the bulk ice were observed at a maximum 
stress of about 7 MPa, implying the interface strength of the ice-solid bond to be 
greater than the cohesive strength of the ice. Shear experiments were conducted in a 
setup resembling the classical charpy impact test apparatus, where the impacting 
pendulum head was made to strike the ice plug almost horizontally. Such tests resulted 
in adhesive breaks at the interface. The overall interface shear strength was found to 
depend upon the loading rate, degree of surface roughness, temperature and the type 
of the substrate material being tested. In shear experiments with ice on steel, adhesive 
breaks were predominantly found down to — 13°C. Below — 13°C,only cohesive 
breaks through the ice were found at a peak stress of only 2 MPa. The difference 
between the shear and tensile strengths was related to the existence of a liquid-like 
layer that is known to exist between ice and the structural solid till — 30°C. The 
existence of this layer which was proposed by Faraday (1859) are given in more detail 
later while discussing the basic adhesion studies. 

Landy and Freiberger (1967) investigated the adhesion strength of ice to various 
plastics using a shear apparatus similar to that used by Jellinek. They attempted to 
correlate the adhesion strengths to physical and chemical properties such as critical 
surface tension of wetting, contact angle, coefficient of thermal conductivity and 
thermal expansion, porosity, dielectric constant, and flexural modulus. They were 
unsuccessful in this attempt probably because such tests are unable to discriminate 
between the effects of various variables separately. Rather, they measure a combined 
effect which can best be considered an average failure stress, far away from the local 
interface stress of interest. 
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More recently, solid-ice adhesion was investigated using a Raman microprobe shear 
apparatus (Sonwalkar et al., 1993). Ice samples of thickness 100-200 fim were vapor- 
deposited on polished substrates of titanium, copper, aluminum, stainless steel, and 
Teflon. The results indicated that the adhesive bonds between the ice and the solid 
substrates are formed primarily by the interaction of oxygen atoms in the ice lattice 
with the atoms of the solid surface. When the solid lattice closely matched the ice 
lattice, high values of adhesive strength were obtained. The adhesive strength was 
also found to be proportional to the extent of mechanical interlocking and inversely 
proportional to the contact angle of a water droplet on the substrate. Values for the 
adhesive strengths obtained in the shear apparatus were in relative agreement with 
the values obtained by Jellinek (1957), in his experiments on steel and polymeric 
substrates. 

All tests discussed above, provide only a relative measure of the adhesion of ice to 
the substrate of interest. This is due to the influence in all cases of the large extrinsic 
components, for example, Jellinek's direct tension and pure shear tests (Jellinek, 
1957a, b) contained the effect of residual stresses at the metal-ice interface trapped 
during sample preparation. These tests also contained the effects of dust particle- 
induced interfacial flaws as indicated by the low measured bond strength value of 
about 2 MPa, which is two-three orders of magnitude lower than the expected strength 
from quantum mechanical calculations. Also included, are the effects of local creep 
relaxations as indicated by the measured non-linear stress-strain response, effects of 
strain rate as indicated by different stress-strain curves at different loading rates, 
effects of substrate surface roughness, and finally, the effects of the different local 
tensile to shear stress ratios at the interface—even though the far-field loading was 
either pure tension or pure shear. In fact, shortly after Jellinek carried out many of 
his studies on ice adhesion, breakthroughs in interfacial fracture mechanics were made 
by Rice and Sih (1965); they found that when a crack resides at an interface between 
dissimilar materials, the local stress state is a combination of shear and tension, even 
when the interfacial crack is loaded under far-field uniaxial tension (Mode I) or shear 
(Mode II) loads. The exact ratio of the tensile to shear stresses depends upon the 
mismatch in the elastic properties of the two materials. For the steel-ice interface, a 
shear stress of about 15% of the far-field tensile stress will develop under pure Mode 
I loading. So, without knowing the exact local stress state which is responsible for 
either the cohesive, adhesive, or mixed failure, the conclusions drawn by Jellinek 
assuming the locus of failure caused by either pure applied tension or shear, remain 
questionable. It seems unlikely that the bond strength of the stainless steel-ice interface 
is as low as 2 MPa, so there must be concentration sites at the interface which lead to 
higher local stresses. 

Attempts to understand basic adhesion dates back to the 1850s, when Faraday 
(1859) studied the adhesion between two spheres of ice brought into contact. He 
correctly explained this adhesion by postulating that there is a thin "liquid-like" layer 
at the surface of ice which seemed to persist until temperatures as low as — 30°C. 
Weyl (1951) later proposed a plausible structure to this liquid layer, claiming that it 
is oriented in such a way that the negative oxygen atoms of the water molecules are 
uppermost in the layer. In this orientation, a liquid-like electrical double layer is 
formed and the surface free energy is minimized. The thickness of the layer (several 
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hundred molecular layers thick and decreasing with temperature) was required to 
gradually pass from the outer electrical double layer to the proper structure of solid 
ice. Since this initial attempt to describe the liquid-like layer on the surface of ice, 
many other models have been proposed to describe the ice surface. A good summary 
of these is given by Petrenko (1994). 

Most fundamental experimental studies of the ice adhesion process to date have 
been accomplished using the contact angle measurement technique, where the contact 
angle 0, made by a drop of water on a solid surface is measured, and related to the 
work of adhesion Wad and free energy of the liquid-vapor interface yw using the 
relationship (Jellinek, 1957a) 

Wad=yiv(l+COSÖ) + 7te, (1) 

where ne represents the increment in the solid-vapor free energy on account of 
adsorbed gases and liquids on the solid surface. The values of Wad obtained from eqn 
(1) for the water/solid interface cannot be directly taken as a measure of the work of 
adhesion for the ice/solid interface, especially when a liquid-like layer of varying 
thickness is present at the ice/solid interface at different temperatures. Nevertheless, 
such contact angle studies can be used for qualitatively determining the degree of 
hydrophobicity of various engineering metallic and polymeric substrates as dem- 
onstrated by Jellinek (1957a). 

Scanning force microscopy (SFM) has recently been used by Nicolayev and 
Petrenko (1995) to study the surface of ice and the adhesive forces between the ice 
surface and cantilever tip of the apparatus. This method allows the study of the ice 
surface and ice adhesion to solids (the tip of the cantilever) at the molecular level. In 
this experiment, a very sharp tip, mounted to a flexible cantilever of the SFM, is 
dragged over the surface of an ice sample. Deflections in the flexible cantilever are 
detected by a laser beam reflected from the cantilever, providing a vertical resolution 
of about 0.1 nm. Measurements of the force interaction between the tip and the 
surface, as a function of relative tip-sample position, yield a force curve. From this 
force curve, the adhesion force between the tip and the ice surface can be deduced. 
Then, the adhesion strength is defined as the adhesion force per unit area of the tip. 
For silicon nitride cantilever tips, Nickolayev and Petrenko (1995) found an adhesion 
strength of 2.7 MPa at -5°C, with the strength decreasing with decreasing tempera- 
ture. Although this technique is promising, there are a number of questions that 
pertain to converting the measured force to the local stress. First, the mechanistic 
considerations should include the sharp tip geometry-related singularity effects while 
converting the force to the stress. This should increase the calculated interface stress 
significantly. When operated in the contact mode, the surface tension effects between 
the tip and the liquid layer will significantly depend upon the tip geometry, and hence, 
so would the calculated adhesion stress. Finally, the technique is rather impractical, 
since one will have to change the tip material to aluminum or other materials of 
interest. Unfortunately, putting a coating on nitride cantilever tips will not yield basic 
adhesion data between the coating material and ice, since it is well known that the 
influence of tip material could persist through 70-100 monolayers of the intervening 
layers of different materials (Yuan and Gupta, 1995). Additionally, the grain orien- 
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tation and geometry that is known to influence the adhesion strongly will become a 
significant factor in interpreting the data, given the rather small diameter of the 
cantilever tip. In light of the above discussion, the values obtained from this procedure 
can only be considered qualitative at the present time. 

In summary, a quantitative measure of basic adhesion between ice and structural 
solids has not been obtained so far, and yet this appears to be a basic quantity that is 
needed to solve the deicing problem, from a fundamental standpoint. The aim of the 
research leading to this paper was to develop an experimental procedure for measuring 
the tensile strength of ice/structural aluminum interfaces by adapting the recently 
developed technology of laser-generated stress pulses. Previously, the tensile strengths 
of interfaces formed by a variety of metal, ceramic, and dielectric films and a number 
of engineering substrates were measured under ambient conditions by using laser- 
generated stress pulses (Gupta et al, 1990 and 1992; Yuan et al, 1993; Gupta and 
Yuan, 1993; Yuan and Gupta, 1993; Gupta et al., 1994). As discussed below, this 
so-called laser spallation experiment is capable of measuring the intrinsic tensile 
strength of flaw-free interfaces. The present investigation was focused on developing 
this procedure further for carrying out ice adhesion measurements at cryogenic tem- 
peratures, and to study the effects of the type and quality of the substrate surface, 
including the effects of intervening hydrophobic coatings and the interface strength 
dependence on temperature. The basic laser spallation test methodology is discussed 
first, and this is followed by the sample preparation procedures and the new test 
apparatus for examining the ice/6061 Al bond strength. 

2.    THE LASER SPALLATION TECHNIQUE 

In this experiment (Fig. 1), a 2.5 nanosecond (ns) long Nd: YAG laser pulse is 
made to impinge over a 3 mm-dia area on a 0.3 /uri-thick aluminum film which is 
sandwiched between the back surface of a substrate disc and a 5-10 /mi thick layer 
of solid water glass. This layer is provided as a liquid solution of sodium silicate, 
which dehydrates within a few minutes when exposed to air, and leaves behind a 
continuous layer of solid Si02, covering the aluminum film. The melting-induced 
expansion of aluminum under confinement generates a compressive stress pulse with 
1 ns ( = 10~9 s) rise time directed towards the test coating which is deposited on the 
substrate's front surface. The compressive stress wave reflects into a tensile pulse from 
the coating's free surface and leads to its spallation (complete removal) at a sufficiently 
high amplitude. The critical stress at the interface is calculated by measuring the 
transient displacement history of the coating's free surface (induced during pulse 
reflection) by using an optical interferometer (shown towards the right and top in 
Fig. 1) which is capable of recording fringes from even optically rough surfaces and 
with a resolution of only 0.2 ns in the single shot mode. For a coating of density p, 
thickness h, and longitudinal wave velocity, c, the interface stress a is calculable from 
the measured transient velocity v (t) using 
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The major advantage of this technique over its counterparts is in its ability to provide 
a fundamental measure of the bond strength, since interface decohesion is achieved 
at a relatively high strain rate (107 s-10 during which all inelastic dislocation-related 
processes are essentially suppressed, and the measured values relate directly to the 
atomic structure and chemistry of the interfacial region. Additionally, the short rise 
time of the stress pulse is able to invoke a rather local response of the interface such 
that minute changes in the atomic structure and chemistry are reflected directly in the 
measured strength values. This was recently demonstrated (Yuan and Gupta, 1995) 
on interfaces between sputter-deposited polycrystalline Nb coatings and sapphire 
substrates where structural changes brought about by different heat treatment cycles 
and different thicknesses of the intervening Cr and Sb layers were shown to directly 
affect the interface's tensile strength. 
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3.    MODIFICATIONS TO THE LASER SPALLATION TECHNIQUE FOR 
ICE ADHESION STUDIES 

3.1.    Sample preparation 

The current investigation involved testing the adhesion strength of ice frozen to 
sheets of Al-6061 alloy with different surface treatments. The first set of samples 
were tested in the as-manufactured condition. The second set were polished on a 
metallographic wheel using a-alumina powder of sizes 1.0 jim, 0.3 ym and 0.05 ^m. 
The third set were prepared with the aim of investigating the influence of hydrophobic 
coatings. For this purpose, unpolished Al substrates were coated with 1 ^m-thick 
coatings of polymethylmethacrylate (PMMA) and a polyimide (PI) and tested at 
— 10°C. The polymer coatings were spin-cast onto the Al substrates, and then baked 
for 1 h in an oven at 100°C. The coatings were transparent. Finally, the last set of 
samples were used for studying the effects of temperature on bond strength. For this, 
only the as-manufactured Al surfaces were used and bond strength determined at 
-20°C, -30°C, and -40°C. 

All aluminum sheets, regardless of the surface treatment, were 0.8 mm thick and 
roughly 25-50 mm in length and width. The back side (i.e., other than the one treated 
above) of each sample was cleaned in an ultrasonic cleaner in a bath of acetone, 
rinsed in de-ionized water, then again cleaned in a bath of de-ionized water in the 
ultrasonic cleaner. The samples were then air dried and a thin layer (30-50 ^m) of 
liquid water glass (H2Si03 -(H20)x) was applied to one surface of the aluminum. After 
exposure to the air for several minutes, the water evaporated and a layer of solid 
water glass (Si02) was left on the aluminum. This layer of water glass serves as the 
confining layer, which is critical for the generation of the high-amplitude and quickly 
decaying stress pulse discussed by Yuan et al. (1993). Previously, it was found that 
the generated stress pulse amplitudes and profiles are quite insensitive to the solid 
water glass in the above thickness range, which in turn, could be applied reproducibly. 

Once the water glass hardened, samples were placed in a freezer held at — 10°C. 
The samples were allowed to equilibrate to this temperature for about 1 h and then 
the ice was grown on the treated surface of the aluminum, opposite to the one covered 
with the water glass coating. To grow ice, an O-ring with a 25 mm inner diameter was 
placed on the surface. Then, room temperature de-ionized water was placed inside 
the O-ring, with the meniscus of the water rising above the thickness of the O-ring 
(«2-3 mm). Normally, ice formed several minutes after the water was filled inside 
the O-ring. If ice did not form within this time, a slight movement of the O-ring would 
cause the water to crystallize. Figure 2 shows a schematic of such a sample. 

After ice formation, the sample was allowed to sit for an hour in the freezer at 
— 10"C. The O-ring was then carefully removed from the sample and the ice puck 
was shaved flat, using a razor blade. This was done to remove bubbles from the upper 
part of the ice which would inhibit examination of the interface by optical microscopy. 
The ice samples were polycrystalline in nature with columns perpendicular to the 
interface. In all experiments the thickness of the ice was about 0.74 mm and the 
variation of the thickness over the entire surface area was normally less than +0.05 
mm. Due to the internal reflection of the stress pulse that occurs at each boundary, 
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Fig. 2. A schematic showing the geometry of the ice plug/aluminum sample 

variation of the ice thickness could lead to a different stress state at the interface due 
to different arrival times of the compressive and tensile pulses. Therefore, only samples 
with ice thicknesses in the range of 0.74 + 0.05 mm were used in actual experiments. 

Figure 3(a) and (b) show high magnification view of the unpolished and polished 
Al substrates, respectively. These surfaces were typical of the surfaces which were 
used in the present study. It should be noted that no quantization of the surface 
roughness was performed (such as surface profilometry, etc.), so that any conclusions 
based on surface roughness are qualitative in nature. 

As expected, the ice microstructure was strongly influenced by that of the substrate 
surface below. Figure 4(a) and (b) show ice grains on unpolished and polished Al 
substrates, respectively, using reflected light in an optical microscope. The grains are 
visible as shadows on the surface of the aluminum substrates. The grains on the 
unpolished Al (Fig. 4(a)) are generally hexagonal in nature, having grain sizes of 
about 1.5 mm and under, and oriented perpendicular to the interface (so the grains 
are visible in the plane of the aluminum). On the polished Al substrates (Fig. 4(b)), 
the grains are smaller in size (averaging less than 1 mm in width) and, in general, 
more irregular in shape than on the unpolished substrates. 

Figure 5(a) and (b) show the grain structure of the ice grown on the substrates 
coated with 1 ^m of PMMA and PI, respectively. The grains in these micrographs 
are viewed under double-polarized light. In order to view the samples in this way, the 
light illuminating the samples had to be polarized in one direction before hitting the 
sample. After reflection from the sample, the light was polarized along the other 
direction and gathered by the microscope objective. Figure 5(a) and (b) do not show 
the hexagonal structure for the ice grains that is seen on the uncoated aluminum 
samples. 

Before performing experiments on new samples, all samples were examined using 
an optical microscope. Occasionally, some samples would show bubbles or other 
contaminants either in the bulk ice or close to the ice-aluminum interface. These 
samples were discarded and not used in any laser spallation experiments since these 
contaminants could have caused premature failure and skew the data. 
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Fig. 4. Micrographs showing the grain structure of ice grown on (a) unpolished Al and (b) polished Al 
substrates under reflected light in an optical microscope. The grains show up as shadows on the Al 

substrate. 

3.2.    Test apparatus 

A sample holder similar to the one used by Gupta and Tian (1994), was constructed 
to incorporate the new geometry of the current investigation (Fig. 6). In this holder, 
stainless steel clips held the aluminum-ice sample in the inner chamber (fig. 6(a)) 
which was held in the freezer at - 10°C until the outer chamber (Fig. 6(b)), already 
in place in front of the YAG laser) was cooled to the desired test temperature. Once 
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Fig. 5. Micrographs showing the grain structure of ice grown on Al substrates coated with 1 /(m of (a) PI 
and (b) PMMA viewed under double-polarized reflected light in an optical microscope. Grain boundaries 

are indicated by arrows. 

the outer chamber was at the desired temperature, the inner chamber was placed 
inside such that the water glass-covered surface of the sample was facing towards the 
YAG laser source. Both chambers were then allowed to equilibrate to the desired test 
temperature for several minutes. As before, a copper coil was immersed in a liquid 
nitrogen bath and gas flowed through the coil and into the chambers to control the 
temperature. Due to its availability in the laboratory, compressed air was used as the 
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Fig. 6. A schematic diagram of the ice sample holder used in the aluminum-ice adhesion experiments : (a) 
inner chamber; (b) outer chamber. 

cooling gas, as opposed to nitrogen used in the cleavage strength measurements of 
ice crystals of Gupta and Tian (1994). Occasionally, water vapor and oxygen would 
freeze inside the coils and the flow of air was restricted, but this never prevented the 
setup from cooling the chamber to the desired temperature. The temperature of the 
chamber was controllable to within +1 °C by adjusting the flow rate of the air. 
The lowest test temperature investigated, — 40°C, was easily achieved using this 
experimental assembly, 

The Nd: YAG laser pulse communicated with the constrained aluminum surface 
via one of the quartz windows that was provided on the outer chamber. Similarly, a 
rear quartz window provided the view of the ice surface as needed to inspect the spall 
phenomenon. The quartz used for constructing the window facing the YAG laser 
source was transparent to the 1.06 /im wavelength of the YAG laser. A continuous 
flow of room temperature air was blown on the windows to prevent condensation of 
vapor. 
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3.3.    Test procedure 

3.3.1. Procedure summary. The basic structure of the laser spallation experiment 
described in Section II was used without change except that a different quantification 
strategy had to be adopted because of the difficulties encountered in measuring the 
free surface velocity of the ice surface. In the new procedure, the threshold laser 
fluence causing the onset of damage at the ice/aluminum interface was determined 
first. Next, a bare aluminum surface having identical geometry and stress pulse 
generation conditions, was subjected to the same laser fluence that led to the initiation 
of interface damage in the first step, and the transient free surface velocity resulting 
from the reflecting stress pulse was recorded by using an interferometer. This free 
surface velocity was used as an input to a finite-difference program which solved the 
one-dimensional elastic wave equation in an aluminum/ice plug assembly and resulted 
in the desired peak interface tensile stress. Although this procedure is not as direct as 
the one based on the measurement of the coating's free surface velocity (as discussed 
in Section II above), it is still less complicated than the original procedure of Gupta, 
et cd. (1992) which used a simulation to convert the threshold laser energy into the 
desired interface stress, without the use of any interferometer. In this latter approach 
(Gupta et al, 1992), the entire process of stress pulse generation resulting from the 
melting and associated volumetric expansion of the aluminum film, and its subsequent 
propagation to build the tensile stress at the interface, was modeled. The various 
aspects of the quantification procedure outlined above are preliminary and well 
established, and hence only a brief description of each is provided below. 

3.3.2. Determination of the threshold laser energy. At the desired test temperature, 
a Nd: YAG laser pulse was fired through the quartz window onto a 3 mm dia area 
of the aluminum surface constrained by the water glass layer(Fig. 6). After each shot 
of the YAG laser, the ice samples were returned to the cold room and examined 
under an optical microscope. For the purpose of interface strength measurement, 
quantification of the initiation of interface damage and not propagation of such 
damage was desired. Three types of damage were typically seen in most samples, as 
is shown in Fig. 7. First, damage occurs at the outer reaches of the incident area or 
the stress pulse (labeled A in Fig. 7). This damage is caused by the momentum of the 
volume of ice under the influence of the stress pulse and the constraint of this volume 
of ice by the surrounding ice. So, the axial stress ax (normal to the ice surface, see 
Fig. 2) and the confinement by the surrounding ice create a shear stress which causes 
the cracking around the periphery of the stressed spot. A second type of failure 
(labeled B in Fig. 7) is damage within the ice, that is, the cracking of columns along 
the grain boundaries. This damage is caused by the transverse tensile stress, a„ that 
develops in the yz plane due to the plane strain constraints of the sample. The final 
type of failure (labeled C in Fig. 7) is the interface damage consisting of a void 
formation at the interface due to the axial stress ax. The first two types of damage 
will not be discussed any further here. It is the interface damage which is of interest 
in this investigation. 

Interface damage and void formation are more easily seen in Fig. 8(a) where the 
large decohered regions appear dark compared with the bonded regions immediately 
to the outside and are labeled A. Normally, the formation of voids (or one large void 
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Fig. 7. A micrograph showing the three types of failure observed during ice adhesion experiments viewed 
under reflected light in an optical microscope. (A) pulling out of ice plug; (B) cracking of ice columns; (C) 

interface voids. 

in some cases) occurred within the central region of the incident area of the stress 
pulse, sometimes extending to the edges of the stress pulse area. This damage occurred 
as a result of the axial tensile stress acting to pull the ice away from the aluminum at 
the interface. These voids were easily discernible under the optical microscope, even 
when they were small in size, Fig. 8(b). 

It is noteworthy that the compressive pulse should not predamage ice since grain 
boundaries are normal to the interface and hence experience no shear. Furthermore, 
the deformation occurs at a strain rate of 10~7 s~', which is about five orders of 
magnitude higher than the rate at which Picu and Gupta (1995b) observed the grain 
boundary sliding phenomenon in freshwater columnar ice. 

Once damage at the interface was discovered using the optical microscope, the 
experiments were repeated several times to verify that interface damage actually 
occurred and was repeatable. Then, the laser output energy was measured using an 
energy meter, and the laser fluence (or energy per incident area) was calculated. The 
laser fluence at which damage at the interface first occurred was then found by 
repeated experimentation, and this was termed the threshold laser fluence for the 
particular aluminum surface treatment at the particular test temperature. The stress 
causing this damage initiation at the interface is a direct measure of the bond strength 
between the ice and the aluminum. The method to calculate this stress from the 
recorded threshold laser fluence is discussed next. 

3.3.3. Determination of the aluminum free surface velocity using interferometry. 
The wide angle interferometer shown in Fig. 1 was used for recording the free surface 
velocities from a highly reflective aluminum surface whose backside was subjected to 
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Fig. 8. (a) A micrograph showing interface voids (labeled A) on a polished Al substrate viewed under 
reflected light in an optical microscope; (b) Interfacial microbubbles viewed using an optical microscope 

at the ice interface with a polished aluminum surface. 

the same laser fluence that led to crack nucleation at the ice/aluminum interface. 
Except for the ice layer, every other aspect of the previous sample geometry including 
the water glass layer was identically reproduced. The interferometer design is some- 
what similar to that proposed by Amery (1976) and its details have been given earlier 
(Pronin and Gupta, 1993). A typical fringe record obtained from an Al surface is 
shown by the solid line in Fig. 9. Since the useful duration of the signal is well within 
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Fig. 9. The fringe pattern recorded by using the differential displacement-velocity interferometer of Fig. 1, 
is shown by the bold line. 

the delay time xd of the interferometer ( = 13.3 ns), the fringes obtained during this 
time are directly related to the surface displacements. Due to the rather sharp rise 
time and duration of the signal in the laser spallation setup, the signal to noise ratio 
of the recorded fringes is not ideal. This requires information on the expected velocity 
profile before the fringe data can be unambiguously reduced to the transient velocity 
profile. To get such information, a linear velocity interferometer was constructed. In 
this type of interferometer, the delay length between the two optical paths is made 
much smaller than the rise time of the velocity pulse so that the photodetector output 
is directly proportional to the free surface velocity (Barker, 1972). 

In this modified interferometer (shown in Fig. 10), the delay leg of two lenses and 
one mirror of the interferometer shown in Fig. 1 is replaced by a de-ionized water- 
filled etalon with a mirror on one end. The etalon was constructed of a plexiglas tube 
of 2 in inner diameter and about 7 in length, capped at the ends by fused silica 
windows of 0.5 in thickness. The fused silica window on the left end had a 5 urn thick 
layer of aluminum deposited on the outside to act as mirror M2 as shown in Fig. 10. 
Once again, the apparent position of M2 (M2*) and Ml are equidistant from the BS. 
Due to the higher index of refraction of water compared to air («1.3 compared to 
1), the actual optical position of M2 is at M2**, yet this is much less than the actual 
optical position of M2 in Fig. 3. This reduction in actual optical distance traveled 
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etalon to verify the assumed shape of the velocity pulse. 

between the two interferometers reduces the time lag between the delayed beam and 
the signal beam to approximately 0.67 ns. Since the expected rise time of the velocity 
pulse recorded in this experiment is appreciably larger than 0.67 ns, the photodetector 
output is directly proportional to the transient surface velocity. Figure 11 shows the 
fringe record (or proportional to velocity profile) obtained from the linear inter- 
ferometer at the same laser fluence as the one that resulted in the displacement 
fringe record of Fig. 9. It is noteworthy that the linear interferometer only provides 
information proportional to the actual velocity, with the amplitude of the actual 
velocity undefined. This was of no concern here as the aim was just to obtain the 
profile of the surface velocity so that it could be used to judiciously reduce the 
displacement fringe data of Fig. 9 obtained using the interferometer of Fig. 1. It was 
found that the velocity profile remained almost identical, except for the amplitude 
over the range of laser fluences that were needed to initiate damage at the ice/aluminum 
interface. The expected displacement fringe data corresponding to the recorded vel- 
ocity profile with an assumed amplitude, was determined via integration and matched 
with the displacement fringe pattern recorded using the interferometer of Fig. 1. The 
amplitude of the recorded velocity pulse was varied till the match between the cal- 
culated and recorded displacement fringes was the closest. The dashed line in Fig.9 
corresponds to the calculated fringe record obtained via the above procedure. The 
complete velocity information was next used as an input to the wave propagation 
simulation to arrive at the desired interface stress history. 
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Fig. 11. The velocity fringe profile as obtained from the etalon interferometer. The ordinate of the fringe 
record was adjusted till a close fit to the recorded fringes in Fig. 9 was obtained. Thus, the as-recorded 

fringe record ordinate in units, of m V was converted into m/s. 

3.3.4. Interface stress calculation using a finite-difference simulation. The geometry 
of the ice/aluminum assembly used for the computation is shown in Fig. 2. In the 
central region of the stressed area, the normal strains in the plane of the interface can 
be considered fully constrained and hence, the stress wave propagation through the 
assembly can be idealized as one-dimensional. Further, for ice, a strain rate of 10"1 

s"1 is plenty to invoke an elastic dislocation motion-free response from a polycrystal 
(Picu and Gupta, 1995a and b). The stress-velocity data in aluminum at strain rates 
in the laser spallation experiment, near 107 sec"1, is currently unavailable. Linear 
extrapolation of data from lower rates, however, suggests an elastic response. There- 
fore, the stress state within the aluminum and ice was taken to be elastic throughout 
with the displacements and the resulting stresses in the assembly calculated by solving 
the classical one-dimensional elastic wave equation, albeit modified by the condition 
of zero lateral strains. Due to this latter condition, the transverse stresses a, develop 
and their magnitude equals the product of the axial stress ax with the term v/(l — v), 
where v is the Poisson's ratio. The wave equation was solved subject to: (1) the 
traction free condition at the ice's free surface; (2) continuity of traction and velocity 
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at the ice/aluminum interface; and (3) the initial stress condition at the back aluminum 
surface given by 

a = 0.5 pMcMV(t) (3) 

where pM is the Al density, cA1 is the speed of a longitudinal wave traveling through 
aluminum, and V(t) is the Al free surface velocity determined from the experiments 
discussed above. 

The simulation modeled the propagation of the stress wave through the aluminum- 
ice sample (Fig. 2) for 1 ^s by using the finite difference approach. The Al thickness 
used in the program was 0.84 mm while the ice thickness was 0.74 mm. Furthermore, 
because of the rather small thickness of the polymeric (1 pm) and liquid-like layer 
(few hundred Ä thick) compared with the stress wave, they were not identified in the 
simulation. The model incorporated 1000 space nodes and 12,000 time steps, giving 
Ax = 1.58 /an and At = 0.083 ns. The density, one dimensional Young's modulus 
(l + 2p), Poisson's ratio, and longitudinal speed of sound for both Al and ice that 
were used in the simulation are summarized in Table 1. Specific ice adhesion results 
on differently treated aluminum surfaces are provided next. 

4.    RESULTS 

For all experiments performed, regardless of the surface finish, applications of 
coatings on the Al, or test temperature, it was found that damage initiation at the 
interface with ice always occurred between YAG laser fluences of 1.3 x 104 J/m2 and 
2.15 x 104 J/m2. The interface stress was calculated at three values of laser fluence 
within this range (as discussed in Section III), and fitted to a curve, as shown in Fig. 
12. Each data point on the curve is the average of seven runs of the finite-difference 
program with each run using a different velocity record obtained from a fringe record 
output of the interferometer shown in Fig. 1. In all cases, the velocity pulses input 

Table 1. Material properties for aluminum and ice as used in the finite difference 
simulation 

Property Aluminum Ice 

Density (kg/m2) 2700 918 
One-dimensional 111 9.4 
Modulus (A + 2/0 (GPa) 
v 0.345 0.33 
c (m/s) 6409 3200 
Reference Brandes and Brook (1992) Hobbs (1974) 
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Fig. 12. A plot of the calculated interface stress as a function of laser fluence. 

into the finite-difference program, were of similar shape (that is, similar rise and decay 
times) and varied only in amplitude for different threshold laser fluence levels. This 
was confirmed experimentally. This method of determining the interface stress 
expedited the data collection process. 

The results for the ice adhesion experiments performed in this investigation are 
summarized in Table 2. Those results which show a + value were calculated from the 
methods described in Section III. The others were determined by reading the interface 
stress from Fig. 12 according to the experimentally determined threshold laser fluence. 
The number of experiments in which interface damage was observed at the indicated 
interface stress is shown after the stress level in Table 2. The number after + represents 
the error range resulting from the laser pulse-to-pulse variation, recording and reduc- 
ing the interferometer data, and sample preparation procedures. Details of this esti- 
mation can be found in Archer (1996). 

The maximum strain rate calculated in the finite-difference program was found to 
be about 2x 107 s"1. This, of course, depends upon the exact shape of the stress 
pulse and the actual stress amplitudes, but since the velocity pulses found with the 
interferometer were of the same shape and varied only slightly in amplitude, the stress 
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Table 2. Results for the laser spoliation experiments on the Al-ice interface system with 
various aluminum surface treatments 

Substrate Surface Temp (°C) 
Interface strength 

(MPa) No. of experiments 

Unpolished Al 
Unpolished Al 
Unpolished Al 
Unpolished Al 
Polished Al 
Al+1 /imPMMA 
Al+1 jmi PI 

-10 
-20 
-30 
-40 
-10 
-10 
-10 

274+17.1 
192 
183 
179 

180.8±6.4 
190.3 + 8.0 

181 

6 
4 
6 
5 
8 
8 
5 

All temperatures shown for the experiments are + 1 °C. The number of experiments in which 
interface damage was observed at the indicated stress is shown after the stress. 

pulses in all experiments were very similar in shape. Therefore, the strain rate in all 
experiments is in the order of 107 s"',high enough to justify the elastic wave propagation 
simulation. 

5.    DISCUSSION 

As discussed in Section I, many studies have been performed attempting to measure 
the ice adhesion strength to various substrates, yet none, to date, have been able to 
characterize the intrinsic interface tensile strength. The current investigation provides 
data closer to the true value of intrinsic interface stress than any other report to date. 
Thus, data obtained here cannot be directly compared with the results of previous 
studies, but the results are very promising in that the trends of the data follow intuition 
and current theories on the existence of the liquid-like layer at the interface. Qualitative 
comparisons are made with other investigations wherever appropriate. 

5.1.    Temperature dependence 

Table 2 shows the adhesion strength of ice to the unpolished Al substrates to be 
temperature-dependent. This temperature dependence is plotted in Fig. 13 along with 
a best fit of an exponential function of the form 

rr^o-o + aexp257-/* (4) 

where a0 is 179 MPa and a and b are fitting parameters whose values are shown in 
the figure, with falling temperatures, the interface strength falls, leveling off to a value 
of about 179 MPa at -40°C. This temperature dependence is contrary to that found 
by Jellinek in tensile tests of ice on polystyrene substrates (Jellinek, 1957a), but in 
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Fig. 13. A plot of the temperature dependence of the interface strength of ice on unpolished aluminum 
substrates and the best fit of an exponential function. 

agreement with Nickolayev and Petrenko (1995) in SFM tests of ice adhesion to 
metals. 

This temperature-dependence of adhesion data on unpolished Al substrates can be 
explained using the existence of a liquid-like layer at the Al-ice interface. At relatively 
high temperatures (— 10°C), the value of adhesion is the largest. The liquid-like layer is 
largest at temperatures close to the freezing point of water and decays with decreasing 
temperature (Weyl, 19510. Since the layer is liquid-like, it should be treated as 
incompressible with Poisson's ration equal to 0.5. In this case, the transverse stress 
(a,) developed within the liquid-like layer equals the axial stress (erx), and now more 
energy is dissipated in the transverse direction. Because of this, a much larger stress 
is needed to accomplish interface separation. At — 20°C, the interface strength has 
dropped dramatically, which also correlates with a corresponding decrement in the 
liquid layer thickness, below — 20°C, the value of the interface strength levels off to 
about 180 MPa. It is a temperature between -25°C and — 30°C where the liquid-like 
layer disappears (Weyl, 1951; Jellinek, 1967; Hosler et al, 1957). In this case, the 



Measurement and control of ice adhesion to aluminum 6061 alloy 1767 

damping effects of the liquid-like layer would be removed completely, and the interface 
stress would correspond directly to the bond strength between the aluminum and ice. 
The final two data points (for -30°C and -40°C) support this view, as they are the 
same. In order to verify this hypothesis, however, more experiments would have to 
be performed at intermediate temperatures (between -10°C and — 30°C), as well as 
temperatures between 0°C and — 10°C. Interestingly, the decrement of the liquid-like 
layer with temperature follows an exponential curve, too, (Weyl, 1951), and this 
provides further credence to the above explanation tying the strength decrement to 
the features of the liquid-like layer. 

5.2.    Surface roughness 

As stated earlier, the discussion of the relationship of substrate surface rough- 
ness to adhesion strength is purely qualitative, meaning no data on surface rough- 
ness was collected and can be compared to actual values of adhesion strength. 
This should not preclude a discussion of such a relationship., however, as repeatable 
experiments reported herein attest to the fact that such a relationship does exist. 

As shown in Table 2, the adhesion strength of ice on aluminum can be greatly 
reduced by decreasing the surface roughness of the aluminum. That is, by refining the 
surface quality from that shown in Fig. 3(a) to that shown in Fig. 3(b), the stress 
causing interface damage was reduced from 274 MPa to 181 MPa. This decrease in 
the adhesion strength can be explained as follows: the smooth Al surface shows many 
small, thin scratches, while the rougher surface appears to have only larger hills and 
valleys (as evident in Fig. 3). These scratches on the polished Al surface act as 
additional nucleation sites for the ice. This is witnessed in the smaller and more 
irregular grain structure seen on the polished Al substrates in Fig. 4(b), as opposed 
to the larger grains more closely resembling the classic hexagonal structure that ice 
assumes on the unpolished Al (Fig. 4(a)). The larger fraction of intersecting grain 
boundaries must lead to larger defect density at the interface, and in addition, provide 
sites for mechanical stress concentration. A more detailed discussion is outside the 
scope of the present investigation. 

The lowering of adhesion strength by polishing the substrate surface was also found 
by Jellinek (1962), although his tests were performed under shear and on stainless 
steel substrates. In addition, Sonwalkar et al. (1993, found in shear experiments that 
the adhesion strength was proportional to the amount of the mechanical interlocking 
of ice on the substrate. Instead of varying the substrate surface roughness, they 
varied the actual substrates from stainless steel, copper, aluminum, titanium, to 
polytetrafluoroethylene (PTFE). The stainless steel, copper and aluminum showed 
the largest pit size, which allowed the ice to interlock on these substrates more than 
on titanium and PTFE. Similarly, the hills and valleys of the rough Al substrate 
(in the present investigation) provide a greater likelihood of interlocking and thus 
contributed to the increased adhesion strength over polished Al substrates, which 
have fewer anchoring sites. 
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5.3.    Addition of polymer coatings 

The addition of polymer coatings affected both the growth of the ice on the Al 
substrates and the measured adhesion strength. The surface of the polymers is rela- 
tively flat, with few pits, and therefore few nucleation sites for ice growth. This implies 
that ice growth will be quite random, as is evident from Fig. 5(a) and (b), which show 
the ice grain structure for substrates coated with PMMA and PI, respectively. The 
materials chosen for this investigation were done so because of their availability and 
their durability to repeated testing. For the present investigation, the two polymers 
exhibit slight polarity, yet not to the extent of Al2Oa, which is inevitably found on the 
Al surface. This provided few bonding sites for the ice on the coated substrates 
(compared with Al alone) which contributes to the rather low (for this study) adhesion 
strength values of 181 MPa and 190 MPa for ice on PMMA and PI, respectively. 
However, as discussed below, there is a potential to lower this strength further. 

The structure of PI shows that there are many oxygen atoms available on both 
sides of its chain to which hydrogen atoms form the liquid-like layer can attach. In 
comparison, PMMA lacks the exposed oxygen that PI displays, but it does have a 
polar side group, COOCH3. Thus, even though the PMMA coatings on Al substrates 
provide fewer bonding sites to the liquid layer in comparison to the PI, the PMMA 
layer is by no means completely hydrophobic. Attempts to manufacture such coatings 
using the concepts of self assembled monolayers of polymeric material is currently in 
progress. 

5.4.    Transverse cracking of ice columns 

Finally, using the simulation, the transverse tensile stress that led to the cracking 
of the grain boundaries was estimated to be 47.4 MPa from data obtained at - 10°C. 
These cracks were observed to begin (Fig. 7) within the bulk of the ice away from the 
interface and the free surface. This value of the grain boundary strength is much 
smaller than the cleavage strengths across the prismatic planes of 1.3 GPa (Gupta 
and Tian, 1994). 

6.    CONCLUSIONS 

A basic understanding of the nature and strength of this bond is crucial to solve 
the deicing problem from a fundamental standpoint. Motivated by such goals, a new 
strategy to measure the tensile strength of interfaces between ice and structural 
surfaces was developed and presented in this paper. Because the interface separation 
is accomplished at an ultra high strain rate (107 s-10), all inelastic deformation during 
the interface separation process are essentially suppressed and the measured strength 
is the actual strength of the interface. The tensile strength of ice with the as-manu- 
factured 6061 Al surfaces was measured as a function of temperature (-10—40°C), 
and the results indicated an exponential decrease in the bond strength with decrease 
in the temperature, 274 MPa at - 10°C to 179 MPa at -40°C. The effect of polishing 
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the aluminum surface was to reduce the adhesion dramatically, from 274 MPa for 
the as-manufactured surfaces to 181 MPa for surfaces polished on a metallographic 
wheel using a-alumina powder of sizes 1.0 fim, 0.3 yum and 0.05 ßm. This was also 
consistent with results of other investigators (Jellinek, 1962; Sonwalkar et al., 1993). 
The same holds true with the experiments on Al substrates coated with polymer films. 
As in other investigations (Jellinek, 1957a, jellinek et al., 1978), polymer coated 
substrates exhibited lower adhesion strengths when compared with untreated metal 
substrates. The interface between polymer and ice was the weakest, and for polyimide 
and PMMA, tensile strength values of 190 and 181 MPa were recorded. This result 
shows the promise of developing better hydrophobic coatings with no outstanding 

polar groups. 
An understanding of the fundamental adhesion is only one step in resolving the 

overall ice/adhesion engineering problem. In any deicing or mechanical ice removal 
process, the energy consumed in propagating a crack along an ice/structure interface 
or in its vicinity is much larger than what is required to overcome the intrinsic tensile 
strength of the interfacial bonds, and often termed as the total roughness G of the 
interface. This depends upon many extrinsic parameters including the specimen 
geometry, loading rate, creep effects, temperature, roughness and adsorbed impurities 
on structural surfaces, interface flaw density, and the ratio of the tensile to shear stress 
ratio at the interface. Experiments that can sort out the role played by each of these 
process variables separately are vital for a complete understanding of the ice adhesion 
process. The results of such a study should be also useful in designing efficient ice 
removal strategies. 

ACKNOWLEDGEMENTS 

This work was funded via the Army Research Office Contract Nos. DAAL03-92-G-0250 
and DAAH04-96-1-0010, and the Office of Naval Research Grant No. N00014-93-1-1106 for 
which we are grateful to Drs Russell Harmon, Tom Swean, Y. D. S. Rajapakse, Tom Curtin, 
Robert Reeber and Wilbur Simmons of these agencies. 

REFERENCES 

Amery, B. (1976) Wide range velocity interferometer, in Sixth Symposium on Detonation, 
(Arlington, Virginia), pp. 673-681, Office of Naval Research-Department of the Navy, 
August 24-27. 

Archer, P. (1996) Investigation of the adhesion strength of ice to aluminum using a laser 
spallation experiment. Master's thesis, Thayer School of Engineering, Dartmouth College, 
Hanover, New Hampshire, U.S.A. 

Barker, L. M. (1972) Laser interferometry in shock-wave research. Experimental Mechanics 
12,5,209-215. 



1770 P. ARCHER and V. GUPTA 

Brandes, E. and Brook, G. ed. (1992) Smithells Metals Reference Book. London: Butterworth- 
Heinemann, seventh edn. 

Faraday, M. (1859) On regelation, and on the conservation of force. Philosophical Magazine 
17, 162-169. 

Gupta, V., Argon, A. S., Parks, D. M. and Cornie, J. A. (1992) Measurement of interface 
strength by a laser spallation technique. Journal of the Mechanics and Physics of Solids 40, 
1, 141-180. 

Gupta, V., Yuan, J. and Pronin, A. (1994) Recent developments in the laser spallation technique 
to measure the interface strength and its relationship to interface toughness with applications 
to metal/ceramic, ceramic/ceramic and ceramic/polymer interfaces. Journal of Adhesion Sci- 
ence and Technology 8, 6, 712-747. 

Gupta, V. and Yuan, J. (1993) Measurement of interface strength by the modified laser 
spallation technique. II. Applications to metal/ceramic interfaces. Journal of Applied Physics 
74, 4, 2397-2404. 

Gupta, V. and Tian, X. (1994) Measurement of cleavage strength in ice crystals by a laser 
spallation technique. Journal of Offshore Mechanics and Arctic Engineering 116, 35-42. 

Gupta, V., Argon, A. S., Cornie, J. A. and Parks, D. M. (1990) Measurement of interface 
strength by a laser-pulse-induced spallation. Materials Science and Engineering A126, 105— 
117. 

Hobbs, P. (1974) Ice Physics. Clarendon Press. 
Hosier, C, Jensen, D. and Goldshlak, L. (1957) On the aggregation of ice crystals to form 

snow. Journal of Meteorology 14, 415-420. 
Jellinek, H. (1962) Ice adhesion. Canadian Journal of Physics 40, 1294-1309. 
Jellinek, H. (1957a) Tensile strength properties of ice adhering to stainless steel. Research 

Report 23, U.S. Army Snow Ice and Permafrost Research Establishment. 
Jellinek, H. (1957b) Adhesive properties of ice. Research Report 38, U.S. Snow Ice and 

Permafrost Research Establishment. 
Jellinek, H. (1960) Adhesive properties of ice, Part II. Research Report 62, U.S. Snow Ice and 

Permafrost Research Establishment. 
Jellinek, H. (1967) Liquid-like transition layer on ice. Journal of Colloid and Interface Science 

25, 192-205. 
Jellinek, H., Kachi, H., Kittaka, S., Lee, M. and Yokoto, R. (1978) Ice releasing block- 

copolymer coatings. Colloid and Polymer Science 265, 544-551. 
Landy, M. and Freiberger, A. (1967) Studies of ice adhesion I. Adhesion of ice to plastics. 

Journal of Colloid and Interface Science 25, 231-244. 
Mittal, K. (1978) Adhesion measurement: recent progress, unsolved problems, and prospects, 

in Adhesion measurements of thin films, thick films, and bulk coatings, STP-640 ed. K. Mittal, 
(Philadelphia), pp. 5-17, ASTM. 

Nickolayev, O. and Petrenko, V. (1995) SRM studies of the surface morphology of ice, in 
MRS Symposium Proceedings, ed. B. G. Demczyk, et al, (Pittsburg), pp. 221-226, MRS. 

Petrenko, V. (1994) The surface of ice. Special Report 94-22, U.S. Army Corps of Engineers, 
CRREL. 

Picu, C. R. and Gupta, V. (1995a) Crack nucleation in Columnar ice due to elastic anisotropy 
and grain boundary sliding. Ada Metallurgica et Materialia 43,10, 3798-3805. 

Picu, C. R. and Gupta, V. (1995b) Observations of crack nucleation in columnar ice due to 
grain boundary sliding. Ada Metallurgica et Materialia 43, 10, 3791-3797. 

Pronin, A. and Gupta, V. (1993) Interferometry on diffuse surfaces in high-velocity measure- 
ments. Review of Scientific Instruments 64, 8, 2233-2236. 

Rice, J. R. and Sih, G. C. (1965) Plane problems of cracks in dissimilar media. Journal of 
Applied Mechanics 32, 418-423. 

Sonwalkar, N., Sunder, S.  S. and Sharma, S.  (1993) Ice/solid adhesion analysis using 
low-temperature Raman microprobe shear apparatus. Applied Spedroscopy 47, 10, 1585- 
1593. 

Weyl, W. (1951) Surface structure of water and some of its physical and chemical mani- 
festations. Journal of Colloid and Interface Science 6, 5, 389^105. 



Measurement and control of ice adhesion to aluminum 6061 alloy 1771 

Yuan, J., Gupta, V. and Pronin, A. (1993) Measurement of interface strength by modified laser 
spallation technique. III. Experimental optimization of the stress pulse. Journal of Applied 
Physics 74, 4, 2405-2410. 

Yuan, J. and Gupta, V. (1993) Measurement of interface strength by the modified laser 
spallation technique. I. Experiment and simulation of the spallation process. Journal of 
Applied Physics 74, 4, 2388-2396. 

Yuan, J. and Gupta, V. (1995) The effect of microstructure and chemistry on the tensile strength 
of Nb/sapphire interfaces with and without interlayers of Sb and Cr. Ada Metallurgica et 
Materielia 43, 2, 781-794. 



J. Mech. Phys. Solids, Vol. 46, No. 10, pp. 1773-1787, 1998 
© 1998 Elsevier Science Ltd. All rights reserved 

Pergamon Printed in Great Britain 
0022-5096/98 $—see front matter 

PII: S0022-5096(98)00047-7 

INITIATION AND PROPAGATION TOUGHNESS OF 
DELAMINATION CRACK UNDER AN IMPACT LOAD 

PRASHANT KUMAR* AND N. N. KISHORE 

Department of Mechanical Engineering, Indian Institute of Technology, Kanpur—208 016, India 

{Received 2d December 1997; in revised form 23 February 1998) 

ABSTRACT 

A combined experimental and finite element method is developed to determine the interlaminar dynamic 
fracture toughness. An interlaminar crack is propagated at very high speed in a double cantilever beam 
(DCB) specimen made of two steel strips with a precrack. A special fixture is designed to apply impact 
load to one cantilever and determine the deflection of the cantilever-end, initiation time and crack propa- 
gation history. The experimental results arc used as input data in a FE code to calculate ./-integral by the 
gradual release of nodal forces to model the propagation of the interlaminar crack. The initiation fracture 
toughness and propagation fracture toughness are evaluated for interlaminar crack propagating between 
850 and 1785 m/s. The initiation and propagation toughness were found to vary between 90-200 J/m2 

and 2-13 J/m2 respectively. The technique is extended to study initiation and propagation toughness of 
interlaminar crack in unidirectional FRP laminates. © 1998 Elsevier Science Ltd. All rights reserved. 

Keywords: A. delamination, A. dynamic fracture, A. fracture toughness, B. fibre-reinforced composite 
material, C. finite elements. 

1.    INTRODUCTION 

Laminates of fibre reinforced plastic (FRP) are increasingly used as structural mem- 
bers because they offer many attractive properties such as high specific strength, high 
specific stiffness and environmental stability. 

A laminate is commonly made by stacking prepregs over each other and curing 
them at high temperature and pressure. High strength man made fibres (carbon, 
kevlar, glass) impart stiffness and strength in the plane of a ply but the plies are 
bonded to each other with the help of comparatively low strength matrix material; 
high strength fibres do not reinforce the laminate through the thickness. However, 
interlaminar strength is usually adequate for an FRP structure loaded under quasi- 
static loading conditions. 

When an FRP laminate is impacted by a foreign body at subsonic velocity an 
intense damage is observed at the centre of the impact with fibre breakage, matrix 
cracking and fibre pull out. Also the damage spreads laterally to a considerably large 
area mainly through interlaminar separation even if the impacting body is of low 
mass (10-30 g) (Kumar and Badri, 1993). 

*To whom correspondence should be addressed. Fax: 0091 512 59 7408 ; E-mail: prkumar@iitk.ernet.in 
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On the other hand, when a foreign body impacts a metallic surface, material at 
the impact point yields, usually with workhardening in most engineering materials, 
resulting in formation of a small dent. FRP laminates are less tough as a result, in 
comparison to conventional metals. Furthermore, in opaque composite laminates 
(e.g. carbon fibre laminates) delamination damage occurring on interfaces between 
various plies is not visible from outside and may not be detected easily. Interlaminar 
cracks are observed to propagate at very high speeds that are comparable to shear 
wave velocities. The speed of expanding fronts of delamination cracks, as measured 
by high speed cameras, is as high as 200-500 m/s (Takeda et al., 1982). When 
glass fibre reinforced epoxy laminates are impacted it was found that if the total 
delamination area between various plies is multiplied by the quasi-static energy release 
rate, the net energy exceeds the energy of the impacting mass [Kumar and Narayanan, 
1993). This suggests that delamination cracks at high speeds propagate at lower 
toughness resulting in a fairly large damage area. Therefore the characterization of 
the interlaminar fracture toughness under dynamic crack propagation is of utmost 
concern for composite laminates. 

Experiments to determine dynamic fracture toughness have been mostly done on 
large metal plates having a crack through the thickness. Schardin (1959) introduced 
the method of caustics that was further developed by Mannog (1966) and Theocaris 
(1970) and discussed in detail by Popadopoulas (1993). Ravi Chandar and Knauss 
(1982, 1984a, 1984b, 1984c, 1984d) conducted exhaustive studies through the method 
of caustics for Homolite-100. Rosakis, Duffy and Freund (1984) performed a dynamic 
crack propagation experiment using wedge loading. Zehnder and Rosakis (1990) used 
the optical method of reflected caustics, combined with high speed photography, to 
investigate the dynamic fracture initiation and propagation in a 4340 steel specimen. 

A special technique was developed by Ravichandran and Clifton (1989) to study 
the initiation and propagation of crack in a steel disc containing a prefatigued edge- 
crack in the midplane. The disc was plate impacted by a thin flyer of the same material. 
The resulting compressive pulse propagates through the specimen and reflects from 
the rear surface as a tensile pulse of a submicron duration. The motion of the rear 
surface was monitored using a laser interferometer system. 

Berger and Dally (1990a) used a series of strain gauges ahead of the crack tip at a 
certain predetermined location to monitor the strain and crack propagation. Berger, 
Dally and Sanford (1990b) also used strain gauges ahead of the crack tip to determine 
the dynamic stress intensity factor associated with a propagating crack. 

Although a considerable amount of work has been done to study the fracture 
phenomena through numerical methods, only large rectangular double cantilever 
beams were given attention. Owen and Shantaram (1977) introduced the use of finite 
element method to study dynamic crack growth. Nishioka and Atluri (1982a, 1982b) 
investigated the crack propagation and arrest in a high strength steel DCB specimen 
using moving singular dynamic finite element procedure. Crouch and Williams (1987) 
used a dynamic mode finite element program to analyse different geometries. Amin- 
pour and Holsapple (1991) developed a finite element procedure to provide the state 
of stress, displacement and stress intensity factors of a propagating crack at the 
interface of the two dissimilar anisotropic materials. Crack propagation is 
accomplished by moving the crack tip inside the singular element according to a 
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Fig. 1. DCB specimen. 

prescribed crack tip history. A local redefinition of the finite element is required when 
the crack tip reaches an extreme position inside the singular element. Thesken and 
Gudmundson (1991) worked with an elasto-dynamic moving element formulation 
incorporating a variable order singular element to enhance the local crack tip descrip- 
tion. Wang and Williams (1994) investigated high speed crack growth in a thin double 
cantilever beam specimen using finite element method. The strain release rate obtained 
by FEM was compared with the quasi-static solution based on beam theory, for 
various loading conditions. 

The study of fast moving delamination cracks in a laminate, whose thickness is 
usually less than 5-7 mm, is complex from an experimental and numerical point of 
view. It was felt that, to determine dynamic interlaminar toughness, a combined 
technique should be developed, which would make use of numerical simulation using 
experimental data from an instrumentation that is not too sophisticated and expensive. 
The technique is initially developed on a double cantilever beam (DCB) specimen 
made from hardened steel strips bonded together with epoxy. One of the cantilevers 
is impacted and with the help of experimental data a FE code is developed to simulate 
the wave propagation in the DCB specimen and to determine the initiation and 
propagation toughness of the interlaminar crack. The experimental theoretical tech- 
nique is then extended to determine initiation and propagation toughness of delami- 
nation crack in a DCB specimen made of unidirectional glass fibre reinforced epoxy 
laminates. 

2.    EXPERIMENTAL DETAILS 

2.1.    Steel and FRP specimen 

The DCB specimen is made by bonding two thin strips of steel each of 2.8 mm 
thickness and of 24 mm width with a precrack as shown in Fig. 1. The cantilevers are 
made of hardened 4340 steel and ground fiat. For bonding the sheets together, epoxy 
LY 556, hardener HT 976, and accelerator XY 73 are mixed in the mass ratio of 
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Fig. 2. Schematic diagram of the experimental setup. 

100:35:2 (purchased from Ciba-Geigy Limited, Bombay). The curing is carried out 
at 140°C for four h under a pressure of 0.5 MPa. It is then cooled to room temperature 
at the same pressure. The precrack, introduced in the DCB specimen during bonding 
by placing a thin (18 fim BOPP sheet is sharpened through a specially designed fixture 
(Verma, 1995). 

The unidirectional FRP laminate specimen is made from glass fibre prepregs by 
stacking 32 plies with a thin teflon film (20 fan) placed at the midthickness of the 
laminate to introduce a precrack. It is cured at 120°C with 0.7 MPa for one h and 
then at higher temperature of 140°C maintaining the same pressure for six h. The 
specimen is 7 mm thick (each cantilever is 3.5 mm thick) and 25 mm wide; its 
length ranges from 190-220 mm. The as-cast crack tip is sharpened with the special 
arrangement designed for steel specimen. 

2.2.    Experimental setup 

The schematic diagram of the experimental setup is shown in Fig. 2. In this 
technique a stress pulse is generated in the cylindrical load bar by impacting it with a 
striker propelled from an airgun. The load bar and the striker are made of the same 
material and are of the same diameter. The end of the rear cantilever beam is screwed 
to the load bar and the end of the load bar is made spherical to facilitate the rotation 
of the rear cantilever. The face of the front cantilever is bonded to a rigid block of 
mild steel (50 mm x 50 mm x 150 mm) which is clamped further to a rigid base plate. 

Two strain gauges, at diametrically opposed locations, are mounted in the longi- 
tudinal direction on the surface of the load bar to record the incident and the reflected 
pulses. When this incident pulse reaches the specimen, part of it is transmitted to the 
cantilever, thus dynamically loading the specimen. The remaining energy of the 
incident pulse is reflected into the load bar. Responses of the strain gauges are recorded 
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Fig. 3. Oscilloscope traces (Experiment S-l of steel specimen). 

on a four channel digital oscilloscope (Model 1624, Gould Inc., U.K.). The length of 
load bar and the location of its strain gauges are suitably chosen to separate the 
incident and reflected pulses. 

To measure the interlaminar crack velocity, three strain gauges (0.2 mm length, 1.4 
mm width, 120 + 0.3Q) are bonded to the side face of the rear cantilever. These gauges 
were supplied by Tokyo Sokki Kinkyuju Ltd., Japan. The first strain gauge (SGI) is 
bonded very close to the already sharpened crack tip (within 2-3 mm, and the distance 
between the strain gauges (SGI, SG2 and SG3) is approximately 5 mm. The locations 
of the strain gauges are measured accurately with the help of a travelling microscope, 
prior to loading the specimen in the experimental setup. As the crack advances and 
approaches a strain gauge, the strain increases and reaches a maximum value due to 
the singular stress field. By recording the time at which the maximum strain is reached 
in all three gauges, growth of the crack length with time is determined. Figure 3 shows 
the four oscilloscope traces of an experiment; the lowest trace shows incident and 
reflected pulses in the load bar and the other three traces are the outputs of the 
small strain gauges attached to the specimen. By applying one dimensional wave 
propagation theory to the incident and reflected pulses in the elastic load bar one 
obtains particle velocity at the cantilever-end which is integrated to determine deflec- 
tion history of the cantilever-end. 

Thus the experiment provides the following data for numerical simulation of wave 
propagation in the specimen and building up of the /-Integral at the tip of interlaminar 
crack: 

(a) the deflection of the cantilever-end with time, 
(b) the crack initiation time, and 
(c) the crack propagation history. 

3.    NUMERICAL SIMULATION 

The system of finite element equations governing the linear dynamic response of 
an elastic body can be expressed as 
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[M]{fj} + [*]{U} = {R} (1) 

where [M] and [K\ are the mass and stiffness matrices respectively and {R} is the 
external load vector. {U} and {Ü} are displacement and acceleration vectors of finite 
element assemblage respectively. In the present analysis the damping is neglected and 
Newmark Integration Method for time variables is used (Bathe, 1990). To simulate 
the crack propagation, the crack tip jumps from one node to the next if a simple node 
release procedure is used. To overcome such difficulties, several algorithms exist in 
literature which release the nodes gradually. The various schemes available to decrease 
the nodal forces gradually to zero are due to Malluck and King (1978), Rydhom et 
al. (1978) and Kobayasi et al. (1978). 

In the present work a modified method is adopted to achieve gradual and smooth 
propagation of interlaminar crack. The holding-back force at node B (Fig. 4) is 
decreased linearly in proportion to the distance of the crack tip from the end of the 
succeeding element (node E). Thus, when the crack tip is located between nodes B 
and D, the force FB at node B is given by 

■FBC 2d (2) 

where bx is the crack extension beyond node B and FBC is the internal force when the 
crack tip was located at node B. As the crack tip moves beyond node D by distance 
b2, internal force at the node B becomes 

■FBC 

1- 
d + b; 

2d 
(3) 

Path independent /-Integral is adopted to represent the fracture toughness. Similar 
to the J-Integral used for computing elasto-static fracture in mode I, path integrals 
are developed for elasto-dynamic crack propagation. This also involves the domain 
integral arising out of the kinetic energy term (Atluri, 1982; and Nishioka and Atluri, 
1983). In the present work /, given by Kishimoto, Aoki and Sakata (1980) is adopted 
which is defined as 
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Contour of ./-Integral. 

J, = lim 
1 E-O 

[Wni-tiUu] ds + P«i"u dV (4) 

where integration paths rc"", T and T+ and the volumes V and V, are defined in Fig. 
5; W represents the strain energy density, u, the displacement and «, the component 
of unit normal in x, direction. 

The computer code for crack simulation has been validated (Verma (1995)) against 
known problems, Parton and Boriskovsky (1989), Nishioka and Atluri (1986). 

Higher order elements are not preferred for generating mesh in a DCB specimen; 
a simple four noded isoparametric element is employed. However, very fine mesh is 
used. Uniform mesh throughout the specimen is generated to avoid spurious reflec- 
tions of stress waves. In the steel specimen four noded isoparametric elements of size 
0.4 mm along the length and 0.28 mm in the direction of thickness were generated. 
Mesh size of 0.4 mm x 0.35 mm was generated in the unidirectional FRP specimen. 

In the initial stage of this study both cantilevers of the DCB specimen were modelled 
for evaluating Jv However, contribution of the front cantilever (Fig. 1) is only 
marginal because it is bonded to a very stiff block. Therefore only rear cantilever was 
analysed to minimize computations. 

Bathe (1990) suggested guidelines to choose the proper time step (At) to satisfy the 
stability criterion. At should be smaller or equal to h/c where h is the spatial resolution 
and c is the highest wave velocity in the specimen. For the steel specimen, At should 
be less than 0.08 /xs to meet the guidelines. However, it was found that / obtained 
with At = 0.2 us was very close to /determined through At = 0.03 (is. Thus to decrease 
computational time it was decided to use the time step of 0.2 /is. 

4.    RESULTS AND DISCUSSION 

4.1.    Steel DCB specimen 

The stress waves propagating in the cantilever-end slowly build up the value of J 
at the crack tip. Reference time (/ = 0) corresponds to the arrival of the incident stress 
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Fig. 6. Deflection of cantilever-end (Experiment S-l of steel specimen). 
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Fig. 7. Variation of crack length with time and determination of initiation time (Experiment S-l of steel 
specimen). 

pulse at the cantilever's end as shown in Fig. 3. The crack remains stationary until 
the interlaminar bond is able to resist the crack propagation. 

Incident and reflected pulses of lower trace (Fig. 3) determine the variation of 
velocity of cantilever-end with time. The velocity is integrated to obtain displacement 
boundary condition of cantilever-end (Fig. 6). 

The upper three traces of specimen-strain gauges (Fig. 3) determine the velocity of 
interlaminar crack propagation, as discussed earlier in section 2. The crack length as 
a function of time is plotted in Fig. 7, a second degree polynomial curve is fitted 
through these data points and is extrapolated to the initial crack length to find the 
crack initiation time. It is worthwhile to note that determination of the initial time 



Toughness of delamination crack 1781 

2000 

52 56 44 48 
TIME.jjs 

Fig. 8. Variation of crack propagation velocity. (Experiment S-l of steel specimen). 
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Fig. 9. Initiation toughness of Experiment S-l of steel specimen. 

through extrapolation is not expected to introduce much error because (i) crack 
velocity is extremely high at initiation time («1850 m/s of experiment S-l) and (ii) 
the distance between the location of initial crack tip and the first strain gauge is small. 
In fact, it is estimated that the crack tip takes only 1.3 ^ts to reach the first strain 
gauge, which is much smaller than the initiation of 43.51 (is. Figure 8 shows the 
variation of the interlaminar crack velocity with time. 

4.2.    Interlaminar initiation fracture toughness 

Displacement and stress fields for a stationary crack are determined through the 
FE computer program after each time step and variation of /, is shown in Fig. 
9. Corresponding to the initiation time, interlaminar initiation toughness (/ini) is 
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Table 1. Initiation time and initiation toughness in steel DCB specimen 

Time of Strain- 
Crack SGI from 

crack-tip 
gauge peak Initiation 

time / Expt. Length 
No. (mm) (mm) SG1 SG2 SG3 0*0 (J/m2) 

S-l 40.9 2.3 44.8 47.6 50.6 43.51 150 

S-2 40.8 1.0 43.4 47.0 49.8 42.64 90 

S-3 42.1 2.3 46.5 50.0 54.0 45.20 160 

S-4 41.1 1.3 45.0 48.5 52.7 44.32 200 

S-5 39.3 1.5 44.3 49.6 55.6 42.76 125 

determined. The details of initiation time and initiation toughness are given in Table 
1 for all five experiments. Interlaminar toughness under quasi-static loading (/quas) is 
12 J/m2. It is clear from the table that / required to initiate the crack growth is at 
least one order higher. 

4.3.    Interlaminar propagation fracture toughness 

The crack propagation simulation (eqns 2 and 3) is invoked as soon as the crack 
initiation takes place with available crack velocity history. The advancement of crack 
in each iteration is calculated and stress and displacement fields are determined. Jx 

after the crack initiation is known as interlaminar propagation toughness (/prop). 
Figure 10 shows that drop in J, is sharp and substantial. 

The oscillatory behaviour of Jprop may be due to several reasons. Firstly, the free 
surfaces of DCB specimen are close to the crack tip; in fact, propagation time of 

200 
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Fig. 10. Variation of/with time for stationary and propagating crack (Experiment S-l of steel specimen). 
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Table 2. Average crack velocity, initiation and propagation toughness in steel specimen 

Average crack 

Length of 
velocity 

Expt. precrack a,* fl2t JM ■'prop 

No. (mm) (m/s) (m/s) (J/m2) (J/m2) 

S-l 40.9 1785 1700 150 3 
S-2 40.8 1416 1607 90 2 
S-3 42.1 1437 1300 160 3 
S-4 41.1 1400 1190 200 8 
S-5 39.3 925 850 140 13 

* Average crack velocity between first and second strain gauge, 
f Average crack velocity between second and third strain gauge. 

stress waves to emanate from the crack tip, reach the free surface and then come back 
to the crack tip is 1-2 /zs only. The superposition of these waves and their effect on 
/prop cause fluctuations. Secondly, the crack tip which moves from one node to another 
in numerical simulation decreases the holding back force linearly. A better model for 
estimation of nodal forces at the node may decrease the fluctuations. 

The details of average crack velocity, Jini and average Jpwp are given in Table 2 for 
all five experiments with the DCB specimen prepared from thin steel plates. At very 
high crack speeds Jpmp is much smaller than /quas (12 J/m2). At relatively lower crack 
velocity (850-925 m/s of experiment S-5) Jprop is 13 J/m2 which is approximately the 
same as /quas. 

4.4.    DCB specimen of FRP 

The experimental numerical technique is being extended to unidirectional glass 
fibre epoxy laminate with specimen geometry described in section 2. Preliminary 
results are reported and discussed in this section. 

Table 3 provides the initial crack length, average crack velocity, Jini and /prop for all 
five experiments with FRP specimens. The experimentally recorded incident and 
reflected pulses in the load bar and the responses of all the specimen strain gauges are 
shown through traces in Fig. 11 for experiment FRP-1. The computer simulation 
shows the variation of Jx in Fig. 12. Jprop can be seen better in the magnified view 
shown in Fig. 13. 

Interlaminar toughness at quasistatic loading (Jqms), in FRP laminate was found 
to vary between 344 and 478 J/m2. Similar to the results of the steel DCB specimen, 
the drop in Jprop is sharp and substantial. In fact, in experiment FRP-3, with very high 
average crack velocity, Jpmp takes very low values. Furthermore, Jini is smaller than 
Jquas, but it has not decreased to very low values. The reduction of interlaminar 
toughness at high crack velocity of FRP laminates is similar to that of the steel DCB 
specimen except for the difference that in the steel specimen /ini > Jqum whereas in the 
FRP laminates Jini < </quas. 
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Table 3. Crack velocity, Jini andJpmp ofDCB specimen of FRP 

Average crack 
velocity 

Initial 
Expt. crack length a,* a2f JM •'prop 

No. (mm) (m/s) (m/s) (J/m2) (J/m2) 

FRP-1 46.5 622 361 230 11-59 
FRP-2 43.5 898 743 145 12-28 
FRP-3 44.0 1016 751 102 0-26 
FRP-4 30.0 730 572 118 3-28 
FRP-5 34.0 734 543 90 1-20 

* Average crack velocity between first and second strain gauge. 
t Average crack velocity between second and third strain gauge. 
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Fig. 11. Oscilloscope traces of Experiment FRP-1. 

5.    CONCLUSIONS 

A combined technique has been developed, using experimental measurements and 
finite element analysis, to determine the initiation and propagation toughness of a 
DCB specimen, prepared by bonding two steel strips together with epoxy. It was 
found that /builds up to a high value before the crack starts growing. Once the crack 
is initiated, it was observed to propagate at high velocity of 800-1700 m/s with low 
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Fig. 12. Variation of/with time of Experiment FRP-1. 

250 

52 5A 56 58 

TIME.JJS 

Fig. 13. 7prop vs time of Experiment FRP-1. 

toughness. For a quasi-static toughness of 12 J/m2, the initiation toughness of the steel 
specimen was found to be in the range of 90-230 J/m2, with propagation toughness 
decreasing sharply to 2-13 J/m2. Preliminary experiments on unidirectional glass fibre 
composite materials showed initiation toughness of 90-230 J/m2 against quasi-static 
toughness of 344-478 J/m2. Propagation toughness of 0-50 J/m2, was found for 
interlaminar crack propagation with velocity in the range of 622-1016 m/s. 
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ABSTRACT 

This paper describes experimental observations of various phenomena characteristic of dynamic intersonic 
decohesion of bimaterial interfaces. Two separate but complementary optical methods are used in con- 
junction with high-speed photography to explore the nature of the large-scale contact and mach wave 
formation at the vicinity of running cracks in two different bimaterial systems. Theoretical predictions of 
crack tip speed regimes, where large-scale contact is implied, are confirmed. Also, the theoretically predicted 
mach wave emanating from the intersonically propagating crack tip is observed. Direct visual evidence is 
also obtained for another traveling mach wave emanating from the end of the intersonically moving contact 
zone. Subsequently, a physical model for intersonic crack propagation along bimaterial interfaces is 
presented and ratified in view of recent experimental observations and theoretical developments. Finally, 
the paper presents very recent experimental evidence that shows crack tip speeds exceeding the intersonic 
regime and becoming clearly supersonic. © 1998 Elsevier Science Ltd. All rights reserved. 

Keywords: A. dynamic fracture, B. crack mechanics, layered material, D. optical interferometry. 

INTRODUCTION 

In homogeneous materials, the observations of crack growth speeds greater than the 
shear wave speed, v > cs, is limited to the cases when the loading is applied directly 
to the propagating crack tip. For remotely loaded cracks, energy considerations make 
it impossible for the crack tip speed to exceed the Rayleigh wave speed of the material 
(Broberg, 1960; Freund, 1990). Thus, the only experimental observations of intersonic 
or supersonic crack tip speeds, v > cs or v > c,, in a laboratory setting have been on 
crack growth along weak crystal planes in single crystals of potassium chloride, where 
the crack faces were loaded by laser induced expanding plasma (Winkler et al., 1970; 
Curran et al., 1970). Indirect observation of intersonic shear rupture (c, < v < c,) has 
also been reported for crustal earthquakes (Archuleta, 1982). These observations 
have motivated extensive theoretical work in the area of high-speed shear fracture 
in homogeneous materials. This has been primarily conducted with seismological 
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applications in mind and includes the work of Burridge (1973), Burridge et al. 
(1979), Freund (1979), Broberg (1985, 1989), Georgiadis (1986), Bykovtsev and 
Kramarovskii (1989) and Aleksandrov and Smetanin (1990). 

In bimaterial systems, however, it has been recently demonstrated (by the authors 
and their coworkers) that intersonic crack propagation along bimaterial interfaces is 
possible even under remote loading conditions (Liu et al., 1993; Lambros and 
Rosakis, 1995a, b, c; Singh and Shukla, 1996). Indeed, it has been experimentally 
shown that if there exists a significant mismatch in the stress wave speeds across the 
bimaterial interface then the crack can propagate intersonically with respect to the 
material with the lower shear wave speed, while it remains subsonic with respect to 
the material with the higher wave speed. Under these conditions only a finite amount 
of energy has to be supplied to the crack tip to maintain extension as the propagational 
speed approaches the lower of the two Rayleigh wave speeds. This fact was analytically 
confirmed by Yang et al. (1991) on the basis of a subsonic analysis which removes 
the theoretical restriction for the attainment of intersonic crack tips speeds of the type 
that exist in homogeneous materials. 

Despite these initial attempts, the phenomenon of intersonic crack propagation is 
still more or less unexplored. The experimental evidence is quite limited and still there 
does not exist a completely physically realistic theoretical model for the intersonically 
propagating interfacial crack. In view of these limitations, the current study presents 
valuable experimental observations on interface failure in the intersonic regime and 
interprets these observations based on currently available theory. 

EXPERIMENTAL TECHNIQUES 

The two techniques of coherent gradient sensing (CGS) and photoelasticity were 
employed independently to study intersonic crack propagation along a bimaterial 
interface subjected to impact loading. Both these optical techniques provide real-time 
full field information and are ideally suited to investigate dynamic fracture events 
when used in conjunction with high-speed photography. However, the two techniques 
have their own advantages and limitations and the information provided is comp- 
lementary. Hence, employing both the techniques allows for a better understanding 
of the dynamic fracture process. This will become apparent when the two techniques 
are discussed in the following sections. 

Coherent Gradient Sensing interferometer (CGS) 

Figure 1 shows a schematic of the CGS setup in a transmission configuration. A 
coherent, monochromatic, collimated laser beam is incident on the bimaterial speci- 
men. After transmission through the transparent side of the deforming specimen, it 
acquires an optical path difference and loses collimation. The optical path difference 
acquired is due to stress induced differences in refractive index and due to a non- 
uniform contraction in the thickness direction around the vicinity of the crack tip 
(Poisson's ratio effect for elastic solids). The resulting, non-collimated, beam passes 
through two line diffraction gratings Gt and G2 of fine pitchy (typically 40 lines/mm). 
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Fig. 1. Schematic of CGS setup in transmission. PMMA/steel bimaterial specimen is illustrated. 

The gratings are situated a distance A (typically 30-50 mm) apart and perform a 
"shearing" of the incident wave front. The gratings' output intensity is transmitted 
through a filtering lens L. A diffraction spot pattern is obtained on the filtering plane, 
which is located at the back focal plane of lens L. On this plane all but one diffraction 
orders are blocked. The one remaining diffraction spot (either of + 1 orders), shown 
in Fig. 1 as the open circle on the filtering plane, is imaged to produce an interference 
pattern. For the case of a dynamic experiment the imaging device is a high-speed 
camera focused on the specimen. 

The details of analyzing the CGS optical method can be found in several previous 
articles including Tippur et al. (1991) and Rosakis (1993) and will not be repeated 
here for the sake of brevity. The condition for formation of constructive CGS inter- 
ference fringes on the image plane, for gratings with lines parallel to the x2-direction, 
is, 

8(S{xux2)) 

dx. 

mp 
0, ±1,±2,... (1) 

Where, S(xux2) is the optical path change that is introduced due to specimen defor- 
mation at a certain location in the x,-x2 plane. It has also been assumed that the 
diffraction gratings G, and G2 are close enough and/or fine enough to obtain an 
interferogram that represents the xrgradient of S, rather than an x,-finite difference 
of S. If the grating lines are parallel to the x, direction then it can be shown that the 
condition for constructive interference becomes 

8(S(xi,x2)) 

dx-, 

np 
:A~' 

« = 0, ±1, ±2, (2) 

For the case of plane stress and a transmission configuration the quantity S(x{, x2) 
is related to the stress state in the deforming specimen as (Rosakis, 1993), 

S(xuX2) « C(TÄ[ffn(x1,X2) + (f22(xl,X2)]. (3) 
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Where c„ is a stress optical coefficient for the material, h is the specimen thickness and 
er,, and &22 are thickness averages of the in-plane stress components in the plate. 

For points outside the near tip three-dimensional region the CGS patterns assume 
a simple interpretation in terms of two-dimensional stress field approximations. In 
particular, eqns (1) and (2) in conjunction with eqn (3) now indicate that the fringes 
obtained from regions surrounding the three-dimensional zone can be related to the 
in-plane gradients of au + d22 as follows, 

c„h 
d(an+d22) 

dx. 

mp 

T' c„h 
d(<jn+G22) 

dx1 

np 

1' m, n = 0, + 1, ±2,. (4) 

Where, in the case of transmission, ca is the stress optical coefficient of the transparent 
material. 

The CGS interferograms are imaged by a rotating mirror type high-speed camera 
(Cordin Co., model 330A). The camera records 80 frames of the dynamic event and is 
typically operated at an interframe time of 1.2 p& (about 840,000 frames/s). Individual 
frames are obtained by operating the laser light source (Spectra-Physics Argon-ion 
laser, model 166-09; operating wavelength X = 514.5 nm light) in a pulsed mode. The 
exposure time used in all experiments (i.e., the laser pulse duration) is 30 ns and the 
image is recorded on 35-mm black and white film (Kodak TMAX-3200). 

Note that in this case the CGS interferograms represent contours of constant 
gradients of the first stress invariant, an + d22, of the thickness averaged stress tensor 
in plane stress, 6. This invariant can also be expressed in terms of the principal stresses 
of ö as follows: dn + a22 = 0\ + ö2, since a33 = a3 = 0. Thus, the technique of CGS 
will not be sensitive to changes in the individual components of stress as long as the 
derivative of a^ + a2 remains a constant. 

Photoelasticity 

A schematic of the photoelastic setup in a transmission configuration is shown in 
Fig. 2. The specimen is placed in the optical bench of a high speed Cranz-Schardin 
spark-gap camera. The optical setup consists of two field lenses, F, and F2, and two 
circular polarizers, Q and C2. The first field lens, Fb collimates white light from the 

Circular Polarizers 
Field Lens F, 

Film Holder 

J$ll\     Spark Gaps 
-iP<S§     (White Light Source) 

Projectile 

Bimaterial Specimen 

Fig. 2. Schematic of photoelasticity setup in transmission. Homalite-100/aluminum bimaterial specimen is 
illustrated. 
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spark-gaps that is incident on the specimen, while the second field lens, F2, focuses 
the light transmitted through the specimen onto the film plane of the high speed 
camera. Meanwhile, the two circular polarizers form a circular polariscope, which 
allow photoelasticity to be used to observe the state of stress in the specimen. The 
transparent side of the bimaterial specimen is specially chosen so that it exhibits stress 
induced birefringence, which is a fundamental requirement of this technique. A filter 
(Kodak Wratten filter no. 8) is placed before the film plane of the high speed camera, 
so that only fringes corresponding to a particular wavelength of light are recorded. The 
technique of photoelasticity is very well established for a variety of solid mechanics 
applications and the reader is referred to Dally and Riley (1991) for further details. 

The generation of isochromatic fringe patterns is governed by the stress optic law. 
For the case of monochromatic light, the condition for the formation of fringes is 
expressed as, 

G\-Gi =—r-, (5) 

where, a, — <r2 is the principal stress difference of the thickness averaged stress tensor, 
a,fa is the material fringe value, h is the specimen thickness and TV is the isochromatic 
fringe order. The isochromatic fringe patterns observed are contours of constant 
maximum shear stress, fmax = (cr, — <r2)/2. 

The photoelastic fringe patterns are imaged using a high speed Cranz-Schardin 
spark-gap camera. The camera provides a total of twenty images of the dynamic 
fracture event at an interframe time of 4 ^s (250,000 frame/s). The spark-gaps serve 
as the light sources and the exposure time is typically 400 ns, as determined by the 
time duration of the sparks. The recording medium is once again black and white 
photographic film (Kodak Professional 8' x 10' film no. 4127). 

Bimaterial specimen and loading arrangement 

The bimaterial specimens used in these experiments consisted of a transparent 
polymer bonded directly to a metal. The material combinations were chosen so that 
there would be a large mismatch in the mechanical properties across the interface and 
this would intensify the dynamic effects. The particular choice of the transparent 
polymer was also dictated by the particular needs of the experimental technique 
employed, i.e. CGS or photoelasticity. For the case of CGS, the transparent half was 
Plexiglas (Polymethylmethacrylate or PMMA) while the metal half was AISI 4340 
steel. For the photoelastic experiments, the transparent half was Homalite-100, a 
polyester resin that exhibits stress induced birefringence, while the metal half was 
6061 aluminum. Throughout this paper, the transparent polymer side of the specimen 
will be referred to as material-1 and the metal side as material-2. 

Mechanical properties of the material constituents are listed in Table 1. Since both 
PMMA and Homalite-100 exhibit rate sensitivity their properties are listed for two 
extreme strain rates [e = 10~3 s"1 and e = 103 s"1 (glassy state)] that could be enco- 
untered by material elements in the vicinity of the propagating crack tip. In reality 
the material surrounding the propagating crack tip is not subject to any uniform value 
of strain rate. Instead there is a strain rate distribution around the crack tip, which 
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depends on the crack tip stress field. Thus, the material wave speeds at any given 
point of observation would depend on the effective strain rate at that point and would 
lie between the two extreme values listed in Table 1. It should be noted that neither 
6061 aluminum nor 4340 steel exhibit any appreciable strain rate sensitivity for the 
strain rates in consideration. 

As shown in Table 1, either of the PMMA/steel or the Homalite-100/aluminum 
combination results in a significant mismatch of mechanical properties and, most 
importantly for dynamics, wave speeds across the bimaterial interface. The values 
of the plane-stress quasi-static oscillatory index e are also listed for PMMA/steel, 
PMM A/rigid, Homalite-100/aluminum and Homalite-100/rigid material combi- 
nations. As demonstrated by these values, both the material combinations behave 
very similar to an elastic/rigid bimaterial system. Thus, one can expect intensified 
interfacial effects during the dynamic fracture event. 

The specimen preparation procedure for both the material combinations is the 
same in principle. The bonding is achieved using the monomer of the transparent 
polymer in conjunction with appropriate catalysts/hardening-agents. Bonding for the 
PMMA/steel interface is described by Tippur and Rosakis (1991) while that for the 
Homalite-100/aluminum interface by Singh and Shukla (1996). The issue of bond 
strength and toughness has also been addressed by the same authors. 

The bimaterial specimens were subjected to one-point bend type impact loading as 
shown in Fig. 3. The impact was achieved by using a cylindrical steel projectile 
launched using a pressurized gas-gun. For the CGS experiments the projectile was 75 
mm long and 50 mm in diameter, and the impact velocity was 20 m/s. Meanwhile, 
for the photoelastic experiments the projectile was 100 mm long and 12.5 mm in 
diameter, and the impact velocity was 30 m/s. As will be shown later, both these 
loadings result in essentially the same mode of bimaterial failure. It is apparent that 
the loading history experienced by the crack tip would depend on whether the speci- 
men was impacted on the polymer side or the metal side of the interface. In all these 
experiments the specimen was impacted from the metal side of the interface, so that 
the energy to the propagating crack tip would be supplied from the side with the 
higher stress-wave speeds. 

300        25 —s 

(Pre-Crack) 

Material-1 

/JCGS = 9 

frphotoel. = 6 

Impact Loading 

|<=— 125 —5^ All dimensions in mm 

Fig. 3. Bimaterial specimen showing the one point bend impact geometry. 
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Material -1 

«F^: 

is- 
Material -2 

Impact 

Fig. 4. Stress wave loading of the interfacial crack tip arising from the one point bend impact, (a) just after 
impact, (b) just before initiation and (c) during crack growth. 

The nature of the loading arrangement results in the interface crack tip being loaded 
primarily in shear. The projectile impacting the metal side of the specimen generates 
stress wave fronts as shown in Fig. 4(a). The main compressive dilatational stress 
wave traverses the width of the metal specimen. When this wave passes by the pre- 
crack tip at the interface it loads the crack tip primarily in shear. This compressive 
dilatational stress wave then reflects from the opposite free surface as a tensile wave 
and again propagates by the crack-tip on the interface going in the opposite direction. 
Doing so it enhances the state of shear that exists around the crack tip (doubles the 
particle velocity in the negative xrdirection), resulting in crack initiation and crack 
extension. The acoustic mismatch across the bimaterial interface greatly impedes the 
transfer of stress waves from the metal to the polymer. Hence, the interface crack is 
driven from the metal side and primarily in a state of shear. Note that at later times 
other reflections from the specimen boundaries will also impinge upon the interface, 
as shown in Fig. 4(c), and will change the nature of loading. However, these effects 
occur later on in the time history of the fracture process. 

RESULTS AND DISCUSSION 

Observation of contact and shear mach wave 

A typical selected sequence of CGS interferograms from a one point bend exper- 
iment on a PMMA/steel specimen is shown in Fig. 5 (Lambros and Rosakis, 1995a). 
Note that the CGS fringes are observed only in the transparent side (i.e. the PMMA 
side) of the specimen. The instantaneous location of the crack tip is known from each 
frame and this was used to determine the history of the crack tip speed. A typical 
crack tip speed history obtained from one such experiment is plotted in Fig. 6. The 
shear wave speed of PMMA, cfMMA, is also plotted in the same figure for two extreme 
loading rates [(e = 10~3 s"1 and e = 103 s"1 (glassy state)] that may be typically 
expected in the region surrounding the propagating crack tip. The effective shear 
wave speed at a given point of observation would depend on the effective strain rate 
at that point and thus would like between the two extreme values shown in Fig. 6. 
After initiation the crack tip accelerated very rapidly to beyond the upper extreme of 
the shear wave speed of PMMA. Then the crack tip speed oscillated between the 
upper and lower extremes of Ci

PMMA for about 15 ps, after which it accelerated even 
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Fig. 5. Typical set of CGS interferograms obtained for dynamic crack growth along a PMM A/steel 
bimaterial interface subjected to impact loading. 

further. Crack tip accelerations were of the order of 108 m/s2, which establishes the 
highly unstable nature of this crack tip event. This dynamic and highly repeatable 
variation of the crack tip speed was first observed by Lambros and Rosakis (1995a) 
and explained by Lambros and Rosakis (1995c) and Liu et al. (1995). 

Tests conducted with Homalite-100/aluminum specimens, using the technique of 
photoelasticity, yield similar observations despite the fact that now different materials 
constitute the bimaterial interface. Figure 7 shows a typical set of isochromatic fringe 
patterns obtained for dynamic crack propagation along a Homalite-100/aluminum 
bimaterial surface (Singh and Shukla, 1996). The history of the crack tip speed 
typically observed for these experiments is plotted in Fig. 8. As observed for the 
PMMA/steel case the crack tip accelerated very rapidly after initiation to beyond the 
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Fig. 6. Typical crack tip speed history for dynamic crack growth along a PMMA/steel bimaterial interface 
subjected to impact loading. 

upper extreme of the shear wave speed of material-1 (Homalite-10). Thereafter, the 
crack tip speed stayed at this value for about 20 its, after which it accelerated even 
further. 

The terminal crack tip speeds that have been observed for these experiments were 
about 140% of the upper extreme of c5

PMMA for the PMMA/steel bimaterial interface 
and about 130% of the upper extreme 0f cfomalile"100 for the Homalite-100/aluminum 
bimaterial interface. Nevertheless, the dilatational wave speed of material-1 (PMMA 
or Homalite-100) was not exceeded in either case. Crack growth in this speed regime 
is termed as being intersonic. 

Crack propagation in the intersonic regime has a direct effect on the nature of the 
fringe patterns observed. At first the fringes are smooth and continuous, while the 
crack tip is still subsonic, as shown in the first few frames in Figs 5 and 7. Moreover, 
the forward and rear fringe loops focus at a single point along the interface, which is 
the crack tip. In subsequent frames, however, the fringes become squeezed and 
elongated normal to the interface. Finally, in the intersonic crack growth regime, the 
fringes in the center of the two lobed fringe pattern do not seem to focus to a single 
point along the interface. Instead they intercept the bond line over a finite area 
between the two main lobes, which is evident in the last frame in Fig. 5 and the last 
three frames in Fig. 7. This effect is seen clearly in Fig. 9, in which the length of the 
area between the front and back lobes is identified as /. The fringe pattern in this 
particular frame is caused by large scale contact of the crack faces along /, as the 
crack is propagating in the intersonic regime. This large-scale contact of crack faces 
was first observed by Lambros and Rosakis (1995c), theoretically confirmed by Liu 
et al. (1995), and also observed by Singh and Shukla (1996). From the numerical 
simulation point of view, Xu and Needleman (1996) have confirmed the existence of 
a contact zone area when the crack tip speed exceeds the lower of the two Rayleigh 
wave speeds. 
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Fig. 7. Typical set of isochromatic fringe patterns obtained for dynamic crack growth along a Homalite- 
100/aluminum bimaterial interface subjected to impact loading. 

Another direct consequence of intersonic crack propagation is the formation of a 
mach wave (or line-of-discontinuity) in the stress field surrounding the moving crack 
tip. The propagating crack tip acts as a source of shear and dilatational stress waves, 
which radiate out into the material and establish the stress field that surrounds the 
crack tip. If this source (the crack tip) propagates faster than the shear wave speed 
then the spreading out of the shear waves is limited and a mach wave (or line-of- 
discontinuity) forms. The existence of such mach waves was predicted by the analysis 
of Liu et al. (1995) but could not be confirmed by the earlier CGS experiments. Note 
that by the very nature of the technique, CGS would not be sensitive to these 
discontinuities in the stresses and hence the mach wave would not show up in the 
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Fig. 9. Enlarged view of CGS fringes in the intersonic crack growth regime showing the area of crack face 
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Fig. 10. Discontinuities of isochromatic fringe contours representing the formation of a mach wave. 

CGS interferograms. Experimental evidence of the mach wave is observed in the 
photoelasticity experiments in the form of discontinuous isochromatic fringe contours 
as shown in Fig. 10. The line originates at the crack tip and radiates out into the 
material. To the authors' knowledge this is the first direct observation of mach wave 
formation resulting from intersonic crack propagation along a bimaterial interface. 

Intersonic crack growth along an elastic/rigid interface 

It was noted earlier that both the PMMA/steel and Homalite-100/aluminum bima- 
terial systems can be modeled very well by an elastic/rigid approximation. Now, 
consider a crack propagating intersonically along an elastic/rigid interface, as shown 
in Fig. 11. Using an asymptotic analysis Liu et al. (1995) have shown that the stress 
field around the crack tip can be expressed as, 

HAQ 

-a/a. 

T" 

Oii+äv^y 
H(r]1+äsn2) + 2£ 

(-»h-<Vh)' 
H(-rj1-d,n2) 

(6) 
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Fig. 11. A crack propagating intersonically along an elastic/rigid interface. 

af = !--._ 1. (7) 

Where, v is the crack tip speed; \i, c, and cs are the shear modulus, dilatational wave 
speed and shear wave speed, respectively, of material-1 and H{-) is the Heaviside unit 
step function. Also, the functions ££, S?y and Z?- are functions of 9,, the crack tip 
speed, v, and the wave speeds of material-1, c, and cs. The scaled polar coordinates 
are defined as, 

^i+«?»/!, 9; = arctan 
«jth 

1i 

Finally, the strength of the crack tip singularity is given as, 

1 f«,<2,[4-(l-«2)2] 
q(v) = -arctan < —-—^-z 

n [4a2a2 + (l-a2)2 

(8) 

(9) 

The variation of the singularity exponent, q(v), with crack tip speed, v, is plotted 
in Fig. 12 for different values of the Poisson's ratio of the elastic material. The 
exponent starts at a value ofq(v) =0atv = cs and increases monotonically with crack 
tip speed till it reaches a maximum value at v = Jlcs. With further increase in the 
crack tip speed the exponent decreases monotonically back to the value q = 0. Note 
that q(v) remains less than 0.5 for the entire speed range considered. This limit on the 
maximum value of q(v) implies that energy flux into the moving crack tip is always 
zero irrespective of the crack tip speed in the intersonic crack growth regime. 

The asymptotic analysis is very useful in explaining several key features of intersonic 
crack propagation along bimaterial interfaces. The first result is that across the 
head wave front S0, see Fig. 11, the components of stress and particle velocity are 
discontinuous. Therefore, unlike subsonic crack growth where only one singular point 
is present at the crack tip, for the case of intersonic crack growth, an entire singular 
line of infinite jumps in stress and particle velocity appears in the body. The singularity 
across this line is the same as that at the crack tip. The line originates from the 
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Fig. 12. Variation of the singular exponent q(r) as a function of crack tip speed v for different values of 
Poisson's ratio (Liu el at., 1995). 

propagating crack tip and radiates out into the elastic solid. The existence of such a 
discontinuity is evident by inspection of eqn (6) shown above. This is the line- 
of-discontinuity that appears in the isochromatic fringe patterns obtained in the 
photoelastic experiments. The equation of the moving line of discontinuity is given 

by, 

f?,+a,f?2 = 0. (1°) 

Thus, the angular orientation of this line, with respect to the interface, can be expressed 
in terms of the crack tip speed, v, and the shear wave speed of the elastic material (or 
material-1), c,, as, 

tan/? = 
1 

(11) 

c, 

The orientations of the line-of-discontinuity determined from the experimental 
isochromatic fringe patterns were compared with the angles predicted by the above 
equation and are listed in Table 2. The correspondence between the experimentally 
observed and theoretically predicted angles is excellent and substantiates the fact that 
the experimentally observed line-of-discontinuity is indeed the theoretically predicted 
mach wave. Further evidence of the line-of-discontinuity is presented in the numerical 
simulations of Xu and Needleman (1996). Liu et al. (1995) also showed that there is 
no energy dissipation when the singular line S0 moves through the elastic material. 

Consider the normal tractions along the interface at an arbitrary distance a ahead 
of the moving crack tip, <722(fl,0

+,0, and the crack opening displacement at the 
distance a behind the moving crack tip, u2(-a,0+, t). Then it can be shown (Liu et 
al, 1995) that if the crack tip speed is in the range cs < v < Jlcs, <r22(a,0+, t) and 
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Table 2. Comparison of experimentally measured and theoretically predicted orien- 
tations of the line-of-discontinuity 

Frame number v/c Homalitc-100 
P Theory 

O 
/^Experiment 

O 

13 1.16 59.5 63 
14 1.19 57.5 55 
15 1.21 55.7 53 
16 1.30 50.3 48 

u2( — a, 0+, t) have opposite signs. This implies that when the normal traction ahead 
of the crack tip is positive, crack face penetration into the rigid substrate is predicted. 
Now, positive normal tractions ahead of the crack tip are required to facilitate 
interface rupture and crack face penetration is physically impossible. Hence, in the 
crack tip speed range cs < v < -J2cs the crack faces would come into contact behind 
the propagating crack tip. This accounts for the large-scale contact of crack faces 
observed experimentally in the CGS interferograms when the crack tip speed was 
indeed in the range CP

MMA
 < v < N/2c™MA. When the crack tip speed is in the range 

y/2cs < v < ch a positive normal traction ahead of the crack tip results in crack face 
opening behind the moving crack tip and no contact of the crack faces should be 
observed asymptotically. However, up to date, no observations of crack tip speeds 
greater than y/2cs have been made. 

It should be noted at this point that in the intersonic regime the asymptotic crack 
tip field does not have the oscillatory nature characteristic of all subsonic crack growth 
solutions. In the subsonic cases it is this oscillatory nature that accounts for contact 
and interpenetration. As discussed by Rice (1988), in most cases, this "small scale" 
contact is of the order of 10~8L, where L is a characteristic length of the problem. 
The situation here is very different. The observed and predicted contact zones are 
large scale (7 K 1-5 mm) and are not a result of an oscillatory nature of the field. In 
the present scenario contact is related to the intersonic motion of the crack tip 
disturbance. Indeed this phenomenon is reminiscent of the intersonic motion of a line 
load on an elastic half-space. In this problem when the speed of the moving load 
exceeds the Rayleigh wave speed of the half-space the direction of surface displace- 
ments, under the load, is in opposition to the direction of loading as discussed by 
Georgiadis and Barber (1993). 

When crack face contact does indeed occur, the asymptotic solution is no longer 
valid and the problem must be revisited under different crack face boundary 
conditions. Nevertheless, despite this limitation the solution does provide considerable 
conceptual insight into the intersonic crack growth phenomenon. 

Same qualitative observations as above have been made for a more realistic ela- 
stic/elastic analysis for intersonic bimaterial crack growth (Huang et al., 1996). Here 
again traveling mach waves have been predicted. Also, for certain crack tip speed 
range large-scale contact was implied by the solution. However, the details of the 
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Fig. 13. Schematic of crack face openings for an intersonically propagating interface crack. 

speed range where contact is predicted is slightly modified depending on the relative 
magnitudes of wave speed mismatch of the two elastic solids. 

Given the experimental observations presented in the previous section and the 
asymptotic analyses of Liu et al. (1995) and Huang et al. (1996) it is believed that 
when the crack tip is propagating in the regime c, < v < Jlcs, with respect to 
material-1, the crack faces behind the moving crack tip would be in contact. This 
contact zone would propagate along with the moving crack tip as illustrated in Fig. 
13. Finite contact behind the propagating crack tip raises the possibility of two mach 
waves being generated at the moving crack tip and at the end of the contact zone. 
Indeed, most recent experimental observations based on photoelasticity clearly show 
the existence of two such mach waves when the crack propagates in the regime 
cs<v < Jlcs with respect to the more compliant material (Singh et al, 1997). Figure 
14 shows the two shock waves observed using dynamic photoelasticity for intersonic 
crack propagation along a homalite-100/aluminum interface. In addition, the exper- 
iments also show that the two shock waves are equally inclined to the interface and 
indeed propagate with the same speed for substantial time periods throughout the 
experiments. 

Very recently, Huang et al. (1997) have employed an asymptotic analysis to deter- 
mine the stress field around crack tip propagating intersonically along a bimaterial 
interface accounting for frictional, finite crack face contact (as shown in Fig. 15). 
They have shown that the stress field around the crack tip is given as 

(iA0     (\+2af+d^ 

1 +a, a; r'i'rV- 
(a;a, cos ß + sin ß) 

^ {H(R{) +(cos qtn-upiSmqriiH^-HiR!)]} 
\R, I"\R,\q- 

+ a?-l 

RA'"\R2\'h 
[(a,dscos(ql +q2)7i + sm(ql+q2)n)H(- R2)]>     (12a) 

— uAa   fl — d?7 ^ „     .   „-. 
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Rayleigh Singularity     Contact Zone Crack Tip 
Fig. 14. Details of the isochromatic fringe patterns around the intersonically propagating crack tip showing 
the primary and secondary mach waves as lines-of-discontinuity, the dynamically moving contact zone, 

and the Rayleigh disturbance. 
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Fig. 15. An interface crack propagating intersonically between an elastic solid and a rigid substrate, with 
a finite contact zone of length / trailing the crack tip. 
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Where, / is the friction coefficient, / is the contact length, H(x) is the Heaviside 
function, and 

»j, = x — vt   J?2 = y 

r, = s/tf + vjtli,    0, = arctan    [-1-1 

(13) 

''2 = yOlTT/F+a?'??,    ö2 = arctan 
CV?2 

a, =     1 ■ ■-1 

c]i = -tan" 
71 

tan" 

cj V c; 

/?, = JJ, + &st]2,    R2 = )?, + dsrj2+l 

a,(l+d;)(l+las) 

(14) 

(15) 

(16) 

a,2d,(l + d2 +21a,)+ A(l -a2) 

'     a,(l-df)[2Adt-(l-(x2)] 

4a,2d,(l +d; +2Ad,) + A(l -a,2)3. 

ß = ql0]+q2e2. 

(17) 

(18) 

The functions </, and g2 represent the singularity strengths at the crack tip and at 
the end of the contact zone. For a far-field observer located at r = L » /the crack tip 
and the end of the contact zone appear as one and have a stress singularity given as 

q\+qi (19) 

Where, the coefficient q is the same as defined by eqn (9) and plotted in Fig. 12. 
The solution features a large-scale contact zone and predicts two distinct traveling 

mach waves, one emanating from the crack tip and the other from the end of the 
contact zone. Moreover, it also predicts a non-zero energy dissipation rate due to 
frictional dissipation associated with the contact region. Figure 16 shows rep- 
resentative isochromatic fringe patterns generated using the crack tip stress fields 
given in eqn (12). Here the crack tip is propagating with velocity v = 1.2c,. as for the 
experimental case shown in Fig. 14. The theoretically generated fringe patterns show 
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Contact Zone 
Fig. 16. Representative isochromatic fringe patterns generated using the asymptotic crack-tip stress fields 

(Yang «a/., 1997). 

the existence of two distinct mach waves, one emanating from the crack tip and the 
other from the trailing edge of the contact zone. 

Future directions 

Motivated by the critical crack opening and shearing displacement criterion for 
subsonic crack growth along a bimaterial interface (Lambros and Rosakis, 1995b) a 
fracture growth criterion has also been proposed for the case of intersonic crack 
growth along a bimaterial interface (Huang et al., 1997). In the absence of opening 
displacements in the contact zone for intersonically growing interface cracks (as 
depicted in Fig. 15) it is postulated that intersonic crack growth will take place in the 
presence of a critical sliding displacement evaluated at the end of the contact zone 
(Huang etal, 1997), 

«iOh -l,tl2=0+) = oc. (20) 

Where, Sc. is the critical value of the sliding displacement and depends only on 
bimaterial and bond properties. Based upon eqn (20) it is possible to express the 
normalized energy dissipation rate associated with the propagating crack as a function 
of the crack tip speed. Figure 17 shows the variation of the normalized energy 
dissipation rate as a function of crack tip speed for the case of a positive coefficient 
of contact friction, X. For this specific case it is found that the energy dissipation rate 
has a large but finite value at cs. This suggests that there exists a finite energy barrier 



«3 

G 

Intcrsonic crack propagation in bimaterial systems 

I 

1809 

I 

\      \ 
a 

CrJ - \     \ 
0 - \ 
o 

2 _ \   \ 
cd \      \ 
CO 
CO \ 

A = +oo,5.0,2.0, 1.0, 0.5 

1.0 1.1 1.2 1.3 

Crack-Tip Speed, v/c 

1.4 

Fig. 17. Normalized energy dissipation rate for intersonic crack propagation along an elastic/rigid interface 
(Yang e/cv/., 1997). 

at the velocity c„ which is consistent with experimental observations (Liu et al., 1993; 
Lambros and Rosakis, 1995c; Singh et al., 1997). In these experiments it was observed 
that the crack seemed to favor growth at c = c, and stayed at this speed for a 
substantial period of time before accelerating further in an unstable fashion. Indeed, 
the unstable acceleration of the crack tip beyond Jlcs is consistent with the decreasing 
energy dissipation rate, as shown in Fig. 17. 

Very recent experiments conducted on the PMMA/Aluminum bimaterial system 
have demonstrated that it is possible for bimaterial cracks to propagate at speeds 
even greater than yjlc, of the more compliant material (i.e. PMMA). These exper- 
iments employed the same specimen geometry and loading arrangement as before. 
However, the time window of observation was extended to observe more of the 
fracture process. A typical selected sequence of CGS interferograms from such an 
experiment is shown in Fig. 18. Note that, as before, the CGS fringes are observed 
only in the PMMA side of the specimen. The history of the crack tip speed obtained 
from this experiment is plotted in Fig. 19. Itcan be seen that the crack propagates 
for some time in the regime cs <v< 2C,PMMA before accelerating further in a 

rapid unstable fashion. Terminal crack tip speeds in this case have exceeded not only 
the plane wave speed of PMMA, \ but also the Rayleigh wave speed of alumi- 
num. Thus, this is the case of crack growth being truly supersonic with respect to the 
compliant half of the bimaterial interface. Note that once ^/2c?MMA has been exceeded 
there is no further requirement for crack face contact and the model depicted in Fig. 
15 must be revisited and suitably modified. 
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Fig. 18. Typical set of CGS interferograms obtained for dynamic crack growth along a PMMA/aluminum 
bimaterial interface subjected to impact loading. (Extended time window of observation.) 

CLOSURE 

This paper describes experimental observations of various phenomena charac- 
teristic of dynamic intersonic decohesion of bimaterial interfaces. The optical tech- 
niques of coherent gradient sensing (CGS) interferometry and photoelasticity, were 
employed in conjunction with high speed photography, in separate yet complementary 
experiments, to explore intersonic interfacial crack propagation in two different bima- 
terial systems, namely, PMMA/steel and Homalite-100/aluminum. 

Using the two techniques the nature of large-scale contact and mach wave formation 
at the vicinity of running cracks in the two bimaterial systems is explored. It is 
confirmed that large-scale contact does indeed occur when the crack tip speed is in 
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Fig. 19. Crack tip speed history of dynamic crack growth along a PMMA/aluminum bimaterial interface. 

the c( <v< y/2cs regime, as implied theoretically. Also, direct visual evidence is 
obtained for mach waves emanating from the intersonically moving crack tip and the 
end of the intersonically moving contact zone. In view of these experimental obser- 
vations, a physical model for intersonic crack propagation along bimaterial interfaces 
was presented and ratified in view of recent theoretical developments. Finally, very 
recent experimental evidence was presented to demonstrate the possibility of super- 
sonic crack growth along a bimaterial interface. 
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ABSTRACT 

Frictional crack bridging is the main mechanism of toughening in brittle fiber/brittle matrix composites. 
In addition, the fibers may have a second beneficial effect: they tend to trap cracks propagating through 
the solid, and may cause them to arrest. The effectiveness of crack trapping increases with the fracture 
toughness of the interface between fibers and matrix. In contrast, crack bridging tends to be more effective 
if the interface between fibers and matrix has a low fracture toughness. In this paper, we study the competing 
effects of crack trapping and bridging in a brittle fiber/brittle matrix composite. A numerical method is 
used to predict in three dimensions the path of a crack as it bypasses rows of fibers in an ideally brittle 
matrix. The results are used to deduce the influence of crack trapping on the toughness of the composite. 
In addition, a simple model of frictional crack bridging is used to compare the relative effects of crack 
trapping and bridging. It is shown that, in general, the influence of bridging greatly exceeds that of trapping. 
However, if the fibers have a low tensile strength and there is a large resistance to sliding between fibers 
and matrix, crack trapping can be significant: in this case, the best composite toughness is achieved by 
using a tough interface between fibers and matrix. © 1998 Elsevier Science Ltd. All rights reserved. 

1.    INTRODUCTION 

Ceramics have a high specific stiffness and yield stress; they melt at high temperatures, 
and are resistant to wear, oxidation and corrosion. Materials with these properties 
are in demand for a number of applications, particularly where components are 
required to withstand high temperatures and a hostile environment. However, cer- 
amics have a very low ductility and fracture toughness compared to metals. This 
severely limits their performance, and at present ceramics can only be used in com- 
ponents which are subjected to modest loads. There is therefore great interest in 
finding ways to improve their fracture toughness. 

One promising approach is to add a second phase to the solid, in the form of 
particles, whiskers or fibers. Two general types of composite are made in this way. In 
one type, a tough, ductile material (such as a metal) is chosen for the second phase, 
and the reinforcing particles are strongly bonded to the matrix. In this case, the 
reinforcing particles have two beneficial effects: firstly, they trap the front of a crack 
as it propagates through the solid, and may cause the crack to arrest. Secondly, they 

*To whom correspondence should be addressed. Terra Tek, University Research Park, 420 Wakara 
Way, Salt Lake City, UT 84108, U.S.A. E-mail: analysis® terratek.com 
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are left intact in the wake of the crack, pinning the crack faces and carrying part of 
the load. Both experiment and theory show that the combined effects of crack trapping 
and bridging can increase the toughness of a brittle matrix a factor of 10 (Kristic et 
al., 1981; Kristic, 1983; Bower and Ortiz, 1991). The toughness of the composite 
increases with the toughness and volume fraction of the reinforcing phase. 

The main disadvantage of reinforcing a ceramic with metal particles is that the high 
temperature performance of the composite is limited, due to oxidation and melting 
in the metal. For high temperature applications, it is common to reinforce ceramics 
with ceramic fibers: one example is an alumina matrix reinforced by silicon carbide 
fibers. In this case, the toughness of the fibers is comparable to that of the matrix. To 
strengthen the composite, the interface between fibers and matrix must have a low 
toughness. Then, as a crack propagates through the solid, it is deflected along the 
interface between fibers and matrix. Many fibers remain intact in the wake of the 
crack, and are progressively pulled free from the surrounding matrix as the crack 
faces separate. Energy is dissipated by frictional sliding, so the toughness of the 
composite may be considerably greater than that of its constituents. 

Brittle matrix/brittle fiber composites must be designed with care. The strength of 
the composite is very sensitive to the properties of its constituents, and to the properties 
of the interface between fiber and matrix. Unless the combination of material proper- 
ties is chosen correctly, the toughness of the composite may be little better than that 
of the matrix. Much effort has therefore been devoted to finding materials and 
interfaces that optimize the fracture resistance of composites. 

To direct the development, it is helpful to predict the combination of material 
properties which should lead to the highest strength. A number of theoretical models 
have been developed for this purpose, (Rose, 1987; Budiansky, 1986; Budiansky et 
al., 1988; Becher et al., 1988; Budiansky and Amazigo, 1989; Nair, 1990). The 
standard approach is to assume that frictional crack bridging is the main mechanism 
which is responsible for improving the strength of the composite. The effect of the 
bridged zone in the wake of a crack is often idealized as a distribution of pressure 
p(S) which acts on the crack faces. The relationship between the pressure p and the 
crack opening 8 is found by calculating the force required to pull a single fiber free 
from the matrix. The pull-out force is determined by a number of factors, including 
the fracture toughness of the interface between fiber and matrix; the nature of the 
friction force acting between the sliding surfaces; the geometry of the fibers; and 
residual stresses in the solid. Once the functionp{8) has been found, one may calculate 
the toughness of the composite, the length of the bridging zone, and the crack opening 
displacements, as a function of the properties of the materials. Models of this type have 
successfully predicted many of the features of fracture in fiber reinforced composites. 

There is no doubt that frictional crack bridging is the dominant toughening mech- 
anism in brittle matrix/brittle fiber composites. However, the fibers have another 
important effect. Suppose that a semi-infinite crack propagates through a fiber 
reinforced solid, as illustrated in Fig. 1. One of several possible events may occur 
whenever the crack meets the fibers. If the fiber toughness exceeds that of the matrix, 
and the fibers are strongly bonded to the surrounding material, then the crack is 
trapped by the fibers. This process can significantly improve the strength of a brittle 
solid. However, for trapping to be effective, the fiber toughness must be at least three 
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Fig. 1. Idealized model of a crack bypassing a row of fibers. 

times that of the matrix. If the fibers have a low toughness, the semi-infinite crack 
breaks through them, and the toughness of the composite is little better than that of 
the matrix. One may prevent the fibers from breaking by bonding them only weakly 
to the surrounding solid. Then, the semi-infinite crack is deflected along the interface 
between fibers and matrix. The crack is effectively trapped within the interface: the 
semi-infinite crack bypasses the fibers, which are left intact in the crack wake, and 
toughen the solid by frictional crack bridging. 

Although this form of crack trapping is not as effective as the trapping by strongly 
bonded, tough fibers, it nevertheless influences the toughness of the composite. If 
the interface between fiber and matrix is relatively strong, one might expect some 
improvement in toughness due to trapping, while if the interface has a low toughness, 
the solid may be weakened by the debonding. A detailed analysis of this process has 
not yet been attempted. Existing models of fracture in brittle fiber reinforced com- 
posites either neglect the effects of crack trapping altogether, or assume that fiber 
debonding reduces the strength of the matrix. In this paper, we present a detailed 
three dimensional analysis of crack trapping by fibers in a brittle matrix. 

Figure 1 shows our model of fracture in a fiber reinforced composite. The matrix 
is taken to be an isotropic linear elastic solid, with Young's modulus E and Poisson's 
ration v. The matrix is assumed to be ideally brittle, with a mode I plane strain fracture 
toughness K™K or critical energy release rate G",:,t- The so,id is reinforced by a regular 
distribution of long, cylindrical fibers, with radius R and spacing b. For simplicity, 
we assume that the fibers have the same elastic properties as the matrix. The fibers 
are also assumed to be ideally brittle, with fracture toughness K™ and critical energy 
release rate G"b. The interface between fibers and matrix is taken to be ideally brittle 
as well, with interface toughness G'f. For simplicity, we assume that the solid is stress 
free when unloaded. 

To calculate the toughening due to crack trapping, we investigate the behavior of 
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a planar, semi-infinite crack as it propagates past a row of fibers. The shape of the 
crack is calculated in detail, and the toughening is estimated by computing the load 
required to bypass the row of fibers. The results are used to investigate the influence 
of the interfacial toughness and fiber volume fraction on the toughening due to crack 
trapping. Our results show that crack trapping can significantly improve the strength 
of a fiber reinforced solid, even if the interface between fibers and matrix has a 
low fracture toughness. The toughening due to trapping increases with the fracture 
toughness of the interface. 

In contrast, several authors have shown that if one reduces the fracture toughness 
of the interface, the toughening due to frictional crack bridging tends to increase. 
This suggests that there may be an optimal value for the interface toughness, which 
leads to the greatest toughness for the composite. To investigate this possibility, we 
have estimated the combined effects of crack trapping and bridging on toughness, 
to find the effects of crack bridging, we have used the results of calculations by 
Charalambides and Evans (1989), Hutchinson and Jensen (1990), and Nair (1990). 
These models approximate the bridging region as a cohesive zone in the crack wake: 
the toughening is deduced by finding the work done to pull a fiber free from the 
matrix. 

2.    ANALYSIS OF CRACK TRAPPING 

2.1.    Assumptions 

We begin by calculating the toughening due to crack trapping. For this purpose, 
we suppose that the composite contains a planar semi-infinite crack, whose plane is 
perpendicular to the fiber axes. The crack faces are assumed to be free of bridging 
fibers. We suppose that the crack front is initially straight, and lies just short of a row 
of fibers. The solid is subjected to remote loading so as to induce mode I stress 
intensity factors on the initial crack front. The magnitude of the external loading is 
parameterized by a remote stress intensity factor Kf. We now suppose that the remote 
load is progressively increased. 

The remote load induces uniform mode I stress intensity factors on the initial crack 
front. When the remote load reaches a magnitude Kf = Kf£\ the crack begins to 
propagate. In all the calculations presented here, we have selected parameters so that 
the crack is either trapped at the fibers, or is deflected along the interface. The 
remainder of the crack bows out between the fibers. Our objective is to calculate the 
shape of the crack (including any crack growth along the interface), and to estimate 
the critical load required to bypass a row of fibers. 

The shape of the crack is determined by an appropriate fracture criterion. The 
crack may adopt a complex three-dimensional shape, and generally propagates in 
mixed mode: one must therefore specify the influence of mode mixity on the fracture 
process. We have used a particularly simple fracture criterion in our analysis. A local 
energy release rate G(s) is defined at each point on the crack front 

GJ^{K>+K» + ^) (1) 
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At points where G < Gc, the crack is assumed to arrest. For crack growth to be 
possible, the condition G = Gc must be satisfied. Situations in which G > Gc are 
assumed to be physically inadmissible. Where the crack lies in the matrix, we assume 
that it grows in a direction so as to satisfy Ku(s) = 0. Cracks which are trapped in the 
fiber/matrix interface may propagate in fully mixed mode. 

This approach has been shown to predict accurately both fracture loads and crack 
trajectories in homogeneous solids. However, it is likely to underestimate the strength 
of an interface. Experiments show that the toughness of an interface increases with 
the ratio of KJK, (Evans et al., 1989; Hutchinson and Suo, 1991; Shih, 1991): this 
is not predicted by the simple fracture criterion that we have adopted. Consequently, 
our calculations are likely to underestimate the toughening due to trapping. 

2.2.    Numerical procedure 

To apply the fracture criterion, one must calculate distributions of stress intensity 
factor and energy release rate around the crack front. We have used a numerical 
procedure to do this. The method is described in detail by Xu and Ortiz (1993), so 
only a brief summary is given here. Consider a three-dimensional crack in an infinite, 
linear elastic solid. Let S denote the plane of the crack, and let n(x) be a unit vector 
normal to S at x. Suppose that the solid is loaded by remote stress tr00, which induces 
a displacement jump u(x) in direction n(x) across S at x. Xu and Ortiz (1993) show 
that the potential energy of the solid $ may be expressed as 

0[u] = W[u] u • ff00 • n dS. (2) 

Here, W[u] represents the elastic strain energy due to introducing the displacement 
discontinuity u(x) into the solid. It may be computed by representing the crack as a 
distribution of dislocation loops which lie on the cracked plane. Xu and Ortiz (1993) 
give the following expression for W 

W[u] = 
An 

[e, -(n(x) x Vuj(x))][ej-(n(g) x V»,(£))] 
R 

dAs dAx 

8TT s J 

8rc(l-v) 

[e, -(n(x) x Va,(x))][e; -(n(g) x V»,(g))] 
, R "      x 

f [e, x (n(x) x V»,(x))] • T • [ey x (n(g) x VHy(g))] ^ ^ 
R 

Here, e, denote a set of Cartesian basis vectors; V is the gradient operator; /J, and v 
are the shear modulus and Poisson's ratio of the solid; R = |x — g|, and T is a tensor 
with components 

d2R 
T =  

v     dXjdXj 
(4) 

To calculate stress intensity factors for an arbitrarily shaped crack, one must find 
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the distribution of crack opening displacements which minimizes eqn (2). A numerical 
approximation is found by dividing the surface of the crack into a number of six- 
noded triangular elements, and using quadratic shape functions to interpolate the 
crack opening displacements within each element. For elements on the crack front, 
the mid-side nodes are relocated to quarter-point locations so as to approximate 
accurately the parabolic variation of opening displacements. By substituting the 
resulting expressions for the opening displacements into eqns (2) and (3), one finds a 
system of linear equations for the opening displacements at discrete points on the 
cracked surface. One advantage of this formulation is that the system of equations is 
symmetric. Finally, the stress intensity factors are deduced from the asymptotic 
variation of crack opening displacements near the crack front. 

As the crack propagates around the fibers, the shape of the crack must be adjusted 
so as to satisfy the fracture criteria at all points on the crack front. We have used two 
procedures to do this. In simulations where there is no fiber debonding, we calculate 
the crack shape by integrating a pseudo-dynamic equation of motion for the crack 
tip. Freund (1990) has shown that the velocity of the tip of a semi-infinite crack under 
mode I loading is closely approximated by 

(cR[\-GJG(s)],    G(s)>Gc, 
a(s) = < . (J) 

[0 G(s) <GC 

where ä is the rate of crack advance, and cR is the Rayleigh wave speed for the 
material. We have used this expression to compute the rate of advance of each point 
on the crack front. The shape of the crack is then computed by integrating the rate 
of crack advance using a simple Euler time marching scheme. To ensure that G(s) ~ Gc 

over all propagating regions of the crack, the remote load is increased slowly so that 
ä « cR. In situations where the crack does not grow in a plane, one must also calculate 
the direction of growth. Here, we wish to enforce the condition Kn{s) = 0 over regions 
of the crack front in the matrix. For this purpose, we compute the kink angle co(s) at 
each point on the crack front from the first-order estimate co(s) = IKn^/K^s). 
Provided that the crack is advanced in small steps, we have found that this procedure 
ensures that Ku(s) « K^s). 

In situations where fiber debonding occurs, we have found it more convenient to 
satisfy the fracture criterion by iteration. Initial, approximate crack profiles are 
adopted at various stages of growth. The final profiles and remote loads are computed 
by repeatedly advancing regions of the crack front where the energy release rate 
exceeds the fracture toughness, and healing regions which have G > Gc. This process 
is continued until the fracture criterion is satisfied within a prescribed tolerance. 

2.3.    Results 

To illustrate the general process of crack trapping by tough fibers in a brittle matrix, 
we first consider a planar crack as it bypasses tough fibers that are strongly bonded 
to the matrix. Similar analyses have been described by Fares (1989) and Bower and 
Ortiz (1991), so our results are presented mainly for comparison. 

Suppose that a brittle matrix, fracture toughness Kfg\ is reinforced by a rectangular 
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Fig. 2. Profiles of a semi-infinite crack as it bypasses two rows of impenetrable, strongly bonded fibers. 

array of circular fibers, with radius R and spacing b. Assume that the toughness of 
the fibers greatly exceeds that of the matrix, and that the fibers are perfectly bonded 
to the matrix. We now consider the behavior of a planar, semi-infinite crack as it 
propagates through the matrix. Figure 2 shows a sequence of profiles of the crack 
front as it bypasses two successive rows of fibers. Results are shown for a ratio of 
fiber radius to spacing R/b = 0.25. Initially, the crack front is straight. When it meets 
a row of fibers, parts of the crack arrest: to drive the crack past the fibers, one must 
increase the remote stress. In Fig. 2, we have shown values of the remote load, 
parameterized by a remote stress intensity factor KiJjK™\ at various stages of crack 
growth. Also shown is the maximum value of stress intensity factor on the crack front 
K'™x/K™1. Eventually, the crack bows so far past the row of obstacles that parts of 
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Fig. 3. Variation of remote stress intensity factor with mean distance advanced by the crack, as a crack 

bypasses two rows of tough fibers. 

the crack front are attracted to one another: thereafter, the crack propagates under 
decreasing remote load, until it reaches and bypasses another row of obstacles. 

Figure 3 shows the variation of remote load KfjK™1 as a function of mean crack 
advance (a}/R, where <a> is the square root of the area swept by the propagating 
crack and R is the particle radius. Evidently, the remote stress intensity factor must 
be increased to 2.4 times the matrix toughness to bypass a single row of fibers. We 
take this maximum value of K™ to be the effective toughness of the solid due to 
trapping, since this is the apparent toughness that one would deduce by measuring 
the load required to initiate unstable crack growth. 

These results confirm earlier computations which predict substantial increases in 
strength due to crack trapping. Bower and Ortiz (1991) have conducted a detailed 
parametric study of crack trapping by tough, perfectly bonded fibers. For modest 
volume fractions of fibers, their numerical results are closely approximated by the 
expression 

Ui"c7 
= l 

2R ,^,1+4,f     b (6) 

where Gcap is the maximum remote energy release rate required to bypass a single 
row of fibers. This expression is valid in the range 0 < R/b < 0.35. 

Experiments conducted by Mower and Argon (1995) have confirmed many of the 
predicted features of crack trapping. In particular, they have shown that the pre- 
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dictions of eqn (6) agree with experiment; in addition, the measured profiles of the 
crack front match the theoretical predictions well. However, the experiments showed 
a striking feature that has not been predicted theoretically. Figure 2 shows the crack 
front coalescing with itself on the far side of a row of trapping fibers. Experiments 
show that this does not occur: instead, the two lobes of the crack front ahead of the 
fiber bypass one another and overlap. 

We have investigated the cause of this phenomenon and its influence on the effective 
toughness of the solid. For this purpose, we suppose that the initial semi-infinite crack 
is not perfectly planar, but contains a small periodic geometrical perturbation which 
may promote non-planar crack growth. In the simulation we present here, assume 
that the height of the initial crack plane above z = 0 is given by 

z(x,y) = 
(x + o0)Qsin(27t>7/?),    x > 

0 x < a. 
(7) 

0 

with Ci = 2.5° and a0 = b/2. We then calculate the path of the crack as it bypasses a 
single row of fibers, as before. Figure 4 shows the predicted crack profiles after the 

Fig. 4. The profiles of a semi-infinite crack as it asymmetrically bypasses perfectly bonded impenetrable 
fibers. 
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crack has bypassed the fibers. The two approaching crack tips avoid one another and 
overlap, as observed in the experiments. The variation of remote stress intensity factor 
as the crack grows has been added to Fig. 3. The results are very similar to those 
obtained for a perfectly planar crack, except that for the planar crack, the load drops 
precipitously while the crack coalesces with itself; this drop is not observed for the 
non-planar crack. However, the peak load required to bypass the fibers is not affected, 
so this phenomenon has no practical significance. Henceforth, we will assume that 
the initial semi-infinite crack in the solid is perfectly planar. 

The simulations shown in Fig. 2 show that the fracture toughness of the fibers must 
be at least 3.5 times that of the matrix for the crack to bypass the fibers. More 
generally, Bower and Ortiz (1993) suggest that for bridging particles to form, the fiber 
toughness should exceed 

G^/GT>(2.l+4.iR/b)2 (8) 

If this is not the case, the semi-infinite crack cuts through the fibers: the maximum 
possible toughness of the composite is then (Rose, 1975) 

Gmat b   yGm^ j 

If the fiber toughness Gf is comparable to G™\ very little improvement in toughness 
is observed. 

If brittle fibers are to reinforce a brittle solid, the interface between fibers and 
matrix should have a low fracture toughness. Then, if a semi-infinite crack meets the 
fibers, it is deflected along the interface, so that bridging fibers may remain intact in 
the crack wake. He and Hutchinson (1989) have shown that crack deflection will 
occur if the interface toughness is sufficiently low, G™' < 0.25Gf. Our objective is to 
investigate the influence of crack trapping in a composite where this condition is 
satisfied. 

Figure 5 shows a typical sequence of crack profiles as a semi-infinite crack bypasses 
a single row of fibers. In the simulation shown, the fiber radius R/b = 0.25, and the 
interface toughness Gf = 0.25G™at- We have also assumed that G[lb ^ Gfat: there- 
fore, the crack deflects up the interface between fibers and matrix. The crack deflection 
retards the matrix crack, and one must increase the remote load to bypass the fibers. 
Figure 6 shows the variation of remote load, parameterized by the remote stress 
intensity factor Kf, as the crack bypasses the fibers. The angle a shown in Fig. 1 is 
used to characterize the extent of crack growth. Results are not shown for a > 120°, 
because at this point the crack faces come into contact at some points within the 
debonded region. Our numerical procedure is not yet able to account for crack face 
contact and friction. The results shown in Fig. 6 suggest that interfacial debonding 
considerably reduces the effectiveness of crack trapping. Nevertheless, we find some 
improvement in toughness due to trapping, even if the interface has a low fracture 
toughness. 

Figure 7 shows the predicted variation of stress intensity factors around the crack 
front. The debond in the fiber/matrix interface evidently propagates under strongly 
mixed mode loading. This demonstrates that it is important to characterize the 
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a=120° 

a=100° 

Fig. 5. Profiles of a semi-infinite crack as it bypasses weakly bonded fibers. 

mixed mode fracture behavior of interfaces accurately. Several experiments have been 
conducted to measure the influence of mixed mode I/mode II loading on interfacial 
fracture (Cao and Evans, 1989; Wang and Suo, 1990; O'Dowd et al, 1992). The 
effects of mode III loading are not as well understood. 

For practical purposes, the influence of interfacial toughness and fiber volume 
fraction on the effective toughness are of particular interest. We have not been able 
to calculate the maximum load required to bypass a row of fibers, due to the difficulty 
in accounting for contact between the crack faces. Instead, we have used as a measure 
of effective toughness the load required to propagate the crack to a critical configur- 
ation, such that the angle a = 90°. The results shown in Figs 2 and 5 suggest that, for 
a weakly bonded interface, this is likely to underestimate the true effective toughness 
by about 10%; while for a perfectly bonded interface, this procedure would under- 
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estimate the toughening by approximately 30%. Nevertheless, it is likely to predict 
the trends accurately. 

Using this procedure, we have plotted the predicted variation of toughness as a 
function of interface toughness in Fig. 8, for various fiber radii Rib. The strengthening 
caused by crack trapping increases with the toughness of the interface, and with the 
volume fraction of fibers. It is important to note that the predictions in Fig. 8 are 
valid only if the fiber is sufficiently tough for crack deflection to occur: this requires 
that G[lb > 4G™1. The toughening due to trapping will continue to increase with G™1 

until the interface is strong enough to prevent crack deflection, in which case the 
toughness may be computed from eqn (6). 

3.    ANALYSIS OF CRACK BRIDGING 

Crack trapping is not the main mechanism of toughening in brittle fiber reinforced 
composites; the most important effect is frictional bridging in the wake of the crack. 
The analysis described in the preceding section shows how bridging fibers are formed: 
the crack repeatedly bypasses rows of fibers, leaving debonded fibers in its wake. 
Several hundred rows of bridging fibers may form in this way. A three-dimensional 
analysis of this process would be prohibitively expensive, so we have resorted to a 
simple two dimensional model to estimate the influence of bridging fibers. Our objec- 
tive here is to assess the interaction between crack trapping and bridging in a fiber 
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reinforced composite, rather than to develop a new model of crack bridging. We 
therefore used results from Charalambides and Evans (1989), Hutchinson and Jensen 
(1990), and Nair (1990) to estimate the effects of crack bridging. 

Following the standard approach, we idealize the bridging zone in the crack wake 
as a distribution of pressure p(ö) which acts on the crack faces. The variation of 
pressure p with crack opening displacement <5 is estimated from the force required to 
pull a single fiber free from the matrix. It is then straightforward to find the toughness 
due to combined trapping and bridging. As before, we do so by considering the 
behavior of a semi-infinite crack as it bypasses a single row of fibers. We suppose that 
there is a fully formed bridging zone in the crack wake, whose length remains constant 
as the crack grows. Provided that the bridging zone is much longer than the spacing 
between fibers, the effect of the pressure acting on the crack faces is simply to reduce 
the energy release rate uniformly over the propagating crack front. One may calculate 
the reduction in G(s) suing the / integral, following the procedure outline by Rose 
(1987) and Budiansky and Amazigo (1989). The result is 

AGb p(S) da. (10) 

To fracture the composite, the remote load must be increased until G(s) = G"rap, where 
G,rap is the critical energy release rate required to bypass a row of fibers, calculated in 
the preceding section. Thus, the effective toughness of the composite follows as 

Gcff = Gtrap + AGbridg (11) 

To find AGbridg, one must find the cohesive law p(S) which characterizes the bridged 
zone in the crack wake. For this purpose, we idealize the bridged region as shown in 
Fig. 9. The matrix is assumed to be reinforced by a volume fraction / of long, 

G 

tttttttttttttt 

a 
Fig. 9. Idealized model of fibers pulling out in the wake of a crack. 
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cylindrical fibers with radius R, which are progressively pulled free from the matrix. 
We suppose that both fibers and matrix have the same Young's modulus E and 
Poisson's ratio v, and residual stresses are neglected. The fracture toughness of the 
interface between fibers and matrix is assumed to be sufficiently low that debonding 
is initiated while a crack bypasses the fibers, as described in the preceding section. 
Thereafter, the fibers continue to debond from the matrix due to a cylindrical crack 
which propagates up the interface. We assume that after debonding, a shear stress x 
resists sliding between the fibers and the matrix (any tendency for the fiber to lose 
contact with the matrix is neglected, for simplicity). 

Hutchinson and Jensen (1990) show that under these conditions, the longitudinal 
stress in the fiber <r"b varies linearly in the debonded region of the fibers, 

(rB = V-2t^ (12) 
/ K 

where ax is the stress in both matrix and fibers some distance above the debonded 
region. This expression is valid for z < ld, where /d is the length of the debonded region 

/„     I-fa-     \(\-f)EGT\ul (13) 

R       If   x      \(\-v2)Rx2 

Evidently, the greatest stress in the fiber (apart from the stress singularity at the tip 
of the debond) occurs at z = 0. We suppose that the fibers continue to pull free from 
the matrix until the maximum fiber stress reaches a critical value, of™ = <7fract, where- 
upon the fibers break at z = 0. In practice, experiments show that many fibers fracture 
at the end of the debonded region, and are subsequently pulled free from the matrix. 
By assuming all fibers break at z = 0, we underestimate the toughness due to bridging. 

To find the properties of the cohesive zone/>(£>) required in eqn (10), we imagine 
the crack faces to be some distance above the debonded region of the fibers. Then, 
we identify the pressure p acting on the crack faces as p = ax. The displacement of 
the crack faces ö is taken to be the additional relative displacement of material 
points above and below the debonded region due to fiber debonding. The additional 
displacement may be deduced by integrating the strain in the fibers 

7 (\—f) er00 x I2, vnb-o/£dz=iy^/d-H (i4) 

Substituting for /d and using p = (j°°, one may write the cohesive law in a simple form 

(k2     /      k2\   5  V'2    .     . 
= 2{-r +   l--rr h—}       S<5{mA 

fffrac. Iß2 \ ß2JÖln 

P       0   <5><5fract (15) 
°fract 

where <5fract is the crack opening displacement at the point where the fibers break, and 
k, ß are dimensionless constants, defined by 
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R{\-fY°La G^    „ = f£    (l-v2)(l-f)R 

Finally, evaluating the integral in (10), we conclude that 

AGbridg 4/(1 _/} 

A/?2   1-7? <17) 
Gmat 3(1-V2)      "V 0 

where 

A = <Tfract/T (18) 

Although we have described particularly simple analysis of crack bridging, Nair 
(1990) has shown that a very similar model predicts accurately many of the features 
of fracture in fiber reinforced composites. It is well suited for our purpose, to compare 
the relative importance of trapping and bridging in strengthening a fiber reinforced 
composite. 

4.    TOUGHENING DUE TO COMBINED TRAPPING AND BRIDGING 

To combine the results of the preceding two sections, it is useful to note that 

Gtrap/G:mat =  J + 4.23^/flfc2 - 0.1 5) (19) 

gives an adequate fit to the numerical data presented in Fig. 8. In fitting to our 
numerical results, we have assumed that R/b = ^/fjn. Then, the effective toughness 
of the composite may be expressed as 

Gf/GT = l+4.23^2-0.15)+^f^AiS2(l-^ (20) 

Here, the first term represents the effects of trapping, while the second accounts for 
frictional crack bridging. It should be noted that this expression is valid only for a 
limited range of its parameters. The expression for the toughness due to trapping is 
valid only for 0.2 < k < 1, 0 </< 0.4; while the expression of the toughness due to 
bridging is valid only if the length of the debonded region of the fibers is significantly 
greater than the fiber radius. This requires 

IA(l-/)(l-|)>l 

Finally, the fracture toughness of the fibers must be sufficiently large that cracks are 
deflected up the interface: this requires Gf'IGf1 > 4. 

Typical values for the parameters in our expression at A = 60, ß = 0.7, /= 0.25 
and v ~ 0.25 (Nair, 1990). As a representative case, we have plotted the predicted 
toughness of a fiber reinforced composite as a function of interface toughness par- 
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ameter k/ß in Fig. 10, for A = 60,/= 0.25. Results are shown for a range of values 
of the fiber strength parameter ß. Under these conditions, the increasing the toughness 
of the interface between fibers and matrix tends to reduce the strength of the 
composite. This is because for large values of the parameter A, the influence of crack 
bridging greatly outweighs that of crack trapping. 

Crack trapping is more significant if the ratio of fiber strength to interface sliding 
resistance A is small, to illustrate this, we have plotted the effective toughness of the 
composite as a function of k/ß in Fig. 11, for various values of A. In each case, we 
have assumed that ß = 0.8. Evidently, for low values of A, it is preferable to exploit 
the effects of crack trapping by using the largest possible value for interface toughness. 
For values of A > 15, crack bridging begins to dominate crack trapping, and better 
performance is achieved by using an interface with a low fracture toughness. The 
critical value of A appears to be insensitive to the value of ß. 

5.    CONCLUSIONS 

We have analyzed in detail the influence of crack trapping on the toughness of fiber 
reinforced composites. Two cases were considered. In the first instance, the fibers 
were assumed to be much tougher than the matrix, and were assumed to be strongly 
bonded to the surrounding solid. In this case, we found a substantial increase in 
toughness due to trapping: as an example, for aligned cylindrical fibers spaced four 
fiber radii apart, we found G"ap/G™at = 5.6. Our calculations also showed that the 
ratio  of fiber toughness  to  that  of the  matrix  must  exceed  a critical  value 
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Fig  11  Effective toughness of a fiber reinforced composite, as a function of interface toughness, ß = O.i 
v = 0.25,/= 0.25. 

(G"b/G™at > 12) for trapping or bridging to be effective. If the fiber toughness is less 
than this critical value, it is preferable to bond them to the matrix with an interface 
that has a low fracture toughness, such that G?l/G*b < 4 (He and Hutchinson, 1989). 
In this case, the crack is deflected up the interface between fibers and matrix when it 
meets the fibers. Under these conditions, we found that cracks may still be trapped 
by the fibers, but the strengthening effect of crack trapping is greatly reduced. Figure 
8 summarizes the results. The increase in toughness due to trapping tends to increase 
with the fracture toughness of the interface. In contrast, it is known that the tough- 
ening effects of bridging decrease with interface toughness. We used a simple cohesive 
zone model of bridging to investigate this trade-off in detail. Our calculations show 
that if the fibers have a high fracture stress fffract and the resistance to slip between 
fibers and matrix x is small (o!vJx > 15), it is preferable to maximize the effects of 
bridging by using an interface with low fracture toughness. If o{mJx < 15, the fibers 
strengthen the matrix more effectively if the interface toughness is as large as possible, 
within the constraint GfjGf' < 4. 
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ABSTRACT 

The surface chemical potential field represents the tendency for an elastic solid to lower its free energy by 
means of mass rearrangement. In a recent paper in this Journal, Wu [1996, J. Mech. Phys. Solids 44, 2059- 
2077] pointed out that the commonly used definition of chemical potential for elastic solids is inconsistent 
with the change in free energy of the system associated with shape change at finite strain. The purpose here 
is to rederive Wu's main result by a direct rate calculation, rather than a variational approach, which 
appears to be simpler in implementation. In addition, the definition is generalized to include orientation 
dependence of surface energy. © 1998 Elsevier Science Ltd. All rights reserved. 

Keywords : A. chemo-mechanical processes, A. diffusion, surface, A. surface tension. 

INTRODUCTION 

The concept of chemical potential enters the description of shape change in elastic 
solids in the following way. For a mechanical process under isothermal conditions, 
the total free energy of an elastic solid is the sum of the elastic strain energy and 
the surface energy. The time required for a perturbed system to reach mechanical 
equilibrium is typically very small compared to times characteristic of mass rearrange- 
ment mechanisms, so the mechanical fields are assumed to be in equilibrium at all 
times. However, systems can be far from chemical equilibrium, defined as a state of 
minimum free energy. According to the second law of thermodynamics, a system 
which is not in chemical equilibrium will tend to reduce its free energy if dissipative 
mechanisms are available for doing so. In the context of the present discussion, a 
consequence of activating any such mechanism is to add mass to the surface by 
condensation, remove mass by evaporation, or rearrange mass by surface diffusion; 
the possibility of bulk diffusion, which usually occurs much more slowly than surface 
diffusion, is not considered. The shape of the reference configuration of the body is 
altered by any of these modes. If there is no exchange of energy between the solid and 
its surroundings, then the change in free energy for a given change in shape represents 
the driving force for that shape change. The chemical potential at any point on the 
surface of the solid is then defined as this driving force per unit mass for addition for 
an infinitesimal amount of mass at that point. Recently, Wu (1996) has pointed out 
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inconsistencies between the commonly used definition of chemical potential and the 
actual variation in free energy with change in shape of an elastic solid, and the 
discussion of this point is continued here. 

Gibbs introduced the concept of chemical potential in a two-part article concerned 
with the chemical equilibrium between a deformable solid in contact with a solution 
saturated with the same material in dissolved form; the article is reproduced in his 
Collected Works (Gibbs, 1928). During the past four or five decades, the concept has 
been further developed within the contexts of a range of applications. A few overview 
articles are cited here, and each includes many relevant references to work on the 
topic. For example, Herring (1953) was concerned with the processes by which highly 
compressed powders are converted into solids by curvature-driven mass transport at 
elevated temperature during sintering. In connection with studies of creep cavitation 
and rupture of materials in high temperature environments, Rice and Chuang (1981) 
added stress effects to Herring's curvature effects to broaden the applicability of 
chemical potential as a surface field driving mass transport. The fundamental interface 
problems of solidification and heat treatment of crystals, polycrystals and alloys are 
reviewed by Leo and Sekerke (1989) who focused on the effects of surface stress at 
finite strain on chemical equilibrium of interfaces. In recent years, the challenges of 
fabricating high quality material nano-structures, mainly for microelectronic appli- 
cations, has generated broad interest in the equilibrium, stability and evolution of 
surfaces and interfaces. Some recent ideas are reviewed from the solid state physics 
perspective by Nozieres (1992) and from the mechanics of materials perspective by 
Suo (1997). Each of these sources includes many citations of relevant original work. 
The very recent contribution of Wu (1996) represents a significant step in resolving 
some inconsistencies in defining the chemical potential surface field, and Wu's (1996) 
insightful analysis is reexamined here from a different point of view but with the same 
general conclusions. 

The principal assumptions underlying the development are summarized here: 

(i) Although Wu's (1996) calculation can be applied to three-dimensional defor- 
mation fields as well as two-dimensional, he limited consideration to the latter; 
the same restriction is adopted here for both convenience and clarity of central 
ideas. 

(ii) The possibility that deformation is finite is admitted and no restrictions are 
placed on the magnitudes of deformation gradients. 

(iii) As already suggested above, the process is assumed to be isothermal, so that the 
free energy is the isothermal Helmholtz free energy. 

(iv) No externally applied traction acts on S, the evolving part of the boundary of 
the solid. 

(v) The conditions of mechanical equilibrium are satisfied by the deformation field 
at each instant. 

(vi) There is no exchange of energy between the system and its surroundings. This 
condition can be satisfied, for example, if the fields are spatially periodic and the 
boundaries of the region considered are chosen to be boundaries on which 
conditions are periodic. It can also be satisfied if shape changes are spatially 
localized and fields on remote boundaries are not perturbed by these shape 
changes. 
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(vii) All mass rearrangement is coherent. This condition ensures that no incompatible 
strains are introduced through mass transport, and that a well-defined stress 
free reference state always exists. 

TOTAL FREE ENERGY 

A portion of an elastic solid is shown in Fig. 1 in its natural reference configuration. 
For plane deformation, the material occupies the area R. The portion of the bounding 
surface with the potential for shape change is S. The remainder of the boundary 
(shown dashed) represents workless constraints. Material points are located in R with 
respect to a fixed rectangular basis eA. by coordinates pk. Arc length s along S is 
measured from some arbitrary origin. Local surface orientation is represented by a 
tangent unit vector «i, in the direction of increasing s and by a corresponding outward 
normal unit vector «,, It is also useful to represent local surface orientation at any 
time t by means of the angle 6(s) = sin"1 [e3-(e, xm)]. In terms of this angle, the 
surface curvature is 

K(S) 
30 

(i) 

at any time t. 
The configuration shown in Fig. 1 is mapped into the current configuration at any 

time / by the continuous deformation 

vn(s,t)     /g 

e(s,t) 

Fig. 1. Schematic diagram of a deformable body in its natural reference configuration, including a portion 
S of the surface which involves by mass transfer. The constraints acting on R are assumed to be workless. 
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Xic = IkiPi'Pi) (2) 

The deformation gradient throughout R is 

8pj 

The deformation of the surface S associated with this bulk deformation is of particular 
interest. This is conveniently represented by the surface deformation gradient which 
is obtained from Ftj by restricting its domain to include only material line elements in 
the surface; its range is still the full two dimensional plane. In other words, the surface 
deformation gradient is the 2 x 1 tensor which carries line elements lying in S into 
vectors representing the length and orientation of the material elements in the current 
configuration, that is, 

P = Fijmj (4) 

where Fu in this expression is understood to be the limiting value of the deformation 
gradient on 5" upon approach from within R. Some special surface deformation tensors 
have been adopted in the past which have the convenient property of preserving the 
role as a transformation of three-dimensional vectors into three-dimensional vectors, 
in general (cf Leo and Sekerke, 1989). However, the calculation of rates of change of 
these tensors requires special attention so these tensors are not adopted here. 

The change in shape of the reference configuration is specified by prescribing the 
normal velocity v„{s) along S. It is emphasized that v„ has no connection to defor- 
mation ; it is due solely to local addition (v„ > 0) or removal (v„ < 0) of material from 
the surface. It is this feature that makes it preferable to describe the process in 
terms of the reference configuration rather than the current configuration. Chemical 
potential is defined as energy change per unit mass added and, in the reference 
configuration, the rate of material volume addition represented by v„ is equivalent to 
the rate of material mass added for a homogeneous material. This is a matter of 
convenience rather than necessity. 

The bulk material in R is characterized by the strain energy function U(F0). The 
nominal stress in R is then 

N„ = —-    mR (5) 
"     8F ij 

and the condition of equilibrium requires that 

NVJ = 0   mR (6) 

The limiting traction on S from within R is denoted by Th so that 

7,- = NijKj   on S (7) 

The behavior of the two-dimensional surface material (which is one dimensional 
for plane strain deformation) is characterized by the surface energy Ü(Ph 6). The first 
argument F, reflects dependence of surface energy on deformation and the second 
argument 8 reflects dependence on local orientation. The surface tension £,- is rep- 
resented through the constitutive property that 
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(8) 

The magnitude of % is the surface tension in the current configuration (which is the 
same as the magnitude in the reference configuration because the length of surface 
material lines in the e, direction are not affected by deformation) and the direction is 
the tangent line in the current configuration. Equilibrium of the surface requires that 

ds 
Nj/tj   on S (9) 

With the assumptions adopted and the definitions established, the total free energy 
of the system at any instant of time is 

S(f) = U(F,J)dR- U(Fh 0) dS (10) 

The task is now to evaluate the rate of change of i, denoted by i, and to cast the 
result into the form 

<? = $ (deformation shape)r„ dS (11) 

At any point s along the surface, the factor v„dS is essentially the rate of addition of 
material volume. It follows that the quantity O can be identified as the chemical 
potential field over S. 

THE CHEMICAL POTENTIAL FIELD ON S 

The free energy S can change with shape for a number of reasons: 

(i) change in strain energy due to change in deformation in R 
(ii) change in strain energy due to addition/removal of deformed material 

(iii) change in surface energy due to change in deformation of surface 
(iv) change in surface energy due to change in orientation of surface 
(v) change in surface energy due to increase/reduction in amount of surface 

The effects are evident in a direct evaluation of S. As tacitly implied in (11), a dot 
superimposed on a function of time denotes its derivative. In the expressions to follow, 
a superposed dot on any field depending on both t and pk denotes the derivative with 
respect to time of that field at fixed pk; the operator djdt is reserved to represent the 
total time derivative of such fields at a point convecting with the surface at speed v„ 
as it moves with respect to the material. 

Application of the definition of a derivative to (10) yields 

S 
du . 

Uv„ dS+ 
dUdF,     3Ü.     ~     " 
p0^T7 + ^fl 0-UV„K 
cFj dt      dti 

dS (12) 
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The first, second and last terms on the right side correspond to items (i), (ii) and (v) 
above. By recalling the definition of the surface deformation gradient, the total time 
derivative appearing in (12) can be decomposed into 

&F,     ( ■ 8F,.     . 
^7= [F«+v--to;»')m'+F«m> (13) 

The second term in (13) must be included because the point at which FtJ is to be 
evaluated in computing dFJdt moves with respect to the material as time goes on. 
The rate of change of the tangent vector is 

ä       8v" m, = tin, = — n, 
OS 

(14) 

Similarly, the term involving rate of deformation evaluated on S is 

Fijirij = %tJmj = 
dt 
8s 

(15) 

If the right most forms in (14) and (15) are substituted into (13) and the rule for 
differentiation of a product is applied, then 

NuFudR + 

+ 

Uv„ dS 

~ i  ■ 8FU 8vn 

^\FumJ+v"^tmJ+^F^n 
dÜdv^ 
JeHs - UV„K v„dS    (16) 

where dFJdn at any point on S is interpreted as the double inner product of the 
limiting boundary value of dFu/dpk with m/ik at that point. If the divergence theorem 
is applied to the first term on the right side, the equilibrium equations are enforced, 
and the condition of workless boundary constraints is recalled, then (16) reduces to 
the form (11) with 

~dF,        3   ~       ,    8f,dFt       /,    82U 
$(n,0) = U+T,-nk--(i:,F,Jn,)-~--K ( Ü+ (17) 

as the chemical potential field. For isotropic surface energy, 8/89 s 0 and this result 
agrees with the result given in eqn (3.19) of Wu's article. 

SOME INTERPRETATIONS AND OBSERVATIONS 

While the interpretations of some terms in O are self-evident, this is not so for all. 
To gain further insight into the result, consider a portion of the boundary 5 in the 
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F.. 

Fig. 2. A portion of the evolving free surface S in the reference configuration (left) and the current 
configuration (right); the configurations are related through the deformation gradient F,;;. 

reference configuration and in the current configuration, as depicted in Fig. 2. Suppose 
that a material element on 5 aligned with mt in the reference configuration has a 
stretch ratio ;.,„,); this element is aligned with the tangent unit vector mf in the current 
configuration. Then 

Fijnij = X(m)mf (18) 

If s* is arc length along the deformed surface in the current configuration then, for 
any surface field, 

d.v      <m) ds* 
(19) 

The unit vectors tangent to and normal to the surface in either configuration are 
related through the corresponding surface curvatures according to the differential 
relations 

dm,- 
~d7 

= Kflj, 
dm? 

d?7 = K*rif (20) 

where K* is the curvature of the surface in the current configuration. Denote the 
stretch ratio of a material element at the surface S, but aligned with the surface normal 
«, in the reference configuration, by A(n). Then it is noted that 

F,jnj = A((l)v? * X(n)nf (21) 

where vfvf = 1, if there is any shear deformation between the normal and tangential 
directions. In general, this shear strain is given by the inner product 

(n 
Mm)X(n) COS -!(„„•) FikmkF,jnj (22) 

where y(,„n) is the decrease in angle between line elements aligned with m, and «, in the 
reference configuration as they are deformed into the current configuration. The 
connection between K and K* can be established by forming the inner product of the 
terms shown as equal in (21) with mf, and then differentiating with respect to arclength 
s. The result is 
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K*n*vf 
I 00 

8X, 
~nk 

(m) 1 

\»<) Spk     x ("0 
mk — (m*v*Xin)) (23) 

Finally, if x is the surface tension at a point on the surface in the deformed con- 
figuration then 

S; = xm* (24) 

With these relationships and definitions in hand, it is clear that the second term in 
the definition of $ can be reduced as 

_~ dF, 8X 
£/T— nk = xmfmf—— = x 

cpk on on 
(m) (25) 

Strictly, the right side of this expression does not exist because X{m) is defined only on 
the surface, whereas calculation of the normal derivative requires that it also be 
defined for points interior to R adjacent to S. This poses no difficulty, however. The 
stretch ratio of every material element in R is known through Fy. To compute 8X0„}/8n 
at some point on S with tangent mh note that the stretch ratios of all material lines 
parallel to w, along a line extending from the point of interest into R are known. 
Thus, this normal derivative can be calculated unambiguously. 

The third term in (17) can also be reduced to the form 

8s 
(tiFijiij) = X{m) -^{xF^mkFijiij) = X(l >o ds* 

T/(„,)/l(„) COS [        —Jinm) (26) 

The surface equilibrium equation (9) can also be written in a more interpretable 
form by applying the definitions and conventions introduced in this section. If the 
Cauchy stress in the current configuration is ff,7, then Nj/ij = A(m)<7,/z*and the surface 
equilibrium equation becomes 

81. 
s7 "•(».) 

8(xrrif) 
8 s* 

hn)[^m*+xK*nf X(m)<5ijn* (27) 

If the term-by-term inner product of this equation with rif is formed then the local 
form of the classical Laplace relationship involving surface tension, surface curvature, 
and internal pressure results, namely, 

XK* = nfOjjn* (28) 

On the other hand, if the term-by-term inner product with mfis formed then it follows 
that the tangential surface traction acting on the boundary of R is equal to the surface 
gradient of surface tension, that is, 

8x_ 

8 s* 
mfOjjn* (29) 

It follows that the limiting tangential surface traction on the boundary of R is zero 
only when x is a constant, say T0, along the deformed surface. This is the case if 

U x0X, (m) (30) 
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which implies that dO/dd = 0. In this case, y(mn) is also zero point-wise along the 
deformed surface. 

The conceptual structure of this development, as introduced by Wu (1996) and as 
slightly extended here, can be carried over to three space dimensions and time without 
modification. However, the details of the calculation are more complex. In the case 
of two space dimensions, the advantages of using arc length as the independent 
variable for surface fields is fairly obvious. In general, the intrinsic surface geometry 
in three-dimensions is non-Riemannian, intrinsic surface coordinates may not have 
length dimensions, and the two-point tensor fields representing deformation of surface 
elements are more difficult to interpret. 

The new features of chemical potential for elastic solids introduced by Wu, as well 
as those having to do with surface energy anisotropy introduced here, require further 
investigation to make their significance for surface diffusion and other mass transport 
phenomena clearer. It would seem that two paths would be pursued simultaneously 
in an effort to advance understanding of such phenomena. First, the relative con- 
tributions of the various terms in (17) to the value of chemical potential or chemical 
potential gradient must be understood for a range of processes. Are there any situ- 
ations for which the additional features make a significant difference? Also, it must 
be recognized that the present level of development includes everything that local 
continuum mechanics has to offer. However, it should not be forgotten that the 
physical phenomena which motivate such developments arise from the discrete nature 
of real materials, and this gives rise to the second question. Are the mechanical features 
which emerge from such developments actually representative, in some average sense, 
of the behavior of surfaces of real materials? 
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ABSTRACT 

Cohesive zone models provide an illuminating and tractable way to include constitutive non-linearity into 
continuum models of defects. Powerful insights have been gained by studying both dislocations and cracks 
using such analyses. Recent work has shown that as a result of the locality assumption present in such 
cohesive zone models, significant errors can be made in the treatment of defect energies. This paper aims 
to construct a non-local version of the Peierls-Nabarro model in which the atomic level stresses induced 
at the slip plane depend in a non-local way on the slip degrees of freedom. Our results should be seen as a 
demonstration in principle of how microscopic calculations can be used to construct insights into consti- 
tutive nonlocality. The non-local interplanar kernel used here is computed directly from atomistics and is 
used to evaluate both the structure and energetics of planar dislocations. The non-local formulation does 
not significantly change the dislocation core structure from that obtained with the local model, but the new 
formulation leads to significant improvements in the description of dislocation energetics for dislocations 
with planar cores. © 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

The appropriate method to use in modeling the behavior of a material is often 
dictated by some intrinsic length scale in the problem. When considering atomic scale 
defects, atomistic models are often required. On the other hand, macroscopic models 
are concerned with bulk properties of specimens with dimensions on the micron scale 
or larger. In this regime, the assumptions of continuum mechanics are justified. 
Recently, there has been increased interest in modeling the so-called mesoscale regime, 
the range of length scales that are often too large for fully atomistic models but too 
small for discrete lattice effects to be ignored. In this regime, neither atomistic mode- 
ling nor continuum mechanics is entirely satisfactory, and new models which incor- 
porate features from both approaches seem to be necessary. 

One class of model which serves as a bridge between the microscopic and macro- 
scopic approaches is that of cohesive zone models. Using a cohesive zone model 
allows bulk regions to be handled using conventional continuum mechanics, while 
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atomistic effects are incorporated only at certain interfaces where it is deemed that 
they are important. Models of this type were first proposed by Peierls (1940) to describe 
dislocations, by Barenblatt (1962) to model fracture processes and by Dugdale (1959), 
and Bilby et al. (1962) to estimate plastic zone sizes ahead of cracks. A review of a 
number of examples of this approach may be found in Miller and Phillips (1996b), 
while this paper focuses on the specific example of the Peierls dislocation. 

The Peierls dislocation model has received renewed interest of late, being used, for 
example, by Rice (1992) in his description of the brittle vs ductile behavior of crystals. 
The attractiveness of the Peierls framework is that it offers an analytically tractable 
(or at least numerically expedient) continuum model which incorporates nonlinear 
features resulting from the presence of the discrete lattice. The model assumes that 
the atomistic features of a dislocation are confined to a single atomic plane referred 
to as the slip plane. It is only at the slip plane that discontinuities in the displacement 
fields are assumed to take place, and a special constitutive law is used to account for 
them. Away from the slip plane, the remainder of the bulk crystal is treated as a linear 
elastic medium. In conventional treatments, the constitutive law at the slip plane is 
simplified by assuming that the energy and stress depend only locally on the slip 
distribution, despite the non-local nature of atomic interactions. In effect, while the 
Peierls model does incorporate a periodic length into the local relation between stress 
and slip, it does not define a length scale below which the non-local effects due to slip 
gradients become important. 

In earlier work (Miller and Phillips, 1996b) it has been demonstrated that the 
various approximations inherent in the Peierls model can lead to serious error in the 
energetic description of a dislocation. One important source of error arises from the 
failure to incorporate non-local effects, since full atomistic calculations show that the 
gradients in the slip distribution that are present in realistic dislocation cores are often 
too large for non-local effects to be ignored. By postulating a new form for the energy 
of a slip distribution, we formulate a model which includes a non-local term while at 
the same time reduces to the original Peierls model in the limit where slip gradients 
become small. This new model includes non-locality in a simple way, allowing for an 
investigation of non-local effects alone. We do not consider the other sources of error 
in the Peierls model, as these have been addressed elsewhere (see, for example, Miller 
and Phillips, 1996b; Bulatov and Kaxiras, 1997). 

Many examples exist where a certain model, derived under specific assumptions, is 
pushed to the extremes of its range of applicability and as a result must be corrected 
through inclusion of higher order terms. Anharmonic models of lattice vibrations 
(Duesbery et a/., 1973; DiVincenzo, 1986), recent work on gradient models (Fleck et 
al, 1994; Aifantis, 1992), and several papers on non-local continuum theories 
(Eringen et al., 1977; Eringen and Balta, 1979; Eringen, 1987) are but a few examples 
of this strategy. Similar extensions are made here in the context of the Peierls frame- 
work. Due to the inclusion of a new term in the expression for the energy of a slip 
distribution, the model is now able to capture non-local effects due to the presence of 
gradients in the slip distribution. This improvement is demonstrated via comparisons 
to fully atomistic calculations of slip plane energies, and is then used to model 
dislocation core structures. This work is undertaken not so much in the name of 
improving the Peierls-Nabarro model itself as to examine the interplay between 
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atomic level nonlocality and plausible constitutive models of extended defects in 
solids. The artificial confinement of the entirety of the constitutive complexity to a 
single plane reduces the computational difficulties substantially, while still allowing 
for substantive insights to be gained. Ultimately, for the treatment of generic dislo- 
cations, we advocate a less conservative approach in which constitutive nonlocality 
and nonlinearity are not restricted to any particular plane (see, for example, Tadmor 
etal., 1996). 

In Section 2 we begin with a brief description of the original Peierls framework and 
its breakdown in the limit of rapidly varying slip distributions. In Section 3, we present 
the details of our non-local formulation and describe how atomistic calculations are 
used to build the necessary non-local constitutive model. We then use the non-local 
Peierls model to compute the energetics of crystalline slip, and show that the non- 
local model is in better agreement with purely atomistic results than was the classical 
Peierls framework. Finally, in Section 4, the non-local model is used to obtain the 
core structure of a (100)[011] dislocation in fee Al. 

2. BREAKDOWN OF THE TRADITIONAL PEIERLS FRAMEWORK 

In this section, we present a brief explanation of the Peierls model, but focus mainly 
on describing the breakdown of the local cohesive zone assumptions. For a complete 
description of the Peierls model, see Hirth and Lothe (1992). 

The Peierls model assumes that a dislocation can be described as two elastic half- 
spaces joined at a common plane on which there is a discontinuous jump in the 
displacement fields. We adopt the convention that the slip plane is the x-y plane, with 
the dislocation line along the >>-axis. The discontinuity in displacements due to the 
presence of the dislocation is referred to as the slip distribution, S(x,y) = u+(x- 
,y) — u~(x,y), where u±(x, y) are the displacement fields just above and below the slip 
plane. We confine our discussion to the simple case of plane strain in the x-z plane, 
and to the situation where only one component of ö is non-zero. This allows us to 
write ö as a scalar, ö(x). Dealing with the more general case is a straightforward 
extension of the results presented below, while the simple case being discussed here is 
better suited to demonstrate our arguments. It is important to bear in mind that 8(x) 
is not constant as in rigid slip, nor is it a simple step function as in the Volterra model 
of a dislocation. Rather, the slip distribution varies from zero at a point on the slip 
plane far from the dislocation core to a full Burgers vector once the core is traversed. 
The slip distribution is assumed to lead to atomic level forces due to the interaction 
between the slipped surfaces, thus providing the tractions, T(X), on the elastic regions. 
These tractions take a simple form that depends only on the local slip discontinuity 

T(X) = z[8(x)], (1) 

and can be determined on the basis of atomistic calculations. Early work within the 
Peierls framework assumed a simple periodic form for eqn (1), with the periodicity 
tied to the Burgers vector (see, for example, Foreman et al., 1951). More recently, 
highly accurate atomistic calculations have allowed for the direct calculation of T(<5), 
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improving the agreement between models built upon the Peierls framework and the 
results of direct atomistic simulation (see, for example, Sun et al, 1993). 

For the purposes of this paper, we find it more convenient to consider dislocation 
energetics rather than the resulting forces and tractions. According to the Peierls 
models, the energy of a dislocation is made up of two parts—the elastic energy 
contained in bulk regions and the misfit energy associated with the slip plane. The 
first component, the elastic energy, is fully defined once the elastic constitutive law 
for the bulk regions is specified, while the misfit energy is computed as an integral 
over the slip plane. While this is generally a surface integral, for the simplified geometry 
of a straight dislocation oriented along the j-axis, the integral reduces to 

£, = 0>[«5(x)]dx, (2) 

where EL is understood to be the local misfit energy per unit length along the dis- 
location line. This convention will be maintained throughout the paper. In eqn (2), 
<S>(5) is given by 

<t(<5) = T(ö')dö'. (3) 
0 

<£>(ö) is referred to as the interplanar slip potential, and can be thought of as the energy 
cost associated with slipping one block of atoms over another by an amount ö. As 
with the tractions T(<5), the interplanar slip potential can also be obtained through 
simple atomistic calculations (see, for example, Sun et al, 1993; Kaxiras and Dues- 
bery, 1993). 

The energetic description provided above introduces an important assumption that 
has been central to the Peierls framework and results in a formulation that is strictly 
local. Specifically, this assumption arises from the fact that the interplanar potential 
is computed on the basis of a purely uniform slip distribution, even though the actual 
slip distributions of interest are non-uniform. The energy of the non-uniform slip 
distribution is found using eqn (2), which effectively divides the slip distribution into 
infinitesimal slip steps, samples the interplanar potential for each of these steps, and 
sums the results. The tacit assumption of this approach is that despite the non-uniform 
nature of the slip distribution, the local environment at each point can be considered 
to be approximately uniform, allowing for the local slip energy to be determined from 
the interplanar slip potential. It is expected that as long as the gradients in the slip 
distribution are small, this approximation will be valid, but as the gradients become 
more severe, the approximation will break down. One result of interest is to quantify 
what the maximum acceptable gradients are, and to determine whether or not the slip 
gradients occurring in real dislocation core structures exceed these values. 

These questions about the validity of the assumptions in eqn (2) were addressed by 
Miller and Phillips (1996b). The breakdown of the local assumptions was quantified 
by computing the energy of a number of idealized slip distributions in two ways, first 
using atomistics (considered "exact" in this context) and then using the approximation 
embodied in eqn (2). The parameters in the slip distribution were then selectively 
varied, allowing for control of the severity of the slip gradients and a direct comparison 
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Fig. 1. Energy of idealized distributions as a function of the parameter iv, which determines the gradients 
in the slip distribution. These results demonstrate the failure of the local slip approximation for small it'. 

Exact atomistic energy (filled circles); local model (dashed line); non-local model (solid line). 

of the two methods of obtaining the slip plane energy. These calculations dem- 
onstrated a clear breakdown in the locality assumption. Further, it was found that 
the gradients associated with the slip distributions for simulated core structures are 
of the same order of magnitude as those for which eqn (2) failed. 

In Fig. 1, we reproduce the results of Miller and Phillips for the {001}[110] slip 
system in fee Al and include new results for the {111 }[110] slip system. The figure shows 
a plot of misfit energy per unit area of the slip plane for various slip distributions. For 
periodic distributions, this is computed by dividing the misfit energy per period by 
the periodic length. For slip distributions which are not periodic, an effective slip area 
was used, which is defined as the area over which the slip is greater than 1 % of its 
maximum value. The following slip distributions were used, 

ö(x) = Asin- 
2nx 

(4) 
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5{x) = A exp 
1/x 2U (5) 

For these slip distributions, w can be varied in order to control the slip gradients. 
Small w corresponds to large gradients, and hence the regime in which we expect the 
local approximation to fail. To build these slip distributions for an atomistic calcu- 
lation, one divides a crystal in two, and imposes a different deformation field in the 
upper and lower halves. Judicious choice of these deformations leads to the appro- 
priate discontinuity at their common surface, and allows for the computation of the 
misfit energy due to that discontinuity. This is the exact atomistic energy which is 
compared to the results of eqn (2) in Fig. 1. Further detail of the atomistic calculation 
of misfit energy is given in Section 3. 

Figure 1 includes two different types of slip deformation. In the slip distributions 
associated with straight dislocations, two types of gradient effects are possible. First, 
both the direction in which the slip distribution is changing and the direction of the 
slip discontinuity itself can be the same. This is characteristic of the slip distributions 
for pure edge dislocations, and therefore we refer to any slip distribution for which 
the S vector and the Vc5 vector are parallel as an "edge"-type distribution. The 
second type of gradient effect occurs when the direction of the slip discontinuity is 
perpendicular to the direction along which it is changing. This is characteristic of a 
pure screw dislocation, and therefore we refer to such an instance as a "screw"-type 
slip distribution. It is possible to mix these two effects, but for our present purposes 
we consider only the pure edge and pure screw cases. These two types of slip dis- 
tributions are analogous to longitudinal and transverse phonons. 

The results in Fig. 1 demonstrate the breakdown of the Peierls assumption for the 
slip distribution of eqns (4) and (5) for both the {001}[110] edge distribution and the 
{111}[1T0] screw distribution. The plots give the energy of the slip distributions as a 
function of the parameter w. In all of the plots, the prediction of the local slip 
approximation for the misfit energy is shown as the constant dashed line near the top 
of each graph, a striking manifestation of the lack of a characteristic length scale in 
the local cohesive zone approach. For periodic slip distributions, it is easy to see why 
the Peierls model approximation is independent of the parameter w. The plots of Fig. 
1 are of the quantity 

w      w 
<b[A sin (2nx/w)] dx, (6) 

where E^ is the energy of a single periodic length of the slip plane. The fact that this 
integral correctly represents the energy of a single periodic length is discussed in 
Section 3. By making the change of variables y = x/w, one can see that the expression 
is independent of w. The data points in Fig. 1 come from atomistic calculations of the 
same misfit energies. Note the divergence from the local estimate at small values of 
w. The significance of this divergence in the context of dislocations depends on the 
gradients found in their cores. Evidence that non-local effects are indeed important 
in real cores was presented in Fig. 4(b) of Miller and Phillips (1996b), which shows 
that non-local effects in an arctan slip distribution become important for core widths 
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c/b < 0.5 in the (100)[011] slip system. Actual core widths for this slip system have 
been found using lattice static core simulations by fitting slip distributions to the 
arctan function (Miller and Phillips, 1996a). Using a least squares fit to the entire 
core, a value of c/b = 0.224 was obtained, while fitting the slope at the center of the 
core resulted in a value of c/b = 0.435. Both of these values are in the regime where 
non-local effects become important. 

The first mission of the non-local model will be to improve the agreement between 
the atomistic and continuum predictions for the slip energy shown in Fig. 1. The solid 
lines in this figure show the improvements made by using the non-local model, and 
will be discussed in more detail at the end of Section 3. 

3. THE NON-LOCAL FORMULATION 

The notion that any field variable (for example stress, strain or temperature) is 
known pointwise, and depends only on other state variables at that point is a natural 
starting point in the construction of constitutive models. The result is the assumption 
of locality—one of the basic tenets of the Peierls model, most other cohesive zone 
models, and classical continuum mechanics in general. However, on the atomic scale 
the state of each atom is influenced by a finite cluster of its neighbors, not only by the 
state at an individual atomic site. The non-local formulation of the Peierls model 
outlined in this section is proposed as a simple way to include the non-local nature of 
atomic interactions into cohesive zone models such as the Peierls framework. 

The modification made to the Peierls model in going from the local to non-local 
formulation involves the inclusion of a non-local contribution to the misfit energy. 
The addition of this term has far-reaching implications, though it is the only con- 
ceptual change that is introduced. Clearly, this approach will confine all non-local 
effects to the slip plane, in the same way that the original Peierls framework confines 
the extent of non-linearity. It is recognized that this approach will only approximate 
the true non-local effects in the core, which could be more rigorously treated via non- 
local elasticity in the bulk regions. On the other hand, this simple approach leads to 
a tractable analysis that still allows for an explicit venue within which one may study 
the effect of non-local behavior. 

Consider again the misfit energy of a dislocation as given in the local framework 
of eqn (2). Non-locality is incorporated by the addition of a term which should vanish 
for slowly varying slip distributions while at the same time capturing gradient effects 
when they are present. We confine ourselves to a discussion of a straight edge dis- 
location as a clear example of the underlying concepts. For a straight dislocation, we 
postulate the non-local misfit energy to be given by 

%F — ®[ö(x)]dx + K(x-x')ö(x)ö(x')dxdx'. (7) 

The additional term contains the non-local interplanar kernel K(x — x'), which weights 
the non-local contributions to the total energy. On physical grounds, we assume that 
K{x — x') = K{x' — x), or that the influence that one point has on another depends 
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only on the distance between these points. The new model requires only that we 
determine a suitable form for the non-local kernel K(x — x'). We propose to adopt a 
similar strategy to that used in obtaining <!>(<5), whereby we extract a numerical 
reckoning of K(x — x') from atomistic calculations and then fit these results to simple 
analytic forms. In the past, non-local expressions of this type have been advanced 
without the benefit of atomistic calculations to determine the influence function 
(Eringen et al, 1977; Eringen and Balta, 1979; Eringen, 1987). It seems possible that 
the methods presented here can be adapted to those cases as well. 

Given the non-local kernel, the traction at the slip plane can be written as the first 
variation of the misfit energy functional with respect to the slip distribution, yielding 

3EMF     dO[S(x)] 
T(X) = 

dö do 
K{x-x')d{x')äx'. (8) 

Thus, for the non-local model, the traction T at any point on the slip plane depends 
on the entire slip distribution, whereas in the local formulation the stress is determined 
pointwise. It is this additional feature of the new model which allows it to capture the 
gradient effects discussed earlier. 

To determine the non-local kernel, we solve eqn (7) for K(x — x') by imposing a 
number of special slip distributions, and use the non-local term to exactly fit the 
energies of these slip distributions to the atomistic result. This procedure amounts to 
the assumption that K{x — x') is independent of the form of the slip distribution. While 
this may not be rigorously true, it is postulated that the non-local kernel obtained in 
this way will be reasonably effective for general slip distributions. Based on this 
assumption, it is convenient to choose slip distributions which allow for a deter- 
mination of the Fourier components ofK(x — x'). For the purposes of our calculation 
we place two demands on the slip distributions. First, that it be periodic with period 
/, and second, that the maximum amplitude of the distribution is small with respect 
to the lattice parameter of our material. The first requirement is one of computational 
convenience, allowing for the use of periodic boundary conditions when determining 
the exact atomistic energy of a slip distribution, while the second requirement is made 
in order to allow us to rewrite the interplanar potential, <D, using its quadratic 
approximation. This step proves essential in determining K(x — x') in much the same 
way that one uses the quadratic approximation to match the shear modulus in the 
case of the Frenkel sinusoid model. It simplifies the local term in the energy for the 
purpose of finding the non-local kernel, but once the kernel is computed the exact 
form of the local term will be reinstated. This ensures that the non-local model will 
still be applicable to large slip deformations. 

The energy expression of eqn (7) yields the energy of the slip distribution over the 
entire slip plane. On the other hand, atomistic models naturally provide us with a 
way to compute the energy of only a finite section of the slip plane. If periodic 
boundary conditions are used in the atomistic model, as will be used here, then the 
energy obtained from atomistics is the energy of a single periodic length of the slip 
distribution. In order to make valid comparisons between the exact atomistic misfit 
energy and the energy obtained from the non-local model, we must find the non-local 
expression for the energy of a single periodic length of slip. Equation (7) can be re- 
written in the form 
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(9) 

where the constant c arises from the treatment of the interplanar potential via its 
quadratic approximation and £ is some origin where 0 «S ^ < L. It is easy to show 
that for periodic slip distributions, the integrals inside this sum are independent of n 
and £, and hence each periodic length in the variable x contributes the same amount 
to the total misfit energy. We can then write the misfit energy of a single period of the 
slip plane, E^F(ö), as 

£U<5) = cö(x)2dx + K(x - x')ö(x)ö(x') dx' dx, (10) 

and note that for a given slip distribution, E^F(ö) is a quantity which can be computed 
directly from atomistics. For this purpose, it is convenient to take 8(x) to be 

S(x) = (5,/x) = A sin qx, (11) 

where q = 2n/L and A is much smaller than the lattice constant of the crystal under 
consideration. We insert this form of 5(x) into the expression for £j,F. Making a 
change of variables z = x-x' and recalling that K(z) = K(-z), the energy expression 
becomes 

_„ cA2L       . 
£°MF(^) = -^+^

2 sin qx 
Jt](: + .\)_ -K/(- + .V) 

K(z)- dx, (12) 

where we have made use of the exponential form of the sine function. We recall the 
definition of the Fourier transform,/(£), of a function/(Xl as 

Ak) = 

and also the inverse Fourier transform 

fix)- 
2n 

f(x)e-lkxdx, 

f(k)eikxdk, 

(13) 

(14) 

and use eqn (13) to write the non-local energy expression in terms of the Fourier 
transform of the non-local kernel, K(q). Noting again that K{z) = K(-z), we see that 
K(q) = K(-q), and the expression for the total energy becomes 

^MF(«?) 

cA2L 
A2K{q) sin2 qx dx. (15) 

Evaluating the integral leads to an explicit expression for the non-local interplanar 
kernel in Fourier space; 
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K{q)=     A2L' -c. (16) 

At this point, the strategy is to obtain the energy dependence on the Fourier variable 
q numerically through an atomistic model. 

3.1. Atomistic determination of the non-local interplanar kernel 

The procedure for determining the energy of a given slip distribution was outlined 
in Section 2 and is described in detail by Miller and Phillips (1996b). Here, we use the 
same computational approach which is described briefly below. 

We desire the energy of the slip distribution given by eqn (11) as a function of the 
parameter q. To make the computation, the crystal is divided into an upper and a 
lower half. By imposing the appropriate displacement fields on the two half spaces, 
we can create the desired slip distribution at their common interface. For example, 
consider the slip distribution of eqn (11). For the case of edge-type slip, the slip 
distribution can be obtained by imposing the following displacement fields on the 
crystal: 

u+ = [(A/2) sin qx, 0,0], (17) 

IT = [(,4/2) sin ?x, 0,0], (18) 

where u+ represents the displacement field in the upper half of the crystal and u" is that 
in the lower half. This combination of displacement fields leads to a slip distribution of 
the form 

<5(x) = ut — u~ = A sin qx (19) 

at the plane where the upper and lower half spaces meet. 
Using any convenient atomistic model (we have used the embedded atom method 

(EAM), see Daw and Baskes, 1984 for example) it is then possible to compute the 
energy of this crystal. The result of such an atomistic calculation is an energy consisting 
of two parts, that due to the interface and an additional elastic strain energy due to 
the deformation in the bulk regions of the crystal. The elastic energy can be found 
directly by computing the energy of each half space separately, using a periodic 
computational cell containing no slip discontinuities. This energy can then be sub- 
tracted from the total energy of the configuration which includes the slip jump, leaving 
the misfit energy, E^F- 

By repeating this procedure for a sequence of values of q, we obtain a discrete 
representation of the non-local kernel K{q) in Fourier space. Results of such cal- 
culations using the EAM potentials for Al of Ercolessi and Adams (1994) are presented 
in Fig. 2. The various slip systems are either edge, screw or "mixed", where edge and 
screw are as defined in Section 2. The "mixed" system is in this case the direction 
associated with the 30° Shockley partial. All of the curves are given in non-dimensional 
form using the constants given in Table 1, where yus is the unstable stacking fault 
energy for a given slip system. The values in the table are obtained by rigidly sliding 
two blocks of atoms with respect to one another and allowing relaxations in only the 
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qd 
Fig. 2. Examples of the Fourier space representation of the non-local interplanar kernel, K, for various 
slip systems in Al, as obtained using the EAM potentials of Ercolessi and Adams (1994). See Table 1 for 

normalization constants. 

Table 1. Burgers vector b, interplanar spacing d and unstable stacking fault energy ym 

for the slip systems considered in Fig. 2 as obtained from the EAM Al potentials of 
Ercolessi and Adams (1994) 

Slip system b{k) d/b y* (eV/Ä2) 

(100)[0: 
(iii)[l; 
(iii)p: 
(ioo)[o: 

0] Screw 
0] Screw 
1] Mixed 
1] Edge 

(100)[010] Edge 

4.032 1/2 0.04065 
2.851 x/3/6 0.02705 
1.646 73/2 0.008032 
2.851 1/2 0.02521 
4.032 1/2 0.04065 

out-of-plane direction. The remaining constants in the table are b, the Burgers vector, 
and d, which is defined below. The representative examples in Fig. 2 demonstrate a 
number of the characteristics of the non-local interplanar kernel when constructed in 
Fourier space. All such functions are even and periodic, and therefore only the first 
half period of each is shown. The periodic length of K depends on the slip system 
being considered, and is given by 2njd where d is the distance between planes with 
normal parallel to the direction of the slip gradient vector. Note that these planes are a 
set of y-z planes, which are perpendicular to the x-y slip plane. Another characteristic 
feature of the K function is that it is exactly zero at q = 0, which implies that in the 
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limit of very slowly varying slip distributions, the non-local correction vanishes and 
we recover the classical Peierls framework. It is also worth noting that while most of 
the K functions are negative, we see that for the case of screw-type slip distributions 
on the {001}[010] slip system ^is entirely positive. This suggests that there is no set 
rule about whether the non-local contribution to the misfit energy is positive or 
negative—it will depend on both the slip system being considered and on the Fourier 
components of the slip distribution itself. Comparing the various curves in this figure 
can help us to understand the relative importance of the non-local effect for various 
slip systems. Note that the strongest effect is associated with the (100)[010] edge 
system. It is interesting that this same slip system, but in the screw orientation, shows 
the weakest non-local correction, and that the sign of this correction for the various 
Fourier components of the slip distribution is reversed. This is because the screw-type 
sinusoidal slip distribution represents a more severe misfit configuration than the 
edge-type for this slip system. Meanwhile, the local model predicts the same energy 
for either edge or screw slip due to the symmetries of the {100} planes. For this slip 
system, the local prediction for misfit energy somewhat overestimates the edge energy, 
while somewhat underestimating its screw counterpart. The result is this seemingly 
anomalous behavior of the screw-type slip. 

3.2. Approximate analytic form in real space 

Numerical inversion of the Fourier representation of K deduced above can be 
problematic due to the fact that Kis known only for a discrete set of points in Fourier 
space. Therefore, we propose to fit K in Fourier space with a cosine series, which can 
be easily transformed into real space in the form of a sum of Dirac delta functions. 
Because K(x — x') exists as part of an integrand over the entire slip plane, these Dirac 
deltas will have the effect of reducing the dimension of the integral in eqn (7). We 
have found that excellent fits of the numerical data can be obtained using only the 
first few terms of such a cosine series, and one can therefore write 

K(q)^^+Yjancosndq, (20) 

where an are the fitting parameters and d is the distance between planes perpendicular 
to the slip plane, as described previously. The number of fitting parameters N will 
depend on the range of the atomistic potentials used in obtaining K, but we have 
found that for the potentials and slip systems considered here, the value of TV typically 
does not need to exceed five. This form for the non-local kernel allows for easy Fourier 
inversion, yielding 

K{x-x') = ~öD{x~x')+ £ ^(öD(x-x' + nd) + öD(x-x'-nd)), (21) 
2 „=i ^ 

where SD is the Dirac delta function. This expression for the non-local kernel can be 
used in the original definition for the misfit energy, as well as in the expression for the 
tractions on the slip plane. The results are 
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0[<Kx)]dx-£ 
11=1 

8(x)8(x-nd) + ö(x)ö(x + nd)\A 
a„  ö(xY  ax, 

(22) 

N 

T(x) = S^I _ Y a„(28(x)-8(x + nd)-8(x-bd)), (23) 
o n=l 

where we have eliminated a0 from the expressions by using the fact that K(0) = 0. The 
ö appearing in this expression is the slip distribution, and not the Dirac delta function 
SD. The computed values of a„ are plotted in Fig. 3 for the five slip systems considered 
here. In this figure, increasing n corresponds to sampling the slip distribution farther 
and farther from the point at which the energy and stress is being computed. It is 
clear that the non-local effects decays quite rapidly, and in all cases a, (corresponding 
to the near neighbor non-local influence) is by far the most important contribution. 
Non-local influence is felt as far as five neighbors away in some systems, but beyond 
as, the coefficients are negligible. 

Note that the expressions for the energy and stress are consistent with our intuition 
as to the nature of the non-local terms. First, in the limit when ö(x) is slowly varying, 
8(x±nd) -> S(x) and the above expressions reduce to the conventional local formu- 
lation. Second, the non-local effects for a given point arise as a result of sampling a 
discrete set of points along the rest of the slip distribution. These points are spaced 
by a distance d, which coincides with the spacing of atomic planes in the direction of 
the slip gradient vector. The discreteness of this sampling, together with the physical 
significance of the spacing of the sampling points results in a sensible atomistic 
extension of the original constitutive assumptions of the local model. 

Finally, it is interesting to note that the terms of the sum in eqn (23) can be viewed 
as a linear combination of approximations to the derivatives of the slip distribution. 
The symmetry of our non-local kernel in Fourier space means that only even order 
derivatives contribute to this correction, and therefore it is possible to re-write eqn 
(23) in the form 

« = «-w«-w. (*> 
where the coefficients c„ are the weights associated with the «th derivative, and <5('° is 
the central difference approximation to the 77th derivative of the slip distribution. The 
c„ are simply linear combinations of the a„ already introduced. For example, if we 
take TV = 2 in eqns (23) and (24), and make use of the following central difference 
approximations for the second and fourth derivative of S(x), 

d2S     8(x + d)-28(x) + 8(x-d) 

dx2 d2 

dA5     ö(x + 2d)- 4S(x+d) + 6S(x)- 48(x -d) + ö(x-2d) 
(26) 
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Fig. 3. Non-local influence coefficients, a,„ for the slip systems considered in Fig. 2. 

then we can solve for the coefficients c2 and cA. In this case, these are found to be 

c2= -d\ai+a2), (27) 

c4 = -d
4a2. (28) 

This exercise highlights the parallels between our non-local approach and recent 



Formulation of the Peierls dislocation model 1859 

gradient correction models (e.g., Fleck et ah, 1994; Aifantis, 1992), although in this 
paper we will not explore the gradient correction form of these equations further. 

3.3. Energy of crystalline slip within the non-local formulation 

The simplest test of the non-local model is to re-examine the energetics of idealized 
slip distributions as originally presented in Fig. 1. Recall that in this figure the 
predictions of the local model are given by the constant dashed line near the top of 
each graph, whereas the data points are exact calculations of the misfit energy as 
determined using atomistics. The solid curves are the results of using the non-local 
model, which are in significantly better agreement with the exact results than are the 
local results. In each case, the energetics using the non-local model exhibit the correct 
trend as a function of slip gradients, unlike the original model which does not capture 
gradient effects. The non-local model is not able to capture the anomalous upturn in 
the atomistic results for the {111 }[1 TO] screw orientation, a pathology of this particular 
slip deformation which results from putting atoms into highly unfavorable proximity 
across the slip plane. Nonetheless from the standpoint of purely energetic consider- 
ations, the non-local model shows a marked improvement over the local model, 
without any great cost in model complexity. 

4. THE NON-LOCAL MODEL OF REALISTIC DISLOCATION CORES 

As an example, we apply the non-local model to the determination of the core 
structure for a straight dislocation with a planar core. For this purpose we consider 
the Lomer dislocation in fee Al, with a <110> line direction and Burgers vector (a/2) 
<T10>. 

We obtain the Lomer core structure using two schemes. The first makes use of a 
simplified form for local part of the interplanar potential <P(<5) that allows for a 
closed form analytic solution for the slip distribution in Fourier space. In the second 
determination of the Lomer core, the full-blown atomistic result for <D(<5) is used and 
the core structure is computed numerically. Each of these results is then compared to 
the slip distribution taken directly from the atomic positions resulting from full 
relaxation of the atomistic degrees of freedom. The first scheme, which admits of an 
analytic solution, is of interest as a method for testing the numerical procedures used 
in the second scheme. At the same time, it demonstrates that considerable analytical 
progress can be made with the non-local formulation. The second, fully numerical 
solution demonstrates that stable core structures are readily obtainable within the 
non-local formulation. We will see that while the effect of the non-local terms on the 
slip distribution and core structures are subtle to the eye, they represent a significant 
improvement when quantified in terms of the predicted misfit energy of the dislocation 
core. 

4.1. Eigenstrains solution for ö within the quadratic well approximation 

In this section, we describe the procedure used in determining an analytic result for 
the core structure of the Lomer dislocation. The important approximation in this 
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procedure in relation to the results of the subsequent section is the simplified form 
used for the interplanar potential $(<5). 

Within the Peierls framework, the determination of 5(x) is equivalent to finding the 
core structure of the dislocation. Once <5(x) is found, the elastic displacement fields 
away from the slip plane can be computed from an integral of the Volterra kernel 
over the entire slip plane. As well, the misfit and elastic energy are then fully specified 
by the slip distribution. Therefore, we seek the slip distribution ö(x) which minimizes 
the total energy functional. The energy associated with the dislocation, which is a 
functional of the slip distribution 8(x), can be expressed as the sum of three parts 

Etol = EL + ENL + En. (29) 

EL is the misfit energy as determined within the traditional local model and given in 
eqn (2), ENL is the non-local correction term added to the misfit energy in eqn (7), 
and EB is the elastic energy of the bulk region. The elastic term is obtained by 
superimposing the elastic interaction energy for a distribution of infinitesimal dis- 
locations with Burgers vector density — d<5/dx, 

1 ,     ,     R    \d<5(x) dö(x') ,    . , .... 
m°z{ix^7\)^x-^rdxdx- (30) 

In this equation, R is a measure of the size of the bulk region. Making use of 
integration by parts, it is possible to eliminate the constant R from the analysis. B is 
defined as 

B = 2CyS,Sj (31) 

where s{ is the z'th component of the slip direction for the dislocation of interest and 
C,j is the prelogarithmic energy tensor, discussed in detail, for example, in Bacon et 
al. (1979). In the case of an isotropic solid B reduces to 

B    = . (32) ,so     2;r(l-v) 

For the purposes of obtaining an analytic solution we use the method of eigenstrains 
(Mura, 1984). We make the approximation that the local interplanar potential <J>(<5) 
takes the form of a periodic array of quadratic wells as shown in Fig. 4(a). This 
approximation is clearly not an accurate representation of the full interplanar poten- 
tial, but does capture one of the real potentials most significant features, namely, its 
convexity, and is a standard tool in the method of eigenstrains. The full interplanar 
potential will be incorporated in Section 4.2. Now, we employ the method of eig- 
enstrains as described by Mura to minimize the energy functional with respect to the 
slip distribution for a dislocation dipole with spacing r. The dipole configuration is 
used so that the slip distribution goes to zero at x = ±oo. By making r large, the 
dipole becomes two isolated dislocations of opposite sign. This approach allows us 
to rewrite the local contribution to the energy as 
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Fig. 4. (a) Quadratic well approximation to the local interplanar potential, (b) Eigenslip, S''(x) for the 
dipole configuration. 

EL c(8(x)-8E(x))2dx. (33) 

In this equation the constant c is determined by fitting the quadratic wells to linear 
elasticity at small values of 8 — 8E. This leads to c = p.ßa where a is the spacing 
between slip planes and \x is the relevant shear modulus for the slip system of interest. 
<5E in this expression is the "eigenslip" which ensures that the dipole slip configuration 
is enforced during the energy minimization. 8E(x) is shown in Fig. 4(b), where b is the 
Burgers vector and r is the dipole spacing. We will need the Fourier transform of this 
eigenslip, which is found to be 

-r/2 

2b     kr 
b e      dx = — sin — 

k       2 
(34) 

Making use of eqn (14),we can replace 8, 8E and K with their Fourier transforms, 
allowing for a Fourier space representation of the total energy. Integrating by parts 
on the bulk energy terms and assuming that the order of integrations can be switched 
allows us to simplify the energy expression to 
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Fig. 5. Comparison of core structures for the Lomer dislocation in Al as obtained from the continuum 
model with exact atomistic results, (a) Structure obtained using the quadratic well model of the interplanar 
potential and (b) with the full numerical solution to the Peierls-Nabarro equation. The filled circles 
represent the atomistic result, the thin line is the local model result, and the thick line is the non-local 

model result. 
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d/c. 

(35) 

Note that at this point, our solution is predicated upon a knowledge of the Fourier 
space features of the interplanar kernel. Taking variations with respect to b and setting 
SE,„, = 0 we find 

2b sin - 
kr 

b(k) 
K(k)     7iBirl 

(36) 

where we have made use of the fact that K(k) is an even function and used eqn (34) 
to replace the Fourier transform of the eigenslip. This expression gives us the Fourier 
transform of the slip distribution for the dislocation dipole. Although it cannot be 
transformed into real space explicitly, the transformation integral is straightforward 
to perform numerically once the form of K is known. Thus we numerically compute 
the slip distribution from the expression 

8{x) = 
2b 

sin — cos kx 

KQc)     %Bk 
1 + V ~z 

c 2c 

dk. (37) 

This result is plotted in Fig. 5 for the case of K = 0 (which corresponds to the local 
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Peierls model solution) and with K from Fig. 2 for the (100)[011] edge (Lomer) slip 
system. Only one member of the dimple pair is shown because of the symmetry of the 
distribution. For comparison, we have included the slip distribution obtained from a 
lattice statics energy minimization of the same dislocation core. Note that in making 
such comparisons, care must be taken to insure that the method used in extracting 
the slip distribution from the atomic coordinates is consistent with the definition of 
S(x) used in the continuum model. A discussion of this distinction can be found, for 
example, in Miller and Phillips (1996b) or Rice (1992). 

We see in Fig. 5(a) that the effect of the non-local correction is to introduce small 
oscillations in the slip distribution and increase its slope slightly at the dislocation 
core. At first, the oscillations may appear to be unphysical, but recall that this 
continuous curve is really a representation of the slip for a discrete set of lattice sites. 
Therefore, only the values at the lattice sites are germane for the atomic positions 
implied by the solutions. It is interesting to note that this analytic model provides a 
reasonable approximation to the dislocation core, although the differences between 
the local and non-local results are hard to quantify. It seems that the quadratic well 
approximation used in obtaining this result leads to an overestimate of the lattice 
restoring force, as evidenced by the narrowness of the Peierls model cores when 
compared to the atomistic result. In the next section, we will see the improved 
representation of these forces when the full interplanar potential is used. We should 
not expect the quadratic well model to accurately capture subtle details of the atomic 
core, but it is encouraging that the model does lead to a stable core configuration that 
is similar to the exact result. 

4.2. Numerical solution for the slip distribution 

It is now of interest to see what effect the non-local correction has on the dislocation 
core structure when the correct atomistically obtained <£>(S) is used. In this case, it is 
necessary to resort to a full numerical solution of the governing equation. 

The numerical approach for finding S(x) follows closely the approach of Beltz and 
Freund (1994), to which we refer the interested reader for more details. We begin with 
the well-known Peierls-Nabarro equation (Hirth and Lothe, 1992) 

T[Ö(X)] =  - ^ 
2JI(1-V) 

dS(x')/dx' 
,    dx', (38) 

into which we can substitute eqn (23) for T[ö(X)]. By an appropriate change of 
variables, the domain of integration can be collapsed onto the finite domain (—1,1). 
This domain can be discretized and the integration carried out by making use of the 
Gauss-Chebyshev integration techniques described in Erdogan and Gupta (1972). 
This approach reduces the problem to a set of nonlinear algebraic equations which 
can be solved iteratively via the Newton-Raphson method, leading to a discrete 
representation of the slip distribution <5(x). The results of such a calculation for the 
Lomer core structure are presented in Fig. 5(b). Again, we note that the resulting core 
structure is not changed dramatically relative to the local model as a result of adding 
the non-local correction. Note that neither of the two continuum models can capture 
the slight asymmetry of the atomistic core which arises due to discrete lattice effects. 
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One important improvement in the non-local model is a slight increase in the slope 
at the core center, which brings the narrowness of the core into better agreement with 
that of the atomistic result. 

The fact that the structural differences between the local and non-local models are 
small does not imply that the non-local effect is unimportant. Another quantity to 
compare between the two models is their predictions for the total energy of the 
dislocation. The elastic energy is computed in the same way for the two models, and 
the highly similar cores implies that the value of the elastic energy for the two models 
will be about the same. On the other hand, the misfit energy is computed differently, 
and even identical core structures will lead to different misfit energies by virtue of the 

non-local energy term. 
Using the method described in Miller and Phillips (1996b) to isolate the misfit 

energy from the strain energy in the bulk regions, we can compute the exact atomistic 
misfit energy of the lomer dislocation to be 0.1362 eV/A. This is accomplished by 
representing the atoms in the upper and lower bulk regions by nodes in a finite element 
mesh, and computing the strains (and consequent strain energy) in this mesh via the 
Cauchy-Born rule (Ericksen, 1984). On the other hand, we can compute this energy 
using the local and non-local models from eqns (2) and (22), respectively. The local 
model predicts an energy of 0.1979 eV/A, about 45% greater than the exact energy. 
The non-local result is 0.1471 eV/A, only 8% greater than the atomistic result. This 
result demonstrates that although the core structures in the local and non-local 
formulations are very similar, the non-local treatment of the core energies is sig- 
nificantly more accurate. We would expect similar adjustments to the cohesive zone 
model estimate of the Peierls stress. 

5. CONCLUSIONS 

Motivated by previous work which demonstrated a failure of the local Peierls 
framework to accurately describe the energy of interplanar slip for the types of slip 
distributions found in real dislocation cores, we proposed a non-local formulation of 
this framework. We then proceeded to outline a set of simple atomistic calculations 
whereby one can obtain the non-local interplanar kernel required in the formulation 
of the model. To demonstrate that the model improved estimates of the slip energy, 
we compared these results to purely atomistic calculations and showed that the non- 
local model improves the agreement between the cohesive zone model energies and 
explicit atomistic energies. 

Given that the non-local model leads to better energetic descriptions of slip dis- 
tributions, we proceeded to demonstrate the model by computing the structure of a 
straight dislocation with a planar core, namely, the Lomer dislocation in Al. It was 
found that the differences between the local and non-local results, and between either 
of them and the atomistic core, were subtle and difficult to quantify when considering 
only the spatial structure of the dislocation. However, an alternative measure of the 
performance of the models is the energy they imply, which the local model predicted 
to be 45% larger than the exact atomistic result. The non-local model significantly 
improved the energetic description of the core, overestimating the exact result by only 
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8%. Nevertheless, the negligible changes in the non-local description of the core 
structure serve as a reminder that the cohesive zone approach appears to lack the 
flexibility to really serve as a generic basis for mixed atomistic and continuum studies 
of dislocations. Even in its non-local form, this framework restricts the slip, all non- 
linearity and all non-locality to a particular slip plane, thus forbidding the emergence 
of complex cores such as those found in bcc metals. 

Future work in the context of cohesive zone models could include an attempt to 
integrate non-local effects into other models of the mechanical behavior of materials. 
One example of interest is the model of Rice (1992) and the numerous related works 
that describe dislocation emission from crack tips. Preliminary investigations in this 
area suggest that the concepts outlined here can be used for such problems (Miller et 
ai, 1997). The basic equation to be solved in the case of a dislocation near a crack tip 
is a modified version of the Peierls-Nabarro equation with additional terms due to 
the presence of the crack. Any realistic solution of this equation requires a numerical 
procedure, and the simple form of the non-local corrections in eqns (22) and (23) 
mean that the additional computational cost in the non-local formulation is small. 
The most serious obstacle in this case seems to be the proper treatment of the boundary 
conditions in the non-local setting, and most importantly the stress free boundaries 
at the crack faces. However, the fact that non-locality plays an important role at the 
atomic level means that a correct non-local treatment of the atomistically sharp crack 
may be an important contribution to our understanding of crack tip phenomena. 

One important approximation of the Peierls model not discussed in this work is the 
treatment of the inherently discrete slip distribution as a continuous function <5(x). 
Another possible direction for this work is the integration of the non-local formulation 
into the recently proposed "semi-discrete Peierls framework" of Bulatov and Kaxiras 
(1997), which correctly treats the slip distribution as a discrete function. Results using 
the semi-discrete version of the Peierls model show significant improvement to the 
conventional Peierls framework, but some error remains. It is possible that including 
non-local effects into this model may further improve its agreement with atomistics 
while retaining its tractability. 

A third future direction for this research should be an effort to compute other non- 
local kernels analogous to K(x — x'). For example, it may be possible to directly 
compute from atomistics the non-local elastic moduli introduced by Eringen et al. 
(1977) for bulk crystals. This would eliminate guesswork about their appropriate 
form and base them solidly on their atomistic underpinnings. Other recent work 
(Tadmor et ai, 1996a, b) substantiates our belief in the critical role played by consti- 
tutive non-locality in the description of atomic scale defects and calls for continued 
efforts to put such models on a clear analytic footing. 
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ABSTRACT 

The topics considered are poorly understood aspects of the high-rate deformation and fracture under 
shock-wave loading, and some new kinds of shock-wave experiments. A high mobility of the crystal lattice 
behind the shock front as a result of formation of many stacking faults, unexpectedly high dynamic yield 
strength of metals at elevated temperatures as a result of viscous dislocation drag and spontaneous 
nuclcation of point defects, spall strength of metals at temperatures up to the melting point, use of the line 
imaging interferometer technique to study a relationship between trans-granular and inter-granular 
dynamic strength of a polycrystalline metal, and inelastic deformation and fracture of glasses under impact 
loading are discussed. O 1998 Published by Elsevier Science Ltd. All rights reserved. 

1.    INTRODUCTION 

Since the shock wave and high-strain-rate phenomena are involved to broad tech- 
nological and other applications, we are interested in understanding the time-depen- 
dent mechanical properties under these non-trivial conditions. On the other hand, the 
shock-wave technique provides a powerful tool for studying material properties at 
extremes of strain rates. Since then the modern high-resolution methods of monitoring 
of the stress and particle velocity histories in shock waves have been created, numerous 
investigations of mechanical properties of different classes materials were performed, 
and numerous phenomenological as well as microscopical models were developed. 
However, in spite of a quite sufficient general understanding, experiments, theory, 
and material models do not agree in details. Mechanical yielding and strength behavior 
in shock waves show complexities that are not understood yet. 

There are reasons for concern that unidentified processes and phenomena occur. 
One of the goals of the paper is to attract an attention to some such unidentified 
aspects of high-rate deformation and fracture of solids in conditions of shock-wave 
loading. Another goal of the paper is to discuss some new kinds of experiments that, 
we hope, can provide important interesting data. Examples and possible mechanisms 
of a fast stress relaxation in ductile crystalline materials will be discussed in Chapter 
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2. Chapter 3 is devoted to discussion of anomalous temperature effects on the dynamic 
yield strengths of metals. The high-temperature effect on the spall strength of metals 
as well as new possibilities to study the spall phenomena are discussed in Chapter 4. 
Chapter 5 presents some last results on the failure waves in glasses. 

2.    A FAST STRESS RELAXATION IN METALS 

It is usually recognized that mechanical behavior of metals and alloys is well 
understood and is well described by modern advanced phenomenological and dis- 
location models. Nevertheless, there is a series of observations which point out that 
the high rate of strain of metals in shock waves is accompanied by a specific change 
in their properties. Let us consider examples. 

Figure 1 shows the stress histories in the armco iron and steel samples loaded 
successively by two compression pulses (Kanel et al, 1978). Measurements were done 
with the insulated manganin pressure gauges. The insulating films decreased the time 
resolution at low stresses in the elastic precursor wave, but at stresses of around 4-5 
GPa and more the time resolution (~ 50 ns) is good enough. The initial parts of stress 
profiles shown in Fig. 1 are typical for metals at low peak shock pressures. The 
first load pulses include the elastic-plastic compression and unloading waves. The 
amplitude of elastic precursor of the first compression wave is the Hugoniot elastic 
limit (HEL). There is no indication of a finite purely elastic stress range in the release 
part of stress profiles. For the elastic-plastic solids, the stress decrease in the elastic 
portion of the unloading wave should be twice the HEL, however the experimental 
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Fig. 1. Stress profiles in the armco iron and steel samples loaded successively by two compression pulses. 
Measurements were done with manganin gauges embedded on a distance of 15 mm from the impact 
surface. Low time resolution at small stresses in vicinity of the Hugoniot elastic limit is a result of the 

gauges insulations. 
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data show that only the very start of the release could be indicative of purely elastic 
behavior, the plastic strain starts almost immediately behind the wavefront rarefac- 
tion. The stress history also exhibits the change in character, and drop in the ampli- 
tude, of the elastic compression precursor in the second load pulse. Similar 
behavior was observed also for titanium (Kanel et al., 1978) and molybdenum 
(Furnish et al., 1992). It looks like materials become softer or transition from 
the elastic-viscous-plastic to elastic-viscous response occurs after the shock 
compression. 

Another example of this series is related to the unloading and reloading of shock- 
compressed metals (Dremin and Kanel, 1976; Asay and Lipkin, 1978; Asay and 
Chhabildas, 1981). In contrary to the purely elastic-plastic model, the initial unloading 
or reloading from the shocked state is determined to be elastic in both cases. Fur- 
thermore, the difference between increments in the deviatoric stress in compression 
and rarefaction waves is not much less than the magnitude of the increments, i.e. the 
stressed state of matter immediately behind the shock front is almost isotropic. 

Finally, until now it has not been clear how the polymorphous transformations 
occur so rapidly under shock-wave conditions. The basic mechanisms driving and 
controlling the shock transitions are still uncertain. 

From these observations we may conclude that shock waves appear to have a 
specific effect on matter: relatively high mobility of the crystal lattice and the fast 
relaxation of shear stresses become possible. For explanation of the phenomenon, 
observations of the microscopic structure in the shock-compressed state should be 
attracted. One such technique involves the study of X-ray diffraction during shock 
wave compression of crystalline solids (Johnson et al., 1970; Egorov et al., 1972). It 
has been shown (Zaretsky et al., 1991a, 1991b; Zaretsky 1992) that, whereas for bcc 
metals the ratio of the diffraction peak angles of the initial and shock-compressed 
states is proportional to the ratio of the lattice constants, this obvious relationship is 
not maintained for fee metals. The discrepancy has been explained by Zaretsky et al. 
in terms of formation of the stacking faults. This disturbance of the crystal symmetry 
leads to a shift of the diffraction peaks in the case of fee structure, while for bcc lattice 
the stacking faults produce only broadening of the diffraction peaks and does not 
produce their shift (Warren, 1959). During the plastic flow, the stacking faults arise 
as a result of a splitting of complete dislocation in the (111) planes into two partial 
dislocations in the same planes. Simulations of the weak-shock induced plasticity by 
the molecular dynamics methods (Mogilevsky and Mynkin, 1978; Holian, 1995) 
confirm generation of the partial dislocations. 

At the maximum concentration of stacking faults, the fee lattice transforms into a 
hep lattice which is not stable. Estimations (Zaretsky, 1992) show that the whole or 
almost whole plastic strain has to be produced by the partial dislocations to provide 
the observed anomalous shift of the diffraction peaks. As a result, the stacking faults 
concentration reaches few percents in shock waves of several GPa peak stress. The 
large concentration of the stacking faults means that a remarkable amount of meta- 
stable phase is produced during the shock compression. Thus, a possible base for the 
physical description of the observed time-dependent shear stress response is that the 
lattice becomes unstable and, due to that, the fast stress relaxation becomes possible 
during disappearing of the metastable phase. 



1872 G. I. KANEL 

3.    RESISTANCE TO PLASTIC DEFORMATION OF METALS AT 
ELEVATED TEMPERATURES 

The effect of strain rate on the plastic flow behavior of metals has been successfully 
rationalized in terms of the dynamics of dislocations (Kumar and Kumble, 1969). 
For low rates of mechanical loading, the dislocation motion is aided by thermal 
fluctuations. The dislocations are obstructed at barriers and a combination of thermal 
agitation and applied stress field is required to activate the dislocation over the 
obstacles. At some point (103-104 s"1) between intermediate strain rates and the 
higher strain rates, the plastic deformation process makes a transition from being 
dominated by stress-assisted thermal activation to being controlled by the time it 
takes a mobile dislocation to get from one barrier to the next; this latter time depends 
on the effective stress and viscous-drag force provided by the perfect lattice. At very 
high strain rates the applied stress is high enough to overcome instantaneously the 
usual dislocation barriers without any aid from thermal fluctuations and viscous 
phonon drag becomes dominant. Clifton (1971) has given the earliest and most 
complete discussion of transition from thermal activation to dislocation drag in shock- 
loaded solids; modern state of the question was discussed recently by Johnson and 
Tonks (1992). 

In order to evaluate conditions of the transition from the thermal activation mode 
to athermal mechanisms of the plastic deformation, measurements over a wide tem- 
perature range are necessary. There were just few observations of the mechanical 
yielding and strength behavior in shock waves at elevated temperatures. Rhode (1969) 
studied the dynamic yield behavior of iron over a temperature range of 76-573°K. 
The dynamic yield stress at strain rate of ~ 105 sec"1 was found to be independent of 
the temperature in contrast to the highly temperature sensitive quasi-static yield stress 
which decreased by a factor of 2.5 between 76 and 298°K. It was concluded that the 
motion of twinning dislocations is the mechanisms of dynamic yielding of iron. 
According to Asay (1974), the elastic precursor amplitude in bismuth is independent 
of temperature almost up to 523°K while the melting temperature is 544.4°K. Unlike 
to that, Duffy and Ahrens (1994) have found the HEL amplitude of molybdenum is 
reduced by 26-46% relative to its room temperature value reported by Furnish and 
Chhabildas (1992), but there is not assurance that the tested molybdenum specimens 
were of the same incident structure. 

Figure 2 shows examples of the free-surface velocity profiles in aluminium AD1 
(analogous to the Al 1100 alloy) and cast magnesium Mg95 measured with VISAR 
techniques (Kanel et ah, 1996b). The initial temperature of samples was varied from 
room temperature to near the melting point. 

In the profiles presented in Fig. 2, the elastic-plastic compression wave initially 
accelerates the sample surface. The unloading wave originating from the back of the 
impactor plate subsequently begins to decrease the free-surface velocity. Interaction 
of the reflected compression pulse from the free surface and the unloading wave 
creates tensile stresses within the sample and causes internal spall fracture. Relaxation 
of tensile stresses at the spall interface produces the subsequent second acceleration 
wave which appears in the free-surface velocity profile as a spall signal. 

Experiments performed at high initial temperature have yielded unexpected 
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Fig. 2. Examples of the free surface velocity profiles measured in experiments with aluminium and mag- 

nesium samples at normal and elevated incident temperature. 

behavior: the amplitude of elastic precursor wave, and hence the Hugoniot elastic 
limit, as temperature approaching melt is achieved becomes substantially larger than 
the value at ambient temperature. Since the precursor amplitude is determined not 
only by the yield stress but also by the elastic modules, the result observed does not 
mean that the dynamic yield stress is growing with increasing temperature. Isoentropic 
elastic modules of metals as a function of the temperature from 20°C to 640°C have 
been published by Simmons (1965), and Tallon and Wolfenden (1979). Using these 
values and the free surface velocity profiles, the stress-strain diagrams were recon- 
structed by Utkin et al. (1997) in a frame of the simple wave approach. Figure 3 
presents the results for aluminium. The plastic strain, ep, was calculated from the 
relationship sp = E-aJ(K+4/3G), where the total strain e = (V0- V)/V0. 

It is difficult to say now whether the observed temperature effect is related to the 
initial yield strength or the increase in flow stress can be observed over the whole 
cycle of deformation. We are continuing now these investigations with single-crys- 
talline metal samples and, in general, preliminary results are in agreement with the 
data discussed here. 

Since the high strain rate is controlled by the viscous phonon drag, it is natural to 
suppose that the growth of phonon viscosity with increasing temperature is a main 
reason of the observed high dynamic yield strength at elevated temperature. Another 
explanation is based on spontaneous nucleation of point defects. At high tempera- 
tures, some atoms achieve energies sufficient to leave their positions in the lattice and 
to occupy interstitial positions (Frenkel, 1926) or free positions at surfaces or internal 
imperfections (voids, grain boundaries, dislocations) (Wagner and Shottky, 1930). It 
is argued (Kraftmakher and Strelkov, 1970; Goland, 1976), that the equilibrium 
concentration of vacancies can reach -0.1% at the melting point. The point defects 
create additional drag forces for the dislocations. Since only initial magnitudes of the 
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dynamic yield stress were measured, we cannot exclude that the growth of this value 
is a consequence of condensation of vacancies on pre-existing dislocations. Formation 
of clouds of vacancies creates an obstacle resisting the activation and motion of 
dislocations. 

If the growth of the dynamic yield strength near melting point will be confirmed 
for other metals, we will need to revise interpretation of the adiabatic shear bands 
mechanisms which is treated as a result of deformation instability at a high level of 
strain and strain rates (Zurek and Meyers, 1996). 

4.    NEW STUDIES OF THE SPALL FRACTURE PROCESSES 

The dynamic tensile strength of materials at load durations of microseconds or less 
is studied by analyzing spall phenomena under shock pulse action (Davison et ai, 
1996). Spalling is the process of internal rupture of a body due to tensile stresses 
generated as a result of compression pulse reflection from the surface. During the 
dynamic fracture process, many microvoids or microcracks, more or less simul- 
taneously, undergo nucleation, growth, and coalescence in a volume of material to 
form a failed or spalled region (Curran et ah, 1987). Large overstresses even near the 
ultimate theoretical tensile strength can be reached under these conditions due to the 
high rate of stress application (Kanel et al., 1994). The amount of activated damage 
nucleation sites sharply increases with increasing tensile stress because smaller defects 
get involved. 
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Figure 4 shows the dependence of the spall strength on the initial temperature for 
aluminium and magnesium (Kanel et al., 1996). In general, the spall strength decreases 
with initial temperature but this decrease occurs much slower than it takes a place for 
the quasistatic tensile strength. A larger drop in the spall strength is associated with 
heating above ~0.9 of the melting temperature in the absolute scale. A theoretical 
description of the dependence should be still developed. 

As a rule, kinematic parameters of shock-wave loads are monitored in one point 
of the sample. Since the fracture is a process of nucleation and growth of cracks or 
voids, it is often important to know a space picture of the phenomenon. It seems, a 
first step in this direction has been done by Ravichandran and Clifton (1989) and 
Prakash and Clifton (1992) when they investigated a crack propagation under con- 
ditions of plane strain. In these experiments, the rear surface motion was monitored 
at four pre-determined points. The recently developed line imaging interferometer 
technique (Baumung et al., 1996a) provides capability to record simultaneously the 
velocity histories in many points along a line on the sample surface. With this 
technique, we can hope to construct a strength map and to see some new details of 
dynamics of the fracture initiation and growth. 

Figure 5 presents the line imaging ORVIS interferogram of an experiment with a 
0.82 mm thick magnesium sample (Baumung et al., 1997). It is clear, we may be able 
to see any variations in the fracture only in tests with a scale close to that of 
nonuniformity of the material. Because of this, experiments were carried out at a 
small load durations using a pulse ion beam (Baumung et al., 1996b) as a shock-wave 
generator. Each point of vertical sections in the interferogram corresponds to a 
separate point of the measuring line on the sample surface. A vertical displacement 
of the interference fringes is proportional to velocity increments. The amplitude of 
the initial velocity jump in the shock front is not resolved, however, exact knowledge 
of the velocity peak is not so important for the spall strength measurements. 
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The original cast magnesium Mg95 has a grain size in the order of 1-2 mm. The 
field of view of the velocimeter included two large grains that are visible on the 
interferogram due to the different reflectivity. Results of evaluations presented in Fig. 
6 indicate that the spall strength is changing from point to point in the sample, but, 
despite of the grain boundary in the ORVIS field of view, there is no sharp jump in 
the strength distribution. It is necessary to mention that, under conditions of one- 
dimensional shock loading of metals with low yield strength, the stress tensor is nearly 
spherical. In other words, there is no large anisotropy of the loading, and there is no 
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strength jump between grains of different orientation of their crystal structure. Of 
course, the inter-granular boundary in the ORVIS field of view has to be a site of 
easier nucleation of fracture, but it seems such fine details can be observed only at 
much larger magnifications. 

Figure 7 shows result of measurements in comparison with the resistance to spall 
fracture of the same magnesium at lower strain rates. In many previous investigations, 
such dependences are well approximated by a power function over a wide range of 
strain rate. The new data at highest strain rate are deflected from the power depen- 
dence to larger values of the spall strength. The spall thickness in this shot varied 
between ~60 and ~80 Lim, that is much smaller than the grain size. This means the 
spall crack had to cross the grains and the measured spall strength should correspond 
to that of crystals. It has been found earlier (Kanel et ai, 1994, 1996a) that the spall 
strength of copper and molybdenum single crystals exceeds that of polycrystalline 
samples by a factor of ~2 for molybdenum and ~3 for copper. Since the deviation 
of the new data from the extrapolated dependence, in average, is not so large, we may 
suppose that, in this experiment, the main spall crack at least partly coincides with 
the inter-granular boundary below the sample surface. Thus, both intra-granular and 
inter-granular strength were observed, and the intra-granular strength is as much as 
twice the strength on inter-granular boundaries. 

The preliminary data presented here show that the line-imaging interferometry of 
free-surface velocity profiles is a way to analyze uniformity of strength properties of 
materials. In the following, we are planning similar measurements at increased space 
resolution to see the fracture initiation in visible grain boundaries. 
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5.    INELASTIC DEFORMATION AND FRACTURE OF GLASSES 
UNDER IMPACT LOADING 

The dynamic fracture of brittle materials occurs through a formation of multiple 
cracks. The impact loading of a glass and, probably, other brittle materials can be 
accompanied by an appearance of failure wave. The failure wave is a network of 
cracks that are nucleated on the surface and propagate into the stressed body. We 
may hope that the investigations of failure wave in glasses provide information about 
the mechanisms and general rules of nucleation, growth and interactions of the 
multiple cracks and will help us to interpret better the experiments with other hard 
brittle materials, like ceramics and rocks. 

The failure wave was observed under the planar shock-wave compression below 
the Hugoniot elastic limit. In experiments described by Razorenov et al. (1991) and 
Kanel et al. (1992), the shock pulse was introduced into the glass sample through a 
copper baseplate. When the peak stress of the shock pulse was far below the elastic 
limit, a short negative velocity pullback appeared in the free-surface velocity profile 
as a result of the re-reflection of the rarefaction wave at the sample-baseplate interface. 
In contrast, however, no re-reflected tensile pulses were observed in experiments near 
the elastic limit. Instead, a small velocity rise was indicated on the free surface profile 
and the moment of this velocity rise was earlier than the elastic wave reverberation in 
the sample, This modification of the wave process was explained in terms of the 
formation of a failed layer near the sample-baseplate interface under the uniaxial 
compression. An expansion of the failed layer was interpreted as a failure wave 
propagation. 

Brar et al. (1991, 1992) have shown by direct measurements on a soda lime glass 
that behind the failure wave the tensile strength drops to zero, or almost to zero, and 
the transverse stress increases, indicating a decrease in shear strength. Raiser and 
Clifton (1994a, 1994b) have found that the surface roughness of the aluminosilicate 
glass between 0.04 and 0.52 /mi does not appear to play a significant role in the 
formation of a failure wave. Independently on the surface roughness, they observed 
a high spall strength of the glass when the compressive stress was around 3.5 GPa 
while at the peak stresses of 7.5-8.4 GPa the spall strength was high ahead of the 
failure front and was low behind of it. They have also got evidence of increasing of 
the failure wave velocity with increasing impact stress. Dandekar and Beaulieu (1995) 
have found that failure wave is initiated in a soda lime glass at an impact stress 
between 4.7 GPa and 5.2 GPa. The propagation velocity of the failure wave is 
determined to be 1.56 km/s and it remains constant with the thickness of glass sample 
between 3.1 and 9.4 mm at the impact stress of 5.2 GPa. Espinosa et al. (1997) 
observed a progressive reduction in normal stress behind the failure wave close to the 
impact surface. They have concluded that the inelastic process responsible for the 
reduction in shear strength has well defined kinetics. While much work has con- 
centrated around relatively open structure, lower density glasses, Bourne et al. (1996b) 
observed the failure wave in a higher density filled lead glass which has a density of 

5180 kg/m3. 
The failure wave was visualized by Brar and Bless (1992), Bourne and Rosenberg 

(1996a) and Senfe? al. (1995). Most interesting results were obtained in experiments 
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with large specimens of the optical glass K5 impacted by blunt steel cylinders (Senf 
et ai, 1995). The experiments demonstrated several modes of the fracture nucleation. 
Around the edges of projectile many cracks are initiated by the propagating surface 
wave, which form the conical shaped fracture zone. In the central part, the damage 
zone exhibits a planar front that propagates with velocity equalling the terminal crack 
velocity of 1550 m/s in this type of glass. Besides the fracture nucleation on the sample 
surface, separate crack nucleation sites were also activated on the microdefects inside 
the stressed glass target. As a result, several spherical or nearly spherical failure waves 
were formed ahead of the main front. 

Figure 8 shows the free-surface velocity profiles measured in experiments with 
Chines K9 crown glass. In more detail, these experiments will be described in a 
separate paper (Kanel et al., 1997). The targets were composed of one or two glass 
plates 2-6 mm thick. In the diagram, the time, t, has been normalized as t/h, where h 
is the sample thickness in the case of single-plate sample or the second piece thickness 
in the case of two-plate sample. A few weak velocity steps before the main front in 
some shots are the result of shock waves in the residual and infiltrated gas between 
the impactor plate and the sample. In the shot 3 at maximum peak stress, the inelastic 
deformation in the compression wave is starting in vicinity of 1200 m/s of the free- 
surface velocity that corresponds to the Hugoniot elastic limit (HEL) of about 9 GPa 
and the compressive yield strength, Y = aHEL(l — 2V)/(1 — V), of ~6.6 GPa. The free- 
surface velocity profiles of this shot contains the unloading part of the incident shock 
pulses that exhibit a high dynamic tensile strength of the material above the HEL. 

When the peak stress does not exceed the Hugoniot elastic limit, the wave re- 
reflection inside the sample is recorded in the vicinity of 0.22-0.25 ^is/mm of the 
normalized time both for single-plate and composed targets. This confirms formation 
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of the failure wave under shock compression below the HEL. Estimations have given 
the average propagation velocity of the failure wave of 0.91 km/s at 5.2 GPa and 1.25 
km/s at 7.8 GPa in the K9 glass. Comparison of experimental data for one-piece and 
two-piece targets shows that the failure wave were nucleated on the piece surfaces, 
independently on whether it is the impact surface or the surface of piece inside the 
composed sample. Similar results have been obtained for a dense flint glass also. Since 
the failure waves are nucleated on the internal interfaces of two-plate targets, we may 
certainly confirm that, unlike to phase transitions or elastic-plastic responses, the 
failure wave is a non-local phenomenon in the sense that response of each elementary 
volume in the body depends not only on its local state, but also on whether the failure 
wave has approached to this point or not. 

Silicate glasses exhibit a high yield strength at shock compression. The very high 
yield strength of glasses is associated with their amorphous state because the dis- 
location slip is impossible in the irregular structure. When the peak stress exceeds the 
Hugoniot elastic limit, brittle glasses become ductile. Ductility of glasses is caused by 
a loose structure with a large amount of molecular-sized microvoids. It is known that 
glasses show gradual structural changes resulting in increased density (Arndt and 
Stoffer, 1969). Since the densification occurs under Vickers indentation, it is supposed 
(Ernsberger, 1968) that the irreversible densification and compaction in the silicate 
structure are responsible for the plastic flow properties of glasses under high pressure. 
This densification, the degree of which can be varied to some extent by variation of 
pressure, temperature, and shear strain, remains irreversible at normal conditions. 
Once the plastic flow started, the stress relaxation reduces the stress concentration at 
the crack tip and, by this way, stops propagation of cracks. Thus, the inelastic 
deformation of glasses under compression above the HEL may occur without crack- 
ing. Unlike to cracks, the plastic flow is not associated with formation of free surfaces 
inside the body and, respectively, does not destroy the cohesive strength. 

A microscopic examination of the deformed zone in glass under pyramidal inden- 
tations (Hagan, 1980) shows that inelastic deformation is concentrated in shear faults 
of negligible thickness produced by genuine shear displacements without cracking. 
Under dynamic conditions, localization of inelastic deformation is accompanied by a 
temperature rise within the shear bands that, in turn, should decrease the densification 
threshold and provide the ductility under unloading. The high spall strength revealed 
in the stress range above the HEL means that the ductility is preserved even at 
following tension. 

Below the HEL, inelastic deformation may occur by cracking. A mechanism of 
inelastic deformation in the failure wave is not quite clear yet. Clifton (1993) expressed 
the fundamental doubts about extensive cracking under the uniaxial strain 
compression. However, it is known that applied stress is locally modified by a crack, 
and may become tensile at certain points on the crack surface, even when applied 
stress is wholly compressive (Griffith, 1924; McClintock and Argon, 1966), so the 
cracks may grow in response to this local tensile stress. The growth of cracks in glass 
under compression was observed by Brace and Bombolakis (1963). They have found 
that the most severely stressed cracks are inclined at about 30° to the axis of 
compression. 

Our previous investigations (Kanel and Molodets, 1976) of behavior of the K8 
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crown glass under shock compression and unloading brings to conclusion that there 
is a mutual influence of the cracking and densification. In this study, a distortion of 
internal interfaces of the two-piece glass targets was revealed at the uniaxial com- 
pression above the HEL. The distortion appeared in elongation of the manganin 
piezoresistant foil gauges used for recording the stress profiles. Figure 9 presents, 
simultaneously with the stress history, the component of gauge resistance increase 
that is provided by the gauge elongation. The foil gauges feel the surface distortion if 
the nonuniformity size is comparable or larger than the foil thickness. Obviously, the 
finding is a result of localization of deformation which forms blocks bounded by 
cracks or shear bands. According to the observations, the peak distortion increases, 
as the ramping of the compression wave grows. This observation may be interpreted 
in terms of different concentration of activated cracks or shear bands and respectively 
different size of the blocks. It seems, ultimate amount of the shear faults is activated 
when the large stress is applied suddenly. When the stress grows with some limited 
rate, the larger faults provide relaxation of the shear stresses and, by this way, prevent 
activation of smaller faults which need higher stresses to activate them. 

Figure 9 shows that, at stresses above the HEL, the distortion of the surface through 
which the compression wave goes out from the first piece of the target is much less 
than the distortion of surface through which the wave enters into the second plate. In 
other words, larger blocks are formed when the cracks grow in the direction of loading. 
We may conclude also that the ductile shear strain is concentrated in continuation of 
the cracks that have been activated first in the elastic deformation phase. Very 
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surprisingly is the reversibility of surface distortion which means that the unloading 
strain occurs along the same shear faults as the strain at compression. Another 
important observation is that the maximum of the surface distortion is delayed 
relatively to the stress maximum. Obviously, mutual shifting of blocks and, cor- 
respondingly, the shear stress relaxation are continuing until the shear stresses will 
not be reduced to zero. 

It would be important to explain peculiarities of the free-surface velocity profiles 
when the failure wave is formed. In most of the experiments, the free-surface velocity 
profiles contain smooth maxima immediately behind the front. Computer simulation 
of the phenomena performed by Kanel et al. (1992) showed that the "rounding" of 
top of the compression wave can be formed as a result of decreasing propagation 
velocity of the failure wave, or increasing yield strength of comminuted material, or 
increasing relaxation time with increasing propagation distance. Brace and Bom- 
bolakis (1963), in their study of the growth of cracks in glass under compression, 
have found that the cracks grow along a curved path which becomes parallel with 
the direction of compression. When this direction is attained, growth stops. This 
observation may explain the decreasing velocity of the failure wave or increasing 
relaxation time. Unfortunately, low reproducibility of the wave profiles does not 
permit to make certain conclusions on the wave dynamics of the phenomenon. 

6.    CONCLUSION 

Investigations of material properties under shock-wave loading are carried out with 
a main goal to predict their response to a high-velocity impact, explosion, or to 
impulsive laser and particle beams. In this regard, it seems that relatively simple 
empirical or semiempirical constitutive models are quite sufficient for most practical 
applications. Nevertheless, more careful examination of accumulated experimental 
data displays the complexities of physical and mechanical processes active in the 
shock-wave event. The unidentified shock-wave properties of solids are fascinating 
researches and can be expected to challenge the experimenters and theorists for a long 
time to come. New prospects are created by the development of new experimental 
technique. 

In the present review, possible mechanisms of a fast stress relaxation in ductile 
crystalline materials, anomalous temperature effect on the yield and tensile strength 
of metals, new studies of the dynamic fracture, and the failure waves in glasses were 
discussed. 

From observations of the stress profiles in metals at various ways of shock loading 
and anomalous X-ray diffraction pattern shifts, we have concluded that a large 
amount of the stacking faults is produced in shock waves. As a result, the lattice 
becomes unstable and, due to that, the fast stress relaxation becomes possible. Prob- 
ably, such behavior can be described in terms of models of multicomponent media 
with variable concentrations of components. 

Unexpected growth of the dynamic yield strength as the melting temperature is 
approached, still needs confirmation and deeper interpretation. The viscous dis- 
location drag and spontaneous nucleation of point defects can be a possible base for 
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mechanisms of the phenomenon. If the growth can be confirmed, we probably should 
reconsider the nature of adiabatic shear band at high-speed deformation. Measure- 
ments showed a precipitous drop in the spall strength of preheated samples as tem- 
peratures approached the melting point while at temperatures up to ~0.9 Tm the 
spall strength decreased very slowly. A nature of the precipitous drop still needs an 
explanation. 

The recently developed line imaging interferometer technique provides the capa- 
bility to construct a strength map along the sample surface. With this technique, 
experiments on coarse-grain cast magnesium have been performed. Both in-granular 
and inter-granular strength were observed and in-granular strength exceeds that on 
inter-granular boundaries by as much as a factor of two. 

Silicate glasses exhibit a high yield strength at shock compression. When the peak 
stress exceeds the Hugoniot elastic limit, brittle glasses become ductile that appears 
in their high spall strength at large peak stresses. The irreversible densification is 
responsible for the plastic flow properties of glasses under high pressure. Below the 
HEL, inelastic deformation may occur by cracking. The multiple crack network forms 
the failure wave that is initiated on the impact surface, as well as on any internal 
surfaces, and propagates into the stressed body with subsonic speed. In both cases 
deformation is localized with the formation of blocks bounded by cracks or shear 
bands. As a result, a distortion of internal interfaces of the two-piece glass targets can 
be observed. A mathematical description of the failure wave should account a non- 
local nature of the phenomenon. 
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ABSTRACT 

The response of brittle materials to uniaxial compressive shock loading has been the subject of much recent 
discussion. The physical interpretation of the yield point of brittle materials, the Hugoniot elastic limit 
(HEL), the dependence of this threshold on propagation distance and the effect of polycrystalline micro- 
structure remain to be comprehensively explained. Evidence of failure occurring in glasses behind a 
travelling boundary that follows a shock front has been accumulated and verified in several laboratories. 
Such a boundary has been called a failure wave. The variations of properties across this front include 
complete loss of tensile strength, partial loss of shear strength, reduction in acoustic impedance, lowered 
sound speed and opacity to light. Recently we have reported a similar behaviour in the polycrystalline 
ceramics silicon carbide and alumina. It is the object of this work to present our observations of these 
phenomena and their relation to failure and the HEL in brittle materials. © 1998 Elsevier Science Ltd. All 
rights reserved. 

Keywords: dynamic fracture, shock waves, ceramic material, glass material, plate impact. 

1.    INTRODUCTION 

The dynamic response of brittle materials to impact results primarily from an interest 
in their possible use as armour materials or as engine turbine blades. The early 
literature (Ahrens and Linde, 1968; Graham and Brooks, 1971; Gust et al, 1973; 
Gust and Royce, 1971) showed ceramic materials to exhibit very high dynamic 
compressive strengths (HELs). Munson and Lawrence (1979) used the velocity inter- 
ferometry system for any reflector (VISAR) to obtain accurate figures for the HEL 
and generated renewed interest in ceramics in impact situations. Further studies have 
extended the range of materials characterised, a review of which appears in Rosenberg 
(1992). The most comprehensive recent review of the field is that of Grady (1996). 

In recent years there has been some controversy over whether the HEL of poly- 
crystalline ceramics displays precursor decay. Early work by Gust and Royce (1971) 
showed that both hot pressed alumina and boron carbide exhibit a decay in elastic 
precursor amplitude with thickness but they could find no consistent trend in the 
other materials studied. Rosenberg et al. (1988) reported a steady HEL only for tile 
thickness greater than 10 mm in both 76 and 99% purity aluminas. Much interest has 
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centred on the testing of higher purity aluminas with Bourne et al. (1994a) showing 
precursor decay in 96% pure aluminas and Staehler et al. (1994) observing this effect 
in a 99.99% pure material. Cagnoux and Longy (1988) and Grady (1994a) observe 
no influence upon the value of the HEL for their high purity aluminas, although 
Grady defines his HEL at a different point in the loading history. The effect can also 
manifest itself as an increase in amplitude of the elastic precursor with increasing 
driving stress as was noted in several works (Bourne et al, 1994b; Munson and 
Lawrence, 1979; Murray et al., 1996). 

There has also been extensive research over the last three decades into the response 
of various glasses to impact loading (Abou-Sayed and Clifton, 1976; Ananine et al, 
1974a,b; Barker and Hollenbach, 1970; Bless et al, 1988; Cagnoux, 1982; Grady et 
al, 1975; Kane et al, 1977; Kondo et al, 1983; KondoeJa/., 1981; Wackerle, 1962). 
The materials investigated have varied from the more open-structure materials such 
as fused silica and borosilicate, through the partially filled soda-lime, to the highly 
filled lead glasses. The open structure glasses show high Hugoniot elastic limits (HELs) 
in the range 6-9 GPa (Bourne et al, 1996d; Holmquist et al, 1995) and spall strengths 
(over 4 GPa) resulting from their amorphous silicate network structure (Rosenberg 
et al, 1985). This structure also gives rise to the possibility of densification during 
compression and this manifests itself in leading ramps on the rising edge of the wave 
(for comparison of three types of glass used in this study see Bourne et al, 1996c). 
The highly filled glasses on the other hand exhibit fast rising elastic waves and have 
similar wave profiles to polycrystalline ceramics (Bourne et al, 1996b). Such materials 
have lower HELs in the 4-5 GPa range since the network structure is disrupted by 
the presence of the large lead atoms which fill the matrix. All of the glasses show 
pronounced elastic precursor decay with target thickness (Bourne et al, 1996a). This 
effect has been shown to be reduced by lowering temperature (Dremin et al, 1992). 

Rasorenov et al. (1991) were the first to observe the phenomenon of delayed failure 
behind the elastic wave in glass, across a front which has been called a fracture or 
more lately a failure wave. Such a wave was proposed by Nickolaevskii (1981) who 
used the concept of a wave of fracture passing through a brittle material to explain 
the elastic limit. Later work (Brar and Bless, 1992; Brar et al, 1991a,b) confirmed 
the existence of these waves by measuring spall and shear strength strengths ahead of 
and behind the failure wave, using manganin stress gauges. 

Grady (1996) and Grady et al. (1977) have presented the most comprehensive 
model for the failure of a generic brittle material. The model incorporates time- 
dependent fracture and rate-dependent plasticity. Two nested and independent yield 
surfaces (see Fig. 1) are hypothesised, the inner of which identifies a fracture limit at 
which a flaw or system of flaws is activated by the load. Dynamic loads may exceed 
this surface because of the time dependence of fracture. In shock loading, the very 
high strain-rates may allow the stress to reach the outer surface with the accrual of 
negligible fracture damage. When the surface is reached, a transition to shear failure 
is achieved. It is this outer surface that is associated with the HEL of the material. 

We have conducted a matrix of plate impact experiments on several brittle materials 
including glasses, aluminas and silicon carbides using embedded stress and strain 
gauges, velocity interferometry and high-speed photography. Some of these results 
are presented below to contrast the brittle failure behaviour of a range of materials. 



Shock induced failure of brittle solids 

Mean pressure 
Fig. 1. Schematic of the model of Grady (1996) for the response of polycrystalline ceramics to shock 

loading. 

More detailed accounts of the responses of individual materials may be found in 
papers referred to in the text. We will address specifically their compressive failure in 
this paper leaving the spall response to other publications. We show that a wave of 
fracture passes through glasses and that this determines their HEL. On the other 
hand, the fracture is localised in polycrystalline ceramics to a failed zone at the impact 
face. 

2.    EXPERIMENTAL 

Plate impact experiments were carried out on the 50 mm bore gun at the University 
of Cambridge, (Bourne et ah, 1995b). Stress profiles were measured with commercial 
manganin stress gauges both embedded, or placed on the rear face of the specimens 
and supported with thick polymethylmethacrylate (PMMA) blocks. These gauges 
(Micromeasurements type LM-SS-125CH-048) were calibrated by Rosenberg et al. 
(1980). In some experiments the backsurf ace configuration was used for longitudinal 
stress measurements since it is superior to the fully embedded gauge as the impedance 
mismatch between gauge package and specimen is removed leading to a faster response 
from the gauge. Stresses in the specimen are inferred from the measured signals in the 
PMMA using the well-known impedance correction factor 

Z,+Z2 

2Z, (1) 

where Z, and Z2 are the shock impedances of specimen and PMMA respectively. The 
signals were recorded using a fast (1 GS s"1) digital storage oscilloscope and trans- 
ferred onto a micro-computer for data reduction. Impact velocity was measured to 
an accuracy of 0.5% using a sequential pin-shorting method and tilt was fixed to be 
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less than 1 mrad by means of an adjustable specimen mount. Impactor plates were 
made from lapped tungsten alloy, copper and aluminium discs and were mounted 
onto a polycarbonate sabot with a relieved front surface in order that the rear of the 
flyer plate remained unconfined. Targets were flat to within five fringes across the 
surface. Lateral stresses were also measured using manganin stress gauges, this time 
of type J2M-SS-580SF-025 (resistance 25 Q). The data collected cannot be used 
directly to infer the lateral stress and were thus reduced using a new analysis requiring 
no knowledge of the longitudinal stress (Millett et al, 1996). The gauges had an active 
width of 240 fim. and were placed at varying distances from the impact face. The 
lateral gauges were mounted using Hysol 0151 clear epoxy and a special clamping 
fixture which holds the two halves of the sectioned target during its curing time (about 
8 h). A 25 fi resistor was added in series to the lateral gauge leads in order to produce 
48 Q across the input to the power supply. The gauge mounting positions and sample 
configurations are shown in Fig. 2a. 

The lateral stress, ay was used along with measurements of the longitudinal stress, 
<rx to calculate the shear strength T of the material using the well-known relation 

T = 5(o-x-ffy)- (2) 

This quantity has been shown to be a good indicator of the ballistic performance of 
the material (Meyer et al, 1990). Our method of determining the shear strength has 
the advantage over previous calculations of being direct since no computation of the 
hydrostat is required. 

In one of the experiments, a target was constructed from soda lime glass to inves- 
tigate the effect of an inner interface on the response. Two stress gauges were sand- 
wiched between the faces of two tiles in order to measure the lateral component of 
the stress (see Fig. 2b). The sample was constructed from two identical targets, both 
faces of which were ground flat with 25 ßva alumina (removing at least seven times 
the average surface flaw size) and then polished to an optical finish using jeweller's 
rouge. After these targets were prepared, they were bonded together with a low 
viscosity epoxy to form a single assemblage containing two orthogonal cuts, with the 

Fig. 2. Experimental arrangement used in the experiments showing sectioning of the target and the insertion 
of gauges. 
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gauges now placed along the plane oriented in the direction of shock propagation at 
2 and 12 mm from the impact face. A second target was constructed from a monolith 
of thickness 25 mm which was sectioned in the direction of shock propagation and 
then reconstructed with two lateral gauges embedded at 2 and 12 mm from the impact 
face. The impact surface of the block was lapped with a 25 /ira alumina paste. The 
samples were then subjected to the same impact conditions from a copper flyer plate 
of thickness 10 mm to ensure no longitudinal unloading from the flyer plate and 
inducing a longitudinal stress of around the HEL of the glass (further details in 
Bourne et al., 1997b). 

Each of the materials used in the study was characterised in several tests at lower 
strain-rate. These results are summarised in the table of material properties (Table 
1). The alumina had its grain size determined by a linear intercept method to be 4 + 4 
p;m. The material was 97.5% pure and had a porosity of 3.5%. The silicon carbide 
was produced by a pressureless sintering process with carbon added as a sintering 
aid. The three glasses used in the study were of varying density. The chemical com- 
position of the glasses is given in Table 2. Microstructural examination of the glasses 

Table 1. Materials' data for the brittle materials studied 

Borosilicate Soda-lime DEDF Alumina SiC 

p( + 0.05gcrrr3) 2.23 2.49 5.18 3.80 3.16 
£(GPa) 73.1 73.3 52.8 346 422 
p. (GPa) 30.4 29.8 21.1 140 181 
Poisson's ratio v 0.20 0.23 0.25 0.23 0.16 
cL( + 0.01 mm/«-1) 6.05 5.84 3.49 10.30 11.94 
cs(±0.01 mm jus-1) 3.69 3.46 2.02 6.07 7.57 
Quasi-static T( + 0.4 GPa) 1.2 1.0 — 3.4 5.2 
SHPBT(±0.4GPa) — — — 54.1 7.3 
HEL ( + 0.5 GPa) 8.0 6.0 4.5 7.7 13.5 

Table 2. Composition of the glasses used in this study 

Soda-lime DEDF Borosilicate 

Si02 72.6 27.3 80.6 
AUO, 1.0 2.2 
Na,0 13 4.2 
K,0 0.6 1.5 
PbO 71.0 
MgO 3.94 0.05 
CaO 8.4 0.1 
FcO, 0.11 0.05 
As,0, 0.1 
B,03 12.6 
p(kg irr3) 2490 5180 2230 
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indicated randomly distributed flaws of three types. Sub-micron bubbles of average 
separation ca 10 /mi, larger bubbles of radius of order 50 /mi and conchoidal cracks 
of size ca 50 /mi. Both these larger flaws were separated by 5-10 mm. 

3.    RESULTS 

3.1.    The brittle failure of glasses 

The three glass types described above have all been characterised in uniaxial strain 
impacts so that their Hugoniots might be measured (Bourne et al, 1996b,d; Bourne 
and Rosenberg, 1996a). Several interesting features of the longitudinal stress histories 
were noted, of which two are presented here. Whilst the ramping behaviour of 
borosilicate glasses is well-known, the detail of the rising part of pulses in soda-lime 
glass has not received so much attention. 

Figure 3 shows longitudinal stress histories obtained using embedded gauges placed 
5 mm from the impact face in soda-lime glass. The lower trace shows a flat plateau 
typical of the lower stress levels. The highest stress achieved shows a ramping rise to 
a stress of 7 GPa over ca 700 ns. This trace is above 6 GPa which is normally regarded 
as the HEL of this material. The middle stress history achieved a stress of 4.5 GPa 
before relaxing over a period of a few hundred ns back to a stress of 4 GPa. Such 
relaxations are always observed for soda-lime glass in our experiments, in the range 
of longitudinal stresses between 4 and 6 GPa, most noticeably at the lower end of this 
range. A second feature (noted in Bourne et al., 1996c) is that of a break to a shallower 
ramp at ca 4 GPa observed primarily in backsurface traces, where details of the rise 

7 t- 

w 
Q.       6 

•» «7 

C 

1      3 
5 

0 0.5 1 

Time (us) 
Fig. 3. Three traces showing impacts upon soda-lime glass taken with embedded gauges. Note the stress 

relaxation in the centre stress history. 
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are clearer. This can be seen in our experiments and also those of others (for instance 
Dandekar and Beaulieu, 1995). The importance of such longitudinal stress relaxations 
is that they occur only in the stress range above 4 GPa which has been determined by 
the authors and by Brar and Bless (1992) as the threshold for the onset of the failure 
wave. Such stress relaxations are believed to result from fracture behind the shock 
front. 

The response of the filled lead glass DEDF is shown in Fig. 4 where a series of 
backsurface measurements of stress at varying positions from the impact face for a 
pulse of amplitude ca 6 GPa is presented. Thicknesses of tile ranging from 2-15 mm 
were impacted by a 6 mm thick copper flyers travelling at nominally 535 m s"1. The 
gauge was mounted between the rear of the tile and a PMMA backing so as to give 
maximum temporal resolution. In each of the traces the elastic wave jumps very 
rapidly over 40-60 ns followed by a concave ramp as the plastic wave rises. This 
behaviour is often seen in ceramics (such as the aluminas of Murray et al., 1996) 
where the rapid rise of the wave often leads to an electrical ringing at the HEL as 
seen in these traces. This ringing is not a mechanical effect and can be suppressed by 
moving the gauge back into the PMMA (Bourne and Rosenberg, 1996b). The form 
of the plastic rise suggests that the Hugoniot has a section that is concave downwards 
just above the HEL before rising as normal. It is apparent that the break between the 
elastic and plastic rises decays as the tile thickness increases. In this glass, the precursor 
amplitude decays from 1.9-1.4 GPa (as measured in PMMA) at ca 12 mm at which 
value it becomes steady. This represents a reduction of the order 25% of the initial 
value. The decay mechanism is assumed to result from micro-cracking. Fracture 
relieves stresses behind the shock front at stresses in excess of the HEL. Release waves 

2.2 

I 
.5 
M 

CO 

I I 
I o 

1 1.5 2 
Time (ßs) 

Fig. 4. Precursor decay in the filled glass DEDF. The precursor amplitude can be seen decreasing from 2- 
15 mm. On the right hand side of the figure a blow up of the upper section of the 5 mm trace shows steps 

on the plateau. 
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sent forward from the rear catch the shock front and slow stress increments above 
the HEL back down to this value. 

The top of the 5 mm trace is blown up on the right hand side of Fig. 4. It will be 
noted that none of the traces have smooth, flattened tops in this stress range. As an 
example we show the stress history at 5 mm which has a stepped appearance. The 
stress range viewed for this trace is shown on the right-hand axis. These steps are 
believed to result from reflections of the release from the PMMA block at the failure 
front returning as a compression and then ringing between the travelling failure front 
and the PMMA interface. Such features have been noted previously for soda-lime 
glass most typically in VIS AR measurements (see Kanel et al, 1992 for example). 

In Fig. 5 we present results of an experiment in which a soda-lime monolith 
containing lateral gauges at 2 and 12 mm was compared with an equivalent sample 
in which gauges were placed at the same position, but in which a highly polished 
interface had been added at 10 mm. The form of the traces for the monolith, which 
are represented by solid lines, is typical of lateral stress measurements across failure 
waves. The initial lateral stress is ca 2 GPa rising to 4 GPa across a front travelling 
behind the shock v/ave. The gauge at 12 mm sees much the same stresses in the case 
of the monolith. The longitudinal stress for this impact is very close to the quoted 
HEL of 6 GPa giving values of the shear strength of the order of 2 GPa ahead of the 
failure front. The expected value of shear strength can be calculated within the elastic 
range using the well-known relations. 

a>=T 
l-2v 

a, and thus 2T = — <rx (3) 

0.8 1.6 2.4 3.2 

Time (/is) 
Fig. 5. Lateral stress histories taken at 2 and 12 mm from the impact face of soda-lime glass targets shot 
to a stress of 6 GPa. The solid traces represent histories measured in a monolith. The dotted represent 

those where an interface was introduced 10 mm from impact. 
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which (when Poisson's ratio v = 0.23 is substituted) leads to an expected value of 2T 

ahead of the failure front of 4 GPa. This may be applied to this case since we are at 
the quoted HEL and the agreement is good. The second pair of traces show the effect 
of a polished interface in the centre of the target on the propagation of the failure 
wave. The first gauge sees much the same trace as the monolith even though this tile 
had been specially polished to an optical finish to remove surface flaws. This provides 
confirmation of the result of Raiser et al. (1994) who showed that surface finish had 
no effect on failure wave speed. However, at 12 mm the initial strength of target, 
ahead of failure propagating from the new interface, is higher than that on the impact 
face by ca 0.6 GPa. This remarkable result means that the second tile behaves as if it 
is stronger, as a result of the wave having crossed an inner interface before reaching 
it. The wave nevertheless arrives sooner at this gauge than was the case for a monolith, 
indicating that a second failure was nucleated at the interface. 

The ability to place multiple gauges in glass targets allows one to build up a picture 
of the velocity at which the failure front passes through the tile at given impact 
stresses. We have noted that the wave travels at approximately constant speed through 
glasses and that the wave velocity can be made to travel fast enough so that failure 
can occur within the shock front itself (Bourne et al., 1996a). This occurs at ca 10 
GPa for soda-lime glass, and at ca 8 GPa for the filled glass DEDF. Nevertheless, in 
the region below this threshold we have calculated the velocity of the wave corrected 
by the particle velocity to give a Lagrangean value and these data are plotted in Fig. 
6. The top curve, B, is for the borosilicate glass, the central one, SL, is for soda-lime 
glass and the lower, D is for DEDF. It will be seen that the lowest density material 
B, shows the most rapid failure with the DEDF the slowest. All three glasses show 
an increased failure wavespeed with stress which is to be expected. 
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Fig. 6. Failure wavespeed plots for the three glasses tested. The speed is represented after particle velocity 

has been subtracted. 
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Fig. 7. Deviatoric response of three glasses constructed from lateral stress measurements. 

The deviatoric behaviour of the three glasses can be summarised by plotting the 
value measured for twice the shear stress at increasing longitudinal stress. These data 
are presented in Fig. 7 for the three glasses. The diagonal line is at a slope of two- 
thirds as calculated from eqn (3). Note the remarkable uniformity of the response 
with the initial values of the strength all lying on the upper elastic (or extension of 
the elastic) line and the failed strengths lying along the lower horizontal line. It should 
be noted that even above the HEL the materials are found to exhibit a strength which 
lies on an extension of the elastic curve beyond the yield point. It is a puzzling feature 
of the response of the three glasses that their deviatoric behaviour should be described 
by a single curve since their Hugoniots are different from one another. No explanation 
is as yet offered but it may be noted that all three glasses contain a silica network 
microstructure. 

3.2.    The brittle response of an alumina 

The response of aluminas has been a topic of great interest for many laboratories 
over the last 20 years. One feature of the response that has always attracted contro- 
versy has been the question as to whether the amplitude of the elastic precursor decays 
with travel of the shock pulse through the target. In other studies we have presented 
evidence of the decay of the precursor in aluminas for 88, 97 and 99% purity (Murray 
et al., 1996). Further features of the stress histories will be highlighted here in order 
to provide support for the lateral stress measurements which follow. We present the 
results of precursor decay measurements for the 97% pure alumina in Fig. 8. The 
histories were measured using gauges embedded at the rear surface of the tile in a 
PMMA block. The precursor decays in value from ca 10-8 GPa over the range of 
thicknesses studied when correction has been made for the measurement having been 
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Fig. 8. Precursor decay in the alumina taken at various tile thicknesses. Note the reload signal R seen on 
the 6 mm trace. 

made in PMMA. The major part of this decay is seen over the region up to 6 mm 
from the impact face. We note that all of the traces, except that at 4 mm, show an 
interesting structure on the top plateau which is reminiscent ofthat seen in the DEDF. 
This is a reload signal which comes from the surface failed zone. Detail of the 6 mm 
trace is provided in the figure to illustrate the reload signal, R, which is a reflected 
release off a low impedance region near the impact face. We identify this region as 
containing a failure wave using lateral stress measurements below. The relative pos- 
itions of these signals on each trace confirm that the failed zone is of limited extent 
confined at the front surface. 

Figure 9 presents the results of three lateral gauge experiments in the same alumina. 
The tiles were 25 mm thick and were sectioned to allow gauges to be introduced at 2 
mm from the impact face. All were then impacted with 10 mm thick copper flyers 
travelling as 350, 480 and 650 m s_1. This induced longitudinal stresses of ca 6, 9 and 
12 GPa respectively. The three traces clearly show the failure wave behaviour noted 
previously in glasses. There is an initial plateau which lasts for up to 0.5 /is in the 
lower of the traces before delayed failure occurs. It should be noted that this is much 
longer than the plastic wave risetime of the pulse from the HEL to the Hugoniot 
stress. By the uppermost trace, the stress is sufficient to fail the material in the shock 
front itself as noted early for the glasses. Note that this delayed failure is occurring 
below the HEL for the material (which is ca 9 GPa) for the lower of the stress 
histories. 

The same experiment was repeated at a stress of 9 GPa in the target. This is 
incidentally, around the value of the HEL in the material. In a series of experiments 
the lateral stress histories at 2, 4, 5, 6, and 8 mm from the impact face were recorded. 
The traces at 2 and 4 mm (shown as dotted curves) show evidence of the same failure 
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Fig. 9. Lateral stress measurements at 2 mm in alumina shot with a 10 mm copper flyer plate inducing 
longitudinal stresses of 6, 9 and 12 GPa. 

Time (ps) 
Fig. 10. Lateral stress histories recorded at various distances from the impact face after impact with copper 

flyers of thickness 10 mm. Longitudinal stress is 9 GPa. 

seen earlier. However, at 5 mm and beyond no failure wave was seen to arrive for the 
duration of the experiment. These observations indicate that contrary to the glasses, 
the failure process swept into the target from the interface in alumina does not reach 
beyond the first 5 mm of the target. This distance is approximately that over which 
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the majority of the precursor decay is observed to occur indicating that the precursor 
decay is a real effect governed by the delayed failure swept in from the surface. 
Interestingly, the initial value of 2T which is ca 6 GPa reduces to ca 4 GPa in the 
surface zone but remains at its initial value in the bulk. The expected value of 2T 

calculated using eqn (3) is close to 6 GPa in agreement with our measurements of the 
bulk strength. The dip in the lateral stress seen before the arrival of the failure front 
in the 4 mm trace is reproduced in many others. It may indicate a relaxation in the 
amplitude of the first wave due to the fracture process. 

We summarise the response of the alumina in Fig. 11 where we plot the strength 
data for alumina as we have done previously for the glasses. The dark points are for 
the experiments of Figs 9 and 10 whilst the open diamonds are data for AD85 taken 
from Rosenberg et al. (1987). It will be seen that the agreement between the strengths 
measured for the two aluminas is good considering that the AD85 has lower alumina 
content and higher porosity. Note also that the materials have differing HEL (6 and 
8 GPa respectively). That they show similar strength behaviour may indicate that the 
shear strength depends principally upon the alumina grains rather than the glassy 
phase. A feature of our curve is the failed curve which extends from ca 6 to 10 GPa. 
Several aspects of this curve are worthy of note. Firstly it does not extend beyond 10 
GPa, since by this point the failure is nucleated and remains within the shock. It is 
thus clear that the surface failure process determines the magnitude of what we have 
been calling the HEL up to this point. Secondly, this failed zone has a strength which 
is lower than the bulk which contrasts with the measurements in glass where the 
strength of material before failure could rise up the elastic line beyond the HEL until 
the failure could occur behind the shock. The figure represents a cut through a three 
dimensional surface where distance from the impact face is the third axis. We have 

l—I—i—i—i—i—i—i—I—i—r- 

ox (GPa) 

Fig. 11. Deviatoric response of the alumina at 2 mm from the impact face constructed from lateral stress 
measurements. 
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shown that the failed surface only exists up to ca 5 mm and that beyond that only the 
upper curve is measured (which would have been the case in the AD85 experiments 
due to the position of the gauge in that work). 

3.3.    The response of silicon carbide 

Finally, we show equivalent experiments for a silicon carbide material further 
details of which appear in Bourne et al. (1997a). The measured HEL was 13.5 + 0.3 
GPa as reported in that paper. Experiments were carried out to measure the lateral 
stress histories at 2 mm from the impact face at five different stress levels; ca 9, 14, 
16, 19, and 21 GPa. An additional experiment was carried out in which the gauge was 
placed 4 mm from the impact face in order to assess the size of the failed surface zone. 
Again the impactor was a 10 mm thick copper flyer plate to ensure that longitudinal 
release did not enter the gauge region until after the compressive failure processes had 
occurred. The histories are presented in Fig. 12. Similar behaviour was observed in 
this material as that seen in the alumina. At the lower stresses, delayed failure was 
observed whilst at the highest it occurred within the shock front itself. The dotted, 4 
mm trace shows that the delay time increases to nearly 1 ^s from its previous value 
at 2 mm of 400 ns. This means that the failure wave is slowing rapidly. It thus appears 
that as in the case of the aluminas, the failed zone does not propagate more than a 
few mm into the target. Note again that the lowest stress is below the HEL and shows 
similar behaviour to histories recorded at much higher stresses. 

The deviatoric response of this SiC at 2 mm is summarised in Fig. 13. The solid 
line represents elastic behaviour up to the HEL. The delayed failure is indicated by 
the arrows from an upper unfailed to a failed surface. By the highest stress, 21 GPa, 

0 0.5 1 
Time (us) 

Fig. 12. Lateral stress measurements at 2 mm in silicon carbide shot with a 10 mm copper flyer plate 
inducing longitudinal stresses of 9, 14, 16, 19 and 21 GPa. The dotted trace is at 19 GPa but the gauge was 

placed at 4 mm from the impact face. 
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Fig. 13. Deviatoric response of silicon carbide at 2 mm from the impact face constructed from lateral stress 

measurements. 

the material is failing in the shock front. Whereas alumina never exceeds the strength 
at the HEL, SiC does so in the region where it exhibits delayed failure. It does 
ultimately, however, fail to a strength less than that at the HEL. Again the measured 
and calculated strengths at the HEL agree well. We emphasise again that this rep- 
resents a single set of measurements at one distance from the impact face. We have 
shown in Fig. 12 that the failure wave is slowing rapidly and is confined to a failed 
surface zone so that this response will only be seen in impact surfaces. 

4.    DISCUSSION 

The results presented above have highlighted both similarities and differences in 
the behaviour of these five materials. The failure wave and its consequences control 
the response of the glasses, particularly their shear strength, whilst the wave is less 
important in this respect in the polycrystalline materials. In these, its primary effect 
is to control the magnitude of the elastic precursor. 

Let us first consider the magnitude of the strengths measured for our materials. 
The deviatoric response of all those mentioned above is plotted on the same axes in 
Fig. 14. This curve represents the strength of material close to the impact face as we 
have shown. 

The failed strengths of the materials rank in order of ballistic performance with the 
glasses showing 2T of 2 GPa, alumina, 6 GPa and silicon carbide 11 GPa. It will be 
seen that the surface region can support shear stresses up to ca 8 GPa transiently in 
silicon carbide. This ability to display strengths in excess of those measured at the 
HEL is a feature shared in common with the glasses. 
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Fig. 14. Deviatoric response at 2 mm from the impact face of all classes of material presented collated from 
Figs 6, 12 and 14. 

The evidence presented above may be summarised as follows. Brittle materials 
appear to fail as a result of a fracture wave propagating into the material from the 
impact face. This wave crosses the entire target in the case of the glasses, but in 
polycrystalline materials the failure wave does not penetrate into more than a surface 
region of the tile. This behaviour has been observed directly by lateral gauges moni- 
toring strength loss at different locations from the impact face. Importantly, these 
findings have been confirmed by independent measures such as reflected waves picked 
up by gauges monitoring longitudinal stresses in the backsurf ace configuration. It is 
thought that the failure wave is fracture propagating from the impact face. In glasses, 
embedded gauges have observed relaxations in the longitudinal stress which are seen 
at stresses exceeding the failure wave threshold. Additionally, high-speed photography 
has shown cracks propagating from the impact face behind the shock (Bourne et al., 
1995a). In all the brittle materials observed, the failure wave has been observed to 
propagate at a stress below the steady value of the HEL of the material. We estimate 
this stress to be 3 GPa for DEDF, 4 for soda-lime and 5 for borosilicate. Similar 
thresholds are found in ceramics but have not been accurately determined as yet. The 
threshold may correspond to that at which the spall strength begins to decrease as 
the stress amplitude increases. A feature of this failed zone in alumina is that its extent 
is precisely that determined for precursor decay in other experiments (Murray et al., 
1996). 

The Rayleigh wave speed is generally accepted as the threshold velocity for the 
propagation of a single crack and is close to 0.9 cs for the materials tested. It is 
probable that some failure is also triggered at bulk flaw sites by the shock and this 
may allow some regions of locally failed material that could in principle give failure 
speeds in excess of the Rayleigh wavespeed. The data of Fig. 6 show that in the case 
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of soda-lime and borosilicate the maximum speeds measured do not reach this limit. 
On the other hand, DEDF, where the failure wave was driven into the front, appears to 
show speeds that asymptote to ca 2 mm ^s_1 consistent with the Rayleigh wavespeed. 
Clearly this evidence suggests that the failure is propagating faster than would be 
possible for shear cracking alone since this, although propagating at cs, would be 
travelling at 45° to the applied stress which would give a resolved velocity in the 
direction of the shock of 0.7 cs giving 1.4 mm /K~' as an upper limit. The situation in 
the polycrystalline materials is more revealing. Here we see two differing behaviours 
which may be explained by noting that alumina fails faster than silicon carbide (as 
noted in Grady, 1996). This may be due to the glassy phase present in the alumina. 
The slower failure of silicon carbide allows it to load substantially above the shear 
strength at the HEL (along the elastic curve) before failure drops it to the lower 
failure surface. Alumina on the other hand does not display this type of behaviour. 

It is believed that the principal reason why the failure is localised to the surface in 
the polycrystalline materials is that the grain boundaries act to impede the fracture 
front eventually stopping it. Similar effects were observed at the inner interface in the 
experiment described above. The presence of a weaker layer in the material acts to 
stop or filter out the smaller cracks whilst the larger ones can reform across the 
boundary. This effect may operate in polycrystalline materials where many internal 
interfaces exist. 

We have discussed the failure wave in some depth but have not as yet mentioned 
other possible inelastic deformation mechanisms that might be occurring in the 
materials. It is known that open structure glasses such as soda-lime and borosilicate 
became more dense during the shock process and this masks some of the features of 
the failure wave propagation although clear evidence of its effects are seen in the 
lateral gauge measurements. The filled glass DEDF provides the model brittle material 
in which to study the effects of brittle failure. In the case of both alumina and silicon 
carbide there is compelling evidence of plasticity within the grains as evidenced 
from recovery and Hopkinson bar experiments. It is apparent that this provides the 
mechanism for the shear failure of the bulk of these materials. We schematically 
represent the deviatoric response of the glasses and polycrystalline materials in 
Fig. 15. 

T ■• 
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Fig. 15. Schematic representation of the variation of deviatoric response with distance from the impact 
face in (a) glass, (b) alumina, (c) silicon carbide. 
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In Fig. 15(a), (b) and (c) we show surfaces representing the schematic response of 
glasses, alumina and silicon carbide respectively. The elastic and failed surfaces are 
represented as planes extending outward as a function of the distance from the impact 
face. The response of glass can be represented by these surfaces at any position in the 
sample as shown in (a). The stress loads up the elastic surface and then drops after 
some time to the failed plane. At high impact stresses the final strength lies directly 
on the failed surface. At low stresses it remains on the elastic surface. Only the 
presence of an interface alters this representation by moving the failed surface upwards 
at that position. In (b) we represent the behaviour of alumina. In a surface zone up 
to a critical distance rfcrit from the impact face, the stress follows the elastic or the 
upper surface, which is always horizontal, and fails to a lower surface over a limited 
range of stresses lying from below the HEL to some way above it. At positions in the 
bulk beyond the critical distance, the fracture does not penetrate and the failure 
beyond the HEL is directly onto the horizontal surface. In (c) we note the differing 
response of silicon carbide. At stresses below the HEL a lower failed surface appears 
to lie below the elastic one up the critical distance where the surface fracture can 
penetrate. Above the HEL, the behaviour is more reminiscent of the glasses in that 
the stress can load up the elastic surface and then drops to the failed surface below it. 
The differences between (b) and (c) are believed to result from the different times to 
failure discussed above. 

Clearly the failure wave does have effects in polycrystalline materials. Even though 
it does not penetrate far into the bulk it nevertheless determines the amplitude of the 
elastic precursor and determines the pulse shape since releases can travel forward to 
relieve stresses from the rear. In glasses, the wave is not apparently stopped and the 
precursor amplitude in DEDF for instance, where densification is not possible due to 
the filled microstructure, will decrease as the wave travels and damage accrues. 

Other features of the response of polycrystalline materials may now be explained 
with the knowledge that a damaged surface zone is present. Spall strength measure- 
ments can be seen to be highly geometry dependent. We are not, it should be 
noted,suggesting that the spall strength is reduced completely to zero in the failed 
surface zone. The state of the strength will depend upon the time at which the material 
is sampled and whether or not the crack network can interconnect. It is thus plausible 
that some tiles may be recovered only partly cracked at twice the HEL if the samples 
were pure and thick (Longy and Cagnoux, 1990). Additionally, it becomes vital to 
know the region from which samples where recovery analyses have been done were 
taken, since their microstructural features will be determined by their position. 

We can apply these ideas to the response of other polycrystalline materials. Several 
ceramics have been regarded as showing anomalous responses, for instance titanium 
diboride which shows two cusps in its Hugoniot and boron carbide which shows 
pronounced precursor decay and retains little or no shear strength with its response 
rapidly collapsing to the hydrostat (Grady, 1994b). The two yields in TiB2 may 
correspond to the onset of the failure process and the onset of grain plasticity respec- 
tively. The visibility of the lower cusp may be similar to the situation in soda-lime 
glass where the lower threshold for the failure wave is manifested by a kink on the 
longitudinal stress history. The behaviour is entirely brittle and a failure wave may 
propagate with little slowing through the material hence the pronounced precursor 
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decay and loss of strength determined almost entirely by fracture processes. Finally, 
we note that in many ceramics a volume of material ahead of a penetrating long rod 
is seen to be comminuted (Shockey et al., 1990). This region, known as the Mescall 
zone, may now be explained in terms of the fracture wave described above. 

5.    CONCLUSIONS 

We have presented experimental results showing details of the response of several 
brittle materials to plate impact loading. The materials chosen were glasses and 
polycrystalline ceramics and many common features were observed. The low density 
glasses showed behaviour dominated by fracture and by densification in the shock 
front. The highest density glass showed behaviour which was determined by brittle 

fracture in its response. 
The polycrystalline materials, on the other hand, showed evidence of both brittle 

failure and plasticity. The surface responds to impact by driving a failure wave 
into the bulk which is rapidly slowed and eventually halted as it encounters grain 
boundaries. This means that a layer near the impact fact shows delayed failure 
occurring behind the propagating shock. This surface zone is characterised by several 
features. Firstly, its size corresponds with that over which elastic precursor decay is 
observed. Secondly, the precursor amplitude steadies to a constant value above a 
threshold stress when tiles of a fixed thickness are shocked to different levels. This 
threshold stress corresponds with that required to fail the material immediately within 
the shock front. The failure communicates its effects to the shock front via waves 
which travels forward from the failed zone. In the bulk of the material in contrast the 
steady elastic limit is determined by a second, rate independent yield surface on which 
the controlling deformation mechanism is grain plasticity. 

The glasses show several interesting features. The failure wave does not reach the 
Rayleigh wave speed in the open structure glasses but appears to saturate at this value 
in the filled glass. Secondly, the failure wave itself must restart at inner interfaces 
which results in the apparent strength of a second tile being higher than the facing 
one. The mechanism by which this operates may be removal of the smaller fractures 

by the weaker interlayer material. 
Further experiments are in progress to elucidate these mechanisms further and 

these will be published in future papers. 
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ABSTRACT 

A dynamic finite element analysis of large displacements, high strain rate deformation behavior of brittle 
materials is presented in total Lagrangian coordinates. A continuum/discrete damage model capable of 
capturing fragmentation at two size scales is derived by combining a continuum damage model and a 
discrete damage model for brittle failure. It is assumed that size and distribution of potential fragments arc 
known a priori, through either experimental findings or materials properties, and that macrocracks can 
nucleate and propagate along the boundaries of these potential fragments. The finite deformation con- 
tinuum multiple-plane microcracking damage model accounts for microcracks within fragments. Interface 
elements, with cohesive strength and reversible unloading before debonding, between potential fragments 
describe the initiation of macrocracks, their propagation, and coalescence leading to the formation of 
discrete fragments. A surface-defined multibody contact algorithm with velocity dependent friction is used 
to describe the interaction between fragments and large relative sliding between them. The finite element 
equations of motion are integrated explicitly using a variable time step. Outputs are taken at discrete time 
intervals to study material failure in detail. 

The continuum/discrete damage model and the discrete fragmentation model, employing interface 
elements alone, arc used to simulate a ceramic rod on rod impact. Stress wave attenuation, fragmentation 
pattern, and overall failure behavior, obtained from the analyses using the two models, are compared with 
the experimental results and photographs of the failing rod. The results show that the continuum/discrete 
model captures the stress attenuation and rod pulverization in agreement with the experimental observations 
while the pure discrete model underpredicts stress attenuation when the same potential fragment size is 
utilized. Further analyses arc carried out to study the effect of potential fragment size and friction between 
sliding fragments. It is found that compared with the continuum/discrete damage model, the discrete 
fragmentation model is more sensitive to the multi-body discretization. © 1998 Elsevier Science Ltd. All 
rights reserved. 

Keywords: A. dynamic fracture, A. grain boundaries, A. microcracking, B. crack mechanics, C. finite 
elements. 

This paper is dedicated to Professor Rodney Clifton, a pioneer in the study of failure 
and damage of advanced materials. It is our hope that the reader will recognize the 
influence of Professor Clifton in two major features presented in this paper. Firstly, the 
formulation of failure models capable of analyzing real and complex field applications 
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through a combined experimentall computational approach. Secondly, the role of 
specially designed wave propagation experiments in the identification of rate and 
temperature effects in brittle failure. Fundamental contributions within these lines are 
envisioned in years to come. 

1.    INTRODUCTION 

The study of ceramics under high velocity impact and penetration has gained pro- 
minence over the years owing to their high compressive strength and low density 
which make them more suitable for armor applications when compared to other 
conventional materials. There have been attempts to determine the fracture charac- 
teristics and threshold conditions for dynamic fragmentation of ceramics through 
particle impact experiments (Evans, 1978; Field, 1988; Shockey et ah, 1990a; And- 
rews and Kim, 1997). Also, there have been numerous experimental studies to evaluate 
and characterize the performance of ceramics under various impact and boundary 
conditions (Shockey et al., 1990b; Espinosa et al, 1992; Hauver et al, 1993, 1994; 
Woodward et al, 1994; Espinosa, 1995; Orphal and Franzen, 1996, 1997a; Orphal 
et al, 1997b; Espinosa et al, 1997a; Xu and Espinosa, 1997; Brar et al, 1997). The 
outcome of these experiments has been that ceramics can be extremely efficient in 
defeating long rod penetrators as long as they are properly confined. In this case, high 
compressive strength and friction between fragmented pieces, in the comminuted 
zone, is achieved. The more efficient the confinement, the better the resistance of 
ceramics to penetration. However, many phenomena observed during deformation 
of the material under such high strain rate still remain unanswered, e.g., the effect of 
material processing route and grain size on penetration resistance, coupling between 
structural design and ceramic response, etc. These issues are expected to play a 
significant role in deriving useful design criteria and scaling experimental results to 
field application. Achieving these objectives by experiments alone is a difficult if not 
impossible task. Hence, recourse is sought to a combined experimental and numerical 
study. 

The use of finite element analyses to determine the performance of ceramic targets 
under high velocity impact and penetration is relatively recent. The majority of the 
efforts up to now have been devoted to modeling the complicated response of ceramics 
in the post-failure regime, i.e., in the presence of cracks. Brittle failure in ceramics is 
the result of initiation and propagation of cracks, marked by fragmentation and stress 
attenuation. The various models available until now to describe this behavior can be 
categorized into two classes; those based on a continuum approach, and those based 
on a discrete approach. The continuum approach (Johnson and Cook, 1985; Addessio 
and Johnson, 1989; Curran et al, 1990; Steinberg, 1992; Johnson and Holmquist, 
1992; Rajendran and Grove 1992a; Rajendran, 1992b, etc.) is based on homogenizing 
the cracked solid and finding its response by degrading the elasticity of the material. 
The fundamental assumption in these models is that the inelastic strains are caused 
by microcracks whose evaluation during loading degrades the strength of the material. 
This degradation is defined in terms of damage moduli whose evaluation under 
compressive, as well as tensile loading, is formulated using the generalized Griffith 
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criterion. In addition, some of these models account for the initiation of cracks, 
coalescence, friction between fragments in the comminuted zone, etc. However, some 
of these phenomenological models have shortcomings in that they cannot describe 
damage induced anisotropy and also, that their parameters are difficult to measure 
experimentally. To overcome these limitations, Espinosa (1992, 1995) derived a mul- 
tiple-plane microcracking model based on the micromechanics of solids. In this model, 
the constitutive response of the material is obtained from fundamental quantities that 
can be determined experimentally such as grain size and fracture toughness. In 
addition, since the dynamic growth of microcracks is described independently on each 
orientation, damage induced anisotropy and rate effects are naturally incorporated 
in the model. The model has been used extensively (Espinosa et al., 1996, 1997, 1998) 
to study the high velocity impact response of ceramics under various conditions. In 
spite of these developments, continuum models have been criticized because they 
require assumptions on the size and distribution of microcracks to start with, and 
because they cannot describe the growth of dominant cracks leading to failure, which 
are not suitable for homogenization. Computationally, continuum models possess the 
problem of very large deformation under high strain rates, specially for higher order 
elements. As a result, elements distort and integration time step reduces below an 
acceptable level. One of the possible means to circumvent this problem is to use 
adaptive meshing (Camacho and Ortiz, 1996; Espinosa et al., 1996, 1998) by which 
the elements in the highly deformed zone are remeshed into regular shaped elements. 

On the contrary, models based on a discrete approach (Needleman, 1988; Biner, 
1994; Lawn, 1994; Gong, 1995; Xu and Needleman, 1995; Camacho and Ortiz, 
1996, etc.) nucleate cracks, and follow their propagation and coalescence during the 
deformation process. In this respect, the Camacho and Ortiz (1996) model is one of 
the most elaborate and powerful models currently available. In their model, conical 
and longitudinal cracks can nucleate at any node in a finite element mesh when the 
resolved normal or shear stress at the node exceeds an effective fracture stress. Cracks 
are nucleated by duplicating nodes and propagated, along the element boundary, by 
opening further nodes. Adaptive remeshing is used to provide a reach enough set of 
possible fracture paths around the crack tip. The forces at the cracked surfaces are 
brought to zero in accordance with the Griffith criterion accounting for unloading, if 
any, before reaching the critical fracture opening. Following this procedure, fragments 
are generated as cracks coalesce in a closed path. Thereafter, the model accounts for 
contact and friction between fragments. Realizing the computer resources required for 
carrying out three dimensional analyses, they carry out two dimensional axisymmetric 
analyses accounting for radial cracks based on a continuum approach. The major 
disadvantages of the discrete models are that they are extremely computer intensive 
and become infeasible as the number of cracks increases. At the limit, meshes with 
element size of the order of the grain size are required to capture all possible crack 
nucleating sites. 

Besides all these developments, a fact remains that the experimental and numerical 
work have been carried out more or less independently of each other. There have 
been very few attempts (Espinosa et al., 1998) to use meaningful experimental results 
to motivate the numerical modeling and vice versa. The experimental evidence (Simha 
et al, 1995; Espinosa and Brar, 1995; Espinosa et al, 1998; Brar et al, 1997) is used 
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Fig. 2. Micrograph showing microcracks between grains and within glassy phase of ceramic rod. 
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Fig. 3. Schematic of the interface defeat experiment. 

Fig. 4. Micrograph showing fragmentation in TjB, target plate. 
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Microcracks that are not able to propagate and transform into a major crack can 
be modeled using a continuum approach so that the resulting degradation in the 
strength of the material is accounted for. A discrete approach can be used sim- 
ultaneously to model crack coalescence and formation of fragments. To this effect, 
one simplification is made in the present analyses, based on the above experimental 
findings, by assuming that the macrocracks initiate only at potential fragment bound- 
aries, i.e., the microcracks inside fragments do not propagate to the fragment bound- 
aries and transform into macrocracks. This assumption makes it possible to model 
individual ceramic fragments with a continuum approach, and their boundaries by a 
discrete approach. The contact-interface element of Espinosa et al. (1997b) inserted 
along fragment boundaries can further eliminate the computation overheads in cre- 
ating the microcracks and the remeshing to provide the crack path. The above 
assumption of macrocracks only along fragment boundaries and the existence of 
fragments containing a large number of microcracks, allows the analyst to consider a 
cluster of grains as a single fragment. Hence, analyses can be carried out with few 
hundreds to few thousands of fragments instead of millions of grains. The size and 
distribution of fragments can be determined from the initial grain structure of 
ceramics, distribution of macrocracks in recovered samples after shock and validation 
of the analysis results with the experimental results. This further concretizes the 
concept of a combined experimental-numerical study for such complex problems. 

The following sections briefly describe the multiple-plane microcracking model of 
Espinosa (1995) extended to a large deformation formulation and the contact-inter- 
face model of Espinosa et al. (1998) including rate and temperature effects followed 
by the analyses of the ceramic rod on rod impact carried out based on discrete as well 
as continuum-discrete models. The comparison of the analyses results with 
the experimental results clearly marks the advantages and disadvantages of the 
two approaches and the effect of size of fragments and friction between 
fragments. 

2.    EQUATIONS OF MOTION 

In our formulation, the field equations describing the material response of a body 
use a total Lagrangian approach. Considering a solid with volume B0 in the reference 
configuration, and a deformation process characterized by the mapping x(X, /), a 
material point initially at X will be located at x = X + u after deformation, in which 
u is the displacement vector, as shown in Fig. 5. A displacement based finite element 
formulation is obtained from the weak form of the momentum balance or dynamic 
principle of virtual work. At time t, the weak form is given by 

[VoT0+p0(b0-a)]^dÄ0=0 (1) 

T0:V0^d50 Po(b0-a)-ridB0- fjjdS0 = 0 (2) 
Js„„ 
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Fig. 5. Reference and current configurations. Orientations 11,12 and 13 are hidden. 

where T° is the first Piola-Kirchhoff stress tensor at time t; b0, a, and t are the body 
force vector, acceleration vector, and boundary traction vector on volume B0 and 
boundary S0tT, respectively. Virtual displacement field r\ is assumed to be admissible, 
and p0 represents the material density per unit volume in the reference configuration. 
The symbol V0 denotes the material gradient with respect to the reference configur- 
ation, and ':' is used to denote the inner product between second order tensors, 
e.g., A:BE AijBj,, where the summation convention on repeated indices is implied. 
Another form of the weak form of the momentum balance, in terms of spatial 
quantities, is given by 

T : Yf] dB0 - p0(b0-a)-ridB0 t-jjdSo =0 (3) 

in which superscript s stands for the symmetric part of the tensor, x is the Kirchhoff 
stress and V is the spatial deformation tensor. The Kirchhoff s stress is related to first 
Piola-Kirchhoff stress T° and second Piola-Kirchhoff stress tensor S by 
x = FT0 = FSFT, where F is the deformation gradient at time t. 

The discretization of eqn (3) defines a system of nonlinear ordinary differential 
equations which can be solved for the updated deformation x„+1. A displacement- 
based finite element formulation is obtained by expressing field variables at any point 
in an element as a function of nodal quantities and the element shape functions in the 
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reference configuration. For the two dimensional analyses considered herein, they are 
given as: 

NEN 

NEN 

0=1 

aia= £ NM,n)a". (4) 

where w,-„, i>,v„ and a,„ are the displacement, velocity, and acceleration at the point of 
interest. Na[t,'?) are the shape functions relating nodal quantities u", v", and a',' to the 
point of interest and the summation is taken over the number of nodes in the element, 
i.e., NEN. The vector £, J? contains the natural coordinates of the point of interest in 
the isoparametric master element. For the triangular elements, these natural coor- 
dinates are related to the area coordinates as L, = £, L2 = r\ and L3 = \-£,-r\. 

Substitution of the discretized variables into eqn (3) leads to the following system 
of ordinary differential equations, 

where, 

J ia 2-j 

Mjaßüß,  — J ia        J k, 

na.fu d#u = X 

(5) 

Brr dB0 

/£* = ! p0boiN:dB0+\     I,NadS0 

MiaJh = X öup0NlNl
adB0 

K 
(6) 

in which/;"',./■"', and MiaJh are the internal nodal forces, the external nodal forces, 
and the lumped mass matrix, respectively. In the above equations, summation is taken 
over all the elements in the mesh according to their nodal connectivities. 

3.    FINITE DEFORMATION CONTINUUM MICROCRACKING 
MODEL 

The large deformation continuum response of ceramics in the presence of cracks is 
described through a microcracking multiple-plane model based on a dilute approxi- 
mation (Taylor model). The formulation is an extension of the small deformation 
multiple-plane microcracking model given in Espinosa (1995), assuming that the 
displacements and rotations are large while the strains are moderate. This assumption 
allows us to adopt the rate form of the work conjugate second Piola-Kirchhoff stress 
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tensor and Green-Lagrangian strain tensor with an additive decomposition of the 
later into an elastic and inelastic part, i.e., 

%i = % + % (7) 

where tf is the elastic part of the Lagrangian strain rate, and Ec is the inelastic part 
arising from the presence of microcracks within the solid. Based on this decompo- 
sition, the elasticity law can be formulated as; 

S,y = L,yWE^, (8) 

in which Lijkl is the fourth order material stiffness tensor. 
The basic assumption in the microcracking multiple-plane model is that micro- 

cracking and/or slip can occur on a discrete number of orientations (see Fig. 5) 
Slip plane properties (friction, initial size, density, etc.) and their evolution are 
independently computed on each plane. In contrast to scalar representations of 
damage, the present formulation is broad enough to allow the examination of damage 
induced anisotropy and damage localization in the interpretation of impact exper- 
iments. 

For a representative volume B0, in the underformed configuration, of an elastic 
solid containing penny-shaped microcracks with a density N(k\ the average Lag- 
rangian inelastic strain rate tensor can be written as; 

t'j = £ N^n(a^)2 l(BPnf + nf>5f>) + f N^na^a™(b?>«f + nfbf)     (9) 

where the subindex k is used to label the orientations, af-k) denotes the radius of a 
microcrack on orientation k, n(k) the corresponding unit normal, and b(k) the average 
displacement jump vector across A(k). 

If the resolved normal traction acting on the microcracks on orientation k is 
tensile, the average displacement jump vector resulting from an applied second Piola- 
Kirchhoff stress field S is given by 

bik) = — 
'       Am bf> dA = 16^    v2) fl<*>(2StfWf - vS,«f nPnP), (10) 

in which E and v are the Young's modulus and Poisson's ratio of the uncracked solid, 
and ak is the radius of the penny-shaped microcracks on orientation k. By contrast, 
if the normal traction is compressive, the microcracks are closed and the average 
displacement jump is given by 

-.      32(1-v2)   .   . 
bk = — -akfk nn 

where f* is the effective shear traction vector on orientation k given by 

fk=(Sk + fiSk)(nT)
k. (12) 

In the above equation, \x is the friction coefficient of the microcrack faces, Sk and Sk 

are the resolved shear stress and the normal stress acting on microcracks with orien- 
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tation k, respectively, and nk is the unit vector in the direction of the resolved shear 
traction. Embodied in eqn (12) is the notion that f' provides the effective driving force 
for the sliding of the microcracks. If T

<A)
 < fiaf} a sticking condition occurs. Hence, 

irreversible displacement jumps develop making the deformation process strongly 
nonlinear and history dependent. 

In order to compute the inelastic strain tensor at all times, it becomes necessary to 
follow the evolution of the microcrack radius, ak, in the selected orientations. Fol- 
lowing Freund (1990), an equation of evolution for a in the case of mixed mode 
loading can be derived, Espinosa et al. (1992), Espinosa (1995), viz., 

ak=m±cK[\-(K!C/Kk
(ty

±]>0 (13) 

in which n± and m± are phenomenological material constants which may have 
different values in tension and compression, cR is the Rayleigh wave speed, KIC is the 
material toughness, and Kk

n(S,(/) is an effective stress intensity factor which is a 
function of the stress state S and the microcrack size a{k). For mixed mode conditions, 
Ktf( is derived by considering an average energy release rate associated with an increase 
in radius of the microcracks, namely, 

1 

2n 

from which the following expression for Kk
fS is obtained, 

-[Kf + K^+Kjn/(l-v)]dd (14) 

Kk
K=lf^. (15) 

The general structure of these constitutive equations corresponds to that of a solid 
with a damage-induced anisotropic stress-strain relation with elastic degradation. In 
particular, the effective behavior of the solid is predicted to be rate dependent due 
to crack kinetics effects. From a computational standpoint, this insures numerical 
reliability and mesh independence, according to Needleman (1988), and Espinosa 
(1989). This is in contrast to quasi-static formulations of damage for which the 
governing equations become ill-posed in the softening regime, as in Sandier & Wright 
(1984). Details about the stress update algorithm, assuming the above additive 
decomposition of strain rates into an elastic and cracking part, can be found in 
Espinosa (1995). 

It should be pointed out that this inelastic model is a continuum model in which 
material damage results from microcracking. If the material is subjected to a pre- 
dominantly tensile stress state, microcracks along orientations perpendicular to the 
direction of maximum tensile stresses will grow according to eqns (10) and (13). In this 
case, significant dilation is expected due to mode I crack opening. If a predominantly 
compressive state of stress with shear is imposed, then crack opening is inhibited but 
inelasticity is manifested by the growth of penny-shaped cracks in modes II and III 
(shear modes). 



1920 H. D. ESPINOSA et al. 

4.    CONTACT/INTERFACE LAW WITH FINITE-KINEMATICS 

The continuum model is integrated with a dynamic contact/interface model for 
predicting the discrete response of the material with regard to the cracks initiating at 
and propagating along the fragment boundary. A versatile multi-body contact model 
for explicit dynamic analysis has been developed. The contact algorithm is based on 
predicting accelerations assuming no contact and later correcting the accelerations of 
the surface nodes so that the surfaces do not interpenetrate. In addition, a velocity 
dependent friction model is included. This surface-based contact algorithm allows 
contact between bodies that undergo large relative displacements as they move. It 
also allows the easy incorporation of a velocity-dependent friction model where 
the friction coefficient is made a function of pressure and temperature. A detailed 
description of the contact algorithm can be found in Espinosa et al. (1996, 1998). 

The contact algorithm is augmented with interface elements to simulate the 
initiation of cracks and subsequent large sliding, opening and closing of the cracked 
surfaces. The model is based on the interface model proposed by Tvergaard (1990) 
for quasi-static calculations. It assumes that a perfect interface between two surfaces 
carries forces that oppose separation and shear between them until debonding. After 
debonding, the two surfaces will behave as distinct identities. The propagation of a 
crack can thus be simulated as the consecutive failure of interface elements between 
potential fragments. The magnitude of the opposing forces before debonding is a 
function of the relative normal and shear displacement jumps between the two 
surfaces. The normal and tangential tractions are given as, 

Tn=^F(lc),Tt = ^F(Xc) (16) 

F^c)=jTmx(\-2Xc + X2
c),    for0<^l (17) 

where, rm is the maximum interface traction and Xc is a non-dimensional parameter 
representing an effective normalized displacement jump given by, 

In the above equation, wn and wt are the normal and tangential displacement jumps at 
the interface. Sn and Sl are critical displacement jump values at which the interface 
breaks, i.e., crack initiation. Tmax, <5n and <5t can be easily determined from energy 
arguments based on the mode I critical strain energy release rate of the interface. It 
is evident that the value of kc varies from 0 to 1 with Xc = 1 defining interface failure. 
Four node quadrilateral elements are embedded as the interface elements between 
fragments. The normal and tangential forces are computed depending upon the state 
of stress at the interface, as shown in Fig. 6 and Table 1. 

As long as the value of kc remains less than unity, the interface normal traction is 
computed from the contact model in the case of compression-shear and from the 
interface model in the case of tension-shear. The shear traction is computed from the 
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Fig. 6. Schematic of contact/interface law. 

Table 1. Contact and interface calculations based on interface traction 

Load State T A n 

Tension-shear 

Compression-shear 

/t, < 1 
K > 1 

;., < l 
K > i 

Interface 
Contact 

Contact 
Contact 

Interface 
Open 

Interface 
Friction 

interface model. These normal and tangential tractions contribute to the internal 
nodal forces so that the/;"1 of eqn (6) gets modified as; 

ft = I      Bri dB0 +fT = £      Bri dß0 + £ 
'• JB; 

NrTdS (19) 

where f]",lc is the force contributed by interface element to node / which is calculated 
by integrating the interface tractions over the midsurface of the element. For values 
of AC larger than unity, signifying initiation of crack, only the contact model is used 
to compute the interface tractions in both states. The dependence of the interface 
model on the materials properties and switching from interface to contact and vice 
versa make the approach realistic to simulate crack initiation, unloading if any before 
opening of cracks and subsequent large sliding at the newly created surfaces. 

Two possibilities exist for the description of interface friction unloading. The first, 
based on the existence of a potential, describes unloading following the loading path. 
The second, based on an irreversible process, may describe unloading connecting the 
maximum displacement jump and the origin. The irreversible interface law (Pandolfi 
and Ortiz, 1997) could be used in problems where interface damage occurs. In this 
law, the maximum displacement jump is used to represent history effects. Both possible 
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Fig. 7. Schematic representation of reversible and irreversible interface laws. 

interface laws are schematically shown in Fig. 7. The reversible model is used in the 
calculations reported later. 

Rate and temperature effects in the interface description can be easily incorporated 
in terms of the kc parameters as given by, 

r     = T°     1 + B In 1 max J max I   *Tpai 
'hi 1   JZ-Z°LY -<u TO    

48G' 1 - T= ^ I with TLx = 
\Tm — T0] 21Ö' 

(20) 

In the above expression, Tmax is the maximum interface traction at the current dis- 
placement jump rate Xc and current temperature T, rmax is the maximum interface 
traction at reference displacement jump rate Xcß and reference temperature T0, and 
T„, is the melting point of the material. The parameter ß and x can be identified 
through specially designed experiments. Since there are three parameters and only 
one energy equation, a proper characterization requires impact experiments, i.e., 
spallation and compression shear, in which the cohesive law can be properly charac- 
terized. Similarly, the functional dependence of the interface traction on displacement 
jumps and temperature needs intensive experimental characterization. 

5.    DIRECT TIME INTEGRATION ALGORITHM 

An explicit central-difference integration algorithm is being used to integrate the 
system of ordinary differential equations in time. The algorithm, accounting for 
acceleration corrections due to contact and equivalent nodal forces arising from 
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Table 2. Explicit integration algorithm 

1. Initial conditions: 
n = 0 

V0 = Vo 

a0 = M-'(fr-fin. 
2. Correction accelerations due to changes in boundary conditions : 

ä„ = M-'(c-r). 
3. Compute displacement predictor: 

»n+i = u„ + A/vn+ l/2A;2ä„. 

4. Modify accelerations due to surface contact based on u„+1. 

a„ = an + Aa„ 

5. Update displacements: 

u„+i = u„ + A/vn+l/2A?2air 

6. Update second Piola-Kirchhoff stress tensor S at each element using material constitutive 
law 

7. Compute the interface traction T(A(.) for the intact interface elements 

8. Compute internal force vector: 

BrT„+ldfi0 + NrT(;.,.)d5;  T„+I = F;;+1S„+,F;;
7
M 

9.    Solve for accelerations: 

a„+l =M-|(G,-f„"|,). 

10. Update velocity vector: 

v„+i = v„+y(a„ + a„+l)- 

11. n = n + 1, if n < nm:lx go to step (2), else stop. 

interface elements, is summarized in Table 2. As in any initial boundary value problem, 
initial displacements and velocities u° and v° are required. Initial accelerations a0 are 
calculated from initial applied forces f£xl, and initial internal forces f0

m from the 
equation of motion at time t. 

At each time step n, the nodal accelerations must first be corrected for any time- 
dependent changes in the traction boundary conditions. Then, a displacement pre- 
dictor at time n+ 1, is computed using the corrected acceleration, displacements and 
velocities at time step n. Modified accelerations at time n are computed based on the 
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corrected acceleration and changes in accelerations resulting from surface con- 
tact/interface determined from the displacement predictor at n+\. Updated dis- 
placements at n+1 are used in the update of stresses and the computation of internal 
forces. Lastly, accelerations and velocities at time n + 1 are obtained completing the 
time integration scheme. 

This explicit integration method is very useful for studies in which high rates of 
loading are expected. The time steps used by these explicit calculations are limited by 
stability, so care must be taken in finite deformation dynamic calculations to ensure 
that waves do not propagate through the mesh faster than the material wave speeds. 
To this end, the time step is calculated dynamically from the maximum element 
frequency in the mesh <x>max, such that At < 2/cumax. Flanagan and Belytschko (1984), 
derived the following estimate of com^ for an 7V-noded isoparametric element, 

.i + 2^ (21) 

in which BnBn is the trace of [Ajt-S]7", and the area A is found as CvXxYh where 

and ./Vj are the element shape functions 

di;   8n       drj   dE, J 

6.    CASE STUDY: ROD ON ROD IMPACT 

6.1.    Problem definition 

After developing a finite element model for large deformation brittle failure, vali- 
dation by simulating specially designed experiments is required. Moreover, accessing 
its ability to capture the observed material inelasticity and failure mechanisms is 
desirable. Espinosa and Brar (1995) and Simha et al. (1995) studied damage and 
fragmentation of AD-998 and AD-94 sintered alumina bars manufactured by Coors 
Porcelain Company, Golden, CO. The experiments consisted of the co-axial impact 
of a ceramic rod against another rod made of identical materials with diameter 
12.7 mm. The length of the impactor rod was 80 mm, while that of the target rod was 
170 mm. Moreover, in-material stress measurements were performed with manganin 
gauges (Type C-880113, Micro-Measurements, Raleigh, NC) embedded at 10 rod 
diameters from the impact surface. The gauges were backed by 25.4 or 50 mm rods 
of the same material as the front piece. The back pieces of the assembled bar targets 
were set in a lexan disk using epoxy in order to align the target for a planar impact. 
A coaxial trigger pin was also set through a hole in the lexan ring to trigger a manganin 
gauge bridge circuit and a high speed Imacon camera operated at 105 frames/s. The 
bars were painted black so that cracks and faults could be distinguished during the 
failure event. Measured stress profiles revealed the material remains elastic when the 
impact velocity is below about 100 m/s. By contrast, when the impact velocity reaches 
304 m/s, the maximum compressive stress is sustained for only 200 /is with a main 
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pulse duration of approximately 1.8 /zs followed by a tail. Damage evolution was 
observed in a sequence of photographs taken every 10 i<s with the Imacon camera. Well 
defined patterns of longitudinal cracks are also observed in a region approximately two 
bar diameters in size, symmetrically formed from the impact surface. A violent 
radial expansion with a debris of fine particles results from accumulated damage and 
pulverization of the material. 

The results obtained from the rod on rod experiments are used to validate the 
numerical model described earlier. The model is further used to carry out parametric 
analyses and establish the adequacy of the proposed model. The dimensions of the 
two ceramic rods used in the analyses are the same as mentioned above. All the 
analyses are carried out at an impact velocity of 304 m/s. 

6.2.    Multi-body discretization 

As stated earlier, it is important to measure the initial grain size of the ceramic 
material to estimate the smallest possible fragment size (cluster of grains) based on 
experimental observations. Based on this estimate, fragments are generated in the 
ceramic bars with random morphology. The application of the model to actual grain 
sizes and fragments is the subject of current research work. For discretization, it is 
assumed that potential fragments are of quasi-hexagonal shape with random size and 
their major axes are aligned parallel to the axis-of-symmetry. In order to minimize 
the computation time, potential fragments are generated only in a portion of the 
length of the two bars where severe fragmentation was observed. The rest of the bars 
length is discretized continuously without potential fragments. 

A pre-processor has been developed and integrated in our version of FEAP (Zien- 
kiewicz and Taylor, 1991a, b) for generating potential fragments and the interface 
elements between them. The bar radius, the axial length and the number of fragments 
to be generated along the two directions, i.e., X- and Y-, are given as input to the pre- 
processor. The pre-processor calculates the average fragment size based on the input 
and generates the hexagons. Subsequently, the vertices of the hexagon are displaced 
randomly maintaining the outer boundaries. The direction and the amount of dis- 
placement for each node are generated using a standard random number generator. 
Each hexagon is then discretized into six 6-noded quadratic triangular elements. On 
account of symmetry at the center and to maintain the continuity of the material, 
partial hexagons are generated at the boundaries which are discretized into two or 
three triangles. Four noded interface elements are embedded along the edges of 
hexagons by picking two edge nodes from the hexagon on the right side of an edge 
and remaining two nodes from the hexagon on the left side of the edge. 

The quadratic triangular elements in the continuous region of the two bars are 
generated using a pre-processor already in-built in this version of FEAP. One 
additional module has been developed to connect the hexagons and continuous 
regions by embedding interface elements between them. 

Two types of meshes have been used in the analyses. As shown in Fig. 8 with zooms 
centered at the impact plane, one is a coarse mesh having 100 hexagons, 2713 nodes, 
923 triangular elements and 510 interface elements. A fine mesh shown in the same 
figure having 304 hexagons, 7464 nodes, 2564 triangular elements and 1656 interface 
elements was also used. 
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Nodes: 2713 
Elements: 1433 
Interface Elements: 510 
Grains: 100 

Fig. 

Nodes: 7464 
Elements: 4220 
Interface Elements: 1656 
Grains: 304 

8. Coarse and fine meshes. 

6.3.    Materials properties 

The properties of the alumina ceramic and the parameters for the contact and 
interface elements used in the various analyses are given in Tables 3-5. The ceramic 
multiple-plane continuum damage model parameters are selected such that a damage 
threshold is properly captured and, at the same time, they are in agreement with 
values reported in the literature. As pointed out in Espinosa and Brar (1995), it should 
be noted that microstructural differences have an effect on model parameters. For 
instance, the existence of a second phase at the grain boundaries controls parameters 
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AD-99.5 Alumina ceramic 

Elastic Properties 
E = 374 GPa Young's modulus 
v = 0.22 Poisson's ratio 
p0 = 3890 kg/m3 Density 
Inelastic properties 
/j = 0.1 Internal friction coefficient 
cR = 5000 m/s Wave speed 
KK = UxlO'MPa^/m Critical stress intensity factor 
a„ = 10 /<m Initial crack radius 
c,; = 1.0xl0,2m-3 Crack density for plane 1 
d = 1.0xl0,2m-3 Crack density for plane 2 
cl = 1.0xlOl2irr3 Crack density for plane 3 
ct = 0.0 Crack density for plane 4 
cl = 0.0 Crack density for plane 5 
cl = 1.0xl0'°irr3 Crack density for plane 6 
cl = 0.0 Crack density for plane 7 
cl = 0.0 Crack density for plane 8 
cl = 0.0 Crack density for plane 9 
cJ° = 0.0 Crack density for plane 10 
C,!1 = l.Ox 10,0m-3 Crack density for plane 11 
c,1,2 = 0.0 Crack density for plane 12 
c,1,3 = 0.0 Crack density for plane 13 
n+ =0.3 Ratio 1 (tension) 
«" =0.1 Ratio 2 (compression) 
m+ = 0.3 Power 1 (tension) 
»r =0.1 Power 2 (compression) 

Table 4. Contact constants 
{Espinosa et al., 1998) 

n 0.0 0.2 0.5 

fo 0.0 0.2 0.5 
H«, 0.0 0.2 0.5 
7 0.0 0.0 0.0 
ß 0.5 0.5 0.5 

f = ^ + (^0-/'*>"''' 

H, n±,m± and Ä"IC. The grain size controls the values of a0 and maximum crack density 
of each orientation. The choice of different crack densities as a function of orientation 
is motivated by experimental data (Espinosa et al., 1992) indicating that the density 
of active microcracks is a function of the mechanism responsible for crack nucleation. 
In the case of predominantly compressive stress states, glass at the grain boundaries 
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Table 5. Interface element constants 

Interface properties 

Tma% = 140.0 MPa Maximum interfacial traction 
S„ = 1.0 ^m Critical normal opening 
<5, = 1.0 urn Critical tangential slip 
a = 0.5 Interface mode coupling parameter 

determines the early stages of inelasticity and acts as a precursor for the development 
of triple point microcracks. In the case of predominantly tensile stress states, cracks 
are mainly nucleated due to grain boundary decohesion at a much lower stress level. 
In the present axisymmetric calculations, plane 1 is a plane on which positive normal 
tractions result from unloading waves emanating from the bar surface. By contrast, 
planes 6 and 11 are mainly shear cracks. 

The interface parameters were selected consistently with the assumed fracture 
toughness of the material, i.e., K1C = 1.7 MPa ^/m or Gc = 78.75 N/m. Assuming a 
(5, = 1 urn, a quasi-static Tmax = 140 MPa is obtained. In the present analyses, a 
reversible law is used and no rate or temperature effects are included due to the limited 
experimental data available. 

6.4.    Summary of analyses 

Two dimensional axisymmetric analyses for the rod on rod impact have been 
carried out to validate the model with the experimental results and to study the effect 
of various parameters. The continuum-discrete approach as mentioned earlier, as well 
as the discrete approach using the interface elements, are employed to analyze the 
hexagon region of the two bars, while only continuum damage is used to analyze the 
continuous region. The effect of fragment size is analyzed by carrying out analyses 
with two different mesh sizes as given earlier. Analyses have also been carried out 
with three different values of the friction coefficients between fragments to study their 
effect on the response during deformation. The various analyses carried out are 
summarized in Table 6. 

As mentioned earlier, the continuum damage model possesses the problem of very 
large distortion of elements which has been circumvented before by adaptive meshing 
of the highly deformed zone. In the present case too, the fragments deform excessively 
when the continuum/discrete model is used. The remeshing of grains and reinsertion 
of interface elements between them due to mesh changes are under development. The 
problem has been circumvented for the present analyses by using erosion (Espinosa 
et al., 1998). Fragments in which all elements attain a critical value of erosion 
parameter at their integration points are eroded. The value of 2.0 for the effective 
inelastic strain considered as erosion parameter has been used in all the analyses with 
the continuum/discrete model. 
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Analysis Model Mesh Friction coef. 

I Continuum/discrete coarse 0.0 
II Continuum/discrete coarse 0.2 
III Continuum/discrete coarse 0.5 
IV Discrete coarse 0.0 
V Discrete coarse 0.2 
VI Discrete coarse 0.5 
VII continuum/discrete fine 0.2 
VIII Discrete fine 0.0 
IX Continuum coarse 0.0 

7.    RESULTS AND DISCUSSION 

As given below, the results obtained from various analyses are discussed in terms 
of the continuum-discrete vs discrete damage models, effect of fragment size and 
friction and the fracture patterns predicted with the two models. The results obtained 
from the analyses are compared with the experimental results in terms of the measured 
in-material stress histories and the recorded fragmentation pattern with high speed 
photography. 

7.1.    Continuum/discrete vs discrete damage models 

As mentioned in the previous section, failure in ceramics is the result of initiation 
and propagation of cracks. As a result of which, stress attenuation and fragmentation 
take place. In general, stress attenuation can be described reasonably well by means 
of continuum models. However, due to the inherent assumptions, they cannot describe 
crack coalescence leading to discrete fragmentation. Hence, a complete description of 
brittle failure can be obtained either by means of discrete fragmentation models or 
continuum/discrete models. 

In order to examine the features of continuum/discrete and discrete models in 
predicting the response during impact, analyses are carried out with a coarse as well 
as a fine mesh. The analyses with the coarse mesh have been carried out without 
friction between fragments, while a value of friction coefficient of 0.2 is used in the 
case of the fine mesh. The axial stress at 120 mm from the impact plane is retrieved 
from analyses results. This stress is compared with the experimentally measured stress 
and is plotted in Figs. 9 and 10 for the two types of meshes, respectively. An analysis 
has also been carried out with the continuum damage model alone for comparison 
purposes. Its stress history is also given in Fig. 9. 

It is found that the discrete model reasonably predicts the stress increase and its 
peak value, but overpredicts the pulse duration and fails to capture the strong stress 
attenuation observed experimentally. By contrast, the pure continuum model provides 
a good overall fit for the set of parameters previously reported. However, the con- 
tinuum/discrete model predicts the pulse duration and shock attenuation with reason- 
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9. Continuum/discrete and discrete models vs experimental data with coarse mesh. 

able accuracy but underestimates the peak stress. It is not surprising that the 
continuum/discrete model results in a lower peak stress than the one obtained with a 
pure continuum damage model. In fact, since the same crack density is used in both 
cases, the continuum/discrete model possesses a larger crack surface area per unit 
volume in view of the point that, in addition to the microcrack density used in the 
multiple-plane model, macrocracks are allowed in the formation of fragments. It can 
be inferred from the plot that the continuum/discrete model can capture not only the 
measured stress profile, but also the pulverization observed experimentally in the 
impact region (see later discussion on fragmentation pattern and ceramic pulverization 
near the impact region). 

7.2.    Effect of friction between fragments 

An important aspect of the failure of ceramics is the role of friction between 
fragments. It is known that the shear strength of comminuted ceramics is controlled 
by the friction properties between fragments. For this reason, confinement pressure 
also play a dominant role in the material shear resistance. In the case of rod on 
rod impact, the confinement pressure is generally low. However, friction between 
fragments is important at the early stages of damage. 

In order to investigate the effect of friction between fragments, analyses have been 
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carried out with three values of the friction coefficient as 0.0, 0.2 and 0.5 using both 
the continuum/discrete and discrete models and the coarse mesh. Axial stress histories 
predicted by the two models with the 0.2 and 0.5 friction coefficients together with 
that obtained with the zero coefficient discussed above are plotted in Figs 11 and 12, 
respectively. The fragmented bars at 10, 20, 30 and 40 fis are shown in Fig. 13 for the 
three coefficients obtained by the discrete model. A comparison with high speed 
photographs, at these times, taken during the experiment is also shown in the figure. 
The experimental photographs clearly show longitudinal cracks and an increasing 
radial expansion, near the impact surface, leading to the pulverization of the ceramic. 

As observed in Figs 11 and 12, the friction coefficient has a lesser effect in the case 
of continuum/discrete model compared to the discrete model. The difference in the 
peak stress predicted by continuum/discrete model is about 0.8 GPa when the friction 
coefficient is increased from 0-0.5. But the pulse duration and stress attenuation are 
not altered significantly. In the case of the discrete model, the peak stress increases 
by about 2.2 GPa as the friction coefficient is increased to 0.5. Also, the pulse duration 
increases and the stress attenuation is reduced significantly. As the value of friction 
coefficient is definitely larger than zero, the response predicted by the discrete model 
is in sharp contrast to that obtained experimentally. It should be noted that in the 
case of the continuum/discrete damage model, a significant fraction of the total 
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Fig. 11. Continuum/discrete model with ji = 0, 0.2 and 0.5. 

dissipated energy occurs within the fragments due to the growth of a large density of 
penny-shaped cracks. In the calculations, the internal friction coefficient used in the 
description of the multiple-plane model was not modified. 

It is observed in Fig. 13 that the discrete model predicts overall fragmentation 
consistently with the experimental results only at low values of \i. While the discrete 
model is more sensitive to the friction coefficient between fragments, it does not require 
fragment erosion to advance the calculation. As a result, a better understanding of 
the evolution of fragment initiation and evolution is attained. It is observed that the 
amount of radial expansion and rotation in the fragmented zone is very much reduced 
with the increase in friction coefficient. The response predicted by the model when 
the friction coefficient is set to 0.2, matches reasonably well with the fragmentation 
progression as recorded by high speed photographs. Similar results have been obtained 
with the continuum/discrete model (not plotted here) with the difference that it 
requires a small amount of fragment's erosion to advance the solution. 

7.3.    Effect of model type on fracture patterns 

It is also important for the model to predict fracture patterns leading to failure in 
agreement with the experimental findings. For this purpose in this subsection, the 
fracture pattern obtained from the discrete and continuum/discrete models are given 
in Figs 14-17, respectively, obtained with the coarse and fine meshes at the early 
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Fig. 12. Discrete model with /( = 0, 0.2 and 0.5. 

stages of fragmentation, first 12 /<s. It is observed, in both models, that fracture of 
ceramic rods starts from the outer surface and propagates towards the core and away 
from the impact surface. This is consistent with the wave propagation theory in 
inelastic media. Together with the compressive shock wave generated at the impact 
surface, tensile rarefaction waves are generated at the rod free surface which tail the 
shock wave with the sound speed of the ceramic material. These rarefaction waves 
are primarily responsible for the initiation of cracks near the surface. So long as the 
rarefaction wave from the other end of the bars has not arrived to the hexagon region, 
failure of both bars, impactor and target, remains more or less similar in pattern. 
However, due to arrival of the unloading pulse, the core of the shorter impactor bar 
produces additional fragments in the impactor. These phenomena can be seen in the 
case of the coarse, as well as fine mesh, in Figs 14-17. 

It is found that in both models, there is not excessive deformation and rotation of 
grains, in the failure zone, during the first 12 jus. Fragments displace radially outward 
giving the step pattern of the failure surface at the boundary which is consistent 
with the experimental observation as evident from the high speed photographs. The 
photographs show that the crack density gradually diminishes away from the impact 
surface. This behavior is predicted to some approximation by both models, though 
the deformation and rotation of grains in the simulations are appreciable. A larger 
gradient in crack density is observed in the continuum/discrete damage model. 

An important observation to be made from these plots is that there are distinct 
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Fig. 14. Fracture pattern for discrete model with coarse mesh. 

Fig. 15. Fracture pattern for discrete model with fine mesh. 
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Fig. 16. Fracture pattern for continuum/discrete model with coarse mesh. 

Fig. 17. Fracture pattern for continuum/discrete model with fine mesh. 
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Fig. 18. Axial stress comparison between fine and coarse meshes for discrete model. 

25 

planes at which radial bulging is observed. The length interval at which this takes 
place is the same in the case of the coarse and fine meshes indicating the phenomena 
to be related to a material behavior. One possible reason for this may be the attenu- 
ation of the tensile rarefaction radial waves due to release of energy in crack initiation 
and enlargement. Additional failure can take place only by the new rarefaction wave 
generated down the length of the bars. This observation is important from the 
experiment at viewpoint in deciding the location of the gauge for stress and radial 
velocity measurement. The constant length interval in the case of coarse and fine 
meshes indicates that the pulse duration and the attenuation of waves appear inde- 
pendent of the mesh size. 

7.4.    Effect of potential fragment jmesh size 

As mentioned earlier, one of the objectives of the present research is to develop a 
model which minimizes the run-time and yields results consistent with experimental 
observations. Figures 18 and 19 compare the axial stress obtained from coarse and 
fine meshes with the discrete and continuum/discrete models, respectively. The friction 
coefficient in the case of continuum/discrete model is 0.2 while the discrete model uses 
zero friction coefficient. It is observed that there is not appreciable difference in the 
peak stress, pulse duration and stress attenuation predicted by both models for a 
given value of friction coefficient, between fragments, as the mesh is refined. Hence, 
the two models are predicted to be almost mesh independent for the two fragment 
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Fig. 19. Axial stress comparison between fine and coarse meshes for continuum/discrete model. 

sizes considered in the present analyses. This shows that the assumption of fragments 
containing a large number of grains is not far from realism in computational analyses. 

It can be argued that it is surprising that not much mesh sensitivity is observed in 
the case of the pure discrete fragmentation model. In fact, it is expected that as the 
number of potential fragments in the mesh is increased, the stress history would 
approach the experimentally measured stress history. A possibility for the lack of 
significant increase in stress attenuation behind the wave front, with fragment size 
reduction, (see Fig. 18), may be due to the fact that an extremely fine mesh, with 
potential fragment sizes of the order of the material grain size is required to capture 
the initiation of all possible microcracks. Certainly, in the present analyses, the 
reduction in the fragment size in the case of fine mesh is far from achieving the actual 
grain size of the material. 

8.    CONCLUDING REMARKS 

A novel way of predicting structural response of ceramics during impact capable 
of capturing brittle failure features has been presented by combining two classes of 
damage models, viz., continuum and discrete damage models. The model so arrived, 
and named continuum/discrete model, is able to predict the response of ceramics in 
agreement with experimental observations. The concept of arriving at meaningful 
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finite element simulations of such highly nonlinear class of problems, in a reasonable 
time, may be well served as established by comparing simulation results with exper- 
imental results. The simulations presented here establish the advantages of the con- 
tinuum/discrete damage model over the discrete damage model in terms of the 
structural response of ceramics, e.g., deformation, stress history, fracture pattern, 
etc. The arguments in favor of the two classes of damage models may be applied 
simultaneously to the continuum/discrete model. However, one argument against the 
model may be related to the assumption of the initial fragment size and interface 
elements between them providing pre-determined crack paths. The discrete damage 
model with the capability of initiating as many cracks as required with their propa- 
gation in the correctly predicted direction, or the continuum/discrete damage model 
with the fragment size of the order of actual grain size may seem to be scientifically 
more accurate. However, such analyses would be so computer intensive that they may 
prove to be far from realism for field design applications. Also, such analyses would 
be carried out omitting useful experimental findings. On the contrary, potential 
fragment shape and size can be reasonably chosen based on experimental findings 
as discussed in the introduction. This further concretizes the concept of combined 
experimental/numerical investigation for such highly nonlinear and complex class of 
problems. The concept of choosing a random pattern of potential fragments, a priori, 
and embedding interface elements between them, i.e., prefixing the direction for crack 
propagation, may find application readily in many other problems for which the 
position of crack initiation and propagation are more or less well defined, e.g., 
machining of ceramics, delamination in fiber reinforced composite materials (Lu, 
1998), etc. 

The interface law plays a significant role in the continuum/discrete model. In 
principle, any interface law can be used after experimental determination of its 
parameters through well designed experiments, viz., plate impact experiments and 
Kolsky bar experiments (see contributions by Clifton and Klopp (1985); Duffy, 
1980). The rate effect included in our interface formulation is expected to eliminate 
the need for regularization through nonlocal analyses, thus making the prediction of 
dynamic failure mesh independent. 

One disadvantage of the continuum/discrete model is that with the accumulation 
of damage, element distortion within fragments may become excessive. In such case, 
remeshing of elements within each fragment is required if erosion is not desirable. 
Such remeshing with a consistent mesh transfer operator can be easily implemented. 
Hence, it may be concluded that the present methodology provides a powerful tool for 
predicting the structural response of brittle materials in agreement with experimental 
measurements and observations. 
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ABSTRACT 

A transient finite element analysis is carried out to provide insight into the low temperature dynamic 
material toughness versus crack tip relationship for high strength structural steels under intense stress pulse 
loading. The problem analyzed here is plane strain fracture of an edge cracked specimen under plane wave 
loading conditions. The finite element formulation employed accounts for the effects of finite geometry 
changes, material inertia, and heat conduction. The material is characterized as an isotropically hardening 
and thermally softening elastic-viscoplastic von-Mises solid. To model crack initiation and crack advance 
various crack-tip equations of motion based on elastodynamic modelling of crack growth are used.In 
particular, relatively simple forms for the crack tip equation of motion corresponding to crack growth at 
either constant energy release rate, or a constant stress intensity factor, or a constant crack tip speed, along 
with more complicated forms involving a sharp upturn in fracture resistance at a limiting crack tip speed 
arc employed. The results of these models emphasize the existence of a sharp upturn in dynamic fracture 
toughness in high strength structural steels at a material characteristic limiting crack tip speed at test 
temperatures as low as -80"C and with crack tip loading rates of the order of K, ss 10s MPa ^/m/s. 
© 1998 Elsevier Science Ltd. All rights reserved. 

Keywords: A. dynamic fracture, A. fracture toughness, B. elastic-viscoplastic material, C. finite elements, 
C. plate impact. 

1.    INTRODUCTION 

In the present study, results of plate impact fracture experiments (Prakash, 1993), 
conducted on AISI 4340VAR steel at lower than room temperature, are used to 
examine several crack initiation and crack propagation models under nominally brittle 
fracture conditions. The objective is on understanding the primary features of the 
low temperature dynamic material toughness versus crack tip speed relationship for 
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dynamically propagating cracks in high strength structural steels. The plate impact 
fracture experiments (Prakash, 1993) are designed to subject a pre-cracked disk to a 
large amplitude tensile pulse with a sharp wave-front. The loading results in the onset 
of crack extension in less than a microsecond. Significant inertial effects can arise 
under these conditions due to rapidly applied loading on the cracked solid and/or 
from rapid crack propagation (Freund, 1990). Strain rate effects have generally been 
regarded as making elastic-viscoplastic materials to appear more brittle. This increased 
propensity for brittle failure can be attributed to the elevation in the material's flow 
stress, due to its strain rate sensitivity, to a critical level required for initiating cleavage 
failure before significant plastic strains can accumulate and mitigate the effects of the 
otherwise sharp crack tip. At the same time, dynamic loading with sustained elevated 
plastic strain rates is capable of inducing significant levels of plastic strains in a very 
short time, leading to blunting of the crack tip and hence crack growth by primarily 
deformation controlled mechanisms. 

In order to ascertain the validity of the various crack propagation models it is 
desirable to compare the target free surface motion obtained from the aforementioned 
plate impact fracture experiments with predictions of target free-surface particle 
velocity history obtained by employing various crack propagation models into an 
elastic-viscoplastic material framework. Analytical solutions for crack-tip quantities 
such as the history of the stress intensity factor, under the assumptions of small scale 
yielding, are available for a semi-infinite crack in an infinite isotropic body under 
plane wave loading (Achenbach and Nuismer, 1971; Freund, 1973). However, such 
solutions are not available for far-field quantities such as particle velocities and 
stresses for cracks propagating non-uniformly under stress-wave loading conditions. 
Thus, in the present investigation, a numerical solution for the far field quantities of 
interest is sought by employing a transient finite element analysis in conjunction with 
various crack initiation and propagation models. 

The finite element formulation employed accounts for the effects of finite geometry 
changes, material inertia, and heat conduction. The material is characterized as an 
isotropically hardening and thermally softening elastic-viscoplastic von Mises solid. 
To model crack initiation and crack advance various crack tip equation of motion 
based on the elastodynamic modelling of crack growth are employed. These crack tip 
equations of motion are obtained by assuming various functional forms for the 
dynamic fracture toughness versus crack-tip speed relationship for the particular 
4340VAR steel under investigation. In particular, relatively simple forms for the crack 
tip equation of motion corresponding to crack growth at either a constant energy 
release rate, or a constant stress intensity factor, or a constant crack tip speed, along 
with more realistic forms involving the sharp upturn in fracture resistance at the 
limiting crack tip speed characteristic of the material (Rosakis, Duffy and Freund, 
1984), are employed. 

The paper is presented as follows: in Section 2.1 a brief description of the exper- 
imental configuration and appropriate theoretical background is provided. Section 
2.2 provides a summary of the experimental results. The problem formulation for the 
computational analysis along with its finite element implementation is provided in 
Section 3. Section 4 outlines the various crack growth criteria employed to obtain the 
crack tip equation of motion. Section 5 provides the results and discussion. 
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2.    PLATE IMPACT FRACTURE EXPERIMENTS 
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2.1.    Experimental configuration and theoretical background 

The experiment involves the plane strain loading of a plane crack by a step tensile 
pulse with duration of approximately 1 [is. The loading is achieved by impacting a 
disk shaped specimen containing a mid-plane crack by a thin flyer plate fabricated 
from the same material as the specimen, in a plate impact loading device as shown in 
Fig. 1. The specimen is machined from a notched cylindrical bar in which a fatigue 
crack has been grown by subjecting the bar to cyclical bending (Ravichandran, 1983). 
Impact occurs in a vacuum chamber that has been evacuated to a pressure of 60 to 
80 /mi of Hg and is part of a single stage gas-gun assembly. Upon impact, compressive 
waves of uniaxial strain are generated; one that propagates in the specimen and 
another that propagates in the flyer. The wave propagating through the specimen 
reflects from the rear surface of the specimen as a plane tensile pulse, and it is this 
wave which loads the crack in tension. Details of experimental procedure used for 
specimen preparation and executing the plate impact fracture experiments are pro- 
vided in Ravichandran and Clifton (1989) and Prakash and Clifton (1992). 

The time-distance diagram for the wave fronts that traverse the specimen and the 
flyer plate is shown in Fig. 2. The compressive wave that propagates through the 
specimen reaches the rear surface of the specimen at time, /,. The compressive wave 
that travels in the flyer reflects from the rear surface of the flyer as a plane tensile 
wave-front and propagates back towards the specimen. This unloading wave from 
the flyer removes the pressure that was imposed on the crack plane by the initial 
compressive pulse, leaving the crack-faces traction free. The velocity of the free surface 
of the specimen remains constant at the impact velocity V0, until the unloading wave 
reflected from the rear surface of the flyer arrives at the rear surface of the target plate 

FIBERGLASS 
PROJECTILE 

3.25" GAS GUN 
BARREL 

Fig. 

TO AND FROM 
LASER 
INTERFEROMETER 

1. Schematic of the experimental configuration. 
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'FLYER'       SPECIMEN 

Fig. 2. Wave propagation in the flyer and the specimen. 

at time, /„,. This unloading wave brings the rear surface velocity of the specimen to 
zero. During this time interval, the compressive wave reflected from the rear surface 
of the specimen plate arrives at the traction-free crack plane as a tensile pulse at time, 
tc. The cylindrically diffracted longitudinal wave arrives at the rear surface of the 
specimen plate at a point directly opposite the crack tip at time, td. Tensile loading of 
the crack plane continues until the time, te when the end of the tensile pulse arrives. 
The corresponding diffracted longitudinal wave arrives at the rear surface of the 
specimen plate at time, tt. Thus, the time interval (td, ff) is the interval of primary 
interest in this experiment. 
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A four point normal displacement interferometer is used to measure the rear surface 
motion of the specimen. With this interferometer, the motion of four different points 
on the specimen surface can be measured simultaneously during the experiment. This 
is important, since unlike the conventional plate impact experiments where the rear 
surface motion is independent of in plane coordinates, a two-dimensional field is 
generated by the diffraction of the plane wave by the crack. Details of the four point 
laser interferometer employed in the experiments for measuring the target rear surface 
motion can be found in Mello, Prakash and Clifton (1991). 

In the design of the experiments, the dimensions of the specimen plate are adjusted 
such that the unloading waves from the lateral surface of the target plate arrives at 
the monitoring points after the time, t{. This condition ensures that the loading 
conditions for the dynamic fracture experiment are essentially exactly those of plane 
strain, at-least until the diffracted waves from the lateral boundary reach the centre 
of the specimen. This feature greatly facilitates the detailed correlation of theroy and 
experiment, since for two-dimensional fracture dynamics, numerical solutions can be 
obtained with acceptable levels of computational effort. 

The loading pulse has a duration tQ = 2h/CL, where h is the thickness of the flyer 
plate, and CL is the speed of propagation of longitudinal waves in 4340VAR steel. 
The tensile stress of loading pulse, a*, is given by 

<7*=ipCLF0, (1) 

where p is the mass density and VQ is the projectile velocity measured during the 
experiment. 

For a loading of pulse of duration t0, the transient stress intensity factor for the 
present model problem is given by Freund (1990) as 

KdO = n(v)a*Cn'll2-(t-t0y
i2H(t-t0)]. (2) 

In eqn (2) H(t) is the Heaviside unit step function, and n(v) is given by 

2     /l-2v\1/2 

n(v)=- r        , (3) 
(l-v)\   i   / 

where v is the Poisson's ratio. The crack-tip stress intensity factor, for the stationary 
crack increases in proportion to yft for 0 < t < t0. For t > t„, the stress intensity 
factor decreases due to the unloading term in proportion to ^/t—t0. The largest value 
of the stress intensity factor reached is n(v)o*^/CLt0 so that the crack will initiate 
only if «(v)(T*x/CL?0 > Klä, the critical value of the dynamic stress intensity factor 
for the material. 

Subsequently, the crack initiation time, T, is given by 

1      /Kld\ (4) 

n2(v)CL\(T* 

Knowing x and using eqn (2), the dynamic fracture toughness, Kld and the crack tip 
loading rate, Ku can be expressed as 
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K 
Kld=n(v)Ct2a*x112    and    ^ = y1, respectively. (5) 

The crack arrest time, ta, assumed to take place when the stress intensity factor reduces 
to the value Kld, can be obtained from eqns (2) and (4) as 

<.-j(i + *Y. («9 

2.2.    Experimen tal results 

The material used in the present study is AISI 4340VAR steel. This material is a 
high strength, low ductility, structural alloy having reduced levels of phosphorus and 
sulfur to enhance the fracture toughness. The material is heat treated by normalizing 
at 900°C for 2 h austenizing at 850°C for 2 h, and then rapidly quenching in an ice 
brine solution. The heat treatment ensures a hardness of 55 to 56 on the Rockwell C 
scale. 

Table 1 summarizes the experiment described in the present manuscript. It gives 
the impact velocity, V0, the applied normal tensile stress, cr0, and the duration of the 
pulse, ?„. The low temperature of the test ( —80°C) ensures fracture in a primarily 
brittle or cleavage mode. The magnitude of the applied normal stress corresponds to 
approximately 47% of the Hugoniot elastic limit for 4340VAR steel. 

The solid lines in Fig. 3 correspond to the experimentally recorded velocity-time 
profiles at the four monitoring points on the target free surface. The data shown 
corresponds to the time interval of primary interest, which is between ;d and t( on the 
time-distance diagram (Fig. 2). The closest monitoring point is 0.6 mm ahead of the 
crack tip. The remaining three monitoring points are spaced at 0.7 mm intervals. The 
zero of the time scale corresponds to the first arrival of the longitudinal wave at the 
closest monitoring point. The curves with the lowest (Curve A) and the highest (Curve 
D) velocity-time profiles correspond to the farthest (Point A) and the closest (Point 
D) monitoring points, respectively. The delay times between the traces correspond 
closely to the difference in arrival times of waves diffracted from the crack tip. The 
dashed curves correspond to the numerical simulation using a temperature dependent 
elastic-viscoplastic material model, and assuming that the crack remains stationary 
(details of the finite element method employed to obtain the diffracted free surface 
particle velocity field are provided in Section 3.0). Agreement between the computed 
and experimentally obtained velocity-time profiles is observed to be good up to 

Table 1. Summary of the experiment on 4340 VAR stet >/ 

Stress pulse 
Impact velocity            amplitude 
(m/s)                                (MPa) 

Pulse duration       Crack growth 
(fis)                      (mm) 

Test temp. 
(°Q 

59.0                                1342.0 1.01                         1.3 -80 
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velocity history for a stationary crack at the four monitoring points (A-D). 

a certain time. Thereafter, the experimental and computed profiles separate. This 
separation point is understood to be related to the time of crack initiation during the 
experiment. The experimental record after the separation point corresponds to crack 
propagation phase of the experiment. From Fig. 2 the crack initiation time can be 
inferred to be 116 ns. This corresponds to a dynamic initiation fracture toughness of 
36 MPa ^/m. The crack tip loading rate can be estimated by using eqn (5) to be 
1.5xl08MPaym/s. 

Figure 4 shows a fractograph representative of the region in the vicinity of the 
crack initiation site. The predominant mode of crack initiation is cleavage. The 
multifaceted surface is typical of cleavage in a crystalline material; each facet cor- 
responds to a single grain. The river patterns on each facet are also typical of cleavage 
fracture. The crack growth region contains many cleavage facets, often surrounded 
by a narrow dimpled region, and appreciable areas of decohesion between grains 
and/or phases. Presumably the cleavage facets are cross grains that have been favour- 
ably oriented for cleavage with the crack front and hence cleaved. Since the grains 
are not always favourably oriented to the fracture path, the fracture propagates in a 
tortuous path and is accompanied by some plastic flow. From the modes of failure 
depicted in the fractographs it is expected that besides the energy required for the 
cleavage of the favourably oriented cleavage grains a substantial fraction of the 
fracture energy is consumed in the necking down of the ductile ligaments left behind 
as the brittle fracture front advances through the material. Moreover, the presence of 
voids at the grain boundaries, suggest that inelastic processes involving the initiation, 
growth and coalescence of voids must accompany the dynamic fracture process. Thus, 
in the continuum sense, the failure mechanisms can be regarded as quasi-cleavage 
and any analysis pertaining to the experiment must include inelastic effects. 
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3.    COMPUTATIONAL ANALYSIS 

One of the objectives of the present study is to critically examine the applicability 
of various fracture criteria for sustained cleavage crack growth in high strength ferritic 
steels, by comparing the computed time history of the target free surface motion with 
that measured experimentally. To accomplish this a transient finite element analysis 
which accounts for the effects of finite geometry changes, material inertia, material 
rate sensitivity and heat conduction, is employed. The material is characterized as an 
isotropically hardening, and thermally softening elastic-viscoplastic von Mises solid. 
A combined power-law and exponential plastic strain-rate relation (Clifton, 1990), 
that gives rise to enhanced strain-rate hardening at ultra-high strain rates, e.g. Cambell 
and Ferguson (1970), and Klopp et al. (1985), is also employed. 

3.1.    Problem formulation 

The analysis is based on a convected Lagrangian formulation of field equations with 
the initial undeformed body configuration as the reference. Convected coordinates y' 
are introduced which serve as particle labels. Relative to a fixed Cartesian frame, the 
position of a material point in the reference configuration is given by X(/). The 
corresponding material particle in the current configuration is located by a position 
vector x(y'). The base vectors for the reference and the current configuration of the 
body are denoted by g; and g{, respectively, with 

* = W and g' = sy- (7) 

The displacement vector, u, and the deformation gradient tensor, F, are defined as 

u = x-X    and    F = ^ (8) 

The dynamic principle of virtual work can be written in the integral form as 

3 V 
TijÖEijdV = f'dui dS- Po-T8uiAV, (9) 

at 

where V, S, and p„ are the volume, surface area and mass density, respectively, of the 
body in the reference configuration, and T is the Kirchoff stress defined by T = det(F)er. 
The traction vector component/' on a surface with unit normal vector component «y 

in the reference configuration is given by 

/'=(Ttf + !4T>,, (10) 

The Lagrangian strain tensor in the reference configuration is 

E,j = \{uu + UJJ + u%J, (11) 

where (), represents the covariant partial differentiation in the reference frame. 
With body forces and external heat energy source being absent, the balance of 

energy can be expressed as integrals over the reference configuration 
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Fig. 4. Fractograph indicating quasi-cleavage fracture. 

p„edV+-    -p0ü-üdV: f-üdS- JnF  ]qdS, (12) 

where e is the specific internal energy, d/dr is the material time derivative, / is the 
Jacobian of the deformation, and q is heat-flux vector normal to the surface in the 
current configuration. 

The formulation of the energy balance and the equation of heat conduction follows 
Povirk, Needleman and Nutt (1990) except for the inclusion of the kinetic energy 
term. Assuming that the heat capacity at constant stress can be approximated by the 
specific heat at constant pressure cp, and assuming small elastic strains (/ = det|F| x 1 
hence x — a), the balance of energy can be expressed in terms of integrals over the 
reference configuration as 

p0cpfdV = XT:D
/
W+ JkVQ.(F~l.F~r.VQT)dV, (13) 

where the gradient operator in the reference configuration is denoted by 

V0 = g* 
dyK' 

and x represents the fraction of plastic work rate converted to heat: % is taken to 
have the value of 0.9, which is typical for metals (Taylor and Quinney, 1934). 

The material is characterized as an isotropically hardening viscoplastic solid for 
which W can be expressed using J2 flow theory as 

W = ep   where p = 
3T' 

Iff' 
(14) 



1952 YOUNGSEOG LEE and VIKAS PRAKASH 

In eqn (14) g is the equivalent plastic strain rate function: the deviatoric stress x' and 
the equivalent flow stress 5 are given by 

3 
T' = T—r(r:I)I    and    a  =-x':x' (15) 

The material properties used in the present simulations are representative of hard- 
ened AISI 4340VAR steel. The plastic strain rate, i, is taken to be of the form 

s = Jhjh_ 
s,+s2 

where 

and 

Here, 

£i — e0 
giß, T) 

, h = em exp 
ag(s, T) 

g(s,T) = cj0(l+e/sor{l-ß[(TIT0)
k-l]}. 

(16) 

(17) 

(18) 

Sdt 

is the equivalent plastic strain, em is a reference strain rate, m and a are the rate 
sensitivity parameters, respectively, a0 is a reference stress, e0 is a reference strain, N 
is the strain hardening exponent, T0 is a reference temperature, and ß and k are the 
thermal softening parameters. The function g(ß, T) represents the stress-strain relation 
at quasi-static strain rate of s0 and at temperature T. Equation (16), provides a smooth 
transition between the measured response e = E,(ff, s, T) at strain rates less than 103 

s_1, and the limiting behaviour g = i2(5, e, T) at strain rates greater than, say, 105 

s-1. 
The material response of 4340VAR steel is shown in Figs 5(a) and 5(b) along with 

the plastic strain rate and the temperature dependence of the flow stress. The material 
parameters used in the model are listed in Table 2. 

3.2.    Finite element implementation 

As discussed by Budiansky (1969), the principle of virtual work eqn (9) can be 
used as the variational principle for a solid continuum undergoing arbitrarily large 
displacements and deformations. Moreover, the variational equation governing the 
thermo-mechanical energy balance can be obtained from the balance of energy, eqn 
(13), as 

PoCP TSTdV = Xx:T>pÖTdV- Jk(F-1-F-T.V-T)V-ÖTdV 

+ JkN-{(F-]-F-T.V-T)}ÖTdS.     (19) 
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Fig. 5. Elastic-viscoplastic response of 4340 VAR steel, (a) Enhanced plastic strain rate sensitivity of flow 
stress for if > 105/s, (b) Temperature dependence of the flow stress as a function of the plastic strain at a 

fixed plastic strain rate. 

When the finite-element approximations for the displacement and temperature 
fields are substituted into eqns (9) and (19), the resulting equations take the form 

82U 

dt2 (20) 
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Table 2 Material parameters used to describe the present model for AISI4340 VAR 
steel (200°C temper, Rc = 55)          

E = 202 GPa, a0 = 1895 MPa 
»;= 100.0,/? = 3.19 
cp = 465J/(Kg-K),<x = 1.0xl05l/Ä" 
a= 10.0, £o = l.OxlO^s-1 

fim = 5.0xl08s^1,£o = ffo/£' 
k= 100.0 W/m-#, r0 = 293K 
K= l.O, JV = 0.1, v = 0.3 

C?=-KT + H, (21) 
dt 

where U is the vector of nodal displacements, T is the vector of nodal temperatures, 
M, C, K, are, respectively, the mass, heat capacitance, and heat conductance matrices, 
and R and H are the mechanical and thermal force vectors. A lumped mass matrix is 
used in eqn (20) instead of the consistent mass matrix; the lumped mass matrix has 
been found preferable for explicit time integration procedures from the point of view 
of computational efficiency and accuracy (Krieg and Key, 1973). Additionally, a 
lumped heat capacitance matrix is used in the eqn (21). 

An explicit time integration scheme based on the Newmark ^-method, with ß = 0, 
and y = 0.5 (Belytschko et al., 1976) is used to integrate the equations of motion to 
obtain the nodal velocities and nodal displacements via 

^_ = M-,R"+1. (22) 
dt2 

d\J"+l     3U"    , A   fd
2V"     32U"+1\ . 

dt dt     2    n\dt2 dt 

PIT" d2\J" 
U-'=U« + A4^-+i(A02^, (24) 

where ()"' denotes the matrix inverse. 
The plastic dissipation rate, x: Dp, is calculated and its contribution to the thermal 

force vector, H", is determined. The nodal temperature at t„+1 are obtained via 

p <™ +1 
_ = C-'f-K'T + H") (25) 

dt 

and 

T"+1 =T' + Atn~—. (26) 
dt 

The rate tangent modulus expansion method (Peirce et al, 1984) is used to update 
the contravariant components of the convected Kirchhoff stress tensor, i.e. 
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Fig. 6. (a) Geometry of the edge cracked specimen used in finite element discretization, (b) Quadrilateral 
elements consisting of four "crossed" triangles, the location of the initial crack tip, and the process zone. 

= T" + T'A;„. (27) 

The computations are carried out for an edge cracked specimen as shown in Fig. 
6(a). Plane strain conditions are assumed to prevail and a Cartesian coordinate system 
is used as a reference, with the y'-y2 plane being the plane of deformation. The 
specimen dimensions are taken as \\\ = w2 = 20.0 mm and bx—b1 = 4.0 mm. To save 
computational time the initial conditions corresponding to a plane tensile pulse 
propagating towards the crack plane from the specimen rear-surface are prescribed. 
With origin of the coordinate system at the initial crack tip, the boundary conditions 
can be written as 

p =0,   f2 =0    on   y[ = -w 

p =0,   p = 0    on   y' = w2, 
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/' = 0,   f2 = 0    on   y2 = 0    and   y1 < 0, 

/' =0,   /2=0    on   / = -62, 

M2 
V(t)dt   and   /' = 0    on   y2=bl. (28) 

0 

The function V{t) in eqn (28) is taken to be 

K(o=r°,/u' for^rise'  • ^ [F0, for tnsc < t < ffa„ 

The finite element discretization is based on linear displacement triangular elements 
that are arranged in a 'crossed-triangle' quadrilateral pattern. In these constant strain 
triangular sub-elements the displacements and temperature are taken to vary linearly 
over the triangular elements. Nagtegaal et al. (1974) have shown that an element of 
this type can accommodate isochoric deformations. This is of significance since plastic 
strain is volume preserving, so that the total deformation at large strains is nearly 
isochoric. 

In presenting computational results, the quadrilateral is regarded as the basic 
element, and when reporting values of field quantities the average value of the four 
triangles is associated with the centroid of the quadrilateral. The full finite element 
mesh used in the computations is shown in Fig. 6(b). In front of crack tip, a uniform 
mesh also referred to as the process zone, consists of 50 quadrilaterals in the yl 

direction and 10 quadrilaterals placed symmetrically about the y2 direction. Each 
quadrilateral element in the process zone has a dimension 16 ^m x 10 yum. The entire 
finite-element mesh consists of 3980 quadrilateral elements with 19,882 degrees of 
freedom. 

4.    MODELLING OF DYNAMIC CRACK INITIATION AND 
PROPAGATION 

4.1.    Crack tip equation of motion based on elastodynamic modelling of crack growth 

In the study of dynamic propagation of a crack through a continuum solid, the 
field equations can be solved for any motion of the crack edge, in principle. That is, 
if the motion of the crack edge is specified, along with the configuration of the body 
and the details of the loading, then the resulting mechanical fields can be determined. 
However, in order to specify an acceptable crack tip equation of motion, dynamic 
crack initiation and crack growth criterion is required. For crack growth processes in 
materials which fail in a predominantly brittle manner, or in which any inelastic crack 
tip zone is completely contained within the surrounding elastic crack tip zone, the 
most common crack growth criteria are the generalizations of Griffith's critical energy 
release rate criterion (Griffith, 1920) and Irwin's critical stress intensity factor criterion 
(Irwin, 1957; 1960). According to the generalized Griffith criterion, a crack must 
grow in such a way that the crack tip dynamic energy release rate is always equal to 
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the dynamic fracture energy of the material. A similar statement can be made con- 
cerning the generalization of Irwin's stress intensity factor criterion to the case of 
dynamic crack propagation. In this criterion, the material specific resistance to crack 
advance is the dynamic fracture toughness. Consequently, if either the Griffith's or 
the Irwin's criterion is considered to provide an acceptable postulate for describing 
crack growth, then either the specific fracture energy or the dynamic fracture tough- 
ness characterizes the resistance of the material to crack growth and must be specified. 

In general, the crack tip stress intensity factor represents the effect of the applied 
loading, the geometrical configuration of the body, and the bulk material parameters 
of the material in the crack tip region for any motion of the crack tip. For the case of 
non-uniform crack growth these parameters depend on time, the crack length and the 
crack tip speed. For the model problem considered here it has been shown, e.g. Freund 
(1990), that the instantaneous value of the crack tip stress intensity factor for an 
arbitrary motion of the crack tip depends on crack motion only through the instan- 
taneous value of the crack tip speed, a, and time. Moreover this dependence has a 
separable form 

Kp(t,ä)=k(ä)K(t;0), (30) 

where Kp is the instantaneous dynamic stress intensity factor for crack propagation, 
K(t; 0) is a functional given by (2), and k(a) is a universal function of crack speed 
and can be approximated as 

l-a/cR 
k{a)K-— . (31) 

1 — 0.5fl/cR 

Analogously, the instantaneous energy release rate for propagating cracks, Gp, can 
be expressed as 

Gp(t,ä)=g(ä)G(t;0), (32) 

where g{a) is a universal function of crack speed and can be approximated by 

g(ä)*l--. (33) 

Moreover, the instantaneous dynamic energy release rate for crack propagation, Gp(t, 
a), is related to the instantaneous stress intensity Kp(t, a) via the relationship 

Gp(t;ä) = ]--^-A<iä)K2
p(t:ä). (34) 

where A{ •) is a universal function of the instantaneous crack tip speed, ä. The function 
A has the properties that A(a) -> 1 as ä -> 0, A'(ä) -> 0 as ä -> 0, and A(ä) -» co as 

Results of several dynamic fracture experiments on tough structural metals which 
do not undergo a transition in fracture mode with increasing crack tip speed and 
show relatively low strain hardening characteristics in the plastic range, indicate that 
the material's level of resistance to crack advance may depend on the instantaneous 
crack tip speed (see, e.g. Rosakis, Duffy and Freund, (1984); Rosakis and Zhender 
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(1990); and Kobayashi and Dally (1979)). The most significant feature of this depen- 
dence is the increasing sensitivity of dynamic fracture toughness to crack tip speed 
with increasing speed. Although this sensitivity might be attributed, at least in part, 
to strain rate dependence of the material response, it is noteworthy that the feature 
persists even for materials which appear to exhibit little strain rate dependence in 
their bulk response. Furthermore, the feature cannot be attributed entirely to crack 
speed dependence of the elastic field surrounding the crack tip plastic zone. The 
surrounding elastic field shows little dependence on crack speed for speeds less than 
about 50-60% of the shear wave speed, whereas the sharp upturn in the variation of 
toughness with speed has been observed for speeds in the range of 25-30% of the 
shear wave speed. Theoretical/numerical investigations of dynamic fracture in elastic 
ideally-plastic materials (Lam and Freund, 1985) have shown that this upturn in the 
material's fracture resistance can be attributed to inertial effects within the crack tip 
plastic zone. Furthermore, it has been demonstrated that for ductile solids, the inertia 
effects become important at much lower crack tip speeds as compared to those in 
brittle solids. 

Experimental data (Rosakis, Duffy and Freund, (1984)), relating the dynamic 
fracture toughness to the crack tip velocity (from here onwards referred to as the KlD 

versus a relationship) can be correlated by the heuristic experimental relation sug- 
gested by Kanninen and Popelar (1985) 

Kw(t,a)=       K'\m, (35) 
a 

K 

where Klc is the crack initiation toughness under dynamic loading conditions, VL is 
the limiting crack tip speed, and m is a dimensionless shape factor. Using eqn (35), 
the Km vs ä curve for 4340 steel (heated to 843°C, oil quenched and tempered at 
316°C for 1 h, and with <r0 = 1300 MPa and Klc = 60 MPa Jm), can be effectively 
represented by VL = 1100 m/s and m = 2. 

In view of the aforementioned possibilities, the crack growth criterion that is 
required to specify the equation of motion of the crack tip is assumed to be governed 
by any one of the following criteria 

Gp(t, a) = G,c(constant energy release rate criterion), (36) 

Kp(t, a) = ATIC(constant stress intensity factor criterion), (37) 

a = constant(constant crack velocity criterion). (38) 

According to eqns (36) and (37), the crack must propagate in such a way that either 
the dynamic energy release rate, Gp, or the dynamic stress intensity factor, Kp is 
always equal to its material characterizing value at crack initiation, i.e., GiC or K1C, 
respectively. 

Using eqns (30) to (38), the average crack growth, Aa, corresponding to each of 
the three crack growth criterion can be expressed as, 
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Aa 
K2  \ 

1 — —— Id? (for constant energy release rate criterion),        (39) 
KKOJ 

Aa = CR 1- 
0.5KJKM 

1-O.SKJKtit) 
dt (for constant stress intensity factor criterion), 

Aa = a(ta — x) (for constant crack velocity criterion). 

(40) 

(41) 

To model crack propagation, material failure is implemented via the element van- 
ishing technique Tvergaard (1982). When the crack tip passes a material point occu- 
pied by an element in the process zone ahead of the initial crack tip, the element is 
assumed to vanish and its contribution to the virtual work is neglected. The magnitude 
of reduction of the nodal forces is taken to be proportional to their initial values, with 
the proportionality factor depending instantaneously on the fraction of the length 
that the crack tip has traversed in the failed element. 

5.    RESULTS AND DISCUSSION 

The computed and the experimental particle velocity-time profiles based on crack 
tip equation of motion (36), (37) and (38) are shown in Fig. 7. Early separation 
between the experimental and the computed profiles for the case of a stationary crack 
indicate that the cracks begin to propagate during the early part of the tensile pulse. 
Good agreement is obtained between measured velocity time profiles and predictions 
of a constant velocity crack propagation (ä = 1300 m/s) model. Predictions of the 
constant energy release rate model, and to a lesser extent, of the constant stress 
intensity factor model tend to overestimate the acceleration of the free surface over 
much of the time interval and especially the latter times. 

The success of the constant crack velocity model in predicting the experimental free 
surface particle velocity provides a strong indication for the existence of a dynamic 
fracture toughness versus crack tip speed relationship similar to eqn (35) for the 
4340VAR steel (Rc = 55) employed in the present investigation. In view of this the 
following particular form for the dependence of dynamic fracture toughness versus 
the crack speed is sought 

Km{ä, t)=- 
K,r 

1 
£cr 

(42) 

where £, p and q are empirical constants to be evaluated iteratively by comparing the 
experimental and the computed free-surface particle velocity history corresponding 
to eqn (42). Using eqn (42) in eqn (30), the governing equation for the crack tip 
motion takes the form 
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Fig. 7. Experimental and the predicted target free surface particle velocity profiles at the four monitoring 
points (A-D), corresponding to the constant energy release rate model, the constant stress intensity factor 

model, the constant crack velocity model (1300 m/s) and the case for the stationary crack. 

Klu(a, t) = 
Klc 

'-'.£ 
= k(a)K(t;0). (43) 

Furthermore, by employing eqns (2) and (31) in eqn (43) yields the following ordinary 
differential equation 

1 — d/cR 

1 — 0.5a/cR 

a -1/2 

(t^-(t-t0y
i2H(t-t0)) 

(44) 

To obtain the history of the crack tip motion a(t), eqn (44) can be solved for the 
crack tip velocity ä, at times t and t + At by using the Newton-Raphson method. 
Further, by employing the mean value theorem of integral calculus the instantaneous 
crack tip position at t + At can be expressed in terms of crack tip position at time t, 
as 

a(t + At) =a(t) + 
ä(t + At)-ä(t) 

+ h.o.t. (45) 
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Fig. 8. (a) Crack tip position and the crack tip velocity as a function of time corresponding to two different 
values of the parameter £, i.e. f = 0.4 and { = 0.5 with/; = 0.5 and (/ = 5.0, (b) Experimental and computed 

target free surface particle velocity history for \ = 0.4 and <j = 0.5 with p = 0.5 and q = 5.0. 

Figure 8(a) depicts the corresponding solution for the crack tip position and the 
crack tip velocity as a function of time for/? = 5.0, q = 0.5 and two different values 
of the parameter £, i.e. t = 0.4 and £ = 0.5. The crack tip accelerates quickly during 
the initial 100 ns after the arrival of the loading pulse at the crack plane before 
reaching a plateau. Figure 8(b) compares the experimental and the computed target 
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Fig. 9. (a) /-integral versus time profile, (b) COD versus time profile. 

free surface particle velocity history obtained by employing eqn (42). The comparison 
between the experimental and the computed profiles is observed to be in good agree- 
ment for all times at the four monitoring points by using the model parameters with 
£, = 0.5. Using this model parameter the crack tip velocity reaches a plateau of 
approximately 1400 m/s. 

Figures 9(a) and 9(b) show the computed profiles for the /-integral (energy release 
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rate) and COD (crack opening displacement) versus time for the elastodynamic 
modelling of crack growth based on eqn (44). Along with these curves, the /-integral 
and the COD profiles for the case of the stationary crack are also shown for com- 
parison purposes. The /-integral employed is the generalization of Rice's /-integral 
(Rice, 1968) to dynamic conditions, which involves a contour integral as well as an 
integral over the area inside the contour (Moran and Shih, 1987; Nakamura et al, 
1985) 

/ = [(W+L)dy2 -T'uitids] + CCTkTj 
3V 

dt2 -P^j-Uo-P—'" 
du'(du!_ 

~dt\dt 
dA,    (46) 

where A is the area of the contour T and 

W-- x'J dEu — a 4dT, L = \P 
du' dUi 

dt dt ' 
(47) 

Using eqn (46), / was calculated on several contours outside the uniformly spaced 
mesh region, with any contribution of the cohesive surface ignored. The deviation on 
all paths away from the uniform mesh was within 7%, with the deviation being less 
in the early stages of crack growth. Prior to the onset of crack growth the curves of 
COD and the /-integral increase regularly as predicted by the elastodynamic solution 
for a half plane crack subjected to plane tensile pulse. With the onset of crack extension 
the COD grows linearly and exceeds the COD level for the case of stationary crack. 
The /-integral also increases with the crack growth but its value is always lower than 
that obtained for the case of the stationary crack. This is to be expected since the 
universal function for the energy release rate decreases monotically with the increase 
in crack tip speed. The oscillations in / integral are a consequence of wave effects 
associated with the creation of new free surface using the element vanishing technique, 
which affects /-integral values computed for remote contours because of the area 
integral term in eqn (46). 

Contours of Mises effective stress in the vicinity of the crack tip, are shown in Figs 
10(a) to 10(d) for four different time intervals after the arrival of the tensile wave at 
the crack plane. For the contour plots at / = 200 ns and t = 400 ns the contours of 
effective Mises stress are similar in shape and level to those for the elastic material. 
At higher crack tip speeds (contour plots at t = 600 ns and t = 750 ns), leads to 
noticeable plastic deformation in the near crack tip region. This is also observed from 
the shape of the Mises effective stress contours which show a region of enhanced 
Mises effective stress behind the crack tip. 

Figures 11 (a)-l 1 (d) show the contour plots for the effective plastic strain lp, in the 
vicinity of the crack tip at four different time intervals after the arrival of the tensile 
wave at the crack plane. The equivalent plastic strain in the vicinity of the crack tip 
increases as the crack growth occurs (to a maximum of 5% plastic strain), and the 
plastic strain profile shows decreasing plastic strain in the wake region behind the 
crack tip as the distance from the crack tip increases. This is consistent with the /- 
integral calculations which show an increase in toughness as the crack growth occurs. 
The limited but non-zero plastic strains at the crack tip aid in increasing the fracture 
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Fig. 10. Contour plots for the flow stress in the vicinity of the propagating crack at time t = 200, 400, 600 
and 750 ns after the arrival of the tensile wave tip at the crack plane. 
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Fig. 11. Contour plots for the equivalent plastic strain in the vicinity of the propagating crack at time 
/ = 200, 400, 600 and 750 ns after the arrival of the tensile wave tip at the crack plane. 
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Fig. 12. Normalised dynamic fracture toughness versus dimensionless crack tip speed for the room tem- 
perature dynamic fracture of 4340VAR steel (Rc = 45), and the low temperature dynamic fracture of 4340 

VAR steel (Rc = 55). 

resistance of the dynamically propagating crack due to material inertia and the strain 
rate sensitivity of flow stress for 4340VAR steel. The local temperature change in the 
vicinity of the crack tip is also small. It increases from — 80°C to a maximum of 
— 5CTC during the entire duration of crack growth. The temperature contours, which 
are similar to the equivalent plastic strain profiles, indicate that the heating extends 
in a narrow region around the crack tip and the deformation remains essentially 
adiabatic in the wake region behind the crack tip. 

Figure 12 shows the normalized dynamic fracture toughness versus dimensionless 
crack tip speed for the room temperature dynamic fracture of 4340 steel (Rc = 45) 
and the low temperature dynamic fracture of 4340VAR steel (Rc = 55), obtained by 
using eqns (42)-(45). Both steels show a monotonically increasing fracture toughness 
versus crack velocity relationship which takes on large values for moderate values of 
a/cR ratio. Although there is no unambiguous way to associate a terminal velocity 
with these results, the plot suggests a maximum attainable velocity well below the 
Rayleigh wave speed of the material. The intercept value of fracture toughness at 
a/cR = 0 corresponds to the so-called steady state toughness value of the theory of 
stable crack growth. The spread of intercepts on the a/cR = 0 results because of the 
normalization factor (AT,C corresponding to the 4340VAR steel (Rc = 55) at -80°C) 
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used to normalize all data shown on the plot. As discussed by Lam and Freund 
(1985), the variation of fracture toughness with crack speed for 4340 steel with Rc = 45 
is primarily due to inertial effects. It is anticipated that if the inertial effects were 
neglected, the calculated toughness would be completely independent of speed (Sieg- 
mond and Needleman, 1997). As discussed in Section 2.2, the low temperature 
( — 80°C) fracture of 4340 steel (Rc = 55), occurs essentially by a quasi-cleavage 
mechanism involving a limited amount of inelastic deformation. Moreover, as com- 
pared to the room temperature experiments, the flow stress of the 4340 steel (Rc = 55) 
in the vicinity of the crack tip (within the plastic zone region) would be significantly 
higher due to the lower than room test temperature and the relatively higher rate 
sensitivity of the steel employed in the present investigation. This results in relatively 
smaller levels of plastic deformation and hence to a smaller plastic zone size. The 
relatively smaller levels of inelastic deformation for the low temperature experiments, 
leads to smaller particle velocities and hence to lower particle accelerations in the 
vicinity of the crack tip region as compared to the room temperature experiments on 
4340 steel in a much more ductile condition (Rc = 44). The smaller particle accel- 
erations lead to a smaller inertial resistance, thus delaying the upturn in the fracture 
toughness to relatively higher crack tip speeds. This observation is also consistent 
with the analysis of Mataga et al. (1987), who, using a strain-based crack growth 
criterion, have shown that for tough structural materials requiring higher critical 
strains for failure, and thus with larger plastic zone sizes, show lower crack tip speeds 
at which the upturn in the material fracture resistance occurs. 
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ABSTRACT 

The Cosserat Spectrum theory is applied in the theory of linear viscoelasticity. The solution for the 
Laplace transform of the displacement of the viscoelastic problem is expressed in a series of the Cosserat 
eigenfunctions, which arc dependent only on position, and the coefficients are expressed as convolutions 
of the time dependent body force or surface loading provided that the inverse Laplace transforms of the 
viscoelastic moduli are known. This renders the Cosserat Spectrum theory advantageous for the solution 
of viscoelastic problems. Several examples are shown. © 1998 Elsevier Science Ltd. All rights reserved. 

Keywords: A. creep, B. viscoelastic material. C. Cosserat Spectrum. 

1.    INTRODUCTION 

The homogeneous Navier equations AW + COVV-H = 0, [co =(k + n)jn = (1/(1—2v),A 
and j.i being the Lame's constants, v the Poisson's ratio], with homogeneous boundary 
conditions of displacement or traction admit nontrivial solutions when co takes values 
in a set of points lying outside the physical range of Poisson's ratio called the Cosserat 
Spectrum. The Cosserat Spectrum theory was introduced by Cosserat and Cosserat 
(1898) and then fully developed by Mikhlin (1973), who proved the completeness and 
orthogonality of the Cosserat eigenfunctions and represented the displacement field 
u as summation of the Cosserat eigenfunctions for the boundary value problems of 
displacement or traction. Pobedria (1970) applied the Cosserat Spectrum theory to 
2-D viscoelastic problems. In a recent paper, Markenscoff and Paukshto (1998) 
applied it to problems in elasticity and thermoelasticity. They also developed a 
variational principle in thermoelasticity within the frame of the Cosserat Spectrum 
theory. 

In the present article we develop a theory of linear viscoelasticity based on the 
Cosserat Spectrum theory. We show that in the Laplace transformed space the Navier 
equations hold and the Cosserat Spectrum theory can be applied. The solution for 
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the Laplace transform of the displacement function of viscoelastic problems is expre- 
ssed in series of the Cosserat eigenfunctions, which are functions of geometry only 
(and not the transform variable s), and the coefficients are functions of s that can be 
easily inverted for rational functions, which is the case in the commonly used vis- 
coelastic models (Christensen, 1971). Thus, once the inverse Laplace transforms of 
these functions that depend on the viscoelastic moduli are known, the solution may 
readily be expressed as convolutions of the time dependent body force or surface 
loading. In this respect, this method of solution has an advantage over the standard 
methods as in Lee (1955), Radok (1957), and Lee et al. (1959). 

2.    FORMULATION OF THE GOVERNING EQUATIONS OF 
VISCOELASTICITY IN TERMS OF THE COSSERAT SPECTRUM THEORY 

The equations of quasi-static equilibrium are given by 

trijj(t)+F,(t) = 0   inQ (1) 

with boundary conditions of displacement 

u = u{t)    on dQ. (2a) 

or traction 

~?'(t) = o(t)-n    onöQ (2b) 

while the stress o,j(t) and strain 

Bu(t)={[ulJ(t) + Ujj(t)] (3) 

are related by the constitutive equations (Christensen, 1971) 

<TljO) = [2fi(t-f) de,7(0 + A(?-0^d£,,(0] (4) 

with fi(t) and ?,{t) being the time dependent Lame's moduli. 
By applying the Laplace transform on the above equations, denoting by "A" the 

transformed quantities, and combining the transformed eqns (1), (3) and (4), we 
obtain the Navier equations for the transformed displacements 

where 

i?. 
ü,jj + d)üjji = —-x   infi (5) 

co = —^- (6) 

with boundary conditions of displacement 

u = ub    on dQ (7a) 

or traction 
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1 = a • n    on dQ, (7b) 

We now observe that the displacement u satisfying eqns (5) and (7) may be expressed 
in terms of a series of the Cosserat eigenfunctions, which satisfy the homogeneous 
Navier equations 

V
2
M„ + Cö„VV-W„ = 0   inQ (8) 

with homogeneous boundary conditions of displacement 

w„ = 0    onöQ (9a) 

or traction 

?'(«„) = a(ün) • n = 0    on <3Q (9b) 

As presented by Mikhlin (1973), the Cosserat eigenfunctions are complete in the 
Sobolev space H1, and thus, the solutions of the inhomogeneous eqn (5) with bound- 
ary conditions of displacement [eqn (7a)] or traction [eqn (7b)] admit the Mikhlin 
(1973) representation theorems as follows: 

The solution for the boundary value problem of displacement 

F 
Aw + a>VV-w=--   inD (10a) 

ft 

S = 0    onSQ (10b) 

admits the representation 

s = 4 £ \{~Fj^üir,)+(f,üir))^r)+^^(kü,l)a,]       (iia) 
^„f, [   l+co m„-co J 

where 

(F,u)=JF-udV (lib) 

The solution of 

A3 + raVV-a = 0    inQ (12a) 

u = ub    on<3Q (12b) 

admits the representation 

"    cod},, 
u = u0+ >  ~ (divw0,divw„)M„ (13a) 

„=1 m — m„ 

where w0 satisfies 

AS0=0    inQ (13b) 
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S0 =SA    onSQ (13c) 

The solution for the boundary value problem of traction 

F 
AS + CöVV-S=-T   inü (14a) 

i" 

l(S)-«=f   on<9Q (14b) 

can be represented as 

a = I £ j2(f5')}"»'!) + ^ ^^ + ^TM M~>~-1        (15a) 

where 

(/,w)s jF-wdF+jf-adS' (15b) 

By of,"" in the above equations is indicated the infinite orthogonal subspace of 
eigenfunctions corresponding to the eigenvalue of infinite multiplicity & = — 1, by 
M,

(
,
X)
 is indicated the infinite orthogonal subspace of eigenfunctions corresponding to 

the eigenvalue of infinite multiplicity & = oo, while by w„ is indicated the orthogonal 
subspace of eigenfunctions corresponding to the eigenvalues of finite multiplicity of 
the discrete spectrum &„. We may note here that the Cosserat eigenfunctions are 
functions of the space variables only (and not the transform variable s). 

3.    INVERSION OF THE LAPLACE TRANSFORMS 

An advantage of expressing the solutions of the viscoelastic problem in terms of 
the Cosserat eigenfunctions is that the inversion of the Laplace transform may be 
obtained by convolution, provided that inverse Laplace transforms of the terms 
involving the viscoelastic moduli can be easily obtained. 

Let us consider the representation eqn (11) for the boundary value problem of 
displacement with homogeneous boundary conditions and denote 

G
(
-
,,

W=T7T^7T (16a) 

(?<»>0)=4 (16b) 

G(co„,s)=       f0" (16c) 
jU(tt>„ — CO) 

If for a given viscoelastic material, eqn (16) can be inverted to obtain G{~l\t), 
G(x)(/) and G(a>„, t), then the solution of the viscoelastic problem in the time domain 
may be obtained by convolution as follows 
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3(0 = I [F(0,wi~1)]G,<"1)(/-Od?'M,(,-1)+E 
r 

GO 

+ 1 [?(/'), «,,]G(cS„, /-*') dt'ü,,     (17a) 

where 

[^(0,«] = j^WwdF (17b) 

Similarly, the inversion of the representation eqn (13) for the boundary value 
problem of displacement with inhomogeneous boundary conditions, and eqn (15) for 
the boundary value problem of traction may be obtained. Thus for any time dependent 
body force loading or boundary loading, the solution of viscoelastic problems may 
be written immediately in the form of eqn (17) if the Cosserat eigenfunctions are 
known for the geometry of the problem. The functions G(~!)(0, G(cc)(0 ar>d G(&„, t) 
for the commonly used viscoelastic models are presented in the Appendix. 

4.    APPLICATIONS AND EXAMPLES 

(1) Time dependent temperature loading 

We consider viscoelasticity problems with thermal loading that may, in addition, 
be time dependent. As shown by Markenscoff and Paukshto (1998), the temperature 
loading is equivalent to a body force loading that results in the representation of the 
displacement field in terms of a series of the Cosserat eigenfunctions according to 

U=(3OJ— \)a V —(T,div »„)«„ (18) 
n=lco„-co 

for the boundary value problem of displacement with zero boundary displacement, 
and 

«   f   2                             l —co ) 
u = (3co -1)« X   —rr(T, div w<--") + HT, div ün)ü„ (19) 

„=1   [CO+l CO —CO,, J 

for the boundary problem of traction with traction free boundary condition. The 
displacement field in the Laplace transform space s in thermoviscoelasticity is, accord- 
ingly, represented by the series 

CO 

„" co„ — co 
u =(3ro— l)a YJ ~Z—'^:(f7 divü„)ü„ (20) 

for the boundary value problem of displacement with zero boundary displacement, 
and by 
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3 =(3ffl—l)a YJ 
2 -{f, div al,- l))ttn + ]r-^H?>div «>~» 

cb+l co —co„ 
(21) 

for the boundary value problem with traction free boundary condition. 
By applying the convolution theorem, according to the analysis of the previous 

section, we have the representation of the displacement for the solution of the ther- 

moviscoelastic problem 

3 = £ [7X0, div ü„]G(cö,„ t-t') dt'i (22a) 

where 

G(co„, t) = co„aL~ 
'3d)-l' 

co„ — co 

for the boundary value problem of displacement, and 

3= £       [r(0,diviä-')]G(-I)('-Odf'«<-,) 

"=1   (Jo 

+ 

(22b) 

[T(f),diva„]G(<a„,t-0 dt'u„    (23a) 

where 

,   ,* . \3cb— 1 
G(-1)(0 = 2oL-1   -^r—r 

CÜ+1 

G(c5„,0 = (l-£ä„)aL-' 
3tO— 1 

co —c3„ 
(23b) 

for the boundary value problem of traction. If the material is initially undisturbed 
and the temperature T is not time dependent, then the convolution integrals are easily 

performed. 

(2)  The Lame problem under time dependent loading 

This is the problem of a spherical, viscoelastic shell under time dependent internal 
and external pressure^, a.ndp2, respectively. The classical elastic solution (Lure, 1964) 

is 

.3 „3 
2 

U,. 
J {Pirl-P\r\)r      1   {p2-P\)r\r 

Ali   {r\-r\)r M3o-l)       r\-r\ 

Uo = w» = 0 (24) 

where r, and r2 are the internal and external radius, respectively. It can be verified 
that the first term in eqn (24) is an eigenfunction corresponding to co = 1/3, and the 
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second term is an eigenfunction corresponding to & = GO. In the Laplace transform 
space s, the displacement field will be 

1        (P2>i-P\rl)r      1  (p2-P\)r]r\ 
U'~      /2(3cÖ-l)       rl-r]            4/2   {r\-r]y 

üo = u,p = 0                                                                                    (25) 

If the viscoelastic material is Hookean solid in dilatation and Kelvin solid in 
distortion, the material parameters represented by eqns (A3)-(A5) in the Appendix 
are now substituted into eqn (25) 

(Pi'i -p >i)r             1          {Pi-P\)r\rl 

"'"        3A:(rI - r\)        2{q0 + q,s)   fö-r])r2 

u0 = «?„ = o                                                                  (26) 

The inverse Laplace transform of eqn (26) gives the solution for any general time 
dependent loading 

[P2(t)rl-Pi(t)r3\]r 
U'~            3k(rl-rl) 

r]r\ 
'lP2(t)-Pi(t)]exV>(-9o(t

n   'Adt' 
o                                   \           1\       J 2qM-r\)r\ 

u„ = uv=0 (27) 

Let the body force acting on a viscoelastic sphere be gravity according to the 
Newton's law of gravitation. It is known from potential theory that the resultant 
attraction is directed along the radius to the center of the sphere and that its magnitude 
is proportional to radial distance. Consequently the body force is given by 

F=-^ (28) 
o 

where p is density, g the gravitational acceleration, r0 the radius of the sphere and T 
position vector measured from the center of the sphere. The displacement field of an 
elastic gravitating sphere is presented by Lure (1964). We rewrite it as follows 

P8>'o 
co- 

ir 

'0 

u0 = uv = 0 (29) 

so that the first part is an eigenfunction corresponding to OJ = -1, and the second part 
is an eigenfunction corresponding toö= 1/3. If the spherical shell is of viscoelastic 
material, then the Laplace transform of the displacement field will be 
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Ug 

Pgr0 ri tr P)i 2r 1 
lOsfi _cö+l V     rlj '  3co-l_ 

K = o (30) 

Suppose that the material behaves as a Hookean solid in dilatation and Maxwell 
fluid in distortion, then the material parameters are represented by eqns (A14)-(A16). 
The inverse Laplace transform of eqn (30) will be 

«,. 

Ug 

Pgr0 

10 b + 3^ni
eXPl K) Pgr0r 

15k 

= 0 (31) 

where T,„ = [(3fc/>, +2g,)/3£]. When t-> oo, eqn (31) reduces to 

ur = 
Pgr0 

10k 
Pgrpr 
15k 

uo — uip 0 (32) 

It is interesting to note that ur is finite as t -> oo. We have verified that both 
eigenfunctions satisfy VxS = 0, that is, both are distortion-free vector. Furthermore, 
the second eigenfunction associated with <Jj = 1/3 produces uniform normal stress 
components and no shear components. Physically, since both eigenfunctions are of 
zero distortion, the displacement field remains finite even though the material is of 
the Maxwell fluid type in distortion. 

(4) Heat flow past a thermally insulated spherical cavity 

Suppose the material behaves as a Hookean solid in dilatation and a Maxwell fluid 
in distortion, then the material parameters are represented by eqns (A14)-(A16). 

The temperature field is given by 

T(t) = T](t) + T2(t) 

where T\(f) is a linear function of position z = rcos 6, i.e., 

T,(0 =z(t)r cos 9,    T2(t) 
<t)rl 

2r2 COSÖ 

(33a) 

(33b) 

where r0 is the radius of the spherical cavity. The thermoelastic solution to this 
problem was given by Florence and Goodier (1959) who treated the temperature field 
with constant x. Here we view this problem in thermoviscoelasticity with arbitrary 
i(r). 

The Laplace transform of the displacement field corresponding to free thermal 
expansion caused by T\(t) is given by 
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«,. = - air1 cos 0 
2 

1 -.^,.2 sin0 u0 = 2aT'" 

The inverse Laplace transform of eqn (34) is given by 

«,. = ^aT(O'"2cos0 

u0 = \<xx(t)r2 sin0 

1977 

(34) 

(35) 

The Laplace transform of the displacement caused by the temperature field T2(t) is 
a Cosserat eigenvector corresponding to the eigenvalue co = — 1, i.e., 

(3d)—\)afr, 

u0 = 

2(d)+1)    V     3r3 

(3c5-l)aT>o fr0      r\ 

cost 

2(co+l)    \2r     6r3 

The inverse Laplace transform of eqn (36) gives 

sin0 (36) 

rl 
3r3 COS0 x(t')Gl~])(t-t')dt' 

>'5 />'o      r0 u0 = — I rr 1 sin I 
4 \2r     6r3 

where G~\t) defined by eqn (23b) is written as 

x{t')G(~ ])(t-t')dt' 

G(-'\t) = 2a 
3p 2q] 

5(0 + —exp   - 

(37a) 

(37b) 

If T = x0H(t), then eqn (37) becomes 

aT0''o 
w,. 

aXni-n 
U()   = 

3-— ex 

3~/—exP, 

3r3 COS0 

'"o _ rQ 

2r     6/-3 sin0 (38) 

where T„, = [(3/cy;, +2^,)/3/c] is the relaxation time of the viscoelastic material. 
When t -> oo, eqn (38) reduces to 

3(XTn)'n  I I'h 
Ur 

2      V     3r3 

3ai0>i fr0      >i 

COS 9 

sin0 (39) 
2     \2r     6r\ 

It is interesting to note that ur is finite when /-> oo. We have verified that the 
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eigenfunction satisfies Vxw(-1) = 0. Physically, since the eigenfunction is of zero 
distortion, the displacement field remains finite even though the material is of the 
Maxwell fluid type in distortion. 

5.    CONCLUSIONS 

The Cosserat Spectrum theory is applied to the linear theory of viscoelasticity. The 
Mikhlin representation theorems in the form of Laplace transform are written in such 
forms that the inverse Laplace transforms are easily carried out for some frequently 
used viscoelastic models in terms of convolutions. Also the physical meaning associ- 
ated with the Cosserat eigenfunctions corresponding to the eigenvalues & = — 1 
(distortion free) and & = oo (divergence free) ties naturally with viscoelastic behavior 
that may differ in the dilatation and distortion part of the constitutive relation. 
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APPENDIX 

The functions of G(~"(0. G(x)(t) and G(m„, t) for the commonly used viscoelastic models are 
as follows. 

Model 1—Hookean solid in dilatation and Kelvin solid in distortion 

The constitutive equations take the form 

<?u(0 = 3kr.kk(t) (Al) 

^(0 [qa + qx5{t-t')}deu(t') (A2) 

where k is the buck modulus in dilatation and qjqa the retardation time in distortion, su and 
eu are the stress deviator and strain deviator, respectively. The complex Lame moduli ß, X and 
the spectrum parameter Co are 

ß = {(q0 + qls) (A3) 

i = \(3k-q0-q,s) (A4) 

„      6k + q0+qts 

3(<7o + 9i-0 
(A5) 

The functions of G(t) for the boundary value problem of displacement, described by eqn 
(10), are now written as 

-,(-ur.x       3  „._/'    2q0 + 3k 
G(-.)(/)=_CTp^__i^_rj (A6) 

G<-»(0=-expf--A (A7) 

G(w„, t) = — — exp   - ";;° / A8 
{3w„-\)q,        \        (l-3co„)g,      y 

The functions of G(t) for the boundary value problem of traction, described by eqn (14), are 
now written as 

-c-o/rt- 3 -.-(    2ao + 3k 
G(~"(0=-exp [-—. 1) (A9) 

;(X)/A 2 „._ /       <?0 G<-)(0=— exp   -— t) (10) 

(3w„-\)q,        \ (l-3oj„)?,      / 

Model 2—Hookean solid in dilatation and Maxwell fluid in distortion 

The constitutive equations take the form 

M0 = 3fes„(0 (A12) 

ty(0 = '^expf-^de,7(0 (A13) 
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where k is the buck modulus in dilatation, />, the relaxation time and qx the viscosity in 
distortion. The complex Lame moduli p., 1 and the spectrum parameter m are 

P 
q,s 

1 = 

2(\+p,s) 

3k+(3kp, — q,)s 

3(1+/>,*) 

6k+(6kpi +q\)s 

3qts 

(A14) 

(Al 5) 

(Al 6) 

The functions of G(t) for the boundary value problem of displacement, described by eqn 
(10), are now written as 

G<--'\t) 
3/>. 2q, (         3kt     X 

(A17) 

(A18) 

3kp{ +2q, 

G 

G(w„, t) 
6d5„p, 

(3<S„ — 1)<7, —6kpi 

3(t)- 
(3c3„— l)^i 

exp 
^[^«„-Iki-ö/cp,]       V    (l-3co„)g,+6/c/7 

6Ä;? 
(A19) 

The functions of G(f) for the boundary value problem of traction, described by eqn (14), are 
now written as 

G<~"(0 
6p, 2qx (    3kt  w (A20) 

(A21) 

3kpl+2ql 

G 

r)+pt(3> 

<7i 

<Pi+2q\) *P{     3kpl+2qJ\ 

G(o\, f) 
6(a„-\)p1 

(3<B„ — l)<7i —6kpx 

8(t) + 
(3«„-l)g, 

/>1[(3c5„-l)^,-6fcpi] 
exp   - 

6kt 
(l-3w„)ql+6kp] 

(A22) 
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ABSTRACT 

A full field method for visualizing strain fields around a crack tip under large strains is developed. Digital 
image correlation is used to compute strains and displacements incrementally between consecutive images 
in a process of large deformations. Values of strain and displacements for these consecutive deformations 
are added such that convergence of the DIC algorithm is assured. The method is used to investigate the 
strain distribution in a globally homogeneously strained participate composite (solid propellant) as well as 
in a zone close to (~ 2 mm) the crack tip in such a material by using a microscope. It is found that maximal 
strain variations deviate by as much as a factor of three from the average strain; additionally, observations 
on the interaction of strain inhomogeneities with the tip of a macroscopic crack are discussed. © 1998 
Elsevier Science Ltd. All rights reserved. 

Keywords: A. fracture, A. strain localization, B. inhomogeneous material, B. viscoelastic material, C. 
digital image correlation. 

1.    INTRODUCTION 

Particulate composites are widely used in engineering. In the automotive industry, 
for example, carbon black filled rubbers are used in tires. Many injection molded 
materials are filled with small particles, while other rigid polymers are toughened 
through the addition of rubber particles. Solid propellant rocket fuels are physical 
mixtures of mostly ammonium perchlorate and aluminum powder, often in a multi- 
modal size distribution, bonded together by a rubber phase called the matrix. Failure 
in all these materials is heavily dependent upon the interaction between the particles 
and the matrix, specifically on the separation of particles and binder. Failure also 
depends on the volume ratio of particles to matrix, which is typically close to 75% in 
solid propellant materials, but only in the range of 15-40% in structural polymers. 
In the sequel we examine the failure progression in a solid propellant (Thiokol TPH 
1011). Application of continuum mechanics to the stress/strain analysis of structures 
made of these types of materials typically invoke macroscopically homogeneous 
material performance, even though deformations are anything but homogeneous at 
the size scale of the particles. We shall see that inhomogeneous deformations occur 
at a size scale that is significantly larger than the largest particle, and that the failure 

* To whom correspondence should be addressed. E-mail: wgk@atlantis.caltech.edu 

1981 



1982 J. GONZALEZ and W. G. KNAUSS 

process is directly related to the micro-structural deformations associated with these 
inhomogeneities. 

Measuring large strains over small domains of tens to hundreds of microns is not 
a trivial matter. Imprinted grids tend to serve well at a size scale just above what is 
required here. Determining the micromechanical deformation with the aid of optical 
microscopy, e.g. at the tip of a macroscopic crack, implies the need to extend the 
presently available tools of strain measurements. In principle the digital image cor- 
relation method (Sutton et ai, 1983, 1985, 1986, 1989; Vendroux and Knauss, 1994) 
is ideal for this purpose except that it is not suitable if the deformations are so large 
that convergence of the correlation algorithm is no longer guaranteed: we shall see 
that deformations involving strains much in excess of 10% cause convergence failure 
of the DIC algorithm. On the other hand, strains on the order of 50-100% are typical 
for crack propagation problems in the materials of interest here. Accordingly we 
develop an incremental application of the DIC method that is capable of analyzing 
large deformation histories. This development is first addressed in Section 2, and 
followed, in Section 3, by a discussion of the experimental setup for two sets of 
experiments: the first experiment addresses, in Section 4, locally inhomogeneous 
deformations in a globally homogeneous deformation field, and the second examines 
the deformation field around the tips of a (slowly growing) crack in Section 5, with 
particular interest centering on the inhomogeneity of the material response in the 
immediate crack tip region. The paper is summarized with concluding remarks in 
Section 6. 

2.    DIGITAL IMAGE CORRELATION 

Developed by Sutton and his colleagues (1983, 1985, 1986, 1989) and improved by 
Vendroux and Knauss (1994), the digital image correlation (DIC) program is used 
to measure the displacement field and its gradients from images of an undeformed 
and deformed body. These are gray level images consisting of a grid of pixels (typically 
640 x 480) with eight-bit gray levels (0-255 levels). In the sequel we discuss problems 
arising with large deformations and a remedy to the situation through a step-wise 
method we call Large Deformation Digital Image Correlation (LD-DIC). 

2.1.    Effect of strain level in code convergence 

The problem in applying the DIC program to compute strain distributions in a 
large deformation process is, essentially, the failure of the DIC algorithm to converge 
from an initial solution estimate. The reasons for non-convergence may be diverse. 
The two major ones are changes of shadows from a fixed light source coupled with 
large motions of the surface, and, in the present case, possibly an inhomogeneous 
evolution of the deformation images. If one considers that the (rate of) convergence 
depends on the closeness of an initial estimate for the result (see the study on the 
radius of convergence by Vendroux and Knauss (1997) it becomes reasonable that 
failure can occur at even moderate strains. Clearly, more definitive rules for code 
failure or success depend on the specific experimental conditions. 
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Fig. 1. Successful convergence of the DIC algorithm as a function of (Lagrangian) strain level. 

To assess the effect of the strain level on the convergence of the DIC code, consider 
a test on a homogeneous silicone rubber sheet stretched uniaxially, for which the 
resultant undeformed and deformed images associated with stretches from 0-40% 
are compared with the aid of DIC. For each deformation the strains and displacements 
were computed at 300 points. The fraction of points at which the numerics for the 
correlation optimization converged is presented in Fig. 1 as a function of the Lag- 
rangian strain. 

It is apparent that for deformations in excess of 10% a pronounced decrease occurs 
in the number of points with successful convergence. For the purpose of studying 
cracked solid propellants, where typically strains in excess of 30% need to be 
measured, the applicability of the standard DIC method is thus seriously compromised 
and a new or extended analysis tool is required. 

2.2.    The Large Deformation Digital Image Correlation method 

To illustrate a proposed Large Deformation Digital Image Correlation (LD-DIC), 
consider a sequential deformation process on a body: initially undeformed, the body 
undergoes a continuous deformation, called the "global deformation". Consider three 
configurations of the body at three different instants during this global deformation. 
The first configuration describes the undeformed state of the body and the second a 
deformed state under a set of changed surface (and body) forces. Call this first segment 
of the global deformation "deformation A". Next, an increment in the surface and 
body forces deforms the body further, this next incremental deformation being des- 
ignated by "B". The state of the body after deformation B is represented by the third 
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configuration. Each configuration corresponds to an experimentally determined and 
temporally ordered set of images, say, the first, second and third. We select load 
parameters such that, by assumption, the DIC code can converge successfully to the 
proper increments of displacements and displacement gradients for the two separate 
deformations. However, the strains between configurations 1 and 3 (global defor- 
mation) are presumed larger than those that cause convergence failure. The LD-DIC 
method computes the deformation for the third state from the deformations in the 
two separate steps. To this end compute the global deformation gradient tensor Fgloba, 
as the product of the individual deformation gradients 

'global — Fß^A (1) 

The DIC program determines the displacements of deformation A and their gradi- 
ents for a discrete set of points G, defined on a rectangular grid with respect to 
the first (reference) configuration. For demonstration purposes, these points are 
represented in configuration 1 in Fig. 2 as a coarse rectangular grid. At the end of 
deformation A, material particles of the body at the grid points have moved to the 
points G, in configuration 2 as signified by the non-orthogonal grid. By comparing 
the position of the points G, and G, in configurations 1 and 2 the DIC program yields 
the displacements uf and vf, and the associated gradients u%, v% i$ and v% where the 
index "z" signifies the individual initial positions of the G,. 

The displacements and displacement gradients are computed in a Lagrangian refer- 
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Fig. 2. The interpolation process 
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ence frame, the coordinates of which are X = {Xu,X2l}. Upon denoting the dis- 
placement components as uA motions of the material points are represented by 

G,.(X,) = G,(X,.)+uA(X,) (2) 

During the second deformation (B), the displacements and their gradients are 
computed for a different set of material particles which are located in configuration 2 
at the grid points K, of an orthogonal grid, shown in Fig. 2 as the fine grid. In 
deformation B these points are mapped onto the set Kj in configuration 3. Kj is again 
represented in the Lagrangian reference frame Y, = {Tu, T2i} of configuration 2 as 

%(¥,)=*,-(¥,) + <(¥,) (3) 

To obtain the global deformation (A + B) it is necessary to assure that the material 
points of the first deformation are the same as for the second one. It is thus necessary 
to interpolate the results from the DIC for deformation B onto the locations of the 
material particles or grid points of the first (reference) configuration to obtain the 
displacements and their gradients uf, vf, M

B
, i>B, i/8 and uB, relative to configuration 

1. The interpolation of the coordinates G, is achieved by constructing a set of piecewise 
continuous surfaces from bilinear patches (plane surfaces). These are determined 
from the coordinates Kj of configuration 2 so that the displacements and displacement 
gradients of the initial set of material points are now known. 

Using the subscript "gl" to denote global variables, one finds the global dis- 
placement components as 

Ug| =uA+uB 

vgi=vA+vB (4) 

and their gradients are, upon invoking the tensorial relation (1), 

[«.v]gl = WA + ul + MAMB + W;V
A 

[vrh = vy + Vy + VyV* + v*vy 

[w,.]g, = MA + MB + MJ
AMB + M

Bt);
A 

[l>,]gl = ^ + «? + «X + i>X (5) 

From which the (global) two-dimensional Lagrangian strain tensor derives, by 
definition, as 

2£v, = 2[Mjgl + {[«Jä + [i;Jf1} 

2Eyy = 2[v^ + {[uy]l + [V)]l} 

2Exy = {[w,]gl + [i)A.]gI} + {[M.v]gl[H,.]Bl + [t>.v]gl[iggl} (6) 

Here the displacement gradients of the displacement "R>" normal to the surface 
have been neglected. This is permissible (even) for this situation of "plane stress" 
since under these large deformations the propellant material voids considerably so 
that the effective Poisson ratio is rather small, thus giving rise to only small gradients. 
For a global deformation requiring more than two steps the same is applied con- 
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Fig. 3. Comparison of strains determined optically and by the LD-DIC method; the solid line is the ideal 

relation. 

secutively such that the second-to-the last increment is treated like the first one in the 
two-step example outlined here. 

When more than two steps are needed for field evaluations there arises a loss of 
information at the boundary. This is the result of interpolating information near and 
internal to the boundary. As more and more steps are required the information near 
the boundary becomes increasingly corrupted due to the interpolation process and 
thus information is lost here. This loss is evident in the field images presented later 
on as apparent white-out regions along a boundary, including the flanks of a crack. 
Minimization of this feature still requires future attention. 

2.3.    Verification of the scheme for addition of fields 

In order to check the efficacy of the proposed multi-step scheme we examine 
experimentally a specimen of homogeneous silicone rubber without a crack and 
coated with microscopic speckles, stretched sequentially and uniaxially to a minimum 
(Lagrangian) strain of 0.70 in a sequence of 12 deformation steps of 3-4% strain each 
(13 images). These strains were recorded (optically) with the aid of a microscope by 
keeping track of special markers ( = prescribed strain). Also, by using the information 
generated by the DIC program for every sub-deformation and the Large Deformation 
DIC method, the strains corresponding to images 1 and 2, images 1 and 3, etc., were 
computed, up to the deformation of image 13 relative to image 1. 

Figure 3 shows the result as a comparison of the (optically) prescribed strain and 
the Large Deformation DIC computed (Lagrangian) strains. The maximum deviation 
occurs at a strain of 40%, amounting to only a 1% difference between the strain 
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Fig. 4. Schematic of the experimental setup. 

determined through the microscope and by the large deformation DIC method, a 
precision that is very acceptable for experimental mechanics investigations. 

3.    EXPERIMENTAL SETUP FOR DEFORMATION STUDIES 

The equipment used for the experimental work on the particulate composite (solid 
propellant) has been described elsewhere in detail by Gonzalez (1997). It includes a 
straining stage driven by a stepping motor through a flexible cable. The straining 
stage is, in turn, mounted on a positioning stage, for which a joy-stick controller 
allows the positioning of the straining stage under the objective of a Nikon microscope 
(Measurescope MM-22), a CCD camera and a personal computer with a frame 
grabber unit. The images from the experiment are processed on a Sun workstation. 
A schematic of the experimental setup is shown in Fig. 4. 
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4.    LOCALLY INHOMOGENEOUS DEFORMATIONS IN A GLOBALLY 
HOMOGENEOUS DEFORMATION FIELD 

Before considering the problem of the strain distribution around the tip of a crack 
we examine the inhomogeneity of strains in a solid propellant sample subjected to 
uniform deformations at the specimen boundary (globally homogeneous defor- 
mation). To this end a sheet sample of propellant (5 x 2 x 0.3 cm) is strained uniformly 
in the direction parallel to the 2 cm dimension; after normalization by the 2 cm 
dimension, that boundary displacement is called the "applied strain". In Fig. 5 we 
show a 2.5 x 2.5 mm field from the center region of the specimen as resolved through 
a microscope and deduced with the aid of the LD-DIC algorithm. The false color 
scheme clearly identifies the inhomogeneous character of the strain field, and from 
this map it is quite clear that the variations in the strain values are not only very 
significant, but that the "material properties" vary to a like degree in these regions. 

It is of interest to dwell briefly on the scale of the inhomogeneous regions. While 
the latter are not sharply defined, it is, nevertheless, clear that these domains are 
measured in terms of millimeters and not microns. One might argue that a variation 
in properties in a small region (a hole or a hard, well-bonded particle) embedded in 
a homogeneous field renders deviation from that field several times larger than the 
defect itself. The reference problem of a circular hole in an elastic infinite sheet 
suggests that a noticeable perturbation in its vicinity is on the order of three times its 
diameter. While it is not our purpose to analyze in detail here the precise origin of 
every inhomogeneity, be it one of larger strain than the average or of a smaller value, 
it appears clear that these inhomogeneities are produced either by clusters of particles 
or by the presence or absence of individual ones. 

To quantify the inhomogeneity of the strain field further, consider a plot of the 
strain along the line in Fig. 5 as shown in Fig. 6. The magnitude of these strains vary 
by as much as a factor of three, although the average of the strain in Fig. 6 represents 
closely the applied global strain of 1.5%. 

The distribution of these inhomogeneities defines a macroscopic size scale below 
which the assumption of homogeneous material properties is not justified. Stated 
alternately, in order to be able to assign homogeneous properties to such a composite 
it is necessary to deal with a size scale that is several times larger than the spacing 
between the regions of inhomogeneity. That region is, however, at least on the order 
of 5 mm or more. 

We shall see that this size scale is important in the analysis of the failure/fracture 
process considered next, since in this context this size limitation emphasizes the 
dependence of the fracture process on the statistical nature of the medium. 

5.    THE STRAIN FIELD NEAR THE TIP OF A CRACK 

Having examined the distribution of strains in a globally homogeneous deformation 
field we turn next to examining the deformations in the close vicinity of a crack tip. 
We describe first the experimental set-up and then proceed to the analysis of the 
results. 



I   I    I   I    I 

x (mm) 

Fig. 5. Inhomogeneous strain distribution in an integral specimen "homogeneously" deformed to 1.5C 

global strain.' 

sp 0.200 
0.186 — 0.171 
0.157 
0.143 
0.129 
0.114 
0.100 
0.036 
0.071 

Pi 0.057 
0.043 
0.029 
0.014 
0.000 

J_L J L_l_ 

Fig. 

x (mm) 
Maximum principal strain distribution for 2% global strain. 
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red contour lines, not strain concentrations in themselves. 
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Fig. 7. Specimen geometry and straining of a specimen. 

5.1.    Experimental aspects 

A cracked specimen of solid propellant TPH 1011 is deformed globally at a constant 
strain rate 0.001 1/s in the direction perpendicular to the crack. The crack, cut initially 
with a razor blade, opens commensurately. Its opening process is monitored through 
a microscope at 25 x power. Five digital images of 640 x 480 pixels, representing 4x5 
mm of the specimen surface were acquired every 10 s, corresponding to global 
(Lagrangian) strains of Eyy = 0, 1, 2, 3 and 4%. 

Although each of the images, excepting the first, is associated with different defor- 
mations we select here only two loads or deformation levels for illustrative purposes. 
Application of the (multi-step) LD-DIC code renders deformation maps as shown in 
Figs 8 and 9. 
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Recall that because the multi-step method loses information at the boundary in 
each step the crack appears wide open and as having a very blunt tip. This appearance 
is the consequence of the multi-step method, so that Figs 8 and 9 do not represent 
the crack opening shape correctly; instead the shape has been sketched in as outlines. 

5.2.    Results 

We demonstrate results for the global strain of 2 and 4%. While deformations at 
higher load levels can be obtained, their interpretation is more troublesome since it 
involves (more) motion of the crack tip. As an example we present (false color) plots 
of the maximum principal strain at 2% global deformation in Fig. 8 and both the 
maximum and minimum principal strains for 4% in Figs 9(a) and (b). The two strain 
levels are presented primarily to afford a comparison for two progressively larger 
strains. By comparing Figs 8 and 9(a) one can readily see how the inhomogeneities 
develop early and essentially grow in intensity with the global strain. In passing from 
2-4% of global strain, a small amount of crack growth has taken place as is evident 
from comparing Figs 8 and 9(a). 

As before, the amplitude of the (Lagrangian) strain is represented by colors and 
contours and the small lines represent the orientation of the corresponding principal 
axes. Note that although the maximum principal axes should be basically parallel to 
the applied global displacement(s), at least in the region ahead of the crack tip, there 
are numerous locations where marked differences occur from this orientation. These 
differences are associated with the material strain inhomogeneities discussed in Section 
4. The same observation applies to the map of the minimum principal strain in Fig. 
9(b) for which the orientations (small line segments) are generally orthogonal to 
those for the maximum principal strain. Also, compare the scale associated with the 
inhomogeneities and the distance of the high strain region relative to the crack tip. It 
is clear that the strain inhomogeneities cannot be separated from or submerged in the 
strain field of the crack tip: the crack tip strains are intimately connected with the 
scale of the material inhomogeneity. We note in particular that at this size of the 
viewing field the lobes that are part of the typical crack tip strain field for isotropic 
and homogeneous material are absent in the domain of observation or at most 
apparent in vestigial form; they are present only outside of the 2.5 x 2.5 mm obser- 
vation area. 

One feature of interest and identifiable in Figs 8 and 9 is the localization of high 
strain within a roughly circular area of 0.5 mm radius around the crack tip. Figure 8, 
which shows the maximum principal strains and directions for 2% far field strain, 
shows deformation localization around the crack tip in two locations. One, partially 
visible, is centered on the current crack tip (at x = 0.7 mm, y = 1 mm) and about 150 
/mi in radius. The other concentration is centered on the position (0.7 mm, 0.8 mm), 
where it reaches a maximum principal strain of about 11%. However, that location 
does not become a part of the crack propagation process as is evident by its persistence 
in Fig. 9(a). Adjacent to these strain concentrations is a domain of about 5% local 
strain which includes the position (1.1 mm, 1 mm) where the orientation of the 
maximum principal strains is nearly aligned with the crack rather than being normal 
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Fig. 10. Micrograph of the crack tip region at a global strain of 5%. The "void" at the crack tip was a 
region of "small" (~5%) surface strain in Fig. 8. 

to it.2 At this position a void develops under subsequently increased deformation. 
This void is visible in Fig. 10, which represents the image of the specimen for a 5% 
global deformation. 

We have dwelt on these details to some extent in order to demonstrate that the 
observation of the surface of the failing material is not always indicative of how and 
where the crack is likely to propagate. Because one identifies strain inhomogeneities 
on the surface, it stands to reason that similar distributions exist through the thickness 
of the specimen. Thus, the observations offered here point to a truly three-dimensional 
process. However, it is quite clear that the domain in which the failure process is 
prominently operative is confined to a domain on the order of half, but not more 
than one millimeter. This observation agrees with the results of Liu (1997) who 
observed a similar confinement of the process zone to a very small region. So much 
is clear from these studies, only portions of which are reported here, namely that 
crack propagation occurs by opening up voids which are typically high strain regions, 
distributed statistically throughout the material, and through joining of these voids 
with the main crack. 

6.    CONCLUDING REMARKS 

The method of digital image correlation has been extended to large deformations 
by dividing the strain range into intervals within each of which DIC converges. The 

2 Similar situations prevail in Fig. 7 at locations (1.6 mm, 0.9 mm), (2.1 mm, 1.1 mm) and (2.2 mm, 1.6 
mm). In these regions the strains remain small, indicating that they are associated with rigid domains inside 
the specimen and under the surface. 
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sequential extension renders satisfactory results with deviations not exceeding 1% 
from the prescribed strain field. This method has allowed resolution of highly inhomo- 
geneous deformations embedded in a globally homogeneous deformation field. It is 
then demonstrated that this method can be applied to the analysis of strains around 
the tip of a crack in a particulate composite (solid propellant rocket fuel). 

The, perhaps, most striking result of that investigation is the surprisingly large, 
inhomogeneous variations in the local strain field in a globally homogeneously 
deformed solid propellant material. It is apparent that the inherent heterogeneity of 
the material plays a key role for distribution of strains around the crack tip and its 
propagation. A second important observation is the fact that most of the deformation 
related to the crack propagation process localizes in a region around the crack tip of 
only about 0.5 mm radius. Although there exist strain concentration domains outside 
of this small region on or close to the specimen surface, these deformations are 
insufficiently high to cause void formation of the strain concentrations so that they 
do not become sources of coalescence with the macroscopic crack. There is evidence, 
however, that the three-dimensional distribution of strain inhomogeneities through 
the thickness of the specimen plays a role that mimics their in-plane distribution. 
There is no reason to suppose otherwise for this kind of particulate solid. Certainly 
some of the features visible on the surface are the consequence of single particles and 
particle agglomerations buried just beneath the surface. 
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ABSTRACT 

The goal of the work presented here is to study dynamic crack initiation in ductile steels (Ni-Cr steel and 
304 stainless steel) at different loading rates and to establish appropriate dynamic failure criteria. A variety 
of infrared and visible optical methods and high-speed photography are used in this study. Prccracked 
steel specimens are subjected to dynamic three-point bend loading by impacting them in a drop weight 
tower. During the dynamic deformation and fracture initiation process the time history of the transient 
temperature in the vicinity of the crack tip is recorded experimentally using a high-speed infrared detector. 
The dynamic temperature trace in conjunction with the HRR solution is used to determine the time history 
of the dynamic ./-integral J'\i), and to establish the dynamic fracture initiation toughness, J','. The measure- 
ments made using high-speed thermography are validated through comparison with determination of 
J''(l) by dynamic"optical measurements of the crack tip opening displacement (CTOD). Finally, the 
micromechanisms of fracture initiation are investigated by studying the fracture surface using scanning 
electron microscopy. © 1998 Elsevier Science Ltd. All rights reserved. 

Keywords: A. fracture toughness, dynamic fracture, B. elastic-plastic material, C. electron microscopy 

1.    INTRODUCTION 

To aid in the design and vulnerability analysis of impact loaded structures and energy 
systems (e.g., pressure vessels, pipelines and reactors), it is necessary to quantify the 
mechanical behavior and failure modes of materials used in such systems under 
carefully controlled conditions. Because of design constraints and safety issues, these 
energy systems are typically fabricated with corrosion resistant and highly ductile 
metallic alloys such as stainless and Ni-Cr steels. Yet, relatively little is known 
regarding dynamic crack initiation and growth in such ductile metals. A major 
stumbling block in this area is the measurement of relevant fracture parameters, such 
as the ./-integral, under a combination of large scale yielding conditions and dynamic 
loading. Considerable effort has been made towards the analytical and computational 
characterization of fracture parameters in highly ductile metals (Hutchinson, 1968; 
Rice and Rosengren, 1968; Needleman and Tvergaard, 1987; Nakamura and Parks, 
1990; Narasimhan and Rosakis, 1990; Duffy and Chi, 1992; Cho et a!., 1993). 
Recently, several researchers have presented detailed analyses of ductile fracture using 
higher order expansions of the deformation fields within the plastic zone (Li and 

tTo whom correspondence should be addressed. Tel: 626 395 3690. Fax: 626 449 2677. E-mail: 
rosakis(tf atlantis.caltcch.edu 
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Wang, 1986; Sharma and Aravas, 1991; O'Dowd and Shih, 1991, 1992; Yang et al, 
1993). 

To date relatively little experimental work has been done on determining fracture 
parameters, such as Jd(t), for ductile fracture under dynamic loading conditions. 
Limited cases exist where careful choice of specimen geometry and loading histories 
allow for the measurement of Jd based on the use of dynamic boundary value measure- 
ments interpreted on the basis of quasi-static formulae for / (Costin et al., 1977). 
Also, Douglas and Suh (1988) and Sharpe et al. (1988) have developed an alternate 
method based on comparing a dynamic finite element analysis with experimental 
observations to provide the critical value of CTOD (crack tip opening displacement) 
and thus the critical value of /, corresponding to crack initiation. The only direct 
measurements of the dynamic value of the /-integral, Jd(t), have been made using the 
optical technique of caustics in conjunction with high-speed photography (Rosakis 
et al, 1988; Zehnder et al, 1990). However, even this approach employs a procedure 
using calibration of/vs the caustic diameter, D, under quasi-static loading conditions 
and then extends the same to dynamic loading conditions. Hence, this technique is 
limited to rate-insensitive materials and requires calibration for all combinations of 
specimen material and specimen geometry. 

The current study introduces a technique for measurement of temperature variation 
in the vicinity of the dynamically loaded crack tip using a high speed infrared detector 
to determine the time history of the dynamic value of the /-integral, JJ(t). The dynamic 
temperature trace is also employed to establish the dynamic fracture initiation tough- 
ness, /''(/<■) = -^M where tc is the time of fracture initiation. The measurements made 
using high-speed thermography are validated through comparison with determination 
of Jd(t) by dynamic optical measurements of the crack tip opening displacement 
(CTOD). Both these techniques provide a direct measurement of the time history of 
the dynamic /-integral and are not restricted by specimen geometry, rate of loading, 
or rate-sensitivity of the material. 

2.    EXPERIMENTAL SETUP 

In this investigation high-speed infrared measurements of temperature and optical 
measurements of crack tip opening displacements were employed to study dynamic 
crack initiation in precracked ductile steel specimens. In the former, the temperature 
increase ahead of the crack tip during dynamic deformation is measured and is related 
to the dynamic /-integral. In the latter, the dynamic /-integral is estimated by relating 
it to the measured crack opening displacement history. 

2.1.    Specimen configuration, loading arrangement and material properties 

The experiments employed edge cracked specimens in a three point bend con- 
figuration. The specimens were fabricated out of 2.3Ni-L3Cr steel (will be referred 
to as Ni-Cr steel here onwards) and 304 stainless steel, whose compositions are listed 
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Table 1. Composition for Ni-Cr steel and 304 stainless steel 

Ni-Cr 
304 Stainless 

Mn Cu Si Ni Cr Mo 

0.17 
0.024 

0.30 
1.77 

0.13 
0.28 

0.22 
0.33 

2.35 
8.16 

1.32 
18.33 

0.25 
0.35 

1999 

Co 

0.1 

Table 2. Material properties for Ni-Cr steel and 304 stainless steel 

Properties Ni-Cr 

Young's modulus, E (GPa) 
Density, p (kg/m3) 
Specific heat, cp (J/Kg-K) 
Yield Stress, a0 (MPa) (s = 10~3 s~') 
Hardening exponent, n (s = 10~3 s-1) 

304 Stainless 

205 193 
7910 7900 
460 500 
750 510 

8 7 

in Table 1. The relevant material properties for these two steels are listed in Table 2. 
Both the steels are relatively low to medium strength steels and fail in a ductile fashion 
under the given test conditions. Ni-Cr steel is strain rate sensitive as demonstrated 
by the uniaxial compression stress-strain behavior shown in Fig. 1. There was a 
significant elevation in the yield stress, a0, as the strain rate was increased from 10^3- 

0.00 
0.00 

e=10"3 s"1 

_l I I L. 

0.05 0.10 0.15 

True Strain, e 
Fig. 1. Stress-strain behavior for Ni-Cr steel under uniaxial compression. 
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mm 

Thickness =10 mm 

Precrack Length = 30 mm    Notch Width = 0.25 mm 
Fig. 2. Schematic of three-point bend impact loading of a precracked steel specimen. 

103 s_I. However, no appreciable change in the hardening exponent, n, was observed. 
On the other hand, 304 stainless steel is relatively rate insensitive and does not 
demonstrate any appreciable change in yield properties for the same change in strain 
rate. Dimensions for the edge-cracked specimen are shown in Fig. 2. An initial crack 
length of 30 mm was machined using a wire electric discharge machining (EDM) that 
resulted in a notch 0.25 mm wide. 

The test specimens were dynamically loaded in a three-point bend configuration by 
subjecting them to impact in a Dynatup 8100A drop weight tower. A schematic of 
the loading configuration is shown in Fig. 2. A tup mass of 200 kg and an impact 
velocity of 5 m/s were employed for all the experiments conducted. This dynamic 
impact of the precracked steel specimens results in deformation followed by fracture 
initiation. The dynamic deformation and fracture initiation process were monitored 
using high-speed infrared measurement of temperature and optical measurement of 
crack tip opening displacements. Details of the two experimental techniques are 
presented in the following sections. 

2.2.    Infrared temperature measurements 

In this first series of experiments high-speed infrared diagnostics were introduced 
to study dynamic crack initiation for the first time in precracked ductile steel specimens 
impact loaded in a three point bend configuration. As the specimen was loaded, a 
high-speed HgCdTe infrared detector was employed to record the evolution of the 
temperature trace at a pre-determined location from the crack tip, as shown in Fig. 
3. A Newtonian optical arrangement, illustrated in Fig. 3(a), employs a collecting 
mirror M, in conjunction with a plane mirror M2 to map the area of interest on the 
specimen on to the infrared detector element. This results in a focused system such 
that there is a one-to-one mapping between the detector element and the area of 
interest on the specimen. Moreover, varying the object and image distances allows 
the magnification to be changed so that any desired area from the specimen can be 
mapped onto the detector element, which has a fixed size of 100 x 100 (im square. The 
location of the area of interest on the specimen, which is essentially the area of 
temperature measurement, is situated well within the plastic zone that engulfs the 
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Specimen 
2001 

Plane Mirror, M 
IR Detector 

Liquid N2 Dewar 

Collecting Mirror, M 

Crack Tip Plastic Zone 

Temperature 
Measurement 
Area 

Notch/Pre-crack 

(b) 
Fig. 3. Measurement of temperature variation in the vicinity of the dynamically loaded crack tip using an 
infrared detector, (a) Top view of specimen showing the infrared optical arrangement and (b) location of 

temperature measurement area on the specimen. 

dynamically loaded crack tip, as shown in Fig. 3(b). If this temperature measurement 
is made at an appropriate location within the crack tip plastic zone surrounding the 
dynamically loaded crack tip, then, as it will be shown later, the history of the 
temperature trace can be directly related to the evolution of the dynamic value of the 
/-integral, /'(/)• 

2.3.    Optical measurements of the crack tip opening displacement (CTOD) 

In order to corroborate and evaluate the accuracy and applicability of the infrared 
temperature measurement technique to determine /''(/), optical measurements of the 
crack tip opening displacement (CTOD) were performed to measure the time history 
of the dynamic value of the /-integral, /''(/). The optical arrangement for the CTOD 
measurement, as illustrated in Fig. 4, employs a cavity dumped pulsed laser as the 
illumination source and a high-speed camera as the imaging system. A collimated 
laser beam is incident on the steel specimen, passes through the crack opening and is 
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Impact Pulsed Light 
Source 

Steel Specimen 

High Speed Camera 

Fig. 4. Optical measurement of crack tip opening displacement (CTOD) using high speed photography. 

imaged on to the film track of a rotating mirror type high-speed camera (Cordin Co., 
model 330A) with a maximum framing rate of 2 million/s. This results in the crack 
opening profile being photographed by the high-speed camera as the specimen under- 
goes dynamic deformation. The crack tip opening displacement is later measured 
directly from the recorded crack opening profiles. The camera recorded 80 frames of 
the dynamic event and was operated at an interframe time of 8.33 its (120,000 frame/s). 
Individual frames were obtained by pulsing the laser light source (Spectra-Physics 
Argon-Krypton-ion laser, model 166-09; operating wavelength X = 514.5 nm light) 
in a pulsed mode. The exposure time used in all experiments (i.e., the laser pulse 
duration) was 8 ns and the image was recorded on 35-mm black and white film 
(Kodak TMAX-400). 

3.    ANALYSIS PROCEDURE 

The temperature measurements made in the vicinity of the dynamically loaded 
crack tip and the optical measurements of the crack tip opening displacement were 
analyzed to determine the time history of the dynamic value of the /-integral, Jd(t). 
The analysis procedure involves the application of an appropriate asymptotic field 
that describes the crack tip stresses in an elastic-plastic material. The details of the 
analysis procedure are discussed in the following sections. 
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3.1.    Asymptotic elastic-plastic crack tip field 

Hutchinson (1968) and Rice and Rosengren (1968), collectively referred to as HRR, 
considered the case of a monotonically loaded stationary crack in a material described 
by a /,-deformation theory of plasticity and a power hardening relationship between 
the plastic strain e? and stress <jlß and showed that the strain components in the crack 
tip region scale with the value of the /-integral. Within a small strain assumption, 
asymptotic solution of the elastic-plastic field equations in the crack tip region has 
the form 

r     T    ~K("+1) 
0) 

J ;/(//+1) 

E,j{n, a) Eij ~* £0 _a0£0I„r_ 

J i/(«+n 

£/y(«,0) Gij -* <70 

_a0s0I„r_ 
(2) 

as r -> 0. ff„ is the tensile yield stress, e.0 is the equivalent tensile yield strain, n is the 
hardening exponent, and the angular factors £,7 and Eu depend on the mode of loading 
and the hardening exponent. The dimensionless quantity /„ is defined by Hutchinson 
(1968). The amplitude factor / is the value of Rice's ./-integral (Rice, 1968). It has 
been suggested that, provided a one parameter representation of the crack tip fields 
remains valid, a condition for onset of crack growth is the attainment of a critical 
value of /. 

3.2.    Temperature rise associated with the HRR singular field 

Consider an elastic-plastic isotropic homogeneous material with constant thermal 
conductivity. The heat conduction equation can be written as 

ÄrV20-a(3A + 2/O0oSu+ ßo.A = PC® (3) 

where, k is the thermal conductivity, 0 is the absolute temperature, a is the coefficient 
of thermal expansion, ), and /< are Lame elastic constants, 0() is the initial temperature, 
e,j and <r„ are the Cartesian components of the strain and stress tensors, p is the mass 
density, and c is the specific heat. The quantity ß is the fraction of plastic work rate 
density, W = ou£p

u, dissipated as heat. For the case of dynamic fracture in an elastic- 
plastic material we can neglect the thermo-elastic term, since £,} « ä-j. Moreover, we 
can also assume the process to be sufficiently dynamic so that it can be approximated 
as being adiabatic. Hence, the heat conduction eqn (3) becomes 

2-a Si = ® (4) pc 

Substituting eqns (1) and (2) into eqn (4) we have 

= esjjL fc±T)       ;        Q(„ e, o (5) 
ß   I   n   /Z,:/(ö,«)£,7(ö,«) 

On integrating eqn (5) with respect to time, t, we obtain 
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Fig. 5. Motion of the temperature sensing area relative to the crack tip as a function of time. 

■no = 
pcl„ (n+\ 

ß   \   n      ^lj{B,n)Eij{e,n) 
[®(r,9,t)-®0(r,e,t0)]+J'<(t0) (6) 

where Jd
0 (/„) is the value of the /-integral at time t = t0 and represents the integration 

constant. Equation (6) relates the time history of the dynamic value of the /-integral, 
J''(t), to the dynamic temperature rise in the vicinity of the crack tip. 

It should be noted however that during the impact loading of the specimen the 
crack tip moves downward along with the motion of the impacting tup. This causes 
a relative motion between the crack tip and the area where the infrared temperature 
detector is focussed. This process is illustrated in Fig. 6. At the beginning of the 

Crack Face 

Fig. 6. Crack tip opening displacement defined on the basis of 90° intercepts (Shih, 1981). 
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experiment (pre-impact) the temperature detector is focussed at an area below the 
crack tip. During the post-impact loading and deformation process the crack tip moves 
downwards while the location of infrared temperature detection remains stationary, as 
shown in Fig. 5. Thus, it is only at some finite time, t = tUKK, that the infrared 
detection area is well within the crack tip plastic zone and temperature is sensed in a 
zone characterized by the HRR singular field. This implies that eqn (6) is strictly valid 
only for, t ^ /HRR, and hence is expressed as, 

J"0) = "^ f—)T (a '['l m   A&(r,9,t)-@0(r,0,t0)]+J"(tHRR),    t > W 

(7) 

The value of the dynamic /-integral at time t = ?HRR is estimated, as a first approxi- 
mation, by assuming a linear variation of /''(/) from t = 0 to t = tURR- It should also 
be noted that now the radial distance between the temperature detection area and the 
crack tip is given as a function of time, r = r{t), which is experimentally determined 
using high speed photography. 

3.3.    Crack tip opening displacement (CTOD) associated with the HRR singular field 

Consider crack face opening as shown in Fig. 6. Then the CTOD is defined using 
the intersection of a 90" vertex with the crack flanks. This definition of CTOD was 
invoked by Shih (1981) to relate the /-integral to the value of the crack tip opening 
displacement using the HRR singularity field as 

d„ (E0,n) 

where, 6 is the CTOD, / is the value of the /-integral, aa is the yield stress and d„ is a 
material dependent dimensionless constant as defined by Shih (1981). For the case of 
a dynamically loaded crack eqn (8) becomes 

where, /''(?) is the dynamic value of the /-integral and d''(t) is the dynamic value of 
the CTOD. 

4.    EXPERIMENTAL OBSERVATIONS AND RESULTS 

4.1.    Measwemen t of J d (t) 

Typical variations of temperature measured in the vicinity of the crack tip for a 
dynamically loaded Ni-Cr steel specimen are shown in Fig. 7. Traces from two 
nominally similar experiments are plotted. There are a few features in the temperature 
traces that merit elucidation. The initial oscillations in the signal are due to the fact 
that the temperature detection area is moving past the crack tip (as in Fig. 5(b)) while 
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Time After Impact, ? (|J.s) 

Fig. 7. Time history of the temperature variation in the vicinity of the dynamically loaded crack tip for a 
precracked Ni-Cr steel specimen subjected to three-point bend impact loading. 

the specimen is undergoing initial structural oscillations resulting from impact. At 
about 550 /.is after impact the temperature detection area is completely engulfed by 
the crack tip plastic zone and the transient temperature signal starts to increase 
steadily in a monotonic fashion. This increase remains steady until about 1200-1300 
fts when a dip occurs in the temperature trace. It will be shown later, using strain gage 
instrumentation, that this dip corresponds to dynamic fracture initiation. Fracture 
initiation causes the specimen compliance to increase and thus results in a momentary 
decrease in the rate at which J\t) increases, and possibly a drop in the value of J\t). 
It should be noted that if the crack tip were stationary with respect to the temperature 
sensing area a decrease in the value of Jd(t) would lead to elastic unloading and hence 
to thermoelastic cooling only. This would not cause any significant change in the 
temperature signal. However, in the present case the temperature detection area is 
continually moving away from the crack tip due to specimen motion. Therefore, since 
the temperature distribution exhibits r_1 dependence [eqn (6)], even a decrease in the 
rate at which J\t) increases could lead to a drop in the temperature signal. 

The transient temperature traces discussed above were analyzed using eqn (7) to 
determine the evolution of the instantaneous value of the /-integral, Jd(t). The analysis 
procedure accounted for the relative motion of the temperature detection area with 
respect to the crack tip, r = r(J), using high-speed photographic measurements of 
specimen (and crack tip) motion during the impact loading. Figure 8 shows a typical 
variation of Jd{t) determined from infrared measurement of temperature in the vicinity 
of a dynamically loaded crack tip. This was the first time that a non-contact tem- 
perature measurement has been used to determine the time history of the dynamic J- 
integral, J\i). Note that the values of Jd{i) as shown in Fig. 8 will be valid only until 
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Fig. 8. Variation of the dynamic value of the /-integral as a function of time for Ni-Cr steel, as obtained 

from temperature measurement. 
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Fig. 9. Time history of the dynamic temperature variation in the vicinity of the dynamically loaded crack 
tip for a precracked 304 stainless steel specimen subjected to three-point bend impact loading. 

the time of crack initiation, i.e. until the HRR asymptotic fields remain a good 
approximation of the crack tip fields. 

Infrared thermography was also employed to study ductile failure of edge-cracked 
304 stainless steel specimens subjected to three-point bend impact loading. Figure 9 
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Fig. 10. Variation of the dynamic value of the /-integral as a function of time for 304 stainless steel, as 
obtained from temperature measurement. 

shows typical variations of temperature measured in the vicinity of the dynamically 
loaded crack tip for a 304 stainless steel specimen. Traces from two nominally similar 
experiments are plotted. As shown in Fig. 9, the temperature traces begin to rise only 
after about 300 ^s after impact, which coincides with the arrival of the plastic zone 
at the location where the temperature was being measured. A dip in the temperature 
traces occurred around 1500-1700 /is, which is associated with crack tip initiation. A 
typical time history of the dynamic /-integral, J\i), as determined from the infrared 
temperature measurements is plotted in Fig. 10. 

As discussed earlier, optical measurements of the crack tip opening displacements 
were made using a high-speed imaging system in order to validate the infrared 
thermography measurements of Jd(t). Figure 11 shows a selected set of crack opening 
profiles obtained for three-point bend impact loading of an edge-cracked Ni-Cr steel 
specimen. The dynamic value of the CTOD, 8''{t), was measured directly from these 
photographs using the 90° vertex intercept definition. Thereafter, time history of the 
dynamic value of the /-integral, J\t), was determined from the CTOD variation in 
accordance with eqn (9). Figure 12 plots the time history of the dynamic /-integral, 
J\i), as determined from measurements of the dynamic CTOD, Sd(t). The figure also 
shows the variation of J\i) as determined from infrared measurements of temperature. 
The excellent degree of correspondence between the two establishes the validity and 
accuracy of the infrared thermography technique to determine J\t). 

Optical measurements of the crack tip opening displacement were employed to 
determine the dynamic /-integral, J\t), also for edge-cracked 304 stainless steel 
specimens subjected to three-point bend impact loading. Figure 13 shows the variation 
of /'(0 as determined from measurements of the dynamic CTOD, 3d(t). Results 
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Fig. 11. Typical set of crack opening profiles obtained for a prccracked Ni-Cr steel specimen subjected to 

three-point bend impact loading. 
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Fig. 12. Time history of the dynamic value of the /-integral as obtained from optical measurement of crack 

tip opening displacement and infrared measurement of temperature (Ni-Cr steel). 
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Fig  13 Time history of the dynamic value of the /-integral as obtained from infrared measurement of 
temperature and optical measurement of crack tip opening displacement (304 stamless steel). 
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Fig 14. Determination of fracture initiation during quasi-static loading of a prepacked steel Jörnen- (a) 
Three-point bending loading configuration, (b) Location of strain gage with respect to crack tip. 

obtained from infrared measurements of temperature are also plotted. There is excel- 
lent agreement between the two measurements for low values of 3 (t). However, 
unlike the Ni-Cr case this correspondence breaks down for higher values ol 3 (t) 
This is due to the much higher deformations observed for the 304 stamless steel 
specimens. Equation (9), which relates the dynamic /-integral to the dynamic CTOD, 
is strictly valid only if the HRR singular field is an accurate representation o the 
stress and strain fields very close to the crack tip. However, for very large crack tip 
deformations this would not be the case and CTOD could not be expected to give an 
accurate estimation of the dynamic /-integral value. Nevertheless, away from the 
immediate vicinity of the crack tip the HRR singular field is still expected to hold and 
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Fig. 15. Variation of the /-integral and strain gage signal during quasi-static three point bend loading of 

an edge cracked Ni-Cr specimen. 

3500 

3000 

2500 

«   2000 
OH 

S   1500 

1000 

500 

0 

At) 
Strain Gage 

L ^M 
\\f* 

0.5 

0.4 

0.3 •a 
</i 
o 
«f 

0 2 c 
OJ 
CJ 
0) 

OH 

0.0 

-   0.0 

0 500 1000 1500 2000 2500 

Time After Impact, t (\is) 

Fig. 16. Variation of the dynamic /-integral and strain gage signal during impact three-point bend loading 
of an edge cracked Ni-Cr specimen. 

thus the infrared measurements of temperature would still provide a reasonable 
estimate of the dynamic /-integral value. 

4.2.    Identification of time of crack initiation 

Identification of fracture initiation is a crucial step required to establish the dynamic 
fracture initiation toughness, /''(/,) = J'!, where t = tc is the time of fracture initiation. 
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Fig. 17. A scanning electron micrograph of the fracture surface of Ni-Cr steel showing the tunneled region 

and the shear lip regions. 
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Fig. 18. SEM image of the tunneled region showing dual population of voids. 
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Fig. 19. SEM image of the shear lip region showing dual population of voids. 

Strain gage instrumentation was employed to identify the fracture initiation event 
during dynamic deformation of the precracked steel specimens subjected to three- 
point bend impact loading (Couque, 1994). A strain gage located in the vicinity of 
the crack tip was employed to detect the change in specimen compliance that 
accompanies the fracture initiation event. The change in specimen compliance was 
reflected as a change in the rate at which the strain signal increases. As a first step, 
the strain gage technique was applied to identify the fracture initiation event in an 
edge-cracked specimen loaded quasi-statically in a three-point bend configuration. 
The advantage of quasi-static loading conditions is that the identification of fracture 
initiation can be corroborated with direct visual observation of the crack tip root. A 
schematic showing the loading arrangement and the strain gage location is given in 
Fig. 14. For this loading arrangement the value of the /-integral can be determined 
provided the load, P, and load point displacement, s, are known. Rice et al. (1973) 
have shown that 

/ = 
tb 

Pds (10) 

where b is the length of the uncracked ligament, t is the specimen thickness and 8 is 
the load point displacement due to the presence of the crack. A typical variation of 
the value of the /-integral for quasi-static loading of an edge-cracked Ni-Cr steel 
specimen is shown in Fig. 15. The figure also shows the strain monitored by the strain 
gage employed to identify fracture initiation. The sudden change in slope of the 
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Table 3. Fracture toughness as a function of loading rate for Ni-Cr steel and 304 
stainless steel 

Ni-Cr steel 304 Stainless steel 

id jd id 
-/crit ^crit ^cnt 

lOkNm-'s-1 1080 kNm-1 SkNm^'s"1 1300 kNm"1 

2500kNm-,s"1 1750 kNm-' 1300kNm-'s-' 1600 kNm"1 

strain gage signal was identified as the fracture initiation event. This was confirmed 
simultaneously by direct visual observation of the crack tip root. 

As a subsequent step, strain gages were employed to determine the fracture initiation 
event for dynamic three-point bend impact loading of a precracked Ni-Cr specimen. 
The strain gage location was selected to be the same as the quasi-static loading case. 
Figure 16 shows the variation of the strain as function of time during the impact 
loading of a precracked Ni-Cr steel specimen. The time history of the value of the 
dynamic ./-integral, as determined by infrared thermography, is also shown in the 
same figure. As demonstrated in the figure, the fracture initiation event is clearly 
identified by the change in slope in the strain gage signal. 

Table 3 lists the values of fracture initiation toughness, J(Q = Jc, obtained for 
quasi-static loading conditions and for dynamic loading. Fracture toughness values 
for both the steels are listed. The rate of loading at the time of fracture, t = t„ is 
quantified in terms of the value of the rate of change of the /-integral. As can be seen 
from this data there is a significant increase in the value of the fracture toughness 
with increasing rate of loading for Ni-Cr steel. No such significant rise is observed 
for the 304 stainless steel. 

4.3.    Micromechanisms of fracture initiation 

Ductile fracture in Ni-Cr and 304 stainless steels initiated in the form of tunneling 
in the center of the crack front followed by shear lip formation at the free surfaces. 
The failure process is dominated by void nucleation, growth and coalescence at the 
microstructural level. Figure 17 shows a scanning electron micrograph of the Ni-Cr 
fracture surface of a specimen loaded under dynamic conditions with tunnel and shear 
lip regions identified. Void formation begins in the center of the specimen due to the 
high constraint resulting from the prevailing plane strain conditions there, which leads 
to fracture initiation in the form of tunneling. These voids are nucleated at second 
phase particles in the microstructure. During the fracture process, these voids grow 
under the high crack tip stresses and eventually coalesce with each other and with the 
main crack. Figure 18 shows the voids and the particles that initiated these voids. 
Figure 18 also shows a much smaller void population filling up the regions between 
the larger voids. This points to the mechanism where the void coalescence takes place 
through the formation of void sheets consisting of a smaller void population. A 
similar mechanism appears to dominate the fracture process in the shear lip regions. 
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Figure 19 shows a detailed micrograph of the shear lip region. The elongated voids 
suggest that two mechanisms operated simultaneously in this region, i.e., void 
nucleation and growth and shear deformation. The distribution of smaller void 
population between the larger voids indicates that final failure again took place 
through the formation of void sheets. 

5.    SUMMARY 

This study focuses on the development of a non-contact experimental technique to 
measure the history of the /-integral for dynamically loaded cracks in ductile solids. 
This technique utilizes infrared thermography for the first time to measure the tem- 
perature increase ahead of the dynamically deforming crack, which is subsequently 
related to the /-integral through HRR singular fields. The accuracy of this method is 
verified through an independent measurement of the dynamic /-integral, where high 
speed photography was used to measure the crack tip opening displacement (CTOD). 
A preliminary attempt has been made at understanding the micromechanisms of 
dynamic fracture initiation in ductile solids using scanning electron microscopy. 
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ABSTRACT 

The scattering of wave energy during shock propagation through heterogenous media is examined as an 
alternative to visco-plasticity as the physics underlying the formation of structured steady shock waves in 
polycrystalline metals. A theory based on a quasi-harmonic representation of scattered acoustic energy in 
solids is pursued and used to develop continuum constitutive relations to describe nonlinear wave propa- 
gation in heterogeneous solids. Resulting constitutive models are compared with shock wave profile data 
for metals. (f) 1998 Elsevier Science Ltd. All rights reserved. 

Keywords: A. shock waves, B. stress waves, B. inhomogeneous material, C. plate impact. 

INTRODUCTION 

Barker (1968) reported on experimental measurements of structured shock waves in 
aluminum providing one of the first demonstrations of the excellent temporal res- 
olution of the velocity interferometry diagnostic methods in shock wave physics. 
Early theoretical work (e.g., Band and Duvall, 1961) referred to an underlying solid 
viscosity as the property responsible for the observed finite rise-time in steady struc- 
tured shock waves. The early Russian literature also attributed effects observed in the 
shock wave environment to viscous characteristics of solids (e.g. Mineev and Savinov, 
1967). From the aluminum data of Barker (1968) it was noted that this viscosity 
lessened with the shock amplitude giving rise to a very strong increase in the steepness 
of the shock wave with shock amplitude. In fact if a strain rate s was identified at the 
fastest rising portion of the structured steady wave it was found that the strain rate 
increased with the shock amplitude p according to e ~ />4 while the viscosity r\ was 
observed to lessen as Y\ ~ s~,ß (Grady, 1981). Structured steady-wave data on a range 
of metals were subsequently reported by Swegle and Grady (1985) and showed the 
same fundamental trends with variation in shock amplitude suggesting a universal 
behavior in the nature of structured steady waves in metals. 

These structured shock-wave data for metals have led to a number of efforts to 
develop descriptive constitutive models (e.g., Johnson, 1992, Swegle and Grady, 1985; 
Rubin, 1990; Partom, 1990). Such models were generally based on formalisms of 
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visco-plasticity and have been reasonably successful in describing the trends in the 
experimental data. These previous modeling efforts tacitly assumed, of course, that 
the underlying physics of time-dependent plasticity processes (dislocations, twinning, 
etc.) are responsible for the dissipation and wave dispersion leading to observed 
structured shocks in metals. Visco-plasticity may, in fact, be the responsible physics 
but there are other viable physical mechanism which could account for the observed 
results that have not been adequately discounted. 

An alterative mechanism, for example, which could account for the observed 
structured shock waves in metals is suggested by ultrasonic experiments of Mason 
and McSkimin (1947) on aluminum. Their work shows that the attenuation of ultra- 
sonic waves above a frequency of about several megahertz is dominated by scattering 
within the grain structure of the polycrystalline metal. Acoustic scattering would lead 
to wave dispersion at any amplitude and could also counterbalance the shock-up 
tendency of nonlinear solids accounting for observed structured shock waves. 

There can be little doubt that scattering plays a role in the propagation of large 
amplitude shock waves in metals. Whether scattering is principally responsible for 
the observed shock wave structure is the critical question. 

With these brief remarks serving to introduce the nature of the topic of interest the 
remaining portion of the introduction will outline the objectives and briefly summarize 
the results of the present paper. It is suggested first that wave scattering may be 
responsible for the finite width structuring of shock waves in polycrystalline solids. 
Earlier ultrasonic data on wave scattering in metals are then summarized and serve 
to motivate ideas of wave scattering when material is subjected to large amplitude 
shock waves. Such ideas have received only the briefest of attention in earlier shock 
wave literature. Consequently, a substantial portion of the paper focuses on ident- 
ifying the physics and developing a model descriptive of the processes by which shock 
waves scatter acoustic energy and which accounts for the subsequent representation 
ofthat energy. It is found that a quasi-harmonic theory of matter previously used to 
develop equilibrium thermal properties of solids can be extended to the problem of 
acoustic scattering, providing both a vehicle for clarifying the physics and a framework 
for modeling the phenomena. 

This physics-based model is found to lead to continuum constitutive relations which 
are formally the same as governing relations arrived at by Barker (1971) and by 
Kanel' et al. (1995) on a more intuitive basis. It is shown that such relations based on 
the physics of acoustic wave scattering quite adequately model the structured steady 
shock-wave data for metals. 

The results therefore leave open the question of whether visco-plasticity or wave 
scattering provides the dominate underlying physics responsible for observed behavior 
of structured steady waves in metals. Single-shock steady-wave data are not sufficient 
to discern between the constitutive models resulting from the two physical theories. 

This observation opens the question of whether more complex large amplitude 
wave profile data would provide the test for distinguishing between the theories. It is 
noted that some two-step steady shock data exists for selected metals, providing an 
interesting alternative loading path for testing the models. Such data for aluminum 
are examined and it is found that the continuum models based on the physics of wave 
scattering which satisfactorily predicted the single-step steady shock data are unable 
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to predict the two-step data. It is noted, however, that the visco-plasticity models 
would also fail in this task. 

The paper concludes at this indecisive point. An alternative physical mechanism 
underlying structured waves in metals is offered. A substantial physics-based modeling 
effort is pursued resulting in continuum governing relations for large amplitude wave 
propagation in materials exhibiting scattering-induced dispersion. The underlying 
physics of structured waves in metals is at present uncertain, however. 

SCATTERING OF ACOUSTIC WAVES IN GRANULAR MATTER 

Rayleigh (1929) investigated the scattering of wave energy from a single particle 
and derived the relation, 

As     nv (AE Ap\ 

A,     rX2 \E p J 

in the limit of the wave length X long relative to the particle dimension. On the left of 
eqn (1) is the ratio of the scattering amplitude relative to the incident amplitude of 
the wave. On the right v is the particle volume, AE/E is a relative measure of the 
elasticity difference between particle and medium, Ap/p is the relative density differ- 
ence, while r and 6 are the distance from particle to observation point, and the angle 
between this distance and the direction of the incident wave, respectively. 

Mason and McSkimin (1947) surmised that Rayleigh's relation should apply to the 
scattering of acoustic wave energy by a single grain within a polycrystalline material 
because of the projected impedance difference of an arbitrarily oriented grain with 
respect to its neighbors. By integrating the scattered energy determined from eqn (1) 
over a sphere and accounting for the average contribution from all grains they arrive 
at the following expression for the acoustic attenuation factor due to scattering, 

XA   \\E 

The expression exhibits the classic fourth power dependence on wave length of 
Rayleigh scattering. Subsequent analysis by Knopoff and Hudson (1964) showed 
that scattering of acoustic waves in polycrystalline media resulted in both incident 
dilatation and shear waves scattering predominantly into shear wave energy. 

Experiments performed by Mason and McSkimin (1947) on several aluminum 
samples revealed an acoustic attenuation component proportional to the fourth power 
of the frequency. Calculated scattering losses based on the Rayleigh scattering relation 
[eqn (2)] agreed quite well with experiments. The fourth power scattering behavior 
was observed until the wave length approached about three grain dimensions. For 
higher frequencies attenuation increased more nearly with the square of the fre- 
quency—a not unexpected trend since scattering for very short wave lengths is pre- 
dicted to be frequency independent. 
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STRUCTURED FINITE-AMPLITUDE WAVES IN HETEROGENEOUS 
MEDIA 

Wave propagation in a homogeneous linear elastic continuum is well understood. 
In contrast wave propagation in a heterogeneous and nonlinear elastic media is 
considerably more complex. Elastic pulse wave transmission in heterogeneous solids 
exhibit similarities to wave propagation in dissipative media. Pulse wave shapes will 
evolve and attenuate, while energy is lost from the pulse as the wave propagates. 
Nonlinear elastic heterogeneous media can support steady structured shock waves 
and account for the prerequisite entropy production in the compressive shock process. 
The underlying cause is related to wave dispersion brought about by scattering within 
the heterogeneous microstructure. 

Finite amplitude compression waves in nonlinear solids will become steeper as the 
wave propagates. Wave dispersion can counter the steepening process leading to 
structured steady shock waves. Heterogeneities within a solid body contribute to wave 
dispersion and can account for the structured steady shock waves. To understand the 
underlying physics responsible for structured steady shock waves in heterogeneous 
solids consider the following hypothetical situation: the material of concern is a 
nonlinear thermoelastic heterogeneous solid. Curves of elastic uniaxial strain loading 
corresponding to isothermal conditions, isentropic conditions and steady shock 
(Hugoniot) conditions for this solid are identified in Fig. 1. When subjected to shock 
compression through a steady structured shock the continuous stress versus strain 
compression path experienced by an appropriately averaged material element departs 
for the thermodynamic surface, following a straight Rayleigh line from the state in 
front of the shock to the compressed thermodynamic state behind the shock. 

The following questions concerning shock compression of this elastic heterogeneous 
solid are relevant: first, what physically supports the excess nonequilibrium stress 
(the vertical distance between the Rayleigh line and the equilibrium thermodynamic 
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Fig. 1. Steady structured shock wave loading in a thermal-elastic solid. 
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Fig. 2. Shock wave stimulated scattering at sites of heterogeneity in a solid. 

surface) experienced during the shock transition process? Second, what are the under- 
lying physical mechanisms responsible for the structure of the compression shock 
wave? Third, how is entropy production accounted for in the elastic shock process? 

In pursuing answers to the questions posed consider the aspect of a heterogeneous 
solid illustrated in Fig. 2 by the single inclusion in an otherwise continuous solid. A 
region of the body including this inclusion compressed quasi-statically would achieve 
some level of lattice strain energy. That same region compressed by a finite amplitude 
shock wave would, in addition to the equilibrium lattice strain energy, include a 
dynamic or acoustic energy component associated with wave scattering as the shock 
wave passed over the inclusion. In fact, as the characteristic wave length X of the 
shock approached the characteristic dimension d of the inclusion scattering would be 
expected to amplify markedly. 

Thus, when a finite amplitude shock wave passes through a heterogeneous solid 
the energy residing in the material behind the shock wave will include both a com- 
ponent due to the lattice strain energy and a kinetic component corresponding to a 
field of acoustic phonon energy caused by wave scattering within the heterogeneous 
microstructure. 

Such acoustic phonon energy can be characterized through a quasi-harmonic nor- 
mal mode representation of anelastic solid. Although more commonly applied in the 
description of perfect crystals in which lattice waves and normal modes are the same 
(Klemans, 1965), heterogeneous elastic solids can, in principal, also be described by 
normal mode coordinates. A property of a normal mode coordinate is a decoupling 
from the other coordinates such that energy introduced into that coordinate persists. 
In nonlinear solids the elastic constants depend on distortion (dilation and shear). 
These anharmonic properties of the material will lead to a coupling of normal mode 
coordinates and thus energy introduced into a single coordinate would ultimately 
diffuse throughout the system of normal coordinates until an equilibrium controlled 



2022 D. GRADY 

by statistical mechanical principals is achieved. Acoustic phonon energy will also 
contribute to the global stress state if anharmonicity is a property of the media. 

The inducement of a component of kinetic or acoustic phonon energy during the 
dynamics of the shock compression process as outlined in the brief comments above 
offer answers to the questions posed. During passage of the structured shock, wave 
scattering leads to the production of acoustic phonon energy within a limited spectrum 
of normal mode coordinates within the shock front. This nonequilibrium acoustic 
phonon energy would account for the excess stress on the Rayleigh line during passage 
of the shock wave. Diffusion of this energy to an equilibrium configuration throughout 
the acoustic normal modes is achieved as the final shock state is approached. Ulti- 
mately diffusion throughout the full thermal spectrum occurs until complete thermo- 
elastic equilibrium is achieved. The latter accounts for entropy production within the 
elastic shock process in the heterogeneous solid. Details of the steady shock wave 
profile structure are determined by characteristic relaxation times associated with 
specific acoustic energy diffusion processes. 

NORMAL MODE DESCRIPTION OF SCATTERED ENERGY IN 
HETEROGENEOUS SOLID 

The foregoing description of large-amplitude wave dispersion resulting from acous- 
tic scattering in heterogeneous solids can be modeled through a quasi-harmonic 
representation of the shock compressed matter. As noted, the dynamic state of 
an elastic heterogeneous solid can be characterized by a normal mode system of 
coordinates. 

Accordingly, consider a decomposition of the energy into that due strictly to lattice 
compression U0(e) and that due to the acoustic phonon energy, Uk = *Ln,hvh such 
that, 

U=U0(s) + Yjnihvi. (3) 

The current nominal axial strain state is s while rc, is the number of phonons with 
energy Av,, The normal mode frequency is v, and h is Planck's constant. Although a 
quantum representation of the acoustic phonon energy may appear superfluous to 
what is clearly a classical issue, the approach offers a particularly transparent frame- 
work for developing the appropriate relations and has been productively used in other 
common theoretical solid state concepts such as the Debye theory of specific heat and 
Gruneisen's theory of thermal pressure. 

To proceed Uk in eqn (3) will be decomposed into acoustic and thermal normal 
modes, 

acoustic thermal 

where the acoustic-to-thermal transition in vibrational frequency will be of the order 
10'°-10n hertz while the upper cutoff is of the order of the Debye frequency (~ 1015 
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hertz). In equilibrium each normal coordinate would have an energy of M, = kT where 
7" is the temperature. Because the density of vibrational frequencies increases like v,2, 
energies in the acoustic modes under equilibrium conditions are ordinarily negligible. 
In the present application, however, where energy is initially introduced into a limited 
spectrum of acoustic modes through scattering within the heterogeneous micro- 
structure, the acoustic portion of the normal mode spectrum is critical to the physical 
processes. Equilibration throughout the acoustic spectrum and ultimately over the 
full thermal spectrum can be abstractly depicted in the following way; 

where T„ and T, represent relaxation times over acoustic modes and over the thermal 
spectrum, respectively. The processes identify a diffusion of phonons into the under 
populated acoustic modes and, ultimately, the higher frequency thermal modes. 

Recognizing the focus on the acoustic normal mode spectrum we will return to eqn 
(3) written in the form, 

U = U0 (e) + X nmhv, + £(«,- - nm)hv„ (6) 

where ni0 represents the set of equilibrium population numbers. Combining the first 
two terms on the right as the equilibrium thermoelastic equation of state l/cq(e, s) of 
the heterogeneous solid gives, 

U=Uai(e,s)+Z(ni-ni0)hvi. (7) 

The second term on the right in eqn (7) is then the nonequilibrium acoustic phonon 
energy induced in the shock-wave scattering process. The strain derivative of U 
provides the stress, 

f = tfeq + £(«,- - n,o)hv'i, (8) 

also composed of an equilibrium component and a contribution due to the non- 
equilibrium acoustic phonon energy. 

The anharmonic character of the respective normal modes is determined by the 
strain dependence of the normal mode vibration frequencies v'h The time dependence 
of eqn (8) yields, 

An 
ff = <teq+E^7Av'- (9) 

The second term on the right will be identified as <r„ the time rate of the nonequilibrium 
component of the stress due to the acoustic phonon field stimulated in the het- 
erogeneous solid. Ignored in the step leading to eqn (9) is a nonzero time-dependent 
term resulting from the strain dependence of the normal mode frequency. Assumed 
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small in the present derivation this term could alternatively be included in the S(-) 
term defined in eqn (12) below. 

The expression dn,-/d* is fundamental in modeling the rate of stimulation and 
relaxation of the phonon population within the acoustic normal nodes. A reasonable 
governing equation would be, 

^ = *,(•)+-(«,-«»), (10) 
at T; 

where $,•(*) represents a phonon stimulation function dependent on the dynamics of 
the wave interaction with the heterogeneous microstructure. The second term provides 
for relaxation of the normal mode energy levels toward an equilibrium population ni0 

with a characteristic relaxation time T,. Equations (9) and (10) combine to provide, 

If one assumes that a common relaxation time x X T, sensibly describes all normal 
modes, eqn (11), with eqn (8), yields, 

* = *eq + S(-)-V-ffeq)- (12) x 

Equation (12) resulted from a quasi-harmonic description of dispersive wave scat- 
tering in heterogeneous media is recognized as the functional form for a continuum 
nonlinear anelastic constitutive relation. In the following section phenomenological 
constitutive models of the form of eqn (12) proposed by earlier authors to describe 
dispersive wave propagation in heterogeneous media are examined. 

MODELING DISPERSIVE WAVE PROPAGATION IN 
HETEROGENEOUS SOLIDS 

The physical issues of nonlinear large-amplitude wave dispersion introduced in the 
earlier sections suggest a material response model initiating with the decomposition 
of stress, 

This decomposition is not an assumption. It is a recognition that on the most fun- 
damental level forces of interaction in condensed matter are a composition of lattice 
potential and kinetic (momentum exchange) terms. The first term on the right will 
determine the equilibrium thermoelastic response of the heterogeneous solid. That 
this term may also include the equilibrium component of the acoustic phonon stress, 
as suggested by eqns (6) and (7), is not inconsistent with the fundamental stress 
decomposition of eqn (13). The second term on the right accounts for stresses brought 
about by the nonequilibrium acoustic phonon energy induced in the heterogeneous 
microstructure by the transient wave. The assumed time dependence is of the general 
form, 
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&„ = S+R, (14) 

where the terms S and R account, respectively, for the stimulation and relaxation of 
nonequilibrium acoustic phonon energy. Within these terms lies the opportunity to 
model a rich variety of responses exhibited by heterogeneous solids subjected to finite- 
amplitude transient stress wave propagation. The general model framework identified 
by eqns (13) and (14), and the specific models to be considered presently which fall 
within this framework, will be recognized as continuum anelastic representations of 
the stress vs strain response of solid matter. 

Knopoff (1965) was perhaps one of the first to recognize the potential of continuum 
anelasticity models to describe wave dispersion brought about by scattering in het- 
erogeneous media. He realized that heterogeneities within the earth's interior con- 
tributed to the dispersion and attenuation of sonic waves and explored the 
applicability of a linear Maxwell model to describe the wave propagation. The linear 
Maxwell model within the framework of eqns (13) and (14) is written, 

6 = <j„ = Me--a,,, (15) 
T 

<xcq = 0. (16) 

In this most fundamental of anelasticity models transient stresses are stimulated 
through a modulus M and relax over a characteristic time T. Knopoff (1965) found 
that dispersion characteristics predicted by eqn (15) were not in accord with observed 
attenuation of sound waves in the earth. 

Barker (1971) proposed use of a general nonlinear Maxwell model in the form, 

a + q>{e)t = --(a-a), (17) 
T 

to describe finite amplitude wave propagation in composite solids. This approach 
reasonably modeled available experimental data and was consistent with fundamental 
computer solutions of wave propagation in composites. Barker's model has been 
examined in some detail recently by Johnson et al. (1994). The stress decomposition 
of eqns (13) and (14) is readily reproduced, 

6„ = M(e)e--ff„, (18) 
T 

&eq = S(e)<5. (19) 

Equation (18) explicitly displays the stimulation and relaxation terms identified in 
eqn (14). Stimulation of nonequilibrium stress is accomplished through the modulus 
M(e) = (p(s)-9(s). Relaxation is governed by a linear relation proportional to the 
nonequilibrium stress. 

Barker's relation nicely models a theory of Zel'dovich (1946) on shock waves in 
relaxing media in which the normal mode coordinates are considered to be divided 
into two categories: those which are excited instantly and those which are stimulated 
only after some characteristic relaxation time. The modulus M then determines the 
difference in compression paths of the media under the conditions of restricted (non- 
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equilibrium) and unrestricted (equilibrium) stimulation of the normal mode degrees 
of freedom. 

More recently Kanel' et al. (1995) have proposed another continuum anelasticity 
model to describe wave propagation in solid composites. In the same framework the 
model can be written, 

an = kEm--a„, (20) 
T 

<jeq = He)&. (21) 

Although quite similar to Barker's model (the models differ only in the stimulation 
term) the physical implications in the stimulation term for m / 1 are fundamentally 
different. Rather than modeling a dichotomous (instantaneous and equilibrium) 
response of the material, the stimulation term implies a continuously increasing 
scattered energy (and hence nonequilibrium stress) with increasing strain rate within 
the shock wave. The modeled behavior can be likened, for example, to the Rayleigh 
scattering of sound waves in heterogeneous media as has been observed experimentally 
in the acoustic limit by Mason and McSkimin (1947) as discussed earlier. 

STRUCTURED-STEADY WAVES 

The relations put forth by Barker (1971) and by Kanel' et al. (1995) are intended 
to provide continuum models to describe the additional stress brought about by 
the scattering of acoustic wave energy resulting from shock wave propagation in 
heterogeneous media. The present theory based on a statistical normal-mode quasi- 
harmonic representation of this acoustic energy provides qualitative support for the 
general character of these models. 

Written in the form, 

a = a'cq(e)8 + k(s)sm- -(a-aeq(e)), (22) 

summarizes both models with k(e) = const, for the Kanel et al. equation, while m = 1 
captures the Barker equation. 

Structured steady-wave solutions require the stress-vs-strain path to traverse a 
straight Rayleigh line path connecting lower and upper points on the equilibrium 
curve. Consequently, the constraint a = pU% where U is the steady-wave shock 
velocity, yields, with eqn (22), the ordinary nonlinear differential equation, 

k(s)E- + (a'eq(E)-pU2)s-\pU2s-aeq(E)) = 0, (23) 

for the time history of the strain through the structured steady wave. Directly solving 
eqn (23) for the strain rate may reveal regions in the domain where s is negative, 
indicating the occurrence of shock segments within the structured wave. Solutions of 
the differential equation for the s(t) history through the steady wave applies then only 
to those regions in which continuous flow occurs. 
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Fig. 3. Stress decomposition into equilibrium and nonequilibrium components in steady structured shock 

NATURE OF THE NONEQUILIBRIUM STRESS 

From eqn (22) the nonequilibrium stress stimulated by the scattered acoustic energy 
during passage of the steady wave within the framework of the continuum models 
proposed by Barker, and by Kanel' et al., is given by, 

1 
ft,, =k(e)s'"--(j„ 

T 
(24) 

A maximum in <x„ occurs at &„ = 0 providing, 

a™ = rk(E)e"\ (25) 

where both £ and e are evaluated at the point of ff"lilx. Equation (25) is appropriate in 
corresponding closely to the conditions in which experimental results for structured 
steady waves have been presented in past work. Namely, e is determined at the fastest 
rising point in the wave and correlated with the maximum nonequilibrium stress as 
identified in Fig. 3 (e.g., Swegle and Grady, 1985). 

COMPARISONS WITH STRUCTURED-STEADY WAVES IN METALS 

Structured steady shock-wave data for metals have become available following 
development of high-resolution wave profile diagnostic techniques such as velocity 
interferometry (e.g. Swegle and Grady, 1985). It has become common to characterize 
the structure of the plastic shock through a correspondence of the stress jump with 
the maximum strain rate during the rise of the wave. Equivalently, a comparable 
correspondence between the maximum stress difference separating the Rayleigh line 
and the Hugoniot within this region can also be made as alluded to in closing the 
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(a) (b) 
Fig. 4. Experimentally observed behavior of steady structured shock waves in metals (e.g., Swegle and 

Grady, 1985). 

previous section. A preponderance of these data indicate the trend shown on the left 
side of Fig. 4. 

An alternative representation of the steady wave data follows through identification 
of a viscosity as the ratio of rmax and e compared with the amplitude of the strain 
within the structured wave. This is shown on the right in Fig. 4. Shock data on metal 
as indicate a reduction of this viscosity measure with the second power of the strain. 

It is clear from the form of the structured wave data in Fig. 4 and the relation for 
the maximum nonequilibrium stress in eqn (25) that the models of Barker and of 
KaneF et al. can both adequately fit the experimental data—at least to this first order 
representation of the steady shock profiles. For Barker's model k(e) ~ e~2 while for 
the Kanel' et al., model k(e) = const and m = 1/2. Abilities to fit the full profile 
structure will differ, however, and this should be pursued. 

COMPLEX SHOCK LOADING DATA 

It should be reasonably clear at this point that the ability of the models proposed 
by Barker and Kanel' et al. to reasonably describe the shape and the trend of the 
observed character of structured steady shock waves in metals does not provide very 
strong support for acoustic scattering as the underlying physics structuring shock 
waves. In the present study this alternative physical explanation for structured shock 
waves in metals has been proposed and used as a stimulus for investigating a method 
of modeling the generation and effects of acoustic scattering energy in large amplitude 
wave propagation. This development has been accomplished and continuum anelastic 
models of the form proposed by Barker (1971) and by Kanel' et al. (1995) are found 
to be natural representations of such behavior and adequately describe observed 
steady shock waves in metals. Therefore, we can conclude that acoustic scattering is 
not inconsistent with the theory and must be considered as a viable mechanism. 

Models similar to (although not precisely the same as) those of Barker and of 
Kanel et al. emerge in consideration of a visco-plastic description of structured shocks 
in metals. For example the visco-plastic model developed by Swegle and Grady (1985) 
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STRAIN 
Fig. 5. Rayleigh line loading paths in single and double steady shock processes. 

proposed a law whereby the plastic strain rate is related to the viscous stress according 
to yp oc T

2
. That model also adequately described the structure shock data. 

The stress-vs-strain-rate data or viscosity-vs-strain data described in Fig. 4 are 
related to a very special loading path. Namely, that of the Raleigh line followed in a 
steady structured shock wave. As noted earlier the models of Barker (1971), of Kanel 
et al. (1995), and those based on visco-plasticity theories adequately described these 
data. Whether such models could successfully describe more general dynamic loading 
has not been seriously pursued. 

Useful data exist for undertaking such a pursuit. Tests have been performed in 
which metal samples were subjected to structured steady shocks, allowed to dwell at 
the shock state for some period (typically about one microsecond), and then subjected 
to further compression through a subsequent second steady shock wave. The test 
methods are illustrated in Fig. 5 showing loading through both a single structured 
steady shock in contrast to loading through two structured steady shock waves. In 
the latter test loading is along separate Rayleigh line segments in contrasts to a single 
Rayleigh line path in achieving the final compression state. Double shock experiments 
have been performed on several metals including and aluminum alloy (Asay and 
Chhabildas, 1981), copper (Chhabildas and Asay, 1982) and beryllium (Chhabildas 
etal., 1982). 

The models previously discussed, if sufficiently general, should predict the nature 
of the second shock as well as that of the principal shock. Thus, for the model of 
Kanel' et al. (1995) a plot of the maximum nonequilibrium stress vs the strain rate 
for the second shock should lie on that of the principal shock data if the model is 
predictive. Similarly, for the model of Barker (1971) the viscosity vs strain data should 
overlie that of the principal shock. 

Second shock data for 6061-T6 aluminum alloy (Asay and Chhabildas, 1981) are 
compared in this way in Fig. 6. As is readily seen, neither model survives this simplest 
of test generalizations. It is suspected that previous visco-plastic models developed to 



2030 D. GRADY 

103 

~105 106 107 

STRAIN RATE (s1) 
(a) (b) 

Fig. 6. Single and second shock states for aluminum alloy (Asay and Chhabildas, 1981). 

describe steady shock data would also fail this comparison, although such an analysis 
has not been pursued in detail. 

The second shock is considerably thicker (lower peak strain rate) than would be 
predicted from the principal structured shock data. Equivalently, the effective viscosity 
is substantially higher in the second shock than would be inferred from the principal 
shock data. 

CONCLUSIONS 

The physics underlying transient wave propagation, in which scattering of wave 
energy brought about by interaction of the wave with the heterogeneous substructure 
of a solid, has been explored in the present study. This feature of heterogeneous 
matter can lead to wave dispersion, wave attenuation and steady-structured waves 
not unlike wave propagation in dissipative media. A decomposition of energy into 
potential strain energy and vibrational energy was pursued where a normal mode 
quasi-harmonic representation of the latter is assumed. Key to the theoretical devel- 
opment is a recognition that transient wave interaction with the microstructure will 
lead to an initial highly nonequilibrium distribution of the vibrational energy. Stat- 
istical mechanical forces will drive the system toward an equilibrium distribution 
throughout the normal mode spectrum of the body. In application this energy will 
ultimately thermalize if it is not absorbed by intervening dissipative processes (i.e., 
damage, dislocation motions) as it percolates through the substructure degrees of 
freedom. 

Relatively general assumptions in modeling the wave stimulation of the vibrational 
spectrum and the subsequent time-dependent relaxation toward equilibrium is found 
to lead to nonlinear continuum anelastic equations. Phenomenological equations 
developed and used by earlier workers (Barker, 1971; Kanel' et ai, 1995) to describe 
the wave propagation in heterogeneous matter are shown to be in accord with the 
theoretical results. Consequently, a firmer physical basis for such models has been 
established. More importantly, the theoretical methodology points toward a path 
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whereby the dynamics of more complex substructure physical processes can be 

modeled. 
The underlying physics of scattering in nonlinear wave propagation in het- 

erogeneous solids is then suggested as an alternative to visco-plastic processes in 
causing structured steady waves in polycrystalline metals. Models resulting from the 
scattering theory readily describe single shock steady-wave data for metals. Conse- 
quently the physics responsible for structured waves in metals must be regarded as 

uncertain. 
The models are then compared with more complex two-step steady structured 

shock data in aluminum. The available models fail to predict these more general 
data raising serious concerns of current understanding of this fundamental shock 

phenomena. 
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ABSTRACT 

An exact mathematical analogy exists between plane wave propagation through a material with voids and 
axial wave propagation along a circular cylindrical rod with radial shear and inertia. In both cases the 
internal energy can be regarded as a function of a displacement gradient, an internal variable, and the 
gradient of the internal variable. In the rod the internal variable represents radial strain, and in the material 
with voids it is related to changes in void volume fraction. In both cases kinetic energy is associated not 
only with particle translation, but also with the internal variable. In the rod this microkinetic energy 
represents radial inertia ; in the material with voids it represents dilitational inertia around the voids. Thus, 
the basis for the analogy is that in both cases there are two kinematic degrees of freedom, the Lagrangians 
are identical in form, and therefore, the Euler-Lagrange equations are also identical in form. Of course, 
the constitutive details and the internal length scales for the two cases are very different, but insight into 
the behavior of rods can be transferred directly to interpreting the effects of wave propagation in a material 
with voids. The main result is that just as impact on the end of a rod produces a pulse that first travels with 
the longitudinal wave speed and then transfers the bulk of its energy into a dispersive wave that travels 
with the bar speed (calculated using Young's modulus), so impact on the material with voids produces a 
pulse that also begins with the longitudinal speed but then transfers to a slower dispersive wave whose 
speed is determined by an effective longitudinal modulus. The rate of transfer and the strength of the 
dispersive effect depend on the details in the two cases. © 1998 Elsevier Science Ltd. All rights reserved. 

Keywords: voids and inclusions, porous material, stress waves, asymptotic analysis. 

INTRODUCTION 

The response of a material with voids has been a subject for research for many years. 
MacKenzie (1950) was perhaps the first to estimate the effective elastic moduli of a 
linearly elastic isotropic material that contains a random distribution of small voids. 
His approach was to consider a hollow sphere, made of the matrix material in 
question, that is embedded in a continuum of isotropic material with the average 
properties of the material with voids. The hole in the center of the sphere was of such 
a size that the void ratio for the sphere was the same as the void ratio for the complete 
material with voids. This approach, now known as the self-consistent method, was 
an adaptation of a method introduced by Fröhlich and Sack (1946), in estimating the 
viscosity of dispersions. The method has been extended to include composites gen- 

* Tel.: 00410-278-6046; Fax : 00410-278-6952; E-mail: tww@art.mil 

2033 



2034 T. W. WRIGHT 

erally and has been used many times since as reported by Christensen and Lo (1979), 
for example. Other examples, as well as other approaches for estimating the overall 
properties of heterogeneous solids, can be found in a recent book by Nemat-Nasser 
and Hori (1993). 

The approach described above is essentially static in nature. Carroll and Holt 
(1972), who also used the device of an embedded hollow sphere, initiated a dynamic 
version of this line of research. They investigated the dynamics of pore collapse due 
to an imposed pressure and used the results to supplement the so-called P — a model, 
due to Herrmann (1969), for shock compression of a porous material. The most 
notable effect was to add inertia and plastic flow, associated in a spherically symmetric 
way with the pores, but no effect from the gradient of porosity was included. The 
dynamics of pore collapse seemed to add rate dependence to the flow law for the 
material. 

In the same year as Carroll and Holt's paper Goodman and Cowin (1972) published 
a general continuum theory for a fluid-like material with voids that was intended to 
be applied to flows of a granular material. In this paper they introduced the notions 
of equilibrated stress, equilibrated body force, and equilibrated inertia. These concepts 
all arise in a natural way once it is conceived that the energy in the material may 
depend on the porosity and its gradient, as well as on the usual kinematic variables. 
In effect, for purposes of constructing a constitutive theory, the porosity is allowed 
to have kinematic freedom that is on a par and completely independent of the average 
deformation. As a consequence, generalized forces and inertia must be introduced to 
develop a continuum theory that is unrestricted in scope a priori. 

Subsequently, Nunziato and Cowin (1979) published a fully general theory for a 
nonlinearly elastic, porous solid, where the porosity and its gradient enter into the 
constitutive theory with the same kinematic independence as in the theory for granular 
materials. The resulting continuum theory is very elegant in its mathematical structure 
and generality, but it seems to have lost touch with the equally elegant ideas on 
composites that were developing contemporaneously with it. Intuitively it would seem 
to make sense that in the static limit of uniform stress the general continuum theory 
should coincide with the theory of effective properties for composites, a material with 
voids being one degenerate form of a composite, but this connection between the two 
lines of research does not seem to have been pursued. 

Another line of research that on its face would seem to be completely independent 
of all of the preceding was developed by Wright (1982) in a paper describing the 
nonlinear dynamics of a circular cylindrical rod with radial inertia and shear. When 
the axial and radial motions are assumed to be kinematically independent, but still 
describable in a simple manner to be given later, the energetic structure of the theory 
is formally identical to a one dimensional version of the dynamical theory for a 
material with voids. Thus, the Euler-Lagrange equations for the theory of axial 
motions in a rod have the same mathematical structure as those for plane waves in a 
material with voids. This fact was noted by Wright (1982) for the linearized versions 
of the two theories. The linear equations for the rod were first given by Mindlin and 
Herrmann (1950) and for the material with voids by Nunziato and Walsh (1977). 

In this paper a model linear problem is set up and examined in order to demonstrate 
the relationship between theories of effective moduli and the dynamical theory of 
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materials with voids. It will also be shown that previous work on the dynamics of 
rods can be used as an intuitive guide to understanding the nature of the generalized 
forces and the response of a material with voids. 

WAVES IN A HOLLOW CYLINDER: A MODEL PROBLEM 

Imagine a material that contains a large number of small voids with random sizes 
and locations such that on average there are a constant number of N voids per unit 
total volume. If the fraction of each element of spatial volume that is occupied by 
voids is denoted cpR, where 0^<pR<\, then the solid fraction is 1 -cpR. Imagine 
further that the size distribution of voids in each unit of volume is clustered around 
an average size with volume equal to that of a sphere of radius a. Then the void ratio 
must be proportional to the total number of voids per unit volume times the cube of 
the average radius. That is, (pRazNcf. Since another length, b, may be defined by the 
relationship q>R={äjb)\ then it is clear that bccN~lß and that b may be thought of 
as approximately half the average spacing between void centers. The length b will 
be regarded as a fundamental characteristic of the porous material for dynamical 
problems. 

The usual determination of the effective elastic moduli would proceed from this 
point by considering deformations of a hollow sphere that is made entirely from the 
matrix material and so has known elastic moduli, that has inner radius ä and outer 
radius b, and that is embedded in an infinite continuum that is characterized by the 
unknown effective moduli of the porous material. For present purposes only motions 
that are uniaxial on average will be considered so rather than examining an embedded 
sphere, imagine a hollow cylinder with inner radius a and outer radius b, where now 
the void volume ratio is given by cpR = (a/b)2. Since there is no unique way to map the 
voids into empty cylinders, for simplicity it will be assumed that the cylindrical and 
spherical characteristic lengths are approximately equal, b x b so that bjb = 0(1). 
For example, if it is assumed that the characteristic sphere of radius b is replaced by 
a characteristic right circular cylinder of equal volume, and that the cylinder has 
radius b and height 2b, then it is easily worked out that 6/6 = (2/3)'/3. To maintain the 
same void volume ratio the cylinder must be pierced by a tube of radius a/ä = (2/3)l/3 

<p\ß. Whereas the characteristic length washes out in the determination of effective 
static moduli, it plays an important role in a dynamical theory, as will be seen, so it 
is necessary to retain it in some form even though the exact value is only known 
approximately. 

If the void volume ratio is small, it is plausible to suppose that propagation of 
longitudinal waves through the material with voids should be essentially equivalent 
to propagation along the hollow tube, just described. Clearly the inner surface of the 
tube must be stress free, but for symmetry and to reflect the dominantly longitudinal 
motions that are contemplated here, the outer surface should be assumed to have 
mixed boundary conditions with vanishing normal displacements and shear tractions. 
The motion of the hollow tube will be treated in a way that is similar to the way 
Mindlin and Herrmann (1950) treated motion in a solid rod. 
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With cylindrical material coordinates and time (R, Z, i), the kinematics for the 
hollow tube will be assumed to have the approximate form 

r(R,Z,t) R-B(Z,t)[R 
R 

eR + [Z+w(Z,t)]ez (1) 

where the bold face type indicates vectorial quantities (r is the position vector, and 
eR, ez are unit vectors) and the functions B and w are the two allowed scalar degrees 
of freedom. The radial displacement has been assumed to take the correct form for 
the one-dimensional static problem with vanishing displacement at R = b. Note that 
the kinematic function B is proportional to the change in porosity since 

2naur(R = a) 

*-^=~^ = 2B[l    b> or   B = 
1   <P-<PR 

2l-(pR 

Since there are only axial and radial motions allowed, the strain tensor e, when eqn 
(1) is used, works out to be 
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For an isotropic linearly elastic material the constitutive relation in Cartesian tensor 
notation is au = ?iekköij+2fieu or in terms of the assumed degrees of freedom 

arr = Xwz — 2(X + ix)B — 2p,[ — ) B 

lwz-2(l + fi)B + 2n{ - I B 
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where X and [i are the Lame coefficients. There are only four nonzero components of 
the stress tensor, so the equations of motion in cylindrical components take the form 

8arr     dor-     arr — ass 
+ ^^ H ^ = pür 8R      dZ R 

da,.-     8a-     ar- 

l3R+^ + -R=pÜ" (4) 

Furthermore, since the displacement, strain, and stress relations will be approximate 
in the radial coordinate, except for the case of static uniaxial deformations, the 
equations of motion will only be required to hold in an appropriate average sense. 
Specifically eqn (4.2) will be averaged over the full cross sectional area of the hollow 
tube, 

dZ\nb\ 
a::dA  + 

1 

nb2 '2nR^(Rar:)6R = ^ w dA (5) 

and eqn (4.1) will first be multiplied by R and then averaged over the full cross section. 

M1 
dZ\nb\ ^)+ij RllMiR^dA- 

1 
aS!i dA = 

nb2 Rür dA      (6) 

Equations (5) and (6) may be rewritten as 

8Q 
dZ 

dS_ 

dZ^ 

-P + 2 

bZh-aZa 

b2Rh-a2Ra 

w 

pb7 a'- 

~b2 
B (7) 

where S us the average stress over the whole tube, P is the average over the tube of 
the sum of radial and circumferential stresses, Q is the polar moment of radial shearing 
stress and Rah, Zah are radial and shear tractions on the inner and outer surfaces of 
the tube. That is 

5": 
1 

a-dA 

P = 
1 

nb2 (Grr + Gs»)dA 

nb2 Rarz dA (8) 

and i?a = ar,.(a, t), Zh = ar:(b, t), etc. Both components of traction have been assumed 
to vanish on the inner surface, and the shearing traction has been assumed to vanish 
on the outer surface, so that only the radial traction on the outer surface remains. 
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The surface tractions that appear in eqns (7.1) and (7.2) after integration by parts 
play the role of "equilibrated body forces" to use the language of Cowin and cowor- 
kers (e.g. see Nunziato and Cowin (1979)). A body force is usually thought of as 
being externally controlled, as would be the case in eqn (7) if the tractions were 
prescribed. But in the case considered here, three out of four possible components of 
traction have been assumed to vanish and the remaining one is a reaction that must 
take on the values necessary to prevent radial displacement on the outer surface. As 
shown by eqn (3.1) the radial stress that is compatible with vanishing radial dis- 
placement at R = b depends on the strain in the tube as expressed by wz(Z, t) and 
B{Z,t). Thus, in this case the "equilibrated body force" depends on constitutive 
information in the matrix material, but it is in the nature of a workless constraint for 
the tube. Equation (3.4) shows that the shear traction also vanishes on the outer 
surface, as required. 

When the constitutive relations, as expressed approximately by eqn (3), are sub- 
stituted into eqns (8) and (7), the displacement form of the equations of motion 
becomes 

(l + 2fi)wzz-2XBz = pw 

pB7Z+~T^—,{A>a2wz-2[Xa2+p(a2+b2)]B}=pB (9) 
(b —cr) 

If the kinematical assumption had been r(R,Z, t) = R[l+\p(Z, t)]eR + 
[Z+w(Z, t)]ez, rather than eqn (1), then the procedure described above would have 
produced the Mindlin-Herrmann (1950) equations of motion for a solid rod with 
traction free sides, 

(A + 2p) wzz + 2A\]/Z = pw 

l4zz--n {Awz + 2(A + AiW} = p$ (10) 
b 

The function \j/{Z,t) has the interpretation of lateral strain in the solid rod. Clearly 
eqns (9) and (10) are very closely related, as is to be expected. (The relationship is 
clearer if B is replaced by —B in eqn (9).) 

The linearized continuum theory for longitudinal wave propagation in a solid 
material with voids, as given by Nunziato and Walsh (1977), takes the form 

Ewzz + pr\z = pw 

u-nzz ~ (fiwz + pßn) = pkfi C1!) 

and again the similarity to either eqns (9) or (10) is striking. In (11) w(Z, i) is the 
translation of the matrix material in the Z direction, and r\(Z, t) is the change in void 
volume ratio. The coefficients E and ß are simply generic coefficients in a quadratic 
expansion of internal energy. Although they have the dimensions of stress, in the 
theory they are a priori unrelated to the Young's modulus or the shear modulus of 



Elastic wave propagation through a material with voids 2039 

the matrix material. The modulus a has dimensions stress(length)2, and for consistency 
ß and k must have dimensions (velocity)2 and (length)2, respectively. (In their original 
paper ß, as used here, appears as —ß. The change of sign is preferable for indicating 
stability of waves, as will be shown below.) 

By cross differentiation each of the three systems of eqns (9), (10), or (11) may be 
put in the form 

JSfw = 0 (12) 

where if is a linear operator, 

*-K£-£VH£-£Vr^£-£l 03) dz2    dt2J\   8z2    dt2)     \   dz2    8t2 

and C\, c2, and c are all wave speeds. 
All three systems have the same identical mathematical structure provided only 

that in each case the nondimensional coupling coefficient T has the same sign and the 
three wave speeds are ordered in the same way. From the form of eqn (13) it is clear 
that the characteristic speeds, that is, the speeds that can carry discontinuities, are 
+ c, and ±c2. For the rod or the hollow tube c2 = (l + 2p)/p and c\ = \x\p, which are 
the bulk longitudinal and shear speeds in the matrix material, but for the generic 
continuum with voids, c] = E/p and c\ = a/pk. The continuum theory does not 
indicate which wave speed is the greater, but it would also be reasonable to associate 
them with the bulk longitudinal and shear speeds. (Imagine a three-dimensional 
problem where a longitudinal wave passes through a material with distributed point 
scatterers. By Huygens' principle each scatterer would be the source of both longi- 
tudinal and shear waves, so it is natural to expect that a purely longitudinal pulse will 
generate secondary shear waves, and therefore, that the smaller characteristic speed 
in the reduced theories should be associated with the bulk shear speed.) Since eqn 
(11.1) indicates that ct should be associated with predominantly longitudinal motions, 
it will be assumed that in every case c, > c2. 

The wave operator (13) exhibits a hierarchy of wave speeds in Whitham's termin- 
ology, Whitham (1974). It was shown by Wu (1961) that for such a system to be 
stable, in the sense that no harmonic wave component can grow exponentially in 
time, it is required that T > 0 and c> c,. (Whitham actually treated the stability of a 
slightly different wave system, and Wu extended the analysis to systems that include 
(13). The implications for the present case are as stated.) For the three cases 

r   8c2 solid rod 
(\-2v)b2' 

i(\^2v + (pR)c\ 
hollow rod 

(l-lvXl-cp^b2' 

ß. 
U' continuum 

r=« —   rK\\;    hollow rod (14) 
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Pe = 

2fi(\+v); solid rod 

1— v+(l+v)q>R 
2/± 

l—2v + cpR 
hollow rod 

continuum 

(15) 

where Poisson's ratio for the matrix material is given by v = 1/2(1 +p.). Wu's stability 
conditions are always met for the solid or the hollow rod. For the continuum they 
are met if ß > 0 and k > 0, but for his theorem to apply at all, it is also required that 
E > ß2/pß- It will be assumed that this last condition holds, as well, since if it did 
not, disturbances with small enough wave numbers (long wavelengths) would have 
complex frequencies, implying exponential growth. 

The lower wave speed, c, for the solid rod will be recognized as the bar speed, which 
is determined by Young's modulus, E = 2(\+v)p. For the hollow rod c depends on 
the void ratio cpR, as is to be expected. As q>R tends to zero, c tends to the bulk 
longitudinal speed, which is also reasonable. But as cpR tends to one, c tends to the 
longitudinal speed for plane stress. This limit is reasonable for a thin walled tube 
whose outer surface cannot expand, but the thin walled tube itself is not a reasonable 
approximation for a material with a large void volume. Therefore, henceforward it 
will always be assumed that cpR is small unless explicitly stated otherwise. 

BEHAVIOUR OF SOLUTIONS TO Jäf w = 0 

Static solutions to eqn (12) are those that correspond to S = const, P = const, and 
0 = 0. (There are also static solutions where Q # 0, but these turn out to have 
boundary layers and will be ignored here.) Stated in another way, solutions are static 
when wz and either B, ij/, or r\ are constant. Then eqns (9.2), (10.2), or (11.2) may be 
solved for B, i/>, or n in terms of wz, and the effective static longitudinal modulus, Ls, 
may be found by examining the ratio S/wz. The result is 

Ls= < 

solid rod 1 + 2U + 21— = 2/J.(1+V); 
wz 

B      „  l-v + (l+v)cpR     .   „ , 
A+2u - 2A — = 2fi    ,     ' —;   hollow rod 

wz \—2v + (pR 

(16) 

wz pß 
continuum 

The reader will immediately recognize that the lower order wave speed, or sub- 
characteristic wave speed, as it is also called, is determined by the static longitudinal 
modulus since the right-hand-sides of eqns (15) and (16) are identical. Wu's stability 
condition, c < cu corresponds to the physical statement that the effective longitudinal 
modulus is less than the longitudinal modulus of the matrix material. This is to be 
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expected, of cource, because the presence of voids contributes some extra strain for 
the same applied stress and therefore increases the compliance. It will also be noted 
that the extra stability condition for the continuum, E > ß2/pß, is just the reasonable 
physical condition that the static longitudinal modulus should be positive. 

It remains to describe the typical behavior of eqn (12) for a given typical disturb- 
ance. Let it be supposed that c, > c> c2 (always true for eqns (9) and (10), and also 
expected to be true for (11) for small enough void volume ratios) and consider an 
initial boundary value problem where the medium is quiescent at t = 0. Let a step in 
longitudinal velocity be applied at time t = 0 to the boundary Z = 0, and calculate 
the response in the interior of the medium as a wave propagates off to infinity. Since 
the equations are linear, the interior response for other velocity histories at the 
boundary may then be calculated by convolution. Because of the exact mathematical 
analogy among the three physical problems, it is only necessary to consider one of 
them, say the case of the solid rod, where existing insight may be used to guide the 
analysis. Results for the rod may then be applied to the other cases directly, with only 
a change in interpretation of the physical constants. 

Perhaps the most straightforward approach is to use the Laplace transform. Since 
this was worked out by Wright (1982), the details will not be repeated here, and only 
a brief summary follows. With boundary conditions ii'(0, /) = w0h(t) and i//z(Q, i) = 0 
(h(t) is the Heavyside step function and w0 is an arbitrary constant), and with initial 
conditions vi(Z,0) = i//(Z,0) = 0, it was shown that an asymptotic representation for 
vi' near the leading wavefront is 

H' _„     r,Z 

' b 

J\ (y) dy 
cxt>Z (17) 

where r\ = 8(cj — c2)/c2. Equation (17) is shown plotted in Fig. 1. Note that the height 
of the step at the wave front remains constant, but that the magnitude of the particle 
velocity drops off rapidly behind the front, and the greater the distance from the 
origin, the more rapid the rate of decrease. 

With the identity (e.g. see Bowman (1958)) 

J1(y)dy      l-e~" 
~7. U») 

o Jy2+ri2 

and expansion of the Bessel function for small values of its argument, eqn (17) can 
be shown to give 

w (      c2\Z c,t — Z 
—-1-4 l-^F-^v—+ ••■    ,ctt-Z^0 (19 M'0 \      c\)b      b 

Equation (19) shows the same trend as Fig. 1, and in addition it shows that the rate 
of decrease behind the front is greater as the ratio cjc\ decreases. For the three cases 
the effect of the velocity ratio is given by 
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-0.5L 

Fig. 1. Dispersion in the leading wave, as calculated from eqn (17). (Taken from Wright (1982). Reproduced 
with kind permission from Kluwer Academic Publishers.) 

2v solid rod 
l-v' 

ci-c2 2v2<pR 

{\-v){\-2v + <pRY 

ß2 

IpßE' 
continuum 

(19a) 

In an elastic bar, as is well known, the main pulse travels with the lower order wave 
speed that is determined by Young's modulus. The asymptotic response near Z = ct 
can also be found from the Laplace transform (e.g. see Wright (1982)), but another, 
more intuitive approach, explained by Whitham (1974), may also be adapted for use 
here. Since a nondispersing and forward propagating wave with speed c can be 
described by the equation (d/dZ+c~ ldldi)<j> = 0, as an approximation for the dis- 
persive wave, set 8/dZ = -c'^d/dt in all parts of eqn (13) except the forward wave 
operator with speed c itself. Then eqn (12) becomes 

^1 
dt3 2T 

°8Z + dt 
vv = 0 

and with the change of variables 

83 

-r3c3~ \w 

= t — Z/c and £, -- 

= 0,    where r3 = 

= Z it finally becomes 

2IV 

(c\-c2)(c2-c\) 

(20) 

(21) 

Note that r3 > 0 by assumption concerning the ordering of the three wave speeds. 
Also since T has dimensions {time)'2, r3 has dimensions {length)'2. 
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A similarity solution to eqn (21) may be found by setting x = <j>£,~Xß, which reduces 
it to Airy's equation 

dx2 + VVx 
dw 
dx 

0 

The solution to eqn (22) that vanishes as <j> 

dw 

die 

oo far ahead of the wave is 

CAi(-3-]/3rcx) 

(22) 

(23) 

where C is an arbitrary constant. After integration on x and adjustment of the 
constant, the solution is 

f> 
Ai( — q) dq,    where \p = 

rc(t-Zjc) 
1/3 

(24) 

Equation (24) is the same as the result given by asymptotic expansion of the solution 
by Laplace transform in Wright (1982) and is shown in Fig. 2. Note the familiar 
dispersive waveform with the Pochhammer-Chree ringing about the unit step. The 
scale of the risetime in the dispersive front is determined by (3Z)l/3/>'c, which is another 
familiar result for wave propagation in a bar. Although the exact numerical values of 
the constants here may vary somewhat from the three-dimensional result, the form is 

Fig. 2. Dispersion in the main pulse, as calculated from eqn (24). (Taken from Wright (1982). Reproduced 
with kind permission from Kluwer Academic Publishers.) 
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Fig. 3. Composite sketch showing expected separation of leading wave and main pulse. (Taken from 
Wright (1982). Reproduced with kind permission from Kluwer Academic Publishers.) 

identical. Equation (24) may be rewritten so that b is the natural length scale for Z, 
just as it is in eqn (19). Figure 3 shows a composite sketch of the expected waveform 
when both (17) and (24) are taken into account. As time progresses, the discontinuous 
front and the main pulse should separate from one another, and the leading spike 
should become thinner and thinner. An example of this behavior, actually calculated 
for the continuum theory by Nunziato and Walsh (1977), is shown in Fig. 4. In their 
calculation the wave speeds satisfy the ratios fe/cj)2 = 0.55 and (c/c^)2 = 0.81 so the 
three speeds are ordered as assumed. Since c = 0.9c,, the separation between the 
distinctive parts of the response does not occur very rapidly with distance of propa- 
gation, but the formation of the spike and the developing dispersive waveform are 
clearly evident. 

Solutions for the hollow tube or the continuum with voids follow exactly the same 
pattern, but with differing numerical constants. Characteristic speeds were discussed 
following eqn (13), and the lower order or subcharacteristic speeds were given in eqn 
(15). The scaling parameter r2 for the three cases works out to be 

r  = < 

8      l+v 

b~2v2(l+2v)' 

8 (\-2v + (pR)2 l-v + (l+v)(pR 

b2v2(pR(l-(pR)2   l + (l+2iO<pÄ  ' 

(pß)2f, zjkp 
kfl2 1-- 

E-ß2lpß, 

solid rod 

hollow rod 

continuum 

(25) 

Since risetime decreases as r increases, the dispersive wave reduces to a step pulse as 
r -» oo. For both the solid and the hollow rods this happens when v-*0, but then c -> 
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Fig. 4. Particle velocity vs time at four stations, as calculated by Nunziato and Walsh (1977). The cutoff 
frequency cu, is calculated from w? = F in present terminology. (Reproduced with kind permission from 

ASME.) 

c, at the same time. For the hollow rod c -»c, also when (f>R -> 0. For all of these 
cases the leading and dispersive waves coincide so the limiting behavior of the dis- 
persive wave is to be expected. Similarly for the continuum, as c-> c2, the term in 
parentheses vanishes, and the dispersive wave becomes a step wave. 

DISCUSSION 

Three physical systems have been shown to be described by the same linear partial 
differential equations. The case of the solid rod is well understood and can therefore 
be used as a guide to understanding the other two. The hollow rod, if regarded as a 
model problem that approximates the continuum with voids, shows how a small void 
volume fraction gives rise to a dispersive wave that is entirely analogous to the bar 
wave. Finally, the continuum theory of a material with voids shows that in general 
the analogy with the bar wave should hold true. 

The main point to be recognized is that in systems of the kind described in this 
paper it is the lower order or subcharacteristic wave speed that carries the dominant 
energy pulse, but that it takes time and distance, possibly many characteristic lengths, 
for the dispersive wave to establish itself. The key parameters in determining the 
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decay of the leading spike are readily apparent in eqn (19). They are the relative 
difference between squares of wave speeds, given in eqn (19a), and the characteristic 
length scale. Obviously the porosity has a large influence on the rate of decay. Similarly 
the main features of the dispersive wave are determined by the parameters r, as 
determined from eqn (21) or (25), and the characteristic length scale. Again the 
porosity obviously has a large influence. 

The wave profiles will be further modified if there is a finite rise time in the input 
velocity at the boundary. Since the solution in that case is a convolution with the 
response to a step load, the effect will be to clip the leading spike. The resulting wave 
profile may then be easily confused with a profile that results from a rate effect in the 
constitutive behavior of the material. To put it another way, when there are both rate 
and dispersive effects present, it may be extremely difficult in an experiment to separate 
the two without taking appropriate precautions. 

Cowin and Nunziato (1983) suggested that with regard to the relationship between 
a continuum theory of a material with voids and the effective moduli calculations 
for porous materials, they are "... complementary, each being able to accomplish 
something the other cannot". Here it has been shown how the two approaches may 
be blended together so as to get the effects of both simultaneously. Although the 
model problem of the hollow rod, embedded in an equivalent continuum, has obvious 
limitations as a physical surrogate for a continuum with voids, it serves admirably to 
show the mathematical relationship between the solid rod and the continuum with 
voids. 
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ABSTRACT 

Indentation tests at scales on the order of one micron have shown that measured hardness increases 
significantly with decreasing indent size, a trend at odds with the size-independence implied by conventional 
plasticity theory. In this paper, strain gradient plasticity theory is used to model materials undergoing 
small-scale indentations. Finite element implementation of the theory as it pertains to indentation modeling 
is briefly reviewed. Results are presented for frictionless conical indentations. A strong effect of including 
strain gradients in the constitutive description is found with hardness increasing by a factor of two or more 
over the relevant range of behavior. The results are used to investigate the role of the two primary 
constitutive length parameters in the strain gradient theory. The study indicates that indentation may be 
the most effective test for measuring one of the length parameters. © 1998 Elsevier Science Ltd. All rights 
reserved. 

Keywords : A. indentation and hardness, B. elastic-plastic material, C. finite elements. 

1.    INTRODUCTION 

Indentation tests have been used extensively to characterize the plastic properties of 
solids. Historically, one of the primary goals of indentation testing has been to 
estimate the yield stress by measuring the hardness, defined as the load on the indenter 
divided by the area of the resulting impression (e.g. Atkins and Tabor, 1965; Johnson, 
1970; Rubenstein, 1981). Recently, hardness has been shown to be size-dependent 
when the width of the impression is below about fifty microns. Such small-scale 
experiments are often referred to as micro-indentation tests (or nano-indentation tests 
at the sub-micron scale) and have become a popular method of illustrating the size- 
dependence of plastic deformation (Gane and Cox, 1970; Pethica et al., 1983; Doerner 
and Nix, 1986; Samuels, 1986; Stelmashenko et al, 1993; Atkinson, 1995; Ma and 
Clark, 1995; Poole et al, 1997). The measured hardness may double or even triple as 
the size of indent decreases from about fifty microns to one micron. In effect, the 
smaller the scale the stronger the solid. This is a large effect which almost certainly 
has significant implications for other applications of metal plasticity at the micron 
scale. A size-dependence of indentation hardness is not encompassed by conventional 
plasticity. Simple arguments, based on dimensional analysis, reveal that any plasticity 
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theory which does not contain a constitutive length parameter will predict size- 
independent indentation hardness. 

Recently, new plasticity theories containing constitutive length scales have been 
developed to characterize size-dependent plastic deformation (e.g. Fleck and Hutch- 
inson, 1993,1996; Acharya and Bassini, 1996,1997). Micro-hardness tests are thought 
to provide an effective method for characterizing a material's flow response at small 
length scales. By correlating an indentation solution for a given theory with test data 
in the size-dependent range, one should be able to infer values of the constitutive 
length parameters, in much the same way as the macroscopic hardness test is used to 
measure flow stress. 

In this paper, the Fleck^Hutchinson (1997) strain gradient plasticity theory has 
been used to determine the effect of the material length scale on predicted hardness 
for small indents. Prior to this work, only one attempt appears to have been made to 
analyze the size-dependence of micro-hardness tests with a continuum theory of strain 
gradient plasticity. Shu and Fleck (1996) applied an earlier version of the plasticity 
theory that accounts for contributions of rotation gradients to hardening but not of 
stretch gradients. They found that a version of the theory based on rotation gradients 
alone cannot account for the strong size-dependence observed experimentally. In part, 
their finding provides the motivation for the present work which extends the study to 
include the role of stretch gradients. In addition, contact will be made between the 
present results and predictions from dislocation-based models of micro-indentation 
size-dependence by Ma and Clarke (1995), Brown (1997) and Nix (1997). 

The constitutive behavior and its finite element implementation are first briefly 
reviewed. Results are then presented for conical indentation without friction. The two 
primary goals of this paper are: (a) to assess the effectiveness of strain gradient 
plasticity theory in accounting for the strong size-dependence observed in indentation 
tests; and (b) to infer values of the constitutive length parameters via correlation of 
the mechanics results with experimental data available in the literature. 

2.    CONSTITUTIVE DESCRIPTION 

The constitutive behavior of the material is described within the context of small 
strains and small rotations. A deformation theory version of strain gradient plasticity 
is used here in the form given by Fleck and Hutchinson (1997). The formulation is 
for a small strain, non-linear elastic solid, where both strain and strain gradients 
contribute to the strain energy density. It falls within the general class of solids 
considered by Toupin (1962) and Mindlin (1965). Interpretation of the strain gradient 
contribution to strain hardening in terms of the connection of strain gradients to the 
generation of geometrically necessary dislocations has been discussed by Fleck et al. 

(1994). 
The strain tensor is defined in terms of the displacements M, in the usual manner, 

that is e,j = {(uu + uM). The second gradient of the displacement vector is defined as 
rj = ukij; kcan be expressed in terms of the strain gradients as r\ijk = sjkJ+eikJ- sUik. 
The effective strain measure introduced below is taken to be a function of only the 
deviatoric parts of the strain and strain gradient tensors, defined as 
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£// = e//-3<5(A* 0a) 

n\,k = nuk -föikrijpp + öjklipp) (lb) 

such that r\'ikk = 0. Non-zero deviatoric strain gradients for the general axisymmetric 
case are given in terms of the displacements in the Appendix. Smyshlaev and Fleck 
(1995) showed that the deviatoric strain gradient tensor could be decomposed into 
three unique, mutually orthogonal third order deviatoric tensors according to 
r\'jjk = r\\]j! + rf$+rf$, where rjfprifß = 0 for m + n and each tensor preserves the 
properties rffjl = rfjll and rjftl = 0. The steps required to carry out this decomposition 
are also given in the article by Fleck and Hutchinson (1997). 

The effective strain measure used to define the deformation theory is taken to be 
the isotropic invariant 

F2 - IF'F' -4-/
2

M
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I-!
<1,

4-/
2
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-I-/

2
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(3)
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(:
'
) (2) £■ e   — i EijEij   l   ' 1 <\ijk Hijk + ' 2 HijU <\ijk T t 3 <\ijk llijk ■ \£) 

The first term in (2), ^4, is the invariant used to form the classical J2 deformation 
theory, and the strain gradient theory reduces to the classical theory in the limit in 
which the strain gradients are small. The three invariants of the strain gradients in 
(2) represent the most general dependence on the deviatoric strain gradient tensor 
that is isotropic and homogeneous of degree two. The contribution is positive definite 
when the three length quantities, /, are each non-zero. These lengths are the new 
constitutive parameters in the theory. 

It is instructive to write the effective strain in a form which reveals more explicitly 
its dependence on rotation gradients. With the rotation as Ö, = \eiJkukJ, where eijk is 
the permutation tensor, define %,-j = Qu = eipkz'kj^ as the rotation gradient. As Fleck 
and Hutchinson (1997) have noted, the second and third of the above strain gradient 
invariants depend only on the rotation gradients: 

f$»7$ =\XijX>j + \XijXji    and    »/IÄ)=!x<,Xy—|X(/XA (3) 

Thus, an equivalent alternative expression to (2) is 

El =^A+iW}k)nW+lilsXiJxiJ+(~il-lii)%uXj, (4) 

where Ics = (2/1 + 12/f/5). The invariant r\\$r\\$ depends on both stretch and rotation 
gradients. For deformations which are irrotational (i.e. %u = 0), only the first of the 
length parameters, lu has any influence. It is through l]rf\^r\\^ that stretch gradients 
make their presence felt. 

The first version of the strain gradient theory (Fleck et al., 1994; Fleck and 
Hutchinson, 1994) assumed strain gradients enter only through the one in invariant 
of the rotation gradients, X/jX/ß according to 

El = ^i/u + ^llsXifliy (5) 

This is a special case of (4) with /, = 0, l2 = \lCs ar>d h = \/~YJCS- This class of solids 
falls within the framework of couple stress theory, a sub-set of Toupin-Mindlin 
theory. Fleck et al. (1994) analyzed wire torsion data for annealed copper wires 
ranging in radius from 7-60 microns using the version of the plasticity theory based 
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on (5). By fitting the theory to the data, they inferred that lcs ^ 4 /mi for this material. 
The deformations in wire torsion are such that the two other invariants of the strain 
gradients in (4), J^JM** and Xijljh are identically zero (Fleck and Hutchinson, 1997). 
Thus, for this application, there is no loss in generality in using a theory based on (5) 
rather than (4). In other applications, however, contributions from stretch gradients 
through iWijk^ can be of dominant importance, particularly when deformations 
are nearly irrotational. Examples of this type discussed by Fleck and Hutchinson 
(1997) include void growth and cavitation, crack tip fields, and indentation. 

No examples have been identified yet for which the third invariant of the strain 
gradients in (4), x,yX//> Plavs a particularly important role. To reduce the set of length 
parameters from three to two, we will exclude any dependence on x,yX/> in (4) by 
taking l2 = -j6/5h (with l2 = lcs/2 and /3 = y/5/24lcs) such that (4) becomes 

(6) Ee   — J t'ifi'ij + 11 Y\ijk r\ijk + 3 'csXijXij 

From (2), it can be noted that this combination is positive definite if both /, and lcs 

are non-zero. As mentioned above, lcs controls the size effect in wire torsion, while 
the outcome of the present work will be that /, is by far the more important of the two 
parameters in micro-indentation. Thus, it seems likely that both length parameters, /, 
and lCs, must be retained for general application of the theory. Moreover, unless it 
turns out that these two length parameters have fixed proportion for all metals, it 
would appear that experimental data from at least two different types of small scale 
tests will be required to separately determine /, and lcs. Further discussion of this 
issue will be given at the end of the paper. 

A strain energy density function is assumed in the form 

W(Ee) = w(Ee) + 
6(1-2v) 

(7) 

where E is Young's modulus and v is Poisson's ratio. The dependence on deviatoric 
quantities w{Ee) is chosen such that in uniaxial tension the stress-strain behavior 
derived from (7) reproduces the Ramberg-Osgood tensile relation 

a     3 oy 
£=E

+ii[7 (8) 

The work increment per unit volume associated with an arbitrary variation of the 
displacements is 

S W = Oijd&ij + iijk5r\ijk (9) 

where the stress quantities, au = o> and zi]k = xfik, are obtained from W by 

dW        , dW 
,, = ^r   and    T(,=—. 

The principle of virtual work is given by 

(10) 

[oij5eij + %ijk5tiijk\dV = fiöuldV+ [tjöUi + rjttjoUij] dS (11) 
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where dV and dS are the volume and surface elements,/- is the body force per unit 
volume, /, is the surface traction, /•,• is the double stress traction, and n, is unit surface 
normal. The equilibrium relationship derived from the principle is 

aikj~tijk.ij ~   ~Jk (12a) 

while the stress-traction relationships for a straight boundary aligned with the x, axis 
are 

h — a2k~l2jk,j~~l2\k,\ 

rk =T22k- 

(12b) 

(12c) 

Stress-traction relationships for arbitrarily oriented and shaped boundaries are given 
by Fleck and Hutchinson (1997). 

3.    FINITE ELEMENT FORMULATION AND INDENTATION MODEL 

On the basis of the deformation strain gradient plasticity behavior outlined in the 
previous section, a finite element scheme was derived for the general axisymmetric 
case. The potential energy of the system is given by 

7r(w) = *(*'>+Hf dV~ [tkUk + rkDuk] dS (13) 

where K = £7(3(1 — 2v)) is the bulk modulus and S is the portion of the boundary on 
which tractions are prescribed. The principle of minimum potential energy applies in 
the usual manner, i.e. of all kinematically admissible displacement fields, the actual 
displacement field will render n a minimum. The governing equations are then found 
by taking the first variation of (14) in the usual manner. The finite element dis- 
cretization of the result follows standard procedures, but is complicated by the 
dependence of w on strain gradients. 

The finite element model is illustrated in Fig. 1. The contact radius is defined as a; 
the depth of penetration of the indenter is 8. The half-angle of the indenter, ß, was 
taken to be 72°, which corresponds to a Vickers indenter. The indenter is assumed to 
be rigid. Contact between the indenter and the substrate is assumed to be frictionless. 
Studies on conventional elastic-plastic solids indicate little difference between the 
hardness predicted for a frictionless indenter and that for an indenter-substrate system 
permitting no sliding. The material is modeled as being a semi-infinite half plane; the 
size of the mesh was chosen by decreasing the size relative to the contact radius until 
there was a negligible change in the calculated hardness. 

3.1.    Choice of elemen t 

It is important to note that admissibility requirements of the second gradient terms 
require Ct continuity in displacements. Previous strain gradient modeling efforts have 
explored a variety of types of elements (Xia and Hutchinson, 1996) and have shown 
that element performance is strongly dependent on the constitutive behavior. Based 
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axis of revolution 

Included half-angle: 
ß = 720 8 - depth of indent 

9ur      n 
Under the indenter 

f(D,   ^ = C 
dr 

3u 
' dr 

z-0 

Fig. 1. Geometry of the axisymmetric indentation model and boundary conditions. 

on this earlier work, an element similar to one initially derived for plate applications 
was chosen; problems in previous work (Xia and Hutchinson, 1996) with the element 
concerning adequate hydrostatic stress fields did not arise for the compressible 
material modeled here. More recently, C0 elements with displacement gradients as 
nodal degrees of freedom have been investigated and performed admirably for linear 
elastic boundary value problems; these elements may prove more desirable for future 
efforts in strain gradient plasticity (Shu et al., 1997). 

The element is a three noded triangle with eighteen degrees of freedom. For each 
node, the nodal variables are 

dur du,. 
uz, 

duz duz 
(14) 

Thus, the elements produce C, continuity at the nodes. The shape functions were 
derived by Specht (1988) and are outlined and discussed by Zienkiewicz and Taylor 
(1989). In general, the displacement gradients are not continuous across element 
boundaries, only at the nodes. However, the variation of displacement gradients along 
element faces are defined such that the element passes the patch test and can exactly 
reproduce constant strain gradient fields. This implies that there is no spurious energy 
contribution from jumps in displacement gradients across element boundaries. 

The constitutive behavior and interpolation outline above were used in defining a 
general axisymmetric user element in the commercial code ABAQUS. 

3.2.    Boundary conditions 

Axisymmetry dictates that ur and dur/dz are zero along the axis of symmetry. The 
vertical displacement along the bottom of the mesh was constrained to be zero, 
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while the radial quantities were unconstrained. Derivatives of displacements must be 
specified in addition to displacements, as they are additional nodal degrees of freedom. 

For a frictionless indenter, the proper boundary condition underneath the indenter 
is a constraint between the radial and vertical displacements; the nodes in the contact 
region are constrained to fall on the indenter, with freedom to slide up and down the 
face of the indenter. For small strain theory and the shallow indenters considered 
here, this can be approximated by specifying the downward displacement and allowing 
the radial displacement to be free. The more shallow the indenter, the more accurate 
are these linearized boundary conditions. Thus, the following modified boundary 
conditions under the indenter were imposed: 

,-, c       r        Su-        1 
i   H,(r) =-S+——,-^ = —— (15a) 

tan/f      or     tanp 

dur     du,,     du. 
(it) no restriction on un   -r—,    ~^~,   -r1- (15b) 

or       oz       oz 

In addition to approximating zero shear traction under the indenter, (15b) results in 
a zero double stress traction [given by (12c)], enforced by the variational principle. 

3.3. Determining the proper contact radius and indent depth 

The contact between the indenter and the substrate was simulated by assuming a 
contact radius, a, and iterating to find the proper indentation depth, <5, for that size 
of indent. The proper indentation depth is defined as the depth at which the normal 
pressure between the indenter and material goes to zero at the edge of contact, i.e. at 
r = a. Using small strain theory for shallow indenters, the pressure is given by the 
traction in the vertical direction, given by (12b). The pressure under the indenter 
simplifies to 

dx.r.     dz.~ 

'< = *--2ir-ir- (16) 

For the strain gradient solid, evaluating the tractions under the indenter using (16) 
and the finite element solution proved unreliable, due to the difficulty in evaluating 
the derivatives of the higher order stress quantities. To avoid this, the correct depth 
was assumed to be that at which the nodal forces went to zero at the edge of contact. 
Since the nodal forces represent the integrated average of the tractions over the 
element faces, this is consistent with the zero-traction criterion. The benchmark test 
results summarized below confirm the accuracy of this method. 

3.4. Benchmark tests 

The element performance and mesh geometry were tested by comparing predicted 
hardness values with an analytical solution for shallow conical indentation of an 
elastic half-space and some results based on conventional plasticity for the same 
problems which were presented by Shu and Fleck (1996). In general, the model was 
quite accurate. There was less than 2% error in the indentation load at a given 
indentation radius compared with the analytical solution for the elastic problem. The 
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a       a      a 

Fig. 2. Size-dependent hardness predictions as a function of material length scale over contact radius, for 
a frictionless conical indenter with a 72° half-angle. 

hardness values (loads) for conventional plasticity were within 5% of the benchmark 
tests outlined by Shu and Fleck (1997). 

The added computational expense of six degrees of freedom per node was partially 
compensated by the greater accuracy of the higher order element. The mesh density 
was chosen by examining the hardness values as the size of the smallest element 
(located adjacent to the contact radius) decreased. For both the conventional and 
strain gradient theories, the change in hardness was less than several percent when 
the minimum element size was decreased from 0.034a to 0.016a; decreasing the 
minimum element size further by a factor of two led to even smaller changes in 
predicted hardness, although computation time increased significantly. The mesh used 
to generate the results was comprised of 1500 elements, with a minimum element size 
of 0.016a. 

4.    NUMERICAL RESULTS 

4.1.    Size-dependent hardness 

Computed size-dependent hardness for the conical indenter with a half-angle 
ß = 72° is presented in Fig. 2, where the hardness H is defined as P/(na.2) with P as 
the load. These results are for the strain gradient solid with U = lcs= I for several 
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Table 1. Values of the material length scale determined from least squares fits with 
several experiments from the literature 

Orientation 

Macroscopic 
hardness—H0       n = 3      n = 5 

MPa fim urn 

Stelmashenko et al. (1993) 

Ma and Clarke (1995) 

Nix (1997) 
Atkinson (1995) 

(100)[011] 3100 0.52 0.41 
(110) 3200 0.38 0.32 

011)[011] 3300 0.25 0.22 
[100] 360 0.39 0.34 
[110] 375 0.22 0.19 

566 0.60 0.42 
ork-hardened 0.81 0.73 
Annealed 1.76 1.56 

values of the hardening exponent n. The particular solid with /, = lcs = I hardens in 
response to both stretch and rotation gradients. It was labeled an SG solid by Fleck 
and Hutchinson (1997) and was used in that paper to study the effect of strain 
gradients in several examples. Emphasis is on the variation of hardness with relative 
size of the indent as measured by the ratio of the indent radius to the material length 
parameter /. The results in this paper have been computed with ay\E= 1/300 and 
v = 0.3. 

The hardness, H, in Fig. 2 has been normalized by the conventional plasticity result 
at the same value of n, i.e. the limiting result for l/a -> 0, which is given in Table 2 in 
the Appendix. The values for the conventional limit in Table 2 can be used with Fig. 
2 to determine the actual hardness for a given length scale or size of indent. The plot 
thus represents the relative increase in hardness due to including strain gradients in 
the constitutive formulation. The abscissa in Fig. 2 is l/a, and it can be seen that size- 
dependent increases in hardness begin to become significant when a is less than about 
10/. Hardness is approximately doubled for indentation radii as small as about twice 
the length scale parameter /. The relative increase in hardness for « = 5 is greater than 
for n = 3, although the absolute increase in hardness at corresponding values of l/a 
are very nearly the same for the two strain hardening levels. In Section 5, the absolute 
value of the material length parameter will be estimated by comparison with exper- 
iments available in the literature. 

4.2.    Deformation characteristics 

The deformed surface profiles under the indenter are shown in Fig. 3(a) for several 
indent sizes. In this figure, the radial and vertical locations have been normalized by 
the material length scale, which is assumed to be a material property. The values of 
the indent load (labeled in the figure) and displaced profiles accent the role of the' 
normalizations used in calculating the hardness. The hardness, which is defined as the 
average stress under the indenter, is a function of the size of indent relative to the 
material property /, as already noted. 
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£ 
a 

P 
aya2 

a 0.1 21 
b 0.3 30 
c 0.5 41 
d 0.7 50 

r/a 

Fig. 3. (a) Deformed surface profiles for several indent sizes and constant material length scale. Given in 
the figure are normalized values of the indent load, (b) Deformed surface profiles for constant indent size 
and various length scales. Given in the figure are normalized values of material length scale and cor- 

responding indent load. 
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Fig. 4. Effective strain contours for various material length scales; each curve represents the estimated 
plastic zone size (i.e. E,. a; 1.3c,) for a given length scale to indent size ratio. 

Figure 3(b) illustrates the effect of variations of material length parameter at 
constant indent size. These cases can be considered to be indents of the same size 
(defined as having the same contact radius) in materials with different length par- 
ameters /. The materials with the larger / are harder, and require greater loads to 
create the same contact radius. This is consistent with both the experimental behavior 
and anticipated behavior of the constitutive description, which dictates that the 
amount of hardening increases as / increases. The curves show that this increased 
hardening results in profiles that are increasingly similar to the elastic case where no 
pile-up occurs. 

The effect of the material length parameter on the amount of plasticity underneath 
the indenter can be investigated by estimating the size of the plastic zone under the 
indenter. In Fig. 4, approximate boundaries to the plastic zone are shown for several 
length parameters /, all for the same contact radius a and the same strain hardening 
level, n = 5. The plastic zone is estimated as the region in which the effective stress 
measure is greater than av or, equivalently, E,, > \.3ey, as determined by the stress- 
strain relationship (8). The size of the plastic zone for the conventional plasticity 
limit, given approximately for the case //A = 0.001) is consistent with previously 
published results (e.g. Bhattacharya and Nix, 1991; Giannakopoulos and Larsson, 
1997; Shu and Fleck, 1997), regardless of whether flow or deformation plasticity 
theory was used. Figure 4 illustrates that increasing the material length parameter /, 
or, equivalently, decreasing the size of the indent a, increases the extent of the plasticity 
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Fig. 5. Ratio of indentation volume over estimated plastic zone volume vs indentation depth. The volume 
of the plastic zone was estimated by fitting the curves in Fig. 4 with a half-ellipsoid of revolution. 

zone relative to the indent size. When the indent radius is as small as 21, the extent of 
the plastic zone is nearly doubled. This is a large effect, but not surprising given the 
effect of / on the indentation load. 

The effect is further illustrated in Fig. 5, which presents the ratio of the indentation 
volume over the volume of the plastic zone. The volume of the plastic zone was 
estimated by identifying the plastic zone as the region inside the appropriate contour 
in Fig. 4 and fitting the shape of the zone with a half-ellipsoid of revolution. Ma and 
Clarke (1995) have presented experimental results in a similar manner. They estimated 
the extent of plastic flow by measuring the size of the plastic zone at a given depth. 
Their results are presented in the same manner as in Fig. 5, with the ratio of indentation 
volume to plastic zone volume vs indentation depth. Their experiments confirm the 
trend displayed in Fig. 5 : smaller indents have significantly larger relative plastic zone 
sizes. 

4.3.    Role of'the individual length parameters, \xand\cs. 

The results presented above are for the SG solid for which the ratio of the amplitudes 
of the length parameters in (6) are fixed according to /, = lcs=l (with l2 = -2 lcs and 
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Fig. 6. Normalized hardness predictions as a function of individual length scale parameters; in case (i) lcs 

is constant and /, varies, in case (ii) /, is constant and lcs varies. 

/3 = yf^lcs)- There is no physical basis for this particular choice of ratio, except that 
it ensures that both stretch and rotation gradients influence gradient hardening. This 
choice also ensures that Ec is positive definite because each of the three length 
parameters, /,, in (2) are non-zero. 

To gain some insight on the role of individual length parameters on hardness, 
calculations were carried out in which l{ and lcs were varied independently. Nor- 
malized hardness predictions are shown in Fig. 6 for a material with aJE= 1/300, 
n = 5 and v = 0.3. Case (i) displays the dependence of the normalized hardness on 
IJa with lcsja fixed at 0.3, while case (ii) gives the dependence on lcsja with IJa fixed 
at 0.3. The point where the two curves cross at IJa = lcs/a = 0.3 is the case of the SG 
solid. The relative slopes of the two cases illustrate that /, has much more effect on 
the hardness than !cs. A decrease of /, by 50% [case (i)] drops the size-dependent 
hardness elevation by 60%. Conversely, the length parameter associated with the 
couple stress theory, lcs, plays a relatively insignificant role. A 50% change in lcs only 
results in approximately a 10% change hardness elevation. The results are consistent 
with the results of Shu and Fleck (1996), who found the couple stress theory did not 
predict significant hardness increases. Extrapolating the results for case (i) to lJa = 0 
(see Fig. 6), one finds a size-dependent hardness elevation on the order of 10% for 
the couple stress solid with lcs/a = 0.3. Shu and Fleck report a 5% elevation for this 
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case; the discrepancy can be explained by minor differences in the assumed tensile 
stress-strain law (8) and element performance. 

An open question remains: What is the relative proportion of the material length 
parameters lx and lcsl Hopefully, insights will come from fundamental dislocation 
mechanics. It seems more likely, however, at least in the short term, that the answer 
will come from correlation with experiments which differentiate the two contributions, 
such as indentation and wire torsion. The parameter lcs is clearly of secondary 
importance in indentation. By contrast, as noted earlier, /, has no influence on wire 
torsion. In the present study, a non-zero value of lcs is required to ensure a positive 
definite formulation for the strain energy density. When the ratio lcs\lx is taken to be 
too small, the finite element model becomes ill-conditioned. Thus, the SG solid with 
/, = lcs = I provides a useful choice in the present study. Identification of / by fitting 
the solutions for the SG solid to experimental indentation data should be regarded as 
an approximate determination of /, with no implication for lcs. 

5.    COMPARISON WITH EXPERIMENTS AND DISLOCATION 
MODELS: CHOICE OF THE MATERIAL LENGTH PARAMETER / 

Indentation hardness data of Ma and Clark (1995) on silver single crystals with 
two orientations relative to the axis of the indenter are shown in Fig. 7(a), and another 
set of data on tungsten single crystals from Stelmashenko et al. (1993) at three 
orientations are shown in Fig. 7(b). In the first case, the hardness H is plotted against 
the indentation depth (/?), while in the second it is plotted against the indent diagonal 
(D). Ma and Clarke used a Berkovich indenter (65.3° face angle) with the same area- 
depth ratio as the Vicker's indenter (68° face angle) used by Stelmashenko et al. There 
is some dependence of the measured hardness on crystal orientation relative to the 
indentation direction in both sets of data, but size-dependence dominates. Super- 
imposed on the data in Fig. 7 are the present theoretical predictions from Fig. 2 for 
n = 3, corresponding to a high strain hardening level characteristic of annealed metals. 

The theoretical predictions were generated in the following manner. The results in 
Fig. 2 were fitted with second order polynomials to obtain H/H0 as a function of 
l/a. The limiting macroscopic hardness (H0 = H for l/a = 0) chosen for the fit is 
approximately the value of the hardness obtained in the experiments for the largest 
indent. These values are given in Table 1 and are indicated in each plot in Fig. 7. 
Indents of the same area are compared; the contact radius in the prediction was 
related to the experimental depth (or diagonal size) that would give the same projected 
area. Equating the areas for a 72° cone and a Berkovich indenter yields a = 2.8/z, 
where /; is the experimental depth. The relationship for a Vickers indenter is a = 0.45D, 
where D is the diagonal of the impression in the experiment.* These equations 
substituted into the polynomials yields an expression for the predicted hardness as a 

* Since the cone used here has a slightly higher area/depth ratio than the Vickers and Berkovich indenters, 
the depth of the prediction is slightly smaller than the actual depth in the experiments. Using a cone angle 
of 70.V gives the same area/depth relation and hence, compares indents of equal area and depth; the 
equations above would not change. 



The mechanics of size-dependent indentation 2063 

0) 
C 

800 

700 

600 

500 

400 

300 

-[110] 

H0 = 360 MPa -O- [10 0] 

0.22 |im 

: 0.39 |im 

ÜZ.= V 

Data taken from Ma and Clarke (1995) 
I   I   !   I   I   I   1   I   !   I   I   I   I   !   I 

S 

01 
C 
TS 

6000 

5000 

4000 

3000 

0.5 1 1.5 2 

Plastic depth h frm 

H0 = 3100 MPa _E^ (i00) [011] * = 0.52|im 

H0 = 3200 MPa ...0- (110) i = 0.38 |xm 

H0 = 3300 MPa _A... (lll)[011] ^ = 0.25 um 

Data taken from Stelmashenko, et. al. (1993) 
 i i \ i i i i i I i i      i 

10 

Diagonal of indent - D fim 

100 

Fig. 7. (a) Comparison of the experimental results of Ma and Clarke (1995) and the theoretical predictions 
given in Fig. 2. The lines indicate the results of a least squares fit to determine the material length scale. 
The experiments were done using a Berkovich indenter with a 65.3° face angle, (b) Comparison of the 
experimental results of Stemalshenko et al. (1995) and the theoretical predictions given in Fig. 2. The lines 
indicate the results of a least squares fit to determine to the material length scale. The experiments were 

done using a Vickers indenter with a 68" face angle. 
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function of experimental depth (or diagonal) and the material length scale /. The 
length scale was then determined by a least squares fit of the functions H =f(h, I) to 
the experimental data. This was done for both n = 3 and n = 5, and the results are 
tabulated in Table 1. For all cases, values for / in the range 0.2-0.6 pm fit the data 
very well. 

For hardnesses which do not exceed the macroscopic hardness, H0, by more than 
a factor of about 2, the numerical results of Fig. 2 can be well approximated by a 
linear dependence on the inverse indent radius according to 

~=l+c(n,ay/E)-. (17) 

For ay/E = 1/300, the numerical results give c s 1.85 for n = 3 and c ^ 2.43 for n = 5. 
A somewhat different dependence of H on the indent size has been suggested on 

the basis of dislocation arguments by De Guzman et al. (1993), Ma and Clarke (1995), 
Poole et al. (1997) and Nix (1997). Here, Nix's (1997) result will be quoted as it is the 
most detailed. The starting point of each of the above derivations is that the flow 
stress follows Taylor's relation x = apbp1'2, where a is a constant depending on 
structure which is about 0.3 for FCC materials, p is the shear modulus, b is the 
Burgers vector, and p is the total dislocation density. The total dislocation density is 
taken to be the sum of the statistically stored dislocations, ps, and the geometrically 
stored dislocations, pG, according to p = ps+pc- The statistically stored dislocations 
are related to the average plastic strain, while the geometrically necessary dislocations 
are tied to the incompatibility of the deformations induced by the indenter. Nix takes 
pG = 3(cotß)2/(l6bh). His final result for the size-dependent hardness is 

H\2 h* 

d-1+T (18) 

where H0 = 3j3apb^/ps and h* = 3(cotß)2/(\6bps). Note that h*/h is equivalent to 
a*la, where a* = h*/cotß. For small values of a*la, (18) also gives an inverse depen- 
dence on indent size as in (17). The two results are brought into coincidence if 

c{n,ay/E)l = \a*. (19) 

Differences between (17) and (18) become noticeable for values of a* I a greater than 
about 1/2. 

Nix (1997) plotted data for copper single crystals of McElhaney et al. (1997) as 
(H/H0)

2 vs l/h, presented here in Fig. 8. This data is taken with a Berkovich diamond 
pyramidal indenter with a 65.3° face angle. The linear dependence of (H/H0)

2 with 
l/h displayed by the data over the range from h = 1/5-2 pm is striking. Nix extrapo- 
lated the unnormalized data to 1 /h = 0 to obtain H0 = 556 MPa. The value, h* = 1.68 
pm, in (18) gives the best fit to the data. Poole et al. (1996) also presented plots of H2 

vs l/h for their micro-indentation data on two sets of copper polycrystals, one 
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Fig. 8. (a) Comparison of the experimental results of McElhaney et al. (1997), the theoretical predictions 
of Nix [eqn (18)] and the theoretical predictions given in Fig. 2. The experiments were done using a 

Berkovich indentcr with a 65.3° face angle. 

annealed and one work hardened. Their data indicates a value of h* for the work 
hardened copper, which is roughly one quarter that for the annealed copper. Their 
data, however, is less convincing as to the linear dependence of (H/H0)

2 on \\h. 
Superimposed onto Fig. 8 are the numerical results from the present analysis (from 

Fig. 2) for the case n = 3, using H0 = 556 MPa and accounting for the difference 
between the pyramidal and conical indenters in the manner discussed earlier. The 
least squares fit outlined earlier results in the value / = 0.6 ^m. (A summary of the 
fitting results is included in Table 1.) As mentioned above, the present results do not 
produce a linear dependence of (H/H0)

2 on \/h over the full range of 1//?. The 
dependence of the presence results seen in Fig. 8 is a consequence of the composition 
of the invariants employed in (6). In strain gradient plasticity, strain gradients are 
associated with geometric dislocations, while statistically stored dislocations are 
associated with the deviator strains (Fleck and Hutchinson, 1997). Thus, rather than 
a linear dependence of the form ps + pa, the effective strain Ec in (6) models a 
dependence composed according to the so-called harmonic mean as -JPS + PG- This 
choice has been made largely for mathematical convenience. Alternative compositions 
to (6) are discussed by Fleck and Hutchinson which are capable of modeling the 
linear dependence, ps + pG- Specifically, the choice 

E, — E  ■£■■ 
3 " '■' 

;./2 

+ [iWMlW+^lhTUjX,. 
;./2- 

(20) 

models the linear dependence for X = 1 and reduces to (6) for 1 = 2. Until more data 
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becomes available, we leave for the future the investigation of whether an alternative 
composition such as (20) should be used in the strain gradient plasticity formulation. 

Finally, the theoretical results in Fig. 2 have been fit to hardness data collected and 
analyzed by Atkinson (1995). Atkinson conducted indentation tests on a wide range 
of polycrystalline metals and extensively analyzed the data, with the goal of quan- 
tifying the size effect through relatively simple empirical formulae containing par- 
ameters to be determined by fitting the experimental hardness trends. One of the 
significant results of Atkinson's analysis is the finding that the variance of the fitting 
parameters is not greater for smaller indents than larger indents. This emphasizes 
that measurement error does not systematically increase with decreasing indent size. 
Atkinson's took data for relatively large indents, with the radius of the smallest 
indents no smaller than about 5 /mi. Consequently, his hardness measurements for 
the smallest indents were no more than 25-35% above the macroscopic hardness 
values. Atkinson found distinct differences among metals that divided along two 
lines: metals which were strain hardened by plastic working and those that were 
annealed. By choosing the material length parameter / for the present results in Fig. 
2 to fit Atkinson's data for a given class of metals, we were able to accurately reproduce 
the variation of HjH0 with indent size. Typically, the value of/for an annealed (soft) 
metal was found to be about 1.6 /an. The corresponding value for a work hardened 
(hard) metal was between 1/2 and 1 /mi. The values given in Table 1 are the results 
to fitting average results presented in Atkinson's paper. 

In summary, indentation data appears to be an excellent means to infer the material 
length scale / in the strain gradient plasticity theory. As emphasized in Section 4, / 
should be identified with the length parameter /, associated with stretch gradients in 
(6), since lcs has little influence on indentation. The values of / inferred from exper- 
imental data for a number of materials lies with the range for about 1/4-1 /mi, with 
the hardest materials having the smallest values of /. This is consistent with the fact 
that the free slip distance of dislocations decreases with hardness, and that / is related 
to the free slip distance. 
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APPENDIX 

Table Al. Non-zero strain gradients for the general axisymmetric case 

Deviatoric 
strain 
gradients Non-deviatoric components Derivative components 
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Table A2. Hardness predicted for conventional plasticity 

{a,IE) = 1/300; v = 0.3 ; (//a) = 0.001 
(H/(jr) = (P/OyTia2) Approximate S/a 

n = 3 7.49 0.37 
i, = 5 5.57 0.35 
« = 10 3.85 0.33 
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ABSTRACT 

Initiation of cracking due to small particle impacts on low ductility intermetallics is investigated exper- 
imentally and theoretically. The gamma titanium aluminidc alloys of interest which are being considered 
for elevated temperature structural applications in aircraft engines exhibit tensile ductilities on the order 
of 1-2%. Cracking due to any source, including small particle impacts, is of concern given the rapid growth 
of cracks in fatigue. This investigation focuses on a model geometry which reproduces the rear face cracking 
that is induced by a small particle impinging on an air foil leading edge. Small steel spheres are projected 
onto thin plates at velocities ranging from 76 to 305 m/s; cracking is thereby induced on the rear surface 
of the plates. Through finite element analyses of the dynamic impact event and some analytical estimates, 
we examine the hypothesis that crack initiation due to small particle impacts can be correlated with material 
ductility and with the severity and spatial extent of the straining during the impact event. In addition, with 
the use of static indentation tests in which similar strain distributions are present, some insight is gained into 
the difference in ductility between high and low strain rates. <f) 1998 Elsevier Science Ltd. All rights reserved. 

Keywords: A. ductility, B. contact mechanics, C. finite elements, C. plate impact, intermetallics (not 
included in list). 

1.    INTRODUCTION 

The intermetallic y-TiAl offers attractive properties for aircraft engine applications, 
including low density, high modulus, and high burn resistance. These properties come 
at the expense of the low tensile ductility that is typical of intermetallics; the ductility 
of gamma ranges from below 1% up to approximately 3%. The relevance of low 
ductility, particularly in the case of engine component design, is not appreciated 
quantitatively; indeed, ductility is not traditionally accounted for in design. For 
materials used to date, there presumably has always been enough ductility. A critical 
question for engine manufacturers contemplating intermetallic components is whether 
tensile ductilities on the order of 1 % are still sufficient. 

Wright (1993) made an initial attempt to estimate the actual tensile ductility 
required in various circumstances. Very recently, Knaul et al. (1998) have shown that, 
indeed, elastic stress concentrations (up to 2.3) are effectively blunted even with tensile 

*To whom correspondence should be addressed. 

2069 



2070 P. S. STEIF et ah 

Fig. 1. Definition of geometric quantities for sphere impacting target. 

ductilities as low as 1%. In contemplating the use of gamma in airfoils — turbine 
blades and certainly compressor blades — the threat of small particle impacts is also 
of considerable concern to designers. Significant amounts of foreign object damage 
have been documented for conventional titanium alloy compressor blades (Haake et 
a!., 1989), as well as on superalloy blades in other parts of aircraft engines. Given the 
low ductility in gamma, it is certainly possible that cracks may initiate from such 
impacts and thereby reduce the fatigue life. 

This paper stems from an investigation (Steif et al., 1997) which seeks to quantify 
the various factors controlling the fatigue strength or life reduction in gamma that 
may accompany small particle impacts. Relevant to this investigation is a parallel 
study carried out jointly by NASA Lewis Research Center and GE (Draper, Pereira 
and Nathal, 1997). They have cast to size "blade-simulative specimens" of gamma: 
fatigue specimens with the edge of the gage section shaped to simulate a blade leading 
edge. These specimens are to be subjected to conditions of load and temperature 
typical of those experienced by turbine blades, impacted with high speed particles, 
and tested in fatigue. Preliminary results of this investigation have been revealing as 
to the nature of damage to be expected. It has been found that small particle impacts 
perpendicular to the blade at the leading edge produce cracking on both the front 
(impacted) surface and on the rear surface. It is still unclear which of these forms of 
damage is more critical in determining the subsequent fatigue resistance, although the 
rear face damage tends to consist of cracks that are roughly perpendicular to the 
major loading direction in the blade. 

For purposes of developing some quantitative understanding of the factors con- 
trolling damage in such impact situations, we have focused on one of these forms of 
damage: rear surface cracking. Further, we have devised a related, though more 
analyzable, configuration in which similar damage patterns are observed: a thin plate 
to be impacted at its centre perpendicular to the large free surface (Fig. 1). In 
this paper we compare observations of plasticity and cracking with finite element 
predictions of the rear face strain patterns. This comparison was also carried out for 
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static indentation tests which have been chosen so as to feature similar strain patterns 
on the rear face. In addition, simplified models and correlations are developed which 
may be useful in lieu of detailed numerical analyses. 

The response of materials and structures to impacts has been the subject of inves- 
tigation in many contexts. Most relevant to the present paper are studies of local 
damage induced by small impacts. This includes the effect of impacts on composites 
(which have been extensively studied; e.g., Choi and Chang (1992)) and on ceramics 
(Evans, 1973; Tsuruta et ah, 1990). Such impacts introduce damage which can grow 
subsequently in fatigue. The effect of small particle impacts on blades made of 
conventional titanium alloys has been investigated by Nicholas, Barber and Bertke 
(1980). They considered various impact conditions on a blade-like sample, and then 
assessed the resulting reduction in fatigue strength. They found that impacts which 
produce cracks had in fact a more severe effect on fatigue strength than higher energy 
impacts which cleanly cut out a portion of the blade leading edge. Very recently, 
Walston, Darolia and Demania (1997) have investigated the effect of small particle 
impacts on NiAl alloys. 

2.    MATERIALS, PREPARATION, AND EXPERIMENTAL PROCEDURE 

2.1. Materials 

The gamma TiAl alloy used principally in this investigation had a composition Ti- 
47.3Al-2.2Nb-0.5Mn-0.4W-0.4Mo-0.23Si (Bhowal, Merrick and Larsen, 1995). This 
alloy, designed as WMS alloy, was investment cast into plates measuring 3 mm x 11 
mm x 75 mm. Following casting the material was subjected to a HIP treatment 
consisting of 1260°C and 172 MPa for 4 h, followed by a heat treatment of 1010°C 
for 50 h. The resulting microstructure was fully lamellar in character with significant 
amounts of the B2 and a2 phases, along with some degree of residual segregation. 
Rectangular flat plates of two thicknesses (1.75 mm and 2.25 mm) were electro- 
discharge machined from the cast plates. All samples were low stress ground, subjected 
to conventional mechanical polishing by hand with 600 grit paper and then elec- 
tropolished in a solution containing 300 ml methanol, 175 ml «-butanol and 30 ml 
perchloric acid maintained at — 50°C. 

A second investment cast gamma alloy with a final composition of Ti-47.9Al-2.0Cr- 
1.9Nb (Huang, 1991) has also been the subject of study in concurrent investigations; 
this alloy will be referred to as 48-2-2 alloy. Plates measuring 12.6mm x 100 mmx 140 
mm were subjected to a pre-HIP treatment of 1093°C for 5 h, HIP'ed at 1205°C for 
4 h at 172 MPa and given a subsequent heat treatment of 1205°C for 2 h, followed 
by rapid cooling. The resultant microstructure of 48-2-2 alloy was near-gamma in 
character, with an average grain size of about 70 ^m and about 6 vol% of y-a2 

lamellar colonies. The 48-2-2 alloy is relevant to the present investigation in that 
data at high strain-rates was obtained for this alloy, as described below. 

2.2. Material properties 

Room temperature tensile testing of the WMS alloy was carried out at strain rates 
of 0.3 s_l on cylindrical bars of gauge diameter 4.57 mm and length 23.4 mm. These 
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tests revealed a yield strength of 500 MPa, an ultimate strength of 540 MPa and a 
plastic strain to failure of 0.5%. The true-stress true-strain responses of the 48-2-2 
alloy at large strains were measured in compression using solid-cylindrical samples 
5.0 mm in dia. by 5.0 mm long, lubricated with molybdenum grease. Quasi-static 
compression tests were conducted on a screw-driven load frame at strain rates of 
0.001 and 0.1 s-1 at 77 and 298K. Dynamic tests, at strain rates of 1000-8000 s"1, 
were conducted as a function of strain rate and temperature utilizing a Split-Hop- 
kinson Pressure Bar (Follansbee, 1985). High temperature tests were performed in a 
vacuum furnace mounted on the Split-Hopkinson Pressure Bar (Frantz, Follansbee 
and Wright, 1984). The high temperature Hopkinson-Bar samples were lubricated 
with a boron nitride powder/alcohol slurry which was allowed to dry on the sample 
prior to testing. The samples were heated to temperature and allowed to stabilize 
prior to testing. The furnace used in the elevated temperature tests reached the 
equilibrium test temperature within an elapsed time of 7-10 minutes based upon 
thermocouple monitoring directly adjacent to the sample. 

The results of these tests were then fit to a Zerilli-Armstrong model (Zerilli and 
Armstrong 1987), which features five fitting constants and involves a logarithmic 
dependence on strain rate and a power law dependence on strain. Computer programs 
were developed to optimize the fitting constants to the stress-strain data over a wide 
range of temperatures and strain rates. A range of corresponding constants are given 
to calculate the stress at a certain strain followed by comparing this value to the 
experimental values. This process is repeated for every curve of interest until the best 
agreement to the entire set of stress-strain data is achieved. A deviation parameter 
indicating the degree of fit is defined as: 

T^      .      . *   v^   I ^calculated VW/       ^experimental VW/1 /1-, 
Deviation = - 2_, rr  (U 

n/=l ^experimental \^i) 

Two points representing the characteristic hardening behaviour on each stress-strain 
curve were taken to compare to the calculated stresses at the corresponding strain 
values. For the models presented, fits with deviation parameters of better than 4% 
were achieved. An in-depth description of the Zerilli-Armstrong model as well as other 
models was recently summarized in detail by Chen and Gray (1996). Additionally, a 
recent review of the high-strain rate mechanical response of aluminides by Gray 
(1996) details the numerous varied responses of Fe-, Ni-, and Ti-aluminides to high- 
strain rate deformation as a function of temperature. 

From the fit so obtained, the flow stress as a function of the plastic strain (for the 
48-2-2 alloy was expressed in the form 

ff = 270 + 660exp[-0.00350r+0.0001750rin(e)] + 3000£°9f> (2) 

where the stress a is in MPa, e denotes the strain rate, ep is the plastic strain, and 7" is 
temperature. For the WMS alloy, the static yield stress is approximately 200 MPa 
higher than that of the 48-2-2 alloy to which the fit was made. The first term in the 
Zerilli-Armstrong fit represents essentially the static yield stress. Therefore, we raised 
that coefficient by 200 MPa (from 270 to 470) and assumed the same hardening 
behaviour and strain-rate sensitivity as was observed in the 48-2-2. 
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2.3.    Impact Experiments 

High speed impact damage was produced on the plates using a ballistic impact 
facility. Steel spherical projectiles were accelerated down a steel barrel by the release 
of compressed helium. The velocity of the projectile was measured at the end of the 
barrel by breaking two laser beams a known distance apart. The spheres were 1.587 
mm in diameter and had velocities ranging from 76 m/s to 305 m/s. The particle 
impinged normal to the plate in the thickness direction and at its centre. 

3.    FINITE ELEMENT SIMULATION OF IMPACTS 

Finite element simulations of the high speed, small particle impact experiments 
were based on the idealized problem of a circular, simply supported plate impacted 
perpendicularly (without friction) by a rigid sphere with mass density 7850 kg/m3. 
The impacted plate (representing the WMS alloy) was assumed to have a density of 
3830 Kg/m3. The impacted plate was taken to occupy the region 0 < r < 19 and 
0 < z < /, where / = 1.75 or 2.25, depending on the plate thickness; the point of 
impact is at ;• = 0, z = 0. The calculations employed the commercial code ABAQUS 
EXPLICIT (Hibbit Karlsson and Sorenson, Inc.). The uniaxial behaviour described 
above was generalized to multiaxial states through the Mises stress invariant. The 
elastic modulus and Poisson ratio were taken to be 192 GPa and 0.3, respectively, 
and the transition in the stress-strain curve from the elastic regime to the fully plastic 
regime was assumed to have the same shape as for the 48-2-2 alloy. Meshes of various 
types have been used to assess convergence; the results to be presented below are 
based on a mesh of 2304 elements. The time integration steps are chosen automatically 
in ABAQUS EXPLICIT depending on the element size. The time steps were generally 
on the order of 2 x 10~9s. 

Typical results from the finite element simulations of high speed impacts (229 m/s 
on a 1.75 mm plate) are shown in Fig. 2. The peak force, the displacement at the 
impact point, as well as the rear surface deflection and the rear surface effective strain 
at r = 0, are plotted as functions of time. All have been normalized by their peak 
values (shown in Fig. 2); the peak values occur at different time instants. A second 
result of interest is the variation of the effective strain (the second invariant of the 
strain tensor) on the rear surface with r (distance from the central point beneath the 
point of impact). The results for three impacts (152, 229, 305 m/s on a 1.75 mm plate) 
are depicted as the solid curves in Fig. 3. These impacts produce successively higher 
peak effective strains; however, when the strains are normalized by their maximum 
values at r = 0, they can be seen to fall essentially along a single curve. For the lowest 
energy impact, at which no rear face damage was observed, the strain distribution is 
somewhat different. 

The coincidence in the effective strain distributions for impacts of various energies 
has two useful implications. First, it indicates that strain at any point on the rear 
surface can be estimated if the maximum strain at r = 0 is known. Second, it provides 
the basis for constructing what we designate as "equivalent" static tests. Specifically, 
we entertain the possibility that static indentations of plates of the same dimensions 
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Fig. 2. Representative time traces from finite element analysis (229 m/s on 2.25 mm plate); quantities have 
been normalized by their maximum values. 

could result in the same strain distribution if the plates were properly supported. 
Hence, we considered plates resting on a rigid support which contained a hole of 
diameter D concentric with the impact point. The strain distributions associated with 
such static indentations, again normalized with respect to their maximum values at 
r = 0, are also depicted (as the dashed curves) in Fig. 3 for several values of the hole 
diameter D. It can be seen that holes of diameter in the range shown lead to dis- 
tributions that are rather close to the distributions from the dynamic case. Accord- 
ingly, static tests were carried out using a hole of diameter 6.35 mm, with indentation 
forces chosen to produce strains similar to those predicted by the simulation of high 
speed impacts. 



Damage in gamma titanium aluminides 2075 

1.2 

c 
re 

w 

> 
''S 

LU 

£   0.8   ■- 
V) 
0) 
> 

LU 

ra 
a> a. 

0.6   •- 

0.4     - 

0.2    - 

1.75mm (152m/s) 
1.75mm 229m/s 
1.75mm 305m/s) 

Static, D=3.175mm 
Static, D=6.35mm 
Static, D=9.525mm 

aa 

Distance from Impact Center (mm) 
Fig. 3. Effective strains (normalized by their values at r = 0) as a function of radial distance from centre 
of Impact. Note similarity of distribution for various high speed impacts, as well as effect of hole diameter 

D on distribution for static indentations. 

RESULTS 

4.1.    Comparison of impact experiments with numerical predictions 

We now present observations of plastic deformation and cracking produced by 
high speed impacts and static indentations and relate these observations to predictions 
of rear surface strains. First, we note that while there are substantial dents on the 
impacted face, there is little or no cracking. While gamma can withstand substantial 
strains when the stresses are compressive (as they predominantly are in the contact 
region), plastic straining and tensile stresses, such as takes place on the rear surface, 
do produce cracking. Selected optical images of the rear surfaces are shown in Fig. 4. 
From these images, a plastic zone was identified as that region in which plastic slip is 
observable at the surface. The size of this zone was defined as the diameter of the 
smallest circle which included all the observed surface slip. Selected secondary electron 
images of the rear surfaces are shown in Fig. 5. From these images, a cracking zone 
can be discerned; this zone includes larger cracks at the center and smaller cracks at 
the periphery. Selected optical images of the rear surfaces are shown in Fig. 4. The 
size of the cracking zone was defined as the diameter of the smallest circle which 
included all the observed cracking. The zones of plasticity and cracking are referred 
to collectively as the damage zones. 
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Fig. 4. Selected optical images of the rear face of plates impacted at high speed showing plastic zones. 

Fia. 5. Selected secondary ele of the rear face of plates impacted at high speed showing 
cracking zones. 

The sizes of the plastic zone and the cracking zone for high speed impacts on two 
plate thicknesses are plotted in Fig. 6 as a function of impact velocity; the expected 
increase of damage with velocity is observed. Additionally, the damage zones tend to 
be larger for thinner plates. Likewise, the damage zones associated with static inden- 
tation increase in size with static indentation force and tend to be larger for thinner 
plates (Fig. 7). 

We consider now whether the strains computed from finite element analysis and 
continuum plasticity can be used to predict the extent of damage during impact. For 
each of the above high speed impacts and static indentations, the distribution of 
effective plastic strain on the rear surface was determined (from FEA) at the radial 
positions corresponding to the periphery of the plastic and cracking zones. Thus, this 
strain corresponds to the minimum straining necessary to initiate plastic slip or 
cracking. The inferred strains to initiate plasticity and cracking are plotting in Fig. 8 
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as functions of the damaged zone size. If plastic yielding were perfectly reproducible, 
then the inferred strains would be constant for all impacts sufficient to induce some 
plasticity; likewise, perfectly reproducible ductility would lead to constant strains for 
crack initiation. As can be seen, plasticity becomes visible when the strains reach 
values on the order of 0.2-1%. Interestingly, there is little discernable difference 
between the strains to produce visible plasticity with high speed impacts and with 
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static indentations. However, thinner plates tend to require somewhat higher strains 
to produce visible plasticity; this is not understood at present. 

The effective plastic strain to initiate cracking spans the range from 1-3%. Note 
that these strains correspond to a range of cracking zone sizes. The strain level may 
be compared with the uniaxial tensile ductility of 0.5% measured for this material, 
although the strains in the configuration studied here are biaxial, and the strained 
volume is rather small. While there is a range of strains at which cracking initiates, 
these strains appear to be consistently lower for high speed impacts (from 1-2%) 
than for static indentations (from 2-3%). The data suggest that ductility decreases 
at higher strain rates, although this conclusion is somewhat premature given the 
known variability of gamma and the small size of the data set examined here. However, 
there is other evidence (Y-W. Kim, private communication) that the uniaxial tensile 
ductility first increases with strain rate up to strain rates of the order 0.01 s_1, and 
then decreases for higher strain rates. The strain rates associated with the impacts 
considered here can be much higher than 0.01 s_1. 

4.2. Approximate estimates of strains due to small particle impacts 

It has been seen that strains on the rear face of the plate correlate reasonably 
well with damage zones. Therefore, it seemed potentially useful to devise simple 
approximate means of estimating the strain produced by any given impact. However, 
constructing a simple analysis of the impact event is very challenging: the event is 
dynamic, the material is strain-rate sensitive, and the strains in the rear portion of the 
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impacted plate are barely into the elastic-plastic regime. Nevertheless, the beginnings 
of such a simplified analysis is put forth here. Our approach involves demonstrating 
how the peak contact force can be estimated, and then showing from numerical 
simulations that the rear surface peak strain can be correlated with the peak force 
suitably normalized. 

Our first step in devising a method of estimating the peak force was to eliminate 
the strain-rate sensitivity and carry out strain-rate insensitive finite element com- 
putations for the set of high speed impacts described above on thin plates. This was 
done using the constitutive law (2), corresponding to the 48-2-2 alloy with the strain 
rate fixed at 0.001 s"1. In addition, strain-rate insensitive finite element computations 
were carried out with the same constitutive law for the same set of impacts on a half 
space. The corresponding peak forces are plotted in Fig. 9 as the solid curves, with 
the forces and impact energies normalized by the sphere radius as shown. Note that 
all of these calculations included the effects of inertia. 

To devise a simpler means of analyzing these impacts, we appeal to the classification 
of impacts given by Johnson (1985). One finds the impacts of interest here are 
quasistatic in that the impact velocity is much less than the elastic wave speed. In 
addition, pV2 tends to be the order of 0.1-1 times the yield stress; this corresponds 
to fully plastic contact, at the upper limit of shallow indentation theory but still short 
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of the hydrodynamic regime. One can, therefore, usefully employ Johnson's (1985) 
simplified formulation in which the "equation of motion of the particle" is combined 
with the "static force-indentation relation of the half-space". With reference to Fig. 
1, the appropriate relations include the equation of motion of the particle 

dt 

where P is the contact force between the particle and the impacted body, m is the 
particle mass and ö is the indentation. This equation is subject to the initial conditions 

«5(0) = 0;   ~=V (4a, 4b) 

where / = 0 coincides with the instant of first impact, and V is the velocity of the 
particle at impact. 

The geometry of the rigid sphere implies a relation between contact radius and 
indentation of the form 

a2=2R8-82 (5a) 

where a is the contact radius and R is the particle radius. The relation (5a) can be 
approximated for shallow indentations (ö/R < < 1) as 

a2 = 2RS (5b) 

Finally, we use the approximate relation between contact force and contact radius 
(Johnson, 1995) 

P = 3na2arep (6) 

where crcp is a representative flow stress. In taking the contact pressure to be 3 times 
the flow stress, fully plastic contact conditions have been assumed. 

If the flow stress is approximated as constant during the impact aKp = a0, eqns (3), 
(4), (5b) and (6) can be integrated with the result 

(7) 

which suggests a feasable normalization scheme for other assumptions of flow stress. 
Note that the impact event is described completely by the impact energy of the particle 
in this approximate analysis; the inertia of half-space is neglected. 

Alternatively, the representative flow stress in equation (6) may be taken to be 
dependent on the strain and on the strain-rate. This may be done by adopting the 
observation of Tabor (1951) that a representative strain beneath the contact depends 
on the contact radius a according to 

e„„ = 0.2«/* (9) 

and, therefore, 
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anp = a(0.2a/R) 

where the function a(e) represents the uniaxial stress-strain curve. Although this has 
not been done, the strain-rate sensitivity can also be included using 

£,,,„ = 0.2ä/R (10) 

together with a relation between the indentation rate a and the indentation rate. 
Using a representative flow stress that depends on the contact area, the simplified 

analysis was also performed using the following linear hardening model 

a = 0Q+ke (11) 

With 0O = 434 MPa and k = 3682 MPa, this linear approximation closely fits equa- 
tions (2) for a temperature of T = 298 K and a strain rate of 0.001 s^1. 

For such a hardening model, the peak force and the energy are related para- 
metrically to the peak indentation <5max according to 

6nR7 R 
-0.2k (12) 

-mV2 

2 

37t/?3 R 
(13) 

The results of this first approximation simplified analysis are plotted as the dotted 
curve in Fig. 9 along with the finite element results. 

It is interesting to note that while the peak forces associated with impacts on the 
thin plates are lower than those associated with impacts upon a half-space, they are 
only slightly lower. One expects inertia of the impacted body to play a more important 
role in impacts on thin plates. Studies of impact (Goldsmith, 1960) would suggest 
that the mass of the particle relative to that of the plate plays a role, in addition to 
the impact energy. For example, if the impact energy were to be held constant, but 
the impacting body had a much lower speed and a much higher mass, then the plate 
would flex statically during the impact. Much of the impact energy would go into 
gross deformation of the plate. Of course, the response to low speed impacts would 
depend on the diameter of the impacted plate, in contrast to the high speed impacts. 

For the higher speeds considered here, however, the contact time is not long 
compared with the natural period of gross flexural vibrations. Thus, little gross 
deflection occurs and lower rear-face strains are realized. The impact energy instead 
goes into very local and more intense deformation in the contact region, leading to 
higher peak forces. Still, as for the impacts on the half space, the impact velocities are 
not high enough for there to be much inertial resistance to the local contact defor- 
mation. In this sense, within the range of impact conditions considered here, the 
precise combination of mass and velocity is less important than the energy: regarding 
the peak force, the plate reacts rather like a more massive body. 

One can also see from Fig. 9 that the approximate analysis agrees fairly well with 
the half-space results, at least for lighter impacts; it overestimates the peak force for 
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Fig. 10. Finite element predictions of contact force versus contact radius compared with fully plastic 
contact relation. 

higher impacts. To gain some insight into the basis for the deviation between the 
finite element results and the approximate analysis, recall that the essential ingredients 
in the approximate analysis are the relations between force and contact radius and 
between contact radius and indentation depth. For this reason we have plotted these 
results from the finite element calculations for impacts on the half space in Figs 10 
and 11, together with the predictions of the approximate analysis. Again, the half 
space has properties given by eq (2) with a strain-rate of 0.001 s~', and the approxi- 
mate analysis uses the closely fitting linear hardening curve. 

From Fig. 10, one can see that the relation between contact force and contact 
radius involving the representative flow stress fits the FE results remarkably well; this 
plot contains in addition numerical results for impacts of 3.175 mm spheres on 
the plates. However, from Fig. 11, one can see that the FE predictions of surface 
displacement versus contact radius, while reasonably captured by the simplified eq 
(5b) for small displacements, is poorly approximated by this shallow indentation 
formula for larger indentation (higher impact velocities). Even the more accurate 
approximation tends to overestimate the contact radius for a given indentation. 
Clearly, there is deflection of the surface outside of the contacting region. One expects 
these additional deflections to be more severe in the cases of impacted plates, where 
the contact area should be even more overpredicted as a function of the surface 
displacement. 
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Accordingly, the approximate analysis was repeated, this time with the full 
expression (5a) for the contact radius in terms of the indentation (which requires 
numerical integration), rather than using eq (5b). The result of this analysis is plotted 
in Fig. 9, now as the dashed curve. While there is some improvement in the prediction 
(the peak force is lowered), it continues to overestimate the peak force somewhat for 
higher energy impacts. 

While deformations near the contact surface are fully plastic, and hence amenable 
to the approximate analysis of the peak force given above, the deformations near the 
rear surface are within the elastic-plastic regime. This has made it difficult to devise 
an approximate analysis from which one can estimate in advance the rear surface 
strains. Of course, this difficulty is compounded by our use of realistic (experimentally 
determined) stress-strain curves, rather than, say, a perfectly plastic model. Never- 
theless, we now show a correlation gleaned from the numerical results which might 
prove to be helpful in building such an approximate analysis. Figure 12 displays the 
peak force divided by the thickness squared (a stress-like quantity) plotted as a 
function of the peak strain on the rear surface. As indicated, Fig. 12 contains results 
for two materials: for the impacts on the WMS alloy( which includes strain-rate 
sensitivity), as well as for the impacts on the 48-2-2 alloy (for which the strain-rate 
has been fixed at 0.001 s~'). 
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In each case, one discerns the data points to fall within a tolerable range of a single 
"stress-strain" curve. The dependence on the thickness of the plate is quite slight 
(after the normalization of the peak force); there is some dependence on the sphere 
radius particularly as the peak strain extends beyond about 2%. Notice also that the 
curves'for the WMS alloy (only simulations with 1.59 mm spheres were conducted 
with this alloy) tend to lie approximately 200 MPa above the curves for the 48-2-2 
alloy We suggest that it may be possible to combine this correlation with the approxi- 
mate analysis of the peak force described above to estimate the likelihood of damage 
initiation given a contemplated impact. Certainly, to have a general tool for making 
quantitative predictions of damage, much additional study of the origin of the form 
of these curves and the dependence on the material stress-strain behaviour is required. 

5.    CONCLUSIONS 

Our goal has been to gain insight into the factors which control the damage 
accompanying small particle impacts on air foils of low ductility intermetallics, such 
as gamma TiAl. To this end, experiments were conducted to study impacts of small 
particles on thin flat plates. Impacts over a range of energies have been produced 
which introduced differing degrees of damage on the plate rear faces. Damage was 
quantified in terms of two measurements: the size of the region in which plasticity 
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was visible and the size of the region in which cracking was visible. In addition, finite 
element analyses of the high speed impacts were performed, from which the plastic 
strain distributions were extracted. These finite element analyses also permitted us to 
devise static indentation tests which produce strain distributions on the rear face 
essentially matching the distributions from the high speed impacts. 

For each impact and indentation, the strains necessary to initiate plastic defor- 
mation and to initiate cracking were taken to be the finite element predicted plastic 
strain at the periphery of the respective plastic or cracking zone. It was found that 
the strains to initiate plasticity ranged from 0.2-1.0%, independent of whether the 
damage was caused by a high speed impact or a static indentation. There was a higher 
strain to initiate plasticity in thinner (1.75 mm) plates than thicker (2.25 mm) plates. 
It was also found that strains ranging from 1-2% were necessary to initiate cracking 
in the high speed impacts, whereas higher levels of strain (from 2-3%) were required 
in the static indentations. These strain levels should be compared with strains to 
failure in uniaxial tension of 0.5% measured with standard cylindrical specimens. 
While the set of data reported here is still rather small, it does suggest that the strain 
to initiate cracking under high rate conditions is lower than that to initiate cracking 
under static conditions. Finally, it has been shown that reasonably accurate cal- 
culations of the peak force can be devised based on simple contact mechanics. In 
addition, there is a correlation between a suitably normalized peak force and the peak 
strain on the rear face. These provide a potential basis for simple means of estimating 
whether cracks will initiate under contemplated impact conditions. 
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ABSTRACT 

An experimental study on the formation and evolution of strain inhomogeneity in the form of deformation 
bands on the surface of polycrystalline sheet metals is presented. A whole field in-plane deformation 
measurement technique based on computer vision has been applied for in situ monitoring the development 
of plastic deformation patterns in annealed Al-5%Mg and recovered AA5182 aluminum sheet metals. The 
strain inhomogeneity over a rectangular area about 5 mm x 3 mm on the sheet metal surfaces is found to 
increase steadily with increasing elongation during a uniaxial tensile test. Propagative deformation bands 
have been detected in both aluminum alloys by incremental strain mapping although no band-like 
deformation patterns can be identified by direct visual observation of Al-5%Mg specimen surfaces. The 
effect of plastic deformation patterns on surface finish, tensile ductility, and formability of sheet metals are 
elucidated. The approach and results of this experimental investigation can be valuable to physically- 
based multiscale plasticity modeling of sheet metal forming. © 1998 Elsevier Science Ltd. All rights 
reserved. 

Keywords: A. strain localization, B. polycrystalline materials, B. metallic materials, C. digital image 
correlation, C. mechanical testine. 

1.    INTRODUCTION 

In the continuing efforts in reducing weights and increasing fuel efficiency of ground 
transportation vehicles, light-weight aluminum alloys are being developed and gradu- 
ally used for automotive body sheet applications. Many important technical issues 
including surface finish and formability of newly developed aluminum sheet metals 
require in-depth investigation to ensure their defect-free production and smooth 
introduction. The surface finish is found to be particularly problematic for some 
aluminum alloy sheet metals. Beside the commonly known "orange peeling" due to 
surface grain roughening during forming, 5xxx aluminum alloys are susceptible to 
the growth of propagative Portevin-Le Chatelier (PLC) deformation bands (Chihab 
et al., 1987). Formation of ridging or line surface defects during stamping has also 
been reported for 6xxx aluminum alloys that are being developed for automotive 
outer body panels (Roush, 1996). Existing aluminum alloy sheets also, in general, 
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show lower formability than that of low-carbon steel sheets currently used for auto 
body panels (Newby, 1982; Ghosh et al, 1984). Three important parameters, (n, K 
and r) have been identified in forming of steel sheets over the years, where n and K 
are the material parameters in the Holloman constitutive equation a = Ken, r is the 
ratio of the true strain in the lateral direction to the true strain in the thickness 
direction of a sheet metal (Raghavan et al, 1992; The Aluminum Assoc, 1996). The 
parameter n is known as the strain hardening exponent and a higher value of n implies 
a greater stretchability. However, the strain hardening exponent n alone may not be 
sufficient as a measure of stretchability across sheet metal material systems. For 
example, while an n value of 0.23 is obtained for both heat treated aluminum body 
sheet 6111-T4 and aluminum killed deep drawing quality steel based on stress-strain 
curves measured from uniaxial tensile testing, the actual stretchability of the aluminum 
sheet is much lower than that of the steel (The Aluminum Assoc, 1996). 

The surface finish of sheet metal panels is closely related to the roughening of 
surface grains during stretch forming operations (Fukuda et al, 1974). Free surface 
grain roughening are the manifestation of microscopic non-steady and non-uniform 
plastic deformation of individual grains or grain clusters even when a sheet metal 
undergoes a macroscopically uniform plastic deformation (Tong et al, 1997; Weiland 
et al, 1997). The existence of propagative PLC deformation bands and the appearance 
of accompanying surface markings in 5xxx and other aluminum alloy sheet metals 
have been attributed to the self-organization of microscopic plastic deformation 
processes correlated over a certain length scale and time scale (Kubin and Estrin, 
1985; Estrin and Kubin, 1995). As the non-uniform deformation or strain inhomo- 
geneity often also leads to tensile instability of sheet metals via the formation of 
macroscopic grooves and necking of the sheet metals (Marciniak and Kuczynski, 
1967; Parmar et al, 1977; McCarron et al, 1988; Jain et al, 1996), the spatial 
formation and temporal evolution of strain inhomogeneity in plastically deforming 
aluminum sheet metals may be one of the keys to achieve a better understanding of 
surface degradation and forming failure of the sheet metals. 

An experimental study of characterizing whole-field strain inhomogeneity in two 
aluminum sheet metals subjected to a uniaxial tension is presented in this paper. A 
deformation measurement technique based on a computer vision approach was used 
to extract the whole field displacement data by comparing contrast features in a pair 
of digital images of a specimen surface before and after deformation. This technique, 
often called digital image correlation (DIC) in the literature, has been developed and 
improved over the years by Brack et al. (1989), Sutton et al. (1991), Vendroux and 
Knauss (1994), and others. The sensitivity and accuracy of the DIC measured local 
strain variations of plastically deforming sheet metals have recently been evaluated 
by Tong (1997) and Smith et al. (1997) and are found to be sufficient for discerning 
the deformation patterns on both cumulative and incremental strain maps at a length 
scale of the order of 1 mm. The organization of the paper is as follows. Details of the 
experiment are described in Section 2. The results of macroscopically uniform uniaxial 
tension experiments on two aluminum sheet metals are presented in Section 3. Dis- 
cussions on strain inhomogeneity, surface topography and finish, and tensile ductility 
of the aluminum sheet metals are given in Section 4. Finally, conclusions drawn from 
the present study are summarized in Section 5. 
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2.    EXPERIMENTAL TECHNIQUE 

2.1. Materials and specimen preparation 

Two aluminum alloy sheet metals were investigated in this study, namely, Al- 
5%Mg (nominal thickness: 1.08 mm) and AA5182 (composition limits: 0.2 Si, 0.35 
Fe, 0.15 Cu, 0.2-0.5 Mn, 4.0-5.0 Mg, 0.1 Cr, 0.25 Zn; nominal thickness: 0.203 mm). 
Dogbone-shaped flat tensile testing coupons were cut from rolled sheets so that the 
sheet rolling direction was aligned with the tensile loading direction. Al-5%Mg 
specimens had a nominal total length and width of 35 mm and 5 mm, respectively; 
their gauge section was nominally 15 mm long and 3 mm wide. The material Al~ 
5%Mg was annealed to obtain a recrystallized grain structure consisting of equiaxed 
grains at an average size of about 70 /mi. AA5182 specimens had a nominal total 
length and width of 50 mm and 6.8 mm, respectively and their gauge section was 
nominally 18 mm long and 4.6 mm wide. The material AA5182 was rolled and 
recovered and had an average grain size of about 12 /im. All specimen surfaces were 
mechanically lapped with #600 SiC paper to a smooth finish, free of any machining 
and processing marks. One flat surface of the tensile specimens was decorated with 
random white-and-black speckles by a fine mist of paint spray to facilitate the digital 
image processing for whole field deformation measurements. 

2.2. Experimental set-up and procedure 

In situ tensile tests of Al-5%Mg and AA5182 flat sheet specimens were carried out 
at the ambient temperature on a compact loading stage. The loading stage with a 
dimension of 100 mm x 125 mm x 50 mm was mounted to an x-y stage under a long- 
distance focus optical microscope with a CCD camera attached. The jaws of the 
tensile stage move in opposite directions to minimize the movement of the observation 
area which is kept close to the center of the tensile specimen. The maximum jaw travel 
is 50 mm and the maximum load capacity is 4.45 kN; these features enable the stage 
to stretch tensile specimens to large plastic deformation and fracture. The specimen 
fixture for testing Al-5%Mg was originally designed to hold a flat, dogbone-shaped 
tensile specimen close to the top surface of the tensile stage so that the specimen 
surface can also be directly measured in situ by atomic force microscopy (Tong et al., 
1997). Both displacement and load data were recorded via a computer-based data 
acquisition system. An eight-bit grayscale digital image (640 x 480) of the flat surface 
of a specimen was captured after each prescribed displacement increment. Several 
dozens of images were acquired in a typical tensile test. Additional details of the 
experimental set-up, data acquisition procedures, and calibrations of load, dis- 
placement and digital images were given by Tong (1997) and Huang (1997). 

2.3. Force-displacement data reduction 

The displacement and load data collected during a tensile test were first corrected 
for the compliance of the loading stage and then used to compute the macroscopic 
true stress and true strain of the aluminum specimens by assuming that plastic 
deformation is volume preserving and the volume change due to elastic deformation 
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Fig. 1. Summary of a tensile test on an Al-5%Mg flat sheet specimen: (a) true stress-strain curve; (b) 
strain hardening rate vs true stress; (c) strain inhomogeneity of three accumulated strain components; and 
(d) strain inhomogeneity of axial strain increments. The insert in (a) shows the schematic of the specimen 

geometry, the region of the measurement, and the initial digital image of the specimen surface. 

is negligible. The resulting stress-strain curve was approximated by a spline fit and 
the instantaneous strain hardening rate was calculated from the curve-fit. The cal- 
culated true strain was confirmed by comparing with the final dimension of the 
deformed specimens. 

2.4.    In-plane surface strain mapping 

The following coordinate system is used throughout the paper (see the inserts in 
Fig. 1 (a) and Fig. 2(a): the x-, y- and z-axes are set to be the tensile loading direction, 
the transverse direction, and the normal or thickness direction of the sheet metals, 
respectively. The flat surface of a sheet metal tensile specimen forms the x-y plane. 
Two types of in-plane strain maps over the center region of a specimen gauge section, 
i.e. cumulative strain maps and incremental strain maps, were obtained by digital 
image correlation (DIC). A cumulative strain map was obtained by comparing each 
current deformed image with the initial, undeformed image of the specimen. An 
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Fig. 2. Summary of a tensile test on an AA5182 flat sheet specimen: (a) true stress-strain curve; (b) 
strain hardening rate; (c) strain inhomogeneity of three accumulated strain components; and (d) strain 
inhomogencity of axial strain increments. The insert in (a) shows the schematic of the specimen geometry, 

the region of the measurement, and the initial digital image of the specimen. 

incremental strain map was computed by comparing the image at the current load 
step with the image recorded just before the current displacement increment. An 
image window size of 40 x 40 pixels was used as the subset in DIC calculations as well 
as the numerical gage in local strain calculations (Tong, 1997). The mean value and 
the standard deviation from the mean of each strain component were evaluated for 
each strain map consisting of M x N grid points. For the results reported here, the 
spacing between each grid point in either horizontal or vertical direction is 10 pixels 
and typically a total of more than 1600 ( = MxN) points were used for each strain 
map. An average strain ratio (ey/e.) was also computed for each map. 

2.5.    Surface topography and roughness 

By assuming that plastic deformation is volume preserving and neglecting elastic 
strains, the cumulative normal strain of a sheet metal averaged through the sheet 
thickness, i.e. the thickness strain E., was computed from the measured in-plane axial 
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(ev) and transverse (e;.) strains via ez = —ex — sy. The non-uniform thinning of the sheet 
metal as the result of in-plane inhomogeneity of the normal strains was represented by 
the in-plane distribution of the current thickness of the deformed sheet metal via 
h(x,y) = h0e~r--(x'y), assuming the initial thickness h0 of the sheet metal is uniform. 
The average surface topography or the surface height of the two flat surfaces of a 
sheet specimen was computed by w(x, y) = [h(x, y)-have]/2, where have is the average 
thickness of the deformed sheet metal. Three surface roughness parameters of sheet 
metals were then estimated, namely 

1 N     M 

arithmetic mean valuei?a = ——- £ £ |iv(x„ jy)|, (1) 

/    j      N    M 

root-mean-square averageRq =   /—- £ Z w(*<>J/)2> (2) 
MNj=ll.t 

and maximum roughness height i?max = max[w(x, y)] — min[w(x, y)]. (3) 

3.    EXPERIMENTAL RESULTS 

A uniaxial tensile test of a metal is typically divided into three regimes, namely, 
elastic deformation (up to plastic yielding), uniform plastic elongation and post- 
uniform elongation. Discussions of the tensile experimental results here are limited to 
the nominally uniform elongation regime. The limiting uniform strain eu is commonly 
assumed to be attained when the macroscopic strain hardening rate 0 becomes equal 
to the flow stress, that is 

®^ = ax, (4) 
dex 

where ax and ev are the true axial stress and true axial strain. 
Figure 1 summarizes the tensile testing of an Al-5%Mg specimen. In addition to 

the true stress-strain curve, Fig. 1 (a) shows the schematic of the specimen geometry, 
the region of the measurement, and the initial digital image of the specimen. The 
specimen was not stretched to failure at the end of this test and the macroscopic strain 
hardening rate 0 was still larger than ax (the straight line in Fig. 1 (b) corresponds to 
eqn (4)). Cumulative strains of the DIC processes region as a function of the overall 
axial strain averaged over the entire gauge section are shown in Fig. 1(c). The 
solid lines correspond to the mean values and the error bars indicate their standard 
deviations respectively; the dashed line represents the ideal case when the axial strain 
of the DIC processed local region is equal to the overall average axial strain. Results 
of the mean value and standard deviation of the increment in local axial strain after 
each increment of axial displacement are shown in Fig. 1(d). A similar summary is 
given in Fig. 2 for an AA5182 specimen; the specimen was broken in this test which 
was indicated by a large drop in stress at the end of the stress-strain curve in Fig. 
2(a). Strain maps or spatial variations of both cumulative and incremental axial strain 
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0.0770 0.0798 0.0826 0.0855 0.0883 0.0911 0.0940 0.0968 
Fig. 3. Cumulative axial strain map of the deformed Al-5%Mg specimen surface with an average axial 

strain of 8.50%. 

components are shown in Figs. 3 and 4 for the material Al-5%Mg and in Figs. 5 and 
6 for the material AA5182, respectively. The strain maps in each figure correspond to 
a typical load step during each tensile test. All strain maps are plotted in the reference 
configuration (i.e. the initial undeformed region of each sheet metal). 

Variations of the estimated surface roughness parameters with increasing axial 
strain are shown in Fig. 7(a) and (c) for aluminum sheet metals Al-5%Mg and 
AA5182 respectively. The change of the strain ratio with the axial strain of these two 
materials is shown in Fig. 7(b) and (d) respectively. The evolution of surface top- 
ography of the sheet metal Al-5%Mg due to plastic deformation is shown in Fig. 8, 
corresponding to the same step shown in Figs. 3 and 4. Unlike the strain maps, the 
surface topography is represented in the current configuration (i.e. the deformed 
surface of sheet metal specimens), which is consistent with the situation when the 
roughness of a deformed sheet metal specimen is measured by a surface profilometer. 
The predicted surface topography for the sheet metal AA5182 is given in Fig. 9. 
Finally, optical photographs of the two sheet metal surfaces after uniaxial plastic 
tensile deformation are shown in Fig. 10(a) and (b), respectively. 

4.    DISCUSSIONS 

Plastic deformation of a single crystal due to dislocations is inherently het- 
erogeneous at the microscopic level (Hähner and Zaiser, 1997). Each individual grain 
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0.0118 0.0123 0.0128 0.0133 0.0139 0.0144 0.0149 0.0154 
Fig. 4. The incremental axial strain map of the deformed Al-5%Mg specimen surface at the load step 

shown in Fig. 3 (the average strain increment = 1.24%). 

0.0199 0.0210 0.0222 0.0233 0.0245 0.0257 0.0268 0.0280 
Fig. 5. Cumulative axial strain map of the deformed AA5182 specimen surface with an average axial strain 

of2.41%. 
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0.0002 0.0020 0.0039 0.0057 0.0076 0.0094 0.0113 0.0131 
Fig. 6. The incremental axial strain map of the deformed AA5182 specimen surface at the load step shown 

in Fig. 5 (the average strain increment = 0.46%). 

in a polycrystal aggregate deforms differently from an imposed macroscopically 
deformation field even when the field is nominally uniform (Weiland et ed., 1997). 
The experimental observation shows that a significant level of strain inhomogeneity 
exists over a field of view of several millimeters in two aluminum alloy sheet metals 
subjected to macroscopically uniform uniaxial tension. Such a field of view is larger 
than the thickness of the sheet metal and is much larger than the average size of 
individual grains in either sheet metal. The strain fluctuation measured in terms of 
the standard deviation from the mean value ranges from 10% to 30% of the average 
strain of the measured area, depending on the amount of cumulative deformation 
and materials. The origin of such a fluctuation can be attributed to non-homogeneous 
deformation of grains and grain clusters in Al-5%Mg (Figs. 3 and 4) and localized 
propagative deformation bands in AA5182 (Figs. 5 and 6). 

Of two aluminum sheet metals tested, AA5182 shows a strong PLC effect (Fig. 6) 
and surface markings due to such deformation banding can be visually observed on 
the polished AA5182 specimen surface from a glancing angle (Fig. 10(b)). However, 
no band-like deformation patterns can be identified by direct visual observation of 
Al~5%Mg specimen surface (Fig. 10(a)). Nevertheless, the existence of propagative 
deformation bands has been unambiguously uncovered in Af-5%Mg, see Fig. 4. The 
major difference between these two aluminum sheet models is reflected in the level of 
strain inhomogeneity and the variation of the average strain in their incremental 
strain maps (see also Fig. 1(d) and Fig. 2(d)). The dynamic and heterogeneous nature 
of plastic deformation can thus be effectively described by spatial characterization of 
strain rates or strain increments (Tong, 1997). Experimentally, the incremental strain 
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Fig. 7. Summary of the computed surface roughness parameters and strain ratio for Al-5%Mg (a) and (b) 
and AA5182 sheet metals (c) and (d), respectively. 

mapping approach used in this study seems to be robust and sensitive in monitoring 
the deformation process in sheet metals and it can be applied to systematically study 
the spatial coupling effects of plastic deformation in metals and alloys. 

Surface roughness in terms of the three parameters defined by eqns (1-3) increases 
monotonically with increasing deformation in Al-5%Mg (Fig. 7(a)). Up to 15% of 
axial strain, an approximately linear relation between the three roughness parameters 
and axial strain is observed. This linear dependence is consistent with observations 
by others (e.g. Fukuda et ai, 1974). An empirical relation was proposed by Fukuda 
et al. (1974) between the amplitude of surface roughening R and the average grain 
size d0 and the effective strain s, namely 

R = R0+kd0e, (5) 

where R0 and k are initial surface roughness and a material constant, respectively. 
Such a relation has been justified by assuming surface roughening is due primarily to 
surface grain rotation (Dai and Chiang, 1992). The surface roughness and topo- 
graphical features estimated here for the two sheet metals are based on the in-plane 
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Y 

Axial Strain = 8.503% 
Fig. 8. Computed surface topography of the deformed Al-5%Mg specimen surface at the load step shown 

in Fig. 3. Each grid corresponds to a 67 /im x 67 /mi square on the undeformed surface. 

strain inhomogeneity (see Section 2.5). The size of surface topographical features on 
the deformed Al-5%Mg surface is at least several times ofthat of grains (each grid 
in Fig. 8 corresponding approximately the average grain size of the sheet metal Al- 
5%Mg). Similarly, the periodicity of horizontal spacing of the peaks and valleys was 
found to be about an order of magnitude larger than the grain size in aluminum sheet 
metals by Jain et al. (1996). Surface roughening of Al-5%Mg at a field of view of 
several millimeters is thus dominated more likely by some collective deformation of 
a cluster of grains. Grains within certain small misorientation angles across grain 
boundaries can be the microstructural basis of such grain clusters (Adams, 1993; 
Rändle, 1992). These results indicate that refining of grain size without controlling 
the microtexture of sheet metals may not result in any significant improvement in 
surface finish. Surface roughening of AA5182 is dominated by the strong PLC effects 
via propagative deformation bands: its surface roughness parameters change irregu- 
larly with increasing axial deformation within the field of view of the experimental 
measurements (Fig. 7(c)). Grooves aligned around 50° to the tensile loading direction 
are major surface topographical features of the deformed AA5182 surface, see Fig. 
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Axial Strain = 2.408% 
Fig. 9. Computed surface topography of the deformed AA5182 specimen surface at the load step shown 

in Fig. 5. Each grid corresponds to a 110 /on x 110 /an square on the undeformed surface. 

10(b). Surface roughness of both deformed Al-5%Mg and AA5182 specimens was 
measured over a sampling area of 1 mm x 1 mm by an optical surface mapping 
microscope (Phase Shift Technology, Inc.). The measured surface roughness par- 
ameters Äa and Rq are consistent with the predicted values. The measured Rmax is 
slightly smaller which may be due to the small sampling area. The size of major 
surface topographical features ("peaks", "valleys", and "grooves") measured by the 
surface mapping microscope is also consistent with those in the predicted topography 
maps shown in Figs. 8 and 9. 

Formability of metals has often been linked to the amount of uniform elongation 
in uniaxial tension. Consequently, macroscopic strain hardening behavior and its role 
in improving and predicting the formability of metals have been of considerable 
research (Kocks, 1976; Petch and Armstrong, 1990; Chu and Morris, 1996; Jain et 
ah, 1996). The success of such a macroscopic description of plastic deformation is 
largely limited to pure, well-annealed, poly-granular metals and it alone is not 
sufficient in characterizing resistance of engineering aluminum alloy sheet metals to 
tensile instability that leads to strain localization and thus forming failure. For 
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Fig. 10. Optical photographs of the deformed Al-5%Mg (a) and AA5182 (b) specimen surfaces. 

example, the final failure of the AA5182 specimen was rather brittle-like as there was 
little necking process observed. In terms of the macroscopic stress-strain behavior of 
the material, its average strain hardening rate was well above the true stress level for 
initiating the macroscopic necking when the specimen broke (Fig. 2(b)) and hence 
was not the dominant factor determining its tensile ductility. The sudden loss of the 
potential ductility is attributed to the dynamic nature of a strong strain inhomogeneity 
within the sheet metal (Fig. 4). 

It is well-established that ductile fracture of engineering materials involves void 
nucleation and growth from inclusions or second phase particles (Gurland and 
Plateau, 1963; McClintock, 1968). Failure of thin sheet metals has been observed 
however to occur primarily by the loss of tensile deformation stability and the growth 
of incipient grooves or necking. Marciniak and Kuczynski (1967) have subsequently 
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developed a theory of analyzing limit strains in the processes of stretch-forming sheet 
metals by assuming that necking develops from local regions of initial thickness 
inhomogeneity. Their approach has since been adopted widely to construct biaxial 
forming limit diagrams of sheet metals (for example, Parmar et al, 1977; Jain et al., 
1996). While the Marciniak-Kuczynski type models provide a framework for rational 
discussion of limit strains in sheet metal forming, the resulting forming limit diagrams 
are found to be rather sensitive to the precise size and shape of the postulated groove 
(McCarron et al., 1988). Efforts in removing the arbitrary assumption of the geometric 
defect include the introduction of a surface roughness parameter (Parmar et al., 1997; 
Jain et al., 1996). However, experimental observation of the incipient grooves or 
necks on deformed sheet metal surfaces has shown that the necks are very much 
longer and larger in magnitude than that of the surface roughness (Marciniak and 
Kuczynski, 1967; McCarron et al., 1988). Based on the measured cumulative strain 
maps and predicted surface topography maps shown in Figs. 3^1 and Figs. 8-9, tensile 
instability and thus the initiation and grow of necks may be attributed to the interplay 
of strain hardening, material (and hence strain) inhomogeneity, and geometric imper- 
fection (surface topography) over a length scale at least larger than the thickness of 
the sheet metals. Plasticity models incorporating the material inhomogeneity at proper 
length scales to capture the evolution of in-plane deformation patterning and surface 
topography may provide much more robust capabilities in analyzing sheet metal 
stretching processes. 

5.    CONCLUDING REMARKS 

The lack of intrinsic length and time scales in conventional polycrystal plasticity 
theories make them inadequate in modeling some of technologically important metal 
plasticity problems. As an illustration as well as an application, the spatial charac- 
terization of strain inhomogeneity and its evolution in two aluminum alloy sheet 
metals have been successfully carried out using a digital image correlation technique. 
Under macroscopically uniform axial tension and over a physical field of view of 
several millimeters (which far exceeds the grain size of the materials), non-hom- 
ogenous plastic deformation with an inhomogeneity up to more than 30% of the 
average deformation has been observed via cumulative strain mapping. The dynamic 
nature of the plastic deformation process has been effectively monitored via incremen- 
tal strain mapping as non-stationary deformation bands have been detected in both 
aluminum alloy sheets. The in-plane strain inhomogeneity of sheet metals has been 
identified as the leading factor that contributes to their local non-uniform thinning 
and consequently their surface roughening and formation of grooves at the same 
physical length scales. For the class of sheet materials similar to these two aluminum 
alloys, the conventional macroscopic plasticity models of strain hardening appear to 
be deficient for tensile ductility and formability analysis and completely inadequate 
for modeling the evolution of surface finish in sheet metal stretching operations. 

There is an increasing recognition regarding the importance of the interactive 
hierarchy of length and time scales in modeling polycrystalline materials undergoing 
plastic deformation (Fleck and Hutchinson, 1997; Estrin and Kubin, 1995). Dynamic 
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in situ whole field strain mapping both cumulatively and incrementally over a range 
of corresponding scales, combining with effective characterization and representation 
of the evolution of spatial heterogeneity of material microstructure using the tools 
such as orientation imaging microscopy (Adams, 1993), should be valuable in studying 
the formation and evolution of plastic deformation patterns and their effect on surface 
finish, tensile ductility, and formability of newly developed sheet metal alloys. 
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ABSTRACT 

In this paper the process of orthogonal cutting is studied by analytical means. A thermomechanical model 
of the primary shear zone is combined with a modelling of the contact problem at the tool-chip interface. 
A friction law is introduced that accounts for temperature effects. The effects of cutting conditions and 
material behaviour on the temperature distribution along the contact zone, on the mean friction and on 
the global cutting forces are evaluated. The experimental trends are shown to be well described by the 
proposed model. <C) 1998 Elsevier Science Ltd. All rights reserved. 

Keywords: A. cutting and forming, thermomechanical processes, B. viscoplastic material, friction. 

1.    INTRODUCTION 

Machining of metals is a complex process. Two main mechanisms can be identified; 
firstly the chip is formed along the primary shear zone with a sudden change in the 
direction of velocities producing an intense shearing; secondly the chip sustains a 
sliding along the tool-chip interface accompanied by friction effects and the formation 
of a secondary shear zone. To fully describe the cutting process would involve account- 
ing for the formation of a build-up edge (which might be important for low cutting 
velocities), and to model among other phenomena the wear of the tool, the chip 
segmentation, the chip curvature. 

Before attaining these goals, our aim is to propose an analytical model of stationary 
orthogonal cutting based on a realistic description of the friction effects at the tool- 
chip interface. 

A first modelling of orthogonal cutting was formulated by Merchant (1945). Cutting 
forces were predicted by considering a chip forming under shearing along a plane 
surface originated at the tool edge and inclined with an angle cf> (the shear angle) with 
respect to the workpiece surface. The material was assumed to be perfectly rigid 
plastic. This model neglects thermomechanical effects. A Coulomb friction law at the 
tool-chip interface is assumed with a constant friction coefficient. The shear angle 0 
is determined by minimization of the work produced by the cutting forces. 

* To whom correspondence should be addressed. Fax : 0033 0387315366. 
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A thermomechanical modelling was developed by Oxley (1989) which included 
temperature effects and material characteristics such as strain rate sensitivity and 
strain hardening. A semi-empirical thermal analysis was developed which provided 
satisfactory results at conventional cutting velocities. However the complexity of the 
model results from the existence of several parameters that have to be adjusted. This 
makes the interpretation of some trends of the model difficult. 

A global analysis of the cutting process is made possible by use of finite element 
methods, (Strenkowski and Caroll, 1985; Strenkowski and Moon, 1990; Sekhon and 
Chenot, 1993; Marusich and Ortiz, 1995). The numerical solution depends on features 
such as the criterion of mesh opening and the mesh distortion in a Lagrangian 
formulation. Results obtained in this global analysis involve the whole cutting system; 
this makes the analysis of the influence of some parameters more difficult than in 
simple specific analytical models. 

For industrial applications, a model should be able—from the cutting conditions, 
the thermomechanical properties of the workpiece and of the tool, and from the 
friction law—to predict the cutting forces, the stress, strain and temperature fields, 
the tool wear, the surface state, the instability conditions and chatter. There is no 
model at present that can efficiently account for all these effects together. 

To model a cutting process, one has to characterize the thermomechanical behav- 
iour of the workpiece at very large strain rates and a large range of temperatures. 
Indeed, strain rates larger than 105 s_1 can be attained in the primary shear zone even 
for conventional cutting velocities. In addition, high elevations of temperature are 
due to the important work of deformation associated to large shear strains in the 
primary shear zone (values of strains as high as 3 are usual), and to the friction effects 
along the tool interface. For steels, temperatures as high as 400-500°C are typical of 
the primary shear zone, and temperatures higher than 1000°C are usual on the tool 
interface. Such an increase in temperature has a major effect on the material response 
by lowering the flow stress (thermal softening). 

Contact conditions at the tool-chip interface are severe. The pressure is high and 
the sliding velocity may be large. This results in an important heating at the tool 
interface which affects the friction conditions. We shall propose a model of friction 
appropriate for the extreme conditions of pressure, velocities and temperature enco- 
untered during machining. 

Data obtained from machining experiments indicate that the mean friction 
coefficient at the tool-chip interface depends upon the rake angle a—friction increases 
when a is getting larger; Bailey (1975)—upon the feeding ?,—when the latter is 
increased, the friction coefficient decreases, Findley and Reed (1963)—upon the 
cutting speed, Schulz (1989) and the thermomechanical properties of the tool-work- 
piece pair. This list of parameters affecting friction, is not exhaustive. Empirical laws 
have been proposed where the mean friction coefficient increases exponentially with 
the rake angle, Usui et al. (1978), or decreases as a power law of the cutting speed, 
Schulz (1989). However it is difficult to generalize these laws so as to bring together 
all the effects of the cutting conditions (a, tuV). 

Experiments (using, for example, a high speed pin-on-disk test device) have shown 
that at large sliding velocities a reduction of the friction coefficient is obtained when 
the normal pressure or the sliding velocity are increased (Williams and Griffen, 1964; 



Modelling of orthogonal cutting 2105 

Kadhim and Earles, 1967; Earles and Powell, 1967; Montgomery, 1976; Lim et al, 
1989). We postulate that for sliding velocities large enough (typically ^ 1 m/s) these 
effects are related for a large part, to the change of the tool-chip interface temperature. 
This temperature is non uniform in general. However we simplify the situation by 
considering the mean temperature T-ml along the interface as the main parameter. 

Our principal assumption consists of postulating a Coulomb friction law with a 
mean friction coefficient p. depending on the mean temperature Tint 

fi = fl(Tint) (1) 

We shall validate this assumption by comparison with experimental results under 
various cutting conditions. It may be noted that under our hypothesis the pressure 
and velocities effects have an action on the friction coefficient through the changes of 
the interface temperature which they produce. Although the real friction law might 
be a little more complicated, the main experimental trends are reproduced under the 
assumption, (1). Note that the present model is viewed as being specially suited for 
large sliding velocities (^1 m/s). Note also that in our considerations, we shall be 
concerned with dry friction. 

The model of orthogonal cutting presented here has two main aspects: 

(1) The primary shear zone is considered as a thin straight band. This idealization is 
specially appropriate for large cutting velocities. Within this band the ther- 
momechanical problem and the material flow are modelized in a one dimensional 
approach (Molinari and Dudzinski, 1992; Dudzinski and Molinari, 1997). 

(2) Tool-chip contact is described by use of a mean friction coefficient depending 
upon the mean surface temperature TiM (friction law (1)). The existence of a 
secondary shear zone where the material sustains shearing along the tool interface 
is not considered; this simplification is specially adequate for high cutting speeds. 
The thermomechanical problem to be solved has a two dimensional character. 
An analytical solution of the temperature distribution is obtained. 

The characteristics of the friction law are deduced from the interpretation of data on 
machining of steels. Once this law is identified, various cutting conditions are con- 
sidered so as to check the range of validity of the proposed model. Finally a large 
variety of results is provided by a parametric study. 

2.    MODELLING OF THE PRIMARY SHEAR ZONE 

The following model of the primary shear zone has been proposed by Molinari and 
Dudzinski (1992). It is assumed that the chip is formed by shearing in a narrow 
straight band of thickness h, whose inclination with respect to the workpiece surface 
is defined by the shear angle </>, Fig. 1. It is supposed that the material is deformed by 
shearing in the shear band and that no deformation occurs before and after the band. 
The secondary shear zone that appears along the tool interface is not considered in 
the present modelling. The complex material flow near the tool is not accounted for 
either. We restrict our attention to the case of orthogonal cutting (cutting edge 
perpendicular to the cutting speed V). 
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Fig. 1. The primary shear zone is modelled as a shear band of constant thickness h, inclined to the cutting 
direction at an angle cj>. 

The uncut chip thickness tx (or feeding) is presumed to be small with respect to the 
width of cut it'. It is then justified to consider that the chip is formed under plane 
strain conditions. The cutting edge is taken as perfectly sharp and the tool is not 
deformable. The cutting conditions are given: it means that the feeding tu the rake 
angle a and the cutting speed V, are known. 

The workpiece material is postulated to be isotropic, rigid (elastic deformations 
neglected) and to have a thermomechanical response described under shear conditions 
by the following power law: 

fi0(y+yPy'y'"Tv (2) 

where y, y and Tare the shear strain, the shear strain rate and the absolute temperature 
respectively. Characteristics of the material behaviour are defined as /xp, the strain 
hardening exponent n (w ^ 0), the strain rate sensitivity exponent (0 ^ m < 1) and 
the thermal softening coefficient v (v «S 0). At large strain rates an increase of the 
strain rate sensitivity is observed on metals (Campbell and Fergusson, 1970; Klepa- 
czko, 1994). This can be included in the constitutive model, see Marusich and Ortiz 
(1995), and will be considered later in this paper, see section 5.4. 

Velocity diagrams at the inflow and outflow of the primary shear zone are shown 
in Fig. 2. Vc is the chip velocity relative to the tool. Vso and KS1 are the components 
of particle velocities tangential to the shear zone, respectively at the inflow and at the 
outflow; the normal velocity component VN is constant through the thickness of the 
band, due to the incompressibility condition: 

VN = Vsincj) (4) 

The analysis is limited to the case of stationary flow. The formulation is one 
dimensional, the variables depend solely on the coordinate y normal to the band and 
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Primary shear zone 

Cutting speed V 

Fie. 2. Velocity diagrams at the boundaries of the shear zone. 

do not depend on time. The equations of conservation of momentum, of conservation 
of energy, (assuming adiabatic conditions which are approached when high cutting 
speeds are considered), and the constitutive law (2) can be respectively written as 
(Dudzinski and Molinari, 1997): 

T= T,,-\ I p VN — + T0y 

f = [-)  T~r""(y+yp) (5) 

where p, c and ß represent respectively the material density, the heat capacity and the 
fraction of the plastic work converted into heat (Taylor-Quinney coefficient). Tw is 
the absolute temperature of the workpicce. In addition, we have the compatibility 
condition: 

dy )' 1 T(>',T0) 
(ny,T„))-'-''"(r+>p)-"'"" (6) 

T0 is the stress at the entry of the band. The term pV^ represents the inertia effects. 
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Heat conduction effects could easily be added in this formulation, Dudzinski and 
Molinari (1997). 

The boundary conditions are: 

T=TV    at   j = 0 (7.1) 

y = 0    at   >> = 0 (7.2) 

y = yx = tan(0 —a) + -—-r   at   y = h (7.3) 

Note that the temperature 7 given by (5.2) satisfies (7.1). When solving the differential 
equation (6) the value of T0 has to be determined iteratively so as to satisfy the 
boundary conditions (7.2) and (7.3). 

To solve the foregoing equations, the value of the shear band thickness h (appearing 
as the length of the integration domain of the differential equation (6)) and the value 
of the shear angle (j> are needed. The thickness h is assumed to be known (it can be 
measured). We shall determine 4> by the following relationship due to Zvorykin 
(1893): 

<t, = A+^-l (8) 

where a is the rake angle and X the mean friction angle at the tool-chip interface: 

ß = tan/I (9) 

A is a constant that depends on the material considered. For A = njA the relationship 
(8) corresponds to the Merchant formula. There is no general proof of eqn (8) that 
should be considered rather a constitutive assumption validated experimentally for 
some materials. Experimental results shown later indicate for example, that a reason- 
able value of the angle A for steel would be: 

A = 35° (10) 

There are some materials for which <f> would be of the form 

(j) = A1+A2(a-X) (11) 

3.    MODELLING OF THE THERMAL EFFECTS AT THE TOOL-CHIP 
INTERFACE 

The evaluation of the temperature at the tool-chip interface is an important step in 
the modelling of the cutting process. Friction effects are actually temperature depen- 
dent as proposed in our model (1). A realistic analysis of cutting can not be developed 
without accounting for the heat produced by friction. In addition one can note that 
the tool life depends strongly on the temperature level at the tool-chip interface, 
Taylor (1907). To increase the tool life, would involve a control of temperatures and 
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Fig. 3. Schematic view of the thermal boundary conditions used to solve the thermal problem in the vicinity 
of the tool-chip interface. T, is the temperature at the outflow of the primary shear zone. Q(X) is the 

surfacic heat source due to friction. 

of pressures. To achieve this control by optimizing the cutting process would be a 
major goal. 

Experimental data on the temperature distribution have been obtained by different 
means. Use of thermocouples and extrapolation of the results based on the solution 
of the heat equation in the tool provide an estimate of the temperature field and in 
particular of the mean contact temperature, Groover and Kane (1971). Other pro- 
cedures are based on infrared technique measurements Boothroyd (1963), or on the 
analysis of the structural modifications in the tool material, Wright and Trent (1973). 
These measurements have indicated that temperatures at the tool-chip interface as 
high as 1200°C are not uncommon. The temperature distribution at the interface is 
shown to be non uniform and to have a maximum. Moreover, an important influence 
of cutting conditions such as the cutting speed and the depth of cut t\ has been 
demonstrated, Trent (1977). The effect of the secondary shear zone was illustrated by 
Boothroyd (1963). 

The modellings of the thermal problem on the rake face of the tool are based upon 
the following simplifying hypothesis: 

HI.    The tool tip is perfectly sharp. 
H2.    The heat produced by friction on the flank face is neglected. 
H3. The heat flow through the tool surface will be neglected. Actually, the part of 

the heat flowing into the tool was shown to be small by Boothroyd (1963). This 
was revealed by the analysis of isothermal contours in the chip. 

H4. The heat transfer in the flow direction due to conduction is neglected with 
respect to the heat convection due to the material flow. 

Assuming that the heat sources are known, several solutions of the thermal problem 
at the interface have been proposed in the literature. The problem is considered as 
two-dimensional and time independent. The axes {X, Y) in Fig. 3 are taken along, 
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and perpendicular to the tool interface respectively. Rapier (1954) has solved the heat 
equation in the chip for a given heat source at the interface. The secondary shear zone 
which is disregarded in the Rapier calculations, is introduced in the work of Boothroyd 
(1963). 

None of the former models consider the full coupling between the thermal problem 
and the friction effects. A full coupling is proposed in our approach based on the 
assumption of a temperature dependent friction coefficient, see eqn (1). With that 
assumption the friction characteristics will depend on the cutting conditions in a way 
that allows to reproduce the experimental trends. The totality of these trends could 
not be captured by other models. 

The proposed model is the following: hypothesis HI to H4 are adopted; the 
secondary shear zone is neglected—this is specially adequate at large cutting speeds; 
the heating of the chip is due to the viscoplastic deformation in the primary shear 
zone on the one hand, and to friction on the tool-chip interface on the other hand. 
The stationary temperature distribution in the chip beyond the primary shear zone is 
obtained by solving the following two dimensional thermal problem: 

d2T(X,Y) 8T(X, Y) a^^=Vc^x-> (12) 

where a = k/pc is the thermal diffusivity of the workpiece material, and Vc is the chip 
velocity. The term in the right hand side is the material derivative of the temperature, 
providing that the partial time derivative vanishes in the stationary problem. 

The outflow boundary of the primary shear zone is considered to be orthogonal to 
the tool interface (although it is not in general). This assumption, made for 
convenience, allows an analytical solution. Considering a different inclination of the 
primary shear band will not affect the solution at a distance X large enough with 
respect to the width of the layer thermally affected by friction, which is supposed to 
be small. 

Boundary conditions associated to eqn (12) are: 

T(0, Y) = T,    X=0,Y^0    (outflow of the primary shear zone)      (13.1) 

lim T(X, Y) = TX    for X ^ 0 (13.2) 
Y—*co 

_^37T^0) forj^o (13.3) 
cY 

T, is the temperature at the outflow of the primary shear band. It can be calculated 
using the thermomechanical model of Molinari and Dudzinski (1992). The condition 
(13.2) has the following meaning: the heat produced by friction affects a layer along 
the tool interface which gets smaller as the cutting speed is increased. Therefore, for 
a distance Y to the interface sufficiently large, the temperature of the chip is equal to 
Tx. In eqn (13.3), k is the heat conductivity and Q{X) is the surfacic heat source due 
to friction: 

Q(X) = ßVcP(X) (14) 
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where p and Vc are the mean friction coefficient and the chip velocity respectively. 
P(X) represents the pressure distribution. 

Experimental data show that the pressure distribution is not uniform but is a 
decreasing function of Xon the tool-chip interface (Usui and Takeyama, 1960; Zorev, 
1963; Kato et ai, 1972; Buryta et al, 1994). To account for this fact, we choose a 
distribution of pressure of the form: 

P(X) = P0(\-f) (15) 

where lc is the chip-tool contact length and PQ represents the pressure on the tool tip. 
The pressure profile is controlled by the parameter £ 00). A parametric analysis of 
the influence of £ will be provided. The contact length lc and P0 are calculated in 
Appendix A. 

The chip velocity Vc is deduced from the incompressibility condition (4): 

sin</> ,,„ 
Vc = V -1— (16) 

cos(0 —a) 

The foregoing problem (12) (13) can be solved with the Laplace transform tech- 
nique, using X as the transform variable, see Appendix B. The temperature dis- 
tribution in the chip is shown to satisfy this relationship: 

nx, r> - ^ ff f'f i - tu)' >p(^U+ r,      <,„ k     \]nVc}0\ lc   ) Ju       \    Aau    J 

We now consider the case of £, being an integer (£ = 0, 1,2,...). By developing the 
expression 

X-u 

we obtain the mean interface temperature (7=0): 

with 

Because of the dependence of fl upon fim in our model, ß is not known beforehand. 
The relationship (18) appears as an implicit equation in terms of fint. Once fin, is 
calculated (iteratively), the friction coefficient p(Tint) is determined. 
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4.    HOW THE MODEL WORKS 

Let us consider that the friction law (1) has been identified (this will be discussed 
later in detail). In addition the values of £ governing the variation of the pressure 
along the tool-chip interface are supposed to be given. 

The following set of equations allows us to determine ß, <j), Vc, lc, y,, Tu T,, P0, 7ft, 
and T0. 

fl = fl(Tint) = tan(A) (19.1) 

4> = A+\(u-X) (19.2) 

VC = V^^ (19.3) 
cos((p —a) 

£ + 2 sm((j) + X — a) 
2       sind) cosl /c = f1"T   T7...7 (19-4) 

Tl =tan((^-a) + ^ (19.5) 

T0 = i0(cutting conditions, (j>, material parameters) (19.6) 

T, =p(Ksin0)2y,+To (19.7) 

r, = rw+^[p(Fsin0)2^+Toyi I (19.8) 

P  _J + l        cos2(1)        T (19 9) 
0        <^ + 2sin(2(0 + A-a))   ' v    ' ' 

Equations (19.1) to (19.5) come from (1), (8), (16), (A.12), (7.3); (the choice of the 
parameter A in (19.2) is made later). Equations (19.7) to (19.10) come from (5.1), 
(5.2), (A.9) and (18). The relationship (19.6) expresses the fact that T„ can be calculated 
in terms of the cutting conditions, the shear angle (j> and the material parameters, 
using the model of the primary shear zone presented in section 2. In this model T0 is 
obtained iteratively by integration of the differential eqn (6). 

The iterative scheme used to solve the preceding set of equations is as follows: let 
us consider that at the nth iteration 7ft? is known. ß{"\ 0W and y','0 are given by (19.1), 
(19.2) and (19.5). rg0 follows from (19.6), xf\ T({'\ V(§, lg} and P^ result from 
(19.7), (19.8), (19.3), (19.4) and (19.9). Finally a new estimate 7ftt

+1) of the tool-chip 
mean interface temperature is obtained from (19.10). The calculations stop when the 
accuracy on the estimate of 7ftt is good enough. 
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5.    RESULTS AND DISCUSSION 

In this section the proposed model is applied to the analysis of orthogonal cutting 
of steels. We shall consider a CRS 1018 steel (U.S. norms) whose thermomechanical 
response has been characterized with high strain rate tests on Kolsky bars. The 
constitutive law (2) is used with the following values of material parameters, Clifton 
etal. (1984): 

v= -0.38   « = 0.015   w = 0.019 

/i0 = 3579.106S/   c=500J/(kg°K)    p = 7800kg/m3 

Jfc = 54w/m°K 

Experimental results concerning the cutting of a 0.2% carbon steel, with charac- 
teristics close to the CRS 1018 steel, have been presented by Oxley (1989). The tool 
is made of tungsten carbide tips with a 6° clearance angle and negligible nose radius. 
These results are used to infer the friction law (1) and the relationship (8) providing 
the shear angle (f>. A validation is later obtained by comparing the predictions of the 
model to experimental data under various cutting conditions. 

5.1.    Experimental identification of the Zvorykin law and of the friction law 

The identification of the laws (1) and (8) is made with experimental data of Oxley 
(1989). Values of the shear angle (f> determined from measurements of the chip 
thickness, are reported in Fig. 4(a). They correspond to different cutting conditions 
(a = +5°, —5°, /, = 0.125, 0.25, 0.5 mm, w = 4 mm) and various cutting velocities, 
Oxley (1989). It is seen that the Merchant formula overestimates the shear angle. The 
Zvorykin law (8) describes quite well the experimental trends for a value of the angle 
A = 35° (in place of A = 45° in the Merchant formula), see Fig. 4(a). 

The mean friction coefficient p is deduced from the measurements of the com- 
ponents FP and FQ of the cutting forces, see (A. 13). 

Since we do not have measurements of the interface temperature rin, in the Oxley 
experiments, we propose to make an estimation using the following procedure. Two 
types of pressure distributions on the tool interface will be considered: a uniform and 
a parabolic profile (£ = 0 and £ = 2, resp.). The thickness h of the primary shear zone 
is taken as h = 0.025 mm. This is a typical value found in the literature, Shaw (1984). 
Actually, under the adiabatic assumption made for the flow within the shear band, 
and for the constitutive law (2) (with »i of low value) considered here, the precise 
value of h has no major influence on the results, Dudzinski and Molinari (1997). This 
point has to be reconsidered for material response with a larger strain rate sensitivity, 
see section 5.4. 

From the value of FP, we can deduce Fs and T, with use of (A.4) and (A.2). Then 
T0 and T, are given by (19.6) and (19.8). P0 and lc are obtained with equations (19.9) 
and (19.4). The mean temperature Tint at the tool interface is finally estimated by 
(19.10). For the following cutting conditions: V = 100, 200, 400 m/mn, a = -5°, 
t] = 0.25 mm, w = 4 mm, p has been measured using Oxley data and Tint has been 
estimated as shown before. The corresponding points calculated for £ = 0 and £, = 2 



2114 A. MOUFKI et ah 

(j)(rad ) 

1 

0,8 

0,6 

0,4 

0,2 

0 

A t, = 0.50 mm, a = -5° 

♦ tj = 0.25 mm, a = -5° 

a tj = 0.125 mm ,a- = -5° 

X t, = 0.50 mm, a = +5° 

o t1 = 0.25 mm, a = +5°   ___.---■-" 

k-~                o \                   x  
No J£~-~--~~^ 

rt \     \ 

-a o     / 

Zvorykin law 

 1 h- 

Merchant 

 1 1  

-0,8 -0,7        -0,6 -0,5        -0,4 

(a-A) frad) 

(a) 

-0,3 

0       250     500     750    1000   1250   1500 

Tinl(°C) 
(b) 

Fig. 4. (a) Experimental identification of the Zvorykin law (8) for the shear angle (f>, (b) Experimental 
identification of the friction law (1). Tmt is the mean temperature at the tool-chip interface. 
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are reported on the p vs fim diagram of Fig. 4(b). It appears that the mean temperature 
Tml is weakly affected by £, and consequently the identification of the friction law 
p = p(Tml) seems not to be really dependent on the precise value of«!;. 

More experimental measurements would be needed to have a complete identi- 
fication of the friction law (1). However the temperature dependence of the friction 
coefficient can be extrapolated in the range of temperatures from 20-1500°C, with 
consideration of experimental results reported in the review by Lim et al. (1989). It 
appears that the dry friction coefficient decreases when the sliding velocity increases 
in the range 1 m/s s= Vc ^ 100 m/s. The maximum value of p for steel on steel friction, 
attained at velocities of the order of 1 m/s, is found to be close to unity. In addition, 
when the interface temperature is close to the melting temperature, a drop of the 
friction coefficient is assumed in our modelling. All these features are accounted for 
in the evolution of the friction law (1) reported in Fig. 4(b), and described by the 
following empirical equations: 

ß = 1 - 3.44 10-4 fint    for    25°C < fim ^ 955°C 

T-mt-T 
/I = 0.68(1-^-^)    for   955°C^fint<1500°C 

with q=\.l,T= 955°C, Tm = 1500°C    (melting temperature) 

In all the calculations presented in the following section 4> and p are evaluated with 
reference to Zvorykin and the friction laws represented in Fig. 4(a) and 4(b). 

5.2.    Pressure and temperature distribution at the tool-chip interface 

In this paragraph, the following cutting conditions are considered: 

a= -5°,/, = 0.25mm, V= 250m/mn, w = 4mm 

It should be remembered that in our calculations the heat flow toward the tool is 
neglected. The heat conductivity used for the chip is that of the CRS 1018 steel k = 54 
w/(m°K). 

The temperature distributions along the interface presented in the Fig. 5 indicates 
the existence of a maximum located at a distance to the tool edge depending on the 
value of Q. For £ = 2, this distance is approximately equal to /c/3, as observed in the 
experiments (this distance does not depend on the cutting conditions in the present 
model). Note that for <J = 0 (uniform pressure distribution) the temperature 
maximum appears at the extremity X= lcof the contact zone. The prediction of the 
local temperature is important for the analysis of tool wear; then a realistic value of 
<J must be considered. Note finally that, although the temperature distribution is «In- 
dependent, the average temperature fim is just weakly dependent upon «f. This fact is 
illustrated in Fig. 6 where a small increase of temperature (30°K) is obtained by 
replacing £ = 2 with £ = 0. 

In Fig. 7, the pressure distribution at the tool-chip interface is represented with 
different values of £. The pressure P0 at the tool tip is shown to attain high values when 
£, is increased. A constant pressure profile {£, = 0) is not observed in the experiments. It 
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0    0,25 0,5 0,75    1    1,25  1,5  1,75   2   2,25 

X(mm) 
Fig. 5. Temperature distribution at the tool-chip interface, for different values of £. 

2500 - 

Parameter  E, 

Fig 6 Longitudinal, orthogonal cutting forces F„ FQ and mean temperature at the tool-chip interface f, 
as a function of the pressure parameter (. 
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Fig. 7. Pressure distribution at the tool-chip interface, for different values of £. 

appears that the global quantities FP and FQ are weakly dependent upon £, see Fig. 
6. 

Due to the foregoing discussion, the value of ^ = 2 will be chosen for the following 
calculations. 

5.3.    Validation of the model 

We shall now validate the model by varying the cutting conditions. Two different 
depths of cut /, (feeding) are considered: /, = 0.25 mm (for which the corresponding 
experimental data were used to identify the friction law) and /, = 0.5 mm. 

The evolution of the longitudinal and orthogonal components FP and FQ of the 
cutting force (see Fig. 19) are reported in terms of the cutting velocity Fin Fig. 8, for 
tx = 0.25 mm and /, = 0.5 mm. The decay of the forces for an increasing velocity is 
due to the lowering of the friction coefficient, see Fig. 9, as a consequence of the 
growth of the interface temperature. The growth of Tini with V for a fixed f, is due to 
the term V^2 in (19.10). 

We can also note from the experiments that the forces FP and FQ are not pro- 
portional to the feeding /,. This fact is restituted by the model, and will be explained 
later. 

The experimental trends discussed before concerning the dependence of the friction 
coefficient p on the cutting velocity and the feeding tx are reproduced by the model, 
Fig. 9. 

The shear angle (f> predicted by the model when the cutting speed is varied is 
compared with experimental measurements, in Fig. 10. The increase of <f> with V 
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Fig. 8. Predicted cutting forces (for CRS 1018 steel) compared to the experimental values for a 0.20% 
carbon steel, (experimental data are from Oxley (1989)). The cutting conditions are: a = -5°, w = 4 mm, 

/, = 0.25 mm and t, = 0.50 mm. 

results from the law (19.2) and the lowering of the friction angle A. It is reminded that 
the rake angle and the width of cut have in these calculations the values a = — 5° and 
w = 4 mm. 

5.4.    Parametric analysis 

A systematic analysis of the influence of cutting conditions is now presented. It will 
be shown how a, f, and V affect the cutting forces, the friction coefficient and the 
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temperature distribution at the outflow of the primary shear zone and at the tool- 
chip interface. 

5.4.1. Influence of the cutting speed V. The rake angle and the cutting width have 
the values a = - 5° and w = 4 mm. The cutting velocity is varied from conventional 
to high speeds. The mean temperature fint at the tool interface is represented in Fig. 
11(a) in terms of the cutting velocity V, for two different values of the feeding tu A 
large increase of fint can be observed for velocities less than 1000 m/mn. This results 
in an important decay of the friction coefficient ß and of the cutting forces FP and FQ, 
as shown in Fig. 11(b) and 11(c). 

The variation of the temperature T, at the outflow of the primary shear band, 
versus the cutting velocity is reported in Fig. 11(d). The large decay of T, when V 
increases up to the value 1000 m/mn can be explained in the following way. Due to 
the decrease of the friction angle X, the shear angle (j> increases, see eqn (19.2) and 
Fig. 11(e). This results in a reduction of the shear strain y{. Consequently the work 
of plastic deformations and the heat produced by dissipation are reduced, and so is 

n 
The decay of ß also implies an important reduction of the contact length lc, as 

illustrated in Fig. 11(f), in agreement with the experimental observations of Gad et 
al. (1992). 

Because of the term V^2 in expression (19.10) of the mean interface temperature, 
it is expected that for large cutting velocities, the dependence of Tint upon the cutting 
speed is attenuated, while strongly marked for V ^ 1000 m/mn, see Fig. 11(a). This 
weakening of the velocity dependence for V^ 1000 m/mn is clearly transmitted to 
the evolution of ß, FP, FQ, 7", and lc, see Fig. 11. 

A slight increase of the force FP and of Tx can be observed for V ^ 4000 m/mn. 
This is due to inertia effects that become apparent at large cutting velocities. These 
effects are conducive to a rise of the flow stress T, at the outflow of the primary shear 
zone (Dudzinski and Molinari, 1997; Recht, 1984) which explains the trends noticed 
on FP and Tx. 

5.4.2. Influence of the rake angle a. For the present analysis, the feeding is fixed 
at the value tx = 0.25 mm and the width of cut is w = 4 mm. The influence of the rake 
angle a on the cutting process will be studied for three cutting velocities: 250 m/mn, 
2500 m/mn and 6000 m/mn. 

It is observed in Fig. 12(a) that the mean interface temperature TiM is a decreasing 
function of a. The decrease in T, and lc reportedin Fig. 12(e) and Fig. 12(f) for an 
increasing a are responsible for the evolution of Tint, see eqn (19.10). 

As a result of the variation of fint presented in Fig. 12(a), the mean friction 
coefficient ß varies in terms of a as shown in Fig. 12(b). These trends are in agreement 
with the experimental observations of Bailey (1975). We have evaluated the function 
ß(a) with the Oxley model (1989), using the constitutive law (2). These calculations 
have shown that ß decreases with a, in contradiction with the experimental obser- 
vations. 

The shear angle $ undergoes two opposite effects. When a is made larger, it is seen 
in the law (19.2) that this geometric effect induces an augmentation of (j>. However 
the increase of the friction angle X in (19.2) has the reverse consequence. Eventually 
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Fig. 11. Analysis of the effects of the cutting speed V on : (a) the interface temperature TiM, (b) the mean 
friction coefficient ft, (c) the cutting forces FP and FQ, (d) the temperature at the outflow of the primary 
shear zone 7",, (e) the shear angle <j>, and (f) the contact length /c. A CRS 1018 steel is considered. The 

cutting conditions are: a = — 5°, w = 4 mm, t, = 0.25 mm and /, = 0.50 mm. 
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Fig. 12. Analysis of the effects of the rake angle a on: (a) the interface temperature 7in„ (b) the mean 
friction coefficient p, (c) the longitudinal cutting force, FP, (d) the shear angle <j>, (e) the temperature at the 
outflow of the primary shear zone T, and (f) the contact length lc. A CRS 1018 steel is considered. The 

cutting conditions are: V = 250, 2500, 6000 m/mn, w = 4 mm and t, = 0.25 mm. 
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the first effect outweighs the second and (j) is shown in Fig. 12(d) to follow the 
variation of a. 

The reduction of <j) when a is decreased, leads to larger plastic deformations 
y, = tg((j)-a) + \/tg(p, and thus to a larger plastic work and a larger increase of 
temperature 7, at the outflow of the primary shear band, as reported in Fig. 12(e). 
Note that the large increase of 2", for negative values of a, can be indicative of a 
situation favourable to thermomechanical instability and to chip segmentation. 

The cutting force component FP increases when <x is reduced Fig. 12(c), in spite of 
the decay of friction. This is a consequence of the decay of (j>. 

In Fig. 12( 0, it is shown that the contact length is increased when a is made smaller. 
Indeed a decrease of a produces a reduction of the friction angle X and of the contact 
length, see (19.4). However the dependence of lc upon a in the relationship (19.4) 
overcomes the effect of X. This explains the trends shown in Fig. 12(f), which are in 
concordance with the experiments of Gad et al. (1992). 

The effect of the cutting speed shown in the preceding figures conforms with the 
trends illustrated in the former paragraph. 

5.4.3. Influence of the depth of cut t,. In the present paragraph, the rake angle and 
the width of cut have a fixed value a = - 5° and w = 4 mm. Experimental results have 
shown that the cutting forces are not proportional to the feeding /,. A proportional 
relationship would be incorrectly suggested by a first examination of eqns (A.4) and 
(A.5). However one cannot ignore in general the dependence of the friction angle 
upon tx which is the cause of the non proportional relationship between the cutting 
forces and the feeding. More precisely an increase in tx induces an augmentation of 
the interface temperature finl, Fig. 13(b), which in turn produces a reduction of 
friction, Fig. 13(c). 

The variation of fint shown in Fig. 13(b) induces the decay of p in terms of?, shown 
in Fig. 13(c). This dependence of the mean friction coefficient with respect to the 
feeding agrees with the experimental data of Findley and Reed (1963). 

The dependence of fint upon /,, cannot be explained in a simple way. On the one 
hand an increase of /, induces a growth of the contact length lc, eqn (19.4) and Fig. 
13(a), which leads to a rise of the interface temperature fint if Tt were fixed, eqn 
(19.8). However, on the other hand T, is a decreasing function of/,, Fig. 13(e). This 
is a consequence of the decay of y, resulting from the growth of the shear angle, Fig. 
13(d), induced by the decay of the friction coefficient. Apparently the first effect 
overcomes the decay of Tx and produces an increase of fim in terms of the feeding tu 

Fig. 13(b). Note that the crossing of curves in Fig. 13(e) and 13(f) is a result of inertia 
forces. 

5.4.4. Influence of a change of mechanism in the constitutive law at large strain 
rates. In this paragraph, the following cutting conditions are considered: 

a = —5V, = 0.25 mm, w = 4 mm 

It is known that a significant increase of the strain rate sensitivity appears in metals 
subjected to strain rates higher than a critical value yt (Campbell and Fergusson, 1970; 
Follansbee and Kocks, 1988; Tong et al, 1992; Klepaczko, 1994). The following 
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Fig. 13. Analysis of the effects of the depth of cut t, on: (a) the contact length lc, (b) the interface 
temperature fin„ (c) the mean friction coefficient p., (d) the shear angle <f>, (e) the temperature at the outflow 
of the primary shear zone T,, (f) the cutting force FP. A CRS 1018 steel is considered. The cutting conditions 

are: V = 250, 2500, 6000 m/mn, w = 4 mm and a = -5°. 
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Fig. 14. Variation of the shear stress T in terms of the shear strain rate y (Logarithmic scale). 

formulation of the constitutive law is a way to account for these experimental obser- 
vations : 

T = Ho(y+yPyT'T''   ify^y, 

(20) T = iio(y+yP)"-}\m>-'"2)riTv   ify^r, 

with % = 104 s"1. The strain rate sensitivity m, = 0.019 has the same value as the one 
used in the preceding calculations. Two values of m2 (0.1 and 0.2) are considered in 
our analysis to illustrate the effect on the cutting process of the change of mechanism 
at jv The strain rate dependence of the constitutive law (20) is illustrated in Fig. 14 
form2 = 0.1 andm2 = 0.2. The other values of parameters are those of the CRS 1018 
steel, see section 5. Note the large increase of the stress for y ^ yt = 104 s"1. The effect 
of the change of mechanism is important on the level of the cutting forces, Fig. 15. 
for m2 = 0.2, the growth of the stress induced by the change of strain rate sensitivity 
overcomes the decrease of the cutting forces due to the friction effects. The influence 
of the cutting conditions (role of a, tu V) is similar to the one illustrated by use of the 
constitutive law (2) (with no change of mechanism) as far as the following quantities 
are considered : fin„ p., cj), lc, T(X) (distribution of the interface temperature). As an 
example, the evolution of fint in terms of V is presented in Fig. 16 for the two 
constitutive laws (2) and (20). The temperature distribution at the tool-chip interface 
is presented in Fig. 17. The increase of strain rate sensitivity for y > yt seems to have 
little effect on this distribution. 

The role of the thickness h of the primary shear zone is now important, because of 
the large strain rate sensitivity for y ^ yx. We have kept in our calculations the value 
h = 25 p.m. An increase in h will produce a lowering of the strain rates within the 
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Fig. 15. Effect of the cutting speed Fand of the change of mechanism in the constitutive law (20) on the 

longitudinal cutting force FP. The cutting conditions are: a = — 5°, w = 4 mm, t, = 0.25 mm. 
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Fig. 16. Influence of the change of mechanism in the constitutive law (20) on the evolution of the mean 
interface temperature T-mx in terms of the cutting speed V. The cutting conditions are:a= — 5°, iv = 4 mm, 

/, = 0.25 mm. 
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Fig. 19. Forces at the tool-chip interface and at the outflow of the shear zone. 

primary shear zone, that could lead (if the strain rates are close to yt) to a significant 
effect on the flow stress and on the cutting forces, see Fig. 18. 

6.    CONCLUSION 

The model of orthogonal cutting presented in this paper combines a ther- 
momechanical analysis of the material flow within the primary shear zone and a 
modelling of friction at the tool-chip interface. We have used a Coulomb law in which 
the friction coefficient is a decreasing function of the temperature. Other parameters 
could influence the friction characteristics. However due to the extreme temperature 
variations at the tool-chip interface observed in machining we consider that Tint has 
a primary role. 

Experimental trends such as the decay of the mean friction coefficient p in terms of 
the cutting velocity V, the feeding tt and the growth of p in terms of the rake angle a 
are reproduced by the present analysis. The last feature can not be captured by the 
Oxley model. 

Some improvements could be made, for instance by including the effect of the 
secondary shear zone and the effect of the pressure distribution along the primary 
shear zone. 
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APPENDIX A: FORCES AND CONTACT LENGTH CALCULATIONS 

We consider the chip after the outflow of the primary shear band, see Fig. 1. The rate of 
change of the total momentum of the chip is equal to zero in a stationary process. Then, the 
equilibrium of the forces applied to the chip, reduces to : 

R = R (A.1) 

where R is the force exerted by the tool on the chip and R' is the force exerted by the workpiece 
on the chip along the line OA (the outflow of the primary shear band), see Fig. 19. 

The forces R and R' are conveniently resolved into three sets of components as indicated in 
Fig. 19: 

(1) in the horizontal and vertical direction FP and FQ 

(2) along and perpendicular to the shear zone Fs and Ns 

(3) along the perpendicular to the tool face Fc and Nc. 

The shear stress distribution on the shear plane OA is supposed uniform. Then the component 
Fs at the outflow of the layer is proportional to the shear stress T, (T, is given by the relation 
(19.7), ;, is the depth of cut and w the width of cut): 

Fs = wOAx, = -T-JT, (A.2) 
sin</> 

The other forces are easily obtained from Fs, as it is evident in Fig. 19: 

Ns = Fs tan(0 +1 - a) (A.3) 

cost A —a) ,.   .. 
FP = Fs cost/. + 7VS sin<£ = Fs    \      ' (A.4) p ^ cos(0 + A —a) 

sm(l-a) ,.  ,. 
FQ = -^ssin^ + 7Vscos0 = Fs^^T^) (A-5) 

sinA ..  ,. 
Fc = R' sinA = Fs T-—: r (A.6) 

cos(r/> + A-a) 
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cos! 
Nc = R cos>. = Fs —— - c scos(^ + A-a) 

The force Nc can also be calculated as the following: 

Nc = k 
wdX= P0 

wlc 

P0 is obtained with : 

cosA £+1 
' cos(0 + A — a) wlc 
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(A.7) 

(A.8) 

(A.9) 

To calculate the contact length /c, an assumption has to be made on the distribution of 
normal stresses at the outflow of the primary shear band. This distribution is assumed to be 
uniform in the present analysis. Considering the momentum equilibrium of the chip at the tool- 
tip (point O in Fig. 19), we obtain MOA = MOB, with : 

M„n = XPJ\-~) wdX=P0 
wl2c cosA lc. 

(£+l)(£ + 2)       scos((j() + ,t-a)(£ + 2) 

OA 
Mo,=Ns-T = Fs — tan((/> + A —a) 

The tool-chip length lc is then determined : 

lc = t 2       sin</>C0S/l 

(A. 10) 

(All) 

(A. 12) 

The mean friction coefficient ß and the associated friction angle A at the tool-chip interface are 
defined by: 

\i = tanA = 
Fc     FP tana + FQ 

Nc     FP — FQ tana 
(A. 13) 

APPENDIX B: SOLUTION OF THE THERMAL PROBLEM AT THE 
TOOL-CHIP INTERFACE 

The thermal problem at the tool chip interface is solved with use of the Laplace transform 
technique with lines similar to what was done by Wright et al. (1980), although the problem is 
set differently. We consider the Laplace transform T* (S, Y) of the temperature with respect to 
the variable X: 

T*(S,Y) T(X, Y)exp(-SX)dX 

Expressions (12) and (13) are transformed into : 

d2T*(S,Y) 

dY2 = VC(ST*(S, Y)-Tl) 

7^(5,00): 

(B.l) 

(B.2) 
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dT*(S, Y) 

dY 
= f(S) (B.3) 

f(S) = Q(X)exp(-SX)dX 

Q(X) = 0    for X ^ /c 

where f{S) is the Laplace transform of the surfacic heat source Q(X) due to friction. The 
solution of (B.l) is: 

T*(S, Y) = C,exp(y   -^) + C2exd-Yl-^- (B.4) 

with C, and C, determined by the boundary conditions (B.2) and (B.3): 

C, =0 

AS)   I  a 
C2 k   V SVC 

Finally (B.4) has the form: 

AS)       a ,     „ 1± 
s 

(B.5) 

(B.6) 

The temperature distribution in the chip is calculated with use of the inverse Laplace transform, 
Abramowitz and Stegun (1964): 

T(X, Y) = 
ßVcP0   / a X-uX   1 (-VcY\A (B.7) 

Considering that a = k/pc, by developing the expression 

X-u\ 
lc 

we obtain the interface temperature T(X, 7=0): 

T(X, Y = 0) 

with 

fnkic Vc'=o2/+l 

V c   C{     (£-i)!i! 

c'tiic-^-'jrf- (B.: 

The mean temperature is given by: 

lc 
T(X,Y =0)dX 

By developing the expression (lc — X)f ' we obtain 

T    = J int 
flPo 

yjnkpc 

A    2 
^lvricW-iyc^m}»3 

(B.9) 

(B.10) 
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ABSTRACT 

A review is presented on recent progress in shear testing of materials at high and very high strain rates. 
Some experimental techniques are discussed which allow for materials testing in shear up to 1061/s. More 
detailed informations are provided on experimental techniques based on the Modified Double Shear 
specimen loaded by direct impact. This technique has been applied so far to test a variety of materials, 
including construction, armor and inoxidable steels, and also aluminum alloys. The double shear con- 
figuration has also been applied to test sheet metals, mostly used in the automotive industry, in a wide 
range of strain rates. Details of both techniques, including measuring systems and elastic wave propagation 
in tubes, are discussed. In addition, a new experimental configuration which can be applied for experimental 
studies of adiabatic shear propagation and high speed machining is discussed. 

The role of adiabatic heating at different rates of shearing is also discussed, including transition from 
pure isothermal to pure adiabatic deformation. It appears that the initial impact velocity is an important 
parameter in development of plastic localization. 

Finally, a new development is discussed in determination of the Critical Impact Velocity in shear. A 
comparison is shown between recent experimental findings and a simple analytic estimation. The CIV in 
shear is a certain mode of adiabatic failure which occurs at relatively high shear velocities of adjacent 
material layers. Numerical simulations support the existence of the CIV in shear which can be recognized 
to some extent as a material constant. © 1998 Elsevier Science Ltd. All rights reserved. 

Keywords: A. dynamics, B. metallic materials, B. stress waves, B. viscoplastic material, C. impact testing. 

1. INTRODUCTION. GENERAL REMARKS ON FAST SHEARING 

Shear is the fundamental mode of plastic deformation in materials. Testing of 
materials in shear over a wide range of strain rate and temperature can provide a 
fundamental knowledge in the development and improvement of constitutive relations 
used nowadays in large numerical codes. Advances in experimental techniques made 
it possible to determine plastic properties of materials in a wide range of strain rates, 
from 10~41/s to 1061/s, that is nine decimal orders. However, when the nominal strain 
rate, that is the mean strain rate over the gauge length, is high enough, or time of 
plastic deformation is relatively short (order of hundred of ms and less), adiabatic 
instability and strain localisation can occur and dominate the process of plastic 
deformation. At still higher strain rates in shear (impact velocities ~ 100 m/s and 
higher) plastic waves in a deforming material can completely change the mechanics 
of deformation. In addition, at strain rates typically higher than ~ 1031/s and above 
the so called threshold stress, the rate sensitivity of metals substantially increases. This 
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phenomenon can be approximated by the pseudo-viscosity approach, for example 
Campbell and Fergusson (1970); Klepaczko (1988). 

On the other hand, it is well known that experiments with strain rates higher than 
1031/s constitute a formidable task concerning technical difficulties, and only a limited 
number of reliable experimental techniques provide reliable results. Each setup con- 
figuration, that is specimen geometry and type of loading, offers some advantages 
and deficiencies in comparison to another one. Sometimes the roles may be completely 
inverted. It is then very important to test the same materials at high strain rates with 
different experimental techniques and compare the results. 

Most studies of both constitutive modeling and adiabatic instabilities in shear, are 
based so far on results from the Split Hopkinson Torsion Bar technique (torsional 
Kolsky apparatus), (Duffy et al, 1971, Lewis and Campbell, 1972). This experimental 
technique is quite reliable within a narrow range of strain rates, typically from 3 x 102 

1/s to 2 x 1031/s. A thin-walled tubular specimen of a short length, 2-5 mm, and wall 
thickness 0.5-1.0 mm, is loaded by the incident shear wave. The incident, reflected 
and transmitted torsional waves are analysed in a similar way as in the Split Hopkinson 
Pressure Bar (Kolsky, 1949, Lindholm, 1964, Klepaczko, 1971). The SHTB technique 
has been modified later to perform incremental/decremental strain rate tests (jump 
tests) (Frantz and Duffy, 1972). The thin-walled tubular specimens were used much 
earlier to test materials at different strain rates with specially designed torsion 
machines and also at impact shearing, typically up to 1021/s, for example Klepaczko, 
1965, 1967, 1969. The SHPB technique (original Kolsky apparatus) can also be used 
in shear by loading of specimens with special geometries. One such technique is the 
so called "hat" specimen, for example Hartman et al, 1981, Beatty et al, 1992. 
Because of a non-uniform deformation of the radial field within the shear zone in the 
"hat" specimen, determination of the shear stress vs shear strain is very difficult and 
needs an application of an FE technique. This technique is relatively well suited for a 
study of controlled initiation of Adiabatic Shear Bands (Beatty et al, 1992). 

A unique experimental technique is the pressure-shear plate configuration intro- 
duced by Clifton et al. for example Clifton and Klopp (1985). This technique rep- 
resents an attractive configuration for studying dynamic plastic flow at shear strain 
rates from 1051/s to 1061/s. In this experiment, the strain rate of the order 1051/s is 
achieved by sandwiching a very thin specimen between two hard elastic plates. The 
specimen is attached to the flyer and launched with the velocity of a few hundred m/s. 
The flyer impacts the stationary anvil in a vacuum at a small angle. Because of the 
inclined impact, the specimen is deformed in shear with a relatively high component 
of pressure. The elastic wave profiles, shear and normal components, which are 
transmitted by the specimen and the anvil plate, are recorded on the free external 
surface of the anvil. The wave analysis permits to find shear stress vs shear strain 
characteristics at strain rates in excess of 1051/s. The characterisation of materials in 
shear at strain rates below 1051/s must be complemented by a different experimental 
technique, for example SHTB. These two techniques are quite different, including the 
way of loading and specimen geometries. 

Because of the effects of wave propagation in a specimen, every change of the 
specimen geometry and experimental technique introduces changes in the specimen 
response to fast or impact loading. The best solution is to use one specimen geometry 
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for the widest possible spectrum of strain rates, for example from 10"4 l/s-1051/s or 
even 1061/s. 

An effective specimen geometry which can be used in studies of dynamic plasticity 
at low, medium and high strain rates is the double-notch specimen. Such a specimen 
was first proposed by Fergusson et al. (1967), to study dynamic plasticity of single 
crystals. Later, the Double Shear specimen was applied, with the loading scheme 
consisting of the incident Hopkinson bar and transmitter Hopkinson tube by 
Campbell and Fergusson (1970), to study temperature and strain rate dependence of 
the yield stress of a mild steel. A very small gage length of 0.84 mm was used in the 
study mentioned above. Because of a small gage length of the original DS specimen, 
application of the conventional mass velocities occurring in the incident bar, from 
~ 1.2 m/s to ~ 11 m/s in the work of Campbell and Fergusson, provided the nominal 
strain rates in shear up to ~ 1041/s. Determination of higher shear strains from the 
DS specimen geometry, more than a few percent, by use of the method of the 
net displacement between the Hopkinson bar and Hopkinson tube (Campbell and 
Fergusson, 1970), leads to large errors due to a non-uniform shear and severe plastic 
deformation of the specimen supports. Some improvements, mainly to the DS speci- 
men geometry, but with the gage length 0.8 mm, have been introduced later by 
Harding and Huddart (1979). 

In order to study dynamic plasticity and adiabatic instabilities within a wide range 
of strain rates and at large strains, the concept of the double shear test has been 
completely modified to load specimens of the same geometry at very different velocit- 
ies, from quasi-static to impact. This test technique is briefly discussed in the next 
part of this paper. 

2. DIRECT-LOAD MODIFIED SHEAR TEST 

This relatively new experimental technique was briefly described by Klepaczko 
(1991) and a more complete outline was given later (Klepaczko, 1994). It combines 
some advantages in comparison to the original DS technique developed by Fergusson 
et al. The fundamental change in comparison to the bar-tube configuration has been 
introduced by elimination of the incident bar and application of the direct impact by 
a projectile. Within the quasi-static region of strain rates, from 10~41/s up to ~500 
1/s, a special rig was constructed to load specimens by a fast servo-hydraulic machine. 
On the other hand, the specimen geometry has been substantially modified, the 
shearing zones have been enlarged to 2.0 mm and the external parts enforced, to 
eliminate plastification of the support regions, the Modified Double Shear geometry 
is given elsewhere (Klepaczko, 1994). Because of the direct impact the risetime of the 
incident wave has been reduced to ~2 ^s in comparison to ~30 jus in the bar-tube 
configuration. This experimental technique is shown schematically in Fig. 1. The flat- 
ended projectiles of different lengths made of maraging steel and of diameter dp = 10 
mm are launched from an air gun with desired velocity V0; 1.0 < VQ < 200 m/s. 
Impact velocity is measured by three optic chains: source of light, photodiode and 
input/output optic fibers. Electric signals from the photodiodes are recorded by 
two time counters. The setup with three light axes makes it possible to determine 
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1 LIGHT SOURCE 
2 PHOTODIODES (3) 
3 FIBER OPTIC LEADS (6) 
4 TIME COUNTERS (2) 
5 TEFLON RINGS (2) 
6 SPECIMEN TARGET 
7 STRAIN GAGE (2) 
8 2-CHAN. TRANSDUCER 
9 TRANSD. AMPLIFIER 

10 SR AMPLIFIER (2) 
11 SR SUPPLY UNIT (2) 
12 DIGITAL OSC. 
13 PC-486 
14 INTERFACE TF.EE-488 
15 PRINTER OR PLOTTER 

Fig. 1. Configuration of experimental setup for impact shearing of the MDS specimen (Klepaczko, 1991, 
1994). 

acceleration/decelaration of a projectile just before impact, so the exact value of V0 

at the impact face of the MDS specimen can be found. Axial displacement SA(t) of 
the central part of the specimen is measured as a function of time by an optical 
transducer, acting as a non-contact displacement gage. Since the double channel 
transducer is used, the second channel controls displacement <5F(f) of the impact face 
of the MDS specimen. Measurements of V0 and <5F(?) make it possible to determine 
the coefficient of restitution for each test. A black and white target is cemented on the 
side of the MDS specimen (No. 6 in Fig. 1) and at the same time the impact end of 
the projectile is black; in this way the non-contact displacement transducer also reacts 
to the movement of the impact face. The axial force transmitted by the specimen 
symmetric supports into the Hopkinson tube can be determined as a function of time, 
F(t), from the transmitted longitudinal elastic wave st(t). The transmitted wave st(t) is 
measured by strain gages 7, DC supply units 11 and amplifier 10. All electric signals, 
that is voltages of displacements <5A(T) and c5F(0 and transmitted wave et(0 are 
recorded by the digital oscilloscope 12 and stored later in the PC hard disk for further 
analyses. After an analysis of recorded signals and elimination of time, a force-net 
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displacement curve F(ß) can be constructed for each test and z(T) and also f (T) 
characteristics determined, where T is the shear stress, T strain, and f = dr/dt is the 
strain rate. The complete theory of the test is given elsewhere (Klepaczko 1994). 

The experimental technique based on the direct impact on the MDS specimen has 
appeared to be quite effective and flexible in materials testing in shear at high strain 
rates, 103 1/s < f < 105 1/s. In addition, the special rig permits loading of the MDS 
specimen at low and medium strain rates, 1(T41/s < f < 5 x 1021/s. A fast, closed- 
loop hydraulic testing machine is used together with this device (Klepaczko, 1991). 
Thus, the experimental technique based on the MDS specimen assures a wide spectrum 
of the nominal strain rates, typically from 10~41/s—1051/s. 

Several alloys, mostly varieties of steel, were tested by this method; almost all of 
them show a very high rate sensitivity above 1031/s. One typical example is given in 
Fig. 2 (Klepaczko and Rezaig, 1994), where the maximum shear stress (Fig. 2(a)) and 
shear deformation at the final adiabatic localisation (Fig. 2(b)) is shown as a function 
of the logarithm of the shear strain rate in log [1/s] for a hot-rolled low alloy steel, 
0.41% C, 5% Cr, 1.4% Mo. Above strain rate 103 1/s, a substantial increase of the 
maximum shear stress is observed. On the contrary, the adiabatic localisation strain 
increases initially, again up to ~ 1031/s and next, in excess of ~2 x 1041/s, decreases 
rapidly. This is called the Critical Impact Velocity (CIV) in shear, which is discussed 
in the next part of this paper. 

3. MACHINING BY DIRECT IMPACT 

The idea of the direct impact on the MDS specimen has also been applied for high- 
speed machining. A new experimental setup has been put into operation in LPMM 
Metz which permits a ballistic high-speed machining up to ~ 100 m/s as well as for 
the testing of the dynamics of adiabatic shearing (Sutter et ah, 1997, Faure, 1996). 
The main modification lies in application of the projectile of a large diameter, d = 50 
mm, guided without rotation in the air gun tube. The specimen to be cut is attached 
to the projectile and a pair of knives is fixed to the Hopkinson tube. The schematic 
picture of this arrangement is shown in Fig. 3. The specimen in the form of the 
parallelepiped, can be cut before testing with high precision to assure an exact chip 
thickness predetermined by the distance of two knives attached with sufficient pre- 
cision to the Hopkinson tube. The length of cutting is predetermined by the length of 
the specimen, dimension L in Fig. 3. During the cutting process the mean force is 
transmitted by two knives into the Hopkinson tube in the form of the transmitted 
longitudinal elastic wave which is recorded by strain gages, signal conditioners, ampli- 
fiers and a digital oscilloscope. The whole scheme of the setup is shown in Fig. 4. The 
projectile mass can be adjusted according to the energy needed for an almost constant 
cutting speed and for the impact velocity. The typical range of cutting speeds is within 
the limits of 10 m/s-100 m/s. The impact velocity is determined in the same way as in 
the double shear technique: three sources of light S, fiber optics, three photodiodes 
PH and three time counters CT1 and CT2 (Klepaczko, 1994). The oscillograms 
obtained in the form of the transmitted wave as a function of time et(t) permit the 
force-projectile displacement characteristic to occur, with the assumption that the 
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(Klepaczko and Rezaig, 1995). 
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CUTTING TOOLS 
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TOOL HOLDING FIXTURE SPECIMEN 

Fig. 3. Configuration of the specimen attachment to the projectile and tools fixed to the Hopkinson tube, 
projectile diameter 50 mm, (Sutter et ah, 1997). 

projectile deceleration is negligible. In general, the decrease of the velocity due to the 
cutting process was less than 4% (Sutter et al., 1997). The theory of the test is 
practically the same as given by Klepaczko (1994). 

Another recent application of the experimental setup shown in Fig. 4 was a study 
of the propagation of the adiabatic shear bands (Faure, 1996). The flat projectile 
made of a hard martensitic steel, and guided in the air gun tube, impacts a flat 
specimen attached to the Hopkinson tube. The scheme of loading is to some extent 
similar to that introduced by Kalthoff for Mode-II impact loading of cracks, for 
example Kalthoff (1990). The main difference is that in the LPMM setup, the force 
transmitted by the specimen supports can be determined from the transmitted elastic 
longitudinal wave measured in the Hopkinson tube. For instance, the mean crack 
velocity can be determined in this way. During crack propagation in Mode II, the 
force transmitted by the tube diminishes in proportion to the non-fracture ligaments 
in the specimens, and at the instant when the specimen breaks the force, it drops to 
zero. Because the initial length of the shear crack is known and the total time of the 
transmitted wave is measured, a mean crack speed can be determined, (Faure, 1996). 
It appears that in the case of a mild steel being tested, the mean crack speeds are not 
constant but increase with impact velocities. 

In materials testing and machining at very different strain rates, additional effects 
like transition from isothermal to adiabatic deformation, adiabatic instability and 
localisation, and finally deformation wave trapping, complicate interpretation of the 
experimental results. Some of those features are addressed in the next part of this 
review. 

4. ADIABATIC HEATING, INSTABILITY AND LOCALISATION 

It is well known that during plastic deformation of materials, a large part of plastic 
work is converted into heat (Taylor and Quinney, 1934). When deformation is slow, 
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PC2 PCI 

CT- TIME COUNTERS 
PH- PHOTODIODES 
S   - LIGHT SOURCES 
JE - STRAIN GAGES 
A   - AMPLIFIER 

Fig. 4. Configuration of experimental setup for impact machining, LPMM 

OSC - DIGITAL OSCILLOSCOPE 
PC - COMPUTERS 
TT - PLOTTER 
C   - SET OF 6 FAST CCD CAMERAS 

-Metz. 

all heat generated is evacuated into surroundings by heat diffusion or by direct 
emission. However, when the process of deformation is short enough, there is no time 
for heat transfer and almost all plastic work is converted locally into volume heating. 
In a certain range of strain rates, the transition occurs between entirely isothermal 
and entirely adiabatic modes of plastic deformation. Some preliminary study on this 
subject was reported by Kaminski, 1976 and Litonski, 1985. 

Because this transition depends, in the first place, on the geometry of the deformed 
body and also on the intensity of the heat extraction from the heated zones, a 
numerical analysis is very helpful in determining the region of strain rates and for 



Remarks on impact shearing 2147 

which specimen geometry the transition occurs. When the thickness of deformed layer 
is ~2.0 mm, like in the MDS specimen, the transition occurs at the following critical 
strain rates: copper ~85 1/s, aluminum ~68 1/s and a mild steel ~48 1/s (Oussouaddi 
and Klepaczko, 1991). The finite difference technique has been applied, and the 
calculations were carried out at T0 = 300 K, the initial temperature. The results 
support quantitatively the physical intuition that the critical strain rate increases in 
proportion to the thermal conductivity, which is the lowest for steel and the highest 
for copper. Since those values are based on the maximum temperature gradients, a 
complete transition into the entirely adiabatic conditions occurs at strain rates at least 
5 1/s higher than the mean value. Variations in the specimen geometry also change 
the transition region, (Oussouaddi and Klepaczko, 1991). 

Thermal softening during adiabatic heating leads directly to instability and local- 
ization, for example early works (Litonski, 1977, Rogers, 1979, Zener and Hollomon, 
1944). In the case of pure shear, the condition for stability is reduced to maximum 
shear stress dx = 0, where T is the shear stress (Litonski, 1977, Rogers, 1979). This 
condition can be rewritten into the form of zero tangent modulus dt/dr = 0 and 
T = Tc, the instability strain. A schematic stress-strain curve showing different stages 
of deformation during fast (adiabatic) shearing is shown in Fig. 5. 

All stages shown in Fig. 5 were identified by high-speed photography during 
deformation of a tubular specimen made of HY-100 steel loaded in SHTB (Marchand 
and Duffy, 1988). During the first stage of deformation, that is, in between the yield 
point (ry, Ty) and the instability point (TC, TC) where dr/dr = 0, strain distribution 
over the gage length is homogeneous. During stage 2, shown in Fig. 5, the strain 
distribution becomes inhomogeneous, and localization begins. Finally, during stage 
3, localization occurs by catastrophic shear, the flow stress drops rapidly and the 
Adiabatic Shear Band is well formed. However, during this stage the high-speed 
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Fig. 5. Schematic stress-strain curve showing different stages of fast (adiabatic) shearing, Ty is the yield 
stress and di/dT = 0 is the instability point. 
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6 Schematic evolution of stress-strain curves of industrial steels at strain rates higher than 5 x 1021/s; 
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photography revealed some circumferential nonuniformities in formation of the ASB 
(Marchand and Duffy). The last part of stage 3 shows, which should be called stage 
4, is typically observed for more ductile metals, a slowdown of the rate of the flow 
stress. Such behavior is caused by cooling of a very thin layer of material situated 
very close to the ASB (Litonski, 1985). 

The instability point (TC, TC) can be found for different constitutive relations, for 
example (Dormeval, 1987). A more general analysis of the condition dr/dT = 0 has 
been discussed by (Klepaczko, 1991, 1994b). Application of the condition for stability 
dt/dr = 0, and some form of equation for constitutive modeling, leads to the final 
result in the form Tc(f, T), when the adiabatic process of deformation is assumed 
together with a constant strain rate (Klepaczko, 1991). It has been found that an 
increase of flow stress when the strain rate is increased, has a negative effect on the 
onset of adiabatic instability, that is Tc is reduced when strain rate is increased 
(Klepaczko, 1994). The positive rate sensitivity increases production of plastic work 
converted into heat, this process accelerates formation of the instability, so the value 
of Tc is a diminishing function of the nominal strain rate. Several industrial steels 
tested so far in shear at strain rates from 10"3—105 1/s with the MDS method 
(Klepaczko, 1991, 1994a), showed a substantial evolution of the stress-strain curve. 
Schematic changes of the T(T) curves observed for many industrial steels at increasing 
rates are shown in Fig. 6. 

In this schematic Figure, the mean proportions are conserved to show the effect of 
the very high rate sensitivity on the yield stress and instability stress above ~ 1031/s. 
Contrary to the positive rate sensitivity of the critical stress TC, the critical strains of 
instability Tc always show a tendency to diminish when the strain rate is above ~ 103 

1/s. The same happens with the fracture strains. At very high strain rates this feature 
is even more abrupt; this occurs because of a superposition of the ASB formation 
and plastic waves in shear. 
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5. CRITICAL IMPACT VELOCITY IN PLASTIC SHEARING 

It has been shown recently (Klepaczko, 1994b, 1995), that during shear deformation 
imposed by a high-velocity, plastic waves excited in a deformed material can com- 
pletely change the mechanics of plastic field. As a rule, an intense plastic deformation 
will appear near the impact end of a specimen. For the MDS specimen with the gage 
length 2.0 mm, the nominal strain rate when the plastic waves start to dominate is 
5 x 1041/s, that is, the velocity of shearing reaches value ~ 100 m/s. 

Since formulation of the rate independent theory of elasto-plastic waves in solids 
by Kärman, Taylor and Rakhmatulin, in the late forties and early fifties (for a review, 
see Cristescu, 1967), it is known that the longitudinal plastic deformation can be 
localised in thin bars by a high velocity impact (Kärman and Duvez, 1950). This 
deformation trapping by longitudinal plastic waves is called the Critical Impact 
Velocity in tension (Kärman and Duvez, 1950, Klepaczko, 1968). It has been shown 
recently that the Critical Impact Velocity in shear can be determined experimentally 
using the MDS specimen and the direct impact loading, (Klepaczko, 1994b, 1995). 
This is demonstrated in Fig. 2(b), where a systematic drop in the critical strain of 
shear localisation is observed for a low alloy steel around impact velocity 100 m/s. 
An existence of the CIV in shear was predicted by a numerical method by Wu and 
Freund (1984). 

A more detailed analytic study was published elsewhere (Klepaczko, 1995); here, 
only a brief discussion is offered. It is clear that the CIV in shear is closely related 
with adiabatic heating and thermal softening. The CIV in shear is caused by an 
instantaneous instability and strain localisation superimposed on plastic wave propa- 
gation in shear. The rate-independent wave propagation theory has been applied to 
analyse CIV in shear and the final formula was derived by Klepaczko (1995). 

Preliminary numerical estimation of the CIV values for 1018 steel (French Standard 
XC18) have confirmed the usefulness of the analytic procedure proposed by Kle- 
paczko (1994b, 1995). The value of CIV obtained with a simplified constitutive 
relation was Vcr = 98.0 m/s and Tc = 4.9 x 1041/s for 2.0 mm gage length, the value 
very close to the one determined by the MDS direct impact technique, Kcr s 90 m/s. 
The experimental technique based on the MDS specimen and direct impact has been 
applied so far for determination of the CIV for three steels. Besides XC18 mild steel, 
the CIV determined for VAR 4340 steel (52 HRC) was ^ 130 m/s and in the case of 
hot-rolled C-Cr-Mo steel s 100 m/s. 

Of course, the process of adiabatic shearing and localisation superimposed on the 
propagation of plastic waves leads to shear fracture. It is interesting to note that the 
superposition of those two processes leads to a substantial decrease of the energy to 
fracture. Such behavior of the MDS specimen is demonstrated for C-Cr-Mo hot- 
rolled steel in Fig. 7. The total energy to fracture normalised by the specimen cross 
section is plotted vs logarithm of shear strain rate in 1/s. Up to values of the nominal 
strain rate ~ 1.5 x 1041/s, the energy slightly increases up to 0.87 J/mm2, but above 
this value a substantial drop is observed, up to 0.4 J/mm2 at strain rate ~7 x 1041/s 
(Vcr= 134 m/s). 

The phenomenon of the CIV in shear has been studied by FE technique for VAR 
4340 steel, ~50 HRC (Klosak and Klepaczko, 1997). An infinite layer with a small 
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Mo hot-rolled steel (Klepaczko and Rezaig, 1995). 

geometrical imperfection was analysed. Seventeen loading velocities of the MDS 
specimen were assumed, and for each velocity the instability shear strain (dr = 0) and 
the deep localisation strain have been found. The final results are shown in Fig. 8. 
Both characteristic strains are shown as a function of the different velocities, from 
quasi-static to impact, 160 m/s. Those detailed calculations entirely support exper- 
imental observations discussed in the preceding parts of this paper. In between impact 
velocities from 105 m/s to around 130 m/s, a CIV transition occurs. The analytic 
approximation of the CIV in shear for this steel yielded a value of 114 m/s. However, 
the numerical study clearly indicates that the CIV phenomenon is a process. The 
fracture energies for the VAR 4340 steel (the MDS geometry) have been estimated as 
a function of the impact velocity by integration of the force-displacement curves 
found by the FE technique. The final result is shown in Fig. 9. At lower impact 
velocities, the energy to the final localisation increases up to 681 MJ/m3; however, at 
impact velocities higher than 100 m/s, the energy drops considerably, to the value of 
~ 8.0 MJ/m3. Thus, the energy drop is slightly less than a hundred times. The striking 
similarity can be instantly spotted between the experimental results of Fig. 7 and the 
numerical results shown in Fig. 9. It is clear that the CIV in shear can be understood 
as a new material constant. More precise experiments could be performed to determine 
this value for different materials. 
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Fig. 8. Results of numerical calculations by FE method for VAR 4340 steel. Nominal shear strains of 
instability Tnc and localisation r„, vs impact velocity; CIV indicates the Critical Impact Velocity transition, 

(Klosak and Klepaczko, 1997). 
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6. DISCUSSION AND CONCLUSIONS 

It has been shown in this review that materials testing in shear within a wide range 
of strain rates, from quasi-static to impact and up to 105 1/s, is possible using the 
MDS specimen loaded at moderate rates or by a direct impact. Since the duration of 
experiments occurs at very different time spans, additional effects like transition from 
isothermal to adiabatic deformation, adiabatic instability and localisation, and finally 
CIV in shear, change the deformation process. In each range of strain rates, different 
processes may dominate. Indeed, the thermal coupling associated with heat pro- 
duction due to plastic deformation and heat conduction plays an important role in 
dynamic plasticity during shearing. Characteristic values of the CIV in shear can be 
proposed as a new material constant. The FE numerical technique has confirmed 
quantitatively and qualitatively existence of the CIV in shear. Analytic methods to 
estimate the value of the CIV in shear may be used as a first approximation. Of 
course, a value found will depend on the quality of the constitutive relations used. 
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ABSTRACT 

The localization of shear deformation and the eventual rupture inside shear bands are analyzed exper- 
imentally. The shear failure resistance of several structural metals is compared. The materials studied are 
HY-80, HY-100, HSLA-80, 4340VAR, and Ti-6A1-4V. The evaluation of failure progression focuses on 
the evolution of both the stress-carrying capacities and material microstructures. Experiments show that 
despite its significantly stronger rate sensitivity, Ti-6A1-4V is more susceptible to shear localization and 
rupture compared with the steels, as demonstrated by its relatively early and precipitous loss of stress- 
carrying capacity. This observation is supported by measurements of the shear band and rupture lengths 
in specimens deformed to various stages of failure development. Among the steels, the martensitic micro- 
structure of HY-100 seems to be responsible for its higher susceptibility to localization. While all the steels 
studied show very similar dynamic constitutive responses, their significantly different shear failure behaviors 
suggest that macroscopic thermal-mechanical descriptions alone are not sufficient to account for the shear 
failure in the form of combined localization of strain and the eventual rupture through the shear bands. 
Consequently, microstructural damage mechanisms should also be considered. © 1998 Elsevier Science 
Ltd. All rights reserved. 

Keywords: A. strain localization, B. viscoplastic material, ductile failure, C. Kolsky bar. 

1.    INTRODUCTION 

Shear band formation rather than crack initiation is the principal form of failure for 
many structural metals under certain dynamic loading conditions. In most appli- 
cations, this form of failure should be avoided. It is necessary to evaluate the resistance 
of similar materials to dynamic shear failure in order to achieve maximum structural 
integrity through design, materials selection and development of more advanced 
materials. Identifying the factors that determine the susceptibility or resistance of 
materials to the initiation and propagation of localized shear deformation has clear 
practical significance. Just as fracture toughness is a measure of material resistance to 
cracking, there may also be a toughness measure for material resistance to dynamic 
shear banding. Although the influences of many individual material properties on 
shear banding, such as strain hardening and rate sensitivity, are understood, no well- 
developed criterion is available for the comparison of the relative susceptibilities to 
shear localization of different materials. The difficulty arises partly because different 
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materials have different combinations of properties. The lack of a criterion for the 
comparison of the relative resistance to shear failure is an issue in the design of 
structures and the selection of materials. 

The occurrence of shear bands at high strain rates is a thermomechanical process 
driven mainly by heat due to plastic dissipation. Analyses of this phenomenon have 
either followed mechanics approaches, which are based on descriptions of the thermo- 
mechanical response of materials, or materials approaches, which focus on the micro- 
scopic evolution associated with the shear band development. The mechanics analyses 
have yielded understandings on the conditions for the onset and development of shear 
bands. For example, Clifton (1980) analyzed the effects of heat conduction and strain 
rate on the growth of perturbations in deformation fields. Molinari and Clifton 
(1987) obtained the critical condition for shear localization in closed form for several 
idealized models of simple shearing deformation. A sample of related work includes 
Rogers (1979), Bai (1981, 1982), Rogers and Shastry (1981), Merzer (1982), Freund 
et al. (1985), Wright and Walter (1987), Grady and Kipp (1987), Needleman (1989), 
Shawki and Clifton (1989), Batra and Kim (1991, 1992), Grady (1992), Needleman 
and Tvergaard (1992), Nemat-Nasser (1992), Shawki (1992), Zhib and Aifantis 
(1992), Gioia and Ortiz (1996), Kalthoff (1987), Mason et al. (1994), and Zhou et al. 
(1994, 1996a,b, 1997). On the other hand, microscopic studies have revealed material 
deformation, damage and failure mechanisms associated with the localization process. 
For example, Cho et al. (1990, 1993) analyzed the local temperature profiles inside 
shear bands in several metals. They also found that rotation and alignment of mar- 
tensitic laths accompany shear band development. The experiments of Andrade et al. 
(1994) suggested the occurrence of dynamic recrystallization in copper during shear 
localization. Other microscopic studies have been reported by e.g. Rogers and Shastry 
(1981), Giovanola (1988), Machand and Duffy (1988), Duffy et al. (1992), Bai et al. 
(1994), Ramesh (1994), Zurek (1994), Meyers et al. (1995), and Xu et al. (1996). 

Grady (1994) derived a shear band toughness measure which is indicative of the 
amount of energy dissipated in propagating shear bands approximated by a one- 
dimensional model. This quantity is a function of parameters in a simplified material 
constitutive model and does not account for microscopic damage and ultimate rupture 
which leads to the eventual failure of materials inside shear bands. Experiments have 
indicated that the dynamic shear failure of metals is controlled by ductile damage 
mechanisms as well as their thermomechanical constitutive behavior. Beatty et al. 
(1991) showed that 4340 steels with the same hardness value but different carbon 
distributions absorb varying amounts of energy in a split Hopkinson bar experiment. 
They also identified the importance of grain size on the susceptibility of copper to 
shear banding, Andrade et al. (1994). Bai et al. (1994) pointed out that shear band 
formation in Ti-6A1-4V does not necessarily cause a loss of load-carrying capability. 
Instead, a loss is observed only after the occurrence of a sudden rupture due to the 
coalescence of microcracks. Clearly, in order to assess realistically this form of failure, 
experiments and models accounting for both macroscopic constitutive response and 
microscopic characterizations are needed. 

The objective of this research is to identify, on macro- and microscopic scales, the 
factors that determine the resistance of materials to dynamic shear failure in the form 
of shear band formation and eventual rupture and provide an assessment of the 



Dynamic shear failure resistance of structural metals 2157 

relative resistance to this form of failure. The focus is on both the evolution of 
the load-carrying capacity of these materials during shear band development and 
associated microscopic changes. The materials studied are structural metals HY-80, 
HY-100, HSLA-80, 4340VAR and Ti-6A1-4V. These are the materials for many 
structures and shear banding is the major mode of failure under certain dynamic 
loading conditions. For example, Hanchak et al. (1993) have demonstrated that shear 
band formation dominates the dynamic perforation of HY-100 steel. The experiments 
used in this analysis provide a range of loading rates and superimposed hydrostatic 
pressures. Deformations can be controlled to occur to various stages of shear local- 
ization and failure, allowing shear bands to be "frozen" at different levels of straining 
and analyzed using optical and electron microscopy. The experiments will also allow 
the evolution of the load-carrying capacity of the materials to be obtained and 
evaluated. Since a range of materials with different macroscopic properties and micro- 
structures are analyzed under similar conditions, the results of this research can 
contribute to the quantification of the "shear band toughness" of materials. 

2.    MATERIALS 

The four structural steels and one titanium alloy studied are listed in Table 1 along 
with their chemical compositions. HY-80 and HY-100 are carbon steels with different 
levels of yield strength resulting from their different carbon and magnesium contents. 
HSLA-80 is a low alloy substitute of HY-80 with a lower amount of carbon and an 
increased amount of magnesium. The 4340VAR steel is a low alloy steel. Ti-6A1-4V 
is a high temperature titanium alloy. The heat treatment conditions and the resulting 
static strength and hardness parameters are shown in Table 2. 

The microstructures of the four steels are shown in Fig. l(a)-(d). The micro- 
structures of HY-80, HSLA-80 and 4340VAR steels consist of ferrite (light) and 
pearlite (dark). The size scales for the two constituents vary, with HSLA-80 having 
the finest phase morphology and 4340 having the coarsest phase morphology. HY- 
100 has a martensitic microstructure, in contrast to those of the other three steels. 
This microstructure gives HY-100 a higher static strength than the other steels. The 
Ti-6A1-4V alloy has a microstructure consisting of equiaxial a-phase (light) and ß- 
phase (dark), as shown in Fig. 2. The a-phase has a volume fraction of approximately 
80%. The static strength of the titanium alloy is the highest among the materials 
analyzed. 

3.    DYNAMIC SHEAR FAILURE EXPERIMENT 

An experimental configuration involving a hat specimen geometry is used. The 
geometry of the specimen is illustrated in Fig. 3. The specimens are machined from 
one inch plates, with their axes parallel to the plate normal. This experiment is used 
to subject the materials to nominal shear deformations in the strain rate range of 102- 
104 s~'. This configuration was first used by Beatty et al. (1991), Andrade et al. (1994), 
and Meyers et al. (1995) to analyze the shear deformation of a 4340 steel and copper. 
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(a) HY-80 

(c) HSLA-80 

(b) HY-100 

(d) 4340 VAR 
Fig. 1. Microstructures of the steels analyzed; (a) HY-80, (b) HY-100, (c) HLSA-80, and (d) 4340VAR. 
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TI-6AI-4V 
Fig. 2. Microstructure of Ti-6A1-4V alloy. 
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SPECIMEN 

All Dimensions in mm 
Fig. 3. A schematic illustration of specimen configuration. 

This technique has also been used by Subhash and Ravichandran (1993) in a study 
of the deformation and failure of hafnium. A split Hopkinson compression bar as 
described by Follansbee (1985) is used to cause the compressive loading to the 
specimen along its axis. The specimen geometry is such that upon compressive loading 
at the two ends, intense shear deformation is obtained in the ligament between the 
smaller top section and the hollow cylinder section. A stopper ring is placed around 
the hat during the experiment to control the amount of shear deformation imparted 
to the ligament. The hat section protrudes above the ring surface and the amount of 
protrusion (A) determines the maximum amount of deformation allowed. Upon 
loading of the specimen, the hat section deforms until the incident bar touches the 
ring surface. The relatively small size of the ligament ensures that deformations in the 
hat and hollow cylinder sections are small and negligible compared to the deformation 
in the ligament. The maximum average shear strain in the ligament is ymax = 2A/.5. By 
varying the thickness of the stopper ring, a range of shear deformations can be 
obtained for each material. After the experiment, the specimens are sectioned in halves 
and polished. The steels are etched with a 3% nital solution and the titanium is etched 
with Kroll's solution. The length and width of the shear band are measured on a 
Reickerd optical microscope. The length of any visible rupture within the shear band 
is measured. Optical and scanning electron microscopy are used to examine the 
fracture surfaces for the specimens with completely ruptured ligaments. 

4.    RESULTS 

4.1.    Dynamic constitutive response 

The dynamic constitutive behaviors of the materials are analyzed using the same 
split Hopkinson compression bar apparatus. The specimen is a cylinder 3 mm in 
diameter and 3 mm in length. The stress-strain curves for the five materials over the 
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strain rate range of 102-104 s_l are shown in Fig. 4(a)-(e). A comparison of the 
dynamic responses of the materials for similar strain rates between 2.1-2.4 x 104 s"1 

is given in Fig. 4( f)- The curves show that like their similar quasistatic yield strengths 
and ultimate tensile strengths, the steels have similar dynamic constitutive behaviors 
in the strain rate range of 10M04 s_1. The similar quasistatic and dynamic responses 
indicate that the steels have nearly the same rate-sensitivities in the strain rate range 
analyzed. It can be seen in Fig. 4(f) that the steels also have nearly the same rate of 
strain hardening. 

Ti-6A1-4V has a much stronger rate-sensitivity than those of the steels. In addition, 
its rate of strain hardening is slightly higher. Despite these factors, this material is 
more susceptible to shear banding and ductile rupture than the steels, as suggested by 
the precipitous drops in stress at strains of approximately 0.2. Postmortem analysis 
revealed that the shear bands occurred along plane approximately 45° from the 
loading axis. This is inconsistent with the understanding that strong rate-sensitivity 
and higher strain hardening enhance resistance to shear localization, indicating factors 
other than rate-sensitivity play a more dominant role in determining shear failure 
under the conditions analyzed. Further discussions on this will follow in later sections. 
Shear bands are not observed for the steels in uniaxial compression experiments. 

4.2.    Evolution of stress-carrying capacity throughout deformation and failure 

The nominal shear stress-strain curves obtained from shear failure experiments for 
all five materials are shown in Fig. 5(a)-(e). The stress and strain are average values 
in the specimen ligament. The shear stress is obtained by dividing the total load 
applied to the specimen by the cylindrical surface area in the ligament. The shear 
strain is obtained via 

2u(t) 

where u(t) is the decrease in the length of the hat specimen. This calculation assumes 
that all the deformation occurs in the ligament. For each material, results for several 
stopper thickness values are shown. The precipitous drops in shear stress signifies the 
loss of stress-carrying capacity associated with shear failure development. The increase 
in stress following the drop on each curve results from the contact of the incident bar 
and the stopper. It does not represent material behavior. Rather, it signifies the 
cessation of deformation in the specimen. To facilitate comparison, the curves for all 
five materials for the stopper thickness allowing complete failure are shown in Fig. 
5(f). Clearly, all materials show a total loss of stress-carrying capacity indicated by 
the drop of stress to near zero levels. The shape of the curves indicate that the strains 
at which materials lose all of their stress-carrying capacities increase in the order Ti- 
6A1-4V -► HY-80 -► HY-100 -> HSLA-80 ->• 4340VAR. The critical strain level for 
Ti-6A1-4V is approximately 1.6—significantly lower than those of the steels. Ti-6A1- 
4V does not display a period of gradual decrease of stress. Instead, a rapid loss of 
stress is observed immediately after the onset of localization. The steels, on the other 
hand, show gradual softening preceding the rapid losses of load-carrying capacity, 
indicating higher resistance to shear failure. 
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Fig. 4. Constitutive response over a range of strain rates for (a) HY-80, (b) HY-100, (c) HSLA-80, (d) 
4340VAR, (e) Ti-6A1-4V alloy ; (f)is a comparison of all materials at similar rates. 
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4.3.    Microscopic observations 

To compare microstructural evolution during the shear failure process, the 
deformed microstructures of the steels at nominal shear strain levels of 2.0 and 2.5 
are shown in Fig. 6. This series of pictures illustrates the progression of localization 
and rupture in each material. HY-100 shows distinct shear band formation across the 
whole ligament of the specimen at y = 2.0. The band is narrow (~ 60-70 ^m in width) 
compared with those in the other steels. At y = 2.5, complete rupture has occurred 
along the shear band. This material shows the most extensive microscopic damage 
among the steels. For HY-80, a shear band is emerging from one side of the ligament 
at y = 2.0. The band has propagated through the ligament at y = 2.5 but no crack is 
seen. Note that the notch on the right hand corner is formed by the motion of the 
initial free surfaces and does not represent a crack. SEM photographs of the ruptured 
specimens indicate that the original radius of the specimen folds inward as the shear 
deformation increases. This folded surface is noticeable in all the specimens in which 
the shear band has not completely propagated across the ligament. A shear band is 
emerging from one side of the ligament at y = 2.0. The localization of deformation in 
4340VAR occurs later than in all other steels. In addition, the deformation is diffuse 
and the shear band has a width of approximately 260 /im, 3-4 times those in HY-80, 
HY-100 and HSLA-80. The increasing order of shear failure resistance for the steels 
appears to be HY-100 ->■ HY-80 -> HLSA-80 -> 4340. This is different from the order 
of decreasing critical shear strain indicating the onset of loss of stress-carrying capacity 
seen in Fig. 5. It seems that the martensitic microstructure of HY-100 makes it more 
susceptible to the development of intensely localized shear bands. However, its earlier 
development of localization does not necessarily result in early loss of stress. Rather, 
significant loss of strength follows more closely the subsequent ductile rupture of 
materials. This observation is consistent with what was reported by Bai et al. (1994). 

The deformed microstructures of Ti-6A1-4V at y = 1.3 and 2.0 are shown in Fig. 7. 
Note that the strains here are from those in Fig. 6, indicating shear failure occurs 
significantly earlier in the titanium alloy than in the steels. The shear band in this 
material has a width of only 10 /j.m (Fig. 8), nearly an order of magnitude smaller 
than those in the steels. In addition to the extremely intense shear deformation, the 
shear band is closely followed by cracks formed through the microrupture of damaged 
materials inside the shear band, Fig. 8. Note that while no shear band is seen in Fig. 
7(a) at y = 1.3, nearly complete fracture has occurred in Fig. 7(b) at y = 2.0, indicating 
the full development of localization and rupture in this material is within a nominal 
shear strain increment of 0.41. This rapid occurrence of failure has been observed in 
the stress-strain profiles for this material in Fig. 5(e). 

To quantify the extent of shear localization and rupture, the lengths of shear bands 
and cracks following the shear bands are measured and plotted in Fig. 9. These two 
lengths increase with the nominal shear strain inside the ligament. For each of the 
steels, there is an appreciable difference in the shear band length and the crack length, 
suggesting development of rupture after localization of strain. For Ti-6A1-4V, the 
shear band length and the rupture length are very close to each other. This lack 
of difference for the titanium alloy indicates the near simultaneous occurrence of 
localization and rupture. 
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Fig. 6. Morphologies of shear bands and ductile rupture at y = 2.0 and 2.5 for (a) HY-80, (b) HY-100, (c) 

HSLA-80, (d) 4340VAR. 
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y=1.3 y=2.0 
Fig. 7. Morphologies of shear bands and ductile rupture at y = 1.3 and 2.0 for Ti-6A1-4V. 
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Fig. 8. A close up look of the shear band in Ti-6A1-4V at y = 2.0. 

Partly because of this rapid development of rupture, Ti-6A1-4V exhibits a much 
higher degree of susceptibility to the loss of stress-carrying capacity than those of the 
steels. 

5.    DISCUSSION AND SUMMARY 

Although it is based on an approximate characterization of the thermomechanical 
response and a one-dimensional deformation model, the shear band dissipation energy 
derived by Grady (1994) allows the energy dissipated per unit area of shear band 
growth for different materials to be estimated and compared. This shear band dis- 
sipation energy is 
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Table 3. Dissipation energy and shear band toughness 

Flow stress Dissipation energy Ts Shear band toughness Ks 

Material (MPa) (KJ/m2) (MPa^/w) 

HY-80 1460 125.2 142.221 
HY-100 1530 120.9 139.745 
HSLA-80 1280 138.2 149.414 
4340VAR 1450 125.9 142.588 
Ti-6A1-4V 2000 3.935 18.861 

_pc/9pVX
3V/4 

s
 „.   I        3    ~> • 

a \ TyCc y 

where p is density, % is thermal diffusion coefficient, a is a thermal softening coefficient, 
c is specific heat, zy is the flow stress at strain rate y. This parameter is calculated for 
the materials analyzed in the experiments. For the steels, their densities, thermal 
diffusion coefficients, and thermal softening coefficients are similar (due to similar 
melting points) and are taken as p = 7.85 x 103 kg m"3, a = 6.5 x 10"4 m2 s"1, and 
c = 503 J -(kg ■ K)~', respectively. For Ti-6A1-4V, these parameters are p = 4.43 x 103 

kgrrr = 5.6x10- ', and c = 526 J-(kg-K)"1. The flow stress iy for each 
material is taken from its stress strain curves in Fig. 4 at a strain rate of y = 1.7 x 104 

s_1. The values are listed in Table 3 along with the values of calculated Ts. A shear 
band toughness parameter is defined by Grady as K, = JlGY,, where G is the shear 
modulus. It can be seen that the dissipation energy and shear band toughness values 
for the steels are very close to each other due to their similar thermal and mechanical 
properties. This similarity is in contrast to the significantly different shear failure 
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behaviors observed in the experiments. In addition to the approximate nature of the 
model on which the calculation of Ts is based, the lack of agreement between the 
values of these quantities and the shear failure resistance of the materials observed 
has to do with the influence of microscopic damage not accounted for in the analysis. 

The shear stress-shear strain curves obtained in the experiments described above 
and the microscopic observations assign mostly consistent shear failure toughness 
rankings for the materials analyzed. From the most susceptible to the least susceptible, 
the ranking is Ti-6A1-4V, HY-80, HY-100, HSLA-80, 4340VAR based on the stress- 
strain curves or Ti-6A1-4V, HY-100, HY-80, HSLA-80, 4340VAR based on the 
microscopic morphologies of shear bands and fracture behind the shear band tips. 
The stress-strain response and the microscopic analysis showed that Ti-6A1-4V is 
more susceptible to dynamic shear failure than the steels considered. This is in contrast 
to its much higher rate sensitivity than those of the steels. Similarly, among the steels, 
significant difference in the shear failure behavior is observed, despite their similar 
thermal and mechanical constitutive behavior over the strain rate range of 102-104 

s_1. The discrepancies can be partly attributed to the fact that the formation of a 
well-deformed shear band does not necessarily cause an instantaneous loss in load 
carrying capability. The subsequent coalescence of cracks or development of rupture 
also plays a significant role in determining the evolution of the load-carrying capacity 
of materials during shear deformation. Clearly, microscopic damage as well as the 
thermal-mechanical response of materials needs to be considered in evaluating the 
dynamic shear failure resistance of materials. 

The calculated dissipation energy value for Ti-6A1-4V and the calculated shear 
band toughness value are only fractions of those for the steels. This partly explains 
its much higher susceptibility to shear failure compared with those of the steels 
and demonstrates that thermomechanical behavior plays a very important role in 
determining material shear failure resistance. However, the experiments showed that 
rupture closely follows the propagating shear bands in this material, further expediting 
the progression of failure through rapid release of stress. Like in the case of the 
steels, this effect should not be neglected. A comparison of the microscopic rupture 
mechanism in the form of void growth and coalescence in these materials is being 
carried out using scanning electron microscopy. The result and its implications for 
the shear failure resistance of these materials will be reported in a future publication. 
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ABSTRACT 

Confined heterogeneous brittle solids loaded under far-field uniaxial compression are often observed to split 
along the loading axis. We develop a theory which accords this phenomenon an energetic interpretation: the 
solid splits because in so doing it reduces its total energy, defined as the sum of bulk strain energy and 
surface energy. The heterogeneous microstructure gives rise to a complex stress distribution in the intact 
solid. We show that the change in energy due to the release of the microstructural stresses may exceed the 
cost in fracture energy. Critical conditions for splitting are formulated for polycrystalline solids as a 
function of readily measurable material properties and applied stresses. The predictions of the theory are 
found to be in remarkably good agreement with experimental observations in ceramics and rocks. © 1998 
Elsevier Science Ltd. All rights reserved. 

Keywords: A. fracture, B. ceramic material, polycrystalline material, rock, C. energy methods. 

1.    INTRODUCTION 

Confined heterogeneous brittle solids loaded in uniaxial compression are often 
observed to split along the loading axis (Wastiels, 1979; Cannon et al., 1990; Smith 
and Schulson, 1994; Espinosa and Brar, 1995; Chen and Ravichandran, 1996). While 
brittle fracture in compression has been the subject of study since the pioneering work 
of Griffith (1920), an unambiguous understanding of this phenomenon is yet to 
emerge. Models based on the extension of inclined or tortuous cracks have been 
proposed by a number of authors (e.g. Brace and Bobolakis, 1963 ; McClintock and 
Walsh, 1963; Hoek and Bieniawski, 1965; Nemat-Nasser and Horii, 1982; Ortiz, 
1985; Ashby and Hallam, 1986; Vekinis et al., 1991; Ravichandran and Subbash, 
1995; Espinosa and Brar, 1995; Wang and Shrive, 1995). Some of these models are 
based on the nucleation and growth of tension cracks, or "wing" cracks, from the 
tips of isolated inclined flaws. While wing cracks have been observed in some cases 
(Horii and Nemat-Nasser, 1986; Cannon et al., 1990; Vekinis et al., 1991), it has 
been shown by Lehner and Kachanov (1996) that the crack-tip driving force quickly 
approaches zero with crack extension, especially in the presence of frictional resist- 
ance, which calls the effectiveness of the mechanism into question. 

* To whom correspondence should be addressed. E-mail: ravi@atlantis.caltech.edu 
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Most of the existing models of compressive fracture fail to account for heterogeneity 
on the microscale and envision the growth of flaws under the action of the nominal 
applied stresses. However, the heterogeneous micro structure of polycrystals and com- 
posites may lead to substantial local tensile stresses even under compressive applied 
loads. For instance, by treating concrete as a two-phase composite, Ortiz and Popov 
(1982) found that large tensile stresses may develop in the matrix under applied 
uniaxial compression. Furthermore, the tensile stresses are normal to the axis of 
loading, which promotes axial splitting. Indeed, compressive fracture is often observed 
in materials with heterogeneous microstructures such as rocks and concrete, which 
suggests a link between heterogeneity and compressive fracture. 

Studying the energy release rate associated with a crack in the complicated stress 
field of a microstructurally heterogeneous solid appears to be a hopelessly complicated 
task. Therefore, we instead take a more macroscopic and energetic approach. We 
develop a theory which accords compressive fracture an energetic interpretation: 
splitting is driven by an attendant reduction of the total energy of solid, defined as 
the sum of bulk strain energy and surface energy. Similar energetic interpretations of 
fracture have been used successfully in studying cavitation in rubber-like solids (e.g., 
Ball, 1982; James and Spector, 1991; Hou and Abeyaratne, 1992). We combine this 
energetic approach with ideas of effective properties and the principle of minimum 
complementary energy. Hashin (1996) has used this principle to obtain a bound on 
the energy release rate for fracture in laminated composites. We will find that this 
macroscopic energetic approach allows us to easily account for the underlying het- 
erogeneity. 

For definiteness, we restrict our discussion to polycrystals, but other micro- 
structures can likewise be treated within the theory. In a polycrystal, each grain is 
made up of the same material but at a different orientation. Therefore, the het- 
erogeneity arises due to the anisotropy of the properties like elastic moduli of the single 
crystal. The microstructural heterogeneity gives rise to a complex stress distribution in 
the intact solid. We show that the change in the microstructural stresses induced by 
splitting results in a reduction of the elastic energy. By equating the energy released 
by splitting to the fracture energy required for the creation of new surface, critical 
conditions for splitting follow readily as a function of well-characterized material 
properties and applied stresses. The predictions of the theory are found to be in good 
agreement with experimental observations in ceramics and rocks. 

2.    A MODEL OF COMPRESSIVE SPLITTING 

Consider the polycrystalline specimen of height h and thickness t shown sche- 
matically in Fig. 1(a). Suppose it is subjected to a macroscopic uniaxial compression 
a. Suppose for the moment that the lateral confinement ac is zero. As a increases, 
cracks appear as shown in Fig. 1 (b) and the specimen splits into the columns as shown 
in Fig. 1 (c) at a critical value of the applied stress a*. If the lateral confinement ac is 
nonzero but small, the behavior is still similar except the failure strength a* is known 
to increase with ac (e.g., Wastiels, 1979; Cannon et al, 1990; Smith and Schulson, 
1994; Espinosa and Brar, 1995; Chen and Ravichandran, 1996). 
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Fig. 1. Compressive splitting in ceramics. 

In our model, we compare the energy of the unsplit specimen (Fig. 1(a)) with that 
of the slit specimen (Fig. 1(c)). We estimate the elastic energy of both the split and 
the unsplit specimen using ideas of effective properties of polycrystals. The unsplit 
specimen has less total energy when the applied load a is small while the split specimen 
has less total energy when a is large. The failure strength or the critical compressive 
stress required for splitting a* is defined as the applied stress at which there is an 
exchange of stability from the unsplit to the split specimen. We obtain a* as a function 
of the confinement stress ac and easily measurable material properties: the elastic 
moduli of both the single crystal and the bulk polycrystal, the surface energy and the 
grain size. 

2.1.    Energy of the unsplit specimen 

We assume that our specimen is subjected to dead loading corresponding an overall 
stress T. Therefore,the total energy of the unsplit specimen is equal to it's elastic 
energy which is given by 

&,.= - C(x)e(x) • e(x) - T(x) • e(x) \ dx {S(x)T(x)-T(x)}dx 

ht2 

= -—S*T-T. (1) 

Above, C(x) is the fourth-order elastic modulus tensor at point x, S(x) is the fourth- 
order compliance tensor, 5* is the effective compliance tensor of the unsplit specimen, 
e(x) is the strain field, T(x) is the stress field and V is the volume of the specimen Q. 

We assume that the specimen is macroscopically isotropic so that S* is described 
by the effective Young's modulus E„ and effective Poisson's ratio v„. The applied stress 
shown in Fig. 1 corresponds to 
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la    0     0 \ 

0    ac     0 

10    0    aj 

(2) 

in an orthonormal basis where the primary loading axis is chosen to be the 1-direction. 
Therefore, 

ja — 2vu(jc 0 0 \ 

S*T=^T-^-(trT)I=^r\       0 ac-vu(a + ac) 0 (3) 

\        0 0 (7C — vu(o+oc)l 

Finally, we assume that the specimen is a cuboidal with dimension hxtxt. Sub- 
stituting all this into (1), we obtain the elastic energy of the unsplit specimen 

ht2 

S" = " 2£ (<j2+2<7'(1 -v«)-4v«(T^)- (4) 

2.2.    Energy of the split specimen 

There are two components to the energy of the split specimen. First, is the elastic 
energy while the second is the surface energy. Calculating the exact value of either 
can be rather daunting; however, they may be estimated very simply with a few 
approximations. 

We assume that the splitting produces columns of grains with a uniform stress field. 
Therefore, the elastic energy is given by 

ht2 

{S(x)T- T}dx = - — <S>r- T (5) 

where <5> is the average of the compliance tensor over the entire specimen. The 
discerning reader will recognize that <£"> is the Reuss bound for the effective com- 
pliance of the polycrystal. Typically, the grains are much smaller than the specimen. 
Therefore, we may assume that the average is taken over all possible orientations; so 
(Sy is isotropic with some Young's modulus Es and Poisson's ratio v,. Therefore, 

ht2 

Ss = - ^(<72 + 2a2
c (1 - v.) -4wc). (6) 

To calculate the surface energy, we assume that the splitting produces columns 
which are all one grain wide and that the surface energy density y is constant inde- 
pendent of orientation. Therefore, the number of surfaces after splitting is 2t/d (where 
dis the typical grain size), each with area ht. Therefore, the total surface energy is 

ht2 

^ = 2yT. (7) 

2.3.    Criterion for splitting 

We recall that the constant stress Reuss bound always provides a lower bound for 
the energy: this is easily seen from the application of the principle of minimum 
complementary energy. Therefore, Su — Ss^0 and splitting reduces the elastic energy. 
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Our criterion for fracture is that the reduction in elastic energy must overcome the 
surface energy associated with the newly created surfaces. Therefore, at the critical 
state, 

eu-s, = y. (8) 
Substituting from (4), (6) and (7), we conclude that when the applied stress a reaches 
the critical value a*, 

(,*)> 11 _ IV2a? (^ - l-^)-4a*ac (£-£)= -4 
Jli J~'s 

(9) 

We solve this quadratic equation to obtain the failure strength, 

a* 
1 

= A7 
J2A2<7(. -  /2^2(2A2-A1)(A2 + A,)-4A14 

where 

A, = \EU~ -E-)   and    Al = (|-t) (10) 

We will compare this result with experimental observations shortly. Before we do 
so, let us try to understand this result with some comments. First, the failure strength 
at zero confinement is given by 

ff*L.=o 
Ayjd 

(11) 

Notice that it automatically contains the effect of the grain size d. 
Second, to understand the effect of lateral confinement, we find from (10) that 

da* 
dar 

= 2- 
'A, 

(12) 

Let us now assume that the symmetry of the underlying material is cubic. Then, the 
bulk modulus is independent of texture and hence the bulk moduli of the split and 
the unsplit ceramic are equal. Using this fact, it is possible to show that for a cubic 
material, 

da* 
da,. 

= 1. (13) 

3.    COMPARISON WITH EXPERIMENTS AND DISCUSSION 

We now apply our model to various materials. 
The measure elastic moduli of the unsplit specimen are readily available. Similarly, 
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the elastic moduli of the single crystals are also readily available; from this, we may 
easily calculate the Reuss bounds which are effective moduli for split specimen. 
However, it often turns out that the measured elastic moduli of the unsplit specimen 
violates the Reuss lower bound. This is believed to be a result of the porosity and 
texture in these materials. We could correct the Reuss bound for the porosity; 
unfortunately, the exact value of the porosity is difficult to measure and often unavail- 
able. Under these circumstances we decided to estimate the elastic moduli of the 
unsplit specimen based on the single crystal elastic moduli. 

We use the average of the Reuss lower and the Voigt upper bound as an estimate 
of the elastic moduli of the unsplit specimen. It is important to be careful here. The 
quantities that are really bounded are the bulk and the shear moduli. So, we average 
the bounds on the bulk and shear moduli and then obtain the Young's modulus and 
the Poisson's ratio from these. Clearly, we are not proposing this as a model of the 
effective elastic moduli for the polycrystal; instead we use this as the simplest possible 
estimate. The choice of other estimates would not change the qualitative features of 
the predictions. In particular, one can use various self-consistent estimates. However, 
one must choose amongst a variety of approximations. Further, these estimates are 
known to be suspect when the contrast or anisotropy is severe; and the anisotropy 
can be severe in some of these ceramics. 

Finally, we need the surface energy density y and the grain size d; unfortunately, 
these are not always available. Therefore, we use (11) to fit yjd to the experimental 
observations. 

We list the single crystal elastic moduli for various materials in Table 1. We list the 
estimates of the elastic moduli for the split and the unsplit specimen in Table 2. Also 
listed in Table 2 is the fit value of the parameter yjd. We can now calculate the failure 
strength as a function of the lateral confinement using (10). The results are shown in 
Figs 2 and 3 along with experimental observations. We find reasonable agreement. 

Further, the fit values of the parameter y/d are listed in Table 2. We notice that 
they are of the order of 10-5 GJ/m3. Since d is typically of the order of 1CT6 m, we 

Table 1. Single crystal elastic moduli 

Material (symmetry) Elastic moduli (GPa) 

LiF (cubic) C„ = 119, Cu = 54, Cn = 53 [1] 
MgO (cubic) C„ = 286, Cn = 87, C13 = 148 [1] 
NaCl (cubic) C„ = 49, C12 = 12, C,3 = 12 [2] 
A1N (hexagonal) C„ = 424, Cl2 = 103, C13 = 71, C33 = 455, C55 = 138 [3] 
BeO (hexagonal) C„ = 471, C12 = 168, C13 = 119, C33 = 494, C55 = 153 [1] 
TiB, (hexagonal) C„ = 690, C12 = 410, C13 = 320, C33 = 440, C55 = 250 [1] 
A1,Ö3 (trigonal-I) C„ = 466,     C12 = 127,     C,3 = 117,     C14 = 94,     C33 = 506, 

C44 = 235 [1] 
CaCOj (trigonal-I) C„ = 137,     Cl2 = 45,     C13 = 45,     C14=-21,     C33 = 79, 

Cu = 34[1] 

[1] Simmons and Wang (1971); [2] Bass (1995); [3] Azuhata, Soha and Suzuki (1996). 
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Table 2. Failure data for various materials 

Unsplit Split 
a* (GPa) at 
<T, = 0 

0.8 

lid 
(GJ/m3) Material E„ (GPa) v„ Es (GPa) 

0.263 LiF 110 0.257 107 3.63 xl0~5 

MgO 297 0.177 292 0.182 1 1.27xl0~5 

NaCl 36.9 0.253 36.5 0.256 0.045 [1,2] 1.7x10 7 

A1N 372 0.188 370 0.191 4.6 [3, 4] 8.5 xl0~5 

BeO 394 0.237 393 0.238 0.4 [5] 1.18 xlO"6 

TiB-, 456 0.322 419 0.325 40 [6, 7] 5.83 xlO-4 

AbO, 431 0.201 391 0.228 4.77 [5] 1.34x10-' 

CaCO, 84 0.29 72.7 0.312 0.35 [8, 2] 5.67 xlO"5 

[1] Handin (1953); [2] Ashby and Sammis (1990); [3] Rosenberg et at. (1991); [4] Chen and 
Ravichandran (1996); [5] Heard and Cline (1990); [6] Rosenberg et al. (1992); [7] Dandekar 
(1994); [8] Heard (1960). 

obtain a value of y to be of the order 10"2 J/m2. It is low, though reasonable. We 
speculate that the low value is a consequence of the porosity. 

Notice that in general, our theory slightly underestimates the failure strength with 
increasing lateral confinement. We speculate the following. As the lateral confinement 
increases, columns no longer achieve the Reuss lower bound and the failure mode 
changes from splitting to crushing. We can repeat the arguments above for crushing 
failure and we obtain results similar to (10): indeed, it is the same result except the 
term 4y/d is changed to 6yjd. This increases the failure strength. 

The theory failed to predict the observed behavior in TiB2—see Fig. 4. The curve 
marked "Theory 1" is the one predicted using the procedure above. However, we 
noticed that for this material, the measured elastic moduli of the ceramic exceeds the 
Voigt upper bound! If we use the measured moduli rather than the average of Voigt 
and Reuss, we get the curve marked "Theory 2". Based on this observation, we 
suspect that typical specimens of TiB2 are textured. The wide spread of reported 
Poisson's ratios—0.05-0.11—also points to possible texturing in this material. 

4.    CONCLUSION 

In this paper, we have presented an energy-based model of the compressive failure 
of brittle heterogeneous solids. The basic idea is that the solid splits because in so 
doing it reduces its total energy, defined as the sum of bulk elastic energy and surface 
energy. The heterogeneous microstructure gives rise to a complex stress distribution 
in the intact solid. The material fractures to release the excess elastic energy associated 
with this complex stress field. We have applied this idea to macroscopically isotropic 
polycrystalline solids like ceramics and rocks. We have obtained a predictive model. 
Notice that we have explained a large amount of data based on simply the elastic 
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Fig. 2. The theoretical prediction eqn (9) of failure strength vs lateral confinement is compared with the 
experimental observations in various ceramics. The experimental data in A1203 is taken from Heard and 
Cline (1990), in AIN from Rosenberg et al. (1991) as well as Chen and Ravichandran (1996) and in hot- 

pressed (hp) and cold-pressed (cp) BeO from Heard and Cline (1990). 

moduli and one fit parameter —y/d. Thus, the model is able to capture in an essential 
manner the effect of the underlying heterogeneity on failure strength. 

We close by noting that it is possible to apply this model to a variety of other 
situations including textured materials and composites. In particular, this energy- 
based model can provide a direct link between texture and failure strength in advanced 
structural ceramics. 
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