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Statistical normalization of 
non-Rayleigh reverberation 

D. A. Abraham 

Executive Summary: The primary difficulty in the detection of sub- 
marines using low-frequency active sonar in shallow water is reverberation and 
the numerous false alarms it produces. Automatic detection algorithms are 
required to analyze this plethora of alarms as well as to reduce operator load- 
ing and to improve consistency in performance. Hindering the implementation 
of automatic detection algorithms is the variability of the statistics of the re- 
verberation from the traditionally assumed Rayleigh distribution, resulting in 
increased and unknown false alarm performance that changes in range and 
bearing. This report proffers an algorithm capable of removing the statisti- 
cal variation of the background reverberation, allowing the implementation of 
automatic detection algorithms. 
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Statistical normalization of 
non-Rayleigh reverberation 

D. A. Abraham 

Abstract: Low-frequency active sonar systems operating in shallow wa- 
ter are primarily limited by reverberation. Reverberation is traditionally as- 
sumed to follow a Rayleigh probability distribution, from which the detector 
and other signal processing algorithms are developed. Experimental studies 
have shown that reverberation can be non-Rayleigh distributed with varying 
statistical character over range and bearing. In such a situation, detectors de- 
signed under a Rayleigh assumption will exhibit increased and varying false 
alarm performance. This report develops a technique for dealing with the 
unknown and varying reverberation statistics by using a non-Rayleigh rever- 
beration model to perform a statistical normalization of the background rever- 
beration. In this manner, range-bearing images will be produced that have a 
constant background reverberation distribution (i.e., Rayleigh). The technique 
is evaluated through simulation, with particular attention to the false alarm 
performance, which is seen to depend on the severity of the non-Rayleighness 
of the reverberation and the amount of data used to estimate the parameters 
of the reverberation model. Application to real data has shown that a large 
degree of the non-stationarity of the range-bearing image can be removed by 
statistical normalization. 

Keywords: non-Rayleigh o reverberation o constant false alarm rate o nor- 
malization 
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Introduction 

The detection and localization of submarines using active sonar is often hindered 
by reverberation from the ocean surface, volume and bottom. In shallow water, 
reverberation from the bottom typically dominates the other types of reverbera- 
tion. Normalization algorithms in an active sonar system must remove the non- 
stationarity of the reverberation prior to performing detection. These algorithms 
traditionally assume the reverberation to be the result of multiple point scatters, 
producing a Rayleigh distributed matched filter amplitude with a time-varying scale 
factor. Thus, the only effect that must be removed is the time-varying scale. Many 
normalizers have been designed from these assumptions, varying primarily in their 
methods for dealing with corruption of the auxiliary data used to estimate the mean 
power level [1, 2, 3, 4, 5]. However, the validity of the multiple point scatterer and 
resulting Rayleigh assumptions will not hold in all situations. Many researchers (at 
a variety of grazing angles, beamwidths, frequencies, transmit signal types, and bot- 
tom conditions) have shown that bottom reverberation is often non-Rayleigh (see [6] 
for a comprehensive bibliography). Many of these researchers have attempted to fit 
observed reverberation to traditional probability distributions, predominantly the 
log-normal distribution [7, 8, 9, 10] and the Weibull distribution [8, 9]. Others have 
developed their own models including one based on a Markov driven change be- 
tween two different types of sea-floor patches [11], a multiplicative model involving 
chi-squared random variables [12] and a mixture or multi-modal Rayleigh model [13]. 
It is generally accepted that non-Rayleigh reverberation is caused by small resolu- 
tion cell sizes resulting in fewer scatterers so that the central limit theorem does not 
hold [14]. However, it has also been observed that non-Rayleigh reverberation can 
arise when the composition of the sea-bed varies [11, 15] or when Rayleigh backscat- 
ter is affected by a slow modulation as in radar sea-surface clutter [16]. In active 
sonar, large arrays and wide bandwidth transmit signals can result in small enough 
range-bearing cells to produce non-Rayleigh reverberation. In low-frequency sonar 
systems, changes in the bottom composition are almost inevitable over the ranges 
of interest. 

To illustrate the non-Rayleigh character of shallow water reverberation, the prob- 
ability of false alarm (Pfa) measured from some low frequency active sonar data 
obtained during SACLANT Undersea Research Centre's SCARAB trial in June, 
1997 is compared with the Rayleigh distribution in Fig. 1. If, for example, a de- 
tection algorithm was designed for a Pfa of 10~3 assuming Rayleigh reverberation, 
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the actual Pfa in this case would be more than an order of magnitude greater. This 
illustrates the effect non-Rayleigh reverberation can have on the probability of false 
alarm in automatic detection algorithms. When the non-Rayleigh character changes 
with range and bearing, whole regions in a normalized range-beam number display 
can appear brighter than other more Rayleigh-like regions. The range-bearing dis- 
play of one ping of SCARAB data shown in Fig. 2 illustrates this where the angular 
regions to either side of broadside to the array (beam 27) are brighter than other 
areas. This non-stationarity makes target detection and classification difficult both 
visually and by automated techniques using multiple beam information such as im- 
age processing. 
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Figure 1 Probability of false alarm measured from SCARAB data compared with 
the Rayleigh distribution. 

This report proposes the use of a statistical normalizer to convert non-stationary 
non-Rayleigh reverberation back to the Rayleigh distribution. This is accomplished 
by approximating the distribution of the reverberation by an appropriate model and 
applying a nonlinearity to convert the reverberation to the Rayleigh distribution. 
This concept, along with the Rayleigh mixture reverberation model, is discussed in 
Section 2. The Rayleigh mixture model is a general model that has been found to 
adequately represent a wide variety of reverberation [6, 15]. One of the primary 
difficulties in implementing such a statistical normalizer lies in obtaining target- 
free auxiliary data. These data are required to estimate parameters describing the 
distribution of the diffuse reverberation and must not be corrupted by the target 
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or any target-like coherent reverberation. A nonparametric technique for removing 
strong interferences from auxiliary data is developed in Section 3. A new method 
of evaluating the false alarm performance of a normalization algorithm is developed 
in Section 4 and applied to both the statistical normalizer and the non-parametric 
interference removal algorithms of Sections 2 and 3. The performance of the com- 
bined statistical normalizer/nonparametric interference pruning algorithm is exam- 
ined through simulation in Section 5 and then applied to low frequency active sonar 
data obtained from SACLANT Undersea Research Centre's SCARAB97 sea-trial in 
Section 6. 
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Figure 2 Range-beam number displays of the matched filtered beam data (upper 
plot) and the mean level normalizer output (lower plot). The effect of non-Rayleigh 
reverberation is seen in the normalizer output in angular regions to each side of 
broadside to the array (beam 27). 
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2 
Statistical normalization 

The CDF of Ui is 

2.1     Concept 

Traditional normalizers assume that reverberation is Rayleigh distributed and are 
designed to remove the changing mean power level. When no target is present, 
these mean power level normalizers produce a homogeneous or identically distributed 
background with a known probability distribution. Detection is then straightforward 
to perform and allows exact specification of the Pfa. When the reverberation is non- 
Rayleigh, a nonlinearity is required to convert it to being Rayleigh distributed. 

Suppose the observed reverberation data Xj have probability distribution function 
(PDF) f(x;Q) and cumulative distribution function (CDF) F(x;Q) where 0 is a 
parameter vector. Consider the random variables obtained by taking the value of 
the CDF at Xh 

Ui = F(Xi-,e). (1) 

Fu(u)   =   Pi{U<u} 

= Pi{F(Xi-,e)<u} 

=   PrjXifCF-^e)} 

(2) 

for u e (0,1) where F~l (u; 6) is the functional inverse of F (x; 6), which is assumed 
to be strictly monotonically increasing over the region (0, oo) to provide a one-to- 
one transformation from Xj G (0, oo) to Ui G (0,1). From the CDF Fv (u) = u, 
it is clear that the random variables Ui are uniformly distributed between zero and 
one; that is, fu (u) = 1 for u e (0,1). Similarly, it can be shown that the random 
variables taken by forming 

Yi = Fil (U) (3) 

will have CDF FR (y) if the Ui are uniformly distributed between zero and one, 
FR

1
 (u) is the functional inverse of the proper CDF FR (y), and FR (y) is strictly 

monotonically increasing over (0, oo). 
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In this manner the observed reverberation may be transformed so that it follows the 
standard Rayleigh distribution by applying the non-linearity 

for x > 0 where 

and 

g(x) = FIi
1(F(x;e)) (4) 

FR{y) = l~e-y2    for   y>0 (5) 

F^(u) = y/-log(l-u)   for   u 6(0,1) (6) 

are respectively the Rayleigh CDF and its functional inverse. Now, suppose that 
the reverberation is Rayleigh with power A. Then the CDF is simply 

F(x;\) = l~e~^r   for   x > 0 (7) 

and the nonlinearity of eq. (4) becomes 

g{x) = 7\ (8) 

which is identical to the traditional mean level normalizers. If the reverberation 
were Weibull distributed with CDF 

F (x; a,ß) = l - e~axß    for   x > 0 (9) 

then the nonlinearity is 

    ß 
g(x) = yJOL £2. (10) 

To illustrate the transformation required for non-Rayleigh reverberation, the non- 
linearities required to convert reverberation that is Weibull, K, or Rayleigh mix- 
ture distributed are shown in Fig. 3 where the de-emphasizing of the larger values, 
which pulls in the tails of the reverberation, is clearly seen. The reader is referred 
to [6] for a complete description of these non-Rayleigh reverberation models. The 
parameters for the non-Rayleigh distributions were chosen so that the power was 
one and the kurtosis equal to 1.5 (the kurtosis of a Rayleigh random variable is 

^~
3

Tü — 3 « 0.2451). The Rayleigh mixture had two components with proportions 

0.9 and 0.1 and powers chosen according to the specified kurtosis and total power. 

From a statistical perspective, the transformation described by eq. (4) is not neces- 
sarily the most advantageous one. Ideally, the log-likelihood ratio (LLR) of the data 
would be used to implement a detector that maximizes the probability of detection 
while constraining the probability of false alarm.   However, if both the LLR and 
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Figure 3   Example tail de-emphasizing non-linearities for Weibull, K, and Rayleigh 
mixture distributions with a kurtosis value of 1.5. 
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g (x) are monotonically increasing, then either may be used if the detector simply 
compares each individual matched filter output to a threshold (i.e., no combination 
of the data over time). Conversely, if the detector combines data from adjacent 
samples in time, use of the transformed data may not be optimal. 

The two primary difficulties in applying the nonlinearity described by eq. (4) are 
first choosing the appropriate reverberation model F(x;Q), and second, estimating 
the parameters 6. The Edgeworth expansion, log-normal, Weibull, K and Rayleigh 
mixture distributions and their parameter estimation are discussed in [6] along with a 
method for choosing which model best fits the observed data. One of the conclusions 
of [6] was that the Rayleigh mixture model was the most robust in fitting different 
types of non-Rayleigh reverberation, a result also supported by [15]. For this reason, 
the Rayleigh mixture model and its maximum likelihood parameter estimation are 
described in the following section. 

2.2    Rayleigh mixture model 

The results of [7]-[13] illustrate the variability of the probability distribution of the 
reverberation amplitude. A single model that is general enough to adequately rep- 
resent the probability distribution of any encountered reverberation is desired. The 
lack of sufficient and accurate information about sea-bottom composition, especially 
over the ranges of interest to low-frequency active sonar, predicates a model indepen- 
dent of environmental parameters. This requirement leads to considering generalized 
noise distributions such as the generalized Gaussian, generalized Cauchy, stable, or 
mixture distributions [17]. Many of these generalized noise models describe de- 
partures from a nominal distribution which then becomes a special case (i.e., the 
generalized Gaussian model has as special cases the Laplace and standard Gaus- 
sian distributions); however, the mixture model stands out in its flexibility. The 
mixture model may be used to represent an impulsive component [17], multi-modal 
data [18], and can accurately represent most distributions given enough components 
in the mixture. 

Under the assumption that the majority of active sonar reverberation will result in 
a near Rayleigh distribution, a mixture of Rayleigh random variables with different 
variances may be general enough to adequately describe the reverberation PDF with 
a minimal parameterization. This is somewhat supported by the results of Stewart 
et al. [13] where good agreement was found between a Rayleigh mixture and the ob- 
served reverberation data and by those of Trunk [19] where two component Gaussian 
mixtures were used to model the quadrature and in-phase parts of the matched filter 
output for radar clutter. Stronger support may be found in Crowther's [11] model 
of backscatter from a patchy seabed which simplifies to a two component Rayleigh 
mixture if the resolution cell size is small compared with the patch size. A further 

-7- SACLANTCEN SR-303 
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and more mundane justification for considering a Rayleigh mixture model lies in 
the ability to obtain the maximum likelihood estimates of the mixture parameters 
through the expectation-maximization (EM) algorithm [20, 21]. 

The Rayleigh PDF has form 

/(x;A) = Te-T- (11) 

for x > 0 where A is the power (i.e., A = E [x2]). A mixture of p Rayleigh random 

variables has the PDF 

/(x;e) = X)7ri/(a;;Ai) (12) 
4=1 

for x > 0 where G = [ni ■■■ irp Xi ■■■ XP], n is the mixture proportion and A* 

is the power of the ith component. The corresponding CDF is 

F(x-,e) = $> f ^(S'A*) 
»=i      Js=0 

=    ^7rj e   A* (13) 

for x > 0. 

Substitution of eq. (13) into the nonlinearity of eq. (4) results in 

E^e   ^ \     . (14) 

It should also be noted that the standard Rayleigh distribution results if there is 
only one component in the Rayleigh mixture or if all components have the same 

power. 

Care should be taken in the numerical evaluation of eq. (14), particularly for large 
values of x where finite precision arithmetic may return a value of zero for the 
summation even though the summand is always positive (for 7Tj ^ 0). A solution is 

to factor out the largest term in the summation, say 7r0 exp | - f^ }, which simplifies 

further once the logarithm is applied. The resulting summation is then one plus 
p — 1 terms between zero and one and may be evaluated without fear of significant 

numerical error. 

2.2.1     Target models 

Another distinct advantage of the Rayleigh mixture model is it's ability to incor- 
porate the standard fluctuating and non-fluctuating target models.   The Rayleigh 
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mixture model may be developed from a mixture of zero-mean complex Gaussian 
random variables for the quadrature and in-phase components of the matched filter 
output. This differs slightly from the work of Trunk [19] in that this model forces 
both the quadrature and in-phase components to come from the same mixture com- 
ponent and results in a Rayleigh mixture for the magnitude. 

The non-fluctuating target model is represented by a non-zero mean component in 
the complex matched filter output—essentially adding a constant to the aforemen- 
tioned mixture of zero-mean complex Gaussian random variables. The resulting 
magnitude distribution is a mixture of Rician random variables 

/nf (x;e,/x) = f> h U\i, ^H (15) 

where ^» is a signal-toreverberation power ratio (SRR), 

fl{x.,X,6) = ^e-s-^Io(2x]jl\ (16) 

is the Rician PDF with scale A and SRR parameter 6, and Jo (x) is the zero-order 
modified Bessel function. 

The fluctuating target model is represented by an additive zero-mean Gaussian 
component to the complex matched filter output. This results in a mixture of 
Rayleigh random variables with power A* = A* + Ao where A0 is the variance of the 
target component, 

/fl (x; 0, Ao) = J2 Ti / to Xi + Ao) • (17) 
1=1 

The proof of these results is sketched in Annex A. 

2.2.2    Estimation of the Rayleigh-mixture parameters 

The Rayleigh PDF falls under the exponential family of distributions [22]. Thus, 
the EM-algorithm may be applied directly from the results of [20] or [21] to obtain 
the maximum likelihood estimates of the mixture parameters. For the interested 
reader, this development is provided here in Annex B. 

The EM-algorithm for obtaining maximum likelihood estimates of the mixture pa- 
rameters from the observed data (xi, ..., xn) is summarized as follows: 

1. Initialize 0 - For example, set 7Tj = | and form the \ as the sample power 
of subsets of the observed data. 
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2. Expectation step - Form the intermediate variables 

(18) 

and 

■"■ij ' 
*i    - = — e 

x2 

-J- 

W- ■ = vyi,3 

A 3 

2^i=i Ai,j 
(19) 

for i = 1, ..., p and j = 1, ..., n. 

3. Maximization step - Form new estimates of 0 

*4xx* (20) 
n . 1 

and 

\   _ ^J=i   J    ^J (21) 

4. Convergence - If the normalized change between consecutive estimates of the 
unknown parameters is greater than some tolerable value, then go to step 2. 

As the EM algorithm converges to local and not global maxima, it may be ap- 
propriate to run the iteration from several initial starting points. A reasonable 
initialization for the mixture proportions is to set them to be equally likely, n = -. 
Reasonable initial choices for the power components are either (i) the sample pow- 
ers formed from p disjoint subsets of the n data samples, or (ii) the sample powers 
formed from p subsets of the n ordered data samples so that Aj < Aj+i- 

Choice of the model order poses a slightly more difficult problem. It is possible to 
apply Akaike's information criterion [23] or Rissanen's minimum descriptive length 
criterion [24] to choose the model order. Other equally justifiable methods include 
evaluation of the Kolmogorov-Smirnov statistic or consideration of the mixture com- 
ponent proportions and powers (i.e., if an additional component results in a near 
zero proportion or a power identical to a component already present, the lower order 
model is likely adequate). Experience has shown that three or fewer components 
are usually sufficient to represent low-frequency active sonar reverberation. 

In applying this method to real data, the time required for convergence becomes 
an issue owing to the massive number of times the parameter estimation must be 
performed (essentially once for every range-bearing cell). As it is expected that the 
non-Rayleigh character of the data will not change too rapidly in range or bearing, 
the parameter estimation may not need to be performed for every range sample and 
the time to convergence may be reduce by initializing the algorithm with the most 

recent set of parameter estimates. 
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Removal of interference from auxiliary data 

In constant false alarm rate (CFAR) detection, masking of a target occurs when the 
estimate of the reverberation power formed from the auxiliary data is unnaturally 
high, resulting in a reduced probability of detection. This occurs particularly when a 
target or target-like interference is present in the auxiliary data and results in shadow 
regions around the interference. Normalizers based on order statistics (OS) [2] are 
traditionally used to alleviate problems such as masking or its counterpart, false 
alarm rate inflation. These normalizers use a subset of the ordered auxiliary data 
to form an estimate of the reverberation power, essentially discarding some of the 
largest and smallest values. However, they do not utilize any information about the 
location of the largest or smallest values within the auxiliary data window. Lops 
and Willett [4] have proposed a CFAR detector that does exploit position informa- 
tion using the LZ-filters of Palmieri and Boncelet [25]. Their L/-CFAR detector is a 
mean power level normalizer with robust performance when the auxiliary data are 
corrupted by interference (target-like data) and clutter (regions with higher inten- 
sity). However, as previously noted, when dealing with non-Rayleigh reverberation, 
normalization requires more than simple estimation of the mean in the presence of 
interferences in the auxiliary data. An uncorrupted sample of the reverberation is 
required to determine the departure of the distribution from Rayleigh. 

If strong range-spread target-like interferences are present in the auxiliary data, 
removal of some of the largest values would successfully produce a homogeneous 
(i.e., uncorrupted) sample of reverberation-only data. However, when the auxiliary 
data are homogeneous, such a process would remove the largest reverberation values. 
Removal of these extreme values eliminates evidence of heavy tails from the auxiliary 
data and would result in a flawed estimation of the PDF of the auxiliary data. Thus, 
an alternative method is required to remove range-spread target-like interferences 
when they are present and leave the auxiliary data unmodified otherwise. It is 
possible to prune these interferences from the auxiliary data by exploiting their 
spatial compactness (in range). This is also the premise of the L/-CFAR detector 
of Lops and Willett [4] where an LZ-filter is used to estimate the mean power level. 
Here, however, a decision is made first about the presence of an interference in the 
auxiliary data followed by removal of the affected data only if it is decided that an 
interference is present. The resulting pruned auxiliary data is then used to estimate 
the pertinent reverberation model parameters. 

- 11 - SACLANTCEN SR-303 
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As the PDF of the reverberation will not be known exactly and is expected to change 
with range and bearing, a nonparametric technique is required to choose between 
the interference-present hypothesis (Hi) and the null hypothesis (H0) of indepen- 
dent and identically distributed reverberation data. Let the set {KUK2, ■■■,Kn) 
represent the integer-valued indices to the ordered complete auxiliary data. If 
{Xi,X2,...,Xn} are the n samples of auxiliary data, then the ordered samples 

are 

X(1) < Xm <■■< X{n) (22) 

and if Xt = X{n_j+1) then Kj = i. For simplicity, the indices have been numbered 
contrary to standard notation for ordered statistics so that Kx represents the position 
or index of the largest data sample, K2 the second largest, down to Kn representing 
the position of the smallest sample. If the auxiliary data are statistically independent 
and identically distributed, then the probability of the largest value occurring in the 
first position, or second, or nth are all equally ±; that is, the probability mass 

function (PMF) of Kx is 

p(ki) = -    for fci = 1,..., n. (23) 
n 

Similar arguments lead to the marginal PMF of any one index 

P(ki) = l    for^ = l,...,n (24) 

and the joint PMF of any pair of indices 

p(fei,fej) = —7 TT (25) 
^v      ■"     n(n — 1) 

for hi = 1, ..., n and kj = 1, ..., n excepting cases where h = kj. Extension to the 

joint PMF of all the indices results in 

p(fci,-",*») = ^ (26) 

where each index varies between 1 and n and no two indices can have the same 
value. This result implies that any test statistic formed from the indices to the 
ordered statistics will be nonparametric under the null hypothesis. 

Formulation of an optimal test is not possible due to the vague description of the 
interference-present hypothesis (Hx) and the difficulty in analyzing the resulting 
probability mass function (PMF) of the indices to the ordered statistics. However, 
if an interference is spatially compact and stronger than the underlying noise dis- 
tribution, it is likely that the indices of the largest order statistics will indicate the 
position of such an interference within the auxiliary data. This information, accom- 
panied by the fact that all the permutations of the indices to the order statistics are 
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equally likely under the null hypothesis, leads to considering the distance between 
the indices pointing to the largest values of the auxiliary data. Suppose only the 
indices to the two largest samples are considered. The test statistic 

T2 = (K2-Kif (27) 

may provide adequate distinction between H0 and Hi if both of the two largest 
samples are due to the interference. With heavy tailed reverberation, target-like 
bottom features of unknown size, and spreading of the target return due to the 
multipath of shallow water and reflection off of a large target, this may not always 
be the case. Thus, it is prudent to also consider the index to the third largest sample 

and form a similar test statistic, 

T3     =     (K2-Ki)2 + (K3-K2)
2 + (K3-Ki)2 

=   T2 + (K3-K2)
2 + (K3~Ki)2, (28) 

which will perhaps perform well if at least two of the three largest samples are due 
to the interference. Extending this type of test statistic to one considering the m 

largest samples results in 

m i—1 

m— 1 
=   Tm^+^iKm-Ki)2. (29) 

1=1 

If a strong and spatially compact interference exists in the auxiliary data, the pruning 
statistics Tm should be smaller than when the auxiliary data are uncorrupted. Thus, 
interference presence may be tested by choosing 

Ho :       Interference absent if Tm> hm, or 

Hi :       Interference present if Tm < hm 

where hm is a threshold that is ideally chosen according to a desired probability of 
falsely declaring an interference present in the auxiliary data (i.e., Type I error). 
As the spatial extent of the interference is not known a priori, it may be difficult 
to choose an appropriate value for m. As an alternative, each value of Tm may be 
considered up to some maximum number mmax which should be much smaller than 
n (T„ is a constant) and greater than the maximum spatial extent of an interference. 
Unfortunately, this greatly complicates analysis of the Type I error probability and 
thus the thresholds hm. In fact, computation of the PMF of Tm under H0 is reason- 
ably feasible analytically only for m = 2 and numerically so only for small m and n. 
Thus, it is not possible to exactly determine thresholds hm based on the probability 
that Tm < hm under H0 for anything but small m. 

As the consequence of falsely declaring an interference present in the auxiliary data 
is the removal of the noise outliers, exact knowledge of the Type I error probability 
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is not crucial. Thus, approximate thresholds may be obtained by assuming a Gaus- 
sian form for the PMF of Tm- The Gaussian PDF is completely determined by its 
mean and variance, which in this case entails a fairly involved derivation as seen in 
Annex C. The results are as follows, 

rn (m — 1)~ 
E[T„ 

=   I 

2 
n(n+l) 

n(n + l) 

(30) 

and 

Var[Tm]    =   Z (2ci - 8c2 + 6c3) +/0 (4c3 + 4c4 - 8c5) 

V(n+1)2 

where 

+ [/(Z-l)-/0](ci-4c2 + 3C3)-/
2 

m (m — 1) 
i  — Z t 

36 
(31) 

(32) 

h = 
6(7)    m>4 

0 m < 4 
(33) 

and C1-C5 are as described in Annex C. The threshold hm is then chosen according 
to a desired probability of Type I error, a, under a Gaussian assumption for Tm, 

hm = E [Tm] - zay/Vax[Tm], (34) 

where za is the a-quantile of a Gaussian random variable (Z) with zero mean and 
unit variance, 

a PT{Z > Za] = Pi {Z < -za} . (35) 

3.1     Choosing which cells to remove 

Once the decision has been made that a spatially compact interference is corrupting 
the auxiliary data, the affected cells must be removed. Without exact knowledge 
about the range extent of the interference it is difficult to know how many and which 
cells to remove. The following nonparametric technique exploits the expected spa- 
tial compactness of the interference, additionally allowing the removal of a variable 
number of cells. 

1. Isolate the indices pointing to the m largest values in the auxiliary data sample. 
Choose m according to the maximum number of possible interference samples 
(perhaps mmax). 
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2. Form a histogram using equally spaced bins between the smallest and largest 
indices of the interference subset. The number of bins should be less than or 
equal to m. 

3. Discard any cells within a reasonable distance (say half to two-thirds of the 
maximum number of interference cells) of the cell yielding the largest frequency 
from the histogram. 

3.2    Discussion 

The non-parametric interference pruning (NPIP) algorithm described in the previ- 
ous sections was developed to deal with the existence of a strong spatially compact 
interference with unknown range extent that corrupts possibly non-Rayleigh aux- 
iliary data. The objective is to produce an interference-free sample of the rever- 
beration data from which reverberation model parameters may be estimated. The 
requirement for the procedure to deal with non-Rayleigh reverberation with un- 
known distribution predicates a non-parametric technique. The strong interference 
assumption is arrived at by postulating that weak interferences will not greatly alter 
the reverberation parameter estimation and additionally helps to justify the non- 
parametric form of the algorithm. The unknown range extent of the interference is 
required to account for interferences (i.e., bottom features producing coherent rather 
than diffuse reverberation) of unknown dimension and also for the spreading that an 
active sonar echo incurs from propagation to and from the target and reflection off 
of the target. This particular assumption is certainly valid for current tactical sonar 
bandwidths and array sizes; however, it may need to be reconsidered if no spreading 
is expected (i.e., if the target and interference are smaller than the resolution cell 
size). 

The NPIP algorithm suffers from one glaring weakness—the lack of consideration of 
multiple targets or interferences within the auxiliary data set. Accounting for more 
than one target or interference greatly complicates the problem. Possible solutions 
include applying the NPIP algorithm to windows small enough that the existence 
of multiple interferences is not likely (i.e., apply it individually to the leading and 
lagging windows of auxiliary data) or performing a pre-detection screening of the 
data using a non-parametric test like the Page test described in [26] or by passing 
a small-window-NPIP over the time series and tagging all strong spatially compact 
interferences. These strong deviations from the background would then be excluded 
from use in the normalization process. 
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Instantaneous probability of false alarm 

The primary goal of a normalization scheme is to provide a constant false alarm 
probability in the presence of a specific type of change in the null distribution, 
which, in this case, is the reverberation distribution. For example, the mean power 
level normalizers provide constant Pfa for any reverberation power level. There 
is, however, a price to be paid for this invariance. The variability of parameter 
estimation essentially introduces a variability on the threshold used for detection, 
changing both the detection and false alarm performance. 

In this section, a new method for evaluating and comparing the false alarm perfor- 
mance of normalizers is proposed. Traditionally, normalizers are evaluated by their 
loss in detection performance when the detector thresholds are chosen to provide 
the same Pfa. However, when the auxiliary data are corrupted by interferences or 
if the thresholds are chosen based on incorrect assumptions about the reverberation 
statistics, the false alarm performance changes and should be considered separately 
and in addition to Pd. The method proposed in this section specifically considers 
the variability on the false alarm performance introduced by the estimation of re- 
verberation parameters and provides an idea of what the detection performance will 
be. Detection performance is considered more fully in Section 5. 

4.1     Mean power level normalizer 

The effect of the variability of parameter estimation on the probability of false alarm 
for a mean level normalizer may be described by 

X 
Pfa    =   Pro<j^>^ 

=   Ec 

=   Ec 

Pro lx > h\[i   A| 

Pfa(\h)] (36) 

where h is a threshold chosen to provide a specified Pfa, the probability is taken 
under the null or reverberation-only hypothesis and the expectation is taken over 
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the reverberation power level estimate A. The quantity 

Pfa (A, h)    =   Pro lx > hy/X   \\ 

=   1-F(hy/X;x] (37) 

where F (x; A) is the CDF of X under the null hypothesis may be thought of as 
the conditional Pfa in a manner analogous to the conditional signal-to-noise ratio 
of Reed, Mallett and Brennan [27] or as the instantaneous Pfa in the sense that it 
is the Pfa given the current estimate of the reverberation power. The instantaneous 
Pfa provides a measure of the quality of the parameter estimation and an indication 
of the effect on detection performance, particularly in the presence of interferences 
in the auxiliary data window. As an example, consider Fig. 4 where the PDF of 

log10 (Pfa (A, h)) is shown for a cell-averaging constant false alarm rate detector 

(CA-CFAR), an order statistic constant false alarm rate detector (OS-CFAR), and 
a non-parametric interference pruning constant false alarm rate detector (NPIP- 
CFAR). The OS-CFAR detector used the 82nd ordered statistic of the 100 samples 
of Rayleigh distributed auxiliary data. The NPIP-CFAR detector removed auxiliary 
data potentially corrupted by a target or target-like interference by assuming a 
maximum of mmayL = 10 target samples and using thresholds generated according 
to eq. (34) with a = 0.1. The remaining data were then used in the manner of a 
CA-CFAR detector to estimate the reverberation power level. All of the detectors 
have their thresholds set so that Pfa = 10~4, for which the NPIP-CFAR required 
simulation analysis. As expected, the PDFs of the instantaneous Pfa for the OS- 
CFAR and NPIP-CFAR have broader tails than those of the CA-CFAR detector 
indicating slightly worse performance. Note that the actual Pfa is the expected 
value of 10 raised to the random variable represented by the PDFs shown in the 
figures. 

If parameter estimation were perfect, the PDF of the instantaneous Pfa would have 
an impulse function at the actual Pfa and the corresponding CDF would look like 
a rising step function with the transition at the Pfa. From this ideal, one could 
use the slope of the CDF of the instantaneous Pfa at the desired Pfa as a measure 
of effectiveness. The slope of the CDF is, of course, the PDF, and indicates the 
steepness of the CDF in the region of the Pfa—a steeper CDF at the mean implies 
less variance in the PDF and thus more precise false alarm performance. This was, 
in fact, how the 82n" order statistic was chosen in the previous example, and it is 
clearly seen in Fig. 4 that the CA-CFAR has the largest PDF at the desired P/tt. 

Introduction of a non-fluctuating (Swerling Type 0 resulting in Rician distributed 
data) target-like interference into 5 of the 100 samples of auxiliary data shifts all 
of the instantaneous Pfa PDFs to the left, as seen in Fig. 5, indicating a reduction 
in detection performance (target masking). The interference had an interference- 
to-reverberation power ratio (IRR) of 10 dB and was randomly positioned within 
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the auxiliary data for each of the 10,000 simulation trials. Clearly the PDF of the 
instantaneous Pfa for the NPIP-CFAR detector is affected the least of the three de- 
tectors, remaining largely unchanged from the case where no interference is present. 
As a smaller instantaneous Pfa implies a larger effective threshold and thus a smaller 
probability of detection, clearly the NPIP-CFAR detector provides the best perfor- 
mance in the presence of such an interference in the auxiliary data. 

4.2    Statistical normalizer 

The instantaneous Pfa may be similarly developed from the definition of the Pfa for 
the statistical normalizer of eq. (4) 

°fa   =   Pr0{g(X;<d)>h} 

=   Pro{x>g-1(h;e)} 

=   E^[Pv0{x>g-1(h;e)\e}] 

=   EAP, e K7 a(e,h)] (38) 

where the dependence of g on 6 has been indicated explicitly and g~~l is the func- 
tional inverse of g. The instantaneous Pfa is then 

pfa(e,h) = Pv0{x>g-1(h;e)\e} 

=   l-Flg-ifafyiO) (39) 

where F (x; ©) is the CDF of X under the null hypothesis. 

The instantaneous Pfa provides a complete picture of the false alarm performance, 
with the average value representing the standard probability of a false alarm. In 
the presence of non-Rayleigh reverberation, the consequences of assuming Rayleigh 
reverberation or attempting to account for the departure from Rayleigh become 
evident in the PDF of the instantaneous Pfa as do the effects of target masking and 
false alarm rate inflation. 

4.3    Statistical normalizer: Weibull reverberation 

If X is Weibull distributed with parameters 6 = (a, ß) and g is as in eq. (10) with 

the parameter estimates 9 = (a, ß), the instantaneous Pfa is 

*Vl. (40) P/a(e>)=exp|-a^j 
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Figure 4 Probability density function o/log10 of instantaneous Pfa for CA-CFAR, 
OS-CFAR, and NPIP-CFAR with 100 samples of Rayleigh distributed auxiliary data. 
The thresholds for each detector were chosen so that the average Pfa = 10~4. 
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Figure 5 Same as the above figure except with a 10 dB IRR non-fluctuating target 
corrupting 5 samples of the auxiliary data. The actual Pja is indicated on each curve 
by an *. 
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If the parameters are estimated perfectly (i.e., 6 = 0), the instantaneous Pfa be- 
comes constant at Pfa (h) = exp{-/i2}, exactly that for the Rayleigh distribution. 

In [6] the maximum likelihood (ML) estimators for the Weibull parameters had less 
error between the parameter estimate generated CDF and the actual CDF but did 
not fit the sample CDF as well as the method of moments (MM) estimators for 
moderate kurtosis values. The instantaneous Pfa provides a means for compar- 
ing the performance of these estimators in a statistical normalizer with the CA- 
CFAR normalizer using a measure relevant to detector performance. The PDFs of 

log10 (Pfa (®,h)) of eq. (40) for the statistical normalizer using the ML and MM 

parameter estimators and for the CA-CFAR detector are shown in Fig. 6. The PDFs 
are estimated from 10,000 simulation trials with Weibull distributed reverberation 
when the power and kurtosis are both 1 (a = 1.1003 and ß = 1.6147). The thresh- 
olds for all of the detectors were chosen assuming Rayleigh distributed reverberation 
(i.e., h = sj- log Pfa). The PDFs of the instantaneous Pfa for the statistical nor- 
malizes using the ML and MM parameter estimates are nearly indistinguishable 
and clearly provide better performance than the CA-CFAR detector which blindly 
assumes the data to be Rayleigh. Improved false alarm performance is illustrated 
by the decreasing variance and trend of the mean toward the desired Pfa as more 
data are used to estimate the Weibull parameters. 

The actual Pfa and the standard deviation of the instantaneous Pfa are shown in 
Table 1 where it is seen that the MM parameter estimates provide slightly, though 
not significantly, better performance for these particular a and ß. Increasing the 
kurtosis resulted in identical performance for the detector using the ML parameter 
estimates and slightly worse performance for the detector using the MM parameter 
estimates. The equivalence of the performance over varying a and ß for the detector 
using the ML parameter estimates indicates that there may be an invariance to these 
parameters, providing a constant false alarm rate over the complete Weibull family 
of distributions. This invariance does in fact exist when the ML parameter estimates 
are used in either the nonlinearity of eq. (10) or the instantaneous Pfa of eq. (40) as 
shown in Annex D. The importance of this result is that if the reverberation is truly 
Weibull distributed, then the false alarm performance of the statistical normalizer 
using the ML parameter estimates and the non-linearity of eq. (10) is constant 
regardless of the values of a and ß. Thus, the threshold h may be chosen solely as 
a function of the desired Pfa and the amount of auxiliary data used to estimate the 
parameters of the Weibull distribution. As previously indicated, the detector using 
the MM parameter estimates does not enjoy this freedom. Unfortunately, the lack of 
a closed form solution for the ML estimates of a and ß precludes an exact analytical 
analysis of the false alarm performance, thus forcing the use of simulation. The 
invariance of the nonlinearity of eq. (10) to changes in a and ß provides a strong 
argument for using the ML parameter estimators over the MM estimators, even 
though they may be slightly more computationaUy intensive. Goldstein [28] has 
also proposed a detector having invariant false alarm performance over the family of 
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Figure 6 Probability density function of log10 of instantaneous Pfa for statistical 
normalizers using ML and MM parameter estimates, which are nearly identical, 
and for CA-CFAR detector with 100, 500 and 1000 samples of Weibull distributed 
auxiliary data. The actual Pfa for each detector is indicated by the *. 
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Weibull distributions, though it does not have the maximum likelihood parameter 
estimation argument that supports the statistical normalizer. 

Table 1 Mean (Pfa) and standard deviation of instantaneous Pfa for ML and MM 
parameter estimates of Weibull distributed reverberation using auxiliary data sets of 

size n = 100, 500 and 1000. 

n 

100 
500 
1000 

ML Estimator 

Pfa      std[p/a(e,/i)] 

2.873E-4 
1.286E-4 
1.141E-4 

4.830E-4 
0.961E-4 
0.582E-4 

MM Estimator 

Pfa        std[Pfa(e,h)] 

2.751E-4 
1.280E-4 
1.138E-4 

4.744E-4 
0.985E-4 
0.596E-4 

The false alarm performance of the statistical normalizer assuming Weibull reverber- 
ation in the presence of a target-like interference is examined in Figs. 7 and 8. The 
PDF of log10 (Pfa (&, /I)) of eq. (40) using the ML parameter estimates is shown for 
the statistical normalizer with and without target pruning. Figure 7 represents the 
case of n = 100 auxiliary data samples and Fig. 8 when n = 500 samples are used. 
Both have 5 auxiliary data samples corrupted by a non-fluctuating (see eq. (16)) 
interference with the indicated interference-to-reverberation ratio (IRR) and the re- 
maining samples unit power Rayleigh distributed. The target samples were inserted 
adjacent to each other with the position chosen randomly for each of the 10,000 
trials. The target pruning algorithm assumed a maximum of mmax = 10 target 
samples when n = 100 and mmax = 20 when n = 500 and used thresholds generated 
according to eq. (34) with a = 0.1. The PDF of the conditional Pfa when there is 
no interference present is either the upper (n = 100) or middle (n = 500) graph of 
Fig. 6. As the IRR increases, the PDF of the conditional Pfa and its mean for the 
normalizer without target pruning shifts far to the left of the desired Pfa = 10~4, 
indicating much higher effective thresholds and a reduced detection performance. 
When target pruning is employed, the Pfa does not change substantially, though 
the conditional Pfa indicates that a slight reduction in detection performance will 
still be observed as there is more mass in the PDF at lower values. 
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Figure 7 Probability density function of log10 0/ instantaneous Pfa for statistical 
normalizer with ML parameter estimator with and without NPIP for varying IRR. 
Auxiliary data consisted of 100 samples of Rayleigh data, 5 of which were corrupted 
by non-fluctuating interference. The actual Pfa for each detector is indicated by the 
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Figure 8    Same as the above figure except with 500 samples of auxiliary data. 
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4.4    Statistical normalizer: Rayleigh mixture reverberation 

If the reverberation amplitude data sample X is distributed according to a Rayleigh 
mixture with parameters 0 = [iri ■■■ irp Ax • • • Ap] and g is as in eq. (14) with 

the parameter estimates 0 = tai   • • •   7tp Xi   ■■■   APJ, then the instantaneous Pfa 

is 

Pfa($,h) =E^exp{-^[p_1(Ä;ö)]2} (41) 

where #_1 (h; O) is the functional inverse of g, which does not have an analytical so- 

lution when there are two or more components in the mixture with different powers. 
If the maximum likelihood estimates for the mixture proportions and powers are 
obtained via the EM algorithm described in Section 2.2.2, then the false alarm per- 
formance is scale invariant; that is, if the power of the reverberation data changes, 

the function g (x; @), the instantaneous P/tt and the Pfa do not change1. 

In order to examine the performance of the statistical normalizer in realistic rever- 
beration, the Rayleigh mixture parameters are estimated from the SCARAB data 
used to create the Pfa estimates of Fig. 1 and data from one of SACLANT Undersea 
Research Centre's SWAC sea-trials. In both cases, the data were well fit by a three 
component Rayleigh mixture with the proportions and powers as noted in Table 2 
for the SWAC data and Table 3 for the SCARAB data. Note that these SWAC data 
may also be adequately fit by a two component Rayleigh mixture. An indication of 
the severity of non-Rayleighness of these distributions is seen in the (02, ßi) plots 
found in Fig. 9. This type of plot shows the departure of the third and fourth order 
moments (skewness and kurtosis) from that of the Rayleigh distribution (see [6] for 
further information). Though both the reverberation models exhibit non-Rayleigh 
character, the SCARAB data model is extremely non-Rayleigh as evidenced by the 
large values of both skewness and kurtosis. 

The PDF of log10 of the instantaneous Pfa for the CA-CFAR and statistical normal- 
izers is shown in Fig. 10 for both reverberation models when the desired Pfa is 1CT4. 
Clearly, use of the CA-CFAR produces a substantially larger Pfa. The statistical 
normalizer brings the Pfa closer to the design value at the expense of an increase 
in the variance of the log10 of the instantaneous Pfa. As expected, the false alarm 
performance of the statistical normalizer becomes closer to the desired performance 
as more data is used to estimate the Rayleigh mixture parameters. That the sta- 
tistical normalizer is not invariant to changes in the mixture parameters is seen in 
the difference in performance between the SWAC and SCARAB data models. The 

1 This may be proven by first showing that the EM algorithm estimates of the mixture proportions 
{■Ki} are not affected at all by a change in scale and then noting the dependence of g (x; 6) on the 

ratio ^- which becomes distributionally free from any scale applied to the data. 
Ai 
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less extreme reverberation from the SWAC data model is easily normalized by using 
500 samples of auxiliary data while the SCARAB data requires more than twice as 
much to provide equivalent control over the false alarm performance. 

Figures 11 and 12 illustrate how the false alarm performance degrades when an in- 
terference 5 samples long is introduced into the auxiliary data if the NPIP algorithm 
is not first used to identify spatially compact interference and then remove it. When 
the NPIP algorithm is not used, the probability of false alarm is substantially lower, 
indicating target masking and a loss in detection performance. Use of the NPIP 
algorithm results in minimal change in performance. 

The results shown in Fig. 11 used 100 samples of auxiliary data while the results of 
Fig. 12 used 500 samples. The number of order statistics used in the NPIP algorithm 
("^max) must be adjusted according to the amount of auxiliary data; in particular, 
mmax must be increased when more auxiliary data are used. This may be explained 
by the occurrence of a greater number of reverberation data that exceed the inter- 
ference data values, thus requiring consideration of a larger number of the higher 
order statistics to guarantee capturing interference. In the simulations performed 
for this report, mmax = 10 when n = 100 samples of auxiliary data were used and 
mmax = 20 when n = 500 samples were used. 

Table 2    Mixture proportions and powers estimated from SWAC data. 

Proportion Power 

0.5958 
0.3288 
0.0754 

1.5529 
0.2262 
0.0053 

Table 3    Mixture proportions and powers estimated from SCARAB data. 

Proportion Power 

0.4290 
0.4241 
0.1469 

0.9500 
0.6050 
2.2863 
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5.5 6 

Figure 9 Skewness and kurtosis plotted on a (ß2, ßi) plane for the Rayleigh mix- 
ture models estimated from the SWAC and SCARAB reverberation data. Note the 
extremity of the SCARAB Rayleigh mixture model. 
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Figure 10 Probability density function o/log10 of instantaneous Pfa for statistical 
normalizer and CA-CFAR detectors with 100, 500 and 1000 samples of Rayleigh 
mixture distributed auxiliary data. The actual Pfa for each detector is indicated by 
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Figure 11 Probability density function of log10 of instantaneous Pfa for statistical 
normalizers with and without NPIP for varying IRR. Auxiliary data consisted of 100 
samples of Rayleigh mixture data, 5 of which were corrupted by a non-fluctuating 
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interference. The NPIP assumed a maximum of 20 corrupted samples. The actual 
Pfa for each detector is indicated by the *. 
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Detection performance 

Detection performance depends directly on the type of detector used and the sta- 
tistical characterization of the reverberation and target echo. To understand the 
relationships between detection and false alarm performance in the presence of non- 
Rayleigh reverberation, first assume that the distribution of the reverberation is 
known completely and that a simple threshold crossing detector is utilized; that is, a 
detection is declared when the matched filter output exceeds a certain level. The the- 
oretical receiver operating characteristic (ROC) curve for detecting a non-fluctuating 
or Swerling Type 0 target in Rayleigh and non-Rayleigh reverberation with such a 
detector is shown in Fig. 13. The non-Rayleigh reverberation has the same power 
level as the Rayleigh reverberation (thus the signal-to-reverberation power ratio is 
the same for both curves) and is in the form of a Rayleigh mixture distribution with 
the parameters as found in Table 2. If the desired Pfa is 10-4, the Pa is above 0.9 
for Rayleigh reverberation. However, if the data are non-Rayleigh (with the distri- 
bution previously described) and a perfect mean power level normalizer is used, Pfa 

increases by over an order of magnitude and P^ increases very slightly (owing to the 
heavier tails of the reverberation), as illustrated in Fig. 13. The objective of the sta- 
tistical normalizer is to account for the distribution of the reverberation, essentially 
moving along the dashed curve down to the point of the desired Pja- The ensuing 
loss in Pd represents the cost of controlling the false alarms. It should be noted, how- 
ever, that these curves assume identical signal-to-reverberation power ratios (SRRs). 
This may not be the case in practice; for example, increasing bandwidth reduces the 
range-bearing resolution cell size, potentially creating non-Rayleigh reverberation, 
but also reducing the reverberation power level (and possibly the target echo level) 
resulting in a different SRR. Fundamentally, when the reverberation distribution is 
known, the detector in the non-Rayleigh reverberation must operate somewhere on 
the dashed curve. 

When the reverberation distribution is not known exactly, it must be modeled using 
an appropriate statistical distribution whose parameters are then estimated. This 
leads to sources of errors: mismatch between the actual reverberation distribution 
and the assumed one and losses associated with the estimation of the parameters 
characterizing the reverberation model. Choosing a very general model, such as a 
Rayleigh mixture, results in concentrating the losses to the parameter estimation. 
Choosing a specific model, such as the Weibull distribution, may lead to substantial 
mismatch losses. 
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Figure 13    ROC curve for non-fluctuating target in Rayleigh and non-Rayleigh 
reverberation. 

The conditional Pfa developed in the previous section provides a technique for exam- 
ining the effects of parameter estimation and the losses expected from distributional 
mismatch. Given enough stationary real reverberation data is should also be feasible 
to evaluate the conditional Pfa for different models by using a sample CDF in place 
of F(x; 6) in eq. (39). The conditional P/Q can also provide an indication of detec- 
tion performance in that a decrease in performance is expected when there is a high 
probability of observing values of the instantaneous Pfa much lower than the desired 
Pfa- This, however, is not concrete enough to indicate good or bad performance. 

The remainder of this section will illustrate through simulation that it is feasible to 
obtain detection performance near the dashed curve of Fig. 13 by using the statis- 
tical normalizer of Section 2 and the NPIP algorithm of Section 3. As an example, 
consider a non-fluctuating target occupying 5 adjacent range samples and auxiliary 
data consisting of a window 100 samples long. The detector in this case simply 
compares the largest value of the target bins to a threshold. The probability of 
detection for such a detector is shown as a function of the SRR in Fig. 14 when the 
reverberation is Rayleigh distributed and non-Rayleigh using the Rayleigh mixture 
of Table 2. Note that the ordinate has been plotted using the standard normal 
probability scale to expand the regions near zero and one. The threshold for each 
situation is chosen so that Pfa = 0.01 when the reverberation is Rayleigh, as is re- 
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fleeted in the curves for Rayleigh reverberation and Rayleigh mixture reverberation 
where the statistical normalizer is applied with perfect knowledge of the reverbera- 
tion PDF. It can be seen from these curves that the desired Pfa is achieved by the 
tendency of Pd towards this value as SRR decreases. When the statistical normalizer 
is not used (i.e., assuming the reverberation is Rayleigh) when the reverberation is 
non-Rayleigh, Pfa exceeds the desired value along with an increase in Pd. The 'x' 
(n = 100) and 'o' (n = 500) marked simulation results were for clean auxiliary data 
windows; that is, the data were all distributed according to the Rayleigh mixture of 
Table 2. These curves illustrate that increasing the amount of auxiliary data used to 
estimate the reverberation PDF parameters allows achieving performance near that 
when the PDF is known exactly. The '+' marked simulation results placed a 10 dB 
SRR, 5 range sample, non-fluctuating interference in the middle of the auxiliary data 
(77, = 100), resulting in a Rician mixture for those samples. Here it is seen that Pd is 
slightly below the performance when no interference exists, indicating that the NPIP 
algorithm removed most of, but not all of, the interfering signal from the auxiliary 
data. These results indicate that performance near the expected theoretical values 
can be achieved even in the presence of interferences by using the NPIP algorithm 
in conjunction with a statistical normalizer, with improving performance as more 
auxiliary data are used. 
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Figure 14 Probability of detection as a function of signal-to-reverberation power 
ratio for a 5 sample target with a detector comparing the maximum over the target 
cells to a threshold. The thresholds were chosen to provide a false alarm, probability of 
0.01. The statistical normalizer used the NPIP algorithm to remove any interference 
present in the auxiliary data prior to estimating the parameters of a three component 
Rayleigh mixture. The 'x' (n = 100,) and V (n — 500j marked simulations were for 
clean auxiliary data; that is, auxiliary data with no interference present. The '+' 
(n = 100) marked simulation had auxiliary data contaminated by a 10 dB SRR, 5 
range sample, non-fluctuating interference. 
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Application to real data 

6.1    Experiment and sonar configuration 

The data analyzed in this report were collected during SACLANT Undersea Re- 
search Centre's SCARAB '97 sea-trial, which took place in the area north of the 
island of Elba off the coast of Italy. Reverberation data were collected using a 
high power towed source and the Centre's low frequency towed line array. A 2 sec- 
ond linear frequency modulated (LFM) waveform sweeping from 450 to 700 Hz was 
transmitted from the source, which was towed at approximately 62 meters depth 
and was comprised of three transducers spaced approximately 1.5 meters apart and 
beamformed to point 40 degrees down from horizontal. The hydrophone data were 
received from 128 sensors spaced 0.5 meters apart and were beamformed using Plan- 
ning shading on the array to beams spaced so that their beampatterns overlapped 
3dB down from the main response axis at 900 Hz, resulting in 54 beams spanning 
from forward to aft endfire. The correspondence between beam number and main 
response axis angle is depicted in Fig. 15 where zero degrees indicates forward end- 
fire. The data from each beam were matched filtered, basebanded so that the center 
of the waveform band (575 Hz) shifted to zero Hertz, and decimated to a sampling 
frequency of 250 Hz. The resulting data are approximately statistically independent 
from sample to sample in range and provide a range sampling interval of 3 meters 
assuming 750 m/s for the two-way speed of sound. 

6.2    Single beam analysis 

One of the beams containing non-Rayleigh reverberation is chosen for more detailed 
examination. The matched filtered beam output is mean power level normalized 
using a trimmed mean order statistic CFAR processor [2] with leading and lagging 
windows each containing 75 samples with a buffer of 2 samples surrounding the 
range cell being processed. The order statistic CFAR processor trimmed the upper 
and lower 10% of the combined leading and lagging windows of auxiliary data. The 
configuration of the normalizer window that is slid along the matched filtered beam 
output is illustrated in Fig. 16. 
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6.2.1     Distributional models 

The parameters for the non-Rayleigh models described in [6] are estimated and used 
to generate frequency curves (CDFs formed by using estimated rather than exact 
parameter values), from which the probability of false alarm is obtained, as shown 
in Fig. 17. Of all the models, the three component Rayleigh mixture model best fits 
the data as seen in Fig. 17 and further supported by the p-values of the Kolmogorov 
Smirnov (KS) test statistics between the models and the data found in Table 4 (a 
p-value near one indicates a good fit). 

Edgeworth 

Log 
normal 

Threshold (dB) 

Figure 17    Estimated and modeled Pfa for 5000 samples of data from the middle 
region of beam 37.  The Rayleigh mixture (3 component) best fits the data. 

Table 4   KS p-values for various non-Rayleigh reverberation models with data from 
middle region of beam 31. 

Model KS p-value 

Rayleigh 2.4e-14 
Log-normal 3.3e-ll 
Edgeworth 0.0014 

Weibull 0.0082 
K 0.3204 

Rayleigh mixture 0.9896 
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6.2.2    Statistical normalization 

Statistical normalizers assuming either Weibull or Rayleigh mixture reverberation 
are then applied to the mean power level normalizer output under the assumption 
that the non-Rayleigh character of the reverberation is stationary over longer ranges 
than the reverberation power level. The statistical normalizers are implemented us- 
ing leading and lagging windows each containing 250 samples with a buffer of 3 
samples to either side of a target assumed to be 5 samples wide in the same con- 
figuration as that shown in Fig. 16. To decrease the amount of time required for 
processing, the same nonlinearity is applied to all 5 of the assumed target sam- 
ples. The statistical normalizer assuming Rayleigh mixture reverberation always 
used three components and was initialized by the most previous mixture parameter 
estimates unless one of the mixture proportions or powers was near zero; that is, if 
the reverberation were well fit by fewer than three mixture components. The data 
are displayed in Fig. 18 along with the threshold that produces Pfa — 10~4 in unit 
power Rayleigh reverberation. Clearly the statistical normalizer using the Rayleigh 
mixture model has the fewest threshold crossings (false alarms). 

The {ß2;ß\) measures of the skewness and kurtosis [6] are estimated from overlapping 
blocks of 1000 data samples for the mean power level normalizer and the statistical 
normalizers assuming Weibull or three component Rayleigh mixture reverberation. 
Figure 19 illustrates how non-Rayleigh the mean power level normalizer data are, and 
that the statistical normalizer using a three component Rayleigh mixture controls 
the skewness and kurtosis well. 

The Pfa estimated from the mean power level normalizer and the statistical normal- 
izers assuming Weibull or three component Rayleigh mixture reverberation is shown 
in Fig. 20. Observe that the statistical normalizer data are not exactly Rayleigh, 
though their false alarm performance is closer to the desired value than that of the 
mean power level normalizer. Were the reverberation not as extremely non-Rayleigh 
as it is, as discussed in Section 4.4, the false alarm performance of the statistical 
normalizer with the Rayleigh mixture model would be closer to the desired Rayleigh 
reverberation curve. 

- 37 SACLANTCEN SR-303 



SACLANTCEN SR-303 

0 

3 

re     s 
■o 
(1)        4 

mat bit m m 

 T'-"                                      1 

Statistical normalizer Weibull 

15 25 

8 

6 

4 

n Mw WHWPH 

 1           i                  i                   i 

Statistical normalizer - Rayleigh Mixture 

10 15 

Range (km) 
20 
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Figure 19 (/%, ßi) estimates for mean power level normalizer and statistical nor- 
malizes assuming Weibull and Rayleigh mixture reverberation. The estimates were 
formed using blocks 1000 samples long from the data in beam 37 overlapping 50%. 
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Figure 20 Pfa estimated from beam 31 (approx. 10,000 samples) for mean power 
level normalizer and statistical normalizers assuming Weibull and Rayleigh mixture 
reverberation. 

6.3    Full beam analysis 

Images of all the beams from one ping of data are shown in Fig. 21 in a rectangular 
range-beam grid for the mean power level normalizer and the statistical normalizer 
using a three component Rayleigh mixture as described in Section 6.2.2. The bright 
areas visible in the mean power level normalizer image around beams 10 and 35 are 
much less visible in the statistical normalizer image. Though not shown, the image 
for the statistical normalizer assuming Weibull reverberation did not clean up the 
non-Raylcigh reverberation as well as the statistical normalizer using the Rayleigh 
mixture model. 

To provide a quantitative measure of the performance of the statistical normalizer, 
the p-value of the Kolmogorov-Smirnov (KS) test statistic between the observed data 
(blocks of 500 samples with 90% overlap) and the Rayleigh distribution are formed 
and displayed as images in Fig. 22. When the KS statistic p-valueis near zero (black 
on the images), the Rayleigh distribution is a poor fit to the observed data. Values 
that aren't small indicate that the data may be well fit by the Rayleigh distribution. 
For example, the non-Rayleighness of the direct blast (waveform transmission) is 
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Figure 21    Mean power /ewe/ normalizer and statistical normalizer data using a 
three component Rayleigh mixture. 
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clearly seen in the forward pointing beams (lower beam numbers) for all of the 
normalizers. The success of the statistical normalizer in converting the non-Rayleigh 
reverberation observed in the mean power level normalizer output is evident in the 
uniformity of the KS statistic p-values and their nearness to one. Both of these 
indicate that the statistical normalizer output data are closer than the mean power 
level normalizer data to the ideal: unit power Rayleigh reverberation across all beam 
and range cells where ever there is diffuse reverberation. 

To determine how close the normalizer outputs are to this ideal, a similar field of 
Rayleigh reverberation was generated. The KS statistic p-values were then formed 
using the same block sizes and overlapping as for the normalizer data. Then, as 
the KS statistic p-values were themselves random variables, the CDF of the p-values 
was formed from the data beyond 4.5 km (some of the data nearer than 4.5 km are 
invalid owing to overloading of the receive array hydrophones by the transmission of 
other waveforms in the wavetrain). As seen in Fig. 23, the CDF of the KS statistic 
p-values for the mean power level normalizer indicates a much higher probability of 
observing non-Rayleigh reverberation (i.e., small KS statistic p-values). Application 
of a statistical normalizer assuming Weibull reverberation reduces this probability 
somewhat, but not as much as when the Rayleigh mixture model is used. The 
improvement is clearly indicated by the relative nearness of the Rayleigh mixture 
curve to that of the simulated Rayleigh data. 
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Figure 22 KS statistic p-value between normalized data from one ping after mean 
power level normalization and statistical normalization assuming Weibull and three 
component Rayleigh mixture reverberation. Values near one more closely resemble 
the Rayleigh distribution. 
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7 
Conclusion 

Low frequency active sonar systems operating in shallow water have encountered 
non-Rayleigh reverberation, with the statistics changing in range and bearing. The 
lack of knowledge about the reverberation statistics and their non-stationarity hin- 
ders the application of automatic detection algorithms to range-bearing images ex- 
hibiting such non-Rayleigh reverberation. This report has presented a method for 
dealing with such reverberation by converting it back to the Rayleigh distribution 
through a tail de-emphasizing non-linearity. This algorithm, a statistical normal- 
izer, was evaluated through simulation and then applied to real data. The simu- 
lation analysis indicated that the performance was linked to both the severity of 
the non-Rayleighness of the reverberation and the amount of data used to estimate 
the parameters of the reverberation model. Application to real data indicated that 
a large degree of the non-stationarity of the reverberation could be removed, pro- 
ducing range-bearing images suitable for multi-beam processing in the presence of 
non-Rayleigh reverberation. 

In applying the statistical normalizer to real data, an algorithm was developed to 
prune strong, spatially compact interferences from auxiliary data that are subse- 
quently used to estimate reverberation model parameters. The algorithm was based 
on the indices to the order statistics, and is therefore non-parametric (i.e., the per- 
formance is independent of the reverberation distribution) and applicable for use in 
reverberation following an unknown distribution. 

In analyzing the false alarm performance of a simple threshold crossing detector 
operating on the statistical normalizer output, a new technique of examining the 
effect of parameter estimation was developed. The Pfa conditioned on the parameter 
estimate, called the conditional or instantaneous Pfa, was used to determine how 
variable the false alarm performance can be, illuminating the effect of interference 
corrupting auxiliary data and the effect of the statistical normalizer on non-Rayleigh 
reverberation. 

The efficacy of the statistical normalizer in controlling the high and variable false 
alarm rates exhibited by non-Rayleigh reverberation regions observed in low-frequency 
active sonar, and the promising simulation results indicating acceptable detection 
performance lead to the recommendation that this algorithm be considered for in- 
clusion in the Centre's real-time low-frequency active sonar system for use and the 
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eventual evaluation of larger data sets. At the same time, research should con- 
tinue in developing reverberation models that well represent real data with a more 
parsimonious parameterization than the Rayleigh mixture model. 
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Annex A 

Target models in Rayleigh mixture reverberation 

The standard fluctuating and non-fluctuating target models may be represented as 
special cases of a Swerling Type III target which is formed as an additive component 
(U) to the complex matched filter output (Z), 

Y = Z + U (Al) 

where U is complex Gaussian distributed with mean // and variance Ao and under 
the Rayleigh mixture distributed reverberation assumption, Z is distributed as a 
mixture of zero-mean complex Gaussian random variables with proportions 7Tj and 
variances Aj for i = 1, ..., p, 

M*;e) = X>-Ve-^. (A2) 

Here, as in the main part of this report, 0 = [iri • • • irp Ai • • • Xp]. The non- 
fluctuating model is obtained by setting Ao = 0 and the fluctuating model by setting 
ß = 0. 

The distribution of Y may be found by first conditioning on and then integrating 
over U, 

/y(y;6,M,Ao) = f> \       e"W (A3) 
~[     7T (Ao + AiJ 

which is seen to be a mixture of complex Gaussian random variables with mean ß 
and variance A0 + A;. When the mixture distribution is interpreted as one of the 
p reverberation models occurring with its associated probability, this target-plus- 
reverberation distribution is acceptable on an intuitive level as the target introduces 
the same effect on each reverberation component when it occurs. 

By transforming the real and imaginary parts of Y to magnitude and angle coor- 
dinates, followed by integration over the angle coordinate, the distribution of the 
matched filter magnitude output (X = \Y\) is found, 

/(,;G,,,Ao)    =    X>^e     W    I0 (J) 

=   Z^Ki e       Ao+Ai /0   2x 
i=i     ^o + Aj Y    y Ao + Aj 
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=   J2Kifi(x;\o + \i,Si) (A4) 

where & = T^TT- is a signal-to-reverberation power ratio (SRR) for each reverbera- 
' Ao+Ai ° 

tion component, 

A~ '" I—'V A 
/i(x;A,«) = ^e-«-V/0 \2xf- (A5) 

is the Rician distribution with scale parameter A and SRR parameter 6, and I0 (x) is 
the zero-order modified Bessel function. Thus, the magnitude matched filter output 
is a mixture of Rician random variables with scales Ao + Aj and SRRs S{. A non- 
fluctuating target (A0 = 0) results in a mixture of Rician random variables with 

I I2 

scales A; and SRR parameters ^-, 

/rfCx; 0,^ = 1:^/1^,^. (A6) 

A fluctuating target (fj, = 0) results in a mixture of Rayleigh random variables with 
power Ao + Ai, 

p 2r *2 

/fl (x- 0, Ao) = £ 7T, ^-^e  *5I*. (A7) 
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Annex B 

Derivation of the EM parameter 
estimates for a Rayleigh mixture 

The premise of the EM algorithm lies in the ability to describe the observed data as 
being part of a larger set of data with a simpler likelihood function for the unknown 
parameters. In the case of a mixture model, there is a very natural complete set of 
data. If a random variable is drawn from the distribution / (a;; Aj) with probability 
7Tj for i = 1, ..., p, then it has the mixture PDF described in eq. (12). Observing just 
the reverberation samples {£1,2:2, • • • ,xn} the missing data are simply the indices 
that indicate which distribution Xj was drawn from; that is, 

Kj = i (Bl) 

if Xj comes from mixture component i for j = 1, ..., n. The PDF of the complete 
data is 

/(x,K;0) = 0^/(^5^) (B2) 

where x = [x\ ■ ■ ■ xn]T and K = [K\ ■ ■ ■ Kn]T. Note that Kj can take on integer 
values from 1 to p, the number of mixture components. Denote as the set of all 
possible values of K 

** = {!, 2, ...,p}n. (B3) 

The PDF of the missing data K conditioned on the observed data x is 

/(x,K;6) 
/(K|x;6)    = 

where 

/(x;9) 

n?=i£?=i^/fo;Ai) 

=    f[WKjd (B4) 

j = l 2=1 
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is the joint PDF of the observed data and 

T^Ki 

WK,J = HUnfixj-Ai 
(B6) 

The expectation step of the EM-algorithm requires forming the expected value of 
the log-likelihood function of the complete data where the expectation is taken over 
the missing data conditioned on the observed data, 

Q(0,0')    =   Ee'[log/(x,K;e)] 
=      £   log[/(x,K;e)]/(K|x;e') 

=   £ It 
p     n 

= EE^i 
t=i j=x 

log irKi + log 2XJ - log XKj - Y
2
- 

'     X*n 

n 

log 7Tj + log 2Xj - log Aj - — (B7) 

where W,, is formed from the values in 0' and the simplification 

f WK3,J = 1 (B8) 

Kj=l 

has been used. 

The maximization step of the EM-algorithm requires choosing 0 (i.e., the TTJ and A») 
to maximize Q (0,0') constraining £f=1 T» = 1 and perhaps requiring each individ- 
ual proportion TTJ > 0. Using a Lagrange multiplier to enforce the first constraint, 
it is easily shown that maximizing Q (0, ©') with respect to TT* requires choosing 

it. 
1   n 

(B9) 

'i=i 

This particular choice for the mixture proportions also satisfies the latter constraint 
mentioned above TR > 0. Maximizing Q (0, 0') with respect to A* results in choosing 

Xi = (BIO) 
hJ 

SACLANTCEN SR-303 52- 



SäCLANTCEN SR-303 

Annex C 

Mean and variance of Tm 

The mean and variance of the target pruning statistic Tm described in eq. (29) 
must be determined in order to use a Gaussian approximation to obtain thresholds 
according to the Type I error probability. Throughout this annex, the following 
summations [29] have been used liberally, 

t*.=Mi>, (Cl) 
fc=l l 

"  fc2 = n(n+l)(2n + l) (C2) 

h 6 

f^=n2(?1)2, (C3) 
fc=i 

and 

n n v- .4 _ <*(n + l)(2n+l)(3n2 + 3n-l) .     . 

h   ~ 30 • {   } 
fc=l 

It is instructive to first consider the case of T2 = {K\ - K2)
2 as the PMF may be 

obtained analytically and used to verify more general results. As K\ and K% can 
take on any integer values from 1 to n as long as they are not equal, there are 
n (n — 1) equally likely combinations. Throughout these combinations, there are 
exactly 2 (n - j) where \Ki - K2\ = j for j = 1, ..., n - 1. Thus, the PMF of T2 is 

f2[t] = \2-^W     ifv/i = l,...,n-l   _ (C5) 

I 0 otherwise 

It is now straightforward to determine the mean T2, 

n-l 

p^      n(n-l) 

n^n+l)_ (C6) 
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The power of T2 may be similarly obtained through direct summation over the PMF; 
however, obtaining it from the definition will help with the derivation of the general 
case, 

E[r|]    =   E[(ÜTi-2f2)
4] 

=   E [Kf] - 4E [K\K2] + 6E [K\KI] - 4E [K^l] + E [K$] . (C7) 

Due to the symmetry in the joint PMF of the indices to the order statistics, the 
exact index or indices in the above expectations are not relevant. For example, 

Cl    =   E [Kf] = E [K$] = E [Kt] 
n    -4 

= £L 
i=l 

and 

(n + 1) (2n + 1) (3n2 + 3n - l) 
30 

c2   =   E [K3
X2] = E [KxKl] = E [KtKf\ 

(C8) 

n(n — 1) 

1 
n(n — 1) 

n    I   n 

£ £ Ü3 - ^ 

(n + 1) (I5n3 + 21n2 - 4) 
120 

(C9) 

In the latter case, note that using summations from 1 to n for each index requires 
removing the terms where K\ = K2. Similarly, 

c3 = E[K1K$] 

n    I  n 

n(n — 1) 

1 
n(n — 1) 

(n + 1) (2n + 1) 

2     i4 

i=i v=i 
/ n       \ 2        n 

£*2   -£*4 
\i=l i=l 

i-i (lOn3 - 3n2 - 13n + 6) 
180 (n 

Substitution into eq. (C7) results in 

E[r|] =2CI-8C2 + 6C3. 

(CIO) 

(Cll) 
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The more general case is described by eq. (29) in non-recursive form and repeated 
here for convenience, 

m i—l 

i=2j=l 

The mean of Tm is then easily found from the mean of T2, 

m  i—l 

t=2j=l 

'm(m — 1) 

(C12) 

rn(m — 1) 

= I 

2 
n(n + l) 

E[T2] 

n(n + l) 

(C13) 

where I = m^  ^ is the number of terms in the double summation. The power of 
Tm may be described as 

m  i—l   m  k—1 

E[IS] = EEEEE[(^-^-)
2
(^-^)

2
] 

1=2 j=lfc=2 /=1 

=   Z E [(Ki - X2)
4] + h E [(Ki - if2)

2 («'s - ^4)2] 

+ [I (I - 1) - l0) E [(Ä-! - *T2)
2 (#i - ÜT3)

2] , 

where 

*o = 
6(T)    ™>4 

0      m< 4 

(C14) 

(C15) 

(C16) 

The four summations of eq. (C14) result in I2 terms, of which I are cases where the 
index pairs (i,j) and (k,l) are the same (i.e., i = k and j = I or i = I and j = k), 
I (I — 1) — lo are cases where the pairs share only one common index, and Zo are cases 
where all four indices are different. The value of l0 described in eq. (C16) is obtained 
by noting that for each set of four indices there are six combinations that occur in 
the summations of eq. (C14); for example, the combinations 

(if4-#3)2(^2-#i)2,   (K^-KzfiKs-Krf,   (X4-Xi)2(^3-^2)2(C17) 

occur as do their reverse multiplicative order. A similar argument may be used to 
show that the number of combinations with one common index is 

I (I - 1) - Z0 = 6 
m 

(C18) 
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for m > 3. 

Prom eqs. (C7) and (Cll) the first expectation in eq. (C15) is seen to be 

E [(Äi - K2f] = 2Cl - 8c2 + 6c3. (C19) 

The second expectation results in 

E [{Kx - K2f (K3 - KA)
2]    =   E 

4^1X2^3^4 + K\Kl - 2KfK3K4 

+K2K% - 2K%K3K4 

+K%Kl - 2KlKxK2 

+K%Kl - 2K\KXK2 

=   4c3 + 4c4 - 8c5, (C20) 

where 

c4   =   E [KiK2K3KA] 

(n-4)! "    /A. n        in 

Lfc=l     \/=l > 

—l 

-j\s2i-i-2j\-i{j2i-j-2i 

n        / n \ / n 

jfc=i    \z=i 

(n - 4)! 

Li=l 

l4          n 

-e£*2 
n 

Ei 
J        1=1 j=l 

+ 3 E' 

1=1 

2 n      n 

+8E<EJ
8
-6E' 

_i=l     J i=l  j=l i=l 

(n + 1) [l5n2 (n + l)2 (n - 4) + 4 (2n + 1) (10n2 + 9n - 4)] 

240 (n - 1) (n - 2) 
(C21) 

and 

C5     =     E[ä?Ä-2Ä-3] 

(n-3)!g.2f^. 
n! 

i=l       lj'=l 

(n-3)! 
n! 

AT 

1=1 
E* 
j'=i 

E*-J 
*=1 

2 

i=l 

n 
£fc-2i 

Lfe=l 

-2E^3Ei + 2E^ 
i=l    j=l i=l 

(n + 1) [ihn2 (n + l)2 (2n - 5) - 2 (2n + 1) (10n3 - 21n2 - 31n + 12)] 

" 360 (n - 1) (n - 2) ' 
(C22) 
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The third expectation results in 

E [{Ki-Kzfild-Ksf]    =   E 
K\ - 2KfK3 + K\K\ + 4K*K2K3 

-2KfK2 + K\Kl - 2KlKxK2 

+K$Ki - 2K$KiK3 

d - 4c2 + 3c3 + 0c5 

cy -4c2 + 3c3. (C23) 

Substituting eqs. (C19), (C20), and (C23) into eq. (C15) results in 

E[T£] I (2ci - 8c2 + 6c3) + Zo (4c3 + 4c4 - 8c5) 

+ [Z (Z - 1) - Zo] (ci - 4c2 + 3c3). 

The variance of Tm may then be easily obtained from 

Var[rm] = E[T^]-E[Trr 

(C24) 

(C25) 
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Annex D 

Invariance of false alarm performance in 
Weibull reverberation using ML 

parameter estimates 

If the maximum likelihood parameter estimates for Weibull distributed reverbera- 
tion are used in the statistical normalizer nonlinearity of eq. (10), the false alarm 
performance is invariant over the whole family of Weibull distributions. A proof of 

the invariance follows in this annex. 

Either by differentiating the joint PDF of Weibull distributed auxiliary data (Xh 

..., Xn) with respect to a and ß or from the iteration described in [6], the following 
relationships may be derived for the ML parameter estimates 

a = 
1   n 

i=i 

and 

ß n 
i=i ELi^i -ß 

Letting Zi = a Xf these relationships may be described as 

a = at 
\   n      i 

i=i 

(Dl) 

(D2) 

(D3) 

and 

ß n*—1 
i=\ 

(D4) 
a. En        ryß 

1=1 ^i 

If the Xi are Weibull with parameters a and ß, then the Z{ are exponentially dis- 
tributed with unit mean; that is, the Zi are distributionally free from a and ß. Thus, 

according to eq. (D4), the ratio | is also distributionally free from a and ß. 

Substituting eq. (D3) into the nonlinearity of eq. (10) using the ML parameter 
estimates results in 

l(X)   =   y&x'ß 
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1 v-w      yP 

(D5) 

where Z = a X13 is exponentially distributed if X is Weibull distributed with pa- 
rameters a and ß. Thus, # (X) is distributionally free from a and ß resulting in a 
constant false alarm probability irrespective of the actual values of a and ß. 

Substituting eq. (D3) into the instantaneous Pfa of eq. (40) similarly shows a lack 
of distributional dependence on a and ß, 

Pfa{$,h)=ewl-(*±Z?y} (D6) 
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