
A GROUP THEORETIC TABU SEARCH
APPROACH TO THE

TRAVELING SALESMAN PROBLEM

THESIS

Shane N. Hall, First Lieutenant, USAF

AFIT/GOR/ENS/00M-14

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC QUALITY niSFECTED 4

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.
Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

A GROUP THEORETIC TABU SEARCH APPROACH TO THE TRAVELING SALESMAN
PROBLEM

5. FUNDING NUMBERS

6. AUTHOR(S)

Shane N. Hall, First Lieutenant, USAF

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFTT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOR/ENS/00M-14

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQAMC/XPY
402 Scott Drive, Unit 3L3
Scott AFB, IL 62225-5307
DSN: 576-5954

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Dr. James T. Moore. AFTT/ENS JameS.M00re@aflt.af.mil) (937) 255-6565

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

ABSTRACT {Maximum 200 Words)

The traveling salesman problem (TSP) is a combinatorial optimization problem that is mathematically modeled as a binary integer program. The TSP is a very
important problem for the operations research academician and practitioner. This research demonstrates a Group Theoretic Tabu Search (GTTS) Java algorithm for the
TSP. The tabu search metaheuristic continuously finds near-optimal solutions to the TSP under various different implementations. Algebraic group theory offers a
more formal mathematical setting to study the TSP providing a theoretical foundation for describing tabu search. Specifically, this thesis uses the Symmetric Group on
n letters, 5„, which is the set of all n\ permutations on n letters whose binary operation is permutation multiplication, to describe the TSP solution space. Thus, the TSP
is studied as a permutation problem rather than an integer program by applying the principles of group theory to define the tabu search move and neighborhood
structure. The group theoretic concept of conjugation (an operation involving two group elements) simplifies the move definition as well as the intensification and
diversification strategies. Conjugation in GTTS diversifies the search by allowing large rearrangement moves within a tour in a single move operation. Empirical
results are presented along with the theoretical motivations for the research.

14. SUBJECT TERMS
Group Theory, Tabu Search, Heuristics, Metaheuritics, Traveling Salesman Problem, Java, Permuations

15. NUMBER OF PAGES
109

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNC
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the United States Air Force,

Department of Defense, or the United States Government.

AFIT/GOR/ENS/OOM-14

A GROUP THEORETIC TABU SEARCH
APPROACH TO THE TRAVELING

SALESMAN PROBLEM

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

of the Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Operations Research

Shane N. Hall, B.S.
First Lieutenant, USAF

March 2000

Approved for public release; distribution unlimited.

AFIT/GOR/ENS/OOM-14

THESIS APPROVAL

NAME: Shane N. Hall, First Lieutenant, USAF CLASS: GOR-00M

THESIS TITLE: A Group Theoretic Tabu Search Approach to the Traveling Salesman
Problem

DEFENSE DATE: 24 February 2000

COMMITTEE: NAME/TITLE/DEPARTMENT SIGNATURE

Co-Advisor

Co-Advisor

Reader

James T. Moore, Ph.D.
Associate Professor of Operations Research
Department of Operational Sciences
Air Force Institute of Technology

Raymond R. Hill, Major, USAF
Assistant Professor of Operations Research
Department of Operational Sciences
Air Force Institute of Technology

ftn**~

fPcu^^lßJL/J

Robert P. Graham Jr., Major, USAF
Assistant Professor of Computer Engineering
Department of Electrical and Computer Engineering
Air Force Institute of Technology

pmJ^ß/iJio^£

n

Acknowledgements

I wish to express my sincere thanks for several individuals who have guided me

throughout my research. First, thanks to Lieutenant Colonel T. Glenn Bailey, now

retired, who introduced me to the concept of group theoretic tabu search. His motivation

and enthusiasm was an inspiration to work hard and strive for the best. Next, thanks to

Dr. James T. Moore for his guidance and interest in my research. I have great respect for

his patience, style, and knowledge. I also express thanks to Lieutenant Colonel (sei)

Raymond Hill and Major Robert Graham for their efforts in wading through my research

and providing useful comments and suggestions. Finally, I thank Dr. Bruce Colletti and

Dr. J. Wesley Barnes for their motivation, enthusiasm, and inspiration. I honor and

respect each of these professors and will strive to serve with their same qualities.

Finally, my deep gratitude for the special heroes. To my wife, Camalee, and my

two sons, Nikolaus and Ammon, I express my love, respect, and gratitude for their

sacrifice. Only they know and understand the sacrifices and events of the last eighteen

months. To my father and mother, who taught me principles and truths much greater

than tabu search and group theory, I express my honor, love, and respect.

Shane N. Hall

in

Table of Contents

ACKNOWLEDGEMENTS m

LIST OF FIGURES VI

LIST OF TABLES VII

ABSTRACT Vm

CHAPTER 1. INTRODUCTION 1

1.1 BACKGROUND 1
1.2 PROBLEM DESCRIPTION 1
1.3 SCOPE 3
1.4 CONTRIBUTION OF RESEARCH 3
1.5 OVERVIEW 4

CHAPTER 2. LITERATURE REVIEW 5

2.1 INTRODUCTION 5
2.2 THE TRAVELING SALESMAN PROBLEMS 5
2.3 HEURISTIC SEARCH METHODS 5

2.3.1 Tabu Search 7
2.3.2 Reactive Tabu Search 9

2.4 GROUP THEORETIC METAHEURISTICS 9
2.4.1 Groups 10
2.4.2 The Symmetric Group, Sn 12
2.4.3 Subgroups 15
2.4.4 Cosets 17
2.4.5 Conjugation 19
2.4.6 Templates 21

2.5 CONCLUSION 23

CHAPTER 3. METHODOLOGY 24

3.1 INTRODUCTION 24
3.2 ALGORITHM DESCRIPTION AND PSEUDO CODE 24
3.3 TABU SEARCH IMPLEMENTATION 25

3.3.1 Initializing the Algorithm and the Starting Solution 26
3.3.2 Move Definition and Solution Neighborhood 27
3.3.3 Conjugation and k-opt Moves 31
3.3.4 Tabu Criteria and Aspiration Criteria 32
3.3.5 Intensification Strategy 34
3.3.6 Diversification Strategy 39

3.4 TESTING AND VALIDATION 41
3.5 CONCLUSION 42

CHAPTER 4. RESULTS 43

4.1 INTRODUCTION 43
4.2 ALGORITHM RESULTS 43
4.3 ANALYTICAL CONCLUSIONS 47

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 51

iv

5.1 INTRODUCTION 51
5.2 RESEARCH CONCLUSIONS AND CONTRIBUTIONS 51
5.3 FUTURE RESEARCH 53

APPENDIX A. JAVA DOCUMENTATION 57

A.1 CODE DESCRIPTION 57
A.2 SOURCE CODE 57

APPENDIX B. TSP FORMULATION 89

B.l INTRODUCTION 89
B.2 THE TRAVELING SALESMAN PROBLEM 89
B.3 THE MULTIPLE TRAVELING SALESMAN PROBLEM 91
B.4 THE MULTIPLE TRAVELING SALESMAN PROBLEM WITH TIME WINDOWS 92
B.5 THE MULTIPLE DEPOT MULTIPLE TRAVELING SALESMAN PROBLEM WITH TIME WINDOW 93

BIBLIOGRAPHY 95

VITA 97

V

List of Figures

Figure 1. The GTTS Algorithm 25

Figure 2. The GTTS Refined Algorithm 34

Figure 3. The GTTS Intensification Algorithm 35

Figure 4. Looping Structure for iV(p) 36

Figure 5. Looping Structure for M(p) 38

Figure 6. Looping Structure for iV2(p) 39

Figure 7. GTTS Algorithm Baseline 52

VI

List of Tables

Table 1. TSP Data Sets 41

Table 2. GTTS Best Results 44

Table 3. GTTS Results without Intensification or Diversification 45

Table 4. GTTS Results with Diversification 46

Table 5. GTTS Results with Intensification 46

Table 6. GTTS Results with Intensification and Diversification 47

Table 7. Average Improvement in r with Diversification and Intensification 48

Table 8. Comparison of Intensification Neighborhoods M(p) and N2(p) 49

Table 9. Comparison of Tabu Tenure h and t2 49

Table 10. Average Improvement in r when using N2(p) or t2 50

Vll

AFJT/GOR/ENS/00M-14

Abstract

The traveling salesman problem (TSP) is a combinatorial optimization problem

that is mathematically modeled as a binary integer program. The TSP is a very important

problem for the operations research academician and practitioner. This research

demonstrates a Group Theoretic Tabu Search (GTTS) Java algorithm for the TSP. The

tabu search metaheuristic continuously finds near-optimal solutions to the TSP under

various different implementations. Algebraic group theory offers a more formal

mathematical setting to study the TSP providing a theoretical foundation for describing

tabu search. Specifically, this thesis uses the Symmetric Group on n letters, Sn, which is

the set of all n! permutations on n letters whose binary operation is permutation

multiplication, to describe the TSP solution space. Thus, the TSP is studied as a

permutation problem rather than an integer program by applying the principles of group

theory to define the tabu search move and neighborhood structure. The group theoretic

concept of conjugation (an operation involving two group elements) simplifies the move

definition as well as the intensification and diversification strategies. Conjugation in

GTTS diversifies the search by allowing large rearrangement moves within a tour in a

single move operation. Empirical results are presented along with the theoretical

motivations for the research.

Vlll

Chapter 1. Introduction

1.1 Background

Optimization is a vast and important area of study in the discipline of operations

research. Optimization problems are encountered on a daily basis in military and

industrial operations, particularly in the areas of manufacturing and transportation. The

basis for many such manufacturing and transportation problems is the idea of selecting an

optimal, or perhaps feasible, way to partition or order jobs, vehicles, locations, etc. Such

problems fall into the class of combinatorial optimization. In reality, most of the real

world problems in combinatorial optimization are extremely large and complex, but they

nonetheless require timely solutions. Much research in classical optimization and

heuristic methods has been performed to find good and timely solutions to these large

real world problems. This research studies the specific combinatorial optimization

problem known as the traveling salesman problem (TSP). This research studies the TSP

in the light of algebraic group theory and the tabu search metaheuristic. This chapter

contains a general description of the problem, defines the research scope and

contributions, and gives an overview of this thesis.

1.2 Problem Description

The classic TSP requires an agent to leave his base location and visit several other

customer locations exactly once before returning home. The solution specifies the order

in which the locations should be visited and we wish to minimize/maximize some

objective, such as the total distance traveled. The dimensionality of this ordering grows

1

exponentially as the number of locations increase. As an example, a relatively small TSP

with 40 locations has 40!, which is more than 8xl047, possible orderings . Even with

modern computing power, these problems quickly become overwhelmingly large.

If a visit to a location depends on the arrival or departure time, or both, then we

have a TSP with time windows (TSPTW). A mTSP is described in the same manner

where there are multiple agents that may visit the desired locations, instead of only one

agent. Likewise, if a location must be visited within some interval of time, then we have

amTSPTW.

The mTSPTW arises daily in many real world situations. Air Mobility Command

(AMC) encounters a complex variation of the mTSPTW in its daily operations of airlift

and refueling. In the case of AMC, the "salesmen", or agents, are airlift or tanker aircraft

that must visit each of the required drop off or refueling locations with the objective of

maximizing throughput or minimizing cost. AMC's problem is more complex in that the

salesmen, i.e., aircraft, have limiting cargo capacities that must satisfy all customer

demands at each location. This more complex problem is the vehicle routing problem

with time windows (VRPTW).

Air Mobility Command's airlift operations are simulated by the Mobility Analysis

Support System (MASS) model. Aircraft routes are an input to this low-resolution

model, which then analyzes capabilities and assesses future procurements. AMC seeks

more efficient ways to generate quality routes for its operations and simulations.

1.3 Scope

This research seeks a more efficient way to find solutions to the routing problems

encountered by AMC using group theory, an important branch of abstract algebra, and

the tabu search metaheuristic. A group is an algebraic structure that ensures unique

solutions to simple algebraic equations. This research uses the group of permutations on

n letters known as the Symmetric Group on n letters, S„. Conveniently, in the study of

the TSP each solution is a unique element of S„. The basic concepts of group theory

needed for this research are presented in Chapter 2.

Tabu search is a metaheuristic procedure that has proven very effective in large

combinatorial optimization problems. Tabu search uses recency (short-term memory)

and frequency (long-term memory) to search a solution space in an intelligent and

efficient way. Recency and frequency are used to avoid cycling and to escape local

optimum by diversifying into unvisited, and perhaps infeasible, regions of the solution

space.

This research incorporates algebraic group theory to define the tabu search

method used to solve the TSP, which is the base problem to AMC's airlift routing

problem. The group theoretic tabu search method (GTTS) is implemented in the Java

programming language.

1.4 Contribution of Research

The mathematical formulation of the TSP is well known, and many algorithms,

heuristics, and software packages that solve this mathematical formulation exist. Various

tabu search methods have been applied to the TSP; however, a GTTS approach for the

TSP does not exist. The general concepts of tabu search applied to combinatorial

optimization are an active area of research and, until recently, have not been developed

with mathematical rigor. The GTTS method seeks to demonstrate a tabu search method

for the TSP in a mathematically rigorous way. Thus, the GTTS method is described with

algebraic equations rather than narrative.

Once tabu search concepts are fully developed mathematically, it is probable that

more efficient algorithms will be developed which give near optimal solutions to

extremely large combinatorial optimization problems such as those faced by AMC. If

nothing else, understanding the mathematical foundations of tabu search will provide

needed insight into the behavior of the tabu search metaheuristic.

1.5 Overview

This thesis comprises five chapters and two appendices. Chapter 2 describes the

associated current literature and the basic concepts of group theory needed for this

research. Chapter 3 describes the methodology for solving the TSP with GTTS. The

results of this methodology are presented in Chapter 4. Finally, Chapter 5 concludes the

research and discusses future research. Appendix A contains the necessary Java

documentation and source code for the GTTS algorithm, and Appendix B presents a

detailed mathematical model for the TSP and its related class of problems.

Chapter 2. Literature Review

2.1 Introduction

This chapter describes the foundational literature for this research. The three

main areas of interest are the TSP class of problems, heuristic search methods, and group

theoretic metaheuristics.

2.2 The Traveling Salesman Problems

The TSP is the focus problem for this research. The TSP encompasses a whole

class of problems such as the mTSPTW, the VRP, and the pick-up and delivery problem

(PDP). This section reviews the TSP literature relevant to this research. Bodin et al.

(1983) covers in detail the TSP and its class of problems where each problem's

background and formulation is given. Much of the TSP literature used for this research is

taken from Ryer's (1999) application of reactive tabu search to the TSP. Ryer's

formulation of the TSP and the more complex problems derived from it in turn relies

heavily on the work of Bodin et al. (1983) and Carlton (1995). Ryer expands Carlton's

work to formulate the multiple depot VRP with non-homogeneous vehicles. The

literature just presented provides formulations for the TSP class of problems as binary

integer programs. See Appendix B for these formulations.

2.3 Heuristic Search Methods

Most real world combinatorial optimizations problems, such as those discussed in

Section 2.2, are extremely large and complex. Such problems are classified as NP-hard

combinatorial problems (Nemhauser and Wolsey, 1988), which implies that the number

of solutions to the problem grows exponentially as the number of locations, or nodes,

grows. As a simple illustration, consider the 6 node TSP and the 7 node TSP. There are

120 distinct solutions to the 6 node TSP verses 720 distinct solutions to the 7 node TSP.

NP-hard problems have no polynomially bounded algorithm (Baker and Schaffer 1986).

However, to reach the optimal solution in a reasonable amount of time requires a

polynomially bounded algorithm. Thus, these problems must be attacked using heuristic

search methods that produce good solutions in a timely manner. Although heuristics do

not guarantee optimality, the efficiency and near-optimal solution quality of many

heuristic search methods justify their use in solving large combinatorial optimization

problems.

The literature contains several heuristic search methods for solving the TSP class

of problems. Laporte (1992a, 1992b) discusses many heuristic methods for the TSP class

of problems, and classifies heuristic search methods for the TSP as either tour

construction algorithms or tour improvement algorithms. Tour construction algorithms,

such as the nearest neighbor heuristic and nearest insertion heuristic (Nemhauser and

Wolsey, 1988) pick some initial node and construct a tour based on certain criteria. Tour

improvement algorithms include the £-opt algorithms where k arcs are dropped from an

existing tour and then k new arcs are added back to form an improving tour. This is done

iteratively until no improvements may be found. For example, consider the TSP tour:

begin at node 0 -> node 1 -> node 2 -> node 3 -^ back to node 0, denoted (0,1,2,3). A 3-

opt algorithm may be defined as a swap of any two adjacent nodes within the tour.

Hence, the new tour (1,0,2,3) may result from one iteration. Here, we assume that the arc

a-b is different from arc b-a.

Familiar heuristics such as greedy algorithms, genetic algorithms, simulated

annealing, and tabu search are more sophisticated search methods that include tour

construction and tour improvement. Greedy algorithms are useful for simpler problems

but do not provide the desired solution quality. Simulated annealing shows a large

variance in solution quality and computational time (Osman 1993). Tabu search has

proven to be very effective at solving the TSP class of problems, even outperforming

other sophisticated heuristics (Carlton 1995, Glover and Laguna 1997, Laporte 1992b,

Ryer 1999).

2.3.1 Tabu Search

Tabu search (TS) is a metaheuristic search method originated by Glover (1990)

that has proven very effective in solving large combinatorial optimization problems. TS

uses recency (short-term memory) and frequency (long-term memory) to search a

solution space efficiently by allowing the search to leave local optima and search other

areas of the solution space. TS examines a given solution's neighborhood, which is

defined to be the set of all moves from the given solution to a new solution. The move is

problem specific and may change as the search progresses. For example, a move

definition for the TSP may be the 3-opt move described above where any two adjacent

nodes in the given solution are swapped. Another example of a TS move is toggling a

binary variable in an integer programming problem from zero to one.

TS utilizes recency (short-term memory) by remembering its most recent moves

and classifying them as "tabu" or forbidden. For example, the search would classify the

nodes swapped in the 3-opt TSP move as tabu for a certain number of iterations. The

number of iterations a move remains tabu is called its tabu tenure. This keeps the search

from revisiting previous solutions, thereby preventing short-term cycles. Moves that are

tabu may still be performed if they pass an aspiration criteria. An aspiration criteria used

frequently in the literature is to allow a tabu move if the move results in the best solution

encountered to date.

Tabu search uses frequency (long-term memory) for intensification and

diversification purposes. Recording the number of iterations that each node is moved is a

TSP example of frequency. Intensification uses frequency to determine historically good

solutions and then intensifies the search in these regions. For example, suppose that the

search history indicates that placing node 1 after node 3 provides good solutions. The

search may intensify by only picking moves that enforce that condition. Diversification

uses frequency to determine regions in the solution space not yet visited and then

diversifies the search into these regions. For example, suppose the search history has

rarely seen node 5 before node 1; the search may diversify by making moves that place

node 5 before node 1 (Glover and Laguna, 1997).

TS is a broad problem solving methodology and not a strigently defined algorithm

such as the simplex method in linear programming. Hence, TS must be tailored to the

particular problem type with unique stipulations for such things as neighborhood

construction and intensification/diversification strategies. Glover and Laguna (1997)

presents several different TS strategies depending on the problem type. An important

goal of this research is the development of a GTTS algorithm for a general TSP.

2.3.2 Reactive Tabu Search

Battiti and Tecchiolli (1994) present a reactive TS scheme (RTS) that implements

the basic TS methodology but allows the tabu tenure to react based on recent search

history, i.e., the tabu tenure is adjusted according to the quality of the search. As an

example, consider a TS problem with tabu tenure of three iterations. If the search cycles

to a previous solution within a specified number of iterations, then the search reacts by

increasing tabu tenure to five iterations. Conversely, tabu tenure is adjusted to two

iterations if the search does not visit a previous solution.

Ryer (1999) implements a RTS Java algorithm for the mTSP that extends

Carlton's (1995) code through Ryan et al.'s (1999) MODSJM implementation. Ryer uses

both swap and insertion moves to define the solution neighborhood and tracks redundant

tours with a two-attribute hashing scheme. The first attribute is the objective function

value of the tour, and the second attribute is the tour hashing value described by

Woodruff and Zemel (1993). The hashing scheme's purpose is to minimize the number

of collisions (identifying two distinct solutions as identical). See Carlton (1995) for

information on RTS applied to the TSPTW, mTSPTW, and the VRPTW.

2.4 Group Theoretic Metaheuristics

Metaheuristics is an extensive area of research within operations research;

however, group theoretic metaheuristics is still in its infancy. Until recently, group

theory has been applied in combinatorial optimization only in exact methods but not

explicitly to metaheuristic methods (Colletti, 1999; Colletti and Barnes, 1999). Colletti

(1999) explores the explicit application of group theory to metaheuristic methods, and

demonstrates how to apply tabu search to the TSP and mTSP. This research uses this

literature as its foundation for group theoretic metaheuristics concepts and employs a tabu

search algorithm that explores the usefulness of these concepts. The following sections

present the basic concepts of group theory used in this research. An excellent reference

for these concepts is Fraleigh (1994) or Colletti (1999).

2.4.1 Groups

A group is an axiomatic algebraic structure that ensures unique solutions to

simple algebraic equations. For example, 5 + x = 8 or 3x = 24 have the unique solution x

because their algebraic structure satisfies the group axioms. Thus, group theory allows

the formulation of simple equations. This is an important contribution to metaheuristics

since the current format of metaheuristic literature is narrative rather than mathematical

(Colletti, 1999). Some formal definitions follow.

Definition: A group, denoted <G,*>, is a set G together with an associative
binary operation * defined on G such that G has an identity element and each g e
G has an inverse.

Definition: A binary operation, *, is a rule that assigns each ordered pair (g, h),
g, h e G, to a unique element also in G. This implies * is closed on G.

Definition: A binary operation, *, is associative if a * (b * c) = (a * b) * c, V a, b,
ce G.

Definition: An identity is an element e e G such that g*<? = e*g =g, Vge G.

Definition: An inverse for g e G is an element g"1 e G such that g * g"1 = g"1 * g
= e.

10

th Definition: Let n e Z, g e G,theng"= g*g*g*---gis then power of g. It is
> v '

n times

true that g" * gm = g"+ m for all n, m e Z. Also, g° = e and g" = (g1)"1' for n < 0.
(Colletti, 1999)

Definition: The order of g, g e G, is the minimum n, n > 0, such that g" = e.

Therefore, a group is any set together with a binary operation that satisfies the axioms of

associativity, identity, and inverse. It can be shown that the identity element is unique

and that each element in the group has a unique inverse. For notational simplicity, a

group is often represented by its set of elements, such as G; however, any group must

have both a set of elements and an associated binary operation. For example, the group

of integers, Z, does not make sense unless an associated binary operation is understood.

(Fraleigh, 1994)

Examples

Three groups are used to illustrate the important concepts of group theory. The

first is a familiar group encountered in the first year of grade school. This is the group of

integers under addition, i.e., <Z,+>. The second group is the simple finite group

<Z4,+> where Z4 = Z modulus 4 = {0, 1, 2, 3}. The third group, the group of

permutations on n letters under permutation multiplication, is not as familiar as the first

two, but it is the primary group used for this research. This group is called the symmetric

group on n letters, Sn. This section introduces abstract concepts of group theory,

illustrates these concepts with the familiar group <Z,+> and the simple finite group

<Z4,+>, and then demonstrates the concepts on Sn. Let us consider the formal concepts

stated above.

11

• <Z,+>: Addition is an associative binary operation on the set of integers, i.e. take any

two integers, say x andy, then x+y = zeZ and x + (y + z) = (x+y) + z. Lettingx

e Z, then zero is the identity element since 0 + x = x + 0 = x, and -x is the inverse of x

since -x + x = x + -x = 0. For the group element 2, the 4th power, 24 = 2 + 2 + 2 + 2

= 8 and the order of 2 is infinite. For contrast, the integers under multiplication,

<Z,x> is not a group because 2 does not have an inverse in Z; that is, there is no

integer x such that 2x = x2 = 1.

• <Z4,+>: Addition is associative and zero is the identity. Each element has an inverse,

i.e., 0 + 0 = 0, 1 + 3 = 3 + 1 = 0, and 2 + 2 = 0. For the group element 1, the 4th

power is l4 =1 + 1 + 1 + 1=0 and the order of 1 is 4 since 4 is the minimum n > 0

such that g" = l4 = 0 = e.

2.4.2 The Symmetric Group, Sn

The symmetric group on n letters is the group that explicitly applies to this

research.

Definition: Let A and B be two sets and let/be a function such that f :A—> B. f

is one to one (1-1) if each b e B has at most one a e A mapped into it, that is, for
x,-y e A, f{x) = /(y) implies x = y. /is onto if every b e B has at least one a e
A mapped into it.

Definition: Let A be a set; then a permutation of a set A is a function <|> such that
(j,: A 1-land0"'° > A, or <|> is a 1-1 function of A onto A.

Definition: Let A = {1, 2,..., n}. The group of all permutations of A is the
symmetric group on n letters, denoted Sn. (Fraleigh, 1994)

Sn is important because the solutions to the TSP class of problems are

permutations! Group theory provides an alternative mathematical view to these

12

problems. Instead of viewing the solutions as large binary x vectors, they may be viewed

as permutations on n nodes, i.e., elements of S„. An element of S„ may be expressed as a

standard form permutation which is a 2 by n matrix whose top row is the ordered set A,

and the bottom row is the image of A under the function ty (Colletti, 1999). For example,

let p, q e S4, where

P =
(\ 2 3 4^ f

andq =
[2 3 1 A) V

12 3 4

4 2 13

Here, p and q are 1-1 and onto functions that map the positions into the letters. For

example, p maps 2 into the first position ((l)p = 2) and q maps 1 into the third position

((3)q =1). Elements of Sn may also be expressed in cyclic form. The cyclic

representation of p and q above are p = (1,2,3)(4) and q = (1,4,3)(2). The cyclic

representation is more compact and is explained below.

S„ is defined as a group, but this implies Sn must have an associative binary

operation with an identity element and an inverse for each element in S„. The associative

binary operation for the group is permutation multiplication, or function composition, and

is known to be associative. Consider p, q e 54 above. The product of p and q, (x)(p * q)

(or (jc)pq for notational ease) is the composition ((x)p)q. Therefore (l)pq = ((l)p)q = (2)q

= 2, pq(2) = (p(2))q = (3)q = 1, and so forth to yield p * q = pq =

'12 3 4\

2 3 14

/l 2 3 4"

4 2 13"

f\ 2 3 4"

2 3 14

'12 3 4'

4 2 13"

'12 3 4'

2 14 3*

13

Observe that qp =
(\ 2 3 4

4 2 13

(\ 2 3 4\ (\ 2 ^ A\

4 3 2 1
Further pq * qp, i.e.,

2 3 14

permutation multiplication is generally not commutative, implying Sn need not be abelian

(a group is abelian if * is commutative, that is, p * q = q * p for all p, q e G).

The identity and inverse properties for Sn are relatively straightforward. The

(I 2 3 ... n^
permutation () =

P() =

12 3...«

fl 2 3 4Vl 2 3 4Ul 2 3 4Vl 2 3 4^1

12 3 4 2 3 14

is the identity element for Sn. For example, ()p =

fl 2 3 4"\

2 3 14 12 3 4 2 3 14 = P-

The inverse for any p e Sn is found by swapping its rows and then reordering the

columns such that the top row is the ordered set A. Hence, for p, we have p"1 =

f2 3 1 4Wl 2 3 4l

12 3 4 3 12 4
. Note p_1p = pp"1 = () as required.

Recall that p =
(\ 2 3 4'

= (1,2,3)(4) in its cyclic representation. It is read
2 3 14

1 —»-2 -> 3 —>■ 1 and 4 -> 4. Cycles are the disjoint subtours of the permutation. Colletti

(1999) defines an m -cycle (cycle) as an ordered sequence of m letters (whose order is

precisely m). We define an m-cycle (cycle) as any sequence of m distinct letters whose

order is m. Under this definition the 3-cycle (1,2,3) = (2,3,1) = (3,1,2). Hence, the cycle

need not be ordered with respect to the set A = {1, 2,..., n}. A more rigorous definition

for a cycle is given by Fraleigh (1994), but requires additional concepts of group theory

beyond the scope of this thesis. Henceforth, the cyclic representation for permutations is

used.

14

Since S„ is a group, it is closed under multiplication, i.e., any product of

permutations yields another permutation. Hence, cycles are permutations and may be

multiplied with other cycles to yield other permutations. For example, p, above is the

product of two disjoint cycles (a 3-cycle and a 1-cycle) as expressed above. We say

disjoint because neither cycle has a common element. This illustrates the following

theorem.

Theorem 1: Every permutation of a finite set A = {1,2,..., n} is a unique product
of disjoint cycles. (Fraleigh, 1994)

Disjoint permutations yield a very useful property: they commute. The permutations p

and q above are expressed by cycles p = (1,2,3) and q = (1,4,3). The 1 -cycles are

implied; however, it is important to know the symmetric group to which p and q belong.

For example, p = (1,2,3) eS4^q = (1,2,3) e S5 since p = (1,2,3)(4) and q = (1,2,3)(4)(5).

Since p and q are not disjoint cycles, it is not necessary that they commute. This is

consistent with our earlier calculation that pq * qp.

Finally, consider p = (1,2,3) e S4. The 3rd power of p is p3 = (1,2,3)(1,2,3)(1,2,3)

= (1)(2)(3)(4) = () implying that p is of order 3. This is consistent with the definition of

an m-cycle, which is defined to be of order m.

2.4.3 Subgroups

We see that the solutions to the TSP class of problems are elements of the group

S„. Although Sn is finite, the solution space can be extremely large. In some cases, it is

possible to reduce the solution space, Sn, to a "smaller" space that shares the same

algebraic structure, namely, that of a group. A "smaller" solution space is one with fewer

15

elements in the group set. The word "subgroup" intuitively suggests a group within a

group.

Definition: Let H be a subset of the group G, denoted # c G. If H is also a group,
then H is a subgroup of G, denoted H<G.

Definition: Let g e G, then H = {g" I n e Z} is the cyclic subgroup of G
generated by g, denoted <g>.

Definition: A group G is cyclic if there exists some geG such that <g> = G. The
element g is said to generate G.

Definition: A 2-cycle permutation is a transposition.

Definition: A finite permutation is even if it can be expressed as a product of an
even number of transpositions; otherwise, it is an odd permutation.

Definition: The group of all even permutations on n letters is the alternating
group on n letters, denoted An.

It can be shown that a subset H is a subgroup of a group G if H is closed under *,

e e H, and Kl e H for all h e H. Thus <2Z,+> < <Z,+>, where 2Z = {..., -4, -2, 0, 2,4,

...}, and {0, 2} < <Z4,+>. However, the odd integers (together with zero) under

addition do not form a subgroup of <Z,+>. Although the subset H = Zodd contains the

identity and each element has an inverse, H is not closed under addition; i.e., 1 + 3 = 4 g

Zodd- Likewise the set H = {0, 1} c Z4 is not a subgroup because H is not closed (1 + 1 =

2 g #) and each element in # does not have an inverse (namely, the element 1).

Interestingly, the order of g for some geG discussed above equals the order or

cardinality (number of elements) of the minimum subgroup H containing g. For

example, the order of 1 e Z4 is 4. Hence, the smallest subgroup of Z4 containing the

element 1 must have at least 4 elements implying that the smallest subgroup containing 1

is all of Z4. Conversely, the order of 2 e Z4 is 2 and H = {0, 2} < <Z4,+>. Clearly, H =

16

<2> is the cyclic subgroup of Z4 generated by 2. In addition, <1> = {1" I n e Z} = {...,

-I2, -l\ 1°, l1, l2, ...} = {..., -2, -1,0,1, 2,...} = <Z,+> implying <Z,+> is cyclic.

Similarly, <Z4,+> is cyclic since <1> = <3> = <£*,+>. In S4, H= { (), (1,2,3), (1,3,2)} is

a subgroup. Recall the order of p = (1,2,3) is 3, which is precisely the cardinality of the

subgroup //containing p. Also, H = <p> = <(1,2,3)> = { (), (1,2,3), (1,3,2) } is the

cyclic subgroup of S4 generated by p.

An interesting subgroup of Sn is A„ as defined above. An demonstrates the

usefulness of subgroups. For illustration, the feasible solutions to a TSP lie in A„

provided n is odd. Since An is a group, it shares the same group structure as S„ but is a

fraction (actually one half) of the size.

An is a group of even permutations, meaning every permutation in An may be

expressed as a product of an even number of transpositions. The factorization of a

permutation into transpositions is not unique. Consider the cycle (a,b,c,d). Expressed as

transpositions (a,b,c,d) = (a,b)(a,c)(a,d) = (d,a)(d,b)(d,c). Although the factorization into

transpositions is not unique, the cycle (a,b,c,d) is always a product of three transpositions,

which implies any 4-cycle is an odd permutation. In general, any m-cycle is an odd

permutation if m is even and is an even permutation if m is odd.

2.4.4 Cosets

In addition to possibly reducing the size of the solution space, subgroups partition

groups into either identical or disjoint cells. Hence, the solution space Sn for the TSP

class of problems may be partitioned into disjoint cells. These cells are called cosets and

are useful in representing certain tabu search move methods (Colletti, 1999).

17

Definition: Let H< G. The subset gH = {g * h = gh I h e H }is the left coset of
H containing g. Similarly, Hg = {h * g = hg I h e H } is the right coset of H
containing g.

Definition: Let H<G. The number of left (right) cosets of// in G is the index
(G:H) of Hin G.

Consider the group <Z,+>. Let H = <2Z,+>, then the sets

0 + 2Z={...,0 + -4,0 + -2,0 + 0,0 + 2,0 + 4,...} = {...,-4,-2,0,2,4,...}=2Z;

1+2Z={..., 1 + -4,1+-2,1+0,1+2, l+4,...} = {...,-3,-l, l,3,5,...}=Zodd;

2 + 2Z ={..., 2 +-4, 2 +-2, 2 + 0,2+ 2, 2+ 4,...} = {...,-2, 0,2,4, 6,...}=2Z;

are left cosets of H. The first coset is the left coset of H containing 0, the second is the

left coset of H containing 1, and so forth. Observe that gH = H if g e H, and that

2Z uZ^ = Z; that is, the disjoint cosets of//partition the group <Z,+> into the disjoint

cells 2Z and Zodd. Hence, the index of <2Z,+> is 2. Since <Z,+> is abelian, the right

cosets of H are the same as the left cosets (gH = Hg, V g e <Z,+>). The cosets for

<Z4,+> are found in a similar fashion.

The symmetric group S„ may also be partitioned into cosets. For example,

#={(), (1,2,3), (1,3,2) } < S3. The left cosets of Hare

(W= { ()(), ()(1,2,3), ()(1,3,2) } = {(), (1,2,3), (1,3,2) } = H;

(1,2)//= { (1,2)(), (1,2)(1,2,3), (1,2)(1,3,2) } = { (1,2), (1,3), (2,3) }.

The right cosets of H are

//() = //;

i/(l,2) = { ()(1,2), (1,2,3)(1,2), (1,3,2)(1,2) } = { (1,2), (2,3), (1,3) }.

Clearly, ()H u (1,2)// = //() u i/(l,2) = 53. Also, the cardinality of each coset equals

the order of H (a property that always holds).

18

In theory, to generate all left (right) cosets of a subgroup H, we must compute gH

(Hg) for each ge G. However, the Theorem of Lagrange aides in determining the

number of disjoint left (right) cosets needed to partition G, i.e., the index of Hin G.

Theorem of Lagrange (Theorem 2): If His a subgroup of a finite group G, then
the order of H divides the order of G (Fraleigh, 1994).

\G\ / It follows that (G:H) = \ Vu\, since every coset of H contains \H\ elements and the
/\H\

cosets are disjoint. Therefore, for H= {(), (1,2,3), (1,3,2)} whose order (cardinality) is

Is 1/ 3, yields (53: H) = I 4/ = % = 2, which is consistent with our calculations above.

2.4.5 Conjugation

Tabu search applied to the TSP class of problems takes a given solution and

evaluates its move neighborhood. Regardless of the specific move definition, the given

solution, which is represented mathematically by a permutation in Sn, is relabeled to

produce a new solution or permutation. Conjugation is a group operation that allows a

permutation to be relabeled while preserving its cycle structure. By cycle structure, we

mean the same number of disjoint cyclic factors where the number of letters within each

factor stay the same.

Definition: Let g,h e <G*>, then gh = h_1gh is said to be the conjugate of g by h.

Definition: Group elements g and h are conjugates in G if and only if 3 x e G
such that gx = xAgx = h.

Observe that conjugation is different from the nth power operation since h e <G,*>,

which is not necessarily an integer.

19

The concept of conjugation applied to <Z,+> and <Z4,+> is trivial since both

groups are abelian. For a,b e <Z,+> or <Z4,+>, we have ab = b_1ab = ab_1b = ae = a.

Thus, for g,h e G the conjugate of g by h is precisely g if G is abelian.

Since Sn is non-abelian, conjugation is less trivial. Consider p,q e S6 where p =

(1,3,5)(2,4,6) and q = (1,6,3). In standard form we have

(I 2 3 4 5 6\
P = 3 4 5 6 12

To compute pq implies

q =
(\ 2 3 4 5 6\

6 2 14 5 3
, and q"1 =

(\ 2 3 4 5 6"|

3 2 6 4 5 1

pq = q-1pq =
(\ 2 3 4 5 6Vl 2 3 4 5 6^

3 4 5 6 12

fl 2 3 4 5 6"|

6 2 14 5 3

fl 2 3 4 5 6N

6 2 14 5 3 3 2 6 4 5 1

(\ 2 3 4 5 6^

5 4 2 6 13

/"I 2 3 4 5 6"l

5 4 2 3 6 1

= (1,5,6)(2,4,3). (The conjugate of p by q.)

This case demonstrates that conjugation indeed preserves the cycle structure of p.

Conjugation of permutations is a very cumbersome task, especially for large

permutations; however, the next theorem provides a very useful result.

Theorem 3: Let p,q e Sn, then pq is found by replacing each letter in p with its
image in q, i.e., replace x in p with (x)q. The cycle structure of p is preserved.
(Herstein, 1964)

Thus, for p =
(\ 2 3 4 5 6^1

3 4 5 6 12
andq =

(I 2 3 4 5 6}

6 2 14 5 3
, we have

Letter in p 1 2 3 4 5 6
Image in q 6 2 1 4 5 3

20

Recalling p = (1,3,5)(2,4,6) and replacing each letter x in p with its image in q, i.e., letter

1 is replaced with letter 6, letter 3 is replaced with letter 1, letter 6 is replaced with letter

3, gives pq = (6,1,5)(2,4,3) = (1,5,6)(2,4,3) = q_1pq when multiplied directly as shown

previously.

Conjugation in S„ is very useful in defining and describing tabu search moves for

the TSP class of problems. Independent of the move definition, any permutation q e Sn

may be reached by a conjugation on p e Sn; that is, 3 r e Sn such that pr = q provided p

and q share the same cycle structure. For example, consider p and q above: p =

(1,3,5)(2,4,6) and q = (1,6,3). The permutation p represents a 2-TSP tour structure where

salesman one takes tour 1 -» 3 -» 5 ->1 and salesman two takes tour 2 -» 4 -» 6 -» 2.

Conjugation of p by permutation q rearranges three nodes to yield the new solution p' =

(1,5,6)(2,4,3) implying salesman one takes tour 1 -> 5 -> 6 ->1 and salesman two takes

tour 2 -> 4 -H> 3 -> 2.

2.4.6 Templates

The TSP becomes more complex when converted to the mTSP. The mTSP is

more complex because of the vast increase in feasible solutions. The only feasible

solutions to the n node TSP are the n-cycles in S„, but any product of m disjoint cycles in

Sn make up the feasible solutions to the m salesman mTSP. In group theory, a TSP is

easily converted to a mTSP using templates.

Colletti (1999) defines a template as a permutation that operates on another

permutation such that its number of disjoint cycles change. The foundation for the

21

template comes from Rotman (1984) who states that the product of a cycle and a non-

disjoint transposition is a product of two disjoint cycles. That is,

(a1,...,am,bl,...,bn)(al,biy
l=(a1,...,am)(bl,...,bn).

Also,

(a1,...,am,b1,...,bn) = (a1,...,am)(bl,...,bn)(a1,b1).

In general,

(a1,...,ai,b1,...,bj,c1,...,ck,d1,...,d,)(a1,bi,cl,diy
1 =(al,...,ai)(bl,...,bj)(cl,...,ck)(dl,...,dl),

The permutation (a, ,6,, c,, dx)
_1 is a splitting template since it splits the large cycle into

several disjoint cycles. Also,

(ai,...,ai,bl,...,bJ,c1,...,ck,d1,...,dl) = (a1,...,ai)(bl,...,bJ)(cl,...,ck)(dl,...,d,)(a1,bx,c1,dl)

The permutation (al,bl,cx,dx) is a welding template because it combines (welds) the

disjoint cycles into one large cycle. Colletti (1999) defines a joining template as a

template that joins several disjoint cycles into fewer larger cycles.

As an example, let p = (3,5,1,7,4,2,6), the splitting template s = (3,4)_1 splits p into

two disjoint cycles, or ps = (3,5,1,7,4,2,6)(3,4)"1 = (3,5,1,7)(4,2,6). Similarly, if s =

(l,2)-\ then ps = (3,5,1,7,4,2,6)(1,2)"1 = (1,7,4)(2,6,3,5). Likewise (3,5,1,7)(4,2,6)(3,4) =

(3,5,1,7,4,2,6) = p, hence, w = (3,4) is a welding template for q = (3,5,1,7)(4,2,6).

Finally, if p = (1,3,5,6)(2,7)(4,8,9), then j = (3,8) is a joining template since pj =

(1,3,5,6)(2,7)(4,8,9)*(3,8) = (1,3,5,6)(4,8,9)(3,8) *(2,7) = (3,5,6,1,8,9,4)(2,7).

22

2.5 Conclusion

The archival literature for the TSP class of problems, heuristic search methods,

and group theoretic metaheuristics provides the foundation for this research. The

literature for the TSP class of problems is vast and provides a foundation for

understanding each problem's complexities. In general, the classical methods for the TSP

class of problems prevent timely optimal solutions. Hence, simpler, timelier heuristic

methods must be used. The TS metaheuristic, in particular, proves capable of finding

good feasible solutions to the real world TSP class of problems. Although TS is very

effective, the literature is narrative in format rather than mathematical. The group

theoretic metaheuristics literature explains tabu search mathematically using Sn, the

symmetric group on n letters. This research uses group theory to construct, study, and

clarify the underlying structures associated with the TS methodology for solving the TSP.

23

Chapter 3. Methodology

3.1 Introduction

This chapter presents the methodology for solving the TSP via a GTTS algorithm.

First, it provides a general description and pseudo code for the GTTS algorithm. This is

followed by a detailed group theoretic implementation of important tabu search concepts

such as move, intensification, and diversification strategies. The chapter concludes with

a description of the testing and validation of the algorithm.

3.2 Algorithm Description and Pseudo Code

The GTTS algorithm is coded with a Java programming language to take

advantage of Java's object-oriented (00) nature. The 00 design encourages the reuse or

alteration of existing Java code. Specifically, the Java GTTS algorithm uses code

developed by Harder (2000). Harder provides the general Java classes needed for generic

tabu search implementations. Harder's code requires the user to provide the specific code

that defines the solution, moves, neighborhoods, intensification and diversification

strategies, etc. for a specific tabu search application.

Other advantages to the Java programming language include its multi-platform

portability and ease of documentation through the Javadoc tool. Javadoc allows the

program to be documented with embedded code comments, and it provides the

documentation in HTML format for easy navigation within any web browser. Appendix

A contains the Java code and documentation for the GTTS algorithm.

24

A vast library of group theory C code may be found in the existing "Groups,

Algorithms, and Programming" (GAP) Version 4.0 software (Schönert, 1999). The GAP

software is used for computational group theory and is available for public downloading.

This research does not use the GAP software since the GTTS algorithm's needed group

theory code is programmed in Java. However, GAP provides additional group theory

code that is needed to extend the GTTS algorithm to more complex group theory

operations such as generating cosets.

The general GTTS algorithm is expressed with the simple pseudo code in Figure

1 with details of the algorithm explained in Section 3.3.

1. (Initialization Step)
a) Set I = total number of iterations, n = number of nodes in the TSP, C =

distance (cost) matrix, and / = length of tabu list.
b) Select a starting solution p e X.
c) Set pßest = P and let z* = z(pBest), where z(p) is the objective function.
d) Set T = 0, = (0,0,..., 0 and F = 0„. x = (0,0,..., n -1).

2. While *<I
a) FindiV(p). SetRp=0.
b) Evaluate all q e JV(p) using z(q) and C.
c) Select q g Rp such that z(q) < z(x) for all x e N(p) - Rp.
d) If attributes(q) g T, set p = q.
e) If attributes(q) e T and z(q) < z*, set p = q.
f) If attributes(q) e T and z(q) > z*, then q e Rp and return to 2c).
g) Ifz(p) <z\ repeat lc).
h) Update T and F with attributes(p).
i) i<-i+l.

3. Output pßest and z .

Figure 1. The GTTS Algorithm

3.3 Tabu Search Implementation

The GTTS algorithm implements the pseudo code above using basic tabu search

concepts presented by Glover (1990). This section describes the detailed implementation

25

of the GTTS algorithm's starting solution, move definition and solution neighborhood,

tabu criteria and aspiration criteria, and its intensification and diversification strategies.

3.3.1 Initializing the Algorithm and the Starting Solution

The first step in the GTTS algorithm requires an initialization of inputs. In this

research, the total number of search iterations, I, is a function of the problem size n where

n is the number of nodes in the TSP. Specifically, \{n) = 50n. For example, the GTTS

algorithm is performed for 2500 iterations on a 50 node TSP. The function for I is

consistent with current TSP tabu search implementations in the literature (Carlton 1995,

Ryer 1999). The input for / is discussed later in the methodology.

In the general GTTS algorithm, the set X in step lb) is the set of all feasible

solutions. Thus,

X= {x lx= (apöj.aj,...,^), ai e A = {0,l,2,...,n-1}, ie {1,2,...,«} }czSn,

i.e., X is the set of all n-cycles in Sn. Section 2.4.2 defines A = {1,2,. ..,/*}; however,

without loss of generality, A may be any set of n letters. Thus, A = {0,1,2,..., n -1} is

chosen here as a coding convenience since a Java array of length n is indexed from 0 to

n-1.

The focus of this research is on the contributions of group theory applied to tabu

search concepts. Thus, the starting search solution is irrelevant. Hence, the GTTS

algorithm begins the search with an n-cycle ordered from 0 to n-1. Therefore, for an n

node TSP, p = (0,1,2,3,4,..., n - 2,n - 1) is the starting solution.

26

3.3.2 Move Definition and Solution Neighborhood

The tabu search move defines the solution neighborhood, iV(p), in step 2a) of the

GTTS algorithm. The tabu search move for our algorithm is the two letter rearrangement

move, which is simply a swap of any two nodes within the TSP tour. For example,

consider the incumbent solution, p, to the five node TSP. Here let p = (0,1,2,3,4). If

node 2 is swapped with node 4, we have q = (0,1,4,3,2).

In group theory, the swap move is equivalent to the conjugation pm where p is the

incumbent solution and m is a transposition (a 2-cycle permutation). In the above

example, p = (0,1,2,3,4) and m = (2,4) implies pm = (0,1,2,3,4)(2,4) = (0,1,4,3,2).

Therefore, for a swap move, m = (a,b) where a and b are the two nodes being swapped.

Although the swap move is often implemented within the literature (Carlton, 1995),

group theory allows the swap move to be described using algebraic equations. Since the

conjugation operation applies for all m e S„, it provides a great deal of freedom in

defining different rearrangement moves.

The solution neighborhood, iV(p), for the incumbent solution, p, is all the

solutions, q, within one move of p, i.e., iV(p) = {q I pm = q, m = (a,b) for a, b e A = { 1, 2,

..., n-\} and a * b }. Note that a or b ± 0. Thus, the solution p = (0,1,2,3,4,5,6,7,8,9) is

uniquely expressed as an n cycle beginning at node 0. This eliminates the other n - 1

representations of p from being considered in the search, i.e., p = (0,1,2,3,4,5,6,7,8,9) =

(1,2,3,4,5,6,7,8,9,0) = ••• = (9,0,1,2,3,4,5,6,7,8). As in steps 2b) through 2f), the

algorithm evaluates each q e Af(p) and moves to the q with the best objective function

value subject to the tabu and aspiration criteria.

27

The size of Af(p) and the evaluation of the objective function, or tourlength, for

each q e iV(p) is vital to the algorithm's efficiency. The size of JV(p), |iV(p)|, is

determined by the number of possible moves at each iteration. For N(p) = {q I p1" = q, m

= (a,b) for a, b e A = { 1,2,..., n-1} and a * b } we have the following matrix of

moves:

n-2 moves

a = \ m = (l,2) (1,3)

a = 2 m = (2,1) (2,3)

a = 3 m = (3,l) (3,2)

(1,4)

(2,4)

(3,4)

a = n-2 m = (n-2,l) (n-2,2) (n-2,3)

a = n-\ m = (n-1,1) («-1,2) (n-1,3)

(1,/t-D
(2,n-l)

(3, n-1)

(n-2,n-l)

(n-l,n-2)

>n -1 moves

Thus, |JV(p)| = (n - 2)(n -1). However, mi = (a,b) = m2 = (b,a) implying

|iV(p)| =
(n-2)(n-l)

Colletti (1999) presents an efficient way to evaluate the objective function for

each q 6 iV(p). The objective function defined in step lc) of the GTTS algorithm is

simply the tourlength of p, T(p). If T(p) is the tourlength for p e Sn, then

n

TIP) = IX(0P = 5XO)P
i'=l i'emov(p)

where CJ,(OP
is the i,p(i)A entry of the n by n zero-diagonal cost matrix C, and mov(p) is

the set of all letters moved by p, that is, the set of all letters within the permutation p. For

example, if p = (1,3,4,2,7) e 57, then mov(p) = {1,2, 3,4,7} and T(p) =

Cl,(l)p + C2,(2)p + C3,(3)p + C4,(4)p + C7,(7)p = Cl,3 + C2,7 + C3,4 + C4,2 + C7,l •

28

If J(p) * T(q) for p,q e Sn, then there exists noncommon arcs between them

whose tails are the set movCqp"1). If p and q both share arc i-j, then (i)p = (Oq =j, but

(/)p"1= i implying (Oqp"1 =' • The difference in tourlengths, denoted A(p,q), is:

A(p, q) = T(p) - T(q) = £ [c,(0p - c,(0q].
femovCqp"1))

Hence, for q e N(p), T(q) = T(p) - A(p,q). For large n, if T(p) is known and movCqp"1) is

a small set, then computing A(p,q) is a simple calculation. Further, calculating T(q)

using A(p,q) is much easier than calculating T(q) directly. However, to calculate

A(p,q), we must know (Oq, but (Oq = (0pm = (Om^pm = (((Om"1)p)m. Hence, only p

and m are required to find T(q), that is, no knowledge of q is required.

Our tabu search move pm = q, where m = (a,b) produces the set mov(qp_1) where

movCqp"1) < 4 for all m = (a,b), since pm = q implies qp"1 = p'V1 = (m"1pm)p"1 =

m'^pmp"1) = m"1 mp . Here m"1 = m, since m is a transposition, and mp is also a

transposition since conjugation preserves cycle structure. Therefore, the product qp"

involves at most four letters implying movCqp"1) ^ 4. Specifically, qp"1 = m"1 mp =

(a,^)((a)p"1,(%"1) implying movCqp"1) ={a,b, (a)p'\ (fc)p"1}. Observe that (a)p"1 is the

letter preceding a in p and (fe)p'1 is the letter preceding b in p. If a and b are adjacent

nodes, then (b)pA = a and movCqp"1) = 3, otherwise movCqp"1) = 4. For example,

consider p = (0,1,3,4,2,5) and m = (3,5), then q = (0,1,5,4,2,3) and mov(qp_1) = {a, b,

(a)p~\ (b)p'1} = {3, 5, (3)p_1, (5)p-1} = {3, 5, 1, 2} since 1 precedes 3 and 2 precedes 5 in

29

To illustrate tourlength calculations, consider the 10 Ohio city TSP with current

solution p = (0,1,2,3,4,5,6,7,8,9) and cost matrix C. The actual cost matrix is:

0123456789

0 Akron 0 24 227 33 121 186 150 161 122 46

1 Canton 24 0 224 56 118 184 150 159 140 51

2 Cincinnati 227 224 0 239 106 52 128 71 198 273

3 Cleveland 33 56 239 0 141 197 150 172 107 66

C= 4 Columbus 121 118 106 141 0 68 90 43 128 167

5 Dayton 186 184 52 197 68 0 76 25 152 232

6 Lima 150 150 128 150 90 76 0 66 81 196

7 Springfld 161 159 71 172 43 25 66 0 127 207

8 Toledo 122 140 198 107 128 152 81 127 0 168

9 Youngstown 46 51 273 66 167 232 196 207 168 0

9

This yields 7/(p) = £c. (.)p = cw + c12 + c2>3 + c3A +••■ + c9i0 = 24 + 224 + 239 +141 + 68

+ 76 + 66 + 127 + 168 + 46 = 1179. Let m = (4,9), then q = (0,1,2,3,9,5,6,7,8,4) and

mov(qp1) = {4, 9, 3, 8}. This gives A(p, q) =]T [c. (0p - c,>(0q] = £K(0P " c«oq]
femovtqp-1)) fe{3,4,8,9}

= [C3,(3)p ~ C3,(3)q) 1 + [C4,(4)p ~~ C4,(4)q] + [C8,(8)p ~ C8,(8)q] + tC9,(9)p _ C9,(9)q i =

[c3.4 -c3l9] + [c4.5 -C4.0] +[c8.9 -ciA] + [c9fi -c9,5] = [141 - 66] + [68 -121] + [168 -

128] + [46 - 232] = 75 + -53 + 40 + -186 = -124. Thus, 7/(q) = T(p) - A(p,q) = 1179 +

9

124 = 1303. Computing T(q) directly gives T(q) = Xc«oq) = co,i +ci,2 +c2,3 +c3,9 +
!=0

C4,0 + C5,6 + C6,7 + C7,8 + C8,4 + C9,5 = 24 + 224 + 239 + 66 + 121 + 76 + 66 + 127 + 128 +

232 = 1303.

30

3.3.3 Conjugation and fc-opt Moves

There is a relationship between m-letter rearrangement moves by conjugation and

the classical fc-opt moves found in the literature. The GTTS algorithm move is the two-

letter rearrangement move, which is simply a swap of any two nodes within the TSP tour.

Recall that the it-opt move is one where k arcs are dropped from the existing solution and

then k new arcs are added back for an improving solution. The 2-letter rearrangement

move, or swap, is a type of &-opt move. Specifically, the swap move pm = q where m =

(a,b) is a 4-opt move if a and b are non-adjacent nodes in p and a 3-opt move if a and b

are adjacent nodes. For example, consider the incumbent solution, p, to the 5 node TSP.

Here let p = (0,1,2,3,4). If node 2 is swapped with node 4, we have q = (0,1,4,3,2). For

this move, arcs 1-2, 2-3, 3-4, and 4-0 are cut while arcs 1-4,4-3, 3-2, and 2-0 are added.

We assume here that arc i-j is not the same as arcy-/.

In group theory, m-letter rearrangement moves by conjugation are fc-opt moves.

The literature rarely demonstrates fc-opt moves for k > 4 because of their complexity.

However, conjugation performs fc-opt moves in a simple and straightforward manner.

For example, suppose p = (0,2,3,1,5,6,4) and m = (1,6,2). The permutation m is a 3 -

cycle and equates to a three-letter rearrangement move. Thus, pm = q = (0,1,3,6,5,2,4),

and m = (1,6,2) is a 6-opt move since arcs 0-2,2-3, 3-1,1-5, 5-6, 6-4 are cut in p and arcs

0-1,1-3, 3-6, 6-5, 5-2, 2-4 are added back in q. In general, an m-letter rearrangement

move by conjugation is a 2m-opt move if the letters being moved are all non-adjacent in

the TSP tour.

31

3.3.4 Tabu Criteria and Aspiration Criteria

A neighboring solution q e iV(p) is evaluated by its tourlength, T(q), subject to

tabu and aspiration criteria. The algorithm uses recency (short-term memory) to

determine if the new solution q has been visited in recent search iterations. The GTTS

algorithm uses a "tabu list", T, of length l = 2tto determine if q is "tabu", where t is the

tabu tenure. The value of t is a function of n, the number of nodes in the TSP. The

algorithm uses different values of t to demonstrate how the solution's quality depends on

the tabu criteria. Here, t takes on two values for each problem instance. Namely, t =

[O.lOanJ for a = 1 and 2, where n is the number of nodes in the TSP. At each iteration i,

the GTTS algorithm records the move attributes for m = (a,b) that yields pm = q (p is the

solution for iteration (i -1) and q is the solution for iteration 0 in T as stated in step 2h) of

the algorithm. Thus, attributes(q) for T are the nodes swapped, or moved, by m.

Specifically, node a is placed on line (2t - 1) and node b is placed on line 2t (final line) of

the tabu list T. The move for iteration / -1, which was previously stored on lines (2t -1)

and It, is moved to lines (2t - 3) and (2t - 2) of T, while the move for iteration (i - 2) is

moved from lines (2t - 3) and (2t - 2) to lines (2t - 5) and (2t - 4), and so forth until the

move for iteration i - (t-1) is moved from lines 3 and 4 to lines 1 and 2. The move for

iteration i -1 is dropped from the list. Hence, the tabu list T remembers the past t moves

as required. At each iteration, any m = (a,b) is classified tabu if a or b is in the tabu list

array. For example, suppose t=\. Further, suppose the move m = (2,4) for p =

(0,1,2,3,4) yielding q = (0,1,4,3,2) gives the best objective function value. Then, q is the

new incumbent solution and m = (2,4) is added to the tabu list, i.e., T = (2,4). For the

32

next t iterations, any m = (a,b) where a e {2,4} or b e {2,4} is tabu. Each solution q =

pm, where m contains tabu letters, is still evaluated in step 2b). If q is selected as the best

neighbor, but T(q) > r(pBest) then q is placed in the set of restricted moves Rp as in step

2f).

F is the long-term memory for the GTTS algorithm. The list F is of length n - 1

and records the number of times, or frequency, that a letter is swapped. Hence, for the

move m = (2,4), the second and fourth lines of F are incremented by one in step 2h) as a

record that nodes 2 and 4 have been swapped.

It is important that the tabu criterion keeps the search from returning to past

solutions. Theorem 3 in Section 2.4.5 and a solution's unique representation ensure that

the solution p is not revisited within t iterations. Essentially, Theorem 3 states that for

some m = (x,y), nodes a and b are moved in p, if and only if x e {a, b) or ye {a, b).

The unique representation of p ensures that/1 position of the cycle uniquely determines

the cycle. For example, if p = (0,1,2,3,4) = (1,2,3,4,0) = (2,3,4,0,1) then a = 1 may be in

any cycle position of p and still equate to the same cyclic permutation. However, if p is

uniquely represented by p = (0,1,2,3,4), then a = 1 in p is only allowed in the second

position.

At iteration i, any m = (a,b) may be taken if pm = q produces the best known

objective function value encountered in the first i iterations. This is the algorithm's

aspiration criteria that is used to counterbalance the effect of the tabu list. This equates to

step 2e) in the GTTS algorithm. As an illustration, let m = (2,4) be tabu. The move m =

(2,3) for p = (0,1,4,3,2) giving q = (0,1,4,2,3) is permitted if q produces the best objective

function value to date, i.e., z(q) < z* or T(q) < r(pBest)-

33

Summarizing the previous sections, the GTTS algorithm is stated again in full

detail.

1. (Initialization Step)
a) Set I = 50« - E, n = number of nodes in the TSP, C = distance (cost) matrix,

/ = 2t where t = [O.lOc&iJ for a = 1,2, and E is defined in the intensification

strategy.
b) Set the starting solution p = (0,1,2,3,... ,n-\) e Sn.
c) Set pßest = p and let z* = T(pBest), where T(p) is the objective function.
d) Set T = 0, = (0,0,..., I) and F = 0„. i = (0,0,..., n -1).

2. While i<I
a) FindJV(p) = {qlpm = q,m = (a,fc)fora, be A = { 1,2,...,«-1} anda*2>}.

Setflp=0.
b) Evaluate all q e N(p) using r(q) = 7(p) - A(p,q) and C.
c) Select q g Rp such that T(q) < T(x) for all x e JV(p) - Rp.
d) If rriq = (a,b) and a or be T, set p = q. Here, rriq is the move from p to the q

selected in 2c)
e) If a or b e T and T(q) < T(pBcst), set p = q.
f) If a or b e T and T(q) > r(pBest), then q e Rp and return to 2c).
g) If T(p) < r(pBest), repeat lc).
h) Update T by resorting T and adding a to line (2? -1) and b to line 2t. Update

F by incrementing the ath and bth lines by one.
i) I<-/+1.

3. Output Pßest and ^(pBest).

Figure 2. The GTTS Refined Algorithm

3.3.5 Intensification Strategy

The GTTS algorithm employs an elite list intensification strategy (Glover and

Laguna, 1997). This strategy intensifies the search around the best r solutions found

within the first 50n - E iterations of the search. In the GTTS algorithm, r = 5 and E =

(0.40)ITota! = (0.40)50« = 20n is the total number of intensification iterations. Clearly,

the algorithm requires a memory of its elite solutions. Let S = (pi, P2, P3, P4, ps) be the

list of elite solutions for the first 50« - E = 30« iterations, where pi = pBest, P2 is the next

34

best and so forth for p3 through p5. Then step lc) of the GTTS algorithm above should

read

c) In S, set p;- = P/.1 for; = 5,4, 3,2, and set pBest - pi = P and let z* = r(pBest),
where T(p) is the objective function.

The intensification search follows the same GTTS algorithm defined above with a

few modifications. The GTTS intensification algorithm is:

1. (Initialization Step)
a) Set Intensify = E = 20n, n = number of nodes in the TSP, C = distance (cost)

matrix, / = It where t = \0.10ocn] for a = 1,2, and S = (pi, p2, p3, P4, ps) is the

list of elite solutions found in the first 30n iterations.
b) Set the starting solution p; e S„ forj = 1,2, 3,4, 5.
c) Set pßest = p and let z* = r(pBest), where T(p) is the objective function.
d) Set T = 0, = (0, 0,..., I) and F = 0„., = (0, 0,..., n - 1).

2. While/< Iitensify
a) Find JV(p) = {q I pm = q, for selected m = (a,b,c) for a, b e A = { 1, 2,..., n-

1} anda*fc*c }. SetRp=0.
b) Evaluate all q e iV(p) using T(q) = T(p) - A(p,q) and C.
c) Select q <2 Rp such that T(q) < T(x) for all x e iV(p) - Rp.
d) If iriq = (a,b,c) and a, b,orc£ T, set p = q. Here, rriq is the move from p to

the q selected in 2c)
e) If a, b, or c e T and T(q) < r(pBest), set p = q.
f) If a, b, or c e T and T(q) > r(pBest), then q e Rp and return to 2c).
g) If T(p) < r(pBest), repeat lc).
h) Update T by resorting T and adding a to line (3t - 2), b to line (3t - 1), and c to

line 3t. Update F by incrementing the ath, bth, and cth lines by one.
i) i<r-i+l.

3. Output psest and r(pBest)-

Figure 3. The GTTS Intensification Algorithm

First, observe that Intensify = E. Thus, if ITotai = 50rc and n = 50, then E =

(0.40)2500 = 1000 iterations, and each/A elite solution is intensified for Intensify = 1000

iterations. Here, the/'' elite solution acts as the starting solution p in step lb).

35

Second, the tabu list / is now of length 3t, but is modified in the same manner as

defined previously. The change in / is due to a different move definition. Observe in

step 2a) that iV(p) = {q I pm = q, for selected m = (a,b,c) for a, b e A = { 1,2,..., n-1}

and a * b * c }. Here, the neighborhood of p, N(p), only includes a selected number of 3-

cycles to conjugate with p. Therefore, our intensification move is a three-letter

rearrangement move.

iV(p) only includes a selected number of 3-cycles because the size of N(p),

\N(p)\, becomes too large if all 3-cycles are considered. To illustrate, consider the

solution neighborhood N(p) = {q I pm = q for all m = {a,b,c) = ((Op, (i+j+ l)p, (i+j+k+2)p)

for / = 0,..., n -4, j = 0,..., ((n-4) - i) for each /, and k = 0,..., ((it-4)-(i+/)) for each i

and; }. Without loss of generality, let p = (0,1,2,3,... ,n-l). N(p) is constructed with the

looping structure in Figure 4.

For i' = 0,..., n-4
a = (Op
For; = 0,..., ((n-4) - 0

b = (/+/+l)p
For * = 0,..., ((n-4)-(i+/))

c = (i+j+k+2)p

Figure 4. Looping Structure for iV(p)

As a simple illustration, let i=l,j = 2,mdk = 4, then m = (a,b,c) = ((l)p,(4)p,(9)p) =

(2,5,10) when p = (0,1,2,3,... ,n-l). Thus, when i = 0, we have the following group of

moves:

36

ji k->
0 (1,2,3) (1,2,4) (1,2,5) (1,2,6) - (1,2, n- 2) (1,2, n-1)

1 (1,3,4) (1,3,5) (1,3,6) - (1,3, n-2) (1,3, n-1)

2 (1,4,5) (1,4,6) - (1,4,»-2) (l,4,n-l)

(n-4) (l,n-2,n- -1)

Similarly, i = 1 gives the moves

ji *-»
0 (2,3,4) (2,3,5) (2,3,6) (2,3,7) ••• (2,3, n- 2) (2,3, n-1)

1 (2,4,5) (2,4,6) (2,4,7) - (2,4, n- 2) (2,4, n-1)

2 (2,5,6) (2,5,7) - (2,5, n-2) (2,5, n-1)

(n-3) (2,n-2,n- -1)

, • ™ , ,. v? (n-3)(n-2) A similar group of moves exists for each i. Observe that there are ^ x =
x=i 2

moves for i = 0 and V x = — moves for i = 1. For example, if n = 8 then / =
x=\ 2

0 produces the following moves.

ji fc = 0 fc = l Jk = 2 k = 3 k = 4

0 (1,2,3) (1,2,4) (1,2,5) (1,2,6) (1,2,7) x = 5

1 (1,3,4) (1,3,5) (1,3,6) (1,3,7) x = 4

2 (1,4,5) (1,4,6) (1,4,7) x = 3

3 (1,5,6) (1,5,7) x = 2

4 (1,6,7) x = l

r,«. v? (n-3)(n-2) ^ (5)(6) 1Ä , + . , . n T , Thus, \x = = 2JX = -^-^- = 15 total moves for i = 0. In general, we
x=i 2 x=1 2

((n-3)-i)((»-2)-0 , , . . . _ . „
have — —— —- moves for each i = 0,1,2,..., n - 4. Hence,

37

M = X (("-3)"'*-2>'0. ;=o *

Clearly, N(p) becomes extremely large as n grows. This particular neighborhood

structure still does not include all the possible three-letter rearrangement moves on p. For

example, m = (1,3,2) £ N(p) for p = (0,1,2,... ,n-l).

The GTTS intensification algorithm explores two different neighborhood

structures to demonstrate their effect on the solution quality. The first neighborhood

structure is a scaled version of the neighborhood described above. Here, M(p) = {q I pm

= q for all m = {a,b,c) = ((Op, 0*+/+l)p, (i+/+*+2)p) for i = 0,1,2, 3; j = 0,..., ((n-4) - i)

for each i; and k = 0,..., ((n-4)-(i+j)) for each i and; }. The scaling is due to the

limitation on i. Hence, the first neighborhood structure M(p) is generated by the looping

structure below.

For/ = 0, 1,2,3
a = (Op
For; = 0,..., ((n-4) - 0

b = 0'+/+l)p
For fc = 0,..., ((n-4)-(*+/))

c = (/+/+fc+2)p

Figure 5. Looping Structure for iV"i(p)

ThesizeofiVi(p)is |^(p)| = J ({n-3)-i){{n-2)-i) The ^^ simplifies

i=o 2

to \NX (p)| = (n - 3)2 + (n - 5)2. This neighborhood structure limits the effectiveness of

the tabu list since any letter moved into (Op for i = 0, 1, 2, 3 by m may remain tabu for at

most three iterations.

The second neighborhood structure used by the GTTS intensification algorithm is

given by iV2(p) = {q I pm = q for all m = (a,b,c) = ((Op, (i+/+l)p, (i+/+2)p) for i = 0, 1, 2,.

38

ii ;->

0 (1,2,3)

1 (2,3,4)

2 (3,4,5)

.., n-4, and j = 0,..., ((n-4) - i) for each /}. Thus, iV2(p) is generated by the looping

structure below.

For i = 0,1,... , n-4
a = (Op
For; = 0,..., ((n-4) - 0

b = (i+j+iyp
c = (i+j+2)p

Figure 6. Looping Structure for iV2(p)

The size of N2(p), \N2 (p)|, is much smaller than that of iVi(p). Applying the

looping structure for A^(p) to p = (0,1,2,.. .,n-l) gives the following 3-cycle moves:

(1.3.4) (1,4,5) (1,5,6) - (l,«-2,«-l)

(2.4.5) (2,5,6) ••• (2,n-2,n-l)

(3.5.6) ... (3,n-2,«-l)

(n-4) (n-3,n-2,n-l)

n-3 /j. _ y\(n — 2)
Thus, jiV2 (p)| =^x = — . In conclusion, the GTTS intensification algorithm

follows the same process as the general GTTS algorithm. However, the details of the

search, such as the number of iterations, move definition, tabu list, and initial starting

solution, differ.

3.3.6 Diversification Strategy

The GTTS algorithm uses frequency (long-term memory) to diversify the search

into unexplored regions of the solution space. The diversification strategy uses the ideas

of influence and quality (Glover and Laguna, 1997). Any tabu search move has both a

measure of influence and a measure of quality. In our case, the measure of move

39

influence is the order of the move, m, where m = {ax, a2, a3,..., am), and the measure of

move quality is the objective function value, or tourlength, T(q) for q = pm. Recall that m

= (a,, a2, a3,..., am), an m-cycle, has order m. In the general GTTS algorithm, the

influence for any move is 2, since we define our move as m = (a,b), and in the GTTS

intensification algorithm, the influence for any move is 3 since m = (a,b,c).

When the search experiences little change in quality, the diversification strategy is

employed. In the GTTS algorithm, this occurs after U = max{5, (0.005)1} consecutive

non-improving moves have been chosen. Specifically, the GTTS algorithm diversifies

the search by making highly influential moves; that is, the search diversifies by making a

rearrangement move of order m. In the GTTS algorithm, m is a function of the problem

size n. Namely, m = max{5, (0.15)«}. Hence, we diversify if at least 0.5 percent of the

total number of iterations are consecutively non-improving by rearranging at least 15

percent of the nodes within the TSP tour.

Recall that F is the long-term memory for the GTTS algorithm. The list F is of

length n - 1 and records the number of times that a letter is moved. The GTTS algorithm

uses F to determine the nodes that need to be moved and the nodes that need to remain

stable. Specifically, the m least moved nodes are moved by mD = (^, a2, a3,..., am),

where a* is the kA least moved node.

As an example, suppose p = (0,2,3,1,7,8,9,5,4,10,11,6,12) is the fifth non-

improving move made and suppose nodes 11, 3,10, 8,12 are found, after searching F, to

be the five least moved nodes. Then, pnew = pmD, where mD = (11,3,10,8,12), implying

pnew = (0,2,10,1,7,12,9,5,4,8,3,6,11). Thus, pnew becomes the new incumbent solution,

40

i.e. pnew = p in line lb) of the GTTS algorithm. Thus, the GTTS algorithm diversifies by

jumbling the incumbent solution and restarting the search. This jumbling is

accomplished by an m-letter rearrangement of the nodes that are rarely moved.

3.4 Testing and Validation

The Java GTTS algorithm is tested and validated on several TSP data sets. These

data sets range from 10 to 76 nodes and include both symmetric and asymmetric

instances. The smallest problem, the OhiolO problem, is taken from Moore (1999). The

remaining data sets are taken from TSPLIB, which is a library of TSP instances from

various sources and is compiled by Reinelt (2000). Computational results are compared

to the optimal solutions given by Reinelt (2000). The results are presented in Chapter 4.

The actual problem instances used for testing are given in the table below.

Table 1. TSP Data Sets

Problem Name Description Number of
Nodes

Type

OhiolO 10 Ohio cities 10 Symmetric
Grl7 17-city problem 17 Symmetric
Gr21 21-city problem 21 Symmetric
Gr24 24-city problem 24 Symmetric
Fri26 26-city problem 26 Symmetric

Swiss42 42-city problem 42 Symmetric
Att48 48 CONUS state capitals 48 Symmetric
Gr48 48-city problem 48 Symmetric
Eil51 51-city problem 51 Symmetric

Berlin52 52 locations in Berlin 52 Symmetric
St70 70-city problem 70 Symmetric
Eil76 76-city problem 76 Symmetric
Brl7 None 17 Asymmetric
Ftv35 None 36 Asymmetric
P43 None 43 Asymmetric

41

3.5 Conclusion

A specific instance of the GTTS algorithm is coded in the Java programming

language using the generic tabu search framework developed by Harder (2000).

Appendix A contains the specific GTTS Java code as a reference. The GTTS algorithm

employs a 2-letter rearrangement move, or swap, by conjugating the incumbent tour p

with a transposition m. The GTTS intensification algorithm also uses conjugation to

perform 3-letter rearrangement moves. The diversification strategy for GTTS restarts the

search with a new starting solution by making an m-letter rearrangement of the

incumbent tour using the m most unmoved nodes. The results of the GTTS algorithm

follow in Chapter 4.

42

Chapter 4. Results

4.1 Introduction

An instance of the GTTS algorithm is coded in the Java programming language.

The Java program is a very simple implementation of GTTS, and lays no claim as the

ultimate GTTS implementation. In fact, there are several ways to improve this Java

implementation in efficiency and sophistication, some of which are mentioned in Chapter

5. Thus, the purpose of the Java GTTS implementation is to demonstrate the GTTS

methodology described in Chapter 3 and provide an indication of its effectiveness.

Specifically, this chapter provides computational results and analytical conclusions for

the Java GTTS algorithm.

4.2 Algorithm Results

The objective of the GTTS algorithm is to find the minimal tourlength, T(p), for a

given TSP instance within a set number of iterations I. Thus, a natural measure of

effectiveness for the Java GTTS code is its ability to find a TSP tour, p, that minimizes,

or nearly minimizes, the tourlength T(p). In addition to finding good solutions, an

important measure for any heuristic is the amount of time it takes to find the solution p.

Hence, the execution time is provided, although timeliness depends greatly on the

efficiency of the actual code.

The value r is used as a measure of solution quality, where

_ Minimal Tourlength Found by GTTS _ TXPsest)
Optimal Tourlength T(p 0ptimal)

43

Clearly, r = 1 indicates that 7/(pBest) = 7TpoPtimai) implying that r « 1 is desired. Several

TSP heuristics provide a worst case value for r as a measure of solution quality. For

example, the nearest neighbor heuristic referenced in Section 2.3 has worst-case

r < j(log2 n) + \ where n is the problem size (Bodin et al., 1993).

The execution time is given in seconds, and is defined as amount of time required

to complete I iterations using a Pentium II350 MHz/64 MB RAM machine. Table 2

presents the optimal solution, r(p0ptimai), best found GTTS solution, r(pBest), r, and

average execution time for each test problem. The execution time is shown for

intensification neighborhood one, M(p), and intensification neighborhood two, N2(p) as

defined in Section 3.3.5. Also, each problem iterates through I = 30n + 5(20n) total

iterations.

Table 2. GTTS Best Results

Problem ^(POptimal) ZXPBest) r Execution
Time (sec.)

(iVi(p))

Execution
Time (sec.)

(iV2(p))
OhiolO 678 678 1 3.13 2.61

grl7 2085 2181 1.046043 7.07 7.51

gr21 2707 2858 1.055781 42.64 14.90

gr24 1272 1338 1.051887 76.61 25.28

fri26 937 941 1.004269 110.67 30.39

swiss42 1273 1427 1.120974 816.52 201.15

Att48 10628 11239 1.05749 1543.68 364.75

gr48 5056 5710 1.129351 1549.49 372.32

eil51 426 522 1.225352 2340.27 433.75

Berlin52 7542 8649 1.146778 2768.87 799.25

st70 675 895 1.325926 11,902.25 1880.50

eil76 538 675 1.254647 17,856.00 2378.08

brl7 39 39 1 18.80 7.22

Ftv35 1473 1620 1.099796 388.81 110.73

p43 5620 5652 1.005694 1005.65 225.43
Averages 1.101599 2695.36 456.92

44

In GTTS, intensification and diversification should improve the solution quality.

Thus, it is important to see if the solution quality significantly improves as the

diversification and intensification strategies are implemented. Table 3 through Table 6

show the best found solutions for the general GTTS search, i.e., GTTS without

intensification or diversification, then GTTS with diversification, then GTTS with

intensification, and finally, GTTS with intensification and diversification.

Table 3. GTTS Results without Intensification or Diversification

Problem TXPOptimal) ZXPBest) r General
Iterations

OhiolO 678 678 1 300
grl7 2085 2270 1.088729 510
gr21 2707 3223 1.190617 630
gr24 1272 1383 1.087264 720
fri26 937 957 1.021345 780
swiss42 1273 1808 1.420267 1260
Att48 10628 17,589 1.654968 1440
gr48 5056 6091 1.204707 1440
eil51 426 638 1.497653 1530
Berlin52 7542 10,138 1.344206 1560
st70 675 1017 1.506667 2100
eil76 538 771 1.433086 2280
brl7 39 41 1.051282 510
Ftv35 1473 1890 1.283096 1080
p43 5620 5668 1.008541 1290

Averages 1.252828 1162

45

Table 4. GTTS Results with Diversification

Problem ^XPOptimal) ZXPBest) r General
Iterations

OhiolO 678 685 1.010324 300

grl7 2085 2220 1.064748 510
gr21 2707 2872 1.060953 630
gr24 1272 1399 1.099843 720

M26 937 957 1.021345 780
Swiss42 1273 1564 1.228594 1260

Att48 10628 13,296 1.251035 1440

gr48 5056 6217 1.229628 1440

eil51 426 542 1.2723 1530

Berlin52 7542 8,813 1.168523 1560

st70 675 962 1.425185 2100

eil76 538 707 1.314126 2280

brl7 39 41 1.051282 510
Ftv35 1473 1890 1.283096 1080

p43 5620 5700 1.014235 1290

Averages 1.166348 1162

Table 5. GTTS Results with Intensification

Problem ^(POptimal) TXPBest) r General
Iterations

Intensify
Iterations

OhiolO 678 678 1 300 1000

grl7 2085 2181 1.046043 510 1700

gr21 2707 3146 1.162172 630 2100

gr24 1272 1338 1.051887 720 2400

fri26 937 955 1.01921 780 2600

swiss42 1273 1589 1.248233 1260 4200

Att48 10628 12,915 1.215186 1440 4800

gr48 5056 5710 1.129351 1440 4800

eil51 426 546 1.28169 1530 5100

Berlin52 7542 9,024 1.1965 1560 5200

st70 675 910 1.348148 2100 7000

eil76 538 712 1.32342 2280 7600

brl7 39 39 1 510 1700

Ftv35 1473 1668 1.132383 1080 3600

p43 5620 5657 1.006584 1290 4300

Averages 1.144054 1162 3873

46

Table 6. GTTS Results with Intensification and Diversification

Problem ^Cpoptimal) TXPBest) r General
Iterations

Intensify
Iterations

OhiolO 678 678 1 300 1000

grl7 2085 2181 1.046043 510 1700

gr21 2707 2858 1.055781 630 2100

gr24 1272 1349 1.060535 720 2400

fri26 937 941 1.004269 780 2600

swiss42 1273 1427 1.120974 1260 4200

Att48 10628 11,239 1.05749 1440 4800

gr48 5056 5756 1.138449 1440 4800

eil51 426 522 1.225352 1530 5100

Berlin52 7542 8,649 1.146778 1560 5200

st70 675 895 1.325926 2100 7000

eil76 538 675 1.254647 2280 7600

brl7 39 39 1 510 1700

Ftv35 1473 1620 1.099796 1080 3600

p43 5620 5652 1.005694 1290 4300

Average 1.102782 1162 3873

In summary, the tables above present the Java GTTS algorithm results with a

specific focus on the solution quality r and execution time. The chapter concludes with

some analytical conclusions.

4.3 Analytical Conclusions

This section presents conclusions drawn from the GTTS results published in the

tables above. First, a discussion on the effects of intensification and diversification on

the solution quality r follows. Then, a discussion about the difference between

intensification neighborhoods iVi(p) and ^(p) and tabu tenures t\ = 0.10« and t2 = 0.20«

is presented.

It appears from the tables in Section 4.2 that the GTTS intensification and

diversification strategies improve the solution quality r. However, a 95 percent

47

confidence interval is formed to ensure our intuition. Table 7 below shows the average

improvement in r when diversification, intensification, and intensification and

diversification are employed. The normality assumption holds for r in all cases.

Table 7. Average Improvement in r with Diversification and Intensification

Average Improvement 95% Confidence Interval
Average improvement in r
from Diversification

-0.0865 (-0.154, -0.019)

Average improvement in r
from Intensification

-0.109 (-0.173,-0.045)

Average improvement in r
from Intensification and
Diversification together

-0.150 (-0.237, -0.063)

As an illustration, suppose r = 1.285 for some general tabu search solution. Then

we are 95 percent confident that r will improve (decrease) by some value within the

interval (-0.063, -0.237) once intensification and diversification is employed, that is, r e

(1.048, 1.22). Clearly, the GTTS algorithm's diversification and intensification strategy

significantly improves the solution measure r.

The search neighborhood and tabu tenure effects the solution quality. Table 8

below presents some results to contrast the two search neighborhoods and Table 9

contrasts tabu tenures t\ and t2 where t\ = 0.10« and t2 = 0.20«.

48

Table 8. Comparison of Intensification Neighborhoods iVi(p) and iV2(p)

Problem Execution
Time (sec.)

(iVx(p))

r for iVi(p)
andfi

Execution
Time (sec.)

(iV2(p))

rforiV2(p)
andli

OhiolO 3.13 1 2.61 1

grl7 7.07 1.04604 7.51 1.09496

gr21 42.64 1.19061 14.90 1.16217
gr24 76.61 1.05189 25.28 1.08726
fri26 110.67 1.02134 30.39 1.01921
Swiss42 816.52 1.41477 201.15 1.24823
Att48 1543.68 1.23513 364.75 1.24718

gr48 1549.49 1.17840 372.32 1.18968
eil51 2340.27 1.61972 433.75 1.36854
Berlin52 2768.87 1.30907 799.25 1.22713
st70 11,902.25 1.59259 1880.50 1.34815
eil76 17,856.00 1.45167 2378.08 1.32900
brl7 18.80 1 7.22 1
Ftv35 388.81 1.23082 110.73 1.21860
p43 1005.65 1.01103 225.43 1.00658

Averages 2695.36 1.22354 456.92 1.16978

Table 9. Comparison of Tabu Tenure t\ and t2

Problem r for ti and N2(p) r for t2 and iV2(p)
OhiolO 1 1
grl7 1.08825 1.04604
gr21 1.05578 1.27078
gr24 1.09984 1.09984
fri26 1.01920 1.00427
Swiss42 1.37471 1.12097
Att48 1.05749 1.17110
gr48 1.19739 1.13845
eil51 1.22770 1.22535
Berlin52 1.14678 1.18404
st70 1.34667 1.32592
eil76 1.25465 1.32340
brl7 1 1
Ftv35 1.22675 1.09980
p43 1.00658 1.00569

Averages 1.14011 1.13438

49

Forming a 95 percent confidence interval about the average improvement gives:

Table 10. Average Improvement in r when using N2(p) or t2.

Average Improvement 95% Confidence Interval
Average improvement in r
for using N2(jp)

-0.05376 (-0.108,0)

Average improvement in r
for using tenure t2

-0.00574 (-0.06329,0.05180)

Tables 8 and 10 support the hypothesis that N2(p) is a better intensification

neighborhood. The execution time of iV2(p) compared with N\{\>) demonstrates the

impact of neighborhoods on the efficiency of the algorithm. The execution time for M(p)

is nearly five times that of N2(p). Statistically, iV2(p) also produces better solutions.

Tables 9 and 10 show that there is no statistical significance in choosing tenure t\ or t2, at

least when iV2(p) is used.

In summary, the GTTS intensification and diversification strategies show

significant improvement in the general solution quality r, and Af2(p) is a much more

efficient intensification neighborhood.

50

Chapter 5. Conclusions and Future Research

5.1 Introduction

This chapter concludes this GTTS research. The research conclusions are

presented along with its contributions. After presenting the research conclusions and

contributions, future research topics in GTTS are provided.

5.2 Research Conclusions and Contributions

This research demonstrates the first GTTS Java algorithm. Colletti (1999)

presents the theory required for GTTS implementation and provides some pseudo code

for a GTTS algorithm. However, this research demonstrates the first coded algorithm

with empirical results.

The GTTS algorithm offers insight into the benefit of using group theory to

implement a tabu search methodology. An important goal and claim of many heuristic

search methods, in addition to being timely, is that they are simple to implement and

understand. However, several tabu search TSP implementations within the literature,

although they produce excellent results, are far from simple. "How" and "why" authors

define their moves, intensification, and diversification strategies are cumbersome and

lengthy, often too lengthy to present with the required detail. The GTTS algorithm

demonstrates a simple, yet powerful, way to define moves as well as the intensification

and diversification strategies. This is done using a simple algebraic equation, which is

possible because the solutions for the TSP are elements of the algebraic group Sn.

The baseline of GTTS is presented in Figure 7 below. This baseline is used to

51

1. Given incumbent solution p,
2. select new solution q = pm and then
3. set p = q and repeat.

Figure 7. GTTS Algorithm Baseline

define GTTS concepts. Consider the general GTTS concepts of move and neighborhood

definition, intensification, and diversification. In step 1, GTTS begins the search with p

= (0,1,2,.. .,n-l), p = p, if intensifying, where p, is the/ft best solution found in the initial

search, p = the (0.005)I'Ä consecutive non-improving move, if diversifying. In step 2, we

select q for m = (a,b), or m = (a,b,c) if intensifying, such that T(q) is minimized for all q

6 N(p) subject to the tabu and aspiration criteria. Here, a,b,ce A = {1,2,..., n -1}. For

diversification, m = (ax,a2,...,am), where m = (0.15)n and ak is the kth least moved node.

The GTTS algorithm essentially repeats the baseline procedure for p, q, and m as

described above. Simply stated, the entire GTTS methodology described in this research

is explained in one paragraph. Clearly, the key to this simplicity is the simple equation q

= pm = m^pm, i.e., the conjugate of p by m, which is a significant contribution of group

theory in describing tabu search.

Notably, the GTTS implementation presented in this thesis is very basic. In fact,

the two-letter rearrangement, or swap, is a very traditional move for TSP tabu search

implementations within the literature. However, conjugation is not limited to two, three,

or even four letter rearrangements, but is only limited by the problem size n since m e S„.

Thus, any tabu search implementation whose solutions are found by rearranging its

elements, or letters, may be defined in a simple and brief manner using conjugation.

Simple implementations usually lead to a better understanding of the overall

metaheuristic's behavior.

52

The application of GTTS is still in its infancy and requires more testing and

research. Like all new concepts, GTTS must overcome its own hurdles before it will be

accepted and implemented. Two immediate hurdles for GTTS are first, the general

unfamiliarity with group theoretic concepts, and second, the lack of computational group

theory codes. In order to use, understand, and implement GTTS, the researcher must

become familiar with the general concepts of group theory. Although the concepts of

group theory are very simple, when taken as a whole they become very overwhelming

and abstract. However, the full power of GTTS relies on understanding the basic

properties of Sn and then applying these properties to develop better tabu search moves

and neighborhoods. In order to apply the properties of Sn, computer codes need refined

and developed for computational group theory. At this point, the GAP software

referenced in Chapter 3 is essentially the only existing comprehensive code for

computational group theory, but a more expansive library is needed, particularly for the

group S„. Once computer code is readily available and group theory concepts are more

familiar, GTTS will be implemented more readily and become a robust and powerful tool

for finding quality and timely solutions to combinatorial optimization problems such as

the TSP class of problems. Thus, GTTS requires a vast amount on continuing research.

The following section discusses such research.

5.3 Future Research

The GTTS algorithm presented in this thesis uses conjugation, which is one

simple group theoretic concept, but there are several other group theoretic concepts worth

53

exploring to further GTTS research. Colletti (1999) suggests several group theoretic

concepts worth implementing in the GTTS algorithm.

The success of GTTS relies heavily on the search neighborhood structure.

Clearly, the neighborhood structure depends on the move definition, but the move alone

does not eliminate the task of finding the ideal search neighborhood. For example, in

Chapter 3, the neighborhood for the two-letter rearrangement move considered all

possible transpositions m, but for the three-letter rearrangement move, it became

impractical to consider all possible 3-cycle moves. Therefore, what is the best

neighborhood structure? Ideally, we seek quality neighborhoods that are relatively small

and easy to evaluate. Colletti (1999) offers the use of subgroups and cosets (see Section

2.4) to generate neighborhoods for an incumbent solution p. Generating subgroups and

cosets require sophisticated computational group theoretic code, but they provide a strong

theoretical basis for neighborhood building.

Statistical analysis and group theory may be combined to determine the parameter

settings, such as the tabu tenure, number of search iterations, and number of allowed non-

improving moves, that will produce the best solutions. Chapter 4 presents some

differences in solution quality as the tabu tenure and neighborhood structure change, but

a more formal statistical and group theoretical look may provide insights that are more

useful.

The GTTS algorithm presented in this research may be improved and extended in

several ways. First, in order to solve real world problems like those faced by AMC; the

code must be extended from the TSP to solve the other TSP class of problems, such as

54

the mTSP, mTSPTW, and VRP. Second, the overall efficiency and sophistication of the

code may be improved.

As the TSP grows in complexity to include the mTSP, mTSPTW, and VRP, the

feasible tour structure moves from an n-cycle to a product of m-cycles. Thus, problems

like AMC's airlift routing problem require not only a rearrangement of nodes, but a

partitioning of nodes too. Permutation multiplication, by the use of templates, provides

this partitioning as simply as conjugation provides a rearrangement of nodes. Recall

from Section 2.4.6 that templates are permutations that partition another permutation into

either more disjoint cycles (a splitting template) or fewer disjoint cycles (a welding

template). Thus, the GTTS algorithm move may be extended to include moves m, where

pm = q, that is, a template m partitions p to yield q. Just as conjugation is the foundation

for defining node rearrangement moves, templates are the foundation for defining

partitioning moves. By the use of templates, the GTTS algorithm currently suited for the

basic TSP naturally evolves to handling problems that are more complex.

The overall code efficiency and sophistication may be improved in several ways.

One way is to implement a reactive tabu tenure that allows the tenure to adjust to the

quality of search. Using hash tables to track solution collisions and tabu moves should

increase the solution quality and algorithm efficiency. Adding time window constraints

is another improvement required to solve AMC's airlift routing problem. Whether group

theory provides added efficiency is worthy of extensive research from a computer science

perspective.

55

GTTS is exciting and promising research. The need to solve large practical

problems in a timely manner warrants continued research, both theoretically and

computationally, into GTTS.

56

Appendix A. Java Documentation

A.l Code Description

The GTTS algorithm is implemented in the Java programming language. Java is

a high-level object-oriented language. Thus, a program is made up of several classes,

which when instantiated, become objects. The GTTS algorithm employs several objects.

A major advantage of object-oriented coding is code sharing and reuse. The GTTS

algorithm takes advantage of the tabu search framework developed by Harder (2000).

Harder's framework provides an engine to run any general tabu search implementation.

See Harder (2000) for details and the source code for the general tabu search objects.

This appendix contains the source code specific for this research, i.e., for the specific

GTTS implementation.

A.2 Source Code

The section contains the GTTS Java source code for fourteen Java classes. Each

class is coded with in-line comments describing its purpose and function. In Java, a

statement preceded by // or /* indicates a comment. The first ten classes below combine

together to define the move, tabu and frequency list, intensification strategy, and

diversification strategy. The next three classes are for operating on permutations, i.e.,

these classes multiply, invert, and conjugate permutations. The final class is a data object

used for importing the cost matrix for each problem instance into Java from an Access

database. The source code follows with each class being preceded by an underlined title.

57

Execution Class

/***

* This class executes the group theoretic tabu search (GTTS) algorithm. The initial
* inputs are defined within this class.
**

import net.usa.rharder.tabusearch. *;

public class TSPExecute implements Runnable,
NewCurrentSolutionListener,
NewBestSolutionListener,
UnimprovingMoveListener

{
// The variables below are used for diversification purposes.
int numberOfUnimprovingMoves = 0;
int IterationCounter = 0;
int maxUnimprovingMoves;
int diversificationMoveSize;
static int diversificationCount = 0;

// The Distance Matrix determines the tourlength T(p).
static int [][] DistanceMatrix;

// The following array keeps a list of the elite solutions. The array is initialized
// to save to top 5 solutions, but may be initialized to any desired length,
static TSPSolution[] eliteSolutions = new TSPSolution[5];

// The objectiveFunction variable is made static so that it may be used globally.
// Specifically, it is used for diversification.
public static TSPObjectiveFunction objectiveFunction;

// The variable "numberNodes" determines the size of the problem. The solution space
// is the Symmetric Group on n letters (S sub n) where n = numberNodes. The variable
// is static so that it may be referenced in other classes. For example, the number
// of nodes is used to define the neighborhood size in the TSPMoveManager Class,
static int numberNodes;

// Variables for the number of iterations to perform
int GeneralTSIterations;
int Intensificationlterations;

// Variables for the tabu tenure
int GeneralTSTenure;
int IntensificationTenure;

// The variable "thread" specifies whether one or two threads will be used during
// the search. Thus, for machines with multiprocessors, the user may specify
// "threads = 2".
int threads = 1;

// Constructor Method
public TSPExecute(String[] args)
{

58

if(args.length = 2)
{

GeneralTSIterations = new Integer(args[0]).intValue();
threads = new Integer(args[l]).intValue();

}
}

public static void main(Stringf] args)
{

Thread t = new Thread (new TSPExecute(args));
t.start();

}

public void run()
{

DistanceMatrix = DataSets.cost;

// The array below is the initial starting solution for the search. Since
// this algorithm is a demonstration of the group theoretic metaheuristic theory
// developed by Colletti (1999), the initial starting solution is not important.
int[] x = new int[48];
for(int k = 0; k < x.length; k++)

x[k] = k;

numberNodes = x.length;

// Input for the number of iterations to perform, the tabu tenure, and the maximum number of
// consecutive unimproving moves.
GeneralTSIterations = 30*numberNodes;
Intensificationlterations = 20*numberNodes;
GeneralTSTenure = Math.max(2,(int)(0.10*numberNodes);
IntensificationTenure = GeneralTSTenure;
maxUnimprovingMoves = Math.max(5,(int)(.005*GeneralTSIterations));
diversificationMoveSize = Math.max(5, (int)(0.15*numberNodes));

TSPSolution initialSolution = new TSPSolution(x);
objectiveFunction = new TSPObjectiveFunction();
TSPConstraintPenalties constraintPenalties = new TSPConstraintPenalties();
TSPTabuList tabuList = new TSPTabuList(GeneralTSTenure);
TSPMoveManager moveManager = new TSPMoveManager();

// The Engine class is the workhorse of the tabu search algorithm. Harder (2000)
// developed this code for a general tabu search algorithm. The Boolean parameter
// "false" indicates a minimization problem.
Engine engine = new Engine(initialSolution, tabuList,

objectiveFunction, constraintPenalties,
moveManager, false, threads);

// This code implements listeners for diversification and intensfication purposes.
engine.addNewCurrentSolutionListener(this);
engine.addNewBestSolutionListener(this);
engine.addUnimprovingMoveListener(this);

engine.startSolving(GeneralTSIterations);

59

engine. waitToFinish();
System.out.println("Best General Tabu Search Solution :" + engine.getBestSolution());

// The following code is the intensification code. It performs a new search starting
// at the elite solutions found by "engine" above.
TSPSolution intensifyl = eliteSolutions[0];
TSPIntensificationTabuList intensifyltabuList = new TSPIntensificationTabuList(

IntensificationTenure);
TSPIntensificationMoveManager intensifyl mo veManager = new TSPIntensificationMoveManager();
Engine intensificationEnginel = new Engine(intensifyl, intensifyltabuList,

objectiveFunction, constraintPenalties,
intensifylmoveManager, false, threads);

intensificationEnginel.startSolving(Intensificationlterations);
intensificationEnginel.waitToFinishO;
System.out.println("Intensification 1 Best Solution :" +

intensificationEnginel.getBestSolutionO);

TSPSolution intensify2 = eliteSolutions[l];
TSPIntensificationTabuList intensify2tabuList = new TSPIntensificationTabuList(

IntensificationTenure);
TSPIntensificationMoveManager intensify2moveManager = new TSPIntensificationMoveManager();
Engine intensificationEngine2 = new Engine(intensify2, intensify2tabuList,

objectiveFunction, constraintPenalties,
intensify2moveManager, false, threads);

intensificationEngine2.startSolving(Intensificationlterations);
intensificationEngine2.waitToFinish();
System.out.println("Intensification 2 Best Solution :" +

intensificationEngine2.getBestSolution());

TSPSolution intensify3 = eliteSolutions[2];
TSPIntensificationTabuList intensify3tabuList = new TSPIntensificationTabuList(

IntensificationTenure);
TSPIntensificationMoveManager intensify3moveManager = new TSPIntensificationMoveManager();
Engine intensificationEngine3 = new Engine(intensify3, intensify3tabuList,

objectiveFunction, constraintPenalties,
intensify3moveManager, false, threads);

intensificationEngine3.startSolving(Intensificationlterations);
intensificationEngine3.waitToFinish();
System.out.println("Intensification 3 Best Solution :" +

intensificationEngine3.getBestSolution());

TSPSolution intensify4 = eliteSolutions[3];
TSPIntensificationTabuList intensify4tabuList = new TSPIntensificationTabuList

IntensificationTenure);
TSPIntensificationMoveManager intensify4moveManager = new TSPIntensificationMoveManager();
Engine intensificationEngine4 = new Engine(intensify4, intensify4tabuList,

objectiveFunction, constraintPenalties,
intensify4moveManager, false, threads);

intensificationEngine4.startSolving(Intensificationlterations);
intensificationEngine4.waitToFinish();
System.out.println("Intensification 4 Best Solution :" +

intensificationEngine4.getBestSolution());

TSPSolution intensify5 = eliteSolutions[4];

60

TSPIntensificationTabuList intensify5tabuList = new TSPIntensificationTabuList(
IntensificationTenure);

TSPIntensificationMoveManager intensify5moveManager = new TSPIntensificationMoveManager();
Engine intensificationEngine5 = newEngine(intensify5, intensify5tabuList,

objectiveFunction, constraintPenalties,
intensify5moveManager, false, threads);

intensificationEngine5.startSolving(Intensificationlterations);
intensificationEngine5. waitToFinish();
System.out.println("Intensification 5 Best Solution :" +

intensificationEngine5.getBestSolution());

// Outputs for the execution time
System.out.println("General Solution time (sec):" + (engine.getLastSolveMillis() / 1000.));
System.out.println("Intensification 1 Solution time (sec):" +

(intensificationEnginel.getLastSolveMillisO / 1000.));
System.out.println("Intensification 2 Solution time (sec):" +

(intensificationEngine2.getLastSolveMillis() / 1000.));
System.out.println("Intensification 3 Solution time (sec):" +

(intensificationEngine3.getLastSolveMillis() / 1000.));
System.out.println("Intensification 4 Solution time (sec):" +

(intensificationEngine4.getLastSolveMillis() / 1000.));
System.out.println("Intensification 5 Solution time (sec):" +

(intensificationEngine5.getLastSolveMillis() / 1000.));

// Outputs number of iterations and tabu tenure.
System.out.println("Number of General Iterations:" + GeneralTSIterations);
System.out.println("Number of Intensification Iterations:" + Intensificationlterations);
System.out.println("Tabu Tenure is: "+GeneralTSTenure);
System.out.println("Number of Diversification moves performed:" + diversificationCount);

} // end run method

public void newCurrentSolution(TabuEvent e)
{

IterationCounter++;
}

// This method is fired whenever a new best solution is found. This code update the elite
// solutions list.
public void newBestSolution(TabuEvent e)
{

TSPSolution bestSolution = (TSPSolution) ((Engine)e.getSource()).getBestSolution();
for(int n = 4; n > 0; n~)
{

eliteSolutionsfn] = eliteSolutions[n-l];
}
eliteSolutions[0] = bestSolution;

}

// This method is fired whenever a non-improving move is made. The code in this method
// implements the diversification strategy.
public void unimprovingMoveMade(TabuEvent e)

{
numberOfUnimprovingMoves++;

61

if(numberOfUnimprovingMoves != IterationCounter)

{
numberOfUnimprovingMoves = 0;
IterationCounter = 0;

}

else if(numberOfUnimprovingMoves == maxUnimprovingMoves)

{
numberOfUnimprovingMoves = 0;
diversificationCount++;
// m is the diversification move.
int[] m = new int[diversificationMoveSize];

// The following code searches the frequency array to find the least
// swapped nodes and then populates m.
int min = TSPTabuList.frequency[0];
for(int i = 1; i < TSPTabuList.frequency.length; i++)

{
if(TSPTabuList.frequency[i]< min)

min = TSPTabuList.frequency[i];
}
int k = 0;
while(m[m.length-l] == 0)
{

for(int t = 0; t < TSPTabuList.frequency.length; t++)
{

if(TSPTabuList.frequency[t] = min)
{

m[k]=t+ 1;
if(k==m.length-l)

break;
k++;

}
}
min+= 1;

}
//for(int a = 0; a < m.length; a++)
//{
// System.out.print(m[a]+"");

//}
//System.out.println("");

// The code below gets the current incumbent solution p and conjugates it with
// m to yield q, the new incumbent solution.
TSPSolution currentSolution = (TSPSolution) ((Engine)e.getSource()).getCurrentSolution();
int[] p = new int[numberNodes];
for(int v = 0; v < p.length; v++)
{

p[v] = currentSolution.x[v];
}
int[] q;
q = PermutationConjugation.conjugate2(p,m);
for(int u = 0; u < q.length; u++)

62

{
currentSolution.x[u] = q[u];

}
double val = objectiveFunction.evaluate(currentSolution);
currentSolution.setObjectiveValue(val);

}
} // ends unimprovingMoveMade method

} //endclassTSPExecute

63

Solution Class

* This class defines the solution form for the tabu search framework.
* The solution for the GTTS algorithm is an array of length n that
* represents a n-cycle permutation.

import net.usa.rharder.tabusearch.*;

public class TSPSolution extends Solution
{

int[] x;

public TSPSolution(int[] passedArray)
{

x = new int[passedArray.length];
for(int i = 0; i < x.length; i++)

x[i] = passedArray [i];
}

public int size()
{

return x.length;
}

public Object clone()
{

return new TSPSolution(x);
}

public String toStringO
{

// This method outputs the objective and tour for the best
// solution found.
String self = "Distance = " + (this.getValue()) + "\n";
//for(int i = 0; i < x.length; i++)

//self+= "Go to node " + (x[i]) + " and then" + "\n";
return self;

}
} // end class TSPSolution

64

Objective Function Class

/***

* This class evaluates the objective function (tour length) for all moves.
* The evaluate method uses the tourlength equations given by Colletti (1999).
* (not yet programmed).

import net.usa.rharder.tabusearch.*;

public class TSPObjectiveFunction extends TabuFunction

{
public double evaluate(Solution soln)
{

TSPSolution solution = (TSPSolution) soln;
// Evaluate the solution
double value = 0;
for(int i = 0; i < TSPExecute.numberNodes -1; i++)

value+=TSPExecute.DistanceMatrix[solution.x[i]][solution.x[i+l]];
value += TSPExecute.DistanceMatrix[solution.x[TSPExecute.numberNodes-1]] [solution.x[0]];
return value;

}

} // end class TSPObjectiveFunction

65

Move Manager Class

* This class manages the search neighborhood at each iteration. At each
* iteration, each move is stored in an array and then the array of moves
* is sent to the engine for evaluation.

import net.usa.rharder.tabusearch.*;

public class TSPMoveManager extends MoveManager

{
public Move[] getAllMoves(Solution soln)

{
int counti, letterl, letter2;
// In the conjugation pAm = q where m=(a,b), letterl = a, and
// letter2 = b. The variable counti is the index reference for
// the array of all moves, i.e, counti = 0 indexes the first move
// for that iteration. Since p is of size n and we hold the
// first element fixed, there are [(n-l)(n-2)] neighbors at
// each iteration. However, since m = (a,b) = (b,a) = mINV, then
// the neighborhood size reduces to [(n-l)(n-2)]/2. Hence, counti
//ranges from zero to ([(n-l)(n-2)]/2) -1.
counti = 0;
letterl = 0;
letter2 = 0;
TSPSolution solution = (TSPSolution) soln;
TSPMove[] allMoves = new TSPMove[((TSPExecute.numberNodes-2)*

(TSPExecute.numberNodes-1))/2];

// The variable j below represents a position in permutation p, or index
// of the solution array. The letter in position j is letterl above.
// letter2 is in position j+i+1. Thus, the variable i aides
// in identifying the second position and counts the number of times
// letterl = a. For example, if the current solution is the array (cycle)
// p = (0,1,2,3,4,5) and j = 1, then m = (l,i+2) where i ranges from 0 to
// n - (j+2) = 6 - 3 = 3. So the first four moves are m = (1,2), m = (1,3),
//m = (l,4), and m= (1,5).
for(int j = 1; j < TSPExecute.numberNodes-1; j++)

{
letterl = solution.x[j];
for(int i = 0; i < (TSPExecute.numberNodes-1) - j; i++)

{
letter2 = solution.x[j+i+l];
allMoves[counti] = new TSPMove(letterl, letter2, j, i);
counti++;

}
}
return allMoves;

}
} // end class TSPMoveManager

66

Intensification Move Manager Class

/***

* This class manages the intensification search neighborhood at each
* intensification iteration. At each iteration, each move is stored in an
* array and then the array of moves is sent to the engine for evaluation.
**

import net.usa.rharder.tabusearch. *;

public class TSPIntensificationMoveManager extends MoveManager

{
//Intensification Method One
/*
public Move[] getAllMoves(Solution soln)
{

int counti, letter 1, letter2, letter3;
// In the conjugation pAm = q where m=(a,b,c), letter 1 = a,
// letter2 = b, and letter3 = c. The variable counti is the index
// reference for the array of all moves, i.e, counti = 0 indexes the
// first move for that iteration. Since p is of size n and we hold the
// first element fixed, the neighborhood for p is very large as n
// gets large. Each iteration only considers all 3-cycles beginning
// at the letter in the second, third, fourth, and fifth positions of
// the current tour. Thus, there are [(n-3)(n-3)+(n-5)(n-5)] neighbors at
// each iteration. Hence, counti ranges from zero to
//([(n-3)(n-3)+(n-5)(n-5)]-l).
counti = 0;
letterl = 0;
letter2 = 0;
letter3 = 0;
TSPSolution solution = (TSPSolution) soln;
TSPIntensificationMove[] allMoves = new TSPIntensificationMove

[((TSPExecute.numberNodes-3)*
(TSPExecute.numberNodes-3))+
(TSPExecute.numberNodes-5)*
(TSPExecute.numberNodes-5)];

// The variable j below represents a position in permutation p, or index
// of the solution array. The letter in position j is letterl above.
// letter2 is in position j+i+1. Ietter3 is in position j+i+k+2.

for(intj = l;j<5;j++)
{

letterl = solution.x[j];
for(int i = 0; i < (TSPExecute.numberNodes-2) - j; i++)
{

letter2 = solution.x[j+i+l];
for(int k = 0; k < (TSPExecute.numberNodes-2) - (j+i); k++)

{
letter3 = solution.x[j+i+k+2];
allMovesfcounti] = new TSPIntensificationMove(letterl, letter2, letter3, j, i, k);
counti++;

}

67

}
}
return allMoves;

}*/

// Intensification Method Two
public Move[] getAllMoves(Solution soln)

{
int count, letterl, letter2, letter3;
// In the conjugation pAm = q where m=(a,b,c), letterl = a,
// letter2 = b, and letter3 = c. The variable counti is the index
// reference for the array of all moves, i.e, counti = 0 indexes the
// first move for that iteration. Since p is of size n and we hold the
// first element fixed, the neighborhood for p is very large as n
// gets large. There are [(n-3)(n-2)]/2 neighbors at each iteration,
count = 0;
letterl = 0;
letter2 = 0;
letter3 = 0;
TSPSolution solution = (TSPSolution) soln;
TSPIntensificationMove[] allMoves = new TSPIntensificationMove

[((TSPExecute.numberNodes-3)*
(TSPExecute.numberNodes-2))/2];

// The variable j below represents a position in permutation p, or index
// of the solution array. The letter in position j is letterl above.
// letter2 is in position j+i+1. Ietter3 is in position j+i+2.

for(int j = 1; j < TSPExecute.numberNodes-2; j++)

{
letterl = solution.x[j];
for(int i = 0; i < (TSPExecute.numberNodes-2) - j; i++)

{
letter2 = solution.x[j+i+l];
letter3 = solution.x[j+i+2];
allMoves[count] = new TSPIntensificationMove(letterl, letter2, letter3, j, i);
count++;

}
}
return allMoves;

}
} // end class TSPIntensificationMoveManager

68

Move Class

* This class defines the tabusearch move. The move for this algorithm is the two-letter
* rearrangement (a swap). That is, pAm = mINV*p*m = q where p is the current solution,
* m is a transposition, and q is the resulting tour. If m = (a,b), then m yields a swap move
* which is a 4-opt move if a and b and non-adjacent letters in p and a 3-opt move if a and
* b are adjacent in p.

import net.usa.rharder.tabusearch.*;

public class TSPMove extends Move
{

int i, j, letterl, letter2;

public TSPMove(int movenumberl, int movenumber2, int index, int positions)

{
// These inputs are passed from the TSPMoveManager to here to
// perform the individual move. See the TSPMoveManager class for a
// description of the variables below.
j = index;
i = positions;
letterl = movenumberl;
letter2 = movenumber2;

}

public void operateOn(Solution soln)
{

// This method performs the move on the incumbent solution "soln"
// using the PermutationConjugation class.
TSPSolution solution = (TSPSolution) soln;

intm[] = {solution.x[j], solution.x[j+i+l]};
int p[] = new int[TSPExecute.numberNodes];
for(int k = 0; k < solution.x.length; k++)

p[k] = solution.x[k];
intq[];
q = PermutationConjugation.conjugate2(p,m);
solution.xlj] =q[j];
solution.x[j+i+l] = q[j+i+l];

}

public void undoOperation(Solution soln)
{

// This method reverses the conjugation to preserve the incumbent
// solution for the next move operation.
operateOn(soln);

}

// The following methods supply letterl and letter3 to the tabu
// list. See the TSPTabuList class,
public int getIDl()
{

69

return letter 1;
}

public int getID2()
{

return letter2;
}

public boolean conflictsWith(Move move)

{
boolean conflicts = true;
return conflicts;

}
} //end class TSPMove

70

Intensification Move Class

/***

* This class defines the intensification move. The intensification move for this
* algorithm is different from the general tabu search move. The move for intensification
* is the three-letter rearrangement move. That is, pAm = mINV*p*m = q where p is the
* current solution, m is a 3-cycle, and q is the resulting tour. Thus, m = (a,b,c).
**

import net.usa.rharder.tabusearch. *;

public class TSPIntensificationMove extends Move

{
// Intensification Method One
/*

int i, j, k, letterl, letter2, letter3;

public TSPIntensificationMove(int movenumberl, int movenumber2, int movenumber3, int index, int
positions, int positions2)

{
// These inputs are passed from the TSPIntensificationMoveManager for this class
// to perform the individual move. See the TSPIntensificationMoveManager class for a
// description of the variables below.
j = index;
i = positions;
k = positions2;
letterl = movenumberl;
letter2 = movenumber2;
letter3 = movenumber3;

}

public void operateOn(Solution soln)
{

// This method performs the move on the incumbent solution "soln"
// using the PermutationConjugation class.
TSPSolution solution = (TSPSolution) soln;

int m[] = {letterl, letter2, letter3};
int p[] = new intfTSPExecute.numberNodes];
for(int s = 0; s < solution.x.length; s++)

p[s] = solution.xfs];
intq[];
q = PermutationConjugation.conjugate2(p,m);
for(int v = 0; v < solution.x.length; v++)
{

solution.x[v] = q[v];
}

}

public void undoOperation(Solution soln)
{

// This method reverses the conjugation to preserve the incumbent
// solution for the next move operation.
TSPSolution solution = (TSPSolution) soln;

71

int [] mINV = {letter3, letter2, letterl};
int q[] = new int[TSPExecute.numberNodes];
for(int s = 0; s < solution.x.length; s++)

q[s] = solution.xfs];
intp[];
p = PermutationConjugation.conjugate2(q,mINV);
for(int w = 0; w < solution.x.length; w++)
{

solution.x[w] = p[w];
}

}*/

// Intensification Method Two
int i, j, letterl, letter2, letter3;

public TSPIntensificationMove(int movenumberl, int movenumber2, int movenumber3, int index, int
positions)

{
// These inputs are passed from the TSPIntensificationMoveManager for this class
// to perform the individual move. See the TSPIntensificationMoveManager class for a
// description of the variables below.
j = index;
i = positions;
letterl = movenumberl;
letter2 = movenumber2;
letter3 = movenumber3;

}

public void operateOn(Solution soln)
{

//This method performs the move on the incumbent solution "soln"
// using the PermutationConjugation class.
TSPSolution solution = (TSPSolution) soln;

int m[] = {letterl, letter2, letter3};
int p[] = new int[TSPExecute.numberNodes];
for(int s = 0; s < solution.x.length; s++)

p[s] = solution.xfs];
intqü;
q = PermutationConjugation.conjugate2(p,m);
for(int v = 0; v < solution.x.length; v++)
{

solution.x[v] = q[v];
}

}

public void undoOperation(Solution soln)
{

// This method reverses the conjugation to preserve the incumbent
// solution for the next move operation.
TSPSolution solution = (TSPSolution) soln;

int [] mINV = {letter3, letter2, letterl};

72

int q[] = new int[TSPExecute.numberNodes];
for(int s = 0; s < solution.x.length; s++)

q[s] = solution.x[s];
intpD;
p = PermutationConjugation.conjugate2(q,mINV);
for(int w = 0; w < solution.x.length; w++)

{
solution.x[w] = p[w];

}
}

// The following methods supply letter 1, letter2, and letter3 to the tabu
// list. See the TSPIntensificationTabuList class,
public intgetIDl()
{

return letterl;

}

public int getID2()
{

return letter2;
}

public int getID3()
{

return letter3;
}

public boolean conflictsWith(Move move)

{
boolean conflicts = true;
return conflicts;

}
} // end class TSPIntensificationMove

73

Tabu List Class

/***

* This class stores and updates the recency and frequency information for the search.
* Recency is tracked by the tabu list and frequency is tracked by the frequency list.
* The tabu list records the most recent nodes that have been swapped, while the frequency
* list tracks the number of times each node is part of a swap.

import net.usa.rharder.tabusearch. *;

public class TSPTabuList extends TabuList

{
int tenure, swappednodel, swappednode2;
int[] tabulist;
static int[] frequency;

public TSPTabuList(int pTenure)
{

tenure = pTenure;
tabulist = new int[2*tenure];
frequency = new int[TSPExecute.numberNodes - 1];

}

public boolean allowMove(Move move, Solution solution)
{

boolean allow = true;
int i = 0;
while((allow == true) && (i < tabulist.length))
{

if(tabulist[i++] == ((TSPMove)move).getIDl())
allow = false;

if(tabulist[i++] == ((TSPMove)move).getID2())
allow = false;

}
return allow;

}

public void registerMoves(Move[] moves, Solution soln)
{

for(int i = 0; i < moves.length; i++)
registerMove(moves[i], soln);

}

public void registerMove(Move move, Solution solution)
{

// The following code adds the two swapped nodes to the tabu list
for(int i = 0; i < tabulist.length-2; i++)

tabulistfi] = tabulist[i+2];
tabulistftabulistlength - 2] = ((TSPMove)move).getIDl();
tabulistftabulistlength - 1] = ((TSPMove)move).getID2();

// The following code updates the frequency list for the swapped nodes.

74

}

swappednodel = ((TSPMove)move).getIDl();
swappednode2 = ((TSPMove)move).getID2();
frequencyfswappednodel -1] = frequency[swappednodel -1] + 1;
frequency[swappednode2 -1] = frequency[swappednode2 -1] + 1;

public String toString()

{
String self = "Tabu moves are ";
for(int i = 0; i < tabulistlength; i++)

self+=tabulist[i] + "";
return self;

} // end toString
} //endTSPTabuList

75

Intensification Tabu List Class

/***

* This class stores and updates the recency and frequency information for the intensification
* search. Recency is tracked by the tabu list and frequency is tracked by the frequency list.
* The tabu list records the most recent nodes that have been rearranged, while the frequency
* list tracks the number of times each node is part of a rearranement.

import net.usa.rharder.tabusearch.*;

public class TSPIntensificationTabuList extends TabuList

{
int tenure, swappednodel, swappednode2, swappednode3;
int[] tabulist;
int[] frequency;

public TSPIntensificationTabuList(int pTenure)
{

tenure = pTenure;
tabulist = new int[3*tenure];
frequency = new int[TSPExecute.numberNodes -1];

}

public boolean allowMove(Move move, Solution solution)
{

boolean allow = true;
int i = 0;
while((allow == true) && (i < tabulist.length))
{

if(tabulist[i++] == ((TSPIntensificationMove)move).getIDl())
allow = false;

if(tabulist[i++] == ((TSPIntensificationMove)move).getID2())
allow = false;

}
return allow;

}

public void registerMoves(Move[] moves, Solution soln)
{

for(int i = 0; i < moves.length; i++)
registerMove(movesfi], soln);

}

public void registerMove(Move move, Solution solution)
{

// The following code adds the three swapped nodes to the tabu list
for(int i = 0; i < tabulist.length-3; i++)

tabulist[i] = tabulist[i+3];
tabulist[tabulist.length - 3] = ((TSPIntensificationMove)move).getIDl()
tabulist[tabulist.length - 2] = ((TSPIntensificationMove)move).getID2()
tabulist[tabulist.length -1] = ((TSPIntensificationMove)move).getID3()

// The following code updates the frequency list for the swapped nodes.

76

swappednodel = ((TSPIntensificationMove)move).getIDl()
swappednode2 = ((TSPIntensificationMove)move).getID2()
swappednode3 = ((TSPIntensificationMove)move).getID3()
frequency[swappednodel -1] = frequency [swappednodel - 1] + 1
frequency [swappednode2 - 1] = frequency [swappednode2 -1] + 1
frequency[swappednode3 - 1] = frequency[swappednode3 -1] + 1

}

public String toStringO
{

String self = "Tabu moves are ";
for(int i = 0; i < tabulist.length; i++)

self+=tabulist[i] + "";
return self;

} // end toString

} // end TSPIntensificationTabuList

77

Constraint Penalty Class

/**

* This class allows for constraints to be added to the GTTS algorithm,
* such as time windows, etc. The engine requires a value to
* be returned from this class. Thus, if no constraints exist, then zero
* is returned.
**

import net.usa.rharder.tabusearch. *;

public class TSPConstraintPenalties extends TabuFunction

{
public double evaluate(Solution soln)
{

TSPSolution solution = (TSPSolution) soln;
double value = 0;
return value;

}
} // end class TSPConstraintPenalties

78

Permutation Multiplication Class

/***

* This class takes two permutations represented as integer arrays and multiplies the two
* permutations (arrays). The multiply method returns a double array that
* represents the product as a standard matrix permutation.

import java.lang.Math;

public class PermutationMultiplication

{
public PermutationMultiplicationO
{

// Constructor method
}

public static int [][] multiply(int x[], int y[])
{

/* Variables for determining the size of the permutation */
int maxp, maxq, max;

/* Variable for indexing loops */
intij, k, 1, m, n, o, s, t, u;

/* These are the permutations to be multiplied */
int p[] = x;
int q[] = y;

/* g and h are the above permutations in standard matrix format */
intg[][];
inth[][];

/* r is the product of g*h = gh, which is not necessarily h*g = hg */
intr[][];

/* The following code determines the maximum integer in p or q which
defines the size of the permutation. It does this by comparing each
element in each array. */

maxp = p[0];
maxq = q[0];

for(i = 1; i < p.length; i++)
if(p[i] > maxp)
{

maxp = p[i];
}

for(j = l;j<q.length;j++)
if(q[j] > maxq)
{

maxq = q[j];
}

79

max = Math.max(maxp, maxq);

/* Defines the permutations in standard matrix format */
g = newint[2][max];
h = new int[2][max];
r = newint[2][max];

/* The loops define the top row of each matrix permutation as
1,2, 3 "max" where "max" is the largest integer in p or q */

int placeholder 1, placeholder, placeholders;
placeholderl = 1;
for(k = 0; k < max; k++)
{

g[0][k] = placeholderl;
placeholderl++;

}

placeholder2 = 1;
for(1 = 0; 1 < max; 1++)
{

h[0][l] = placeholder-,
placeholder2++;

}

placeholders = 1;
for(o = 0; o < max; o++)
{

r[0][o] = placeholder3;
placeholder3++;

}

// The code below define the second row of each matrix permutation. For the
// permutation p, the second row is the letter that letter i is mapped to in p,
// i.e., p(i) = g[l][i]. The code searches the p array for each letter i and maps
// it to the p[i+l]letter.
int letterl, letter2; // These are the letters being assigned.
letterl = 1;
for(s = 0; s < max; s++)
{

for(m = 0; m < p.length; m++)
{

if (p[m] == letterl && m < p.length-1)
g[l][s]=p[m+l];

// Handles the case if the letter is at the end of the array,
if (p[m] == letterl && m == p.length-1)

g[l][s]=p[0];
}
// Handles the case if the letter does not appear in p. For example,
// if the letter 1 does not appear in p, then the letter 1 is mapped
// back to one.
if(g[l][s] = 0)

g[l][s] = letterl;
letterl++;

80

}

// Similar loop for the matrix permutation h
letter2=l;
for(t = 0; t < max; t++)
{

for(n = 0; n < q.length; n++)
{

if (q[n] == letter2 && n< q.length-1)
h[l][t] = q[n+l];

if (q[n] == letter2 && n == q.length-1)
h[l][t] = q[0];

}
if(h[l][t]==0)

h[l][t] = letter2;
letter2++;

}

// The following code computes the product of gh = r. Recall that
//r(x) = h(g(x)).
for(u = 0; u < max; u++)
{

r[l][u]=h[l][g[l][u]-l];
}
return r;

} //ends the multiply method
} //ends class

81

Permutation Inversion Class

* This class takes any permutation p (an integer array) and
* inverts it to pINV (another integer array)

public class Permutationlnversion
{

public PermutationInversion()
{

// Constructor Method
}

public static int [] invert(int x[])
{

int p[] = x; // p is the permutation whose inverse we seek.
int pINV[] = new int[p.length]; // pDSTV is the inverse of p.

// a permutation is inverted by reversing the order of the cycle.
// For example, if p = (1, 2,4, 5, 3), then pINV = (3,5,4,2,1).
for (int i = 0; i < p.length; i++)

pINV[i] = p[p.length-(i+l)];

return pINV;
} // end invert method

} // ends class

82

Permutation Conjugation Class

/***

* This class conjugates two permuations using two different methods. The first method
* used the definition of conjugation, which is pAm = (mINV)*p*m, where * is the group
* binary operation. The second method uses a theorem proven for any two permutations.
* This theorem states that the conjugate of p by m, or pAm, is found by taking each letter
* in p and replacing it with its image in m. For example, if p = (1,3,2,4) and m = (1,2),
* then pAm = (2,3,1,4) since m(l) = 2, m(2) = 1, m(3) = 3, and m(4) = 4.

public class PermutationConjugation
{

public PermutationConjugationO
{

//Constuctor Method
}

public static int [][] conjugatel(int x[], int y[])
{

int p[] = x; // permutation being operated on
int m[] = y; // permutation operator
ints[],mrNV[];
int q[] []; // conjugate result

// The following code conjugate p by m using the definition
// pAm = mINV*p*m = s*m = q.
rnlNV = Permutationlnversion.invert(m);
11% = PermutationMultiplication.multiply(mINV,p);
q = PermutationMultiplication.multiply(mINV,p);

return q;

} // ends conjugatel method

// The conjugation method below finds the conjugate using the theorem stated above,
public static int[] conjugate2(int x[], int y[])
{

int p[] = x; // permutation being operated on
int m[] = y; // operating permutation
int q[] = new intfp.length]; // conjugate result - conjugation preserves cycle

// structure which requires q to equal p in size,
int letter, lastletter, unmovedletters; // variables for searching p.
letter = 0;
// The following code takes each letter in m (except the last one), finds the
// equivalent letter in p and replaces it with its image in m.
for(int i = 0; i < m.length-1; i++)
{

letter = m[i];
for(int j = 0; j < p.length; j++)
{

if(p[j]== letter)
q[j]=m[i+l];

}

83

}
// The code below considers the last letter in m.
lastletter = m[m.length-l];
for(int k = 0; k < p.length; k++)
{

if(p[k] == lastletter)
q[k] = m[0];

}
// The following code considers all letter in p that are not moved by m.
unmovedletters = 0;
for(int 1 = 0; 1 < p.length; 1++)
{

if(q[l] == unmovedletters)
q[l]=p[l];

}
return q;

} // ends conjugate2 method
} // ends conjugation class

84

Data Class

import java.sql.*;
import java.io.*;
import java.util. *;

public class DataSets
{

//Dl is the distance matrix for the 10-City Ohio problem
static int [][] Dl = { {0,24,227,33,121,186,150,161,122,46},

{24,0,224,56,118,184,150,159,140,51},
{227,224,0,239,106,52,128,71,198,273},
{33,56,239,0,141,197,150,172,107,66},
{121,118,106,141,0,68,90,43,128,167},
{186,184,52,197,68,0,76,25,152,232},
{150,150,128,150,90,76,0,66,81,196},
{161,159,71,172,43,25,66,0,127,207},
{122,140,198,107,128,152,81,127,0,168},
{46,51,273,66,167,232,196,207,168,0} };

static int [][] cost = getData();

public static int [][] getData()
{

String driverName = "sun.jdbc.odbc.JdbcOdbcDriver";
String sourceURL = "jdbc:odbc:MS Access 97 Database";

int[][]D = newint[48][48];

inti;
try
{

Class.forName(driverName);
Connection fileConnection = DriverManager.getConnection(sourceURL, "Admin","");
Statement statement = fileConnection.createStatement();
ResultSet rs = statement.executeQuery("SELECT * from Capitals");

i = 0;
boolean more = rs.next();

while (more)
{

D[i][0] = rs.getInt("Fieldl");
D[i][l] = rs.getInt("Field2");
D[i][2] = rs.getInt("Field3");
D[i][3] = rs.getInt("Field4");
D[i][4] = rs.getInt("Field5");
D[i][5] = rs.getInt("Field6");
D[i][6] = rs.getInt("Field7");
D[i][7] = rs.getInt("Field8");
D[i][8] = rs.getInt("Field9");
D[i][9] = rs.getInt("FieldlO");
D[i][10] =rs.getInt("Fieldll");

85

D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]

D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]

D[i]
D[i]
D[i]
D[i]

D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]|
D[i]
D[i]|
D[i]

[11 | = rs.getlnt ("Fieldl2")
[12 | = rs.getlnt ("Fieldl3")
[13 | = rs.getlnt ("Fieldl4")
[14 | = rs.getlnt ("Fieldl5")
[15 | = rs.getlnt ["Field 16")
[16 | = rs.getlnt ("Fieldl7")
[17 | = rs.getlnt ["Fieldl8")
[18 = rs.getlnt ["Fieldl9")
[19 = rs.getlnt ["Field20")
[20 = rs.getlnt ["Field21")
[21 | = rs.getlnt :"Field22")
[22 = rs.getlnt :"Field23")
[23 = rs.getlnt ;"Field24")
[24 j = rs.getlnt ;"Field25")
[25 = rs.getlnt :"Field26")

[26 = rs.getlnt :"Field27")
[27 = rs.getlnt :"Field28")
[28 = rs.getlnt! :"Field29")
[29 = rs.getlnt! :"Field30")
[30 = rs.getlnt :"Field31")
[31 = rs.getlnt! "Tield32")
[32 = rs.getlnt! "Tield33")
[33 = rs.getlnt! "Field34")
[34 = rs.getlnt! "Field35")
[35 = rs.getlnt! "Field36")
[36 = rs.getlnt! "Field37")
[37 = rs.getlnt! "Field38")
[38 = rs.getlnt! "Field39")
[39 = rs.getlnt "Field40")
[40 = rs.getlnt "Field41")
[41 = rs.getlnt! "Field42")
[42 = rs.getlnt! "Field43")
[43" = rs.getlnt! "Field44")
[44' = rs.getlnt! "Field45")
[45' = rs.getlnt! "Field46")
[46' = rs.getlnt! "Field47")
[47; = rs.getlnt! "Field48")

[48] = rs.getlnt! "Field49")
[49] = rs.getlnt! "Field50")
[50] = rs.getlnt! "Field51")
[51] = rs.getlnt! "Field52")

[52] = rs.getlnt("Field53")
[53 = rs.getlnt! "Field54")
[54] = rs.getlnt("Field55")
[55 = rs.getlnt! "Field56")
[56] = rs.getlnt! "Field57")
[57] = rs.getlnt("Field58")
[58' = rs.getlnt! "Field59")
[59] = rs.getlnt("Field60")
[60] = rs.getlnt! "Field61")
[61 = rs.getlnt! "Field62")

86

D[i]
D[i]
D[i]
D[i]|
D[i]|
D[i]|
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]
D[i]

62] =
63]:
64] =
65] =
66]:
67]:
68]:
69]:
70]:
71]:
72] =
73] =
74] =
75] =
76] =
77] =
78] =
79] =
80] =
81] =
82] =
83] =
84] =
85] =
86] =
87] =
88] =
89] =
90] =
91] =
92] =
93] =
94] =
95] =
96] =
97] =
98] =
99] =
100]
101]
102]
103]
104]
105]
106]
107]
108]
109]
110]
111]
112]
113]
114]
115]

: rs.getInt("Field63")
: rs.getInt("Field64")
:rs.getInt("Field65")
:rs.getInt("Field66")
:rs.getInt("Field67")
:rs.getInt("Field68")
:rs.getInt("Field69")
= rs.getInt("Field70")
:rs.geÜnt("Field71")
:rs.getInt("Field72")
:rs.getInt("Field73")
:rs.getInt("Field74")
= rs.getInt("Field75")
:rs.getInt("Field76")
:rs.getInt("Field77")
:rs.geÜnt("Field78")
:rs.getInt("Field79")
= rs.geÜnt("Field80")
:rs.getInt("Field81")
:rs.getInt("Field82")
:rs.getInt("Field83")
: rs.getInt("Field84")
: rs.getInt("Field85")
:rs.getInt("Field86")
:rs.getInt("Field87")
:rs.getInt("Field88")
: rs.getInt("Field89")
:rs.getInt("Field90")
:rs.getInt("Field91")
: rs.getInt("Field92")
: rs.getInt("Field93")
: rs.getInt("Field94")
:rs.getInt("Field95")
= rs.geÜnt("Field96")
:rs.getInt("Field97")
:rs.geÜnt("Field98")
:rs.getInt("Field99")
:rs.geUnt("Fieldl00");
= rs.getlnti
= rs.getlnt
= rs.getlnt
= rs.getlnt
= rs.getlnti
= rs.getlnt
= rs.getlnt
= rs.getlnt
= rs.getlnt
= rs.getlnt
= rs.getlnt
= rs.getlnti
= rs.getlnt
= rs.getlnt
= rs.getlnt
= rs.getlnti

("FieldlOl")
("Fieldl02")
("Fieldl03")
("Fieldl04")
("Fieldl05")
("Fieldl06")
("Fieldl07"):
("Fieldl08")
("Fieldl09")
("FieldllO")
("Fieldlll")
("Fieldll2")
("Fieldll3")
("Fieldll4")
("Fieldll5")
("Fieldll6")

87

D[i][116]
D[i][117]:
D[i][118]:
D[i][119]:
D[i][120]:
D[i][121] :
D[i][122] :
D[i][123] :
D[i][124] :
D[i][125] :
D[i][126] :
D[i][127] :
D[i][128] :
D[i][129] =

D[i][130] =
D[i][131]:
D[i][132]:
D[i][133] =
D[i][134] =
D[i][135]:
D[i][136] =
D[i][137] =
D[i][138]:
D[i][139] =
D[i][140]:
D[i][141] =
D[i][142] =
D[i][143]:
D[i][144] =
D[i][145] =
D[i][146]:
D[i][147] =
D[i][148]:
D[i][149]:
i++;
more = rs.next();

= rs.getlnti
: rs.getlnt
: rs.getlnti
; rs.getlnti
= rs.getlnt
= rs.getlnti
= rs.getlnti
= rs.getlnti
= rs.getlnti
= rs.getlnti
= rs.getlnti
= rs.getlnti
= rs.getlnti
: rs.getlnti

= rs.getlnti
; rs.getlnti
■■ rs.getlnti
: rs.getlnti
: rs.getlnti
: rs.getlnti
: rs.getlnti
: rs.getlnti
: rs.getlnti
: rs.getlnti
: rs.getlnti
: rs.getlnti
; rs.getlnti
: rs.getlnti
: rs.getlnti
: rs.getlnti
: rs.getlnti
: rs.getlnti
: rs.getlnti
; rs.getlnti

Tieldll7"
■Fieldll8"
•Fieldll9"
"Fieldl20"
Tieldl21"
Tieldl22"
'Fieldl23"
'Field 124"
Tieldl25"
Fieldl26"
Fieldl27"
Fieldl28"
Fieldl29"
FieldBO"

Fieldl31"
Field 132"
Fieldl33"
Field 134"
Fieldl35"
Fieldl36"
Fieldl37"
Fieldl38"
Fieldl39"
Fieldl40"
Fieldl41"
Fieldl42"
Fieldl43"
Fieldl44"
Fieldl45"
Field 146"
Field 147"
Field 148"
Fieldl49"
Fieldl50"

}
}
catch(ClassNotFoundException cnfe)
{

System.err.println("Error Loading " + driverName);
}

catch(SQLException sqle)
{

System.err.println(sqle);
}
//for(int j = 0; j < D2.1ength; j++)

//System.out.println(D2[j][0]+" "+D2[j][l]+" "+D2[j][2]+" "+D2[j][3]+" "+D2[j][4]);
return D;

}
//end class

88

Appendix B. TSP Formulation

B.l Introduction

The TSP class of problems are modeled mathematically as binary integer

programs. This appendix provides a formulation for the TSP, mTSP, mTSPTW, and

multiple depot mTSPTW (md-mTSPTW).

B.2 The Traveling Salesman Problem

Recalling the classical TSP, an agent wishes to leave his base location and visit

several customer locations exactly once before returning home. The agent seeks the tour

that optimizes some objective. Mathematically, suppose we have a network of n nodes

and a arcs connecting these nodes. Further, each arc has an associated cost (benefit), c/,,

for going from node i to node/ We assume cy = 0 when i =j and either q, = Cß

(symmetric) or cy * cp (asymmetric). Also, let each network arc have an associated

variable xy such that

(l if the arc i to j is taken
xu=<

[0 otherwise

The TSP becomes a problem of selecting a minimum cost (maximum benefit) tour, i.e., a

collection of xy, over all n nodes beginning and ending at an origin, say node 1. Clearly

this equates to deciding which xy = 1 and which xtj = 0. The mathematical formulation

that produces an optimal tour defines the objective function as

/I n

Minimize CX= 2,Xcyxy
i=l ;=1

89

where C is the cost matrix whose i, f1 entry is Cy and X is the arc matrix whose /,;' entry

is 0 or 1. Since each node must be visited exactly once, there must be only one arc, xy,

beginning at node i and only one arc, jCy, ending at nodey for all n nodes. This produces

the set of constraints

^Xy = 1 for eachy = 1,..., n and; # i

(Ensures exactly one arc, xy, ends at node j)

(1)

^xy = 1 for each i=l,... ,n and i # j

(Ensures exactly one arc, xy, begins at node i)

Xy e {0,1} V i, j.

The assignment constraints (1) do not eliminate subtours. For example, consider a five

node TSP. It is possible that the above formulation would yield the solution xn = x2\ =

X34 = JC45 = X53 = 1, which contains the subtours 1-» 2 --> 1 and 3 -> 4 -» 5 -> 3. Hence,

we need a second set of constraints to eliminate any possible subtours. Bodin et al.

(1983) provide three different ways to represent subtour breaking constraints:

\ V xr > 1 for every nonempty proper subset Q of the set of nodes {l,2,...,n}; (2a)
feß MQ

yVj.. < |/?| -1 for every nonempty subset R of the set {2, 3, ..., n}; (2b)
fe/e jeR

y,- - y •+ nxr < n -1 for 2 < i / j < n for some real numbers y,-. (2c)

Equation (2a) ensures that every nonempty proper subset of network nodes, namely Q,

must be connected to the nodes that are not in Q. Equation (2b) ensures that the solution

90

contains no cycles since a cycle on R nodes contains at least |i?| arcs. For equation (2c),

let

[k if node i is visited on the k'h step in a tour

[0 otherwise

Therefore, if Xy = 1, then the subtour breaking constraint becomes k-(k + l) + n<n-l,

and if xtj = 0, then we have v, - v;. < n -1.

Representations (2a) and (2b) require 2" constraints while (2c) only requires

n2 - 3« + 2 constraints. The sheer number of subtour breaking constraints demonstrates

the computational complexity of the TSP formulation. For example, a simple ten node

TSP formulation requires 210 = 1024 subtour breaking constraints if (2a) or (2b) is used

and 72 subtour breaking constraints if (2c) is used.

B.3 The Multiple Traveling Salesman Problem

Suppose multiple salesmen (i.e., m of them) are available to travel the network of

n nodes, then we have the mTSP. Assuming all m salesmen depart from the same origin

(depot) gives a formulation nearly identical to the TSP. The only required change in the

TSP formulation for the mTSP occurs in the assignment constraints (1) of section B.2.

The mTSP requires that m arcs begin and terminate at the origin (depot) assumed as node

1. Hence, the assignment constraints (1) for the mTSP are

A \m for 7 = 1
> *,, =1 ;j * i and
tf " \l for 7 = 2,...,«

<A \m for i = 1

j£ u [1 fori = 2,...,n

91

As with the TSP, the mTSP formulation is constrained by equation (2).

B.4 The Multiple Traveling Salesman Problem with Time Windows

Now suppose, in addition to m salesmen, that all or some nodes of the network

must be visited within some specified interval of time. (As an illustration, suppose C-5

aircraft arrivals to Travis AFB are permitted only between 0800 and 2000.) This is the

mTSP with time windows (mTSPTW).

The mathematical formulation of the mTSPTW is identical to the mTSP

formulation discussed in section B.3 with an additional set of time window constraints.

Let Si be the service time at node i, ty be the travel time from node / to node j, and a, be

the arrival time at nodey. Further, let e,- be the earliest arrival time to node./ and let /,• be

the no later than arrival time. Ryer's (1999) nonlinear representation of time window

constraints is

n
aj = X (fl- + si + h H for;' = l,.. •,«;

i=l

fli = 0;

ej < aj < lj for; = 2,..., n.

This representation is intuitive since some xy = 1 for each;. This infers that aj is the sum

of the arrival time to node i, ai, the service time at node i, Si, and the travel time from

node? to node;', ty.

Bodin et al. (1983) provides the following linear representation for time window

constraints:

92

ö^(fl,. + s(+g-jif(i-VL w. .
} for V i, j.

aj <(a,.+^.+^) + M(l-xi:/)J

Note when jc,y = 1, the previous arrival and service time, a,- and s,-, and the travel

time between nodes, %, determines a/, however, when xtj = 0, the constraints are non-

binding for some large positive M.

B.5 The Multiple Depot Multiple Traveling Salesman Problem with Time Window

The final level of complexity is the addition of multiple depots to the mTSPTW.

This problem is the multiple depot mTSPTW or md-mTSPTW. The addition of multiple

depots is important to AMC applications since AMC relies on several bases (depots) to

meet its strategic airlift requirements.

As with other additions to the classical TSP, the md-mTSPTW is formulated with

only a few minor changes in the assignment constraints (constraints (1) in section B.2)

and subtour breaking constraints (constraints (2) in section B.2). Let d be the number of

depots in the problem network, and let my be the number of salesmen at depot y. Then

the assignment constraints for the md-mTSPTW become

J, [m. forj = l,...,d
> x- =i ;j & i and
ji ,J [1 fovj = d + l,...,n

Jt, (m,. fori = l,...,d
> x.. = < ;i^ h
P y [1 foii = d + l,...,n

and the subtour breaking constraints become

yyjcr > 1 for every nonempty proper subset Q of the set of nodes {\,2,...,d}.
feß jtQ

V V xr < \R\ -1 for every nonempty subset R of the set {d + 1, d + 2, ..., n}.

93

yt-y+ nxr <n-\ for d < i t- j < n for some real numbers yt.

Ryer (1999) and Carlton (1995) extend this formulation to the VRP and PDP.

Ryer discusses additional formulation constraints faced by AMC such as route length

restrictions, crew availability, route or airspace restrictions, winds, and air refueling

capability.

94

Bibliography

Baker, E.K., and J.R. Schaffer. "Solution Improvement Heurisitcs for the Vehicle
Routing and Scheduling Problem," American Journal of Mathematical and
Management Sciences, 16: 261-300 (February 1986).

Battiti, R., R., and G. Tecchiolli. "The Reactive Tabu Search," ORSA Journal on
Computing, 6: 126-140 (1994).

Bodin, Lawrence, Bruce Golden, A. Assad, and M. Ball. "Routing and Scheduling of
Vehicles and Crews; The State of the Art," Computers and Operations Research,
10: (1983).

Carlton, William B. A Tabu Search to the General Vehicle Routing Problem. Ph.D.
Dissertation. The University of Texas at Austin, Austin TX, 1995.

Carlton, William B., and J. Wesley Barnes. "A note on hashing functions and tabu search
algorithms," European Journal of Operational Research, 106: 237-239 (1996).

Colletti, Bruce W. Group Theory and Metaheuristics. Ph.D. dissertation.
The University of Texas at Austin, Austin TX, 1999.

Colletti, Bruce W. and J. Wesley Barnes. "Group Theory and Metaheuristic Search
Neighborhoods." Graduate Program in Operations Research and Industrial
Engineering. The University of Texas at Austin, Austin TX, 15 March 1999.

Desrochers, M., J. Desrosiers, and M. Solomon. "A New Optimization Algorithm for the
Vehicle Routing Problems with Time Windows," Operations Research, 40: 342-
353 (1992).

Fraleigh, John B. A First Course in Abstract Algebra. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1994.

Glover, Fred. "Tabu Search: A Tutorial," Interfaces, 20: 74 -94, 1990.

Glover, Fred and M. Laguna. Tabu Search. Boston: Kluwer Academic Publishers, 1997.

Harder, Robert. A Java Universal Vehicle Router in Support of Routing Unmanned
Aerial Vehicles. MS thesis, AFIT/GOA/ENS/00M-15. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2000.

Herstein, I.N. Topics in Algebra. Waltham, Massachusetts: Xerox College Publishing,
1964.

95

Laporte, Gilbert. "The Traveling Salesman Problem: An overview of exact and
approximate algorithms," European Journal of Operational Research, 59: 231-
247 (1992a).

Laporte, Gilbert. "The Vehicle Routing Problem: An overview of exact and approximate
algorithms," European Journal of Operational Research, 59: 345-358 (1992b).

Moore, James T. Ohio 10-City Traveling Salesman Problem. Department of Operational
Sciences, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH
(1999).

Nemhauser, George L. and L. Wolsey. Merger and Combinatorial Optimization. New
York: John Wiley & Sons, 1988.

Osman, I.H. "Metastrategy Simulated Annealing and Tabu Search Algorithms for the
Vehicle Routing Problem," Annals of Operations Research, 41: 421-451 (1993).

Reinelt, Gerhard. TSPLIB. Institut für Angewandte Mathematik, Univeristät Heidelberg,
Germany. ftp://ftp.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html. 22
January 2000.

Rotman, Joseph J. An Introduction to the Theory of Groups. Newton, MA: Allyn and
Bacon, Inc., 1984

Ryan, J L., T. G. Bailey, J. T. Moore, and W. B. Carlton. "Unmanned Aerial Vehicle
(UAV) Route Selection Using Reactive Tabu Search," Military Operations
Research, V4 N3: 5-24 (1999).

Ryer, David M. Implementation of the Metaheuristic Tabu Search in the Route
Selection for Mobility Analysis Support System. MS Thesis,
AFIT/GOA/ENS/99M-07. Graduate School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 1999.

Schönert, Martin, et. al. GAP-Groups, Algorithms, and Programming. Lehrstuhl D für
Mathematik, Rheinisch Westfälische Technische. Hocheschule, Aachen,
Germany, fifth edition, http://www-gap.dcs.st-andrews.ac.uk/~gap/. 25
September 1999.

Woodruff, D., and E. Zemel. "Hashing Vectors for Tabu Search," Annals of Operations
Research, Vol. 41: 123-137 (1993).

96

Vita

First Lieutenant Shane N. Hall was born 1 July 1973 in Show Low, Arizona to

Harry Lynn and Geraldine Hall. After graduating from Show Low High School in May

1991, he attended Brigham Young University and received a Bachelor of Science degree

in Mathematics and his commission in April 1997. While at Brigham Young University,

he married Camalee R. Hall in April 1995. After receiving his commission, Shane

worked in the 96th Communications Group at Eglin AFB, Florida until August 1998

when he entered the Graduate School of Engineering and Management, Air Force

Institute of Technology, Wright-Patterson AFB, Ohio.

97

