
Carnegie Mellon
Software Engineering Institute

A Survey of Legacy
System Modernization
Approaches

Santiago Comella-Dorda
Kurt Wallnau
Robert C. Seacord
John Robert

April 2000

COTS-Based Systems Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2000-TN-003

flncQPAW
njSPBCTE^

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask, don't tell, don't pursue" excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are
available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2000 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

Contents i

Abstract v

1 Introduction 1

2 System Evolution 2
2.1 Maintenance 3
2.2 Replacement 3
2.3 Modernization 4

3 Modernization Techniques 6
3.1 User Interface Modernization 6
3.2 Data Modernization 7
3.3 Functional (Logic) Modernization 10

4 Summary 16

References 17

CMU/SEI-2000-TN-003

CMU/SEI-2000-TN-003

List of Figures

Figure 1: Information System Life Cycle 2

Figure 2: Legacy System Wrapping Using Screen Scraping 6

Figure 3: Gateways and Bridges 8

Figure 4: XML integration 9

Figure 5: Data Replication 10

Figure 6: Legacy System Wrapping Using CGI Extensions 11

Figure 7: Wrapping Legacy Business Logic Using EJB 14

Figure 8: Integration of Legacy Business Logic Using Connectors
15

CMU/SEI-2000-TN-003

CMU/SEI-2000-TN-003

Abstract

Information systems are critical assets for modern enterprises and incorporate key knowledge
acquired over the life of an organization. Although these systems must be updated
continuously to reflect evolving business practices, repeated modification has a cumulative
effect on system complexity, and the rapid evolution of technology quickly renders existing
technologies obsolete. Eventually, the existing information systems become too fragile to
modify and too important to discard. However, organizations must consider modernizing
these legacy systems to remain viable. The commercial market provides a variety of solutions
to this increasingly common problem of legacy system modernization. However,
understanding the strengths and weaknesses of each modernization technique is paramount to
select the correct solution and the overall success of a modernization effort. This paper
provides a survey of modernization techniques including screen scraping, database gateway,
XML integration, database replication, CGI integration, object-oriented wrapping, and
"componentization" of legacy systems. This general overview enables engineers performing
legacy system modernization to preselect a subset of applicable modernization techniques for
further evaluation.

CMU/SEI-2000-TN-003

vi CMU/SEI-2000-TN-003

1 Introduction

Information technology (IT) is revolutionizing commercial and government organizations by
enabling efficiency improvements and creating opportunities for new business practices.
Organizations depend on enterprise information systems (EISs) to codify these business
practices and collect, process and analyze business data. No less an authority on the subject
than Federal Reserve Chairman Alan Greenspan testified before the Joint Economic
Committee (U.S. Congress on June 14, 1999) that current U.S. and global economic growth
is rooted in advances in IT. Chairman Greenspan specifically credited IT, saying:

An economy that twenty years ago seemed to have seen its better days, is
displaying a remarkable run of economic growth that appears to have its roots in
ongoing advances in technology, [innovations in information technology—so-
called IT—have begun to alter the manner in which we do business and create
value, often in ways that were not readily foreseeable even five years ago.

In many ways, these information systems are to an enterprise what a brain is to the higher
species—a complex, poorly understood mass upon which the organism relies for its very
existence. John Salasin characterized enterprise information systems as large, heterogeneous,
distributed, evolving, dynamic, long-lived, mission critical, systems of systems. EISs are
large because the organizations they support are large and complex, and because EISs evolve
through accretion. Much of the code in these systems is likely to be redundant, often
providing the same or similar capabilities in different subsystems that make up the overall
EIS. EISs are heterogeneous for much the same reason. As features are added to an EIS, new
technologies and components are selected and integrated.

The importance of EISs requires organizations to manage system evolution as business
practices change and new information technologies that can provide competitive advantage
become available. EIS evolution becomes more difficult with time as systems are repeatedly
modified and become increasingly outdated. Managing the evolution of outdated systems
requires periodically modernizing these legacy systems to support evolving business
practices and to incorporate modern information technologies.

This document enumerates, describes and, to some extent, evaluates popular legacy system
modernization techniques. In addition, we define system modernization and the role it plays
in managing system evolution.

1 Remarks by Chairman Alan Greenspan, High-Tech Industry in the U.S. Economy, testimony before
the Joint Economic Committee, U.S. Congress. June 14, 1999.

CMU/SEI-2000-TN-003

2 System Evolution

System evolution is a broad term that covers a continuum from adding a field in a database to
completely re-implementing a system. These system evolution activities can be divided into
three categories [Weiderman 97]: maintenance, modernization, and replacement. Figure 1
illustrates how different evolution activities are applied at different phases of the system life
cycle. The dotted line represents growing business needs while the solid line represents the
functionality provided by the information system. Repeated system maintenance supports the
business needs sufficiently for a time, but as the system becomes increasingly outdated,
maintenance falls behind the business needs. A modernization effort is then required that
represents a greater effort, both in time and functionality, than the maintenance activity.
Finally, when the old system can no longer be evolved, it must be replaced.

Time
Figure 1: Information System Life Cycle

Determining the category of evolutionary activity that is most appropriate at different points
in the life cycle is a daunting challenge. Should we continue maintaining the system or
modernize it? Should we completely replace the system? To make the correct decision, we
need to assess the legacy system and analyze the implications of each action. Ransom et al
describe an assessment technique for determining if a legacy system should be replaced,
modernized or maintained [Ransom 98].

CMU/SEI-2000-TN-003

This document focuses on one phase in the life of a system: modernization. In particular, we
concentrate on black-box modernization techniques because they provide a good way to
leverage the existing investment in the legacy systems with a limited effort. To better
understand the extent of modernization, however, first we briefly describe the other two
phases in the life of a deployed system: maintenance and replacement.

2.1 Maintenance
Maintenance is an incremental and iterative process in which small changes are made to the
system. These changes are often bug corrections or small functional enhancements and
should never involve major structural changes. Maintenance is required to support the
evolution of any system, but it does have limitations:

1. Competitive advantage derived from adopting new technologies is seriously constrained.
Net-centric computing or graphical user interfaces, for example, are not typically
considered as a maintenance operation.

2. Maintenance costs for legacy systems increase with time. Finding needed expertise in
out-of-date technologies becomes increasingly difficult and expensive.

3. Often, the compound impact of many small changes is greater than the sum of the
individual changes due to the erosion of the system's conceptual integrity. Information
systems tend to expand with time as efforts to remove unused code are seldom funded.
Modifying a legacy system to adapt it to new business needs becomes increasingly
difficult.

2.2 Replacement
Replacement (AKAbig bang approach or cold turkey) [Bisdal 97] is appropriate for legacy
systems that can not keep pace with business needs and for which modernization is not
possible or cost effective. Replacement is normally used with systems that are
undocumented, outdated, or not extensible. However, replacement has risks that should be
evaluated before selecting this technique:

1. Replacement is basically building a system from scratch and is very resource intensive.
In addition, IT resources are typically fully allocated performing maintenance tasks and
may not be familiar with new technologies that can be utilized on the new system.

2. Replacement requires extensive testing of the new system. Legacy systems are well
tested and tuned, and encapsulate considerable business expertise. There is no guarantee
that the new system will be as robust or functional as the old one (and as shown in
Figure 1, it may cause a period of degraded system functionality with respect to business
needs).

Replacement is a broadly studied problem with plenty of supporting literature. For a
description of different replacement techniques see [Brodie 95]. Seng and Tsai illustrate in
[Seng 99] a complete replacement process.

CMU/SEI-2000-TN-003

2.3 Modernization
Modernization involves more extensive changes than maintenance, but conserves a
significant portion of the existing system. These changes often include system restructuring,
important functional enhancements, or new software attributes. Modernization is used when a
legacy system requires more pervasive changes than those possible during maintenance, but it
still has business value that must be preserved.

System modernization can be distinguished by the level of system understanding required to
support the modernization effort [Weiderman 97]. Modernization that requires knowledge of
the internals of a legacy system is called white-box modernization, and modernization that
just requires knowledge of the external interfaces of a legacy system is called black-box
modernization.

2.3.1 White-Box Modernization

White-box modernization requires an initial reverse engineering process to gain an
understanding of the internal system operation. Components of the system and their
relationships are identified, and a representation of the system at a higher level of abstraction

is produced [Chikofsky 90].

Program understanding is the principal form of reverse engineering used in white-box
modernization. Program understanding involves modeling the domain, extracting information
from the code using appropriate extraction mechanisms, and creating abstractions that help in
the understanding of the underlying system structure.2 Analyzing and understanding old code
is a difficult task because with time, every system collapses under its own complexity
[Phoenix Group]. Although some advances have been made in program understanding, it is
still a risky and work-intensive task [von Mayrhauser 94, Haft 95].

After the code is analyzed and understood, white-box modernization often includes
some system or code restructuring. Software restructuring can be defined as "the
transformation from one representation form to another at the same relative abstraction
level, while preserving the subject system's external behavior (functionality and
semantics)." [Chikofsky 90] This transformation is typically used to augment some
quality attribute of the system like maintainability or performance. Program (or code)
slicing is a particularly popular technique of software restructuring. A description of a
semi-automatic restructuring technique to improve cohesion of legacy procedures can
be found in [Lakhotia 98].

2 Tilley, Scott R. & Smith, Dennis B. Perspectives on Legacy Systems Reengineering (draft).
Reengineering Center, Software Engineering Institute, Carnegie Mellon University. 1995.

CMU/SEI-2000-TN-003

2.3.2 Black-Box Modernization

Black-box modernization involves examining the inputs and outputs of a legacy system
within an operating context to gain an understanding of the system interfaces. Although
acquiring an understanding of a system interface is not an easy task, it does not reach the
degree of difficulty associated with white-box modernization.

Black-box modernization is often based on wrapping. Wrapping consists of surrounding the
legacy system with a software layer that hides the unwanted complexity of the old system
and exports a modern interface. Wrapping is used to remove mismatches between the
interface exported by a software artifact and the interfaces required by current integration
practices [Wallnau 97, Shaw 95]. Ideally, wrapping is a "black box" reengineering task in that
only the legacy interface is analyzed and the legacy system internals are ignored.
Unfortunately, this solution is not always practical, and often requires an understanding of the
software modules' internals using white-box techniques [Plakosh 99].

CMU/SEI-2000-TN-003

3 Modernization Techniques

Legacy systems may be modernized at the functional (logic), data, or user interface level. In
this section, we present a collection of techniques for each of these modernization levels and

discuss typical applications.

3.1 User Interface Modernization
The user interface (UI) is the most visible part of a system. Modernizing the UI improves
usability and is greatly appreciated by final users.

A common technique for UI modernization is screen scraping [Carr 98]. Screen scraping, as
shown in Figure 2, consists of wrapping old, text-based interfaces with new graphical
interfaces. The old interface is often a set of text screens running in a terminal. In contrast,
the new interface can be a PC-based, graphical user interface (GUI), or even a hypertext
markup language (HTML) light client running in a Web browser. This technique can be
extended easily, enabling one new UI to wrap a number of legacy systems. The new graphical
interface communicates with the old one using a specialized commercial tool. These tools
often generate the new screens automatically by mapping the old ones.

Legacy
System

Function 1

Text
Screen

Screen

Scraping Tool

Internet
Server

> HTML

 A 1U111

PC-Based
GUI

Figure 2: Legacy System Wrapping Using Screen Scraping

For example, OC://WebConnect Enterprise Integration Server™ from Open-Connect Systems or
QuickApp™ from Attachmate.

CMU/SEI-2000-TN-003

From the perspective of the legacy system, the new graphical interface is indistinguishable
from an end user entering text in a screen. From the end user's point of view, the
modernization has been successful as the new system now provides a modern, usable
graphical interface. However, from the IT department's perspective, the new system is as
inflexible and difficult to maintain as the legacy system. Screen scraping is basically a
"makeover" for legacy systems. Derogatorily, this approach has been called "whipped cream
on road kill." It can, however, be effective for stable systems where the principle objective is
to improve usability.

Another interesting application of screen scraping is to generate application program
interfaces (APIs) from legacy user interfaces. This technique was applied in a large defense
program integrating an enterprise resource planning (ERP) with other systems. Screen
scraping was used to extract data from the ERP, reversing the normal use of this wrapping
technique because the ERP did not provide a callable application programming interface.

3.2 Data Modernization

Data wrapping enables accessing legacy data using a different interface or protocol than those
for which the data was designed initially. Data wrapping improves connectivity and allows
the integration of legacy data into modern infrastructures.

3.2.1 Database Gateway

A database gateway is a specific type of software gateway that translates between two or
more data access protocols [Altman 99]. There are many vendor-specific protocols used to
access databases, but fortunately there are a few that are de facto industry standards:

1. Open Database Connectivity (ODBC) is Microsoft's interface for accessing data in a
heterogeneous environment of relational and non-relational database management
systems. Based on the Call Level Interface specification of the SQL Access Group,
ODBC provides an open, vendor-neutral way of accessing data stored in a variety of
proprietary personal computer, minicomputer, and mainframe databases [Microsoft 95].

2. Java Database Connectivity (JDBC) is an industry standard defined by Sun for database-
independent connectivity between Java applets/applications and a broad range of SQL
databases. JDBC benefits from the "Write Once, Run Anywhere" characteristics of Java.
The JDBC API defines Java classes that represent database connections, SQL
statements, result sets, and database metadata [JDBC].

3. ODMG is the standard of the Object Data Management Group for persistent object
storage. It builds upon existing database, object, and programming language standards
(including the Object Management Group [OMG]) to simplify object storage and ensure
application portability [Barry 98].

A database gateway normally translates a vendor-specific access protocol into one of these
standard protocols. This translation is useful because modern applications and development
platforms typically support one or more of these standard protocols. Using a database

CMU/SEI-2000-TN-003

gateway to access legacy data improves connectivity, enables remote access, and supports the
integration of legacy data with modern systems.

Given that there are multiple "standard" protocols for accessing databases, the database
gateway available for a specific legacy system and the protocol supported by the new system
may not match. Figure 3, for example, shows a legacy system for which an ODBC gateway is
available while the modern system requires a JDBC interface. One solution is a special
gateway called a bridge that translates one standard protocol into another—in this case a

JDBC-ODBC bridge.

Proprietary interface

Mainframes,
Relational DB.

ODBC interface

ODBC
Gateway

JDBC interface

-o*+
ODBC-JDBC

Bridge
04+

Modern
System

Figure 3: Gateways and Bridges

3.2.2 XML Integration
The Extensible Markup Language (XML™) is a broadly adopted format for structured
documents and data on the Web. XML is a simple and flexible text format derived from
standard generalized markup language (SGML) (ISO 8879) and developed by the World

Wide Web Consortium® (W3C).

XML is expanding from its origin in document processing and becoming a solution for data
integration [Karpinski 98]. XML excels in inter-application data exchange because of its
flexible and extensible method for describing data and its capability to communicate over the
Internet using the standard HTTP protocol [WebMethods 99].

This flexibility makes XML a powerful mechanism for business-to-business (B2B)
application integration. B2B integration is the automated exchange of information between
systems from different organizations. B2B, for example, improves external processes such as
supply chain integration or shipping/logistics tracking [WebMethods 99]. XML-based B2B is
gaining momentum as XML vocabularies emerge in specific business domains such as
finance. In addition, a growing number of commercial enterprise application solutions are

embracing XML.

The keystone in the XML-based B2B architecture is the XML server (Figure 4). The XML
server acts as the contact point between the corporate infrastructure and the rest of the world.
The XML server communicates by various means with the internal infrastructures including
ERP systems, databases, EDIs, etc. On the other hand, the server interoperates with external
organization by exchanging XML messages. There is an active market of solutions for non-

CMU/SEI-2000-TN-003

intrusive integration of legacy infrastructures into XML servers. In addition, most of the
commercial XML servers support a wealth of communication protocols and this enables cost-
effective integration with the most usual legacy applications.

Corporate Boundaries

Database

Supplier 1

XML
" Server 9

•

Internet >.

3\
Provider 1

* XML
Server •

Figure 4: XML integration

3.2.3 Database Replication

Database replication is the process of copying and maintaining database objects in multiple
databases that make up a distributed database system. Changes applied at one site are
captured and stored locally before being forwarded and applied to the centralized repository.
Replication provides users with fast, local access to shared data and greater availability to
applications because alternative data access options exist. Even if one site becomes
unavailable, users can continue to query, or even update, data at other locations.4

Database replication is often used to enable decentralized access to legacy data stored in
mainframes. In this approach, local instances of modern databases are replicated parts of a
centralized database. We can get a similar effect using a remote database gateway, but it is
sometimes undesirable to use a software layer to wrap legacy data. Instead, we want a local
copy of the data that wraps and buffers the original data source. New applications using the

Oracle Corp. Oracle 81 Concepts. Available WWW
<URL: http://technet.oracle.eom/doc/server.805/a58227/ch_repli.htm#l 111
(Users must register with Oracle to access this site.)

CMU/SEI-2000-TN-003

data receive the benefits of local access to a modern database instead of the problems of

remote access to an obsolete data repository.

Figure 5 illustrates one example. An insurance company using a Replication Server,
replicated data stored in a Cincom Systems Supra VI database to about 5,000 PC-laptops of
insurance agents across the United States. It would have been possible for the laptops to
access the centralized data concurrently using a remote gateway, but the performance and
network load would have imposed a severe penalty and increased cost. Instead, the agents
have local copies of part of the data, and the data repositories are coordinated with periodic
batch jobs. Of course, there can be data cohesion problems, but if the data sets resident at

each laptop have little overlap, this solution can be effective.

Figure 5: Data Replication

3.3 Functional (Logic) Modernization

In contrast with data wrapping, functional (or logic) wrapping encapsulates not only the
legacy data but also the business logic embedded in the legacy system. Logic wrapping can
be used, for instance, to leverage existing COBOL code implanted in Transaction Monitor
(TM) procedures. The logic wrapping techniques presented here can provide access to legacy

data, if required, in addition to legacy logic.

3.3.1 CGI Integration
The Common Gateway Interface (CGI) is a standard for interfacing external applications
with information servers, such as HTTP or Web servers. Legacy integration using the CGI
[Shklar Eichman 95] is often used to provide fast web access to existing assets including
mainframes and transaction monitors. As in screen scraping, a new graphical user interface
(in this case always HTML pages) is created, but instead of wrapping the old user interface,
the new GUI communicates directly with the core business logic or data of the legacy system^
CGI integration is more flexible than screen scraping because the new interface does not need
to match the old user interface. However, it shares the advantages and disadvantages of

10
CMU/SEI-2000-TN-003

screen scraping in that it is relatively easy to implement but does not fully address
maintenance issues.

A typical CGI access configuration is shown in Figure 6. A Web server, powered with aCGI
extension to access legacy systems, invokes some function in the legacy system and
generates HTML pages to be served to remote browsers. Although not depicted in the figure,
CGI is used to access legacy data in addition to the logic.

Legacy
System

Function 1

*""-*Fui/ction 44

Text
Screen

T

 CGI..
Extension

Internet
Server

CGI
Script

HTML
1 1UI11
 TTTTTTT

Figure 6: Legacy System Wrapping Using CGI Extensions

An example of using CGI to integrate legacy systems occurred in the National Software Data
and Information Repository (NSDIR) when Perl scripts were used to access legacy data
contained within the repository [Card 96].

3.3.2 Object-Oriented Wrapping
Objects have been used to implement complex software systems successfully. Object-
oriented systems can be designed and implemented in a way that closely resembles the
business processes they model [Phoenix Group]. Additionally, the use of abstraction,
encapsulation, inheritance, and other object orientation (00) techniques make object-oriented
systems easier to understand.

To support object distribution, we need a more powerful means of communication than that
provided by normal inter-object communication mechanisms. Distributed object technology
(DOT) is the combination of distributed technology with 00 [Wallnau 97]. In effect, DOT
extends object technology to the net-centric information systems of modern enterprises by
using object middleware. The most prevalent object middleware is the Common Object
Request Broker Architecture (CORBA) from OMG with its platform-neutral object
specification language, robust remote method calls, interoperable protocols, and rich set of
services.

CMU/SEI-2000-TN-003 11

The conceptual model of object-oriented wrapping is deceptively simple: individual
applications are represented as objects; common services are represented as objects; and
business data is represented as objects. In reality, object-oriented wrapping is far from simple
and involves several tasks including code analysis, decomposition, and abstraction of the 00
model. The project ERCOLE (Encapsulation, Reengineering, and Coexistence of Object with
Legacy) describes an exemplifying process to wrap legacy applications with 00 systems [De
Lucia 97]. Of the multiple technical difficulties involved in wrapping a legacy system, two
are of special relevance: the definition of appropriate object-level interfaces and the need for
integrated infrastructure services.

Translating the monolithic and plain semantics of the often procedural legacy system to the
richly hierarchic and structured semantics of an object-oriented system can be a difficult task.
A good knowledge of the domain can greatly help in the translation. For example, Stets
describes an experience in which the Win32 API is translated into objects [Stets 99]. To
create meaningful objects, domain-specific knowledge of the structure of an operating system
is used. Unfortunately, developers wrapping a system rarely possesses such deep domain
knowledge. Some techniques have been developed to perform the legacy to 00 mapping
more automatically. For example, in one such method, every coarse-grained persistent item is
mapped into an object, and services are assigned to objects with an algorithm that minimizes
coupling [Cimitile 97]. Although these and other techniques are useful in extracting objects
from legacy systems, the mapping problem is far from being solved.

The second challenge of translating an 00 system using DOT is integrating infrastructure
services in the 00 system. Almost any DOT middleware provides some set of services such
as security, transactions or persistence. However, it is often the case that to get the expected
level of services the developer must integrate two or more of these middleware solutions.
This integration is at least problematic due to unexpected interactions and incompatibilities
between theoretically compatible products [Seacord 99]. To address this need for integrated
services, the industry has developed what is commonly known as application servers (AKA
server-side component frameworks). An application server is a product that integrates a set of
services and defines a component model. Components developed conforming to this model
are able to leverage all the services provided by the application server.

The OMG is following this approach in the CORBA 3 specification, which defines a
component framework (known in CORBA 3 jargon as component container) and addresses a

range of infrastructure issues as well.

3.3.3 Component Wrapping
Component wrapping is very similar to OO wrapping, but components, in contrast with
objects, must conform to a component model. This constraint enables the component
framework to provide the component with quality services. Because component-based
modernization is the newest and probably the least known of the approaches illustrated in this
survey, this section discusses not only an overview but some implementation details as well.

12 CMU/SEI-2000-TN-003

The component model market consisted initially of numerous proprietary and mutually
incompatible solutions. Fortunately, this situation is improving with the emergence of a small
set of standard enterprise component models and products. Of these standards, three are of
particular consequence:

• Distributed interNet Architecture™ (DNA) is the Microsoft solution and a de facto
standard because of Microsoft's weight in the industry.

• The CORBA 3 Component Model is the OMG approach for the enterprise that promises
an enterprise component model for CORBA.

• Enterprise JavaBeans (EJB) is the Sun Microsystems solution for Java server-side
computing [Johnson 98].

According to press releases from the OMG, it is likely that the CORBA 3 Component Model
and EJB will merge into a single standard leaving only two dominant players. The following
discussion uses EJB to illustrate component wrapping, but does not necessarily mean that
EJB is superior to other competing models or that these solutions cannot be implemented
with other products.

Components in EJB are known as Enterprise JavaBeans (we will also refer to them as beans).
Each bean encapsulates a piece of business logic. Enterprise JavaBeans are deployed within
an application server, or EJB server, that provides the runtime environment for the bean and
manages common services such as security, transactions, state management, resource
pooling, distributed naming, automatic persistence, and remote invocation. This allows the
EJB developer to focus on the business problem to be solved. An Enterprise JavaBean is, in
essence, a transactional and secure remote method invocation (RMI) or CORBA object, some
of whose runtime properties are specified at deployment using special files called
"deployment descriptors."

The first step in wrapping a legacy system using EJB is to separate the interface of the legacy
system into modules consisting of logical units—shown in Figure 7 as Function 1 and
Function 2. The degree of difficulty in dividing the legacy system into discrete functions will
vary depending on the degree to which the separation was defined in the legacy system
interfaces and whether new interfaces must be built. Although a black-box approach is
preferable, poor documentation and a cryptic legacy system interface may make it necessary
to peer into the black-box to better understand the legacy system [Plakosh 99].

The next step in wrapping the legacy business logic is to build a single point of contact to the
legacy system. It is a good idea to centralize all the communication knowledge in a single
software artifact. The communication method used by this artifact depends on the particular
situation. Options for communication between the single point of contact and the legacy
system include RMI over HOP, sockets, or even Message Oriented Middleware (MOM),
which has the advantage of uncoupling the EJB server from the legacy system and allowing
for asynchronous communication. This single point of contact can be implemented as a bean

CMU/SEI-2000-TN-003 13

(called adapter) or as a service broker—a software component placed external to the EJB
server. Placing the point of contact inside or outside the server depends mainly on the chosen
communication method and some security restrictions. For example, if you need to create a
new thread or listen to a socket, the single point of contact must be outside of the application
server because the EJB specification prevents Enterprise JavaBeans from being multithreaded
or listening to sockets. The final step in wrapping the legacy business logic is to implement a
wrapper bean for each module in the legacy system. In Figure 7, this wrapper is shown as
Bean 2. These beans forward requests to the legacy system using the single contact point, in a

manner similar to object wrapping.

There are several advantages to the component approach for wrapping legacy business logic.
First, with relatively limited effort, the advantages of component-based systems are
supported. We can, for example, build new Enterprise Java Beans that use the wrapper beans
in unanticipated ways, greatly improving system flexibility. Second, wrapper beans are bona
fide Enterprise Beans and can be integrated fully with all the management facilities and
services included with the application server. Lastly, wrapping legacy business logic provides
a roadmap to substitute the old system incrementally. After wrapping the functionality of the
legacy system, we can re-implement wrapper beans one at a time (Bean 1 in Figure 7),
without having to go through a "big-bang" replacement of the system. This is possible
because the system and the clients would not notice any disruption as the re-implemented
bean maintains the same interfaces provided by the wrapper bean. In time, it is possible to
replace the old system completely.

Legacy
System

Function 2 4

Text
Screen

! bß
■ es I <%• vi

ce

i: ,Ji *
, AJ. . <L>
: S t»..,

Bean 2 wraps
Function 2

Bean 1 replaces
Function 1

Figure 7: Wrapping Legacy Business Logic Using EJB

14 CMU/SEI-2000-TN-003

Wrapping legacy business logic with EJB is not without risk. The EJB specification is porous
and portability problems can arise between different vendor's application servers
[Comella-Dorda 99]. In addition, the Java programming language is considered by some to
be unsuitable for critical applications.

As mentioned earlier, application servers manage the system services of deployed
components (persistence, transactions, etc). However, a wrapping bean represents a piece of
business logic living in an external legacy system. A mechanism is needed to coordinate the
service management of both the legacy system and the EJB server. This mechanism, called
connector, is being developed by Sun and promises to simplify the integration of legacy
assets [Sun 99]. Connectors (shown in Figure 8) are a standard set of system level interfaces
that manage transactions, security, and resource pooling between the server and the legacy
resource. This architecture supports the development of a standard connector to access a
legacy data source or system. The connector is plugged into an application server and
provides connectivity between the legacy system and the application server. This connector,
once developed, can be plugged into any application server that supports the connector
mechanism. It is, of course, still necessary to implement application-level communication.

ERP
Transaction Monitoi

Mainframe Application level
Communication

Container

► Enterprise
Bean EJB

Server

System level
Communication

TfansacWö&J'*

Connector^^'^'W"' >■

Standard

^f, •Resource
management

interfaces

j

Figure 8: Integration of Legacy Business Logic Using Connectors

CMU/SEI-2000-TN-003 15

4 Summary

The modernization of legacy systems is a critical issue that IT departments must face in
modern enterprises. Although new technologies such as CORBA and EJB promise to support
modernization, it is still a complex task requiring careful consideration and advanced
planning. There are different approaches to the modernization of legacy assets including
reengineering (white-box) and wrapping (black-box). Before starting any legacy
modernization effort, every possible option should be explored and evaluated. This
evaluation should cover the technical considerations and consider business and strategic
factors outlined in [Weiderman 97b, Bergey 97] to ensure long-term success.

We have presented several techniques to support legacy system modernization. It would be
naive to affirm any of these techniques as superior to the others. Each presented technique
has strengths, weaknesses, and tradeoffs between cost, flexibility, and other variables. Table 1
summarizes the discussions of each presented technique.

Artifact
Modernized

Target Strengths Weaknesses

Screen
Scraping

Text-based
user interface

Graphical or web-
based user interface

• Cost
• Time to market

• Internet support

• Flexibility

• Limited impact on
maintainability

Database
Gateway

Proprietary
access
protocol

Standard access
protocol

• Cost

• Tool support
• Limited impact on

maintainability

XML
Integration

Proprietary
access
protocol

XML server • Flexibility

• Tool support (future) .

• B2B

• Tool support
(present)

• Evolving
technology

Database
replication

Centralized
database

Distributed,
replicated database

• Performance

• Reliability

• Data coherence

• Applicable to a
very specific
problem

CGI
Integration

Mainframe
Data or TM
services

HTML pages • Cost

• Internet support

• Flexibility

• Applicability

00
Wrapping

Any
Enterprise
Resource

OO Model • Flexibility • Cost

Component
wrapping

Any
Enterprise
Resource

Component Model • Flexibility

• Integrated services

• Cost

Table 1: Comparison of Integration Techniques

16 CMU/SEI-2000-TN-003

References

[Altman 99]

[Barry 98]

[Bergey 97]

[Bisdal 97]

[Brodie 95]

[Card 96]

Altman, R.; Natis, Y.; Hill, J.; Klein, J.; Lheureux, B.; Pezzini, M.;
Schulte, R.; & Varma S. Middleware: The Glue for Modern
Applications. Gartner Group, Strategic Analysis Report; 26 July
1999.

Barry, Doug. "ODMG 2.0: A Standard for Object Storage."
Component Strategies. July 1998.

Bergey, John; Northrop, Linda; & Smith, Dennis. Enterprise
Framework for the Disciplined Evolution of Legacy Systems
(CMU/SEI-97-TR-007). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University. Available WWW <URL:
http://www.sei.cmu.edu/publications/documents/97.reports/
97tr007/97tr007abstract.html> 1997.

Bisdal, Jesus; Lawless, Deirdre; Wu, Bing; Grimson, Jane; Wade,
Vincent; Richardson, Ray; & O'Sullivan, D. "An Overview of
Legacy Information System Migration," Proceedings of the 4m

Asian-Pacific Software Engineering and International Computer
Science Conference (APSEC 97, ICSC 97), 1997.

Brodie, M. & Stonebraker, M. Migrating Legacy Systems:
Gateways, Interfaces and the Incremental Approach. Morgan
Kaufmann Publishers, 1995.

Card, D.N.; Hissam, S. A; & Rosemeier R.T. "National Software
Data and Information Repository." CrossTalk9, 2. Available
WWW <URL: http://www.stsc.hill.af.mil/CrossTalk/1996/
feb/national.html> (February 1996).

[Carr 98]

[Chikofsky 90]

Carr, David F. "Web-Enabling Legacy Data When Resources Are
Tight." Internet World (August 10 1998).

Chikofsky, Elliot J. & Cross II, J.H. "Reverse Engineer and Design
Recovery: A Taxonomy." IEEE Software, 7 (January 1990): 13-17.

CMU/SEI-2000-TN-003 17

[Cimitile 97] Cimitile, A.; De Lucia, A.; Di Lucca, A.; & Fasolino, A.R.,
"Identifying Objects in Legacy Systems," Proceedings of the 5*
Workshop on Program Comprehension (WPC97), 1997.

[Comella-Dorda 99]

[De Lucia 97]

Comella-Dorda, Santiago; Robert, John; & Seacord, Robert.
"Theory and Practice of Enterprise JavaBean Portability,"
Proceedings International Society for Computers and Their
Applications (ISCA) 1st International Conference on Information
Reuse and Integration (IRI-99). Atlanta, Georgia, 1999.

De Lucia, A.; Di Lucca, G.A.; Fasolino, A.R.; Guerra, P.; &
Petruzzelli, S. "Migrating Legacy Systems towards Object-
Oriented Platforms," International Conference of Software
Maintenance (ICSM97), 1997.

[Eichman 95]

[Haft 95]

[JDBC]

[Johnson 98]

[Karpinski 98]

[Lakhotia 98]

Eichmann, David. Application Architectures for Web-Based Data
Access. Available WWW: <URL:
http://www.cs.rutgers.edu/~shklar/www4/eichmann.html>.

Haft, T. M. & Vessey, I. 'The Relevance of Application Domain
Knowledge: The Case of Computer Program Comprehension."
Information Systems Research, 6. (1995): 286-299.

Introduction to JDBC. Available WWW <URL:
http://shrike.depaul.edu/~pgrage/dist_sys/ds520_p1.html>.

Johnson, Mark. "A Beginner's Guide to Enterprise JavaBeans."
Java World 3, 10. Available WWW <URL:
http://www.javaworld.com/javaworld/jw-10-1998/
jw-10-beans.html> (October 1998).

Karpinski, Richard. "Databases, Tools Push XML Into
Enterprise." Internet Week Online. Available WWW <URL:
http://www.internetwk.com/news1198/news111698-3.htm>
(November 1998).

Lakhotia, Arun & Deprez, Jean-Christophe. "Restructuring
Functions with Low Cohesion," Proceedings of the 6th Working
Conference of Electrical and Electronics Engineers, 1998.

18 CMU/SEI-2000-TN-003

[Microsoft 95] Microsoft. "Microsoft Windows Operating Systems and Services
Architecture, Chapter 9: Open Database Connectivity (ODBC)
2.0 Fundamentals", Microsoft Corporation. 1995.

[Phoenix Group]

[Plakosh 99]

[Ransom 98]

[Seacord 99]

Phoenix Group. Legacy Systems Wrapping with Objects.
Available WWW <URL: http://www.phxgrp.com/jodewp.htm>.

Plakosh, Daniel; Hissam, Scott; & Wallnau, Kurt. Into the Black
Box: A Case Study in Obtaining Visibility into Commercial
Sottware (CMU/SEI-99-TN-010). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University. Available
WWW: <URL: http://www.sei.cmu.edu/publications/documents/
99.reports/99tn010/99tn01 Oabstract.html> (1999).

Ransom, J.; Sommerville, I.; & Warren, I. "A Method for
Assessing Legacy Systems for Evolution," Proceedings of the
Second Euromicro Conference on Software Maintenance and
Reengineering (CSMR98), 1998.

Seacord, Robert C; Wallnau, Kurt; Robert, John; Comella-
Dorda, Santiago; & Hissam, Scott A. "Custom vs. Off-the-Shelf
Architecture," Proceedings of 3rd International Enterprise
Distributed Object Computing Conference, University of
Mannheim, Germany, September 27-30,1999.

[Seng 99] Seng, Jia-Lang & Tsai, Wayne. "A Structure Transformation
Approach for Legacy Information Systems- A Cash
Receipts/Reimbursement Example," Proceedings on the 321"
Hawaii International Conference on System Sciences, 1999.

[Shaw 95]

[Shklar]

[Stets 99]

Shaw, Mary. "Architecture Issues in Software Reuse: It's Not
Just the Functionality, It's the Packaging," Proceedings IEEE
Symposium on Software Reusability. April 1995.

Shklar, Leon. Web Access to Legacy Data. Available WWW:
<URL: http://athos.rutgers.edu/~shklar/web-
legacy/summary.html>.

Stets, Robert J.; Hunt, Galen C; Scott, Michael L. "Component-
Based APIs for Versioning and Distributed Applications," IEEE
Computer, 54-61 (July 1999).

CMU/SEI-2000-TN-003 19

[Sun 99] Sun. J2EE™ Connector Architecture (JSR-000016). Available
WWW: <URL: http://java.sun.com/aboutJava/
communityprocess/jsr/jsr_016_connect.html> (1999).

[von Mayrhauser 94] von Mayrhauser, A. & Vans, A.M. "Comprehension Processes
During Large Scale Maintenance." Proceedings of the
International Conference of Software Engineering ICSE.
Sorrento, Italy, p. 39-48. May 16,1994.

[Wallnau 97]

[WebMethods 99]

Wallnau, Kurt; Morris, Edwin; Feiler, Peter; Earl, Anthony; Litvak,
Emile. Engineering Component-Based Systems with Distributed
Object Technology Lecture Notes in Computer Science.
International Conference WWCA'97 Tsukuba, Japan. March
1997.

WebMethods. B2B Integration: The Drive to Gain and Maintain
Competitive Advantage. Available WWW: <URL:
http://www.webmethods.com/products/whitepapers/
b2b_wpB2Bintegration.html> (July 1999).

[Weiderman 97a]

[Weiderman 97b]

Weiderman, N; Northrop, L; Smith, D.; Tilley, S.; & Wallnau, K.
Implications of Distributed Object Technology for Reengineering
(CMU/SEI-97-TR-005 ADA326945). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University. Available
WWW <URL: http://www.sei.cmu.edu/publications/documents/
97.reports/97tr005/97tr005abstract.html> (1997).

Weiderman, Nelson H.; Bergey, John K.; Smith, Dennis B.; &
Tilley, Scott R. Approaches to Legacy System Evolution
(CMU/SEI-97-TR-014). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University. Available WWW <URL:
http://www.sei.cmu.edu/publications/documents/97.reports/
97tr014/97tr014abstract.html> (1997).

20 CMU/SEI-2000-TN-003

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and
Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE

April 2000
3. REPORT TYPE AND DATES

COVERED

Final
TITLE AND SUBTITLE

A Survey of Legacy System Modernization Approaches

FUNDING NUMBERS

C—F19628-95-C-0003
6. AUTHOR(S)

Santiago Comella-Dorda, Kurt Wallnau,

Robert C. Seacord, John Robert
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2000-TN-003

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731 -2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Information systems are critical assets for modern enterprises and incorporate key knowledge
acquired over the life of an organization. Although these systems must be updated continuously
to reflect evolving business practices, repeated modification has a cumulative effect on system
complexity, and the rapid evolution of technology quickly renders existing technologies
obsolete. Eventually, the existing information systems become too fragile to modify and too
important to discard. However, organizations must consider modernizing these legacy systems to
remain viable. The commercial market provides a variety of solutions to this increasingly
common problem of legacy system modernization. However, understanding the strengths and
weaknesses of each modernization technique is paramount to select the correct solution and the
overall success of a modernization effort. This paper provides a survey of modernization
techniques including screen scraping, database gateway, XML integration, database replication,
CGI integration, object-oriented wrapping, and "componentization" of legacy systems. This
general overview enables engineers performing legacy system modernization to preselect a
subset of applicable modernization techniques for further evaluation.

14. SUBJECT TERMS

componentization, database gateway, CGI integration,
database replication, information systems, legacy systems,
modernization, object-oriented wrapping, screen scraping,
XML integration

15. NUMBER OF PAGES

19

16. PRICE CODE

17. SECURITY
CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY
CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

