
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

OBJECT SIGNING IN BAMBOO

by

Marlon L. Smith

March 2000

Thesis Advisor: Michael J. Zyda
Thesis Co-Advisor: John S. Falby

Approved for public release; distribution is unlimited.

20000530 047
DT O'TTA VX,,1 -

3T

REPORT DOCUMENTATION PAGE Form Approved
I 0MB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IMarch 2000 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Object Signing in Bamboo

6. AUTHOR(S)
Marlon L. Smith

7.PERFORMING ORAIZTO NAME(S) AND,. ADDRESS(ES) .PREPORT IN NUBRGNZTO

Naval Postgraduate SchoolREOTNM R

Monterey, CA 93943-5000

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense
or the U.S. Government.
12a. DISTRIBUTION/I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited. I________________
13. ABSTRACT (maximum 200 words)

The rapid growth in the Internet has been fueled by an exorbitant number of users, organizations and individuals alike, many
relying on e-commerce to conduct business including the transport of files. Public Key Infrastructure (PKI) technology has emerged
to the forefront as the basis for ensuring secure transactions throughout the Internet. However, this technology is prohibitively
expensive for the majority of users. Object signing technology, a subset of PMI technology, provides a veritable means for file transfer
ensuring non-repudiation, authentication, and content integrity at an amenable cost.

This thesis provides an introduction to computer security with a specific focus on PKI and object signing technology. It details
the selection and implementation of an object signing system layered on Bamboo, namely Pretty Good Privacy (PGP) v2.6.2.
Procedures for establishing a Key Server for certificate distribution are also illustrated. It also introduces security pitfalls associated
with PKI systems and identifies the security weaknesses of this object signing implementation. For further research, recommendations
are provided to improve the overall functionality of this security system and the potential impact any such migration may have on
current users.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Object Signing, Public Key Infrastructure, PMI, PGP13

16. PRICE CODE

17. SECURITY 18. SECURITY CLASSIFICATION OF 19 SECURITY CLASSIFI- 20. LIMITATION OF ABSTRACT
CLASSIFICATION OF REPORT THIS PAGE CATION OF ABSTRACT UL
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

OBJECT SIGNING IN BAMBOO

Marlon L. Smith
Lieutenant Commander, United States Navy
B.S., Bowling Green State University, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING VIRTUAL ENVIRONMENTS

AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
March 2000

Author: /
Marlon L. Smith

Approved by:
SMchael J.4 ,, TAesis Advisor

John S. Falby, Thesis Co-Advisor

Michael J. Zyda ,
MOVES Academic Group

Illi.

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The rapid growth in the Internet has been fueled by an exorbitant number of users,

organizations and individuals alike, relying on e-commerce to conduct business including

the transport of files. Public Key Infrastructure (PKI) technology has emerged to the

forefront as the basis for ensuring secure transactions throughout the Internet. However,

this technology is prohibitively expensive for the majority of users. Object signing

technology, a subset of PMI technology, provides a veritable means for file transfer

ensuring non-repudiation, authentication, and content integrity at an amenable cost.

This thesis provides an introduction to computer security with a specific focus on

PMI and object signing, technology. It details the selection and implementation of an

object signing system layered on Bamboo, namely Pretty Good Privacy (PGP) v2.6.2.

Procedures for establishing a Key Server for certificate distribution are also illustrated. It

also introduces security pitfalls associated with PMI systems and identifies the security

weaknesses of this object signing implementation. For further research,

recommendations are provided to improve the overall functionality of this security

system and the potential impact any such migration may have on current users.

THIS PAGE IINTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. INTRODUCTION 1
A. PROBLEM STATEMENT 1
B. MOTIVATION..1I
C. THESIS ORGANIZATION..................................... 4

II. BACKGROUND... 7
A. INTERNET SECURITY ISSUES................................ 7
B. A GENERAL PMI SYSTEM................................... 12
C. A GENERAL OBJECT SIGNING SYSTEM 21
D. SUMMARY ... 27

Ill. SELECTION.. 29
A. SOFTWARE REQUIREMENTS SPECIFICATION 29
B. COMMERCIAL SYSTEMS AVAILABLE........................ 37
C. SELECTING A SYSTEM..................................... 40

IV. IMPLEMENTATION... 43
A. PGP KEYS.. 43
B. USING PGP WITH BAMBOO 58
C. BAMBOO PGP PUBLIC KEY SERVER.......................... 69
D. ESTABLISHING A SECURITY POLICY FOR PUBLIC KEYS 74

V. RESULTS.. 77
A. RISKS IN A TYPICAL PMI SYSTEM............................ 77
B. RISKS ASSOCIATED WITH PGP v2.6.2......................... 80
C. RESULTS OF PGP v2.6.2 IMPLEMENTATION IN BAMBOO 83

VI. CONCLUSIONS AND RECOMMENDATIONS 87
A. CONCLUSIONS.. 87
B. SIGNIFICANCE.. 87
C. FUTURE WORK.. 88

APPENDIX A. USER'S GUIDE FOR BAMBOO OBJECT SIGNING 93

APPENDIX B. BAMBOO PGP PUBLIC KEY SERVER ADMINISTRATOR'S
GUIDE............................. 103

LIST OF REFERENCES.. 121

INITIAL DISTRIBUTION LIST.. 123

vii

THIS PAGE INTENTIONALLY LEFT BLANK

viii

ACKNOWLEDGEMENT

The author would like to acknowledge the efforts of a multitude of individuals

who provided insight and guidance from the conceptual stage through the implementation

of the security application. This thesis recognizes Kent Watsen for his invaluable

technical knowledge and formalized security requirements in Bamboo; Professor Don

Brutzman for his expertise in Netscape Object Signing technology; and both MOVES

Academic Group advisors, Professor John Falby and Professor Mike Zyda for their

guidance and patience in the delivery of the final product.

Additionally, this thesis recognizes the previous work of Marc Horowitz [Ref. 20]

and utilizes his free implementation of the PGP Public Key Server. It also applauds

Network Associates for providing the PGP freeware security product through the MIT

website, and recognizes Phil Zimmerman's contributions in the original development of

the product and his extensive documentation.

ix

THIS PAGE INTENTIONALLY LEFT BLANK

1. INTRODUCTION

A. PROBLEM STATEMENT

With the rapid expansion of the Internet in recent years, numerous companies

have emerged with products purported to provide security for electronic commerce in the

areas of personal banking, online purchasing, business-to-business transactions as well as

various other areas utilizing a typical public key infrastructure (PKI) system. Additional

focus has been attached to "object signing" for delivery of files across a network in a

manner ensuring a certain degree of content integrity and authentication.

This thesis provides an introduction to computer security with a specific focus on

PKI and object signing technology. The major objective of this thesis includes the

selection and development of an object signing system implemented in Bamboo, a

dynamically extensible, cross-platform, component-based framework for virtual

environments under development at the Naval Postgraduate School. Security sub-areas

such as physical security, types of encryption and hash algorithms to preclude code

breaking, etc., are only briefly covered. However, it is not the intent to undermine the

importance of these sub-areas. A security system will only be as effective as its weakest

link. This thesis discusses the benefits of object signing in Bamboo; specific focus areas

include:

"* acceptable cost to an open-source community.'

"* potential shortcomings in PKI technology and the implemented security

system within Bamboo.

*basis for selection of a particular system based on "a priori" criteria.

The research also discusses various object signing systems available and pertinent factors

such as ease of implementation, initial and recurring costs, and robustness of such

systems.

B. MOTIVATION

1. DOD Relevance

The Department of Defense (DOD) sets forth guidelines pertaining to information

security which include the following requirements [Ref. 1]:

1

"* To put in place information assurance solutions needed to assure the

availability, integrity, authentication, confidentiality, and non-repudiation of

the Defense Information Infrastructure (DII).

"* To provide an extended foundation for the integrated, continuous, multi-

layered (defense in depth) protection of the Defense Information System

Network (DISN), the backbone of the DII.

"* To comply with the Deputy Secretary of Defense (DEPSECDEF) and

Assistant Secretary of Defense (Command, Control, Communications and

Intelligence) memorandums mandating migration to PKI technology to protect

sensitive but unclassified information transfer.

"* To ensure a government link to the industrial base.

A typical PMI system available in this rapidly emerging field fully meets the

requirements set forth above; such a system will be discussed in Chapter HI.

2. Benefits of a PMI System

PMI systems may offer an organization numerous benefits during the transmission

of vital information across a network. A typical system provides the following assurances

[Refs. 1, 2, 3, 4]:

"* Authentication: proof that the sender is whom they claim to be (public/private

key).

"* Non-repudiation: assurance that the person sending cannot deny participation

(digital signature).

"* Integrity: verification that no unauthorized modification of data has occurred

(hash).

"* Confidentiality: assurance that the person receiving is the intended recipient

(encrypt/decrypt).

3. Benefits of Object Signing

Object signing is an emerging technology with inherent roots from PMI and is

used primarily for electronic software distribution. It provides the means for a user to

obtain reliable information about downloaded code such as a list of other users who have

2

digitally signed the code (authentication) and whether the downloaded code has been

tampered with (content integrity). Further details are incorporated in Chapter II.

4. Bamboo

To better understand the motivation for selection of a particular object signing

implementation, it is necessary to comprehend the underlying Bamboo system in which

the object signing system is incorporated. Bamboo is a component framework supporting

real-time, networked virtual environments. This design includes dynamic configuration

without user interaction such that loadable libraries (modules) are downloaded via I{TTP

over the Internet and subsequently loaded into memory. Bamboo is designed as a cross-

platform tool for the open-source community. [Ref. 5]

5. Implementing Object Signing in Bamboo - Issues

In real-time networks, latency is a pertinent issue. To maintain efficiency in

Bamboo's dynamic load process, it is imperative not to introduce additional latency

during the module content verification and authentication process. Encryption of the

module content is not a requirement and avoids latency associated with expensive

encryption and decryption algorithms; this does not pose a security issue since the module

content is unclassified in nature. However, modules will have an encrypted message

digest attached which will require decryption prior to loading in order to verify content

integrity and user authentication. Compressing a module is a requirement before sending

across any network to reduce transmission delay. Additionally, modifications to Bamboo

must be equally portable across various hardware architectures. To maximize user

acceptance and to ensure consistent growth, upgrades must be equally cost-effective to

implement, preferably to the extent of freeware. Since there is no requirement for users

to sign modules in the Bamboo, it is critical to assess ease-of-use so as not to introduce an

encumbrance to the user. Introducing a cumbersome and time-consuming system will

preclude use and void the importance of the object signing implementation.

6. Existing Research

While numerous fee-based commercial PMI systems exist today, few object

signing systems are readily available. Netscape developed the Object Signing Tool 1.1

for various platforms. This tool creates digital signatures and uses the Sun Microsystem' s

3

Java Archive (JAR) format to associate a signature with files. Digitally signed files using

the Object Signing Tool can be verified in Netscape's browser when appropriate

certificates are used. Mýicrosoft's Signcode utility is similar to Netscape's Object Signing

Tool yet is tailored for the Mficrosoft browser and is used to sign Mficrosoft Cabinet Files

(CAB). CAB is similar to a ZIP file. The JAR file format is also based on the popular

ZIP file format and is used for aggregating many files into one. Although JAR can be

used as a general archiving tool, the primary motivation for its development was to allow

Java applets and their requisite components to be downloaded to a browser in a single

HTTP transaction. The JAR format also supports compression (reducing the download

time) and is cross-platform. Additionally, individual entries in a JAR file may be

digitally signed to authenticate their origin.

C. THESIS ORGANIZATION

The thesis is organized as follows: Chapter II introduces terminology in PKI

systems and explores the requisite background material on a typical PMI system and a

typical object signing system. Chapter MI discusses the selection criteria for the

implemented system and covers tradeoffs in some of the systems available today.

Chapter IV discusses the details of how the object signing implementation was achieved.

It also covers the pitfalls encountered during the attempted implementation of various

other systems before settling on the current system. Chapter V analyzes the results of the

security implementation in Bamboo and discusses risks associated with a typical PMI

implementation. Chapter VI concludes the thesis and primarily discusses future work and

areas of further investigation paralleling the research of this thesis. It reviews some of the

attempted implementations of object signing systems and discusses future enhancements,

particularly with regard to the failed implementations. It discusses what requirements

need to be met before accomplishing a migration to another system providing more robust

features.

Two appendices are included as part of the thesis. Appendix A is a User's Guide

with detailed installation procedures and illustrates requisite commands to employ Pretty

Good Privacy (PGP) v2.6.2 with Bamboo. It also covers procedures such as: how to sign

modules and display signatures attached to modules; how to store signed modules on a

4

server and correspondingly download signed modules from a server; how to store a user's

PGP public key on the PGP Public Key Server; and how to extract other users' public

keys. The PGP Public Key Server is instrumental as a distribution medium for PGP

public keys so that end-users can validate signatures attached to downloaded signed

modules. Appendix B details the administration and management of the PGP Public Key

Server and is not intended for the end-user.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

HI. BACKGROUND

Security systems have evolved rapidly in the past 12 months and the industry has

entered a consolidation phase with various acquisitions and mergers taking place.

Currently, VeriSign has the largest installed user base of customers utilizing their PKI

technology and owns Thawte, one of the dominant players in this field. Additionally,

they have established strategic relationships with Netscape, Network Associates, RSA,

and Security Dynamics. Numerous smaller companies have entered the market in just the

past year offering similar PKI security solutions in an effort to take advantage of the rapid

explosion in Internet growth. Despite the voluminous number of participants, the basic

PKI solution appears to be consistent among the offerings. Emerging technology in the

security area of the Internet and networks in general, includes recently available

applications of object signing or code signing. To better understand this thesis'

implementation of object signing, it is necessary to explain the PKI system in broad terms

to'comprehend the foundation upon which object signing has its roots. Much of the

terminology and definitions present in the PMI system are common in an object signing

system.

A. INTERNET SECURITY ISSUES

Communication across the Internet primarily uses the TCP/IP protocol and its

flexibility has led to worldwide acceptance. The information is transmitted in TCP/IP

packets via a local server and may encounter numerous routers prior to reaching the

destination server for end-user processing. Since the data is being transmitted beyond an

organization's firewall, it becomes exposed to third-person parties whom may target the

transmitted data in various ways. Some of the more common techniques of targeting data

packets are [Ref. 6]:

0 Eavesdropping - Information remains intact but its privacy is compromised.

* Tampering - Information is changed or replaced and sent on to the recipient.

* Impersonation - Information passes to a person who poses as the intended

recipient and consists of two variations:

"o Spoofing - A person can pretend to be someone else.

"o Misrepresentation - A person can misrepresent oneself.

7

*Repudiation - A person falsely denies that a transaction occurred or was

authorized after the fact.

To address these concerns, the PKI system was developed with the necessary

features to counter any attempted violation of the transmitted data.

1. Encryption/Decryption

Encryption and decryption is the process of transforming information into

unintelligible data by the sender, and at the recipient's end, the data is transformed back

into its original state for end-user assimilation. By using this technique, eavesdropping is

rendered useless unless the perpetrator has the ability to decrypt the transmitted

information.

2. Digital Signatures

To counter the problem of tampering, digital signatures (also referred to as

message digests) were developed; a digital signature relies on the use of a mathematical

function called a one-way hash routine. The resultant value from a specific hash routine

is unique and of fixed length. Changing one character in the original data and hashing the

data will result in a totally different hash value. Additionally, the content of the original

data cannot be deduced from the resultant hash, hence the name one-way hash. (Popular

hash functions include: Message Digest 5 (MD5), Secure Hash Algorithm (SHA), Tiger,

and RJPEMID-160.) At the recipient's end, the received data can be input into an

identical hash routine and the resultant hash compared with the transmitted hash.

However, this technique alone is not sufficient to prevent a perpetrator from violating the

integrity of the data. For instance, one could replace the original message and its hash

with another. This would ultimately result in the revised transmitted data having a

matching hash at the recipient's end and possibly without the recipient's cognizance of

the content integrity violation. To completely remove tampering, the resultant hash value

must be encrypted with the sender's private key prior to transmission. The encrypted

hash along with other pertinent information such as the hash algorithm is known as the

digital signature. Again, if the perpetrator is able to decipher the digital signature, then

the resultant data can be altered. This provides added significance to the security of one's

private key.

8

Figure 2.1 below encapsulates the digital signature concepts introduced thus far.

It illustrates the transmission of a document with a message digest attached to counter the

threat of tampering. The sender's private key is used to encrypt the message digest prior

to transmission. To validate the integrity of the data at the recipient's end, the original

document is input into the identical hash routine used by the signer and compared with

the decrypted hash associated with the document. The signer's public key is used to

decrypt the message digest; the public key is part of the digital certificate and is extracted

for decryption. Finally, the new hash is compared against the originally transmitted hash.

If they do not match, the data may have been tampered with since it was signed, or the

signature may have been created with a private key that does not correspond to the public

key presented by the signer. If the two hashes match, the data has not changed since it

was signed and the recipient can be certain that the public key in the signer's certificate

corresponds to the signer's private key.

To confirm the identity (authentication) of the signer, however, also involves

confirming the validity of the digital signature of the Certificate Authority (CA) issuing

the signer's certificate. With the advent of numerous organizations instituting their own

private CA servers, there is an inherent risk associated with the acceptance of a certificate

from any particular CA. Therefore, the recipient determines the level of risk it is willing

to accept when processing certificates affiliated with a specific issuing CA. For instance,

it may not be prudent to accept a document with a corresponding digital signature if the

certificate was issued by a CA called "Hackers Anonymous". An end-user utilizing

today's most common Internet browsers can control which CA issuing agencies to accept

certificates from simply by specifying them in the browser itself.

9

SignSeigrtdng RecdvIrkg

daa Original daal

data

~h1Ih
Pr' ley DPublic Ij ,

Onsinature]

DOW Digial If hashe are
sinature sirature identicaloriginal

dai has not changed

since it was signed

Figure 2.1 Using a digital signature to validate data integrity. From Ref. [6].

The significance of a digital signature is comparable to that of a handwritten

signature. Once you have signed data, it is difficult to deny doing so later--assuming that

the private key has not been compromised or out of the owner's control. This resultant

characteristic of digital signatures is described as non-repudiation. In some situations, a

digital signature may be as legally binding as a handwritten signature. Therefore, signers

should take great care to ensure that they can stand behind any data they sign. [Ref. 6]

3. Trust in Cyberspace

The anonymity of users poses a threat to the security of information transmitted

across networks. In the physical world, trust is built through a complex web of social,

legal and business interactions that, in some cases, have taken generations to mature. We

use common instruments to establish trust every day such as drivers' licenses, employee

badges, credit cards, business licenses, etc. We understand that these instruments are

backed by organizations whose diligence, practices, policies, and reputations provide a

readily accepted framework of trust for transactions and communications. These means

of developing trust cannot be used in a digital world. Additionally, these means of

developing trust in the physical world are not failsafe just as they are not in the digital

world. [Ref. 7] We investigate a general PKI system to further explore and nurture our

degree of trust in cyberspace. In a later chapter, we will investigate some of the risks

associated with a typical PKI system and object signing system.

10

a. Fundamental Goals of a Security System

goas Re.]:Electronic security measures are aimed at achieving five fundamental

"* Ensuring that only authorized individuals have access to information.

"* Preventing unauthorized creation, alteration, or destruction of data.

"* Ensuring that legitimate users are not denied access to information.

"* Ensuring that resources are used in legitimate ways.

"* Ease of use so as not to unduly restrict the ability of individuals to go

about their daily business.

b. Security Controls

The area of security is an extremely broad field with numerous texts and

research outlining various security policies and implementations to achieve a certain level

of assurance. Two simple definitions provided to achieve the fundamental security goals

listed above are: communications security- the protection of information while it is being

transferred from one system to another, and computer security- the protection of

information within a computer system. These broadly defined protective measures can be

achieved by implementing established controls such as non-technical and technical

security controls. Non-technical security controls include physical security, procedural

security, and personnel security. Physical security is concerned with accessibility to the

computer security infrastructure to include security protection of the building and room in

which the hardware/software is stored; procedural security includes the organization's

procedures and policies governing information security; personnel security involves

background checks and training. Technical security controls include algorithm strength,

operating system strength, auditing organizational security procedures and security

breaches, and for the DoD, formal evaluation of components against criteria done by

commercial labs in affiliation with joint National Security Agency and National Institute

of Standards and Technology (NIST) National Information Assurance Partnership

(NIAP). [Ref. 1]

c. Assurance Levels

Assurance levels are typically organization-specific and dictate the desired

security policy, procedures, and implementation. One definition which can be applied

broadly across various organizations is defined by Rohrbach [Ref. 1]. The levels of

assurance are divided into three categories: High, Medium, and Basic. The classifications

are grouped by the level of security required based on the type of information to transact.

For instance, the High level may be used for command and control/organizational

messaging, classified information, and electronic commerce in excess of $100,000; the

Medium level is for individual messaging, legal transactions, and electronic commerce

less than $100,000; all other types of information require only the Basic level of

assurance. [Ref. 1]

B. A GENERAL PMI SYSTEM

Two of the most common security precautions in use today are passwords and

firewalls. Passwords are designed to prevent unauthorized individuals from directly

gaining access to sensitive data stored on computers. Firewalls, by contrast, are designed

to provide a perimeter defense mechanism, preventing unauthorized individuals outside

the organization from gaining access to sensitive data inside the organization. Despite

their important role in network security and widespread adoption, firewalls provide only a

partial solution. Any time that data is sent between a server and organizations outside the

firewall, the data can be intercepted using "sniffers". Hackers do not need to get into

your system if you are sending data outside the perimeter of the firewall. PMI provides

tools to achieve security objectives for transporting data beyond the firewall. [Ref. 8]

The following paragraphs offer a detailed discussion of basic terminology

employed in PKI technology.

1. Digital Certificates

Envelopes and secure couriers have been replaced with sophisticated methods of

data encryption designed to ensure a message is read only by an intended recipient.

Physical signatures and seals have been replaced with digital signatures to ensure

messages came from a particular identity and that the message was not altered in any

fashion during transit. Understanding digital certificates is central to understanding PMI

12

systems. It is a credential issued by a trusted authority that individuals or organizations

present to prove their identity (see Certificate Authority below).

In physical transactions, the challenges of identification, authentication, and

privacy are solved with physical marks, such as seals or signatures. In electronic

transactions, the equivalent of a seal must be coded into the information itself. By

checking that the electronic seal is present and has not been broken, the recipient can

confirm the identity of the message sender and ensure that the message content was not

altered in transit. To create an electronic equivalent of physical security, digital

certificates use advanced cryptography. [Ref. 8] A digital certificate employs a matched

pair of keys, private and public keys, that uniquely complement each other such that a

message encrypted with the private key can be decrypted with the corresponding public

key. Additionally, a message encrypted with the public key can be decrypted with the

corresponding private key. The public key may be distributed to other users while the

private key is for the sole use of the rightful owner.- Compromising the private key will

render the PKI system for that individual useless as all security objectives may then be

easily breached. Public keys may be easily distributed as part of the digital certificate and

therefore effortlessly extracted by users whom trust your certificate. An example of

encrypting information using digital certificates is illustrated in Figure 2.2.

Encrypion Sering~r Decrypton

Public: ey Private ley

Ongrigia Sc ramb le d Sc ram bled Original
dau at data data

Figure 2.2 Public key encryption/private key decryption. From Ref. [6].

Conversely, you can use your key pair to digitally sign a message with the private

key and decrypt the scrambled message with the corresponding public key. A digital

certificate is merely a binary file containing pertinent information about the owner such as

name, public key, serial number, expiration date, and information about rights and user

privileges. Most importantly, a certificate always includes the digital signature of the

13

issuing CA. The CA's digital signature allows the certificate to function as a "letter of

introduction" for users who know and trust the CA but don't know the entity identified by

the certificate. Current specifications of digital certificates are available by reviewing the

latest X.509 Certificate Standard.

a. Types of Digital Certificates

There are various types of digital certificates on the market today.

However, with the recent development of object signing tools, some of the later browsers

are incapable of handling the latest certificates such as object-signing certificates. Below

are a few of the common certificates available today [Ref. 9]:

"* Client certificates. Used to identify clients to servers.

"* Server certificates. Used to identify servers to clients.

"* S/MIME certificates. Used for signed and encrypted email.

"* Object-signing certificates. Used to identify signers of Java code,

JavaScript scripts, or other signed files.

"* CA certificates. Used to identify a CA.

b. Private and Public Key Generation

The public and corresponding private keys are created locally by server or

client software requesting the certificate. To help ensure that the private key is not

compromised, it remains on the local machine, and client software or the system

administrator submits the public key along with other information to the issuing CA for

the digital certificate. Again, the CA may be an independent company that issues

certificates for a fee or an administrator running a Certificate Server within an

organization. The CA verifies the identity of the requestor according to the CA's security

policies, then issues the certificate.

c. Public Key Algorithms

As illustrated in Figure 2.2 above, an algorithm is necessary to encrypt and

decrypt the transmitted data; various public key algorithms are used to accomplish this

function. As stated before, a different key is used for encryption and decryption, and the

decryption key cannot be derived from the encryption key. Public key methods are

important because they can be used to transmit encryption keys or other data securely

14

even when the parties have no opportunity to agree on a secret key in private. All known

methods are quite slow, and they are usually only used to encrypt session keys (randomly

generated "normal" keys) that are then used to encrypt the bulk of the data using a

symmetric cipher. The following are some of the common algorithms [Ref. 10]:

"* RSA (Rivest-Shaniir-Adelman) is the most commonly used public key

algorithm. It can be used both for encryption and for signing. It is

generally considered to be secure when sufficiently long keys are used.

The security of RSA relies on the difficulty of factoring large integers.

Dramatic advances in factoring large integers would make RSA

vulnerable. RSA is currently the most important public key algorithm.

It is patented in the U.S. (expires Sep. 2000), and free elsewhere.

"* Diffie-Heliman (DH) is a commonly used public-key algorithm for

key exchange. It is generally considered to be secure when sufficiently

long keys and proper generators are used. The security of Diffile-

Hellman relies on the difficulty of the discrete logarithm problem

(which is believed to be computationally equivalent to factoring large

integers).

"* DSS (Digital Signature Standard). A signature-only mechanism

endorsed by the U.S. Government. It is intended to provide the

capability for the creation and verification of digital signatures and not

for use as a general encryption algorithm, nor for key distribution. Its

design has not been made public, and many people have found

potential problems with it (e.g., embedding hidden data in the

signature and revealing your secret key if you ever happen to sign two

different messages using the same random number).

"* El Gamal public key cryptosystem. Based on the discrete logarithm

problems in a finite field similar to DH, but has been extended to

elliptic curves for greater strength.

"* LUC is a public key encryption system. It uses Lucas functions instead

of exponentiation. Its inventor Peter Smith has since then implemented

15

four other algorithms with Lucas functions: LUCDIF, a key

negotiation method like Diffie-Hellman; LUCELG PK, equivalent to

El Gamal public-key encryption; LUCELG DS, equivalent to El Gamal

digital signature; and LUCDSA, equivalent to the U.S. Digital

Signature Standard.

Further details on public key algorithms is available through most

cryptography texts.

2. Registration Authority

An optional component to a PKI architecture is the Registration Authority (RA).

The RA may be part of the CA or a separate entity. It is dedicated to user registration and

accepting requests for certificates. User registration is the process of collecting user

information and verifying a user's identity, which is then used to register a user according

to a security policy. This is distinct from the process of creating, signing, and issuing a

certificate. An example of an RA in an organization having their own CA may be

characterized by a Human Resources department managing the RA function while an

Information Technology department manages the CA. A separate RA also makes it

harder for any single department to subvert the security system. Systems performing RA

and CA functions are often referred to as Registration Servers and Certificate Servers

respectively. [Ref. 4]

3. Certificate Authority

The core of the PKI architecture is the Certificate Authority (CA). Digital

certificates form the basis of trust and interoperability for a network to communicate

securely. As a result, the quality, integrity, and trustworthiness of a PKI system depend

on the infrastructure and practices of the CA who issues and manages the certificates.

Certificate authorities are entities that validate identities and issue certificates. They can

be either independent third parties or organizations running their own certificate-issuing

server software. Recently, numerous software packages have been introduced for

organizations to host their own Certificate Server instead of outsourcing the responsibility

to a third party. (For instance, Netscape Certificate Management System was released in

May 1999.) The methods used to validate an identity vary depending on the security

16

policies of a given CA. Some of the primary duties for a CA and RA include the

following:

"* Receiving applications and registering identities of end users.

"* Validating identities.

"* Issuing digital certificates.

"* Revoking, renewing, and managing expiration of certificates.

"* Maintaining a database of valid certificates and invalid certificates.

"* Maintaining security on the CA's private key.

"* Ensuring widest dissemination of the CA's digital'certificate.

"* Establishing trust among members.

"* Handling risk management.

In general, before issuing a certificate, the CA must use its published verification

procedures for that type of certificate to ensure that an entity requesting a certificate is in.

fact who it claims to be (background authentication check). If present, an RA would

accomplish this function. It is imperative for the CA to maintain rigorous procedural and

quality control standards in the authentication of publishers and in the creation, issuance,

and maintenance of certificates. When a CA such as VeriSign, Entrust, etc., issues digital

certificates, it verifies the owner is not claiming a false identity and is officially providing

generally recognized proof of a person's identity. By vouching for an individual's or

organization's identity, it is putting its "name" behind the individual's or organization's

right to use their own name. The verification process may encompass days prior to the

issuance of a certificate from a third party CA; one of the benefits of having the CA in-

house is that the time to verify and issue a certificate may be measured in minutes. This

verification and issuance process is analogous to the U.S. Government issuing a passport

to an individual verifying one's own identity.

a. Issuing Digital Certificates

Upon completion of validating a requester's identity, the CA issues the

certificate binding the requester to the submitted public key. This certificate is valid for a

designated time period and becomes invalid upon expiration. Therefore, certificate

renewal procedures are critical to keep an organization's certificates in the mainstream to

17

be used by network resources. Typically, the same certificate can be used once the

org.anization pays the required fee to the CA for reissue (if using an outside party as CA).

Issued certificates are also stored in a CA repository for future access.

b. Revoking Digital Certificates

Occasionally, it may be necessary to revoke a certificate prior to its

expiration date. Occasions for this may be due to the termination of an employee or

compromise of a private key. When a certificate is revoked, it is typically placed on a

Certificate Revocation List (CRL). If an organization receives a transaction with a digital

certificate, it can verify the validity of the digital certificate in various ways. One method

is to query the issuing CA each time to verify the certificate is currently valid. This is

called real-time status checking and may be computationally expensive. Another

technique is for organizations to retrieve the CRE from the CA via a directory service

such as the Lightweight Directory Access Protocol (LDAP). LDAP is a directory

accessing system for an orgganization to assist in the management of certificates. System

administrators can store much of the information required to manage certificates in an

LDAP-compliant directory thereby replacing the real-time status checking at the CA with

a rapid directory search at the local level. An LDAP client connects to an LDAP server

using a TCP/IP connection and can perform authorized functions such as: Read, Add,

Modify, Delete, and Search on specific entries. LDAPs at a minimum typically contain

the CRL and serve as a repository for issued certificates. In this manner, a transaction's

digital certificate can be verified against the revocation list and processing halted if

invalid. Another approach at the organizational level is for the system administrator to

maintain a database of valid certificates such that if the certificate attached to a

transaction is not in the database, then the transaction would not be processed. Of course,

if the organization processes a large quantity of certificates, then the database of valid

certificates can become unmanageable in size resulting in increased access times.

c. Storing and Retrieving Digital Certificates and CRLs

The most common method of storing and retrieving certificates and CRLs

is via the LDAP directory service. Other retrieval techniques include: e-mail, FTP, and

HTFJ P.

18

4. Obtaining a Digital Certificate

The following illustrates a simplified procedure to apply and receive a digital

certificate from a CA using a hypothetical company called "MyCo". There will be minor

differences between respective CAs, however, the principle is the same. Refer to Figure

2.3 below. MyCo provides evidence of its identity, generates a public/private key pair,

and sends the evidence and the public key to the CA. The CA then uses the evidence

provided by MyCo to verify the identity of the entity requesting a certificate. This may be

a superfluous procedure for a free certificate or an extensive verification process requiring

numerous days. It is important to request a certificate with the appropriate level of

identity verification for the intended use.

MyCo
- Provides evidence of

MyCo's identity. Certificate Authority (CA)
-Uses Communicator to 5------I
generate publicpator -t Uses evidence to confirm

Ikey pair. MyCo's identity.

Sends evidence and

public key to CA.
- Keeps private key secret.

MYCO's CertifilCate___________

MyCo's name, address Certificate Authority (CA)
2nd other identifying ÷ Uses information from MyCo.

information . including MyCo's public key.

MyC.o's.p.ubl ..ice... to create MyCo's certificate.

Certificate's validity dates Signs certificate with CA's

SCertifcate's serial number own digital signature and
rCAs nameland other sends certificate to MyCo.

identifying information
i!!!!!.:..!!!:........... C A 's d ig ita l !!!!I!:'--*-

.:.:.:.:.i.:.!...... signature

M/Co can use its certificate as
a"letter of introduction" for
customers who trust the CA
that issued the certificate.

Figure 2.3 Obtaining a Digital Certificate. From Ref. [6].

After the CA has confirmed MyCo's identity, the CA creates a certificate that

includes: MyCo's name; its public key; other information, such as the dates during which

the certificate is valid and the certificate's serial number; and most importantly, the CA's

digital signature. The CA's digital signature allows MyCo to use the certificate as a

"letter of introduction" for customers or others who may not be familiar with MyCo but

who do know and trust the CA. The CA's signature is obtained by encrypting a one-way

hash of MyCo's certificate with the CA's private key. [Ref. 6]

19

5. Key Backup and Recovery

In the event that a user can no longer access one's public key, there needs to be a

measure to recover such a missing key. The first and foremost reason that this may occur

is human forgetfulness. Forgetting one's password can prove disastrous when the system

no longer allows access to your very own public key. Another reason for such a backup

and recovery requirement is that the devices storing the keys may become corrupted.

Without key recovery, encrypted data can be lost forever. It is incumbent upon the

administrator to ensure the appropriate backup and recovery application is available and

executed periodically to ensure ready access to all keys. Again, since the private key

strictly belongs to the user, this key should not be backed up, otherwise non-repudiation

cannot be guaranteed. [Ref. 3]

6. Typical PKI Security Example

Using the background introduced above, the ensuing material illustrates the major

concepts of an arbitrary PMI implementation. In Figure 2.4 below, a user generates his

public-private key pair and sends his public key to the CA to obtain a digital certificate.

For simplification, assume the RA is part of the CA. The CA verifies the identity of the

user and issues a digital certificate and places a copy in the directory for others to access.

Local Registration

Authority,',

Public Key Infrastructure

CA !rve

Public
Key

Certificate

Certificat(

Use Directory

Figure 2.4 A general PMI system.

20

To continue with the example, assume the user desires to send an encrypted e-

mail to another user. As illustrated in Figure 2.5, a user can obtain the recipient's digital

certificate containing the recipient's public key. By encrypting the e-mail using, the

recipient's public key, only the individual holding that recipient's private key can decrypt

the e-mail. Given that there has been no compromise of the private key, only the

recipient would be able to decrypt and view the e-mail.

Requqest/Receive
Sender Recipient's Public ey Directory

EncryptedIMessage
Receive e-mail and decrypt

Recipient with Private Key

Figure 2.5 Encrypting e-mail.

C. A GENERAL OBJECT SIGNING SYSTEM

The number of Internet users is increasing exponentially. Most users are fluent in

acquiring known software from trusted manufacturers through trusted sources such as

catalogs or retail stores, but they have little or no experience downloading software from

the World Wide Web (WWW) or gauging what effect that software could have on their

systems. Organizations are deploying intranets and extranets, tying together employees,

customers, suppliers, and service providers who use very different kinds of software on

very different platforms. For intranets and extranets, as for the Internet, reliable cross-

platform authentication, distribution, and access control for software are becoming more

important every day.

Unfortunately, potential security problems arise when data is distributed

electronically. This data may be object code, source code, or any other form of data. To

address these problems, object signing technology was developed as a means of

establishing trust for downloaded software. It allows users to receive downloaded files

21

with a high confidence level that the content is identical to the original content on the

server. Object signing uses standard techniques of public-key cryptography to let users

get reliable information about code they download in much the same way they can get

reliable information about shrink-wrapped software. It lets end users identify who

.published software and verify that the software has not been tampered with or altered

since the time it was uploaded. Object signing allows developers to digitally sign any

type of file that they may wish to distribute over the Internet. Additionally, browsers

provided by Netscape and Mvicrosoft have the built-in capability to handle signed objects

and process them according to the user's predefined policy. Within the browser, it can

also inform users if Java applets are requesting special privileges, such as writing to the

hard disk. By presenting this information to users, users can then make informed

decisions about downloaded software; for example, whether to allow a signed Java applet

to access specific system resources [Ref. 11]i. To use signed objects with either of the

browsers, you must have an object signing certificate. These certificates can be

purchased from third party sources such as VeriSign, or if the organization is running

their own certificate server (acting as their own CA), then they would inherently have the

capability to issue these certificates.

1. Netscape Object Signing

The Netscape Object Signing system is analogous to the Microsoft Authenticode

system despite their incompatibility. Most object signing systems can be characterized

with similar traits with modifications to reflect that organization's specific desires.

Understanding the primary concepts of this popular object signing system will enable the

reader to comprehend the hybrid PGP implementation incorporated into the Bamboo

software. Much of the information pertaining to this system was extracted from Ref. [6].

Communicator 4.0 was the first Netscape browser with object signing

functionality built in. It was incorporated to help users and network administrators

implement decisions about software distributed over intranets or the Internet--for

example, whether to allow Java applets signed by a given entity to access specific system

resources on specific users'machines.

22

a. Introduction to Netscape Object Signing

Objects signed by the Netscape Object Signing technology may be any

kind of file type. Netscape provides tools that can associate a digital signature with any

kind of software object. When a user signs an object utilizing one's private key, the

generated digital signature is used in future processing to confirm the identify of the

signer and detect tampering that may have occurred since signing (content integrity).

The ability to associate a digital signature with a particular entity allows users and

network administrators to decide which sources of software they want to trust and to

identify software signed by those entities.

b. Features of Netscape Object Signing

By combining the identity and content integrity verification techniques

with Java, Netscape has also created a way to control potentially dangerous access by

software to local system resources outside of the Java sandbox. The user or network

administrator determines what kind of access should be granted or denied for what

signers, and Communicator keeps track of the details. [Ref. 6] This privileged access

approach may not be prevalent in other object signing schemes. By granting the signed

software the ability to perform its required operations without the hindrance of

restrictions promulgated by the Java-specific sandbox, it reduces the chances of

accidental or malicious damage to the user's system either accidentally by the user or by

granting the signed software full-blown access. Another unique feature implemented in

Netscape Object Signing technology based on the access privileges, is the capability for

the browser to download and execute a signed file while simultaneously granting the

appropriate privileges such that the browser can install required plug-ins or other software

updates.

c. Archive Files

Netscape Object Signing makes use of the cross-platform Java Archive

(JAR) format. JAR archive files, which are compatible with standard cross-platform ZIP

files, provide a way to associate digital signatures with specific files in a directory

without making any changes to those files. Because the JAR format does not require a

digital signature to be stored physically inside the file with which it is associated, JAR

23

archives can be used to package and sign any kind of files, including file types that have

not yet been invented. Users can download signed objects on any computer that can run

Netscape Communicator.

d. How Object Signing uses Public Key Cryptography

As depicted in Figure 2.1 above, Netscape Object Signing utilizes the

private-public key pair. Private-key encryption is very useful since it allows one to use

their private key to sign data creating a digital signature. Communicator (with the aid of

the public key) can then confirm that the message was signed with the appropriate private

key and that it has not been tampered with since being signed. [Ref. 6]

The key pair used for object signing is identical to the key pair used in

PKI. Prior to applying for an object signing certificate from a CA, Communicator

generates a public key and the corresponding private key. The certificate issued by the

CA binds the public key to the name of the requesting entity. Communicator recognizes

several kinds of certificates, including those used to identify e-mail recipients and

websites. When you receive a signing certificate for your own use, it is automatically

installed in your copy of Communicator. Communicator also supports the public-key

cryptography standard known as PKCS #12, which governs key portability. This means,

for example, that you can move signing certificates from one computer to another on

credit-card-sized devices called smartcards. Signing tools such as the JAR Packager allow

you to choose which signing certificate you want to use at the time of signing. [Ref. 6]

To confirm a signer's identity, Communicator relies in part on its list of

accepted CAs. A CA can be a publicly recognized independent company such as

VeriSign, or it can be an individual or department recognized only within a corporation's

intranet or extranet. The user can add CAs to Communicator's list of CAs and, if

necessary, delete from the list any CAs that the user decides not to trust for the purpose of

validating a digital signature. If a signer's signing certificate cannot be traced back to one

of the CAs on Communicator's list, that signer's digital signature cannot be validated.

e. Digital Signatures in Netscape Object Signing

Netscape Object Signing technology utilizes a signing tool to sign an

object such as JAR Packager, Page Sign, or Netscape's recently released Sign Tool. This

24

object is first input into a one-way hash routine and results in a fixed length hash. The

resultant hash is encrypted with the private key. The encrypted hash and related

information are collectively known as the signer's digital signature. Again, refer to Figure

2.1 above for an illustration. Finally, upon receiving the signed object, Communicator

hashes the object and compares the new hash against the original hash to verify content

integrity of the object.

An individual file can potentially be signed with multiple digital

signatures. For example, a vendor might sign the files that constitute a software product

to prove that the files are indeed from a particular company. A network administrator

might sign the same files with an additional digital signature based on a company-

generated certificate to indicate that the product is approved for use within the company.

Figure 2.6 illustrates a file called "MyCoFile.class" which has been signed by MyCo's

private key using a signing tool. The signing tool will prepend the digital signature for

later content integrity verification and the MyCo digital certificate. Once the object is

signed, it may be placed on a web site for download.

7-I- 0 MyCo's private key M~l etfct

MyCo's public -key E-D

JAR file

MyCoFile.class i

MyCols digital signiature:I
for MyCoFilie.dss

MyCo's Certificate I1

MyCo's public key w 0 "Letter of

A digital introduction"

! gatureJ

Web site

Figure 2.6 Signing an Object. From Ref. [6].

Once the signed object is stored on a web site, it becomes available for

download by various users. Figure 2.7 illustrates a signed jar file downloaded from a

website. A few assumptions made for this figure include: assumes certificate for the CA

that issued the signing certificate is in Communicator's list of accepted CAs, the JAR file

25

contains only one signed file, and that the signer is not known to the user.
Web site Certifiate
o_ Authority

Us (CA)

downloads Certificate for trusted
JAR file CA is pre-instlled

Cn Communictor

O HMyCo~ile. class
Communicatordigitallsignature.-SMyCo for MyCoFile.dass •

, public key to u
validate MyCos jC ommuanicatoCr uset,•,t, ycc, !:•ii•My !C-A• Cr ifCAicateck
digial signature MyCos public key C validate CAs"lecer :. 's Certificate

___________________________ • of introduction"
____CANs digitalz= CA's public key

iig-ature 4=CA's dig=it =.=
s. .nature

Communicator informs
user that applet
is signed by MyCo

Figure 2.7 Downloading a signed object. From Ref. [6].

The following steps are shown in Figure 2.7 [Ref. 6]:

1. The user downloads the JAR file.

2. Communicator locates the file MyCoFile.class and the corresponding

digital signature in the JAR file. Communicator then uses MyCo's

public key, which it gets from MyCo's "letter of introduction" (MyCo's

signing certificate) in the same JAR file, to validate the integrity of

MyCoFile.class. At this point, Communicator has established that

MyCoFile.class has not been tampered with since it was signed, and

that the public key in MyCo's certificate corresponds to the private key

used to sign the file. However, MyCo's identity has not yet been

validated; the certificate might have been created by someone

attempting to impersonate MyCo. To be sure that the signing

certificate really was issued by the specified CA to the real MyCo,

Communicator must also perform step 3.

3. Using the public key from the specified CA's certificate in its list of

CAs, Communicator validates the CA's digital signature for MyCo's

certificate.

26

4. If steps 2 and 3 are successful, Communicator informs the user that the

applet is signed by MyCo. If MyCo's public key cannot validate

MyCo's signature for the signed file, or if the CA's public key cannot

validate the CA's signature, Communicator informs the user that the

signature is invalid.

When several levels of GAs are involved, Communicator can use the same

technique to check the validity of not only the CA's public key, but also the public key of

the CA that issued the first CA's certificate, and so on. This process of checking the

certificate chain continues until Communicator reaches a CA that is included in its list of

accepted CAs. If Communicator cannot successfully traverse the certificate chain and

identify a CA in its list, it won't accept the original digital signature. [Ref. 6]

2. Other Object Signing Systems

Netscape Object Signing was used to illustrate a general object signing system

simply because of the explicit documentation available and familiarity based upon an

independent project incorporating the technology. Even though other systems were

reviewed such as Microsoft Authenticode, PGP, and various PMI packages capable of

object signing, the necessary detail was not easily extractable for illustration purposes.

Additionally, it establishes a baseline from which to compare the selected system.

D. SUMMARY

Understanding the concepts introduced thus far will enable the reader to better

comprehend the requirements, selection criteria, and implementation specifics for the

object signing system in Bamboo. It is also important to recognize that Public Key

technology is emerging and has not emerged. The products are maturing and currently

have limited integration between systems. Additionally, despite the rapid growth in

Public Key implementations, especially in commercial organizations, there is limited

operational experience in the field. Ideally in the future, vendors of Public Key

technology will deliver integrated and interoperable systems.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

III. SELECTION

Mn order to select an object signing system, one must define the functionality

required of such a system and identify the criteria by which it is bounded (constrained).

The functionality can be formalized via a software requirements specification and the

implementation specifics via a design specification. These will enable the developer to

determine the user's needs and produce a suitable system to meet these needs. Later,

additional criteria may be attached to the system restricting the overall design and

implementation of such a system, and tradeoffs may need to be made. For instance,

resources available to expend toward such an implementation, whether they are one-time

or recur-ring allocations, need to be assessed prior to implementation. Some obvious

examples include financial expenditures, personnel requirements to operate and maintain

the system, and the space required for additional personnel or equipment. This procedure

is not as trivial as may appear.

When researching available systems via direct vendor communication or through

web research, the tendency is to acquire the notion that the implementation is relatively

benign with respect to initial installation costs and projected maintenance. "Turnkey

solution", "low or no maintenance", and "cost savings" are phrases that appear in product

literature. However, since the ultimate goal is to identify a suitable system, one must

discard the banter, locate acceptable systems that best achieve the specified requirements,

install the selected system, and ensure it satisfactorily meets the desired functionality. If

unsuccessful, then recurse on the above procedure to identify another system, or

alternatively loosen constraints.

The following sections detail the functional requirements identified prior to

system selection and some of the research on the multitude of systems available.

A. SOFTWARE REQUIREMENTS SPECIFICATION

The Software Requirements Specification was submitted in June 1999 and

describes the requirements set forth for a module signing application in Bamboo. It

consisted of two parts: requirements analysis to understand the client's (user's) needs and

constraints, and requirements specification to document the requirements. These

activities are logically distinct but occur together since one must identify the user's needs

29

and constraints in order to properly document them. This thesis summarizes some of the

pertinent information contained in the original document and provides the reader with the

original problem statement.

1. Original Stated Purpose

The primary goal of this application is to develop a process where users can

download and upload software modules using Bamboo and receive a degree of content

integrity and user authentication. This application is required to counter any malevolent

threat against software distributed while using Bamboo.

2. Requirements

Two of the primary functional requirements are:

"* content integrity

"* user authentication

The primary non-functional requirements (constraints) are:

"* maintaining performance (speed and simplicity)

"* portability

"* cost

Since module signing in Bamboo is an optional feature, a failure to maintain any

of the following will surely preclude the endorsement by end-users: efficiency, low or no

additional cost, minimal training, simple installation and use. Additional functional and

non-functional requirements are highlighted below.

3. Rationale

Bamboo allows modules to be dynamically loaded from a server. Additionally,

clients can upload their respective modules to a server for mutual access by other clients

(dependent upon granted permissions). However, there is currently no degree of

assurance that a downloaded module is identical in content to the module initially stored

on the server. The module may have been tampered with during transit to and from the

server or it may have been altered due to noise during the transmission sequence.

Additionally, establishing confidence that the client uploading a module is actually the

person claimed to be is of relevant importance. By using signatures, one can establish

authorship of a respective module.

30

A full-fledged PKI system would more than solve the implementation issues

desired for Bamboo. The drawbacks to such an implementation are primarily due to the

nature of Bamboo; it is freeware for public use and dissemination. Bamboo loads

modules in an expedient manner; these significant traits would be lost with time lags

associated with full encryption and decryption inherent in a PKI system. Additionally,

some clients may utilize Bamboo-with no inclination to sign modules. The primary

drawback to a full PKI system is the expense associated with installation and

maintenance.

4. Scenarios

To further delineate the required functionality of the module signing application,

the following scenarios have been formulated. The scenarios are divided into "usual" and

"Ccounter-malicious" scenarios; the "usual" scenarios are designed to illustrate normal

procedures performed by a user and the "counter-malicious" illustrate implemented lock-

outs to prevent a detrimental or undesired action. These scenarios present the principal

user requirements to the reader.

a. Usual Scenarios

" User uploads created module to server after signing the module then

subsequently downloads the same module from the server. This

represents the "usual" mode of operation when a developer will

consistently download his own module, make modifications, test

changes, sign it, then upload it again. See Figure 3. 1.

Signed Module

Server User
Signed Module

Figure 3.1 Normal Download of a Signed Module.

"* User is running Bamboo when a specific module is required for

dynamic load. Bamboo dynamically loads module and checks for

31

content integrity similar to Figure 3.1 above. Upon verifying the

content integrity, processing proceeds. See Figure 3.2.

Signed Module

Server User

Figure 3.2 Dynamic Download of a Signed Module.

*User A physically gives his signed module to User B. User B decides

he "trusts" the module and would like to attach his name along with

User A's. User B "signs" the module and returns the module to User

A. User A uploads the module to the server with both names attached.

See Figure 3.3.

Signed Module by AB Signed Module by A 1

D3.D

User A's User A 2. DUser B
Server

Signed Module by AB

Figure 3.3 Multiple Signatures per Signed Module.

*User downloads an "unsigned" module from the server (considered

"unsafe"). Upon receipt of the "unsigned" module, the user will be

warned prior to unzipping and unarchiving the file that the user

assumes any risks associated with using an "unsafe" module. User is

provided the option of deleting the file prior to these operations. See

Figure 3.4.

32

Unsigned Module

..... Delete

SererUser Keep

Figure 3.4 Download of an Unsigned Module.

b. Counter-malicious Scenarios

*User downloads a module from the server and the module's hash does

not match the prepended hash within the module. Module is

considered "unsafe" and is deleted immediately. This module may

have been tampered with in transit from the server to client and has

content integrity problems. Recommend reattempt download. See

Figure 3.5.

Signed Module Hash
Mismatch

. Delete

Server User

Figure 3.5 Mismatch on Hash Value; Content Integrity

Problem; Module Deleted.

*User downloads a signed module but does not possess the signer's

public key for digital signature verification. The application will query

the user to determine if the module shall be unzipped and unarchived

prior to further processing, or if the user desires to delete the module.

See Figure 3.6.

Signed Module
Do not possess
signer's Public

Key, 0 Delete
Server User 1b'Keep

Figure 3.6 User does not Possess Signer's Public

Key for Digital Signature Verification.

33

*User uploads a module to the server. Enroute to the server, the module

is tampered with (modified). Upon downloading the same module, a

user receives an "unsafe module" error message. Since the module has

been tampered with, the digital signature in the original module will

not match the new signature since certain values have changed. See

Figure 3.7.

Tampered Signed
Module Signed Module

Server User A
Tampering
occurs here.

M6amatch~edLIII]Hash
Tampered Signed .e J0 Delete

Module

K eUserB Ke

Figure 3.7 Modified Module's Digital Signature will

not match new Hash Value.

5. Requirements Specification

The requirements specification provides the' necessary detail to assist the

developer in implementing the desired functionality specified above. A few functional

and non-functional requirements were previously mentioned and some general concepts

pertaining to Bamboo were introduced in Chapter I. Since object signing primarily

involves file content verification and manipulation, it is also necessary to define the

concepts of module andfile type in Bamboo.

A module can be just about any sub-directory in the Bamboo file system. All the

code and data files pertaining to this module reside inside this sub-directory. The current

Bamboo "archive" command creates a file with a '.tar.gz' extension after archiving and

zipping a module. It is analogous to the JAR file format.

Associated with a module is a file type. The file types in Bamboo are user-

specified as data, object, or source during the archive operation. Ideally, the software

34

should be able to inspect the module contents to affirm the specified type based on

specific keyword searches.

Modules loaded from a server via Bamboo consist of either "signed" or

"unsigned" executable modules, "unsigned" data modules, and "signed" or "unsigned"

source code modules. An "unsigned" executable or source code module is uploaded by a

client choosing not to "sign" the module. Any "unsigned" module is deemed "unsafe",

however, data modules should remain "unsigned". Bamboo modules are stored with the

following form in the user-specified '.bamboo/cache' directory of the end-user's

computer: 'filtename.platformjtype.bar". For instance, if a'user on an SGI Irix system

archives a module called "myModule", the resultant signed archive module would be

saved in the '.bamboo/cache' directory with the name: "myModule.sgi.bar". The '.bar'

signifies Bamboo ARrchive module.

a. Functional Requirement Specifications

"* Purpose: Content integrity - ensuring a module is identical in content

at the server and the client.

Input: Bamboo module directory path.

Process: Presently, the Bamboo "archive" command will tar a

directory and gzip a file ('.tar.gz' extension). During the archive

operation, hashing the '.tar.gz' file and prepending the encrypted hash

(digital signature) onto the file provides a means for verifying data

integrity. When the module is downloaded, its unique hash value will

be compared with the prepended digital signature to ensure a match. If

there is a mismatch, then the module is different from the time the

"archive" command was executed prior to upload.

Output: '.bar' file with attached digital signature.

"* Purpose: User authentication - signing of modules for authorship.

This is directly related to previous functional requirement and requires

the hash to be computed then signed by the signer's private key

resulting in the digital signature.

Input: Bamboo module directory path or '.bar' file.

35

Process: Provide means for user to "sign" module and attach one's

name to the module. The name is also included as part of the file so

that it can be used as an index into the recipient's set of keys or

certificates to identify which public key to extract for decryption.

Process entails using user's private key to encrypt prepended hash

value on '.bar' file (do not encrypt the file contents).

Output: '.bar' file with digital signature of signer and name attached.

"* Purpose: Allow multiple signers of a single module.

Input: '.bar' file with zero or more names/signatures attached.

Process: Provide means within Bamboo for user to add one's name to

a module. The module may have names already attached to the

module.

Output: '.bar' file with additional name attached.

"* Purpose: Determine type of module downloaded or uploaded:

"signed" or "unsigned" executable, "signed" or "unsigned" source

code module, or data module ("unsigned").

Input: '.bar' file.

Process: Provide means to accept user-specified file type and to verify

via content inspection.

Output: Upon file type determination, Bamboo will be able to

process module contents as required.

b. Non-functional Requirement Specifications (Constraints)

"* Usability requirements - Object signing feature should not deter

simplicity and usability of Bamboo and should be almost invisible for

those not utilizing the security application.

"* Performance requirements - Performance should not be hampered

since only the hash value is encrypted and decrypted and not the

module contents.

"* Reliability requirements - Reliability is crucial to ensure content

integrity and authorship of modules. Many recently released software

36

applications have not passed the "test of time" toward certification or

acceptance.

* Portability requirements - Must maintain the current portability

effort of Bamboo.

* Overseas usability requirements - Must be able to either export the

system for use outside of the United States (U.S.) or have the ability to

legally acquire the system for Bamboo's International users. Current

U.S. export laws deem certain cryptography systems as illegal for

export other than to Canada. If the system cannot be exported outside

of the U.S., then a compatible system must be available o utside of the

U.S. for foreign use.

0 Cost requirements - Must identify initial and recurring annual

expenses for system installation, equipment appropriation, and other

expenses associated with the user such as certificate requirements. As

stated before, an open-source package must maintain the nearly

freeware characteristic to end-users with maximum benefit, especially

for an optional software enhancement such as module signing.

* Personnel requirements - No additional manpower requirements.

With the requirements identified and documented in the Software Requirements

Specification, the subsequent step was to research and identify suitable systems.

B. COMMERCIAL SYSTEMS AVAILABLE

Many commercial systems are available on the market today with VeriSign as the

leading vendor of PKI technology. A simple filter used to exclude most commercial

systems is to review the pricing model for available systems. Figure 3.8 is a chart created

from data in Ref. [12] providing a 1998 pricing comparison between Entrust and

VeriSign. The data is for the lowest cost scenario employing digital certificates for user

authentication in a strictly browser environment. The price covers a five-year time span

and is limited to only 5000 certificate holders. A quick glance at the data and one can

compute an annual cost exceeding $100,000, definitely cost-prohibitive for the scope of

this thesis.

37

Five Year Total Cost of Ownership of Basic
Certificates for Web Authentication (5000 Users)

1,000,000'

800,000-1/

600,000

400,000-1/

200,000-

PK1 System and Maintenance and TtlC s
Installation Support

* Entrust 85,300 584,103 669,403

* VeriSign 177,406 643,921 821,327

Figure 3.8 Entrust vs. VeriSign Cost Comparison for Five Years. From Ref. [12].

Having quickly eliminated the majority of commercial PKI systems, it became

time to explore the opposite extreme, that of freeware.

1. Other Systems Investigated (Chronological Perspective)

Following the suggestion of Professor Brutzman and Kent Watsen at the Naval

Postgraduate School, the focus was redirected toward investigating Pretty Good Privacy

(PGP), a product from Network Associates. PGP is by far the most widespread software

in use for digital document signing. It is freely available all around the world, but you

need to download your copy from an appropriate place: outside the U.S. if you are not a

U.S. citizen, and from MIT if you are [Ref. 13].

In July 1999, PGP v6.5.1 Command Line was released as freeware for non-

commercial use. It provides the required functionality such as private/public key

encryption, digital signatures, and numerous other features. There is also a freeware

Certificate Server available for management of PGP public keys. Since PGP already has

the largest user-base and PGP v6.5.1 is compatible with the latest releases, it appeared to

be the ideal choice for implementation.

PGP v6.5.1 was subsequently layered on top of Bamboo and the current

"unarchive" operation was modified in the bbModule.c++ file. Additionally, the

archiveApp.c++ file was changed to reflect the new requirements established for the

38

"archive" command; it used PGP v6.5.1 to provide digital signatures with multiple

signatories.

The primary operating systems utilized for testing during this period were

Windows NT and SGI Irix. Since PGP v6.5.1 was a recent release with a version for

NT/95 and another version compatible with AIX, HPUX, SUN Solaris for SPARC and

Linux Red Hat, it was necessary to contact PGP Technical Support for information

pertaining to the anticipated release of other Unix variants. To much chagrin, SGI Irix

was not on Network Associate's list of future operating systems to include.

After reverting back to the WWW for further research, one website

(http://wls.wwco.com/security/myca.html) provided one developer's experience in

establishing his own CA to issue certificates using the freeware SSLeay software. One of

its links is to the Cryptsoft website (http://www2.psy.uq.edu.au/-ftp/Crypto) providing

the background and software related to installation. Reviewing the "Frequently Asked

Questions" section on the Cryptsoft website provided a wealth of vital information, yet

did not provide clear guidance on legal issues in and outside of the U.S. and further

recommended consulting a lawyer. It became apparent that this system may have

beneficial ramifications in the near future if export laws change. (Export laws changed in

January 2000; see Chapter VI.) At the time, cryptography was entangled in a legal mesh

and export restrictions were difficult to decipher.

In September, the Clinton administration proposed that "retail" encryption

hardware and software of unlimited strength could be exported without a license after a

"one-time technical review" and some reporting on whom the products are sold to.

"Custom" products would have some restrictions on sales to foreign governments and

known terrorist or criminal organizations. Products with key lengths of 64 bits or less

would be entirely decontrolled. [Ref. 14] With recent changes in export laws, the SSLeay

product is a strong candidate for further research and is discussed in Chapter VI.

In September 1999, the popular GNU open-source community released GPG vl.0,

the GNU Privacy Guard (http://www.gnupg.org). This security package is similar to PGP

and compatible with both PGP 2.x and PGP 5.x. It is designed as freeware even for

commercial use. Akin to PGP v6.5.1, a key server is included designed for storage and

39

distribution of keys. One major benefit of this system is the interoperability between

older PGP systems, a characteristic not inherent between all PGP releases. Additionally,

it employs the latest security technology at an amenable price, free for all users.

After compiling the source code downloaded from the GNU website, the software

was tested on the SGI Irix operating system. The first step with any module signing

package is to generate the public and private keys. The key generation procedure failed

repeatedly. Further research on the website revealed that this specific "key generation"

bug had existed for Irix operating systems in the beta release since the previous Spring

and was still present in the GPG v1.0 release. After deliberating whether to devote an

indeterminable amount of time to resolve the bug or pursue another avenue, the latter was

chosen. The primary reason was that a brand new release usually has other unidentified

bugs present that may deviate progress from the predetermined time schedule; focus

reverted to another implementation.

C. SELECTING A SYSTEM

Researched systems were grouped into two general categories:

"* System requiring annual X.509 certificate purchase

"* In-house implementation of CA

1. X.509 Certificate Systems Revisited

In Chapter II, Netscape Object-Signing technology was introduced as a basis for

understanding the principles of module signing. With the Netscape tools or even the

Microsoft tools, a developer can produce the required code to perform the authentication

and content integrity desired in a module signing system. However, one of the drawbacks

to utilizing either of these is the need to purchase certificates. Current pricing for an

object signing certificate at VeriSign is $400 annually--a price which may deter many

end-users from even considering using the "optional" module signing application.

2. In-house CA System

In-house CA systems can be further divided into two separate categories, X.509

and PGP. The primary differences are discussed in Chapter IV. Briefly with respect to

implementation, PGP systems have been in force worldwide for years and have an

established user-base with strong open-source technical support. The freeware in-house

40

X.509 CA systems are relatively new with export restrictions (during selection time) and

require extensive technical know-how and overhead to implement and support on a daily

basis.

The cost versus benefit tradeoff needs to be analyzed in order to make a

determination as to how much security one can afford in time, personnel, and equipment.

Again, the intent is to provide a determinable degree of confidence and security with

respect to signed modules used by end-users of Bamboo. This subjective matter will be

broached further when risks of PKI technology and the implemented system are discussed

in Chapter V.

3. Selection

The MI1T website ([Ref. 13]) is one of the primary sources for the latest PGP

software available as freeware, non-commercial use. PGP v2.6.2 is the "command line"

predecessor to the latest release, v6.5. 1 (v6.5.2 subsequently released in October 1999).

It was the obvious choice to layer on top of Bamboo since it provided the same

functionality with just a few restrictions such as key length, a sometimes hastily used

quick measure of encryption strength. However, it is still capable of generating keys of

1024 bits. Additionally, the PGP International website ([Ref. 15]) has a compatible

version, PGP v2.6.3i.

The PGP Public Key Server software available via MIT has been modified and

implemented as the Bamboo PGP Public Key Server. It serves as the central repository

for public keys in the Bamboo system and provides a medium by which end-users can

access other keys and store their own key. One beneficial feature associated with the free

key server software is that an organization can establish their own in-house key server

independent of the Bamboo PGP Key Server and obtain the same key management

functionality within the confines of the organization.

In summary, there exist a wide array of systems available. The Software

Requirements Specification proved invaluable in defining the problem and eliminating

certain systems. With the selection made, implementation became the next critical task.

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

IV. IMPLEMENTATION

PGP v2.6.2 is available at Ref. [13] for U.S. and Canadian residents. The

International version PGP v2.6.3i is available from Ref. [15]. Both versions have been

tested under each of the main operating system variants, Windows NT and Unix.

Appendix A covers details for installing and compiling the PGP software, how to test the

installation, and how to generate and store your PGP keys locally. Additionally,

procedures are outlined to archive and sign modules via Bamboo, transfer a module to a

server via FTP, download a signed module followed by digital signature verification, and

finally, procedures to store and retrieve PGP public keys on the Bamboo PGP Public Key

Server (key server). Appendix B is the reference manual for the key server administrator.

The selected version of PGP is a command-line package. Many of the PGP

invocations are performed via Bamboo, however, the user requires familiarity with many

of the command-line key management commands to perform administrative functions

such as generate, disable, view, and revoke. Before highlighting the PGP software

specifics, the following general discussion is provided as an introduction to PGP v2.6.2.

The information was extracted from Refs. [13, 16, 17] and is suggested as recommended

reading.

A. PGP KEYS

The two most common certificate types are PGP and X.509. The most salient

differences are:

"* PGP certificates can be created immediately while X.509 certificates require a

CA to issue them and typically with an annual fee.

"* PGP certificates can support more than one name for the key owner while the

X.509 certificates can only bind a single name to the public key.

"* PGP certificates can have more than one digital signature attesting to the

certificate's validity while X.509 can only support one, the CA's.

The differences listed above, while providing flexibility, may be construed as

PGP's greatest drawbacks. Even though PGP provides rapid certificate generation with

multiple names -and signatures per certificate, from a security standpoint it is comforting

43

to have only a single CA attesting to the authenticity of an individual, especially in

situations with legal ramifications.

Most secure business applications use an X.509 certificate-based scheme. X.509

has a rigid structure, ASN.1 encoding, and a single issuer (CA). PGP is a flexible
"wallet" of signatures over specific attributes using RADIX-64 encoding [Ref. 16].

Digital certificates are just one small component of the bigger PKI picture, but are the

fundamental building block that can limit or extend the overall capabilities of a secure

infrastructure. [Ref. 18]

PGP keys are kept in individual "key certificates" that include the key owner's

userlD (usually name and e-mail address), a timestamp of when the key pair was

generated, and the actual key material. Public key certificates contain public key

material, while secret (private) key certificates contain secret key material. Each secret

key is also encrypted with its own password, in case it is stolen. A "keyring" contains

one or more of these key certificates. Users possess two separate keyrings, a public and

private keyring, which are used as the principal method of storing and managing keys.

These keyrings facilitate the automatic lookup of keys either by keyID or userlD. A

keyID is an "abbreviation" of the public key (the least significant 64 bits of the large

public key). When this keylD is displayed, only the lower 32 bits are shown for further

brevity. An individual public key may also be temporarily stored in a separate file to send

to an end-user for placement on their public keyring. [Ref. 16]

1. Key Generation/Local Storage

To generate a unique public/private key pair, type "pgp -kg" (key generation) and

answer the prompts with regard to key size, userlD, and pass phrase. For userlDs, follow

the convention: "first-name MIl last-name <e-mail address>". Spaces and punctuation are

allowed in the userID. PGP asks for the pass phrase to protect your secret key in case it

is compromised. No one can use the secret key without this pass phrase. The pass phrase

is like a password, except that it can be a whole phrase or sentence with many words,

spaces, punctuation, or anything else. Do not lose the pass phrase-it is unrecoverable if

lost and renders the secret key useless. Figure 4.1 below illustrates a sample

public/private key generation.

44

CQpgp262>pgp -kg
Pretty CGxd P1ivacy(tm) 2.6.2 -Public-key encption for the rmsses.
(c) 1990-1994 Philip Zimmerinn, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software nay be restricted by the U.S. government.
Current time: 2000/01/19 15:22 GMT
Pick your RSA key size.

1) 512 bits- Low conxrcial grade, fast but less secure
2) 768 bits- High cmercial grade, medium speed, good security
3) 1024 bits- "Mvlitary" grade, slow, highest security

Choose 1, 2, or 3, or enter desired number of bits: 3
Generating an RSA key with a 1024-bit moxdulus.

You need a user IDfcr your public key. The desired form fer this
user ID is your name, followed by your E-mail address enclosed in
<angle brackets>, if you have an E-nmil address.
For example: John Q. Smith <12345.6789@compuserve.c-on>
Enter a user ID for your public key.
John T. Doe <doe@cs.npmvy.nil>

You need a pass phrase to protect your RSA secret key.
Your pass phrase can be any sentence cr phrase and rmy have nmny
words, spaces, punctuation, or any other printable characters.

Enter pass phrase:
Enter same pass phrase again:
Note that key generation is a lengthy process.

We need to generate 768 random bits. This is done by neasuring the
time intervals between your keystrokes. Please enter some random text
on your keybxard until you hear the beep:

0 * -Enough, thank yoa
.................... ****

Key generation completed.

Figure 4.1 Key-pair Generation.

The public/secret key pair is fabricated from large truly random numbers derived

mainly from measuring the intervals between keystrokes with a fast timer. The software

prompts the user to enter random text to help it accumulate random bits for the keys. The

user should provide keystrokes that are reasonably random in timing and different in

content since some of the randomness is derived from the unpredictability of the content

typed.

The generated key pair will be placed on your public and secret keyrings,

pubring.pgp and secring.pgp respectively. Later, the "pgp -kxa" (key extract ASCII

format) command may be executed to extract (copy) your public key to a separate public

key file suitable for distribution via e-mail to other users or for storing on the key server.

45

For instance, Figure 4.2 illustrates the extraction of the public key previously created and

stored in an ASCII text file called doeKey.asc (note: specifying the '.asc' extension is

optional).

C:\pgp262> -k4= doe
Pretty GCxxo Privacy(tm) 2.6.2 - Public-key encryption for the tmsses.
(c) 1990-1994 Philip Zinmermann, Phil's Pretty Good Software. 11 Oct94
Uses the RSAREF(tm) Toolkit, whichi is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software rmy be restricted by the U.S. govemmnmt.
Current time: 2000/01/19 16:08 CMvil

Extracting from key ring: 'pubring.pgp', userid "doe".

Key for user ID. John T. Doe <doe@cs.nps.navymnd>
1024-bit key, Key ID 67468829, created 2000/01/19

Extract the above key into which file? doeKey

Transport armrr file: doeKey.asc

Key extracted to file 'doey.asc'.

Figure 4.2 Public Key Extraction into ASCII Text File.

Even though each secret key is individually protected via its own pass phrase,

never disclose the secret key. Maintain physical control of your secret key, and avoid

storing it on a computer accessible via a network.

2. Storing a Public Key on a Keyring

Another person's public key is the fundamental element required to verify a

signature on a module signed by that individual. To store another user's public key onto

a public keyring, either via e-mail or by downloading it from the key server, obtain the

ASCII version of the public key and store it in a text file with a '.asc' extension. For

example, using Windows NT, access the key server using Explorer extracting a public

key for a fictitious friend Robert Smith. Copy the key material into a Notepad file and

save as "Smithkey.asc". Open a DOS window and execute "pgp -ka Smithkey" (key

add). The PGP software will notify the user that the key has been added to the public

keyring. Follow a similar procedure if using e-mail. Duplicate keys will not be added to

the keyring. Figures 4.3 and 4.4 illustrate.

46

,,FiI& Edit Search Help

Uersion: 2.6.2 j
----- .BEGIN PGP PUBLIC KEY BLOCK--

mQCHAziCQBkAAAEEAHzAUkZabA I JWNEWqSBYmOG6÷E6DdXoWSxaqcrBdad I nCR63
DT 0A6/zyuHcX HxC Jty2HsWJeDfcq dd U33 UuUdl bB H3 DTiTL8P h qUhOHOCYruGuki
gHUIKGu~nxgxBHpISSHIHQjL3Ok4sh6TBS9UI DbenoH3aEHxKsirHiKWqPlAAUR
tCdSb2JlcnQgRS4gU21pdGggPHHtaXRoQGHzLmSwcy5uYXZSLmlpbD4=
=BQzh
- ---- END POP PUBLIC KEY BLOCK -" -

Figure 4.3 Storing Extracted Public Key Information in an ASCII Text File.

Q2pgp262>pgp -ka Snithkey.asc
Pretty CGxxl Privacy(t-n) 2.6.2 -Public-key encryption for the rmasses.
(c) 1990-1994 Philip Zlnnrnn, Phil's Pretty CGod Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. governmt.
Current tin= 2000(01/19 17:29 GMr

Lookdng for new keys...
pub 1024/CA5AA3E5 2000(01/19 Robrt E. Smith <smith@cs.nps.navymril>

Checking signatures...

Ieyfile contains:
1 new key(s)

One or more of the new keys are not fully certified.
Do you want to certify any of these keys yourself (yWN)?

Figure 4.4 Saving a Public Key on a Local Keyring.

3. Checking Validity

One of the most threatening attacks on a public key system is for a perpetrator to

impersonate someone else. Validity is the confidence that a public key certificate actually

belongs to the purported user. Only after a user has assured that a public key belongs to a

specified user (binding) can the user sign the public key on the keyring giving his seal of

approval. If you want others to know that you gave a particular certificate your stamp of

approval, you can export the signed certificate to a certificate server for others to extract

and view. In an organization using PGP certificates without a CA such as this

implementation, a security policy may have to be defined to perform the function of a

CA. One implementation may state that it is the job of the key server administrator to

47

check the authenticity of all PGP certificates and then sign the good ones. This scenario

would ordain the administrator as the final check on certificate binding and the enforcer

of certificate trust. This would entail that each end-user maintain the server

administrator's public key for digital signature verification. Whatever doctrine is

adopted, end-users should always search the key server database and view the latest status

of keys.

a. Manually Verifying a Public Key using the Fingerprint

One way to verify a public key is by confirming the PGP certificate's

unique fingerprint. The 16-byte fingerprint is a hash of the user's certificate and appears

as one of the certificate's properties. Figure 4.5 illustrates the "pgp -kvc" (view

fingerprint of public key) command to view Robert Smith's fingerprint. Contacting

Robert Smith via telephone and confirming the fingerprint characters ensures the key in

fact belongs to Robert Smith.

C\pgp262>Mg -kvc snith
Pretty Good Privacy(tnm 2.6.2 - Public-key encryption for the rnasses.
(c) 1990-1994 Philip Zmrmninn, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSAData Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software uay be restricted by the U.S. governrment.
Curent time: 2000/01/19 20:24 GMI'

Key ring. 'pubring.pgp, looking for user ID "snith".
Type bits/keyID Date User ID
pub 1024/CA5AA3E5 2000/01/19 Robert E. Smith
<smith@cs.nps.navy.nii>
Keyfingerprint= CA6D7AOFB6BBODB7 2491F7CB4E8F0OC

Figure 4.5 Viewing a Public Key Fingerprint for Verification.

Once verification is complete, then sign the public key with your private

key (attaching your approval). By signing the key, other users that trust you will gain the

confidence in this same key establishing a "trusted network". Figure 4.6 shows the

certification of Robert Smith's public key by signing it with the user's private key.

48

C:\pgp262>pgp -ks snith -u doe
Pretty Good Privacy(trn) 2.6.2 - Public-key encryption for the rmsses.
(c) 1990-1994 Philip Zlirrirrmn, Phil's Pretty Good Solfware. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software rmy be restricted by the U.S. government.
Current time: 2000/01/19 21:12 GMT

Looking for key for user 'snith':

Key for user ID- Robert E. Snith <srrith@cs.nps.navy.nifl>
1024-bit key, Key ID CA5AA3E5, created 2000/01/19

Keyfingerprint= CA6D7AOFB6BBODB7 2491F7DCB4E8F8OC

READ CAREFI.LY: Based on your own direct first-hand knowledge, are
you absolutely certain that you are prepared to solernmly certify that
the above public key actually belongs to the user specified by the
above user ID (y/N)? y

You need a pass phrase to unlock your RSA secret key.
Key for user ID "John T. Doe <doe@cs.nps.navy.nil>"

Enter pass phrase: Pass phrase is good. Just a nnnent....
Key signature certificate added.

Make a determination in your owr nid whether this key actually
belongs to the person whom yu think it belongs to, based on available
evidence. If you think it does, then based on your estimate of
that person's integrity and competence in key uanagement, answer
the following question:

Would you trust '?¶rort E. Smith <srnith@cs.nps.navy.mil>"
to act as an introducer and certiIfy other people's public keys to you?
(l=I don't know. 2=No. 3=Usually. 4=Yes, always.) ? 2

Figure 4.6 Certifying another's Public Key on your Keyring.

In Figure 4.7, the "pgp -kc" (view contents and check certifying signatures of

your public keyring) command lists the keys on the user's public keyring and the

certification attached to each. In this example under the "Type" heading, there are two

keys listed as pub. The first public key listed is Smith and the line below it signifies it

has been signed by Doe. Under the "Trust" heading, Smith is listed as Untrusted, and

therefore Doe will not trust any keys certified by Smith (see Establishing Trust section

below).

49

C\pgp262>pgp -kc
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the rmsses.
(c) 1990-1994 Philip Zirnmrrmnn, Phll's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is opyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software rmy be restricted by the U.S. govemnent.
Current tine: 2000/01/19 21:20 GMT

Key ring: 'pulhing.pgp'
Ty bitskeylD Date User ID
pub 1024/CA5AA3E5 2000/01/19 Rober E. Snith <snith@cs.nps.navyrnil>
sig! 67468829 2000/01/19 John T. Doe <doe@cs.npsnavymil->
pub 1024/67468829 2000/01/19 John T. D <doe@cs.nps.navy.nld>

KeyID Trust Validity User ID
CA5AA3E5 umtrusted complete Robert E Smith <sirth@cs.nps.namvynil>

c ultimate John T. Doe <doe@csnps.navy nil>
* 67468829 ultimate complete John T. Doe <doe@cs.nps.navy ni1>

Figure 4.7 Viewing Certifications of Public Keys.

This verification and certification procedure works if one recognizes the

key owner's voice. However, if the key owner is not known or the voice is not

recognized, then another method must be pursued. One other way to establish validity of

someone's certificate is to trust that a third individual has gone through the process of

validating it, whether it be a CA or a third party that you trust. Another important step in

checking certificate validity is to ensure that it has not been revoked.

4. Establishing Trust

You validate certificates. You trust people. More specifically, you trust people to

validate other people's certificates. Typically, unless the owner hands you the certificate,

you have to go by someone else's word that it is valid. [Ref. 13] In most situations, a CA

is completely trusted to validate the identity of an entity requesting a digital certificate. In

some cases, this functionality may be delegated to other entities called "trusted

introducers". The trusted introducers are subordinate CAs. In this manner, the validation

process can be effected by each of the trusted introducers in an accelerated fashion. The

trusted introducers cannot ordain other entities as trusted introducers. A similar process

is used in PKI technology with X.509 certificates where the network of trusted CAs is

established based upon the root CA's signature on subordinate certificates; any certificate

signed by the CA is considered valid to others within the hierarchy. This process of

checking back up through the system to see who signed whose certificate is called tracing

50

a certification path or certification chain. Now that a few new terms have been

introduced, let's investigate the different types of trust models prevalent today.

a. Direct Trust

In this model, a user trusts that a key is valid because he knows where it

came from. All cryptosystems use this form of trust in some way. For example, in web

browsers, the root Certification Authority keys are directly trusted because they were

shipped by the manufacturer. If there is any form of hierarchy, it extends from these

directly trusted certificates. In PGP, a user who validates keys themselves and never sets

another certificate to be a trusted introducer is using direct trust. [Ref. 131

b. Hierarchical Trust

In a hierarchical system depicted in Figure 4.8, there are a number of

"root" certificates from which trust extends. These certificates may be used to certify

certificates themselves, or they may certify certificates that certify still other certificates

down some chain. Consider it as a big trust "tree". The "leaf' certificate's validity is

verified by tracing backward from its certifier, to other certifiers, until a directly trusted

root certificate is found. [Ref. 13]

0
mtItodcr (or root CA)

trutedhirodcer (r CA.)

0 0 1 \00 00

users

Figure 4.8 H-ierarchical Trust. From Ref. [13].

c. Web of Trust

This model is the PGP view of trust. This model is a cumulative trust

model where a certificate might be trusted directly, or trusted in some chain going back to

a directly trusted root certificate or a trusted introducer. PGP uses digital signatures as its

51

form of introduction. When any user signs another's key, that user becomes an introducer

of that key. As this process goes on, it establishes a web of trust.

In a PGP environment, any user can act as a CA. Any PGP user can

validate another PGP user's public key certificate. However, such a certificate is only

valid to another user if the relying party recognizes the validator as a trusted introducer.

(That is, you trust my opinion that another person's key is valid only if you consider me

to be a trusted introducer. Otherwise, my opinion is moot.) [Ref. 13]

Stored on each user's public keyring are indicators of:

*whether or not the user considers a particular key to be valid

*the level of trust the user places on the key that the key's owner can

serve as certifier of other keys

You indicate, on your copy of my key, whether you think my judgment counts. It is really

a reputation system: certain people are reputed to give good signatures, and people trust

them to attest to other keys' validity. [Ref. 13]-

5. Levels of Trust in PGP

The highest level of trust in a key, implicit trust, is trust in your own key pair.

PGP assumes that if you own the private key, you must trust the actions of its related

public key. Any keys signed by your implicitly trusted key are valid.

There are three levels of trust you can assign to someone else's public key:

"* Complete trust

"* Marginal trust

"* No trust (Untrusted)

To make things confusing, there are also three levels of validity:

"* Valid

"* Marginally valid

"* Invalid

To define another's key as a trusted introducer, you:

1. Start with a valid key, one that is either

" signed by you or

"* signed by another trusted introducer

52

and then

2. Set the level of trust you feel the key's owner is entitled.

For example, suppose your keyring contains Alice's key. You have validated

Alice's key and you indicate this by signing it. You know that Alice is a real stickler for

validating keys. You therefore assign her key with Complete trust. This makes Alice a

CA. If Alice signs someone else's key, it appears as Valid on your keyring. PGP requires

one Completely trusted signature or two Marginally trusted signatures to establish a key

as Valid. PGP's method of considering two Marginals equal to one Complete is similar to

a merchant asking for two forms of ID. You might consider Sally fairly trustworthy and

also consider Bob fairly trustworthy. Either one alone runs the risk of accidentally

signing a counterfeit key, so you might not place complete trust in either one. However,

the odds that both individuals signed the same phony key are probably small. [Ref. 13]

For a more comprehensive look at setting a level of trust, see Ref. [17].

6. Certificate Revocation

The basic premise behind certificate revocation introduced in Chapter II is

germane under PGP. Suppose both your secret key and pass phrase are compromised. It

is now necessary to notify other users so that the compromised public key is no longer

used for digital signature verification; the reason is because someone else may be able to

impersonate you. A "key compromise" or "key revocation" certificate must be issued to

revoke the compromised public key. Figure 4.9 illustrates the generation of a revocation

certificate via the "pgp -kW7 (permanently revoke your own key, issuing a key

compromise certificate) command. A user attempting to sign a file with his revoked

private key will be disallowed once the public key is revoked.

53

C'\g262>p -kd doe
Pretty Goo Privacy(tm) 2.6.2 - Plblic-key encryption for the rnasses.
(c) 1990-1994 Philip Zi•mnrmn, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tn) Toolkit, which is copyright RSA Data Security, Inc.
Distrihited by the Massachusetts Institute of Technology.
Export of this software rmy be restricted by the U.S. gowernnrmt.
Current ti=e: 2000/01/19 21:54 GMT

Key for user 1D John T. Doe <doe@cs.nps.navy mil>
1024-bit key, Key ID 67468829, created 2000/01/19

Do you want to pern-ently revoke your public key
by issuing a secret key cmpms certificate
for "John T. Doe <doe@cs-nps.navy.nil>" (y/N)? y

You need a pass phrase to unlock your RSA secret key.
Key for user ID "John T. Doe <doe@cs.nps.navy.nil>"

Enter pass phrase: Pass phrase is good. Just a mnnmnt....
Key compronise certificate created.

Figure 4.9 Creating a Revocation Certificate.

This revocation certificate bears your signature and is made with the same key you

are revoking. By using the same key, it will replace the identical revoked key on the key

server and on any user keyring to which it is added. You should widely disseminate this

key revocation certificate as soon as possible preferably through the "bamboo-users"

mailing list and by extracting the key and storing it on the key server. Others who receive

it can add it to their public keyring, and their PGP software then automatically prevents

them from accidentally using your old public key ever again. You can then generate a

new secret/public key pair and publish the new public key. In Figure 4.10, the revoked

key is extracted into an ASCII text file and printed to the screen.

54

C:pgp262>t) -kxa doe
Pretty Good Privacy(trm) 2.6.2 -Public-key encryption for the n-rsses.
(c) 1990-1994 Philip Zinirrnn Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toollit, which is copynight RSA Data Seairity, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. governnmnt.
Current tid= 2000/01/19 22:03 CMI

Extracting from keyring: W'ping.pgp', userid "doe".

Key for user ID. Johm T. Doe <doe@cs.nps.navy.mil>
1024-bit key, Key ID 67468829, created 2000/01/19
Key has been revoked.

Extract the above key into which file? revoke

Transport arnor file. revoke.asc

Key extracted to file 'revoke.asc'.

Cýpgp262>type revoke.ase
-BECtN PGP PUBLIC KEY BLOCK-
Version: 2.6.2

nrwAziF"rwAAAEEANKxAXdR txe0fpRdbmSxfv81YWY7BIoMYQAvOld4SKO
T'Kpqxtrutc'wR•M5C491KXvda+d6jXYLAU I-dCJ008hWhAt3HN~dBXe+Cel7
CXSSTpoP3cr• egp(ýzx zFK dYlDifkluny&dDhZx BnRogpAAUR
iQCVAwUgOIYypxhL4BnRogpAQEfAP/YfqhlaWI18KhA9xXxBBe+BmNz+kyd
IaZpjBXkA9NHFHAFB1Cva9XhZPBmKO iA moWr +UqVRCSIASEHP+AQdSL
k2XqSSA1nqgXRVyBv.Bk•vtk6g0AbxMYdzvhLssqbiQfl6KgU0aLe+CBK
IOI v3C/ziGOUpaG4gVC4gRG91IDxkb2VAY3MhbBzLIn5hdnkubWlsPg=
=:sPH-S

-END PGP PUBLIC KEY BLOCK-

Figure 4.10 Extracting and Printing the Revocation Certificate.

But what happens if the user can no longer access his private key or if the CA no

longer backs the userID/public key combination on the PGP certificate? With PGP

v2.6.2, the only recourse is to notify as many users as possible that the public key is no

longer valid and should be disabled on their public keyrings (Figure 4.11). A disabled

key may not be used to encrypt any messages, and may not be extracted from the keyring

with the "pgp -kxa" command. However, it is important to point out that it can still be

used to check signatures, therefore it is incumbent upon the user to be aware of the global

status of all keys on his keyrings.

55

C:pgp262>pgp -kd smith
Pretty Good Privacy(tm) 2.6.2 - Phblic-key encryption for the rmsses.
(c) 1990-1994 Philip Zimanrmrnn, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toollkt, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. governnnt.
Current tm: 2000/01/19 22:14 GMT

Key for user Mt Robert E Smith <srnith@cs.nps.navyrnil>
1024-bit key, Key ID CA5AA3E5, created 2000/01/19

Disable this key (y/N)? y

Figure 4.11 Disabling a Public Key on your Keyring.

In the case of Bamboo, one potential mechanism to revoke a user's public key is

to decertify the public key certificate stored on the key server and notify all users via the

"bamboo-users" mailing list. An end-user downloading a signed archive module would

need to ensure that a valid key is still on the key server; this will ensure the end-user is

receiving a verifiable signed archive module.

7. Storing and Extracting Keys at the Bamboo PGP Public Key Server

The Bamboo PGP Public Key Server is discussed in detail below. Its primary

purpose is to serve as a repository for the distribution and management of public keys.

End-users intending to sign archive modules should store their public key on the key

server. This enables other end-users downloading the signed archive modules to perform

a digital signature verification.

a. Storing a Public Key on the Key Server

To store a public key on the key server, it must first be extracted from the

user's public keyring according to procedures outlined in Figure 4.2. Copy the key

information from the ASCII file as in Figure 4.3 and paste the material into the key server

web page under the heading Submit a Bamboo PGP public key to the server. (Currently,

only available in-house (http://hendrix/-smithml/KeyServer.html) but will eventually

migrate to the Bamboo website at Ref. [19]). Depress the Submit button and you have

added a public key to the server for others to access. See Figure 4.12.

56

Subm it a Bam boo PGP nublic key to the server

Here's how to add a Bamboo PGP public key to the server's database:
I. At the command line, execute: pgp -kxa userid filenam e to

extract a public key to a file in ascii form at (see PG P user's
guide for details).

2. U sing your favorite text-editor, open the file created in
previous step and cut-and-paste the ASCII-armored version of
your public B amboo key into the text box.

3. Press "Submit".

The key server will process your request immediately. If you like, you
can check that your B amboo key exists using the extract procedure
above.

E nter A SC lI-arm ored Barn boo PG P key here:

-..... BEGIN POP PUBLIC KEY BLOCK -----
V.-ion: 2.6.2

m. CNA .iaQBkA A A EEA M A UkZabA IJW MEW qaBY .00 6

.ESDdXoW - q ,rSdadinCR63
DTOA 6A/zyuN X Nx ,CJty2N.WJ.5icqddV33ViuUdlbBN3DTITLNPhqUh
ONOCYruGvkI

gM U K Ovenxgx8 Np7 SSHIMQJL3O k4 hSTO. SV I0bnoHM3aENx KnirNI7
KW qPIAAUR
ICdS b2JiInogRa4gU21pdOgSPHNtaXRoO0NzLmSw y5uY XZ5SLmIp
04.

B~z

- END POP PUBLIC KEY BLOCK -----

Fjj

Figure 4.12 Subset of Key Server Web Page for Storing Key.

b. Extracting a Public Key from the Key Server

In order for a user to extract a public key, first access the key server web

page via the link above. Scroll down to the heading Extract a Bamboo PGP public key

from the server. Either type the userlD of the desired key, or if unsure of the userlD, type

a portion of the userlD or name. Depress the Do the search! button and the key server

will perform a pattern match. Once the key server lists all of the "hits", the user can

click on any of the returned hits to view the public key information. Upon locating the

desired key's information, it should be copied into a text editor and saved with a '.asc'

extension. Follow the procedures above under paragraph Storing a Public Key on a

Keyring to place the key onto the public keyring. Now the extracted key should be

verified and is subsequently ready to use for digital signature verification. See Figures

4.13,4.14.

57

Extract a B amboo PGP public key from the server

Here's how to extract a Bamboo PGP public key:
1. Select either the "Index" or "Verbose Index" check box. The

"Verbose" option also displays all signatures on displayed
keys.

2. Type ID you want to search for in the "Search String" box.
3. Press the "Do the search!" key.
4. The server w ill return a (verbose) list of keys on the server

matching the given ID. (The ID can be any valid argum ent to
a pgp -kv(v) com m and. If you w ant to look up a key by its
hexadecimal K eyID , rem em ber to prefix the ID with ox.)

5. The returned index will have hypertext links for every
K eyID , and every bracket-delimited identifier (i.e.
<sm ithm 1@ rs.nins.navy.m il>). Clicking on the hypertext link
w ill display an A SC Il-arm ored version of the listed public
key.

Index: n' Verbose Index:

Search String: I "th.

Show PGP "fingerprints" for Barn boo keys

Only return exact m atches

Figure 4.13 Subset of Key Server Web Page to Extract Key.

Public Key Server -- Index "snith"

Type its/keyMD Date User ID
pub 512/0481F411 2000/01/26 *** KEY REVOKED ***

Marion L Snith <srfnthn @cs.nps.navy nil>
Keyfingeff1int= A1638A10178A821D OC3C6D:C9FB33D28

pub 1024ID749EAD5 2000/01/27 Marion Snith <snithm@cs.nps.naw.ril>
Keyfingmprint= 89ACFC9AC4B70419 A844594491C45BF7

Figure 4.14 Result from Key Server Search.

B. USING PGP WITH BAMBOO

Upon completing the installation procedures for PGP v2.6.2, Bamboo modules

may be digitally signed. Bamboo indirectly calls PGP using Netscape Portable Runtime

(NSPR) [Ref. 19]. In addition to PGP, the code required to perform the module signing is

located primarily in two files. The files, bbModule.c++ and archiveApp.c++, are not

included in this thesis but are available in the Bamboo software download. (See Ref.

[19].)

The module signing application archiveApp.c++ is a standalone utility application

in the Utils directory under the Bamboo directory. It is executed via the archive.bat file

in the Bamboo directory. It is menu-driven and offers the following menu options:

"* Archive/sign a module or sign a previously archived module.

"* Removing a signature from an archive module.

58

"* Display signatures on a signed archive module.

"* Exit.

Since module signing is an optional feature, a user may choose to archive a Bamboo

module and not sign it. This is the only option if PGP is not installed.

The bbModule.c++ software reads archive modules of varying formats (listed

below), provides digital signature verification if required, and expands the archive

module into its original directory structure in the user's '.bamboo/cache' directory.

1. Bamboo File Formats

To provide the reader with insight as to the data requirements necessary for this

application, the internal module file formats are illustrated. The following figures

provide a snapshot of the internal format of different files processed by Bamboo.

Specifically, Bamboo reads archive modules pre-dating module signing (old archive

format with '.tar.gz' extension), unsigned archive modules, and signed archive modules

consisting of one or more signatories. Reviewing the structure of the different file

formats will assist in the discussion of the logic flow in a later section. Figure 4.15

illustrates the internal format found in '.tar.gz' files pre-dating this security

implementation. Figures 4.16 and 4.17 illustrate the file formats created from object

signing in Bamboo. The first consists of a signed module and the second is an unsigned

module; both are stored as '.bar' files and the software determines which type of file it is.

Field Identifier Description Byte Psition

Data Archive data. Vaiable Length
starting at 0.

Figure 4.15 File Format for Old Archive Module (non-PGP

and '.tar.gz' format).

59

Field Identifier Description Byte Pedtions

Header '-DRFMV1.0.O.n" 0-13

File Type 'S' = Source, o 14-15
'0' = Object, or
'D' =Data followed by 'n'.

No. of Signatures String representing integer Variable length starting at 16
ending in "%', i.e., "A\01'.

*UserID #1 String ending in 'r; i.e.,
"Jobn T. Doe <doe@cs.nps.navy.mi,".

*IHsh Algorithm "W\n"; 1 = MD5. For future use.

*Hash #1 Length String ending in 'W.

*Iash #1 Digital Signature followed by '/'.

Data Archive data.

* Repeat for signed archive modules with more than one signature.

Figure 4.16 File Format for Signed Archive Module (PGP).

Fleld Identifier N ption Byte Isitioti

Header '¶HDRFMTV1.0.Wn" 0-13

File Type 'S' = Source 14
'OP = Object
'9 =Data

Zero Signatures '*\n(n" 15- 17

Data Archive data.

Figure 4.17 File Format for Unsigned Archive Module.

2. Source/Destination Directory of Archive Module

The primary repository for storage and access of previously archived modules is

the '.bamboo/cache' directory (specified during Bamboo initialization). A referenced

archive module is usually located in the '.bamboo/cache' directory for access. A user

may specify just the module name, e.g. myModule, and the application will "name

mangle" (attach extensions) based upon operating system and search for the appropriate

module name. For instance, if using SGI Irix, then it would search for myModule.sgi.bar.

The user may also specify file names via direct reference such as

c:/.bamboo/cache/myModule. Conversely, when specifying a module for initial archive,

60

the module should be under the Bamboo directory and is searched recursively inspecting

subdirectories for the module name.

3. Potential Problems

"* In this security implementation, the software checks for content integrity of a

signed archive module prior to decompression and unarchiving. If the user

does not possess the public key for signature verification or if content integrity

problems are encountered, then the user will be notified. The user is still

afforded the opportunity to decompress and unarchive the module, yet is

cautioned against such an action.

"* The user must ensure the existence of the '.bamboo/cache' directory prior to

signing or archiving a module. This should not pose a problem since it is

dynamically created via Bamboo if not already present.

"* During archive and signing operations, the source directory or file will be

preserved. However, there are various file management operations issued

during these processes. If the software encounters an error, an appropriate

error message will be displayed with the necessary means to correct the

situation.

4. Archiving a Module

a. Setting Permissions on a Module Directory Structure

In order to properly archive a module (directory structure), the user must

ensure proper permissions are enabled on the files and the parent directory to archive.

That is, under Unix, if permissions are not set to Read then the archive command will fail

and the user notified.

b. Process of Archiving and Signing a Module

The archive command accepts a module (specified directory) and archives

all files under the directory (including sub-directories) using the familiar Unix "tar"

operation. The intermediate archive module will have the name:

"file.name.platform type.tar". The next operation executed is the familiar "zip" which

compresses the module to a suitable size for transport. The resulting intermediate

archived and zipped module is then of the name format "file.name.platform-type.tar.gz".

61

This file is equivalent to the archive module format under the previous Bamboo

implementation.

The user is also prompted to identify the module type. The code inspects

the file content of the '.tar.gz' file to determine if its contents appear to match the selected

type based upon specific search criteria. If the software determines a possible incorrect

type specification, it will prompt the user to confirm the type specification.

The next step is to optionally sign the module. If the user decides not to

sign the module, it is saved as an unsigned archive module in the '.bamboo/cache'

directory with the name format "filename.platformjtype.bar" (see Figure 4.18). If the

user chooses to sign the module, the user's private keyring is accessed and a list of private

key userlDs is displayed. Upon selection of a private key, the user enters his password to

digitally sign the module. By signing a module, the software hashes the current '.tar.gz'

module and encrypts the hash using the RSA encryption algorithm. (PGP v2.6.3i uses a

compatible encryption algorithm due to an RSA patent.) The encrypted hash, userlD, and

other pertinent data are inserted into the intermediate '.tar.gz' (see Figure 4.16). Once

module signing is complete, the file is again saved in the '.bamboo/cache' directory with

the name: "filename.platform_type.bar". Figure 4.18 is a sample script of a user signing

a module.

62

hendrix 41% archive

** Banrxx) Archive Moxule lvinr (select 1-4) **
(Note. previously archived nxxlules nist be in .baxrlbacache dir)

1.) Display list of signatures attached to archived nxudie.
2.) Remove a signature from an archived rmdule.
3.) Archive/sign a dxxiue or sign a previously archived module.
4.) Exit

:3

Enter the [path/]nane of the rndue: nyModule

Enter type of file to archive (s=source, o=object, d=data) : o

MoIule tarred and zipped as:
Iworka/srohithrn/.cm ocachmd ule.sgli.bar

Do yý desire to sign module with your PGP private key? (y/n): y

List of user id's:
1. Marion L Snith <smithml@cs.nps.navy.nil>

Nane (userid) to attach to this archive moxdule:
"Marion L Smith <srnithml@cs.nps.navynil>"

You need a pass phrase to unlock your RSA secret key.
Key for user ID "Marion L Srith <srmitr@cs.npsnavy nil>"

Enter pass phrase:

Key for user ID. Marlon L Smith <snithmi@cs.nps.navy.fil>
512-bit key, Key ID B06B9FF5, created 2000/01/25

Signed archive nrudule is:
/vorka/srritrnl/.boe/cacehmyldul:e.sgi.bar

Figure 4.18 Sample Script of a User Signing a Module.

63

c. Logic Diagram for Archive and Signing Operation

tar -cf niy1vkxile into nDMydule.tar

Get file type and verify myMdle.tar has
appearance of file type

gzip nmMe.tar into myMAdule.tar.gz

YES 4- Sign nrxilue?--- NO

Display userIDs fron secret Create unsigned archive
keyring and obtain selection per Fig. 4.15

Sign myMoxule.tar.gz and
obtain digital signature

Create signed archive nntule
per Fig. 4.14

Figure 4.19 Logic for Archive and Signing Operation.

5. Signing a Previously Signed Archive Module

Previously, the Web of Trust was defined as a chain of PGP users trusting a public

key as long as somewhere in the web, there exists a single trusted key. The same

cumulative trust concept applies to signed archive modules. For instance, lets say User B

obtains a module originally signed by User A, verifies the digital signature, and performs

testing with the module. After extensive testing, User B decides that he "trusts" this

module and wishes to sign it also (refer to Fig 3.3). Furthermore, say User C downloads

the module to perform testing; yet, User C does not know the identity of User A but trusts

User B. The motivation for allowing multiple signatories is easily perceived from this

example. By allowing multiple signatures on an archive module, a Web of Trust is

formed around the signatures attached to a module.

a. Process of Signing a Previously Archived Module

If a '.bar' extension is specified on the module name, then the software

will check the '.bamboo/cache' directory to locate the file. The header will be inspected

for compliance with the new PGP format. If the module is of the old format ('.tar.gz'

extension), then the user must unarchive the module first via the bamboo command.

64

Once unarchived, the module can be archived and signed directly into the new format as

specified in Figure 4.16. If the module is in the latest PGP format, then all userIDs

attached to the module will be displayed. The user will then be prompted to select his

private key for digital signing and a new signed archive module will be saved in the

'.bamboo/cache' directory with his signature attached.

Figure 4.20 is a sample script of a user signing a module.

hendrix 43% archive

** Banbtx Archive Mxoule Mvenu (select 1-4) **
(Nte: previously archived nodules rnxst be in .banboocache dir)

1.) Display list of signatures attached to archived mxoule.
2.) Remove a signature from an archived nxodule.
3.) Archive/sign a nmdule cr sign a previously archived nodule.
4.) Exit.

:3

Enter the [paith/nane of the nxkule: myNodule.sgi.bar

oidiule currently signed by.
1. 'Marlon L Snith <srithnI@cs.nps.navy.rnil>"

Continue? (y/n) : y

List of user id's:
1. Jolm Q. Public <public@cs.nls.navy.nil>

Nane (useid) to attach to this archive rnxtule
"John Q. Public <pubhic@cs.nps.navy.rnil>"

You need a pass phrase to unlock your RSA secret key.
Key for user ID "Jonm Q Public bic@cs.nps.navy mil>'

Enter pass phrase-

Key for user ID. John Q. Public <public@cs.npsnavyxrrl>
1024-bit key, Key ID 74440BED, created 2000/01/25

myxloule.sgi.har in /wrka/public/.bnrribocachel is signed!

Figure 4.20 Sample Script of a User Signing a

Previously Signed Module.

65

b. Logic Diagram to Sign a Previously Archived Module

Locate archive Module in .bamlxxocache directory

Read header infornmtion

New PCP fomt 4-- Module forr-.t?--- Old frrmt

Yes._ Module signed? --*No

Print userlDs attached

Display useri)s from secret User nrst unarchive old nmdule
keyring and obtain selection format then archive and sign in

new fcrmat

Sign rodule and
obtain digital signature

Insert digital signature, userID and
other pertinent inforrmtion into
signed archive rodule per Fig. 4.14

Figure 4.21 Logic to Sign a Previously Archived Module.

6. Display Signatures (userlDs) on a Signed Archive Module

Modules downloaded from a server (or received via other means) and placed in

the '.bamboo/cache' directory should be viewed to identify the list of userIDs attached.

By previewing the names, the user can determine whether he possesses required public

keys on his keyring for signature verification. If necessary keys are not present, then

extracting the requisite keys from the key server is the next step. The software is capable

of unarchiving modules without signature verification but this practice is not

recommended. Figure 4.22 is an example of a user displaying names attached to a signed

archive module.

66

hendrix 43% archive

** Banrxo Archive Module Menu: (select 1-4) **

(Note: previously archived modules must be in .hlxx:/cache dir)

1.) Display list of signatures attached to archived rxdule.
2.) Remove a signature from an archived module.
3.) Archive/sign a nmodule or sign a previously archived nxmdule.
4.) Exit.

:1

Enter the [paftl]narne of the oxxdule: my)xdule.sgi.bar

Moxule currently signed by-
1. "John Q. Public <public@cs.nps.navynmil>'
2. 'Marlon L Srrith <snithml@cs.nps.navy.nil>"

Figure 4.22 Sample Script of Viewing Signatures Attached to a Module.

7. Removing a Signature (userlD) on a Signed Archive Module

It may be desirable to remove a signature from a module. If a public key is

revoked or disabled, then prudence would dictate removal so that there is no inherent

trust associated with these signatures. Figure 4.23 illustrates the procedure.

hendrix 3% archive

** Bamrd Archive Module Menu: (select 1-4) **

(Note. previously archived rodules rnst be in .bardxbocache dir)

1.) Display list of signatures attached to archived nmdule.
2.) Remove a signature from an archived mroxdule.
3.) Archive/sign a nmxoule or sign a previously archived moxdule.
4.) Exit.

:2

Enter the [path/]name of the oxdule: myModule.sgi.bar

Module currently signed by.
1. "John Q Public <public@cs.nps.navymil>"
2. "Marion L Smith <smithrml@cs.nps.navy.mil>"

Select signature to remove from archive jnxxle (1 -2, x to exit): 2

Confirm user ID signature to delete: 'TMarlon L Smith <srithml@cs.nps.navyamil>"
(y/n) : y

Signature removed firn myAxlule.sgi.bar

Figure 4.23 Sample Script of Signature Removal from a Module.

67

8. Storing a Signed Archive Module on a Server

a. Setting Permissions on a Signed Archive Module

Prior to storing a signed archive module on a server for mutual access by

other users of a network, ensure the appropriate permissions are set for Read access.

b. File Transfer Protocol (FTP) for Upload

FTP is a resourceful utility to store a module from the '.bamboo/cache'

directory to a server for distribution to other users. Modules shall be stored on the server

with name mangling included.

9. Retrieving a Signed Archive Module via FTP

FTP is convenient for downloading modules from a server and storing locally in

the '.bamboo/cache' directory. From here, it is easily processed by Bamboo.

10. Loading Archived Modules via Bamboo

a. Dynamic Download of Archive Modules

If running Bamboo and a module is not available locally, it is feasible to

download a module dynamically followed by signature verification. This principle is

similar to current browser technology for the download and installation of plugins.

Additionally, a user may download an archive module via the bamboo

command followed by the uniform resource locator (url), i.e., bamboo

http:/.lendrix/-smithml/myModule. Again, the software will perform required name

mangling prior to sending the request to the server. Figure 4.24 illustrates.

hendrix 43% mintom http'//hw-dr rrsithrd/n/Module

#Bantxb(c) vO.1215 (the "y2k" vl.0 alpha3) released on January 01, 2000

Narmes attached to nrdule:
1. "John Q. Public <public@cs.nps.navy.nil>"

Good signature from user "John Q. Public <public@cs.nps.navy.rnil>".
Signature made 2000/01/25 01:38 CMv"

kernel Notice: A file has been downloaded and placed inside yur Ban-bo
kernel Nodce: cache directory, ...

Figure 4.24 Sample Script using Bamboo to

Download a Module from a Server.

68

b. Logic Diagram for Archive and Signing Operation

Read header infrinmtion

New PGP fcrimt M• d ule fbr-at?-* Old fmat-

Yes 4-lNMxule signed? - No

Print userlIDs attached

Print userlIDs from public
keyring and user selects
one for decryption

No 4-- Signature verifies? -+Yes

No 4- Continue? -Yes

gunzip archive mnidule

tar-Linxdle

Figure 4.25 Logic for Signature Verification followed by

Module Decompression and Unarchiving.

C. BAMBOO PGP PUBLIC KEY SERVER

The public key server system is a set of programs that manages and provides

general access to a database of PGP public keys. The database itself is not a standard

PGP keyring. Instead, the keys managed by the key server are stored in a set of Berkeley

Database (DB) 2.x format database files. This key server is the identical system used in

other PGP Public Key Servers worldwide and is available for download via Ref. [20].

These servers (called peer key servers) have been instituted to create a network of PGP

key databases mirroring one another in content. Each of the servers communicate via e-

mail to send the latest key updates to ensure data consistency.

In Bamboo, the key server has been incorporated as a single site database

repository for the storage and retrieval of public keys used in object signing. If the object

69

signing feature is adopted by a large number of Bamboo users, investigation into

establishing a mirror database site should be initiated.

Figure 4.26 displays the physical architecture of the key server. In the figure,

there are numerous users accessing the key server to store their own public key on the

server and to extract other users' public keys for insertion onto their personal public

keyrings.

Bamboo PGP Database
Publi Key of Publi
Server Keys

User User

Figure 4.26 Physical Architecture of Bamboo PGP Public Key Server.

1. Bamboo PGP Public Key Server Architecture

The physical architecture above hides the actual implementation or logical

architecture. The logical architecture consists of a group of key server programs

including the server daemon, the server control program, and the server client program.

There is a configuration file providing parameters for both the server daemon and the

control program.

a. Configuration File (pksd~conj)

The pksd.conf configuration file contains all the information for the

programs comprising the public key server system. The e-mail functionality is not

incorporated at this time, therefore many of the configuration variables are not used. The

configuration file variables are:

*pksý_bin_dir - Directory location of executables which form the basis

of the key server system.

70

"* dbdir - Directory containing database files.

"* www-port - Port number for accepting HTTP connections.

"* socketname - Unix domain socket in which the pksd program will

listen for control messages from the pksdctl program to include

notification of new mail messages.

"* mail delivery-client - Not used.

"* maintaineremail - Not used.

"* mail introfile - Not used.

"* helpdir - Directory containing key server help files. The files in this

directory should be named pks.help.LANG, where LANG is the

language of the help file, in lower-case. These files are also used as

MvIME parts, so they are subject to the same formatting requirements

as the mailintrofile.

"* default-language - Default language; uses English.

"* thissite - Not used.

b. Server Daemon (pksd)

The pksd program is a daemon implementing the Bamboo PGP Public

Key Server. It supports searches, key requests, additions, and modifications via the

WWW and email interfaces (e-mail not instantiated at this time). The server reads the

pksd.conf file for initial parameters.

The server may support queries via the web and an email interface. To

control the pksd server daemon during execution, the pksdctl program is used to send

messages via a Unix domain socket (see pksdctl below).

In addition to adding public keys and revocation certificates to the server

database, the server must handle disabled keys. As previously stated, disabling a key is

necessary when a userID requires unbinding from a key. This is a function that the server

administrator or an individual user can perform. It is not useful to remove a disabled key

from the key server database, since it will probably just disappear. Disabled keys cannot

be retrieved from the database to users but are returned by searches.

71

c. Server Control Program (pksdctl)

The pksdctl program sends strings to an executing pksd via a Unix domain

socket. Each string is interpreted by the pksd program as a command. Three commands

are supported, namely: mail, disable, and shutdown. A description of each follows:

• mail msg - The file "msg" will be parsed as a mail server request. If

the file is a valid request, the request succeeds, and the response can be

enqueued, then the file is removed.

• disable userlD - All keys matching "userID" are disabled.

• shutdown - The key server daemon is shut down.

d. Server Client Program (pksclient)

The pksclient program is a command-line interface for the administrator to

perform key server operations directly instead of through the daemon. The software will

use locking and transaction semantics unless specified otherwise. Bypassing the locking

mechanism should be avoided since another process may be accessing the same database

record. Once a command is completed, pksclient will attempt to checkpoint the database

and remove any excess log files (see Database Administration below).

Each command accepts the directory path of the database files, a command

name, and optionally a list of arguments, i.e., pksclient 1db/path create [numfiles].

Some commands take an optional flag argument. Flag arguments are discussed in

Appendix B. The following comprise the commands for the pksclient program:

"• create [numfiles] - Create an empty database overwriting an existing

database if present.

"* recover - Recover an inconsistent database.

"* addfilename [flags] - Add a keyring to the database.

"• get userlD [flags] - An ASCII-armored keyring containing all the keys

matching the userID is printed to standard output (stdout).

"* index userlD [flags] - An index listing for all the keys matching the

userID is printed to stdout.

72

"* since time [flags] - An ASCII-armored keyring containing all the keys

added to the database or changed since the Unix timestamp is printed

to stdout. The timestamp that the database was last modified is printed

to standard error (stderr).

"° delete userlD [flags] - All keys matching the userID are deleted from

the database.

"* disable userlD [flags] - All keys matching the userlD will have the

disabled flag set.

2. Database Administration

To properly manage the public key database, an administrator needs to be

identified and trained in the specifics of the database. The key server is based on the

open-source Berkeley Database (DB); the DB includes full transactional support and

database recovery, online backups, and separate access to locking, logging, and shared

memory caching subsystems. Comprehensive documentation on the DB is available at

Ref. [21].

Fortunately, the Berkeley DB has interfaced with the PGP Key Server software

with exceptional results since 1996 and is employed worldwide at numerous PGP sites.

However, there may be the occasion when a database crashes and procedures for archive

(backup) and recovery require execution.

One key component for database restoration in the Berkeley DB infrastructure is

performing checkpoints of the log files. As transactions commit to the database, records

are written into the log files, but the actual changes to the database may not be written to

disk. When a checkpoint is performed, the changes to the database that are part of

committed transactions are written into the database.

Performing checkpoints is necessary for two reasons. First, you can only remove

the log files from your system after a checkpoint. Second, the frequency of your

checkpoints is inversely proportional to the amount of time it takes to run database

recovery after a system or application failure.

Once the database pages are written, log files can be archived and removed from

the system because they will never be needed for anything other than a catastrophic

73

failure. In addition, recovery after system or application failure only has to redo or undo

changes since the last checkpoint, since changes before the checkpoint have all been

flushed to the file system.

Archiving, recovery, and checkpointing are discussed further in Appendix B and

Refs. [20, 21].

D. ESTABLISHING A SECURITY POLICY FOR PUBLIC KEYS

The Web of Trust is only as effective as all of the participants exercising the

security application. It is imperative that vigilance is maintained throughout and each

user routinely compares the latest key status on their public keyring against the

corresponding keys at the key server. Additionally, if any key is suspect, the key server

administrator needs notification to take appropriate action such as disabling a key.

An initial security policy for this implementation may appear as follows:

"* The server administrator performs CA functions.

"* Require all users storing keys on the key server to join the "bamboo-users"

mailing list.

"* All users storing a public key on the key server should also e-mail their key

information, address, and telephone number to the server administrator and

only the key information to the "bamboo-users" mailing list. In this manner,

the server administrator can compare the e-mail address of the sender with that

stored on the key server and ensure compliance with userID naming

conventions, If non-compliant, disable the key on the server and notify the

user to send a compliant key. Additionally, the server administrator can

ensure the individual is a member of the ''bamboo-users"~ mailing list.

"* Based upon the level of activity of keys stored on the key server, determine an

ideal time period to perform checkpointing to clean up the log files. Refer to

Appendix B.

"* Whenever a key is disabled either by a user or the server administrator, notify

ail personnel on the "bamboo-users" mailing list.

"* Whenever a revocation certificate is issued on the key server, notify all users

via the "bamboo-users" mailing list. This ensures maximum dissemination.

74

The security policy illustrated is rudimentary in nature and will need refinement as

time elapses and weaknesses are identified. No matter how stringent the refined policy,

its evolution must be weighed against the usability by end-users and benefits that it

provides. Its overall effectiveness must be consistently evaluated from an objective

perspective realizing that no security system can be made foolproof. The next chapter

will cover risks associated with PMI technology by one of the renowned experts in

Computer Security, Bruce Schneier.

75

THIS PAGE INTENTIONALLY LEFT BLANK

76

V. RESULTS

The goal of this thesis was stated in Chapter III in the Software Requirements

Specification: ". ..receive a degree of content integrity and user authentication...". The

term "degree" is subjective and may vary from reader to reader. In order to apply a

standard of measurement to the term, the reader must understand the risks associated with

the implemented security application. Once introduced, the reader can then make an

assessment as to the degree of content integrity and authentication provided.

Before discussing the results of the PGP v.2.6.2 system, this chapter reviews

vulnerabilities prevalent in a typical PKI system. One should not be misled into thinking

the most expensive security system is foolproof and provides insurmountable safeguards.

Such a system does not exist, as the following discussion will demonstrate. Following

the discussion, risks associated with PGP v.2.6.2 are reviewed. Only by examining one's

own security system and identifying the weakest areas will an administrator be able to

improve the organization's intended assurance level.

A. RISKS IN A TYPICAL PMI SYSTEM

Trust is defined as: "To rely on or depend on confidently; to believe in another".

[Ref. 22] When dealing with certificates, security is a chain of events. The security of

any CA-based system is based on many links, not all cryptographic. People and computer

systems are involved. Since people are not secure and work with computer systems, the

computer systems are not secure.

Attacking a typical PMI system requires an individual adept at cryptanalysis or a

technically savvy perpetrator who understands the underlying infrastructure of PM1

technology. Since public keys are available to anyone, cryptanalysis can be performed

remotely (beyond the firewall of the organization holding the private key) and is

independent of the PMI system. On the other hand, to attack the PMI infrastructure, the

perpetrator must be inside the organization's firewall ("inside job") or be able to

circumvent some process between the CA and the organization.

77

1. Cryptanalysis Attack

A cryptanalysis attack is a computationally expensive process to render a private

key useless. It is an attempt to determine the composition of a private key using the

public key as data input. This method requires extraordinary computer resources and an

indeterminable amount of time.

In 1999, an effort was successful in factoring a 512-bit number using

approximately 300 fast SGI workstations and Intel Pentium PCs, mostly on nights and

weekends, over the course of seven months. It is certainly reasonable to expect 768-bit

numbers to be factored within a few years. The 512-bit factoring event is significant

since most of the Internet security protocols use 512-bit RSA. Anyone implementing

RSA should have moved to 1024-bit keys and should be thinking about 2048-bit keys

today. [Ref. 14]

2. Attacking the PKI Infrastructure

Ellison and Schneier detail 10 risks associated with PKI technology in Ref. [23]; a

select few are paraphrased below:

a. Trusted Certificate Authority

A CA is not granted a level of trust from any national government

authority; it has merely gained a perceived trust by virtue of reputation, having a large

user-base, advertising, or from general acceptance of its formalized Certificate Practice

Statement (CPS). Yet, all of the CPSs in existence disclaim liability, effectively

detaching any meaning from the certificate; nor does the issued certificate binding an

identity to a key expressly grant permission to perform any kind of transaction, thus

leaving all risks to the parties utilizing the certificate during a transaction.

b. Vulnerability of your Private Key

Usually private keys are stored on a computer, the same computer subject

to viruses or other malicious programs. If the key is safe on the computer, it also needs to

be accessible by only the user. If it is compromised and someone signs using the private

key, then the owner may be subject to risks associated with non-repudiation. Under some

digital signature laws, if your signing key has been certified by an approved CA, then the

user is responsible for whatever is initiated via that private key. This is in direct contrast

78

to mail order/telephone-order rules affiliated with credit cards where the owner can

typically receive a refund for any illegitimate purchases made by an offender.

c. Security of Verifying Computer

The verifying computer receives a certificate during a transaction, uses the

public key of the CA (or one or more root keys in the list) to validate the integrity of the

certificate, then processes the sender's request via the public key embedded in the

certificate. If an attacker can add his own public key to that list, then he can issue his

own certificates, which are treated exactly like legitimate certificates. Since the X.509 v3

format is standardized, the illegitimate certificate mimics a legitimate one except it

contains a public key of the attacker. The only solution is to have a verifying computer

invulnerable to tampering.

d. Binding Process

The CA needs to identify the applicant before binding the applicant's

name to his public key. Often, credit bureaus are used as the source of information to

validate the identity of the applicant. However, a credit bureau provides no proprietary

information that the applicant could not provide himself, and on occasion provides

misinformation. Meanwhile, having identified the applicant somehow, how does the CA

verify that the applicant really controls the private key corresponding to the public key

being certified? Some GAs do not even consider this to be part of the application

process. Could a perpetrator possessing my personal information request a certificate

under my name?

e. Certificate Practice Statement

Certificates are an instrument used to assist in security implementation and

are governed by the X.509 v3 standard. However, CAs establish their own CPSs and they

vary widely. By accepting a specific CA's certificate, you are consenting to their CPS

which may exclude the use of Certificate Revocation Lists or other commonly

implemented methods for determining revoked certificates.

One of the greatest risks resulting from PKI solutions is the false sense of security

perceived by organizations. Systems are typically installed to gain the confidence of

customers conducting business with the organization by projecting a security conscious

79

theme. These systems are often labeled as minimal-impact "turnkey" security solutions

and the requisite personnel are not always allocated for proper management. Despite

their wide deployment, system administrators typically do not understand the underlying

system, and PKI vendors are not in the business of advertising weaknesses in their

respective technology. These PKI systems will continue to be susceptible to attacks

unless the technology is fully understood and appropriate countermeasures implemented.

B. RISKS ASSOCIATED WITH PGP v2.6.2

PGP v2.6.2 can be circumvented in a variety of ways. Potential vulnerabilities

include: compromising your pass phrase or secret key; public key tampering; deleted files

that still physically reside on the disk; viruses; breaches in physical security;

electromagnetic emissions; exposure on multi-user systems; traffic analysis; and even

direct cryptanalysis. [Ref. 16]

1. PGP Vulnerabilities

A few of the vulnerabilities inherent with PGP are presented to introduce some

limitations of the implemented system and to encourage proactive behavior in countering

these potential threats. Those of larger scope such as physical security breaches, tempest

attacks, and traffic analysis are left for the reader to investigate. The following

information is courtesy of Zimmerman [Ref. 17]1:

a. Compromised Pass Phrase and Secret Key

A compromise enables an individual to sign objects with your private key

resulting in identical risks discussed in "Vulnerability of your Private Key" above.

Bottom line: "Memorize your pass phrase and ensure your private key is not accessible by

anyone".

b. Public Key Tampering

Public key tampering is probably the greatest vulnerability and the most

difficult to recognize. When you use someone's public key, make certain it has not been

tampered with. A new public key should only be trusted if received directly from its

owner or if signed by someone you trust. Additionally, this requires that your public

keyring is not available to others and under your physical control. It is also suggested to

maintain a backup copy of both keyrings. An example from Ref. [17] illustrates the

80

pitfalls of public key tampering with respect to PGP applications pertaining to encryption

of e-mail; the following is tailored to object signing. Following the example, measures to

prevent such a catastrophe are presented:

"Suppose you download a signed object code file from a server with

Alice's userlID attached. You trust Alice as a person but unfortunately she is on a

business trip. You download her public key from the key server so that you can decrypt

the signature attached to the downloaded file for an authenticity and integrity validation

check. You notice that the extracted public key is not signed by anyone certifying it as a

valid public key. However, you decide to attach it to your public keyring anyway to

perform the digital signature verification. Alice's signature verifies on the downloaded

file so you start executing the object code and subsequently all your files are erased from

the hard drive. What went wrong?"

First, the public key extracted from the key server was not certified by the

key server administrator or some other trusted introducer. Second, a perpetrator (most

likely inside the organization with access to the key server and the server holding the

signed files) stored a public key on the key server impersonating Alice. Additionally, he

generated a phony private key with Alice's name and used it to sign a virus file, then

stored it on the server for others to download.

There are a couple of ways to prevent such a disaster. The first technique

is to receive the public key directly from Alice and verify the key. The second technique

is to obtain Alice's key from a mutually trusted introducer who knows they have a valid

copy of Alice's key. Of course, you would need the public key of the introducer to

validate his signature on Alice's key. Utilizing the second technique is called

"verification of a signed public key certificate". This example illustrates the importance

of having a trusted introducer such as the key server administrator to perform the public

key verification followed by certificate signing as introduced in Chapter IV.

PGP keeps track of which keys on your public keyring are properly

certified with signatures from introducers that you trust. All you have to do is tell PGP

which people you trust as introducers, and certify their keys yourself. PGP can take it

from there, automatically validating any other keys that have been signed by your

81

designated introducers. As introduced previously, you may directly sign more keys

yourself. [Ref. 17]

Since your own trusted public key is used as a final authority to directly or

indirectly certify all the other keys on your keyring, it is the most important key to protect

from tampering. To detect any tampering of your own ultimately-trusted public key, PGP

can be set up to automatically compare your public key against a backup copy on write-

protected media.

PGP generally assumes you will maintain physical security over your

system and your keyrings, as well as your copy of PGP itself. If an intruder can tamper

with your disk, then in theory he can tamper with PGP itself, rendering moot the

safeguards PGP may have to detect tampering with keys. [Ref. 17]

Bottom line: "No matter how tempted you are, never give in to expediency

and trust a public key unless it is signed by someone you trust or has been personally

verified".

c. Viruses and Trojan Horses

Another insidious attack involves a specially-tailored hostile computer

virus or worm that may infect PGP or your operating system. This hypothetical virus

could be designed to capture your pass phrase or secret key then covertly write the

captured information to a file or send it through a network to the virus's owner. It may

also alter PGP's behavior so that signatures are not properly checked. This attack is

cheaper than cryptanalysis attacks.

There are some moderately capable anti-viral products commercially

available, and following proper hygienic procedures can greatly reduce the chances of

viral infection. PGP has no defenses against a virus, and assumes your own personal

computer is a trustworthy execution environment, If such a virus or worm actually

appeared, the whole PGP environment would have to be reinitialized by issuing

revocation certificates on current keys, generating new key pairs, and signing all of the

files again. [Ref. 17]

Another similar attack involves someone creating a clever imitation of

PGP that behaves like PGP in most respects, but does not work the way it is supposed to.

82

For example, it might be deliberately crippled to improperly check signatures or allow

bogus key certificates to be accepted. This "Trojan horse" version of PGP is not hard for

an attacker to create since PGP source code is widely available. To prevent such an

attack, every new version of PGP comes with one or more digital signatures in the

distribution package, signed by the originator of that release package. Check the

signatures on the version that you get and obtain copies from a reliable source such as

M4Tr. [Ref. 17] Bottom line: "Ensure you have a valid copy of PGP and maintain a

hygienic computing environment using the latest anti-viral software"

d. Exposure on Multi-user Systems

Local area networks are typically designed to allow users to view remotely

located files such as your public and private keyrings. Additionally, there is a greater risk

of involuntarily disclosing your pass phrase through special software to covertly monitor

keystrokes. Recognize these risks on multi-user systems adjusting your expectations and

behavior accordingly. Perhaps PGP should only be run on an isolated computer and

signed files transferred to and from the multi-user system via magnetic media. Bottom

line: "Be aware of the risks associated with multi-user systems and weigh the possible

consequences of your actions".

In summary, understanding the intricacies of PGP is the first line of defense

against malicious intent. Having previewed some of the vulnerabilities, most can be

avoided by not succumbing to shortcuts. By following reasonable precautions, an

attacker will have to expend far more effort and expense to violate your privacy, If you

protect yourself against the simplest attacks, and you feel confident that your privacy is

not going to be violated by a determ-ined and highly resourceful attacker, then you are

probably reasonably safe.

C. RESULTS OF PGP v2.6.2 IMPLEMENTATION IN BAMBOO

Safeguards to counter threats listed above can be defined via the security policy of

the CA or by the organization using the certificates. The primary threats pertaining to the

CA include the threat of public key tampering and procedures for binding of public keys--

each are related. Other threats can be avoided at the user-level by exercising appropriate

precautions that should be defined by the organization's formalized security policy.

83

The example under "Public Key Tampering" illustrates measures to prevent such

a security violation. These measures are also outlined in Chapter IV under

"ESTABLISHING A SECURITY POLICY FOR PUBLIC KEYS" where the key server

administrator is the sole trusted authority on binding of public keys in the database

through certification via his private key. By establishing appropriate guidelines on key

storage, validation, and extraction at a key server, users can extract keys with the

confidence that the key is valid and will not inflict pernicious acts against the user.

By understanding the weaknesses of PGP v2.6.2 and exercising proper

precautions, end-users can obtain content integrity and user authentication subject to the

key certification procedures of the key server administrator. Additionally, this

functionality is at no monetary cost to the end-user and with minimal training. The

extensive documentation on PGP permits the user to rapidly employ digital signing of

files with instantaneous generation of key pairs.

In addition to the freeware aspect of PGP v2.6.2, is the freeware download of the

key server software (available at Ref. [20]). At first glance, the reader may not glean the

importance of the key server software since the Bamboo PGP Public Key Server is

available for general use. However, if an organization desires to implement the security

package within the confines of their organization (behind their firewall), they can institute

their very own key server. This is advantageous for an organization desiring to establish

their own CA and security policy for key binding and validation.

Along with the key server software, there is an active key server technical users'

group mailing list that provides prompt responses to any questions pertaining to the key

server. This is a worldwide user group and consists of members utilizing the key server

software implemented at various peer sites. Simply access the website at Ref. [20] and

select the link "pgp-keyserver-folk@flame.org" to subscribe.

Overall, the security application meets the initial requirements set forth in the

Software Requirements Specification. With further refinement of the security policy and

feedback from the open-source community, the overall utility of the security application

can be enhanced.

84

The concluding chapter discusses recent changes in export laws and possible

ramifications of these changes. Chapter VI also provides areas of further research and the

potential impact on current users if the PGP v2.6.2 system was replaced with another

vendor's product.

85

THIS PAGE IN;TENTIONALLY LEFT BLANK

86

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis implements a simple architecture providing content integrity and user

authentication to Bamboo users. Since the code is predominantly segregated from the

core of Bamboo, it can be easily extracted from the Bamboo download and adapted to

other applications. It utilizes the most widely used type of public key certificates,

namely PGP. It is easy to implement and does not pose an encumbrance upon those not

employing the security application.

B. SIGNIFICANCE

This thesis is resourceful in educating the reader in current PKI technology. It

dispels the claim that PMI solutions are a security panacea by demonstrating

vulnerabilities inherent in such systems. By presenting these vulnerabilities, it not only

informs but also arms the user with the necessary tools to counter malicious intent by a

perpetrator.

Many novice users have fueled the exponential growth in the Internet. In a typical

file download, these users rely strictly on anti-viral software as the primary means to

ensure a download is safe. However, this does not provide the assurance that the

downloaded content has not changed or that the download site is whom they claim to be.

In the commercial world, business-to-business (B2B) is the current buzzword for many of

the e-commerce applications between organizations. Some B2B applications require the

delivery of large files. Current bandwidth limitations and the expense of sophisticated

high-bandwidth technology preclude many small to medium size businesses from reaping

the full benefits of B2B e-commerce. Many still rely on ground or air transport for

delivery of such files. With the increasing deployment of Digital Subscriber Line (DSL)

and cable, bandwidth for large file delivery across the Internet will become

commonplace. All organizations, large and small, will have the opportunity to participate

in such transactions at a reasonable cost. Furthermore, with the continued emergence and

acceptance of object signing technology, digital signing may become the standard for file

transfers across the Internet.

87

C. FUTURE WORK

Rapid changes in technology and the recent revision of export laws play an

integral part in the area of future work of object signing technology. This section reviews

the recent export law changes, discusses licensing, and relates these issues to PGP. The

final portion investigates potential products that may be used to replace the current

security implementation to enhance the overall functionality, and discusses the impact on

current users.

1. Export Law Changes

If Bamboo was strictly for users within the U.S. then the change in cryptography

export laws would not be a major factor, however, such is not the case. During the period

of this research, the Cryptsoft website (http://www2.psy.uq.edu.auk-ftp/Crypto) provided

a freeware version of SSLeay but recommended consultation with a lawyer due to the

export laws that were in force. With the relaxed restrictions, many systems mired in the

legal web may be explored as potential candidates for a future upgrade.

A significant milestone in cryptography is the recent passage of revised export

control laws. Effective January 12, 2000, U.S. companies are now permitted to export

any encryption product around the world to commercial firms, individuals, and other non-

government end-users under a license exception (without a license). In addition, "retail"

encryption products widely available in the market can now be exported to any end-user

including foreign governments. [Ref. 24]

These changes do not include all of the originally proposed measures outlined by

the Clinton administration in September 1999; some issues still remain. First, the

changes to the U.S. export regulations do not completely eliminate controls on the export

of encryption software particularly with regard to the export of binaries. [Ref. 25]

Despite these long-awaited changes, there are other barriers to the use of cryptographic

software outside of the U.S. such as patent issues for different encryption algorithms.

2. RSA Patent License

Because of RSA intellectual property restrictions and the continued presence of

proprietary code licensed from RSA Data Security, Inc., many freeware distribution sites

are reluctant to post any source code reliant on the RSA encryption algorithm.

88

The RSA public key cryptosystem was developed at MIT, and now RSA Data

Security, Inc., holds a patent on it. MIT distributes a freeware version of PGP under the

terms of the RSAREF license. All versions of PGP use RSAREF, a software library that

implements the RSA cryptography routines. Everyone in the U.S who wants to make use

of RSA in their programs and distribute it as freeware, must use RSAREF. However, the

freeware cannot be used for commercial purposes without purchasing the commercial

license.

3. Other Licenses

A conventional block cipher algorithm called IDEA is used by PGP, the SSLeay

freeware, and other security applications. Again, this poses a problem for freeware

distribution sites since the algorithm is covered by a patent in Europe and inside the U.S.

There is no license fee required for non-commercial use of IDEA but commercial users

require the purchase of a license.

4. PGP and the International Version

If PGP utilizes RSAREF, then how can we have an international version that is

fully compatible with the U.S. version? The answer is astounding. PGP v2.6.2 source

code was illegally exported but once out of the country, it was available for distribution

legally. [Ref. 26]

The international version does not use the same RSAREF routines as the U.S.

version; instead, it uses MPJLIB routines that are functionally the same but generally

faster, and are backward compatible with the older signature format from earlier PGP

releases. Since the international version uses MPLLIB vice RSAREF, it should not be

used in the U.S.

5. Alternative Security Implementations

Despite the relaxed export control laws, providing freeware download sites for

cryptography is still entwined in legal issues. However, it should not nullify research into

alternative applications. An incentive for further investigation is the number of new

releases introduced since the original research commenced. The following subsections

review some of the previously attempted installations, discuss recent releases, and the

impact of implementing such systems.

89

a. PGP v6.5.1

PGP v6.5.1 was the first security system layered on Bamboo starting in

July 1999. The only drawbacks appeared to be the lack of a binary for the SGI Irix

operating system and a version for international users. It's functionality was tested with

Bamboo on Windows NT and performed flawlessly. Subsequently, the source code was

made available on October 31, 1999 on the PGP International website [Ref. 15]. A

number of additional releases have been published to correct bugs.

The consequences of an available international release and availability of

the source code have positive implications for Bamboo. The advantages are that it

employs the latest algorithms including longer keys, improved certificate revocation

procedures, and is the most recent commercial version usually resulting in future

upgrades and prompt technical support. Network Associates also provides a Key Server

specifically for v6.5.x available via freeware or commercial purchase.

The impact of migrating to this version is minimal and both versions

(v6.5.x and v2.6.x) can be supported simultaneously. The source code modules in

Bamboo would require minor modifications for v6.5.x compatibility. The code

modifications would be invisible to the end-user. The only hindrance foreseen is the

requirement to establish another Bamboo PGP Public Key Server to handle the larger key

sizes. This would require the administration of two key servers. If two versions of PGP

are undesirable, then by establishing a grace period for end-users to adopt the new key

sizes in PGP v6.5.x, Bamboo can seamlessly migrate to the latest release. Many of the

command-line commands are similar in v6.5.x.

b. SSLeay.

With recent export law changes and renewed hope for further relaxation, it

would appear that establishments may be less hesitant to implement their own freeware

Certificate Authorities for the generation and distribution of X.509 digital certificates.

With respect to Bamboo, this is the area requiring more thorough research from the legal

perspective, and would require thorough analysis prior to migrating to a different

certificate type. The advantages of such a shift would be the adoption of the X.509 v3

certificate format that is extensively used in the business world and prevalent in

90

government PKI systems. [Ref. 27] Additionally, by establishing one's own X.509 CA,

the certificates can be issued and managed for the Bamboo community of users. This

would enable signed files to be downloaded, authenticated, and integrity checked by

various organizations utilizing X.509 certificates inside and outside of the Bamboo

community. Recent experimentation with Netscape Object Signing technology in an

independent project has proven fruitful and implementing such a scheme in Bamboo

appears feasible.

The X.509 v3 digital certificate format is incompatible with the PGP

certificate format. Supporting both certificate formats is 'an option but requires two

independent key servers and the CA must be fluent in both versions for performing CA

duties. Ideally, the X.509 system could be implemented via a transition period allowing

users to generate certificates and learn the specifics associated with X.509. Modifications

to the Bamboo security application code would be more extensive than the simple

migration to PGP v6.5.x stated above. However, the tradeoff is in the widespread use and

rapid acceptance of the X.509 standard by commercial and government entities. From a

user's perspective, well-documented procedures for X.509 versus PGP would not inhibit

or detract from Bamboo object signing but would enhance the overall functionality.

The list of potential security applications for further review does not end here but

continues with each new package introduced to the public. Recently, Mozilla offered

several open-source security projects worth investigating. [Ref. 28] With each potential

application up for review, questions must be answered prior to attempting a migration to

another product. Major issues include but are not limited to:

"* Is the application scalable?

"* Does it hinder non-users of the security application?

* Is it easy to use?

"* Is it interoperable with other security applications? Does it try to achieve a

security standard?

"* What is the overall impact to users in order to migrate?

"* Can two systems be simultaneously supported?

91

6. Recommendation

To maximize integration with popular PKI systems in use today, it would be

prudent to pursue conversion of the current Bamboo security implementation to the X.509

format. Companies have been reengineering their business models to take advantage of

the rapid growth in the Internet. Adaptation to the X.509 format is a prerequisite to

leverage this growth. The overwhelming acceptance of the X.509 format will most likely

lead to a larger user-base than PGP.

Vendors often provide discounts (if not free) to educational institutions for the

implementation of software systems. The benefit to the vendor is in the use of the

institution's name as an advertisement of successful installation sites. This venue could

be an inexpensive means of establishing a commercial Certificate Authority system at the

Naval Postgraduate School (NPS). The University of Pittsburgh has implemented

VeriSign's OnSite PKI system as a pilot program for securing a wide range of University

services; the case study document is available on the VeriSign website. The major selling

point for NPS is that it is not only an educational institution but also provides a foothold

into a potentially large market of government organizations. A successful

implementation at NPS may be viewed as an attractive investment for any vendor. The

alternative to a commercial system is the implementation of a freeware CA system such

as SSLeay.

In summary, the rapid deployment of inexpensive DSL and other technologies

will minimize the bandwidth problems plaguing users today. With these improvements,

large file transfers will be commonplace. If the security industry can adopt an

interoperable object signing standard for implementation across heterogeneous systems,

organizations will be able to confidently and safely transfer, authenticate, and verify the

content of such files.

92

APPENDIX A. USER'S GUIDE FOR BAMBOO OBJECT SIGNING

Appendix A details installation steps for PGP v2.6.2 and illustrates procedures to

utilize the object signing technology in Bamboo. Most of the information presented here

is also available from the Bamboo distribution under: bbdir/utils/index.html (where

bbdir stands for the user-specified Bamboo directory).

A. PGP v2.6.2 INSTALLATION PROCEDURES

For a more comprehensive guide to installation instructions, refer to the user.doc

file included in the PGP v2.6.2 distribution.

1. Windows Install

"* U.S. and Canadian residents may obtain PGP v2.6.2 for DOS at:

http://web.mit.edu/network/pgp.html; others may obtain the international

version PGP v2.6.3i for MS-DOS at:

http://www.pgpi.org/products/nai/pgp/versions/freeware/dos/2.6.3i.

"* Unzip the downloaded zip file, then unzip pgp262i.zip (pgp263ii.zip for

international version) into directory c:\pgp26 (user-specified drive).

"* Set the following variables (add to autoexec.bat file or in System Properties

under Control Panel); if setting the variables in autoexec.bat, reboot for the

changes to take effect.

o set PGPPATH=c:\pgp26

o set path=c:\pgp26;%path%

o set TZ=time zone; "PST8PDT" for Pacific, etc. (see user.doc file)

"* Type: "pgp" at the command prompt; you should receive verbiage such as:

"Pretty Good Privacy(tm) 2.6.2 - Public-key encryption..."; if you do not, then

PGP was not installed properly.

2. Unix Install

* U.S. and Canadian residents may obtain PGP v2.6.2 for Unix at:

http://web.mit.edu/network/pgp.html. It is counter-intuitive but the "Software

Code Download" section for Unix is also located on the DOS download page

after answering the export control questions. Choose the desired Unix

software download distribution link to acquire the PGP source code; others

93

may obtain the international version PGP v2.6.3i for Unix at:

http://www.pgpi.org/products/nai/pgp/versions/freeware/unix/2.6.3i.

* Unix procedures vary by platform; refer to the user.doc file for specific

implementations. The following procedures were used for SGI Irix.

* In your home directory, type:

"o mv pgp262sjtar.gz pgp262s.tar.gz

"o mkdir pgp262

"o cd pgp2 62

"o mkdir build

"o cd build

"o cp ../../pgp262s.tar.gz.

"o gunzip pgp262s.tar.gz

"o tar -xvf pgp262s.tar

"o tar -xvf pgp262si.tar

"o tar -xvf rsaref.tar

"o cd rsaref/install/unix

"o make CC=cc RANLIIB=true

"o cd ../..I../src

"o make irix CC=cc

* Edit your .login file (or other initialization file) to set the path to the location

of the pgp executable (followed by "source .login" to take effect); for

example:

"o setenv PGPPATH /worka/smithml/pgp262/build/src

"o set path=(/worka/smithml/pgp262/build/src PGPPATH $path)

* Setup config.txt file and PGP document files; inside ../pgp262/build directory,

execute the following:

"o mv config.txt src/.

"o mv doc/pgpdoc*.txt src/.

94

* Type: "pgp" at the command prompt; you should receive some verbiage such

as: "Pretty Good Privacy(tm) 2.6.2 - Public-key encryption..."; if you do not,

then PGP was not installed properly.

B. PGP v2.6.2 COMNMANDS

Included in the PGP v2.6.2 distribution are two user's guides: pgpdocl.txt and

pgpdoc2.txt. Certain PGP commands from pgpdocl.txt relevant to this implementation

are highlighted below ([] indicates optional field):

"* pgp -kg

-generate your own unique public/secret key pair

"* pgp -kvv [userid] [keyring]

-view the contents of your public keyring

"* pgp -kxa userid keyfile [keyring]

- extract (copy) a key from your public or secret key ring in ASCII format

to a keyfile

"• pgp -ka keyfile [keyring]

- add a public key (ASCII format) stored in keyfile to your public keyring

" pgp -kvc [userid] [keyring]

- view the fingerprint of a public key

"* pgp -kc [userid] [keyring]

- view the contents and check the certifying signatures of your public keyring

"* pgp -kd youruserid

- permanently revoke your own key, issuing a key compromise certificate

"* pgp -kr userid [keyring]

- remove a key or just a userid from your public key ring

"* pgp -ks heruserid [-u your-userid] [keyring]

- sign and certify someone else's public key on your public keyring

"* pgp -krs userid [keyring]

- remove selected signatures from a userid on a keyring

"* pgp -kd userid

- disable or reenable a public key on your own public keyring

95

C. ARCHIVING AND SIGNING A MODULE

To archive and sign a module, type "archive" at the command prompt under the

Bamboo directory, and select option 3 from the menu. This is the option to "Archive/sign

a module or sign a previously archived module". Salient features of option 3 are divided

into two separate discussions. The first part illustrates procedures to archive a module

with the option to sign it. The second is to sign a previously archived module that may

have zero or more signatures attached.

1. Archiving and Signing a Module

The user enters the name of the module to archive and the file type. File type is

one of three types (s=source, o=object, d=data). Upon archive completion, the user has

the option to sign the module. If the user decides not to sign the module, it is saved as an

unsigned archive module in the '.bamboo/cache' directory. If the user chooses to sign the

module, and if there is more than one private key, then all of the private key userlDs are

displayed. Upon selection of a private key, the user enters his password to digitally sign

the module. The file is again saved in the '.bamboo/cache' directory. Figure A.1 is a

sample script of a user signing a module.

96

hendrix 41% archive

** Banirxo Archive Mxdule Menu: (select 1-4) **

(Note: previously archived nmxoules mist be in .amlxxbcache dir)

1.) Display list of signatures attached to archived module.
2.) Remove a signature from an archived module.
3.) Archive/sign a module or sign a previously archived nxide.
4.) Exit

:3

Enter the [path/]nami of the module: my1odule

Enter type of file to archive (s=smurce, c~object, d=data) : o

Module tarred and zipped as:
/worka/srrdithml/.babnoxcache/myMxdule.sgi.bar

Do you desire to sign mdxule with your PCP private key? (y/n) : y

List of user id's:
1. Marion L Smith <srithnl@cs.nps.navyamil>

Name (userid) to attach to this archive nxdule:
"•Marlon L Smith <smithml@cs.nps.navy.mi>"

You need a pass phrase to unlock yaur RSA secret key.
Key for user ID '1arlon L Smith <smitihm@cs.nps.navyrnil>"'

Enter pass phrase:

Key for user ID, Marlon L Smith <smithml@cs.nps.navy.n-i>
512-bit key, Key ID B06B9FF5, created 2000/01125

Signed archive module is:
/worka/sn-ihmi/.bmxlcache/rrIk e.sgi.bar

Figure A. 1 Sample Script of a User Signing a Module.

97

2. Signing a Previously Signed Archive Module

The user enters the name of the archived module to sign; the module must be

located in the '.bamboo/cache' directory. The user's private keyring is accessed and, if

there is more than one private key, all of the private key userlDs are displayed. Upon

selection of a private key, the user enters his password to digitally sign the module.

Figure A.2 is a sample script of a user signing a previously signed module.

hendrix 43% archive

** Banlo Archive Mxlule Menu: (select 1-4) **

(Note: previously archived modules must be in .aintoo'cache dir)

1.) Display list of signatures attached to archived module.
2.) Renove a signature from an archived module.
3.) Archive/sign a nodule cr sign a previously archived mrxdle.
4.) Exit.

:3

Enter the [pathi]nane of the mxdule: yMXodule.sgi.bar

Mxoule currently signed by.
1. '1Marlen L Smith <snithml@cs.nps.navy.nil>"

Continue? (y/n) : y

List of user id's:
1. John Q. Public <public@cs.nps.navy.mil>

Name (userid) to attach to this archive nmdule:
"John Q. Public <public@cs.nps.navynil>"

You need a pass phrase to unlock your RSA secret key.
Key for user ID "Jolm Q. Public <public@csnps.navy.mil>"

Enter pass phrase:

Key for user ID) John Q Public <public@cs.nps.navy nil>
1024-bit key, Key ID 74440BED, created 2000/01/25

in3Nhule.sgi.bar in /wrka/public1txxanootcache/ is signed!

Figure A.2 Sample Script of a User Signing a

Previously Signed Module.

D. DISPLAY SIGNATURES ATTACHED TO A MODULE

To view signatures attached to a signed module, the '.bar' module must be located

in the '.bamboo/cache' directory. After typing the "archive" command, select option 1.

Figure A.3 displays two signatures attached to a signed archive module.

98

hendrix 43% archive

** Banxbo Archive Module Mvenat (select 1-4) **

(Note: previously ardcived modules mist be in .banhxocache dir)

1.) Display list of signatures attached to archived nmoule.
2.) Remove a signature from an archived nxxdule.
3.) Archive/sign a nmodule or sign a previously archived rmdule.
4.) Exit.

:1

Enter the [patInane of the nxrlule: myMxtule.sgi.bar

Mvodule currently signed by
1. "Jolm Q. Public <public@cs.nps.navyni->"
2. 'Marlon L Smith <srnithiml@cs.nps.namvy.i>"

Figure A.3 Sample Script of Viewing Signatures Attached to a Module.

E. REMOVING A SIGNATURE ATTACHED TO A MODULE

To remove a signature from a signed module, the '.bar' module must be located in

the '.bamboo/cache' directory. Select option 2 from the menu after typing "archive" at

the command prompt. All of the signatories will be displayed and the user prompted to

select one for removal. Figure A.4 is a script illustrating the removal of a signature.

hendrix 3% archive

** Bamnx-o Archive Moldule Mvenu (select 1-4) **

(Note: previously ardcived nodules nmust be in .bmntxocache dir)

1.) Display list of signatures attached to archived nxxule.
2) Renove a signature from an ardcived mxoule.
3.) Archive/sign a module or sign a previously archived rmolule.
4.) Exit.

:2

Enter the [path/Iname of the nmdule: myModule.sgLbar

Module currently signed by.
1. "John Q Public <public@cs.nps.navy~mil>"
2. "vMarlon L Smith <srmithml@cs.nps.navy.mil>"

Select signature to remove from ardcive nmxlule (1- 2, x to exit): 2

Confirm user ID signature to delete. "vMarlon L Smith <smithml@cs.nps.navy.mil>"
(y/n) : y

Signature removed from- myMxl~ule.sgi.bar

Figure A.4 Sample Script of Signature Removal from a Module.

99

F. STORING AND RETRIEVING SIGNED MODULES FROM A SERVER

Use FTP to store signed archive modules at the server for distribution. Modules

are stored with name mangling included. FTP is also handy for downloading modules for

placement locally in the '.bamboo/cache' directory. For dynamic downloads using the

Bamboo kernel, refer to the Bamboo documentation available in the download or by

typing "bamboo" at the command line.

G. STORING YOUR PUBLIC KEY ON THE KEY SERVER

Copy your public key to a keyfile in ASCII format using the "pgp -kxa" command

depicted above. Cut and paste the key information from the ASCII keyfile into the key

server web page (currently at http://hendrix/-smithml/KeyServer.html but will eventually

migrate to the Bamboo website at Ref. [19]) under the heading Submit a Bamboo PGP

public key to the server. Depress the Submit button and you have added a public key to

the server for others to access. Figure A.5 illustrates.
Submit a Bamboo PGP Public key to the server

Here's how to add a Bam.boo PG P public key to the server's database:
I. At the command line, execute: pgp -kxa userid filenam e to

extract a public key to a file in ascii format (see PGP user's
guide for details).

2. U sing your favorite text-editor, open the file created in
previous step and cut-and-paste the ASCII-armored version of
your public B amnboo key into the text box.

3. Press "Submit'.

The key server will process your request im mediately. If you like, you
can check that your Bamboo key exists using the extract procedure
above.

Enter ASC Il-arm ored B am boo PG P key here:

--- t. BEGIN POP PUBLIC KEY BLOCK

V , .jon 2 .t .2

m0 0CNA z0U0 B kA A A EEA M zA tkZ a bA IJW MEW qSBY m0G 6

E6 OdtoW S, qorO d d"nCRa3
T T0A /yu N oX N, C Jty 2N. W Je. t .qd V 3a3V uU dl b B N 3 OTIT L8 Ph Nt

ONOCYruOokl

gM UIKO v0n1xx8 Np7S H I M iL30 k4, h6TOSOV 10bnoH3aENx KIrNI7
K W qP IA A UR
.CdSb2JIc n. g RS4SU21 pd O ggPH N a X Ro O NZ Lm sw cy uYXZSLnlp

84.

..... END POP PUBLIC KEY BLOCK

B..t I 5.ubwithi 151 0* to 1h. Blmn,,a kay a -

Figure A.5 Subset of Key Server Web Page for Storing Key.

H. RETRIEVING A USER'S PUBLIC KEY FROM THE KEY SERVER

Access the key server web page via the key server link above and scroll down to

the heading Extract a Bamboo PGP public key from the server. Type a portion of the

100

userID of the desired key and depress the Do the search! button. The key server performs

a pattern match and returns all of the "hits". Click on any of the returned hits to view the

public key information. Upon locating the desired key's information, copy it into a text

editor and save with a '.asc' extension. Store the public key on your keyring using the
"pgp -ka" command. After key verification, it is ready for use. Figures A.6 and A.7

illustrate.

Extract a Bamn boo PG P nublic key from the server

Here's how to extract a Bamboo PGP public key:
I. Select either the "Index" or "Verbose Index" check box. The

"V erbose" option also displays all signatures on displayed
keys.

2. Type ID you want to search for in the "Search String" box.
3. Press the "Do the search!" key.
4. The server will return a (verbose) list of keys on the server

matching the given ID. (The ID can be any valid argument to
a pgp -kv(v) command. If you w ant to look up a key by its
hexadecimal KcyID , remember to prefix the ID w ith ox.)

S. The returned index w ill have hypertext links for every
K eyID and every bracket-delim ited identifier (i.e.
"<sin ithm I@ cs.npns.n vv.m il>). Clicking on the hypertext link
w ill display an A SC II-arm ored version of the listed public
key.

Index: M. Verbose Index:

S e a r c h S t r in g : ".... . ..

Show PGP "fingerprints" for Barn boo keys

Only return exact matches

Figure A.6 Subset of Key Server Web Page to Extract Key.

Public Key Server -- Index "snith"

Type bitslkeyID Date User ID
pub 512/0481F411 2000/01/26 ***KEYREVOKFD***

Marlon L Smith <smnithm@cs.nps.navrmil>
Key fingerpiint = A1 63 8A10 17 8A82 1D OC 3C 6DFC9FB3 3D28

pub 1024/D749EAD5 2000/01/27 Marlon Smnith <srnithdm@css.nnav.nil>
Keyfingelprint = 89 ACt:C9AC4B7 04 19 A844594491 C45BF7

Figure A.7 Result from Key Server Search.

101

THIS PAGE INTENTIONALLY LEFT BLANK

102

APPENDIX B. BAMBOO PGP PUBLIC KEY SERVER

ADMINISTRATOR'S GUIDE

Appendix B details procedures to manage the key server. It serves as a guide for

the key server administrator and is not intended for an end-user. The PGP Key Server

was created by Marc Horowitz; his thesis is available at:

http://www.mit.edu/afs/net.mit.edu/project/pks/thesis/paper/thesis.html. The freeware

distribution site for the PGP Public Key Server software is located at:

http://www.mit.edu/people/marc/pks. The key server is interoperable with peer PGP key

servers installed worldwide. In the Bamboo implementation, the e-mail capability is

disabled to preclude communication between the Bamboo PGP Public Key Server and

peer servers.

A. PGP KEY SERVER SOFTWARE INSTALLATION PROCEDURES

For detailed installation instructions, refer to the Readme file included in the PGP

Key Server distribution; it is written to accomodate different Unix systems. The

following procedures were used for key server implementation on an SGI Irix. The

distribution in this example was 'untarred' into /worka/smithml/pks-0.9.4. The reader

may substitute his installation directory for /workalsmithml. Review pks-O.9.4/man for

comprehensive documentation on the various programs. An overview of the key server

system is provided in file pks-intro.8.

1. Build

Download the PGP Key Server release 0.9.4 and patch #2 from:

http://www.mit.edu/people/marc/pks (pks-0.9.4.tar.gz). 'Gunzip' and 'untar' (tar -xvf)

the pks-0.9.4.tar.gz file. This will create a pks-0.9.4 directory containing all of the source

code and documentation. Under the pks-0.9.4 directory, perform:

"* ./configure --prefix=/worka/smithml/pks-0.9.4

"* gmake (used version 3.77)

103

2. Install

Incorporate patch #2 into the source code then change to the pks-0.9.4 directory.

Execute 'gmake install' to install the distribution.

In order to utilize the web server component of the package, the pks-

commands.html file was modified to reflect the Bamboo implementation. Figures B.1

and B.2 (Parts 1 and 2) compose the Bamboo PGP Public Key Server web page for

storage and retrieval of PGP public keys. This web page is currently located at:

http://hendrix/-smithml/KeyServer.html (will eventually migrate to the Bamboo website

at Ref. [22]) and interfaces with the key server software to access the database.

104

Bamboo PGP® Public Key Server N-1. 19

"* Extract a Bambx)o pPbi&jcktey from the server
5 ubmigt a Bambo.o.PGP ppubli kev oto..erm

Extract a Bamboo PGP public key from the server

Here's how to extract a Bamboo PGP public key:
I. Select either the "Index" or "Verbose Index" check box. The

"Verbose" option also displays all signatures on displayed keys.
2. Type ID you want to search for in the "Search String" box.
3. Press the "Do the search!" key.
4. The server will return a (verbose) list of keys on the server

matching the given ID. (The ID can be any valid argument to a
pgp -kv(v) command. If you want to look up a key by its
hexadecimal KeylD, remember to prefix the ID with Ox.)

5. The returned index will have hypertext links for every KeylD, and
every bracket-delimited identifier (i.e.
<s•tlttl.fl@(,.np... ..a....t.. I>). Clicking on the hypertext link will
display an ASCII-armored version of the listed public key.

Index: Verbose Index:

Search String: I I..

Show PGP "fingerprints" for Bamboo keys

Only return exact matches

39set ID n eh

Extract caveats:

"• Hypertext links are only generated for the KeylD and for text found
between matching brackets.

"* The search engine will return information for all keys which contain all
the words in the search string. A "word" in this context is a string of
consecutive alphabetic characters. For example, in the string
smithml@cs.nps.navy.mil, the words are smithml, cs, nps, navy and
mil.

"• Keys you may not expect will be returned. Since there may be numerous
keys matching either cs, nps, navy, or mil, it is prudent to search on
smithml to reduce the returned matches from the query. If you do not
desire all these extra matches, you can select "Only return exact matches",
and only keys containing the specified search string are returned.

"* This algorithm does not match partial words. If you are used to specifying
only part of a long name, this does not work.

Figure B. 1 Key Server Web Page (Part 1 of 2).

105

Submit a Bamboo PGP public key to the server

" Here's how to add a Bamboo PGP public key to the server's database:
1. At the command line, execute: pgp -kxa userED fename to extract a public key to a

file in ASCII format (see PGP User's Guide for details).
2. Using your favorite text-editor, open the file created in previous step and cut-and-

paste the ASCII-armored version of your public Bamboo key into the text box.
3. Press "Submit".

"* The key server will process your request immediately. Check that your Bamboo key exists
using the extract procedure above.

Enter ASCII-armored Bamboo PGP public key here:

_j

(Thanks to BrianLalacchia and. Mrc- Hor...wit;, from whom much of this page is cribbed)
(PGP'ý is a registered trademark of Pretty Good Privacy)

Figure B.2 Key Server Web Page (Part 2 of 2).

3. Setting Up the Configuration File

The pksd.conf configuration file contains all of the necessary parameters for the

executable programs of the public key server system. The configuration file is located at

pks-O.9.4/etc/pksd.conf and is part of the download. Documentation is located in file

pksd.conf.5. Refer to the documentation for details. The following is a subset of

available parameters, and specifically those used for this installation:

"* pksj_bindir - Directory location of executables for the key server system

(e.g., /worka/smithml/pks-0.9.4/bin).

"* dbdir - Directory of database files (e.g., /worka/smithml/pks-0.9.4/var/db).

"* www.port- Port number for accepting HTTP connections (e.g., 11371).

106

* help-dir - Directory of key server help files. The files should be named

pks.help.LANG, where LANG is the language of the help file, in lower-case.

(e.g., /worka/smithml/pks-0.9.4/share)

* default-language - Default language English (e.g., EN).

4. Running the Key Server

Before running the server, read pks-intro.8 to familiarize yourself with the Public

Key Server System. In the following example, substitute your installation directory for

PREFIX. (For this particular installation, PREFIX=/worka/smithml/pks-0.9.4.)

a. Creating the Database

To create an empty database, execute the following; if a database already

exists, then the command overwrites its contents:

* PREFIX/bin/pksclient /PREFIX/var/dbcreate

b. Executing the Daemon

To execute the daemon, execute the following command:

0 PREFlI/bin/pksd PREFIX/etc/pksd.conf & sleep 5

B. PGP KEY SERVER COMPONENTS

The key server system interfaces with the open-source Berkeley Database (DB).

The primary components of the key server system are covered here.

1. Server Daemon (pksd)

The pksd program is the public key server daemon. It processes HTTP requests

to add keys to the database and to query the database contents. It is used to add

revocation certificates and to disable keys. It reads the pksd.conf file for initial

parameters. It also receives input from the pksdctl program during execution.

2. Server Control Program (pksdctl)

The pksdctl program is a helper program used by pksd-mail.sh and pksd-queue-

.run.sh. (Shells are covered in the documentation.) If the pksd program fails

unexpectedly, pksdctl can be invoked by pks-mail.sh and pks-queue-run.sh to scan the e-

mail transaction queue to update the database. It sends strings to an executing pksd.

Each string is interpreted as a command. Three commands are supported: mail, disable,

107

and shutdown, and the command syntax is: pksdctl socket string. The pksdctl program is

not used in this implementation.

"• mail msg - The file "msg" will be parsed as a mail server request. If the file is

a valid request, the request succeeds, and the response can be enqueued, then

the file is removed.

"* disable userlD - All keys matching "userID" are disabled.

"• shutdown - The key server daemon is shut down.

3. Server Client Program (pksclient)

The pksclient program is a command-line interface for the administrator to

perform key server operations directly on the database instead of through the daemon. It

supports all of the operations of the daemon and more. The software will use locking and

transaction semantics unless specified otherwise.

Each command accepts the directory path of the database files, a command name,

and optionally a list of arguments; for instance: pkselient 1db/path create [numfiles].

Some commands take an optional flag argument:

" create [num _files] - Create an empty database overwriting an existing

database if present. The database is split into num files with a default of
three.

"• recover - Recover an inconsistent database. (also see dbrecover)

"• addfilename [flags] - Add a keyring to the database. The keyring file may be

of either '.pgp' or '.asc' format. Figure B.3 below illustrates the add function

executed under the directory: /worka/smithml/pks-0.9.4/bin.

o 'd' flag - Disabled flag is not stripped from the input file. This is useful

when initializing the database for the first time with a keyring from

another key server that includes disabled keys.

o 't' flag - Operation takes place without logging and transactions; this is

faster, but less safe.

108

Imnrix 11% pksdient Jvar/db add IwrkatsnihtwdighLasc

[Wed Feb 16 14:55:59 2000] kd open: conpleted successfully
[Wed Feb 16 14:55:59 2000] kd add: flags=100000
[Wed Feb 16 14:55:59 2000] displayjnwYkey: rnw keyid 1 AOEBE6C5
[Wed Feb 16 14:55:59 2000] kd sync: conpleted successfully
[Wed Feb 16 14:55:59 2000] kdcadd: pub+-l sig+0 sig-0 uid+0 uid=O rev+0 rev!0
[Wed Feb 16 14:55:59 2000] kd add: conpleted successfully
Key block added to key server database.
New public keys added: 1

[Wed Feb 16 14:56:00 2000] kd close: completed successfully

Figure B.3 Result of "add filename" Query.

get useriD [flags] - An ASCII-armored keyring containing all the keys

matching the userID is printed to standard output (stdout). Figure B.4

illustrates a search for the userID just added to the database.

"o 'e' flag - The key's userID must be an exact case-insensitive substring of

the userlD.

"o 'a' flag - The userID is ignored, and all keys in the database are returned.

"o 'b' flag - The output keyring is in binary format instead of ASCII-armor

format.

"o 'i' flag - Errors are ignored; this is used when recovering from a corrupt

database.

"o 'd' flag - Disabled keys are returned.

"o 's' flag - Selected keys are output unsorted to stdout. This flag implies the

'b' flag.

"o 't' flag - The operation takes place without logging and transactions; this is

faster, but less safe.

109

hendrix 14% pksclient .Jvar/db get wright

[Wed Feb 16 15:01:38 2000] kd open: cornpleted successfully
[Wed Feb 16 15:01:38 2000] kdget: userid="wright", flags=0
[Wed Feb 16 15:01:38 2000] kdget: conpleted successfuly
-- BEGIN PGP PUBLIC KEY BLOCK--
Version: 5.0
Co-nent: PGP Key Server

mQBNAzirKt0AAAFCAK9wlyFbD7QNkF1U+WQ~e+PG7/w70+mUKj&+rrbtqQBR~j
GROK8iSn F1weRVORKfcZO5YKeigrPqDr5sUABRGOI1RvbSBX nH•QgPHdy
aWdodEBjcy5ucBMbmF2eS5taWw+
=Issp
-- END PGP PUBLIC KEY BLOCK--
[Wed Feb 16 15:01:38 2000] kdsclose: conpleted successfuly

Figure B.4 Result of "get userID" Query.

* index userlD [flags] - An index listing for all the keys matching the userID is

printed to stdout.

o 'v' flag - Signatures are included in the output.

o f' flag - The key fingerprint is included in the output.

o 'e' flag - The key's userlD must be an exact case-insensitive substring of

the userID.

o 'a' flag - The userID is ignored, and all keys in the database are indexed.

o 'i' flag - Errors are ignored. This is used when recovering from a corrupt

database.

o 'd' flag - Disabled keys are returned.

o 's' flag - The index is output unsorted to stdout.

o 't' flag - The operation takes place without logging and transactions; this is

faster, but less safe.

* since time [flags] - All keys added to the database or changed since the Unix

timestamp are printed to stdout.

"o 'b' flag - The output keys are printed in binary format instead of ASCII-

armor format.

"o 'r' flag - The time given is taken as the number of seconds in the past the

dump should start.

110

o 't' flag - The operation takes place without logging and transactions; this is

faster, but less safe.

" delete userlD [flags] - All keys matching the userlD are deleted from the

database.

o 't' flag - The operation will take place without logging and transactions;

this is faster, but less safe.

" disable userlD [flags] - All keys matching the userID have the disabled flag

set. Figure B.5 presents an example of a disable query executed under

/worka/smithml/pks-0.9.4/bin.

"o 'c' flag - The flag is cleared instead of set.

"o 't' flag - The operation takes place without logging and transactions; this is

faster, but less safe.

hendrix 8% pliclient.Jva/ddb disable snithmi

[Mon Feb 14 16:26:17 2000] kd open: conrleted successfully
[Mon Feb 14 16:26:17 2000] kd disable: userid="smithn t ", flags=0
[Mon Feb 14 16:26:17 2000] kdsyr: conpleted successfully
[Mon Feb 14 16:26:17 2000] kd disabled. conpleted successfiuly
key id 0481F411 disabled
key id D749EAD5 disabled
[Mon Feb 14 16:26:17 2000] kdclose: completed sccessfuily

hendrix 9% pkscient .Jvar/db get smithmi

[Mon Feb 14 16:28:06 2000] kdopen: conpleted successfully
[Mon Feb 14 16:28:06 2000] kd.get: userid=-"snithni", flags=0)
[Mon Feb 14 16:28:06 2000] kdget: conpleted with error
database get failed. The requested key has been disabled
[Mon Feb 14 16:28:06 2000] kdclose: corrpleted successfiuly

Figure B.5 Result of "disable userlD" Query

followed by "get userID" Query.

C. BERKELEY DATABASE

The open-source Berkeley Database (DB) distribution is available for download

at: http://www.sleepycat.com. This database is used as the repository for Bamboo PGP

public keys. Certain procedures for database management such as recovery, backup, and

111

checkpointing are briefly discussed here. Comprehensive documentation for this

database is available on the website.

1. Checkpointing

Checkpointing the log files commits the database transactions to disk.

Transaction commit guarantees that the database changes inside it will never be lost, even

after system or application failure. Checkpointing is necessary for two reasons. First, log

files can only be removed after a checkpoint. Second, the frequency of checkpoints is

inversely proportional to the amount of time it takes to run database recovery after a

system or application failure. Once the database pages are written, log files can be

archived and removed from the system because they will never be needed for anything

other than a catastrophic failure. Additionally, recovery after system or application failure

only has to redo or undo changes since the last checkpoint because changes before the

checkpoint have all been flushed to the file system.

a. "dbcheckpoint" Command Description

The dbcheckpoint utility is a daemon process that monitors the database

log and periodically calls another utility, txncheckpoint, for checkpointing.

b. "dbcheckpoint" Command Syntax

Figure B.6 illustrates a sample "db-checkpoint" command execution. The

syntax is:

db_checkpoint [-1v] [-h home] [-k kbytes] [-Lfile] [-p min]

At least one of the -1, -k, and -p options must be specified:

* -1 Checkpoint the log once, then exit.

* -h Specify a home directory for the database.

* -k Checkpoint the database at least as often as every k bytes of log file

written.

* -L Log the execution of the db.checkpoint utility to the specified file

in the following format, where ### is the process ID: "dbcheckpoint:

Wed Jun 15 01:23:45 EDT 1995". This file will be removed if the

db&checkpoint utility exits gracefully.

* -p min Checkpoint the database at least every min minutes.

112

-v Write the time of each checkpoint to stdout.

hendrix 29% db_ hedqpoint -lv -h .Jvar/db

db_checkpoint: checkpoint: Wed Feb 16 15:51:58 2000

Figure B.6 Example "dbcheckpoint" Command.

2. Archiving

Archival is concerned with the recoverability of the database and disk

consumption due to the database log files. First, periodic snapshots (i.e., backups) of

your databases should be taken in case of catastrophic failure. Second, periodic removal

of log files may be necessary to conserve disk space. The two procedures are distinct

from each other, and the current log files should not be removed simply because a

database snapshot was created.

Log files may be removed at any time as long as they are not involved in an active

transaction. By copying the log files to a backup medium before removal, they may be

used during restoration of a snapshot to restore your databases to a state more recent than

that of the snapshot.

It is often helpful to think of database archival in terms of full and incremental file

system backups. A snapshot is a full backup, while the copying of the current logs before

removal is an incremental backup. For example, it may be suitable to take a full snapshot

of an installation weekly, but archive and remove log files on a daily basis. Using both

the snapshot and the archived log files, a crash at any time during the week can be

recovered to the time of the most recent log archival, a time later than that of the original

snapshot.

a. "dbarchive" Command Description

The dbarchive utility writes the pathnames of log files that are no longer

in use (i.e., no longer involved in active transactions) to the standard output, one

pathname per line. These log files should be copied to backup media to assist in recovery

in case of a catastrophic failure (which also requires a snapshot of the database files).

Only then may they be deleted from the system to reclaim disk space.

113

b. "dbarchive" Command Syntax

The dbarchive command syntax is:

dbarchive [-alsv][-h home]

* -a Write all pathnames as absolute pathnames, instead of relative to

the database home directory.

* -h Specify the database home directory.

* -1 Write out the pathnames of all database log files, whether or not

they are involved in active transactions.

"* -s Write the pathnames of all of the database files that need to be

archived in order to recover the database from catastrophic failure. If

any of the database files have not been accessed during the lifetime of

the current log files, dbarchive will not include them in this output. It

is possible that some of the files referenced in the log have since been

deleted from the system. In this case, db-archive will ignore them.

When dbrecover is run, any files referenced in the log that are not

present during recovery are assumed to have been deleted and will not

be recovered.

"• -v Run in verbose mode, listing the checkpoints in the log files as they

are reviewed.

c. Archivalfor Recovery

The Berkeley DB library supports on-line backups, and it is not necessary

to stop accessing the database during the time when the snapshot is created. It is

important to note, however, that the snapshot of an active database will be consistent as

of some unspecified time between the start of the archival and when archival is

completed.

To create a snapshot as of a specific time (recommended procedure for the

Bamboo implementation), stop access of the database for the entire time of the archival,

force a checkpoint (see db-checkpoint), then archive the files listed by the dbarchive

utility's -s and -1 options.

114

Perform the following steps to create a snapshot of your database that can

be used to recover from catastrophic failure:

1. Run db-archive -s -h to identify all of the database data files that must

be saved, and copy them to a backup device. It may be simpler to

archive the whole directory itself instead of the individual files.

2. If reading and writing to the database files while the snapshot is being

taken, run db-archive -1 -h to identify the database log files that must

be saved, and copy them to a backup device. Again, consider

archiving the directory instead of individual files.

Note that the order of these operations is important, and that the database

files must be archived before the log files. This means that if the database files and log

files are in the same directory you cannot simply archive the directory; you must make

sure that the correct order of archival is maintained.

Once these steps are completed, the database can be recovered from

catastrophic failure to its state as of the archival time. To update the snapshot so that

recovery from catastrophic failure is possible up to a new point in time, repeat step #2,

copying all existing log files to a backup device.

Each time all database and log files are copied to backup media, discard all

previous snapshots and saved log files. For archival safety, ensure that you have

multiple copies of database backups, preferably on differing storage media.

d. Archival to Conserve Log File Space

To remove log files, take the following steps:

1 . If you are concerned with catastrophic failure, first copy the log files to

backup media as described above. Log files are necessary for recovery

from catastrophic failure.

2. Run db-archive without options to identify all of the log files that are

no longer in use (i.e., no longer involved in an active transaction).

3. Remove those log files from the system.

115

3. Recovery

Recovery procedures concern the recoverability of the database. After any

application or system failure, there are two possible approaches to database recovery:

"* There is no need for recoverability, and all databases can be recreated from

scratch. The database home directory can simply be removed and recreated.

"* It is necessary to recover information after system or application failure.

Recovery (using db-recover) must be performed on the database home

directory.

Performing recovery will: remove all the shared regions (which may have been

corrupted by the failure); establish the end of the log by identifying the last record written

to the log; perform transaction recovery. Database applications must not be restarted

until recovery completes. During recovery, all changes made by aborted or unfinished

transactions are undone and all changes made by committed transactions are redone, as

necessary. After recovery runs, the environment is properly initialized so that

applications may be restarted. Any time an application crashes or the system fails,

recovery processing should be performed on any database environments that were active

at that time.

There are two forms of recovery:

1. nonnal or non-catastrophic recovery. If the failure is non-catastrophic, (i.e.,

the database files and log are accessible on a file system that has recovered

cleanly), the recovery process will review the logs and database files to ensure

that all committed transactions appear and that all uncommitted transactions

are undone. Figure B.7 below illustrates a non-catastrophic recovery.

2. catastrophic recovery. The Berkeley DB package defines catastrophic failure

to be failure where either the database or log files have been destroyed or

corrupted. For example, catastrophic failure includes the case where the disk

drive on which either the database or logs are stored has been physically

destroyed, or when the system's normal file system recovery on startup is

unable to bring the database and log files to a consistent state. If the' failure is

catastrophic, a snapshot of the database files and the archived log files must be

116

restored onto the system. Then the recovery process will review the logs and

database files to bring the database to a consistent state as of the time of the

last archived log file. Only transactions committed before that date will

appear in the database. Refer to Figure B.8 below.

a. "dbrecover" Command Description

The dbrecover utility is executed to restore the database to a consistent

state. All committed transactions are guaranteed to appear after dbrecover has run, and

all uncommitted transactions will be completely undone.

b. "dbrecover" Command Syntax

The dbrecover syntax is:

dbrecover [-cv] [-h home]

"* -c Failure was catastrophic.

"* -h Specify a home directory for the database.

"• -v Run in verbose mode.

hendrix 28% dbrecover -h .Jvar/db -v

db recover. Finding last valid log LSN: Mile: 1 offset 23946
db recover. Checkpoint at: [1][23675]
db recover: Cleckpoint LSN: [1] [23675]
db recover. Previous checkpoint: [1][23404]
db recover. Ch•ckpoint at: [1][23675]
db recover Checkpoint LSN: [1][23404]
dbrecover: Previous checkpoint: [1][21723]
dbrecover:. Recovery starting from [1] [23404]
dbrecover: Recovery corrplete at Mon Feb 14 17:10-04 2000
dbrecover Maxiniirn transaction id 0 Recovery checkpoint [1] [24173]
db recover. Recovery conplete at Wed Dec 3116:00:00 1969
dbrecover: Maxinmn transaction id 80000000 Recovery checkpoint [1][24173]

Figure B.7 Sample Script of "dbrecover" Operation.

c. Restoring the Database after Catastrophic Failure

To restore the database after catastrophic failure, perform the following:

1. Restore the copies of the database files from the backup media.

2. Restore the copies of the log files from the backup media.

117

3. Run dbrecover -c -h to recover the database. (see Recovery section

below)

Figure B.8 is a script illustrating the creation of a database snapshot in

case of catastrophic failure: the log files are checkpointed; a snapshot is taken via the

archive command; log files are written out to the screen; the database is recovered.

hendrix 110% dbchecpoint -1v -h .dvar/db

dbcheckpoint: checkpoint: Wed Feb 16 17:03:10 2000

hendrix 11% db archive -s -h .Jvar/db

keydb000
keydlbJ01
keyd&002
keydM0
keydb004

worddb

(copy database files to backup location)

hemirix 112% dbarchive -4 -h Jvar/db

log.000000001

(copy log files to backup location)
(after crash occurs, restore backup files)

hmedrix 115% db_recover -cv -h .Jvar/db

dbrecover: Finding last valid log LSN: file: 1 offset 77792
dbrecover: Recovery starting from [0][0]
db_recover: Recovery conplete at Wed Feb 16 17:05:49 2000
db recover: Maxirnmtransaction id 8000004d Recovery checqpoint [1][77792]
db recover: Recovery conplete at Wed Dec 3116:00:00 1969
dbrecover: Maxinum tramaction id 80000000 Recovery checkqpoint [1] [77792]

Figure B.8 Database Snapshot and Recovery Procedures.

4. Other DB Features

Deadlock detection and write-ahead logging (DB recoverability) are briefly

introduced in this section. The documentation at http://www.sleepycat.com is an

excellent and detailed resource on these subjects and other topics. Topics such as: file

118

system operations, logging operations, and utilities: db-printlog, db_load, and dbfdump

are prerequisites to fully understand the intricacies associated with the Berkeley DB. The

two subjects below were selected for discussion, as it is imperative that the administrator

be able to recognize deadlock and understand the write-ahead logging feature of the

Berkeley DB.

a. Deadlock Detection

Deadlock detection is not so much a requirement specific to transaction

protected applications, but rather is necessary for almost all applications where more than

a single thread of control will be accessing the database at one time. While Berkeley DB

automatically handles database locking, it is normally possible for deadlock to occur.

In order to detect a deadlock, a separate process or thread must review the

locks currently held in the database. If a deadlock exists then a victim must be selected.

Berkeley DB provides a separate utility, db_deadlock, to perform the deadlock detection.

Figure B.9 is an example using the db_deadlock utility; refer to the website for

documentation.

hendrix 15% db deadlock -v -h .Jvar/db -t 5
dbdeadlock: Running at Wed Feb 16 09:49:00 2000
dbdeadloclc 3 lockers
db deadlock: Rmuing at Wed Feb 1609:49:05 2000
db_deadlock: 3 lockers

(Perform recovery here)

hmnddx 35% db deadlock -v -h .Jvarldb -t 5
db deadlock: Running at Wed Feb 16 10:04:14 2000
db deadlock: Runing at Wed Feb 16 10:04:19 2000
dbdeadlock: Running at Wed Feb 16 10:04:242000
hendrix 3%

Figure B.9 Script of "db_deadlock" Operation.

b. Write-ahead Logging

Berkeley DB recovery is based on write-ahead logging. When a change is

made to a database page, a description of the change is written into a log file. This

description in the log file is guaranteed to be written to stable storage before the changed

database pages are written. This is the fundamental feature of the logging system that

119

makes durability and rollback work, If the application or system crashes, the log is

reviewed during recovery. Any database changes described in the log that were part of

committed transactions, and that were never written to the actual database itself, are

written to the database as part of recovery. Any database changes described in the log

that were never committed (i.e., changes related to aborted or unfinished transactions in

the log), and that were written to the actual database itself, are backed-out of the database

as part of recovery. This design allows the database to be written lazily, and only blocks

from the log file have to be forced to disk as part of transaction commit.

This introduction to the Berkeley DB enables the administrator to acquire a

general understanding of features inherent in this system. It provides the framework

necessary to maintain data consistency required for the end-user. Establishing backup

procedures for database recovery and periodically performing these procedures will

maximize database accessibility and minimize hardships during recovery evolutions.

120

LIST OF REFERENCES

1. Rohrbach, M., "Public Key Infrastructure," SPAWAR PIMIW-161, October 1998.

2. Entrust Technologies, Entrust Overview, by C. Voice, 22 October 1998.

3. Entrust Technologies, Key Update and the Complete Story on the Need for Two Key
Pairs, by I. Curry, December 1998.

4. RSA Security White Paper, Understanding Public Key Infrastructure (PKI), 1999.

5. Naval Postgraduate School, Bamboo -A Portable System for Dynamically Extensible,
Real-time, Networked, Virtual Environments, presented by K. A. Watsen and M. J. Zyda
at the 1998 IEEE Virtual Reality Annual International Symposium (VRAIS'98), Atlanta,
Georgia, 14-18 March 1998.

6. Netscape White Paper, "Netscape Object Signing: Establishing Trust for Downloaded
Software." [http://developer.netscape.com/docs/manuals/signedobj/trust/index'htm]. July
1997.

7. VeriSign White Paper, VeriSign - Evaluating Enterprise Digital Certificate Solutions,
1998.

8. VeriSign White Paper, VeriSign - Guide to Securing Intranet and Extranet Servers, 1998.

9. Netscape White Paper, "Introduction to Public-Key Cryptography."
[http://developer.netscape.com/docs/manuals/security/pkin/contents.htm]. October 1998.

10. SSH Communications Security Ltd. White Paper, "Cryptographic Algorithms."
[http://www.ssh.fi/tech/crypto/algorithms.html]. 2000.

11. Netscape White Paper, "Signing Software with Netscape Signing Tool 1.1."
[http://developer.netscape.com/docs/manuals/signedobj/signtool/signintr.htm]. June
1998.

12. Machefsky, I., A Total Economic Impact Analysis of Two PKI Vendors: Entrust and
VeriSign, Giga Information Group, 1998.

13. Network Associates Inc., "An Introduction to Cryptography."
[http://web.mit.edu/network/pgp.html] included in distribution, November 1998.

14. Schneier, B., "The 1999 Crypto Year-in-Review."
[http://www.infosecuritymag.com/dec99/cryptorhythms.htm], December 1999.

121

15. PGP International Website, [http://www.pgpi.com]. 1999.

16. Zimmerman, P., PGP User's Guide Volume I: Essential Topics, Boulder Software
Engineering, 1994.

17. Zimmerman, P., PGP User's Guide Volume II: Special Topics, Boulder Software
Engineering, 1994.

18. Breed, C., "X.509 vs. PGP Certs." [http://www.infosecuritymag.com]. June 1999.

19. Bamboo Website, [http://www.npsnet.org/-watsen/Bamboo]. October 1999.

20. Horowitz, M., "PGP Public Key Server." [http://www.mit.edu/people/marc/pks].
September 1999.

21. The Berkeley Database Website, [http://www.sleepycat.com/docs/index.html]. November
1999.

22. Webster's II New Riverside University Dictionary, p. 1240, The Riverside Publishing
Company, 1988.

23. Ellison, C., Schneier, B., "Ten Risks of PKI: What You're not Being Told about
Public Key Infrastructure," Computer Security Journal, Volume 16, pp. 1-7,
January 2000.

24. U.S. Department of Commerce Bureau of Export Administration Website,
"Commerce Announces Streamlined Encryption Export Regulations."
[http://204.193.246.62/public.nsf/docs/60D6B47456BB389F852568640078B6C0
]. January 2000.

25. Mozilla Crypto FAQ Website, [http://www.mozilla.org/crypto-faq.html]. February 2000.

26. Engelfriet, A., "The comp.security.pgp FAQ." [http://www.uk.pgp.net/pgpnet/pgp-faq].
October 1998.

27. VeriSign Website, "VeriSign Approved to Provide Digital Certificate Services for U.S.
Department of Defense." [http://www.verisign.com/press/1999/partner/usdod.html].
October 1999.

28. Mozilla PKI Projects Website, [http://www.mozilla.org/projects/security/pki]. 2000.

122

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center...2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-62 18

2. Dudley Knox Library... 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5 101

3. Prof. Michael Zyda, Code MV... 1
MOVES Academic Group
Naval Postgraduate School
Monterey, California 93943-5 100

4. Prof. John Falby, Code MV.. 1
MOVES Academic Group
Naval Postgraduate School
Monterey, California 93943-5 100

5. Kent Watsen, Code MV...1
Naval Postgraduate School
Monterey, California 93943-5100

6. LCDR Marlon L. Smith, Code MV ... 1
Naval Postgraduate School
Monterey, California 93943-5 100

123

