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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3361

AFRODYNAMIC CHARACTERISTICS OF NACA 0012 ATRFOIL SECTION
AT ANGLES OF ATTACK FROM 0° TO 180°

By Chris C. Critzos, Harry H. Heyson,
and Robert W. Boswinkle, Jr.

STMMARY

The aerodynamic characteristics of the NACA 0012 airfoil section
have been obtained at angles of attack from 0° to 180°. Data were
obtained at a Reynolds number of 1.8 X 100 with the airfoil surfaces
smooth and with roughness applie% at the leading and trailing edges and
at a Reynolds number of 0.5 X 10° with the airfoil surfaces smooth. The
tests were conducted in the Langley low-turbulence pressure tunnel at
Mach numbers no greater than 0.15.

After the stall with the rounded edge of the airfoil foremost, a
second lift-coefficient peak was obtained at an angle of attack of about
450; initial and second lift-coefficient peaks were also obtained with
the sharp edge of the airfoil foremost. The application of roughness
and a reduction of the Reynolds number had only small effects on the 1ift
coefficients obtained at angles of attack between 25° and 125°. A discon-
tinuous variation of 1ift coefficient with angle of attack was obtained
near an angle of attack of 180° at the lower test Reynolds number with
the airfoil surfaces smooth.

At a Reynolds number of 1.8 x 106, the drag coefficient at an angle
of attack of 180° was about twice that for an angle of attack of 0°.
The drag coefficiegts obtained at an angle of attack of 90C at a Reynolds
number of 1.8 x 10° were 2.08 and 2.02 with the airfoil surfaces in a
smooth and in a rough condition, respectively ; the drag coefficient
obtained at an angle of attack of 90° and a Reynolds number of 0.5 X 106
with the airfoil surfaces smooth was 1.95. These values compare favorably
with the drag coefficient of about 2.0 obtained from the literature for

INTRODUCTION

A rotary-wing aircraft in forward flight encounters very high local
angles of attack at inboard locations of the retreating rotor blades.
The local angle of attack may be near 1800 where the local rotational
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speed is less than the forward speed. 1In the past, the operation of
rotary-wing aircraft has been limited to rather low values of the ratio
of forward speed to tip speed so that the area of the very high angle-
of-attack region has been small. Consequently, rather crude spproxima-
tions to the actual airfoil characteristics of the part of the rotor
disk operating within this region have been used in rotary-wing analyses
with satisfactory results.

Some recent trends toward higher forward speeds for rotary-wing
aircraft have resulted in increases in the area of the very high angle-
of-attack region, and the forces contributed by this region constitute
a greater part of the total rotor forces than in the past. Therefore,
airfoil characteristics at very high angles of attack must be available
in order to arrive at dependable performance estimates.

Previous investigations have been made of finite-span wings through
wide ranges of angle of attack (for example, refs. 1 to 3); however, a
search through the literature for similar two-dimensional data yielded
only one paper, reference 4, in which the aerodynamic characteristics of
the NACA 0015 airfoil section were obtained at angles of attack from 0°
to 180°. In order to provide some additional data, & two-dimensional
investigation has been made in the Langley low-turbulence pressure tunnel
of an NACA 0012 airfoil section for an angle-of-attack range extending
through 180°. The NACA 0012 airfoil section was selected because it is
a common rotor-blade airfoil section and because its thickness ratio is
appropriate, even for high tip-speed rotors, for the inboard part of the
blades.

A detailed presentation of the aerodynamic characteristics of the
NACA 0012 airfoil section at angles of attack below the stall and for a
wide range of Reynolds numbers is contained in reference 5. Thus, only
the salient features of the present data obtained in this angle-of-attack
range are discussed herein. Some preliminary results of the present
investigation have been reported in reference 6.

SYMBOLS
c3 section drag coefficient
e, ' section 1ift coefficient
cmc/h section pitching-moment coefficient about quarter-chord point
R Reynolds number based on airfoil chord

o section angle of attack
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APPARATUS, TESTS, AND METHODS

Wind tunnel.- The present investigation was made in the Langley

low-turbulence pressure tumnel. The tunnel, as used in the present tests,

had a closed, rectangular test section which was 7.5 feet high and 5 feet
wide. Air was used as the test medium.

Model.- The two-dimensional model consisted of the NACA 0012 air-
foil section, the coordinates for which are contained in reference 5.
The model was machined from sclid steel, had a chord of 6 inches, and
completely spanned the 3-foot dimension of the tunnel. The maximum
deviation of the model coordinates, at the rounded edge of the airfoil,
from the specified coordinates is believed to have been 0.003 inch.

Method of mounting models .~ The model was supported in the tunnel
by a gimbal arrangement at one end and by a multicomponent strain-gage
balance at the other end. The gimbals restrained the movement of the
model in the 1ift and drag directions but did not restrain the rotation
of the model in the pitch direction. Thus, the balance measured approxi-
mately one-half the 1ift and drag forces and all the pitching moment.

The gimbal arrangement and the balance were located outside the
tunnel walls, and each was separated from the model by a labyrinth-type
seal mounted flush with the inside surface of the tunnel wall. The seals
were approximately 8 inches in diameter and were designed to minimize
the effects of leakage through the necessary deflection clearances. Data
obtained at conditions of maximum 1ift and maximum drag over a wide range
of pressure differences between the inside and outside of the tunnel indi-
cated that leakage through the seals had no measurable effect on the data
presented herein. A more detalled description of a similar model-support
arrangement is presented in reference 7.

Tests .- The data in each test were obtained through an angle-of-
attack range of about 45°; the limits were established by the rotational
range of the end plates to which the model was attached. Angles of atbtack
from 0° to 3600 were obtained by attaching the model to the end plates
at various rotational locations. Measurements of 1ift, drag, and pitching
moment were made at angles of attack of 4°, or less, apart.

Tests were made with the model surfaces smooth and with roughness
applied on the leading and trailing edges of the model. For the tests
with the model surfaces smooth, the surfaces were polished to a high
degree of smoothness when the model was installed in the tumnel. The
surfaces were also wiped clean at the beginning of each test. For the
tests with roughness, 0.005~-inch-~diameter carborundum grains were spread
over a surface length equal to 8 percent of the chord measured from the
leading and trailing edges on both the upper and lower surfaces. The
grains were spread to cover from 5 to 10 percent of this area.
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With the model surfaces smooth, data were obtained through an angle-~
of—attacg range from 00 to 360° at a Reynolds number of approximately
1.8 x 10© and from 0° to 180° at a Reynolds number of approximately
0.5 x 106. With roughness applied on the model, data were obtained through
an angle-of-attack range from 0° to 180° at a Reynolds number of approxi-
mately 1.8 x 106. The stagnation pressure and the Mach number were
1 atmosphere and 0.15, respectively, in the tests at the lower Reynolds
number and 4 atmospheres and 0.12, respectively, in the tests at the
higher Reynolds number.

Corrections .- Theoretically derived expressions were used to correct
the 1lift, drag, and pitching-moment data for the effects of the solid
blockage caused by the constriction of the flow past the model and for
the distortion of the lift distribution caused by the induced curvature
of the flow. Corrections to account for the effects of the blockage
caused by the wake were obtained from measurements of the pressures on
the walls at a point directly above and at a point directly below the
model. Details of these corrections are discussed in reference 8.

Precision of measurements.- The force and moment beams used in the
multicomponent strain-gage balance employed in the present investigation
were designed to give measurement accuracies within 0.1 percent of their
design maximum loads. On this basis, the accuracies of the force and
moment coefficients are shown in the following table:

R=0.5x 106 R=1.8x 100

Cz . - - 'Y - - - - - . . . . 'Y . - L) - . . ' io 00)'1'9 io 0017
Cq o = o o o v o s o s e i e e w w e ... t0.016 $0.006
cmc/u . . . . . . . . t0.017 +0.006

On the basis of repeatability of the data, however, the accuracies are
believed to be considerably better than indicated in this table.

RESULTS AND DISCUSSION

Results at R= 1.8 x lO6 with airfoil surfaces smooth.- The aero-
dynamic characteristics of the NACA 0012 airfoil section, as obtained
in the present investigation at a Reynolds number of 1.8 x 106 with the
airfoil surfaces smooth, are presented in figure 1 for angles of attack
from 0° to 360°.

A maximum section 1lift coefficient, having a value of 1.33 (fig. 1),
occurs at an angle of attack of about 14°. A second lift-coefficient
peak, having a value of 1.15, is shown at an angle of attack of about 450,
The second lift-coefficient peak is much less abrupt than the initial one.
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As would be expected for a symmetrical airfoil section, initial and
second lift-coefficient peaks, having values negative to those obtained
at 140 and 45°, are obtained at 346° and 315°, respectively. For the
sharp edge foremost, initial and second lift-coefficient peaks having
magnitudes of 0.77 and 1.07, respectively, also occur.

The minimum value of the section drag coefficient, although not
shown clearly in figure 1, was found to be about 0.007 with the rounded
edge foremost; however, Wlth the sharp edge foremost, a minimum value of
about 0.014% was obtained. Beyond the stall, the sectlon drag coefficient
increased with angle of attack until a maximum value of 2.08 was reached
at angles of attack of 90° and 270°.

The section pitching-moment coefficient is shown in figure 1 to
become negative after the stall (a =~ 14°) and to remain negative to
a = 180°. The variation of pitching-moment coefficient with angle of
attack is antisymmetrical about an angle of attack of 180°.

. The variations of the force and moment coefficients with angle of °
“attack immediately beyond the stall are shown in figure 1 to be functions
of the direction of change of angle of attack; the direction in which
the angle of attack was changed in this region is indicated in figure 1
by arrows. As the angle of attack was increased beyond the stall, the
1if% coefficient is higher and the drag coefficient is lower than the
values obtained with the angle of attack decreasing from some higher

angle.

Cross plots of figure 1 yielded the drag polar of figure 2(a) and

the pitching-moment polar of figure 2(b). It may be noted in figure 2(a)
that the 1ift coefficient has a positive finite value at an angle of
attack of 90° and a negative finite value at 270°. The finite values
of the 1ift coefficient at these angles of attack can probably be attrib-
uted to the fact that some 1ift is being realized over the rounded edge

; of the airfoil. The finite value of the pitching-moment coefficient at
zero angle of attack in figure 2(b) is probably the result of a slight
asymmetry in the model.

Effects of applying roughness and of reducing the Reynolds number.-
The application of roughness at the lead. %ng and trailing edges of the
airfoil at a Reynolds number of 1.8 x 10° is shown in Tigure 3(a) to have
only small effects on the 1ift coefficients obtained at angles of attack
from 25° to 125°. However, at the stall with the rounded edge of the
airfoil foremost, ‘the effect of roughness was to reduce the maximum 1ift
coefficient from 1.33 to 1.07. Roughness is also shown to reduce the
initial and second lift-coefficient peaks obtained with the sharp edge
foremost and to reduce slightly the lift-curve slope near o = 180°.

At angleg of attack from 0° to 1650, reducing the Reynolds number
from 1.8 x 100 to 0.5 x 100 with the airfoil surfaces smooth is shown to
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have effects on the 1ift coefficient similar to those obtained by the
application of roughness. However, at a Reynolds number of 0.5 X 106,
the initial 1lift-coefficient peak obtained with the sharp edge foremost
was slightly higher than that obtained at a Reynolds number of 1.8 x 10°.
Also, at the lower Reynolds number, the variation of the 1ift coefficient
with angle of attack near an angle of attack of 180° is quite different
from that obtained at the higher Reynolds number. Details of this varia-
tion asre discussed in the subsequent section.

The application of roughness at a Reynolds number of 1.8 x lO6 is
shown (fig. 3(a)) to reduce the drag coefficient at a = 90° from a

value of 2.08 to 2.02; reducing the Reynolds number from 1.8 x 106 to

0.5 X 100 with the airfoil surfaces smooth results in a reduction of
the drag coefficient at a = 90° to a value of 1.95. Thus, the surface
condition and the Reynolds number are shown to have a noticeable effect
on the drag at an angle of attack of 90°. It might be expected that the
lower drag coefficients obtained at « = 90°, with roughness or with
.the lower Reynolds number, might be the result of delayed or incomplete
separation at the rounded edge. If this were the case, the lower drag
coefficients should be accompanied by higher 1ift coefficients than were
obtained for the higher Reynolds number condition with the airfoil sur-
faces smooth. However, the validity of this expectation cannot be cor-
roborated by the present results since the differences in the 1ift coef-
ficients for the three test conditions at an angle of attack of 90° are
small and within the experimental accuracy.

Application of roughness and reduction of the Reynolds number are
shown in figure 3(a) to have only small effects on the pitching-moment
coefficients.

The effects (shown in fig. 3(a)) of reducing the Reynolds number
and of the application of surface roughness on the force and moment coef-
ficients for an angle-of-attack range from -2° to 320 are presented in
greater detail in figure B(b); these effects are typical of what has been
obtained with many airfoil sections in the past and therefore are not
discussed further.

Details of 1lift curves near a = 180°.- The 1lift curves obtained
"near o = 1800 with the model surfaces smooth (fig. 3(a)) are presented
in greater detail in figure 4. At a Reynolds number of 1.8 x 10

(fig. 4(a)), the 1lift coefficient is shown to be a continuous function
of angle of attack through an angle of attack of 180°. The small dis-
continuity in 1ift coefficient at o = 182° is probably due to small
angle-of-attack errors in alining the model previous to one or both of
the tests in which data were obtained at this nominal angle of attack.

At a Reynolds number of 0.5 X 100 (fig. 4(b)), it may be noted that
not only does the 1ift coefficient appear to be a discontinuous function
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of angle of attack, but also the discontinuity occurs. at an angle slightly
greater than 180° for the increasing angle of attack and at an angle
slightly less than 180° for the decreasing angle of attack. It may also
be noted that some differences are evident in the data obtained from two
tests in which the angle of attack was increased from different angles

of attack below 180° to angles of attack beyond 180°. The data of fig-
ure 4(b) indicate that the hysteresis effect persists all the way to the
stall. Comparison of the data of figure 4(b) with those of figure 4(a)
indicates that larger values of 1ift are obtained at the lower Reynolds
number all the way from the discontinuity to the stall. '

The phenomena just described were thought to have the following
explanation: With the airfoil producing positive 1ift near an angle of
attack of 180°, the flow over the sharp airfoil edge produces a small
separated flow region on the upper surface, after which the flow reattaches
to ‘the surface; the boundary layer is turbulent from the point of reattach-
ment to the downstream separation point. On the lower surface the favor-
able pressure gradient, which exists on the surface for a great distance
from the upstream edge of the airfoil, is conducive to a laminar boundary
layer from the upstream edge of the airfoil to the separation point. In
the region of the high adverse pressure gradient at the rounded, downstream
edge of the airfoil, the laminar boundary layer on the lower surface would
be expected to separate at a more upstream location than the turbulent
boundary layer on the upper surface. Under such circumstances, the flow
in the vicinity of the downstream edge of the airfoil would be somewhat
similar to that over an airfoil having a small positive flap deflection.
The sudden change (fig. 4(b)) from an effective positive flap deflection
to an effective negative flap deflection would occur, of course, when
the boundary layer on the lower surface became turbulent and the boundary
layer on the upper surface became laminar. The hysteresis shown in fig-
ure 4(b) probably results from the rather complicated relationship between
the pressure field around the airfoil and the region of separated flow.
Separation points are dependent upon the distribution of surface pres-
sure; however, the pressure distribution in turn depends not only upon

" the boundary Shape of the airfoil but also upon the extent and location

of the regions of separation.

On the basis of the preceding explanation, the presence of turbulent
boundary layers on both the upper and lower surfaces of the airfoll should
eliminate the discontinuity in the 1ift curve. The absence of the dis-
continuity at a Reynolds number of 1.8 x 106 (fig. 4(a)) suggests that

“transition has occurred on the surface upstream of the point at which

laminar separation took place at the lower Reynolds number (fig. 4(b)).

In an effort to obtain some additional information on these phenomena,
1ift data near o = 180° were obtained at a Reynolds number of 0.5 X 106
with roughness on the leading and trailing edges of the airfoil. The
purpose of applying the roughness was to establish turbulent boundary
layers on both airfoil surfaces which, again, would be expected to




8 NACA TN 3361

eliminate the discontinuity in the 1ift curve. The results obtained were
rather inconclusive, however, in that some of the effective~flap effects
were still evident in the data. The roughness in this experiment was

the same as that used in the previously discussed tests at the higher
Reynolds number, and the possibility exists that this size of roughness
at the lower Reynolds number was insufficlent to cause complete transi-
tion to a turbulent boundary layer on both surfaces.

Comparison of present results with those obtained in other facili-
ties .~ The present results obtained with the NACA 0012 airfoil section
‘in the Langley low-turbulence pressure tunnel (Langley LTPT) are compared
in figure 5 with hitherto unpublished data obtained with the NACA 0012
airfoil section in the Langley 300 MPH 7- by 10-foot tunnel (Langley 7 X 10)
and with data from reference 4 obtained with the NACA 0015 airfoil section.

The data of the present investigation, shown in figure 5, were
obtained at a Reynolds number of 1. 8 x 106 with the airfoil surfaces
smooth. Curves are shown for the data as obtained (uncorrected for tunnel-
wall effects), corrected for tunnel-wall effects by the method of refer-
ence 8 (same data as in fig. 1), and corrected for tunnel-wall effects
by the equations of reference 9. Application of the tunnel-wall correc-
tions of either reference 8 or 9 to the present lift and drag data is
shown in figure 5 to yleld essentially the same result even for the drag
coefficient at an angle of attack of 90°.

The investigation in the Langley 300 MPH 7- by 10-foot tunnel was
made at a Reynolds number of 1.36 x 106 and a Mach number of about 0.20.
The l-foot-chord model used in these tests completely spanned the T-foot
dimension of the tunnel so that the ratio of airfoil chord to tunnel
height was 1.5 times the ratio for the present investigation. The
Langley 300 MPH 7- by 10-foot tunnel data were corrected by the equations
of reference 9 and the corrected data, as shown in figure 5, are in good
agreement with the corrected data of the present investigation.

The tests of reference 4t were made at a Reynolds number of l 1.25 x 106
with a 1.5-foot-chord NACA 0015 airfoil section spanning the shorter dimen-
sion of a 2.5~ by 9-foot tunnel. The indicated airspeed of the tests is
stated in reference 4 to have been 80 miles per hour; the 1ift and drag
characteristics were determined from both force and pressure measurements.
Only the results of the force measurement are presented in figure 5. A
conclusion, based on some experiments and assumptions, was reached in
reference 4 that tunnel-wall corrections to the data presented therein
‘Were unnecessary,

The 1ift and drag coefficients for the NACA 0015 airfoil section
as obtained in reference 4 are shown in figures 5(a) and 5(b) to be much
less than those for the NACA 0012 airfoil discussed previously. The
differences in the data obtained with the two sections appear greater
than could be attributed to a change in thickness ratio from 12 to 15 per-
cent. Use of the pressure measurements from reference 4 for the comparisons

-
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would yield no better overall agreement in the 1lift variations and would
yield poorer agreement in the drag variations since the friction drag
would not be included. Application of tumnel-wall corrections (for
example, those of ref. 9) would result in even greater disparity in the
data obtained with the two sections.

The drag coefficient for a flat plate of infinite aspect ratio
inclined normal to the flow is found in the literature (for example,
refs. 10 to 13) to be very nearly 2.0. This value compares favorably
with the drag coefficients obtained in the present investigation with
the airfoil at an angle of attack of 90°.

The data of reference 10 show a marked effect of aspect ratio on
the drag of a flat plate at o = 90O For example, the drag coefficient
of a flat plate having an aspect ratio of 20 is shown to be about 1.48
in comparison with the two-dimensional value of 2.0. As pointed out in
reference 6, this result emphasizes a basic question, not yet resolved,
as to how two-dimensional data should be applied to a rotating wing for
those cases in which the flow over one surface is characterized by exten-~
sive regions of separation.

CONCLUSIONS

- The following conclusions may be made regarding the resﬁlts of an
investigation of the aerodynamic characteristics of the NACA 0012 air-
foil section at angles of attack from 0° to 180°:

1. After the stall with the rounded edge of the airfoil foremost,
a second lift-coefficient peak was obtained at an angle of attack of
about 45°. Initial and second lift-coefficient peaks were also obtained
with the sharp edge of the airfoil foremost. The values of the 1lift
coefficient at the initial and second peaks with the rounded edge of
the aijrfoil foremost and at the initial and second peaks with the sharp
edge foremost were 1.33, 1.15, 0.77, and 1.07, respectively, at a Reynolds
number of 1.8 x 10° with the airfoil surfaces smooth.

2. A small finite value of the 1lift coefficient obtained at an angle
of attack of 90C was probably the result of rea11z1ng some 1ift over the
rounded edge of the airfoil.

_ 5. Application of surface roughness at the leading and trailing
edges and reduction of the Reynolds number had only small effects on the
1ift coefficients obtained at angles of attack between 25° and 125°.

L. At a Reynolds number of 0.5 x 106 with the airfoil surfaces
smooth, a discontinuous variation of 1ift coefficient with angle of
attack was obtained near an angle of attack of 180°; this result is
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believed to have been caused by a difference in the chordwise locations
of the separation points on the upper and lower surfaces.

5. At a Reynolds number of 1.8 x 106 with the airfoil surfaces
smooth, the section drag coefficient at an angle of attack of 180° was
about twice that at an angle of attack of 0°.

6. The drag coefficients obtained at an angle of attack of 90° and
a Reynolds number of 1.8 x 106 were 2.08 and 2.02 with the airfoil sur-
faces smooth and rough, respectively; the drag coefficient obtained at
an angle of attack of 90° at a Reynolds number of 0.5 X 106 with the air-
foil surfaces smooth was 1.95. These values compare favorably with the
drag coefficient of about 2.0 obtained from the literature for a flat
plate of infinite aspect ratio inclined normal to the flow.

T. The quarter-chord pitching-moment coefficient became negative
after the stall and remained negative until an angle of attack of 180°
was reached. '

8. The data of the present investigation were found to be in good
agreement with results obtained with a different model of the same air-
foil section in another facility where the ratio of airfoil chord to
tunnel height was 1.5 times larger than that for the present investigation.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., October 11, 1954.
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(b) Pitching moment.

Figure 2.- Concluded.
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Figure 3.~ Concluded.
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Figure U.- Variation of section 1lift coefficient with angle of attack
for NACA 0012 airfoil section in smooth condition near an angle of

attack of 180°.
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