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TRUST-REGION PROPER ORTHOGONAL DECOMPOSITION FOR FLOW CONTROL 

E. ARIAN*, M. FAHL+, AND E.W. SACHS* 

Abstract. The proper orthogonal decomposition (POD) is a model reduction technique for the simula- 

tion of physical processes governed by partial differential equations, e.g. fluid flows. It can also be used to 

develop reduced order control models. Fundamental is the computation of POD basis functions that repre- 

sent the influence of the control action on the system in order to get a suitable control model. We present an 

approach where suitable reduced order models are derived successively and give global convergence results. 

Key words, proper orthogonal decomposition, Navier-Stokes, flow control, reduced order modeling, 

trust region 

Subject classification. Applied Numerical Mathematics 

1. Introduction. We present a robust reduced order method for the control of complex time-dependent 

physical processes governed by partial differential equations (PDE). Such a control problem often is hard 
to solve because of the high order system that describes the state (a large number of (finite element) basis 
elements for every point in the time discretization). The proper orthogonal decomposition (POD) is a reduced 

order modeling approach that has been successfully applied for the simulation and control of complex systems, 

see e.g. [1, 3, 4, 5, 6, 10,11,13]. POD based reduced order models are used to avoid the difficulty of dealing 

with large systems by using global basis functions instead of local basis functions for the Galerkin projection 

of the considered PDE. Often a small number of these global basis functions suffices to obtain a satisfactory 

level of accuracy. 

However, the limited number of degrees of freedom in the reduced order POD model constitutes its 

main weakness for optimal control purposes. Since the POD model is based on the solution of the PDE 
for a specified control, it might be a poor model when the controller takes the system from its original 

state towards the optimal state. There is no guarantee that the reduced order process will converge to the 
optimal control of the original (large) system. This difficulty leads us to propose a Trust-Region Proper 

Orthogonal Decomposition (TRPOD) method, that constructs successively improved POD models based 
on the updated control values. By embedding the POD technique into the concept of trust-region (TR) 

methods with general, non-quadratic, model functions and inexact gradient information [8, 16] we are able 

to prove convergence of the proposed scheme. That approach is related with optimization methods that use 

surrogate objectives [2, 7]. 

We concentrate on the application of TRPOD for flow control problems with Dirichlet boundary control 
governed by the time-dependent Navier-Stokes equations (NSE) for viscous incompressible fluids. 
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The paper is organized as follows. In section 2 we review the basic ideas of the POD and derive a 
POD based control model. In section 3 the ideas of TRPOD modeling are presented. In section 4 global 

convergence of the TRPOD scheme is treated. In section 5 several numerical examples are given. In section 

6 we give a short discussion and some concluding remarks. 

2. Reduced Order Modeling Using Proper Orthogonal Decomposition (POD). The starting 

point for POD based reduced order modeling, for flow problems, is the availability of an input collection of 

flow fields yl{x) = y(x,ti) (snapshots). Given the snapshot set 

(2.1) ySNAP = {y\...,yN}, 

the POD technique can be used to identify dominant spatial structures in the flow. For ease of notation we 

assume that the snapshots are linearly independent. Then the POD procedure computes an orthonormal 

basis 

yPOD = {^,...,i>N} 

for the subspace spanned by ySNAP and determines the M most important basis elements for the represen- 

tation of the snapshot set in the above orthonormal basis. 
The (accumulated) error of this optimal truncated basis representation is given by 

N M N N 

(2.2) ePOD(M) = ^l^-E^'^)^H2 = Ell   E   (y'.^Vll2 

i=l j=l i=l     j=M+l 

where 

i/' = E>''^V'   »e{i,...,JV}, 

and can be computed explicitly using singular value analysis [6, 10, 14]. By the choice of M a control of the 

magnitude of sPOD(M) is possible. We call * = {V"1, - - ■, 4>M) a POD basis of order M. 

Expanding the velocity field in terms of the POD basis, 
M 

2/(M) = '^2aj(t)ip:>(x), 
3=1 

and projecting the Navier-Stokes equations onto the subspace spanned by the POD basis yields an M- 

dimensional ODE system for the expansion coefficients: 

(2.3) a{t) = F(a(t),t),    a(0) = a0. 

We call (2.3) a POD model of order M. Combining the solution of (2.3) and the expansion (2.2) results in 

an approximation of the flow dynamics. 
Let us suppose that the snapshot set (2.1) corresponds to a flow behavior forced by a certain Dirichlet 

boundary control value, so we can replace (2.3) with the following (cf. [9, 13, 15]) 

(2.4) ä(t) = F(a(t),u(t),t),    a(0) = a0. 

Here, we assumed the control to be of the following form (u denotes the Dirichlet data and g is a fixed 
function): 

u(x,t) = u{t)g{x)    on Tc. 

We call (2.4) a POD based control model of order M. 



3. The Trust-Region Proper Orthogonal Decomposition (TRPOD) Optimal Control Ap- 
proach. In the following we consider the problem of minimizing 

(3-1) f{u) = \fT f      \y(u)-ydfdxdt 
z Jo   Jnob, 

where y{x,t) = y{\i;x,t) is the solution to the two dimensional Navier-Stokes equations for prescribed 

Dirichlet boundary data, u(x,t), yd(x,t) is a desired state and fi0&s C 0 is the observation volume for the 

observation of the state on the domain ti. With regard to the POD based reduced order modeling approach 

we would ideally like to substitute the 'full' state equations with a POD based control model that could be 

used for the optimal control process. In this case (3.1) is replaced with 

(3.2) fPOD(u) = UT f     \yPOD(u) - y^ dx dt 
z Jo   Jnob, 

where yFOD(u;x,t) is the solution of the POD reduced order model for control value u(t) (using (2.4) as the 
POD based control model). 

A priori it is not clear what is the best way to generate snapshots that are useful for the POD based 

control procedure. A successful POD based control model should represent correctly the dynamics of the flow 

that is altered by the controller. It is therefore natural to improve the POD based control model successively 
by improving the snapshot set that is used to generate the POD basis. 

First, we start with an 'arbitrary' initial control uo(t) and compute snapshots that correspond to the 

flow behavior forced by u0(t). We use these snapshots to compute a first POD basis \J>(°) and to build up a 

corresponding POD based control model. We denote the optimal control based on *(°) by Ui(t). If we use 
ui(t) for the computation of a new snapshot set and a new POD basis *^' we can improve the initial POD 

based control model. The new basis is an improvement in the sense that the minimization of the objective 

function based on *(^ results in an 'optimal' control u2(t) such that /(«2) < /(«i). The solution process 
for the reduced order control problem with respect to this second POD based control model can be started 
with the last control function iterate ui(t). 

If we proceed this way, i.e, given a current iterate, Uk{t), for the control we compute corresponding 
snapshots, {y\,... ,yk

k}, compute a POD basis *(*), build a current POD based control model (PCM)k 

(3.3) (PCM)k &(t) = F{a(t),uk(t),t),    a(0) = a0 

and use this model for the computation of the next iterate uk+i(t) via the minimization of (3.2), we expect 

the POD model to converge to a model that represents the flow at the optimal control of (3.1). 

In order to guarantee the convergence of the above process we additionally embed it in a trust region 
framework. 

For given control value uk we add a trust region constraint to the unconstrained optimization problem 
(3.2) and minimize with respect to s 

(3-4) fPOD(uk + s) = \jT f     \yPOD{uk + s)- y<f dx dt 
z Jo   Jnob, 

subject to 

(3.5) ||«||La < dk. 



Here, yPOD{uk +s;x,t) denotes the reduced order flow solution for given control value uk + s, where the 

POD based control model is generated from the snapshots related to uk. 6k denotes the trust region radius 
at iteration k. 

We define the local nonlinear trust-region model for the original objective / at point uk by: 

(3-6) mk(uk+s):=fPOD(uk+s). 

We denote the gradient of the model function at the center point of the trust region by gk — Vmk(uk). gk 

is an approximation to the gradient of the objective function /. 

The outline of the resulting TRPOD algorithm is given below (a stopping criterion should be added in 
practice). 

Algorithm 1: Outline of the TRPOD algorithm 

Let «o, do, 0 < 771 < T)2 < 1 and 0 < 71 < j2 < 1 < 73 be given, set k = 0. 

1. Compute snapshot set y%NAP corresponding to control uk. 

2. Compute POD basis *W and build POD based control model (3.3). 

3. Minimize the model function within the trust region 

sk = arg min mk(uk + s) 
l|s||<<5fc 

4. Compute f(uk + sk) and set and 

Pk mk(uk) -mk(uk + sk) 

5. Update the trust-region radius: 

• If Pk > V2 ■ set Ufc+i = uk + sk and increase trust region radius ök+i = 73^, set k = k + 1 and 
GOTO 1. 

• If Vi < Pk < V2 ■ set uk+1 =uk + sk and decrease trust region radius <Sfc+1 = ^2Sk, set k = k + 1 and 
GOTO 1. 

• If Pk < 1)1 : set uk+i = uk and decrease trust region radius Sk+i = 71.8k, set k = k +1 and GOTO 3. 

Following [16] we call an iteration successful if pk > r]i, i.e., the actual reduction 

aredk(sk) = f(uk) - f(uk + sk) 

is large enough compared to the predicted reduction 

predk(sk) = mk(uk) - mk(uk + sk). 

In the case pk < 771, we call the iteration unsuccessful. 



For a practical implementation of the above algorithm, in the spirit of trust region methods, two specific 

modifications should be considered. 

First, in the case of a rejection of the new trial step we can adapt the reduction of the trust region radius 

to the step length of the unsuccessful step, in order to avoid a possible number of unnecessary reductions 

that show no effect in the computation of a new descent direction. 

Second, it is not necessary to compute an exact (global) minimum in step 3 of Algorithm 1. Instead, we 

use the following step determination algorithm for the computation of a descent direction [16]. 

Algorithm 2: Step determination algorithm 

Let 

(3.7) 0 < a < ß < 1, 0 < vi < 1, v2 > 0, u3 > 0, 0 < \x < 1 

be given. 

Phase 1: Find A^ such that 

(3.8) mk(uk-X£gk)<mk(uk)-aX£\\9, ■fcl 

(3.9) \\K9k\\<Sk 

and 

(3.10) A£ > Af or A£ > min{^ij^ij, u2} 

where Af > 0 (if required) must satisfy 

(3.11) mk(uk - X^gk) > mk(uk) - ß\f\\gk\\2 

Phase 2: If <5jt > vy. Choose step sk such that 

(3.12) mk(uk)-mk{uk + sk)> /j,(mk(uk) -mk(uk - \kgk)) 

(3.13) ll«*ll<a* 

In Phase 1 of Algorithm 2 we compute a step in the steepest descent direction that guarantees a sufficient 

decrease in the model function. We also ensure that the step stays within the trust region and that the step 

size is not too small. This means that Phase 1 can be interpreted as a substitute for the computation of 

the Cauchy point in standard trust region methods for unconstrained optimization (UTR). Phase 2 allows 

to leave the steepest descent direction if the trust region is sufficiently large. Similar to dogleg methods 

for the approximation of sk = argmin||s||<Ä(. mk(uk + s) in the quadratic model function case by using a 

descent direction that includes a certain part of the step into the steepest descent direction and the (Quasi-) 

Newton direction, the above algorithm first guarantees a sufficient decrease in the model function by using 

the steepest descent direction (Phase 1) and then it allows an optional modification of the step direction in 

Phase 2. For Algorithm 2 the following result holds whose proof can be found in [16]. 

LEMMA 3.1 (Toint '88). Provided that (3.7) holds, there always exists a step sk satisfying the conditions 

(3.8) - (3.13). 



4. Convergence Results. In the context of trust region methods we can interpret the TRPOD ap- 

proach for the optimal flow control problem as a trust region method with a non-quadratic model function 

[16]. 
For this purpose we consider a discretization of (3.1), (3.6) such that f,mk : Mn ->• M. For a given UQ 

in the control space If, let UQ be an open convex subset containing the level set £Q defined by: 

Co = {u 6 w|/(ti) < /(wo)} cUoQU. 

We assume that / satisfies the following standard assumptions: 

• / is continuously differentiable on Ho, 

• f is bounded below on Uo, 

• V/ is Lipschitz continuous with constant L on Uo- 

We emphasize the fact that unlike common quadratic trust region model functions mk(uk + s) is not 

quadratic in s. Furthermore, for the model function mk based on POD we have 

(4.1) mk(uk) / }{uk) 

and 

(4.2) gk = Vmk(uk)^Vf(uk), 

i.e., both the model function value at the trust region's center point and the gradient of the POD derived 

model function are inexact. We assume the models mk to satisfy the following properties [8, 16]: 

• each mk is differentiable 

• there exists a positive integer, N, such that the gradient of each model, gk, satisfies the following 

inequality for k > N, 

( } MUNI     -c 

for some user-specified constant £ > 0, where sk is the step according to Alg. 2. 
Condition (4.3) requires that the normalized reduced order directional derivative in descent direction ap- 
proximates the normalized full directional derivative sufficiently well in the limit. 

Based on the above assumptions we prove the convergence of the TRPOD scheme using techniques 

similar to the standard trust region method for unconstrained optimization. Specifically, we use results of 
Toint [16] concerning trust region algorithms with non-quadratic model functions, and Carter [8] who also 
treated trust region algorithms with inexact gradient information. 

For convergence proofs of standard trust region methods with inexact gradients an essential condition 
is the sufficient decrease condition 

(4-4) /(«*) - f(uk + ak) > \c \\gk\\ min{4, jj^jj} 

for some c>0 and where ||.fffc|| denotes the norm of the Hessian of the model function. 
In the general nonlinear model function case we have to derive an analogous sufficient decrease condition 

by other means. We define the following estimate of a function's curvature along the step s based at a point 
u [16]: 

(4-5) w(f,u, s) := ~(f(u + s)~ f(u) - Vf(ufs). 



The following theorem gives a lower bound to the predicted decrease in the model function [16]. 

THEOREM 4.1 (Toint '88). Assume that \\gk\\ ^ 0 and define according to Algorithm 2 

0 when Af is undefined 

u>(mk,uk,—\kgk)    when Af is defined (4-6) "*-!  M>„,      .„^xfl 

Then 

and there exists a constant cs > 0 SMC/J £Äa£ Algorithm 2 produces a step sk with 

(4.7) mk{uk) - mk(uk + sk) > cs\\gk\\2 mm{\\gk\\2/(l + u)k),6k}. 

As an immediate corollary we get the following result, analogous to the sufficient decrease condition 

(4.4), that describes the decrease in the objective when the iteration is successful [16]. 

COROLLARY 4.2. Let the assumptions of Theorem 4-1 be satisfied and assume that the k-th iteration 

was successful. Then 

f(uk) - /(ujt+i) > mcjpfcll2 min{||fffc||
2/(l + uk),5k}. 

The next lemma is required in the global convergence proof (cf. [8]). Its proof follows from the definition 

of Algorithm 2. 

LEMMA 4.3. Let {sk} be a sequence of steps computed by Algorithm 2 and {gk} the sequence of the 

model gradients.  We define 

T 

(4.8) COS0, :=     ~"kfk 

Nil 115*11 
If liminffc_+00 ||5fc|| > 0   and lim^«, 5k = 0  then 

(4.9) lim cos©* = 1. 
k—»oo 

We now give the main convergence theorem for the TRPOD method. 

THEOREM 4.4. Let f satisfy the standard assumptions. Assume that {uk} is a sequence of iterates 

generated by Algorithm 1 with step determination according to Algorithm 2 and that there exists a positive 

integer, N, such that 

(4.10) Ul7uf8k] * C   /- allk>N 
\\9k\\\\Sk\\ 

for some £ with 0 < £ < 1 — 772 •  We define 

(4.11) bk := 1 + max{max{cjj,|w(mj,U;,s;)|},i = 0,...,fc} 

and assume that there exists some constant c\, > 0 such that 

(4.12) bk < cb   for all k>N. 



Then 

liminf ||flfc|| = 0. 
k—»oo 

Proof: The proof follows by contradiction. We assume that 

(4.13) liminf Hfffcll > e 
K—»DO 

for some e > 0. Using Corollary 4.2 we get 

oo 

(4.14) ]>>*<00 

Jfc=0 

using standard arguments [8]. For k sufficiently large with (4.5) and (4.8) we have 

mk(uk + sk) - mk{uk) - (f{uk + sk) - f(uk)) 
l-pk = 

< 

(4.15) 

mk(uk + sk) - mk(uk) 

^\\sk\\2u}{mk,uk,sk) +glsk - (\\\sk\\2u){f,uk,sk) + Vf(uk)Tsk) 

\\\sk\\2u)(mk,uk,sk) + glsk 

\{Vf(uk)-9k)TSk\ + 5\\sk\\2\u(f,uk,sk) - ui(mk,uk,sk)\ 
~9ksk - ^\\sk\\2u(mk,uk,sk) 

\(Vf(uk)-gk)TSk\ + %\\sk\\2(\u>(f,uk,Sk)\ + \u(rnk,Uk,sk)\) 
llflftll||s*||cos0fc- ^\\sk\\2u)(mk,uk,sk) 

COS0fc - §{H[w(mfc,W;fc,Sfc) 2 list I! 

The Lipschitz continuity of V/ leads to 

(4.16) u(f,uk,sk) <L 

where L is the Lipschitz constant of V/. Combining (4.16), (4.11) and ||sjt|| < Sk yields 

(4.17) 1 - P* < 
cos 0/t - i |N[w(mib, «fc, sfc) 2 113*11 

Now we can use (4.9), (4.10),(4.11), (4.12), (4.13) and Sk -> 0 to deduce that 

(4.18) lim(l-pfc)<C<l-»». 
k—foo 

The above limit implies that there exists k with p^ > 772 for all k > k such that the trust region radius 6k is 
not reduced for all k > k, leading to a contradiction with Sk —> 0 for k -¥ oo. □ 

Remark: Since aj(mk,uk, sk) is a measure for the model's curvature in step direction, assumption (4.12) 

is an analogue to the standard assumption of uniformly boundedness of the models Hessian in the quadratic 
model function case (cf. [12]). 



TABLE 5.1 
TRPOD Parameters 

TR Framework Step Determination 

»7i, »72 0.25,   0.75 a,ß 0.25, 0.75 

7i, 72, 73 0.5, 0.5, 2 "1,   "2,   VZ, ß 0.1,   0.1,   0.1 , 1 

5. Numerical Results. In this section we present numerical studies of the TRPOD based control 

method applied to the standard driven cavity test case. All flow calculations were carried out with the flow 

solver FEATFLOW [17] at Reynolds number Re = 200, on the time interval [0,5], using a uniform grid. The 

parameters for the TRPOD algorithm are given in Table 5.1. 

Two examples are in order. In the first example we choose a small observation domain (1.44% of fi) 

and a small control space (7 control variables). In that example the problem is small enough so that the 

assumptions of Theorem 4.4 can be verified explicitely. In the second example we choose the entire cavity 

to be the observation domain and the control space is of maximum dimension (167 control variables). The 

purpose of this example to illustrate the significant change in the POD basis due to the changes in the 

control input, and to demonstrate the effectiveness of the TRPOD method for larger scale problems. In that 

example we did not verify the assumptions of Theorem 4.4 due to the large number of control variables. 

Example 1. In the first example the control of the cavity flow is the top wall velocity (and there 

is no control action on the bottom wall, i.e., y1 - y2 = 0 on Tbot). We reduce the number of control 

variables by restricting the control space using the expansion u(t) = J2k=iuk<Pk(t) with (px(t) = 1 and 

ip2k{t) = cos(2kirt/T), ip2k+l(t)=sm(2kiTt/T), k = 1,2,..., 7, (R = 7). 

For this example, the desired state yd corresponds to 

ud = (0.8,0.1, -0.3,0,0.1, -0.3,0). 

Furthermore, we chose Qobs = [0.44, 0.56] x [0.44, 0.56] in the center of the domain fi = [0, 1] x [0, 1] and 

initialized the TRPOD algorithm with u0(t) = 0.01 and 60 = 0.25. 

Table 5.2 lists the values of the objective function, f(uk), and the model function at the beginning of 

each iteration k, m{uk). The trust region radius, 6k, the computed step length, ||sfc||, the quotient of achieved 

reduction to the predicted reduction, pk, and the number of POD basis elements, M, at the beginning of 

each TRPOD iteration. Furthermore, for this example we checked if the gradient error condition (4.10) 

(5.1) q==l(g*"v/("*))Tflfcl<i-«2 u 119*11 INI      -    m 

is satisfied. The values of (k are also shown in Tab. 5.2 so that we can realize that (k < 0.25 holds for k > 1. 

Based on the values of sk, mk(uk), mk(uk + sk) and gk we found that (4.12) is satisfied with bk < ch= 2. 

We stopped the TRPOD algorithm after four iterations where the objective function value is reduced from 

/(MO) = 5.99e-4 to f(u5) = 4.67e-7. 

In Fig. 6.1 the control iterates are shown and compared to ud. Fig. 6.2 depicts ud, u4, and the solution 

of the reduced order control problem (without TRPOD), uopt. Figs. 6.3 and 6.4 illustrate the improvements 

in the objective function for this example. 

Example 2. We consider the boundary control of a cavity flow where a vortex evolves resulting from the 

movement of the top wall of the cavity at a constant horizontal velocity. The control action is a horizontal 

movement of the bottom wall of the cavity such that a second vortex evolves that counteracts the first vortex 



TABLE 5.2 

TRPOD-Results (Example 1) 

k /(«*) mk(uk) sk 1Mb Pk C* M 

0 5.99658e-4 5.960310e-4 0.25 0.25 1.58 0.5355 4 

1 3.16328e-4 3.195711e-4 0.5 0.46 1.51 0.1339 4 

2 3.07127e-5 3.768390e-5 1 0.20 0.81 0.1183 4 

3 2.60034e-6 2.454936e-6 2 0.22 0.97 0.1230 6 

4 4.67446e-7 

(see Fig. 6.5). Thus, the control variable, u(t), is the time-dependent magnitude of this horizontal boundary 

velocity. The desired state, yd, corresponds to a predefined time-dependent bottom wall velocity, ud, such 

that we are able to compare the computed optimal control to the exact solution. Due to a time discretization 

of At = 0.03 we get n = 167 control variables, i.e., the control space is of maximum dimension. We choose 

the observation domain to be the entire cavity, Qobs = Q, and initialize the TRPOD algorithm with initial 
control of uo(t) = 0.1 (constant over time) and initial TR radius of Jo = 2. 

Table 5.3 lists the values of the objective function, f(uk), and the model function at the beginning of 

each iteration k, m(uk), the trust region radius, 5k, the computed step length, ||s*||, the quotient of achieved 
reduction to the predicted reduction, pk, and the number of POD basis elements, M, at the beginning of 
each TRPOD iteration. 

In the beginning of the iterative process, the trust region constraint is active for the computed steps, 

and the quotient, pk, indicates that the trust region radius should be further increased, keeping the same 
model, m(uk). However, in the TRPOD method, the state y(uk + sk) is computed in the evaluation of the 
quotient, pk, thus we can use this new information to update the model (instead of keeping the previous 
model). We stop the TRPOD algorithm after 5 iterations, where the objective function value is reduced 
from f(uQ) = 0.229239 to f(us) = 0.000132. 

TABLE 5.3 

TRPOD-Results (Example 2) 

k /(«*) mk{uk) h \\Skh Pk M 

0 0.229239 0.118274 2 2.00 2.36 5 

1 0.149097 0.148143 4 4.00 1.27 5 
2 0.080427 0.080532 8 6.84 1.47 5 

3 0.006864 0.008835 16 2.87 0.93 6 

4 0.000246 0.000795 32 0.29 3.61 8 

5 0.000132 

Fig. 6.6 depicts the control iterates, uk, and compared to the desired optimal control, ud. Fig. 6.7 
depicts ud, «5, and the solution of the reduced order control problem without TR modifications, uopt. In the 
case without TRPOD we used a single POD based control model, corresponding to the initial control u0, 

without imposing a TR constraint. Figs. 6.8 and 6.9 illustrate the improvements in the objective function. 

Fig. 6.10 depicts vector plots of the first four POD basis functions corresponding to the initial control, 
and Fig. 6.11 depicts similar plots corresponding to the computed optimal control. These figures illustrate 
the significant change in the POD basis due to the changes in the control input. 
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6. Discussion and Concluding Remarks. We present a robust, globally convergent, approach to 

optimal control based on POD modeling. This approach can be interpreted in the context of trust region 

methods using general nonlinear model functions with inexact gradient information. Convergence results 

for this class of trust region methods carry over to the TRPOD method. Numerical experiments indicate 

the effectiveness of this approach. Optimization without POD reduced order models requires the solution 

of the full state equation and full sensitivity (or adjoint) equations for each 'value' of the control during the 

optimization process. Using POD based control models we only have to solve the full state equation if we 

intend to build a new model. Then we can perform a sequence of optimization steps using reduced order 

gradient information until we have to update the model. This amounts in saving a lot of computational 

work if the solution of the full state equation (and full sensitivity or adjoint equations) is computationally 

expensive. 

The numerical results also demonstrate that the use of POD for reduced order optimal control, based 

on control input that is far from the solution, may lead to a large error in the approximated solution. 

Unlike the traditional TR theory (see e.g. [2, 16]), we have mk(uk) ^ f{uk)- Still, we do not need to 

change most of the conventional TR convergence theory, since the quality of the approximation of /(ujt) 

by mk(uk) does not enter into the proofs directly. However, we have to guarantee through condition (4.10) 

that the gradient of the model function, Vmj, approximates the gradient of the 'full' objective function, 

V/, sufficiently well. In general we do not expect the model gradient, Vmi, to be a good approximation of 

the gradient, V/, unless sensitivity (or adjoint) information of the 'full' problem is taken into account. In 

this context, it is still not clear, e.g., how to incorporate snapshots of the sensitivities into the POD model 

without compromising the quality of the state approximation. 
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