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Chapter 1 

Introduction, Motivation and Background 

This thesis deals with the topic of ultrafast, all-optical switching and logic using spatial and spatio-temporal solitons. The 
main focus is on the accurate analytical and numerical modeling of the interaction among solitons in geometries that allow 
for logically-complete, cascadable logic gates with fanout and level restoration. Detailed modeling will assist in subsequent 
experimental investigation by identifying regions of stability, robust operation and reliability, and candidate material systems. 

The work in this thesis makes significant contributions in the areas of fundamental nonlinear spatio-temporal propagation 
and optical switching and logic. The first contribution is the result of a multiple-scales derivation directly from Maxwell's 
equations, which results in a first-order, multi-dimensional, vectorial differential equation that is accurate beyond the standard 
paraxial and slowly-varying envelope and amplitude approximations. This result is fundamental to the studies of this thesis 
and will have application in other areas as well, such as optical communications, short-pulse passively mode-locked lasers, and 

atmospheric pulse propagation. 
The second contribution arises from the systems-level approach taken to optical switching and logic. Most optical switching 

technologies do not satisfy the basic requirements for a logic gate, thereby rendering them of little use in applications beyond 
simple, smele-staee switching operations. The novel logic gates studied here satisfy the necessary requirements and thus have 
the potential to make an impact in areas of ultra-high speed switching and logic systems. The desirable properties of these logic 
gates are facilitated by the non-diffracting and/or non-dispersing nature of optical solitons. 

1.1    Outline 
The remainder of this chapter briefly presents background in device requirements and optical switching and logic. Section 1.2 
provides motivation and a brief overview of promising applications for optical logic. Section 1.3 covers generic requirements 
for switching and logic devices and additional specific requirements for optical devices. A brief review of other contemporary 
optical switching devices and their shortcomings is presented in section 1.4. Logic devices which specifically take advantage 
of the properties of optical solitons are discussed in section 1.5. which also provides an introduction to the optical soliton logic 
cates.studied in this thesis. 

Detailed background on optical solitons is given in Chapter 2. First, section 2.1 provides historical background in solitary 
wave and soliton phenomena. Section 2.2 covers some preliminary details that lead directly to the discussion of optical solitons 
and solitary waves. The following sections then discuss spatial (sec. 2.3), temporal (sec. 2.4), and spatio-temporal (sec. 2.5) 
optical solitons. 

Chapter 3 derives the multi-dimensional vector wave equations necessary for the numerical simulations of the soliton-based 
logic gates presented in later chapters. Section 3.1 covers a standard treatment of a fully vectorial, nonlinear Helmholtz- 
type wave equation along with background on the linear and nonlinear susceptibilities. This second-order wave equation is 
unsuitable for the purposes of this thesis due to the difficulty in numerically propagating an initial field distribution because 
of the fast time and space scales in the equation. Instead, section 3.2 derives an asymptotic vector nonlinear wave equation 
directly from Maxwell's equations which is first-order in the propagation coordinate and depends only on the scales of the 
slowly-varying envelope, and is thus more suitable for numerical propagation. The importance of the results obtained in this 
chapter arises from the higher-order nature of the derived equation, which extends beyond the approximations made in the 
well-known multi-dimensional nonlinear Schrödinger (NLS) equation, resulting in the capability to describe propagation of 
vector optical field envelopes with very broad spectral content in both the spatial and temporal frequency domains, including 
the effects of higher-order nonlinearities. 

Chapter 4 describes the split-step numerical method used to solve the vector nonlinear wave equations.   The basis of 
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this method is to treat linear and nonlinear (inhomogeneous) propagation in separate steps, performing linear propagation 
in its natural Fourier domain and nonlinear propagation in the real-space domain. For a small step size, this splitting is a 
good approximation. Section 4.1 covers multi-dimensional linear spatio-temporal diffraction, which can be solved without 
approximation as an initial value problem. Noting that linear and nonlinear propagation are not separable, section 4.2 derives a 
split-step formulation which is approximately second-order accurate in step size. This formulation is then applied separately to 
(1+1)-D spatial and (2+l)-D spatio-temporal nonlinear propagation, to be used in later chapters. Finally, section 4.3 discusses 
the accuracy of the method as it applies to problems of later chapters. 

The use of one-dimensional spatial soliton interactions for logic gates is presented in Chapter 5. The first section covers the 
basic soliton interaction geometries useful for three-terminal, restoring logic, noting that the collision and dragging geometries 
using orthogonally polarized solitons, which are of the general class of angular deflection gates, provide the best performance 
in terms of large gain with high contrast. Section 5.3 then examines the effects of linear and two-photon absorption on the 
propagation of a single spatial soliton and develops appropriate figures-of-merit for use in comparing the suitability of nonlinear 
materials for soliton logic gates. The collision and dragging logic gates are then compared in the presence of absorption using 
the material parameters of fused silica, where the spatial dragging gates generally perform better because of their shorter gate 
lengths. The final section (5.4) computes the transfer functions of the collision and dragging gates and determines the maximum 
fanout that these gates can provide in a cascaded system. The results of this chapter provide guidance for the spatio-temporal 
logic gates of the next chapter, which is of ultimate interest. 

" Logic gates based on the interactions between two-dimensional spatio-temporal solitary waves is the subject of Chapter 6, 
which have the potential for greater than THz switching rates with nJ to pJ switching energies. Section 6.1 discusses the 
propagation of a single spatio-temporal solitary wave with higher-order linear and nonlinear effects as derived in Chapter 4. 
This section shows numerically that stabilized solitary waves suitable for logic gates should exist. With these results, section 6.2 
studies the vectorial interaction between these spatio-temporal solitary waves with emphasis on the dragging interaction. For 
completeness, section 6.3 presents results on cascaded logic. It is shown that the dragging logic gates can provide reasonable 
fanout in a cascaded, logically-complete, system, but also that, ultimately, the performance of the logic gate will be limited by 
the effects of Raman scattering. 

Finally. Chapter 7 concludes, noting that this thesis provides the theoretical and numerical development that is necessary to 
study a novel class of all-optical logic gates. Numerical simulations have shown that these gates satisfy the system requirements 
that suggest their use beyond simple, single-stage operation, and paves the way for future theoretical and experimental work on 
ultratast. all-optical logic systems. 

1.2   Applications in Switching and Computing 

The traditional advantages that optics hold over electronics are the inherent speed, parallelism, and lack of inductive or ca- 
pacitive crosstalk, although crosstalk does occur to some extent in linear propagation due to scattering and diffraction, and in 
nonlinear propagation, which plays an important role in the topic of this thesis. These properties allow linear optics to map 
well onto problems in interconnection [1]. It is generally accepted that optical interconnects will replace electric transmission 
lines in many applications. Indeed, this is already occurring in long-haul communications networks and is expected to occur 
in short-haul and local-area networks as well. It is an open question to determine how far down the interconnect hierarchy this 
trend will reach, but it is fairly clear that it will extend to system level switching fabrics. In all of these cases though, the data 
is actually switched electronically, or under electronic control, and processed electronically. 

It is less clear what role optics will play in switching and digital computing however. The soliton-based logic devices studied 
in this thesis are one approach to all-optical logic for switching and computing applications. Numerous all-optical switching 
and logic devices have been proposed, but none so far have reached the stage of practicality for real systems. There are certain 
minimum requirements for a logic device, and many of the optical approaches to logic fail to meet them. These requirements 
are discussed in section 1.3 and some contemporary optical switching devices and their failings are discussed in section 1.4. 
A clear understanding of these failings aids the present study of optical soliton-based logic devices. As section 1.5 explains, 
the soliton devices completely satisfy the fundamental requirements (and most of the practical requirements as well) for digital 
logic 12,3] and might succeed where the other optical approaches have failed. 

The following sections discuss two general areas for which restoring, cascadable logic gates, such as those studied in later 
chapters of this thesis, might find widespread application. 

1.2.1    Optical Communications Networks 
With the advent of high-bandwidth optical communications [4], high-speed switching technology becomes a necessity. Because 
information will be transmitted optically, it makes sense to explore optical technologies and devices to perform (or at least assist 
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in) the switching necessary to multiplex, demultiplex, and route information to the correct destination. Future bandwidth needs 
will be too great for an electronic-only solution to the switching problem. An advantage of optical devices in communications 
systems is the ability to switch and/or perform logic at the bit rate. This means that switching and logic operations are performed 
at and scale with the rate of incoming data, which is especially important in Tb/s communications switching and routing 
applications. Conversely, interconnected electronic gates cannot arbitrarily scale with the data rates and may ultimately be 

limited to speeds of about 50 Gbit/s [5]. 
Optical switching and logic devices are well suited for time-division multiplexed (TDM) data transmission [6], m which 

many low bandwidth channels are interleaved into individual time slots within a single high bandwidth channel. Here, the 
aggregate data rate may exceed 100 Gb/s [7], which is well beyond the performance expectation of practical, low power, 
electronic or optoelectronic switching networks. Therefore, at the very least, optical switching technology will find use in the 
intermediate processing layer in which the individual channels are optically separated (demultiplexed) from the single, high- 
speed transmission channel, for subsequent processing in the electronic/optoelectronic domain. An additional area of use is in 
data regeneration within an optical transmission line, which requires an optical logic gate. Given sufficient noise margins, an 
opticaltogic gate regenerates a noisy or attenuated data stream with fresh pulses that are derived from a power supply or clock, 
such that liming, amplitude, shape, etc., are completely restored. This type of all-optical repeater may eliminate the need for 
high-speed, high-power electronic repeaters in long-haul transmission. 

Currently, the most popular multiplexing technique for long-haul communications and local-area optical networks is wave- 
length division multiplexing (WDM), in which each low bandwidth source channel is assigned a slot in the optical frequency 
spectrum. WDM has the advantage that multiplexing and demultiplexing can be performed by spectrally selective, passive, 
optical elements. However, due to the difficulties in developing a large array of stable wavelength sources, the individual 
channels in a WDM system may exceed data rates of 10 Gb/s [8,9], which may be of sufficient bandwidths that other advan- 
tages of optical switching and logic devices, such as the elimination of the optoelectronic conversion process [10], potentially 
lower power, and the use of deep optical circulating delay lines [11] for contention resolution, may play a role in the choice of 

implementation technology. 
More complex operations are required in packet switched optical networks [10,12]. In these networks, at each node, a 

packet header is decoded, which determines the direction in which to route the packet. Header recognition is a simple digital 
correlation operation, but must be performed at the bit rate. Typical implementations based on optical switches [13] perform 
this operation in parallel, which results in a 1//V loss where TV is the number of bits in the header. In order to reduce the latency 
at each node and avoid the fanout loss, a digital comparator, or shift register, could be used instead, based on optical logic gates. 
In addition, optical logic could be used for contention resolution, real-time encryption/decryption, and other complex tasks as 
well. Therefore, intelligent digital optical processing may'play a significant role in the development in the next generation of 
high-speed optical communications networks. 

1.2.2   Digital Optical Computing and Processing 
Determining what role optics should play in general-purpose computing is an open question. The technological lead, resources, 
and infrastructures that electronics enjoy may be insurmountable for general-purpose optical computing. Even a compelling 
optical technology may not be enough to impact the future of digital computing, but there is potential in niche areas which are 
discussed in this section. 

Simple digital optical logic circuits have been demonstrated [14,15] and proposed [16], which pave the way for more 
complex systems. However, many of these studies have been based on optical switches or gates that do not completely satisfy 
the requirements for digital logic. For example, the nonlinear Fabry-Perot etalon [17] is a two-terminal device which must be 
biased about an operating point with a holding beam and is very sensitive to variations in device parameter (i.e. the transfer 
characteristics vary from device to device). All of these factors preclude their use in complex systems. The logic gates studied 
in this thesis, on the other hand, do not suffer from these problems and could serve as fundamental building blocks in more 
complex systems. 

In the absence of high space-bandwidth optical interconnections, bit-serial computation and signal processing [18] is a 
promising application area, especially when the problems of interest can be processed in a highly pipelined manner [19]. 
Genera! purpose optical computers [20] have even been demonstrated using the bit-serial approach. One potential limitation 
for ultra-fast digital optical computing is the memory store. It has been shown, however, that an optical delay line can be 
used to implement a general machine [16], at the cost of increased latency. These tradeoffs are based on the transformations 
of computational origami [21]. Even more computational capacity can be realized with the combination of optical logic gates 
with optical interconnection, for which the power of the interconnection network allows for the efficient mapping of problems 
that would be difficult to process electronically [22]. 
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1.3   Requirements for Digital Switching and Logic Devices 

Routing switches and logic elements must possess certain properties in order to function properly within a system. The major 
distinction made here between switching elements and logic gates is that switching elements physically direct electrons or 
photons from one or more input ports to one or more output ports, while logic gates replace electrons or photons on the input 
ports with "new" electrons or photons derived from a power supply which then appear at the output ports. The requirements 
for a switching device are much less stringent than those for a logic device and will be discussed first. Additional requirements 
for an optical logic device are discussed in the following section. 

1.3.1 Switching Devices 
Optical routing switches are typically used just in the first switching stage to reduce data bandwidth to a level that electronics 
can handle in subsequent stages. These switching elements use a control to physically direct light from one or more input 
ports to one or more output ports and thus can be used to implement multiplexing and demultiplexing functionality. The 
routing decision is based either on the intensity of the signal inputs or by the presence of an externally derived control which 
is independent of the switching fabric. Therefore, the control is typically not of the same format as the data, meaning that the 
output of the switch cannot directly serve as the control for another switch [3]. As a result, this type of routing switch has fewer 
requirements than a logic gate. 

The most important requirement of a switching device is high contrast operation. In binary transmission, the contrast 
determines the threshold level which separates the high and low states. Higher contrast gives larger noise margin, resulting in 
lower bit-error-rate (BER). For the output of a switching element, the overall contrast depends both on the contrast of the data 
stream (the difference in signal level between the two binary states which depends on the modulation ratio at the input of the 
transmission line and on the transmission line itself) and the contrast of the switching operation. 

Another important requirement is switch transparency. If the switch is lossy or only a small fraction of the input is diverted to 
the output by the switching action, then high-speed, single-shot detection may become impossible, resulting in information loss. 
This does not mean that the switching operation must provide gain, though. For high-contrast output, saturation of an external 
amplification stage can be used to restore the data signal levels, but the gain recovery time may limit the data rate and introduce 
inter-symbol interference, the contrast at the output of the amplifier may be reduced, and complete logic level restoration (as 
discussed later for optical devices) is not obtained. The amount of gain is also limited due to amplified-spontaneous emission 
(ASE) noise, which increases the noise floor. 

Routing switches do not have signal level restoration (in the absence of external amplification or level shifting) and the 
outputs may degrade due to loss or crosstalk and therefore BER may suffer from a long cascade of switches. If data pass 
through many levels of switching, such as in a multi-level implementation of an N:N crossbar or the binary tree structure 
required for 1:N or N:l multiplexors or demultiplexers constructed from 1:2 or 2:1 switches, then gain and level restoration 
as mentioned previously may be a necessity, subject to the limitations discussed in addition to ASE noise. Three-terminal 
operation also becomes necessary when many levels of switching elements are used such that the operation of the switch in 
unidirectional, which prevents any light entering the output ports from affecting the operation of the switch. 

Therefore, in order to implement more complex, multi-level switching fabrics, or to handle data-dependent (i.e. self-routing) 
switching operations, switching elements must have the additional properties and fulfill the more demanding requirements of a 
logic gate. It is in these applications that most all-optical switching devices are inadequate, as discussed in section 1.4. 

1.3.2 Logic Devices 
A digital logic gate performs a Boolean operation on one or more binary inputs. All inputs and outputs are of the same physical 
format thus allowing control to be distributed throughout the switching fabric [3] such that one data stream can control another. 
The logic gate completely restores signal integrity and timing by replacing the electrons or photons at the input with new 
electrons or photons from the power supply that go to the output. 

Logic levels (i.e. 0 or 1 in digital logic) are physically represented by signal levels, which may be voltage or current 
for electronics; or for the representationally richer case of optical logic, amplitude, phase, polarization, or color, and are 
differentiated by a threshold nonlinearity. Information is carried by the logic level and is determined by the interpretation 
of the signal level (based on the threshold). Since the signal level can be altered during a logic operation, small noise or loss 
can accumulate throughout the computation and cause information loss. A digital representation of information avoids this 
degradation if the signal level is restandardized at each step [23]. Restandardization means that the signal levels are restored to 
values (that are the same throughout the system) which represent valid logic states. As a result, a small deviation about a valid 
logic level propagates at most one stage and the logic level remains intact (within the allowable noise margin). The is termed 
logic level restoration. 
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Fieure 1.1: nMOS inverter circuit and associated transfer function. Near the threshold voltage is a region of small-signal gain. 
Large-signal gain is also provided (Vdd > Kh) and the high and low output states are saturated. 

The properties required by a digital electronic [24] or optical [25] logic device are well known. Perhaps the most important 
requirements, upon which many other requirements depend, are gain, saturation, and threshold. These characteristics are illus- 
trated in Figure 1.1, which shows the sigmoidal input-output relationship for a simple nMOS inverter. At the most fundamental 
level. a region (typically near the input threshold) of differential or small signal gain in the input-output transfer function, where 
a small change in the input produces a large change in the output, is required (but not sufficient) for a restoring logic gate [26]. 
Small-signal gain provides sharp switching characteristics and allows for low modulation depth on the input signal biased about 
the threshold level to produce high contrast switching. Outside the linear region of small-signal gain, saturated levels are key 
to providing large noise margin by attenuating small variations in the input about valid logic levels (i.e. inputs lying within the 
"on" and "off" regions shown in the figure), thus producing little change in the output. 

Restoration of the logic level prevents accumulation of errors due to attenuation or crosstalk by providing fresh gate output 
levels direct] v from the power supply. In the case of an optical gate, logic level restoration must include, in addition to power 
levels, beam shape and position, pulse duration, color, polarization, and timing [25]. These levels are standardized throughout 
the entire system typically by the common power supply and ground. Standardization is possible because small-signal gain and 
saturated levels in the nonlinear transfer function allow for a wide tolerance to the variation in operational characteristics of the 
devices in the system [24]. 

Large-signal gain means that the output of the gate is larger than the input required (at least threshold) to switch the gate. 
Without large-signal gain, fanout, in which the output of a gate provides inputs to many gates in order to implement arbitrary 
logic functions, is impossible. Most optical logic gates cannot intrinsically provide large-signal gain, and in fact, the output is 
typically much smaller than the input. Although a separate, external amplification stage can be used, this may limit the bit rate 
and result in reduced contrast and increased BER when the amplifier noise exceeds the device noise margins. A logic gate with 
intrinsic gain, in which a small input controls a large power supply, does not suffer this source of noise. 

Additional requirements for synthesis of arbitrary logic and switching are logical completeness and cascadability. A com- 
plete set of logic functions must include inversion [24]. Inversion is a basic function of MOSFET electronics and the inverter 
structure forms the basis towards implementing more complex Boolean operations such as multi-input and logically complete 
NOR. Cascadability means that the output of one gate can directly drive the input to the next and allows the direct implemen- 
tation of multi-level logic. Logic level restoration and inputs and outputs of the same format are therefore crucial to allowing 
cascadability. 

The most successful logic devices have three orthogonal ports (which can be separate in time, space, wavelength, or polar- 
ization) and input-output isolation. A three-terminal device, such as an electronic transistor, ensures that the output of the gate 
depends only on the inputs and the output does not perturb the operation of the gate [24]. This input-output isolation results in 
one-way operation and prevents downstream noise which enters the output port from affecting the operation of the gate. There 
are many examples of two-terminal devices in optics. The problem with two-terminal devices is that they work equally well 
in either direction [25]. The classic examples are the laser [27] (a two-terminal device with gain) and nonlinear Fabry-Perot 
etalon [17] which, when critically biased [28], can switch either through the input or through an unwanted reflection back into 
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the output. 

1.3.3   Optical Devices 
The main additional requirement for an optical logic device is operation independent of the relative phase between the beam or 
pulse of light that induces the switching operation and the one that is switched. Phase-sensitivity is not an issue in electronic 
devices since the phases of the interacting electrons are continuously randomized from phonon collisions [3]. Phase insensitive 
logic operation is critical in optics because of the coherence of laser sources and since phase is difficult to control in complex 
systems due to the small optical wavelength. An optical logic gate can be made insensitive to relative phase by using the 
interaction between optical inputs of orthogonal polarizations or inputs that are spectrally resolved in angle or frequency such 
that there is no linear interference, but there may be nonlinear interference. 

Material nonlinearity is a necessary requirement in order to implement an optical logic gate. The desire for a low loss, 
ultrafast gate opposes the desire for low switching energy which can be achieved via the use of resonant nonlinearity. Because 
of the large loss associated with resonant nonlinearity, most ultrafast optical switching and logic gates utilize a much smaller 
nonresonant nonlinearity. A detailed exploration of the effect of loss on optical soliton logic gates is presented in section 5.3. 

It is also desirable for the nonlinear coupling between the interacting optical fields to depend only on intensity, but this can 
only be guaranteed in certain situations, such as with orthogonal circular polarizations in bulk isotropic media [2,29]. Other 
situations can reduce phase-dependent nonlinearity by using the accumulating phase difference between orthogonally polarized 
linear eigenmodes of naturally or artificially birefringent media to wash out the phase-dependent nonlinear effects. 

1.4   Digital Optical Switching and Logic Devices 
Some oi the most promising all-optical devices for ultrafast switching and logic are the nonlinear directional coupler (NLDC), 
optical Kerr gate, nonlinear optical loop mirror (NOLM) or Sagnac gate, and the terahertz optical asymmetric demultiplexer 
(TOAD i and its variants. Even though these devices may possess a region of small-signal gain, only the NLDC has saturated 
levels in the device input-output curve and none intrinsically provide a robust way to obtain large-signal gain. As a result, the 
main requirements for these devices are those of a single-stage switch, the most important of which is high contrast, which 
results from complete switching. 

In man\ of these devices, complete switching occurs upon accumulation of a n differential nonlinear phase shift. This phase 
is bet ween'two independent components of the same beam or pulse and is not to be confused with the relative phase between 
control and data as discussed earlier on phase-insensitive operation. The accumulated nonlinear phase shift can be written 

sienencalh 

A* = S=^W3</, (1.1) 
Kf 

where //; is the nonlinear Kerr coefficient defined by the total index n = n0 + n2 \A\2, Kf is the free-space wavelength, d. is the 
interaction length. A is the electric field amplitude of the light that induces the switching operation, and 8 is a constant factor 
determined bv the nonlinear interaction. The phase shift is proportional to the nonlinear index, the peak intensity, and the 
interaction length, and can be made large by an increase in any one of these parameters. At the output of the device, this phase 
shift manifestsitself as an amplitude change, either as a rotation of the polarization followed by an analyzer or due to coherent 
beam combining at an output coupler. 

F.ven though silica has a small nonlinear index for example (see Appendix D), low loss fiber can provide very long inter- 
action lengths"*/ with tight transverse confinement [30], thus making fiber based switching devices very popular [3]. Because 
switching occurs within the fiber, the control and data must be of different wavelengths and/or polarizations in order to avoid 
the power loss in coupling in the absence of phase locking and in order to discriminate the switched data from the control at 
the output. As a result, operation independent of the relative phase between data and control is achieved, but group-velocity 
or birefringence walkoff limits the interaction length (the walkoff must be less than the pulse durations) and therefore the data 
rate. These devices are now discussed individually in some detail. 

1.4.1    Nonlinear Directional Coupler 
This nonlinear switching device is based on the directional coupler as shown in Figure 1.2. The linear directional coupler relies 
on the coherent interaction between two waveguides placed near each other. The coherent interaction is due to evanescent 
overlap between fields confined within the individual waveguides and results in periodic energy exchange between the guides. 
The presence of nonlinearity frustrates this coherent exchange by detuning the waveguides and can result in intensity-dependent 
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Figure 1.2: Directional coupler. In linear operation, energy is exchanged periodically between guides in the coupling region. 
Nonlinear operation can frustrate this coupling, resulting in controlled switching. 

switching between the output ports. The NLDC was originally proposed [31] as an alternative to bistable switching devices such 
as the nonlinear Fabry-Perot etalon. More recently, it has received much attention, particularly in the capacity of a prototype 
all-optical switching device [32], and for ultrafast optical demultiplexing [33]. 

In the limit of weak coupling between identical guides, the coupled mode equations for the NLDC are 

dA 
-/'—— =K/l2 + *//!2|i4i|-i4i 

oz 
(1.2) 

(1.3) 

where K is the linear coupling constant, and Ax and Az represent the electric field amplitudes in guides 1 and 2 respectively. 
Assuming no nonlinearity, the amplitude in each guide can be written 

92/l, 
-^r=-K-Ai 

d: 
i4,j:) = rt|Cos(K;)+Z>isin(Kc) (l-4a) 

,  --K2
A2   =>   A2(z) = n:cos(IC) 4-^:sin(ic). (1.4b) 

dz~ 

With the boundary conditions A ,(0) = A0 and A2{0) = 0. the coefficients b\ = a2 = 0, leading to the result 

i4,(c)=A0cos(Kc) 0-5a) 

/!:(:) =A0sin(»c:). (l-5b) 

The output intensities at the bar and cross ports are given by 

/,{</) =/„cos: (Ttf/Icoh) 0-6a) 

/;(</) = /„ Sin2 (TlJ/Lcoh)- (L6t>) 

where the coherence length is defined ^oh = JI/K and is the length over which light is completely coupled from one guide to 
the other and back. Therefore, for a half-beat length coupler with d = ZW2, input into guide 1 emerges at the output from 
guide 2 (cross state). 

In nonlinear operation, using the nonlinear coupled-mode equations, the fractional intensity in each guide is written [31] 

/,(</)      1], 2nd 
-il-i = -I 1+cn    -—, 

/o -   [ \Z-coh 

/„        2 1 \ L 

I 

•coh 

'crit. 

/ 

.A:rit 

(1.7a) 

(1.7b) 

where cn() is a Jacobi elliptic function. As before, this solution assumes that there is no light initially launched into guide 2. 
The critical intensity is defined as 

/ , -    Xf (1.8) 
'cm —    /,      1 v     ' 
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Figure 1.3: Operation of half-beat length nonlinear directional coupler. For low power, or linear, operation, the input pulse exits 
the cross port (guide 2) while in nonlinear operation, the central portions of the pulse, which exceed the critical intensity, exit 
the bar port (guide 1) with the wings exiting the cross port. 

and represents the input intensity for which the light is divided equally between the two output ports [31]. For a half-beat length 
coupler, the critical intensity results in a n phase shift for the field in guide 1, and 8 = 1 in equation 1.1. Above the critical 
intensity, the fraction of light exiting the bar port increases towards unity. This two-terminal device performs a switching 
operation since photons from the data stream are directed into one of two output ports. 

A half-beat length NLDC is shown schematically in Figure 1.3, where a low-power data pulse couples to the cross port while 
a high-power data pulse remains in guide 1 (bar state). The high-power case can be understood intuitively by considering the 
nonfinear increase in the core index which more strongly guides the light, thus detuning the coupler. Notice that only the central 
portion of the high-power pulse exceeds the critical intensity and remains in guide 1. This effect is called partial switching, or 
pulse breakup, and is characteristic of many optical switching devices and results in reduced integrated energy contrast [33]. In 
fact, partial switching is a problem with all of the non-soliton devices discussed in this section. Solutions to this problem are the 
use of square pulses [34] such that the intensity is constant across the pulse duration, or the use of temporal solitons [35-37], 
which propagate unchanged and tend to switch as a unit because of uniform phase across the pulse profile [38]. 

Fmure 1.4 shows a plot of the switching fraction into the bar output port versus normalized peak pulse intensity launched 
into iiuide 1 for the half-beat length NLDC. The solid curve shows the fraction of the light that remains in the bar state assuming 
a constant intensity square-top pulse as given directly by equation 1.7a. The curve for the soliton case has similar shape with 
sharp su itching characteristics [35], but the switching intensity threshold is about twice the critical intensity because the induced 
nonlinear phase is half that of the plane wave case, as shown in section 2.2. The dashed curve shows the light fraction assuming 
a- non-soliton secrrO input intensity profile and takes into account partial switching which leads to reduced contrast operation 
as indicated by the greatly reduced switching fraction. In either case, at low input levels, all of the light switches over to the 
cross port, while at high inputs, most of the light exits the bar port. 

Direct cascadability can also be addressed using Figure 1.4, where the dotted line represents the input threshold for which 
the output of the bar port exceeds /cril. Figure 1.5, which shows the transfer function for each port of the device, provides the 
same information more clearly. As shown in the figure, for a square-top pulse, an input intensity greater than 1.1 /crit is required 
to exceed the threshold intensity at the bar port. In this case, the output of the bar port can be used as the input to another 
device resulting in 50^ switching of that second device. Therefore, much higher inputs than 1.1 /crit are necessary to cascade 
to another device, but. due to the lack of large-signal gain and in the absence of external amplification, any optical losses in 
the system will eventually result in the degradation of the signal level to the point that switching ceases. The situation is worse 
in the case of a nonuniform pulse. Here, a peak input intensity of greater than 1.6 /crit is required for at least 50% switching 
of a subsequent device. Indeed, because of partial switching, attempts at cascading two such devices have met with limited 
success 139]. A final point to note is that when designed as a half-beat-length coupler in linear operation, the NLDC transfer 
function has quasi-saturated levels which attenuate fluctuation in the input level and allow for some noise margin. 

As described so far, the NLDC is a two-terminal device whose switching operation is determined by the intensity of the 
input signals. A three-terminal version can also be constructed by using a high-power control pulse to switch a low-power data 
pulse as shown in Figure 1.6, but this device is not directly cascadable either due to the lack of large-signal gain and inconsistent 
signal representation (using different wavelengths). The control pulse must be of different central frequency or polarization in 
order to avoid phase-sensitivity and to extract the data at the output with zero background. Experimental demonstrations have 
used different frequencies because of the large difference in coherence lengths between orthogonal polarizations [33]. There 
are still partial switching problems if the control pulse does not have constant amplitude. An additional problem is dispersive 
walkoff, which will be discussed in more detail for the Kerr gate. A recent demultiplexing demonstration [33] used a longer 
control pulse length and allowed the data pulse to walk-through the control to achieve complete switching, and therefore, high 
contrast. Lengthening of the control pulse means that the separation between data pulses needs to be larger, thereby reducing 
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Figure 1.4: Switching fraction into the bar port for a half-beat length NLDC versus input peak intensity. The fraction into the 
cross port is inverse of the curves shown. The solid curve is for a square-top pulse while the dashed curve is for a non-soliton 
sech:() intensity profile pulse indicating incomplete switching. The dotted curve shows the threshold for which the bar state 
output exceeds the critical intensity. 

the data rate and increasing the switching energy, but also allows for some tolerance to timing jitter. 
Because of the region of small-signal gain shown in Figure 1.5, it is possible to obtain large-signal gain with this device, 

based on the process of light-induced symmetry breaking [40], as originally studied using a phase-dependent interaction be- 
tween light input into each port. The input into port 1 is biased with a "power supply" or clock pulse near the critical intensity, 
which is an unstable operating point. Due to small-signal gain, a weak control input into port 2 is amplified, resulting in 
complete switching into either the bar or cross state depending on the relative phase between the inputs in ports 1 and 2. For 
a multiple of 2n relative phase, the inputs add constructively and the output emerges from the bar state, while for 7t relative 
phase, the inputs add destructively causing the output to emerge from the cross state. This switching is critically dependent 
on the relative phase between the data and control, and therefore cascadability may be difficult to achieve if the phase of the 
output depends on the intensity of the inputs. It also appears that such a device would be sensitive to variation in waveguide 
parameters. 

A phase-independent version of this three-terminal device with gain can be realized using weak amplitude to initiate switch- 
ing into the bar port, thereby providing a controlled inversion operation at the cross port. This device must therefore meet the 
more demanding requirements of a logic gate. Again, if port 1 is biased by a clock pulse at some level less than the critical 
intensity such that the clock exits the cross port, then additional light of orthogonal polarization or color entering port 1 can 
activate switching into the bar port. Therefore, logic level restoration is obtained since only the power supply or clock pulse 
(from the cross port) is passed to subsequent gates when the control pulse is blocked by an analyzer or spectral amplitude filter. 
For instance, referring to Figure 1.5, for bias in port 1 of 0.8 /crit, then an additional contribution of 0.6 /crit (for cross-phase 
modulation coefficient of 2/3) can cause complete switching into the bar port. This example illustrates a gain of 1.3, which is the 
maximum for the standard device and may not be achievable in practice because there is strong variation in switching intensity 
with power supply and device variations will not allow for level standardization. It is clear that the larger the small-signal gain, 
the less the input required to switch the state of the device. Because of the ripples in the transfer function, a control pulse of 
intensity 1.2 will allow for an output level of 0.2 at the cross port, thereby significantly reducing the contrast of the gate. When 
the switching is incomplete, though, the small-signal gain may be less than unity, precluding the possibility for large-signal 
gain, as illustrated by the transfer function for the non-soliton sech2() (in intensity) pulse. 
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solid curve is for a square-top pulse while the dashed curve is for a non-soliton sech2() pulse. 
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Fmure 1.6: Three-terminal half-beat length NLDC. The control pulse is of a different color or polarization than the data pulse. 

1.4.2    Kerr Gate 
The optical Kerr gate was proposed as an ultrafast photonic gating device [41]. In the implementations discussed here, the 
Kerr gate is a three-terminal device in which data is either passed or blocked at the output. Since logic-level restoration is 
not possible, this device is simply an optical switch. The bulk geometry is shown in Figure 1.7. By virtue of the difference 
between self-phase modulation and cross-phase modulation, the gate beam A\ induces a differential phase shift which rotates 
the polarization of the signal beam A2, as long as there is nonzero projection of the polarization of A2 onto a direction orthogonal 
to the polarization of A i. Assuming plane waves interacting at small angles, the total electric field at the input can be written 

E(0)=x[Ai(0)e-i^'+cosQA2{0)e-i^' + cc]+y[smeA2(0)e-ita<>l + cc] (1.9) 

where 9 is the angle that the polarization vector of A2 makes with the x axis, which is the assumed polarization direction of A\. 
Note that in practice beams must be used in order to spatially separate A i and A2 at the output, where the angle of interaction 
is greater than the diffraction angle of either beam such that the beams are spatially resolvable in the far field. An additional 
consideration when dealing with beams (or pulses as in the fiber geometry) is that partial switching occurs analogous to the 
situation with the NLDC. For simplicity, the plane-wave analysis is used and is sufficient for the present purposes. 
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Figure 1.7: Bulk Kerr gate geometry. The polarization of the signal (or data) A2 rotates based on the intensity of the gate (or 
control) A,. In the absence of A,, A2 is blocked by the analyzer at the output. For Ai of sufficient intensity, A2 is transmitted by 

the analyzer. 

After a propagation distance d in the nonlinear medium, the polarization components accumulate linear and nonlinear phase 

Al(d)=A](0)eik°dei^ 

AlK(d)=AZx(0)eik°dei** 

A2Ad)=A2AO)^k°de^y, 

where the nonlinear phases are written as 

01 = ^p^[|/l1U)+All(;)|2 + 2A|A;v(;)| 

4>,r = ^ fJ\\A,(z)+Alx(z)\2 + 2A\A2Az)\ 
f Jo  ^ X ■f 

<D2v = ^^[|A2v(c)|: + 2A|/l1(;)+Alt(: 

dz 

dz 

dz. 

(1-10) 

(1.11) 

(1.12) 

(1.13) 

(1-14) 

(1.15) 

The factor 2A denotes the cross-phase modulation coefficient and is equal to 2/3 in isotropic media. Assuming that \A\\ » 
\A2\. thus precluding the possibility for large-signal gain, and that there is no absorption or power exchange throughout the 

interaction, the nonlinear phase induced on A2 can be simplified to 

<t>lK = ^l\A,(0)\2d 
Ki 

<t>2v = 2A 
27Un 

V 
\A,(0)\-d, 

with the differential change in phase between the polarization components of A2 written 

2mi- 
AO = O^ - <J>2 = ^[1-2A]|/M0)|2J, 

(1.16) 

(1.17) 

(1.18) 

such that 8 = 1 - 2A. 
In terms of a Jones vector, the output A2 before the analyzer can be written 

cos9e,A* 
sin9 

A:(d/)=A2(0)e'^e'<1>2> (1.19) 
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The transmission of a linear polarizer (analyzer) oriented at an angle <|> relative to the x axis is [42] 

T(<j?) 
cos2<(>      sin (j) cos (J) 

sin<t>cos<|>       sin2(J) 
(1-20) 

The output intensity of the signal beam after passing through the analyzer is therefore 

I2{d)=I2(0) sin2 <)> cos2 <t> + cos2 6 cos4 <j> + sin2 9 sin4 (j) (1-21) 

+2 cos 9 sin 9 cos <)) sin<() cos AO 

where the intensity/2(0) = eoc«o |'42(0)l"/2- 
Typically, (> = 0 ± 7t/2 so that complete extinction is obtained with no nonlinear phase shift, thus implementing a pass gate. 

In this case, the output intensity is 
I2(d) =2/2(O)cos20sin20[l-cosA4>]. (1-22) 

In order to maximize the contrast of the device, 9 = 7i/4, leading to the final result 

I2(d) = I2(0) sin2 (A®/2). (1-23) 

Therefore, a minimum of a n phase shift is again needed for complete switching, but over switching results when A<D > it. A 
contrast ratio can be defined based on the difference between the high and low output states of a single port 

_ A:Mihigh-^Mliow (124) 
P~ /:(<*)Ihigh + fcMLv " 

In the case of the pass gate, p = 1, assuming an analyzer with perfect extinction. 
An inverter can also be realized by setting (J) = 0. The output intensity is 

/2(rf) = /;(O){l-2cos20sin20[l-cosAO]}. (1-25) 

Again. 0 = 7i-;4 maximizes the contrast, leading to the result 

hid) = /;(0) [l - sin2 (A4>/2)], (1-26) 

with A<1> = T. for complete extinction of the signal. The contrast ratio of the Kerr gate inverter is 

sin2(AO/2) Q< (127) 

H     2-sin-(A4>/2) "    ~ 

Now the contrast is limited by the precision to which the intensity of the gate beam can be controlled in order to exactly achieve 
the condition A<t> = n tor complete extinction of the signal. 

Figure 1 .S shows the input-output relationships for the pass gate and inverter geometries. The maximum small-signal gain 
occurs^ hen A<D = (2w + 1) n/2, but, since /, » /;. small-signal gain is always much less than unity. In addition, there are 
quasi-saturated levels for A4> = »m, where m is a positive integer. The most important point to note is that over switching can 
occur. As A* increases towards n, the pass gate switches on and the inverter switches off, but as A<f> increases past n, the pass 
gate switches off and the inverter switches on. Therefore, there are no true saturated levels giving rise to stable states insensitive 
to variations in the gate beam intensity. 

Because of the condition /|(0) » I2[d). large-signal gain is not intrinsically possible with the Kerr gate either. In other 
words, it takes a high intensity gating beam to switch a small intensity signal beam. External amplification can be used to bring 
the high output state after the analyzer to the level required for switching a subsequent stage, but because of the over-switching 
problems inherent in the device, this process may not stable and could eventually lead to attenuation of the signal level after 
a long cascade of devices due to unavoidable amplitude fluctuations. This process can be made stable through the use of a 
saturating amplifier, but the gain recovery time of the amplifier will place a limit on the data rate. 

As an example of the switching intensities needed for the Kerr gate, consider a 1 cm thick sample of fused silica, with 
/<'-, - 3.3 x 10"16 cm2/W at \f = 1.55 pm (see Appendix D). In this situation, a gate intensity of /i(0) = 700 GW/cm2 is 
required. This intensity can be lowered by orders of magnitude by going to a fiber geometry in which the interaction length can 
be extended to many km's, as shown in Figure 1.9. For a 1 km fiber gate, /i(0) = 3.5 MW/cm2. Another advantage of the fiber 
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Figure 1.8: Transfer functions for the Kerr gate. The solid curve shows the normalized output versus induced phase shift A* 
for the pass gate geometry, while the dashed curve shows the same information for the inverter. 
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Figure 1.9: Fiber Kerr gate geometry. The gate and data pulses are of different central wavelengths. The gate pulse is timed 
to co-propagate with and extract one data pulse. Wavelength-division multiplexing (WDM) couplers launch the gate pulse into 
the interaction region and extract the gate pulse at the output for background-free operation. The bulk analyzer shown can be 
replaced by an in-fiber polarizer. 

geometry in communications situations is that there is no need to couple the signal, or data, pulses out of and back into the fiber 
in order to achieve the desired switching operation. 

Since the pump and data pulses must be separated at the output for background-free operation (i.e. high contrast), the two 
pulses must be of different color. An additional constraint is that the fiber must be polarization preserving, or birefringent, in 
order to keep the polarization of the data pulses from randomly evolving due to thermal or stress variations. As a result, the 
polarization components of the data pulses pick up a nonzero relative phase due to the intrinsic birefringence 

AiAd)=A2x(0)eik"1ei^ 

A:,(rf)=Ah.(0)«^A, 

(1.28) 

(1.29) 

where kx = 2n/i.,/X/. ky = 2nny/kf and «, and ;iv are the indices of refraction along the principal axes of the fiber. The final 
polarization state without the gate pulse is in general elliptical, but the original state of polarization can be recovered using a 
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Figure 1.10: Pulse walkoff in fiber Kerr gate geometry. The fiber length is denoted by d, but the interaction length is limited 
tolhe birefringent or dispersive walkoff distance L. This diagram illustrates the dispersive walkoff between the gate and same- 
polarized data. The birefringence walkoff between the two components of the data pulse is similar. 

compensator plate. Now, the nonlinear phases are written 

"> 
^ = 2~-P\Am?d (1-30) 

<D:v = 2A^|A1(0)|2d, (1-31) 

where the factor of 2 in the x phase is due to the interaction between waves of different frequency, and the four-wave mixing 
terms have been neglected. The differential phase is 

A4» =!£!=[!-A] |yM0)f-</, (L32> 
kf 

which, when A = 1/3. is a factor of 2 larger than in the bulk geometry due to the increased cross-phase modulation coefficient 
between different colors in the same polarization state. 

In an earlv Kerr gate demultiplexing experiment in fiber (43], it was recognized that birefringent and dispersive walkoff 
would limit the performance of the device due to the long interaction lengths needed to obtain a 7t phase shift with low switching 
energies. The result of walkoff is the reduction of the interaction distance as given by the length of the fiber, as shown in 
Figure 1.10. to an effective interaction distance given by one of the walkoff lengths. If the gate and data pulses have temporal 
duration T. then the walkoff lengths can be defined 

/*irc= |*i(corf)-ifv(corf)| 
(L33) 

,A.   - T RJ     
T" (1.34) 

^^-\k'y[^)-k'x{^)\   wady 

where k'Jwj) and k[ (coj) are the group delay coefficients for the polarization components at the data wavelength, ^((%) is the 
group delay coefficient at the gate wavelength, Ao) ~ 1/T is the approximate spectral separation (by one FWHM), and k"((üd) 
is the group delay dispersion coefficient. For T = 1 ps pulses (for a data rate ~ 100 Gb/sec with pulse separation 10 x), typical 
walkoff lengths in silica fiber are Lbire = 30 m for I«, - ny\ ~ 10~5 and L^ = 35 m, using k£{<ad) = -2.79 x 10~8 ps2/pm 
from Appendix D. 

The birefringence walkoff length is the distance over which the two polarization components of the data pulse maintain 
overlap by at least their temporal FWHM. This is also the distance over which the gate pulse and the orthogonal polarization 
of the signal pulse maintain overlap. The dispersive walkoff length is the distance over which the gate pulse and the same 
polarization of the signal pulse maintain overlap. In the worst-case scenario, the gate pulse propagates down the fast (slow) 
axis of the fiber and has the greater (lesser) group velocity. The interaction distance is therefore limited to the minimum of 
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Figure 1.11: Diagram of the two-terminal nonlinear optical loop mirror in the intensity-dependent switching mode. 

the birefringent and dispersive walkoff distances. The best-case is for the gate to propagate down the fast (slow) axis and 
have the lesser (greater) group velocity. Here, the interaction distance is limited to the birefringent walkoff length between the 
polarization components of the data pulse. 

The effective interaction distance can be increased to twice the walkoff length by launching the slower pulse one pulse 
duration ahead of the faster pulse, but this technique still does not solve the underlying problem. Birefringent walkoff can be 
effectively eliminated by cross-axis splicing the polarization maintaining fiber such that the distance between each splice is 
less than the walkoff length Lbire [43]. The effects of dispersive walkoff can be reduced by decreasing the spectral separation 
between the data and gating pulses, thus limiting the data rate because 1/x ~ Ad), or by equally spacing the central wavelengths 
about the zero dispersion wavelength such that both pulses travel with the same group velocities. This does not allow for both 
pulses to be temporal solitons, however. 

A recent fiber Kerr gate demonstration used a 1.5 cm length of silica fiber (which is about L^sp for the experimental pulse 
duration) to perform demultiplexing of a 460 Gb/s data stream [44]. In the experiment, the peak gate intensity 43 GW/cm2 

(about 5 nJ pulse energy) resulted in a gating efficiency of less than 10%. A n phase change requires peak gate pulse intensity of 
nearly 235 GW/cnr (about 25 nJ pulse energy), which, except for the benefits of compactness and increased coupling efficiency, 
eliminates the original advantages of going to the fiber geometry. 

1.4.3    Nonlinear Optical Loop Mirror 

The nonlinear optical loop mirror [38], or NOLM, has been used extensively in ultrafast all-optical demultiplexing experi- 
ments [45,46]. Studies have also focused on the use of NOLMs to realize simple logic gates [45] and more complicated logic 
circuits 116]. The most basic two-terminal configuration is shown in Figure 1.11. A pulse which enters port 1 is split at a 2x2 
fiber coupler into two counter-propagating pulses which recombine at the coupler. For a perfectly symmetric device, the pulses 
constructively interfere at the coupler and exit from port 1. thus acting as a mirror. Deviations from symmetry result in light 
exiting both ports 1 and 2. In nonlinear operation of a non-symmetric device, the pulse intensity can control the ratio of light 
exiting each output port. 

Immediately after the coupler, the field amplitude in each counter-propagating direction of the loop can be written 

A3=tAl 4,=/Ue'*"w (1-35) 

AA = irAi A'4=A3e'^ (1-36) 

when it is assumed that no light enters port 2. The unprimed quantities represent the amplitudes before propagation around the 
loop while the primed quantities are after propagation around the loop and just before the coupler. The phases around the loop 
are allowed to be different as justified later. Here / is the (real) amplitude transmission coefficient and r is the (real) amplitude 
reflection coefficient. When the angle of incidence is less than the critical angle (as it must be here), there is a JI phase shift upon 



Final Report AFOSR F49620-95-1-0431, Spatial Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder 20 

A'1=M'3 + /r/li = irMie,'*tew '\ + eiA* 

A^tA^ + irA'^A^^ i 
r e'^-r2' 

reflection from one of the coupler interfaces. Since the 3dB fiber coupler is symmetric, this phase is distributed symmetrically 
with the reflection coefficient in each direction. The amplitudes at the output ports are then 

(137) 

(1.38) 

where A<J> = 4>Cw - <t>ccw- Finally, the output intensities are written 

7'1=2r2[l-r2][l+cosA(D]/i=4/1r
2[l-r2]cos2(A<D/2) (1-39) 

/£ = /,-4/,r[l-r] cos2 (A*/2), (L4°) 

assuming a lossless system such that r2 + f — 1. 
For the original NOLM device which switches based on the intensity of the incoming data pulses, the phases are 

0ccw = jtöL+^ /W)|2^M-+^|A4(0)|2 (1-41) 
A/  Jo Kf 

^ = kQL+?p. fL
lA3(z)\

2
dzKkoL+

2-^\A3(0)W (W 
Kr   JO Af 

where the differential phase is written 

2tin-iL 
AO = 

h 
l^3(0)|2-|A4(0)|2]]=^[l-2r2]|A1(0)|2, (1-43) 

V 

and 5 = 1 - 2r2. For a symmetric device in which r2 = 0.5, the phase shift is zero and all the light exits port 1, independent 
from the strength of the nonlinear interaction. Therefore, the loop must be unbalanced in order for self-switching to occur, in 

which the light exits port 2. 
An example of the self-switching of the NOLM is shown in Figure 1.12, which plots the peak intensity in each of the two 

output ports (assuming square-top pulses) using r2 = 0.25. This figure is different than Figure 1.8 of the Kerr gate, which plots 
the switching fraction, not the output intensity. This is done here to emphasize the low contrast of the two-terminal NOLM. 
Like the Kerr gate, over switching can occur for input intensity beyond that required for A<t> = n, thus making this device 
difficult to cascade. It should also be noted that partial switching will occur if square-top or soliton pulses are not used. 

Because the self-switching behavior is similar to the two-terminal NLDC, a three-terminal NOLM with large-signal gain 
can be constructed in the same way, by biasing the device with a strong power supply or clock pulse and using a weaker 
control or data pulse (of different polarization or color) to initiate switching, thereby providing complete logic level restoration. 
Unlike the NLDC, the NOLM switching function does not possess saturated levels, thus making the device sensitive to input 
fluctuations, but also allowing for multiple intensity levels for the clock pulse (spaced by even intervals on the figure) to achieve 
inverting operation. Because the switching intensity is fixed at 1/2A for the coordinate system used in the figure, the large- 
signal gain can be arbitrarily high (subject to limitations placed by nonlinear absorption, for example). The output from either 
port 1 or port 2 can be used. The contrast from port 1 is unity, but since this is also the input port, a coupling loss must be taken 
both at the input and at the output in order to extract the switched data. 

The contrast of the NOLM at output port 2 is 

2l2H-=\ (1.44) 
K~ l-2r=[l-r2]' 

which is maximized when r2 - 0.5. The peak intensity required for a n phase shift is 

/. - h  (1.45) 
,_2i»a[l-2r2]' 

which is infinite when r2 = 0.5. Here, the intensity lx represents the data pulse intensity plus any additional control pulse 
intensity. For example. 1\ = /ta -f 2A/comroi. in the case of the biased device. The minimum required intensity is when r = 0, 
but the contrast is 0. Therefore, in the two-terminal or biased three-terminal NOLM, there is a tradeoff between high contrast 
operation and low switching intensity (energy). 

Some of these problems can be solved by using a balanced (^=0.5) and un-biased three-terminal NOLM [47].  This 
configuration is shown in Figure 1.13, in which an external control pulse of different polarization or wavelength is used to 
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Figure 1.12: Switching characteristics of the two-terminal NOLM. If a non-square-top or non-soliton pulse is used, the output 
enemy will not follow the intensity curve and the energy contrast will be reduced over the ideal case of unity for port 1 or 
as given by equation 1.44 for port 2. The amplitude reflection coefficient of the 2x2 fiber coupler is set to r = 0.5, giving a 

reflectance of r- = 0.25. 

switch a much weaker data pulse by inducing a n phase shift on the counter-clockwise pulse via cross-phase modulation. In 
this case, the phases of the counter-propagating pulses can be written 

t>ccW = M-+2A^-|Act,(0)|- (1.46) 

<J>cw = *0^- 

where Actl is the amplitude of the control pulse, which co-propagates Accw and therefore counter-propagates Acw, inducing 
negligible nonlinear effect on the latter. For orthogonal polarizations, 2A = 2/3, while for different wavelengths, 2A = 2. In 
this device, the switching intensity and contrast are independent of r, because the change in phase is 

2TT/I->L .      .„,.-> 
AO = 2A-T^-|/lcl|(0)|- (1.47) 

and the contrast at output port 2 is p = 1 assuming that the control pulse intensity can be maintained to achieve AO = 7t. 
Due to the long interactions lengths of 10 km or more [46], these switching elements suffer from polarization or dispersive 

pulse walkoff (unlike the fiber Kerr gate, the control pulse does not have to be of different polarization and wavelength). 
Walkoff can be minimized by using cross-spliced polarization maintaining fiber or choosing the control and data wavelengths 
symmetrically about the zero dispersion wavelength [45]. as discussed for the fiber Kerr gate. Recent experiments have achieved 
demultiplexing of 100 Gbit/s data streams [48] in a 6 km loop using 1 pJ control pulses, and two-stage cascadability using low 
birefringence fiber loops with an amplification stage in between [49]. 

1.4.4   Terahertz Optical Asymmetric Demultiplexer 
The terahertz optical asymmetric demultiplexor [50], or TOAD, was developed to reduce the long latency inherent in the NOLM 
and reduce switching energies by asymmetrically positioning a thin, highly (resonant) nonlinear element on one side of center 
of a fiber loop mirror, as shown in Figure 1.14. The fiber nonlinearity is not utilized and therefore the fiber loop can be on the 
order of meters in length rather than kilometers. 
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Fieure 1.13: Three-terminal NOLM in two-pulse configuration. Wavelength division multiplexing (WDM) or polarizing (PBS) 
couplers transfer the control pulse into and out of the loop with nearly unity efficiency. For polarizing couplers, the fiber loop 
must be polarization maintaining. The control pulse only propagates counter-clockwise, and only interacts strongly with the 
counter-clockwise component of the data pulse. 
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Figure 1.14: Three-terminal terahertz optical asymmetric demultiplexer. The nonlinear phase shift is provided by the control 
pulse excitation of an asymmetrically placed nonlinear element. 

The TOAD switch works similarly to the three-terminal NOLM by imposing a n phase shift in one arm (direction) of the 
loop, and cannot be configured as a true logic gate. The differentiating factor from the NOLM is that a thin nonlinear element 
excited by the control pulse is responsible for the nonlinear phase shift induced on the data pulses. In the diagram, pulses 
1-3 pass through the nonlinear element before the control pulse and experience no nonlinear phase shift in the clockwise and 
counter-clockwise parts because the nonlinear element is in the un-excited state. As a result, there is no differential phase 
shift (AO = 0) and the pulses exit the input port (or reflect). Pulses 5-8 pass through the element after the control pulse, but 
now each direction experiences a nonlinear phase shift, but, given constraints of long relaxation time of the nonlinear element 
as discussed later, experience no significant differential phase shift and also exit the input port. Pulse 4, on the other hand, 
switches out the other port because the clockwise propagating part of the pulse passes through the nonlinear element before the 
control pulse and experiences no nonlinear phase shift, but the counter-clockwise part reaches the nonlinear element just after 
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excitation by the control pulse and experiences a nonlinear phase shift. If the differential phase shift A<D = n, then the pulse 

will exit the output port. 
The counter-clockwise and clockwise phases can be written 

4>Mw = *öL + A?^Ai!('«—'«i + 2Ar/vs) 0-48) 

<|>cw = *oL+A^M'.-'c,.), (L49> 

where /, is the time that the clockwise portion of the /"■ pulses reaches the nonlinear element, r, + 2bxlvg is the time that the 
counter-clockwise portion of the same pulse reaches the nonlinear element, fcU is the time that the control pulse excites the 
nonlinearity, and vg is the group velocity. The time-dependent nonlinear index change is written 

■*n{t)= rR(T)\Acü(t~T)\2dT t>0 (1-50) 
Jo 

= 0 t<0, (1.51) 

where R{x) is a nonlinear response function, typically of the form of an exponential decay.   It is clear that, assuming an 

instantaneous rise time, 
rI-<fc,i<rI- + 2Ax/vÄ, (1-52) 

in order to switch the /''' pulse. A much more complete analysis has been performed [51], with the basic conclusion that the 
nonzero length of the nonlinear element places a restriction on the minimum duration of the switching window, which must be 
at least twice the transit time through the element plus the rise time of the nonlinearity. The relaxation time of the nonlinearity 
sets the lower bound on the frame time because the nonlinear material must be in the ground state before re-excitation by 
another control pulse. These requirements are expressed by [50] 

Tnse + 2Ttnl„SI, < 7"t,„ «: Tfall < 7frame> (L53) 

where xm, is the rise-time of the nonlinearity and can usually be considered instantaneous, tlransil is the transit time through 
the nonlinear element. 7"blI is the time between adjacent bits in the data stream, Tfan is the fail time of the nonlinearity and does 
not have to be instantaneous as in the other devices which require Tfa!! «: 7bi„ and Tfame is the frame time for time-division 
multiplexed data. The fall time xm must be greater than the time difference 2Ar/vÄ between when the two parts of the same 
pulse pass through the nonlinear element so that the clockwise and counter-clockwise portions accumulate approximately the 
same nonlinear phase shift. A disadvantage is that only one data pulse can be switched within the relaxation time of the 
nonlinear element, so that the switching events must occur at least Tfa„ apart. Unlike the other devices, the TOAD is relatively 
insensitive to timing jitter between the control and data pulses. All that is required is that the control pulse arrives (up to one 
bit time) at the nonlinear element before the intended data pulse. The amount of timing jitter that can be tolerated is limited to 

'bit — Tnsr .. 
Because the nonlinearity need not be instantaneous (and in fact the fall time must be long), very large, resonant nonlinearity, 

such as that produced by real particle excitation and decay, can be used. The optical path length of the nonlinear element must 
be less than that between the element and center and, since the nonlinear phase shift is proportional to the product of nonlinear 
index, control pulse intensity, and the thickness of the nonlinear element, the latter is perhaps the main limitation on high 
contrast, low energy switching for THz data streams. A recent demonstration [52] showed single-pulse demultiplexing of 
250 Gbit/s data with 0.8 pJ switching energy. 

A related device, based on a Mach-Zehnder configuration with asymmetric placement of a nonlinear element in each of the 
two arms (where the difference between the distance from the coupler to each element is Ar), has also been demonstrated [53]. 
As in the TOAD device, a control pulse is used to excite the nonlinear elements, where the time difference between the excitation 
of each element leads to a switching window of duration Av/vÄ. but again, large-signal gain cannot be realized. Because the 
two arms are physically distinct, any differential environmental variations can disturb the operation of the gate, but the effect is 
less important for an integrated device. 

Another variation, which perhaps is more akin to the fiber Kerr gate, is the so-called ultrafast nonlinear interferometer [54], 
or UNI. This device is shown in Figure 1.15. The input data pulses split equally along the polarization axes of birefringent fiber. 
Because the group velocity is different along each axis, the polarization components walk-off from each other in time. The 
time difference between the leading and trailing components allows for asymmetric excitation of the nonlinear element by a 
strong gate pulse such that the leading pulse is affected only by the amplification process of the device (the device is electrically 
pumped) and the trailing pulse is affected by the device after gain saturation by the strong gate. Therefore, due to sub-ps carrier 
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Figure 1.15: Three-terminal ultrafast nonlinear interferometer. A differential phase shift is imparted onto the data pulse at the 
semiconductor optical amplifier (SOA) by asymmetric excitation with the gate pulse. 

heating and gain depletion, and virtual electronic processes, both differential amplitude and phase changes are induced between 
the dam components. Long-lived carrier population and thermal nonlinearities ensure that no differential change is induced 
between subsequent data pulse components. After traveling through another length of birefringent fiber with fast and slow axes 
reversed, the components overlap at an analyzer biased to produce the desired logic operation. For example, if the analyzer 
is set to pass the data pulse in the absence of the gate pulse, then the device will act as an inverter, albeit without logic level 
restoration and large-signal gain. 

Like the TOAD, the switching rate is limited by the gain recovery time of the SOA, but it should be noted that only enough 
recovery time is needed so that the control pulse can induce another n phase shift. If only TDM de-multiplexing is performed, 
then recovery time only limits the frame period, while the bit rate is limited by the optical thickness of the element and the rise 
time of the nonlinearity. For switching operations that occur on a bit-by-bit basis, then the n phase shift recovery time places 
the main limitation on bit rate, which can be as high as 100 Gb/s [55]. A recent experiment [11] demonstrated the cascadability 
of this three-terminal device by implementing a 40 Gb/s inverting shift register. A fiber amplifier was used to bring the inverted 
data output of the device up to the necessary 0.1 pJ switching energy. 

1.5    Optical Soliton Logic Devices 

The devices discussed in the previous section all suffer from drawbacks that may limit their use in cascaded digital logic 
and switching systems. Except for variations of the nonlinear directional coupler (NLDC) and nonlinear optical loop mirror 
(NOLM). none of these switching devices has complete logic level restoration with large-signal gain. In the standard config- 
urations, the data pulse itself is transmitted to the output. The strong control pulse only initiates the switching and is thrown 
away afterwards As a result, the transmitted data is never restored allowing signal level variations to build up over time. The 
roles of control and data can be reversed such that weak "power supply" pulses are passed on to subsequent gates, and are 
controlled by strong data pulses. Here, restoration is almost complete, with the lack of obtaining a valid signal level without 
external amplification which introduces ASE noise and bandwidth limitations. The biased three-terminal NLDC and NOLM 
have complete logic level restoration because of large-signal gain, but the gain of the NLDC is very limited and suffers from 
low contrast in practice, and the NOLM does not possess saturated levels and is lossy in order to achieve high contrast. 

In the three-terminal configurations, these devices are only directly cascadable when using control or gate pulses of or- 
thogonal polarization to the data pulses. Cascadability is achieved simply by using a half-wave plate to rotate the polarization 
of the output to serve as a control input. Using different colors also allows for cascadability, but the system becomes more 
complicated. In the first realization, the output of the gate must be converted through some nonlinear process such as three- or 
four-wave mixing, to the appropriate control input color. A second realization is to alternate the correct control color at each 
stage such that no wavelength conversion is necessary, but this may require two device designs in order to achieve optimum 
performance. These two-color schemes are the only way to cascade the fiber Kerr gate, since different colors are necessary in 
the fiber geometry, and the NLDC, because the use of different polarizations greatly reduces the switching performance [33]. 

The Kerr gate, NOLM, and terahertz optical asymmetric demultiplexer (TOAD) all suffer from over switching, although 
saturated gain in the nonlinear element can clamp the total induced phase shift in the latter device. In each of these three 
devices, a control intensity higher than that required for a 7t phase shift will cause over switching [45] and result in reduced 
contrast. Therefore, each gate in the system must be precisely toleranced if high contrast operation is required, but because of 
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unavoidable variations, the signal level will be attenuated through a long cascade with eventual loss of the logic level. 
The performance of all of the devices, except TOAD, is reduced considerably by walkoff and incomplete switching. Means 

of reducing walkoff were discussed for each device, but it should be noted that, since the use of orthogonal polarizations is 
more practical for cascadability considerations, cross-axis splicing is an elegant solution. Because square-top pulses possess 
high frequency components at the leading and trailing edges leading to rapid pulse broadening, the most robust way to eliminate 
incomplete switching is to use temporal solitons for the control and data pulses. The use of temporal sohtons can also reduce 
or eliminate walkoff by the mechanism of temporal trapping [56,57]. 

The limitations of these devices motivates the study of a new class of devices based on optical solitons, which make full 
use of the soliton properties. Because solitons are threshold phenomena, they are natural carriers of digital information. Below 
a critical power or energy, a nonlinear wave will asymptotically disperse, but above the critical power or energy, a nonlinear 
wave will evolve into one or more stable (possibly higher-order) solitons. Therefore, binary logic levels can be represented by 
the amount of detected power or energy, or even by spatial or temporal size (a soliton could readily pass through a spatial or 
temporal aperture, while the majority of a dispersive wave would not). A related issue is resolvability. Since solitons beat the 
linear diffraction/dispersion limits, a logic gate (without absorption) could be arbitrarily long. This property is used to great 
advantage in the soliton collision and dragging gates as discussed later, where a small angular/frequency change (induced by a 
nonlinear phase shift less than n) manifests itself as a resolvable spatial/temporal shift. 

Other benefits arise from the use of solitons in digital logic systems. Solitons are stable to weak perturbations meaning 
that the soliton tends to maintain its shape in the presence of material inhomogeneities or input profile variations, which is an 
important property for logic restoration. In fact, the original amplitude and shape can be restored even after absorption by the 
use of adiabatic amplification. This property is useful for logic restoration and in long haul communications. Additionally, in 
some cases, solitons will maintain their shape even after collision with another soliton, which turns out to be a disadvantage 
for optical switching. The logic gates presented in this thesis use a configuration in which the interaction is inelastic such that 
soliton shape is not necessarily maintained after collision. The most important benefit to optical switching is that solitons (or 
nonlinear waves in general) can exert a force on one another, unlike light in linear propagation. These forces can alter the 
direction in space or velocity in time of one or both solitons resulting in a switching or logical operation. 

In order to achieve low switching energy per gate operation, the ideal optical soliton logic gate should be based on one 
of the three geometries that allow for complete three-dimensional confinement [2]: 1-D temporal solitons in fiber, 2-D spatio- 
temporal solitary waves in slab waveguides, and 3-D light bullets. The advantage of spatio-temporal solitary waves over 
temporal solitons for switching and logic is the removal of one or two transverse dimensions of linear confinement. This allows 
for spatial parallelism (without the loss of ultrafast temporal pipelining) and the freedom to use spatial interactions with much 
easier output state discrimination [2,58] than their temporal counterparts [59] in order to implement amplitude keyed logic for 
eventual conversion to the electronic domain. Even though one dimension of spatial parallelism is lost, the 2-D solitary wave 
has the important advantages over the 3-D "light bullet" case in that it should be more easily realizable experimentally [60], and 
the slab waveguide geometry allows for the possibility for tailoring of the dispersion properties [61], photolithographic circuit 
definition, and cooling through the area of the substrate. The (2+l)-D case also presents an efficient test bed allowing for the 
study of the effects of higher-order terms in the evolution equation by retaining full spatio-temporal dynamics without resorting 
to the time-consuming (3+l)-D simulation. 

The remainder of "this section briefly discusses two soliton-based logic gates based on the trapping interaction. These gates 
satisfy the requirements for a logic device, including large signal gain and logic level restoration. The first device is the temporal 
soliton dragging gate [62]. and the second is the related spatial dragging gate [58], which is the main subject of this thesis. Note 
that other soliton interactions can be used for logic devices and are discussed further in Chapter 5. 

1.5.1    Temporal Soliton Dragging Gate 
The soliton trapping [62] and dragging [59] gates are based on the temporal trapping mechanism [56,57]. Two nonlinear 
waves of different polarization and/or wavelength propagate down a fiber with different group velocities. If they are initially 
overlapping in time, in linear propagation, one will reach the end of the fiber before the other. In nonlinear propagation though, 
they can trap each other through nonlinear attractive forces such that they both propagate at the same group velocity. In this 
case, each wave must experience a frequency shift in order to propagate at the common, weighted-mean, group velocity. The 
two nonlinear waves do not need to be of the same size (in terms of pulse area) in order for trapping to occur [57], and the 
frequency shift experienced by the smaller wave is greater than that experienced by the larger wave. 

Figure 1.16 shows the generic three-terminal gate geometry. In the most basic geometry as shown, these gates perform an 
inversion operation in which the pump is passed in the absence of the signal and blocked by a spectral filter or time gate (as 
discussed later) in the presence of the signal. Note that the signal is always blocked at the output and the pump of one gate 
becomes the signal of the next, resulting in true three-terminal operation. Since the pump pulse may be passed on to later gates, 
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Figure 1.16: Temporal soliton trapping/dragging gate. Soliton pump pulses (always present) initially overlap in time with (non- 
sohton) data or signal pulses of different wavelength and/or polarization. Cross-induced chirp causes the pump and signal to 
propagate with the same group velocity. This frequency shift must be resolvable for the trapping gate. The change in group 
velocity becomes an arbitrarily large timing shift after propagation through a dispersive fiber delay line. For the dragging gate, 

this timing shift must be resolvable. 

it is convenient for it to be a temporal soliton in order to maintain its shape after propagation through many tens to hundreds of 
meters of fiber, thereby ensuring logic level restoration. The trapping and dragging gates use pulses of the same wavelength but 
with orthogonal polarizations. Note that similar type gates can be constructed using pulses of different wavelength [63], based 
on the analogous trapping mechanism [64], but this gate is not readily cascadable because frequency shifters are necessary 
to drive the subsequent gate, while in the case of different polarizations, a wave plate can be used to rotate the output pump 
polarization to the correct state. In either case, the gate operation is independent of the relative phase between the pump and 

sisznal '. 
" The soliton trapping gate relies on a resolvable spectral shift of the pump soliton [62], so that an unshifted pump will pass 

throueh a spectral bandpass filter while a shifted pump (in the presence of the signal) will not. This results in amplitude keyed 
lo»ic and is compatible with common high-speed optical detectors for eventual conversion into an electronic signal. In order for 
this to occur, the fiber birefringence must be sufficiently large to produce the necessary difference in group velocity between the 
pulse propagating down the slow axis and the pulse propagating down the fast axis, which when compensated due to trapping, 
results in a spectrally resolved shift. The pump and signal pulses must also be of nearly the same amplitude so that the shift is 
not weighted preferentially towards the signal. As a result, this gate cannot provide significant large-signal gain. In fact, the 
first experimental demonstrations [62,65] used solitons of 300 fs duration and 42 pJ energies for the pump and signal. A final 
note is that, because complete trapping can occur in a few soliton periods, the gate length need only be a few tens of meters in 

length, therebv reducing latency. 
The temporal soliton dragging logic gate utilizes the fiber dispersive delay line as a "lever-arm" in order to allow a weak 

control or smnal soliton to "drag" a strong pump in time [3]. In this way, even a small spectral shift of the pump (i.e. less 
than a n phase shift induced by a weak signal pulse) can result in a large time delay due to non-zero group delay dispersion. 
Because the pump is a temporal soliton and does not broaden in time, a resolvable temporal shift can be achieved by choosing 
the appropriate length delay line, according to the expression 

Aü)^Z.>TFWHM, (L54) 

where the frequency shift Aw is a function of the pump and signal pulses and the birefringence, and ^L is the group-delay 
dispersion. Therefore, there is a tradeoff between gain and fiber birefringence (which determine the amount of spectral shift) and 
gate length. If the pump were a linearly dispersive wave, broadening occurs at the same rate as the temporal delay (neglecting 
higher-order dispersion) and temporal resolvability can only be achieved by a resolvable spectral shift. 

~ Temporal dragging logic must be time-shift keyed, which is still fully cascadable in the optical domain (but may limit bit 
rate somewhat) for a clocked system, but not compatible with high-speed electronic detection. Detection can be achieved by 
using a trapping gate in the last stage [3] or an ultrafast optical gating mechanism, such as the Kerr gate. One problem with 
time-shift keyed logic is that the dragged pump is difficult to remove from the system (although it is blocked by the polarization 
beam splitter at the output of every second dragging gate) and may cause interference in subsequent switching stages. Note that, 
in contrast to the problems imposed by birefringent walkoff on the previous fiber gates, the temporal soliton trapping/dragging 

1 when neglecting the nonlinear four-wave mixing effects 
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Figure 1.17: Temporal soliton dragging NOR gate geometries. Diagram a) shows a two-input soliton dragging gate which 
implements NOR. Diagram b) show two cascaded single-input soliton dragging gates which also implements NOR. 

gates use birefringent walkoff (in combination with nonlinear cross-phase modulation) to induce the switching operation. The 
only constraint is that the walkoff length should be greater than about one soliton period because the bulk of the interaction 
occurs within that distance [66]. 

The first demonstration [59] of temporal soliton dragging was of a two-input, logically complete NOR gate. Two possible 
realizations of this logic gate are shown in Figure 1.17, where the first geometry is the one used in the experiment. In this 
experiment, the 300 fs pump pulse had energy of 132 pJ. while the non-soliton control pulses had 30 pJ energy, realizing a 
gain of 4.5 with high contrast. The fiber length was 75 meters, giving a gate latency of 360 ns. A cascading demonstration 
was also performed using a geometry similar to that shown in Figure 1.17 a). This demonstration suffered from the effects of 
Raman amplification, in which lower spectra! components of a pulse are amplified at the expense of higher spectral components, 
resulting in asymmetric temporal broadening of the pump pulse, and may limit cascadability due to the shift in mean frequency. 
When both control pulses are present, the output of the device is sensitive to the relative phase between the control inputs. 

Using the geometry of b), a follow-on work [66] obtained switching with reduced control pulse energy and no phase 
sensitivin. In this demonstration, a 500 fs, 54 pJ pump pulse was used along with 6 pJ control pulses. The pulse durations 
were lengthened and energies were lowered to reduce the effects of Raman gain. For this geometry, the length of fiber between 
the coupling region for each control pulse need only be that required for the interaction to occur (about 75 meters in this case). 
The long dispersive delay line (350 meters) can be placed at the end in order to achieve the timing shift due to the spectral 
shift induced by either control. This is one instantiation of the more general time-domain chirp architecture [3], Dragging was 
obtained with lower control pulse energies because each control pulse completely overlapped the pump pulse in time, resulting 
in a stronger interaction than in the partial overlap geometry of a). 

Subsequent extensions to the time-domain chirp architecture used 30 m of moderately birefringent fiber in which the spectral 
shift occurred, followed by 2 km of polarization maintaining fiber as the dispersive delay line to obtain the timing shift [3]. In 
this case, the control pulse energy was about 1 pJ. Another modification used a short (~ 2 mm), highly nonlinear semiconductor 
as the nonlinear chirping element, followed by 600 m of fiber. Control energies were on the order of 100 pJ because the control 
and pump were slightly offset in time to achieve spectral shift upon trapping due to the lack of strong group velocity mismatch 
in the semiconductor. 

These trapping and dragging interactions are described by the coupled, temporal NLS equations [67] 

2iko ~oT+2Ak°dT 
•*o*oä^r + 2*o- |A,|2 + 2A|A2| (1.55a) 
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2iko 
dA2     1    ,d_A2 
~dT~2M°dT •MoäFr+2*o- |A2|

2+2A|A,| A2 = 0, (1.55b) 

where A& is the difference between the group delay coefficients, and the reduced time is defined T = t - k^z with ^ being the 
average group delay coefficient. Here, the group-delay dispersion coefficients are assumed equal and A, and A2 represent the 
orthogonal polarizations. Note that the vector four-wave mixing terms have been neglected due to unavoidable intrinsic, stress- 
induced, or bend-induced birefringence which leads to accumulating phase difference between the orthogonal polarizations. 
Much more will be said about this fundamental system of equations in later chapters of this thesis. 

1.5.2   Angular Deflection Gate based on Spatial Soliton Dragging 
Spatial dragging gates [58] are one instantiation of a more general class of angular deflection logic gates studied in this thesis. 
The first spatial trapping gate was demonstrated experimentally [68] using spatial solitons of the same polarization (i.e. phase- 
dependent), but propagating at different angles. Due to cross-focusing, which is the spatial analogy to cross-phase modulation, 
the solitons mutually attract and under the right condition, form a trapped pair. The analogous temporal trapping interaction 
between two temporal solitons of different color (and hence different group velocities), has been studied analytically [64] and 
experimentally [63]. The direct spatial analogy to the Islam temporal trapping [62] and dragging [59] gates is the interaction 
between spatial solitons in the orthogonal eigenpolarization states of a uniaxial crystal [69]. In linear propagation, these 
ei-cnstates would normally walk-off in space, but nonlinear cross-focusing causes trapping or dragging to occur. A different 
arrangement, which is the one used in this thesis, has also been analyzed theoretically [58,70], in which the interaction occurs 
between tilted orthogonally-polarized spatial solitons in linearly isotropic media. The temporal analog to this interaction is 
temporal solitons of different color and orthogonal polarization. 

The use of solitons or solitary waves in optical logic is critical in that solitons beat the diffraction and/or dispersion limit over 
distances much longer than the characteristic linear lengths. Here, the main interest is in the use of lateral spatial confinement 
over distances larger than the linear diffraction distance. The key idea is illustrated in Figure 1.18, which shows the basic 
an-ular deflection logic gate. A pump soliton (left-hand side) propagates the length of the gate (which is assumed to be in 
a slab waveguide geometry) and passes through a spatial aperture at the output, forming the high output state of the device. 
Because the" spatial soliton does not diffract, the size of the aperture can be the same as the size of the wave at theinput, 
independent of the actual gate length. 

The switching operation is performed by disturbing the propagation of the pump beam such it does not exit the spatial 
aperture, thus providing the low output state of the device. This can be accomplished by inducing a change in propagation 
ansle w hich leads to a spatially-resolved shift at the output. If the beam propagates linearly (as shown on the right-hand side), 
a spatialK-resolved shift can only be produced by inducing a change in the propagation angle (with a change in phase across 
the aperture of the beam of at least Jt) that is greater than twice the linear diffraction angle. In nonlinear soliton propagation, an 
induced angle change that is less than linearly resolvable (i.e. less than a n phase change across the spatial aperture) results in 
a differential spatial shift which can be integrated over non-diffracting propagation such that a spatially-resolvable shift occurs 
at the output Thus, as shown in the figure, the gate length must be at least the minimum resolvable dragging distance, which 
depends on the spatial width of the soliton beam and the amount of angular change, much like the case of the deflection of a 
linear pump by a much larger angle and well within the linear diffraction length. 

The angular change is produced through the nonlinear interaction between the pump and another, orthogonally-polarized 
beam, called the signal, which initially overlaps the pump and propagates at a non-zero relative angle. The signal beam must 
be strong enough to induce a nonlinear index change felt by the pump through cross-focusing. If the pump propagates linearly, 
then large-signal gain is not possible because the signal beam is necessarily stronger. In this case, there is no mutual nonlinear 
interaction and the nominal effect of the signal is to create a nonlinear prism which deflects the pump in the direction of the 
signal. The deflection angle depends on the relative propagation angle and intensity of the signal, with the maximum angle 
occurring when the pump is completely guided, or trapped, by the signal. Therefore, the angle 9 must be at least the diffraction 
angle of the pump because the deflected pump will be nonlinearly guided by the signal, which may be a spatial soliton in the 
limiting case. 

If the pump is a spatial soliton. then large-signal gain is possible, but the interaction is more complicated due to mutual 
nonlinear coupling: 

2iA + 2ikx^+^ + 2^[\Ay\^2A\Ax\2 

dz ox       ox- «o L 

2l^+^ + 2^\\Ax\2 + 2*\Ay? 
dz      ox- no <• 

Ay  =  0 (1.56a) 

(1.56b) 
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pump 

Figure 1.18: Logic gate geometry based upon the light-induced deflection of an optical "pump" beam away from a spatial 
aperture at the output. At one extreme, the pump can propagate nonlinearly as a spatial soliton (left), or at the other extreme, 
the pump can propagate linearly and diffract (right). Deflection is induced by the cross nonlinear interaction with a signal beam 
which is tilted with respect to the pump. The dashed contours represent the deflected pump. 
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Figure 1.19: Transfer function for spatial soiiton dragging logic gate demonstrating small-signal gain and saturated levels. The 
pump and s.enal are fundamental solitons of width w0. The signal soiiton amplitude is varied to obtain the increasing input 
power as indicated on the horizontal scale. This transfer curve illustrates a large-signal gain of 2.0, as discussed in section 5.4. 

where, for consistency with temporal interaction equations, the angle of propagation 6 of the signal Ay (which is analogous 
to group delav) is included explicitly in the paraxial approximation such that 9 = kx/ko- Here, An «s the wavenumber, n2 is 
the nonlinear Kerr index, and Ax is the pump envelope. This is the base system of equations used in Chapter 5 for the study 
of the interaction between spatial solitons. Now, during propagation, each beam affects the other through cross-focusing. If 
large-signal gain is realized, then the pump exerts a greater attractive force on the signal than the signal does on the pump. 
Nevertheless, as mentioned previously, only a small angular deviation of the pump is needed. As in the case with the linear 
pump, two interaction scenarios can occur: each soiiton simply deflects the other, or they form a bound, orbiting pair propa- 
gating at the weighted-mean angle [58]. The former is typically referred to as dragging [59], while the latter is referred to as 
trapping [651. Soiiton trapping is more likely to occur when the relative propagation angle is small and the solitons are nearly 
the same size, while deflection, or dragging, occurs for large angles and/or large gain. Note also that the optimal interaction 
may not occur in complete trapping, in which case part of the signal, the "shadow" [71], may remain bound to the pump, while 
the rest propagates at a much larger angle as an unbound linear diffractive wave. Therefore, this interaction will be generically 
referred to as dragging since the high gain situation is of ultimate interest. 

figure 1.19 shows a typical input-output relation for the spatial dragging logic gate. Note that the same function would be 
obtained for the temporal dragging gate as well. The most important feature to note is the region of small-signal gain at the 
input threshold level near 0.3, surrounded by saturated levels. The transfer function shows that the dragging gate has the same 
operational characteristics as an nMOS inverter [26], as shown in Figure 1.1. Here, the role of the electric power supply is 
provided by the pump wave and the role of the gate voltage is played by the signal wave. The presence of small-signal gain at 
the threshold level allows the output to be driven low with very sharp switching characteristics. The threshold level is the point 
on the curve in which the input and output levels are the same. For an input level beyond threshold, the output of the device 
is switched into a valid low state; therefore, the threshold level is the minimum input signal level required to switch the output 
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state of the device, and determines the operating point on the transfer curve where large signal gain is unity. When small signal 
gain is greater than unity at the threshold level, then the input switching level can be chosen such that large signal gain and 
contrast greater than unity can be obtained. The transfer curve is terminated by saturated levels, showing that over switching 
is not possible. As a result, when operating well into the "on" and "off' regimes, small variations in the input signal level are 
attenuated and do not affect proper gate operation, thus providing large noise margin. A more detailed examination of soliton 
logic gates, based on spatial interactions, is presented in Chapters 5 and 6. 

Because these gates have two inputs and only one output, they are three-terminal devices with input-output isolation. Only 
the undeflected pump is passed on to subsequent gates, and it is important that the pump propagate stably over the length of 
the gate with little change in its physical parameters. This allows for restoration of not only the logic level (because of small- 
signal gain), but also restoration of timing, position, polarization, color, and shape, which is crucial to cascaded operation [25]. 
Cascading of these gates can result in more complex logic functionality, as discussed in the next paragraph. Since the pump and 
signal have orthogonal polarizations, the interaction between them is phase insensitive. In the case of linear polarizations, this 
is not strictly true because of the presence of phase-dependent vectorial four-wave mixing terms in the nonlinear polarization. 
Here, it is assumed that these terms can be neglected because of waveguide birefringence, which causes each polarization 
to propagate with a different phase velocity. This assumption is valid when the interaction length is much greater than the 

birefringence beat-length. 
In analogy with temporal dragging logic gate [66] of Figure 1.17 b), logically complete, n-input NOR gates can be imple- 

mented with spatial dragging in an n-stage system in which a cascaded pump is dragged to the side and blocked by the presence 
of a signal in any stage, thereby producing a low output, as shown in Figure 5.35 for a two-input NOR. In this implementation, 
the same pump is passed through two (or more) subsequent stages, so that standardized output levels (in terms of both the 
inverter and the multi-input NOR) may not obtained due to absorption incurred in the additional stages. Complete logic level 
restoration is not strictly obtained either, because broadening of the pump in the presence of absorption also depends on total 
propagation distance, as discussed in section 5.3, such that the shape is not necessarily restored. However, complete logic level 
restoration is not necessary for a small cascade of gates (just as with electronic pass gates) and it is important to note that the 
pump soliton is the one that passes through multiple levels. Absorption will be the ultimate limit to the fan-in (number of 
stages) of this type of NOR gate. Another implementation, in which the total length of a multi-input NOR gate is held constant, 
so that the length of each signal input stage gets smaller with the degree of fan-in, results in both standardized output levels and 
complete restoration, and is discussed in more detail in sections 5.4.3 and 6.3.2. 

The main benefit of the spatial dragging logic gate over the temporal dragging gate is that amplitude keyed logic is straight- 
forward to implement while providing gain. In the spatial case, an aperture can be used to discriminate the output. For temporal 
dragging though, an ultrafast time gating mechanism is required to implement amplitude keyed logic instead of the more natural 
time-shift keved logic [3]. A spectral filter is all that is necessary to implement amplitude keyed logic for temporal trapping, 
but the leverage of the dispersive delay line is lost and gain cannot be provided. Therefore, only the spatial dragging geometry 
has the simultaneous advantages of simple output state determination and the leverage of non-diffracting propagation which 
allows for large-signal gain. Additional advantages are spatial parallelism, as discussed previously, and latency. Typical spatial 
soliton logic gates as studied in this thesis are on the order of em's long, while typical temporal soliton gates are on the order 
of 10's of m's. This results in a factor of 1000 reduction in latency. Much shorter temporal solitons can be used to reduce the 
length of the fiber-based gates, but higher-order temporal effects can cause problems as discussed in Chapter 6. 

Spatial dragging of purely spatial solitons loses the advantages of gate-level temporal pipelining and low energies (due to 
complete confinement) of the temporal dragging gates, though, and spatial dragging between non-soliton pulses could yield 
partial switching behavior with low contrast, as shown in previous sections. That is why, in Chapter 6, this thesis studies spatial 
dragging of spatio-temporal solitary waves in order to retain the best features of short gate lengths, ultrafast operation and 
temporal pipelining, and low switching energies. The spatial dragging gate utilizing spatio-temporal solitons is perhaps the 
only all-optical switching and logic technology that satisfies ail of the requirements for digital switching and logic and has the 
potential for implementation into large scale systems utilizing the high degrees of spatial and temporal parallelism available to 

optics. 
Figure 1.20 shows the generalization of the deflection gate architecture to the use of 2-D spatio-temporal solitary waves. 

Utilization of fully-confined spatio-temporal waves allows for low energy operation and the additional flexibility to use spatial 
and/or temporal interactions. Here the focus is on spatial dragging, but temporal trapping/dragging may also occur and allow 
for the reduction of the requirements on allowable timing jitter between the pump and signal. Note that after the first gate, 
timing is restored in the system (because only the undeviated pump clock stream is passed) such that jitter no longer becomes 
a concern. Also, since the solitary wave does not disperse, temporal pipelining can be employed at the gate level, resulting in 
very high throughput which is independent of actual gate length. This architecture maps well onto the processing of a large 
number of independent data streams, such as ultra-fast time-division multiplexed transmission, bit-serial computation [20], and 
bit-serial digital signal processing [18], as discussed briefly in section 1.2. ( 
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threshold level 

pump 

Figure 1.20: Spatio-temporal solitary wave dragging logic gate. A pump solitary wave (left) will propagate the length of the 
gate and pass through a spatial aperture at the output. In the presence of a tilted, orthogonally-polarized signal (right), mutual 
deflection will cause the pump to shift to the side and not pass through the aperture. The inset schematically shows the input- 
output relation for the gate. The threshold level is set at the point where the input and output are equal. This gate performs an 
inversion operation and can achieve large-signal gain. 
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It is important to make clear that dragging is an asymmetric interaction. The nonlinear waves are brought into temporal 
and/or spatial coincidence in linear propagation, such that they overlap at the beginning of nonlinear propagation. For a 
symmetric interaction, such as collision, the waves are brought into coincidence in purely nonlinear propagation where the 
nonlinear interaction forces are present both before and after the point of overlap. These interaction forces are symmetric in 
that the net change in frequency or angle is zero (the change before complete overlap is exactly compensated by the equal and 
opposite change after overlap), but with a small (not resolvable) residual temporal or spatial shift. Since the dragging interaction 
is asymmetric, the nonlinear interaction forces occur only after the point of overlap such that the frequency or angular change 
is not compensated. This is the key point in understanding the advantages of soliton dragging over other, symmetric, collision 

geometries. 



Chapter 2 

Optical Solitons 

Outside of the communications, switching, and computing applications, optical solitary waves and optical solitons (and solitons 
in general) are interesting in their own right. An entire field of mathematics is devoted to the study of nonlinear integrable 
equations and their soliton solutions [131]. These nonlinear equations are associated with a linear scattering problem and time- 
evolution equation. The bound-state eigenvalues of the linear scattering equation correspond to the soliton solutions and only 
those solutions remain in the asymptotic limit of large time (or long distance). The nonlinear evolution of an arbitrary initial 
condition is described by decomposing into the linear eigenfunction basis set given by the scattering problem. These eigenvalues 
are then iso-spectrally evolved and transformed back to the original space using the inverse scattering transformation [73,161, 
1()2| This thesis will not make direct use of the inverse scattering transform because in general the multi-dimensional vector 
nonlinear wave equations employed are not known to be integrable [163] and can be solved instead via more simple numerical 
and approximate analytical techniques. 

Numerous examples of these integrable and non-integrable nonlinear wave equations exist in physics, but the examples 
from optics are most closely related to this thesis. There are many mechanisms of optical nonlinearity through which solitons 
or solitary waves can form, many of which will be discussed in section 2.1. The most ubiquitous example is the optical 
Kerr nonlmearitv (section 2.2), which gives rise to the integrable (1 + 1)-D nonlinear Schrödinger (or NLS) equation, in both 
spatial (section 2.3) and temporal (section 2.4) forms. The multi-dimensional NLS equation (section 2.5) is not known to be 
inte-juble 1163| and describes the propagation of optical waves with additional dimensions of linear and nonlinear behavior. 
With suitable modifications, the NLS equation serves as the basis for describing the soliton behavior necessary for the logic 
gales studied in this thesis. 

2.1    Historical Background 
A solitar\ wave is a nonlinear wave phenomenon that propagates without change. The most notable recorded discovery of a 
solitary wave occurred in 1834 when J. Scott Russell observed a solitary water wave in the Edinburgh-Glasgow canal [164,165]. 
Through laboratory experiments. Russell deduced that the wave speed is proportional to its amplitude, i.e. taller waves travel 
faster than shorter waves. This wave phenomenon is termed a gravity wave. He also deduced that an arbitrary initial profile 
will asymptotically evolve into multiple solitary waves, and that two solitary waves, with the taller one overtaking the shorter 
one. will interact and emerge undistorted [ 165]. These solitary waves were later called solitons by Zabusky and Kruskal [166]. 
In 1871 and 1876. respectively. Boussinesq and Lord Raleigh showed that, by assuming that the length of the solitary wave is 
much greater the water depth, such a solitary wave has a sech:() amplitude profile. At this point it was realized that the length 
of the solitary wave is inversely proportional to its amplitude, such that a shorter wave is longer than a taller wave. 

The governing nonlinear wave equation for shallow water waves was derived by Korteweg and deVries in 1895 [167], now 
known as the KdV equation: 

du    ,  du     33
M n n —+6«^- + 3-^=0, (2-1) 

di ox     OJC
J 

written in normalized form where u is the normalized amplitude of the wave as a function of position and time. In 1955, 
Fermi. Pasta, and Ulam [168] studied a numerical model closely related to discrete KdV, and in 1965, Zabusky and Kruskal 
numerically solved the KdV equation with periodic boundary conditions [166] and found that two or more KdV solitary waves 
do not break up upon collision. This particle-like nature led them to coin the term "soliton". In this thesis, the term solitary 
wave is used when it is not known that the nonlinear wave is indeed a soliton. 

34 
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The first study of solitary wave phenomena in optics was the self-trapping of one- and two-dimensional filaments [169]. 
This was one study out of a large body of theoretical work that arose from experimental observations of beam filamentation 
due to self-focusing in liquids [170], bulk glasses and crystals [171,172], and atomic gases [173], Self-focusing was also 
determined responsible for anomalously low stimulated Raman scattering threshold intensities [174]. It was quickly realized in 
numerical studies based on the radial NLS equation [175] that two-dimensional nonlinear propagation could become unstable 
when diffraction does not balance self-focusing, leading to a focusing singularity. In fact, in two and three dimensions, the 
operating point representing the stationary solution where nonlinearity and diffraction balance is unstable, and results in the 
well-known critical collapse or blow-up phenomenon due to form instability [176], referred to as large-scale self-focusing [177] 
in two spatial dimensions. At some point in the process of focusing to a point, the beam breaks up into many filaments giving 
rise to small-scale self-trapping [178,179] and is a result of modulational instability such that small transverse amplitude or 
phase perturbations cause a plane wave (or large scale filament) to decay into individual beams whose subsequent propagation 
dynamics depend on the scale of the perturbation [178]. 

Blow-up is an unphysical manifestation of the multi-dimensional NLS equation and indicates that the original assumptions 
used in the derivation of the equation break down. One mechanism of arresting this behavior is to include saturation of the 
nonlinear index [180,181], resulting in stable self-trapping, thus explaining the stability of small-scale filaments. Another 
numerical study [179] showed the formation of small-scale filaments by following the self-focusing of a beam and subsequent 
breakup into an annular structure with the center portion resembling a small-scale filament. This ring structure was a result 
of the analysis being based on a radial nonlinear wave equation and by symmetry is the only structure possible, but will be 
indicative of an experimental situation in an isotropic medium in which strict radial symmetry of the initial conditions is 
maintained. The full picture of filamentary structure via transverse instability can only be captured with a two-dimensional 
analysis [ 178]. It was also realized that other higher-order nonlinear effects such as Raman and Brillouin scattering arrested 
collapse. The vector nonlinear wave equation derived in Chapter 3 includes non-paraxial terms which should also be included 
in the study of two-dimensional self-focusing, and will always prevent self-focusing to transverse cross-sectional areas smaller 

than order/.". 
In 1972. Zakharov and Shabat [73] published the seminal paper on the inverse scattering transform for the (1+1)-D spatial 

optical NLS equation. A year later, Hasegawa and Tappert [132] derived the (1+1)-D temporal NLS equation for single-mode 
optical fiber and proposed the use of temporal solitons as data carriers for long-haul communications. It wasn't until 1980, 
thouüh. that the first temporal optical soliton was observed experimentally [182]. This experiment was made possible by 
the availability of low-loss optical fiber in the anomalous dispersion regime (i.e. wavelengths longer than about 1.28 pm in 
fused silica fiber) and the color-center laser producing ps pulses in that regime. More recent work has focused attention on 
the modifications of the base NLS equation required to adequately describe long distance, short-pulse propagation in fiber. 
These modifications include: higher-order dispersion [30]. such as third- and fourth-order; optical shock [ 183] (also called self- 
steepening or the intensity-dependent group-velocity [184]); and stimulated Raman scattering [185,186] (responsible for the 
soliton self-frequency shift [ 145,187]). Spatial optical solitons have also been realized experimentally in liquid CS2 [188,189], 
glass [118. 120] andAlGaAs [190] slab waveguides, and in CS; cells using highly elliptical beams [191] to avoid critical 
collapse inherent in (2+1 )-D nonlinear propagation [175]. Much more theoretical and experimental attention has been paid to 
temporal solitons. though, due to their potential for important applications, such as long-distance fiber communications. 

The previous paragraphs discussed optical solitons formed through the Kerr nonlinearity. but there are other nonlinear 
mechanisms in optics that also allow for solitons or solitary wave behavior. It has been known since the early 1970s that a 
third-order like nonlinearity can be obtained by cascading two second-order nonlinearities, such as occurs with the interaction 
between a fundamental and a field generated through EXT rectification [192] or a generated second-harmonic [193]. The former 
mechanism has been shown theoretically [ 194,195] to be described by the Davey-Stewartson (or Benny-Roskes) equation that 
exhibits stabilized 2-D spatio-temporal solitons [162]. but to date, these solitons have not been observed experimentally. The 
latter mechanism has generated a new field of study in nonlinear optics as a means of producing extremely large, ultrafast third- 
order nonlinear effects [196]. Second-harmonic cascading been shown theoretically [197,198] and experimentally to support 
bright spatial [ 199] and temporal solitons. 

Other nonlinear mechanisms that support solitons include: formation of temporal solitons in the Stokes pulse via stimulated 
inter-pulse Raman scattering (SRS) [200,201], dark 1-D [84] and stable 2-D vortex [202] spatial solitons in self-defocusing 
media with thermal nonlinearity, plasma filaments in air [203], and so-called photorefractive solitons [204]. These nonlinear 
mechanisms do not respond on the fs time scales of the Kerr and cascaded nonlinearities and, as a result, may not be as useful 
for ultrafast optical switching. 
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2.2   Preliminaries 
This thesis concentrates on bright one-dimensional spatial solitons and multi-dimensional spatio-temporal solitary waves in 
media exhibiting optical Kerr nonlinearity. The entire class of dark solitons are omitted from study because they have nonzero 
boundary conditions at infinity, implying the requirement of infinite power/energy. This boundary condition can be relaxed 
somewhat by embedding a dark stripe or vortex within a localized bright diffracting background. A multi-dimensional hybrid 
bright/dark solitary wave, or symbion, may also exist for either bright in time and dark in space (which might be important for 
materials with n2 < 0 and normal dispersion [205]), or bright in space and dark in time (which might be important for materials 

with «2 > 0 and normal dispersion). 
In one dimension of space, a spatial soliton exists through the balance between linear diffraction and nonlinear self- 

focusing [73,169]. In time, a temporal soliton exists through the balance between linear dispersion and nonlinear self-phase 
modulation [132]. Kerr-type (nonresonant and non-dispersive) refractive nonlinearity is responsible for both self-focusing and 
self-phase modulation and is the fundamental requirement for the so-called nonlinear Schrödinger (NLS) solitons in optics 
which are the subject of this thesis. In one dimension, NLS solitons are stable, meaning that small amplitude or phase pertur- 
bations do not upset the balance between the opposing linear and nonlinear effects. 

Under special conditions on the amplitude and beam width/pulse duration, optical solitons can form when the total refractive 
index is well-described by the expression 

n = n0 + n2\A\2, (2-2) 

where /i<> is the linear index of refraction at some frequency co0 and n2 is the total ultrafast nonlinear index, or Kerr index, with 
units of cm:/V:, and A is the electric field envelope with units V2/cm2. The definition of the nonlinear index in terms of the 
third-order susceptibility, given by equation 3.59, was chosen such that the above expression for the total refractive index is 
valid. A further generalization includes the quintic contribution to the refractive index through ultrafast x(5), 

n = n0 + n2\A\2 + nf\A\i, '    (23) 

where the effective quintic index, with units cm4/V4, is defined as 

2«o 
..eff _ ...     _^2_ (2.4) 

ignoring the cascaded contribution. The direct quintic index /i4 is discussed in section 3.1.3. In this case, the relative dielectric 

constant takes the form ^ 

It is now seen that the second term in the definition of nf is the result of taking the square-root of the dielectric constant to 
obtain the retractive index. An additional contribution, produced through the process of cascading between the fundamental 
and third-harmonic, is derived in the multiple-scales analysis of section 3.2. 

The quintic nonlinearity will be used in the multi-dimensional solitary wave case as a means for providing stability, but first 
1-D spatial and temporal solitons as described by the cubic NLS equation will be discussed in detail. 

2.3    1-D Spatial Optical Solitons 

Spatial solitons result from the balance between linear diffraction and nonlinear self-focusing as shown in Figure 2.1. In one 
transverse spatial dimension, these solitons are stable such that the balance between the linear and nonlinear effects prevents 
small amplitude or phase perturbations from destroying the soliton. If a perturbation acts to widen the soliton, nonlinear self- 
focusing overpowers diffraction to restore balance. In the opposite case, if a perturbation narrows the soliton, linear diffraction 
overtakes self-focusing. 

The analytical study of spatial solitons begins with the scalar Helmholtz equation which describes the propagation of a 
monochromatic beam in weakly inhomogeneous media 

V2Ä + k2Ä = 0 (2.6) 

where £ = \Ä(x. y.z)e~Uo°' -fee is the time-harmonic electric field, k = ü)0n(r,co0)/c is allowed to have weak spatial variation, 
and the over bar indicates the presence of a fast phase variation due to propagation. Assuming for the moment that k has no 
spatial variation, equation 2.6 can be transformed into the spatial frequency, or Fourier, domain 

[k2 + k2 + k:}Ä = klÄ, (2.7) 
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Figure 2.1: Illustration of the balance between linear diffraction and nonlinear self-focusing in the formation of a spatial optical 
soliton. The l/e: beam radius is plotted along with the dashed lines which represent the phase fronts. 

where *,. k, and *: are spatial frequency variables representing the Cartesian components of the optical wave vector. The 

solution to this equation is 
y/kl + ki + ki = ko, (2-8) 

which describes the momentum sphere of isotropic propagation and prescribes one spatial frequency component when the other 
two arc known. This sets up an initial-value problem for propagation, such that when the electric field is known on a plane 
for example, guaranteeing that two of the three components of momentum are known, propagation to another parallel plane 
at an arbitrary distance is then fully determined by specifying the third component using equation 2.8. If c is the direction of 
propagation, then the initial-value problem has the solution in the Fourier domain 

Ä{kx,ky,z) = /'\Ao *i k>:Ä(kx,ky, 0), (2.9) 

where Ä(kx.k^.O) is known by the Fourier transform of the initial field on the input plane. The field distribution A (x,y,z) at the 
observation plane is calculated by the inverse Fourier transform of A {kx,ky,z). Linear diffraction is described in more detail in 
section 2.3.2 and Chapter 4. 

In media of isotropic symmetry class with Kerr-type nonlinear index /i2, the inhomogeneous wave number is 

k-(\A\)=4 + 2^\A\2 

where the quintic nonlinear index is neglected. Substituting into equation 2.6 results in 

V2Ä + ki]Ä + 2kt±\A\2Ä=0. 
no 

(2.10) 

(2.11) 

This equation describes the (2+l)-D spatial propagation of a beam in a weakly inhomogeneous, weakly nonlinear medium. 
Since the 1 -D spatial soliton is of present interest, it is assumed that the beam is confined in they dimension by a slab waveguide. 
As a result, assuming that the linearly guided and nonlinear soliton envelopes are separable, i.e. 

Ä{x,y,z) = <l>{y)Ä{x,z), (2-12) 

where O(y) represents the guided profile and is real and of unity magnitude, the nonlinear Helmholtz equation 2.11 reduces to 

oz-      OX" nn 
(2.13) 



Final Report AFOSR F49620-95-1-0431, Spatial Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder 38 

and is the starting point for the following analysis of 1-D spatial solitons. 
Note that the effects of waveguide confinement have been formally neglected in equation 2.13. This omission can be 

remedied by using an effective wavenumber ßeff and nonlinear coefficient nf determined by the appropriate modal overlap 
integrals, but the analysis in the next two sections neglects the effects of transverse waveguide confinement for simplicity. The 
fully confined case of 2-D spatio-temporal solitary waves in a slab waveguide is discussed in full in Appendix C. 

2.3.1    The Non-Paraxial Fundamental Soliton 
A soliton is by definition a stationary solution, therefore, using the field amplitude ansatz 

Ä(x,z)=A(x)e®z (2-14) 

in equation 2.13, the stationary transverse envelope becomes the eigenfunction of the ordinary nonlinear differential equation 

d2A(x) 
dx2 + 

n0 
A(x) = 0, (2.15) 

where ß: is the eigenvalue and ß represents the total wavenumber and contains both linear and nonlinear contributions. 
The transverse envelope is assumed to be of the form [169] 

A(x) =Aosech 
w0 

(2.16) 

where .<*,> is the real amplitude and w0 is a measure of the beam width. Since the soliton is non-diffracting, there is no transverse 
phase variation. The stationary solution is given by 

A0 = 
"o 

ICQWO V ": 

ß- = *o + —= *5 1 + 
n-)A 2^0 

"0 

(2.17) 

(2.18) 

with the Kita! wavenumber ß K ko+kfn2Al/2 when the induced nonlinearity is small. 
Since equation 2.13 is invariant under the unitary transformation 

j 

a more general stationary solution is given by 

A(y.c')=^osech 

cosG     sinG 
-sinG    cos 6 

cosGy — sinGc7 

w'o 

,/ß[cosO^+sin0V] 

(2.19) 

(2.20) 

Equation 2.20 is a fully linear and nonlinear non-paraxial solution when the optical field polarization is in the y direction such 
that vectonal effects are absent. Unfortunately, it is mathematically and numerically difficult to propagate this (or other) solu- 
tion using the evolution equation 2.13; therefore, a common practice is to reduce this full Helmholtz equation to a parabolic 
one so that robust numerical techniques based on finite-difference or split-step methods, and analytic techniques such as the 
scattering/inverse-scattering transform, can be used. This procedure is carried out formally in Chapter 3 for the fully vec- 
torial (3+D-D and (2+l)-D evolution equations which uncovers the linear and nonlinear physics buried in the second-order 
equation 2.6. but done in an ad-hoc manner in the next section for the (1+1)-D case. 

2.3.2    The Paraxial Fundamental Soliton 
Paraxial propagation is described about some mean direction of propagation. For simplicity, choosing z to be this direction, the 
electric field envelope is assumed to be of the form 

Ä(x,z)=A(x,z)eik°\ (2.21) 
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where *o = (Oono/c is the bulk propagation constant or wave number. The fast phase due to propagation is explicitly removed 
from the transverse envelope so that the slowly-varying amplitude (S VA) and paraxial approximations can be made. Substituting 
this expression into the nonlinear Helmholtz equation 2.13, and making the approximation 

PW| = ^ ä7 + äiä?+2^ dz 
< \2kodA/dz\ 

results in the (1+1)-D spatial NLS equation 

„ ,   3-4       d2A      -,TW2 ,.,2 A       n .21*0-5-+ -TT+2*5— A   A = 0. 
dz     ox- no 

(2.22) 

(2.23) 

The first two terms in equation 2.23 simply describe linear diffraction in the paraxial approximation which is seen by taking 

a transverse spatial Fourier transform 

3Ä 

dz 2*o 
Ä(z) = Ä{G)e ■i[k2

x/2ko]z (2.24) 

and reduces the -directed accumulated phase from the maximum value *o to *o [l - k2J2kl] due to the off-axis projection of the 
phase-velocity onto the mean direction of propagation c This expression only allows for propagation in one direction (along z or 
very near to it) and is the result of the using the slowly-varying amplitude approximation which reduces the Helmholtz equation 
to ä uni-directional wave equation. The SVAA is valid when backscattered radiation from linear or nonlinear inhomogeneity 
can be neglected to a given order of approximation, as discussed in Chapter 3. 

Figure 2.2 illustrates diffraction in spatial frequency space. For full (2+l)-D spatial diffraction in isotropic space, the 
surface of allowed * vectors is a sphere. Diffraction in (1 + D-D as shown in the figure is represented by slicing the sphere with 
a plane passine through the origin, resulting in a circle. The paraxial approximation represents this circle as a parabola and 
is valid for small transverse spatial frequencies (small angular bandwidths). Linear propagation is described by appropriately 

phasing each transverse spatial frequency component A(kx) with exp{ikzz), where kz = y/k$ - *| in the non-paraxial case and 

*. % *„ - *7/'2*o in the paraxial case. 
Figure 2.3 shows the diffraction of an initial sech(.r/w0) profile beam over 5 confocal distances. Here the confocal distance 

Z, = Truf,//. is twice the Rayleigh range, which represents the distance over which the FWHM intensity pattern increases by 

\'2 '. Note that the intensity FWHM is 1.1621 WQ [30]. 
Neglecting the diffraction term in equation 2.23 results in the nonlinear equation 

i^- + kfn2\A\2A = 0, 
dz 

where *, = i<h/c is the free-space wavenumber. The solution to this equation is written in the real space domain as 

A(.x.z) .\ - jr'-d.z A{x,0) 

(2.25) 

(2.26) 

with the nonlinear phase accumulation 

^L(x.z) = kf„2J~\A(x,z')\2dz'. 

For small ; = A;, the nonlinear phase is approximated by the expression 

$NL(x. Ac) « *//!; \A{x, Az/2)|2 A: 

(2.27) 

(2.28) 

which is second-order accurate in Az- This nonlinearly induced phase is illustrated in Figure 2.4 for propagation distance Az 
and peak amplitude chosen such that the maximum nonlinear phase is 4 radians. 

The spatial frequency space is the natural domain in which to solve the linear diffraction problem, while real space is the 
natural domain in which to solve the nonlinear problem (ignoring diffraction). This insight will be used in the development of 
the split-step Fourier method outlined in Chapter 4, which efficiently implements nonlinear propagation by switching between 
the two domains for linear diffraction and nonlinear refraction. 

1 Unlike the case for Gaussian beams, in the case of a sech(), this distance is not the same as that obtained by interpolating the far-field diffraction pattern, 
which results in a confocal distance 1.6057t2H^/X 
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Fiüure 2.2: k-space diagram graphically showing the ;-projected wavenumber kz as a function of the transverse wavenumber kx. 
The paraxial approximation is illustrated by the dashed curve. The transverse spatial frequency spectrum of a beam is shown in 
order to illustrate propagation by associating kz with every kx of the spectrum. The paraxial approximation is good for small kx 

but breaks down for larger kx where the associated value for kz deviates significantly from the exact result. 
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Fi«ure -1 V Diffraction of a beam of initial sech(.v/w„) profile, and intensity profile sech2(.v/vv'0), where H-0 = 14.2 pm and 
intensity FWHM 25 /im. After propagating 5 ZQ, where Z,, = Tru-jj/X = 1.85 mm is the confocal distance, the intensity FWHM 

broadens to 140 pm. 
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Figure 2.4: The nonlinear phase (dashed curve) induced by an electric field envelope (solid curve). The induced phase is 
proportional to the local intensity and in a material with positive Kerr nonlinearity, tends to reduce the phase velocity of the 
central portion of the beam resulting in a focusing, or lensing. effect. 

Now, looking for a paraxial soliton solution, the stationary ansatz 2.14 is substituted into equation 2.23 with the result 

d-^l + 2kJ-V + kjn2\A(x)\2}A(X)=0. 
dx- L J 

Assuming the fundamental soliton form of equation 2.16. the amplitude and phase become 

1      /"Ö 
A0 

ArjW'o V "- 

(2.29) 

(2.30) 
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Figure 2.5: Spatial soliton beam of initial sech(.v/vv0) amplitude profile, where vv0 = 14'2 pm and intensity FWHM 25 fim. 
Fven after propagating 5 ZQ, where ZQ = 1.85 mm, the beam width and position are unchanged. 

ß= l/2k0WQ = kfn2Aö/2, (2.31) 

where the amplitude is the same as in the non-paraxial solution and ß represents the slow phase nonlinear correction to the 
fast phase linear wavenumber A"o. The total wavenumber *o + ß 's tne same as tnat obtained in the non-paraxial case given by 
equation 2.18 when w0 »A.. The nonlinear correction to the wave number ß is half that obtained for a plane wave of amplitude 
.-I,,, and simply reflects the fact that the soliton does not have constant amplitude. 

The lull paraxial solution is written 

Ä{x,y,z) = — .P *(v) sech    -   e-'h+'/2*o«3o]=, 
*ow'o V ":     ' \u'o/ 

(2.32) 

where the linearly guided profile <t>(y) and linear wavenumber ky are added for completeness. Spatial soliton propagation using 
the split-step numerical scheme of section 4.2.1 is shown in Figure 2.5 with WQ = 14.2 pm. After a propagation distance of 
5 Z,,. the soliton is unchanged, thereby beating the limits imposed by linear diffraction as shown in Figure 2.3, which would 
result in spatial broadening by a factor of 5.6. 

Defining the optical intensity with units W/crrr 

I(x,y.z)=^\A(x.y.z)\2=^\A(.x.y.z) (2.33) 

and neglecting the nonlinear contribution to the index and impedance, the intensity of the fundamental soliton is written 

/(x,v.=) = 
E<><- 

2kj M-ll; 
<J>-(v) sech" ( — 

,w0 

for ii; in units of V:/cm:. The power of the soliton is 

P(z)=[fl(x.y.z)clxcty=Tß^f^2(y)dx 

(2.34) 

(2.35) 

and has units of H'. Note that / sech2(x/wo)dy — 2uo- 
From these expressions, it is clear that the peak intensity of the soliton increases inversely proportionally to the square of 

the width and the power of the soliton increases inversely proportionally to the width, so that a narrow soliton requires more 
power to launch and propagate than a broader one. 

A further generalization of the paraxial soliton solution is given by 

A(x,z) =AQ sech 
x-Q: 

w0 

J5kxx+fc] (2.36) 
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Substituting this expression into the NLS equation 2.23 results in 

1 

2ko w} 

(2.37) 

(2.38) 

(2.39) 
'o 

which is the paraxial version of equation 2.20. Notice that, like the non-paraxial soliton solution, the NLS soliton solution has 
two free parameters: the width w0 and angle of propagation 9. 

2.4   1-D Temporal Optical Solitons 

Temporal optical solitons result from the balance between linear dispersion and nonlinear self-phase modulation (SPM). In 
order to arrive at this one-dimensional system, the temporal soliton is confined transversely in an optical fiber. Even though the 
nonlinearity of silica glass is very small, optical fiber is an ideal system in which to perform experimental studies because of the 
very low linear loss ~ 0.2 dB/km (~ 5 x 10~7 cm"1) and long interaction lengths [30]. Because a temporal soliton is inherently 
a one-dimensional nonlinear phenomenon described by the NLS equation, stability is guaranteed as it is in the one-dimensional 

spatial case. 
The scalar wave equation describing temporal propagation in fiber is 

31 
0)0 + ^ |A|2A = 0, (2.40) 

where the electric field £ = U(jc,y,z,f )e~/<,v + cc and Raman scattering has been neglected. The wave number function of 
the operator £ is interpreted'by its Taylor expansion [194], as shown in equation 2.44. Here, parenthesis enclose function 
arguments, while braces and brackets are used for grouping. The effects of Raman scattering are considered in section 2.4.3. 
Equation 2.40 describes the evolution of the pulse envelope, therefore soliton solutions are termed envelope solitons, in contrast 
to field soliton solutions of other nonlinear wave equations such as KdV. 

In the following analysis it is assumed that A has the separable form Ä = 4>{x,y)Ä(z,t), where <D is the transversely guided 
profile of unity magnitude! The effects of transverse guidance will be neglected for simplicity, as already done in equation 2.40. 
In Appendix C. the derivation in the case of spatio-temporal propagation in a slab waveguide is presented in full. 

The linear part of equation 2.40 has the simple solution in the temporal frequency domain 

Ä(Aa),c) = e±,i(,,)0+A",):Ä(Acü,0). (2.41) 

The term Aw describes some (small) frequency variation about the central frequency w0. Similar to the case for linear diffrac- 
tion, linear dispersive propagation is fully described by phasing each temporal frequency component ^(coo + Ao)) using the 
appropriate dispersive wave number A((üo + Aw). 

The variation in wavenumber k with wavelength is shown in Figure 2.6 for bulk silica glass, where waveguide dispersion is 
neglected. The linear and nonlinear optical properties of silica are discussed in more detail in Appendix D. Also shown is the 
wavelength dependence of the group delay coefficient, which is related to the wavenumber by k' = dk/dw, and can be evaluated 
in two forms 

w9/i(w) 
k'(co) 

k'(X) = - 
c 

/i w +       a 

n{X)-X-dT 

(2.42) 

(2.43) 

It is clear from the figure that when X > 1.28 pm, shorter wavelengths are delayed less than longer wavelengths, meaning that 
shorter wavelengths (higher frequencies) travel with a greater group velocity than longer wavelengths. This is the anomalous 
dispersion regime and is the regime in which bright temporal solitons can form with positive Kerr nonlinearity. 

Much effort has been placed on using waveguide dispersion of fiber to tailor the overall dispersion characteristics. One 
example of this is dispersion-shifted fiber, in which the zero value of group-delay dispersion is shifted to longer wavelengths, 
particularly near 1.55 pm where the fiber loss is minimum. Double or quadruple clad fiber has flattened dispersion character- 
istics where the GDD is small and nearly uniform over a 25 nm range [30]. Both of these examples are used mainly for linear 
propagation where dispersion is not compensated by SPM. Appendix D briefly covers the effects of waveguide parameters on 
the overall linear dispersion relation. 
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F:iiiure 2.6: Wave number and group delay versus wavelength for bulk silica. The dashed vertical line separates the normal 
(NGDD) and anomalous (AGDD) dispersion regimes. The spectrum of a 16.5 fs intensity FWHM sech() pulse with time- 
bandwidth product 0.316 is also shown. Linear dispersive propagation occurs by phasing each temporal frequency component 
using the appropriate wave number. 

2.4.1    The Non-SVEA Fundamental Soliton 
It is not known that equation 2.40 has a general solution. There are solutions for specific material parameter values when the 
full dispersion relation A2 (to) is truncated at a given order. This truncation amounts to making the slowly-varying envelope 
approximation (SVEA). although the standard SVEA keeps terms only up to second-order in time derivatives and results in the 
temporal NLS equation. 

An analytic solution to equation 2.40 has been obtained [206] keeping linear dispersion terms up to fourth-order in time 
derivatives and all nonlinear terms, excluding Raman scattering. To fourth order, the linear dispersion is 

it"     Wo + I 
dt 

K!CQ+ 2/1-0*0r- - [*o" + Mo] 7^2 (2.44) 

With this approximation, equation 2.40 can be rewritten 

—+köA + liko^ - [A-o- + Mo] g^- - 3 [3*0*0 + *o*o J ^T 

2ikf d      1 d2 

~di~ c2dt2 

dz 

+ l[3*g2 + 4^"+*öC]^ + 2»«o«2 

(2.45) 

*? + \A\2Ä = 0. 

Notice that the SVAA has not been made, even though the SVEA has been made to fourth-order in time derivatives. Equa- 
tion 2.45 will still be referred to as a non-SVEA equation because it includes two orders of time derivatives beyond the standard 
SVEA equation. 

A solitary wave solution to equation 2.45 is given by [206] 

A{z.t)=AQsech['-^)e^-^y (2.46) 
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where the expressions for the quantities A0, v, x0, ß and 5co can be found in the reference. One important property of the solution 
is that all of the parameters are determined by the material constants; there are no free parameters so only one solitary wave 
profile can be a self-consistent solution. This is unlike the NLS case in which there are two free parameters - width/duration 
(or amplitude) and propagation angle/frequency [117]. A condition on the existence of the solution 2.46 is that the material 
dispersion parameters k£, *g' and Ag" are negative, which can be accomplished using quadruple-clad fiber for example [207J. 

Another property of this solution is that, like the non-paraxial spatial soliton solution of the previous section, there is no 
backscatter of radiation from the induced inhomogeneity due to the nonlinear index. This is because the wave is a stationary 
state and does not change with propagation, therefore there is no energy loss due to scattering. The stability properties of this 
non-SVEA solution have not been studied to date, and it should be pointed out that experimental realization may be difficult 

due to the restrictive nature of the solution. 

2.4.2   The SVEA Fundamental Soliton 
Writing the field amplitude in terms of a fast propagation phase and slowly-varying envelope, 

Ä(z.t)=A[z,t)eik°z, (2-47) 

and substituting into equation 2.40, the (l+l)-dimensional scalar nonlinear wave equation usually considered for soliton prop- 

agation in optical fiber [132] is obtained 

2i*o 
dA      ,dA -ko^ + 2^\A\2A = 0, (2.48) 

at- «o 

where the slowly-varying amplitude and envelope approximations have been made. The quantity in brackets simply indicates 
that the wave nominally moves at the group velocity v, = \/k'0. This quantity can be simplified by making the transformation 

into the reduced time coordinates 

T = t-k'0z (2-49) 

Z = z. 

and noting that 

3 _ 97" d      dZ d_ _ _3_ C 50) 
di = It df+ dia~Z ~ dT 
0 -dIJL + dljL--k' — + — (2.51) 
d~z~ dzdT+dzdZ~    K°dT + dZ- 

With these substitutions, equation 2.48 can be written 

2/*o|l_^0 + 2^|A|M = O. (2.52) 
oz öl- no 

which is the temporal nonlinear Schrödinger (NLS) equation. Apart from a scaling factor, this equation is the same as the 
(1 + 1 )-D spatial NLS equation. For bright soliton solutions analogous to equation 2.32, it is clear that 1% < 0, meaning that the 
wave propagates in the anomalous dispersion regime. ■        _ 

By using the transformation 2.49, the coordinate system is changed such that the pulse moving with the group velocity l/k0 

is stationary on the reduced time axis T, instead of moving on the time axis / at the group velocity. This results in the leading- 
order frequency-dependent correction to the wavenumber *o being proportional to the group-delay dispersion coefficient k%, 

or . . 
A(w)*A0 + -Aür^\ (2-53) 

where Jto = A(ü)o) and Aco = w - coo- 
The linear part of equation 2.52 has a simple solution in the temporal frequency domain 

^(Acü.z) = c'KAu2/%Ä(Aü),0). (2-54) 

Analogous to paraxial linear spatial diffraction, linear dispersion is described by phasing each temporal frequency component 
with the appropriate quadratic phase factor ^öAl"2-/2 in this case where SVEA was made such that higher-order dispersion is 
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Fiüure 2.7: Effect of negative group-delay dispersion on a 16.5 fs quasi-monochromatic wavepacket with Xf - 1.55 fim. The 
initial sech() packet is shown on the left and the dispersed packet on the right. The electric field oscillation at optical frequencies 

is shown for illustrative purposes. 
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Fiuure 2.S Dispersion of a pulse of initial sech(7/x0) amplitude profile, where t0 = 9.36 fs and intensity FWHM duration 
10.5 fs After propagating 5 Zh where ZQ = 7t.Tö/2|*o'| = 4.93 mm = 2LD/n is the dispersive confocal distance and LD is the 
standard dispersion length, the pulse FWHM broadens to 91.5 fs. 

nedected The dispersion of a wavepacket is illustrated in Figure 2.7 in the time domain. Even though group delay dispersion is 
an en\ elope phenomenon, the local phase of the envelope affects the underlying carrier. The figure indicates that in the dispersed 
envelope, higher frequencies move towards the pulse leading edge (negative time) and lower frequencies move towards the 
trailing edge (positive time), characteristic of the AGDD regime. 

Figure'z.S shows the effect of group-delay dispersion on a 16.5 fs FWHM pulse envelope over the dispersive equivalent 
distance of 5 Z,, Note that higher-order dispersive effects must be considered for this wavepacket, but are presently neglected 
for illustrative purposes. The definition of ZQ is obtained by using the substitution x0 ->■ w0vAo|*fj| in the definition of the 
confocal distance used for spatial diffraction of the sech(.v/»u) profile. With the consideration of only group-delay dispersion, 
the broadening of the temporal profile depends on the magnitude of GDD, not the sign. The chirp of the carrier does depend on 
the sign of GDD. as shown in Figure 2.7. 

The nonlinear part of equation 2.52 has the solution 

with the nonlinear phase accumulation 

A(T,z) = ei^L{T-)A(0) 

^L(T,z)^kfn2p\A(T,z')\2dz'. 

(2.55) 

(2.56) 
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Figure 2.9: Effect of positive self-phase modulation on a 16.5 fs quasi-monochromatic wavepacket where the initial sech() 
packet is on the left and the nonlinearly modulated packet on the right, with n peak nonlinear phase change. Positive self-phase 
modulation reduces the phase velocity proportionally to the square of the field envelope resulting in an instantaneous frequency 
shift (top rieht), such that the pulse leading edge is downshifted and the pulse trailing edge is upshifted. 

Because of the nonlinear phase modulation, there is an instantaneous frequency change across the pulse envelope. This fre- 

quency shift is defined as 

8co= - 
do NL 

-kiii-iAz 
d\A(T,Az/2)\- (2.57) 

dT   "~    '•'•-" ST 
and IN known as self-phase modulation (SPM) [30]. This effect is illustrated in Figure 2.9. The frequencies at the center of the 
pulse are not shifted because the derivative there is zero. At the inflection points of the envelope the derivative is maximum 
resultin» in the largest frequency shift such that the leading edge is downshifted while the trailing edge is upshifted for positive 
SPM. Therefore, in the anomalous dispersion regime, the leading edge will travel with a slower group velocity than the trailing 
edsie. The net effect is a narrowing, or compression, of the pulse and a temporal soliton results from the dynamical balance 
benveen positive SPM and linear dispersion in the anomalous regime. This balance is the reason for the existence of stable 
temporal sohtons. In the normal regime, pulse lengthening is enhanced due to positive SPM. 

It is clear from Fieure 2.9 that, even though the envelope amplitude is unchanged, SPM alters the phase and hence the 
spectral content. This phenomenon is known as SPM-induced spectral broadening and is shown in Figure 2.10 by comparing 
the temporal Fourier transforms of the two wavepackets in Figure 2.9. where significant spectral broadening has occurred. In 
the absence o\ asymmetric, higher-order effects, spectral broadening is symmetric about the central frequency. 

By analogy with the 1 -D spatial soliton, the existence of a temporal soliton of the form 

AIT,; A0 sech \ — le A- 

is postulated where ß is the nonlinear wave number correction. Using this trial solution in equation 2.52 results in 

Aü 

ß 
^<I":VI 

-k"i/2-^-kjn2A^/2. 

(2.58) 

(2.59) 

(2.60) 

In order for the amplitude A0 to be real, A# < 0. which is the anomalous dispersion regime as anticipated. By comparing the 
expression for the amplitude in the temporal and spatial cases, there is a correspondence between the temporal duration and 
spatial width give by x0 = ^k^kj n0, also indicating that k[\ < 0 in order for x0 to be real. 

The full SVEA temporal soliton solution is then 

Ä(X,y.z.T)=-y —-— <P(.v, v) sech   — ■[ko-qi^z (2.61) 

where the guided profile *(*.>•) and linear wave number ko are added for completeness. The numerical propagation of a 
temporal soliton is shown in Figure 2.11 over 5 Zo- As for the spatial soliton, the pulse duration and position in the reduced 
time coordinate frame are unchanged. 
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Figure 2.10: Self-phase modulation induced spectral broadening. The peak nonlinear phase change is n, resulting in spectral 
broadening by greater than a factor of 2. Subsequent pulse compression utilizing the appropriate net negative group-delay 
dispersion will result in a pulse shorter than the initial pulse. 
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Figure 2.11: Temporal soliton pulse of initial sech(7/T0) profile, where x0 = 9.36 fs and intensity FWHM duration 16.5 fs. 
After propagating 5 Zo. where ZQ = 4.93 mm, the pulse duration and position are unchanged. 

The optical intensity is given by 

/(*,>•,=• 7") 
Eoci!(.r! v)*ö ^2 

2A/T5«2 
<t>-(x,y) sech 

to 
(2.62) 

where the spatial variation of the linear refractive index responsible for transverse guidance is retained. The optical power of 

the soliton is 

P(z.T) = 
eoc/io£ÖAeff 

2£/TQ/22 
sech 

TO 
(2.63) 
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Aeff = - / fn(x,y) <&2(*,y) dxdy. (2-64) 

and the effective transverse spatial area is defined by the expression 

J_ 
no. 

The total energy of the soliton is then 
E_    EQCTIO*^^ (265) 

kfTori2 

with the same scaling as the 1-D spatial soliton. 
As was done for the spatial paraxial soliton solution, the temporal SVEA soliton solution can be generalized to the form 

A{zJ)=Aosech(^^)e^-^r (2.66) 

Substituting into the temporal NLS equation 2.52 results in 

i2 *o"° (2.67) 

P       ^l        2 

8k'0 = 8(ol%. '(2-69) 

This result simplv means that a change in optical frequency 5w changes the linear wave number from *0 to *o + 8(0-1%/2 and 
the group delay from k'Q to k'Q + 8(01%. Notice that the amplitude is unchanged which is the result of neglecting the third-order 
dispersion contribution k'Q" in the NLS equation. 

2.4.3    Higher-Order 1-D Temporal NLS Solitons 
Taking the temporal nonlinear wave equation one order of approximation beyond SVEA results in the modified NLS, or mNLS, 

equation 

...   3-4 „d2A      i      H/3\4 (270) 2,*0 "jp ~ Mo jjyT ~ 3*0*0 ä^ V",KJ> 

+2kl— \A\2A + 4ikfn2 
"o 

»o     *d 
ÖT 

A similar equation was previously considered [140] but lacked the correct form of the shock term. As shown in Chapter 3, 
this is the order at which the effects of stimulated Raman scattering also appear for the given scalings. Raman scattering is a 
dissipative effect and is considered in the next section on higher-order temporal effects. 

A solution to the mNLS equation is given by 

A{z.T)=Ao sech (^^) ^~^, (2-71) 

with the following parameter values 

. 2 *»*■()  (2 72) 
°~    6kfn2xl{n0/c-k'J2\ 

ß = _ _L [,% + 5(<] + ^ + ^l (2.73) 

8^ = 5<+^*I_|; (2.74) 

5U *9 ^2. (2.75) 
ÖCÜ-4[,10/c-^o/2]     2*g'- 

The only free parameter is the pulse duration T0, which allows for multiple solitons of different durations/amplitudes to be used 
for switching. Stability has not been investigated theoretically, but numerical simulation verifies that the solution propagates 
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stably. Note that this solution is a generalization of that obtained previously [140] in which temporal walkoff in the reduced 
time coordinate frame was not allowed, resulting in no free parameters. This is explained further below. 

There are two special cases of interest in which Sk'0 = 0 and Sco = 0.  When S*{, = 0, there is no pulse walkoff in the 
reduced-time coordinate frame. In this case there are no free parameters [140] since the pulse duration is now fixed at the value 

k"1 

T0|8^=0' 6[6a)jf0' + i5(o2^" 
(2.76) 

Another way of expressing this relationship is to determine the value of TOD needed to sustain a given pulse duration. There- 
fore, choosing the pulse duration x0 as a "free" parameter, the following conditions hold 

6co| \&k'0=0 - 

5tt=0 

2TO*O - \/4*oTo " 16 ["o/c~*o/2. 
4T0[MO/C- 

65ü)/."O'T5 

■*r,/2 

35a>:T5 - 1' 

(2.77) 

(2.78) 

where the '-' sign was chosen in front of the square-root as the proper solution which is verified by numerical simulation. 
The other interesting case is when Sco = 0, meaning that the original choice of center frequency (O0 is a solution to the 

mNLS equation. This can only occur when the material dispersion parameters satisfy the condition 

*o" l&u=0 

6<g[«0/c-^/2] 

ko 

such that the change in group delay is written 

,,, k'^/c-k'Jl) 
ö*0 l&o=0- ^2 

(2.79) 

(2.80) 

Note that T„ remains a free parameter.   The temporal walkoff in the reduced time coordinate frame can be eliminated by 
redefining the coordinate transformation as T — t - [k'0 + d>k'0)z. 

A special case of mNLS, written in normalized form, is known to be integrable [208] 

du     1 d'u     .  ,i       .„ 

'ä7 + 2är + H"" + 'ß 
d*u        ,  .-> du 

-7 + 6 \U " ir= 
37 

(2.81) 

because it is a member of the NLS hierarchy and has an associated scattering problem and inverse scattering transform. This 
equation is not of interest here because, like the general mNLS solution with 5co = 0, it places restrictions on the material con- 
stants which may not be feasible to satisfy. Instead, this thesis deals with more general, non-integrable cases using parameters 
of materials currently in use for nonlinear optical switching. 

2.4.4    Higher-Order Temporal Effects 

The previous section considered additional non-SVEA terms to the NLS equation that still allowed for analytic soliton-like 
solutions. This section considers additional terms that result from the scalar, temporal reduction of the full evolution equa- 
tion derived in Chapter 3 for use in spatio-temporal propagation. The additional terms included here that are not present in 
equation 2.70 are fourth-order dispersion (FOD) and stimulated Raman scattering: 

2^- koki) 
FA 

dr- dT> 

+ 2*5— \A\2A + 4ikfnK 
»o 

+ k 
kf + / 

»o 
^o 
c 

1 

«o _ 
c 

d_ 

dT u 

FA 

dTA 

d\A\2A 

dT 

°RR{i)\A{T-x)\2Adx: 

(2.82) 

0. 

Here, k£" is the fourth-order dispersion coefficient, nK is the nonlinear Kerr index, and RR{%) is the Raman response function. 
To date, there is no known analytic solution to this equation. As a result, the effects of these higher-order temporal terms on the 
fundamental NLS soliton are now discussed. 
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Figure 2.12: Effects of linear dispersion on a sech() pulse with initial intensity temporal FWHM of 16.5 fs. Based on the 
dispersion properties of fused silica, the group-delay dispersion (GDD) coefficient A(J < 0, the third-order dispersion (TOD) 
coefficient k[" > 0. and the fourth-order dispersion (FOD) coefficient 1%" < 0. The propagation distance in each figure is 5 ZQ. 

Higher-Order Linear Dispersion 

First, the effects of higher-order linear dispersion will be considered in the absence of nonlinearity. In this case, equation 2.82 
reduces to , . 4 

-..  dA „d-A      i      j„&A       1       „„ d A (2 g3) 
2,ko ^7 - *o*o g^ - 3*0*0 jjfj + r^hh äfi- 

The group delay as a function of frequency, as shown in Figure 2.6. can be written ^(co) = k'0 + M'(Aco), where the approxi- 

mation 
(2.84) M-'(Aü)) % ACJ< + ^Aü)2^" + -Aco3A-0"', 

is made and is cubic in frequency deviation about to(). 
The effects of linear dispersion on a temporal wavepacket are shown in Figure 2.12. The top plot shows temporal broadening 

due to GDD alone, and is based on the same data used for Figure 2.8. The symmetry of the broadening can be understood by 
considering the change in group delay, which is linear in Aw. Therefore, symmetric deviation about the center frequency results 
in anti-symmetric deviation in group delay about k'Q, such that 

Jt'((i)0±Aü))«ito±ACD^. (2.85) 

As a result. GDD leads to symmetric broadening, with red-shifted frequencies trailing blue-shifted frequencies in the AGDD 

regime. 
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Fi<>ure 2.13: Effects of higher-order linear dispersion on a temporal soliton with initial intensity temporal FWHM of 16.5 fs. 
The initial"(dashed curve) and final (solid curve, after 5 ZQ) temporal envelopes are shown on the left plot, while the initial 
(dashed) and final (solid) spectral envelopes are shown on the right. The soliton is delayed by 7.25 fs and narrows slightly to 

16.2 lv 

The second plot shows temporal broadening due to TOD alone. In this case, the group delay 

A'((o0±Aü))«/to + iAcD2C, (2-86) 

which results in a symmetric change in group delay with frequency. This expression indicates that both red-shifted and blue- 
sh.tted frequencies will move towards the leading edge (TOD<0) or trailing edge (TOD>0). For positive TOD as shown, the 
peak u ill be delayed in the reduced time coordinate frame with steepening of the trailing edge and oscillations in the tail [30]. 

The third plot shows the effect of FOD alone. The group delay can be written 

£'(oj0±Aü)) 
6 

(2.87) 

which, like GDD. is anti-symmetric. Again, broadening will be symmetric, but with much stronger change in group delay for 
frequences tar removed from co0. FOD can either enhance (same sign) or oppose (opposite sign) the broadening due to GDD. 
As shown in the plot, the FOD coefficient of fused silica is small enough that its effect is negligible for the choice of initial 
pulse duration and propagation distance. 

Finally the fourth plot shows the temporal broadening due to the combined effects of all dispersion terms. In fact, the 
full dispersion relation using the Sellmeier coefficients for fused silica (see Appendix D) is used, but the primary effects arise 
from GDD and TOD. Because of TOD. broadening is asymmetric. The signs of GDD (<0) and TOD (>0) indicate that TOD 
opposes the change in group delay due to GDD when Aco > 0. and enhances the change due to GDD when Ad) < 0, as shown 
in Figure 2 6 Therefore, the broadening of the red-shifted trailing edge will be increased while broadening of the blue-shifted 
leadins; ed<je will be reduced. Opposite to the case of TOD alone, the peak is now slightly advanced. 

The effect of higher-order dispersion on a temporal soliton is shown in Figure 2.13, as described by the evolution equation 

„.,  dA     ,   .„d2A      i      ,„dyA       1      ,nn^A 2n2,   ]2 (2.88) 

where /^ = n* -f jf- J"RR(T)dx is the total instantaneous nonlinear refractive index. Because AGDD is balanced with self- 
phase modulation/the soliton is delayed by 7.25 fs in the reduced coordinates. This delay is primarily the result of positive 
TOD. and is similar to the case previously discussed with TOD acting alone on a linear pulse, where the delay was 7.08 fs. The 
peak of the spectrum is also downshifted, as shown on the right-hand plot, which corresponds to the delay experienced in time. 
Except for the delay, in real space, the soliton is mostly unaffected by higher-order dispersion, a testament to (1+1)-D stability. 

Optical Shock 

Optical shock [183] is the first-order time derivative of the nonlinearity and gives rise to an intensity-dependent group de- 
lay 1184]. The evolution equation describing nonlinear refraction and optical shock is 

2iJfco-^ +2^^ \A\2A + 4ikfn2 
OZ «0 c 

Jft d\A\-A 
dT 

= 0. (2.89) 
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Figure 2.14: Effects of optical shock on a 16.5 fs wavepacket for a propagation distance of 1.5 Zo- The left-hand plot shows 
the initial (dashed) and final (solid) temporal intensity envelopes and indicates slight narrowing to 16.3 fs and delay of the peak 
by 5.68 fs. The right-hand plot shows the initial (dashed) and final (solid) spectral envelopes and indicates spectral broadening 
from 19.1 THz to 33.9 THz due to SPM with asymmetry caused by shock. 

The optical shock expression obtained here has two contributions, one (proportional to phase delay) directly from Maxwell's 
equation in the.time derivative of the nonlinear polarization, and one (proportional to group delay) due to the removal of the 
SVF approximation by one order. 

Fxpressim: the field envelope as 
' ~ A = \A\<*. (2-90) 

equation 2.89 can be written as the coupled differential equations 

dz         /in 

"(1 

( 11   dT 

dl = kf": ,v: 

2      c. 
-  Ml 

30 
8r' 

(2.91a) 

(2.91b) 

The first equation has the simple solution 
\A{T.Z!,= \A(:-\\pT)\ 

where the intensity-dependent group velocity is defined 

(2.92) 

»■,2V = 

b'2i l^-lu \A\- 

(2.93) 

Therefore, the group velocity is reduced with increasing intensity. 
The .self-steepening effect due to optical shock is shown in Figure 2.14. The peak is delayed more than the wings resulting 

in a steepening of the trailing edge. An estimate of the time delay of the peak is 

A7" = 
dZ,, hi 

c 

*;,i (2.94) 

which gives the value A7" = 5.73 fs using the parameters of the simulations. This compares very well with the value of 5.68 fs 
obtained by numerically locating the peak. The second plot shows that the spectral broadening due to self-phase modulation (as 
shown in Figure 2.10) becomes asymmetric, with slight down-shift of the peak corresponding to delay in the temporal domain. 

The steepening of the trailing edge results in broad frequency content. Therefore, dispersion must be considered, which 
dissipates steepening. The following evolution equation well describes the effects of shock and dispersion 

2ikn 
d_A 

dz 
-zknk, 

,d*A 
'°K°Wß+ 12 

I , .„„3*A 
9*0*0   ^4 

(2.95) 

H)—\A\-A + 4ikfnK 
»o 

«o 
c 

& d\A\2A 

dT 
= 0, 
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Figure 2.15: Effects of optical shock and higher-order dispersion on a 16.5 fs wavepacket for a propagation distance of 5 ZQ. 

The left-hand plot shows the initial (dashed) and final (solid) temporal intensity envelopes and indicates slight narrowing to 
15.S fs and overall (centroid) delay of 13.7 fs. The right-hand plot shows the initial (dashed) and final (solid) spectral envelopes 
and indicates asymmetry due to shock and TOD. 

and is used for the simulation results presented in Figure 2.15, using the fundamental soliton A=sech(T/x0) as the initial 
condition. Dispersion dissipates the shock and the balance between AGDD and SPM stabilizes the pulse. As a result, the effect 
of shock is to delay the entire pulse. The overall delay of 15.8 fs is due to both shock and positive TOD, where the delay without 
shock is 7.25 fs. as shown in Figure 2.13. 

Raman Scattering 

This section considers the full evolution equation 2.82. which includes higher-order dispersion, shock and Raman scattering. 
The Raman nonlmearity is described via the full Raman response function [186] for a single resonance: 

/?«(T) = 
j?„t--^

:sin(QgT) (2.96) 

where iiy - \   il: 
:/4 is the optical phonon frequency, Qj is the natural oscillation frequency and y is the damping constant. 

Raman scattering results in a continuous frequency down-shift by providing gain at lower frequencies at the expense of higher 
frequencies, as discussed in Appendix B. This effect is often referred to as the soliton self-frequency shift [ 145]. In the AGDD 
regime, the downshifted frequencies travel with a greater group delay (slower group velocity) thereby delaying the wave in the 
reduced time coordinates, as shown in Figure 2.16. 

Spectral narrowing and downshift are clearly seen on the right-hand plot. The peak of the Raman gain in fused silica is 
13.2 Til/ ior S2.'J rad/ps). The peak of the downshifted spectrum is about 80 rad/ps below the knee of the high frequency 
side of the cune. indicating that the low frequencies are amplified and the high frequencies are attenuated, resulting in spectral 
narrow ing Spectral four-wave mixing continuously creates new frequencies, called the Stokes (low-frequency) and anti-Stokes 
(high-frequenc>) side bands, allowing for a Raman downshift which exceeds the original spectral bandwidth. The manifestation 
of these effects in the temporal domain is temporal broadening (due to spectral narrowing) and delay (due to downshift). Note 
that the delay of 20.0 fs is only slightly greater than the delay of 13.7 fs without the Raman term. This indicates that, in this 
case, the Raman effect is about the same order as the other higher-order temporal effects, but because of the large, continuous 
spectral downshift, the Raman term will manifest itself over much longer distances and eventually dominate. 

2.5    2-D and 3-D Spatio-Temporal Solitary Waves 

The propagation and interaction of multi-dimensional spatio-temporal solitary waves, which are stationary in both space and 
time, is of ultimate interest to this thesis. These multi-dimensional nonlinear phenomena are termed solitary waves instead of 
solitons because, like solitons, they are stationary, but may not satisfy the additional properties of solitons such as inelastic 
collisions (which preserve the soliton eigenvalues) and integrability of the defining equations. Like temporal solitons in fiber, 
these multi-dimensional solitary waves are fully confined, either by complete nonlinear self-confinement in the case of the 3-D 
li"ht bullet or with one dimension of linear confinement by a planar waveguide in the 2-D self-confined case, such that the 
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Fisure 2.16: Effects of Raman scattering, including shock and higher-order dispersion, on a 16.5 fs wavepacket for a propaga- 
tion distance of 5 Zb- The left-hand plot shows the initial (dashed) and final (solid) temporal intensity envelopes and indicates 
broadenin» to 27.4 fs and overall (centroid) delay of 20.0 fs. The right-hand plot shows the initial (dashed) and final (solid) 
spectral envelopes and indicates spectral narrowing from 19.1 THz to 11.7 THz and overall downshift by 4.23 THz. 

energv requirement is low.  A brief discussion of 2-D spatio-temporal solitary waves is presented here with more detail on 
propagation and interaction provided in Chapter 6. 

The most straightforward means of describing the propagation of 2-D spatio-temporal solitary waves is the direct extension 
of the (1 + 1 )-D nonlinear Schrödinger (NLS) equation 

„ ,  dA     d-A     ,   ,nd2A -,«;     ,2 

dz      ox- ol - «o 
0, (2.97) 

but it is well known that the solitary wave solutions are unstable to propagation [209]. This instability can result in critical 
collapse, or blow -up. when nonlinearity overtakes diffraction/dispersion.or in broadening when diffraction/dispersion overtakes 
nonlinearm In the case of (2+1 )-D spatial and spatio-temporal in the AGDD regime, and (3+D-D spatio-temporal in the AGDD 
re»ime. blow-up is the result [ 176], which indicates that the evolution equation does not take into account additional physics 
which arrest this behavior. The inclusion of non-paraxial and non-SVEA terms results instead in spatio-temporal broadening. 

Since the pump must propagate the length of the logic gate undisturbed (i.e. with final size about the same as the initial 
size), mechanisms to stabilize propagation need to be investigated. Multi-dimensional propagation can be stabilized by the 
inclusion of a suitable nonlinear index saturation mechanism [2.210] such as ultrafast quintic nonlinearity of opposite sign to 
the cubic Kerr nonlinearity. i.e. n = n0 + «; \A\2 + «f \A\* where A is a scalar field and nf < 0 accounts for the refractive 
part of the effective quintic nonlinearity. Examples of this type of saturation behavior are the nonresonant nonlinearities of 
semiconducting AlCiaAs 1143] at sub-half bandgap or the organic single-crystal PTS [125.147]. Ultrafast saturation from the 
quintic nonlinearm is the stabilization mechanism discussed in this thesis, but it should be noted that the balancing between 
third-order dispersion (plus space-time focusing) and shock as shown in section 2.4.3 for 1-D temporal solitons may also serve 
as a.stabilization mechanism for multi-dimensional propagation 1139|. 

The scalar (2+1 )-D cubic-quintic NLS equation is 

,   dA     d2A 
2iko-^- + 3~r 

dz      dx- 
k *" — ■2L-, 

»o 

„eff 
\A\2 + '±\M" 4 = 0. (2.98) 

Along with the quintic term, any additional terms to the (2+1 )-D nonlinear evolution equation that have comparable effect 
must "also be considered, and the conditions determined under which they can be neglected. This motivates the multiple- 
scales derivation of Chapter 3, in which a full vectorial derivation directly from Maxwell's equation is performed and results 
in a coupled, non-paraxial. non-slowly-varying envelope (SVE), first-order vectorial differential equation for the propagation 
of orthogonal linear polarizations including nonlinear couplings with the weak longitudinally-projected field. In Chapter 6, 
reduced^paraxial. versions of these equations are used to study the propagation of a single pump solitary wave and the vectorial 
interaction between pump and signal solitary waves. It is shown that quintic index saturation can stabilize against the effects of 
other, comparable, higher-order terms. 

The scalar equation suitable for the propagation of a single spatio-temporal nonlinear wave under the conditions of present 
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interest is, from section 3.2.3, 
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-*fc The first term in equation 2.99 is the first-order propagator along the z direction. The reduced time transformation T = t _ 
where k'0 is the group-delay, is made such that propagation is nominally stationary in the new coordinate system. Paraxial 
diffraction alons"the x direction and group-delay dispersion are represented by the next two terms, where kJ

0' is the group-delay 
dispersion coefficient and describes pulse lengthening under the SVE approximation. Third-order dispersion, with coefficient 
A-,',", and space-time focusing [144] follow, and are the first non-SVE corrections. The space-time focusing term describes the 
(paraxial) curvature of the energy front due to spatio-temporal diffraction. The final linear term is fourth-order dispersion. 

The first nonlinear term in equation 2.99 represents third-order nonlinear refraction followed by optical shock. The follow- 
in» terms describe the Raman nonlinearity. The effective quintic nonlinear index /if consists of three distinct contributions: 
directlv from the fifth-order polarization, from the product of the third-order polarization with itself due to the reduction from 
Maxwell"«, equations to a first-order equation, and a "cascaded" contribution due to the nonlinear coupling between the funda- 
mental and third-harmonic, which can be tuned via phase-matching [211]. A simple estimate of the size of the cascaded quintic 
nonlinear index suggests that [ 134] nf m -20n\, which is negative as desired for multi-dimensional stability. 

The initial conditions used in the simulations of Chapter 6 are the numerically-computed eigenmodes of the normalized 
scalar (2-1-1 )-D cubic-quintic NLS equation: 

du     d2u       d-it     '      2 '  , -,   i  i4       n i—+^-^+s-^-^ + 2\it\-u + 2q\ii\  u = 0, a dt- 
(2.100) 

where the follow ing definitions are made: u = Ao»W":/"<>-4 where n2 = nK + ^ JQ RR{-c)dx is the total instantaneous non- 

hr.ear retracme index. ; = c/2*i,n-5. x = x/w0. t = T/woyJ\k^\. s = -sign (k'0'), and q = n0nf /n2
2k

2w2 with M-„ a measure of 
the trans\crse spatial width of the solitary-wave. For a bright spatio-temporal solitary wave with n2 > 0, operation must be in a 
region ot anomalous group-delay dispersion (AGDD) such that s = + 1. The symmetry of this cubic-quintic equation allows it to 
be transformed into an ordinary differential equation [2] and subsequently solved via standard fourth-order Runge-Kutta [212]. 

The existence ot a radially-symmetric stationary solution to equation 2.100 of the form 

is postulated, where p = v'Ad- 
equation 

M(y.f,c) = f/(p)exp(/ßc) (2-101) 

Tv Substituting this ansatz into equation 2.100 results in the ordinary nonlinear differential 

^ + !^ + [2^ + 2f/f/
4-ß](y = o. 

dp-      p dp 
(2.102) 

which has fundamental and higher-order solutions corresponding to increasing optical energies, physical size, and number of 
zero crossings of the tield |2). 

For the purposes of optical switching, only the fundamental eigenmode solutions to equation 2.102 are of interest, which 
possess the minimum size and energy [2]. It should also be noted that the higher-order modes are unstable to angular per- 
turbations e\en with a saturating nonlinearity [213]. There is a family of such fundamental solutions of different widths and 
amplitudes parameterized by the value of q. Using the relationship between the field amplitude/\ and the normalized amplitude 
u. the q parameter can be rewritten as 

q="C"lA°f, (2.103) 
n2U0~ 

where \A0\ and t/<> are real and represent the peak value of the field amplitude in real and normalized units respectively. Now 
the quintic nonlinear index /if is written in the convenient form 

..eff . 
A2 
"sat 

(2.104) 
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where ASM is a real constant saturation amplitude. With this definition, the total refractive index seen by a scalar field is 

n = no + «2 
\A\ 
*sat 

\M2 (2.105) 

such that, for a peak field amplitude \A0\ = y/ÖA^, the induced nonlinear index will be reduced from the purely Kerr value of 
/«, to [1 - <j]n2, where o = |A0|2 //& is the saturation parameter. The definition 2.104 is used so that the form of equation 2.105 
isconsistent with the first two terms of the Taylor expansion of the two-level system saturation [214]. 

Including only the cubic and quintic contributions as shown in equation 2.105 cannot result in true saturation. When n2 > 0 
and nf < 0=as in the situation here, the induced nonlinearity reaches a peak at \A\- = A;J2, then decreases and eventually 
becomes negative when \A\2 > As

:
aI. This behavior is an indication that higher-order terms in the material polarization expansion 

may need to be included, but one experimental measurement of the induced nonlinear index in PTS at Xf = 1.064 ^m shows 
that this roll-over into a negative contribution does indeed occur [147]. Nevertheless, when a < 0.5, equation 2.105 mimics 

true saturation behavior. ,■,■>,,r  — 
Combining equations 2.103 and 2.104 and substituting into the eigenvalue equation 2.102 and noting that UQ/U^ - 

l^u!: /^Lr results in the following ordinary differential eigenvalue equation 

<f-U      1 dU     , 
dp-      p dp 

1- U3 - ß(7 = 0. (2.106) 

I'l.-ure "• 17 illustrates a few fundamental eigenmode solutions of equation 2.106 calculated as a function of peak normalized 
amplitude (.'„ using the normalized saturation amplitude f/sat = VKÖ.  The heavy solid line (U0 = 1) corresponds to the 

-    0.0 L_ 
0 12 3 4 

normalized radius p 

Fi»ure 2.17: Fundamental eigenmodes of equation 2.106 plotted as a function of peak normalized amplitude. Here, the normal- 
ized saturation amplitude UM = 4, and o = 0.0625, 0.125.0.25, 0.5, and 0.6 for U0 = 1.0, 1.41, 2.0,2.83, and 3.1, respectively. 
The inset plots show energy ratio (top) and normalized FWHM (bottom) as a function of U0, with asterisks denoting the 
positions of the eigenmodes in the main figure. 

saturation parameter o = 0.0625, while the heavy dashed line (U0 = 2.83) corresponds to o = 0.5. The top inset shows the 
energy ratio as a function of peak amplitude when the a = 0.0625 eigenmode is used as the signal spatio-temporal wave. When 
using o = 0.5 for the pump, the energy ratio is 1.712. The energy ratio increases with increasing o, but when a > 0.5, the 
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induced index as given by equation 2.105 begins to decrease from the maximum when a = 0.5. The lower inset shows the 
variation in intensity full-width at half-maximum (FWHM). The FWHM initially decreases with a, reaches a minimum near 

o = 0.5, then increases as a -» 1. 
Figure 0 18 plots the a = 0.5 fundamental eigenmode (dashed curve) of equation 2.106 along with a = 0 eigenmodes (no 

saturation, solid curves) of peak normalized amplitudes of U0 = 2.83 and U0 = 1.94. The non-saturated U0 = 1 94 eigenmode 

3.0 r 
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3 2.5 ^\\ 
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li-jurc 2 1>. Numerically computed eigenmodes of equation 2.106 for the saturation parameter o = 0.5 and normalized peak 
amplitude (',, - 2 8? (dashed curves) and for the saturation parameter o = 0 with U0 - 2.83 and U0 - 1-94 (solid curves). The 
cltect ..I saturation is to broaden the width of the eigenmode near the peak where the saturation has its greatest effect. The 
sp.K-e. time Kindu idth products are 0.312 for the saturated eigenmode and 0.242 for the non-saturated eigenmodes. 

i- a scaled version ot the ('„ = 2.83 non-saturated eigenmode with the same normalized half-width at half-maximum (HWHM) 
ol 0 5135 as the saturated a = 0.5 eigenmode. and will be used in Chapter 6 to compare the effects of the higher-order temporal 
terms ,-n the pump uith and without saturation in section 6.1. Note that for the same HWHM. the saturated eigenmode will 
have a larger value o! I '„ than the non-saturated one. The normalized FWHM of the intensity profiles of these eigenmodes is 
1.02". while the 'FWHM of the o = 0.0625 signal eigenmode is 2.063. 

Stahihtv ot the cubic-qutnttc eigenmodes can be examined by the evaluation of the stability parameter [209] 

S 
OF 

W 
(2.107) 

where P is the integration over the eigenmode profile and represents power in the 2-D spatial case and energy in the 3-D 
spatio-temporal ease Stability is ensured when S > 0. which is true for (1 + D-D NLS propagation, otherwise, propagation 
is unstable For (2+1 )-D propagation, 5=0. and for (3+1 i-D. 5 < 0 [2]. The first condition is the result of the fact that the 
power of the 2-D eigenmode is"constant with respect to width and eigenvalue [169], such that an increase in width, which 
reduces diffraction/dispersion, is exactly compensated by nonlinearity, and a decrease in width, which enhances nonlinearity, 
is exactly compensated bv diffraction/dispersion. The second condition results from the fact that the energy of the 3-D eigen- 
mode decreases with decreasing width and increasing eigenvalue [2], which is opposite to the 1-D case, such that an increase 
in width results in diffraction/dispersion overtaking nonlinearity, and a decrease in width results in nonlinearity overtaking 

diffraction/dispersion. 
Figure 2.19 plots the eigenmode power (top) and stability parameter (bottom) versus eigenvalue for the (2+l)-D cubtc- 

quintic NLS equation 2.106. It is shown that, like the 1-D case, the power increases with increasing eigenvalue (decreasing 
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0.01 0.10 
nonlinear eigenvalue ß 

Ficurc 2.19: Plot of power and stability versus nonlinear eigenvalue, indicating that quintic saturation results in stable (2+l)-D 
eigenmodes. The asterisks denote the positions of the fundamental eigenmodes of Figure 2.17. 

widthl. indicatinc stability, and 5 is always positive. The figure also indicates that eigenmodes with greater ß (i.e. greater satu- 
ration) are more stable than eigenmodes with small ß. The stability parameter asymptotically approaches zero with decreasing 
ß which is expected since O —> 0 as well. 

Stable propagation of the a = 0.5 cubic-quintic eigenmode is verified by numerical simulation of equation 2.98, as shown 
in Ficure 2.20 The width parameter is chosen as w0 = 39.6 pm. which results in intensity spatial FVVHM of 40.7 pm, and 
temporal FW1IM of 16.5 fs. The propagation distance is 15 Z,,. over which the spatio-temporal solitary wave is unchanged. 
The same stabilized solitary-wave behavior occurs in the fully 3-D case as well [2]. The confocal distance Zy = 0.559k0WQ 
= 5.14 mm. and is calculated numerically. For the simulation, the parameters of fused silica (see Appendix D) are used at 
/.," = 1.55 /mi. The lirst section of Chapter 6 studies the effects of the higher-order terms of equation 2.99 on stability of this 
o = 0 5 cubic-quintic pump solitary wave eigenmode. and shows that stabilization does occur, albeit with some spatio-temporal 

broadening due to Raman scattering. 
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Figure 2.20: Stable propagation of the o = 0.5 eigenmode of the cubic-quintic NLS equation without the effects of the higher- 
order terms. The spatio-temporal wave of transverse FWHM 40.7 pm and temporal FWHM 16.5 fs remains unchanged after 
propagating 15 confocal distances. The contours are at -3 dB intervals relative to the peak intensity in each frame. 



Chapter 3 

The Vector Nonlinear Wave Equations 

Optical nonlinear interactions generally fall into three regimes of operation: parametric, dynamic and transient coherent. Op- 
eratin» very far from resonance, where the material simply serves as an intermediary for the interaction between coherent light 
beaimor pulses, is known as the parametric regime. In this regime, the nonlinear response is purely reactive (real nonlinear 
susceptibilities) because material transitions are virtual, meaning that there is no exchange of energy between light and matter 
because the nonlinear response is a result of wavefunction deformation and is essentially instantaneous and lossless. As a result, 
energy is conserved among the beams or pulses of light and the Manley-Rowe relations hold [215]. The particular parametric 
casetf the third-order nonlinear material polarization responsible for self-focusing and self-phase modulation is known as the 
optical Kerr effect, and is of fundamental importance for the optical nonlinear Schrödinger-type (NLS-type) equations derived 

in the chapter. 
The dynamic and transient coherent regimes are resonant and differentiated by the ratio between the pulse duration and T2, 

the transverse relaxation (or transverse dephasing) time of the resonant excited state. The transverse relaxation time is related 
to the homogeneous linewidth by T2 ='l/nr*. The homogeneous linewidth typically lies in the range GHz-THz for optical 
materials at room temperature, but in solid persistent spectral hole burning materials at low temperature, T,, can be as narrow 
as 100 Hz |216]. Indeed, much effort is directed at finding materials with slow dephasing at low temperature (along with broad 
inhomoueneous bandwidths) for applications in time-domain holography [217,218] and frequency-domain data storage [219]. 
Note that the inhomogeneous dephasing time is defined 7V = 1 /nl*,. where I*,- is the inhomogeneous linewidth. The longitudinal 
relaxation time 7", of the excited state leads to the "sluggish" nature of nonlinearity and corresponds to the decay time-constant 
of the induced population change of the excited state. 

The dynamic regime of optical nonlinearity occurs near resonance when the pulse duration is greater than 7V Operating 
in the dynamic regime ensures that light-induced coherence is lost within the pulse duration and is obviously satisfied by 
continuous-wave irradiation. This nonlinearity produces real excitations because energy is exchanged between light and matter, 
and due to resonant enhancement, nonlinearity can be very large, but at the expense of large absorption. The transient-coherent 
resiime is when the optical excitation is on a shorter time scale than 7";; therefore light-induced coherence persists longer than 
the excitation. Interesting effects arise in this regime such as [214] self-induced transparency (SIT), photon echos, and free- 
induction decay, and may allow for large nonlinearity with small absorption (but long response time) for specially designed 

pulses. 
The parametric and dynamic regimes of operation are studied in this thesis for optical soliton switching and computing. 

The tradeoff between the parametric and dynamic regimes is typically between low absorption and large (resonantly-enhanced) 
nonlinearity. The simulations of soliton interactions in Chapter 5 include absorption, and material figures-of-merit are derived 
in order to determine the maximum gain that can be obtained by the logic gate due to the presence of absorption in candidate 
materials. These figures-of-merit show that the tradeoff must be made in favor of small nonlinearity and low absorption, 
restricting attention mainly to the parametric regime of operation. 

This chapter derives the fundamental nonlinear wave equation, which is a multi-dimensional and higher-order extension to 
the nonlinear Schrödinger (NLS) equation, appropriate for describing propagation in media of isotropic symmetry class and, 
with minor modifications, the cubic 432,43m and m3m symmetry classes. These choices are motivated by the presently avail- 
able materials fused silica (isotropic) and AlGaAs (cubic 43m), each of which satisfy the material figures-of-merit. Section 3.1 
starts with Maxwell's equations and the material polarization expansion and derives the vector nonlinear Helmholtz equation. 
In the parametric and dynamic regimes, the nonlinear polarization can be represented by a Taylor series expansion [220], and is 
the approach taken here. The general integral forms of the first, third, and fifth terms of the polarization expansion are manipu- 
lated into differential form thereby transforming the integral-differential nonlinear Helmholtz equation into a purely differential 
one. The resulting second-order differential equation is difficult to handle numerically in multiple dimensions when long-time 

61 
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evolution is desired, as it is here. As a result, a first-order equation* is derived in section 3.2, with the two leading-order scales 
of the Helmholtz equation removed, which can readily describe long-time evolution. This section uses the asymptotic multiple- 
scales technique to derive the uni-directional, fully vectorial, nonlinear wave equation directly from Maxwell's equations for 
(3+l)-D propagation in weakly nonlinear media. This equation is reduced to forms suitable to describe the (1+1)-D spatial 
and (2+l)-D spatio-temporal simulations presented in thesis which are the starting points for numerical analysis based on the 

split-step method discussed in Chapter 4. 

3.1   Derivation of the Vector Nonlinear Helmholtz Equation 

In this section, the vector nonlinear Helmholtz equation valid for refractive and absorptive effects first-, third-, and fifth-order in 
the electric field is derived. The forms of these polarizations are then specified and examined separately in detail. The complete 
causal dispersive character of the linear susceptibility is retained in a compact time-domain formulation (Section 3.1.1) valid 
for less than unity fractional temporal bandwidths, while the third-order response is reduced from full nonlinear dispersion 
to the dominant time-domain forms describing the optical Kerr effect and fully dispersive stimulated Raman scattering (SRS) 
(Section 3.1.2), and the fifth-order response is reduced to instantaneous form (Section 3.1.3) where dispersion is assumed weak 

enoush to be neglected. 
The starting point for deriving the vector nonlinear wave equations is Maxwell's equations, written in differential form: 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where E is the electric field. H is the magnetic field, D is the electric displacement, B is the magnetic induction, Jf is the free 
current (or source current) and p, is the density of free charge. Boldfaced variables represent vector quantities. In the dielectric 
med.a appropriate for studies in optics, J/ = p/ = 0. In order to couple the material response with the electromagnet.c radiation, 
Maxwell's equations must be amended with the constitutive relations 

B    =    M)H (3-5) 
D    =    EolE=£oE + P (3-6) 

where e is the relative material dielectric tensor, Eo is the free-space dielectric constant, P is the material polarization and p0 is 
the permeability of free-space. Note that the material is assumed to be non-magnetizable, i.e. p = ho- 

using the Maxwell's equations 3.1 and 3.2 and the constitutive relation 3.5 

Vx[VxE] = -^(VxB) = -po-^?, (3.7) 

Vx E = 
dB 
dt 

Vx H = ¥      3D 
J'+ä 

V D = P/ 
V B = 0 

which can be rewritten using the constitutive relation 3.6 

1 
VX[VXE1=--TT-WTT <3.8) 

where c - sj i/Mi^iis the velocity of light in free-space. 
The material polarization P consists of linear and nonlinear contributions: 

p = pL + pNL = pL + p(2)+p(3) + ...) (3.9) 

where P:' is the second-order polarization, etc, and the expansion of the material polarization in a Taylor's series converges 
when the material response is sufficiently nonresonant [220], such as in the parametric or dynamic regimes. 

Since this thesis is concerned with multi-dimensional and higher-order generalizations of the (NLS) equation, it is assumed 
that the lowest-order nonlinear contribution is P!3). The derivations are directly valid for the isotropic symmetry class, but are 
also valid for cubic 432. 43m and m3m with minor modifications. In centrosymmetric media, such as media of isotropic or 
cubic m3 and m3m symmetry classes, x(2" = 0. where £ is a positive integer. Cubic classes 432, 43m and 23, have non-zero 
X!:/!. For the latter three cubic classes, second-harmonic generation can usually be neglected because the cubic classes are 
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linearly Isotropie and phase matching is difficult to achieve. In addition, resonant generat.on of radiation around DC due to 
optical rectification can also be ignored because the phase velocity near DC is typically much smaller than the group velocity 
of the optical driving field, although important effects can occur even in the nonresonant case [195], but are not considered in 

this thesis. . ,        ,.       ... ,-„„ 
Separating the linear and nonlinear parts of the material polarization, the fully vectonal, nonhnearly-dnven wave equation 

1*E.     W     _^ (3,0) 
Vx[VxE]+?-^r+M)-gp dt ->   > 

pL 

or, in the alternate form ^ 

v2E-v[v.E]-?^-po^r=Po^r, (3-U) 

where the vector identity V x [V x E] = V [V • E] - V:E is used. These equations are generally valid for nonlinear optics. The 

forms of the polarizations are now specified. 

The Material Polarization 

The most general form for the linear material polarization, for example, including the full spatial and temporal response, is [221] 

■r,t) = EoJ~ ^~I(r',T)E(r-iV-Tyr'</T, (3.12) 

which describes nonlocal behavior in space, such as diffusion of real carriers, and causal nonlocal behavior in time. By 
employing the electric dipole approximation [221], and thereby ignoring optical activity as well, the spatial response will not 
be considered in this thesis. Therefore, the material polarization convolution integrals describe only spatially localized material 
response but still retain non-zero time response. The form taken for the linear polarization is then 

PL(r,f) = Eo f"*(r,T)-E(r,f-T)</T, (3-13) 

where is a contraction operator and the impulse-response function is allowed to vary spatially as would occur for layered 
media The linear impulse-response function R is a second-rank tensor and causality requires that the response is zero for x< 0 
(for T < 0. the material polarization would depend on values of the field E(t-x) that haven't yet arrived), justifying the lower 
bound on the integral. A second condition is that the response function must be real because both the driving field and material 
polarization are real. Another common way of writing the linear polarization is 

p]-(r,t)=el)fRjk(r.T)Ek(tj-t)dx (3.14) 

where j.k £ {x. \.z} and the Einstein summation convention over repeated indices is used. 
Similarly, the form for the third-order nonlinear material polarization is 

Pi?,(r.O=Eo r [" f  Ä(r.T,.T;.Ti):E(r,/-T|)E(r,/-T:)x (3.15) 
Jo Jo Jo 

E(r,f-T3)rfTi</T;rfT3, 

where the third-order impulse response function £ is a fourth-rank tensor,: is a contraction operator and the induced material 
polarization depends on the product of three fields. Here, spatial dispersion can additionally arise from the diffusion or prop- 
agation of real particles, such as electrons or phonons (i.e. heat), which are created by the nonlinear light-matter interaction. 
These effects are neglected by assuming sufficient distance from resonance. As before, the third-order nonlinear polarization is 
written in component form using the triple Einstein summation convention over repeated indices 

Pf](r,t) = £o j"f J~Rjklm(r,t\^2^)Ek(r,t-ii) x (3-16) 

E,{r,t -x2)Em{r,t -x3)dxldx2dx3. 

The third-order nonlinear polarization is responsible for four-wave mixing effects such as nonlinear refraction (self- and cross- 
focusing and self- and cross-phase modulation), Raman and Brillouin scattering, and third-harmonic generation. 
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For ultrashort pulses with large temporal bandwidths, such that the excitation duration is much shorter than the medium 
response time Tx the time-domain formulation of the nonlinear material response is the appropriate representation [150,220J 
because the electric field can be considered a delta function and the convolution integral trivially evaluated. In the opposite limit 
where the optical excitation lasts much longer than the material response time, the frequency-domain susceptibility formulation 
is most commonly used, such as the case for the mixing of monochromatic beams, because the material response function takes 
on a constant value This thesis deals with an intermediate nonresonant situation for which part of the nonlinear response can 
be considered instantaneous and hence represented by a constant in the frequency-domain, while part of the response is non- 
instantaneous such that the material polarization is nontrivial in either formulation. With these arguments in mind then, instead 
of usino the more general form for the third-order nonlinear impulse response function in equation 3.16 (which is valid for 
nonresonant as well as -near-resonant processes [220]). the following form can be used that is appropriate for the nonresonant 

processes just discussed [145,222] 

*,-WlB(r, T,,T2,T3) = 4;„,(r)5(T1)o(T2)8(x3) (3-17) 

+ /$4/m(r,Ti,T2)5(Ti-T2)8(T3) 

where the constant R%Jr) accounts for the strength of the instantaneous electronic, or Kerr, response and the Raman response 

function [ISO] R* (r,Ti ,*>) accounts for the slower nuclear response. This form does not describe general nonlinear disper- 
sion, hut does describe the most important effects to this thesis - nonlinear refraction (in both instantaneous and delayed forms) 
and third-harmonic generation and down-conversion. 

Raman scattering is a nonlinear refractive/absorptive effect that arises from the rotational or vibrational response ot a 
nucleus to the time-varying electric field. In the quantum picture, Raman scattering is the interaction between photons and 
optical phonons (i.e. high-frequency phonons with non-zero dipole moments). This effect is described by a time-dependent 
nonlinear refractive index [222] as evident by using the impulse response function of equation 3.17 in the convolution integral 

ot equation 3.16 

P{/)(r,t) = toR%lJr)Ek(r.t)E,(r,t)Em(r,t) (3-18) 

+ ^J°°R%lJr.x)Ek(rj-x)El(r,t-x)Em(r,t)dz, 

where T = T; = T;. The Raman response is studied further in Appendix B. 
The corresponding fifth-order polarization is 

p\'\rj)=^R)kh,uJv)Edr.t)El{r.t)Em[rj)En{r.t)Ell{vj), (3.19) 

and IN treated only in instantaneous form responsible for nonlinear refraction. 
Since the terms in the material polarizations depend on time history, it is useful to define the temporal Fourier-transform 

pair 

E(rj)=l |E(r,w)^-/l,V/(0 (3.20a) 

£(r.w)= f E(r.t)em,,dt (3.20b). 

in order to examine the linear and nonlinear polarizations in the temporal frequency domain. For compactness of notation, 
all integrals without limits are taken to extend from -°° to +°°. Using the Fourier transform relations and performing Tay- 
lor's expansions in the temporal frequency domain, the convolution integrals of equations 3.14 and 3.18 can be rewritten in 
differential forms for pulses of finite temporal bandwidths. as shown in sections 3.1.1 and 3.1.2, respectively. The reason for 
writing the material response in differential form is that the integral-differential wave equations 3.10 and 3.11 become purely 
differential. Before this is done, though, the quasi-monochromatic representation, which is key to writing the material response 
as differential operators on the pulse envelope, is examined. 

The Quasi-Monochromatic Representation 

In this thesis, the quasi-monochromatic representation of the optical field is used such that in the time-domain 

E(r.f)=J[Ä(r,i)«-**+Ä,(r1/)e**']. (3-21) 
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Figure 3 I: Quasi-monochromatic wavepacket of fractional bandwidth T] = 0.12. The left figure shows the representation in 
time and the right figure shows the representation in frequency. The dotted lines in the time-domain plot illustrate the pulse 

envelope. 

The qua.s.-monochromatic representation assumes that the field has some finite bandwidth centered about the carrier frequency 
to,, mcanin«' that the fast temporal phase variation is removed leaving only slower temporal variation in the envelope. In fact, 
the notion of an optical envelope has been shown to be valid down to the single-cycle regime [223], but the Taylor expansion 
of the linear and nonlinear convolution integrals performed in the subsequent sections of this chapter does not converge in this 
re-ime where the fractional temporal bandwidth approaches or even exceeds unity. For generality, the envelope still retains a 
fast propagation phase variation, which is denoted by the over-bar. The quasi-monochromatic representation is illustrated more 
clearlv upon transformation into the temporal frequency domain 

l r-r- E(r,o))= -- Ä(r.ü))»5(ci>-ü)o)-l-A (r.co) *5(ü) + W0! 

= -  A(r.w-(!),)) + A (r.to + tOo) (3.22) 

where • is the convolution operator. In the following sections, these expressions will be used to examine the material response 
in the temporal-frequency domain and define the susceptibility tensors. 

The time and frequency domain representations of a quasi-monochromatic wavepacket are shown in Figure 3.1. The frac- 
tional bandwidth is defined as the full-width at half-maximum frequency bandwidth Aü)FVVHM divided by the center frequency 

Wo. . 
_ AüJRVHM (3.23) 

where the quasi-monochromatic representation is valid to the point where r\ ~ 1. In the multiple-scales analysis of section 3.2, r\ 
will serve a> a small expansion parameter; therefore, the situation of interest is when r)< 1. Note that when the third-harmonic 
is considered, an additional slowly-varying envelope about 3M,, must be defined, otherwise the fractional bandwidth of the 
envelope A about the fundamental would exceed unity 

3.1.1    The Linear Material Polarization 
This section transforms the convolution integral of equation 3.14 into the temporal frequency domain representation PL(w). The 
linear susceptibility is defined and Taylor-expanded such that the inverse Fourier transformation into the time domain results 
in a much simpler differential representation of 3.14. The derivation is presented in detail here in order to shorten the similar 
procedure used for the third-order polarization in the following section. 

Using the time/frequency Fourier transform relation, the linear material polarization given by equation 3.14 can be rewritten 

as 

t<">    =    Tn£"*{r'X)[f£k (r.(a)e-^'-TU(ti dx 

=    ^/[/e(T)/v;,(r,T)^T Ek(T,<o)e-iwdio 
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/x/*(r. (ö)Ek(r,(ü)e-md(ü (3.24) 

where the order of integration is changed in the second step, 0(x) is the unit step (Heaviside) function required by causality 
and normally incorporated into the definition of R, and the linear susceptibility is defined 

X7i.(r,(D) = |0(T)^(r,T)e'^T, (3.25) 

which guarantees that X,-t(-o>) = X;» since Rjk is real. An interesting manifestation of causality in equation 3.25 is the 
Kramers-Kronig relations. Equation 3.25 can be rewritten [224] 

Xjtffl 
n    J   fl- CD 

■da, (3.26) 

where T represents the principal value.   The linear susceptibility consists of real and imaginary parts %jk - ^e{X;*} + 

' I'" {71 jk} so that equation 3.26 is rewritten 

a-® 

which arc the linear Kramers-Kronig relations. 
The linear material polarization is now written completely in the temporal frequency domain, 

(3.27) 

(3.28) 

/*-(r,to)    =    ^/  /x;*(r.Wi)£*(r,<öi)*-to,'Ao, 

=    ^/[jxjäv.^e-^-^dt 

=   Eo AXj*(r.tot )£-A(r.to,)5(üJ- coi )rfco 

=    EoX;*(r.<o)£t(r.ci>). 

Ek(r,(ü\)d(ü\ 

(3.29) 

which indicates that the l.near polarization is simply the product of the linear dispersive susceptibility with the amplitude of the 
temporal frequency spectrum of the field. 

Substituting the wavepacket representation into equation 3.29 results in 

pL(r.co) = §Xji(r.w) [Äi(r.cü-ü)0)+Äi(r,a) + (Do) (3.30) 

Since the wavepacket representation is centered about a*, (and the conjugate about -co0), equation 3.30 can be rewritten by 
Taylor-expanding y\ r. to) about the central frequency to0 (and -co0) 

P)-(r.co) = | 
A     " [co-co,,]1   avXM-(r,to) 

X^(r,(Oo)+X^  
J= i 

3o>v 
C0=(0o 

N     ~ [w + coo]2   9AX#(r,to) 
X/*(r,-«o)+X — ^T- 

.t=i 

A*(r,(D-coo) 

Ak(r,(ü + (üo). 

(3.31) 

CU=—CÜQ 

Considering now only the linear polarization near the center frequency co0, and defining co' = co- a>0, the polarization is inverse 
transformed into the time domain 

P-(r,) = !/ 
-  [to']*   9%t(r,o) 

Xjkir.wo) + ZJ "TT      
,v=l 

8o>v 
ü)=<üo 

Ak{r,(ü')e-it0'd(ü 
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-II X;t(r,Cüo) + X 
[ü)f   9%-*(r>w) 

,s=l S\ 9c»5 
CO=(üo 

'  2 

.EO 

'  2 

Xjk{r,(Oo)Ak(t) + 1 Jf • ^7— 

Ak(r,(ü')e-^'+^'d(ü' 

d*Äk(r,t)~ 

W=O)0 df 
-zuty 

-/Oty (3.32) 

Here the function of the operator is interpreted by its Taylor's expansion about the central frequency co0. 
Using equation 3.32, the vector Helmholtz equation 3.11 can be rewritten for the quasi-monochromatic envelope 

t_d_    y   dÄt(r,r)     iaiQt _ 
^M^-äj.S,   dk 

(3.33) 

' keUy.z] 

1^ |^-(r,t)e-^' + \y.jk (r,«)o + 4) ^(r, e-taV 

+2«) 
92/f-+(r,Q 

3r2 

with the corresponding conjugate expression. Here ff-+ means the nonlinear polarization associated with the phase factor 

«.-«■v  An additional equation is required to describe the evolution of any additional radiation well separated from co0, such as 
the third-harmonic, otherwise the fractional bandwidth of a single envelope would exceed unity and the functional representa- 

tion of the linear material polarization would become invalid. 

Defininc the linear dielectric tensor 
E$4(r,w)=l+X;*(r.®). 

the vector Helmholtz equation becomes 

(3.34) 

J k€{.x,\:z) 

(3.35) 

?£i {fa ('•-»+'1) *H ^'}+2w^5_ 

The second-order time derivative of the linear polarization is evaluated 

111 
c2 dt2 e)k (r,ü)o + J^ )/4*(r,r) 

-IU)o/ 

a-        a 
_-2,a)0--ü)5 eMra)° + I'ä:Wr-') dt 

-iiOQt 

0)0 + ^ t,i 

a\^ 
r.ü)o + /'^ Mt(r,r 

-/(UQ' (3.36) 

In general, the linear dielectric tensor is composed of 9 independent elements. For the purpose of this thesis, the material 
symmetry classes will be restricted to those in which the linear dielectric tensor is isotropic. Isotropie refers to the case when 
all three elements of this diagonalized tensor are equal [225], i.e. 

" e(o>)      0        0    1 
E(CD) =       0      e(to)      0       , (3-37) 

[    0        0      e(o)) _ 

otherwise the material is anisotropic. The linearly isotropic symmetry classes are cubic and isotropic. Note that the isotropic 
symmetry class is not a crystal class but a macroscopic description of liquids, gases or disordered or amorphous solids such as 

glass. 
The linear propagation and absorption functions are defined 

*(r,co) + /' 
a(r,to) co2EL(r,ü)) (3.38) 
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where *(r co) is the frequency-dependent linear propagation constant and a(r,co) is the frequency-dependent linear intensity 
absorption coefficient, and both are allowed to be functions of space to represent material inhomogeneity. The tensor notation 
is dropped for the linearly-isotropic classes because the dielectric tensor becomes scalar. Assuming that linear absorption is 
small compared to the propagation constant, equation 3.38 can be approximated 

co2 

k2{r,(ü) + ik(r,(ü)a(r,(ö) « 53L [E^(r,co) + ^(r,co)], (3-39) 

where the following definitions are made: 

£L_(r,co)=^{eL(r,(D)} (3-40) 

eV(r.co) = /»i{eL(r,a>)}. (3-41) 

Now the linear propagation and absorption constants are written 

*>,«>) = ^(r.fl» (3-42) 

a(r,cD) = ^(r,co)/^(r,co). (3-43) 

With these replacements, the Helmholtz equation is now written 

-{k[ r,ü)0 + z^ 
^^   . (     . .a 

k\ r.Oo + 'Y ] + '«! rit°o + *^ Äj(r,t)y-^', 

where only the form of the nonlinear polarization remains to be specified. 

3.1.2    The Third-Order Nonlinear Material Polarization 

This section examines more closely the third-order material polarization, beginning first with the general response of nonlinear 
refraction. Using the same steps as for the linear material polarization, the third-order response integral is transformed into 
the temporal frequency domain. The frequency-domain representation is approximated for finite bandwidth excitation and 
transformed back into 'the time domain. Using the results of Appendix A, the tensor structure is reduced for the isotropic (and 
cubic 432. 43m and m3m) symmetry class. Finally, the fully general case is reduced to a form suitable for the description of 
the nonresonant Kerr and Raman nonlinearities as previously discussed, which are used throughout the remaining chapters of 

this thesis. 
Following the procedure used for transforming the linear response integral in section 3.1.1, the nonlinear polarization 3.16 

is written in the temporal frequency domain as 

^3>.w)=Eo/"/"/"x7Um(ü);r.üJ|.co;,a)3)£jt.(r,(Oi)£/(r,(o:)x (3.45) 

£,„(r.co?)5(to-ü)i -ü):-cü3)</a>!tfüWcü3, 

where the factors of 1 /2n have been neglected for simplicity, and the third-order nonlinear susceptibility tensor is defined 

X;Hm(<o;r,a>,,ü>2,ü)3) = j J JeiiiW^&faWjkimir^u^,^)* (3-46) 

e^z'+0^+iü^dXidx2dz3. 

The Heaviside functions are included to enforce causality with infinite limits of integration. Again, because the third-order 
nonlinear response function RJU,,, is real, 

XjuJw r, -i»i, -W2, -o>3) = X}w™(<°; r, to,, (02, (03). (3-47) 

In this thesis, the nonlinear processes of interest are those which are nearly frequency-degenerate, such that any generated 
frequencies are near that of the driving field at co0, and those involving the third-harmonic. These latter third-harmonic processes 
are discussed in Appendix A. 
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(3.48) 

Using the quasi-monochromatic representation 3.21, equation 3.45 can be written 

pj.3)+ (r, co) = j J J J XjkimiW r, coi, 0)2, to3) x 

Ä^.(r,ü)i+ co0)A/(r,co2-coo)Am(r,a)3-co0) 

+A~k(r,CO] - (Do)Ä/ (r,a>2 + co0)Am(r, co3 - co0) 

+Ai(r,(Oi-coo)A/(r,a)2-tDo)Äm(r,t03 + ü)o) 

5(ü) - CO] - (Ü2 - t03)<ifJL>] rf(02^C03, 

which is valid for fully-dispersive nonlinear refraction. Now, the third-order susceptibility tensor is Taylor-expanded in the 
three frequency space [co,, 0)2, co3] about the center frequency 0)0 and its conjugate -co0. Taking the first term in equation 3.48 

for example 

X/;../,,, (CO;(l)i, 0)2,0)3)Ak((Üi+(Üo)Ai((Ü2-(Üo)Am((Üi- 0)0) (3.49) 

50/m(<*>o; -0)0,0)0,0)0) + [O), + Cl)o] 
dx7*f„,(o>o;(ai,too,a>o) 

3o)i 
(Ü^-COQ 

+ [ü); - 0)0. 

+ [ü)i - 0)o] 

^.(0)1 +0)o)Ä;(ü)2-0)0)/4,„(0)3-0)o) 

9X;»m(ü)o;-0)0,CÜ2,tOo) 
30)2 

3Xjt/>/i(Mo;-too.(°o.to3) 

ü>2=Cüo 

dm 
+ 

(03=U)o 

where the spatial dependence is dropped for notational convenience here and throughout the rest of this section. 
Using the proper Taylor expansions for the remaining terms in equation 3.48 and transforming back into the time domain 

results in (cf equation A. 10) 

/f+(0 = ? aw X#/m("o:-wo + /^:.o)() + /^:.o)o + /^-J^.(r)A,(r)Am(f (3.50) 

aw 
+X7i;w(wo:o)o + /^.-ü)o + '^.o)o + /^- )Ak{t)A,{t)Am{t) 

+Xjkim( w0;o)o + iV.o)o + i^-. -o)o +1^- ) A~k(t)A"i{t)Ä'm(t) 
-lUiQl 

The operator arguments are interpreted as before and the derivative operations are only performed on the corresponding field 
envelopes; thus, ordering of the field envelopes is important. Using the intrinsic and spatial symmetry properties discussed in 
section A.2. equation 3.50 reduces to (cf equation A. 11) 

rf"+(f) = ^ Xjjjj ( wo; -too + / ^. o),, +1 ^. o)0 + / ^ J Aj- (/ )Äj {t)Äj(t) 

+ 2Xyu7(w0;-o)o + /^.o)t) + /^-,0)o + /^-jÄ;(r)ÄA.(/)Ä7(0 

+ Xjjkklw.-^ + '^-^ + 'fo'^ + 'faj^jWÄkMMt) 

(3.51) 

„-«"o' 

where the subscripts j ^ k. 
In general, as given by equation 3.46, all terms in the Taylor's expansion of the third-order susceptibility about ±0)0 have real 

and imaginary parts. This is a result of retaining the fully dispersive character. As mentioned previously, this thesis is concerned 
with the instantaneous and Raman responses. Even though the instantaneous response strictly means that the susceptibility does 
not vary over the excitation bandwidth, this thesis retains both the real and imaginary parts of the "instantaneous" susceptibility 
without considering the fully dispersive character. The reason for doing this is because the delayed response given by the Raman 
effect should dominate the remaining dispersive terms. In contrast to the instantaneous susceptibility, the frequency dependence 
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of the Raman susceptibility is retained such that the even-order terms in the Raman susceptibility expansion are real (giving 
rise to nonlinear refraction effects) while the odd-order terms are imaginary (giving rise to nonlinear gain/absorption effects). 

The full derivation including both the instantaneous and Raman nonlinear response is carried out in section B.3. The result, 

given by equation B.78, is repeated here for convenience 

tf)+(t) = ^ 

-ICOQ» 

+ 

XMJJ(®O> -wo. «o. uo)Äj{t)Äj{t)Äj(t) 

+2X%kj (wo; -Wo- «o, too) Ä*k (*)Äk{t)Äj{t 

+%^i(wo;-Wo.a)o,o}o)^(0^(fM*(f! 

J { [ XJjjj(^0)Xj(t)Äj(t) + x%j((ü0;0)Tk(t)Äk(t)] Äj( 

+X*u.(ü)0;0) [Ak(t)Äj(t) +Tj{t)Äk(t)]Äk(t)}e 

(3.52) 

"»0' 

" 4 

£o 

"       dTj[t)Aj(t) | TR   dXk(t)Ak(t) 

'""       dt jkkj       dt jjjj 
Aj(t) 

+Th jjkk 

dXk(t)Aj(t)  | dTj{t)Ak{t) 

dt dt Mt) 
-icoor 

d2A)(t)Aj(t)       R„ d2A*k{t)Ak(t) X^(wo;0)^P^ + X^(w0;0)^ Aj(t) 

,.R" +x***(w0;0) 
d2Ak(t)Aj(t)     d2Aj{t)Ak(t) 

dT- + dt2 Mt)}e-iu>0'. 

The third-order polarization includes scalar and vectorial (coupled) forms of nonlinear refraction, two-photon absorption, first- 
order Raman gain, and second-order dispersion of Raman nonlinear refraction. The phase-dependent vectorial terms are absent 
it'orthogonal circular polarizations are chosen as the basis set rather than linear polarizations [226]. Here, the linear polarization, 
or Cartesian, basis set was chosen because these polarizations are also the eigenvectors for a planar waveguide. 

Detinmg the Kerr nonlinear index, the two-photon absorption coefficient, the Raman nonlinear index, the Raman time 

constant, and the Raman index dispersion coefficient, respectively. 

7 

«A-= g^-^{x^7J(ü)o;-(üo.(üo.Wo); 

_1_ 

4/10' 
"R = 7-Xljjjj(^ü-0) 

■T* 
Jin llR 

X^/MliO)     IlK + llR Kll!l 

nX=4^Z"»^,:0)- 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

and the nonlinear anisotropy ratios 

AA- = X^j/X^jj    AÄ = X*kkj/X*jjj= Tjkkj/Tjjjj 

YA = x)jkkIXjjj,     Y« = Xjjkk/Xjjjj = TijkklTjijj- 

equation 3.52 reduces to 

Pf>) = eo"o»:{[K(0|:+2A|^(r)|2]^(r)-fY^(r)^(r)A,(0}e-^' 

+ i^\\\Aj(t)f + 2AK\Ak(t)\
2}Mt)+yKÄ)(t)Mt)Mt) }e-*°°' 

2kf  >- L J J 

(3.58) 

■ Eo"o";T/? 
dÄ)(t)Aj(t) dTk(t)Ak(t) 

- + A/? ■  
dt dt 

Aj(t) 
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+ YR 
dTk(t)Aj(t)     dTj(t)Ak(i) 

dt     +     dt 
Äk(t)\e-^' 

2      1 dt- dt- 

+YR 
d2Ä'k(t)Aj(t) , d2A)(t)Ak(t) 

d7-        +        df- 
Mt)\e-^\ 

where the total instantaneous nonlinear refractive index and the overall nonlinear anisotropy factors are defined 

«; = >>K + "R 

2/IA-A,; + "R[AR + YR] 

2[nK + nR] 

"A'YK + "RYR 

A: 

Y = 

(3.59) 

(3.60) 

(3.61) 
»K + "R 

Here. nK = [1 - //?]":• "R = /*«2. and /* represents the fractional Raman contribution to the ultrafast nonlinear index. Note 

that for the isotropic symmetry class, 

2A*: + Ytf=l 
AR + 2YR= 1, 

(3.62) 

(3.63) 

and under Kleinmansvmmetry, AA-= Yä: and A« = YR- 
The form of equation 3.58 is suitable for the multiple-scales analysis of section 3.2 because the terms are easily ordered 

based upon peak intensity and pulse duration. For the nonlinear Helmholtz equation of this section and the numerics of 

Chapter 4 though, the full Raman response can be used. The time-domain form is 

(3.64) /f+(0 = 
.-""o' 

•«DO' 

eo"o"A"{[ \Aj(t)\2 + 2^\Ak\t)\
2]Aj(t)+yKÄ'j(t)Ak(t)Ak(t)}e 

+ i^{[\Aj(t)\2 + 2AK\Ak{t)f]ÄJ(t)+y^j(t)Äk(t)Äk(t)} 

+*F J~itjjjjWÄlit - x)7\k(t -x)Äj(t)dx 

+yRJ^R%J(r)Ä'k(,-x)Ä](t-x)Äk(t)dx 

+yR f R^j^Ä^t - x)Äk(r -x)Äk(t)dx *-''"*>'. 

In the numerics, the convolution integral with the Raman response function is easily evaluated in the temporal-frequency domain 

using instead the Raman susceptibility. 

3.1.3    The Fifth-Order Nonlinear Material Polarization 

The direct extension of the nonlinear polarization to fifth-order is. in the frequency domain, 

P//)(iü) = ecfffffxjti«Uu,{f>y.(ü\.(»2^ym,(o5)x (3.65) 

£A(ü)|)£,(ü):)£„,(ü)3)£n(<Ü4)£«(C05)x 

5(d)- (Di -(O;-a)3-(Ü4-0)5)rf(Dirfü)2<iü)3rfa)4rfü)5. 

Neglecting nonlinear dispersion and using the quasi-monochromatic wavepacket, the fifth-order nonlinear polarization at ü)0 

responsible for nonlinear refraction, written in the time-domain, is 

/f+(0 (3.66) 
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Eo 
32 

Xjkimno{<»o; -tf>o. -Wo-W0. w0,w0) Ak{t)At (t)Am(t)An(t)A0{t) 

+ Xjkl„mo{U0\ -Ü)0. W0. ~W0. ^O^o)Tk{t)Äi{t)Tm{t)Än{t)Ä0{t) 

+ '•' 
„-'Wo' 

where there are 5C2 = 10 total terms. 
From Appendix A, the fifth-order nonlinear refraction for isotropic symmetry is (cf equation A.23) 

/f)+ (t) = ^rXjjjjjji®o>-<i>o--w0,too,coo,coo) e'i(0°' x 
J 16 

(3.67) 

5 
2 1 + ||Ai(r)|24;

2(/MJ(/) + -^?(r)A?(0A;-(r) + -|At(r)|2|A/(/)|
2^(r)J, 

where | =± A-^ / and Kleinman symmetry has been invoked for simplicity, leaving only one independent component of the sixth- 
rank tensor [226]. Analogous to the cubic nonlinear index n2 and two-photon absorption coefficient ß2, the quintic nonlinear 
index and three-photon absorption coefficients are defined 

«4 = 77—^e { Xjjjjjj(Wo; -WO, -W0, W0, W0, Wo) } 
16«o 

ß3 = -f Im {Xjjjjjjiuo'- -wo. -w0. w0, w0, w0)} 

(3.68) 

(3.69) 

Note that the fully-dispersive fifth-order Raman response is not considered. In fact, the zeroth-order refractive part of the 
fifth-order Raman response can be assumed to be included in the definition of n4, where Xjjjjjjls redefined to include both the 
instantaneous and Raman contributions. 

I'sing the quintic nonlinear index and three-photon absorption coefficient, the fifth-order nonlinear refraction polarization 
is final I \ written 

if+(0 EO l!0«4 + ' 

+ 5 No 

2kf 

\Aj(t)\4Aj[t) + l\Ak{t)\>Aj(t) (3.70) 

• v . —?. .— 

■Aj(t) + j\Ak(t) 

1-2.  .-v. 

■Al(t)Aj(t) 

+ ^r/(t)Al(t)Aj(t) + -A-(t)Ak-(t)Aj(t) + j \Ak(t)]-AJ(t)Aj( 

+  [-Äl2(')A](')Aj(t) + l\Ak(,) K(0 'Aj[t) 
-lOlQf 

Again, the phase-dependent vectorial terms are included, but eventually will be removed due to the assumption of phase-velocity 
mismatch between the orthogonal modes of a waveguide, which washes out their effects over distances longer than the beat 
length. The phase-dependent vectorial terms are rigorously absent for the circular polarization basis set [226]. 

An additional, effective, quintic refraction contribution arises from the cascaded interaction between the fundamental at co0 

and the third-harmonic. This contribution will be derived in the multiple-scales analysis even though the result is valid for the 
Helmholtz development of this section as well. This cascaded contribution is the higher-order analogy of second-harmonic 
cascading, which leads to an effective third-order nonlinear refractive effect [193], and has been studied recently because of the 
possibility for producing a large Kerr-like nonlinear index [196]. Note that an additional quintic contribution proportional to 
the square of the cubic Kerr index is obtained in the next section, and is the result of the derivation of a first-order equation. 

3.1.4    The Vector, Nonlinear Helmholtz Equation 
Using the third- and fifth-order polarizations from sections 3.1.2 and 3.1.3, the nonlinear Helmholtz equation 3.44 can be written 

3     v.    BÄk{t) 

0J Jte{.i,v.:} 
dk 

(3.71) 
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k   coo + / 
dt 

k[ (üO + ZT-l+»'a| coo + J^- 

n0nK + i ß2 
2k fi 

m + i dt 

Aj{t) 

Aj(t)\2Äj(t) + 2AK\Ak(t)\
2Äj(t) 

+yKÄl{t)Tj(t) 

'2c2 
coo + i 

dt 
J~Rjjjj(T)\Aj(t-z)\2A-jdz 

+ARfRln(t)\Ak(t-x)\2Äjdx 

+Y« /  RjjjjWÄlit - i)Äj{t - x)Äkdx 

_2 
T c- «O"4 + 'TT"    (üo + ,97 '2/t/j 

|4T Aj{t)[Aj{t) + -\Ak{t)\*Aj{t) 

+ -5\AJ(t)\2\Ak(t)\%(t) + ^\Ak(t)\
2Äl(t)Tj(t) 

+ lTf(t)Äl(t)Äj(t) + ^Ä2(t)Tk
2(t)Äj(t) 

+l\Ak(t)\
2Ä2(t )Tj(t) +1-Tk

2(t)Ä2(t)Äj(t) 

+ UAk(t)\
2\Mt)\-Aj(t) 

Equation 3.71 describes the general evolution of multi-dimensional vector waves including the effects of full linear refractive 
and absorptive dispersion, third-order nonlinear refraction, fully-dispersive third-order Raman scattering, and fifth-order non- 
linear refraction (neglecting the third-harmonic cascading term) and two- and three-photon absorption. This equation also de- 
scribes omm-directionai and inhomogeneous propagation in that scattering from linear or nonlinearly-induced inhomogeneities 
is fully treated. In fact, the only approximations made in the derivation from Maxwell's equations lie in the material polariza- 
tion, and the neglect of frequencies far removed from the fundamental co0 which could be generated by a nonlinear interaction 
such as third-harmonic generation (which will be treated in the multiple-scales analysis). 

The vector nonlinear Helmholtz equation has no known analytic solutions, although approximate stationary solutions to 
reduced versions may be obtainable, for example for a scalar equation with truncated linear and nonlinear dispersion [139]. 
These approximate solutions must be numerically propagated in order to test for stability. Therefore, what is most useful for 
the soliton and solitary wave propagation and interaction studies of this thesis is the nonlinear evolution of an initial vector field 
distribution into the far field (of linear propagation). As a result, equation 3.71 must be treated as an initial value problem rather 
than a boundary-value problem, which can only determine the equilibrium solutions, if any. Evolution over time is the most 
natural, but also the most difficult because the nonlinear Helmholtz equation is differential in space and integral in time due to 
linear and nonlinear dispersion. 

One numerical method to evolve a unidirectional wave by a second-order differential equation is the Nyström method [227], 
which is analogous to Runge-Kutta for first-order differential equations. Nevertheless, second-order equations such as 3.71 are 
difficult to solve numerically for problems where long time/distance evolution is desired. The main contributing factor is the 
leading-order scales, which leads to restrictive requirements on sampling. This difficulty plagues numerical techniques that 
directly solve Maxwell's equations, such as finite-difference time-domain (FDTD) [228], as well, and motivates a different 
approach in which a first-order, vector nonlinear evolution equation for the slowly-varying field envelope is utilized. This 
equation is derived in section 3.2. 

The Helmholtz equation retains the fast variation due to propagation, which is approximately e'k°z. For wide angular 
spectra and backscattered radiation, this phase must be properly sampled. The largest propagating longitudinal or transverse 
wave number is *o = 2rc/A, where A is the material wavelength, and v = 1/A is the largest propagating spatial frequency. 
The upper bound on sampling is given by the Nyquist limit, meaning that in order to properly sample the highest spatial 
frequency, the samples must be at A/2 intervals or less. Two additional considerations must be made. The transverse wave 
number for evanescent fields is larger than *o, and the linear interference between forward- and backward-propagating radiation 
produces fringes with spacing A/2. Therefore, the spatial sampling must be A/4 or smaller in order to Nyquist sample these 
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oscillations. As a result, sampling at A/10 is generally considered a rule of thumb for linear problems using a second-order 
accurate numerical scheme [229]; for nonlinear problems, sampling at A/100 is commonly used. When nonlinear evolution 
into the far field is important (as it is here), it is difficult to formulate an accurate numerical technique that can resolve both 
fast and slow scales, because these fast scales dominates the calculation and any variation occurring on a slower scale becomes 

difficult to detect. 
Much work has been done on a technique known as homogenization, in which the fast and slow scales are separated betöre 

the numerical calculation. The multiple-scales analysis performed in the next section is a form of homogenization, where the 
mean propagation phase and group velocity are removed in the development of a first-order evolution equation. Therefore, 
the two shortest distance scales, which are order 1 and 1/e where e is a small parameter, are removed, with the leading-order 
distance scale, 1/e2, representing diffraction and dispersion (which are far-field effects), and nonlinear self-focusing and self- 
phase modulation. As a result, sampling can be larger than a wavelength since the finest scale to be resolved is that of the field 
envelope. Of course, in the non-paraxial and non-SVEA regime, sampling still must approach A/2. The advantage here is that 
the sampling scales inversely with the bandwidth of the envelope; in the other schemes based on the second-order equation, the 
sampling is based on A, independent of the envelope. 

3.2   Multiple-Scales Derivation of the Nonlinear Wave Equation 

This section uses the asymptotic method of multiple-scales to derive the basic equations needed for the theoretical and numerical 
studies of optical solitons and their interactions presented in this thesis. Because of the numerical difficulties that the Helmholtz 
equation 3.71 poses, a different approach to describing the nonlinear spatio-temporal evolution of wavepackets is developed in 
this section. This equation is first-order in the evolution variable and possesses good scales in the sense that all fast variations 

are removed. 
The multiple-scales analysis separates the fast scales from the slow, resulting in a nonlinear wave equation that can describe 

Ion» time/distance evolution; this is especially important in the waveguide derivation of Appendix C where variation in one 
transverse direction is fast. From the derivation, the multi-dimensional nonlinear Schrödinger (NLS) equation is obtained, 
which evolves over a distance scale 1/e2, while higher-order terms that evolve over distance scales 1/e3 and 1/e4 are obtained 
in subsequent sub-sections. The point of this analysis is to remove the order 1 and 1/e scales from the wave equation, allowing 
for the use of much simpler numerical techniques. 

At each step in the perturbation expansion, an evolution equation is derived that contains all terms with significant contri- 
bution within some characteristic propagation distance. Higher-order equations subsequently extend the region of validity. The 
first-order equation accounts for wave propagation of the optical carrier, which is sufficient over a few wavelengths over which 
the field envelope does not change. A second-order envelope equation determines the group-velocity and is valid over distances 
smaller than the characteristic diffraction/dispersion/nonlinear lengths. Paraxial diffraction, group-delay dispersion, and cubic 
nonlinear refraction are added at third-order to reveal the multi-dimensional NLS equation. For distances well beyond the 
characteristics lengths, higher-order perturbation theory is required. The fourth-order equation adds perturbations to the NLS 
equation that describe linear and two-photon absorption and the first-order non-slowly varying envelope (non-SVEA) terms of 
third-order dispersion, space-time focusing, optical shock, and Raman gain. The fifth-order equation includes second-order 
non-SVEA terms, non-paraxial terms, Raman index dispersion, longitudinal field coupling, and quintic nonlinear refraction 
with contribution due to third-harmonic cascading. 

3.2.1    Multiple-Scales in Maxwell's Equations 

Once again, the starting point is Maxwell's equations, written in a form appropriate for dielectric media 

VxE = -W? (3-72) 
at 

VxH = Efl?+? (3-73) 
dt      dt 

VE=--V-P (3-74) 
£o 

VH = 0, (3-75) 

where the constitutive relations have been used to eliminate the electric and magnetic displacements. Spatial and temporal 
functional dependence is generally neglected for simplicity. Note that, with the use of the constitutive relations, the vector 
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Maxwell's equations contain six unknowns in the vector electric and magnetic fields, but separate into eight equations relat- 
ing those fields. The divergence equations are unnecessary, but will be retained in the analysis because they provide direct 
relationships for the longitudinally-projected fields. 

As before in the discussion of the linear and nonlinear polarizations, the quasi-monochromatic wavepacket representation 

is used for both the electric and magnetic fields 

E=-Äe-i^'+Ue-3i^' + cc 

H = -Be-iw°' + ^Te-3i(0°' + cc, 
2 2 

(3.76) 

(3.77) 

where it is assumed that the fractional temporal bandwidths of the fundamental and third-harmonic envelopes are each less than 
unity. The over-bar denotes the retention of a fast phase variation due to linear propagation. This fast phase will be explicitly 
removed in the multiple-scales analysis. The mean direction of propagation is chosen to be along the z axis, which is fully 
general for the isotropic symmetry class, but only strictly applies to cubic classes when propagation is nominally along one of 
the crystal axes. The third-harmonic is included in order to obtain the cascaded contribution to the quintic nonlinearity. 

With this wavepacket assumption, quasi-monochromatic Maxwell's equations can be written in terms of the fundamental 

envelopes A and B, 

V x A = z'po 

VxB = -/Eo 

COo + ' dt 
B 

CÜO + / 
dt 

i  / ,3\Ti   2 —NL 

^(c+4)[v.Ä]=-|v.^ 
VB = 0. 

(3.78a) 

(3.78b) 

(3.78c) 

(3.78d) 

and in terms of the third-harmonic envelopes S and T. 

V x S = /po 3u>o + /' 
dt 

VxT = -/'Eo 

^^ -    -       -> 

3ü)() + / 
dt 

EL(3a)o + /^)S+^-Pf 
dt EO 

E'-(3Wü + ,-J[V.S] = --^V.P;, 

VT = 0, 

(3.79a') 

(3.79b') 

(3.79c') 

(3.79d') 

with the corresponding conjugate expressions. Here, the material polarization is separated into linear dispersive and nonlinear 
parts. The fundamental and third-harmonic envelopes must satisfy the above equations in order that the total electric and 
magnetic fields E and H. as given by equations 3.76 and 3.77 respectively, satisfy Maxwell's equations. 

Key to the multiple-scales analysis is the suitable choice of small parameters that serve to scale the slow variables. The 
slow transverse variables are defined X = Kx,Y = Kv. which are responsible for diffraction. The small parameter K ~ X/wQ < 1, 
where i»0 is a measure of the beam width, guarantees that the width of the transverse angular spectrum Mr ~ 2n/w0 is small 
compared to the linear propagation constant Jto = 2n/k, otherwise known as the paraxial assumption. In linearly isotropic 
media, only even-order powers of the small parameter K occur in the derivation, and the standard paraxial approximation 
truncates the diffraction expansion at K2 resulting in the parabolic representation of the A-space surface. In this derivation, the 
expansion will be taken to order K4, which goes one step beyond the paraxial approximation. 

The slow time variable is defined T = r)f, where rj ~ Aü)/ü)0 < 1 is the fractional temporal bandwidth. The small parameter 
n. allows for the representation of linear and nonlinear dispersion by Taylor expansion in terms of time derivative operators 
instead of convolution integrals, as developed in section 3.1.1. Dispersion effects appear at all positive powers of T\. For 
example, writing the linear dielectric constant in terms of real (dispersive) and imaginary (absorptive) parts 

Ü)0+/T1ä7:)=e^ Ü)o + JTl 
dT 

+ /e3e; COO-MTI — (3.80) 
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the following expansion can be made 

^    ...        d3      n4 ,«,,.    . 34 

(3.81) 

f) 
+ ie3E^(00o) - E3T1E/' (ü>o) gyT + ■ ■ •. 

where e is a small parameter that scales absorption and is denned later. If the envelope possesses fast temporal variations about 
the carrier io0, i.e. greater than unity fractional bandwidth, then the slow variable T can not be denned and the dispersion 
expansions are not valid. The slowly-varying envelope approximation (SVEA) truncates this expansion at i\-, while the non- 
SVEA development here extends the expansion to T]4 as shown. The imaginary part of the dielectric constant responsible for 
linear absorption is scaled three-orders smaller than the real part in order to appear in the derivation as a first-order correction 
to NLS This is justified by noting that the development of the nonlinear polarization assumed that the optical frequencies were 
not in one-photon resonance with the medium and by the fact that only materials with small linear absorption are of interest 
for soliton switching, as discussed in Chapter 5, which amounts to the requirement that absorption is small over the diffraction 

lennth. which is the length scale of NLS. ' ■       . 
Weak nonlinearity is assumed such that wave propagation is linear to lowest order. This is ensured by redefining the 

envelopes as small - vX and vB for the fundamental - where the small amplitude parameter v ~ y/n2/nd\A\ scales the material 
polarization expansion. Since third-order nonlinear effects contain the product of three fields, nonlinearity will enter the wave 
equation two orders higher than first-order linear effects, which depend on only one field. Using the results of sections 3.1.2 
and 3 1 3. the nonlinear polarization with time dependence centered about the fundamental frequency co0 is 

(3.82) P*L= v3Eo/i0«2 { [ \Aj\2 + 2A \Ak |:] Aj + yA*jAkAkj 

+ /ev3|^{[ \Aj\2 + 2AK\Akf]Aj + yKA)AkAk} 

au,!"      d\Ak 1   ;l   +AR 

4^+Afi 

dT 

d-\Ak\- 
dT: 

Aj+yR 

Aj + lR 

dXkAj     dÄ'jÄt 
dT dT 

Ak 

d2A'kAj     d2A)Ak 

dT2    +    dT- 
Ak 

^r+^Ki4+?Ki:i^i:+=iA;i:iA; 

+ 

+ 

-->_->      l_1_.-> l-,2-2 ~-Ä'fA-k+jA-Al-+-Ak~A 

j\Ak\
2Ä; + ^\Ak\

2Äj}rj 

where jzzk^l. The terms responsible for two-photon absorption are scaled one order smaller than the refractive parts so that 
two-photon absorption also appears one order beyond NLS. This is also justified by noting that the development of the third- 
order nonlinear polarization assumed distance from two-photon resonance. As shown in Chapter 5, it is desirable for soliton 
switching (and true for nonlinear optical switching in general [ 115]) that two-photon absorption is weak relative to nonlinear 
refraction, which appears at the order of the NLS equation. Note that the term responsible for three-photon absorption is 
allowed to be the same size as fifth-order nonlinear refraction, however. The reasons for this are discussed later. The last term 
describes third-harmonic downconversion, and the form is derived in section A.2.3. 

The pertinent nonlinear polarization at the third-harmonic is (c.f. equation A. 16) 

pf< = ^ [Xjjjj(2uo\Mo,(a0,(üo)AjAjAj 

+ 3Xjkkj( 3co0; w0, CD0, (üo)ÄkÄkÄj] 

(3.83) 
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The third-harmonic electric field S generated by this nonlinear polarization is assumed not to be present at the beginning of non- 
linear propagation, but is generated by the fundamental through a non-resonantly phase-matched process. For a single incident 
linearly-polarized wave (at ü)0), the only susceptibility tensor component that will produce a third-harmonic polarization within 
the limit of the fifth-order derivation presented here is the scalar Xjjjp(ü0; coo, CD0, co0). For other states of incident polarization, 
or for the interaction between orthogonally-polarized waves of interest here, more components are required as shown. 

The slow evolution scales are defined Z, = e';, where propagation is assumed to be nominally along the z-direction and 
powers of e determine the scale of the overall variation of the envelope due to diffraction, dispersion, nonlinearity, and absorp- 
tion. At each order / + 1 in the analysis, a differential equation in Z, is obtained which groups all envelope variations of size 
e'+1. To this end, the envelopes are expanded in power series in E: 

Ä = Äi+EÄ2 + E2Ä3 + --- (3-84) 

S = £:S? + --- 

B=B|+EB2 + £
2
B3 + 

T = E:T3 + ---. 

The hieher-order terms in the expansion represent corrections to the initial envelopes A! and B,. Each step in the analysis forces 
the Ions-distance behavior (at Z,) of the envelopes such that equation 3.84 remains a uniform asymptotic expansion. The scaling 
for the"third-harmonic S (in which the first contribution appears at the third-order of the analysis) is set to be consistent with 
ceneration bv the product of three fundamental envelopes A,. The third-harmonic interacts with the fundamental to produce a 
cascaded fifth-order nonlinearity [211] of sign and magnitude which are adjustable through phase-matching. Fifth and higher 
odd-order harmonics could also be generated, but do not affect the nonlinear wave equation for the fundamental at the order of 
the present derivation and are therefore ignored. 

The small parameters, K for the fractional angular bandwidth, r\ for the fractional temporal bandwidth, v for the fractional 
change of the dielectric constant due to nonlinearity. and E as an overall scaling factor, determine the relative scaling among 
terms (and physical effects) in the perturbative expansion. The perturbation expansion follows a particular connected path 
through the three-dimensional lattice of terms indexed by powers of K, r), and v; higher-order terms (more distant from the 
origin") are always smaller. A particular physical situation determines the sizes of the small parameters relative to E, and allows 
foMhe derivation of the appropriate evolution equation. For example, a nonlinear spatio-temporal wave of short duration and 
lame transverse size will result in the scaling K = r\2 = v: = E:. The terms associated with diffraction will then be driven to 
hisher order and the resulting evolution equation at third-order perturbation theory, or e\ will be temporal NLS. Subsequent 
orders E4 and higher will reveal non-SVEA terms (and paraxial diffraction at E5). Conversely, a spatio-temporal wave of long 
duration and narrow transverse size is described by the scaling X] = K: = v: = E:, moving the ultrafast terms to higher order and 
yielding the spatial NLS equation at E3 after transforming into a coordinate system to remove the group delay. Again, further 
analvsis will reveal non-paraxial terms (and group-delay dispersion) at E-. 

The most general equation, retaining as many terms as possible under the initial assumption of weakly nonlinear propagation 
of a field envelope, occurs when all physical effects manifest themselves over commensurate distances of propagation and 
results from the scaling K = r) = v = E. One result of this condition is that the multi-dimensional nonlinear Schrödinger 
(NLS) equation is obtained at order E\ Any other choice of initial scalings, such as the scalings valid for the numerical 
simulations presented later, would lead to one or more effects being less important than the others, resulting in the paraxial or 
SVE approximation, as previously discussed. In terms of the slow variables, the time and space derivative operators become 

(3.85) 

(3.86) 

a     a     , a 
£ + eäz7+e"äz; + - 

a a 
—>ET— 

dt 37 
.a d d 

V = Xrr- + VT— + . • — 
d.x • dv d; 

. a a 
-+XEzr— + VF — + .- 

dX d\ J\ 

where ZQ is replaced by c so that uppercase represents slow (envelope) variables and lowercase represents fast (propagation 
phase) variables. In the'analysis, Zo represents zeroth-order perturbation theory with characteristic length scale on the order of 
the carrier oscillation, Z, is first-order perturbation theory with length scale of group delay, Z2 is second order resulting in NLS, 
and so on. Note that now the field envelopes are functions of : and the slow variables, i.e., 

X-fI(X,K,Z1>0,7\z), (3-87) 

where the fast c dependence will be removed in the analysis. 
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Now, the quasi-monochromatic Maxwell's equations for the fundamental can be written, in component form, 

a 
x:   t 

dAz 

dY 

\d     a 
.ai+eaz;+-. Ay = ino 

y- 
[9 
Tz+t\ 

a 
Ax-t- dx=m 

(00 + JE^ 

co0 + J'E 

z: 
dAv       dAx 

dT 

C00 + JE 

Bx 

By 

d_ 
dT Bz, 

(3.88a) 

(3.88b) 

(3.88c) 

which is Faraday's Law and relates the electric and magnetic fields such that a time-varying magnetic field serves as a source 

for the orthogonal rotation of the electric field, 

x:   £ 
dB: 

dY 

ra     a 
.aI+e3zT+ E v — 

-J£o 
r      d l 
COo + JE^r 

v : 
ra     a 
ä7+eäz:+-. Bx- 

as- 

-j'eo 
r      d l 
Wo+'EäT 

f :   t 
dB,       dBx 

äx _eay ~ 

-J'EO 
r      a i 

EL   cüo + JE^-r \AX+—P: 'dT 
2 -H(NL)+ 

EO 

I   / .     9   \T    ,    2 -s(NL)+ 
£L(co0 + JE^:jAv+-Pv 

EMCOO + ^)A:+^
NL)+ 

(3.89a) 

(3.89b) 

(3.89c) 

'37 «k> 

\\ hit-h is Amperes Law (modified by Maxwell) and states that a time-varying electric displacement drives orthogonal circulation 

of the magnetic field. 

E1-    Wo + IE 
dAx      dA, Ew+ew+ 

3p(NL)+ dP\ 

a 
NL)+ 

a      a 
+ E^- + ' 'dZ, 

A- (3.90) 

ax ■ + E- 
ay 

a      a 
a?+£a^ + 

p(NL) + 

) 

which is Gauss's Law and constrains the longitudinal electric field polarization in order to guarantee that the electric displace- 

ment is divergence free, and finally _ _ _ _ 

e
dJ± + E

dll+\dli + A + ..]=o, (3.91) 
dx+ ay    [a;     az,     J 

which states that there is no isolated magnetic charge and ensures the magnetic field is divergence free by proper choice of 
lonsiitudinalh-polarized magnetic field. 

These equations serve as the starting point for the next section which presents the derivation of the (3+l)-D vector nonlinear 
wave equation for the Cartesian polarization components. This choice of the polarization basis set is arbitrary. The reduced 
dimensional derivation appropriate for nonlinear propagation in a planar waveguide is presented in Appendix C. In this case, a 
(2+1 )-D vector nonlinear wave equation results because of one dimension of linear confinement by the waveguide. Again, the 
Cartesian polarization components are used, but now this choice is not arbitrary since the TE and TM modes of the waveguide 
appear in orthogonal linear polarization states. Slight modification of the above set of Maxwell equations is necessary in the 
guided case since, in one dimension transverse to the mean direction of propagation, the material polarization depends on 
position, and the envelope in that dimension may no longer be slowly varying. 

3.2.2   Derivation of the (3+l)-D Higher-Order Vector Nonlinear Schrödinger Equation 

The propagation of and interaction between optical solitons is of primary interest to this thesis. The use of one field envelope 
A does not preclude the description of multiple soliton interaction with arbitrary states of polarization. Indeed, a first-order 
nonlinear wave equation will be derived for each polarization component in Cartesian coordinates, and any number of soliton 
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envelopes of arbitrary polarization state can be decomposed into this basis set. For example, for the interaction between two 
solitons of orthogonal linear polarizations, the initial conditions would be 

Alx = fx(X,Y,0,T) (3-90) 

Aly=fy(X,Y,0,T), 

where fx and fy represent the envelopes of the individual solitons. Using solitons of orthogonal circular polarizations, 

Alx = 4=[f+(X,Y,0,T)+f-(XJ,0J)] (3-9D 

Aly = ^={f+(X,YAT)-f-(X,Y,0,T)}, 

where 

MX.Y.0,T)*-±2- (3-92) 

f_(XJ,0,T)^ (3-93) 

represent the soliton envelopes of right- and left-hand circular polarizations. 
As a result of the choice of optic axis, z, the wave equations for the x and y polarizations will be identical in form due to 

the isotropic and cubic symmetry. Now the terms are grouped in powers of e. At all orders, Ax and Ay satisfy similar equations, 
while A- is different due to linear vector coupling in Maxwell's equations and the fact that propagation is along the z direction. 

Order £ - Phase Velocity 

At the lowest order. Maxwell's equations constrain the phase velocity. Writing out the coefficients of e, in Cartesian form, 

3ÄH x:   -^-=-ipomBu (3.94a) 

= ifio<i>QBu. (3.94b) 

dz 

dz 

0 = Wüoßic* (3-94c) 

which allows the electric fields to be determined from the magnetic fields, 

.?:   ^ = iEoü)oe^{ü)o)^u (3.95a) 

v:   ^ = -/eoüOo4(cDoM,, (3.95b) 

*:     0 = /eoü)o£^(coo)Ä1:, (3.95c) 

which allows the magnetic fields to be determined from the electric fields, and 

,.    =0 (3-96) 
dz 

0, (3-97) 

9A|; 

dBlz 

dz 

which provide no new information. 
It is immediately seen that the longitudinal electric and magnetic field polarizations are zero to this order, leaving only four 

non-zero field components. This is expected since the projection of the electric polarization onto the propagation direction is 
smaller than the transverse projections because of the initial choice of scalings. These scalings dictate that the fast propagation 
variation is along c and the transverse variation (i.e. diffraction) is described by the slow variables X and Y. 

Taking the ; derivative of equation 3.94b and substituting equation 3.95a, the x-polarized electric field equation is written 

d~A\x        „        ?„L 
g-T1 = -Eo/JoWo^l^oMu 

=>Äu = Au^ (3-98) 
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where Alx is a slowly-varying envelope, eow> = 1/c2 and c is the speed of light in vacuum. The "+" sign is chosen here for 
forward-goino waves, and backward-going wave are neglected by_the_assumption of weak nonhneanty, which forces wave 
propagation to be linear to this order. The same relation holds for A„, Bu and Bly. The wavepackets travel in the z-direction 

with some mean wavenumber % or propagation constant *o = ±0)0^ (CD0)/C resulting in the mean phase velocity vp = 

(0o/&o for the underlying carrier. 
Using the expansion 3.84, the relevant equation at lowest order is 

^ = -^+0(E2), 0-99) 
dz~ 

which determines the phase velocity. The order E2 term emphasizes the fact that this equation is only accurate to order e. 
Equation 3 99 allows the removal of the fast phase variation such that subsequent analysis will reveal approximate evolution 
equations for just the slowly-varying field envelope. Note also that, since Alt = 0, the total longitudinal field Az = 0(E"), which 
will be determined in the following section. 

Order £2 - Group Velocity 

The previous order determined the phase velocity of the underlying wavepacket carrier, this order determines the group velocity 
of the wavepacket envelope. Faraday's Law (equation 3.88a) results in 

.     9/K     dAu - dBu 
x: -är+azr=?"w,cnoÄ2,c+W)"ä7:" 
.     9Jiv     dA~u D 3ßiv (3.100a) 

while Amperes Law (equation 3.89a) results in 

i:   ^ + ^ = ^^(0)0^ (3-lOla) 

r - i /        1 dA\x 
-to [E^(Cü0) + (üOE31(ü)O)J ~^- 

y:  ^ + ^i = _(eo(ÜOE^(coo)Ä2v (3.101b) 

[l,      . L'/      \1 9^'v 
+E0 [E^_(COo) +Ü)0E^(ü)o)j -pjT- 

FinalK. in order to ensure divergence-free fields, 

^!i + ^ll + ^ = 0 (3.102) 
dX        dY        dz 

3Su    35iv3==0 (3-103) 
dX       ÖY        dz 

Here, the divergence equations are used instead of the -component of the curl equations because the former provide direct 
relations for the longitudinal fields. 

Performing the same steps used in the previous order, the equation governing^ is 

^ + fe = -2ikod£- -«^ K(coo) + cooE^(a>o)] ^. (3-104) 

The homogeneous solution to the left-hand side of equation 3.104 is 

such that the right-hand side, which has the same phase factor, is secular. In order to suppress unbounded growth of the 
particular solution for Älv (which would be « zeik°z), and therefore ensure that equation 3.84 is a uniform asymptotic expansion, 
this secular term must be set to zero, resulting in 

2ikod£ = -i^ [2E^(COO) + CO0E^(coo)] *£. (3.106) 
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Noting that 

2^ = 2^y^^V5Ä+^^ z\ (too) 

= 2^(0)0)+ ^(««0), 

equation 3.106 can be rewritten 
3i4, 

3Z, 
_^ + 0(E), 

(3.107) 

(3.108) 

(3.109) 

which is the lowest-order evolution equation for the slowly-varying field envelope and has error of E, which represents higher- 
order corrections that will be obtained in subsequent sections. Equation 3.109 well describes wavepacket propagation over 
distances short compared to the dispersion/diffraction/nonlinear lengths, and subsequent analysis will increase the accuracy of 

the approximate envelope wave equation by successive orders of e. ... 
Making the substitutions Ax = EA,,, 3/3; = e3/3Z,. and d/dt = ed/dT, the overall evolution equation for the x-polarized 

field envelope is currently . 
dAx , ,, oAx 3. 
X+,V = 0(E»' 

(3.110) 

which is accurate to order E2. The error will be reduced to order E4 by deriving the NLS equations in the next section. Equa- 

tion 3.110 has the traveling solution ,, ,,,x 
Ax(x,y,zJ)=Ax(x,y,z,t-k^z) C3-111) 

where *' is the group delay coefficient and vg = 1/JtJ, is the group velocity coefficient. The solution reveals that to this order, 
the envelope simply translates along the direction of propagation at the group velocity without change, which is clearly valid 
within the spatial and temporal confocal ranges of propagation. 

Based on the derivation thus far, the fractional temporal bandwidth small parameter can be more formally defined. The 
group-velocity appears one order of E later than the phase velocity, which implies the following relation 

,3/1 
4, dt <e|Ml. 

which, in the temporal frequency domain, is rewritten 

|AcoJto^| ~e|M| =>E~ Aw^ 

Since the group delay is defined 

#     X/E^O)      COOE^(OO)       V^rco) 
*0 

2CyJt^[<Ü0) 

(3.112) 

(3.113) 

(3.114) 

which is approximately the phase velocity, it is seen that E ~ |Aco/cool (more properly, r\ ~ |Aco/co0|); therefore, the small 
temporal scaling parameter is the fractional bandwidth. For large fractional bandwidth approaching unity, more terms in the 
Taylor expansion of the dispersion need to be retained to properly describe dispersion over the pulse bandwidth. 

Using equations 3.102 and 3.103, the longitudinal field envelopes are written 

A-»-= 

ß,. = 

dAu     3/1 iv 

dX       ÖY 

dBu     dfiiv 

ax      BY 
dA\x     3Aiv 

M)U>0 BY        dX 

+ 0(6) 

+ 0(E) 

+ 0(e). 

(3.115) 

(3.116) 

The over-bar is removed because all components travel with the same phase velocity vp. Again, substituting the amplitude 
expansions, the total longitudinal electric field is 

dAx     3AV 
—-H ~ 
dx       dy 

+ 0(E3). (3.117) 
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The slowly-varying longitudinal electric field envelope is driven by transverse derivatives of Ax and Ay, and thus arises from the 

(paraxial) projection of the x and y polarizations onto the z axis. 

Order e3 - The Multi-Dimensional NLS Equation 

The multi-dimensional spatio-temporal nonlinear Schrödinger (NLS) equation shows up at this order in both the x and y po- 
larization components of the electric field. The third-harmonic is also generated. The E3 terms from the quasi-monochromatic 

Maxwell's equations are 

dA~i-     dAi,y     dAzv     dAly      .        - dBlx , miRal x: ^--r-äzr^=W03^0^ (3118a) 

To   

TH : -r^ = -3/>0w07"3.t 
oz 

3Ä3t     dÄ-y,     dÄlx     dAiz     ■   „ s 3^>' 

TH : ~ = 3if*fiioT3y, 
oz 

(3.118b) 

tor the electric field envelopes of the fundamental and third-harmonic, and 

dB2z      3ß3v _ dj^v _ d_£iy _ 
X '   ~dY        OT ~ 3Z,       3Z,  ~ 

(3.119a) 

-/'eoWo 

3 
+e°3T 

' ,        - i',    M2x    e!{(coo)32,4i,     2-(; 
£^(0)0)^ + 4(0)0)^-  %       ar2  +-/», 

I — T ' v 9^11 
E^(o)0M2, + iE^Ccoo)-^- 

ar3v 
.U TH : :^f- = 3;Ebü)0E^(3ü)ü)5.-,, + 6*COoP(3 

3ß3t     dBlx     d~Bu     dBz: 

•v: ~aT+ az, + dz2    ax 
(3.119b) 

-'£oO)o 

a 
+e°3T 

...      3/K     E*"(o)o)a;Aiv     2-(3 

ar 

■        — i'       3i4iv 

TH : .^ = -3iE00)0E^(3ü)())5,l -ö/Cü,,/
5
^, 

lor the magnetic field envelopes. The final equations from the divergence of the electric displacement and magnetic field are 

(3.120) 

:0 

E'^(O)O) 
3^2,     0A2,     UAT,:     dA2z 

~dx~+ ~oT ' + IT +~dz7 

+4(CüU)'^: 
dA ix     dA 1 v     3/W - + + ax     jr  a 

TH:^ = 0 

3ßlt      3ß;v      3ß3;      3 52: 

IF + ~W + ~3T + az7 
= 0 (3.121) 

TH: ^ = 0, 
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where an immediate simplification of equation 3.120 results by substituting equation 3.102 

p): ^+^+M=0. (3.122) 

The third-order polarizations are written 

(3.124) 

^) = e0non2[\Aix\2Äix + 2A\Aiy\2Äix + yÄ2
lyÄ\x\ (3-123) 

7*3) = eo«o«2 [\Aiy\%y + 2A\Alx\
2Äly+yÄ2

xÄ
t

ly 

7^ = ^5Ccc«(3co0;coo^o.tüü)^i.t+ -^5Cryyx(3cüo;(üo,co0,(Oo)ÄhJ4i.r 

pi3' = 5xcc«(3ü)o;(Oo,w0.Wü)^h + -^Xn«(3cD0;a)o,a)o,ra0)^iAv 
>■*      8 '        o 

Here, the nonlinear polarizations consist of third-order nonlinear refraction for the fundamental and the source terms for the 
third-harmonic driven by the fundamental. 

As before, the equation governing Ax will be developed first. Taking the z derivative of equation 3.118b and substituting 
equation 3.119a results in 

d2A^x     ., dAlx     .,  dAu     .. dA2: dB2y 

//JQCDO 

I — i'        "A i x dB2z    dB2y    9ßh__    _9_ 
"är~"äz7~ äz7-e°ar 

' . L, 3Älv      t%(ao)d2Älx   ,   2-(3) 
+/eoü)0  e^(woM3.t + 'E^(^))-^ 2 37^    eo 

rL"l 

which, after substitutions from order e:, can be rewritten 

a:Av       •,-    _ dAu     d2Au     d2Au -^T+l<öA3x-    iko d^       av,      dxdy 

-iko 
dAZi        3ß;v 

3Z 
+ M) 37 

+ 'Mi^o' 
M)U>o 

3ß-\        Li   3.41, r i   ,     . i', 
- -^- - -2- -Z-+- - E,, ! E^ (WU) + C0„E^ (0)() 

az,    p0W(i az,      iA 

ay2    ayax 

1 3^2» 
37 

(3.125) 

(3.126) 

Setting the secular term to zero results in 

dAu     d2Aix     3
:.4,,     ii),, 

+ 2potör)/
>,"' = -'*<> 

3.4-,        3ß:v 

3Z, 37 - I'M)WO 

32Ä,,t 
J  37- 

3Ö2v 

3Z, 

dA 2v 
-/— [E^(cüo) + co0e^(ü)o)j -rpj: 

(3.127) 

Using the relation dAXx/dZ\ = -^3/^,^/37 and substituting from equation 3.100a, the right-hand side of equation 3.127 

can be written ,   , ( ,    _ 
QWz(a>o)]~ &Alx 

-2iko 
dAZx     .,dAlx 

3Z,       ° 37 

Notin" that 

4c2E^(coo)    37-2 • 

.«=4 ,^,,^«-^[4*1 

(3.128) 

(3.129) 
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substituting equation 3.129 for the right-hand side, and writing the nonlinear coupling in full, equation 3.127 reduces to 

2iko +k°^r+-dz; dz + d2A\x     d2Alx        ,Md2A\x 
dX2 +  dY2 -Mo dT2 

2     A* 

(3.130) 

+2*jj^ \\Au\2Au + 2A\Aly\2Au + yA2
uAl  = 0(e) 

no L J 

Using the amplitude scaling relation Ax = EA]X + s2Alx, and the substitution 

9 _   _d_     ,_3_ 

äE-e8z1
+e az2' 

the slowly-varying envelope equations 3.109 and 3.130 can be written in lab coordinates 

2iko 
dAx      , dAx 

~d7 + k°lT 
d2Ax     d2Ax     ,  ,„d-Ax 

(3.131) 

(3.132) 

+ 2*5^ \\AX\2AX + 2A\Ay\2Ax+yA2Ax  = 0(e4) 
"o L J 

At this point in the analysis, the full evolution equation for the field envelope is valid to order e3. Equation 3.132 is easily verified 
by makin« the substitutions into the slow variables and amplitudes and comparing with the envelope equations obtained m this 
and ihe previous order. Note that there are extra terms containing AZx and A2v that have not been obtained in the analysis thus far. 
These terms, for example d2A^/dX2, 2A\Au\2Alx, and vA;v^t, are all of order e4 and higher and fall beyond the E- accuracy 
of the current state of the derivation. These terms will present themselves in the next sections as the accuracy improves. 

The leading-order distance evolution scale Z, « 1/e of equation 3.132 represents the group delay, or group velocity. This 
scale can be easily removed with the Galilean transformation T = t- kfc, with the resulting leading-order scale (Z2 « 1/e") 
representing diffraction/dispersion and self-focusing/self-phase modulation.  This is a principal advantage of the first-order 

equation over the Helmholtz equation. 
When the coordinate transformationT = t-k'Qz is made and Av = 0, equation 3.132 is the (3+l)-D scalar NLS equation. 

Combined »iih the corresponding equation for A*, equation 3.132 represents the coupled or vector NLS equations. The next 
section w ill determine the first-order corrections to the vector NLS equations. Since there is no coupling from A: to Ax or Ay, 
or linear coupling from Ax directly to Ay to this order, the coupled NLS system is a fully vectorial one for isotropic and cubic 

media. , , 
' The transverse and nonlinear scales become apparent at this order. The terms obtained at this order are £- smaller than the 

terms obtained at order E. Therefore, 
d2Ar     d2Ax 

ox-       oy- 

Bv transforming into the Fourier domain, the small parameter can be written 

K= E' 
7*1 + *; 
~~*^ 

= sin9. 

(3.133) 

(3.134) 

This relation indicates that the transverse momenta must be less than the propagation constant An in order that K < 1, as shown 
in Figure 2.2 for A,. When K > 1, evanescent wave propagation must be considered. The transverse FWHM momenta are 
related to the width of the wavepacket by kx,ky ~ 2n/w0. where circular symmetry is assumed. This relation gives the scaling 
K ~ /./»o Because sinO = kx/ko « 1, the exact isotropic it-relation Ar = A^ - A; - A; is reduced to the paraxial expression 

k- % A(, - k-/2k0 - k2/2ko. as given by the spatial Fourier transform of the linear part of equation 3.132. 
By the same arguments, the nonlinear scale is written 

v = E (3.135) 

which means that the nonlinear polarization expansion is well-ordered and converges when v < 1. This occurs when the induced 
nonlinearity is weak compared to the linear index of refraction, as indicated. 

Performing the same steps with the third-harmonic envelope results in 

d2S3x 

dz2 = -A-(3cao)S3x- 
9co5 
4c2 

7ücxxx^(Ü0)Alx + 3Xxyyx{^OH))A'iyAu (3.136) 
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which is recognized as a wave equation driven by a third-harmonic source term. The wavenumber for the third-harmonic is 
denned k2(3(ü0) = 9^(3co0)/c

2. Because the driving polarization has the phase factor e3'*"', so must the third harmonic in 
order for this equation to have a solution. The solution is then 

9co2 Xxxxr(3coo;coo,coo,(0o) A3
u + 3AKA2

bAix 

^=4^ 9k2- ■k2(3(Oo) 
(3.137) 

where A* is the cross-phase modulation coefficient for the Kerr nonlinearity. The resonant denominator indicates that the 
strength of the third-harmonic grows near the phase-matching condition *(3co0) « 3*o (or «(3co0) « n(fflo)), but the unphysical 
pole is a manifestation of the fact that the derivation is not valid at the resonant condition, for which initially exponential growth 
of the third-harmonic would occur. The pole is not a problem in practice because the phase matching condition is difficult to 
achieve in condensed, linearly isotropic media. In fact, for useful nonlinear dielectrics with low loss, it is typically true that in 
the optical regime, /i(3co0) > n(coo), which has important ramifications to multi-dimensional stability. 

Using equation 3.122, the longitudinal electric field envelope at this order is 

**-5 
ÖAjz      ÖÄ2x      <^2y 

IzT + lix~+ ~dT~ 
(3.138) 

Combining the equation for the longitudinal electric field envelope with equation 3.115, the total longitudinal field envelope is 

+ 0(e4). (3.139) A-=n> 
dAx    3Av 
~dx~ + dv k2dt 

dAx     dAy 

dx       dy 

The form of the longitudinal field will be elaborated on in the next section. 

Order E4 • The non-SVEA Corrections 

In this section, the first set of higher-order corrections to the NLS envelope equation are obtained which allow for the description 
of the propagation of short pulses. These corrections are important in studies of propagation over distances greater than the dis- 
persion/nonlinear lengths and are: linear and two-photon absorption, third-order linear dispersion, space-time focusing, optical 
shock, and Raman scattering. The evolution of the third-harmonic is not considered in this section because any corrections 
obtained here to the solution S3 of the previous order will not enter the final analysis. At e4 then, the terms from Maxwell's 

equations are 

(l).v: 

(i)y 

dAy     dAix     dAy,     dA2y     dA]v 

dY dz       dZ.       3Z,       3Z, 

ip0OioBix - /Jo 

dAix     dA3.v     8-42x  . dAu 
—^ r -zzz—r -^—I- ■ 

dA 3; 

dZ, az,    az3    dx 

iHotOoBiy - fJo 

3ß3, 
dT 

9fl3.v 
dT 

for the electric field envelope, and 

3ß3,     dBAy     3ß3v     dB2y     dB~u 
(2)x: 

dY        dz 

-/Eotto 

dZ, az,    az. 

+Eo 
dT 

i ,- -     i»,  ^dAi*   E^'(CDo)a2/iit 
e^(coo)A4.t + 'e^(o)o)-^ 2 dT2 

.^^"^.,,,7      ,    2p(4) 
-'6    ar3 +'e/(MD)Au+-/>x 

'                     L,       dÄ*    e^'(coo)a2Äu     2-(3) 
E^(ü)o)A3, + ^(ü)o)-^ 2       dT2  + ^ x 

(3.140a) 

(3.140b) 

(3.141a) 
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m\ -    dB<* ■ dB* • dBl* i dBu    dBy~ (2)y: HT    BZ} 
+ dz2 

+ 3Z3     ax 
(3.141b) 

-/'EoWo 

'                    . L,      ,3A3y     E^M32A2, 
E^(ü)oM4y + 'e^(töo)-^ 2 är2" 

.e^"(wo) a3A iy , .v£.^_\T. 
1 B(4) 

/JLI^^ + ^(ffl0)J1,+ -P; 

+EO ar 
' -        . L, dA2y     fr)^!»      2-(3) 
^((OoMav + ^(ffloJ-gyr -      2       9r2 + ^ 

for the magnetic field envelope. The final equations are from the divergence of the electric displacement and magnetic field 

(3.142) ,,,     3A3x , dA3, , dA4:     dA3:     dA2z 
(3): "aF + ~aF + dz +az, +az2 

eoe^((üo) 

,7^3)      gp(3)       -^3) 9? 
ax ■ + ■ ay • + api 

3z 

3ß3.v    3ß3v    3ß4; , 3Ä3Z , 9ß2c _ o 
(4):   —+ 3TT + —+ä^-+3Z,  -°- ax "" ay  '  a 

The third-order polarizations are written 

P(.3) = Eono/i2{2A[n,Jt|
:!+|A1_v|

2 

(3.143) 

Aiz+Y Alx + A\y l), (3.144) 

which is the nonlinear polarization along the z-axis due to coupling between the transverse and longitudinal field, and 

Vf= £0«o"2  2\Au\2AZx + A~lxÄ
,
ly + 2A\A]y\-A2x + yA~]>A: 

+2^iyÄ\>Äix + 2AÄ\>Ä2yÄu + 2yÄi>Ä2yÄ\x 

.Eoß: 

(3.145) 

+'^T1 \\Ai.x\2 AU + 2&K\AU]
2

 AU + YKAUA].*] 

ÄU + VR 

kf 

-Eo;i0/!;T/j 
9|-4ul: , i  9Kvl a^^i.t   a^.v^iy 

ar 3r Aiv>, 

with a similar expression for ¥f. The first set of terms in the transverse nonlinear polarization consist of mixed field envelopes 
from different orders of the field amplitude expansion because Alx can be substituted for one Ab. for example, giving an extra 
factor of E. The second set of terms represents two-photon absorption while the last set represents the first-order approximation 

to Raman gain. 
Following the same procedure used in the previous sections, the condition on the x polarization component at this order is 

-, ■/ + *ö'
4

4A = ~2iko 
of 

a<43.< , ,/ 3A3., 
dz, 37 

_-> 2i*o 
3An d2A2x 

azT- ax2 (3.146) 

°2A2x     d
2A2,x      1 

"äy^"lzT + ? 
-.,  dAlx    „ d2Alx    ,   i 

e^(cüo) + 2co0e^(co0) + y e^(co0) 
32Aiv 

"sr2" 

az az,az,   c2 

2
  ,:n(4) 

OK 
E^(COO) + <DOE£'(CüO) + -^£^"(coo) 

d3Alx 

ar3 

rf? 
-ik2

fe
L

I((ao)Alx--^k~fPx>-4wUo-^- 

Upon further manipulation and the use of equation 3.130, the secular term becomes 

2/*o 
dAju     ., aA3t 

az7 + *°^r + 2% 
dA2x     d2A2x . d2A2x 

az, + ax —+ 
dY2 ■*ö*o 

_„a2A2 

ar2 (3.147) 
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?r + +2ik°~dz  + ikf^(ao)Alx ~ %dT 

i, ,md3Alx     2   ,  (4)     _% U _ ^1 

a2Au , 92^u" 
dX2       dY2 

dP 
,(3) 

9r 
■ = 0(e), 

where the third-order group-delay dispersion coefficient AQ" is 

E^(COO) + w0e^'(ü)o) + y^"(«o) !*# = ? 
w0 -V" 

Once again using the amplitude scaling relation 

Ax = zA\x + E2A2X + zAix, 

AC (3.148) 

(3.149) 

and the ; scale relation 
3 _ _a_   ,_a_   3_a_ 
Fz~ZdZ,+t 3Z,+? dZ' 

the full slowly-varying envelope equation to this order is written 

liko 
dAx      , dA. 

dz + *o dt 

d2Ax     d
2Ax        ,„d2Ax 

(3.150) 

(3.151) 

3*°*°   9,3 ~\dt 

d2Ax     d
2Ax  ±.[ ^ 

dx2       dy2 

+ 2kl— \\Ax\2Ax + 2A\Ay\2Ax + yA2.Ax 
«0 L 

-,n-i 
+ 2ikl^K 

«o 

+ Aikftiz 

2kö— TR 
«o 

\AX\2AX + 2A* |i4_v|M, + YKA
2
A 

'l°-kM<LUAx\2Ax + 2A\As.\2Ax+yA2.Ax 
c      2 J at I 

' 'd\Ax\2 . A   d\Av 

dT 
+ A/?- 

dT -4,+YR 
9/lMt     3AMV 

+ 87 37- 
Ay 0(E5), 

where a,, = *;£'/((•),,)/*„ = Jt/E^((Oo)/^(t»o) " the linear absorption coefficient and K = ß:/2*ö«2 is the normalized two- 

photon absorption coefficient [ 119]. The other additional terms to NLS are third-order dispersion, with coefficient Ag', and the 
so-called space-time focusing [144] term. The space-time focusing term is one of a more general class of terms denoted here 
the space-time dispersion terms, and describes the (paraxial) curvature of the energy front due to spatio-temporal diffraction. 
Followm» nonlinear refraction and two-photon absorption, optical shock is the first-order time derivative of the (vectonal) non- 
linearitv and cives rise to an intensity-dependent group delay. The optical shock expression obtained here has two contributions, 
one directly from Maxwell's equation in the time derivative of the nonlinear polarization (proportional to phase delay), and one 
due to the removal of the SVEA by one order (proportional to group delay). The last term, proportional to the time derivative of 
the (vectorial) intensity, is the first-order (linear) approximation to the Raman gain/loss function, with time constant t« defined 
by equation 3.56. and results in amplification of low frequencies at the expense of high frequencies. 

Solving equation 3.142 for A4z using the fact that AAz has the same propagation phase as all other field components, the 
contribution to the longitudinal field at this order is written 

A4Z=r 

9/4 3:     dAzz     dAsx     dAiy 

~WV + dZ2       dX       dY 
(3.152) 

+ li 

*oEoE^(Uo) 

dP\ ,(3) D(3) 

9X 
• + 

dPy
i]    oP\ ,(3) 

dY 
+ 

dz 

Combining this equation with A2z and Aiz, the total longitudinal field is 

k3 KV ^MS .21 
dt2 

dAx     dAy 
dx       dy 

(3.153) 
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2kl 
d3Az     3

3/tt a3Av 

*o"o I 
\Ax\2+\Ay 

+ 
Mu 

(3) 3NL^    3NL£ 
9A-    

+ 

(3) 

dAx     dAy 
dx       dy 

+ y[Al+A2
y] 

dy 

dx       9v }• 
where the nonlinear terms are defined 

NLi3)=«: \Ax\1Ax + 2A\Ay\2Ax + yA2A,
x 

\Av\2Ay + 2A\Ax\2Ay + yAlA', 

(3.154) 

(3.155) 

There is a simple geometrical interpretation for the origin of the longitudinal field. Considering only linear propagation for 
the moment. Figure 3.2 illustrates the relationship between the projections of the polarization onto the x and z directions given 
an ancle of propaaation 6 with the z axis. In the Fourier domain, the ratio between the transverse and longitudinal components 

I-i-uie 3.2 Origin of the longitudinal field projection. The field envelope A is decomposed into a plane-wave spectrum Ä, 
wi'th one member of that spectrum illustrated, propagating with angle 6. where sinG = *.t/*o. The direction of polarization 
is orthogonal to the direction of propagation, and is decomposed into transverse (Ax) and longitudinal (Äz) components. For 
simplicity nit in the v direction is not illustrated, but is a straightforward extension of the present geometry. 

is <ji\en b\ 
kx - 

A; = - tanGA, = -j-Ax 

This geometry is easily extended to include the y transverse direction, with the result 

/*- = --[M.t+M\] 
kxAx T kYA v 

'yJk2(wo + tuü)-k;-k* 

(3.156) 

(3.157) 

The truncated Taylors expansion, when transformed back to the real space domain, recovers the linear terms of equation 3.153. 
Analogous to the projections of the transverse electric fields, the longitudinal field is also driven by the projections of the 

transvcrse"nonlinear polarizations onto the ;-axis. The paraxial projections appear in the nonlinear terms of equation 3.153, 
with additional contributions from the nonlinear coupling between the longitudinal and transverse fields. 

Order e5 - The non-Paraxial Corrections 

The results of this section are derived mainly for the purpose of obtaining the form of the propagation equation, including 
all commensurate terms through the fifth-order (or quintic) nonlinearity, which will be used later in the thesis as an ultrafast 
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saturation mechanism to stabilize multi-dimensional solitary-wave propagation. The fifth-order nonhneanty obtained here 
consists of three distinct contributions: directly from the fifth-order polarization, from the product of the third-order polarization 
with itself, and a "cascaded" contribution. The second contribution is a result of the reduction to a first-order equation and the 
cascaded contribution arises from the interaction between the fundamental and third-harmonic. 

This derivation also illustrates the non-paraxial and analogous higher-order non-SVEA terms. The terms additional to 
the quintic nonlinearity which show up are then: dispersion of linear absorption, fourth-order linear dispersion and the non- 
paraxial spatial diffraction analog, second-order space-time dispersion, second-order shock (intensity-dependent group-delay 
dispersion) and the spatial analog intensity-dependent diffraction, Raman index dispersion, and nonlinear coupling with the 
longitudinal field. Some of these terms will be used in the remaining chapters of this thesis as well. 

The two Maxwell's equations that are necessary at this order are: 

fl)v 

(2)i 

dA5x     3/W     dAjb     dAlx     dAu     dA4z 

"äT + "äz7+ dz2 
+ dz^    az4    ax 

d~B4:     dB5y     dBAy     3ß3l     dB2y     dBly _ 

ifio(X)oB5y-fJo 
9fl4v 

37" 

dY 

-z'EoCDo 

az, az:    az3    3z4 

dAAx     ek"(fflo) d2A3x     .E^"((0Q) 3^ 
dT2 ar3 

+E0 37" 

£^(ü)o)A5.t-l-/e^(too)-^: 

e*""(l00)a
4äil      . /,     vT       -V,     x3^ ,   2-5<5) 

',       -       ..   ■  3Ä,t    e^'(ü)o)a2Ält    e^'(ü)o) a3Ä,.v 
e^(ü)o)A4A + /E^(tix,) -^ ^  dT2 ar3 

_     ^ _,4) 
+/eftci>o)Au + f-/\ 

where the additional nonlinear polarization term is defined 
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(3.158) 

(3.159) 

(3.160) 

which are the fifth-order terms from equation 3.82. The first set of terms in the nonlinear polarization is the direct contribution 
from zf5'. while the second set of terms is the cascaded contribution from the interaction between the fundamental and third- 
harmonic. The third group of terms is the third-order nonlinear coupling with the z component of the electric field, the fourth 
is the Raman index dispersion and the last represents the mixed terms involving Aix, A^, etc, which are not specified for 

convenience. 
Using the same method employed before, the following secular equation for the evolution of the slowly-varyingx-component 

of the electric field envelope is obtained: 
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The third line from the end contains terms with spatial derivatives of the third-order nonlinear polarization. The first three of 
these terms are vectorial resulting from the divergence equation, while the next two terms result from the reduction to a first- 
order equation. All of these terms correct the curvature of/.-space (which is now slightly anisotropic) due to nonlinearity, termed 
here intensity-dependent diffraction. The next line contains first-order shock terms associated with two-photon absorption and 
Raman scattering, and the second-order shock associated with nonlinear refraction. The last line contains an additional term 
which is the result of the reduction to a first-order equation (discussed next, which contains further non-SVEA and non-paraxial 
nonlinear contributions) and the cascaded and direct quintic nonlinearity. 

Evaluating the remaining Zz derivative term results in 
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which contains effective quintic nonlinear terms from the product of the cubic nonlinearity with itself and additional intensity- 
dependent diffraction and second-order shock terms. Keeping only the effective quintic nonlinear refraction terms 
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(3.163) 

which is similar in form to the direct contribution from X(5)- 
This contribution can be more easily understood intuitively by considering the total scalar relative dielectric constant 

E(|A|
2
) =/r(|A|:) =H6 + 2/IO/!;|/l|2 + 2/IoH4W4, (3.164) 

keeping terms only up to fourth-order in field. In a second-order equation, such as Maxwell's equations or the Helmholtz 
equation, ir is the relevant quantity for wave propagation, while in a first-order equation, n is the relevant quantity. Using the 
appropriate Taylor's expansions. 

« (l^l2) ss«o + «;|i4|2 + "4- 
2/io 

\A\A (3.165) 

which has the direct /i4 contribution from x(5) and an indirect contribution manifested by the expansion of the square-root as 
required in the first-order equation. 

The cascaded interaction between the fundamental and third-harmonic produces another effective fifth-order nonlinear 
interaction. Evaluating the third-harmonic down-conversion terms of the fifth-order polarization given by equation 3.161 
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where A* and yK are the cross-phase modulation and vector four-wave mixing coefficients for the Kerr nonlinearity (the third- 
order Raman susceptibility cannot produce a third-harmonic) and the cascaded quintic nonlinear index is denned 

3   Xxx»(3(Oo;coo.(Oo,coo)x»xcx({Oo;3coo,-(Oo,-coo) (3 167) 

"4    ~32n0 n2-*2(3(Oo) 

This is the same form as the effective n2 produced by the nonresonant interaction between the fundamental and second- 
harmonic [194] mediated by x(2), which has received recent interest [196]. Resonant third-harmonic cascading has also recently 
been studied [211], with results away from the phase-matching condition similar to that derived here. 

Writing out all three contributions to the vectorial quintic nonlinearity results in 

2^i(1 + ?T!     lAWAljt (3.168) 
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which will be used in the final higher-order NLS equation. Note that the coefficients of the intrinsic quintic nonlinearity are 
only strictly valid for the isotropic symmetry class under Kleinman symmetry such that AK = YK = !/3 must also be used for 
the cascaded contributions. 

Three-photon absorption, with coefficient ß3, is included in this study for completeness and to allow for resonant enhance- 
ment of the the quintic nonlinear index. The use of three-photon enhancement would violate the Kleinman symmetry assumed 
in deriving the cross-phase modulation coefficients of the fifth-order susceptibility, however. In three-photon resonance, the 
third-order susceptibilities responsible for third-harmonic generation and down conversion will also be enhanced. The imag- 
inary parts of these susceptibilities would need to be considered as well, and is a straightforward extension to the present 
derivation. In this situation, the third-harmonic cascading process would also produce an additional, effective, three-photon 
absorption coefficient [if*. Three-photon resonance is not used in this thesis, but this discussion is provided as an illustration 
of one means of enhancing the saturation effects of quintic nonlinear refraction. 

3.2.3    Reduction to (1+1)-D Spatial and (2+D-D Spatio-Temporal Equations 

As mentioned previously, the scalings used for the derivation of the (3+l)-D spatio-temporal nonlinear wave equation are not 
the same as those that are valid for the numerical simulations performed in this thesis. In fact, the result of the derivation is a far 
more general vector equation than necessary for the simulations. This section reduces the full equation to simplified equations 
that are more easily dealt with numerically while still describing the necessary physics. 

In both cases, linear confinement in the y dimension is provided by a slab waveguide structure, as shown in Figure 1.20. 
A detailed analysis of the influence of the waveguide is presented in Appendix C up to the order of the NLS equation. For 
simplicity, these results are not used directly here, but some simplifications are used that are the result of the discussions in 
Appendix D, which makes direct use of the waveguide equations derived in Appendix C. The main simplification is that all 
phase-dependent terms in the nonlinear polarization are neglected under the assumption that the difference in phase velocity 
between the TE and TM modes results in a beat length much shorter than the wave interaction distance. 

The (1+1)-D Vector Spatial Nonlinear Wave Equation 

In this situation, which describes the propagation and interaction among purely spatial solitons, the temporal derivatives and 
the y transverse spatial derivatives can be neglected. Also, by setting e = 0.1, the diffraction and nonlinear small parameters 
satisfy K = e, and v = e2. These scalings are appropriate for the numerical studies of Chapter 5. Note that in the (1+1)-D case 
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of spatial solitons, quintic index saturation is not necessary for stability and will not be included because the expected intrinsic 
value of nf for the example material is too small to produce any noticeable effect. 

Using these scalings, the appropriate evolution equation is 

d2Ax       1   34Ar dA 
2/*ö-rJL+ ik>OoAx + ~^r 

dz ox- 

J  
4*g dx4 

(3.169) 

+ 2*5^ {[1 + iK] \AX\2AX + 2[A+IKAK] \Ay\2Ax\ = 0, 
«0 

with the corresponding coupled evolution equation for Ay. The first term in equation 3.169 is the first-order propagator. Linear 
absorption is next, followed by paraxial (second-order .v derivatives) and non-paraxial (fourth-order x derivatives) diffraction. 
Third-order nonlinear refraction and two-photon absorption including scalar and vectorial contributions (neglecting the phase- 
dependent vector four-wave mixing terms) follow. 

Stimulated Raman scattering is not present in the cw case (although the Raman contribution to the instantaneous nonlinear 
index is retained), and it is assumed that spontaneous Raman scattering, which has not been discussed, is negligible. Note that 
the linear non-paraxial term is retained, while the nonlinear non-paraxial terms are neglected. This is justified by the fact that 
v = £2, which places the nonlinear non-paraxial terms order E2 smaller than the linear non-paraxial term. 

The (2+1 )-D Vector Spatio-Temporal Nonlinear Wave Equation 

Like the previous case, here one spatial dimension is neglected due to transverse confinement by a slab waveguide. Therefore, 
the terms with v derivatives are not included, but all temporal derivatives must be retained, subject to the small scaling parame- 
ters A»ain setting E = 0.1, the scaling of the small parameters appropriate for the simulations of Chapter 6 are: K = £-, r\ = E, 
v/= J. and v4 =Y where v: ~ |n2/«ol1/2W. and v4 ~ |«4/«o|1/4|^l- The first two scales indicate that the non-SVEA terms 
are more important than the non-paraxial terms. The temporal scaling parameter is larger than the spatial parameter because 
short pulses are necessitated in this thesis by the desire for short propagation distances combined with the small anomalous 
group-delay dispersion of available materials such as fused silica. The nonlinear scalings indicate that the cubic nonlinearity is 
proportionally weaker than the quintic nonlinearity. Therefore, the quintic nonlinear terms will dominate over the second-order 
non-SVEA nonlinear terms, and the latter can be neglected. Even though the strength of the Raman nonlinearity is about the 
same as the instantaneous cubic Kerr nonlinearity, the spectral bandwidth of the spatio-temporal waves used in the simulations 
exceeds the optical phonon resonance frequency. Therefore, a three-term approximation to the Raman response is insufficient to 
correctly describe intra-pulse stimulated Raman scattering over the entire spectral bandwidth. For the simulations, it is assumed 
that the full Raman response enters at order £3 with the Kerr nonlinearity, as discussed in Chapter 4. 

Using the scalincs appropriate for the simulations then, the higher-order terms included in the reduced equation are the quin- 
tic and Raman nonlmearities and those terms that are the result of the removal of the slowly-varying envelope approximation 
by one order: third-order dispersion (TOD), space-time focusing [144], and optical shock [183]. The fourth-order dispersion 
(FOD) term is also used, but the other second-order non-SVEA terms need not be included, as discussed above. In the reduced 
time coordinate frame, where T = t-kJ

0z and kJ
0 is the group delay at the center frequency co0, the (2+l)-D vector nonlinear 

evolution equation takes the form 
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«0  ^ 5 «4 "0"4 J 

This equation is referred to simply as the higher-order, multi-dimensional vector NLS, or vector hNLS, equation. 
The terms in equation 3.170 are, in order: propagation in the reduced-time coordinate frame, linear absorption, transverse 

paraxial diffraction, group-delay dispersion, third-order dispersion, space-time focusing, fourth-order dispersion, nonlinear 
self-/cross-phase modulation (SPM/CPM) and self-/cross-two-photon absorption, self-/cross-Raman amplification, vectonal 
optical shock (two lines including nonlinear phase modulation and Raman amplification), Raman index dispersion, and quintic 
nonlinear refraction (last three lines). The higher order non-SVEA terms of third- and fourth-order linear dispersion, optical 
shock and Raman scattering were described in more detail in section 2.4, while the spatio-temporal terms are discussed in 
section 4.1 and linear and two-photon absorption are discussed in section 5.3. 



Chapter 4 

Spatio-Temporal Diffraction and the Split-Step 
Numerical Method 

The nonlinear evolution equation derived in the previous chapter can be solved with a variety of numerical techniques. In fact, 
the purpose of using the multiple-scales analysis was to remove the fast scales in order to reduce the complexity of the numerical 
method This is in contrast to the vector nonlinear Helmholtz equation, which is second-order and possesses variations on the 
order oi an optical wavelength and requires more complex methods for numerical solution. 

The principal methods in use today to solve first-order partial differential equations are the finite-difference [212,230] 
and split-step methods [231,232]. The finite-difference method becomes cumbersome when dealing with multiple dimensions 
and hiimer-order derivatives, such as those required for third- and fourth-order dispersion and non-paraxial diffraction. This 
chapter examines the more aesthetic and intuitive split-step method. The split-step method solves, in alternating steps, the linear 
diffraction problem in it's natural Fourier domain and the nonlinear, or inhomogeneous, problem in the real-space domain. 

The split-step method is illustrated schematically in Figure 4.1. The prototype problem to be solved is propagation of an 
initial Held through a volume with inhomogeneous (spatially-varying) dielectric constant. The split-step method can be applied 
to quite general problems where the inhomogeneity is due to refractive, diffractive, or layered structures, but this thesis con- 
centrates'instead on inhomogeneity due to nonlinearity. Ignoring Fresnel reflections, the effect of an inhomogeneous dielectric 
constant on a propagating field is the accumulation of a spatially-varying complex phase. Instead of accumulating this phase 
continuously throughout propagation, the split-step method applies the phase (representing the inhomogeneity throughout a thin 
slab) at discrete points. Between these points, the field is propagated as if the medium were linear and homogeneous. The key 
characteristic of the split-step method is this alternation between linear diffraction and inhomogeneous phase accumulation, but 
it should be noted that the method, like the underlying first-order differential equation, is limited to unidirectional propagation 
and cannot be used when the longitudinal variation of the inhomogeneity is strong enough to produce significant backscattered 

radiation 
Section 4 1 describes the exact spatio-temporal linear diffraction problem for isotropic media and examines the linear spatio- 

temporal terms in the higher-order NLS equation. Section 4.2 derives the split-step method and discusses the application to 
( Ul i-I) spatial and (2+f)-D spatio-temporal propagation. Finally, section 4.3 covers issues related to the implementation of 
the spin-step method, with particular focus on the accuracy of the algorithm and how it scales with step size. 

4.1    Linear Spatio-Temporal Diffraction 

This section examines spatio-temporal propagation using the linear, scalar Helmholtz valid for homogeneous, isotropic media. 
Under these conditions, equation 3.44 can be written 

^ + V^ + *-fco0 + /|)Ä = 0 (4.1) 

where the V [V ■ Ä] term is identically zero (because now V • D = 0 implies that V • E = 0) allowing for the consideration of a 

scalar equation. Vr is the transverse Laplacian. and A is defined 

E(x.y.z.t)=l-[' Afay^e-1"* +Ä*(x,y,z,t)e> 

94 

,l(ÜQl (4.2) 
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Inhomogeneous Propagation 

spatially-varying 
refractive index 
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Figure 4.1: Representation of the split-step method. The top figure shows the desired propagation problem with index variation 
throughout the volume. The bottom figure shows the approximation used in the split-step method. The volume is divided 
into slabs of thickness Ac « L with the inhomogeneous index in each slab reduced to a spatially-varying phase applied at the 
discrete positions along the mean propagation direction (represented by the heavy vertical lines) located at the midpoint of each 
slab. The field is propagated between these midpoints as if the medium were homogeneous. 
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using the quasi-monochromatic representation as before. 
The spatio-temporal Fourier transform pair is defined 

£(W,0=[_L]3 jjE(kx,ky,z,<ö)e^rT-"']dkTd<ö (43) 

E(kx,ky,zM = j j E{x,y,z,t)e-^rr-^dTTdt (4.4) 

where kr = kxx + kvy represents the transverse spatial frequencies and rT = xx + yy is the transverse position vector. The 
spatio-temporal Fourier transform of the electric field becomes 

£(kx,ky,z,(o) = ^[Ä(kx.ky.z,(a-WQ)+Ä'{kx,ky,z,(o + (OQ)]. (4-5) 

An equation will be developed that describes the evolution of the Fourier components with propagation distance, using the 
transverse spatio-temporal Fourier transform of equation 4.1. 

In chapter 3. the two leading-order temporal scales were removed from the evolution equation. The carrier oscillation 
is removed by the use of the quasi-monochromatic representation, while forward-going propagation at the group velocity 
is removed by the coordinate transformation T = t- k'0z.   Using this transformation to the reduced-time coordinates, the 

wavepacket becomes _ , .. ,. 
Ä{x.\\z.t)'-*A(x,y,z,T-kifi). (4-6) 

Then, by the Fourier shift theorem, t -> Ae^ak'oz. The evolution of the Fourier components of the wavepacket in reduced 

coordinates is then __       ( 
d-Ae^o: _ .^ + +      ti^ = 0| (47) 

dz2 L • 

which, upon application of the second derivative with c. becomes 

|? + 2iAuk'0f + [*-(Aco 4- OH,) - *= - k; - Aartf] A=0. (4-8) 
az- oz 

liquation 4 8 can be solved by assuming a solution of the form A(z) = -4(0) exp(yc), thereby removing the fast propagation 
phase and producing a quadratic equation in y 

Y2 + 2i&iak'0y + [*:(Aco + wo) - kf - Aor*£] = 0. (4-9) 

with the familiar solution 

Y = 11-2/Acu^ ± \/[2IAü)^]
: - 4 [*-(Aw + 0)0) - *; - k; - Aco^2] J 

= ±ivA:(Aco + ü)0) - k- - k- - /AcuAvV (4.10) 

This solution includes both forward and backward going waves (with the backward going wave traveling at twice the group 
velocity with respect to the reduced frame), but since it was assumed there is no inhomogeneity, these waves are uncoupled. 
Therefore, the initial conditions can be chosen such that only a forward going wave (the "+" sign) need be considered. This 
is the crucial step in reducing the second-order differential equation into a first-order one and can be done exactly for linear 

homogeneous problems. 
The forward-going solution is written 

A(kx.kyz.toa) = e>k':zA{kx.ky,0,too), (4.11) 

where -4(0) is the transform of the initial field distribution in the transverse coordinates and time and 

kr: = ,j£ (Aco + Cüo) - kl - kj - A< (4-12) 

is the -directed momentum of a particular Fourier component in the reduced coordinate frame. In equation 4.12, the full linear 
phase is accounted for in dispersive, non-paraxial propagation. 
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Equation 4.11 shows that linear propagation can be described by appropriately evolving the phase of each spatio-tempora 
frequency component of the wavepacket. The complex amplitude A(kx,ky,0,Mo) of the wavepacket for each transverse spatial 
and temporal frequency is known by specifying the initial field distribution for all time on a plane orthogonal to the direction 
of propagation. Each point in the three-dimensional Fourier space (kx,ky,Atö) has an associated longitudinal wavenumber 
as prescribed by equation 4.12, which is multiplied by propagation distance to determine the proper phase for each spectral 

component. 
A plot of the z-directed wavenumber is shown in Figure 4.2, where 

kz = ^k2{A(ü + (O0)-^ (4.13) 

in laboratory coordinates for one transverse spatial frequency, kx. When kz becomes imaginary, i.e. when *, > *(Ato + (Oo), 

Figure 4.2: Spatio-temporal momentum space. This surface is calculated using the parameters of fused silica. The center 
frequency of 3770 rad/ps corresponds to a free-space wavelength of 0.5 pm. 

the associated Fourier component propagates with large attenuation. Here, kz is set to zero for these evanescent waves for 
clarity. As shown in the figure, the radius of curvature of the momentum surface increases with frequency. The transformation 
to reduced-time coordinates removes the first-order slope of the surface, k'Q = //(too), where 

3* (to) 
A'(coo) = do 

(4.14) 
(O=u>o 

and results in the removal of a constant group delay, as shown in equation 4.12. 

4.1.1    Spatio-Temporal Group-Velocity Space 

The momentum surface given by kz can be approximated about the carrier frequency ü)0 by 

Ad)2 

k.(kx,6io) * kz(kx,0) + &wk'.{kx,0) + —k'!(kx,0), 

where 

*'.(*,, 0) = 
dkz{kx,(ü) 

3d) 
and   *"(*,,0) = 

d\(kx,(ü) 
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(4.15) 

(4.16) 
(Ü=(UQ 
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thereby giving the z-directed group-delay and group-delay dispersion as a function of transverse spatial frequency. Taking the 
first and second derivatives of equation 4.13 with respect to frequency results in 

(4.17) k,{k *o*b     =    M, 

kl(kx,0) 

Noting that kz = ko cos 8 = kx/ tan 9, the approximate momentum space can be written 

Aco 
kz{kx,A(ü)KkocosQ + 

cos 9       2 

sin" 9 k.Q k" 

cos 8     cos3 9 ko 

(4.18) 

(4.19) 

This approximate expression yields some important insight into phenomena (termed here space-time dispersion effects) ob- 
served in the numerical simulations of Chapter 6, as now discussed. 

Since the group velocity vÄ = !/*(,, from equation 4.19. the z component of the group velocity is 

»V(^.O) = v?cos9 (4.20) 

which is also known as space-time focusing [144]. Space-time focusing refers to the change in the -projected group velocity 
with the tilt ans-le of an off-axis plane wave component within the angular spectrum of the pulse and describes the natural 
curvature of the enerav front in the spatio-temporal diffraction of a narrow pulse. The z component of the group velocity is 
plotted in Figure 4.3*"versus transverse spatial frequency and wavelength (k = 2rcc/co). The group velocity as a function of 

Figure 4.3: Spatio-temporal group velocity. This surface is calculated using the parameters of fused silica. The dashed curve 
separates the regions of anomalous and normal group-delay dispersion. 

spatial and temporal frequency is given by the expression 

kz[kx,(ü) 

k{(ü)k'{(ü)' 
(4.21) 
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where co = Aco + O)0. This expression is the inverse of the generalization of equation 4.17, which gives the group-delay at the 
central frequency co0. Note that in Figure 4.3, the group velocity is plotted versus wavelength instead of frequency. 

Off-axis, the z-projected group delay dispersion coefficient #.' can be negative even when material dispersion dictates that 

k"((ü) > 0. This occurs when 

A"(a>)<=0 
k"((ü) > 0 tane=7

i> 
kz 

0 

v/jfc(oo)*"(to)/Ä'(o)) 

for 
for 

(4.22) 

The boundary between the normal (*" > 0) and anomalous (*" < 0) regimes is shown in Figure 4.3. An effective anomalous 
regime occurs because the curvature of the group velocity surface in the spatial-frequency direction varies along the temporal 
frequency direction. When the spatial frequency curvature is large for small temporal frequencies and small for large temporal 
frequencies, as is typically the case, a region of effective anomalous dispersion can exist, as illustrated in Figure 4.3. This effect 
may have ramifications for spatio-temporal solitary waves, such that a region where k" < 0 may not be necessary for pulses 
with sufficient angular bandwidth, but will not be explored in this thesis. Note that this is a spatio-temporal effect and does not 
occur for purely temporal propagation. 

For completeness. Figure 4.4 shows the ^-projected group-delay dispersion surface kt!{kx,(ü), where 

k"(kz,(ü) 
k3((ü)k"((ü)-k^k((ü)k"((ü)-k;kl2{(ä) 

*3(k,a>) 
(4.23) 

, plotted as a function of wavelength. Figure 4.4 clearly shows the enlargement of the anomalous dispersion regime due to the 

Ö./   VJ.«^ 

Figure 4.4: Spatio-temporal group-delay dispersion. This surface is calculated using the parameters of fused silica. The dashed 
curve separates the regions of anomalous and normal group-delay dispersion. Note that GDD is in units fs2/pm rather than 
ps2/pm. 

angular curvature of the momentum space. It is also evident that temporal broadening, which to first order is determined by 
the group-delay dispersion, varies off-axis. This is in large part due to the second-order space-time dispersion term obtained 
in the multiple-scales analysis, which is perhaps more appropriately referred to as the true space-time focusing term. In the 
anomalous regime, the projection of the wave onto the z-direction will broaden more with increasing angle, while in the normal 
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regime, the broadening will first decrease and then increase as the group-delay dispersion passes through zero with increasing 
angle. As a final note, the magnitude of z-projected third-order dispersion also changes dramatically with spatial frequency, as 
evident from the steepness of the group-delay dispersion surface at high spatial frequencies in the anomalous regime. 

4.1.2 Linear Spatio-Temporal Propagation 

This section briefly examines (2+l)-D linear spatio-temporal propagation in order to provide a graphical representation of the 
effects of space-time focusing. More detailed analysis of linear propagation is presented in Chapter 6. The initial condition for 
propagation is a transform-limited spatio-temporal wave whose shape is calculated numerically as the lowest-order eigenmode 
of theC(2+l)-D NLS equation, and corresponds to the a = 0 solution obtained in section 2.5, with normalized peak amplitude 
U0 - 1.94. Using the same parameters as the simulations in Chapter 6 (i.e. w0 = 39.6pm), the spatio-temporal wave has spatial 
full-width at half-maximum (FWHM) of 40.7 pm and temporal FWHM of 16.5 fs with central wavelength 1.55 pm, leading to 
fractional bandwidths of K ~ 0.01 (not to be confused with the normalized interaction angle) and r\ ~ 0.1, respectively, which 
indicate that temporal (non-SVEA) effects will dominate. 

Figure 4.5 shows the result of propagation over 7.5 confocal distances under the paraxial and SVEA approximations, as 
given by the (2+l)-D linear NLS equation, 

which onlv describes paraxial diffraction and group-delay dispersion. The (2+l)-D propagation geometry is illustrated in 
Figure 1.20. in which two spatio-temporal waves initially overlap at z - 0, with one propagating at an angle (dashed contours) 
such that the spatio-temporal frequency spectra are separated by twice the angular FWHM. This condition leads to a normalized 
interaction angle K = 2, where K is defined in section 5.1.1, and translates to approximately twice the linear resolvability angle, 
but is not exact because the waves are not Gaussian. The waves broaden by a factor of about 6.1 in each dimension after a 
distance of 7.5 Z,>. where the confocal distance ZQ is defined as twice the distance over which the FWHM increases by a factor 
v 2 in linear propagation. Because there is no space-time focusing, the energy fronts have no curvature or tilt. 

For comparison. Figure 4.6 shows propagation under the same initial conditions but with the exact Fourier phase .given 
by equation 4.12. In this case, the spatial broadening factor is 6.0, while the temporal broadening factor is 5.9. This slight 
asymmetry is expected because the governing equation is not symmetric in space and time. First-order space-time focusing is 
clearlv shown in the on-axis spatio-temporal wave by the dashed curve, where the energy front is delayed (positive reduced 
times) for off-axis rays. The steepening of the leading edge (negative times) is also evident. This effect is the result of the 
interaction between anomalous group-delay dispersion and positive third-order dispersion. 

The off-axis wave exhibits more complicated structure. The mean tilt angle corresponds to a spatial-frequency shift of about 
0.07 rad/j/m. which, from the group velocity and group-delay dispersion surfaces, produces a noticeable change in propagation 
parameters as shown in Figure 4.6. In addition to curvature of the energy front, the nonzero tilt of the wave also causes a delay 
of the central portion relative to the on-axis wave. The increase in the magnitude of -projected group-delay dispersion with 
increasing angle, or second-order space-time dispersion, is evident from the figure as well by the visible increase in temporal 
broadening. 

Because the parameters are the same as used for the spatio-temporal solitary wave simulations presented in Chapter 6, the 
higher-order linear effects observed here will be present in the nonlinear simulations as well. The present section also shows 
that the paraxial. SVEA NLS equation will not adequately describe spatio-temporal solitary wave propagation for the regime 
of interest. 

4.1.3 The Linear Terms in the Higher-Order NLS equation 

This section uses the exact expression for forward-going linear spatio-temporal propagation given by equations 4.11 and 4.12 in 
the reduced time coordinate frame in order to obtain the linear terms in the evolution equations derived in the previous chapters. 
This shows the equivalence between the descriptions in the Fourier domains and in the real-space domains and leads into the 
discussion of the split-step numerical method. 

Ignoring evanescent waves, i.e. Jt; + lfc; = kf < jt2(Aü) + (üo), the z-directed momentum given by equation 4.12 can be 
approximated about kf — 0 

Av.«*(AW + ü)o)-—-^ r-Cf3,A**       X-A< <4-25> v 2/:(Aü) + COo)     8fc3(Aco + (Do) 

where only the first three terms of the Taylor expansion of the square-root are kept. The standard paraxial approximation 
keeps only the first two terms in the expansion; this approximation is made in the NLS equation. Retaining more terms in the 
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Figure 4.5: Linear diffraction under the paraxial and SVE approximations of initially overlapping spatio-temporal waves with 
tiUed directions of propagation. The spatio-temporal waves of initial FWHM of 40.7 /urn and 16.5 fs broaden to 247 fim and 
99.S fs after propagating 7.5 confocal distances. The dashed line indicates the position of the energy front (defined by the 1-D 
temporal centroid) across the spatial profile, and the contours are spaced by 3 dB intensity intervals. 
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FMsiurc 4.0: I-ullv non-paraxial and non-SVEA linear diffraction of two spatio-temporal waves, one tilted with respect to the axis 
of propagation. The on-axis spatio-temporal wave of initial FWHM of 40.7 yxn and 16.5 fs broadens to 246 pm and 97.2 fs after 
propagating 7.5 confocal distances. The dashed curve indicates the position of the energy front (defined by the 1-D temporal 
centroid) across the spatial profile, and the contours are spaced by 3 dB intensity intervals. 
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expansion beyond the first two relaxes the paraxial approximation, but evanescent modes must be neglected in order for the 
expansion to converge. In this section, the first three terms will be kept in order to reproduce on a more intuitive basis the linear 

corrections to NLS that were obtained in Chapter 3. 
Equation 4.25 still contains full linear dispersion. The slowly-varying envelope approximation (SVEA) assumes that the 

temporal variation of the envelope A is slow compared to the mean oscillation frequency Cu0- The frequency-domain interpreta- 
tion is that the fractional bandwidth T\ = Aoo/co0 - where Aw is the FWHM of the spectral intensity envelope and (D0 is the central 
frequency, is less than unity. These two measures are related by a factor called the time-bandwidth product. The dispersion 
relation only needs to be known over the frequency range in which the wavepacket spectrum A is localized, implying that a 
Taylor expansion of the dispersion relation is sufficient. Thus the narrower the frequency width (or the longer the duration), 
the fewer terms in the Taylor expansion that need to be retained. The SVEA only keeps the first three terms in the dispersion 
relation, but the first five terms will be used in this analysis for comparison with the more complete derivation in Chapter 3: 

*(Ao> + o>o) « *o + AüJAÖ + -Aurk'o + -Av^kii' + 24Atö4*o" > (4.26) 

which includes up to fourth-order dispersion. Using this expansion in equation 4.25 (which removes the mean group delay) and 

keeping terms only up to fourth power in £7-, Aw and their products, 

krz iko+-A(ü2k^ IA^C + ^ACOX 

kf ■ k*T 

'. [k0 + Ato/.;, iAü)-^'] Ski 

%*0+-AurA0' .iAü)X"+24-Aü)4C (4.27) 

'2*ö 

Awk'{) AurfcA2 

2*o  J 

kA 

8*3' 
The terms obtained in addition to those present in standard NLS are third- and fourth-order dispersion, space-time dispersion 

and a non-para\ial correction. 
The space-time dispersion terms from equation 4.27 can be written 

STD = Acu/t0 1 + 
kf_ 

-\)J 

• Amk'n 
1      - 
-Ato- *(',' + *f 

*0   L 

k'2 

k
0      ~ 1. 

Noting that /.j   k~t sm20 (% G: in the paraxial approximation) the terms are written 

STD = Ad) A. 
COS0 

Aco- 
+ -sin:e^ 

cosO A'o. 

k" 

(4.28) 

(4.29) 

To order 0~\ these terms are the same as the associated terms in equation 4.19. The first space-time dispersion term (called space- 
time focusing [ 144] 1 describes the off-axis variation in group delay in reduced coordinates while the second term describes the 
off-axis variation in group-delay dispersion. At this level of approximation, the region of anomalous group-delay dispersion is 
described by smO > \ W/k' when k" > 0. 

Concentrating for the moment only on the spatial-frequency terms in equation 4.27 results in. 

k. = L 
2A„ 8*0' 

(4.30) 

Figure 4.7 shows a plot of the fully non-paraxial /.-space, the paraxial approximation given by the first two terms of equa- 
tion 4.30. and all three terms of equation 4.30. The figure clearly shows that the three-term expansion better approximates 
the exact it-surface than the two-term expansion given by the paraxial approximation, and is valid over much broader angular 

bandwidths. 
In order to obtain the linear corrections to NLS in the real-space domain, equation 4.11 is written in differential form using 

the approximated kr: from 4.27 

dA 
= i U + i A<A'j + 1*»%'- + 2^Ao)4C (4.31) 

2A„ 
1- 

AcuA,', 

*o 

•0 + Aw2*o2 Aü)2^ 

*6 2Ao 8*<jJ 
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Figure 4.7: Illustration of the paraxial approximation. The solid curve is the exact £-space representation for isotropic media. 
The dashed curve is the paraxial approximation, while the dotted curve is the first-order correction to the paraxial approximation. 

Inverse Fourier transforming leads to 

dz 

1 .„ d2 d7 
1 „,„ 34 

•  I   ; » ; II    "  '  [III    " . ill      

= M *ö - 2*0 äf2 " 6 " W>     24*° dT* 
(4.32) 

+ ; V^ 
l-( 

fco 37     kfidT-     2k0dr-\     8*3 J    ' 2fco L       *o' 

which is reu ritten in more familiar form by making the transformation A -¥ A exp (ik0z) to remove the fast propagation phase 

(4.33) -vi  dA^. ^-A    i i" ^'A     ' i i'" d'A +  [ t /"" d'A 

2<k>-=r + VT
A
 ~ *o*o ^3 ~ 3k{)ku 37? + J^k°ko ^fÄ 

+   T[   'kodT     k2dT-2kodT2 4*5 

which is the same as the linear part of equation 3.170 derived in Chapter 3. 

4.2    Derivation of the Split-Step Method 

The vector, higher-order nonlinear spatial 3.169 and spatio-temporal 3.170 wave equations can be written in the following 
notational form 

ir- = iQAx, (4.34) 
oz 

with a corresponding equation for Ay. Here, all linear and nonlinear effects are lumped into the operator Q. The forward-going 
solution to equation 4.34 as a function of propagation distance z is written 

AAz) = jMMAx(0), (4.35) 
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where Ax{0) is the initial value in space and time of the .v-polarized envelope at z - 0. 
Equation 4.35 can be examined more closely by writing the operator in terms of linear homogeneous and inhomogeneous 

parts Q = QL + Qm. Choosing a small propagation distance Az, and noting that QL can be integrated directly, equation 4.35 

redUCCS t0 AAAz) = A**+#M*\AX(0)- <4-36> 

The integral can be approximated to second-order accuracy in Az 

j^Qm(zW = jf {ß'H(Az/2) + [z1 - Az/2] |ß,H(Az/2) + 0(Az2)} dz1 

= ßIH(Az/2)Az+ ^'-Az/2]2 ^|öIH + 0(A.3) 

= ßIH(Az/2)Az+0(Az3), < (4-37) 

so that the propagation equation becomes 
A,(Az)=^+^/2>U,(0). (4.38) 

Even thouszh equation 4.37 is a second-order approximation to the integral of the nonlinear operator, there is no guarantee that 
the actual implementation is second-order accurate, since self-consistent envelopes at Az/2 are unknown. The approximation 
used in the split-step method is that these values are determined by a Az/2 linear propagation step, thus neglecting the nonlinear 
contribution. The result is that the nonlinear step is nominally first-order accurate, as shown in section 4.3. 

The exponential can be rewritten in the well-known symmetrized form [232] 

Ax(Az) = ei^e^^ei^Ax(0), (4.39) 

which is second-order accurate in Az and requires three operations for one longitudinal propagation step. This separation into 
linear and inhomogeneous steps is the main characteristic of the split-step method. 

In order to verify the second-order accuracy of the splitting, the Taylor expansion of equation 4.39 is compared to that of 
equation 4.3S. First Taylor-expanding equation 4.38 results in 

c^[&-+Qni(^r-)] = i + iAz ß'+ß1H(# 
A£ 

+ ö,H(^)öI-+C?,H(T ß,H ('£ 

ßLßL + ßLß,H 

+ 0(Az3) 

The Taylor-expansion of the exponential operators in equation 4.39 to second-order is 

sSfrgfrff" JSP = 

(4.40) 

l + ^ßL-^ßl-ßL + 0(Az3) 

1 + / Azß ,IH M _ ^El^IH ft* \ AIH Az 
+ 0(Az3 

l+/^Q1-^(?'(?'' + 0(Ac-1) 

= 1 +1:Az ßL + ß,H(# 
A£ 

2 
ßLßL + ßLß,H(^ 

Az 
+ ßIH   v   ß'+ß AIH A: ß'H(f + 0(Az3 (4.41) 

Since both of these expansions are the same to order Ar, the symmetrized representation 4.39 retains the second-order accuracy 
of equation 4.38. 

It is clear from the discussion of section 4.1 that the linear operator is most naturally applied in the Fourier domain, where 
time derivatives are converted into temporal frequency and space derivatives are converted into spatial frequencies. As a result, 
the linear propagation steps are evaluated in the Fourier domain as follows, 

^eL^(0) = j-1{^^(0)}, (4.42) 
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where J_1 is the inverse-Fourier transform operation, and QL is the Fourier phase function as given by equation 4.12 or 4.27 

for example. 
Now that the symmetrized representation is established, one further point needs to be addressed at this time. Propagation 

over some distance occurs in steps of size Az. From equation 4.39, propagation over 2Az is described by 

Ax(2Az) = jW^jWjWj^jWAM 

which only requires five operations instead of six, because the two adjacent half-step linear operations coalesce into one full- 
step linear operation, as shown in Figure 4.1. In general then, for N steps of size Az, the total number of operations is 2/V + 1, 
instead of 3/V as suggested by equation 4.39. 

The following section will examine the special case of spatial propagation appropriate for (1+1)-D spatial sohtons in slab 
waveguides with the split-step method. The generalization to the (2+l)-D spatio-temporal method is considered in section 4.2.2. 

4.2.1    Nonlinear Spatial Propagation 

The (1 + D-D nonlinear evolution equation appropriate for the spatial soliton studies presented in Chapter 5 is given by equa- 
tion 3.169. repeated here for convenience: 

(4.44) 

+ 2*5^ {[1 + iK] \AX\2AX + 2 [A + iKAK] \Ay\2Ax\ = 0, 

where the non-paraxial nonlinear terms have been neglected due to weak nonlinearity, and the vector four-wave mixing term 
neulected under the assumption of short waveguide birefringence beat length. The transverse y dimension is not considered due 
to linear confinement by a slab waveguide. For simplicity, this equation does not include the modal-averaged coefficients due 
to lateral confinement as derived in Appendix C. 

Using equation 4.34. the linear and inhomogeneous split-step operators can be written 

-i        1   d2       1   34     .a<) /,!,,• d2 

dx- 

Ql- = kz = Jk0[ko + ia0}-^-ko. (4-45) 

Qm = kfn2{{[ + iK] \AX\2 + 2 [A+iKAK] \A}]
2} . (4-46) 

Here, the expressions within the square-root are the exact (assuming weak absorption) operator and Fourier phase represen- 
tations of linear spatial diffraction. A similar result was obtained previously [233], with a different, but equivalent, form of 
the linear non-paraxial operator. That work did not consider the nonlinear, non-paraxial terms that were derived in Chapter 3, 
but subsequeni extensions [234] did consider those terms for a purely linear, spatially-varying refractive index. As mentioned 
before, the nonlmearly-induced index for the present studies is small enough that these terms can be neglected. 

For correctness with off-axis plane wave components, the linear absorption term must be applied in the Fourier domain; 
however, these effects occur well beyond the order of the multiple-scales analysis in Chapter 3 due to the assumed order e3 

smallness of ihe coefficient a«. A constant (with respect to angle) absorption, which can be brought outside the square-root, can 
be applied in either the Fourier or real-space domain because of Parseval's theorem. It is more convenient (and more correct in 
terms of the precise behavior in the attenuation of off-axis energy flow) in the numerics to apply this term in the Fourier domain, 
because, if applied in the real-space domain along with nonlinearity, there is an ambiguity whether to attenuate the envelope 
before or after calculating the nonlinear effect. Two-photon absorption must be applied in the real-space domain along with 
nonlinear refraction. 

4.2.2   Nonlinear Spatio-Temporal Propagation 

The (2+1 )-D spatio-temporal nonlinear evolution equation used in the simulations of Chapter 6 was derived in Chapter 3. Using 
the full Raman response in equation 3.170 results in: 

i-i   3A> -L. ■/ « A  J. *~Ax     t f'd2Ax     'n,'«33**    ik'° d*Ax (4 47) 
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+ nk°lc°^F+2K 
1 + i^K 

+ AikjiiK l + i^K no _^g 
c      2 dT 

2  1  J      «o c      2 dT J   . 

\Ax\2 + 2AK\Ay 

\Ax\2Ax + 2AK\Ay\2A 

rRRW\Ax(T-i)\2Axdx 
Jo 

+AR rRR(x)\Ay(T-x)\2Axdx 
Jo 

+yRj~RR{i)A*y(T-'c)Ax{T-T)Aydx 

^«0 t        "4       2n0"4j 

+ 2^{5+^|2i'+wlf^[4i:-T2)Ä}",,l% 

+ ajaj| + 2^p4,+w]!C-[24+T']A}w»ky=A, = o. 

The full Raman response is used in the numerics because the spectral bandwidth of the spatio-temporal waves used in the 
simulations exceeds the bandwidth of the Raman gain spectrum. 

The linear operator is written 

G - 2^8? " 2 ar=   ' 6. ar-1    2*= ara.v2 + 24 ar4 "^ 2 
(4.48) 

ss 1//;   CO0 + /' 
.3 
'dT 

*(o)o + i^:j+iaf(0o + i^: 
92   -,/3   / 

Since the linear exponential operator is applied in the Fourier domain, resulting in an exponential phase function, the linear 
propagation phase is written 

QL = Jk(A(ü + (üo) [*(Aco + Cüo) + i'a(Aü) + (Do)] - *j - Aü)A0 - £0, (4.49) 

which is the exact linear phase kr: as discussed in section 4.1 with the inclusion of weak linear absorption, but only strictly valid 
here when A, < A(Ao>-fwu) because of the addition of the nonlinear terms. 

The argument of the nonlinear exponential operator is defined 

1   f ° 
QNL = — <^ k,NL- + A7NL4 + / — 

Ax 1   '      ' «0 

"£_^0 
c      2 

3NL2 

~3T~ 
(4.50) 

and is applied in the real-space domain. The factor l/Ax is used to handle those nonlinear terms which cannot otherwise be 
written in the form of equation 4.34, such as the last Raman term and the Kerr cross-phase modulation and all Raman terms 
in the first-order shock. This factor serves to remove any fast phase variation (due to nonlinear refraction) from the nonlinear 
terms, which are grouped as follows: 

(4.51) NL, = nK   1 + i—K    |A,|: + 2AA- \A,\ 
L       "K   J L 

+T- rR*w\A*iT-xtfA*dx 
4/io Jo 

+ P- [°°RR(x)\Ax(T-x)\2Axdx 
4/io Jo 4/io 

+ -P-I   RR(x)A;.(T-x)Ax(T-x)Aydx, 
4/io I" 

NL4=«4    l + -^--r 
1   n2 

/i4 2 /10«4 
\AX I  Ax 

(4.52) 
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+ »4{| + 2AK[24«+TA]^-[2a + r]J;}KI2K.|:^ 

Note that the factor \/Ax cancels out from some of the terms in NL2 and all of the terms in NL4. 
The nonlinear "index" produced by the last Raman term is proportional to the factor 

dl = ^Ajl*,-**] (4.53) 
Ax      \AX\ 

Since all fast variations, such as the propagation phase, have been removed, fy and <k (and thus their difference) have at most 
order r variation. The amplitude ratio serves as a normalizing factor to properly scale the size of the third Raman term in 

proportion to the first and second. 
The convolutional Raman response integrals of the intensity are evaluated using an equivalent Fourier identity, but it should 

be noted that the resultant Fourier domain is different than the conventional temporal Fourier domain of the fields since it is 
defined as the transform of the intensity. For example, 

J°°RR(x)\AAT-T)\ZAxJT=!F-l{xR(n)!F{\Ax\2}}Ax, (4.54) 

where y_^ili is the Raman susceptibility, approximated by a singleLorentzian resonance 

^(Q) = __^  (4.55) 

Stimulated Raman scattering is discussed in Appendix B. 

4.3    Implementation and Accuracy of the Split-Step Method 

The derivation of the split-step method indicated that the operator splitting given by equation 4.39 was second-order accurate 
in Mep-M/e Ar. In addition, the midpoint method used to evaluate the longitudinal integral of the nonlinear operator, as given 
h\ equation 4.37. is also second-order accurate, but relies on the knowledge of the field at the midpoint position, which is 
onl\ approximately provided by the half-step of linear propagation. As a result, when the magnitude of the field changes 
MitikieniK rapidK due to absorption, diffraction, etc.. the accuracy of the entire method may scale with step-size worse than 
quadraticalh The reason for this is that self-consistency is not strictly maintained since linear and nonlinear propagation are 
handled separate!), meaning that the nonlinear phase accumulated over the interval Ac may not be properly accounted for. 

A simple, intuitive explanation is provided by the consideration of the propagation of a spatial soliton using the split-step 
method Starting with an initially transform-limited beam, the first half-step of linear diffraction results in broadening, or 
deloaisine The subsequent full nonlinear step, based on a slightly erroneous field value, imparts a focusing quadratic phase 
that o\er-compensaie> the phase curvature accumulated during the half step. The next full linear step first results in focusing to 
a waist (elose to the original soliton form), and then broadening. This process is repeated over the entire propagation distance. 
It is clear that the beam approximately returns to its original soliton form only at distances which are multiples of the step 
M/e. and defocuses and refocuses in between. The actual error arises from the fact that the nonlinear phase is applied based 
on an approximate value for the field determined by linear propagation. The result is that the nonlinear phase may be no more 
accurate than a simple, first-order, forward Euler scheme. 

The easiest way to numerically determine the order of accuracy of an algorithm is to compare the results of simulation with 
varying step size w'nh that of "the best" simulation (i.e. using a very small step size). Another approach is to compare the results 
of simulation with an analytic solution, from which additional information can be gleaned, such as the absolute accuracy of 
the simulation, including the algorithm and model. This is a straightforward procedure when using solitons because the exact 
solution (in 1 -D) is known and doesn't change (except for the usually unimportant nonlinearly-inducedphase) with propagation. 
Both methods are used here. 

In the following sections, numerical accuracy will be determined for various situations for both (1+1)-D spatial and (2+1)- 
D spatio-temporal propagation. For each case, the normalized root-mean square, or RMS, error is calculated between the test 
simulation and the reference:   

£~ I|Aref| 

where the field amplitude Alesl is calculated as a function of longitudinal step size. 



Final Report AFOSR F49620-95-1-0431, Spatial Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder 109 

4.3.1   (1+D-D Spatial 
Figure 4.8 shows how the numerical accuracy scales with step size for a single soliton propagating without absorption. The 

o 

0.001        0.010       0.100        1.000 
longitudinal step size (in Z0) 

Figure 4.8: Plot of percentage RMS error as a function of step size for the propagation of a single spatial soliton without 
absorption using the split-step method. The data points represent results from the simulations while the lines represent error 
scalings of tirst and second order. 

smallest step-size plotted in the figure is A; = Zo/1024. and the "exact" solution to which the others are compared is the result 
obtained when A; = Zo/2048. The longitudinal step size is written in terms of the confocal distance Z) because the Raleigh 
range Zi '2 is generally considered as the distance over which noticeable changes of the wave appear in linear propagation. 
Therefore, the linear longitudinal steps in the split-step method must occur over distances much shorter than Z)- 

The simulation is performed using the initial field profile sech(.v/n0). where u0 = 17.3 fjm, resulting in a spatial full- 
width at hall-maximum (FWHM) of 30.5 pm. meaning that the paraxial approximation is valid because the fractional angular 
bandwidth K = 0.01. The propagation distance is 10 Z) As shown in the figure, for large step sizes, the error decreases' linearly 
with decreasing step size. In addition, as step size decreases phase this linear region, there is a large region over which the error 
scales quadraticalIy. as naively expected. Finally, at the smallest step sizes, the scaling approaches linear again. The important 
point to note is that there is a large region over which second-order accuracy is obtained. This result thus verifies the order of 
the numerical method when stationary propagation is considered, but does not address the absolute accuracy when compared 
to the exact analytical solution or the order of the method for non-stationary propagation, which may be different. 

The comparison between the numerical method with the theoretical soliton solution without absorption is shown in Fig- 
ure 4.9. This figure illustrates the same behavior as shown in Figure 4.8, except for the presence of a distinct error floor beyond 
which the simulation can be no more accurate. It therefore makes no sense to decrease the longitudinal step-size below that 
which reaches the error floor. 

The error floor is the result of discretization in the transverse dimension. Like the continuous NLS equation, the discretized 
NLS equation used in the numerics possesses a set of eigenmode solutions, which are different than their continuous coun- 
terparts. The numerical simulation is started with an eigenmode of the continuous NLS equation, which then evolves to an 
eigenmode of the discretized equation during propagation, leading to the absolute error shown. For the results of Figure 4.9, 
the 1024 element computational grid allows for 55 samples under the transverse spatial full-width at half-maximum (FWHM), 
and 6 samples under the spatial-frequency FWHM. resulting in an error floor of 4 x 10_4%, as shown in the figure. Increas- 
ing the computational grid to 8192 elements and simultaneously decreasing the transverse sampling interval by a factor of 4, 
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Figure 4.9: Plot of percentage RMS error between split-step simulation and the exact analytic form in the propagation of a 
single spatial soliton. The error decreases quadratically with step size, then reaches a floor at about 4 x 10_4%. The lines 
represent zeroth. first, and second order scalings. 

with 221 samples under the spatial FWHM and 12 samples under the spatial-frequency FWHM, decreases the error floor to 
2 - 10"4'; As the number of transverse samples becomes larger, the eigenmode of the discretized equations approaches that 
ofthe continuous equation, resulting in a decrease of the error. It is also found that increasing the number of samples under the 
spatial-l"requenc\ FWHM has little effect on the error. 

In Chapter 5. simulations are performed in which the interaction between two spatial solitons of different widths is studied. 
It is theretore necessary to evaluate the error as the soliton width decreases, such that propagation no longer satisfies the paraxial 
approximation. F:igure 4.10 plots error as a function of step-size for a pump soliton width wp = 2.16 pm, or FWHM 3.81 pm, 
with fractional angular bandwidth K = 0.1. In addition, the induced third-order nonlinear fractional index v: ~ 0.1, and the 
propagation distance is 10 Z>. where ZQ is the confocal distance of the signal soliton ofwidth w0 = 17.3 /um. Now, the step 
size is written in terms of the confocal distance of the pump, or Zr, where ZQ = [wo/wr 64 Zp. Again, as shown in the 
figure, there is a region where the error decreases quadratically with step size, but now the error floor is significantly greater at 
0.04C;, but is still acceptable for most situations. The simulation is performed on a 2048 element grid with 14 samples under 
the spatial FWHM and 47 samples under the spatial frequency FWHM. Increasing the grid size to 8192 elements (with 55 and 
47 samples respectively), reduces the error floor to 0.021*. a significant decrease, but still two-orders of magnitude higher than 
the fully paraxial case. 

In this case, the transverse sampling is not the limiting factor. The main limitation is the fact that the simulation was 
performed with a soliton width that leads to non-paraxial propagation. Even though the linear non-paraxial corrections are 
included in the simulation, the scalings for K and v indicate that the nonlinear, non-paraxial terms are of about the same size 
as the first linear non-paraxial correction, and should be included as well. As shown in section 2.3.1, the fully non-paraxial, 
but also non-vectorial. spatial soliton solution is the same as the paraxial soliton, except for an unimportant nonlinear phase 
factor, and is only valid when all relevant non-paraxial terms in the evolution equation are retained, which is not the case here 
for simplicity. 

These results indicate that the accuracy of the slit-step method scales second-order with longitudinal step size for stationary 
propagation. The accuracy must also be determined when attenuation due to linear and two-photon absorption is considered. 
In this case, absorption causes broadening of the soliton, as discussed in Chapter 5. Linear absorption is applied in the Fourier 
domain along with diffraction and is not expected to alter the order of the algorithm. Two-photon absorption, on the other hand, 
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Fiiiure 4.10: Plot of percentage RMS error between split-step simulation and the exact analytic form in the propagation of a 
single spatial soliton in violation of the paraxial approximation. The error decreases quadratically with step size, then reaches 
a floor at about 0.04<7f. The lines represent zeroth and second order scalings. 

is applied in the real-space domain along with nonlinear refraction. Since two-photon absorption alters the amplitude based 
upon the approximate field, it is possible that the accuracy of the split-step method scales less than quadratically. Aside from 
absorption, the parameters of these simulations are the same as those used in generating the data of Figure 4.10. 

Fisiure 4.11 shows that the error in fact decreases quadratically until the floor is reached, the same scaling as before. The 
analytic solution used as the reference is obtained in section 5.3, but is only approximate. The small error floor (some of which 
is due to non-paraxial propagation before broadening occurs) verifies that the analytic approximation is a good one. For all 
single soliton simulations, at most 256 steps per Zp are sufficient to reach the error floor. 

The final simulations to consider are those of the spatial soliton dragging interaction. During interaction, the soliton shapes 
can change considerably, therefore it is not expected that the accuracy will scale second-order with step size. This is confirmed 
in Fi»ure~4.12. which shows that the accuracy is approximately order one-half, although there are small regions over which 
the error scales linearly with step size. Absolute accuracy can no longer be obtained because no analytic solutions exist to the 
vectorial NLS equations for non-unity cross-phase modulation coefficient. The reference solution is obtained numerically with 
longitudinal step size A; = Zo/2048, as before. Because the simulation is paraxial, with wQ = 17.3 pm for each soliton, only 
1024 transverse samples are used, with 55 samples across the spatial FWHM. 

Figure 4.13 shows the accuracy when the pump soliton propagates in the non-paraxial regime. Here, wp = 2.16/im, the 
transverse grid is of size 2048, and the propagation distance is 10 ZQ, as before. Even though the overall accuracy scales 
approximately as order one-half, there is a region over which the scaling is order three-halves. There are similar regions in the 
paraxial simulation of Figure 4.13 as noted, but these region are less pronounced. 

The most important data obtained in the soliton interaction simulations of Chapters 5 and 6 is the contrast ratio of the logic 
gate under various input conditions. The contrast ratio is not strongly sensitive to small variations in the fields at the output of 
the gate, so it will depend weakly on the accuracy of the simulation. The contrast of a gate is generally considered acceptable 
when it exceeds a given threshold. By how much it exceeds a given threshold is not important, therefore, some inaccuracy 
in the calculation of the contrast can be tolerated. As a result, the spatial soliton interaction simulations of Chapter 5 use a 
longitudinal step-size of A: = Zn/256, as mentioned in the single soliton results. 
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Fiiiure 4.11: Plot of percentage RMS error between split-step simulation and the approximate analytic form in the propagation 
of a single spatial soliton with linear and two-photon absorption. The error decreases quadratically until it reaches a floor at 
about 0.02^. The lines represent zeroth and second order scaüngs. 

4.3.2    (2+l)-DSpatio-Temporal 

It is expected that the accuracy of the split-step method for (2+1 )-D spatio-temporal propagation is similar to that for (1+1)-D 
spatial propagation. Because of the time-consuming nature of multi-dimensional simulations, this behavior is illustrated in this 
section using"the results of two simulations. The grid size for both simulations is 1024 by 1024, with 20 samples across the 
spatial FWHM and 14 samples across the temporal FWHM. Most of the computational grid is unused, but the size and sampling 
are set to be consistent for the more general simulations of Chapter 6. The effect of this is to reduce the absolute deviation 
between simulation and exact results, but the order of accuracy will not be affected. 

Figure 4.14 plots error as a function of step-size for spatio-temporal propagation using the (2+l)-D cubic-quintic NLS 
equation, which has stationary solitary-wave solutions, as discussed in section 2.5. For this simulation, M-0 = 39.6 //m as 
before and the propagation distance is 2 ZQ, reduced mainly because of the computational time required for multi-dimensional 
simulation. The results of the simulation are compared with the exact eigenmode which is computed numerically. As in the 
(1+1 )-D case, the error scales second-order with step-size until an error floor is reached. Since comparison is made to an exact 
numerical solution, the relative error would increase for longer propagation distances, thus requiring smaller Ac to reach the 
error floor. 

The final numerical result, shown in Figure 4.15, indicates that the accuracy is slightly better than first order when the full 
numerical scheme discussed in section 4.2.2 is implemented for a scalar field. The error is computed using the numerical result 
obtained with the step size Ac = Zo/2048 as the reference. Again, due to computation considerations, the propagation distance 
is 2 Zj. Even though the simulations of Chapter 6 use much longer distances, the short distance used here is not a limitation 
because the accuracy scaling is independent of propagation distance. As before in the (1 + 1)-D spatial case, for most purposes, 
256 steps per Zj is sufficient, although in some cases shorter step sizes are used in Chapter 6 because of the longer distances 
involved and the desire for quantitative information. 
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Figure 4.12: Plot of percentage RMS error as a function of step size for the interaction between two (paraxial) spatial solitonsof 
the same size, including the effects of linear and two-photon absorption. The error decreases approximately as the square-root 
of step-size. The line represents one-half order scaling. 
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l-'igure 4 I .V Plot of percentage RMS error as a function of step size for the interaction between two spatial solitons of different 
widths, including the'effects of linear and two-photon absorption. The error decreases approximately as the square-root of 
step-size. The lines represents three-halves and one-half order scalings. 
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I"i»ure 4.14: Plot of percentage RMS error between the split-step simulation and the exact numerical solution for stable spatio- 
temporal solitan. wave propagation. Only the effects of paraxial diffraction, group-delay dispersion, and third- and fifth- 
order nonlinear refraction are included. The error decreases approximately second-order with step-size until a floor at about 
9> 10- is reached. The lines represent zero and second order scalings. 
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I-igure 4.15 Plot tit percentage RMS error as a function of step size for stabilized spatio-temporal solitary wave propagation, 
including all relevant higher-order effects. The error decreases slightly better than first-order with step-size. The line represents 
first order scaling. 



Chapter 5 

Conclusions 

This thesis has developed the necessary framework for the study of general nonlinear, vectorial, spatio-temporal phenomena 
with larce spatial and temporal bandwidths. This framework was applied to the study of novel optical logic devices based 
on the spatial interaction between 1-D spatial solitons and 2-D spatio-temporal solitary waves. These logic gates were found 
to have the properties of full level restoration, fanout with large noise margin, and cascadability to implement arbitrary logic 

functionality. 
Chapter'1 provided motivation for the study of all-optical switching and logic devices, and covered the basic requirements 

for these devices as well. The main differences between switching and logic devices is that an optical logic device regenerates 
degraded data (given sufficient noise margins), has logic-level restoration, provides fanout, and is cascadable. Many contem- 
porary switching devices, which do not intrinsically possess these properties, were then discussed: the nonlinear directional 
coupler, the Kerr gate, the nonlinear optical loop mirror, and the terahertz optical asymmetric demultiplexer. It was then shown 
that the intrinsic limitations of these devices could be overcome through the use of optical solitons, which propagate without 
dispersing and/or diffracting. In particular, the temporal and spatial soliton dragging interactions possess the necessary require- 
ments of a three-terminal logic gate, and form the basis for the class of angular deflection logic gate studies of the later chapters, 
for which a nonlinear phase shift less than n can produce a resolvable change in the output state of the device. 

A detailed discussion of optical solitons was given in Chapter 2. Following the historical development of solitary wave 
and soliton phenomena. 1-D spatial, 1-D temporal, and 2-D spatio-temporal solitons were discussed. In the 1-D cases, soliton 
solutions were obtained for higher-order equations beyond the traditional (1 + 1)-D nonlinear Schrödinger equation. For the 
spatial soliton. this corresponds to the scalar non-paraxial solution, while for the temporal soliton, solutions were shown for 
equations that contained higher-order dispersive terms one or two orders beyond the slowly-varying envelope approximation 
(hut without Raman scattering). In the temporal soliton section, the effects of third- and fourth-order dispersion, optical shock, 
and Raman scattering were discussed as well, which have ramifications for the spatio-temporal simulations of Chapter 6. 
Finally, in the discussion on 2-D spatio-temporal solitary waves, fundamental eigenmode solutions to the (2+1 )-D cubic-quintic 
nonlinear Schrödinger equation were presented, and the stability of these eigenmodes was shown due to the ultrafast saturation 
effect of a negative quintic nonlinearity. The effects of higher-order perturbations on these eigenmodes were discussed in 
Chapter 6. 

The derivation of the fundamental nonlinear wave equations was presented in Chapter 3. First, the integral representation 
of the material polarization expansion up to fifth order was transformed into compact differential operator forms suitable for 
the quasi-monochromatic wave representation. Then, the fully vectorial, nonlinear Helmholtz equation was derived for optical 
wavepackets centered about a single fundamental frequency. Because of the difficulties this second-order equation presents to 
analytical and numerical solution, the following section derived via the multiple-scales perturbative technique, a fully vectorial, 
first-order nonlinear wave equation that consistently includes terms two-orders beyond the slowly-varying amplitude, slowly- 
varying envelope, and paraxial approximations, in addition to terms that describe the vectorial nonlinear coupling with the weak 
longitudinally-projected field and nonlinear coupling with a weak third-harmonic wave which produces an effective saturating 
quintic nonlinearity. This was the fundamental theoretical result of the thesis, and has application not only to the numerical 
studies of later chapters, but to other areas of study as well. For example, considerable attention has been paid recently to (3+1)- 
D nonlinear spatio-temporal propagation in the context of pulse splitting in the normal dispersion regime [ 152,153]. Simplified 
NLS-type models [154] have predicted pulse splitting, but it was also recognized that higher-order terms needed to be included 
in order to follow the subsequent evolution of the split pulses, which have significant angular and spectral bandwidths. More 
recent work has included scalar space-time non-paraxiality with shock [155], and NLS modified with Raman scattering [153]. 
These studies are able to qualitatively reproduce the asymmetric splitting behavior observed experimentally [153], but neglect 
additional physical effects that were derived in this chapter that can also lead to asymmetry. 

117 
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Chapter 4 discussed linear spatio-temporal diffraction and the split-step numerical method used for the simulations in the 
remaining chapters. Diffraction in linear homogeneous media can be performed exactly given the correct initial conditions. 
The diffraction process can be viewed intuitively using the momentum space representation, which is generalized to include 
spatio-temporal diffraction in dispersive media. The split-step numerical method treats inhomogeneous propagation in two 
separate steps. The first step is linear homogeneous propagation over a distance short compared to the diffraction length 
and inhomogeneous length. The second step treats the refractive effect of inhomogeneity due to changes in the linear and/or 
nonlinear properties of the medium over the same distance. Using the symmetrized representation, the split-step method is 
expected to be second-order accurate in step-size. However, in the presence of strong nonlinear effects, the accuracy can 
drop to first-order or less. Even though the scaling can be worse than desirable, comparison of the numerical results to exact 
analytical and numerical solutions show that sufficient absolute accuracy can be obtained in the simulations. 

The heart of the soliton interaction studies for optical logic gates is Chapter 5, which considered logic gates based on spatial 
soliton interactions. Specifically, the spatial collision and dragging interaction between orthogonally-polarized spatial solitons 
were found to provide the best performance for logic gates. These interaction were then studied in detail using the threshold 
contrast metric to find optimal operating parameters, where the dragging interaction generally produced better results. Then, the 
effects of linear and two-photon absorption on the propagation of a single soliton were studied. Figures-of-merit were derived 
to evaluate the suitability of a particular nonlinear material for soliton logic applications. The spatial collision and dragging 
interactions were then evaluated in the presence of absorption with the conclusion that, due to shorter effective interaction 
distances, the dragging interaction again provided better performance. Finally, using the metrics of small-signal gain, large- 
sisnal gain. fanout". and noise margin common in electronics, logic gates based on these interactions were examined. Subsequent 
cascaded studies show that a sequence of controlled inverters, in which the pump output of one stage divided by the fanout factor 
serves as the signal input to the next stage, which in the asymptotic limit forms a stable ring oscillator, results in complete logic 
level restoration and fanouts of two or greater with large noise margin. An additional cascaded geometry, in which the pump 
output of one stage serves as the pump input to a second stage, implements a two-input NOR gate. This gate was shown to 
possess complete logic-level restoration as well, with fanouts of two or greater and logic levels compatible with the single-stage 
inverter. These studies form the second major, systems-level, contribution of this thesis, and are perhaps the first time that such 
studies have been undertaken for all-optical devices. 

The final results chapter, Chapter 6, studied logic gates based on 2-D spatio-temporal solitary waves. Stabilized propaga- 
tion against the higher-order effects of third- and fourth-order dispersion, space-time focusing, optical shock, and intra-pulse 
stimulated Raman'scattering, was demonstrated due to quintic index saturation. However, it was found that downshifting due 
to Raman scattering was the most detrimental effect to asymptotically stable propagation. Using this stabilized spatio-temporal 
wave as the pump, logic gates based on the spatial dragging interaction were studied. The single-stage inverter was shown to 
provide large-signal gains of two or greater, but cascaded operation proved more difficult due to the strong Raman downshift of 
the pump which serves as signal inputs to subsequent gates. After equalizing the group velocities of the interacting waves in the 
cascaded stages, the cross-Raman downshift caused strong energy depletion of the pump, which resulted in spatial broadening 
and dispersive wave generation, and reduced contrast. Using a weaker proportion of Raman to Kerr nonlinearity (more appro- 
priate tor a material such as AlGaAs), fanouts of two or greater were obtained in cascaded operation of inverter and two-input 
NOR gates with complete logic-level restoration. 

The studies of this thesis pave the way for the experimental implementation of low-energy, ultrafast, all-optical logic gates 
tor a variety of applications such as communications switching, routing, and coding, and special-purpose digital computing. 
The results show that, even though materials issues pose a great challenge for ultrafast systems with low average power, 
experimental studies using existing materials are warranted and could lead to new capability not possible with current or future 
electronics. 
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Appendix A 

Symmetry Properties of the Nonlinear 
Susceptibility Tensors 

The symmetry properties derived in this appendix are the intrinsic index/frequency permutation symmetry and spatial symmetry. 
The intrinsic symmetry is a fundamental property of the susceptibility tensors, while the spatial symmetry depends on the 
particular choice of material class. The two triclinic classes are the only ones in which the number of independent elements 
cannot be reduced. This thesis deals mainly with the isotropic symmetry class (i.e. glasses, liquids, gases), but the results are 
valid for cubic 432 (i.e. LiFe508), 43m (GaAs, CdTe) and m3m (Ge, Si, GaP, ZnSe, ZnTe) as well with minor modifications. 

First, the intrinsic index/frequency permutation symmetry property is discussed in the general case of n' '-order nonlinear 
polarization. Then, the spatial symmetries are discussed for the specific cases of the third-order and fifth-order polarizations. 

A.l    The Intrinsic Permutation Symmetry 

In order to present a general proof of the intrinsic permutation symmetry property, the fully dispersive «'''-order nonlinear 
convolution integral is used: 

p(."\,) = eor T... /"/?;„,«,   ojTl.T: T^Ea.U-T,) (A.l) 
1     . Jo  Jo       Jo 

EU:(t-z2)...Ea„(t-xn)dTldT2---dT„. 

The spatial dependence is dropped for convenience. The form of equation A. 1 is a result of the application of time-invariance [220], 
which, when combined with the causal nature of the response function, leads to the intrinsic permutation symmetry property, 
as discussed later in this section. 

Following the same steps used for transforming the linear response integral in section 3.1.1, the nonlinear polarization A.l 
is written in the temporal frequency domain as 

^">((o)=eo|.../x';:i  u„(W «„)£«, (co,)...x (A.2) 

£UJü)„)5(ü)-ü)I - ...-ü)„)</cui ...dco„, 

where the it'1'- order nonlinear susceptibility tensor is defined 

X;«,...^ (0)'u' <on) = J...je(xl)...Q{xn)x 

*!«,   .«„(*! ■ • • ..T„)*,'lw't'+-+°'"t"1</T1 • • .dX„. 

Here, 0 is the Heaviside step function that explicitly enforces causality. Note that all factors of 1/271, due to the definition of 
the Fourier transform pair (given by equations 3.20a and 3.20b) in terms of the radial frequency CO, are neglected for simplicity. 
These factors cancel upon return to the time-domain representation. 

In the non-degenerate frequency case of equation A.2, the n fields in the product can be arranged in any order with the 
corresponding rearrangement of the indices and frequency arguments of the susceptibility tensor. There are n! such equivalent 
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arrangements 

XjaU..^*01'02 W„)£a1(0)l)£a2(C02)...£a„(C0„)= (A3) 

XSJ,«,...«, (tO;OJn.»2, • • .,a)l)£a,,(ffl«)£o2(t02) • • .£a,(0>l) = 

Xtaa    ,   aM'V", C0„_,,..., Cü,)£a„ («„)£«„_, K_i) ...£«, (ü),). 

The field products in equation A.3 can appear in any order by the commutation of the multiplication operator (there are n! 
equivalent arrangements of the fields) and results in the intrinsic index-frequency permutation symmetry of the x tensors: 

xäU...cu(ffl:ffl'^---"-^=Ä«2...«.(ffl;(0-''U)2'"-'a>l)=: (A4) 

••• = x2„a„.,...a1(
w;(ö-ü)«-l'---(ül)- 

For x''". the intrinsic permutation symmetry property states that 

X^/m(co;coi.ü)2.cü3) = x;tm/(ü);o),,(03,0)2) = (A.5) 

Xj/tm(W;ö);.(ü|.ü)3) = XJ,7,„*(ü);ü)2,Ü)3,0)I) = 

Xj,^;(ü);ü)3.ü)i.ü):) = Xym/*((o;(o3,a)2,a)i), 

tor example. 
lull index-frequency permutation symmetry, or Kleinman symmetry, results when the «'"-order interaction is non-resonant, 

mcjnins! that x"" is real [215]. In the case of general x(3) phenomena for example, Kleinman symmetry requires that all 
one-, i««.-. and three-photon transitions are virtual (i.e. the medium is transparent to all frequencies involved), but in the case 
of nonlinear refraction, the requirement applies to just the one- and two-photon transitions. It is apparent that the Manley- 
Kouc relations hold under these conditions. Kleinman symmetry means that the first index/frequency pair takes part in the 
permutation, with a total of (H + 1)! arrangements. In addition, under Kleinman symmetry, the (n + 1) frequency arguments can 
he permuted independently from the indices [220]. For generality and to include the effects of one- and two-photon absorption, 
Kleinman symmetry is not invoked for the third-order susceptibility in this appendix, although it is invoked for the fifth-.order 

susceptibility in order to simplify the derivation, without loss of validity, as explained later. 

A.2    Symmetries of x(3) 

In the case nt the third-order polarization, equation A.2 reduces to 

^■V'(Cü) = £o f f f XjkUWUi .0)2.0)3)^(0), )£/(00;)£m(ü)3) x (A.6) 

5(o)-o)i-0)2-0)3)^0)1^/0)2^0)3. 

The x "' tensor has S1 elements. The intrinsic permutation symmetry property is used in combination with the spatial symmetry 
reductions to reduce the number of independent and nonzero elements for a given nonlinear process. The reductions due to 

spatial svmmetr\ are considered next. _ 
For the more general case of the cubic crystal symmetry classes 432, 43m or m3m, there are 21 nonzero elements of the 

X ' tensor of which only 4 are independent [220]: 

'?)      . „<3I      _y'3.      _y(.\, (A.7) 

v(3!    . v«3)   _jy   _    '?)   _Y(3)   _Y(3)   _y(3) 

v(3)   . „(3)   _¥(3'   _Y<3)   _Y(3)   _    (3)   _„(3) 
A-ikjk ' Juv.w — Z-i-i: — Xviv.v — Avrv; — X.ZXZ.X — Azyzy 

v(3»   . vi3'   _-/■''   _J3i   _„(3)   _    (3)   _    (3) 
Xi'U-;' X."\< — fa-\ — Xi.wv — X.yzzy — Jizxxz — teyyzi 

where j ± k. For the isotropic symmetry class, only three elements are independent because of the additional requirement [220] 

Y(3*   _Y(3)    .     (3)   +y(3) (A.8) 

Aside from using the spatial symmetries, equation A.6 cannot be further simplified until the nonlinear mixing process is 
specified. In this thesis, the third-order processes of interest are the frequency-degenerate case of nonlinear refraction, third- 
harmonic generation and third-harmonic downconversion. The latter two processes, in cascade, result in effective fifth-order 
nonlinear refraction at the fundamental frequency. These three processes are now discussed separately. 
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(A.9) 

A.2.1    Nonlinear Refraction 

Using the quasi-monochromatic approximation 3.21. equation A.6 can be written for nonlinear refraction 

/f )+(w) = J J JIXjkim{fo;(üi,(02,(03) x 

[4J(Wi+<Do)Ä/(CD2-COo)Äm(CÜ3-(Oo) 

+Äk (0)1 - (Oo)Ä* (0)2 + COo)Äm((Ü3 - (Oo) 

+Äi(ü)i -U)o)Ä,(C02-Ü)o)Ä;„(0)3 + Ü)o)] X 

5(ü) - COi - CÜ2 - (ÖT,)d(£)\d(02d(Ü3, 

with corresponding equation for the conjugate third-order nonlinear polarization with time dependence centered about -w0. 
Now, the third-order susceptibility tensor is Taylor-expanded about the center frequencies 0)0 and -(On. Taking the first term in 

equation A.9 for example 

Z;)t/m(W;COi,(Ü2,Ü)3)Ä^(ü)i + Ü)0)Ä;(0); - W0)/4,„(W3 - (O0) = 

dXjklm{(O0\(Ou(O0,(O0) 
Xjklm(<Oo; -(OO, 0)0. Ü)o) + [Wl + ü>o] 

+ [(i); - Wo] 

+ [Oh - Wo' 

Ä'k((Ü\ +Wo)/4;(W2-W())Ä,„(0)3 -Wo). 

d(0\ 
+ 

CÜ,=-COo 

dXjklm((Oo;-<OQ,<02-(Oo) 

3W2 

, 9x./jt/H,(fflo:-t"o,tüo,o)3) 
1 3w3 

+ < 
l)i = COo 

+ 
(03=100 

It i>, evident that each term in the susceptibility expansion is subject to the spatial symmetry reductions, but the fact that the 
derivative terms are subject to the intrinsic index-frequency permutation symmetry is less obvious. In order to see this, the 
proper Tavlor expansions are used in equation A.9 which is subsequently transformed back into the time domain, using a 

procedure similar to that outlined in section 3.1.1. The result is 

/f+(/> Xy;/m(w>:-o\> +i^.o>o +'^•0)i) + /— )A'k(t)Ai(t)Am(t) £o 

+ Xjklm\Wl)'<Oo + i 

(A.10) 

di 
-ti)„-r/ — .Wo + /— )Ak(t)A',(t)Am(i) 

dt 

+ Xjkin,[ w,>;Wo + /Y.ü)(> + '-r.-ü)o-t-/;r )Ak{')Ai{t)A'„,(t) 
-it»,,; 

where the operator arguments are interpreted as the Taylor expansion about the frequency variable and the derivative operations 
are only pertormed on the corresponding field envelopes: thus, ordering of the field envelopes is important. After the derivative 
operators ha\ e been applied to the appropriate envelopes, the ordering of the envelopes is no longer important, and the arguments 
of the susceptibility (with the corresponding indices) can be permuted.  It is now evident that index-frequency permutation 

symmetry holds. 
The combination of the spatial symmetry reductions with the intrinsic permutation symmetry property is now used to reduce 

the general, fully-dispersive case of nonlinear refraction and the special case of the Raman susceptibility. 

Fully Dispersive Nonlinear Refraction 

Applying first the spatial symmetry reductions of the more general cubic classes to equation A. 10 results in the following 

tabulation of terms 

!)        Xjjjj^ü-W) + ifr-®o + i^,(^ + ifr) A*j(t)Aj(t)Aj{t) 
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2) xm fwo;-coo +1^:,wo + igp,coo + i-^J A){t)Ak{t)Ak{ 
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3) Xjjkk (MO;Cü0 +1'^-. Mo + '^. -Mo + ij\ Aj(t)Ak(t)A*k( 

3) Xjkjk (Mo; -Mo + 1^ ■ Mo + i ^, M0 + i^ J A'k{t)Aj(t)Ak{ 

2) x;^fMo;coo + /^,-Mo + /^,M0 + /^-jA;.(r)/l*(OAi.( 

3) Xw* (MO; MO + i^t ■ Mo + ijk, -M0 + i-^J Ak(t)Aj(t)A*k( 

3) X,«y (too;-MO +»'jjj-• wo + '^, wo + '^J K(t)Ak(t)Aj{ 

3) X;«7 (M0;M0 +1^. -a>o + '^,Wo + '07 j 4t('Mi(0A/v 

2) Xjkkj (MO;M0 + /^.Mo + ij£, -co0 + i^J Ai.(/)A^f)A}( 

The same numbered terms are identical by the use of the intrinsic index-frequency permutation symmetry property, thus reduc- 

ing equation A. 10 to 

e+o=^ XjjjjW-UQ + ifr-^ + 'fr'Uo + >fr)A'j{<)Aj(t)Aj{t) 

+ 2x;M/coo; -CO0 + i-^.o*, + i^.o>o + i-^jA'k(t)Ak(t)Aj{t) 

+ Xy;«(Mo;-Mo + /s-.Wo + /^-.Wo + iT-)A*(OA/t(f)Ai(r; 

(A.ll) 

-IIOQI 

where ; - k. It is evident that equation A.l 1 is also valid for instantaneous nonlinear refraction by simply removing the time 

derivatives from the arguments of the susceptibilities. 
For the Isotropie symmetry class, the following relationship holds 

X7;//(wo;-Wo-Wo.ü>o) =2x,u;(Mo;-Mo,u)o.(Oo) 

+ Xy;u(M0;-M0.(ÜO.Mo), 

and. under Kleinman symmetry. X;U-J(MO;-WO.(J)U.ü>O) = X,/U(M);-MO.MO,W0). These relationships are valid in both the 
fullv dispersive and instantaneous cases. The instantaneous case is shown for brevity. 

The Raman Susceptibility 

Now. considering the special case of stimulated Raman scattering as discussed in Appendix B, equation A. 10 reduces to 

8 
0)= | {x"««(Mn;4) [W^W' (A.12) 

+X^,„Uwa7)[A,(r)A;(r)]A„,(r -KOQI 

Now. the derivative operator argument operates on the product between two envelopes enclosed in brackets. Notice that since 
the Raman susceptibility is a function of one frequency argument, the intrinsic permutation symmetry only applies to the two 
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envelopes inside the brackets. Applying the spatial symmetries results in 

J)      J&;;K'';i7     AWAM AJ[t 
dt 

X*;Mw°;'ä7 

2) 

3) 

3) 

2) 

4) 

4) 

Xw[«>o>'to 

Xjjkki^'fr 

Xjkjk [<*><>% 

nj'V^'ä 

Xjkkj\Uo>' 'dt 

^r:,a? 

Aj(t)A)(t)\Aj(t) 

A'j(t)Ak(t)]Ak(t) 

Aj(t)Al(t)]Ak(t) 

Al(t)Aj(t)]Ak(t) 

Ak(t)A)(t)]Ak(t) 

At(t)Ak(t)}Aj(t) 

Ak(t)Al(t)}Aj(t). 

Again, the same numbered terms are identical by the intrinsic index-frequency permutation symmetry. With these reductions, 

equation A. 12 can be written 

CM = !4Ki]hi(')^') Aj(t) (A.13) 

+X%kj(^)[m)Ak(')]Aj{t) 

+X;;«(^4)fa(')A;'(')N') 

+Xw[<%>-^ A'j(t)Ak(t) '} Ak(t)\e-k'*'. 

This expression is the generalization to higher-order terms of the result obtained for the study of the Raman effect in AlGaAs 

waveguides 11511. Note that, for the isotropic class 

Xjjjj - 2y-]jkk+Xjkky (A.I4) 

and. invoking Kleinman symmetry, Xjjkk ~ X%ky 

A.2.2   Third-Harmonic Generation 

The general form of the instantaneous polarization at the third harmonic driven by the fundamental at ü)0 is 

PTHGj(') = jX7^(3^ü;ü)o.O)(1,Wo)A,(OA;(OA„,(/)e-3/tUo', (A.15) 

where the frequency dependence is neglected for simplicity. This is not an approximation as such because in the multiple-scales 
analysis of Chapter 3, the frequency dependence of the third-harmonic susceptibility plays no role to the order of the derivation. 

Using the spatial symmetry properties, the terms in the third-harmonic polarization are 

1) Xj;;/(3cüo;coo,ü)o,co0)A7(f)A;(OA;(0 

2) Xjjkk{3uo<u>o,Wo,u>o)Aj{t)Ak{t)Ak{t) 

2) Xjkjk{3u0;<öo,Uo,Vk>)Ak{t)Aj{t)Ak{t) 

2) Xjkkj(3®o;®o,®o,o*o)Ak{t)Ak(t)Aj(t). 
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The intrinsic permutation symmetry property forces the last three terms to be equal. The polarization is then 

Eo p™cy(')= j  Xjjjj(luo;(öo-Uo-<öo)Aj(t)Aj(t)Aj(t) (A. 16) 

-3KOor + 3Xjkkj{3i>io\^0^0,^o)Ak{t)Ak{t)Aj(t) 

where, for the isotropic symmetry class, 

Xjjjj[2ni>o;(üo.(üo-(üo) = ^Xjkkj{^o;(i>o,(iio,(üo)- (A-17) 

Note that these expressions are generally valid even under the conditions of three-photon resonance, neglecting frequency 

dispersion. 

A.2.3   Third-Harmonic Downconversion 
Again neglecting frequency dependence, the form for the polarization at the fundamental due to mixing between the third- 

harmonic and the fundamental is 

/$+,.(r) = ! [x#;„,(coo;3co0.-(Oo,-(Oo)5,(rM;(r)A;„(r) (A.18) 

+Xjklm[<O0> -W0- 3C00, -COoK(OS/(fMm(0 

+Xjum(^o:-^o--(ü0,3^o)Ai(t)At
l(t)Sm(t) ] e~im°', 

where S is the envelope of the third-harmonic. Using the spatial symmetries, the terms in the polarization are 

1) XjjjAoto 

1) Xjjjji^o 

1)       Xjjjji^o 

3(Oo.-<Oo,-<Oo)Sj(t)A){t)A)(t) 

-<Oo.3tOo,-<oo)A*j{t)Sj{t)A*j(t) 

-co0.-cüo,3a)o)/l*(f)A}(r)5,'(r) 

2) Xjjkda0:M)--i>h--Uo)Sj(t)A'k{t)Al(t) 

3) X,7«(COU;-Wü.3W0. -COO,M}(OS*('MA(0 

3)       Z_,-_,:w-(to0;-ü)u.-ü)0.3a)o)Aj(fK(/)5it(/) 

3) X;A7A(Wo;3ü)o.-U)ü,-CÜo)S;.(rM*(O^I(0 

2) Z7i#(«o;-Wo.3aJ0.-cüo)^(0^(')^I(0 
3) Xjkjk(u>o\-Mo--u>o-3uo)Al{t)At

j{t)Sk(r) 

3) Xjkkj{u>o\M)- -Mo- -u<>)Sk{t)AUt)A'j{t) 

3) X;HJ(wo-.-w().3tü0.-cüü)^.(f)Si.(rM*(0 

2)        Xjkkj(Mo:-Uo-Ui)-2u>0)A'k(t)Al(t)Sj{t), 

which is in the same form as nonlinear refraction. This is expected because in both cases, there are only two non-degenerate 

frequencies. 
The nonlinear polarization for third-harmonic downconversion is 

p(3)+ 
rTIIDj [') = 

3EO 
Xjjjj[(Oo;3(ao. -w0, -w0) Sj(t)A){t)A*j{t) (A.19) 

+ 2Xyay(üJü;3(Uo.-Wo,-Wo)S*(r)Aj(OAj(0 

+ Xy7«(W(i:3co().-(ü0.-o)o)SJ(fK.(OAl(r) -ico0/ 

For the isotropic symmetry class. 

Xjjjj[iü0:3(üo. -w0. -(Do) = 2xyHv(«o;3ü)o, -co0, -co0) 

+ Xjjkk(®o'> 3co0, -Wo, -w0), 

as before. 
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A.3   Symmetries of %(5) - Quintic Nonlinear Refraction and Three-Photon Absorp- 
tion 

In the case of the fifth-order polarization, equation A.2 reduces to 

: Eo/• • •/"%^/„„1„(ü);CO,, . . .,ü)5)£i(ü)l)£/(C02)£m(a)3)£n((04) x /f(co) (A.20) 

£0(ü)5)5(ü) - (Di - co2 - co3 - ü)4 - (1)5)d(Hid(ö2d(ü3d(ß4du)s. 

The x(5) tensor has 729 elements. Even though the development of the third-order polarization is valid for both the isotropic 
and cubic 432, 43m and m3m symmetry classes and processes other than nonlinear refraction, the fifth-order polarization is 
developed only for isotropic symmetry and instantaneous response. This is a simplification that has no consequences in the 
multiple-scales analysis. Any frequency dependence will appear one order later than the instantaneous response. In addition, 
fifth-harmonic generation is also not described because the influence of the fifth-harmonic on the fundamental occurs well 
beyond the order of the multiple-scales derivation. 

In the time-domain then, the fifth-order instantaneous polarization for nonlinear refraction is written 

/*5,+ (0 
(A.21) 

£0 
32 

Xjklmm, («0; -«0- -Wo- WO- Wo, (Oo)A*k ('K ('Mm [t)A„(t)A0[t) 

+ X;«»m»(Wo;-Wo.Wo.-Wo,Wo,COoK(/)A,(OA;„(0'4n(fM«(0 

+ Z;i/™I<,(Wo;-Wo.C00:ü)o.-Wo.Wo)/4l.(0'4/(0^m(0'4«(?Mo(') 

+ Xjklnvw (WOi -W0. W0, U)0• W0. -Ü>oK ('M/ i')Am('M«(fK,(t) 

+ X7«™,»(wo;w0. -ü)0. -W). W0.CDOKI( 

+ Xji/™w(w0;w0. -wo. coo. -to0.cao)4*( 
+ X#/™.»(wo;wo.-Wo.ü>o.w0. -w0)Ak 

+ X^/m»,J(Wo;Wo,Wo.-(Ü0.-COu.COo)/V/: 

+ X7*/«m»(Wo;Wo.Wo.-CO().W0.-tDoMt( 

(t)AUt)A*Jt)An(t)A0(t) 
(t)AUt)Am(t)A;,(t)A„(t) 

(rM7('Mm('M»('K(0 
0A/(0A;,(rK,UM«(0 

+ X^;„„OT(wo;wo.Wo.w0.-W).-Wo)^i(0^/(0'4w('M*1(0^'(OJe ""°r. 

Spatial symmetry of the isotropic class results in 183 nonzero terms of the sixth-order tensor, with 30 independent: 

Xjjjjjj Xjjjjkk Xjjkkkk Xjjkkjj Xjjjkjk Xjjkjkj Xjjjkkj 
Xjjkjjk Xjkjkjj Xjkjkkk Xjkjjkj Xjkjjjk Xjkkjkk Xjkkjjj 
Xjkkkjk Xjkkkkj Xjjkkii Xjjkiki Xjjuik Xjkjkii Xjkjiki 
Xjkjiik Xjkkjii y.jktju Xikiiu Xjkkiji Xjkikji Xjkiijk 
X/kkllj       Xjkllkj 

where j*k~ I. Using Kleinman symmetry (which is not strictly valid near three-photon resonance), the fifth-order polarization 
responsible for nonlinear refraction and three-photon absorption can be written 

O') S {x>WW):-Wu.-w0.ü)o.Wo,ci)o) [l0|i4/(r)|4;4,-(0_ 

+5Xjjkkkk(v>o>-Wo. -w0, w0. Wo,too) x 

'4\Ak(,)\
2Al(,)A'j(t) + 6\Ak(t)fAj(t) 

+ 10Xj7y7u(wo;-Wo.-w0,ü)o,ü)o,ü)o) x 

'3A'f(i)Al(t)+A2
J(t)Al2(t)+6\Aj(t)\2 \Ak(t)\

2} Aj(t) 

+ 15XJ;UH(WO.-WO,-WO,COO,W0,Ü)O) X 

'4\Ak(t)\
2A2(t)A'j(t)+2Al2(t)A2(t)Aj(t) + 

4M')\2\Mt)\2Aj(')]}.>' 



Final Report AFOSR ¥49620-95-1-0431, Spatial Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder 138 

where % -kkkk = Xjjjjkb  In this case, Kleinman symmetry means that there are no one-, two-, three-, four-, or five-photon 
resonances. As mentioned previously, these processes (except for the possibility of three-photon absorption) are assumed weak 
at the very least for materials of interest. 

Now, using the relationship [235] 
Xjjjjjj = 5Xjjkkkk=15Xjjkkii, (A-22) 

the fifth-order polarization is finally written 

M5'+(r) = ^X;7;7y7(a)o;-a)o.-cüo,coo,cüo,coo) e^' x (A.23) 
1 16 

^•(0|%(0+|k(0l4^(0 + 5K(0|2|At(0l%-(0 

+ ||^(r)|2^(r)>lJ(r) + |/lJ:(r)^(r)A7-(r) ++|^(r)A;2(/M;(r) 

+ \ \Ak(t)\2AJ(t)A'J(,)+ l-A?{t)Aj(t)Aj(t) + \ \Ak(t)\2 \Ai(t)\2Aj(t) 

A similar result has been obtained previously [226]. The first three and last terms are phase-independent and give rise to 
tilth-order self- and cross-nonlinear refraction. The second line contains phase-dependent couplings between two polarizations. 
These terms are rigorously absent for the orthogonal circular polarization basis set [226], and are neglected here under the 
assumption of differm» phase velocities between the orthogonally-polarized linear eigenmodes of a slab waveguide. The last 
three terms contain alf three field components and can be neglected. This is justified in the multiple-scales analysis where it 
is shoun that, in the paraxial approximation, the projection of the field onto the direction of propagation is one order smaller 
than the transverse projections and therefore, in the fifth-order polarization, all three components do not enter to the order of 

the derivation. 



Appendix B 

The Raman Response Function and Raman 
Susceptibility 

This appendix examines the third-order nonlinear response given by 

lf)(r,t) = eoRfklm[r)Ek(T.t)El(r,t)Em(r,t) (B.l) 

+ e0fR%iJrr.z)Ek(r.t--:)El(rj-z)Em(Tj)dz, 

which consists of instantaneous (Kerr) and delayed (Raman) parts. Specifically, the second term, or the Raman response, is 
examined in detail here. The spatial dependence will be dropped in what follows. 

The first section presents a classical derivation of the Raman susceptibility based upon a simple spring-mass model for 
molecular vibration. The second section derives the Raman gain coefficient which is the quantity measured experimentally. 
The final section takes the third-order polarization given by equation B.l and approximates the convolution integral for finite- 
bandu ldth excitation. The resulting form is more suitable for analytic representation. 

B.l    Origin of The Raman Response 

The Raman response typically arises from the motion of a molecule in response to a driving electromagnetic field. This is in 
contrast to the electronic response which involves oscillation of the electron cloud relative to the nucleus, producing a radiating 
dipole. A molecule can undergo rotational or vibrational motion, but since this thesis is mainly concerned with nonlinear media 
in the solid-state, it is assumed that the vibrational motion dominates. 

In order to derive the Raman response function, assume that there are N identical harmonic oscillators per unit volume, 
where each oscillator represents one molecule. For simplicity, only the 1-D scalar case is considered so that the vibrational 
coordinate is represented by X(t). Newton's second law [236] states that 

,H'ij^ = F'*(,). (B.2) 
dt- v ; 

where in is the mass and. in the case of the harmonic oscillator (or simple spring-mass system), Fto,(/) represents the total force 
on the molecule and includes the force of the driving field and the natural restoring force via Hook's Law. 

The electrical driving force on the molecule can be derived by first considering the electrostatic stored energy density [237] 

£=^E[E(/)-E(r)], (B.3) 

where e is the total material dielectric constant. For simplicity, keeping only the contribution from molecular vibration, the 
dielectric constant can be written 

e = eo[l+/Voc(X)], (B.4) 

where Eo is the free-space dielectric constant, and a represents the molecular polarizability (not the linear absorption coefficient 
which is not considered in this Appendix), which is necessarily a function of the normal coordinate of vibration X, i.e. the 

139 
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driving force is a function of the offset from the rest position. Taking a two-term Taylor expansion of the polarizability results 

in 
a(X) ziOo + X 

da 

dX 
(B.5) 

x=o 

where oco is the polarizability at the rest position and the first derivative is the differential polarizability. 
Now, the electrostatic stored energy can be written 

£=^{l + N ao + X 
da 
dX x=oJ 

[E(t)-E(t) 

The force exerted on a unit volume of polarizable material is then 

d'L _ EQ 9a 
dX "Y dX 

Fit) [E(t)-E(t)}} 
x=o 

where the force is divided by N to represent the force per molecule. The total force can now be written 

'"<"=!! 
[E{t)-E(t)]-kX(t). 

(B.6) 

(B.7) 

(B.8) 
x=o 

Here. A is the spring constant representing the restoring force of the molecule. 
The equation of motion for the oscillator is then 

^ + Q}*<0 = - 
\E{t)-E(t)] 

2m 
(B.9) 

where the natural oscillation frequency Qf = y/kfm. With the inclusion of a phenomenological damping term proportional to 
the velocity of vibration, the equation of motion becomes 

d2X(t)      dX(i)     _,v.     .     ^ 
m)-E(t)} 

(B.10) 

which IN the equation of motion for a damped harmonic oscillator. Transforming into the temporal frequency domain results in 
the solution 

^   5x 
-Q2-iCti+Q}}X(Q) = -\-^7{E(t)-E(t)}(Q) 

'J ?m 

_e»[K\{)\7{E(,)-E(,)}(Q) ^(Q) = ^    _L_^ 

which gives the expression for the molecular vibration spectrum. 
Now. the material polarization is defined 

P{t] = Nfi(t) 

where the induced dipole moment of the molecule is 

(B.ll) 

(B.12) 

3a 

,x=o 

ao + f-'JXlQ)} 

E{t) 

da 
dX x=o 

p(f) = Eoa(X)£(/)%e„ 

The nonlinear part of the material polarization due to Raman scattering can be written 

/i?)(o = Eo^-!{zR(^)^{£(0-£(0}(^)}£(0- 

E(t). (B.13) 

(B.14) 
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Fiaure B.l: Real and imaginary parts of the Raman susceptibility for fused silica. Here, y = 10.4 THz = 65.6 rad/ps, Q/ = 
142 THz = 89.0 rad/ps. and, at Xf = 1.55/an, R0 = 2.62 x 10~12 cnr/W-ps2. The heavy solid curve is the imaginary part 
and the thin solid curve is the real part. For positive Stokes shift Q, the imaginary part leads to gain, while for negative Stokes 
shift, the imaginary part leads to loss. The dashed curves indicate the three-term Taylor approximation which is valid within 
the ranee ± 5 THz. The dotted curve is the frequency-domain convolution of a 16.5 fs sech() pulse. 

where the Raman susceptibility takes the form 

XR(^) 
EoW 8a 

dX 
Ro 

Qj-Q.2-iQ.yj     QJ-Q2-iQy' 
(B.15) 

The real and imaginary parts of the Raman susceptibility appropriate for silica [141] are shown in Figure B.l. Note that for 
Q. » Q,. Y. the susceptibility XR(^) ~» ° because the time-scale of the driving field is too short for the molecule to respond. 

Transformina back into the time domain 

p{>\t) = £o{/?R(0 *[£■(/) -E[t)]}E{t) 

where the Raman response function is defined 

RR{t) = 7~x /?o 
Qj-Q'-itty 

ftoe-^sin^pe^) 

(B.16) 

(B.17) 

and QR = JO2. - Y:/4. Written in integral form 

/><3)(,) = eo/o°°/?R(T)£(/ -x) • E(t-x)E(t)dx. 

The Raman response function for silica is shown in Figure B.2. 

(B.18) 

B.2   The Raman Gain Spectrum 

The previous section derived the form of the Raman susceptibility and Raman response functions for a single Lorentzian line. 
In typical experimental situations, the Raman susceptibility is mapped out by measuring the Raman gain versus the difference 
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Figure B.2: Raman response function for fused silica: y = 65.6 rad/ps, £2« = 13.2 THz = 82.7 rad/ps, and, at Xf = 1.55 pm, 
/?,,"= 2.62 >: 10-,:cm:/Wps2. 

frequency between two monochromatic beams: the pump beam and the probe (Stokes or anti-Stokes) beam. The probe beam 
experiences exponential gain or loss at the expense of the pump. 

This theoretical treatment of Raman gain begins with the scalar nonlinear coupling between two monochromatic plane 
waves for simplicity 

(B.19) £(-,,) = i,y c^'iV-vl + l-As(z)e^z-w^ + cc, 

such that only the inter-pulse effects of stimulated Raman scattering are treated. 
Since this analysis deals with monochromatic beams, the temporal frequency domain is the natural space in which to derive 

the Raman «jam coefficient. Transforming the electric field then 

I ,. .„ .     1 

(B.20) 

+ ^,(c)eM>:5(co- to,) + ^A:(z)e-ik':d(0i + (üx), 

and ignoring linear absorption and diffraction, the scalar nonlinear wave equation in the temporal frequency domain is 

^|M+^(w)£(a)) + ^xK(wto.ü),(o)£((ü)£(co)£(a)) 
dz- c- 

■+?L I (y^{(ä;Q.)E{iü\)E((ü2)E{(ü-£l)d^diü2 = Q, 

where Q = to, + io: and initially both the electronic Kerr and Raman susceptibilities are considered. 
The nonlinear polarizations of interest are those that drive the wave equation at (ür or CD,. These polarizations are 

(B.21) 

PKM = 2? 

*(»,) = £r- 

XK(av.-°V (är.(üp)\Ap\ 

+2xK((ü^;-ü),,ü),,tüp)Kv 

/^(CÜ.vJ-CO^tCCÜ,)!^!2 

A„e'^ 

(B.22) 

(B.23) 
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+2xK((üs;-(üP:(üp,(üs)\Ap\ Ase> ,'V 

ft(a>,) = !||xR(ü);Q) [A;V((ü, +mp)S(ß)2-o)p) (B.24) 

+ A„A;5(CO! - cOp)S(to2 + ü)p) Ap5(co - Q - cop)e'*''::^ü)1 d(ü2 

+ — f /%R(w;ß) [A.;A,8(CO, + to,)5(to2 - co,) 

+ AsA*S{(üi -0),)S(ü)2 + to.v) ] Ap5(ü)-Q-(üp)e'Vj(D|^tü: 

+ ||/xR(w;Q) [M;8((D, -(OP)8((D2 + (D5) 

+ A;AP8(C0I + CÜ.V)8(Q)2 - COp) A.s8(co - Q - ü)i)e'A:''^co1cfco: 

/»„(co,) = ^fjxR(^^) [A.;A,S(CO, +CO,)S(CO2-CO,) 

+ A.vA.*8(ü)i - cü,)S(cü2 + co,) I A,8(to - Q. - (a^e^du^d^ 

(B.25) 

+ EO //xV ö) AMp 8((üi + o)p)8(o)2 - (üp) 

+ ApA*8(o),-o)/,)S(co2 + o)p) A,8(ü) - Q - co.v)e
ltj::rf(Oi rfco2 

+ H|xR(w;^) [A«A;8(O), -o),)8(o)2+(Dp) 

+A;A.V8(ü), + tOp)S(to2-to,) ]i4pS(ü)-Q-to7,)e
,'*'::rfü)1</a)2, 

where the intrinsic symmetry property was used in the instantaneous polarization and the four-wave mixing terms (2o)f -co,, 
etc) are neulected. Evaluation of the Raman susceptibility integrals results in 

/V(Wp) = ^{xR(Wp;0)|Arf-+[xRK:0) 

Ä,((oJ = ^{xR(ü),;0)|A,l:+[xR(öJ.,;0)+zR(coi;(ü,-coP)]|^|2}>l,e,'*>:. 

Defining the nonlinear indices 

"A(CO) = —— %e {XK(co; -to. w. to)} 

HR(CO.Q)=—|— ^{xR(co;ß)}. 
4/i(to) 

where Q = to,, - to,, and making the slowly-varying amplitude approximation (SVAA) 

3"An, 
^ « 2/VA 

the coupled nonlinear evolution equations become 

2/A.^+2,?"^ 
dz p n(aP) 

3to; 

1 + 

d;2 

HR[(üP.O) 

dAps 

dz   ' 

\Ar 

+ 2 + 

«v(o)p) . 

nR{iüp,0) + nR[(üp,Q.) 

(B.26) 

(B.27) 

(B.28) 

(B.29) 

(B.30) 

(B.31) 

HK{U>P) 4 |A.v|-   A 

+ /—£/HI {xK(tOp; -top, tup,Up)} |AP|
2Ap 

4c- 

+ i 
3cQp 
4f: 

7 
2/HI {xK(cOp;-co,,co,,ü)p)} + -Im {xR(oy,Q)} |A,|-Ap = 0 
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2ik
d^+2k2»Jpl 

dz n(®s) 
1 + 

««(tOv.O)' 
\AS 

(B.32) 

+ 2 + 
/»/?((ü.t.0)+«j?((Ü,v,-fl) 

'      /lA'K) 
AJ'M»' 

+ i-rklm {xK(cov;-co,, Cü.V.Cü.V) } K|2A, 
4c- 
3o>7 

4c- 
2//H{xK(ü),;-cop,(üp,CD,)}+-/m{xR(co,;-ß)} |^|-A,= 0, 

where Im {xK} corresponds to self- and cross-two-photon absorption and is always negative, and the Raman gain/loss suscep- 

tibility component given by Im {xR(co;0)} = 0 by (anti) symmetry. Note that now the ratio between the cross- and self-phase 

modulation coefficients no longer equals 2 in general, a fact previously noted [238]. 
Considering only the imaginary part of the Raman susceptibility responsible for Raman gain for simplicity, the coupled 

equations can be rewritten 

^ = -^/,„{X
R(cop;Q)}K|% 

dz 4/1- 

*£i = J^Im{X*(<os-,Q)}\Ap\2As, 
OZ 4/1- 

uhere «.. = /lien.,). /!., = /i(ü)v) and Im {xR(-Q)} = -'»< JXR(^)} from equation B.60. 
Multiplying equation B.33 by Ap and adding to the conjugate of equation B.33 multiplied by Ap results in 

(B.33) 

(B.34) 

d\Ar 

dz 

Dclming the optical intensity 

equation B 35 can be rewritten 

= -^lm{yR(ur;n)}\As\2\Ap\2. 

/(w) = Ü!Ä*(co)|=, 

dl 
£ = ^-/w,{z

R((or;Q) }UP. 
dz fk)cn?ns V 

I'erti'rming the same steps with equation B.34 results in 

^ = -4-/'«{xR«ü.v;Q)}//./v 
dz       EoCii;iir 

(B.35) 

(B.36) 

(B.37) 

(B.38) 

Ad Jin«: these tue equations in order to obtain the evolution of the total optical intensity indicates that intensity is not conserved. 
Since me interacting tields are monochromatic plane waves, this directly implies that optical energy is not conserved, because 

energ\ is supplied to molecular oscillations, then dissipated through the damping term. 
What is conserved by this system of equations is total photon number. Defining the photon flux 

Ei)(71 (to) ,   ,   . ,i 
O(co)=   "    ■   ' \A[(0)\- 

3i(.) 

the coupled equations for the evolution of the photon flux are 

^--^//„{^(VQ)}*.,*, 
dz Eo/'j,": 

^i = _*4T/,l,{XR((0jr;ß)}*/)<I>J 
dz        E<,/l;ll- 

(B.39) 

(B.40) 

(B.41) 

where it is apparent that total photon number is conserved. ^ ^ 
Now. back to the original purpose of defining the Raman gain coefficient. Typically, when \Ap\~ > |i4.v|", the depletion of 

the pump is negligible, reducing the coupled equations to just 

^M=iL/,„{X"(u,,;Q)}|/lp(0)|2/l,(Z) 
dz 4/1- 

(B.42) 
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where the z dependence has been restored. Now equation B.42 can be easily solved 

Ax(z)=e±c*:As(0), 

where the Raman gain is defined as 

GR = J±Im{xR(us;n)}\Ap\2 = 8RlP- 

The quantity typically reported in the literature as the Raman gain constant is, from equation B.38, 

tQcn;np 

and has units ofcm/W. For example, in silica-core fiber, a gain constant of g* = 1.86 x KT11 cm/W was measured for the peak 
Stokes shift of 13.2 THz (440 cm"1) with a pump wavelength of 532 nm [141], and in Alo.34Gao.76 As slab waveguide, a gain 
constant of gR = 7 x 10~8 cm/W was measured for a peak shift of 8.4 THz (280 cm"1) with pump wavelength 515 nm [151]. 

For the Raman susceptibility given by equation B.15. the real and imaginary parts are 

(B.43) 

(B.44) 

(B.45) 

!R.e{xR(Q)\ 

im{xR(n)\ 

so that the Raman gain constant can be written 

Ro Q} -ß2 

Ro&y 

[°5- Q2 
-1 

»Y- 

(B.46) 

(B.47) 

gR = 
Rpkr 

tociun 

Qy (B.48) 

r   lß:-ß2 
' + ß2Y2 

The peak of the imaginary part occurs at the frequency 

ßn = \ 

2Qj-r+  ■f4-4Y:Qj+16Q} 
1/: 

(B.49) 

For weak damping 7 « ß„m. the frequency at peak gain ß„,JX * Q« % ß/. and the line width of the gain % y. It is useful to 
obtain an expression for ß;. Solving equation B.49 then. 

iiy — i'nuvY Y~ T       «IM     ^max' 
(B.50) 

so that ß, can be determined when the line width y and peak down-shift Qmax are known, which can be easily obtained from 
experimental data. 

The resonance approximation to equation B.15 is common in the literature. Taking ß % ß/ and after a series of straightfor- 
ward manipulations, the susceptibility reduces to 

with real and imaginary parts 

X*(ß) * 

MxR(ß)} 

Ro/Q 
2[ilf-Q]-iy' 

R0 [Qf - ß] /ß 

~4[ß/-ß]2+Y: 

/?oY/ß % . 
4[ß/-ß]2+Y2 

(B.51) 

(B.52) 

(B.53) 
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Figure B.3: Raman gain and index spectra for fused silica, calculated from the data in Figure B.l. The Raman index is defined 
bv equation B.29, and the Raman gain constant is defined by equation B.45. 

Now. the Raman gain coefficient for the Stokes beam becomes 

1/Q 

eocihii-    [Q/_Q]-+Y
2
/4 

The Stokes down-shift frequency that experiences maximum gain is then given by 

(B.54) 

ßrr 
4Q/ + ^/4Q2-3y2 

(B.55) 

Note from equation B. 15 that R0 has units of nr/V: • s:. In the International System (SI) of units, the free-space dielectric 
constant has the value f„ = 8.854 x 10~i: C:/N-rrr, which also has units F/m, or Ws/V:m. For silica fiber. R0 = 5.03 x 
10"l?cm: \':  s: which for'/., = 1.55 ^um. equals 2.62 x 10"': cm:/W ■ ps:. 

B.3    The Raman Susceptibility 

Using the same steps as used for the linear material polarization in section 3.1.1, the Raman response integral is transformed 
into the temporal frequency domain. The frequency-domain representation is approximated for finite bandwidth excitation and 
transformed back into the time domain in a form that can be easily incorporated into the theory and numerics of subsequent 
chapters. This result is compared to that obtained directly from the Taylor-expansion of the time-domain form of equation B.l. 
Finally, using the results of Appendix A, the third-order polarization is reduced to a form suitable for the isotropic and cubic 
43m symmetry classes. Section A.2 discusses the intrinsic permutation symmetry property of the fully dispersive case and the 
reduction to the Raman response, and the spatial symmetry properties of the chosen classes as they relate to x(3). 

Writing the driving fields in their Fourier-domain representation, the Raman response of equation B.l becomes 

= eoJ J X%m(w\a)Ek((Oi)Ei(<o2)Em{t)e-iQ'daild<02, (B.56) 
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where Q = m, + Cü2 is the Stokes (Q < 0) or anti-Stokes (Q > 0) frequency and the third-'order Raman nonlinear susceptibility 

is defined r 

%^,/ffl(co;Q) = /G(x)4;m(T)e'QVT (B.57) 

ancj ^R (_Q) = x*u„,{Q) because the Raman response function is real. It is evident that the Raman susceptibility is subject 
to the Kramers-Kronig "relation discussed in the context of the linear susceptibility. 

The imaginary part of the susceptibility Im {xR(Q)}, where x*(Q) = %e {XR(&)} + Um {*R(ß)} - is proportional to the 
Raman gain, which is typically the quantity measured in experiments, as discussed in the previous section. Therefore, it is 
useful to have a relationship between the imaginary part of the Raman susceptibility and the Raman response function. The 
inverse Fourier transform of equation B.57 results in 

flR(T)0(T) = I xR((ü;Q)e-iQ'dQ. (B.58) 

Through the Kramers-Kronig relation, the real part of the Raman susceptibility can be determined from the imaginary part 
and the response function evaluated by relation B.58. Alternatively, the Raman response function can be determined directly 
from Im {yR(Q)} • Since the Raman response function is real, by equation B.57, the real part of the Raman susceptibility is 
symmetric and the imaginary part anti-symmetric. Note that equation B.58 can be rewritten 

/?
R
(T)0(T)= /[^{zR((o;Q)}+/7m{xR(cü;ß)}][cos(Qx)-/sin(QT)]^Q 

= fü{.e{xR((ü;Q)}cos(Qx)dQ+flm{xR(^^)}sin(Qx)dQ, (B.59) 

where the anti-symmetric terms integrate to zero. Because the left-hand side of the equation is zero when T < 0, it must be true 
that the two integrals on the right-hand side are equal and opposite when T < 0, leading to the relation 

K
R
(T)0(T) = 2 y^{xR(o);fl)}cos(QT)rfQ 

= 2 f Im{xR((ü\^)}s\n[Qz)dQ, (B.60) 

when T > 0. 
The nonlinear polarization is now written in the temporal frequency domain 

/g:'((0) = ^11 Jx%lm((i>;Q)Ek(^ )E,((ü2)Em(,)e-in'doildio2c
kü'dt 

= eo//xWw;fi)^(ü)'^'(co^{/£:'»(,)e'[l,>"nlV/'}'/Ü)'rfCD2 

= eo//xRi/m(«;^)^(wi)^(ü);)£m(w-Q)rfü)^ü)2. (B.61) 

using the Fourier-domain wavepacket representation and keeping only the terms producing a polarization near u0, e.g. the 
terms responsible for nonlinear refraction and nonlinear gain/absorption, the polarization becomes 

O
M

> = 7//$'•>*)* (B.62) 

[Ä'k(ia\+(tio)Äi((ü2-a>o)Äm((a-Q-<üo) + 

Äk{(ü\ -Wo)Ä,*(ü): + ü)o)/4m(a)-Q-cüo) + 

Äk{(üi -(oü)Ä/(ü):-(üo)Ä;i(co-Q + (üo)]rf(0|rfa)2, 

where j.k.l.me {.v.y.c}. The Raman response is typically at low frequencies (when compared to optical frequencies), for 
example, the peak of the Raman gain in fused silica is at 13.2 THz. Therefore the strongest response will occur when Q. is near 
that peak. For the last term of equation B.62, Q. % 2u)0 and Xä(2ü)0) « 0 from section B.l. 

In order to arrive at a simpler time-domain representation, the Raman susceptibility tensor of equation B.62 is Taylor- 
expanded about Q - 0. The Taylor expansion is 

X
R,,„,(ü)o;Q) = XR-/m(oJo;0) (B.63) 
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+ [C0i ±COo] 

+[co2T«o] 

aXrt-,„,(öo;ü)i±«o) 

3coi 
(0!==FüJo 

3Cü-> 
+ 

(ü2 = ±ü>0 

Using these expansions, the integral of the Raman susceptibility is approximated as 

Pg»+ (a,) = 111 {X
R + [(0,4- too] X?' + [«2 - wo] Xf + • • j x 

i4j. (CD] + COo)i4,((Ü2 - Ö)o)Ä„,(r, Q) - Q - (D0)^CÜi^OJ2 

+ |//{xR + H-coo]xf + [o)2 + coo]x?' + ---}x 

Ä*(0)i - 000)Ä;* (C02 + Ü)0)Ä,„(ü) - Q - C00)^/O)i<f(U2 

where the following shorthand notation is used 

(B.64) 

Xi 

..R' 

..     ^;„,((o0;oJi-co0) 

3coi 

9XRA/,„(WO;-COQ + Cü2) 

9CO-I 

aXR
Wm(w0;co,+ü)o) 

8(üi 

0), =U)0 

coi=-u)o 

dxR/,„(wo;ü>o + cü2) 
dco? 

0)2=0)0 

0>> = — COo 

(B.65) 

(B.66) 

(B.67) 

Now equation B.64 can be written in the time-domain. For example, inverse-transforming the first integral of equation B.64 

^;,+ (,) = |xR///^(wi+«oM/(a)2-coo)x 

Ä„,(u> - oj| - üb - co0)rfcoi d(ü2e~,uxd(0 

-X2    I I   I  [«I +C00]^(Ü), +ÜJ0)/4;(üJ2-Ü)o) X 

Ä,„((0-a)i -ü>2 -a)o)rfü)irfüJ2e
_,(0Va)H  

+ EO. 

<K>. 

+!* 

R 1f fÄm((ü')e-u"''dw'Äl(^ + OJok~'ü)|'<toi x 

Ä/(ü):-ü)o)c-,',,,J'</(ü2«?"/'no' 

■-' [ [ [Äm(«>')e~iu''d<ü'[(Oi +COO]Ä;.(Cü1 +ü)0)e-''to'^(0, x 

i4/(ü); - b)Q)e-
kl)-'d(ü2e-iWü' + ■ ■ ■ 

8 XRA^(0/l/(0 + 'X: 
,R'^I 

3; 
LA,(t) + (B.68) 

'XR^.(0-^Li + /U(r)<r'loo'. 

Using equation B.57, the coefficients 

■tt=y? = ijxQ{x)R%m{x)dx = xR'. (B.69) 

Note that y*' is purely imaginary because it is proportional to the slope of the Raman gain at zero frequency. Now the first term 
of the Raman polarization can be written 

p(3)+ _ £0 XRA'k(t)Al(t) + iX
R        g,        +' Am(t)e-^' 

= jX%mU^)m)A,(t)]Am{t)e-^, (B.70) 
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where the derivative argument acts on the quantity in brackets. Combining this expression with that obtained for the second 
integral in equation B.64 results in 

p(3)+ 
rRj (0=|{x^m(coow|) mm)+Akmm]}AmW -/COof (B.71) 

Here, the function of the operator is interpreted by a Taylor expansion about zero frequency. 
An alternative approach is to start with the time-domain convolutional representation given by equation 3.18, rewritten here 

in component form 

pg>+(0 = ^£$ujTmt-T)Al(t-i)Am(t)e-H"dT 

+ | J~R%,„WMt - T)A? (t - x)Am{t)e-^'dx. 

Defining s = t - T, the delayed fields can be Taylor-expanded about t 

A(s)=A{t) + [s-t]-±± + [s-t]- d2A{s 

1   -.1 

ds2 + • 

dA(t)     T2d2A(t) 
= A(t)-T—— + —    -, -,    +• 

dt 2    dt2 

Substitutin« into the convolution integral results in 

P(3)+(f) = ^ 

eo 

AUt)A,(t)+Ak{t)AUt)] Ani(t)e-i<ü°'jf   R%!m(x)dx 

(B.72) 

(B.73) 

(B.74) 

Using equation B.57. it is clear that equations B.71 and B.74 are the same. Defining the constant 

equations B.71 and B.74 can be simplified to 

.0" = TXWWO-.O) kio/wo+^woj^o*-''^ 

T'jkh, 
dAl(t)A,(t) t dAk(i)A1(t) 

dt dt 
Am(')e-^' 

^XR>o;0) 
d2Al(t)A,(t)     d2Ak{t)Al{t)' 

dt2 dt2 Am(t)e-k"°' + 

(B.75) 

(B.76) 

The first-order term in the Raman expansion is a linear approximation to the Raman gain/loss curve. The second-order term is 
a parabolic approximation to the dispersion of the Raman nonlinear refractive index. The next correction for the Raman gain is 
third-order cubic as evident by the fact that the imaginary pan of the susceptibility is anti-symmetric. 

The total induced third-order polarization including the instantaneous and Raman contributions can then be written 

P^t(') = z}{x%lJ<*u-^-Uo-Uom<)Al(t)A„l(t) 

+X}jkil„((i>o:ok>--u>o-(öo)Ak(t)A
,

l{t)Am(t) 

(B.77) 

+X%im(^'(üo-füo--(°o)Mt)Ai{t)A'„{t) + 

EorR 
TV*' 

+X%J^-0)[Al(t)Al(t)+Ak(t)A
t

l(t)}Am(t)}e-^1 

Am(t)e-ia°' 
dAl(t)A,(t)  {dAk(t)A*(t) 

dt 

^„R" 
^X

R
;„„(CDO;0) 

dt 

d2A'k(t)A,(t)     d2Ak{t)A]{t) 

dt2        + dt2 A,„(t)e -i(u0; 
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Using the spatial and intrinsic symmetry reductions from section A.2, equation B.77 becomes 

PW+(t) = 2|° [x^(coo;-coo.co0,ü)o)A*(f)A,(f)A7(r) 

+2x;tt;(a>o: -co0. co0, C00)A^ {t)Ak{t)Aj{t) 

e-i^0< 

+ 

+ljjkk{(üo\-(äo^o,(üQ)A*j(t)Ak(t)Ak{t) 

J {[ XJjjj(^0)A)(t)Aj(t) +X%kj(<öo;0)Al(t)Ak(t)\ Aj( 

+XJjkk(^0)[Al(t)Aj(t)+A)(t)Ak(t 

" 4 

dA)[t)Aj(t) , TR  9A;.(rM,(0 
F.-;; ; ^  + I jkkj 

+7-, 

JJJJ 

R 
jjkk 

dl dt 

dA'k(t)Aj(t)     dA){t)Ak(t) 

dt        +        dt 

Eo ' R"   FA'jWA')       R"   ^l(t)Mt 
Xjjjj       3,:        +Xjkkj       3,2 

Ak(t)}e-" 

Aj(t) 

Ak{t)>e 

Aj{t) 

l'üty 

„-'<"<>' 

R" 
+Xjjkk 

d2A'k(t)Aj(t)     d2A){t)Ak(t) 

dr-     +     a?2 Ak(t) 
-icüor 

(B.78) 

whiL-h i> the form used in the multiple-scales analysis. 



Appendix C 

Derivation of the (2+l)-D Vector Nonlinear 
Schrödinger Equation for a Slab Waveguide 

This appendix reduces the full (3+D-D NLS evolution equation for nonlinear spatio-temporal propagation in homogeneous 
media to the (2+1 )-D equation appropriate for propagation in a planar waveguide structure that supports TE and TM modes. The 
ke> to this derivation is the use of separation of variables in which the functional form of the one-dimensional linearly-guided 
profile is separated from the envelope in the unguided dimensions. To lowest order (sec. C.l), this separation of variables results 
in the well-known effective index approximation, which reduces the dimension of the problem. At higher orders, the concept of 
effective index is extended to the linear dispersive (sees. C.2 and C.3) and nonlinear terms (sec. C.3). The resulting nonlinear 
wave equation is the (2+l)-D reduced version of the (3+D-D NLS equation (with the transverse dimension v removed), with 
effective values of the material parameters which represent the influence of the transversely guided modes. 

Section D.2 of Appendix D evaluates the effective linear dispersion coefficients for a generic three-layer slab waveguide 
structure. The results of this analysis for typical waveguide parameters justify certain approximations made in this multiple- 
scales derivation in order to obtain an NLS equation for the waveguide modes. 

The waveguide geometry is shown in Figure C.l. By symmetry, the waveguide supports two sets of modes, transverse 
electric (THi and transverse magnetic (TM), which are of orthogonal linear polarizations. Thus, the use of the Cartesian 
polarization basis set is not arbitrary. The initial electric and magnetic field envelopes are written 

Äl=M>F-L<*> + it±y7-(X.Zl.T)c*™: (Cl) 

B, = -4l-™ (>•«*,- *^) ß{M(A'.Z,.7><^ (C.2) 

such that the interaction between waveguide modes is handled explicitly by the choice of slowly-varying envelopes A]E and 
ß™. The waveguide mode profiles UTE and V™ are unitless with the components UjE and V™ normalized to unity. 
Therefore, the envelopes A]E and ß™ have units V/m. while AJ

E
/TI

TE
 and ß™/T]™ have units of A/m. The constants 

TI
TE

 = po<A)/ßTE and Ti™ = poOo/ß™ represent the material impedance seen by the TE and TM modes [239]. These 
impedances have units V/A = Ohms. 

The frequency-dependence of U and V is included to describe the variation of guided profiles (and effective index) with 
wavelength, which simplifies the analysis [ 194). Note that the waveguide modes do not have z variation. This approximation 
fixes the modes such that they cannot change with propagation and is valid when the induced nonlinear index is small compared 
to the linear index variation of the waveguide, which is the case assumed here. In fact, typical nonlinear index changes are on the 

151 
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Figure C. 1 Waveguide geometry used for (2+1 )-D derivation. The linear refractive index varies along the v-direction, which 
gives rise to distinct .sets of TE (electric field polarized along v) and TM (magnetic field polarized along .v) modes. 

order ot 10"" - 10-4. while weakly guiding waveguide structures have A/i ~ 10-3 - 10_:. Only one TE and one TM mode are 
considered and are assumed to be fundamental modes (no zero crossings of the field), but this assumption is not a requirement 
tor the general case derived here. Extension to multiple, higher-order modes, is straightforward [99], but not necessary in this 
thesis. 

Guided modes typically have profile variations on the order of a few wavelengths, therefore v is taken to be a fast variable 

such that 

v = "£dx+^ + t 
a      a     , a (C.3) 

Because of this change. Maxwell's equations need to be suitably modified. The modification of Faraday's and Ampere's Laws 
is straightforward: 

(C.4) 

(C5) 

Bz, (C.6) 

dAz 

dv 

\d      a 
.ä7 + Eä2 

_ + ... A, = iyo CÜ0 + 
9 1 

/Eä7\ 
Bx 

\d      a a,\. 
■*Vi - £ -T7T = 'M) 

r      d 
0)0 + ,eaf By 

a 
Ea 

Ay     dAx 

X ~~dy~ 
= 'M) 0)0 + 31 

35- a     a 
£+eaZ + ßv 

-lEo (DO + »E dT y,(D0 + /e^J., + |^NL)+ 

(C7) 
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y- 

z: e 

3      a  , 

dBy    dBx 

dX ~ dy 

ß,-e 
dB, 
dX 

-/eo 

-/Eo 

d 1 
w0 + it^=- tHy,m+^)i!+lfr 'dT 

(C.8) 

(C.9) 

O)0 + IE 
dT 

eL[y,(üo + ie^-)Az+-Pz 
dT 

2 D(NL)+ 

£o 

Gauss's Law, on the other hand, is not quite so straightforward because the dielectric constant now has variation in the y 

direction. This change is 

3 
-LEL(y,o0 + /E^)Av 

3        9 
dX      [dz      dZx 

-5<NL)+ 

'EOT  ax   +   a.v + e^r + - 8;       dZ 
<NL)+1 

Finally, the magnetic field divergence equation is 

3ß\     dB, dB-       dB. 

lt + Edz-l
+' 0. 

With these chances from the (3+l)-D derivation noted, the waveguide derivation can begin. 

(CIO) 

(Cll) 

C.l    Order E - Effective Indices and Phase Velocity 

At the lowest order. Maxwell's equations result in 

3,41-     dA\v — 
(TM) x :   -5-^- - -r-1- = ilMWoBix 

(TE)  v : 

(TE) z: 

dALl 

dz 
dAu 

- ifjQ(üoB\Y 

: -i/j0(ü0Biz. 

which allows the electric fields to be determined from the magnetic fields. 

(TE) x: 

(TM) y: 

(TM) z: 

dBlz     dBu _ 
- -/'Eoü)oE^(y,coo)-4u 

a flu 
dz 

9fl,i., 
3v 

JEoCOoE^^COoMi 

!Eo(üoe^(y,ü)o)/lu, 

which allows the magnetic fields to be determined from the electric fields, and 

3lnE!p(v.(Do) _       3Älv     3Äi-     n 
(TM)   —A__Av+_ + ir = 0 

3ßiv    3ßi-    n 
(TE) -3T + -3T = 0' 

which relate the v and c polarization components and offer no additional information. To this order, all six field components are 
nonzero. Equations C.12, C.16, C.17 and C.18 determine the TM mode and equations C.13, C.14, C.15, and C.19 determine 

the TE mode. 

(C.12) 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

(C17) 

(C.18) 

(C.19) 
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TEMode 
Working first with the TE mode, taking the z derivative of equation C.13 and substituting equation C.15 results in 

d2Alx 

dz2 : z'/ioWo 
dB 
y!£ + /'Eo(o0E^(;y,(o<))Aij 

Substituting equation C.14 for B\z, 

r     i   3-4 
■ [ßTE]2^u = 'H)0)o g-T^ + i'eocooe^^cooMu 

(C.20) 

(C.21) 

(C.22) 

which, upon rearrangement, yields the eigenvalue equation 

a 
Equation C.22 is a function of only the fast variable v and determines the TE guided profile UjE{y, co0) and effective propagation 
constant ßTE. Since the envelope A]"E(X,Z;, T) cancels, equation C.22 can be written as 

^ = {[^]2-k-(y,iO0)}Alx. 

d2UjE(y,(ü0) 
dv2 {[ßTE]:-^(v,ü)o)}t/;E(^ü)o). (C.23) 

This equation is most appropriate for waveguide structures with continuous variation of the refractive index, but in general, is 
not sufficient to determine the guided profile [240]. The constraint provided by the finite one-dimensional power of the guided 
mode provides the necessary additional information. 

For waveguide with discontinuous, or step, variations in refractive index, equation C.23 can be solved in each homogeneous 
res-ion and linked through the appropriate boundary conditions. These boundary conditions are the continuity of the tangential 
electric and magnetic fields across the dielectric interfaces. For the TE mode, Ax and Bz are continuous, and by equation C.14, 
ö.\, !i)\ is continuous [239], Therefore, the boundary conditions are given by the continuity of 

TP dt/JE(v,coo) 
£/v

TE(y.wü)    and        A :■'   °'. (C24) 

Determination of the magnetic field components of the TE mode. UjE{y.(ü0) and uJE(y,u>0), is not necessary since the wave 
equations will be developed for the vector electric field. 

For a known index and guided amplitude profile, the dispersion relation can be written as an overlap integral. This can be 
seen by multiplying equation C.23 by UjE and integrating, resulting in 

r TF1,     Jk2(y.u0)[uJE]2dy-J 
[ßTE]- =  

at/7 
dv dv 

J[UjE)-dy 
(C.25) 

TMMode 
The TM guided profile is most easily obtained using the magnetic field. Taking the ; derivative of equation C.16 and substituting 
equation C. 12 results in 

d2Bu i , 
—y = ;eoü\)e^(y.co0) 

dA, 

dv 
■ + i/j0(OoBix 

Substituting equation C. 17 for A \z. 

-[ß™]2Äu = - 
pBu     ain£^(y,ü)Q)35|V 

dv2 dv dv 
Zo/M)(äoE^{y,(üo)Bu, 

which, upon rearrangement, yields the eigenvalue equation 

d2V™(y.u())     aine^(y,ü>o)3v7M(y,ü)o) _ 
d\~ dy dy 

{[ß™]2-^(v,ü)o)}v7M(y,co0), 

(C.26) 

(C.27) 

(C.28) 
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which again is most appropriate for continuous index variation. 
For step variations, the boundary conditions for the TM mode are the continuity of Bx and Az across any dielectric interface. 

Using equation C. 17 for Az leads to the continuity of 

„™,       ^       A          1       ay™(y,mo) (c29) V'M(v.(O0     and    -r— =■ • \S~-^) 
e^b.ooo)        9>' 

In order to facilitate the derivation of the TE and TM nonlinear wave equations, the y and ; components of the electric field 
associated with the TM mode must be obtained. From equation C.16 

R™ 

R™   12 
ß Vv™(>',ü>o), (C30) 

_A(y.coo 

which determines the y component, and from equation C.17 

V™(y,d)o) 
dV™(y,u0) 

Tl™eoü)0E^(v,(oo)        dy 

iß™   •9v7M(y,Mo)|' (C31) 

£2(v.coo) dy        ' 

w hich determines the c component. These expressions are fully non-paraxial in the guided dimension because of the choice of 

v as a fast variable. 
Note that the ; profile of equation C.31 depends on a transverse derivative. The major contribution to this transverse 

derivative is the transverse vvavenumber. When the transverse wavenumber is small (as is the case for low-order modes in a 
stromilv-guiding structure, or for modes in a weakly-guiding structure), the mode angular spectrum remains close to the z-axis, 
meanmu that I'.™ « I'™, which is the paraxial condition. Even though the paraxial condition is imposed on the unguided 
envelopes A and B bv the choice of the slow transverse variable X, it does not need to be imposed on the guided profiles U and 

■I' which depend on the fast variable y. Later in the derivation (sec. C.3), though, this condition will be imposed in order to 
simplifv ihe nonlinear polarization. 

The dispersion relation for the TM mode can be obtained in a similar manner to that for the TE mode, with the result 

R™ "= : —:—— : • (C.32) 

The eigenvalue equation C.28 can be recast into a more familiar form in terms of the y-component of the electric field. 
Substituting \\IN,i.\.tt>,,> « E^(y.ü)0)V™(y.ü)o) into C.28 results in [ 159] 

d:\;™(y.(ü())     3ln£^(y.ü)o)av;™(.v.ü)o) (C 33) 

dy2 dy dy 

+ a2'n|!f-M")i^(y-o,.) = {[ß™]:-^(ycoo)}v7M(y,coo). 

C.2   Order E2 - Group Velocity 

Similar to the (3+1 )-D derivation, this order determines the group delay of the TE and TM envelopes, except that now the 
group-delay has contributions from both the material and waveguide dispersions. The waveguide dispersion is responsible 
for the difference in TE and TM group delays, which can be tailored somewhat by the choice of waveguide parameters. In a 
weakly-guiding structure, the group delays will be nearly equal when the material is linearly isotropic as is the case here. 

Another difference from the (3+1 )-D derivation is the inclusion of the frequency-dependence of the waveguide mode [194]. 
The first-order dispersion of the waveguide mode is included as 

_ _f Tp, %  dA]E(X,Zi,T)     ;f)TE. tniA\ 
Ait = AZv + iU]E (y, (D0)      '   ^ e     "' (C'3 ] 
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where Ä* is the second term in the electric field expansion and is composed of an unknown component Alx and the first term 
in the electric field expansion obtained at the previous order which now includes dispersion of the waveguide profile. The other 
components of the electric and magnetic fields are handled similarly. 

From Maxwell's equations then, Faraday's Law results in 

3/K     dA2v     dAu      .        - dBu 
(TM) x:   -^ - -^" ~ ~^~ = 'Po^oSit ~Mr 

3v dZ, 

8A-><     dA\x     dA\:      .        -5 
(TE) y :   -^ + ^ - ^r = m^Bzy-^ 

(TE) z: 

dz     az,    ax 

8A iv     dAzx 

87" 

8ßlv 

dT 

dX 
- i/JQuioBz.-fJo- 

dB]: 

dT ' 

while the modified Ampere's Law gives 

(TE) x. 

(TE) y : 

(TM) ;: 

iin.ilK. the divergence laws give 

dB2z     dB2>     dBu 
~8v     dT~Hz~ 

- -/'eotooe^y.WoMit 

+£o e^(y,co0) + cu0e!{(y,coo) 
dA l.t 

8ß^.    8ß)(    3ßi- L/     . ,T 

dz 3Z,       3X 

+eo e^(y,co0) + ü)0e^(y,coo) 

87 

8AU. 

J  3r 
8ßlv    8ß2t 

= -lEOtOt)E^(y.Ü)0)A2c 

+E0 
L'/ 

E^(v,0)o) + (l)oE^(.V.(Oo) 
■ dAu 
.   dT ' 

ae^y.oo) 
(TM)   —^ A2v + £^(y.w0 

8Ai,     8A;V     8A:;     8A i: 
H—^—^ H—=r— + 

3X 

8e!;'(y.cüo)8Ah     ... 8 

8;       3Z, 

SA), SA]; 

~3v~ + ~8T 

8ßh    8ß>    3ß-    8ß,-     n 
(TEi   -T-|i + -r^ + -^ + ^ = 0. 

8X 8c       dZ, 

(C.35) 

(C.36) 

(C.37) 

(C.38) 

(C.39) 

(C.40) 

(C.41) 

(C.42) 

TKMocIe 

Now the en\ elope equation for the TE mode is derived. Taking the -derivative of equation C.36, and substituting equation C.38 
and the \-derivative of equation C.37, results in     .   ■ ' 

3M-,     dzAlx     lüf,  | -        8:A1:     8
:Alv 

■ iß 
TE8j4u      too rc, K 1   W i- 

c- 

+ MJ 
3:ßL- 
dvdT 

/P(|Ü),|- 

E^(.v.ü)o) + co0e^(y,ü)o)J -^p- 

8ß,v        8:ßlv 

dZ, -Po 3c87 

After substituting from order E. the TE mode equation reduces to 

d2Alx     d
2Az,     Wfi  i ,        ,T 

oTH9Al.. 
P    3Z, 

•A-(y.O)o)A''(y,(i)0) 
dA, 
dT 

8ln£^(y,ü)0) 8Aiv 

3y" ~dX~ 

(C.43) 

(C.44) 
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Using C.34, equation C.44 can be written 

d2A\x    d
zA\x     C05 . -t 

d2U™(y,m) 
dz2        dy2 

{[^]2-k2(y.0)0)}u]*\y^)-0-^ 

dA~ix 

(C.45) 

^ 

37 

-2i az, + k(y,u>o)k'(y.u>0) 37 

3lne^(y,ü)0) 3^4 iv 

3>        ~dX~' 

The left-hand side can be reduced by taking a frequency derivative of equation C.23, 

3:(/,TE'(>.,ü)o) _ 
{[ßTC]:-A--(v,(Oo)}^E'(,cou)-^^ (C.46) 

^-{[ßTE]2-A-2(y,a)o)}f/,TE(v,(Oo). 
3wo 

which, upon substitution, results in 

d2A\r     3Mit     ,-.,        ,—t 

3c-        ov- 
(C.47) 

QTE^lv 
P    3Z, 

+ A-(y.Wo)/:'(y,COo) 
,3A i.t 

37 

3lne^(y,w0) dAly 

3^ dX~ 
TTE. 

3co0 
{[ßTE]:-A:iy.(1)0)}t/.l

TE(y.»o 
TE,       ,3A,  (V\ü)Q) 

37 

TE I j^i      RTH' ?Al 
3Z,  + P      37 

3lne^(y,co0)3/liv 

3v        "33T 

Equation C.47 is in the form Lit - f where L is an operator and / is the forcing function. By the'Fredholm alternative 
theorem 1194]. this equation has a solution if and only if [u'h.f) = 0, where uh is the homogeneous solution, i.e. Luh = 0. The 

homogeneous solution for Ä'Zx is just the TE mode so that uh ~ L'l
Tl":(y.ü)0)f

,'pTn:. In order to guarantee a'unique solution then. 

ßTF- ^/ [u]Hy.m)fdy + ßTHßTH'^/ [^(.v.«*.)] V (CAS) 

+ 1 dB TM 

3X 
L_j[P™-PTC]: /v.™ 

T,.           3ln£!A(v.to()) 
1 v.o)oU,'l

Th(y.(ü„) ^ rfv = 0. 

which can be wniien in the simpler form 

8Z, 37 
(C.49) 

dX 

Note that the TE-mode group-delay is defined as 

.3ß™ y[pTM_pn.]: J V,1S11 v. J^WjB(y~cüo)[aine^(y,Q>u)/3yRv 

pzjlUjHy^Ydy 

V.V _ 3ßTE 

ß"- = 
3üj0 ' 

(C.50) 

which can be evaluated from the eigenvalue equation C.23 or the TE dispersion relation C.25. The TE-mode group velocity is 

defined as >JK = l/ßTH'. 
The extra term in equation C.49 indicates linear coupling between the TM and TE modes due to the variation of the TM 

mode along the x direction, thus serving as a source term for the TE mode. This effect arises because of the differing rates of 
diffraction on either side of a dielectric interface and does not occur in homogeneous regions; in the (3+l)-D case, the dielectric 
"interface" is due to nonlinearitv, which occurs at order e\ and this term appears with the vectorial nonlinear couplings at order 



Final Report AFOSR F49620-95-1-0431, Spatial Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder 158 

e5. Since the TE mode travels with the natural phase delay ßTE, and the extra component generated by the TM mode is driven 
with the phase delay ß™, there is a coherence length. Lcoh = [ß™ - ßTE]_I, over which the effects of this term are important. 
It is assumed that the propagation lengths of ultimate interest (~ Z2) are much longer than this coherence length (~ Z,) so that 
the generation of a new TE component averages to zero, and the term can be neglected. 

TMMode 

Performing the same steps with the TM mode results in 

d2B,x    d
2BZx     dz^iy.Uo) ÖBZx      2 ■        - 

dz-        o\- dv dy 

— i 

-2/ 

_d_ 

3wn 

ß ™3B"+it(v.aio)if(y,a)o^ 
3Z, 

3lne!j(v.ü)o) 

dl- 

dT 
+ dlnz\(y,(Q0) dBly 

By dX 

d2Bu 
dvdT 

Taking a frequency derivative of equation C.28 allows C.51 to be written 

^^.a^W^^     )2|t 
dz2 +   dv2 

-•^™];-<^>}f-,^ 

2/  ß DTM dBlx 

dZ, 
+ k{y.tiX))k'(y.io0 

dBu 
' 87 

3lne^(y,(Oo) 

d~y 

8lnE^(v,(Oo)3ßlv 

d2BXx 

dvdT 

dv dX 

= -2/ß™ 

3lnE^(.v.ü)0) 

d~v 

d2Bu 

dvdT 

dB\.x  , oTM'd^ii 

3Z,      P       dT 

ainE^(y.ti)o) 8ßlv 

oT      aF 

Again using ihe Fredholm alternative theorem, equation C.52 is written in group-delay form 

A H™ Ä R™ do,     _ _ _TMi do, 

az ar 
dA]E ,[^_ßT>i],./^':(.v-"o)^,TM(.v^u)[ain£'^(,v.ü)o)/ay]<v 

+ l dX  C 2ß^fWJMtv.(ün)]2dv 

The effective TM-mode group-delay coefficient is 

iTM' aß tTM 

dato 

where ßTNI is obtained from equation C.28 or the TM dispersion relation C.32. 

(C.51) 

(C.52) 

(C.53) 

(C.54) 

C.3    Order e3 - Coupled Nonlinear Schrödinger Equations 

The nonlinear Schrödinger equation appears at this order for both the TE and TM modes. The difference between the re- 
sults obtained here and those obtained in the (3+D-D derivation is the appearance of effective material constants representing 
diffraction and nonlinearity. Because of the linear coupling between the TE and TM modes due to transverse index variation, 
diffraction in the unguided transverse direction is modified slightly from the linear homogeneous case. Note that this effect 
does not show up in purely scalar analysis [194], but, except in the strongly-guided case, can be neglected nonetheless. The 
effective nonlinearity is given by modal overlap integrals of the material nonlinear coefficient with the appropriate waveguide 
profiles for self-and cross-phase modulation. 
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At this order, the second derivative with frequency of the mode profiles associated with A j and B{ must be included, along 
with the first derivative with frequency of the mode profiles associated with A, and ß2: 

,-TE',        jAf-(X,Zjj) flTE. 
A3x = A'to +iU}   (v,wo)     '   dT 

1      TE„ sd
2A\E{X,ZjJ)    ;ßTE; 

~2Ux    (y."o) ~äf2 e      ■ 

(C.55) 

Again, A3A. is the unknown component of the electric field. 
Now, Maxwell's curl equations result in 

(TM) x: 
3/4 3-     3i4.iv     3i4;v     3/4 iv 

"37 
3ßlv 

dÄ3x      3Ä\      dÄu      9^2;       . "5 3#2v 

(TE) z: 

dz 

3/4 2v     3i4.i., 

az,    az,    ax 3r 

dx = ;>0Woß3;-^0- 
3ß^ 
37 ' 

(C.56) 

(C.57) 

(C.58) 

and 

(TE) x: 
3ß3;    3ß3v    3ß2l    3ß,v 

(TM) =: 

3v dz       3Z,      dZ, 

+E0 

l£oW0E^(y,Wo)i43.r 

3Äo 
e1^(y. wo) + w0e^(y, w0) j -^ - 2/w0P, D(3) 

,!'(, m0   L"/ 3:/4l.t 
+/Eo e!^(y.wo) + — e^(y,w0)j -^j 

3ß3t    3ß\    3ß|,    3ß^- L/      ,T 
. (TE) v :   -3^ + -^ + 37- - "ätr = -«^of^ (v, WoKv 

+ £{> e!^(y.Wo) + WoE^(y.w0) 

r i\      v    wo 1".      ."1 era 1 
+;£o  E^(y.Wo) + — £^ (y.w0)j -^ 

3ß2v    3ß3t 

3/4-v    _      „ni 

3^lv 

3A- 
-/£oW0E^(.V.Wo)i43: 

-'-< ^,.._d.', ..U^_2/o)0/f +Eo ^(y.w0) + w0E^(y.w0) j -^ 
dA^ 

+'£<) ?LV. Wo   L", £^(.v.Wo) + — £^(y,w0 
1 3:/li 

dT2 ' 

(C.59) 

(C.60) 

(C.61) 

where the third-order polarizations are written, for example. 

?'u=eo"o":(v){[l^i,|2+2A|/\h|:+2A|/i1;|
: 

The Maxwell divergence equations give 

i4i,+Y Iv+^lc]<v}- 

(TM) 
3E^(y,w0) 

i43v + £^(y.w0) 
3i43v    3i4->t    3A3-    3i4i-    3/4i- 

3v       dX       dz      3Z,     3Z2 

+/- 3Ek'(y,Wo)3A2v :PL' 

3v 3T + '^(V't°0)3T 
3/i->v     3Ait     3/4->-     3/41- 
 ±4 Ü4 ~  4 Li 

3v      3X      dz     az. 

a2 
ia£V'(y,W0)3

:/\lv      1  L„ 3/4iv     3/4i- 
 Ü4 li 
3y        3z 

(C.62) 

(C.63) 
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eo   dy      £o   dz 

dB^x     dB3v     dBy     dB-,-     dBlz     n (C.64) 
3X        dy        dz       3Z,      dZ2 

TE Mode 
As before, taking the -derivative of equation C.57, and substituting equation C.59 and the y-derivative of equation C.58, results 

in 

d2Aix     d2A3x     ,,.        .- d2Alx     d
2AXx  , d2A2y | d2A2z 

-Q^ + -^+k-^^A^ = -öldYrd^^+dylx+^zdx 
d2B^        d2B2v     .       dBz,     .       3ß!v    -  2    P(3) 

+W) äväf -podzd¥ ~ w(üoir- ,poa)0^z7 - 2cDoW,/^ 
.0)0 
I— 

C-   L 
e^(y,(Do) + o)0e^(y,o)o) 

1 dA->t    coo r i',      . , coo in,      . 32Ä l.v 

dT2 

Usmg the appropriate substitutions from order e2 and order e, this equation can be written 

-3-F +'-ä-T5- + *"(v.O)o Kv = 
dz-        dy- 

^2^v     0.„        w„        A       d2Älx     d2ÄLx 

-2dld^-2lk{y'(0o) (v-ü)o)^T"2äläzT-_-ä^ 
d2Äi~      f. ■ o  1 d2A! 

az 

9o)n 

£ + {[k'(v. wo)]: + *( v.o)0)A-"(y,too)} -^r - 2(°o^o/> ,(3) 

8ln£^(y.co0) 

d~v 

d2Au     9ln£^(y, (00)8,42,. 

dXdT 3v 3X 

With the .substitution of C.55, the terms on the left-hand side of equation C.68 containing Ayy become 

dz- dy- 

d2Ä'lx   a:Ä3v + ^+—#+*-(y.CD0)/hv 
dz- d\- 

+ 2i ßTEßTE'-*(v,(D0)*'(y.ü)o) 
3A;V 

ar 
ßTEf + ßTEßTl-:"-[A'(v.(ou)]

:-l-(y.a)o)A"(y,(Oo) 
a2-4 i.t 
ar- 

_ -i ßTEßTE' - *(y.ü)„)A'(y.ü)u)J UjE (y.COo)-^-. 
,a-Ä 

■TE 

Now. equation C.66 reduces to 

a~     a.v 

- 2/ßTE d^lv   ,  RTE' ^2x 
dz, +p    ar ■2iß' 

iTEaAu   a2Ai,t _ a~^ i.t 
"az7~ ax2 ~ az~ 

+ ;"1 ^i-f , ORTE,,TE'. RTE'j - + ßTEßTE" I  ^U + 2ßTEt/TE'^^ ^J_ 

8lne^(y,(D0) a2Aiv 
axar 

(C.65) 

(C.66) 

(C.67) 

(C.68) 
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3lne^(y,co0)   TM,82ß™    aine^(y,to0) 8^ 

"'        d~v        Vy     dXdT dy dX dy -v     dXdT 

which has homogeneous solution A^ - U]E(y, (OQ)^. Applying the Fredholm alternative theorem to the right-hand side of 

equation C.68 gives the following condition 

2/ßTE BAJ
B- TE-^P , ^ri 

3Z,   + P      dT        dZ, 

+ a^| i24TE 

|[^TE(v.ü>o)]Xv 

ßTE<] 2 + ßTEßTE» | ö^p + ^!] y [[7TE(>, ^ = rfy 

JuJE'(y,(O0)UjE(y,(ä0)dy d2A]E  , oTE-^n 
az,8r + p    ar- 

ax2 

-2ßTE 

+ 2«0*7 |AJ
E

 |V
E

 y n2(y) [^TE(y, mo)]4 <v 

/»:(>') {[K™(v.co0)f/A
TE( v,co0)]> [K™(y, to0)t/v

TE(y,a*,)]2} rfy 

dXdT J ay 

,Är-F]:/l 
axar 7 ato0 

aine^(y,coo) 
v7M(y,co0)^

TE(y,co0)<v 

ggP^-B*]; /•8lnEHV-M»)VvTM(V|Mo)t/iTC(>,iMo)rfy   =   0. 
ax y       a> 

Using equation C.49. the /\|E terms with Zx derivatives are written 

a:ATE 

_ .ajßjM  im^_^:]rjUjE'uJEdyjV^Urid\n^(y,Wo)/dy]dy 
'dXdT0 J[UjE]2dy 

a=ATE/V™^    ^^!!^    rfv/V^TE 
Slntk (y.uio) 

ax- 4ßTi:ßTMj[V/TM]-,/> 

(C.69) 

(C.70) 

(C.71) 

Finally, using these expressions and defining the effective diffraction and nonlinear coefficients, the evolution equation becomes 

2,ßTE 3AT
E
      TE-CL4F     3^ 

di + p    af + az. 
■  „TE^F      RTERTE"^I! 
+0   ax-    p p    dr- 

(C.72) 

+2*0- 
TE-spin TE-xpm 

|ATEpATE + 4^^__A|ßTM|^TE = 0i 

where the phase-dependent terms arising from the x projections of the TM mode have been dropped. This is justified because 
the terms that show up at this order are significant over the distance scale Z2 (and farther), and the phase dependent terms 
are assumed to have coherence length Z^oh ~ Z,, and therefore average away for NLS propagation. For the same reasons, the 
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phase-dependent terms in the nonlinear polarization are also dropped, because they have a phase factor e2'$      ß  ] associated 
with them, and coherence length LCOh/2. 

The diffraction coefficient is defined as 

dg^(y.Mo) TM//TE /V™£/, 
,TE. 1- 

3e^(y,cüo) 

<5v dyjV™U] TMr/TE dy 

4ßTEßTM/[i/TE]-^/[VTM]-^ 
(C.73) 

which has primary contribution from linear homogeneous diffraction and an additional contribution arising from the linear 
coupling between the two waveguide modes. This latter contribution is assumed small and a taken as unity. In the case of a 
step-index waveguide, this assumption is well justified by noting that the derivative of the dielectric function results in a delta 
function, which, in the integrals in the numerator, serves to sample the value of the product of the modal envelopes at each 
interface. With a finite number of interfaces, these contributions will be much smaller than the continuous summation given by 
the integrals in the denominator. 

The effective self- and cross-phase modulation coefficients are defined 

TE-spm 

TE—xpm 

_/»:(>■) [uJE(y^o)]4dy 

J[U]*}2dy 

_ j#i:(y) [u]E(y^o)yJM(y^o)]2dy 

J[Uj*}2dy 

(C.74) 

(C.75) 

T\ A TX4 pi"r ■ 

Note ih.it in writing the effective nonlinear coefficient for cross-phase modulation that it was assumed that V. < Vy , Ux , 
which IN valid tor weak guidance. Due to the overlap between the TE and TM modes, the effective ratio between the self- 
phase modulation and cross-phase modulation coefficients may not equal the intrinsic value 2A, because, in general, n-,    spm ^ 

ii 

l.ikmj the results from this and the previous order, the nonlinear wave equation for the TE mode in laboratory units is 

2/ß' TE a^ + ßTE'^ 
+ 

dz    '^       dt 
TE-spm 

\A     I   A 

^TH      ßTEßTE"^TE 

-i It 
+2*5- 

«o 

a.v 
TE-xpm 

AS 

dt- 

TM|: ,TE = 0. 
«o 

(C.76) 

TM Mode 

I'ertormuiL' the same steps with the .v-component of the magnetic field results in 

^-     ,\        *?   ,^>     ainEklv-t°o)dgL 

- 2/ß' TM dUl 
dZ 

j± + ß TM'^2. 
dr 

- 2«ß' TM dBLx     d
2Bu     d2BlA 

~dz7 ~ Ux2     dzj 

+ TM' dzBu d2B™ 
■ + ß™ß™"^ + 2ß™VJ™,(v.Cüo)37.aZi 

-2ß™ß™V7M'(y.coo 
d-B 

TM 
.Tl 

TM 

dT2        r)TE 3co0 

3lne^(y,co0) 

3v 
d2Bu 
dXdT 

+ 
^MdlnE^v.ü),))   TK, d-A\b     ri™9ln£^(>',üJo)3ß:v 

'rF 3y L'     {yWo]dfdX-W        d~y ~dX 

+ 2('ri,"cüo 
d\ne\j. (v.ü)0) „(3! 

d\ 3v 

,(3) dP ,(3)' 

■ + ■ 

(C.77) 
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which has homogeneous solution Bix °= V™(y, C0o)e'ß   :- Applying the Fredholm alternative theorem to the right-hand side of 
equation C.77 gives the following condition 

2/ß' TM dS?LßTM<9itfM       dB™ 

+ 

az, 
32ß™ 

+ ■ 
dT        dZ 

dX2 

JlvJ^y^fdy 

„} d2B™     d2B™ 

(C.78) 

ßTM'   -+ßTMßTM»[>^J_ + ^iL 
dT2 dZ2 f[V™(y,U0)}: 

d\ 

-2ß TM a-ß™   „xu-a2ßTM 
1       ,  RTM'" "l ; + ß Jv™\y,<üo)V™(y,(Qo)dy 

BZidT    w       dTz 

+ 2n0k2\B™\2B™Jn2(y) [\'™(y,co0)]
3V™(y,<ao)dy 

+ 2-^£{2Aß™ KE|2ß™ + Y [2ßTE- ß™] [Aj^-B^e2'^-^} x 

fn2(y) [£/,TE(v. Wo)]: V™(y,U0)V™(y,tt0)dy 

^TM^TE 

+r\™dXdT J 

+ iftdxdT y au,, 

3lne^(v,(o0) 

3v 

3ln£L(>-,coo) 

U^(y,(üo)VjM(y,(ßo)dy 

dy 
UjE(y,(ß0)V™(y,(iy0)dy 

ri™3ATE ,rRTE RTMi.  rd\nzl{y,(üo)    Tp TM + W~dX~ J ~~k- VjE(y><öo)V™(y,<öo)dy = 0, 

where again it was assumed that V.™ <g V™,U]E such that the ; component of the nonlinear polarization P]z can be neglected. 
As before, using equation C.53, the ß™ terms with Z\ are rewritten, allowing the solvability condition to be reduced to 

2/ß TM 3ßT" |RTM,3ßT"    3ß[" 
3Z,  + P       37"   + 3Z, 

-TM d~Bt      _ „TMoTM" d~B]M 

3,Y-       P    P        37"- 
(C.79) 

+2i(l^— |ß™f ß™^2^-—A^pß™ = fJ 
«0 "0 

where the phase-dependent terms arising from the x projections of the TE mode have been dropped. The phase-dependent terms 
in the nonlinear polarization are also dropped. The diffraction coefficient is defined as 

TKi/TM 

o™ = 1 - 
JU^VX 

rJcL t vu)() i 
dyjUjEV™ dt^(y.o>o) 

4ßTMßTH/[r>TM]-,/vr[t/TB]-<v 

which is again taken as unity, and the effective self- and cross-phase modulation coefficients are defined 

(C.80) 

; ™-sp,„ E J»:(v)[V',1M»-Q'..']-V/7M(>-.cao)rfv 

"2 ~ f{^Mfdy 

TM-xPm _ /'»:(>■) [i'7f:iy^h)}2VjM(y,oi0)V™(y,(Ü0)dy 

(C.S\) 

J[V™]-dy 

Taking the results from this and the previous order, the nonlinear wave equation for the TM mode in laboratory units is 

(C.82) 

2/ß TM 
3ß™+ßTM,3ß™ 

3c 3/ 
4- _ RTMRTM" ° B 

+     d.X2 P      P dt2 (C.83) 

+2*5- 
"o 

|ß™|:ß™ + 4^^ AUTE|-:ß™ = 0. 
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As mentioned previously, these results are obtained strictly for the purposes of illustration of the effects of transverse 
guidance, which, in the weak guidance approximation, results is effective linear and nonlinear coefficients. The modified NLS 
equations are not used for the simulations directly, but the effective linear coefficients are evaluated in Appendix D for the 
purposes of obtaining the birefringence beat length and the group-velocity walkoff length. 



Appendix D 

Optical Properties of Fused Silica 

The numerical simulations presented in this thesis make use of the material parameters of fused silica. The reasons for this 
choice are numerous: fused silica is highly transparent in the visible and infrared with small linear and two-photon absorption 
and ultrafast non-resonant nonlinearity, has anomalous group-delay dispersion at the telecommunications wavelengths around 
}.f = 1.55 pm, has high damage threshold, is well characterized, and has well-developed technology for fabrication into slab 
and cylindrical waveguide devices. The main downside, thoughts the relatively small nonlinear coefficient. Because of this 
fact, other nonresonant nonlinear materials, such as AlGaAs and PTS, will ultimately need to be studied, but fused silica serves 
as a useful material on which to base initial investigations and the results obtained should be generalizable to other materials. 

The first section discusses the optical properties of fused silica in bulk, while the second section looks at glass slab waveg- 
uides, in which the linear properties are modified due to transverse confinement. 

D.l    Properties of Bulk Fused Silica 
For comparison, linear and nonlinear properties of fused silica and other candidate materials are shown in Table D. 1. The other 
materials are presented here because optical properties are used in Chapter 5 to derive figures of merit for use in spatial soliton 
switching. 

For The spatio-temporal simulations, the linear index dispersion and nonlinear Raman dispersion need to be discussed. 
Appendix B covers the Raman response function and Raman susceptibility spectrum for fused silica. The linear index dispersion 
is typically given by a Sellmeier-type relation of the form 

j=\k~-Kj 

(D.l) 

where X, are the resonance wavelengths and Bj are the associated oscillator strengths. Table D.2 lists the coefficients for fused 

silica |30]. 

Material fused silica 397, Ph silicate PTS Al läGa^As 

reference [30] (1561 [125] [127] 

/•o (pm) 1.55 1.064 1.6 1.55 

»0 1.444 1.774 1.8 3.4 

A," (ps-/pm) -2.79 x 10~8 1.17 x 10-' >0? 1 x 10-6 [157] 

a (cm-1) 0.1 0.1 0.3" 0.15 

n{ (cm-VW) 3.3 x 10-|b 2.2 x lO"15 2.2 x 10-'- 1.2 x 10-|J 

ßl (cmAV) 5.5 x lO-13 7.2 x lO-'-* <5.0x 10-|U «0" 

n\ (cm4AV-) ? •J -8x 10-" -5x 10--3[143] 

" absorption at Xj = 1.3pm used [158] 
h three-photon absorption is estimated at &'4 = 0.055 x 10~18 cm3/W [127] 

Table D.l: Linear and nonlinear properties of promising materials for nonlinear optical switching. The values for the linear 
absorption coefficient are valid for slab waveguide geometries and are dominated by waveguide scattering. 

165 
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j resonance wavelength Xj (pm) oscillator strength Bj 

1 0.0684043 0.6961663 

2 0.1162414 0.4079426 

3 9.896161 0.8974794 

Table D.2: Sellmeier coefficients for fused silica. 

A plot of index dispersion over visible to near IR is shown in Figure D.I.' The refractive index n determines the phase 

1.440 

0.6    0.8     1.0     1.2     1.4     1.6     1.8    2.0 
wavelength A (in fim) 

Figure D. 1: Linear retractive index n and group index nx for fused silica. The zero dispersion wavelength Xzil = 1.27 pm divides 
the boundan between the normal dispersion regime (X < Xzli) and the anomalous dispersion regime (X > Xzd). The curves are 
marked for their values at 1.55 pm. 

velocity 17, = v/n. where c is the speed of light in free-space. The material propagation constant k - cu/i/c is also referred to 
here as the phase delay coefficient, since it is related to the inverse phase velocity. Of more relevance to this thesis, though, 
are the group velocity and the group delay coefficient. The group velocity is the velocity at which a quasi-monochromatic 
wavepacket travels, which is in general different than the phase velocity, and is most easily calculated from the group delay 
coefficient. The group delay coefficient is the frequency derivative of the phase delay: 

k'= — = - 
dw      c 

where nK is the group index. Now, the group velocity is 

dü) 
_ 2i 
—  c 

(D.2) 

V* ~ k'~ ne 

(D.3) 

The group index is also plotted in Figure D.I. showing that, over the spectral range plotted, the group velocity is less than the 
phase velocity, which is generally true away from resonance. 
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Another useful relation is the calculation of group delay based on the change of index with wavelength. Noting that 

2nc       d X2   d 
Ü): 

A.       d(0        2nc dX' 

the group delay can be written 

* = ! n-X 
dn 

dX 

(D.4) 

(D.5) 

Group-delay dispersion describes the variation in group delay across a wave packet spectrum and is responsible for pulse 

broadening in linear propagation. The group-delay dispersion coefficient is calculated 

k" 
d2k _ 1 

3üP     c 

dn        d2n 

d(0       dco- 
(D.6) 

A3   d2n 

~2nc2dX2' 

Figure D.2 plots group-delay dispersion over the wavelength range 0.5 - 2.0 pm. The zero-dispersion wavelength is also shown 

^ 

K 

>> 

b£ 

0.05 

0.00 

X   -0.05 - 

0.6    0.8     1.0     1.2     1.4     1.6     1.8 
wavelength X (in /zm) 

2.0 

Figure D.2: Group-delay dispersion k" for fused silica. The zero dispersion wavelength Xzd = 1.27 ^vm divides the boundary 
between the normal dispersion regime (X < Xld) and the anomalous dispersion regime (X > Xzä). The curve is marked for its 

value at 1.55 pm. 

on this plot to emphasize that, since group-delay dispersion is zero at this location, a wavepacket should propagate without 
change. Of course, this is not strictly true, because any wavepacket has nonzero bandwidth and will broaden because the slope 
(called third-order dispersion) and curvature (fourth-order dispersion) of group-delay dispersion are nonzero at this wavelength. 

Higher-order dispersion becomes important for broad temporal bandwidths. The simulations of spatio-temporal solitons in 
this thesis use the higher-order dispersion coefficients because such broad bandwidths are present. Third-order dispersion is 

calculated from 
.,„      dh      1 

doo3 

d2n        c)V| 

d(02       3co3 
(D.7) 

XA 

47t:c3 

d^n       Pn 

dX2+   dX* 
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Fourth-order dispersion is calculated from 

k"" = 
3co4 

a3«     av 
4äu?+ü)äu7 

15 

8TI
3
C 3^4 

d2n 93n     . -, d4n 

Plots of third and fourth-order dispersion for fused silica are shown in Figure D.3. 

B   0.40 

en 

0.30 

s. 

~    0.20 r 

O.lOr 

-1 .0 
■I—1 

-1 .5 in 

-2.0 P 
o 

(D.8) 

0.6     0.8     1.0     1.2     1.4     1.6     1.8     2.0 
wavelength A (in /j,m) 

hgure I) -;  1 It gher-nrder dispersion for fused silica. Third- (solid curve) and fourth-order (dashed curve) dispersions are plotted 
versus wavelength. The curves are marked for their values at 1.55 pm. 

As a summarv of this section, the appropriate dispersion coefficients for bulk fused silica at the communications wavelength 
/. = 1 55 //m are listed in Table D.3. 

coefficient bulkSiO; units 

«0 1.444 

k) 5.854 1/pm 

*;, 4.875 fs/pm 

*;; -0.02791 fsJ/pm 
k'" 0.1511 fsV^m 
i.iiu 
K0 -0.4931 fs4//um 

Table D.3: Calculated dispersion coefficients for bulk fused silica at X = 1.55 pm. 

D.2    Properties of Glass Waveguides 

The waveguide geometry of interest is shown Figure C. 1. This sections derives the TE and TM eigenvalues and modal profiles 
in this three-layer slab case, and evaluates the modal phase delays ßTE and ß™ and the effective linear coefficients derived in 
Appendix C. 
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A cross-sectional view is shown in Figure D.4. Since the structure is piece-wise separable, the following definition is used 

which represents phase delay in each layer 
271/1' (D.9) 

where n2- - tj. Note that it is assumed that the magnetic permeability is the same in all regions. 

n1 
cladding 

f 

"2 
core \      ~7 

/ 

T^ 

°3 cladding 

( 

d/2 

-d/2 

Figure D.4: Cross-sectional view of three-layer slab waveguide geometry. In general, the refractive indices of the two cladding 
lavers are different, leading to an asymmetric structure. 

D.2.1    Derivation of TE Mode 

The solution for the TF mode must satisfy equation C.23. repeated here for convenience 

5^M = {[P™]=-il=(v.c0)}^(v.«o). (D.10) 

along with the boundary conditions C.24. It is clear that, depending on the size of [ßTE]" relative to k2(y. CD), equation D. 10 has 

two types of solutions: 

;TE _ L   -iK-,v   i   j._„-»>.> 

The transverse wave numbers are defined 

a:=[ßTKj:-*:(y. 

when [ßTE]:>Jt:(v.cö) 

when [ßTC]2 <*2(y,aj) 

(D.ll) 

CD (D.12) 

K; = A:(y.cu)-[ßTE]:. 

It is clear that in order to satisfy the boundary condition of finite one-dimensional power, the modal profiles must decay in 
the cladding regions, implying that the effective longitudinal wave number ßTE is greater than the bulk propagation constant of 
the cladding. This also implies that, in order to satisfy the continuity boundary conditions, the field in the core region cannot 
decay, such that the effective longitudinal wave number is less than the bulk propagation constant of the core. 

With that in mind, the following piecewise solution is posed 

a\e -Olv.V y>d/: 
t/7E(y. CD) = {   b cos (K2vy + d>)    -d/2 <y<d/2 (D.13) 

ave«3vv y < -d/2 
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where the solution in the core region is written in the form of a cos() function without loss of generality. Note that the non- 
decaying solutions in the cladding regions have been eliminated. Imposing the boundary conditions at y = d/2 yields the 

following constraints 

flie-alv<//: _ fcc0S(K2>,rf/2 + <t)) (D.14) 

-alva,e-a^/: = -K2vfcsin(K2vrf/2 + <t>), (D.15) 

which can be divided to obtain 
^ = tan(Kv//2 + <|>). (D.16) 
K2>. 

Similarly for the fields at y = -d/2, 

a2e-(V/: = bcos{-K2yd/2 + (J>) 

aha2e-a^dr- = -K2ybsm{-K2yd/2 + Q) 

=>^ = tan(K2v^/2-(t)). (D.17) 
K2v 

Now there are two equations and one unknown - 0. Forcing both equations to give the same value for 0 results in the 
condition 

l-^+l^ = K2yd±pn, (D.18) 

where p is a nonzero integer and the phases are defined 

<t>JE = 2tan-' (a,_v/K2y) = K2V</+ 2<t> ±/ffl (D.19) 

<t>p = 2tan_' (a3v/K2v) = K2yd-2$±mn. (D.20) 

Defining the effective index 

K2v = y/kl-m^koy/nl-nlx, (P-21) 
the equation for the modal eigenvalue can be written 

2Mv/";-"e
:
ff-oTF--<i>JE = 2^, <D-22> 

which can be solved numerically via the bisection method. The phases are rewritten as 

,TB = 2tan-,(v/|E^ (D.23) 
\V"5-"eff/ 

0TE = 2tan-/\^^y (D.24) 
\V"5-'1eff/ 

With ;ic„. and hence ß1>:. known, K2v, 0C|V, a3v. and 0 can be calculated. From this information, the overall profile can be 
calculated .    ,,,, 

f cos(K2vd/2 + t>)e-a^-dM    y>d/2 
UjE(\,to) = b{   COS(K2VV + 0) -d/2<y<d/2 (D.25) 

[ cos(K2yd/2-0)ea^+J^      y<-d/2 

where b is an arbitrary (real) constant. In Appendix C, this constant is taken as unity. 

D.2.2   Derivation of TM Mode 
The solution for the TM mode must satisfy equation C.28, repeated here for convenience 

a2Vt™(y.Cüo)     ^rxz^(y,(üo) dVjM{y,(üo) _ 
dy2 dy dy 

{[ß™]2-^(,,a)0)}v7M(^(Oo), 

(D.26) 
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along with the boundary conditions C.29. When taking the boundary conditions into account at each interface, the eigenvalue 
equation to be solved in each homogeneous region is [159] 

a^.COo) = {[ß^]2-ifc2(y,mo)}vjTM(y,mo)l 
dy 

which has the same form as for the TE mode. 
Following the same steps used in the previous section yields the equation for the TM effective index 

2MV^-»eV<t>™-4>3M = 2^- 

The phases are defined 

4>™ = 2tair' 
'":\A'eff-"i' 

-I    I*) "> 
= K2vd+2<i>'±/l7t 

<t)™ = 2tan-1 |   ~V, | = K2yd-2^'±mn, 

and the overall profile can be written 

cos (K2V<//2 + tf)e-a»k-dM    y > d/2 
V™(y,(ü)={   cos(K2vv + 0') -d/2<y<d/2 

cos (KV//2 - o')ca*'Lv+''/21      y < ~dl2 

(D.27) 

(D.28) 

(D.29) 

(D.30) 

(D.31) 

D.2.3    Linear Waveguide Dispersion Properties 

This section calculates the dispersion coefficients for the TE and TM modes, taking into account both the material and waveg- 
uide dispersions. The waveguide structure is assumed to be three-layer, as illustrated in Figure D.4. 

The Sellmeier coefficients for three glass compositions [ 160] are given in Table D.4. These compositions are representative 

coefficient Si02 GeO::Si02 (0.135:0.865) B20.vSi02 (0.133:0.867) 

*i 0.069066 0.064270 0.061900 

A^ 0.115662 0.129408 0.123662 

Ä? 9.900559 9.425478 9.098960 

B\ 0.696750 0.711040 0.690618 

B- 0.408218 0.451885 0.401996 

By 0.890815 0.704048 0.898817 

Table D.4: Sellmeier coefficients for representative glass compositions suitable for waveguide fabrication. 

of glasses which are common for fiber and integrated waveguide devices. Because of the variability of glass properties between 
different melts and processing conditions, the coefficients for fused silica (Si02) in this table are slightly different than those 

listed in Table D.2. 
The three most important effective waveguide quantities to this thesis are the difference in the phase delays between the 

TE and TM modes, the difference in the group delays, and the effective group-delay dispersion coefficients. The first quantity 
leads to a beat length between the modes defined by 

'beai = 
231 

VTE. VTMI *3F- „TMI 
^eff I 

(D.32) 

When the propagation distance is much greater than the beat length, then phase-dependent terms in the nonlinear polariza- 
tion can be neglected as done for the simulations in Chapters 5 and 6, and the phase-dependent linear couplings derived in 
Appendix C for the slab waveguide geometry can also be neglected. 
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The second quantity leads to temporal walkoff, defined by 

Twalkoff = Aß'z, (D33) 

where Aß' = ßTE' - ß™' is the differential group delay coefficient, z is the propagation distance, and the effective TE and TM 
group delay coefficients are defined by equations C.50 and C.54. When the walkoff time is greater than the temporal duration 
of interacting pulses, then the interaction distance is limited to the walkoff distance, as defined by equation 1.33. As shown 
in Chapter 6 though, this birefringent walkoff can be beneficial in order to counteract the temporal walkoff due to the strong 
Raman down-shift of the pump solitary wave. 

The final quantity, group-delay dispersion, is only important for the spatio-temporal studies in Chapter 6. In this case, a 
negative group-delay dispersion (AGDD) coefficient allows for the formation of a bright solitary wave. The magnitude of this 
coefficient determines the ratio between transverse width and duration (and spatial width), with small magnitude leading to 
short duration and large magnitude leading to long duration. 

These three quantities for A = 1.55 urn are plotted as a function of core thickness in Figures D.5 and D.7 for symmetric 
waveguides, and in Figures D.6 and D.8 for asymmetric waveguides, with air serving as the upper cladding layer. The waveguide 
compositions shown consist of Si02 core with B203:Si02 cladding, and Ge02:Si02 core with Si02 cladding. These figures 
indicate that the use of asymmetric guides leads to shorter beat lengths and greater differential group delays. 

For the spatial soliton logic gates studied in section 5.4, the gate lengths were 2.63 cm, indicating that /beat «: 2.63 cm. 
Numerical simulation has shown that the phase-dependent effect of the vectorial four-wave mixing terms is nearly eliminated 
when the device length is greater than about 5 /beat- Therefore, for the spatial dragging gates, /beat < 5 mm. This criterion is met 
by the asymmetric waveguide of Figure D.8, for core thicknesses of about 4.5 /im or less. 

The spatio-temporal logic gates of section 6.3 have gate lengths of 8 Zo = 13.2 cm, so that /beat < 25 mm. This constraint can 
be met by all waveguide structures except for the first symmetric waveguide with Si02 core. There is an additional constraint in 
the spatio-temporal case, however. As discussed in section 6.3, due to the Raman down-shift, in cascaded operation, group delay 
birefringence is necessary to equalize the group velocities of the downshifted signal and clean pump in all cascaded stages. This 
differential group delay is about 2.3 to 2.8 fs/fum, which can only be obtained by the second asymmetric guide of Figure D.8 
with core thickness about 2 pm. Note, though, that the first asymmetric guide nearly fulfills this additional requirement as well. 
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Figure D.5: Linear properties of silica (SiO;) core, B;03:SiO: symmetric clad slab waveguide versus core thickness. All 
quantities are evaluated at kf = 1.55 pm. The birefringent beat length /^t is defined by equation D.32, and the differential 
group delay Aßü leads to temporal walkoff defined by equation D.33. For comparison, the GDD coefficient for the core 
material is -0.02745 fs;/^m, and -0.03865 fs2/jum for the cladding. 
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Figure D.6: Linear properties of silica (SiO:) core. B:0?:SiO: lower clad and air upper clad slab waveguide versus core 
thickness. The dispersive properties of air are neglected for simplicity. All quantities are evaluated at Xf = 1.55 fim. The 
birefringent beat length 1^* is defined by equation D.32, and the differential group delay Aß£, leads to temporal walkoff defined 
by equation D.33. For comparison, the GDD coefficient for the core material is -0.02745 fs'/pm, and -0.03865 fs2/fim for the 
lower cladding. 
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Figure D.7: Linear properties of GeO::SiO: core, silica (StO:) symmetric clad slab waveguide versus core thickness. All 
quantities are evaluated at Xf = 1.55 pm. The birefnngent beat length /^ is defined by equation D.32. and the differential 
group delay Aß;, leads to temporal walkoff defined by equation D.33. For comparison, the GDD coefficient for the core 

material is -0.01733 fs:/Pm- and -0.02745 fs\/>m for the cladding. 
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Figure D.S: Linear properties of GeO;:SiO; core, silica (SiO;) lower clad and air upper clad slab waveguide versus core 
thickness. The dispersive properties of air are neglected for simplicity. All quantities are evaluated at Xf = 1.55 /jm. The 
birefringent beat length 1^ is defined by equation D.32. and the differential group delay Aß£, leads to temporal walkoff defined 
by equation D.33. For comparison, the GDD coefficient for the core material is -0.01733 fs-/pm, and -0.02745 fs:/^m for the 
lower claddinn. 


