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The Impact of Speech Under "Stress" on 
Military Speech Technology 

(RTO TRIO) 

Executive Summary 

The field of military speech technology requires the integrated use of speech systems for 
communications, command, and control and intelligence. Speech technology in military environments 
offers the promise of more direct and effective communication, speaker verification of personnel, and 
allowing operators to have access to better information. The problems of battlefield stress conditions, 
however, raise a serious obstacle for the transition of commercial off-the-shelf speech technology for 
speech recognition, speaker verification, synthesis and coding. Studies conducted by participating 
NATO laboratories and discussed here suggest that many COTS speech systems which were designed 
for quiet or low-noise office environments, cannot be effectively used in real-world, high task stress, 
emotional induced, high background noise, and operator fatigued situations. The main findings and 
recommendations are: 
- Military operations are often conducted under conditions of stress induced by high workload, sleep 

deprivation, fear and emotion, confusion due to conflicting information, psychological tension, pain, 
and other typical conditions encountered in the modern battlefield context. These conditions are 
known to affect the physical and cognitive abilities of human speech characteristics. 

- It is suggested that the effect of operator based stress factors on speech production quality is likely to 
be detrimental to the effectiveness of communication in general, in particular to the performance of 
communication equipment and weapon systems equipped with vocal interfaces (e.g., advanced 
cockpits, command, control, and communication systems, information warfare). 

- Commercial off-the-shelf speech recognition systems are not yet able to address the wide speaker 
variability associated with speech produced under stress. 

- Databases obtained or collected during this study have been distributed to all participating NATO 
countries, and most are available in CD-ROM format. 

- Progress in the field of military based speech technology, including advances in speech based 
system design, has been restricted due to the lack of available databases of speech under stress. In 
particular, the type of stress that an operator may experience in the modern battlefield context is not 
easily simulated, and therefore it is difficult to systematically collect speech data for use in research 
and speech system training. 

- In the future it will be more necessary to improve the coordination of multi-national military forces. 
The need therefore exists for battlefield simulations with multi-national military personnel using a 
wide range of speech technology. Such battlefield simulations will have to address the impact of 
factors such as high workload, sleep deprivation, fear and emotion, confusion, psychological 
tension, pain, etc. on speech technology. 



L'impact de la parole en condition de "stress" 
sur les technologies vocales militaires 

(RTO TRIO) 

Synthese 

Le domaine des technologies vocales militaires concerne Fintegration de systemes de parole pour les 
communications, le commandement et contröle et le renseignement. La mise en oeuvre des 
technologies vocales dans des environnements militaires ouvre la perspective de communications plus 
directes et plus efficaces, avec verification du locuteur, permettant aux Operateurs d'acceder ä des 
informations plus fiables. Cependant, les problemes occasionnes par le stress du champ de bataille 
represented un obstacle serieux ä la transition des technologies vocales disponibles sur etagere 
(COTS) vers des applications militaires de reconnaissance de la parole, de verification du locuteur, de 
synthese et de codage. Les etudes realisees en cooperation par des laboratoires de l'OTAN indiquent 
que bon nombre de systemes de parole, concues pour des environnements de bureau peu bruyants, sont 
inadaptes ä des situations reelles, ä haut niveau de stress operationnel et d'emotion, avec des niveaux 
de bruit de fond eleves, impliquant des Operateurs fatigues. Les principales conclusions et 
recommandations sont les suivantes: 

- Les operations militaires sont souvent conduites dans des conditions de stress induites par des 
charges de travail elevees, le manque de sommeil, la peur et 1'emotion, la confusion due ä des 
informations contradictoires, la tension psychologique, la douleur, et par d'autres conditions 
typiques du champ de bataille moderne. II a ete demontre que ces conditions affectent les capacites 
physiques et cognitives des caracteristiques de la parole humaine. 

- n est soutenu que l'effet des elements stressants sur la qualite de la parole risque de nuire ä 
Fefficacite de la communication en general, en particulier en ce qui concerne les performances du 
materiel de communication et des systemes d'armes equipes d'interfaces vocales (par exemple les 
postes de pilotage avances, les systemes de commandement, contröle et communications et de 
guerre de 1'information). 

- Les systemes de reconnaissance de la parole disponibles sur etagere ne sont pas encore en mesure de 
gerer les grandes variations entre locuteurs associees ä la production de la parole sous le stress. 

- Des bases de donnees obtenues ou recueillies au cours de cette etude ont ete diffusees ä F ensemble 
des pays de FOTAN participants, et la plupart d'entre elles sont disponibles sous forme de CD- 
ROM. 

- Les avancees dans le domaine des technologies vocales militaires, y compris les avancees dans la 
conception des systemes de parole, ont ete freinees par la non-disponibilite de bases de donnees 
contenant des exemples de paroles produites sous le stress. En particulier, le type de stress eprouve 
par un Operateur dans le contexte du champ de bataille moderne n'est pas facile ä simuler. Par 
consequent, il est difficile de collecter de facon systematique des donnees vocales pour incorporation 
aux programmes de formation aux systemes de parole et pour la recherche. 

- A Favenir, il deviendra de plus en plus necessaire d'ameliorer la coordination des forces militaires 
internationales. Le besoin existe done, de simulations du champ de bataille integrant des personnels 
militaires internationaux et faisant appel ä un eventail de technologies vocales. De telles simulations 
du champ de bataille devront tenir compte de l'impact de facteurs tels que la charge de travail 
elevee, le manque de sommeil, la peur et F emotion, la confusion, la tension psychologique, la 
douleur etc. sur les technologies vocales. 
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Preface 

Military operations are often conducted under conditions of stress, induced by high workload, sleep deprivation and, 
battle stress. These stresses are believed to affect voice quality, and are likely to be detrimental to the performance of 
communication equipment (e.g. low-bitrate secure voice systems) and weaponry with vocal interfaces (e.g., advanced 
cockpits, command, and control systems). The actual effects of stress on voice are not well understood. 1ST Task 
Group 001 (former RSG.10) has conducted a study on stress effects of the kind to which military operations are 
subject. The work was separated into five tasks: 

1. Collect speech data for various types of stress, such as for workload. In parallel stress related physiological 
measures and objective measures will be collected, 

2. Produce an annotated database that might be used beyond the confines of the Task Group (continuous data base 
collection through life time of the project), 

3. Characterise speech parameters related to stress, 
4. Assess effects on performance of recognisers and communication equipment, 
5. Relate derived results to military applications. 

In this report the results of the study are presented. These results were also presented and discussed at a special session 
of the International Conference on Acoustics, Speech and Signal Processing held in 1999 at the Phoenix USA 
Conference Center under responsibility of the IEEE and the IST-011/TG-001. 

Preface 

Les operations militaires sont souvent conduites en conditions de stress, du fait de la charge de travail elevee, du 
manque de sommeil ou du stress au combat. Ces stress affectent la qualite de la voix et peuvent diminuer la 
performance des equipements de communication (par exemple les systemes de communication securises ä bas debit) 
et les armements ä interface vocale (par exemple les systemes avances de "copilote electronique", de commande et de 
contröle). Les effets reels du stress sur la voix ne sont pas connus precisement. Le groupe IST-Oll/TG-001 
(ex-RSG.10) a conduit une etude sur les effets de stress du type de ceux que Ton rencontre en operations militaires. Le 
travail a ete reparti en cinq taches : 

1. Collecter des donnees de parole sous differents types de stress, comme la charge de travail, ainsi que des mesures 
physiologiques correlees ä d'autres mesures objectives, 

2. Produire une base de donnee annotee qui pourra §tre utilisee au-delä du seul groupe OTAN (perrenite du projet), 
3. Caracteriser les parametres de la voix lies au stress, 
4. Evaluer l'impact sur la performance des systemes de reconnaissance de la parole et de communication, 
5. Applications militaires des resultats. 

Le rapport presente les resultats de 1'etude. Ces resultats ont aussi ete presented dans une session speciale du congres 
international ICASSP (International Conference on Acoustics, Speech and Signal Processing) qui s'est tenue en 1999 
ä Phoenix sous la responsabilite conjointe de l'IEEE et du groupe IST-Oll/TG-001. 



Foreword 

Efficient speech communication is recognized as a critical and instrumental capability in many military 
applications such as command and control, aircraft and vehicle operations, military communication, translation, 
intelligence, and training. The former NATO research study group on speech processing (AC243 
(Panel 3)RSG. 10) conducts since its establishment in 1978 experiments and surveys focused on military 
applications of language processing. Guided by its mandate, the former RSG.10 initiated in the past the 
publication of overviews on potential applications of speech technology for military use and also organized 
several workshops and lecture series on military-relevant speech technology topics. Recently the group 
continued under the 1ST panel as AC232/IST/T'G001. 

In recent years, the speech R&D community has developed or enhanced many technologies which can now be 
integrated into a wide-range of military applications and systems: 

• Speech coding algorithms are used in very low bit-rate military voice communication systems. These state-of- 
the-art coding systems increase the resistance against jamming; 

• Speech input and output systems can be used in control and command environments to substantially reduce 
the workload of operators. In many situations operators have busy eyes and hands, and must use other media 
such as speech to control functions and receive feedback messages; 

• Large vocabulary speech recognition and speech understanding systems are useful as training aid and to 
prepare for missions; 

• Speech processing techniques are available to identify talkers, languages, and keywords and can be integrated 
into military intelligence systems; 

• Automatic training systems combining automatic speech recognition and synthesis technologies can be 
utilized to train personnel with minimum or no instructor participation (e.g. Air traffic controllers). 

This report is the result of a project on "Speech under Stress Conditions" with contributions of all Task Group 
members which represent nine NATO countries (Belgium, Canada, France, Germany, the Netherlands, Portugal, 
Spain, United Kingdom, and the United States; in 1999 Turkey joined this group). 

Because speech technologies are constantly improving and adapting to new requirements, it is the intention of 
the Task Group to initiate projects on military applications of speech technology. Therefore the group appreciates 
any comment and feedback on this report. 
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Chapter 1 

Introduction 

Military operations are often conducted under conditions of physical and mental stress which are 
detrimental to the effectiveness of speech communications. This stress is induced by high work- 
load, sleep deprivation, frustration over contradictory information, emotions such as fear, pain, 
psychological tension, and other modern battlefield conditions. These conditions are known to 
affect the physical and cognitive production of human speech. The change in speech production 
is likely to be disastrous not only to human understanding of coded speech, but also to the 
performance of communication equipment, and weapon systems equipped with vocal interfaces 
(e.g., advanced cockpits, C3 Systems—Command, Control, and Communication systems, and 
information warfare). 

The IST-TG01 (Formerly RSG.10) recognized the need to perform research and conduct 
studies on this topic to better understand, detect, and mitigate the effects of stress on speech 
production. Thereby identifying and supporting future military requirements. In order to 
address the different scientific aspects of this topic, Project 4 began with the organization, in 
cooperation with ESCA (European Speech Communication Association), of an international 
workshop on "Speech Under Stress" held in Lisbon, Portugal in September 1995. This very 
successful workshop underlined the necessity of a coordinated international effort to support 
NATO interests in this area. A primary outcome of this project is to create speech systems 
which are robust to stress indicative of the military speech environment. 

In order to share the most recent advances in this field the NATO IST-TG01 established 
a Speech Under Stress webpage1. This page contains an overview of the on-going activities, 
collected/available speech databases, international research groups, and an extensive updated set 
of references. This report is organized into five chapters, with conclusions and recommendations 
in Chapter 7. Below we briefly summarize the main issues discussed and evaluations performed 
in each chapter. 

Chapter 2: This chapter considers the issue of defining the problem of speech under stress. 
Specifically, several definitions of stress are presented with a flow diagram which connects 
the stage of speech production with the stress taxonomy order. 

Chapter 3: This chapter presents the various speech under stress databases which were col- 
lected from participating laboratories. These databases include: SUSC-0, SUSC-1, SUSAS, 
DLP, vocal emotion, and DCIEM. An overall summary of the task, amount of data, lan- 
guage, stress type, and other characteristics is included in Table 3.2. 

Chapter 4: This chapter is focussed on the analysis of speech under stress. Here, previous 
work and the analysis of various speech production domains are considered for the speech 
data discussed in Chapter 3. This chapter briefly reviews work in the field, and presents 
a representative set of results from the SUSAS stressed speech database. 

lrThis page is located at the following Web location: http://cslu.colorado.edu/rspl/stress.html 



Chapter 5: This chapter considers the problems of detection, classification, and assessment of 
input speech under stress. In many military situations, it is useful to be able to assess the 
stress state of the speaker. This area is also of interest to law enforcement. 

Chapter 6: Here, the problems of speech recognition, speaker recognition, and speech cod- 
ing/synthesis are considered with respect to speech under stress. Extensive evaluations 
were performed to assess the performance of commercial off-the-shelf (COTS) speech rec- 
ognizers in order to illustrate the significant impact stress has on recognition performance. 
The tests were performed at several laboratories using speech data from SUSAS and DLP. 
Next, in order to address the changes in speech production under stress, several stress 
compensation methods are discussed which are shown to improve speech recognition per- 
formance. While these approaches have been effective in speaker dependent speech recog- 
nition applications for limited vocabularies, there has not been much success in addressing 
stress for COTS large vocabulary speaker independent systems. This chapter also considers 
the related problem of speaker recognition under stress, with experiments presented using 
SUSAS data. Finally, the chapter concludes with a discussion of methods and experiments 
of stressed speech synthesis and coding. 

Chapter 7: Finally, in this chapter we draw conclusions and discuss the impact speech under 
stress has in military speech technology. 



Chapter 2 

Definitions of Speech Under Stress 

Speech production is a complex process, beginning with an intention to communicate, and 
passing through various levels of mental processing which translate an idea into sequences of 
motor neuron firings, that in turn activate muscles that generate and control acoustic signals. 
The outcome of this process may be perturbed by so many factors that it is probably rare for 
two utterances to be so similar that no difference could be detected. Much (perhaps all) of the 
variability of speech carries information about the state of the speaker; this is generally useful 
in social interactions between humans but is not "understood" by machines. Human-machine 
interaction via speech is at present largely limited to an exchange of "words" with precisely 
defined meanings, and the para-linguistic content is instead a problem to be overcome. This is 
particularly the case when the speech is perturbed by "stress" on the talker. The aim of this 
chapter is to describe and explain the working definitions of stress which formed the basis of the 
data collection and experiments reported in later chapters. It is based on the discussions at the 
Lisbon workshop, as summarised by Murray, Baber and South, (1996 [119]), but some changes 
have been made, especially in the definitions of "second-order" and "third-order" Stressors. The 
main focus of this work is on the effects of stress on speech production by humans, but an 
understanding of these effects is also useful in synthesizing speech whenit is desired to simulate 
emotions. As an example, synthetic emotion may be added to cockpit voice warnings in order 
to impart a sense of urgency to the pilot. Defining "stress" is a notoriously difficult problem. 
In all probability, no single definition will satisfy all circumstances, or, if it does, it will be too 
vague to have any practical use. The definitions offered here will, we hope, be appropriate to 
military applications of speech technology but may be unsuited to other areas. A definition of 
"stress" must also be considered in the context of a model of the human system; indeed, this 
may be the only way to make sense of the subject. The next section considers definitions of 
stress in fairly general terms, while a model of speech production under stress is also described. 
The final section of this chapter, considers a taxonomy of Stressors, as related to the speech 
production model. 

2.1    Definitions of Stress 

The title of the Lisbon workshop "Speech under Stress" was deliberately chosen to reduce 
confusion with the meaning of "stress" as used in the science of linguistics, i.e., emphasis given 
to a syllable. The implication of being "under stress" is that some form of pressure is applied 
to the speaker, resulting in a perturbation of the speech production process, and hence of the 
acoustic signal. It is often the case that the pressure is in some sense threatening to the speaker 
(especially in the context of military operations), but this is not always so. This definition 
necessarily implies that a "stress free" state exists, i.e., when all pressure is absent, although it 
may be hard to find circumstances completely free of stress. An important consideration of the 
application of speech technology is that the speech being processed is usually compared with 



reference samples that were collected under unstressed conditions. This is particularly the case in 
military applications, where the reference speech may be recorded at home base in comfortable 
surroundings but during operations the users of such equipment will be subjected to noise, 
physical forces, fear, fatigue, etc. For practical purposes therefore, the unstressed state may be 
defined as that in which the reference samples of speech are collected. The term "stressor" is 
used to denote a stimulus that tends to produce a stress response; the actual responses produced 
by individuals may vary a great deal and it may not be possible to classify all possible stimuli 
as either stressful or not. In the context of military operations, the Stressors are often easy to 
identify and define, and nearly always threatening to the individual's comfort and well-being. 

2.2    Model of Speech Production under Stress 

Speech production begins with abstract mental processes: the desire to communicate and the 
idea which is to be communicated. Suitable linguistic units (words or phrases) have to be 
chosen from memory and formed into a sentence, subject to grammatical constraints. From the 
abstract sequence of words, a corresponding sequence of articulatory targets must be generated, 
then appropriate motor programmes for the targets must be activated, with modifications to take 
account of context and para-linguistic information. This results in patterns of nerve impulses 
being transmitted to the muscles which control the respiratory system and vocal tract. The 
final stages are purely physical: the generation of acoustic energy, the shaping of its spectral 
and temporal characteristics, and its radiation from the mouth and/or nostrils. These processes 
are summarized on the left side of Fig. 2.1. 

Although described as a sequence, these processes overlap to a considerable degree, especially 
in the information processing stages. It is probably quite normal for the acoustic signal to be 
started before the sentence has been fully formed in the higher levels of the brain. There are also 
many layers of feedback within the overall process, which may cause the process to be halted or 
re-directed at any stage if an error is found. Evidence for this is provided by the dysfluencies in 
normal speech (Laver [90]). 

A given stressor can be considered to act primarily on a particular stage of the speech 
production process, and this should define its effects, within certain (possibly very wide) limits. 
There follows a classification of Stressors based on the level in the above model at which the 
stressor acts (as shown on the right side of Fig. 2.1). 

The Stressors whose effects are easiest to understand are those which have a direct physical 
effect on the speech production apparatus. Examples of such "zero-order" Stressors include 
vibration and acceleration. To a first approximation, the patterns of impulses in the motor 
neurons and the resulting muscle tensions will be the same as in the unstressed condition, but 
the responses of the articulators will change because of the external forces applied to them. 
There may be some modification of the neuromuscular commands as a result of auditory and 
proprioceptive feedback. In general, these Stressors will have similar effects on all speakers, but 
differences in physique will affect the response, particularly under vibration when resonances in 
the body can magnify the effects at particular frequencies. 

"First-order" Stressors result in physiological changes to the speech production apparatus, 
altering the transduction of neuromuscular commands into movement of the articulators. These 
may be considered largely chemical effects whether the chemical mediators originate externally as 
medical or narcotic drugs, or internally as a result of illness, fatigue, dehydration, etc. Factors 
affecting the feedback of articulator positions would also fall into this class. Differences in 
individual responses could be large, especially where habituation or training is involved. 

"Second-order" Stressors are those which affect the conversion of the linguistic programme 
into neuromuscular commands. This level could perhaps be described as "perceptual" as it 
involves the perception of a need to change the articulatory targets, but without involving 
higher level emotions. The most common example is the Lombard effect, in which the stressor 



is noise and the response is to increase vocal effort. This is a particular case of perception of a 
problem with the communication channel; other similar problems may be perceived aurally or 
by feedback from the listener. 

"Third-order" Stressors have their effects at the highest levels of the speech production 
system. An external stimulus is subject to mental interpretation and evaluation, possibly as a 
threat (as implied by the word "stress"), but other emotional states such as happiness will also 
have their effect at this level. Some third-order Stressors may not be external stimuli at all, but 
originate from within the mind. These complex mental processes may affect the original idea 
and the construction of the sentence, which is perhaps outside the scope of this project. There 
will certainly be effects on the articulatory targets and neuromuscular programme expressing 
the emotion via paralinguistics, and possibly, through changes to physiological arousal, also at 
the transduction level. 

The classification of Stressors described above is based on the level of the speech production 
process at which the Stressor has its primary effect. It should be borne in mind that there may 
also be secondary effects at other levels. For example, to someone who has never flown in a 
helicopter before, the high vibration levels may be perceived as a threat and result in fear, with 
possible third order effects from a Stressor normally classified as zero-order. 

2.3    Taxonomy of Stressors 

This section attempts to classify various stressful stimuli within the scheme outlined above, 
according to their primary effects. In some cases it is not clear at which level the primary 
effects occur, or major effects may occur at more than one level or at different levels in different 
individuals. Self-awareness also makes it possible that almost all Stressors may have a third- 
order effect. For these reasons, a definitive classification of Stressors is not possible and the 
tentative classification offered here (Table 2.1) would need to be re-considered in the light of a 
particular application. 

Stressor order Description Stressors 

0 Physical 
Vibration Acceleration (G-force) 

Personal equipment, Pressure 
Breathing, Breathing gas mixture 

1 Physiological 
Medicines, Narcotics, Alcohol 

nicotine, Fatigue, Sleep deprivation 
Dehydration, Illness, Local anaesthetic 

2 Perceptual 
Noise (Lombard effect), Poor 

communication channel, Listener 
has poor grasp of the language 

3 Psychological 
Emotion, Workload 
Task-related anxiety 
Background anxiety 

Table 2.1: Stress Taxonomy 

Of the physical Stressors, vibration and acceleration are self-explanatory, and common in 
military environments. Personal equipment includes clothing and other items worn on the body, 
which may exert pressure on the vocal apparatus. Examples are the oxygen mask worn by fast- 
jet aircrew which applies pressure to the face and restricts jaw movement, or a safety harness 
restricting chest movement. Positive pressure breathing (used to maintain consciousness at high 
G-levels or in the event of loss of cabin pressure at high altitude) has the effect of distending 
the vocal tract and thus changing its resonant frequencies. Changes in the constituents of the 
breathing gas will also affect the speech signal, as when oxygen/helium mixtures are used by 
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Figure 2.1: Outline of Speech Production Process and Order of Stressors. 



deep-sea divers. 
Physiological Stressors include a wide range of stimuli, from narcotic drugs to sleep depriva- 

tion, and many of these may also have second and third order effects. Perceptual Stressors form 
a much more limited set, but again may also have third order effects arising from, for example, 
frustration at the difficulty of communicating via a poor channel. The range of stimuli that 
could be considered psychological Stressors is almost unlimited, as the input is interpreted in 
the light of the individual's beliefs. If we are considering military applications, speakers will 
in general be highly trained and mentally robust, but fear and anxiety will still be factors in 
most operations. Workload will probably be the most common third-order Stressor, as military 
personnel spend the larger part of their time in training. 





Chapter 3 

Speech Under Stress Databases 

This chapter provides a brief introduction to the speech databases used in the experiments 
described later in the report. More detailed descriptions can be obtained from the references or 
the documentation files on the CD-ROMs. In addition, sample audio demonstration files can be 
found on the NATO Stress Web page http://cslu.colorado.edu/rspl/stress.html which 
also includes access to additional documentation.1 

This chapter is organized as follows. Sec. 3.1 describes the SUSC-0 database which includes 
stressed speech from air traffic controllers and emergency fighter cockpit environments. Sec. 3.2 
considers a database of speech produced during a physical load task (climbing stairs). Next, 
Sec. 3.3 considers the Speech Under Simulated and Actual Stress database, which includes speech 
from various speaking styles, computer workload response tasks, speech produced during roller- 
coaster amusement park rides, and helicopter cockpit environments. Sec. 3.4 considers stress 
from operators reading license plates from video systems at different speeds. Sec. 3.5 considers 
a small database of speech created for the study of emotion for text-to-speech synthesis systems. 
Finally, Sec. 3.6 describes recordings made during a sleep-deprivation experiment. The main 
features of all the databases are summarized in Table 3.2 at the end of this chapter. 

3.1    SUSC-0 

This database was created specifically for this project, by bringing together existing recordings 
from a number of sources. 

3.1.1    SUSC-0: Fighter Controllers (ground-to-air) 

A study on workload and stress of fighter controllers at the Control and Report Centre of the 
Military Air Traffic Control Centre in the Netherlands was conducted by the TNO Human 
Factors Research Institute. For studies on the speech signal, communications from ground-to- 
air operations were recorded from 11 different speakers. For each speaker a total of 15 minutes 
of speech is available. 

A part of this speech represents communications with fighter pilots. These communications 
conform to pre-defined procedures in English, but spoken generally by non-native speakers. The 
vocabulary is limited by the procedures. Another part of the communications are local (with 
other fighter controllers). These communications are normally in Dutch. The speech utterances 
are orthographically transcribed. The advantage of this database is that an objective measure 
of workload was obtained, and that physiological stress measures were recorded at 5 minute 

xThe NATO Speech Under Stress Web page was originally established by the Robust Speech Processing Lab 
was at Duke University at the following web location: http://www.ee.duke.edu/Research/Speech/stress.html 
RSPL has since moved to the University of Colorado, Boulder as part of a new Center for Spoken Language 
Understanding. The web pages continues to be maintained by RSPL (links from the old web site to the new 
location will also be maintained) at the new link: http://cslu.colorado.edu/rspl/stress.html 
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Figure 3.1:   Relation between the heart rate and the number of radio contacts per 5 min. 
interval [49]. 

•o 
10 o 

J3 
3 
CO 

2 
CO 
DC 

0     1-12 13-21 >22 
# radio communications 

Figure 3.2:  Relation between RSME (a subjective measure of workload) and the number of 
radio contacts per 5 min. interval [49]. 

intervals. In this way a 'calibrated' database can be produced. Every five minutes the following 
four physiological measures were derived: 

• heart rate, 
• blood pressure (systolic and diastolic), 
• respiration (volume and rate), 
• concentration of carbon dioxide in the blood (transcutaneous = p(C02))- 

Additionally, the workload of the fighter controller was estimated by counting by the number 
of radio contacts in each five minute interval. In Fig. 3.1 the relation between the number of 
radio contacts and the heart rate is given. The heart rate is expressed by the z-score in order 
to normalize for the different rate ranges of the different speakers. 

In Fig. 3.2 a similar relation between the RSME (Rating Scale Mental Effort [49]), and the 
number of radio contacts is given. The RSME is a subjective measure of workload as assessed by 
the fighter controller (also for each 5 min. interval). The graphs show a good relation between 
the increase of the number of radio contacts and the blood pressure and RSME respectively. 
This is in agreement with the relations found by Gaillard and Wientjes [49]. 

The results of the objective and subjective measurements are annotated to each speech 
utterance (typically a sentence). This type of calibrated database allows research on the relation 
between both objective and subjective physiological measures and speech parameters. 
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3.1.2 SUSC-0: Aircraft Crash 

The second part of this database contains speech from communication between a fighter pi- 
lot and co-pilot which was, by accident, obtained for a stressful condition. The aircraft lost 
communication with the ground station due to a failure of the radio transmission switch (the 
transmitter was not switched off). As the aircraft was flying in ground fog (low level), it was 
not possible to find the runway and to land the aircraft in a safe manner. During this flight 
all the communications were transmitted. Voice communication starts with a conversation that 
the radio does not work and ends with the decision to eject from the aircraft (both pilots landed 
safely by parachute). Due to the use of oxygen masks by the pilots and the limitations of the 
radio transmission, the quality of the speech signal of this database is very poor, and hum in- 
troduced by the ground station also deteriorated the signal. The recording lasts 23 minutes, 
including speech and silent periods. 

3.1.3 SUSC-0: F-16 Engine Out 

Recording of an incident in which an USAF F-16 fighter lost engine oil pressure. Voices of the 
pilot of the disabled aircraft (call-sign Viper 03), another F-16 pilot (Viper 04), an air traffic 
controller, and some of the cockpit voice warnings are heard on the single channel recording. 
Viper 03 is guided towards an airfield, with Viper 04 in support, but the engine seizes up while 
they are still over five miles from the airfield. Fortunately, he has enough altitude to glide to 
the airfield and Viper 03 makes a successful engine-out landing. The quality of the recording 
is fair, although voices often overlap and the cockpit audio system AGC allows the background 
noise to come up to high levels when the pilot is not speaking. The pilot of Viper 03 sounds 
fairly calm at the beginning, becomes very excited when his engine seizes, and is clearly very 
relieved after landing. The recording is 15 minutes long. 

3.2 SUSC-1 

3.2.1    SUSC-1: Physical Stress Database 

For analysis on the effect of physical stress on speech production, subjects were asked to pro- 
nounce a short sentence twice after a fair physical load (running up and down a staircase of 
three floors for ten times). Just before and just after this exertion, recordings were made in a 
soundproof room with a high quality recording system. 

For the experiments 10 male and 10 female speakers were used. Each subject performed the 
task twice. This concept was designed to compare the effect on the speech production of physical 
stress versus "relaxed" speaking, gender, and inter speaker variations. In addition to this, for 
two speakers the recordings were repeated 10 times on 10 different days. This gives some data 
to study the effects of intra speaker variability. All the speech material was annotated at phone 
level. 

3.3 SUSAS: Speech Under Simulated & Actual Stress Database 

This database was established in order to conduct research into the analysis and recognition 
of speech produced in noise and under stress (Hansen [54]). SUSAS refers to "Speech Under 
Simulated and Actual Stress," and has been employed extensively in the study of how speech 
production and recognition varies when speaking during stressed conditions (see references [60, 
68, 58, 54]). SUSAS consists of five domains, encompassing a wide variety of stresses and 
emotions (see Fig. 3.3). A total of 32 speakers (13 female, 19 male) were employed to generate 
in excess of 16,000 isolated-word utterances. The five stress domains included were: (i) talking 
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SUSAS DATABASE 
SPEECH UNDER SIMULATED AND ACTUAL STRESS 

DOMAIN TYPE OF STRESS OR EMOTION SPEAKERS COUNT      VOCABULARY 

TALKING 
STYLES 

SIMULATED STRESS 

SLOW SOFT- 
FAST LOUD 

ANGRY CLEAR 
QUESTION 

9 SPEAKERS 
(ALL MALE) 

8820 
35 AIRCRAFT 

COMMUNICATION 

WORDS 

SINGLE 
TRACKING 

TASK 

CALIBRATED WORKLOAD 
TRACKING TASK: 

MODERATE & HIGH STRESS 

LOMBARD EFFECT 

9 SPEAKERS 
(ALL MALE) 

1890 35 AIRCRAFT 

COMMUNICATION 
WORDS 

DUAL ACQUISITION & COMPENSATORY 

TRACKING TRACKING TASK: 

TASK MODERATE & HIGH STRESS 

8 SPEAKERS 

(4 MALE) 

(4 FEMALE) 

2257 35 AIRCRAFT 

COMMUNICATION 

WORDS 

ACTUAL AMUSEMENT PARK ROLLER-COASTER 

SPEECH HELICOPTER COCKPIT RECORDINGS 
UNDER (G-FORCE, LOMBARD EFFECT, 

STRESS NOISE, FEAR, ANXIETY) 

11 SPEAKERS 

(4 MALE, 3 FEMALE) 

(4 MALE) 

1642 35 AIRCRAFT 

COMMUNICATION 

WORDS 

PSYCHIATRIC 
ANALYSIS 

PATIENT INTERVIEWS: 
(DEPRESSION, FEAR, 

ANXIETY, ANGRY) 

8 SPEAKERS 
(6 FEMALE) 
(2 MALE) 

600 CONVERSATIONAL 
SPEECH: PHRASES 

& SENTENCES 

Figure 3.3: SUSAS: Speech Under Simulated and Actual Stress database. 

styles2 (slow, fast, soft, loud, angry, clear, question), (ii) single tracking computer response task 
or speech produced in noise (Lombard effect), (iii) dual tracking computer response task, (iv) 
subject motion-fear tasks (G-force, Lombard effect, noise, fear), and (v) psychiatric analysis 
data (speech under depression, fear, anxiety). A common highly confusable vocabulary set of 35 
aircraft communication words make up the database (subsets include {go, hello, oh, no}, {six, 
fix}, etc. See Table 3.1). Each subsection of the database is described briefly below; a more 
complete discussion of SUSAS can be found in the literature (Hansen [60, 58, 54]; Hansen and 
Bria [66]; Hansen and Cairns [68]). 

All speech tokens were sampled using a 16-bit A/D converter at a sample rate of 8 kHz. All 
speech files have been orthographically transcribed and labeled at the phone and word levels 
using a new parsing routine [125, 126]. Further details are contained in the following docu- 
ment: "Getting Started with the SUSAS: Speech Under Simulated and Actual Stress Database," 
J. Hansen, S. Bou-Ghazale, R. Sarikaya, and B. Pellom, Robust Speech Processing Laboratory, 
Technical Report: RSPL-98-10, April 15, 1998 (contained on the CD-ROM) and in the refer- 
ence [65]3. We briefly summarize the stress areas below. 

3.3.1    SUSAS: Talking Styles Domain 

The first SUSAS domain involves speech under various speaking styles. Data in this domain was 
originally used in studies by Lippmann, et al. [95, 124] (16 kHz sampled), and was donated by R. 

2We note here that approximately half of this portion of SUSAS consists of style data donated by Lincoln 
Laboratory (Lippmann, et al. [96]). 

The SUSAS Stressed Speech Database from RSPL is available from the Linguistics Data Consortium at the 
following web location: http://morph.ldc.upenn.edu/Catalog/LDC99S78.html 
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35-Word SUSAS VOCABULARY SET 
brake eighty go nav       six thirty 
change enter hello no         south three 
degree fifty help oh         stand white 
destination fix histogram on         steer wide 
east freeze hot out       strafe zero 
eight gain mark point    ten 

Table 3.1: A summary of the 35-word vocabulary set used for SUSAS domains 1 to 4 (talking 
styles, single tracking task, dual tracking task, actual speech under stress). 

Lippmann and C. Weinstein of Lincoln Laboratory. This portion of SUSAS contains utterances 
under eight speaking styles (normal, slow, fast, soft, loud, question, clear enunciation, angry). 
The words were produced by nine male talkers sampling three major accents (General American, 
Boston, New York). Each word was produced 28 times by each subject. Both training and test 
data is included. 

3.3.2 SUSAS: Single Tracking Task Domain 

The second SUSAS domain consists of speech data from a single tracking task, and speech under 
Lombard effect. The same 35-word vocabulary and 9 speakers were used as in the talking styles 
domain. Speech was produced while performing a computer workload task which stimulates 
stress, originally proposed by Jex [81]. In this approach, a single tracking task, which reflects 
graded levels of mental workload, was developed. The operator views a display of the error 
between the command input and plant output, which is the response of a marginally stable, 
single-pole linear system, and corrects errors with opposite pressure on a control stick (similar 
to a joy-stick in some video games). The degree of instability may be adjusted for varying 
degrees of difficulty. Two levels of workload difficulty were used in this section. Subjective 
ratings, performance data, and heart rate data indicated that the high workload (A = 70 %) 
was measurably more difficult than the moderate level (A = 50%). This domain also includes a 
small portion of speech produced in noise, simulating the Lombard effect [100]. The Lombard 
effect occurs when talkers vary their speech characteristics in order to increase intelligibility 
when speaking in a noisy environment. For this portion, Pink noise was presented binaurally at 
an overall level of 85 dB SPL. 

3.3.3 SUSAS: Dual Tracking Task Domain 

The third SUSAS domain consists of speech produced while performing a dual tracking task 
(simulating flight control and target acquisition) as a means of inducing workload. This task 
addresses a pilot's two key goals and was developed by Folds, et al. [45, 46] for the USAF School 
of Aerospace Medicine. Task difficulty could be controlled by time constraints for completion, 
or increasing resource competition or motivation. The primary tracking task was a pursuit task 
in which the input signal was determined by the sum of two sine functions. The response marker 
(output signal) was a small circle. The vertical position of the circle was fixed at the center of the 
display; the horizontal position was determined by the movement of a control stick in its x-axis. 
The trail of response markers (triangles and circles) indicates past attempts by the operator to 
perform the task. Speech data was collected during the performance of the dual-tracking tasks 
at two different levels of workload stress. 

3.3.4    SUSAS: Actual Speech Under Stress 

The fourth domain consists of speech produced during the completion of two types of subject 
motion-fear tasks. These tasks were chosen because they required no training, yet generate the 
type of stress (fear or anxiety) which might be experienced in an aircraft cockpit emergency 



14 

situation. Two rides from an amusement park were chosen: the Scream Machine and Free Fall. 
The Free Fall ride lasts for about 60 seconds, with the free fall portion comprising about 10 sec- 
onds. Four seated passengers are strapped in an upright seated position into a car which is 
raised vertically to approximately 130 feet. The car drops vertically downward for about 100 
feet, before rolling onto a horizontal portion of the track for deceleration. During the free fall 
portion, talkers repeated several pre-chosen words. The second task was the Scream Machine, 
which is a typical wooden frame roller-coaster which seats roughly 30-36 passengers. Due to 
the large number of passengers, higher levels of background screaming can be heard in these 
recordings. The overall ride consists of large vertical movements with small amounts of lateral 
movement during calm periods between drops. The entire ride lasts for about 90 seconds. Each 
speaker performed the task twice. The speaker's location during the ride was identified based 
on timing and background noise. Each recording was partitioned and subjectively marked for 
stress with respect to time and position during the task. The chosen subjects were all native 
Americans with no apparent speech deficiencies. A total of 1642 utterances were collected from 
speech under task stressed and baseline neutral recordings. In each subject motion task, at least 
four factors contributed to the type of speech recorded: #-force variation, background noise, 
Lombard effect, fear and/or anxiety. 

While SUSAS was organized and collected during the period 1985-88, (Hansen, 1988 [54]), 
it was determined that additional speech under actual stress would be useful. Four additional 
male speakers were later added in 1993 using the same 35-word vocabulary which included pilots 
flying missions in Apache helicopters. Two of the pilots were operating their Apache helicopter 
in normal flight conditions as (i) baseline with helicopter on the ground but running, and (ii) 
pilots flying their helicopter while speaking. An additional set of recordings were included from 
two other Apache helicopter pilots flying a night mission into the Raleigh/Durham Airport while 
running low on fuel (the pilots were not familiar with the area, since they were from another 
state in the U.S.). This speech consists of tactical communications between pilot, co-pilot and 
sometimes an air-control person giving directions. The speech data consists of continuous speech 
passages not from the 35-word vocabulary. Stress levels increase as the fuel level begins to drop. 
Two large digitized files are included which contain speech from each pilot and co-pilot. 

3.3.5    SUSAS: Psychiatric Analysis Domain 

The last SUSAS domain is in psychiatric analysis. A collection of recordings were obtained from 
a Emory Medical Center, Department of Psychiatry for the purposes of obtaining examples of 
speech under emotional stress. Patients undergoing psychiatric analysis were recorded using a 
high quality microphone and tape recorder in a natural doctor-patient environment. This data 
was not released since it contains direct patient information, however it is available upon special 
permission (Hansen [54, 60]). 

3.4    DLP: License Plate Reading Task 

The entry of alpha-numeric data is highly relevant to many military tasks, from entering NATO 
stock numbers in the storeroom to aircraft identification in the field. The majority of the speech 
databases used for recognition system evaluation are obtained in highly controlled conditions 
to reduce variability. These databases generally make use of scripted speech and exclude large 
variations in speech style and spoken errors. A more representative corpus would involve the 
recording of subjects carrying out a realistic data entry task, which will include, rather than 
exclude, spoken errors and speech level and rate variations. 

There was thus a requirement to record a speech corpus of alpha-numerics spoken under 
a suitable simulation of a 'real' data entry task. It was desirable to ensure that the subjects 
concentrated more on the data entry task than providing a good speech performance. An alpha- 
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numeric entry task with a potential relevance to required military functions was considered to 
be the reporting of car number plates. 

The DERA License Plate (DLP) corpus was recorded at the Speech Research Unit during the 
summer of 1992. It comprises recordings of car number plates read using the phonetic alphabet 
of the International Civil Aviation Organisation (ICAO) (alpha, bravo, charlie etc.), plus digits. 
Fifteen speakers were recorded, 11 male and four female, covering a range of ages and featuring 
a number of non-extreme British regional accents. The number plates were presented via video 
playback through a monitor, with two different rates of presentation, fast and slow. The fast 
rate was intended to be above the dictation rate of the subjects and hence a source of cognitive 
stress. The subjects' perceived stress during the dictation sessions was recorded to provide data 
for a corpus of speech under limited stress conditions. 

This task was chosen partially to fulfill the demand for an initial speaker independent test 
database of spoken alpha-numerics, and partly to examine the effects of cognitive stress on 
speech performance and any concurrent effects on automatic speech recognition performance. 

The database was recorded in conjunction with the Industrial Ergonomics Group at Birm- 
ingham University, whose interest was in examining dictation accuracy, speaker coping strategies 
and the effects of stress on the performance of speech recognizers 

3.4.1    DLP Database: Details of The Task 

3.4.1.1 Experimental Task 

The task chosen for the recordings was the dictation of British car number plates. The data 
was collected by recording vehicles' number plates onto video, with the camera panning across 
the fronts of the cars at a constant speed. The video was then played back to the speakers for 
dictation. The data was recorded in a car park, with the car number plates clearly visible and 
uniformly space separated. Each number plate set covered ninety seconds of data. There were 
a total of 159 number plates across all the recordings, with no repetition of number plates. 

3.4.1.2 Dictation Task Details 

The rate of viewing of the number plates was, on average, 787 number plates per hour for the 
slow rate and 1309 for the fast. Three sets of recordings were made for each of the two speed 
conditions. The database thus comprises 90 speech files totaling 135 minutes of speech from 15 
speakers. Each subject was shown the clips in a randomized order. After each individual test, 
the subject was asked to complete a NASA-TLX subjective workload questionnaire to provide 
a subjective measure of the stress. 

Display of the video data was via a large monitor placed for easy viewing and such that 
the car number plates were clearly visible. The subjects were required only to dictate the car 
number plates as accurately as possible. No other tasks were required. No feedback with regards 
to their vocal performance was provided. 

The number plate data was shown un-rehearsed and without repetition to ensure that no 
familiarity was possible. No attempt was made to correct spoken errors; all spoken errors are 
included in the database. 

3.4.1.3 Speaker Experience 

The speaker population comprised eleven male and four female speakers aged 20 to 38 years, 
plus an additional trial recording by a male. Accents were all non-extreme British English from 
a variety of regions. All the speakers were working on speech or signal processing topics either 
full-time or as short-term summer studentships. All subjects were made aware of the aims of 
the recordings in advance. 
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The translation of number plates to the ICAO form requires a level of cognitive processing, 
such that subjects with varying familiarity with the vocabulary will experience different levels of 
stress for the same conditions. The ability of the subjects was such that with no time constraints, 
they could dictate given number plates without translation errors. At the fast rate the subjects 
were not able to dictate all the number plates, causing an increase in errors and stress. 

3.4.1.4 Data Processing 

Recording was carried out in a sound proof booth, with the speech signal recorded onto DAT 
with a sampling rate of 48 Khz from a SHURE SM10A headset mounted microphone. Recording 
level was equalized across all speakers by varying the recording gain before each session on 
representative speech. Background noise was low (SNR better than 42 dB) across most of the 
speakers, though some files were recorded with a low level of 50 Hz hum evident. 

3.4.1.5 Annotation of the DLP Corpus 

The speech data was down-sampled from DAT to computer hard disk at 20 kHz and archived to 
optical disk as signal format files. The speech files were filterbank analyzed using the standard 
27 channel SRUBANK analyzer. 

A detailed orthographic transcription was made of the speech data which included all the 
out-of-task speech. Annotation of the filterbank domain files was carried out by forcing recog- 
nition of the speech files against the orthographic transcription, using the ASTREC speech 
recognizer. The speech models used for the recognition were taken from the SI89 database of air 
reconnaissance task recordings and comprised a speaker independent model set of alpha-numeric 
tokens. The annotations were then hand checked to verify the automatic process. 

3.5    Databases for the Study of Vocal Emotion in Speech Syn- 
thesis 

Most studies of emotions are based either on a "palette" model, a multi-dimensional model or 
combinations of both. The palette model defines a closed set of "basic" emotions from which 
all other emotions may be derived; the multi-dimensional model defines emotions as points 
within some form of dimensional space. Although the number and type of basic emotions may 
differ substantially from one author to another, a typical palette may include: anger, happiness, 
sadness, fear and disgust. Hence, a few databases designed for the training and evaluation 
of speech-with-emotion synthesis systems include these sentences with primary emotions. A 
database designed by Murray (1995 [118]) was designed for the study of 6 emotions (anger, 
happiness, sadness, fear, disgust and grief). It includes 39 different phrases which were spoken 
in different ways by a synthetic speech system and used in perceptual experiments to evaluate 
the capability of synthesizing emotions of this system. The 39 phrases were subdivided into: 

• 18 neutral phrases (3 for each of the 6 emotions) 
• 21 emotionally loaded phrases (3 for each of the 6 emotions, plus neutral) 

The perceptual experiments involved: 

• 18 neutral phrases spoken in a neutral voice 
• 21 emotionally loaded phrases spoken in a neutral voice 
• the same 18 neutral phrases spoken with one of the 6 emotions 
• the same 21 emotionally loaded phrases spoken with the appropriate vocal emotion 

Other speech databases have also been formulated to study emotion for speech synthesis. An 
emotional speech database for Spanish has been recorded at Universidad Politecnica de Madrid 
(UPM) using one actor, to study anger, happiness, sadness and surprise. The database contains 
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3 types of structures: short neutral sentences, single words or short phrases extracted from the 
previous group and paragraphs in which some of the short sentences may be embedded. 

Finally, the BDFALA database [105] was collected for European Portuguese which includes 
29 emotionally-loaded sentences, each read by 10 speakers4. 

The sentences were designed to study anger, happiness, irony and disgust. A new database 
is currently being recorded with both neutral and emotionally-loaded sentences for 5 basic 
emotions. 

3.6    DCIEM Sleep Deprivation 

This database was collected during the DCIEM Sleep Deprivation Study (1994). The Defense 
and Civil Institute of Environmental Medicine (Department of National Defense, Canada) has a 
history of studies into the effects of sleep deprivation. This database was directed towards effects 
of drugs on performance decrements during sleep deprivation. It is known that amphetamines 
counter some decrements, but amphetamines have undesirable side-effects. For some time, the 
French Army had been making available to its soldiers on demand a drug called Modafinil, which 
is prescribed for narcolepsy, but which had not been tested for its effect on the performance of 
otherwise normal individuals deprived of natural sleep. Unlike amphetamines, Modafinil is 
known to have a wide ratio between useful and toxic doses. The present study was designed to 
determine whether Modafinil would work as well as amphetamines in reducing the performance 
decrements associated with sleep loss. 

It consists of a map reading task which is based on the HCRC Map Task Corpus. The 
map task is a cooperative task involving two participants. The two speakers sit opposite one 
another and each has a map which the other cannot see. One speaker, the Instruction Giver, 
has a route marked on his/her map, while the other, the Instruction Follower, has no route. The 
speakers are told that their goal is to reproduce the Instruction Giver's route on the Instruction 
Follower's map. The maps are not identical and the speakers are told this explicitly at the 
beginning of their first session. It is, however, up to them to discover how the two maps differ. 
No restrictions are place on what either speaker can say. All dialogues were recorded via close- 
talking microphones, with one channel per speaker, on a Panasonic SV-3500 DAT recorder in 
quiet conditions. All participants took part in a number of sessions, and so gained experience 
with different maps. The maps themselves differ as a result of the systematic manipulation of 
the following design variables: (1.) phonological characteristics of feature names, (2.) the extent 
to which features contrast or are shared between the maps. The assignment of speakers to maps 
involves two further variables: (3.) drug condition (Modafinil, Amphetamine, and Placebo), and 
(4.) subgroup size. An unusual feature of this study is that subjects' time was almost wholly 
occupied with the performance of various psychological tasks. These were scheduled in 6-hour 
BLOCKS of three 2-hour SESSIONS each. The task sequence was the same in each 6-hour" 
block, but differed among the 2-hour blocks in some respects. The first day of the study was 
used for introduction to the tasks. Blocks began on the second day and continued throughout, 
except for sleep periods on second, fifth, and sixth nights. The speech data is available from the 
Linguistics Data Consortium (LDC). 

4This database is available from the authors of [105] 
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SUSC-0 
Aircraft 

Lost in Fog 
F-16 

Engine Out 

SUSC-1 
Physical 
Exertion 

DERA 
Licence 
Plates 

Fighter Cockpit 
& Controller 

Stressor Workload Anxiety Anxiety Physical 
Exertion 

Pressure 

Stressor Type Psych. Psych. Psych. Physio. Psych. 
Stressor Order 3 3 3 1 3 

Language English 
and Dutch 

Mostly Dutch, 
Some English 

US 
English 

Dutch UK 
English 

Task Command 
and Control 

Fighter Cockpit Fighter Cockpit 
Air Traffic Control 

Read 
Sentences 

Prompted 
Phrases 

Quantity 3 hours 23 mins 15 mins 15 mins 2 hours 
Number of 
Speakers 

9 2 3 20 16 

Gender Male Male Male 10 Female 
10 Male 

4 Female 
12 Male 

Native 
Language 

Dutch Dutch US 
English 

Dutch UK 
English 

Population Air Force 
Controllers 

Pilots 
Pilots 

Pilots 
and ATC 

Researchers Researchers 
Time 

Microphone Oxygen Mask Oxygen Mask Shure SM-10 
Sampling Rate 16 kHz 16 kHz 16 kHz 16 kHz 20 kHz 

Recording Quality Good Poor Poor Good Good 

Lombard 
Effect 

Computer 
Tracking 

Tasks 

SUSAS 
Roller- 
Coaster 
Rides 

Helic opter 
Fuel Low 

Talking 
Styles Word 

Commands 
Stressor Emotion Noise Time Pressure, 

Workload 
Acceleration 
Exhilaration 

Noise, 
Vibration 

Noise, Vibration 
Anxiety 

Stressor 
Type 

Psych, 
(simulated) 

Perceptual Psych. Physical 
and Psych. 

Physical, Psych, 
and Perceptual 

Physical, Psych, 
and Perceptual 

Stressor Order 3 2 3 0,3 0, 2 and 3 0, 2 and 3 
Language US 

English 
US 

English 
US 

English 
US 

English 
US 

English 
US 

English 
Task Isolated 

Words 
Isolated 
Words 

Isolated 
Words 

Isolated 
Words 

Isolated 
Words 

Spontaneous 
Phrases 

Quantity 2 hours 30 min 50 min 45 min 30 mins 15 min 
Number of 
Speakers 

9 9 8 7 4 2 

Gender Male Male 4 Male 
4 Female 

3 Female 
4 Male 

Male Male 

Native 
Language 

US 
English 

US 
English 

US 
English 

US 
English 

US 
English 

US 
English 

Population Adults Adults Graduate 
Students 

Graduate 
Students 

Aircrew Aircrew 

Microphone Sennheiser 
HMD-224 

Sennheiser 
HMD-224 

Shure 
512 

Shure 
512 

boom boom 

Sampling Rate 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 
Recording 

Quality 
Good Good Good Variable 

(noisy) 
Variable 
(noisy) 

Poor 
(noisy) 

Table 3.2: Summary of All Stressed Speech Databases. 
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Chapter 4 

Analysis of Speech Under Stress 

Due to difficulty in experimental design and limited research efforts, changes in the character- 
istics of speech produced under workload stress remain unclear. Thus far, research has been 
limited in scope, often using only one or two subjects and analyzing a single parameter (often 
fundamental frequency or pitch). It is not unusual for researchers to report conflicting results, 
due to differences in experimental design, level of actual or simulated stress, or interpretation of 
results. For example, some studies concentrated on analysis of recordings from actual stressful 
situations (Kuroda, et al., 1976 [89]; Simonov and Frolov, 1977 [144]; Streeter, et al, 1983 [150]; 
Williams and Stevens, 1972 [160]), while others used simulated stress or emotions (Hecker, et 
al, 1968 [75]; Hicks and Hollien, 1981 [79]; Williams and Stevens, 1972 [160]). This offers 
the advantage of a controlled environment, where a single emotion can be examined with little 
background noise. In some cases, variable task levels of stress have been used. Other advan- 
tages include larger data sets with multiple speakers. This allows results to be based on general 
speaker characteristics instead of possibly particular characteristics of an individual speaker in 
conveying emotion. The major disadvantage in these studies has been the reduction in task 
stress levels. In addition, studies using actors may produce exaggerated caricatures of emotions 
in speech. 

In this Chapter, we summarize a series of studies which have considered the analysis of 
speech under stress. Sec. 4.1 briefly considers several background studies on speech under stress 
associated with acceleration and vibration. Sec. 4.2 presents an overview of a number of studies 
conducted on the SUSAS speech under stress database. Finally, Sec. 4.3 considers analysis of 
the SUSC-0 speech corpus. 

4.1    Stress Effects of Noise, Acceleration, and Vibration 

Noise is certainly one of the major Stressors encountered in military environments. In high 
performance fighter aircraft levels of 115-120 dB are not uncommon. Even with the 15-20 dB 
attenuation provided by the flight helmet and earcups, levels of up to 100 dB can be reached at 
the pilot's ears. This induces what is called the Lombard effect (Lane, et al., 1970 [91]; Lane 
and Tranel, 1971 [92]). This effect causes speakers to increase the volume of their speech and 
to increase their fundamental frequency. Pisoni, et al. (1985) [128] and Bond, et al. (1986) [10] 
in separate experiments reported that in addition there are effects on the formants. The vowel 
space defined by the first two formants (Fl and F2) becomes smaller and the distribution 
of energy within the speech spectrum shows an increase in the high frequency third formant 
(F3) region (know as spectral tilt). In terms of the effects on speech recognition performance, 
Rajasekaran, et al., (1986) [131] has reported that the effect of noise at the speaker's ears results 
in a greater degradation in the performance of an automatic speech recognition system than 
does the presence of noise at the speaker's microphone. Stanton (1988) [146, 147] reported 
results comparing loud and Lombard speech. His results showed that Lombard speech caused 
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greater degradation in performance than did loud speech (Stanton developed a slope-dependent 
weighting technique that reduced the degradation error rate of both loud and Lombard speech 
by 50 %). The implication of these studies is that the changes in speech production attributable 
to a high ambient noise environment are sufficient to effect the performance of speech recognition 
systems. 

Another environmental Stressor that is experienced in high performance aircraft is acceler- 
ation. Acceleration effects have been demonstrated on respiration and motor control, both of 
which may influence speech production. Bond, et al. (1987) [11] examined speech produced by 
two male speakers under normal (+lg) and at high-sustained acceleration (+6g) to determine 
the effects of acceleration on the acoustic-phonetic structure of speech. Speakers wore oxygen 
masks and breathing was supplied through a chest-mounted regulator. Increases were found in 
fundamental frequency for both speakers. No increase in amplitude was found, but the vowel 
space as defined by Fl and F2 became more compact. Although no recognition experiments were 
conducted, the change in vowel space could effect performance of speech recognition systems. 

The final environmental stressor of concern is that of vibration. Moore and Bond (1987) [108] 
reported preliminary results using a laboratory database collected for initial ground based eval- 
uations of ASR systems to be flown on the AFTIF-16 (Anderson, et al., 1985) [4]. The speakers 
wore oxygen masks and chest-mounted regulators and were exposed to four experimental condi- 
tions, a control (no vibration), low, medium, and high levels of vibration. The levels emulated 
the buffeting that might be encountered on a low level, high speed flight. The results indicated 
that once, again fundamental frequency increased and the vowel space becomes more compact. 
These effects are in addition to the modulation or "shakiness" imposed on the voice due to 
the whole body vibration. More extensive work by Bond and Moore (1990) [12] also showed 
decreases in spectral tilt (increase in the high frequency energy). Laboratory studies (Dennison, 
1985 [43]; Cruise, et al., 1986 [35]) as well as data collected in flight (Malkin and Dennison, 
1986 [101]) indicated that helicopter vibration environments at that time did not substantially 
affect the performance of the ASR systems tested. However, evaluations performed in Great 
Britain with speech recorded at vibration levels greater than those used in the above studies 
reported a decrease in performance of an ASR system. The vibration level used for this study 
were levels that the author considered reasonable for next generation high performance rotary 
wing aircraft (Leeks, 1986 [93]). 

4.2    Production &: Recognition Based Feature Analysis using the 
SUSAS Database 

This section discusses several results from a comprehensive investigation of acoustic correlates 
of speech under stress using the SUSAS database (Hansen, 1988-96 [54, 55, 59, 60]). In these 
studies, well over 200 parameters and 10,000 statistical tests were considered in evaluating the 
following parameter areas of speech production: (i) pitch, (ii) duration, (iii) intensity, (iv) glottal 
source, (v) and vocal tract spectrum. 

4.2.1    Pitch 

The most widely considered area of stress evaluation are characteristics of pitch. These stud- 
ies have considered subjective assessment of pitch contours, statistical analysis of pitch mean, 
variance, and distribution (see Fig. 4.1) [54, 60]. A partial list of conclusive points are: 

• Mean pitch values may be used as significant indicators for speech in soft, fast, clear, Lombard, 
question, angry, or loud styles when compared to neutral conditions. 

• Loud, angry, question, and Lombard mean pitch are all significantly different from all other styles 
considered. 
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• Speech produced under Lombard effect gave mean pitch values most closely associated with pitch 
from fast and clear conditions. 

• Soft and loud pitch variance are significantly different from all styles considered. 
• Pitch variance for clear and Lombard conditions are similar, but different from all other styles 

considered. 

PITCH 

100 

80 

w   60 

S.  40 

20 

0 

FUNDAMENTAL FREQUENCY DISTRIBUTION 

LOMBARD 

NEUTRAL 
ANGRY 

100 

111111111111111111 

200 300 400 

FREQUENCY (HZ) 

NEUTRAL       LOMBARD      ANGRY 

MEAN (Hz)     145 160 253 
STAND. DEV.   15 24 95 

Figure 4.1: Sample pitch (fundamental freq.)  distribution variation for speech under neutral, 
Lombard, and angry stress conditions. 

4.2.2    Duration 

Previous studies of speech under stress have not considered statistical evaluations of individual 
phoneme class duration. Duration analysis was conducted across (i) whole words, and (ii) 
individual speech classes (vowel, consonant, semivowel, and diphthong) [54, 60]. An analysis 
was also conducted on interclass duration movement to determine if speakers increased duration 
of certain phoneme classes at the expense of others. Examples of overall word phone class 
(vowel, semivowel, and consonant) duration for neutral, angry, and Lombard stressed speech 
can be found in Figure 4.2. The length of the bars indicate the overall change in word duration. 
The numbers within each bar indicate the percentage of time spent in that phone class and the 
arrows represent a statistically significant shift in the phone class duration ratio between phone 
classes. A partial list of duration conclusions are: 

• Mean word duration was a significant indicator for speech in slow, clear, angry, loud, Lombard, or 
fast styles when compared to neutral. 

• Slow and fast mean word duration were all significantly different from all other styles considered. 
• Clear mean consonant duration was significantly different from all styles except slow. 
• Duration variance increased for all domains (word, vowel, consonant, semivowel, diphthong) under 

slow stress. 
• Duration variance decreased for most domains under fast stress condition. 
• Duration variance significantly increased for angry speech. 
• Clear consonant duration variance was significantly different from all styles. 
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Figure 4.2: Sample duration variation for speech under neutral, Lombard, and angry stress 
conditions. 

4.2.3    Intensity 

An analysis was conducted on (i) whole word intensity, and (ii) speech phoneme-class intensity 
(vowel, semivowel, diphthong, consonant) [54, 60]. Statistical tests were performed on mean, 
variance, and distribution across the database. The shift in available energy between speech 
classes was also considered to determine if speakers reduce intensity in some classes in order to 
increase others. A partial list of conclusions are: 

• Average RMS word intensity values were significant indicators for speech in angry, loud, and high 
workload task styles when compared to neutral conditions. 

• Loud and angry RMS word intensity were significantly different from all other styles considered. 
• Loud and angry RMS vowel and diphthong intensities were significantly different from all other 

styles considered. 
• RMS consonant and semivowel intensity were not significant stress indicators for any of the styles 

considered. 
• Variance of average RMS word intensity values were significant indicators for speech in angry and 

loud styles when compared to neutral. 
• Variance of loud and angry average RMS word intensity was significantly different from most other 

styles considered. 

4.2.4 Glottal Source 

Aspects such as duration of each laryngeal pulse (open/closed periods), instant of glottal closure, 
spectral structure of each glottal pulse, or pulse shape play important roles in conveyance of 
stress state (Hansen, 1988; Cummings and Clements, 1989, 1990, 1995; [54, 36, 37, 39]). Due 
to limitations of glottal inverse filtering techniques in stress evaluation, this portion focused on 
direct estimation of the glottal flow spectrum. Examples of spectral structure, average spectral 
value, and spectral slope (in decibels/octave) are shown in Fig. 4.4. The present analysis of 
glottal source spectrum revealed that parameters such as spectral slope and the distribution of 
energy are important for relaying stress. 

4.2.5 Vocal Tract Spectrum 

Analysis of vocal-tract spectrum focused on formant location and bandwidth for selected pho- 
nemes across the SUSAS database.   Mean and variance estimates for specific phonemes were 



23 

INTENSITY 

WORD (dB) Q^ 

VOWEL   I 
SEMIVOWEL   | 

CONSONANT   ■ 

STATISTICALLY 
SIGNIFICANT 
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Figure 4.3: Sample RMS intensity (dB) variation for speech under neutral, Lombard, and angry- 
stress conditions. 
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Figure 4.4: Sample glottal source spectra for speech under neutral, Lombard, and angry stress 
conditions. 
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analyzed for the 11 stress conditions. Statistical evaluations showed that of the 400 Student 
i-tests, 166 were statistically different from neutral. Most of these involved loud, angry, or 
Lombard effect formant information. A majority of the significant comparisons involved mean 
and variance of formant location and bandwidth for Fl and F2 as shown in Fig. 4.5. Of the 
ten stress conditions, average formant information for loud and angry were the most consistent 
across the phonemes tested. 

VOCAL TRACT SPECTRUM 

NEUTRAL 

LOMBARD 

ANGRY 

LOMBARD ,  ANGRY 

FREQ. (kHz) 

F1(Bw) F2(Bw) F3(Bw) F4(Bw) 
411(52) 1970(222)    2607(496)    3368(366) 
412(73)        2006(139)    2644(250)    3376(185) 
586(102)      2078(166)    2661(464)    3357(392) 

Figure 4.5: Sample vocal tract spectra variation for speech under neutral, Lombard, and angry 
stress conditions. 

4.2.6    Vocal Tract Articulatory Profiles 

The speech features considered thus far focus on characteristics of speech production. As another 
analysis area on speech under stress, it would be beneficial to illustrate how stress effects vocal 
tract structure [62]. This analysis is based upon a linear acoustic tube model with speech sampled 
at 8 kHz. One means of illustrating the effects of stress on speech production is to visualize the 
physical vocal tract shape. The movements throughout the vocal tract can be displayed by 
superimposing a time sequence of estimated vocal tract shapes for a chosen phoneme. Wakita, 
1973 [157] proposed a method to estimate vocal tract shape using an acoustic model. The vocal 
tract shape analysis algorithm assumes a known normalized area function and acoustic tube 
length. The algorithm begins by computing the sagittal (vocal tract length) distance function 
by assuming a cylindrical vocal tract. Next, a set of rigid points from the glottis to the upper 
teeth (and rigid upper lip) models the hard palate. With the hard palate model in place, the 
soft palate and pharynx are approximated by forming a dependence upon the sagittal distance 
function. Finally, the lower lips are modeled using one of four rigid models dependent upon the 
acoustic tube length. 

The articulatory model approach by Wakita, 1973 [157] was used to consider changes in 
vocal tract shape under neutral and various stress conditions as illustrated in Fig. 4.6. Here, a 
set of vocal tract shapes are superimposed for each frame in the analysis window. For Neutral, 
there is some movement of the articulators in the pharynx and oral cavities (as there should be 
for the production of the /r-iy/ phone sequence in "freeze"). There is also limited movement for 
the Soft speaking condition. However, for Angry and Lombard conditions, there is significant 
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Figure 4.6: Sample vocal tract articulatory profiles for the phone sequence /r-iy/ from the 
utterance "freeze." Articulatory variation is shown for speech under neutral, soft angry, and 
Lombard effect stress conditions. 
perturbation in the blade and dorsum of the tongue and the lips. This suggests that when 
a speaker is under stress, typical vocal tract movement is effected, suggesting a quantifiable 
perturbation in articulator position. 

4.2.7    Analysis using 'Actual' Stressed Speech from SUSAS 

One limitation of previous studies on speech under stress has been analysis of simulated stress 
with no confirmation using actual recordings. This problem occurs because it is difficult to 
obtain recordings of the same speakers in both simulated and actual stress environments. This 
issue was considered using speech data from the Actual Speech under Stress (roller-coaster 
motion-fear MF-task) and Dual Tracking Task (DT-task) portions of SUSAS (Hansen, 1998a, 
1998b [61, 62]). The same five analysis areas of pitch, duration, intensity, glottal spectrum, and 
vocal tract spectrum were considered. 

The mean of the fundamental frequency for the DT-task produced limited variations, with 
some speakers showing slightly increasing or decreasing mean.   For DT-task, workload per- 
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formance was assessed using the overall RMS error for completing the acquisition tracking 
task [45, 46]. Speakers who experienced little variation in RMS task error also produced limited 
changes in the mean of the fundamental frequency. Speech from the Actual MF-task domain 
showed statistically significant increases in fundamental frequency mean and variance. The dif- 
ferences were 50-100 % larger than those observed for simulated angry or loud spoken speech, 
thus indicating that fundamental frequency characteristics from the simulated stress domains 
possess similar parameter trends (degree and direction), though actual stressed conditions were 
found to possess larger variations. For duration, it was determined that under Actual MF-task 
stress conditions, consonant and semivowel duration increased, while vowel duration decreased. 
Interior vowels possessed smaller decreases, and leading nasals resulted in larger duration in- 
creases than other consonants. A new quantity based on duration ratios for phoneme classes 
confirmed the increase in consonant duration at the expense of decreased vowel duration under 
MF-task stress. For the MF-task, both word and phoneme classes showed significant increases 
in RMS intensity with respect to neutral (+137% to +190%). Consonant intensity, especially 
nasals, also showed marked increases for mean and variance of RMS intensity. Intensity ratios 
suggest that there was a slight intensity shift from consonants to vowels. For the glottal source 
spectrum, average spectral content increased dramatically for all speakers in the Actual MF-task 
domain. Average spectral tilt significantly decreased for all speakers during the roller-coaster 
task, thus implying a large increase in the high frequency energy of the glottal pulse. Finally, 
for the vocal track spectrum, first formant locations generally increased for MF-task, while for 
the DT-task they generally decreased. Higher formant locations either remained constant, or in- 
creased slightly in frequency. First formant bandwidths normally increased, and fourth formant 
bandwidths always decreased. Variation in second and third formant bandwidths were mixed. 

In general, variation in speech features under actual stress conditions support earlier observa- 
tions from simulated stress conditions. For the Actual Stress task domain, parameter variations 
in general followed those observed for loud, angry, and/or Lombard styles. In most cases, vari- 
ations were more pronounced (i.e., larger shifts in mean pitch, first formant location for vowels, 
etc.). 

4.2.8    Summary from SUSAS Analysis 

This section presented a brief discussion of the analysis of speech under stress. The focus was on 
speech from simulated stressed conditions. A similar evaluation was also conducted on speech 
from actual stress conditions to confirm direction and degrees of speech parameter variation. In 
all, well over 10 000 statistical comparisons were conducted. The interested reader may consider 
the following references for a more complete discussion of these results (Hansen, 1988, 1989, 
1995, 1996 [54, 55, 71, 59, 60]). However, these results serve to motivate the type of speech 
processing needed to address recognition of speech under stress. 

4.3    Analysis of Speech Under Stress using the SUSC-0 Database 

A study on the analysis of speech from pilots under stress was conducted at the U.S. Air Force 
Research Laboratory in Rome, NY [52]. The study concentrated on the stress of an F-16 pilot 
while conversing with his wing man and the tower controller during an in-flight emergency. The 
data was taken from the NATO SUSC-0 database and consisted of approximately 10 minutes 
of voice communications. The study was performed to determine if a change in the Amplitude 
Modulation (AM) and Frequency Modulation (FM) can be detected in the pilot's voice in the 
vicinity of the fundamental frequency and the first and second format frequencies when the pilot 
was under stress. To compare the modulation characteristics of the utterances, two ratios were 
used. The first ratio, Es, is defined as the ratio of the energy of the AM envelope to the energy 
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of the bandpass filtered signal. The second ratio, fs, is the ratio of the geometric mean of the 
AM envelope to the arithmetic mean of the AM envelope. 

The results of the study showed that both amplitude and frequency modulation around the 
fundamental frequency increased as stress on the pilot increased. Within the vicinity of Fl 
(maximum amplitude) the amplitude modulation and the frequency modulation decreased with 
increasing stress. Further, the Es and fs ratios decreased with increasing stress. It was also 
observed that Es and fs did not vary with stress in the frequency area of F2. 

4.4    Selected References of Interest: 

Here, we summarize several references which have considered analysis of speech under stress. 
The reference section at the end of this report contains all references cited in this chapter. 
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Chapter 5 

Stress Classification and Detection 

5.1    Introduction 

In this chapter we discuss commercial stress classification and assessment systems, and summa- 
rize some recent research studies on voice stress classification. While a number of voice stress 
classification systems are available on the market today, the scientific basis on which they are 
built is not well understood. A systematic objective evaluation would be a good first step to 
determine their usefulness. The assessment of stress in a speaker's voice is an important issue 
in monitoring speaker state, especially in military environments where high physical task stress 
or fatigue induced stress can occur, or in forensic applications for law enforcement or security 
applications. 

Today, commercial based speech recognition systems can achieve more than 95 % recognition 
rates for large vocabularies in restricted paradigms. However, their performance degrades greatly 
in stressful situations, such as a pilot in an emergency situation, a military operator under a 
heavy workload, or a medical team that is exhausted due to lack of rest. Similar losses in 
performance occur for other recognizers such as automatic speaker recognition systems. It is 
suggested that algorithms which are capable of detecting and classifying stress could be beneficial 
in improving automatic recognition system performance under stressful conditions. Furthermore, 
there are other applications for stress detection and classification. For example, a stress detector 
could be used to detect the physical and/or mental state of a pilot and that detection could put 
special procedures in place such as the rerouting of communications, the redirection of action, 
or the initiation of an emergency plan. To be able to detect and classify stress, it is necessary to 
understand the effects of stress on acoustical features. Thus far, differences in acoustical features 
between neutral and stressed speech brought on by a variety of emotions and the Lombard effect1 

have been the focus of a number of research investigations [1, 13, 54, 60, 85, 160, 146]. We have 
seen in Chapter 4 that many speech production features change when a person is speaking under 
stressful conditions. 

This chapter is organized as follows. In Sec. 5.2, traditional methods for stress classifica- 
tion are discussed. Most commercial based systems fall into this area. In Sec. 5.3, methods 
proposed in the past few years using neural network concepts are presented. These methods 
employ speech features derived from a linear speech model, and typically features which are 
cepstral-based [73, 162]. Next, Sec. 5.4 considers more recent classification experiments which 
use linear based speech features and optimum Bayesian detection theory. These experiments 
were conducted on linear features such as duration, intensity, pitch, glottal source, and vocal 
tract spectrum for stress classification [167]. Next, it was shown in a previous study [26, 25] that 
the TEO-based (Teager Energy Operator) nonlinear speech feature has the potential to improve 
stress classification performance. In a recent USAF study, (verified by Hansen at RSPL, Univ. 

xThe Lombard effect occurs when a speaker, in either a conscious or sub-conscious manner, modifies his speech 
production in order to increase his communication ability in a noisy environment. 
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Colorado/Duke Univ.) several TEO-based nonlinear features were found to be very effective for 
both stress classification and stress assessment (Zhou, Hansen, Kaiser [165, 166, 168]). There- 
fore, in Sec. 5.5 several new nonlinear based features are summarized which have shown promise 
in both classification and assessment of speaker stress. When possible, results using speech data 
discussed in Chapter 3 (i.e., SUSAS and SUSC-0) are presented. 

5.2 Traditional Methods for Commercial Voice Stress Analysis 

Traditional methods for detecting the stress in a speaker's voice have evolved from the early 
interest by military and law enforcement agencies in the detection of deception. Military in- 
terrogators and law enforcement interviewers were anxious for a capability that would aid in 
determining whether a subject was making a truthful statement or lying. Such a voice stress 
analysis (VSA) capability would be extremely valuable in gathering information that could im- 
pact on the outcome of a battle or a trial. The reason for this interest lies not only in its 
information value but in the non-intrusive and efficient way that VSA equipment promises to 
obtain information that otherwise could not be obtained so quickly and conveniently. While mil- 
itary interest has continued to increase, law enforcement agency interest has grown immensely 
which has created a commercial market for VSA equipment. 

An additional growing civilian application of VSA technology and equipment that is creat- 
ing a market is pre-employment interviews. As a result, several commercial VSA systems are 
available in both hardware and software. The systems range in price from approximately $100 
to $10000. Many of the vendors offer training courses and some of these courses are intensive 
and require as much as a week or more to complete. 

The basic assumption underlying the operation of these commercial systems is the belief 
that involuntary detectable changes in the voice characteristics of a speaker take place when 
the speaker is stressed during an act of deception. The systems in general detect inaudible and 
involuntary frequency modulations in the 8-12 Hz region. The frequency modulations, whose 
strength and pattern are inversely related to the degree of stress in a speaker, are believed 
to be the result of physiological tremor or microtremor (Lippoid, 1971 [97]) that accompanies 
voluntary contraction of the striated muscles involved in vocalization. The systems generally 
use filtering and discrimination techniques and display the result on a chart recorder. The 
determination of the degree of stress contained within a selected voice sample is made through the 
visual examination of the chart by a trained examiner [29]. The examiner looks for characteristic 
shapes related to amplitude, cyclic change, leading edge slope, and square waveform shapes called 
blocking. 

5.3 Neural Networks with Linear Speech Model-based Features 

5.3.1    Cepstral-based Features 

In a previous study conducted at RSPL [73, 162, 161], a neural network based classification 
algorithm was considered for stress classification using cepstral-based features which have tra- 
ditionally been employed for recognition. Five cepstral feature sets were investigated, which 
included Mel d (C-Mel), delta Mel DQ (DC-Mel), delta-delta Mel D2d (D2C-Mel), auto- 
correlation Mel AQ (AC-Mel), and cross-correlation Mel XCitj (XC-Mel) cepstral parameters. 
The first three cepstral features (Ci,DCi, and D2Q) had been shown to improve speech recogni- 
tion performance in the presence of noise and Lombard effect [74]. The ACi and XQj features 
were new in that they provide a measure of the correlation between Mel-cepstral coefficients. 

The Mel-cepstral (C-Mel) parameters are well known as features that represent the spectral 
variations of the acoustic speech signal. It is suggested that such parameters are useful for stress 
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classification since vocal tract and spectral structure vary due to stress. The C-Mel parameters 
are able to reflect these energy shifts. 

The DC-Mel and D2C-Mel parameters provide a measure of the "velocity" and "acceleration" 
of movement of the C-Mel parameters. These features are calculated by performing polynomial 
fitting of the C-Mel parameters and taking the derivative of the polynomial itself. This may 
differ from other studies which use a first and second order difference method to estimate DC; 
and D2d respectively. It appears that the reason delta parameters are more robust to stress 
variations is due to their reduced variance across stress conditions. This trait suggests that while 
these features are more useful for recognition, they may be less applicable to stress classification. 

It is suggested that the two more recently derived feature representations (AC-Mel and XC- 
Mel) could be more successful in representing variations due to stress. The AC-Mel features are 
calculated as follows, 

m=k+L 
AC?\k)=    Y.    [Ci{rn)*Ci{m + ?)\l mVACf\k\ (5.1) 

m=fc k 

where k is the frame number, L is the correlation window length, £ the number of correlation lags, 
and % the Mel coefficient index. When £ = 0, AQ models the relative power between frequency 
bands. For £ > 0, AC{ models spectral slope and changes in the frame to frame correlation 
variation due to stress. The XC-Mel coefficients are similar to the AC-Mel coefficients except 
that the cross-correlation is found from one Mel coefficient d to another Cj across frames, 

m—k+L 
XC$(k)=    £    [Ci{m)*C}{rn + l)]/8iipXC%(k). (5.2) 

m=k k 

The XC-Mel parameters XCij provide a quantitative measure of the relative change of broad 
versus fine spectral structure in energy bands. Since the correlation window length (L = 7) 
and correlation lags (£ = 2) are fixed in this study, the correlation terms are a measure of 
how correlated adjacent frames are over a 72 ms window (24ms/frame and 8 ms skip rate). It 
is apparent that both AC-Mel and XC-Mel parameters provide a measure of correlation and 
relative change in spectral band energies over an extended window frame. Feature analysis 
suggests that the AC-Mel parameters have similar properties to the XC-Mel parameters. In 
addition, the AC-Mel parameters can be directly compared with other selected feature sets 
since they are based on a single coefficient index i. Therefore, AC-Mel parameters appear to be 
a better choice for stress classification than the XC-Mel parameters. 

5.3.2 Neural Network Classifier 

A neural network stress classifier was formulated using mono-partition features (i.e., a single 
phone class partition). Each partition of speech features was propagated through two hidden 
layers of the neural network to an output layer that estimates the stress probability scores. 
The neural network training method employed was the cascade correlation back-propagation 
network using the extended delta-bar-delta learning rule [106]. This method was selected due to 
its flexibility, and because it is capable of forming the complex contoured hypersurface decision 
boundaries needed for the stress classification problem. Fig. 5.1 shows the structure of this 
classification system. 

5.3.3 Neural Network Stress Classification Evaluations with Cepstral Fea- 
tures 

The neural network stress classification algorithm was evaluated using a collection of features 
from frame- and word-level features. Both fine and broad stress classes were evaluated. The 
fine (i.e., ungrouped) stress classes were the 11 stress conditions from the simulated portion of 
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Figure 5.1:   Stress classification method using phoneme based neural networks, with output 
scores combined for an overall stress score. 
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SUSAS. Ungrouped stress class neural network classifier performance is summarized in Table 5.1 
using closed 35-word test sets. Classification rates ranged from 11-17 % for the 35 word test 
set, which is greater than chance (i.e., 9 %). It is clear that for some stress conditions reasonable 
classification performance is attained. A similar test using a 5 word vocabulary produced higher 
average classification rates (i.e., 32-67,%). It is also useful to point out that these results were 
for a 1 of AT stress class test, versus a pairwise neutral versus particular stress style. Pairwise 
classification results are always significantly higher, since some stress conditions for SUSAS are 
similar (e.g., angry and loud, clear and Lombard, etc.). 

STRESS CLASSIFICATION PERFORMANCE 

Single Speaker, 35 Words, Stress Ungrouped 
CLOSED VOCABULARY TEST SET 

STRESS 

CLASS 

CLASSIFICATION RATE (%) 
d Dd D2d Ad 

Angry 6.20 0.00 19.49 4.96 
Clear 12.50 0.00 4.27 7.32 

Cond50/70 42.47 59.76 56.08 14.61 
Fast 7.26 1.65 44.53 68.10 

Lombard 1.64 0.00 8.53 2.54 
Loud 12.40 3.73 3.15 1.69 

Neutral 22.31 0.00 2.61 1.72 
Question 14.05 0.00 5.15 4.76 

Slow 19.01 4.76 27.56 4.31 
Soft 16.53 33.09 0.00 2.38 

MEAN 15.44 10.30 17.14 11.24 
STD. DEV. 11.33 20.12 19.62 20.35 

Table 5.1: MPSC Performance for Ungrouped Closed 35 Word Test 

5.3.4    Neural Network Stress Classification with Target Driven Features 

Further classification studies have expanded on these neural network approaches using target 
driven features [162]. In this method, a wide selection of features are automatically extracted 
including articulatory measures, pitch, phone duration, spectral based, etc. Next, the most 
effective feature subset for each targeted stress condition is determined during a training phase. 
During classification, only those targeted features needed for a neural network stress classifier 
under test are employed. This allows the classifier to use the most discriminating features for 
classification of each stress style. A second study proposed an approach which combines stress 
classification and speech recognition functions into one algorithm [163]. This was accomplished 
by generalizing the one-dimensional hidden Markov model to an N-channel Hidden Markov 
Model (N-Channel HMM). Here, each stressed speech production style under consideration 
is allocated a dimension in the N-Channel HMM to model each perceptually induced stress 
condition. It is shown that this formulation better integrates perceptually induced stress effects 
for stress independent recognition and classification. This is due to the sub-phoneme (state 
level) stress classification that is implicitly performed by the algorithm. The N-channel stress 
HMM method was compared to a previously established 1-channel stress dependent isolated 
word recognition system yielding a 73.8 % reduction in error rate. 

5.4    Bayesian Stress Classification with Linear Speech Features 

While neural network classifiers have shown promise, there is clearly a difference in performance 
based on the feature set used for stress classification. It has been shown that there are observable 



34 

differences in duration, intensity, pitch, glottal source information, and formant locations be- 
tween neutral and stressed speech [54]. Therefore, it is worthwhile to evaluate their performance 
for stress classification, or stress detection. Here two terms, classification and detection, can be 
used interchangeably since only pairwise classification is considered. The methods employed for 
classification here are Bayesian hypothesis testing approach and distance measure. 

5.4.1    Feature Description 

For linear feature based stress classification, only vowel sections are extracted from the simulated 
domain of the SUSAS database for evaluation. The length of each vowel in msec is used as the 
duration feature. The intensity feature is defined as, 

Intens 
1   K 

\^Es2W (5-3) 
)        i=l 

where s(i) (i = l,...,K) represents the K individual samples in the vowel. Pitch, glottal source 
information, and formant locations are extracted on a frame basis with frame length being 
32 ms and an overlap length between adjacent frames of 16 ms. The modified simple inverse 
filter tracking (MSIFT) algorithm [7] is employed to extract pitch frequencies from vowel speech 
waveforms. Spectral slope was used as the glottal source feature. It is difficult to obtain the 
glottal spectral slope from the raw vowel speech waveform due to the coupling effect between 
the sub-glottal structure and forward portion of the vocal tract. To avoid this effect, only data 
obtained during closed vocal fold periods was used. This unfortunately limits the usable data. 
Also, it is difficult to accurately locate the boundaries between vocal fold closing and opening 
periods. As an approximation, a frame based log average amplitude FFT was computed versus 
log frequency for each vowel section. 

Next, a straight line is used to approximate its envelope, and the line's slope is considered 
as the glottal spectral slope. Only the first two formants are used for the evaluation since the 
remaining formants do not show much differences between neutral and stressed speech [54]. The 
HTK xwaves function "formant" was employed to extract formant locations for all vowels in the 
SUSAS database. 

5.4.2    Bayesian Hypothesis Testing versus Distance Measure Testing 

A stress classifier is similar to a Bayesian hypothesis testing system. It has two hypotheses, that 
is, HO and HI. Under HO, the speech is neutral; while under HI, the speech is stressed. Given 
an input speech feature vector, x, (x = xi,... ,xM; M is the vector length), the following two 
conditional probability densities are calculated, p(x\H0) and p(x\Hl). The likelihood ratio, A, 
is then defined as, 

The decision of whether the input speech is neutral or stressed is made by comparing the 
likelihood or log likelihood ratio with a pre-defined threshold, ß. If it is bigger than ß, the input 
speech is labeled as stressed; otherwise it is classified as neutral. The value of ß depends on what 
criterion is used for detection. In a stress classification system, a criterion should be selected 
so that the two important probabilities, the false acceptance rate (FAR) and the false rejection 
rate (FRR), should be as low as possible. Obviously, it is not possible to minimize both FAR 
and FRR, and hence, a compromise must be made between FA and FR. For some systems, the 
requirement for one probability is more important than the other. For a stress classification 
system, however, we are only interested in the overall accuracy and have no preference for either 
FAR or FRR. Therefore, the value of ß corresponding to equal error (FAR = FRR) rate (EER) 



35 

is selected. In the experiments performed here, the values of FAR and FRR were calculated as 
the ratio of the number of falsely accepted vowels to the total number of vowels, and the ratio 
of the number falsely rejected vowels to the total number of vowels, respectively. By changing 
the threshold value, the value of ß corresponding to EER can be found. 

It is also possible to detect stressed speech from neutral by using a distance measure with 
prior trained feature distributions. Given an input speech feature vector, x = xi,x2,... ,XM; 

M is the vector length, two values, the distance between x and the neutral speech feature 
distribution, dn, and the distance between x and the stressed speech feature distribution, ds, 
are computed as follows, 

dn = \E_lA) (5.5) 
aa„ 

ds = K^-, (5-6) 
OO* 

where ixn,on,ns,as are means and standard deviations for the neutral and stressed speech 
features, which are obtained from training data; ß and a are the sampled estimated mean and 
standard deviation of the components of the input vector, x. 

This distance measure reflects how close the input test speech feature vector is to the feature 
distributions of neutral and stressed speech data. If dn is smaller than ds, the input vector x is 
labeled as neutral, otherwise, it is assigned as stressed. The distance scores can also be used to 
quantify the degree of stress content in the test data. 

5.4.3    Linear Feature Based Evaluations 

A 33 word vocabulary under neutral, angry, loud, and Lombard effect speaking styles from the 
simulated domain of the SUSAS database was employed for evaluations. From all identified 
vowels, duration, intensity, pitch, glottal spectral slope, and formant locations were extracted. 
For each feature, all extracted data was used to estimate the density function (pdf) of the feature 
distribution (Fig. 5.2 shows two examples, one for a Gaussian distribution for pitch and a second 
for Gamma distribution for glottal spectral slope for vowels under loud speaking style) to obtain 
ROC curves for the Bayesian hypothesis testing approach. To find average test results, the data 
was divided for each feature into 10 equal size sets. For each of the 10 sets, we test with one set 
and train with the other 9 to calculate the average EER threshold for the Bayesian hypothesis 
testing approach, and the mean and variance of the feature distribution for the distance measure 
approach. 

Several testing feature vector lengths (1,5,10) were used to obtain ROC curves and error 
rates. Two of the many ROC curves obtained are shown in Fig. 5.3 for stress classification 
between neutral and loud for mean pitch and glottal spectral slope. 

Table 5.2 shows an error analysis for all five feature domains using both the Bayesian hypoth- 
esis testing approach and distance measure approach. The pairwise errors for each detection 
technique and feature are given for the detection of three stress conditions (angry, loud, or 
Lombard) from neutral speech. 

Based on Table 5.2, the following observations can be made: (1) that pitch is the best feature 
for stress classification among the five features, (2) error rates generally decrease as feature vector 
length increases, (3) performance differences exist between different stress styles, and (4) mean 
vowel formant locations are not suitable for stress classification. The results in this section 
have therefore established stress classification performance using linear speech production based 
features with two types of optimum detection methods. Further discussion of the evaluations 
presented here can be found in [63]. 
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Detection 
Method 

Vector 
Length Feature 

S peaking 
Angry 

Style of Si 
Neutral 

tbmittec 
Loud 

I Test Spe< 
Neutral 

jch 

Lombard Neutral 

Bayesian 
Hypothesis 

Testing 

1 

Duration 45.13 
40.26 
18.95 
33.33 
42.60 
51.48 
36.36 
24.68 
15.17 
25.45 
40.60 
53.88 
41.03 
23.08 
12.76 
25.00 
38.79 
55.76 

45.38 
37.44 
18.57 
36.78 
41.80 
50.88 
38.96 
22.08 
14.31 
21.82 
40.30 
49.85 
35.90 
17.95 
11.72 
17.86 
40.91 
47.58 

38.21 
34.87 
11.94 
41.38 
46.43 
58.20 
33.77 
27.27 
10.34 
30.91 
46.12 
58.51 
38.46 
28.21 
7.24 

35.71 
43.03 
59.39 

38.72 
32.82 
11.63 
41.72 
45.10 
54.51 
35.06 
22.08 
10.00 
34.55 
45.82 
56.12 
35.90 
17.95 
8.28 
35.71 
44.24 
57.27 

40.77 
40.77 
24.08 
42.76 
46.84 
52.98 
40.26 
38.96 
21.90 
30.91 
47.91 
54.78 
38.46 
35.90 
20.69 
28.57 
47.58 
53.33 

40.26 
39.49 
24.18 
42.07 
46.90 
49.88 
40.26 
35.06 
22.07 
36.36 
46.87 
50.90 
46.15 
35.90 
19.31 
32.14 
47.88 
55.15 

Intensity 
Pitch 

Glottal 
Formant 1 
Formant 2 
Duration 

5 
Intensity 

Pitch 
Glottal 

Formant 1 
Formant 2 
Duration 

10 
Intensity 

Pitch 
Glottal 

Formant 1 
Formant 2 

Distance 

Measure 

5 

Duration 48.05 
41.56 
15.34 
34.55 
43.58 
53.28 
43.59 
30.77 
14.48 
35.71 
41.82 
54.55 

49.35 
27.27 
15.00 
18.18 
37.76 
49.85 
53.85 
33.33 
12.76 
17.86 
39.39 
49.09 

29.87 
35.06 
12.41 
38.89 
44.63 
41.49 
28.21 
25.64 
12.07 
44.44 
43.64 
40.00 

36.36 
22.08 
7.07 

35.19 
45.97 
74.78 
41.03 
23.08 
4.83 
25.93 
41.82 
74.85 

32.47 
40.26 
23.10 
38.89 
45.82 
36.87 
30.77 
41.03 
21.38 
44.44 
45.45 
38.48 

42.86 
35.06 
19.48 
33.33 
46.72 
74.93 
46.15 
33.33 
17.59 
25.93 
46.06 
76.06 

Intensity 
Pitch 

Glottal 
Formant 1 
Formant 2 
Duration 

10 
Intensity 

Pitch 
Glottal 

Formant 1 
Formant 2 

Table 5.2: Detection Error Rates for Multiple Speaking Styles. 
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(a.) Pitch Distribution 

100 150 200 250 300 

(b.) Glottal Spectral Slope Distribution 
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Figure 5.2: (a.) A conditional Gaussian pdf is used to approximate the pitch distribution of 
vowels under loud speaking style: N{n,o2\X > 0) with (JJL = 192Hz, o2 = 2094). (b.) A 
conditional Gamma pdf is used to approximate the distribution of glottal spectral slope for 
vowels under loud speaking style: T(a,ß) with (a = 4.2329, ß = 3.6612). 

5.5    Stress Classification Using Nonlinear Speech Features 

In this section, recently proposed approaches to stress classification that employ on Teager 
Energy Operator based processing are considered. Four features are discussed, followed by 
evaluations using stressed speech data from SUSAS. These features have been shown to be more 
effective than many linear based features such as pitch and spectral structure (as reflected by 
MFCC parameters). Further details can be found in studies by Zhou, Hansen, and Kaiser [165, 
166, 167, 168]. While some of the discussions in this section is more research oriented, the 
features discussed have potential as important processing tools in monitoring and assessing 
personnel in high stress military voice communication settings. 

5.5.1    Teager Energy Operator 

According to studies by Teager [152, 153, 154], the assumption that airflow propagates as a 
plane wave in the vocal tract may not hold, since the flow is actually separated and concomitant 
vortices are distributed throughout the vocal tract. Teager also suggested that hearing could be 
viewed as the process of detecting the energy. Based on the theory of the oscillation pattern of 
a simple spring-mass system, Teager developed an energy operator to measure the energy for 
simple sinusoids which can be believed as useful elements for speech. The simple and elegant 
form of the operator was introduced by Kaiser [86, 87] as, 

*e[*wi = (|*<*>)2-*(*>(£*<«> 
=   [x(t)]2 - x(t)x(t), (5.7) 

where *[•] is the Teager Energy Operator (TEO), and x(t) is a single-frequency component of 
the continuous speech signal. Kaiser [86, 88] derived the operator for discrete-time signals from 
its continuous form \&c[:r(t)], as, 

*[a;(n)] = x2(n) - x{n + l)x(n - 1), (5.8) 

where x(n) is the sampled speech signal. 
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(a.) Pitch ROC (b.) Glottal Spectral Slope ROC 
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Figure 5.3: ROC detection curves for "loud" versus neutral speech using: (a.) pitch (line 
with *: input vector length is 1, EER(*) = 11.47%; line with o: input vector length is 5, 
EER(o) = 9.86%; line with A: input vector length is 10, EER(A) = 6.80%). (b.) spectral 
slope (line with *: input vector length is 1, EER(*) = 40.51 %; line with o: input vector length 
is 5, EER(o) = 32.22%; line with A: input vector length is 10, EER(A) = 34.48%). 

The TEO is typically applied to a bandpass filtered speech signal, since its intent is to reflect 
the energy of the nonlinear energy flow within the vocal tract for a single resonant frequency. 
Under this condition, the resulting TEO profile can be used to decompose a speech signal into 
its AM and FM components within a certain frequency band via, 

f(n) 
2TTT 

arccos I 1 V\y(n)] + %(n + 1)] 
4*[a;(n)] 

\a(n)\ 
$[x(n)] 

\[1-(1 gry(n)1+ttfy(n+l)1^2 

4*[x(r ; 

(5.9) 

(5.10) 

where y(n) = x(n) — x(n — 1), *[•] is the TEO operator as shown in Eq. 5.8, f(n) is the FM 
component at sample n, and a(n) is the AM component at sample n [103, 104]. On the basis 
of this work, Maragos, Kaiser, and Quatieri [104] proposed a nonlinear model which represents 
the speech signal s(t) as, 

M 

s(t) = £ rm(t), 
m=l 

where 

»(*) = «mW cos (2?r(/cmi + /  qm(r)dT) + 0J 

(5.11) 

(5.12) 

is a combined AM and FM structure representing a speech resonance at the mth formant with 
a center frequency Fm = fcm. In this relation, am(t) is the time-varying amplitude, and qm(T) 
is the frequency modulating signal at the mth formant. 

Although the TEO is formulated for single-frequency signals or signals with a single resonant 
frequency, previous studies have shown that the TEO energy of a multi-frequency signal is not 
only different from that of single-frequency signal but also reflects interactions between different 
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frequency components [165, 166]. This characteristic extends the use of TEO to speech signals 
filtered with wide bandwidth band-pass filters (BPF). 

5.5.2    TEO-FM-Var: FM Variation 

Previous studies have shown that vowels spoken under stress generally have more instantaneous 
pitch variations than vowels spoken under neutral conditions. This suggests that features which 
represent fine excitation variations, would be useful for stress classification. To some extent, 
these variations are believed to be due to the effects of modulations. According to work by 
Maragos, Kaiser, and Quatieri [103, 104], the TEO is a nonlinear differential operator that can 
detect modulations in the speech signal and further decompose the signal into its AM and FM 
components. It is not difficult to understand that the AM-FM decomposition of a speech signal 
over a wide frequency band will not provide correct estimation of the real modulations. AM-FM 
signal analysis requires a carrier frequency which must be higher than the modulating frequencies 
within the signal. Because of interest in the fine excitation variations, the raw input speech is 
filtered using a Gabor bandpass filter (BPF) centered at the median fundamental frequency, 
F0, with a root mean square (RMS) bandwidth of FQ/2 based on the TEO profile of the entire 
input. The F0 is estimated using the average magnitude difference function (AMDF). After the 
Gabor BPF, TEO analysis is performed and the resulting profile is used to separate the input 
speech signal into its AM and FM components using Eq. 5.9 and Eq. 5.10. A flow diagram for 
extracting the TEO-FM-Var feature is shown in Fig. 5.4. 

Voiced Gabor BPF 
CF.FO 

BW = F0/2 
TEoU- FM 

Component 
Segmentation 
(Fixed Frame) Speech 

t t 
!*■ ESTIMATE MEDIAN PITCH FO 1 output Feature 

Frame-based 
FM variation 

Figure 5.4: TEO-FM-Var Feature Extraction 

5.5.3    TEO-Pitch: TEO based Pitch 

Unlike the feature presented in 5.5.2, or the feature to be presented in 5.5.4, the TEO-Pitch 
feature is a direct estimate of the pitch itself. Since it is difficult for currently available tech- 
niques to correctly detect the pitch of speech under stress, especially under extreme stress, TEO 
processing is first applied to the raw vowel waveform. As will be explained in Sec. 5.5.4, the 
TEO profile has the same periodicity as pitch. Furthermore, experiments determined that it 
generally showed better periodicity than the raw stressed speech partly because of the square 
effect of TEO. Since we found that pitch usually falls within the extreme range of 50 Hz to 750 Hz 
(female speech from actual high stress can have pitch as high as 700Hz), the TEO profile is 
bandpass filtered over (50:750 Hz) [165]. As shown in Fig. 5.5, after the BPF and segmentation, 
a normalized cross-correlation function (NCCF) and dynamic programming [151] is applied to 
detect the pitch structure. Here the waveform is first down-sampled, and candidate peaks in the 
NCCF are selected. Subsequently, the peaks are fine-tuned by using the NCCF of the original 
waveform (before down-sampling). The candidate frame-based pitch periods are determined by 
the average distance of two neighboring peaks within that frame. Finally, dynamic programming 
is employed to decide the pitch period of each frame. 
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Figure 5.5: TEO-Pitch Feature Extraction 
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5.5.4    TEO-Auto-Env: Normalized TEO Autocorrelation Envelope Area 

The third feature, named TEO-Auto-Env, also reflects the instantaneous excitation variations of 
speech. A flow diagram is shown in Fig. 5.6. This feature is based on the idea that the presence 
of stress may affect modulation patterns within the frequency bands of speech differently. It is 
obtained by passing the raw input speech through a filterbank consisting of 4 bandpass filters 
(BPF). 

Each BPF output stream is processed by a TEO to estimate each profile. Our experiments 
show that the TEO profile of an AM-FM signal has the same periodicity as the modulating 
signals. Furthermore, the TEO profile periodicity is generally dominated by an amplitude 
modulating signal frequency. This explains why the TEO profile reflects the same periodicity 
as the pitch profile since both are affected by amplitude modulations. Therefore, we obtain a 
feature representing the fine pitch variation by analyzing the TEO autocorrelation envelope. 

If we consider the fact that pitch is a slow-changing variable, we can bandpass-filter each 
TEO output stream through a Gabor BPF centered at the median fundamental frequency 
(FO), with the 3 dB bandwidth being roughly FO/2. FO is obtained using the AMDF based 
pitch detection method on the TEO profile instead of the raw speech. Subsequently, each 
Gabor-filtered TEO stream is segmented into frames. In order to have equivalent averaging 
effects, the frame length is set to 4 times the median pitch period. Furthermore, the normalized 
autocorrelation function is computed for each frame. If there is no pitch variation within a 
frame, its normalized autocorrelation function should be a damped sinusoidal response with a 
straight line envelope. The area under the ideal envelope (without pitch variation) should be 
the same for each frame for a specified vowel, that is, AT/2, where N is the frame length. In the 
case when pitch variation is present in a frame, its normalized autocorrelation envelope will not 
be an ideal straight line, and hence the area under the envelope will not be N/2. By computing 
the area under the normalized autocorrelation envelope and normalizing by N/2, it is possible 
to obtain 4 normalized TEO autocorrelation envelope area parameters for each time frame (i.e., 
one for each frequency band). This 4 parameter vector represents the TEO-Auto-Env feature 
per frame. 
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Figure 5.6: TEO-Auto-Env Feature Extraction 

5.5.5    TEO-CB-Auto-Env: 
lope 

Critical Band Based TEO Autocorrelation Enve- 

Empirically, the human auditory system is assumed to be a filtering process which partitions the 
entire audible frequency range into many critical bands [164]. Based on this assumption, the last 
proposed nonlinear feature employs a critical band based filterbank to filter the speech signal 
followed by TEO processing (see Fig. 5.7). Each filter in the filterbank is a Gabor bandpass 
filter, with the effective RMS bandwidth being the corresponding critical band. 

To extract the TEO-CB-Auto-Env feature, each TEO profile of a Gabor BPF output is 
segmented into 200-sample (25 ms) frames with 100-sample (12.5 ms) overlap between adjacent 
frames. Similar to the extraction of the TEO-Auto-Env feature, M normalized TEO autocor- 
relation envelope area parameters are extracted for each time frame (i.e., one for each critical 
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Figure 5.7: TEO-CB-Auto-Env Feature Extraction 

band), where M is the total number of critical bands. This is the TEO-CB-Auto-Env feature 
vector per frame. Fig. 5.7 shows the entire feature extraction procedure. Since each critical 
band possesses a much narrower bandwidth than the 1 kHz bandwidth used for BPFs in the 
TEO-Auto-Env feature, post Gabor bandpass filtering centered at median FO is not needed 
in TEO-CB-Auto-Env extraction. This makes the new feature independent of the accuracy of 
median FO estimation. 

In practice, all TEO profiles are segmented into many frames and all autocorrelation func- 
tions are normalized. As a result, the constant autocorrelation function is represented as a de- 
caying straight line from (0,1) to (iV,0), where N is the frame length. Those variations caused 
by harmonic distribution as well as by modulations from stress are expected to be reflected by 
the change in the TEO autocorrelation envelopes. 

5.5.6    Evaluations 

Evaluations were conducted using the SUSAS, Speech Under Simulated and Actual Stress data- 
base. SUSAS consists of five domains spoken under a wide range of stresses and emotions. In 
experiments discussed here, angry, loud and Lombard effect styles were used from SUSAS for 
simulated stress (speakers were requested to speak in that style; 85 dB SPL pink noise played 
through headphones was used to simulate the Lombard effect). Data for SUSAS actual stress 
was selected from the subject motion-fear domain. In the actual domain, a series of controlled 
speech data collection experiments were performed with speakers riding an amusement park 
roller coaster. 

Since the TEO is more applicable for the voiced sound than for the unvoiced sound, only 
voiced sections of all word utterances were used for the evaluation. A baseline 5-state HMM- 
based stress classifier with continuous Gaussian mixture distributions was employed for the 
evaluations. For the purposes of comparison, the traditional pitch feature tracked by the algo- 
rithm proposed in [151] and the MFCC feature [42] were used. 

The evaluation results are shown in Fig. 5.8. In general, TEO based features are effective in 
classifying stressed speech from neutral for both simulated and actual stress situations. Among 
them, the TEO-Auto-Env feature has very consistent performance across different styles of stress, 
but the accuracy is not as high as the TEO-CB-Auto-TEO because of fewer frequency band 
partitions. The TEO-CB-Auto-Env feature with fine frequency partitions, however, provide the 
most effective and consistent level of stress classification performance compared with MFCC 
and pitch information. 

The evaluations in this section have shown that recently proposed nonlinear based features 
can be effective in the classification of speech under stress in both simulated and actual stress 
settings [165, 166, 167]. This assumes that the goal is to detect the presence of stress. In 
some military or law enforcement settings, it is also necessary to assess the level of stress in an 
operator's voice. The next section considers both linear and nonlinear based features for the 
task of stress assessment using actual emergency military voice communications between aircraft 
pilots from the SUSC-0 stress database. 

5.6    Stress Assessment 

In many military and civilian applications, it is necessary to assess whether or not a speaker 
is under stress.   To evaluate the techniques discussed and their ability to detect real stress, 
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Figure 5.8: Pairwise Stress Classification Results (Mean and standard deviation of overall neu- 
tral/stress classification rates are shown; Different speaker groups were used for simulated and 
actual stress conditions) 

the SUSC-0 database containing speech of pilots under stress was processed [63]. The SUSC-0 
database is from NATO IST-TG01, which consists of actual aircraft pilot communications under 
emergency situations. Specifically, Mayday2 domain in SUSC-0 was used. Mayday2 contains 
speech data between a pilot and controller collected from the initial ground aircraft system check, 
through preliminary discovery of engine emergency, until safe resolution of the emergency. The 
different stress degrees experienced by the pilot are reflected by his speech in Mayday2. A second 
database entitled TORONTO-AIR was also considered. This tape recording consisted of voice 
communications between a pilot and the controller before a fatal aircraft crashed. Since the 
pilot was generally unaware that an emergency was taking place until it was too late, there is 
only mild levels of uncertainty in his voice. Also, this tape is an 'air traffic control' (ATC) tape 
recorded from the ground, so high levels of noise were present. Due to these issues, the results 
discussed here focus on SUSC-0. Further details of the second database results are in [63]. 
Twelve (12) sentences from each database were extracted to represent different speaking styles 
for the assessment evaluation. Table 5.3 shows the 12 sentences from SUSC-0. 

A baseline HMM-based stress assessor with continuous Gaussian mixture distributions was 
used for the evaluation. Two reference HMM models, one representing neutral speech and the 
other representing stressed speech, were trained. All voiced segments of word "help" under 
neutral conditions in SUSAS database were used to train the neutral HMM reference model. 
For the stressed HMM reference model, two different sets were trained, one from the simulated 
angry, loud, and Lombard stress conditions, and one from that actual stress roller coaster and 
free fall ride data, respectively. If a speech feature can assess the degree of stress regardless 
of text, the log likelihood ratio of the unknown speech generated by the stressed HMM model 
versus the neutral HMM model should be able to indicate whether it is more likely under stress 
or neutral. Since TEO-based autocorrelation envelope features (TEO-Auto-Env, and TEO-CB- 
Auto-Env), MFCC, and frame-based pitch information were shown to be very effective for stress 
classification, they were used to assess the stress for SUSC-0 database. Since both TEO-based 
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features and pitch information are only useful for voiced speech, the assessment is based on the 
extracted voiced portions from each utterance. To consider the variations within each utterance, 
4 voiced portions per utterance (shown in Table 5.3) are extracted for the assessment. 

Sentences from Mayday2 Domain of SUSC-0 
No. Sentence 

1 avionics UGHt hydrAUlic oil pressure UGHt engine indications ARE ... 
2 AND you'er gONNA declare an emERgency or am I 

3 ... checklist Oil pressure malfunction G one-hundred ... cruise 
altitude stORe jett ... throttle minimize mOvement ... 

4 roger that Oil indicAtion is nOW zERO 
5 ... ALRIGHt newt ... engine fault UGHt still lit ... hydrAUlics are ... 

total pOUNds six ... 
6 and I'm going there and I'm there I'm desENding down to ten grANd right 

I'm nOt picking up a tAcan lock 
7 no I'M doing ALRIGHt now and the rAdial is whAt 
8 okAY give me immEdiate vectors this is an emERgency I'm engine OUt 
9 give me hEAdings I nEEd headings nOW 
10 put the cAble dOWN pUt the cAble down 
11 I'm hOt I nEEd the cAbLe ... 
12 mAn I thOUGHt I wAs gOne 

Table 5.3: Sentences from SUSC-0 for Stress Assessment Evaluation. Note that bold uppercase 
characters represent voiced section which were used for overall stress assessment of that sentence. 

The assessment results are shown in Fig. 5.9 for SUSC-0. Here, one score is obtained by find- 
ing an average output score across the four extracted voiced sections per sentence. Generally 
speaking, the recordings begin in a neutral relaxed setting (sentence numbers 1-2), then move 
into concern while pilot begins to determine the cause of the problem (sentence numbers 3-7). 
Finally, the pilot determines that the emergency is serious must land the aircraft without power 
(sentence numbers 8-11). Sentence number 12 indicates his relief after a safe landing. 

Both figures ((a) and (b) in Fig. 5.9) show that the general assessment score trend is similar 
regardless of which anchor stress HMM reference model is used. However, the stress HMM 
reference model trained from actual SUSAS stress results in larger fluctuations among assessment 
scores. This may be because that model represents an extreme case of stress. It is noted that 
SUSC-0 recording can at times have high levels of background noise, so the stress assessment 
can be affected. We believe that it is the background noise which impacts the stress assessment 
because both simulated and actual stress HMM reference models produced similar results, while 
the actual stress HMM reference model was trained from very noisy data. 

5.7    Stress Assessment and Classification Issues 

We have seen that the problem of stress classification is a problem which is becoming increas- 
ingly important for military and security in the field of multi-national communications between 
operators/personnel. Past methods for voice stress analysis have focused on what is beleived 
to be microtremors in the muscles for voice production. More recent methods using digital 
speech processing have suggested alternative methods which offer the promise of better system 
integration within speech/speaker recognition or voice communications equipment for military 
scenarios. 

While research and progress have been made in the areas of stress classification and as- 
sessment, a number of important research areas require further investigation. Here, we briefly 
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consider four points. First, in order to perform stress classification or assessment, two anchor 
models are needed (one for neutral and one for stress). These models should be trained using 
speech obtained from the actual stressful environments in which we wish to assess operators 
(i.e., aircraft pilot recordings if pilots are to be assessed). The type of stress which is displayed 
in one setting (aircraft cockpit), may not reflect the same workload conditions an operator may 
experience in another (army tank operator). Second, further research is needed to assess the 
consistency of stress assessment/classification for a given speaker and for unseen speakers (i.e., 
explore the impact of using other training data to assess new speakers). Third, there is clearly 
a range of emotions and workload factors which all contribute to operator 'stress.' In military 
scenarios an operator may experience a combination of fear, anxiety, fatigue, etc. at the same 
time. The ability to classify/assess this mixture of speaker traits is important in determining 
the stress state of the speaker/operator. Finally, there exists an unknown relationship between 
how computer based speech systems are able to classify stress and how humans perform stress 
classification. This issue is important in the collection of future databases so that better stress 
anchor models can be used with speech technology. From the research conducted here, it is 
suggested that speakers often vary how they convey stress in their speech, and that several 
speech features may be needed to capture the subtle differences in how speakers convey their 
stress state in military voice communications. 

5.8    Selected References of Interest: 

Here, we summarize several references which have considered classification or features related 
to classification of speech under stress. The reference section at the end of this report contains 
all references cited in this chapter. 
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Figure 5.9: Assessment results for pilot's speech from Mayday2 domain of SUSC-0 database 
(Log likelihood ratio is shown along Y-axis while sentence number is shown along X-axis): (a) 
Neutral vs Simulated stress (Loud, Angry and Lombard) HMM reference models; (b) Neutral 
vs Actual stress HMM reference models 
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Chapter 6 

Speech System Evaluations 

6.1 Introduction 

It has been found that the robustness of various available speech technologies can be impacted 
by the stress level of the user of the system. Tests of speech systems have been conducted, 
using the stressed speech databases described in Chapter 3, at a number of research facilities 
around the world. The NATO RSG-10 Panel Report [149] lists the various speech technologies 
which are of interest to military users, however, experiments have not been carried out on all 
technologies using the stressed speech databases which are available. This chapter summarizes 
several tests of speech and speaker recognition systems as well as addresses the issues of stress 
and emotion for speech synthesis and speech coding systems. The related area of stress/emotion 
classification systems was considered in Chapter 5. 

Section 6.2 describes experiments conducted on two of the databases using speech recognition 
systems. Section 6.2.1 summarizes experiments conducted using the DLP database using a 
variety of recognition systems. Section 6.2.2 looks at experiments carried out using the SUSAS 
database. Section 6.2.3 discusses various compensation techniques which have been proposed 
to improve the performance of speech recognition for stressed speech. Finally, section 6.2.4 
summarizes the work done in speech recognition on the stressed speech databases. 

Section 6.3 deals with tests carried out using speaker recognition systems. Since databases 
for speaker recognition are formulated differently than for speech recognition, only restricted 
evaluations were performed using the stress databases discussed in Chapter 3. Results of speaker 
recognition tests carried out on the SUSC-0 database are outlined in Section 6.3.1 and the results 
of tests carried out on the SUSAS database are given in Section 6.3.2. Conclusions on the effects 
of stress on speaker recognition systems are drawn in section 6.3.3. 

Work being carried out on characterizing emotion in synthesis systems and coding systems 
is discussed in Section 6.3. At the present time, there is not as much work being carried out in 
this area. Here, we cite some of the recent methods proposed for imparting emotion in text-to- 
speech synthesis systems. Results are also presented from a recent study by Bou-Ghazale and 
Hansen at RSPL [19], which considers methods for imparting stress characteristics onto neutral 
input speech. We point out that further research is needed for a better understanding of how to 
effectively synthesize speech under stressful conditions, a useful task when considering military 
training simulators. 

6.2 Speech Recognition 

The issue of robustness in speech recognition can take on a broad range of problems. A speech 
recognizer may be robust in one environment and inappropriate for another. The main reason 
for this is that performance of existing recognition systems which assume a noise-free tranquil 
environment, degrade rapidly in the presence of noise, distortion, and stress. In Fig. 6.1, a general 
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speech recognition scenario is presented which considers a variety of speech signal distortions. 
Here, the index n represents time. For this scenario, we assume that a speaker is exposed to some 
adverse environment, where ambient noise is present and a stress induced task is required (or the 
speaker is experiencing emotional stress). The adverse environment could be a noisy military 
vehicle where wireless communication is used, high-stress noisy helicopter or aircraft cockpits, 
and others. Since the user task could be demanding, the speaker is required to divert a measured 
level of cognitive processing, leaving formulation of speech for recognition as a secondary task. 

Speech recognition systems can be classified in a number of ways [149]. Briefly, we will 
consider speaker-independent (systems trained for the individual user) vs. speaker-independent 
(systems trained on a large population of speakers), task-dependent (systems trained on the 
database which is used in testing) vs. task-independent (systems trained on databases different 
from that used in testing) and limited vocabulary systems vs. large vocabulary systems. 

The issue of robustness in speech recognition can take on a broad range of problems. A speech 
recognizer may be robust in one environment and inappropriate for another. The main reason 
for this is that performance of existing recognition systems which assume a noise-free tranquil 
environment, degrade rapidly in the presence of noise, distortion, and stress. In Figure 6.1, 
a general speech recognition scenario is presented which considers a variety of speech signal 
distortions. Here, the index n represents time. For this scenario, we assume that a speaker 
is exposed to some adverse environment, where ambient noise and a stress induced task are 
present (or the speaker is experiencing emotional stress). The adverse environment could be 
a noisy military vehicle where wireless communication is used, high-stress noisy helicopter or 
aircraft cockpits, and others. Since the user task could be demanding, the speaker is required 
to divert a measured level of cognitive processing, leaving formulation of speech for recognition 
as a secondary task. 
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Figure 6.1: Types of distortion which can be addressed for robust speech recognition. 

Workload task stress has been shown to significantly impact recognition performance [30, 
54, 71, 123, 131]. Since background noise is present, the speaker will experience the Lombard 
effect (Lombard, 1911, [100, 84]); a condition where speech production is altered in an effort 
to communicate more effectively across a noisy environment. The level of Lombard effect may 
depend on the type and level of ambient noise di(n) (though no studies have considered this), 
and has been shown to vary between male and female speakers [84]. In addition, a speaker 
may also experience situational stress (i.e., anger, fear, other emotional effects) or workload 
task stress (i.e., flying an aircraft) which will alter the manner in which speech is produced. If 
we assume s(n) to represent a Neutral, noise-free speech signal, then the acoustic signal at the 
microphone will include distortion due to stress, workload task, Lombard effect, and additive 
noise. The acoustic background noise di(n) will also degrade the speech signal as illustrated in 
Fig. 6.1. Next, if the speech recognition system is trained with one microphone and another is 
used for testing, then distortion due to microphone mismatch can be modeled with a frequency 
distortion impulse response hmike(n). If the speech signal is transmitted over a telephone or 
cellular channel, further distortion is introduced (modeled as either additive noise d2(n), or a 
frequency distortion with impulse response Channel (n)). Furthermore, noise could also be present 
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at the receiver d3(n). Therefore, the Neutral noise-free distortionless speech signal s(n), having 
been produced and transmitted under adverse conditions, is transformed into the degraded 
signal y{n). 

y(n) =       -([s(n) | workload, stress, Lombard effect(di)]+ rfi(n)J x (6.1) 

xhmite(n) + d2{n) ^channel («) + d3(n) (6.2) 

We should emphasize that all forms of distortion identified in Equation 6.2 and Fig. 6.1 may not 
exist simultaneously. In studies considered in this section, the primary focus will be on speech 
under stress (including Lombard effect), with secondary emphasis on speech under stress with 
additive background noise distortion (speech data from some actual stress environments will 
always contain noise). 

6.2.1    Speech Recognition: Tests using the DLP Database 

Tests using the DLP database have been conducted using a commercial off the shelf (COTS) 
recognition system, a speaker-independent isolated word recognition system and speaker-indepen- 
dent, task-independent recognition system. The results of these experiments are summarised in 
the next three sections. 

6.2.1.1    Commercial Off the Shelf Recognizer 

Tests were conducted by the the U.K. Defence and Engineering Research Agency (DERA) us- 
ing the DLP database to test a COTS speech recognition system on the DLP stressed speech 
database. As part of another task, a Marconi Speech and Information Systems (MSIS) speech 
recognition card was available for use with a speaker independent alphanumeric model set pro- 
vided. The MR8 contains an implementation of the IMELDA technique to improve robustness 
to speaker variability, which should include variability due to stress. The recognizer was tested 
on the DS development set of speech files. The results show a small word accuracy fall-off 
from 95.1 % in the slow condition to 93.5 % in the fast condition suggesting that the IMELDA 
transform does provide an improvement in robustness to speaker stress. 

Initial recognition experiments have been carried out on the DLP database to investigate the 
affect of user stress as caused by a time constrained task on speech recognizer performance. The 
use of a NASA-TLX performance evaluation questionnaire indicated that there was a measure- 
able increase in user stress for the fast data display conditions. As was expected, the performance 
of a speaker-independent, sub-word based speech recognition system was found to be degraded 
during the higher stress task, as stress related speech affectations were encountered, such as 
higher co-articulation rates, slurring and false starts. 

This experiment does confirm that cognitive stress, whether due to conflicting parallel tasks 
as reported in other works, or due to a time constrained task will degrade speech recognition 
performance. This has to be borne in mind when speech recognition applications are being 
considered. It will be necessary for non-adaptive recognition systems to be used in situations 
where user stress is likely to be irrelevant, such as non-safety critical systems. It is likely that 
shortcomings in recognizer performance, such as high error rate or slow working speed may 
cause an increase in user stress, exacerbating the problem and disenchanting the user - a serious 
implication for future market penetration. 

Adaptive recognition techniques would be expected to cope better with increasing user stress 
level. It has been noted that the IMELDA technique provides good robustness against short 
term speaker variability and initial results with a recognizer incorporating this technique do show 
a less dramatic performance fall-off than with the ASTREC recognizer. Further investigations 
into robust recognition systems may provide further techniques to cope with stress induced 
degradation, as well as other performance degrading environments. 



50 

6.2.1.2    Speaker-independent, isolated word recognition system 

A set of speaker-independent recognition evaluations of the DLP Database was conducted by 
Bou-Ghazale and Hansen of the Robust Speech Processing Lab (RSPL), Univ. of Colorado/Duke 
Univ. Although under high task conditions spoken errors may be present, it was assumed that 
the speaker had correctly uttered the individual words. When a person incorrectly utters a word 
or skips a word completely, the recognizer cannot recover from such human errors unless some 
rules or a priori knowledge are integrated within the system. For this reason, this study was 
intended to ignore human errors, and focus on recognition system errors caused by cognitive 
workload stress. 

Background: The number plates were presented with two different rates: fast and slow. The 
resulting speech is referred to here as high and moderate task speech. The task of dictating the 
car plates at a fast rate was believed to be a source of cognitive stress to speakers. One point 
to note, the occurrance of the individual alpha numerical characters and digits is not evenly 
distributed for all words. For example, while in some instances, twenty-eight tokens of the word 
eight exist, there are only three tokens of the word lima. 

Data Preparation: For the purpose of this experiment, the data was first downsampled from 
20 kHz to 8 kHz. The down-sampled continuous sentences were then parsed into isolated words 
by using the orthographic transcription provided with the database. A word which has less 
than four training tokens per speaker and style was excluded from the evaluations. Four tokens 
of each word under each style were then randomly selected for training a speaker independent 
isolated word recognizer. Prior to training, the isolated tokens were played to a human listener 
in order to spot and correct any labeling errors such as incorrect boundaries, or incorrect label 
files. The following twenty-seven words were used in the evaluations: alpha, charlie, delta, echo, 
eight, five, four, foxtrot, golf, hotel, Juliet, kilo, nine, november, one, oscar, papa, romeo, seven, 
six, three, two, uniform, whiskey, x-ray, yankee, and zero. 

Isolated Word Training: The data was parameterized using 12 mel-frequency cepstral coef- 
ficients. A 25 ms Hamming window was used, and a first order preemphasis was applied to the 
data using a coefficient of 0.97. The zeroth cepstral coefficient served as the energy component. 
Cepstral mean normalization was performed on the cepstral parameters to compensate for long- 
term spectral effects. In addition, the cepstral parameters were re-scaled using a cepstral lifter 
as follows: 

,       .       L  .   7rn. cn = (1+2-sm—)cn, 

where L was set to 22. Delta and acceleration coefficients were also computed and appended 
to the MFCC coefficients since the performance of a speech recognition system can be greatly 
enhanced by adding these time derivative features. 

A total of 27 words were used for training the recognizer. The speaker population consisted 
of 12 males and 4 female speakers. A round robin training and testing scenario was employed in 
order to test all speakers. Hence, a total of 60 tokens per word (4 tokens per word x 15 speakers) 
per style were employed for training a 2-mixture continuous density 5-state left-to-right HMM 
model. 

Recognition Performance: A total of 1728 tokens per style were employed for testing the 
speaker and gender independent recognizer (results shown in Figure 6.2). The recognition ac- 
curacy of the models trained and tested with moderate task speech was 98.4 %. Models trained 
with moderate task speech, and tested with high task speech achieved a 97.0 % recognition ac- 
curacy. Hence, the recognition error which may be due to cognitive stress is 1.4%. A model 
trained and tested with high task speech achieved a recognition rate of 97.7 %. 
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Figure 6.2: Individual Speech Recognition Results from DLP speech data (a) speakers 1-8, and 
(b) speakers 9-16. 
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Models 
Tested With 

Models Trained With 
Moderate Task High Task 

Moderate Task 98.4% 97.5 % 
High Task 97.0% 97.7% 

Table 6.1: Speaker-independent recognition results from speech produced under moderate and 
high task conditions (DLP reading task). Round robin training and testing was conducted using 
speech spoken by a total of 16 (12 male and 4 female) speakers. 

6.2.1.3    Speaker-independent, task independent recognition system 

Tests were conducted by the the U.K. Defence and Engineering Research Agency (DERA) using 
the DLP database to test a speaker-independent, task-independent recognition system on the 
DLP stressed speech database. 

The recognition experiments were carried out in two stages. The first set of experiments 
involved testing the ASTREC-216 recognizer on all the DLP database using digit and ICAO 
alphabet models extracted from the speaker-independent air reconnaissance mission (ARM) 
model set. This was to provide initial, rough estimates of the performance variations likely 
to be encountered in a naively implemented system with little error recovery. The second set 
of experiments involved a more detailed investigation of the maximum performance that could 
be achieved by the recognizer. As this involved much more experimentation, only speech data 
from a single speaker, DS, was used as a development set. The best performance measured was 
equivalent to that reported for more general speaker independent results. 

The Recognition System: The ASTREC-216 recognizer is an implementation of a one pass, 
fully continuous, sub-word hidden Markov model (HMM) based recognition system. The speech 
signal is passed through a critical band spaced, 27 channel filterbank analyzer running in software 
before input to the recognizer. The simple filterbank vector is transformed into various possible 
representative feature vectors by a preprocessor stage of the recognizer operating at run time. 
The preprocessor options specified variable frame rate analysis at Euclidean distance threshold 
1100, frame throw away limit of 50, then reduction to eight cosine coefficients and then time 
differenced. 

The alphanumeric model set used was a subset of the speaker-independent ARM model set, 
built using a decision tree approach to provide context sensitive models and nominal task in- 
dependence. The training set for male speaker models was based on the SI89 speech corpus, 
and comprised three read ARM reports each from 61 speakers. The female training set com- 
prised three read ARM reports each from 61 speakers All models used were multi-state, single 
Gaussian HMMs, with re-estimation being carried out in the transformed domain specified by 
the preprocessor options. These model sets are not completely independent of the number plate 
reading task as in the ARM reports, alphanumerics are generally read as a continuous string 
rather than having phonemic contexts embedded in other words, improving the potential model 
performance at tasks such as this. 

Initial Experiment: The initial experiments involved the running of the ASTREC recognizer 
on all the speech files. For this initial trial, the modifications to the model set made to accommo- 
date the new recognition task were simply to alter the active vocabulary to exclude all but the 
ICAO alphabet and digit model combinations and the triphone model combinations to explain 
the out of vocabulary words identified from the recordings. This method of handling the out of 
vocabulary words was not considered to be optimal due to the task independence of the models. 
It would be expected that this treatment would lead to a higher insertion rate than could be 
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achieved with a more careful consideration of errors, however, this method would provide initial 
estimates of the recognizer performance, as well as giving pointers to requirements for future 
error handling algorithms. 

Results: The results for the initial recognition experiments are summarized in Figure 6.3. 
The words correct performance figures include the percentage of the words actually spoken that 
were correctly recognized while the word accuracy figures are the percentage of displayed to- 
kens correctly recognized. Figure 6.3(a) summarizes the words correct and Figure 6.3(b) word 
accuracy figures for all the speakers. The recognizer performance shows large variations across 
the speaker population. Previous work has reported a word accuracy figure of around 75 % for 
speaker-independent operation on controlled recordings on the ARM task. The performance 
shown here is significantly below that on the slow data rate speech for the easier task of al- 
phanumeric recognition. 

This poor result could be explained by the lack of careful level monitoring during recording 
sessions. Another possible source of reduced accuracy was a pollution of the recordings by power 
line (50 Hz) pickup from the low power fluorescent lighting used in the recording booth. This 
hum was more noticeable on some of the recordings than others. 

Speaker BP, on which the recognizer performed the worst, had a strong Scottish accent, 
which would be expected to perform less than satisfactorily against the model set which was 
trained on southern British English accented speech. Of the other poor results, speakers BA 
and MG had varying strengths of Scottish accent, while speaker DJ had a mild Welsh accent. 
The best performance, speaker SB, may be explained by the fact that her speech was in the 
data used to train the speech models. 

Variation of Performance With Stress Level: Comparing the variation of performance 
with the change from slow to fast data rates shows a small but significant degradation as the 
speaker stress level, as marked by the NASA-TLX test, increased. This is broadly in line with 
expectations, though the figure is made less certain due to the large variations between speakers. 
Average variations in the words correct rate and word accuracy rate for all the speakers are 
12.3 % and 20 % respectively. 

Improving The Recognizer Performance: The initial results reported above for alphanu- 
meric recognition using the speaker independent ARM model set were fairly poor. There are 
several possible reasons beyond those discussed above. One was the lack of proper handling of 
out of vocabulary words. For the above experiments, out of vocabulary words were modeled by 
concatenation of sub-word units, but the performance of this was found to be lacking. Out of 
vocabulary words could be modeled either by a babble model or a wildcard model, or explicitly 
ignored from the scoring. Also, the recognizer parameters could be optimized and a syntax 
added. To carry out this matrix of tests on the full data set would have been impractical, so 
a single speaker set, DS, was chosen as a development set, due to the speaker's mild southern 
British English accent matching that of the model set and his high spoken accuracy. 

The recognition results for speaker DS for the various experiments carried out are shown 
in Figure 6.4. The first experimental condition was a repeat of the initial experiment. The 
model set used was the male, speaker-independent ARM model set with only the models for the 
alphanumeric words, silence models and triphone model expansions of out of vocabulary speech. 

It was noted that the models used for explaining the out of vocabulary speech were causing 
the majority of the insertion and mismatch errors. The second experiment simply removed the 
models to explain the out of vocabulary speech. It would be expected that this would allow 
insertion errors when a non-vocabulary word was spoken, though for speaker DS, these were 
few in number.  The results show a significant improvement in recognizer performance as the 
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Figure 6.3: Words Correct Rate (a) and Word Accuracy Rate (b) as a Function of Visual Data 
Rate for all Speakers. 
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Figure 6.4: Words Correct Rate (a) and Word Accuracy Rate (b) as a Function of Visual 
Data Rate for Speaker DS. Experimental Conditions Were A: Initial Experiment, B: Use Target 
Vocabulary and Four Silence Models Only, C: Addition of Wildcard Model for Out of Vocabulary 
Speech, and D: Out of Vocabulary Words Ignored in Scoring. 

poor non-vocabulary models could no longer degrade the result. The insertion rate due to out 
of vocabulary speech was not a significant problem. 

Next, a wildcard model was included. The wildcard model returns the same Euclidean 
distance for each input speech observation. If the speech was in vocabulary, the correct speech 
model should prove a better match than the wildcard. However, out of vocabulary speech 
will match poorly with the speech models but the same with the wildcard, leading to the 
wildcard model being chosen as the best match. This technique provided a small improvement 
in performance indicating that the wildcard model was working as specified. 

The final result in Figure 6.4 shows the performance of the recognizer on the target vo- 
cabulary only. This was achieved by specifying, in the scoring program, that certain out of 
vocabulary words listed in the master annotation file were to be ignored, and any word label 
output by the recognizer at that point was to be ignored. This provided a small performance 
increment over the use of a wildcard model which suggests that out of vocabulary speech was 
not a problem with speaker DS. 

Comments on Results:    The average word accuracy values from this last experiment were 
91.0 % for the slow condition and 83.7 % for the fast condition. This level of performance was that 
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which would be expected for speaker independent recognition of a small vocabulary size. The 
fall-off in recognition performance with the increasing stress level was quite marked indicating 
that stress effects do cause a problem for speech recognition. This 7.3 % degradation in word 
accuracy was caused by an increase in the errors due to mismatch between input speech and 
the models used in the recognizer, which was expected, as slurring and co-articulation degrade 
the quality of the shorter digit labels. 

6.2.1.4    Discussion 

The results for all the experiments carried out on the DLP database are summarized in Fig- 
ure 6.5. In general, there was a decrease in recognition rate as the stress level was increased, i.e., 
from the slow rate to the fast rate. The one exception to this was the RPSL tests with training 
done on the fast rate data. This result is expected since the models produced would best match 
the training data. As is expected, the results also show a decrease in recognition rate when go- 
ing from a system trained on the database (the RPSL and MR8 results) to a task-independent 
system (the DERA ASTREC results). 
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Figure 6.5: Word Recognition Rate for All tests Conducted on the DLP Database. 

6.2.2    Speech Recognition: Tests using the SUSAS Database 

The following subsections consider results from evaluations using the SUSAS database. The first 
is a study utilizing a phone recognizer. The next is two studies using isolated-word methods. 
The other sections summarize results of large vocabulary, continuous speech recognition systems, 
one of which is a COTS product. 

6.2.2.1    Monophone recognition system 

Large vocabulary continuous speech recognition (LVCSR) systems use low-level sub-word recog- 
nition along with higher-level language and grammar level constraints, which can at times correct 
sub-word and word-level recognition errors. An evaluation was conducted at RSPL, Univ. of 
Colorado/Duke Univ. to explore monophone recognition performance across stressed speaking 
conditions using the SUSAS database. 

In order to investigate the effects of stress on the monophone recognition task, an experiment 
was performed using three stress conditions: angry, loud and Lombard as well as neutral. The 
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number of phones obtained from the training portion of SUSAS was not sufficient for full coverage 
of a standard phone set such as that used in the TIMIT speech corpus. The phone set for this 
experiment was limited to 29 phones. Since the SUSAS vocabulary set is limited to a 35 word 
vocabulary, the effects of phoneme context in the recognition task could not be considered. 

The phone set is given in the Figure 6.6 along with individual recognition results. For each 
phone there are 12 neutral training tokens. The models were generated by round-robin training 
for each phone and for each speaker. As a result the neutral condition was tested with 12 tokens 
whereas only two tokens were available for the other three stress conditions. The ensemble 
of results over all nine speakers were averaged to obtain reliable recognition rates. Hence the 
results listed in the table comprise 108 testing tokens for neutral and 18 tokens for each stress 
condition. 

The speech data was sampled at 8 kHz and analyzed at a skip rate of 5 ms with 15 ms window 
length. Ten static MFCCs were supplemented with deltas, energy and delta energy coefficients, 
resulting in a feature vector size of 22. Here, 3-state left-to-right HMMs with 2 mixtures were 
used for modeling. Several observations can made from the results. First, diphthongs, vowels and 
semi-vowels yielded very high recognition rates which were usually long in duration in neutral 
testing. Consonants rates were not as high as high energy voiced phones, with particularly low 
performance for stops which have high variability and short duration. 

The overall recognition rate for angry speech resulted in dramatic reduction in recognition 
performance 30.7%, followed by loud and Lombard. The results indicate that these stress 
conditions resulted in tremendous variability in the acoustic parameterization which were not 
represented in the underlying neutral model. 

A number of more detailed experiments were performed by RSPL on stressed monophone 
recognition to investigate the effect of phoneme positions (initial, middle, final) on the stressed 
speech recognition rates. Observations on the effects of phoneme locations together with the 
some of the results for stressed monophone recognition are as follows: 

1. For nasals, recognition rates increase in general for all stress conditions if the phoneme 
comes in the final position instead of initial position. The differences between scores are 
dramatic (e.g., /m/ in "mark -vs- histogram", and /n/ in "no -vs- change -vs- on"). 

2. For voiced stops ( /d/, /g/ ), the rates increased across all stress conditions when they come 
in the middle or final positions rather than the initial position (e.g., /d/ in "degree-wide" 
and /g/ in "go-degree"). 

3. For dipthongs ( /ey/, /aw/, /iy/ ), while scores for neutral were not sensitive to phoneme 
position, the recognition scores all increase for the other stress conditions, when they come 
in the middle or final position versus when they come in the initial position. 

4. For /th/, recognition rates increase across all stress conditions if the phone comes in the 
initial position versus the final position. 

Change in Recognition Rate for /th/ in Initial vs. Final word position. 
Neutral      Angry        Loud Lombard 

Difference:     +3.7%    +27.8%    +22.3% +16.6% 

5. For jij phone, recognition rates increase in general across all stress conditions if /f/ comes 
either at the middle or final position. 

6. For /z/, recognition rates increase for neutral, angry and Lombard if /z/ comes in the 
final position rather than initial position. It decrease for loud speech if it comes in the 
final position. 
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Change in Recognition Rate for /th/ in Final vs. Initial word position. 
Neutral      Angry        Loud Lombard 

Difference:    +18.5%    +44.5%    -16.6% +16.6% 

7. For /p/, while there is very little change in recognition rates for the neutral case for different 
phone positions, recognition rates increased dramatically for the other stress conditions 
when /p/ comes in the final position rather than initial position. 

Change in Recognition Rate for /p/ in Final vs. Initial word position. 
Neutral     Angry        Loud Lombard 

Difference:     -6.5%    +33.4%    +44.4% +16.7% 

8. For /k/, recognition rates increase across all stress conditions when the phone comes in 
the middle rather than in the final position. 

Change in Recognition Rate for /k/ in Middle vs. Final word position. 
Neutral      Angry        Loud Lombard 

Difference:    +26.9%    +16.7%    +11.1% +16.6% 

6.2.2.2 Speaker-dependent isolated word systems 

This section considers results from evaluations using the SUSAS database. Two studies focus 
on isolated-word methods, one conducted by Grupo De Technologa Del Habla (GTH) in Spain 
and the other by the Robust Speech Processing Lab (RSPL) in the USA. 

6.2.2.3 Test conducted by GTH 

The Automatic Speech Recognition (ASR) System: The recognition tests were per- 
formed with an isolated word recognizer developed by Grupo De Technologa Del Habla (GTH), 
Universidad Politecnica De Madrid, a standard discrete HMM system using one model per digit 
in a speaker-dependent task. 

The front-end of the ASR system used the following features: 10 mel-cepstrum coefficients 
and the average energy extracted from each frame. The MFCC were obtained using a bank 
of 17 mel-scaled, triangular band-pass filters applied to the DFT spectrum computed from a 
frame of 256 points windowed by a Hamming window with preemphasis. The sampling rate was 
8 kHz and the frame advance rate was 80 frames per second. Dynamic parameters were not 
extracted, so, only 11 coefficients represent each frame. The process of quantization used only 
one codebook composed of 128 centroids. 

Every speech file, in both the training and test sets, was automatically segmented in order 
to detect the beginning and the end of the utterance. For each digit, six frames of silence were 
added at the beginning and the end of the isolated word for modeling the word and the silence 
simultaneously. For each word, a discrete HMM with six emitting states was trained using the 
"train" data only. The two models of silence were trained in the same way using a discrete 
HMM with three emitting states. The recognition stage used a standard Viterbi decoder for 
isolated speech with initial and final silence models appended to each word. 

Experiments were carried out on the talking styles and single tracking task domains from 
the SUSAS database. A complete report of these experiments is available [50]. 

Results: Figure 6.7 summarizes the average recognition rate for all speakers under the con- 
ditions in the talking styles domain (neutral, angry, clear, fast, loud, question, slow and soft). 
These conditions are simulated stress conditions.  Note: results of recognition tests using the 
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Figure 6.6: Monophone Recognition Rates for Various Stress Conditions for (a) Consonants and 
(b) Vowels, Diphthongs and Semi-Vowels. 
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training portion of the database are included in order to evaluate the correct performance of the 
recognizer. 

Figure 6.8 summarizes the average recognition rate for all speakers in simulated task stress 
conditions: moderate stress (cond50), high stress (cond70) and Lombard conditions (lombard). 
Also shown are the results for neutral speech in order to compare the performance of the ASR 
system with the other stress conditions and the results for the training set in order to evaluate 
the correct performance of the recognizer. 

Talking Styles 

DIrain 
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SLoud 

0Question 
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HSoft 

Figure 6.7: Average recognition rate in the simulated stress conditions. 

Single Tracking Task 

□ Train 

H Neutral 

HCond50 

HCond70 

HLombard 

Figure 6.8: Average recognition rate in the simulated task domains and Lombard effect stress 
conditions 

Discussion: The ASR system used in these experiments was not explicitly optimized for stress 
conditions, and therefore these results can be used as a reference for further studies. The results 
show the following tendencies: 

Recognition performance varies considerably across the different talking styles and stress conditions. 
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• There was no significant difference between the recognition rate under moderated stress (cond50) 
and high tracking workload stress (cond70). 

In this simulated stress domain, we observe that neutral speech had the best recognition rate. 
For the talking-style domain, we observe that the results for most of these experiments was not 
significantly different. The talking styles can be grouped in three classes. All the members of 
each class have overlapped reliability intervals. 

• Class A Neutral and fast. 
• Class B Clear, question, soft, slow and loud. 
• Class C Angry and loud. 

Class C had the worst recognition performance, and Class A the best. 
For the single tracking task domain, the results for moderated stress (cond50) and for high 

stress (cond70) do not present significant differences. 

6.2.2.4 Test conducted by RSPL 

The discussion in this section is based on evaluations and improved algorithm formulation for 
speech recognition under stress from the Robust Speech Processing Lab (RSPL), Univ. of Col- 
orado/Duke Univ. 

To illustrate the problem of speech recognition in stress and noise, a baseline speech rec- 
ognizer (VQ-HMM) was employed on noisefree and noisy stressed speech from SUSAS. This 
system was a discrete observation, 5-state, left-to-right HMM, trained in a speaker dependent 
mode (trained using odd neutral tokens; and tested using even tokens then repeated with even 
training, and odd token testing). A 64-state speaker-dependent VQ codebook was trained us- 
ing two minutes of training data. Figure 6.9 shows that when stress and noise are introduced, 
recognition rates decrease significantly. When white Gaussian noise is introduced, noisy stressed 
speech rates varied, with an average rate across all ten stressed conditions of Avg = 30.3 % (i.e., 
a 58% decrease from the 88.3% neutral rate). Recognition performance also varies consider- 
ably across the ten stressed speaking conditions as reflected in the large standard deviation in 
recognition (SD = 15.35 for noise free and 9.12 for noisy stressed conditions). 

6.2.2.5 Speaker-independent task-independent continuous recognition system 

Experiments conducted by the DERA Speech Research Unit (SRU) investigated the effect of 
speech under stress on an automatic speech recognition system which had specifically not been 
optimized for either the speakers or the vocabulary under test. A recognition system was con- 
figured which was 'speaker-independent'—that is, where the speech models had been generated 
from speakers outside the SUSAS data set—and task-independent—that is, where the word 
models had been constructed from general un-stressed speech material. The speech models used 
were a set of well-trained context-dependent sub-word HMM models which had previously been 
optimized by the SRU for large vocabulary continuous speech recognition over the telephone. 

The original speech training data had been derived from full-bandwidth Wall Street Journal 
(WSJ-SI284) recordings. The resulting models had then been adapted to telephone bandwidth 
speech. These models had the same recording bandwidth as SUSAS but, because of their 
telephone characteristics, the SUSAS input data needed to be 'normalized' prior to recognition. 
Normalization was applied by first performing unconstrained phone recognition (that is, phones 
were recognized with no restriction on their sequential ordering), and then by using 'spectral 
shape adjustment' (SSA) to adjust the speech vectors accordingly. 

Since the SUSAS data consists of words spoken in isolation, the SRU continuous recognition 
system was configured to employ a single-word syntax. This limited the opportunity for word 
insertion errors, and allowed the results to be more directly comparable with those arising from 
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SUSAS BASELINE SPEAKER-DEPENDENT ISOLATED WORD RECOGNITION 
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Figure 6.9: Recognition performance of neutral and SUSAS stressed type speech in noise free 
and noisy conditions. (Additive white Gaussian noise, SNR = +30 dB) 

experiments performed using isolated word recognition. The vocabulary was defined to be the 
35-words in the SUSAS data set, and each word was allocated a single phonetic pronunciation. 

The results for the eleven 'simulated' stress test conditions are illustrated in Figure 6.10. 
Overall, the average word recognition rate was around 77%. The worst condition was 'angry' 
with a word recognition rate of around 54 %. The 'neutral' condition gave rise to a word 
recognition rate of 86 %, but the best condition was 'Cond50' at 87 % of words correct. 

The results for the four 'actual' stress test conditions are illustrated in Figure 6.11. In 
this case the overall average word recognition rate was 41 %—that is, about half that achieved 
under the simulated stress conditions. However, the results were distinctly bi-modal with the 
'SM' condition being the worst at 30 % word recognition rate together with the 'FF' condition 
giving rise to 44% of word correct. The other two conditions, 'Medst' and 'Hist' both had 
word recognition rates around 81 %, which is comparable with several of the 'simulated' stress 
conditions. 

These results indicate that, whilst useful performance (that is, around 90% word recog- 
nition rate) is just achievable from an unadapted state-of-the-art task-independent speaker- 
independent system in benign conditions, performance deteriorates badly for most stressed con- 
ditions. 

6.2.2.6    Large vocabulary continuous speech recognition system 

The DERA SRU were able to use the recognition framework outlined in the previous section 
to perform large vocabulary recognition on the SUSAS data. The same model set was used 
but, in this case, the vocabulary was not limited to the 35 words in the SUSAS data, but 
expanded to include the 20 000 most frequent words in the Wall Street Journal Training corpus 
(the 20 000 words being themselves derived from a set of 200 000 words). SSA was again used to 
compensate for the different spectral characteristics of the WSJ and SUSAS data sets. Similarly, 
a single-word syntax was used to limit insertion errors. 

The results for the eleven 'simulated' stress test conditions are illustrated in Figure 6.10. 
Overall the average word recognition rate was around 29 %—that is, about one third of the 
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Figure 6.10: Recognition performance of two speaker-independent continuous speech recognition 
systems on the SUSAS simulated stress database. 
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Figure 6.11: Recognition performance of two speaker-independent continuous speech recognition 
systems on the SUSAS actual stress database. (Note: the word accuracy rate for the 20k 
vocabulary system on the FF data was 0%.) 
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recognition rate for the 35-word system. The worst condition was again 'angry' with a word 
recognition rate of around 14 %. The 'neutral' condition gave rise to a word recognition rate of 
40%, but the best condition was again 'Cond50' at 42% of words correct. 

The results for the four 'actual' stress test conditions are illustrated in Figure 6.11. In this 
case the overall average word recognition rate was 16 %. As in the previous section, the results 
were bi-modal with the 'SM' condition being the worst at 2 % word recognition rate and the 
'FF' condition with 0% of words correct. The other two conditions, 'Medst' and 'Hist' both 
had word recognition rates around 30 %, which is comparable with the average 'simulated' stress 
conditions. 

Clearly, these results indicate that an unadapted state-of-the-art LVCSR system is unable 
to achieve any degree of useful performance in any of the stressed speech conditions. Thus it 
is concluded that system optimization/adaptation (either to the speaker, to the task or to the 
stress conditions) is of paramount importance to achieving a usable level of performance. 

6.2.2.7 COTS large vocabulary continuous speech recognition system 

An evaluation was performed by RSPL on the effects of stress on a commercial large-vocabulary 
continuous speech recognition system. The purpose here is to demonstrate that the effects 
of stress have a serious impact by degrading recognition performance for commercial systems. 
Speech data from the SUSAS corpus was used for the evaluation. Since SUSAS data represents 
mostly isolated words, a series of carrier phrases was used to submit stressed speech tokens to 
the commercial system. All recognition results reflect only the performance of the system on 
the stressed speech, since the carrier phrases were held constant across the stressed speaking 
conditions. 

6.2.2.8 RSPL ViaVoice Gold Experimental Set-up 

IBM's VIA-VOICE GOLD is a commercial large vocabulary continuous speech recognition 
(LVCSR) system. It has a 64,000 word vocabulary which can be extented to 250,000. The 
performance of this system can be improved by enrolling the user with an initial training ses- 
sion where the HMM recognition models are adapted to the speaker, however, this was not 
carried out since the focus of this experiment was on the performance of the use of the system 
as a commercial off-the-shelf recognizer, without attempting to improve it's performance by any 
means. This system is believed to have a bigram or a trigram language model which renders 
the recognition of isolated words difficult if not impossible. In order to by-pass this problem 
SUSAS words were presented to the system within grammatically correct sentence structures 
where each sentence was composed of a leading carrier phrase followed by the SUSAS words. 
The SUSAS vocabulary set consists of 35 words, whereas only 16 different carrier phrases were 
shared among the input word-list. The list of words as well as carrier phrases are summarized 
in Table 6.2. 

Each SUSAS word was concatenated with the respective carrier phrase and recorded onto 
a DAT tape player/recorder. In order to isolate each sentence from the following example a 
command phrase, period new line, was appended to each carrier phrase. This ensures that each 
sentence was completed with a period and the cursor was advanced to the next line. The tape 
was played to the IBM recognizer through the line-in input of the computer. The output of 
the recognizer, the recognized text stream, was printed into a text file. This text file was then 
processed to evaluate the system performance. A block diagram describing the experimental 
set-up is shown in Figure 6.12. 
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IBM VIAVOICE EVALUATION 

aa s 

CARRIER PHRASE SUSAS WORD 

WHAT DID YOU BREAK 

WHAT IS YOUR DEGREE 

/ WAS BORN IN 1950 

WHO DID YOU HELP 

NEUTRAL, 
ANGRY, 
LOUD, 
LOMBARD 

IBM VIAVOICE 
LVCSR 

Figure 6.12: Block diagram of the IBM Via-Voice Gold large-vocabulary continuous speech 
recognition evaluation using the SUSAS speech under stress database. Isolated speech under 
stress tokens were automatically inserted into carrier phrases for LVCSR testing. 

Table 6.2: SUSAS Words and Carrier Phrases 

What did you break What is nav 
What did you change I said no 
What is your degree My phone number is 684 354 oh 
What is your destination What did you put on 
I will go east When did you go out 
My phone number is 684 354 eight What is your point 
I was born in 19 eighty My phone number is 684 354 six 
Where did you enter I will go south 
I was born in 19 fifty Where did you stand 
What did you fix How did you steer 
Why does water freeze How did you strafe 
What did you gain I was born in 19 ten 
Where did you go I was born in 19 thirty 
I said hello My phone number is 684 354 three 
Who did you help His car is white 
I plotted a histogram His car is wide 
The water was hot My phone number is 684 354 zero 
How did you mark 
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6.2.2.9    RSPL ViaVoice Gold Evaluations 

The following three SUSAS simulated stress styles, Angry, Loud, Lombard, and the SUSAS 
Actual stressed speech domain, in addition to Neutral speech, were included in the analysis. 
Two methods were used to assess performance of the system. First, errors in the recognized 
carrier phrase were ignored and only correctly recognized SUSAS words were counted. Homonym 
type outputs were also counted as errors (i.e., histogram and his stick gram). The results, based 
on this type of evaluation method, are shown in Figure 6.13. The second evaluation method 
was based on the standard LVCSR NIST scoring method at the word and sentence levels. The 
results for the second method are given in Figure 6.14. 

For the first evaluation method, the neutral spoken SUSAS words achieved the highest 
recognition rates (38.6%), followed by Lombard (32.7%), loud (26.2%), angry (23.2%), and 
actual (0.0%). After considering the selected carrier phrases and the SUSAS words presented, 
the overall results for each of the stress conditions were revised. One example of carrier phrase 
impacting the recognition evaluation involved numerals (e.g., "The telephone number ... three 
eight four oh" is recognized as for alt). On the other hand, it is believed that some of the 
SUSAS words are not in the dictionary (i.e. nav, strafe, histogram (or their probability is so low 
that when they are recognized, the language model drops the word and selects an alternative 
word with higher overall probability). The revised results were obtained by excluding these 
factors (revised overall column in Figure 6.13). While these factors do increase the recognition 
rate, the order of results across the four stress conditions remain the same. 

In the NIST evaluations, two set of results are reported, one corresponding to sentence level, 
the other to word level accuracy. While there are a total of 630 SUSAS words for Simulated 
Stress Conditions (Neutral, Angry, Loud, Lombard), there are 484 words for Actual stress 
conditions. The number of words in the entire sentences (including carrier phrase) is 3276 for 
the Simulated stress set, and 2486 for the actual stress sentences. The rank order of the stress 
conditions follows the same pattern as the first evaluation method. The reason for the similar 
word accuracy results was due to the ratio of SUSAS words in the test set to the overall number 
of words in the sentences (19.2 %). 

Neutral Angry . Loud Lombard 

I Overall    D Revised Overall 

Figure 6.13: Recognition Results for IBM ViaVoice Gold Using SUSAS Database. 

It can be clearly seen that in a commercial LVCSR framework, speech under stress impacts 
overall recognition performance beyond what is expected for neutral speech. The reader should 
note that there are a number of reasons for obtaining low IBM ViaVoice recognition rates for 
Neutral speech. Some of these include: (i) not having an initial enrollment training session to 
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Figure 6.14: Recognition Results for IBM ViaVoice Gold Using SUSAS Database. (Note: the 
sentence correct rate on the actual data was 0%.) 

adapt the models to the speaker1, (ii) the effects of inserting SUSAS words within a carrier 
sentence, and (iii) the selection of the specific carrier phrases. What is important to note is the 
relative difference of the recognition rate for the Neutral reference speech and the recognition 
rates for the different stressed speaking conditions reflecting the impact of stress on recognition 
performance. 

6.2.2.10    Discussion 

Figure 6.15 shows a summary of all the experiments carried out using the SUSAS database. It 
can be seen from the figure that all systems had more trouble recognizing certain stressed speech 
conditions than others. For example, angry speech had the worst recognition rate for all systems 
tested in these experiments. If the speech condition was considered in the development of the 
system then there is not too much degradation in the recognition rate. For example, recognition 
systems handle differences in the rate that the speech is spoken and most systems did not see 
too much degradation when comparing the neutral to the fast conditions, although the systems 
did not do as well with the slow condition. The system evaluations using speech under stress 
from the actual domains of SUSAS (e.g., roller-coaster rides, military helicopter pilot speech) 
showed a more significant reduction in recognition performance (i.e., a reduction from 96% to 
27%). 

The results show that systems with a vocabulary limited to the words in the database 
performed better than those with a large vocabulary. Comparing the DERA 35 word vocabulary 
and the RSPL and GTH isolated word systems with the DERA 20K vocabulary and the ViaVoice 
system results we see that the small vocabulary systems have better recognition rates under all 
speaking conditions. It is interesting to note that while the baseline speaker dependent systems 
used by RSPL and GTH gave slightly better results with neutral speech when compared to 
the DERA LVCSR, they performed worse than the LVCSR system on some of the speaking 
conditions. This is probably due to the difference in available training data between the speaker 
dependent systems (using data from SUSAS), versus LVCSR (which was already trained using 
several orders of magnitude more data from a wider speaker population). The evaluations 
performed by RSPL on the Viavoice LVCSR system required that artifical conditions be imposed 
by inserting the words in a carrier phrase. It is also possible that continuous speech is a better 

xThis was not performed, because the carrier phrases were produced by a speaker outside of the SUSAS speaker 
set, so adapting the recognizer could not be achieved for both the carrier phrase test speaker and SUSAS test 
speaker at the same time 
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Figure 6.15: Word Recognition Rate for All tests Conducted on the SUSAS Database, 
that some experiments were run on subsets of the database. 

Note 

representation of the speech samples than is expected by the GTH isolated recognition system. It 
is very important, however, to keep in mind that a direct comparison of the recognition systems 
in Figure 6.15 is done only for reference, since the LVCSR systems were previously trained with 
significant amounts of data not made available to the speaker-dependent systems. 

6.2.3    Stress Compensation Techniques 

6.2.3.1    Background of Recent Methods for Stressed Speech Recognition 

Approaches for robust recognition can be summarized under three areas: (i) better training 
methods, (ii) improved front-end processing, and (iii) improved back-end processing or robust 
recognition measures. These approaches have been used to improve recognition of speech in noisy 
and Lombard effect environments, as well as workload task stress or speaker stress conditions. 

To formulate automatic speech recognition algorithms which are more effective in chang- 
ing environmental conditions, it is important to understand the acoustic-phonetic differences 
between normal speech and speech produced under stressed conditions (some of these issues 
were considered in Chapter 4). Several studies have shown distinctive differences in pho- 
netic features between normal and Lombard speech [53, 54, 84, 146], and speech spoken in 
noise [51]. Further studies have focused on variation in speech production brought on by 
task stress or emotion [14, 54, 57, 68, 71]. The primary purpose of these studies has been 
to improve the performance of recognition algorithms in Lombard effect [84, 74, 148], stressed 
speaking styles [96, 123, 30], noisy Lombard effect [54, 66, 58], and noisy stressful speaking 
conditions [131, 54, 71, 57]. 

Approaches based on improved training methods include multi-style training [96, 123], sim- 
ulated stress token generation [14, 64], and others such as training/testing in noise and robust 
distance measure approaches [41, 83]. Improved training methods can increase recognition per- 
formance, however results degrade as test conditions drift from the original training data. In 
fact, even if background noise could be addressed in this manner, poor recognition performance 
will persist due to changing speech characteristics caused by stress and Lombard effect. Fur- 
ther discussion of alternative methods for stressed speech recognition which include front-end 
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processing/speech feature-estimation can be found in the following references [60, 85]. 

6.2.3.2 Stress Compensation Methods for Speech Recognition 

Since noise, stress, and Lombard effect have been shown to disrupt speech recognition, re- 
searchers at RSPL have considered alternative speech modeling/feature processing methods 
based on a Source Generator Framework. The notion of Source generator representation was 
considered in a study by Hansen, 1994 [58], and later employed in other robust recognition 
algorithms [57, 14, 24, 68, 64]. 

The concept of a source generator framework is as follows. For the production of a word, 
it is assumed that a sequence of coordinated movements of the vocal system articulators and 
excitation controls are needed (represented in the multi-dimensional speech production space). 
The coordinated sequence of excitation and articulatory controls are modeled as a smooth path 
in this speech production space. It is hypothesized that vocal system controls (i.e., articulators, 
etc.) will be perturbed under stressed speaking conditions resulting in deviations from this 
"neutral" production space path. From previous studies, it is known that the presence of stress 
will cause changes in phoneme production with respect to glottal source factors, pitch, intensity, 
duration, and spectral shape [54, 70]. The framework suggests that the perturbation of these 
vocal system controls can be modeled by a change in the speech source generator 7j in some 
F-dimensional feature space. Each source generator will occupy some volume in the multi- 
dimensional feature space, and that deviations in speech production under stress will result in 
a feature sequence which deviates from the mean "neutral" path. A more complete discussion 
can be found in [60]. 

Three front-end processing approaches are proposed to compensate for the changes due to 
stress for speech recognition. The formulated methods are based on speech parameter estimation 
schemes which are less sensitive to varying levels and types of background noise, as well as 
accurate modeling of the human speech production under stress to improve recognition in adverse 
environments. These methods employ robust speech feature estimation algorithms, as well as 
stress equalization techniques based on source generator theory. A comparison of how the 
stress equalization methods are applied to the extracted speech feature sequence is shown in 
Figure 6.16. 

6.2.3.3 Combined Stress Equalization &: Noise Suppression 

The first front-end approach employs feature enhancement and production equalization algo- 
rithms under the source generator framework [60, 72]. The intent here, was to demonstrate that 
a direct stress equalization can reduce the effects of stress for robust recognition in diverse envi- 
ronmental conditions. Therefore, though the choice of source generator type is arbitrary, hand 
labeled phoneme partitions were employed (see Figure 6.16a). The feature enhancement algo- 
rithm was formulated based on a class of constrained iterative techniques previously derived for 
automatic enhancement of speech in varying background noise environments. The enhancement 
technique employs speech specific inter and intra-frame spectral constraints applied to line- 
spectral-pair parameters and autocorrelation estimates [69]. Next, a multi-dimensional stress 
equalization approach was formulated which produces recognition features which were suggested 
to be less sensitive to varying factors caused by stress. The stressed based equalization domain 
was restricted to be the spectral domain in an eight-dimensional feature space (k = d\ ■ ■ ■ d$). 

VTr r„, 1 . „neutral ._.   „stressed (c o\ 
*SPECTRAL(fc))Croi • %• ^ S I6-3) 

c € (NEUTRAL, SLOW, FAST, SOFT, LOUD, ANGRY, CLEAR, QUESTION, C50 TASK, C70 TASK, LOMBARD) 

The spectral dimensions SPECTRALfc were defined as the first four formant locations and band- 
widths (F,B). Stress equalization of the speech feature set was achieved using a unique trans- 
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Figure 6.16: A comparison of how stress equalization is applied to extracted speech features, 
(a.) Stress equalization of formant location and bandwidth across a source generator phoneme 
sequence, (b.) Stress equalization of Mel-cepstral features using fixed compensation terms across 
a V/T/UV source generator sequence, (c.) Stress equalization of Mel-cepstral features using a 
word dependent feature enhancing artificial neural network (FEANN) across a V/T/UV source 
generator sequence, (d.) Stress equalization of Mel-cepstral features using word dependent 
Maximum-Likelihood compensation across a V/T/UV source generator sequence. 



71 

formation term £4SPECTRAL(*[A, diilj]), which was estimated for each feature dimension di, 
stressed condition c = A, and source generator jj as 

*JV. 

A«SPECTRAL(*[A,(ii,7j]) = 
Ni EtnLtl AAtn) 

(6.4) 

Next, using a hidden Markov model recognition framework, baseline scores were obtained 
(Figure 6.17) for SUSAS speech under neutral, stressful, noisy neutral, and ten noisy stressful 
speaking conditions (e.g., loud, angry, computer task conditions, Lombard effect, etc.). Com- 
bined stress equalization with constrained feature enhancement was shown to reduce the average 
word error rate for recognition of noisy stressful speech by —38.7% (mean recognition for noisy 
stressful speech increased from 30.3% to 57.3%). Significant improvement occurred for noisy 
speech under loud, angry, and Lombard effect stress conditions. The tandem recognition algo- 
rithm was also shown to be more consistent across noisy stressful conditions as measured by a 
decrease in the standard deviation of recognition rate (from 9.1 to 5.7). Further details can be 
found in previous studies (Hansen, et al, 1988,89,95 [54, 71, 72]). The results suggest that the 
combination of a flexible source generator framework to address stressed speaking conditions, 
and a feature enhancement algorithm which adapts based on speech specific constraints, can be 
effective in reducing the consequences of stress and noise for robust automatic recognition. 

SUSAS SPEECH RECOGNITION WITH STRESS EQUALIZATION & SPEECH ENHANCEMENT 

100 

90 

S? 80 

di 70 

& 60 

g 50 

•d    40 

I    20 
10 

0 Hi 
0) 

2> 
O) 

5 
o 

Elfoisy, Stressful     «with Auto-LSP   Enhancement   Dplus Stress aticn 

Figure 6.17: Recognition performance of noisy stressful speech with combined generator en- 
hancement and stress equalization (Auto is with Auto:I,LSP:T front-end speech enhancement 
and Equalization includes (F),(B),(F&B) (formant location/bandwidth) Stress Equalization. 
Note: Additive white Gaussian noise, +30 dB SNR 

6.2.3.4    Fixed ML and FEANN stress equalization 

While useful, the maximum likelihood (ML) formant location and bandwidth based stress equal- 
ization method requires phoneme level sequence information. Front-end modifications have also 
been proposed which normalize the spectral characteristics of stress speech so that stress speech 
parameters resemble neutral speech [30, 66, 58]. In the compensation method by Chen [30], the 
impact of stress was assumed to remain constant across an entire word interval, resulting in a 
fixed whole word compensation stress vector. From Chapter 4, it was shown that the impact of 
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stress was not uniform over an entire sequence of phonemes, so compensation at the sub-word 
level should be more effective. 

The next set of front-end stress equalization methods, developed by RSPL, removes the re- 
quirement of phoneme level sequence information. The second approach is based on a maximum 
likelihood stress equalization method which normalizes input speech feature sequences using a 
set of fixed equalization terms (see Figure 6.16b) [66]. This method assumes that input speech 
is parsed into a sequence of voiced/transitional/unvoiced (V/T/UV) labeled sections [56], and 
that three different maximum likelihood stress equalization vectors for voiced, transitional, and 
unvoiced speech sections are employed to compensate for the effects of stress. Results using 
SUSAS speech data show that stress compensation using three fixed V/T/UV stress equaliza- 
tion terms improves Lombard speech recognition performance by +10 %. This method was later 
adapted for real-time implementation and evaluated for ten noisy stressful conditions with a 
+17% improvement in recognition [68, 24]. 

Another approach using a feature enhancing artificial neural network (FEANN) was also 
developed by RSPL which reduces stress effects during parameterization [31, 60]. Figure 6.16c 
illustrates the basic approach. Here, a unique FEANN was formed for each keyword model 
and evaluated using a semi-continuous HMM recognizer followed by a likelihood ratio test for 
keyword detection. 

This system was evaluated for the task of keyword spotting of speech under stress using data 
from the SUSAS database. Results using receiver-operating-characteristic (ROC) curves show 
that the feature enhancing neural network was able to enhance Mel-frequency cepstral coeffi- 
cients (MFCC) under stress and reduce the probability of false acceptances of non-keywords by 
adapting its weights and input layer width based on extracted speech characteristics. Keyword 
recognition evaluations show that FEANN reduced the number of false acceptances for neutral 
and Lombard stress by more than one third. 

6.2.3.5    MCE-ACC Stress Equalization & Noise Suppression 

In this section, robust speech recognition in stress and noise is accomplished via morphologi- 
cal constrained feature enhancement (MCE) and stressed source compensation which is unique 
for each source generator across a stressed speaking class (see Figure 6.16d)[58] The algorithm 
developed by RSPL uses a noise adaptive (V/T/UV) boundary detector [56] to obtained a se- 
quence of source generator classes, which is used to direct MCE parameter enhancement and 
stress compensation. This allows the parameter enhancement and stress compensation schemes 
to adapt to changing speech generator types. The algorithm is entitled Morphological Con- 
strained feature Enhancement with Adaptive mel-Cepstral Compensation based hidden Markov 
model recognition {MCE-ACC-EMM). The source generator sequence of MCE estimated spec- 
tral responses S*yb.,a,ß,T>g(wi), are then submitted for stress equalization. Stressed speaking 
conditions are addressed by the choice of a modified source generator for each phoneme-like 
section. The unknown stress dependent model parameter C^.^.^(k) is estimated by maximizing 

the log-likelihood function, resulting in the ML estimate. A compensation model vector Cy.a,) 
is therefore estimated for each detected source generator section during HMM training, and 
applied during recognition evaluation. 

The algorithm was evaluated using SUSAS speech data for noise free and nine noisy Lombard 
effect speech conditions which include additive white Gaussian, slowly varying computer fan, and 
aircraft cockpit noise [58] (see Figure 6.18). System performance was compared to a traditional 
VQ-HMM recognizer with no embellishments. Employing individual recognition scores for all 27 
noisy Lombard effect stress conditions, the final mean recognition rate increased from 36.7 % for 
VQ-HMM to 74.7 % for MCE-ACC (+38 % improvement). The MCE-ACC was also shown to be 
more consistent, as demonstrated by a decrease in standard deviation of recognition from 21.1 
to 11.9, and a reduction in confusable word-pairs. These results demonstrate the consistency of 
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MCE-ACC recognition improvement for noisy Lombard effect speaking conditions. 

NOISY SPEECH RECOGNITION WITH STRESS EQUALIZATION & FEATURE ENHANCEMENT 

Nöise-Free WGN Aircraft PS-2 Fan Overall N.L. 

O Neutral   &   VQ-HMM       ■ Lombard   &   VQ-HMM        P Lombard    &   MCE-ACC-HMM 

Noise-Free WGN Aircraft PS-2 Fan Overall N.L. 

H Neutral   &   VQ-HMM       ■ Lombard   &   VQ-HMM        D Lombard    &   MCE-ACC-HMM 

Figure 6.18: Overall recognition results for the VQ-HMM recognizer and the new robust recog- 
nizer MCE-ACC-HMM for three types of noise (white Gaussian noise, Lockheed C130 aircraft 
cockpit noise, IBM PS-2 cooling fan noise). Noise-free and averages over all noisy conditions 
(10, 20, 30 dB SNR) are shown. The lower plot shows the standard deviation in recognition for 
each test condition. 

6.2.3.6    Stressed Speech Training Methods: Stress Token Generation 

A number of studies have been suggested for improving recognition of speech under stress [14, 
15, 30, 58, 66, 71, 84, 96], Thus far, the first three approaches to front-end stress compensation 
outlined in Figure 6.16 have been discussed. While front-end stress equalization can be effective 
for reducing speech feature variation prior to using a neutral speech trained recognizer, other 
methods based on system training have been suggested to address stress. Since the performance 
of a speech recognition system degrades if the recognizer is not trained and tested under similar 
speaking conditions, an approach called multi-style training by Lippmann et al. [96] has been 
suggested for improving speaker-dependent recognition of stressed speech. This method required 
speakers to produce speech under simulated stressed speaking conditions and to employ these 
multi-styles within the training procedure. In addition to significant improvements in stressed 
speech recognition, this study showed that multi-style training also improved recognition perfor- 
mance under normal conditions. However, a later study by Womack and Hansen [162] showed 
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that multi-style training actually degrades performance if employed in a limited but speaker- 
independent application. The cause of this was believed to be due to the issue that speakers 
have significantly different vocal tract structures. For an individual speaker, multi-style training 
simply captures the dependent variations a speaker exhibits when asked to speak under the range 
of simulated stress styles. However, all speakers may not vary the same articulatory structure 
under stress, and the deviation from the neutral condition for one speaker will not necessarily 
coincide with the deviation exhibited from neutral for a new speaker. 

An alternative technique by Bou-Ghazale and Hansen which also employed the source gen- 
erator framework turns the stress compensation around by generating simulated stressed tokens 
which were used for training a stressed speech recognizer [15, 64]. Generating simulated stress 
data in the training phase rather than compensating for the effect of stress in the recognition 
phase resulted in a computationally faster recognition algorithm. In the latter approach, both 
duration and spectral content (i.e., mel-cepstral parameters) were altered to statistically re- 
semble a stressed speech token. Using SUSAS stressed speech data, this method was shown to 
improve isolated word recognition of Lombard effect speech by 24 % when compared to a neutral 
trained speech recognizer [64, 14]. This approach therefore extracts a model for how speakers 
vary speech recognition features from neutral to stress, and applies this model to neutral input 
training data in order to modify the recognizer word models to address stress. These pertubra- 
tion word models could therefore also be applied to unseen speakers, since they only reflect 
the deviation from neutral speaking conditions. A more extensive modeling approach based on 
HMMs was later proposed for stress modification of neutral speech for synthesis and recogni- 
tion [18]). This approach will be considered later in Section 6.4 on stressed speech synthesis and 
coding. 

6.2.3.7    Direct Robust Features for Stressed Speech Recognition 

The two broad approaches considered in the previous sections for improved stressed speech 
recognition have focused on (i) front-end stress equalization, where a codebook of stress com- 
pensation terms are first estimated and applied to the input feature sequence in some prescribed 
manner, and (ii) alternative training methods either based on collecting speech data in simulated 
stress conditions, or formulating models to perturb neutral training tokens to resemble stressed 
tokens. 

The approach taken in this section, is to suggest a direct speech feature set which is reliable 
for speech recognition in both neutral and stressed conditions. A study by Bou-Ghazale and 
Hansen [18] at RSPL evaluated the effectiveness of traditional features in recognition of speech 
under stress and formulated new features which were shown to improve stressed speech recog- 
nition. The focus was on formulating robust features which are less dependent on the speaking 
conditions rather than applying compensation or adaptation techniques. The SUSAS stressed 
speaking styles considered were angry and loud, Lombard effect speech, and noisy actual (roller- 
coaster ride) stressed speech. In addition, the study also investigated the immunity of LP and 
FFT power spectrum to the presence of stress. The results showed that, unlike FFT's immunity 
to noise, the LP power spectrum was more immune than FFT to stress as well as to a combi- 
nation of a noisy and stressful environment. Finally, the effect of various parameter processing 
such as fixed versus variable preemphasis, liftering, and fixed versus cepstral mean normaliza- 
tion were also studied. Two alternative frequency partitioning methods (M-MFCC, ExpoLog) 
were proposed and compared with traditional MFCC features for stressed speech recognition. 
The alternate filterbank frequency partitions were found to be more effective for recognition of 
speech under both simulated and actual stressed conditions. Here, some of the findings from 
that evaluation are briefly summarized. 

Recognizer and Database: The speech data employed was a subset of the SUSAS database. 
All recognition evaluations were speaker-independent, and considered only male speakers. A 30- 
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word HMM-based recognizer was formulated using a variable-state, left-to-right model, with 2 
continuous mixtures per state. The HMM models were trained with the neutral speech of eight 
speakers while a ninth speaker was left for open testing. A total of 10 tokens per speaker were 
employed for training each neutral HMM word model resulting in 80 training tokens per word. 
The training and testing were done in a round robin scheme to allow all speakers and tokens to 
be tested in an open evaluation. In evaluating each of the neutral trained HMM models, a total 
of 2160 tokens were tested from the four speaking styles. 

The last evaluation employs actual stressed speech from the SUSAS database. This data 
consisted of speech produced during the completion of two types of subject motion-fear tasks. 
The speakers produced speech while participating in two amusement park rides (e.g., a tradi- 
tional roller-coaster ride and a free-fall ride consisting of a 130 ft vertical drop machine). These 
two rides were chosen in an attempt to simulate the sudden change in altitude or direction which 
could be experienced in a military aircraft cockpit under emergency conditions. 

Performance of Traditional and Noise-Robust Features in Stress: In this section, the 
effectiveness of previously proposed noise robust features were investigated in the recognition 
of stressed speech. The first set of features evaluated in this study were the one-sided auto- 
correlation linear prediction coefficients (OSALPC) [78]. The OSALPC technique is based on 
the application of the windowed autocorrelation method of linear prediction to the one-sided 
autocorrelation sequence as discussed in [77, 78]. OSALPC has been shown to outperform linear 
prediction (LPC) as well as two other noise robust methods. The second set of features evalu- 
ated were the cepstral-based OSALPC, referred to as OSALPCC, which were compared to the 
performance of traditional cepstral-based LPC and mel-frequency scale coefficients (MFCC). 
Therefore, the recognition performance of the following set of features was compared (i) linear 
prediction coefficients (LPC), (ii) linear prediction cepstral coefficients (LPCC), (iii) one-sided 
autocorrelation linear prediction coefficients (OSALPC), (iv) OSALPC-based cepstral coeffi- 
cients (OSALPCC), and (vi) mel-scale filter bank cepstral parameters (MFCC). 

Next, the performance of these features was considered for recognition of speech under 
stress. Two sets of evaluations are presented. The first compares the performance of HMM 
models trained with static features with no parameter processing while the second compares the 
performance of models trained with static and dynamic features in addition to parameter pro- 
cessing such as cepstral liftering and cepstral mean normalization (CMN). In both evaluations, 
the models were speaker-independent neutral trained and were tested with SUSAS speech from 
four speaking conditions : neutral, angry, loud, and Lombard effect. 

The results, plotted in Figures 6.19 (static) and 6.20 (static, and delta with parameter 
processing), show that for both evaluations the one-sided autocorrelation linear prediction co- 
efficients (OSALPC) performed better than traditional LPC for all three stress conditions. OS- 
ALPC, however, does not achieve the highest performance among the evaluated features. In 
fact, the three remaining cepstral features, LPCC, OSALPCC and MFCC, achieved higher 
recognition rates than OSALPC. In addition, the results show that cepstral based OSALPC 
outperformed OSALPC by 12.4 % across the four speaking conditions for static features, and 
by 21.7 % for static and dynamic feature trained models. 

MFCC and LPCC parameters achieved the highest recognition rates in both static and 
combined (static, dynamic, with parameter processing) evaluations. Their performance was 
very similar across all four speaking conditions as shown in Figures 6.19 and 6.20. Both features 
achieve a higher level of recognition performance than OSALPCC across all four speaking styles 
in both scenarios. In summary, these results show that while noise-robust features such as 
OSALPC may be robust in noise, they are not necessarily robust to the presence of speaker 
stress. These results also suggest that features derived from cepstral analysis clearly outperform 
features derived from a linear predictive model. It is recommended that due to the variability 
across the three stress conditions, new feature sets are needed for improved stressed speech 
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STRESSED SPEECH RECOGNITION WITH DIFFERENT LP DERIVED STATIC FEATURES 

ILPC  EOSALPC 0LPCC DOSALPCC 

Figure 6.19: SUSAS Recognition performance of linear prediction power spectrum based static 
features in the presence of stress.   The graph shows the recognition rates of neutral trained 
models tested with four speaking conditions for 5 different sets of features:  LPC, OSALPC 
LPCC, OSALPCC, and MFCC. 

recognition. 

MFCC vs. Modified Mel and Expo-Log Frequency Scales: Using a Mel-scale filter 
bank analysis, speech recognition across individual sub-bands were conducted across four stress 
conditions. The results showed that Mel-frequency cepstral coefficients (MFCC) were not always 
effective in recognition of stressed speech. It became evident that a new frequency scale would be 
needed that would emphasize mid-frequencies while de-emphasizing lower and higher frequencies. 
To achieve this, two new frequency partitions were proposed: one referred to as the modified mel- 
scale (M-MFCC), and the second, a combination of an exponential and a logarithmic function, 
referred to as the ExpoLog scale. Both frequency scales along with the traditional mel-scale are 
given below: 

mel-scale 

Modified mel-scale 

ExpoLog 

=   2595 x log(l + X) 

=   3070 x logfl + -L-) 6V       1000' 
_       f   700 X (1U3M8  - 1) 

1 2595 x log(l + 4) 
0 < / < 2000F* 
2000 < / < 4000Hz 

(6.5) 

(6.6) 

(6.7) 

Here, the ExpoLog mapping filter bank are highly concentrated at mid frequencies and sparsely 
distributed at frequencies below 750 Hz and above 2000 Hz. Using SUSAS speech, results 
from an evaluation of the three frequency warping scales for cepstral parameters were obtained 
(MFCC, M-MFCC, ExpoLog). Each scaling method was evaluated with a total of 2160 open test 
tokens. When static features were employed for recognition, M-MFCC outperformed traditional 
MFCC by 4.5% for angry, 1.9% for loud, and 5.4% for Lombard effect. The performance of 
ExpoLog static features also outperformed the mel-scale, for all stress styles, with an average 
performance improvement of 4.8 %. Note that for angry and loud speech recognition, ExpoLog 
exceeded MFCC by as much as 7.6 % and 7.8 %. These results clearly showed that with a slight 
modification in the manner in which cepstral parameters were obtained, recognition performance 
in stressed speech conditions was improved. 



77 

SPEECH RECOGNITION WITH DIFFERENT LP DERIVED STATIC & DYNAMIC FEATURES 

21 

Neutral Angry Loud Lombard Overall 

■ LPC + delta 

HLFQC + delta + CMN + Liftering 

DMFGC + delta + CMN + Liftering 

0OSALPC + delta 

DOSALPCC + delta + CMN + Liftering 

Figure 6.20: SUSAS Recognition performance of linear prediction power spectrum based static 
and dynamic features in the presence of stress. The graph shows the recognition rates of neu- 
tral trained models tested with four speaking conditions for 5 different sets of features: LPC, 

OSALPC, LPCC, OSALPCC, and MFCC. 

Stressed Speech Recognition using FFT vs. Linear Prediction Power Spectrum:    In 
a recent survey by Picone [127] of contemporary recognition systems, it was established that 
FFT-based spectral parameters are preferred to LP-based parameters since they are believed to 
be more immune to the presence of noise. Only a third of all the surveyed systems employed 
LP-derived parameters, the remainder used FFT based processing. For this reason, a number 
of systems rely on the Fourier transform-based filter bank analysis. In order to evaluate the 
FFT's immunity to stress, two recognition evaluations were conducted using parameters derived 
from FFT and LP power spectral estimation methods. An additional recognition evaluation 
employing actual stressed speech produced in a noisy environment was performed in order to 
determine which power spectral estimation method was more robust to the presence of both 
noise and stress. The noise in this case represented time varying mechanical and wind noise 
obtained from speech recorded during amusement park roller coaster rides. 

The results showed that, contrary to their noise immunity, FFT-based spectral parameters 
were not equally robust to the presence of stress. A comparison of the performance of LP 
and FFT power spectrum based features is shown in Figure 6.21. For neutral training and 
testing, FFT based parameters performed slightly better than cepstral parameters derived from 
an LP spectrum. However, the LP power spectrum performed significantly better than the FFT 
power spectrum when neutral trained models were tested with angry, loud, and Lombard effect 
speech. Modified MFCC (M-MFCC) and ExpoLog based features consistently outperformed 
MFCC parameters using both FFT and LP based spectra, but LP derived ExpoLog produced 
the highest recognition rates across stressed styles using static features. Next, extending the 
static features to include time derivatives and feature processing, these combined parameters 
were shown to greatly enhance the performance of stressed speech recognition [74]. Having 
established the ExpoLog frequency scale as being superior to mel and modified-mel scales, 
the performance of ExpoLog static and dynamic features showed that the LP based features 
outperform FFT by an overall 3.9 %. For angry speech recognition, the difference in recognition 

was as high as 9.6 %. 
A second evaluation was performed using actual noisy stressful speech from the SUSAS 
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RECOGNITION PERFORMANCE USING NEUTRAL TRAINED MODELS EMPLOYING 
STATIC MFCC, M-MFCC, AND EXPOLOG FEATURES DERIVED 

FROM FFT & LP POWER SPECTRA 

Neutral Angry- Loud Lombard Average 

IMFCC  (FFT)   DM-MFCC (FFT)    □ ExpoLog (FFT) 0MFCC   (LP)   EM-MFCC   (LP)   HExpoLog   (LP) 

Figure 6.21: A comparison of the performance of FFT vs. LP power spectrum derived features 
of neutral trained models using static features. The performance of MFCC is compared to two 
different frequency scales. 

database. This evaluation was intended to determine which power spectral estimation method 
was most effective when speech was subjected to a combination of noise and stress. The results, 
as summarized in Figure 6.22, indicate that the LP-based features outperformed the FFT-based 
features not only for noise-free simulated stress conditions but also for noisy actual stressed 
speech. It is believed that the spectral smoothing inherent in the LP model provides a more 
overall smooth set of parameters capable of reducing the fine fluctuations caused by excitation 
changes (i.e., pitch structure) that exist under stressful conditions. 

Basic Parameter Processing: Preemphasis, CMN, Cepstral Liftering While it is de- 
sirable to formulate speech features which are inherently robust to the variability of speech 
under stress, there are a number of possible subsequent parameter processing methods which 
have been shown to be effective for noise and communication channel effects. It is noted that 
other methods, such as stress equalization feature processing (MCE-ACC [58] and others in [60]), 
have been shown to be effective in reducing the impact of stress. However, such stress equal- 
ization processing requires stress and/or word dependent compensation terms. The goal here 
is to consider only feature processing methods which do not require knowledge of either word 
or phoneme class sequence content, or the type of speaker stress. For these experiments, the 
following three parameter processing methods were considered: preemphasis, liftering, and cep- 
stral mean normalization, which have been widely used for improved speech recognition and 
speaker identification. Here, their contribution to stressed speech recognition was evaluated. 

Fixed and Slowly-Varying Preemphasis Previous analysis studies on stressed speech have 
shown that the spectral structure and overall average spectral slope varies for different speaking 
conditions [54, 60, 160, 136, 143, 147]. Since the average spectral slope of the input speech 
is different for various stressed speaking styles, then in order to flatten the spectral tilt, it is 
necessary to vary the filter parameters according to the input speech. Therefore, it is proposed 
to use an adaptive preemphasizer where only the spectral slope of voiced speech is adaptively 



79 

SUSAS: ACTUAL SPEECH UNDER STRESS RECOGNITION PERFORMANCE 
USING NEUTRAL TRAINED MODELS EMPLOYING STATIC & DYNAMIC FEATURES 

DERIVED FROM FFT & LP POWER SPECTRA 
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Figure 6.22: Recognition performance of neutral trained models employing static and dynamic 
MFCC, M-MFCC, and ExpoLog features derived from FFT and LP power spectra in noisy 
actual stressed conditions. 

flattened while the unvoiced speech sections are not preemphasized. The adaptive preemphasizer 
chosen was a slowly-varying first order filter [130]. The variable filter coefficient was represented 
as a ratio of the first to the zeroth order lag autocorrelation parameters. The filter was applied 
to utterances both during training and testing. An evaluation using SUSAS data showed that 
the slowly-varying preemphasis filter improved recognition of angry speech by 2.4 % and that of 
Lombard effect speech by 1.5 %. 

Fixed and Variable Cepstral Mean Normalization In a study of channel compensation 
techniques for speaker identification, simple cepstral mean removal was the best channel com- 
pensation method when compared to RASTA processing and quadratic trend removal [132]. 
Cepstral mean normalization is a simple yet effective method which assumes no knowledge of 
the environment and is employed for reducing long term differences in channel characteristics. 
Since the presence of stress impacts voiced and unvoiced speech phonemes differently [54, 71], 
it is proposed to compute a separate cepstral mean for voiced and unvoiced sections instead 
of computing a single mean across the entire utterance. A series of the SUSAS recognition 
evaluations were performed using MFCC static parameters, with various configurations of delta 
parameters, fixed or variable preemphasis, and fixed or variable cepstral mean normalization 
(CMN). The results, shown in Figure 6.23, indicate that variable cepstral mean normalization 
performed better than traditional CMN when no delta parameters were employed. The recog- 
nition of angry, loud, and Lombard effect speech was improved respectively by 4.1 %, 3.5 % and 
1.5%. Variable CMN was most effective with static features and fixed preemphasis. 

Cepstral Liftering The last feature processing method considered was cepstral liftering. Cep- 
stral liftering is a weighting technique applied to cepstral coefficients in order to reduce the 
spectral slope or the undesirable broadband noise components of the spectrum, which affect low 
order cepstral parameters, while retaining the essential characteristics of the formant structure. 
The low-order cepstral coefficients are believed to be primarily sensitive to overall spectral slope, 
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speaker characteristics, or vocal efforts. The higher order cepstral coefficients represent fine spec- 
tral structure. Cepstral liftering was also evaluated using MFCC parameters for SUSAS speech 
(see Figure 6.23). The evaluations showed that when cepstral liftering was employed with time 
derivative parameters and cepstral mean normalization, it had no effect on the recognition per- 
formance of neutral trained models tested with neutral, angry, loud, and Lombard conditions. 
Variable preemphasis slightly improved recognition over fixed preemphasis. Finally, variable 
CMN improved recognition over fixed CMN by 3 % when static parameters were employed for 
recognition. Their performance was not equally effective when time derivative parameters were 
included. The final recommendation from the RPSL study on robust features was that for effec- 
tive speech recognition performance in both neutral and stressed conditions, speech recognizers 
should (i) employ features derived from an LP as opposed to an FFT based power spectrum, and 
(ii) use a modified frequency partition such as M-MFCC or ExpoLog if possible. In addition, 
it was reported that variable preemphasis and variable CMN both improved stressed speech 
recognition performance, but that their impact was reduced if time derivative parameters were 
also included. 

Naitral Angry- Loud Lombard Average 

■ Fixed Rreetphasis  (FixdP) D Varying Preemphasis 

EFxdP + CMN HFxdP + Variable CMN 

BFxdP + Delta HFxdP + Delta + Variable CMN 

HFxdP + Delta + CMN m ExdP + Delta + CMN + Liftering 

Figure 6.23: Effect of preemphasis (fixed and variable), cepstral mean normalization (fixed and 
variable), time-derivative (A coefficients), and cepstral liftering on the recognition performance 
of LP based MFCCs. Note, "FxdP" refers to "Fixed Preemphasis", and "Delta" refers to time- 
derivative delta coefficients. 

6.2.4    Automatic Speech Recognition Conclusions 

In general, we see a degradation in the performance of recognition systems when the user is under 
stress, regardless of the system under test. In the case of the DLP database the relationship to 
increasing speaker stress is clear as the increasing frequency of the plate reading task corresponds 
to an increase in user stress, although if we look at the DERA results for individuals (see 
Figure 6.3), we see that this is not always the case for a given individual. It was also evident 
that the level of task stress experienced by the speaker was mild, given the potential range of 
stress an operator may face in military environments. 

The range and levels of stress displayed within the SUSAS database was more extensive. The 
simulated stress domains of SUSAS have speakers producing speech under different emotions or 
computer response tasks, and therefore the stress levels were not as significant as the actual stress 
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domains (roller-coaster rides, helicopter pilot speech, etc.). In tests using the SUSAS database 
the correlation is not so clear. Results of tests on the different simulated and actual stressed 
conditions show a clear degradation from neutral speech and we can see that the commercial 
off-the-shelf recognition systems tested do not perform as well when speech is under stress. For 
example, all systems tested demonstrated the lowerest recognition results when the simulated 
angry speech was used. 

As we would expect, large vocabulary speaker-independent task-independent (COTS) sys- 
tems did not do as well as systems with vocabularies limited to that used in the datasets or 
those trained on the subsets of the database. Previous methods which use multi-style training 
can improve performance, but this has been shown to work only for speaker-dependent recog- 
nizers. The results for the DERA speaker-independent task-independent 35 word vocabulary 
system performed better than several systems trained on the database in some conditions (see 
Figure 6.15), indicating the progress being made in these systems. 

The compensation techniques described in the last section have also shown improvements in 
the recognition rate for the system tested and reduced the standard deviation of the rates, (i.e. 
the results were more consistent across different stress speaking conditions). Those methods 
which directly compensate for stress in the speech recognition features, typically at the phone- 
class level, are more effective than general compensation such as whole word cepstral mean 
normalization. However, it is also known that speakers will often differ in how they display stress 
in their speech under these conditions, thereby suggesting that speaker-dependent approaches 
may be the only viable solution. It is noted that some techniques reduced the number of insertion 
errors. 

From those studies which considered overall feature processing, the recommendation is to use 
(i) an LP based spectral feature set instead of one based on an FFT, (ii) the use of a modified 
frequency partition such as a modified mel-frequency scale coefficients or ExpoLog, and (iii) the 
use of second order parameters. 

6.3    Speaker Recognition and Verification 

There has been great interest in military voice communications, command, and control for re- 
liable speaker recognition. These involve both identification (input speaker is 1 of N known 
speakers) and verification (input speaker claims to be 1 speaker, but could come from an un- 
restricted population). A number of speaker recognition studies include those by Reynolds, et 
al. [132, 133, 134], and others [135, 48, 32]. The issue of reliable speaker identification under 
stressful speaking conditions however has received little attention. This is primarily due to the 
lack of a large, well organized database for such studies. Databases such as the YOHO2 or NIST 
Switchboard3 databases for example, are produced under calm neutral speaking conditions. In 
this section, we discuss speaker recognition evaluations conducted by RMA/SIC on the SUSC-0 
database, and by RSPL on the SUSAS database. 

6.3.1    Evaluations Conducted Using SUSC-0 

Tests were conducted at the Speech Lab of the Royal Military Academy (Belgium) (RMA/SIC) 
using the speech material in the SUSC-0 database to determine the effects of stressed speech on 
the results of a speaker recognition system. 

The number of different speakers needed to measure the performance of speaker recognition 
systems has to be reasonably high, so, the SUSC-0 database was chosen. Nine different con- 
trollers appear in the database, but as the duration of the speech uttered by speaker VL was too 

2YOHO is a 138 speaker database where speakers produced 3-pair digit combination lock sequences, and has 
been used extensively in algorithm development for speaker recognition. 

3The NIST Switchboard database consists of over 500 speakers talking extemporaneously over telephone chan- 
nels and has been used for competitive evaluations since 1996. 
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short, all measurements were made with the eight other speakers. The sentences uttered by the 
controllers were different from one speaker to another; moreover, the "non-stressed sentences" 
were not in the same language as the "stressed sentences". As a result, it was only possible to 
use speaker recognition methods that are text- and language-independent. 

Speaker Recognition System The speaker recognition system used in these experiments 
was the Vector Auto-Regressive (VAR) method. In this method, each speaker is characterized 
by two prediction matrices which are used in a second order vector-equation to predict the 
sequence of cepstral vectors from a speech file. 

During the training phase, the matrices were determined so as to minimize the total quadratic 
prediction error of the considered vector sequence obtained from 20 seconds of speech. For an 
identification test, the prediction matrices from each speaker were used to calculate the total 
quadratic prediction error related to the test sequence. The identified speaker was the one with 
the lowest total quadratic error. For a verification test, only the prediction matrices of the 
claimed speaker were used in order to calculate the total quadratic error of the given sequence. 
This error was then compared with a threshold to make a decision about the speaker. 

The speech sequence required for this method has to be of adequate length. The training 
database contained four sentences for each speaker. These sentences were obtained by concate- 
nation of speech material from each speaker in order to obtain the following durations. For 
the first three sentences, the duration was about 20 seconds and for the fourth sentence, the 
duration was about 40 seconds. This last sentence was obtained by the concatenation of the first 
two sentences and permitted the study of the effect of the duration of the speech sequence on 
the results. With these four sentences, it was possible to establish four models for each speaker. 

The test database contained 10 sentences per speaker. Each of them was also obtained by 
concatenation of the available speech material in order to have a duration of about 7 seconds. 

Due to the existence of two recording conditions, it was possible to conduct three test cases: 

1. training with neutral speech, test with neutral speech 
2. training with neutral speech, test with stressed speech 
3. training with stressed speech, test with stressed speech 

Results of the identification tests For each test case, four identification tests of the 8 
speakers were completed. Each test corresponds to one of the four speaker's models. 

Figure 6.24 summarizes the results of the experiments. The results show that there was 
a large increase in the error rate when the tested speech condition did not correspond with 
the training condition, however, when the speech was stressed, even if the training condition 
corresponds to the test condition, there was an increase in the identification error rate. 

Results of the verification tests A determination of the false acceptance rates and of the 
false rejection rates was made for the eight speakers, using the four models for each speaker. 
Figure 6.25 and 6.26 are graphs for the first speaker. Figure 6.25 gives the false acceptance 
rate (rejection-curve) and the false rejection (verification-curve) as a function of the decision 
threshold obtained with the speaker's model 1 for the three test cases. Figure 6.26 is the 
corresponding ROC-curve. 

The first graph is very interesting because it shows that the three curves of the false accep- 
tance rate are independent of the test case. Whether the speech was stressed or not does not 
change this particular error rate. The value obtained relates more to the speaker recognition 
method used than to the speech model. This was not true for the false rejection rate, here the 
results for test case 2 were not as good as those of the other test cases. 

If the same results are represented with ROC-curves (Figure 6.25), we can see that the test 
case 2 results were bad in comparison with those of test case 1 and test case 3. However it is 
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SUSC-0: SPEAKER ID EVALUATION 

Test Case 1 Test Case 2 Test Case 3 

20 seconds □ 40 seconds 

Figure 6.24: Results of the Speaker Identification Tests (Note: error rate in test case 1 for 40 
seconds test sample is 0%.) 

not possible with this type of curve to emphasize the independence of the false acceptance rate 
(rejection-error) with respect to the test case. 

Conclusion Due to the concatenation of the speech material to obtain different sentences 
with a sufficient duration, it was not possible to relate the stress level of the speakers to the 
sentences used, therefore, the results of this study are rather rough. However, they permit us 
to conclude that stress does have an influence on speaker recognition results. 

To identify stressed speakers, it is insufficient to have a non-stressed model of the registered 
persons. It is thus interesting to build a "stressed model" of each person, leading in this way to 
a good identification and verification of the stressed speaker. The remaining problem in a real 
case would be to determine whether the tested speaker is stressed or not. 

6.3.2    Evaluations Conducted Using SUSAS 

Tests were conducted by RSPL, using speech material from the SUSAS database to determine 
the effects of speech under stress on a speaker recognition system. 

Speaker Identification System and Test Set-up: A standard Gaussian mixture model 
(GMM) speaker identification system was implemented [132]. The GMM system employed 
32 Gaussian mixture weights, with a parameter set consisting of 19 Mel-frequency cepstral 
coefficients (MFCC). Here, a preemphasis was first performed with a coefficient of 0.97, and the 
parameters were found using 20 filterbank channels. We also note that c[0] was excluded. The 
parameters were obtained using an analysis window width of 20ms, with a skip rate of 10 ms. 
The training data consisted of 35 isolated words per speaker, per stress condition. Nine SUSAS 
speakers across 7 stress conditions were used to evaluate the effects of speaker stress on speaker 

identification accuracy. 

Experiment 1: Here, we want to see the effects of mismatch in speaker stress style on speaker 
identification. As such, neutral trained models are used to identify speakers with stressed speech. 
We note that this was an open test. 
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Figure 6.25: Verification and Rejection errors. 

Results from Experiment 1: The results summarized in Figure 6.27 illustrate how speaker 
ID performance can quickly degrade as a result of variations in speaker stress. 

Experiment 2: This experiment is intended to determine if cepstral-mean normalization will 
improve or degrade speaker identification in mismatched training/testing conditions. Cepstral- 
mean normalization has been used to remove long-term spectral structure, such as microphone 
or channel characteristics, for speaker recognition. For this experiment, the speaker models were 
retrained using mean normalized features and mean normalized testing data. This was also an 
open test experiment. 

Results from Experiment 2: The results summarized in Figure 6.28 show speaker ID per- 
formance with cepstral-mean normalization applied to training and test data. Here we see 
that cepstral-mean normalization actually leads to poorer performance over models trained and 
tested without cepstral-mean normalization. 

6.3.3    Discussion 

Although the databases available do not contain enough material to do comprehensive speaker 
identification or verification evaluations under stressful conditions, several preliminary exper- 
iments have been carried out on two of the databases described in this report. The results 
of the experiments indicate that speech spoken under stressful conditions degrade the perfor- 
mance of speaker recognition systems. The performance observed when testing a system which 
was trained with neutral speech can be less than half those of a system trained with material 
collected under the same stressed conditions. 

6.4    Stressed Speech Synthesis and Coding 

A limited number of studies have integrated stressed speech variations in speech synthesis sys- 
tems to improve the naturalness of synthetic speech [2, 22, 118, 139]. Previous approaches 
directed at integrating emotion in text-to-speech synthesis systems have concentrated on for- 
mulating a set of fixed rules to represent each emotion. However, analysis studies on emotion 
and stress suggest that using a fixed set of rules would ultimately represent merely a single 
caricature of speech variations under a certain emotional condition rather than representing 
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Figure 6.26: ROC Curve. 

the range of variations for continuous speech that may exist under stress. A stressed speech 
parameter modeling and perturbation scheme based on a code-excited linear prediction (CELP) 
vocoder was previously employed for speaking style modification of neutral speech [16]. While 
the speech parameter perturbation within a CELP framework was effective and successful based 
on a formal listener assessment, the approach was text-dependent and restricted to the vocoder's 
framework. 

Some researchers have suggested that "no commercial TTS system incorporates prosodic 
variation resulting from emotion and related factors" [119]. In fact, the voice quality of current 
TTS systems is still easily distinguishable from natural voices and introducing pragmatic effects 
has always been of lower importance than intelligibility. Thus, the study of vocal emotions 
has been conducted mostly in academic environments by physiologists on one side and speech 
researchers on the other. 

Progress in this area has been slow, partly due to the complexity of identifying and cate- 
gorizing the emotion factors in human natural speech, and implementing these factors within 
synthetic speech. It is known that emotion causes changes in voice quality, pitch contour and 
speech rate. 

A few prototype TTS systems include some sort of vocal emotion synthesis capability, by 
manipulation of the above mentioned parameters. Examples are: the HAMLET system by 
Murray [110], the Affect Editor system by Cahn [22], and the SPRUCE system by Tatham [155]. 

The European project VAESS (Voices, Attitudes and Emotions in Speech Synthesis—Tide 
Program) also approached this subject. In this context, a prototype system for Spanish has 
been enhanced with the capability of simulating three emotions (anger, happiness and sadness). 

Emotions and other Stressors have been studied in a totally different context by Bou-Ghazale 
and Hansen [16]. The stress perturbation algorithm has been formulated based on a CELP cod- 
ing structure, for isolated words under neutral, loud, angry and Lombard effect speaking con- 
ditions. This study showed that the perturbations of neutral speech that better conveyed the 
emotional state of the speaker were a combination of pitch, gain and formant location modifica- 
tions. A later formulation, generalized the approach using hidden Markov models to represent 
the stress deviation from neutral (Bou-Ghazale and Hansen [19]). This method demonstrated 
that it was possible to model the changes which occur in stressed speech production from a 
given training speaker set, and use this knowledge and model representation to perturb unseen 
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Figure 6.27: Speaker recognition results (in %) from a GMM system trained using neutral speech 
data and tested with speech under stress (mismatched condition), and GMM system trained and 
open tested with speech under stress (matched condition). 
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Figure 6.28: Speaker recognition results (in %) from a GMM system with cepstral-mean nor- 
malization (CMN), trained using neutral speech data and tested with speech under stress 
(mismatched condition), and GMM system trained and open tested with speech under stress 
(matched condition). 
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neutral input speakers so their output reflected certain stress speaking styles. 
Despite the slow general progress in this area, it is worth mentioning that prosodic content 

in synthetic speech is seen as increasingly important, and there is presently renewed interest in 
the derivation of models of emotion. 

6.5 Conclusions 

The results in of the experiments in this chapter have shown significant degradation in per- 
formance of commercial off-the-shelf speech and speaker recognition systems when the talker 
is under stress. Techniques to compensate for the stress have only been marginally effective. 
Continued research into the techniques to reduce the impact of stress is required, especially for 
applications in military environments. 
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Here, we summarize several references which have considered areas of recognition, speaker iden- 
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Chapter 7 

Conclusions & Recommendations 

The field of military speech technology requires the integrated use of speech systems for commu- 
nications, command, and control. In addition, for multi-national environments, it is necessary 
for a wide range of protocols from participating countries to be integrated together for safe 
and effective operations. Speech technology in military environments offers the promise of more 
direct and effective communciations, verification of personnel, and allowing operators to have ac- 
cess to better information. The problems of battlefield stress conditions, however, raise a serious 
obstacle for the transition of commercial off-the-shelf speech technology for speech recognition, 
speaker verification, synthesis and coding. Studies conducted by participating NATO labora- 
tories and discussed here suggest that many COTS speech systems which were designed for 
quiet or low-noise office environments, cannot be effectively used in real-world, high task stress, 
emotional induced, high background noise, and operator fatigued situations. The benefit of 
voice technology in such environments is clear; however the advances in basic research needed 
to address these environments has not kept up with demand for effective solutions. It is sug- 
gested that this report will serve as useful vehicle to focus the speech community (both industry, 
academia, government and military labs) on important issues of speech variability under stress. 
Databases obtained or collected during this study have been distributed to all participating 
NATO countries, and several are available in CD-ROM format for those interested1. Below, we 
summarize the main findings and recommendations. 

1. Military operations are often conducted under conditions of stress induced by high work- 
load, sleep deprivation, fear and emotion, confusion due to conflicting information, psycho- 
logical tension, pain, and other typical conditions encountered in the modern battlefield 
context. These conditions are known to affect the physical and cognitive abilities of human 
speech characteristics. 

2. It is suggested that operator based stress factors are likely to be detrimental to the ef- 
fectiveness of communication in general, as well as to the performance of communication 
equipment and weapon systems equipped with vocal interfaces (e.g., advanced cockpits, 
C3—command, control, and communication systems, information warfare). 

3. Commercial off the shelf speech recognition systems are not yet able to address the wide 
speaker variability associated with speech produced under stress. 

4. Progress in the field of military based speech technology, including advances in speech 
based system design has been restricted due to the lack and availability of databases of 
speech under stress. In particular, the type of stress which an operator may experience 
in the modern battlefield context is not easily simulated, and therefore it is difficult to 
systematically collect speech data for use in research and speech system training. 

lrnie SUSAS Stressed Speech Database from RSPL is available from the Linguistics Data Consortium at the 
following web location: http://morph.ldc.upenn.edu/Catalog/LDC99S78.html 
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5. It is certain that in the future it will be more necessary to improve the coordination of 
multi-national military forces. The need therefore exists for planned simulations requiring 
co-ordinated emergency or military personnel using a wide range of speech technology. 
Such battlefield settings will have to address factors an operator would actually experi- 
ence such as high workload, sleep deprivation, fear and emotion, confusion, psychological 
tension, pain, etc. 

6. The success of this three year effort by RSG10 (now IST/TG-01) has underlined the 
necessity to further invest coordinated international effort to support NATO interests in 
understanding speech production and perception and our ability to implement speech 
systems which are robust to the specific realities of everyday military speech. 

7. In order to share the most recent advances in this field, then NATO IST/TG-01 estab- 
lished their Speech Under Stress web-page, which is found at the following Web loca- 
tion: http: //cslu. Colorado. edu/rspl/stress. html Information found here include an 
overview of our activities, namely collected and available speech databases (with audio 
demonstrations), international research groups, and an extensive set of references. A copy 
of this report is also available at that web page. 



91 

Bibliography 

[1] Speech Communication: Special Issue on Speech under "Stress", Vol. 20, Nos. 1-2, Nov. 1996. 

[2] E. Aadjieva, I.R. Murray, J.L. Arnott, "An enhanced development system for emotional speech syn- 
thesis for use in vocal prostheses," Proc. of EC ART 2, 2nd European Conference on the Advancement 
of Rehabilitation Technology, Stockholm, Sweden, 26-28 May 1993. paper 1.2, pp. 4-6. 

[3] E. Abadjieva, I.R. Murray, J.L. Arnott, "Applying analysis of human emotional speech to enhance 
synthetic speech"," Proc. Eurospeech'93, 3rd European Conf. on Speech Communication and Tech- 
nology, Berlin, Germany, 21-23 September 1993, pp. 909-912. 

[4] T.R. Anderson, T.J. Moore and R.L. McKinley, "Issues in the development and use of speech recog- 
nition data base for military cockpit environments," Proc. of Speech Tech. '85, Media Dimensions, 
172-176, 1985. 

[5] J.L. Arnott, N. Alm, I.R. Murray, "Enhancing a communication prosthesis with vocal emotion 
effects," Proceedings of the ESCA Tutorial and Research Workshop, Speech and Language Technology 
for Disabled Persons, Stockholm, Sweden, 31 May-2 June 1993 pp. 165-168. 

[6] J.L. Arnott, A.F. Newell, I.R. Murray, E. Abadjieva, "Development of rule systems for the simulation 
of mood and emotion in speech synthesis," Final Project Report to the SERC, Dundee University, 
Microcentre, July 1993, pp. 1-33. 

[7] L.M. Arslan, "Foreign Accent Classification," Ph.D. Thesis, Robust Speech Processing Laboratory, 
Duke University, Department of Electrical and Computer Engineering, July, 1996. 

[8] L.M. Arslan and J.H.L. Hansen, "A study of temporal features and frequency characteristics in 
American English foreign accent," J. Acoust. Soc. America, vol. 102, no. 1, pp. 28-40, July 1997. 

[9] P. Benson, "Analysis of the Acoustic Correlates of Stress from an Operational Aviation Emergency," 
Proc. ESCA-NATO Tutorial and Research Workshop on Speech Under Stress, Lisbon, Portugal, 
pp. 61-64, 1995. 

[10] Z.S. Bond, T.J. Moore, and B. Gable, "Some phonetic characteristics of speech produced in noise," 
Journal of Acoustical Society of America, S49 (A), 1986. 

[11] Z.S. Bond, T.J. Moore, and T.R. Anderson, "The effects of high sustained acceleration on the 
acoustic-phonetic structure of speech: A preliminary investigation," Journal of the American Voice 
I/O Society, 4, 1-19, 1987. 

[12] Z.S. Bond, T.J Moore, "Effect of Whole Body Vibration on Acoustic Measures of Speech," Space 
and Environmental Medicine, pp. 989-993, Nov. 1990 

[13] Z.S. Bond, T.J. Moore, "A note on Loud and Lombard Speech," 1990 ICSLP, pp. 969-972. 

[14] S.E. Bou-Ghazale, "Duration and Spectral based Stress Token Generation for Keyword Recognition 
using Hidden Markov Models," M.S. Thesis, Robust Speech Processing Laboratory, Duke Univ., 
Dept. of Electrical Engineering, June 1993. 

[15] S.E. Bou-Ghazale, J.H.L. Hansen, "Duration and Spectral Based Stress Token Generation For HMM 
Speech Recognition under Stress," IEEE 1994 ICASSP, pp. 413-416. 

[16] S.E. Bou-Ghazale, J.H.L. Hansen, "Stressed Speech Synthesis Based on a Modified CELP Vocoder 
Framework," Speech Communications: Special Issue on Speech Under Stress, vol. 20, pp. 93-110, 
Nov. 1996. 



92 

[17] S.E. Bou-Ghazale, "Analysis, Modeling, and Perturbation of Speech Under Stress with Applications 
to Synthesis and Recognition," Ph.D. Thesis, Robust Speech Processing Laboratory, Duke Univ., 
Dept. of Electrical Engineering, November 1996. 

[18] S.E. Bou-Ghazale, J.H.L. Hansen, "Speech Feature Modeling Approaches for Robust Speech Recog- 
nition Under Stress," submitted to IEEE Trans, on Speech & Audio Proc, 24 pgs, Oct. 1997 Revised 
Feb. 1999. 

[19] S.E. Bou-Ghazale, J.H.L. Hansen, "Stress Perturbation of Neutral Speech for Synthesis based on 
Hidden Markov Models," IEEE Trans, on Speech & Audio Processing, vol. 6, no. 3, pp 201-216 
May 1998. 

[20] 0. Bria, "Improved Automatic Speech Recognition Under Lombard Effect," M.S. Thesis, Robust 
Speech Processing Laboratory, Duke University, Dept. of Electrical Engineering, April 1991. 

[21] S.R. Browning, et al, "Texts of Material Recorded in the SI89 Speech Corpus," SPA Research Note 
#142, Feb. 1991. 

[22] J. Cahn, ""The generation of affect in synthesised speech", Journal of the American Voice I/O 
Society, Vol. 8, pp. 1-19, 1990. 

[23] D.A. Cairns, "Real-time Speech Recognition under Lombard Effect and in Noise," M.S. Thesis, 
Robust Speech Processing Laboratory, Duke University, Dept. of Electrical Engineering, April 1991. 

[24] D.A. Cairns, J.H.L. Hansen, "ICARUS: An Mwave Based Real-time Speech Recognition System 
in Noise and Lombard Effect," ICSLP-92, Inter. Conf. Spoken Lang. Proc, pp. 703-706, Alberta, 
Canada, October 1992. 

[25] D.A. Cairns, J.H.L. Hansen, "Nonlinear Analysis and Detection of Speech Under Stressed Condi- 
tions," Journal of the Acoustical Society of America, vol.96, no.6, pp. 3392-3400, Dec. 1994. 

[26] D.A. Cairns, J.H.L. Hansen, "Nonlinear Speeöh Analysis using the Teager Energy Operator with 
Application to Speech Classification under Stress," ICSLP-91: Inter. Conf. on Spoken Lang. Proc, 
vol. II, vol. 3, pp. 1035-1038, Yokohama, Japan, Sept. 1994. 

[27] M. Carey, E. Parris, and J. Bridle, "Methods and Apparatus for Verifying the Originator of a 
Sequence of Operations," United States Patent, Patent No. 5, pp. 526-465, June 11, 1996. 

[28] R. Carlson, B. Granstrom, L. Nord, "Experiments with emotive speech - Acted utterances and 
synthesized replicas," ICSLP-92: Inter. Conf. on Spoken Lang., Proc, vol. 1, pp. 671-674, Banff 
Canada, 1992. ' ' 

[29] V.L. Cestaro, "A Comparison between Decision Accuracy Rates Obtained Using the Polygraph 
Instrument and the Computer Voice Stress Analyzer (CVSA) in the Absence of Jeopardy", Tech. 
Report, DoD Polygraph Inst., Aug. 1995. 

[30] Y. Chen, "Cepstral Domain Talker Stress Compensation for Robust Speech Recognition," IEEE 
Trans, on ASSP, pp.433-439, April 1988. 

[31] G.J. Clary, J.H.L. Hansen, "A Novel Speech Recognizer for Keyword Spotting," ICSLP-92: Inter. 
Conf. on Spoken Lang. Proc, pp.13-16, Oct. 1992. 

[32] J.M. Colombi, D.W. Ruck, S.K. Rogers, M. Oxley, "Cohort selection and word grammar effects for 
speaker recognition," IEEE 1996 ICASSP, pp. 85-88, May 1996. 

[33] F.S. Costanzo, N.N. Markel, P.R. Costanzo, "Voice quality profile and perceived emotion," Journal 
of Counseling Psychology, vol. 16:3, pp. 267-270, 1969. 

[34] R. de Crdoba, X. Mendez-Pidal, J. Macas-Guarasa, A. Gallardo-Antoln and J.M. Pardo, "Develop- 
ment and Improvement of a Real-Time ASR System for Isolated Digits in Spanish over the Telephone 
Line", EUROSPEECH-95: 1th European Conf. on Speech Communication and Technology, vol. 2, 
pp. 1537-1540, Madrid Spain, Sept. 1995. 

[35] R. Cruise, D. Denison and P. K. Rajasekaran, "Speech recognition in the helicopter vibration envi- 
ronment," (Unpublished paper presented at the 1986 Human Factors Society Meeting, Dayton Ohio 
1986. 



93 

[36] K.E. Cummings, M.A. Clements, and J.H.L. Hansen, "Estimation and Comparison of the Glottal 
Source Waveform Across Stress Styles Using Glottal Inverse Filtering," Proc. of the IEEE South- 
eastcon, pp. 776-781, Columbia, South Carolina, April 1989. 

[37] K.E. Cummings, M.A. Clements, "Analysis of Glottal Waveforms Across Stress Styles," IEEE 
ICASSP-90: Inter. Conf. on Acoust., Speech, Sig. Proc, pp. 369-372, 1990 

[38] K.E. Cummings, M.A. Clements, "Improvements to and applications of analysis of stressed speech 
using glottal waveforms," IEEE ICASSP-92, 11:25-28, 1992. 

[39] K.E. Cummings, M.A. Clements, "Analysis of the glottal excitation of emotionally styled and 
stressed speech," J. Acoust. Soc. Am., 98(1) 88-98, 1995. 

[40] J.K. Darby, Speech Evaluation in Psychiatry, Grune & Stratton, New York, New York, 1981. 

[41] B.A. Dautrich, L.R. Rabiner, T.B. Martin, "On the effects of varying filter bank parameters on 
isolated word recognition," Trans, on Acoustics, Speech, and Signal Processing, vol. ASSP-31, no. 
4, pp. 793-806, August 1983. 

[42] S.B. Davis, P. Mermelstein, "Comparison of Parametric Representations for Monosyllabic Word 
Recognition in Continuously Spoken Sentences,"  IEEE Trans, on Acoustics, Speech, and Signal 
Proc, vol. ASSP-28, pp. 357-366, 1980. 

[43] T. Dennison, "The effect of simulated helicopter vibration on the accuracy of a voice recognition 
system," In Proceedings of the American Helicopter Society Annual Forum and Technical Display, 
1, 133-136, 1985. 

[44] M. Flack, "Flying Stress," London: Medical Research Committee, 1918. 

[45] D.J. Folds, J.M. Gerth, W.R. Engelman, " Enhancement of Human Performance in Manual Tar- 
get Acquisition and Tracking, " Final Technical Report USAFASM-TR-86-18, USAF School of 
Aerospace Medicine, Brooks AFB, TX, 1986. 

[46] D.J. Folds, "Response Organization and Time-Sharing in Dual-Task Performance," Ph.D. disserta- 
tion, School of Psychology, Georgia Institute of Technology, Atlanta, May 1987. 

[47] C.R. Prankish, D.M. Jones and K.C. Kapeshi, "Maintaining Recognition Accuracy During Data 
Entry Tasks Using Speech Input," Contemporary Ergonomics, Ed E.J. Lovesey. Taylor and Francis, 
pp 445-453, 1990. 

[48] S. Furui, "An overveiw of speaker recognition technology," ESCA Workshop on Automatic Speaker 
Recognition, Identification, and Verification, pp. 1-9, April 1994. 

[49] A.W.K. Gaillard and C.J.E. Wientjes, "Mental Load and Work Stress as Two Types of Energy 
Mobilization," Work and Stress, No. 8, pp. 141-152, 1994. 

[50] A. Gallardo-Antoln, I. Mayoral and J.M. Pardo, "Automatic Speech Recognition Under Stress Con- 
ditions", Research Report GTH-DIE-ETSIT-UPM 2/97, Grupo De Technologa Del Habla, Departa- 
mento De Ingeniera Electrnica, Universidad Politcnica De Madrid, Spain, Nov. 1997. 

[51] M.B. Gardner, "Effect of Noise System Gain, and Assigned Task on Talking Levels in Loudspeaker 
Communication," J. Acoust. Soc. Am., 40:955-965, 1966. 

[52] K. Gopalan, "Amplitude and Frequency Modulation Characteristics of Stressed Speech," Final Re- 
port for Summer Faculty Research Program, sponsored by AFOSR, U.S. Air Force Research Labo- 
ratory [AFRL], July 1998. 

[53] C.N. Hanley, D.G. Harvey, "Quantifying the Lombard Effect," J. of Hearing & Speech Disorders, 
30:274-7, Aug. 1965. 

[54] J.H.L. Hansen, "Analysis and Compensation of Stressed and Noisy Speech with Application to 
Robust Automatic Recognition," Ph.D. Thesis, Georgia Inst. of Tech., Atlanta, GA, 428 pgs., July 
1988. 

[55] J.H.L. Hansen, "Evaluation of Acoustic Correlates of Speech Under Stress for Robust Speech Recog- 
nition." IEEE Proc 15th Bioengineering Conf, pp. 31-32, Boston, Mass., March 1989. 



94 

[56] J.H.L. Hansen, "A New Speech Enhancement Algorithm Employing Acoustic Endpoint Detection 
and Morphological Based Spectral Constraints," ICASSP-91: IEEE Proc. Inter. Conf. on Acoust, 
Speech, and Signal Proc, pp. 901-904, Toronto, Canada, May 1991. 

[57] J.H.L. Hansen, "Adaptive Source Generator Compensation and Enhancement for Speech Recognition 
in Noisy Stressful Environments," IEEE 1993 ICASSP, pp. 95-98, 1993. 

[58] J.H.L. Hansen, "Morphological Constrained Enhancement with Adaptive Cepstral Compensation 
(MCE-ACC) for Speech Recognition in Noise and Lombard Effect," IEEE Trans. Speech, Audio 
Proc, SPECIAL ISSUE: Robust Speech Recognition, vol. 2(4), pp. 598-614, Oct. 1994. 

[59] J.H.L. Hansen, "Analysis and Compensation of Noisy Stressful Speech for Environmental Robustness 
in Speech Recognition," (invited tutorial), NATO-ESCA Proc Inter. Tutorial & Research Workshop 
on Speech Under Stress, pp. 91-98, Lisbon, Portugal, Sept. 1995. 

[60] J.H.L. Hansen, "Analysis and Compensation of Speech under Stress and Noise for Environmental 
Robustness in Speech Recognition," Speech Communications, Special Issue on Speech Under Stress 
vol. 20, pp. 151-173, Nov. 1996. 

[61] J.H.L. Hansen, "An Analysis of Acoustic Correlates of Speech Under Stress. Part 1: Fundamen- 
tal Frequency, Duration, and Intensity Effects," submitted to Journal Acoust. Society of America 
October 1998. 

[62] J.H.L. Hansen, "An Analysis of Acoustic Correlates of Speech Under Stress. Part 2: Glottal Source 
and Vocal Tract Spectral Effects," submitted to Journal Acoust. Society of America, October 1998. 

[63] J.H.L. Hansen, G. Zhou, R. Sarikaya, "An Analysis of Acoustic Correlatates of Speech Under Stress. 
Part 3: Applications to Stress Classification and Speech Recognition," submitted to Journal Acoust. 
Society of America, April 1999. 

[64] J.H.L. Hansen, S. Bou-Ghazale, "Duration and Spectral Based Stress Token Generation for Keyword 
Recognition Using Hidden Markov Models," IEEE Trans. Speech and Audio Proc, vol. 3(5) DD 415- 
421, Sept. 1995. 

[65] J.H.L. Hansen and S. Bou-Ghazale, "Getting Started with SUSAS: A Speech Under Simulated and 
Actual Stress Database," EUROSPEECH-97, Vol.4, pp. 1743-1746, Rhodes, Greece, Sept.1997. 

[66] J.H.L. Hansen, O.N. Bria, "Lombard Effect Compensation for Robust Automatic Speech Recognition 
in Noise," ICSLP-90: Proc. Inter. Conf. Spoken Lang. Proc, pp. 1125-1128, Kobe, Japan, Nov. 1990. 

[67] J.H.L. Hansen, O. Bria, "Improved Automatic Speech Recognition in Noise and Lombard Effect," 
EURASIP-92. In Signal Processing VI: Theories and Applications, Elsevier Publishers New York 
NY, pp. 403-406, 1992. 

[68] J.H.L. Hansen, D.A. Cairns, "ICARUS: Source generator based real-time recognition of speech in 
noisy stressful and Lombard effect environments," Speech Communications, 16:391-422, July 1995. 

[69] J.H.L. Hansen, M. Clements, "Constrained Iterative Speech Enhancement with Application to 
Speech Recognition," IEEE Trans, on Signal Processing, vol. 39, no. 4, pp. 795-805, April 1991. 

[70] J.H.L. Hansen, M.A. Clements, "Evaluation of Speech under Stress and Emotional Conditions," 
Proc. Acoust. Soc Am., H15, 82(Fall Sup.):S17, Nov. 1987. 

[71] J.H.L. Hansen, M.A. Clements, "Stress Compensation and Noise Reduction Algorithms for Robust 
Speech Recognition," ICASSP-89: Inter. Conf. on Acoustics Speech and Signal. Proc, pp. 266-269, 
Glasgow, Scotland, May 1989. 

[72] J.H.L. Hansen, M. Clements, "Source Generator Equalization and Enhancement of Spectral Prop- 
erties for Robust Speech Recognition in Noise and Stress," IEEE Trans. Speech and Audio Proc 
vol. 3(5), pp. 407-415, Sept. 1995. 

[73] J.H.L. Hansen, B.D. Womack, "Feature Analysis and Neural Network based Classification of Speech 
under Stress," IEEE Trans. Speech and Audio Proc, vol. 4, no. 4, pp. 307-313, July 1996. 

[74] B.A. Hanson, T. Applebaum, "Robust Speaker-Independent Word Recognition Using Instantaneous, 
Dynamic and Acceleration Features: Experiments with Lombard and Noisy Speech " IEEE 1990 
ICASSP, pp. 857-60, Apr. 1990. 



95 

[75] M.H.L. Hecker, K.N. Stevens, G. von Bismarck, C.E. Williams, "Manifestations of Task-Induced 
Stress in the Acoustic Speech Signal," J. Acoust. Soc Am., 44(4):993-1001, 1968. 

[76] H. Hermansky, N. Morgan, H.G. Hirsch, "Recognition of speech in additive and convolutional noise 
based on RASTA spectral processing," IEEE 1993 ICASSP, pp. 83-86, 1993. 

[77] J. Hernando, C. Nadeu, "Speech recognition in noisy car environment based on OSALPC represen- 
tation and robust similarity measuring techniques," ICASSP-94: IEEE Inter. Conf. on Acoustics, 
Speech, and Signal Processing, pp. 69-72, 1994. 

[78] J. Hernando and C. Nadeu, "Linear prediction of the one-sided autocorrelation sequence for noisy 
speech recognition," IEEE Trans. Speech and Audio Proc, vol. 5, pp. 80-84, Jan. 1997. 

[79] J.W. Hicks, H. Hollien, "The Reflection of Stress in Voice-1: Understanding the Basic Correlates," 
1981 Carnahan Conf. on Crime Countermeasures, 189-195, 1981. 

[80] M.J. Hunt, C. Lefebvre, "A comparison of several acoustic representations for speech recognition 
with degraded and undegraded speech," IEEE 1989 ICASSP, pp.262-5. 

[81] H.R. Jex, "A Proposed Set of Standardized Sub-Critical Tasks For Tracking Workload Calibration," 
in N. Moray, Mental Workload: Its Theory and Measurement, New York: Plenum Press, pp. 179-188, 
1979. 

[82] D. Jones, "Extending the Speaker Independent ARM Continuous Speech Recognition System to 
Female Voices" ,DRA Memo #4636, September 1992, 

[83] B.H. Juang, "Speech Recognition in Adverse Environments," Computer, Speech & Lang., pp.275-94, 
1991. 

[84] J.C. Junqua, "The Lombard reflex and its role on human listeners and automatic speech recognizers," 
J. Acoust. Soc. Am., (l):510-24, 1993. 

[85] J.C. Junqua, "The Influence of Acoustics on Speech Production: A Noise-induced Stress Phe- 
nomenon Known as Lombard Reflex," Speech Communication, vol. 20, Nos. 1-2, pp. 13-22, 1996. 

[86] J.F. Kaiser, "On a Simple Algorithm to Calculate the 'Energy' of a Signal," ICASSP-90: Inter. 
Conf. on Acoust, Speech, Sig. Proc, pp. 381-384, 1990. 

[87] J.F. Kaiser, "On Teager's Energy Algorithm, its Generalization to Continuous Signals," in Proc. 4th 
IEEE Digital Signal Processing Workshop, Mohonk(New Paltz), NY, Sept. 1990. 

[88] J.F. Kaiser, "Some Useful Properties of Teager's Energy Operator," ICASSP-93: Inter. Conf. on 
Acoust, Speech, Sig. Proc, Vol. 3, pp. 149-152, 1993. 

[89] I. Kuroda, O. Fujiwara, N. Okamura, N. Utsuki, "Method for Determining Pilot Stress Through 
Analysis of Voice Communication," Aviation, Space, & Env. Med., 5:528-533, 1976. 

[90] J. Laver, "Monitoring Systems in the Neurolinguistic Control of Speech," in Fromkin, V. (ed.) 
"Errors of Linguistic Performance." Academic Press, New York. (Re-printed in Laver, J. "The Gift 
of Speech", Edinburgh University Press, 1991. 

[91] H.L. Lane, B. Tranel, and C. Sisson, "Regulation of voice communication by sensory dynamics," 
Journal of Acoustical Society of America, 47, pp. 618-624, 1970. 

[92] H.L. Lane, and B. Tranel, "The Lombard Sign and the role of hearing in speech," Journal of Speech 
and Hearing Research, 14, pp. 677-709, 1971. 

[93] C. Leeks, "Operation of a speech recognizer under whole body vibration," Royal Aircraft Establish- 
ment, Tech Memo FDS(F)634, 1986. 

[94] P. Lieberman, S. Michaels, "Some Aspects of Fundamental Frequency and Envelope Amplitude as 
Related to the Emotional Content of Speech," J. Acoust. Soc. Am., 34(7):922-7, 1962. 

[95] R.P. Lippmann, M. Mack, D. Paul, "Multi-Style Training for Robust Speech Recognition Under 
Stress," Proc. of the Acoustical Society of America, 110th Meeting, QQ10, May, 1986. 

[96] R.P. Lippmann, E.A. Martin and D.B. Paul, "Multi-Style Training for Robust Isolated-Word Speech 
Recognition," IEEE ICASSP-87, pp. 705-708, 1987. 

[97] O. Lippold, "Physiological Tremor," Scientific American, vol. 224, no. 3, pp. 65-73, Mar. 1971. 



96 

[98] S. Lively, D. Pisoni, W. van Summers, R. Bernacki, "Effects of cognitive workload on speech pro- 
duction," J. Acoust. Soc. Am., 93(5) 2962-73, 1993. 

[99] F.H. Liu, A. Acero, R.M. Stern, "Efficient joint compensation of speech for the effects of additive 
noise and linear filtering," IEEE 1992 ICASSP, pp. 257-60. 

[100] E. Lombard, "Le Signe de l'Elevation de la Voix," Ann. Maladies Oreille, Larynx, Nez, Pharynx, 
37:101-19, 1911. 

[101] F.J. Malkin, and T. Dennison, "The effect of helicopter vibration on the accuracy of a voice 
recognition system," In Proceedings of National Aerospace and Electronics Conference (NAECON), 
Dayton, Ohio, 1986. 

[102] D. Mansour, B.H. Juang, "A Family of Distortion measures based upon projection operation for 
robust speech recognition," IEEE Trans. ASSP, 37:1659-71, 1988. 

[103] P. Maragos, J.F. Kaiser, and T.F. Quatieri, "Amplitude and Frequency Demodulation Using Energy 
Operators", IEEE Trans, on Signal Processing, Vol. 41, No. 4, pp. 1532-1550, Apr. 1993. 

[104] P. Maragos, J.F. Kaiser, and T.F. Quatieri, "Energy Separation in Signal Modulations with Appli- 
cation to Speech Analysis", IEEE Trans, on Signal Processing, Vol. 41, No. 10, pp. 3025-3051, Oct. 
1993. 

[105] C. Martins, M.I. Masacrenhas, H. Meinedo, J.P. Neto. L.C. Oliveira, C. Ribeiro, I.M. Trancoso, 
M.C. Viana, "Spoken Language Corpora for Speech Recognition and Synthesis in European Por- 
tuguese," Proc. of the 10th Conf. on Pattern Recog., RECPAD'98, pp. 357-364, Lisbon, Portugal, 
March 1998. 

[106] A. A. Minai and R. D. Williams, "Back-propagation heuristics: A study of the extended delta-bar- 
delta algorithm", in IJCNN, June 17-21, pp. 595 - 600, 1990. 

[107] B.A. Mellor, R. Graham, "The Effect on Speech Recogniser Performance of Cognitive Stress Induced 
by a Time Constrained Task," DRA Memo #4749, Unreleased, Sept. 1993. 

[108] T.J. Moore, Z.S. Bond, "Acoustic-phonetic changes in speech due to environmental Stressors: Impli- 
cations for speech recognition in the cockpit," R.S. Jensen (Ed) Proceedings of the 4th International 
Symposium on Aviation Psychology, Columbus, Ohio, 77-83, 1987. 

[109] I.R. Murray, J.L. Arnott, A.F. Newell, "Hamlet - simulating emotion in synthetic speech," Proc of 
Speech'88, 7th FASE symp, Edinburgh , pp.1217-1223. 1988. 

[110] I.R., Murray, "Developing HAMLET - an emotional synthetic speech system," Invited paper, ISACC 
UK Newsletter, 6, June 1989 (Inter. Soc. for Augmentative and Alternative Communication, Lon- 
don), pp. 4-5. 

[Ill] I.R. Murray, "Simulating Emotion in Synthetic Speech," Ph.D thesis, Dundee University, October 
1989. 

[112] I.R. Murray, J.L. Arnott, "Evaluation of a synthetic speech system which simulates vocal emotion 
by rule," Proc. of the Inst. Of Acoustics, 12, pp. 117-123. 1990. 

[113] I.R. Murray, J.L. Arnott, N. Alm, A.F. Newell, "A communication system for the disabled with 
emotional synthetic speech produced by rule," Proc. Eurospeech '91, 2nd European Conf. Speech 
Comm. and Tech., pp.311-314, Genova, Italy, 24-26 Sept. 1991. 

[114] I.R. Murray, J.L. Arnott, N. Aim, A.F. Newell, "Emotional synthetic speech in an integrated 
communication prosthesis," Proc. 14th Annual Con. of the Rehabilitation Engineers Soc. of North 
America. (RESNA), Tech. for the Nineties, Kansas City, MO, USA, 21-26 June 1991 (J.J Presberin 
(Ed.), pp. 311-313, RESNA Press, Washington DC, USA. 

[115] I.R. Murray, J.L. Arnott, "A tool for the rapid development, of new synthetic voice personali- 
ties" , Proc. ESC A Tutorial and Research Workshop, Speech and Language Technology for Disabled 
Persons, Stockholm, Sweden, 31 May-2, pp. 111-114, June 1993. 

[116] I.R. Murray, J.L. Arnott, "Toward the simulation of emotion in synthetic speech: A review of the 
literature on human vocal emotion," J. Acoust. Soc. of America, 93(2), pp. 1097-1108, Feb. 1993. 



97 

[117] I.R. Murray, J.L. Arnott, E.A. Rohwer, "Modeling vocal emotion effects in synthetic speech to 
improve augmented communication for non-vocal people," Institute of Acoustics Autumn Conference 
on Speech and Heering, Bowness-on-Windermere, November 1994. 

[118] I.R. Murray, J.L. Arnott, "Implementation and testing of a system for producing emotion-by-rule 
in synthetic speech," Speech Communication, 16, pp. 369-390, June 1995. 

[119] I.R. Murray, J.L. Arnott, "Synthesizing emotions in speech: is it time to get excited?," Proc. 
ICSLP'96, vol. 3, pp. 1816-1819, Philadelphia, October 1996. 

[120] I.R. Murray, J.L. Arnott, E.A. Rohwer, "Emotional stress in synthetic speech: Progress and future 
directions," Speech Communication, Vol. 20, Nos. 1-2, Nov. 1996. 

[121] I.R. Murray, C. Baber, A. J. South, "Towards a definition and working model of stress and its 
effects on speech," Speech Communication, Vol. 20, Nos. 1-2, Nov. 1996. 

[122] J. Ohala, "Ethological theory and the expression of emotion in the voice," Proc. ICSLP'96, Philadel- 
phia, Oct. 1996. 

[123] D.B. Paul, "A Speaker-Stress Resistant HMM Isolated Word Recognizer," IEEE 1987 ICASSP, 
pp.713-716,1987. 

[124] D.B. Paul, C.J. Weinstein, R.P. Lippman, Y. Chen, "Robust HMM-Based Techniques for Recogni- 
tion of Speech Produced Under Stress and in Noise," Proc. Speechtech-86 Conf, pp. 241-249, April, 
1986. 

[125] B.L. Pellom, J.H.L. Hansen, "Automatic Segmentation and Labeling of Speech Recorded in Un- 
known Noisy Channel Environments," ESCA-NATO Workshop on Robust Speech Recognition for 
Unknown Communication Channels, pp. 167-170, Pont-a-Mousson, France, April 1997. 

[126] B.L. Pellom, J.H.L. Hansen, "Automatic Segmentation of Speech Recorded in Unknown Noisy 
Channel Characteristics," Speech Communication: Special Issue on Robust Speech Recognition in 
Unknown Communication Channels, vol. 25, nos. 1-3, pp. 97-116, Aug. 1998. 

[127] J.W. Picone, "Signal modeling techniques in speech recognition," Proceedings of the IEEE, vol. 81, 
pp. 1215-1247, September 1993. 

[128] D.B. Pisoni, R.H. Bernacki, H.C. Nusbaum, and M. Yuchtman, "Acoustic-phonetic correlates of 
Speech produced in noise," ICASSP-85: Proc. Inter. Conf. Acoust, Speech, Sig. Proc, pp. 1581- 
1584, 1985. 

[129] E.C. Poulton, "Composite Model For Human Performance in Continuous Noise," Psych. Rev,' 
86(4), pp. 361-375, 1979. 

[130] L. Rabiner and B. H. Juang, Fundamentals of Speech Recognition, Prentice Hall Signal Processing 
Series, Englewood Cliffs, New Jersey, 1993. 

[131] P.K. Rajasekaran, G.R. Doddington, J.W. Picone, "Recognition of speech under stress and in 
noise," IEEE 1986 ICASSP, pp. 733-736, 1986. 

[132] D.A. Reynolds, "Experimental evaluation of features for robust speaker recognition," IEEE Trans, 
on Speech & Audio Proc, vol. 2, pp. 639-643, Oct. 1994. 

[133] D.A. Reynolds, "The effects of telephone transmission degradations on speaker recognition perfor- 
mance," IEEE 1995 ICASSP, pp. 329-332, May 1995. 

[134] D.A. Reynolds, "The effects of handset variability on speaker recognition performance: experiments 
on the switchboard corpus," IEEE 1996 ICASSP, pp. 113-116, May 1996. 

[135] A. Rosenberg, S. Parthasarathy, "Speaker Background Models for Connected Digit Password 
Speaker Recognition," IEEE 1996 ICASSP, pp. 81-84, May 1996. 

[136] R. Roessler and J. W. Lester, "Vocal patterns in anxiety," Fann, Pokorny, and Williams, editors, 
Phenomenology and Treatment of Anxiety. Spectrum, New York, 1979. 

[137] M. Ross, R. Duffy, H. Cooker, D. Sargeant, "Contribution of the lower audible frequencies to the 
recognition of emotions," American Annals of the Deaf, pp. 37-42, 1973. 



98 

[138] R. Ruiz, E. Absil, B. Harmegnies, C. Legros, D. Poch, "Time and spectrum-related variabilities in 
stressed speech under laboratory and real conditions," Speech Communication, 20:111-130, 1996. 

[139] J.C. Rutledge, K.E. Cummings, D.A. Lambert, and M.A. Clements. "Synthesizing styled speech 
using the klatt synthesizer," Proc. IEEE Inter. Conf. on Acoustics, Speech, and Signal Proc, pp. 648- 
651, 1995. 

[140] R. Sarikaya, J.N. Gowdy, "Subband Based Classification of Speech under Stress", IEEE 1998 
ICASSP, pp. 569-573,1998. 

[141] K. Scherer, "Adding the affective dimension: a new look in speech analysis and synthesis," Proc. 
ICSLP'96, Philadelphia, October 1996. 

[142] M. J. Russell. "The development of the Speaker Independent ARM Continuous Speech Recognition 
System, " RSRE Memo #4473. Jan. 1992. 

[143] K.R. Scherer, "Nonlinguistic vocal indicators of emotion and psychopathology," C. E. Izard, editor, 
Emotions in Personality and Psychopathology, pp. 493-529. Plenum, New York, 1979. 

[144] Simonov, P.V., Frolov, M.V. "Analysis of the Human Voice as a Method of Controlling Emotional 
State: Achievements and Goals," Aviation, Space, & Environmental Sciences, Jan., 23-25, 1977. 

[145] C. Sotillo, et al., "DCIEM Sleep Deprivation Study: The Design of the Map Task Dialogues," 
Report DCIEM, Doensview, Canada, 1994. 

[146] B.J. Stanton, "Robust recognition of loud and Lombard speech in the fighter cockpit environment." 
Ph.D. thesis, Purdue University, 1988. 

[147] B.J. Stanton, L.H. Jamieson, G.D. Allen, "Acoustic-Phonetic Analysis of Loud and Lombard Speech 
in Simulated Cockpit Conditions," IEEE 1988 ICASSP, pp. 331-334, 1988. 

[148] B.J. Stanton, L.H. Jamieson, G.D. Allen, "Robust Recognition of Loud and Lombard Speech in 
the Fighter Cockpit Environment," IEEE 1989 ICASSP, pp.675-8. 

[149] . NATO RSG-10 Research Study Group on Speech, "Potentials of Speech and Language Technology 
Systems for Military Use: An Application and Technology-Oriented Survey," NATO: North Atlantic 
Treaty Organization, Defense Research Group, Technical Report AC/243 (Panel 3) TR/21, 1996. 

[150] L.A. Streeter, N.H. Macdonald, W. Apple, R.M. Krauss, K.M. Galotti, "Acoustic and Perceptual 
Indicators of Emotional Stress," J. Acoust. So. Am. 73(4) 1354-1360, 1983. 

[151] D. Talkin, "A Robust Algorithm for Pitch Tracking (RAPT)", in Speech Coding and Synthesis, 
Edited by W. B. Kleijn and K. K. Paliwal, Elsevier Science, Amsterdam, The Netherlands, pp. 497- 
518, 1995. 

[152] H.M. Teager, "Some Observations on Oral Air Flow During Phonation," IEEE Trans, on Acoustics, 
Speech, and Signal Proc, vol. ASSP-28, no. 5, pp. 599-601, Oct. 1980. 

[153] H.M. Teager and S.M. Teager, "A Phenomenological Model for Vowel Production in the Vocal 
Tract," in Speech Science: Recent Advances, edited by R.G. Daniloff (College-Hill, San Diego), 
pp. 73-109, 1983 

[154] H.M. Teager and S.M. Teager, "Evidence for Nonlinear Production Mechanisms in the Vocal Tract," 
in Speech Production and Speech Modeling, NATO Advanced Study Institute, Vol. 55, Bonas, France, 
(Kluwer Academic Pub., Boston), pp. 241-261, 1989. 

[155] M. Tatham, E. Lewis, E. "Prosodic assignment in SPRUCE text-to-speech synthesis," Proc. Inst. 
Acoust, Vol. 14, No. 6, pp. 447-454, 1996. 

[156] E. Uldall, "Attitudinal meanings conveyed by intonation contours," Language and Speech, 3, 
pp. 223-234, 1960. 

[157] H. Wakita, "Direct Estimation of the Vocal Tract Shape by Inverse Filtering of Acoustic Speech 
Waveforms," IEEE Tran. Audio & Electroacoustics, AU-21:417-427, Oct. 1973. 

[158] C. Willemet, C. Vloeberghs, F. Jauquet, "Influence of Stressed Speech on Speaker Recognition 
System." RSG-10 Report: Study Based on the CD-ROM SUSC-0, RMA/SIC 1997. 



99 

[159] C.E. Williams, K.N. Stevens, "On Determining the Emotional State of Pilots During Flight: An 
Exploratory Study," Aerospace Medicine, 40 1369-1372, 1969. 

[160] C.E. Williams and K.N. Stevens, "Emotions and Speech: Some Acoustical Correlates", Journal of 
Acoustical Society of America, Vol. 52, No. 4, pp. 1238-1250, 1972. 

[161] B.D. Womack, "Classification and Recognition of Speech under Perceptual Stress using Neural 
Networks and N-D HMMs," Ph.D. Thesis, Robust Speech Processing Lab, Dept. of Electrical Engi- 
neering, Duke Univ., Dec. 1996. 

[162] B.D. Womack and J.H.L. Hansen, "Classification of Speech under Stress Using Target Driven 
Features," Speech Communication, Vol. 20, Nos. 1-2, pp. 131-150, Nov. 1996. 

[163] B.D. Womack, J.H.L. Hansen, "N-Channel Hidden Markov Models for Combined Stress Speech 
Classification and Recognition," accepted to IEEE Trans. Speech & Audio Proc, Jan. 1999. 

[164] W.A. Yost, Fundamentals of Hearing, 3rd Edition, Academic Press, San Diego, CA., pp. 153-167, 
1994. 

[165] G. Zhou, J.H.L. Hansen and J.F. Kaiser, "Classification of Speech under Stress Based on Features 
from the Nonlinear Teager Energy Operator," ICASSP'98, vol. 1, pp. 549-552, Seattle, WA, 1998. 

[166] G. Zhou, J.H.L. Hansen, and J.F. Kaiser, "A New Nonlinear Feature for Stress Classification," 
IEEE NORSIG-98, pp. 89 - 92, 1998. 

[167] G. Zhou, J.H.L. Hansen, and J.F. Kaiser, "Linear and Nonlinear Speech Feature Analysis for Stress 
Classification," ICSLP-98: Inter. Conf. Spoken Lang. Proc, vol. 3, pp. 883-886, Sydney, Australia. 

[168] G. Zhou, J.H.L. Hansen, and J.F. Kaiser, "Nonlinear Feature Based Classification of Speech under 
Stress", submitted to IEEE Trans, on Speech and Audio Processing, Dec. 1997. 



REPORT DOCUMENTATION PAGE 

1. Recipient's Reference 2. Originator's References 

RTO-TR-10 
AC/323(IST)TP/5 

3. Further Reference 

ISBN 92-837-1027-4 

4. Security Classification 
of Document 

UNCLASSIFIED/ 
UNLIMITED 

5. Originator     Research and Technology Organization 
North Atlantic Treaty Organization 
BP 25, 7 rue Ancelle, F-92201 Neuilly-sur-Seine Cedex, France 

6. Title 
The Impact of Speech Under "Stress" on Military Speech Technology 

7. Presented at/sponsored by 
the RTO Information Systems Technology Panel (1ST). 

8. Author(s)/Editor(s) 

Multiple 
9. Date 

March 2000 

10. Author's/Editor's Address 

Multiple 

11. Pages 

112 

12. Distribution Statement There are no restrictions on the distribution of this document. 
Information about the availability of this and other RTO 
unclassified publications is given on the back cover. 

13. Keywords/Descriptors 

Speech recognition 
Voice communication 
Military operations 
Military applications 
Speech 
Stress (physiology) 

Stress (psychology) 
Human factors engineering 
Command and control 
Sleep deprivation 
Secure communication 
Workloads 

Data bases 
C3I (Command Control 

Communications and 
Intelligence) 

COTS (Commercial 
Off-The-Shelf) 

14. Abstract 

Military operations are often conducted under conditions of stress induced by high workload, 
sleep deprivation, fear and emotion, confusion due to conflicting information, psychological 
tension, pain, and other typical conditions encountered in the modern battlefield context. These 
conditions are known to affect the physical and cognitive abilities of human speech 
characteristics, and this study was intended to determine the actual effects of stress on voice 
production quality. 

It is suggested that the effect of operator based stress factors on voice is likely to be 
detrimental to the effectiveness of communication in general, in particular to the performance 
of communication equipment and weapon systems equipped with vocal interfaces (e.g., 
advanced cockpits, command, control, and communication systems, information warfare). 

Progress in the field of military based speech technology, including advances in speech based 
system design has been restricted due to the lack of availability of databases of speech under 
stress. In particular, the type of stress which an operator may experience in the modern 
battlefield context is not easily simulated, and therefore it is difficult to systematically collect 
speech data for use in research and speech system training. It is foreseen that in the future it 
will be necessary to improve the coordination of multi-national military forces. The need 
therefore exists for planned simulations with military personnel using a wide range of speech 
technology and addressing factors such as high workload, sleep deprivation, fear and emotion, 
confusion, psychological tension, pain, etc. 



NORTH ATLANTIC TREATY ORGANIZATION 

RESEARCH  AMI}  TECHNOLOGY  ORGANIZATION 

BP 25 « 7 RUE ANCELLE 

F-92201 NEUILLY-SUR-SEINE CEDEX » FRANCE 

Telecopie 0(1)55.61.22.99 » E-mail mailbox@rta.nato.int 

DIFFUSION DES PUBLICATIONS 
RTO NON CLASSIFIEES 

L'Oraanisalion pour la recherche et la technologie dc l'OTAN (RTO), detient un stock limite de certaines de ses publications recentes, ainsi 
que de celles de l'ancien AGARD (Groupe coiisultatif pour la recherche ct les realisations aerospatiales de l'OTAN). Celles-ci pourront 
eventuellemcnt etre obtenues sous forme de copic papier. Pour de plus amples renseignements concemant l'achat de ces ouvrages, 
adressez-vous par lettre ou par telecopie ä l'adresse indiquee ci-dessus. Veuillez ne pas telephoner. 

Des exemplaires supplementaires peuvent parfois etre obtenus aupres des centres nationaux de distribution indiques ci-dessous. Si vous 
souhaitez recevoir toutes les publications de la RTO, ou simplement celles qui conccrnent certains Panels, vous pouvez demander d'etre 
inclus sur la liste d'envoi de Tun de ces centres. 

Les publications de la RTO et de l'AGARD sont en vente aupres des agences de ventc indiquees ci-dessous, sous forme de photocopie ou 
de microfiche. Certains originaux peuvent egalcment etre obtenus aupres de CAST. 

CENTRES DE DIFFUSION NATIONAUX 

ALLEMAGNE 
Streitkräfteamt / Abteilung III 
Fachinformationszentrum der 

Bundei'swehr. (FIZBw) 
Friedrich-Ebert-Allee 34 
D-53113 Bonn 

BELGIQUE 
Coordmateur RTO - VSL/RTO 
Etat-Major de la Force Aerienne 
Quartier Reine Elisabeth 
Rue d'Evere. B-1140 Bruxelles 

CANADA 
Directeur - Recherche et developpement 

Communications et sestion de 
l'information - DRDCGI 3 

Ministere de la Defense nationale 
Ottawa. Ontario K1A 0K.2 

DANEMARK 
Danish Defence Research Establishment 
Ryvanas Alle 1. P.O. Box 2715 
DK-2100 Copenhagen 0 

ESPAGNE 
INTA (RTO/AGARD Publications) 
Carretera de Torrejön a Ajalvir, Pk.4 
28850 Torrejön de Ardoz - Madrid 

ETATS-UNIS 
NASA Center for AeroSpace 

Information (CASI) 
Parkway Center 
7121 Standard Drive 
Hanover. MD 21076-1320 

FRANCE 
O.N.E.R.A. (ISP) 
29, Avenue de la Division Leclerc 
BP 72, 92322 Chätillon Cedex 

GRECE (Correspondant) 
Hellenic Ministry of National 

Defence 
Defence Industry Research & 

Technology General Directorate 
Technological R&D Directorate 
D.Soutsou 40, GR-11521, Athens 

HONGRIE 
Department for Scientific 
Analysis 

Institute of Military Technology 
Ministry of Defence 
H-1525 Budapest P O Box 26 

ISLANDE 
Director of Aviation 
c/o Flugrad 
Reykjavik 

ITALIE 
Centro documentazione 

tecnico-scientifica della Difesa 
Via Marsala 104 
00185 Roma 

LUXEMBOURG 
Voir Belgique 

NORVEGE 
Norwegian Defence Research 
Establishment 

Attn: Biblioteket 
P.O. Box 25, NO-2007 Kjeller 

PAYS-BAS 
NDRCC 
DGM/DWOO 
P.O. Box 20701 
2500 ES Den Haag 

POLOGNE 
Chief of International Cooperation 

Division 
Research & Development Department 
218 Niepodleglosci Av. 
00-911 Warsaw 

PORTUGAL 
Estado Maior da Forca Aerea 
SDFA - Centro de Documentacäo 
Alfragide 
P-2720 Amadora 

REPUBLIQUE TCHEQUE 
VTÜL a PVO Praha / 

Air Force Research Institute Prague 
Narodni informaeni stfedisko 

obranneho vyzkumu (NISCR) 
Mladoboleslavskä ul., 197 06 Praha 9 

ROYAUME-UNI 
Defence Research Information Centre 
Kentigern House 
65 Brown Street 
Glasgow G2 8EX 

TURQUIE 
Mill! Savunma Baskanligi (MSB) 
ARGE Dairesi Baskanligi (MSB) 
06650 Bakanliklar - Ankara 

NASA Center for AeroSpace 
Information (CASI) 

Parkway Center 
7121 Standard Drive 
Hanover. MD 21076-1320 
Etats- Unis 

AGENCES DE VENTE 

The British Library Document 
Supply Centre 

Boston Spa. Wetherby 
West Yorkshire LS23 7BQ 
Royaume-Uni 

Canada Institute for Scientific and 
Technical Information (CISTI) 

National Research Council 
Document Delivery 
Montreal Road. Building M-55 
Ottawa K1A 0S2, Canada 

Les demandes de documents RTO ou AGARD doivent comporter la denomination "RTO" ou "AGARD" selon le cas, suivie du 
numero de serie (par exemple AGARD-AG-315). Des informations analogues, telles que le titre et la date de publication sont 
souhaitables. Des references bibliographiques completes ainsi que des resumes des publications RTO et AGARD figurent dans les 
journaux suivants: 

Scientific and Technical Aerospace Reports (STAR) 
STAR peut etre consulte en ligne au localisateur de 
ressources uniformes (URL) suivant: 

http://www.sti.nasa.gov/Pubs/star/Star.html 
STAR est edite par CASI dans le cadre du programme 
NASA d'information scientifique et technique (STI) 
STI Program Office, MS 157A 
NASA Lansley Research Center 
Hampton, Virginia 23681-0001 
Etats-Unis 

Government Reports Announcements & Index (GRA&I) 
publie par le National Technical Information Service 
Springfield 
Virginia 2216 
Etats-Unis 
(accessible egalement en mode interactif dans la base de 
donnees bibliographiques en ligne du NTIS, et sur CD-ROM) 

Imprime par le Groupe Communication Canada Inc. 
(membre de la Corporation St-Joseph) 

45, bold. Sacre-Cceur, Hull (Quebec), Canada K1A 0S7 


