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Chapter 1

Introduction, Motivation and Background

This thesis deals with the topic of ultrafast, all-optical switching and logic using spatial and spatio-temporal solitons. The
main focus is on the accurate analytical and numerical modeling of the interaction among solitons in geometries that allow
for logically-complete, cascadable logic gates with fanout and level restoration. Detailed modeling will assist in subsequent
experimental investigation by identifying regions of stability, robust operation and reliability, and candidate material systems.

The work in this thesis makes significant contributions in the areas of fundamental nonlinear spatio-temporal propagation
and optical switching and logic. The first contribution is the result of a multiple-scales derivation directly from Maxwell’s
equations, which results in a first-order, multi-dimensional, vectorial differential equation that is accurate beyond the standard
paraxial and slowly-varying envelope and amplitude approximations. This result is fundamental to the studies of this thesis
and will have application in other areas as well, such as optical communications, short-pulse passively mode-locked lasers, and
atmospheric pulse propagation. »

The second contribution arises from the systems-level approach taken to optical switching and logic. Most optical switching
technologies do not satisfy the basic requirements for a logic gate. thereby rendering them of little use in applications beyond
simple. single-stage switching operations. The novel logic gates studied here satisfy the necessary requirements and thus have
the potential to make an impact in areas of ultra-high speed switching and logic systems. The desirable properties of these logic
gates are facilitated by the non-diffracting and/or non-dispersing nature of optical solitons.

1.1 Outline

The remainder of this chapter briefly presents background in device requirements and optical switching and logic. Section 1.2
provides motvation and a brief overview of promising applications for optical logic. Section 1.3 covers generic requirements
for switching and logic devices and additional specific requirements for optical devices. A brief review of other contemporary
optical switching devices and their shortcomings is presented in section 1.4. Logic devices which specifically take advantage
of the properties of optical solitons are discussed in section 1.5. which also provides an introduction to the optical soliton logic
gates.studied in this thesis. :

Detarfed background on optical solitons is given in Chapter 2. First, section 2.1 provides historical background in solitary
wave and sohiton phenomena. Section 2.2 covers some preliminary details that lead directly to the discussion of optical solitons
and solitary waves. The following sections then discuss spatial (sec. 2.3), temporal (sec. 2.4), and spatio-temporal (sec. 2.5)
optical solitons.

Chapter 3 derives the multi-dimensional vector wave equations necessary for the numerical simulations of the soliton-based
logic gates presented in later chapters. Section 3.1 covers a standard treatment of a fully vectorial, nonlinear Helmholtz-
type wave equation along with background on the linear and nonlinear susceptibilities. This second-order wave equation is
unsuitable for the purposes of this thesis due to the difficulty in numerically propagating an initial field distribution because
of the fast time and space scales in the equation. Instead. section 3.2 derives an asymptotic vector nonlinear wave equation
directly from Maxwell's equations which is first-order in the propagation coordinate and depends only on the scales of the
slowly-varying envelope, and is thus more suitable for numerical propagation. The importance of the results obtained in this
chapter arises from the higher-order nature of the derived equation, which extends beyond the approximations made in the
well-known multi-dimensional nonlinear Schridinger (NLS) equation, resulting in the capability to describe propagation of
vector optical field envelopes with very broad spectral content in both the spatial and temporal frequency domains, including
the effects of higher-order nonlinearities. '

Chapter 4 describes the split-step numerical method used to solve the vector nonlinear wave equations. The basis of
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this method is to treat linear and nonlinear (inhomogeneous) propagation in separate steps, performing linear propagation
in its natural Fourier domain and nonlinear propagation in the real-space domain. For a small step size, this splitting is a
good approximation. Section 4.1 covers multi-dimensional linear spatio-temporal diffraction, which can be solved without
approximation as an initial value problem. Noting that linear and nonlinear propagation are not separable, section 4.2 derives a
split-step formulation which is approximately second-order accurate in step size. This formulation is then applied separately to
(1+1)-D spatial and (2+1)-D spatio-temporal nonlinear propagation, to be used in later chapters. Finally, section 4.3 discusses
the accuracy of the method as it applies to problems of later chapters.

The use of one-dimensional spatial soliton interactions for logic gates is presented in Chapter 5. The first section covers the
basic soliton interaction geometries useful for three-terminal, restoring logic, noting that the collision and dragging geometries
using orthogonally polarized solitons, which are of the general class of angular deflection gates, provide the best performance
in terms of large gain with high contrast. Section 5.3 then examines the effects of linear and two-photon absorption on the
propagation of a single spatial soliton and develops appropriate figures-of-merit for use in comparing the suitability of nonlinear
materials for soliton logic gates. The collision and dragging logic gates are then compared in the presence of absorption using
the material parameters of fused silica, where the spatial dragging gates generally perform better because of their shorter gate
lengths. The final section (5.4) computes the transfer functions of the collision and dragging gates and determines the maximum
fanout that these gates can provide in a cascaded system. The results of this chapter provide guidance for the spatio-temporal

~ logic gates of the next chapter, which is of ultimate interest.

Logic gates based on the interactions between two-dimensional spatio-temporal solitary waves is the subject of Chapter 6,
which have the potential for greater than THz switching rates with nJ to pJ switching energies. Section 6.1 discusses the
propagation of a single spatio-temporal solitary wave with higher-order linear and nonlinear effects as derived in Chapter 4.
This section shows numerically that stabilized solitary waves suitable for logic gates should exist. With these results, section 6.2
studies the vectorial interaction between these spatio-temporal solitary waves with emphasis on the dragging interaction. For
completeness, section 6.3 presents results on cascaded logic. It is shown that the dragging logic gates can provide reasonable
fanout in a cascaded, logically-complete, system, but also that, ultimately, the performance of the logic gate will be limited by
the effects of Raman scattering.

Finally, Chapter 7 concludes, noting that this thesis provides the theoretical and numerical development that is necessary to
study a novel class of all-optical logic gates. Numerical simulations have shown that these gates satisfy the system requirements
that suggest their use beyond simple, single-stage operation, and paves the way for future theoretical and experimental work on
ultrafast. all-optical logic systems.

1.2 Applications in Switching and Computing

The traditional advantages that optics hold over electronics are the inherent speed, parallelism, and lack of inductive or ca-
pacitive crosstalk, although crosstalk does occur to some extent in linear propagation due to scattering and diffraction, and in
nonlinear propagation. which plays an important role in the topic of this thesis. These properties allow linear optics to map
well onto problems in interconnection [1]. It is generally accepted that optical interconnects will replace electric transmission
lines 1n many applications. Indeed, this is already occurring in long-haul communications networks and is expécted to occur
in short-haul and local-area networks as well. It is an open question to determine how far down the interconnect hierarchy this
trend will reach. but it is fairly clear that it will extend to system level switching fabrics. In all of these cases though, the data
is actually switched electronically, or under electronic control, and processed electronically. :

It is less clear what role optics will play in switching and digital computing however. The soliton-based logic devices studied
in this thesis are one approach to all-optical logic for switching and computing applications. Numerous all-optical switching
and logic devices have been proposed, but none so far have reached the stage of practicality for real systems. There are certain
minimum requirements for a logic device, and many of the optical approaches to logic fail to meet them. These requirements
are discussed in section 1.3 and some contemporary optical switching devices and their failings are discussed in section 1.4.
A clear understanding of these failings aids the present study of optical soliton-based logic devices. As section 1.5 explains,
the soliton devices completely satisfy the fundamental requirements (and most of the practical requirements as well) for digital
logic [2.3] and might succeed where the other optical approaches have failed.

The following sections discuss two general areas for which restoring, cascadable logic gates, such as those studied in later
chapters of this thesis, might find widespread application. : '

1.2.1 Optical Communications Networks

With the advent of high-bandwidth optical communications [4], high-speed switching technology becomes a necessity. Because
information will be transmitted optically, it makes sense to explore optical technologies and devices to perform (or at least assist
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in) the switching necessary to multiplex, demultiplex, and route information to the correct destination. Future bandwidth needs
will be too great for an electronic-only solution to the switching problem. An advantage of optical devices in communications -
systems is the ability to switch and/or perform logic at the bit rate. This means that switching and logic operations are performed
at and scale with the rate of incoming data, which is especially important in Tb/s communications switching and routing
applications. Conversely, interconnected electronic gates cannot arbitrarily scale with the data rates and may ultimately be
limited to speeds of about 50 Gbit/s [5]. .

Optical switching and logic devices are well suited for time-division multiplexed (TDM) data transmission [6], in which
many low bandwidth channels are interleaved into individual time slots within a single high bandwidth channel. Here, the
aggregate data rate may exceed 100 Gb/s [7], which is well beyond the performance expectation of practical, low power,
electronic or optoelectronic switching networks. Therefore, at the very least, optical switching technology will find use in the
intermediate processing layer in which the individual channels are optically separated (demultiplexed) from the single, high-
speed transmission channel, for subsequent processing in the electronic/optoelectronic domain. An additional area of use is in
data regeneration within an optical transmission line, which requires an optical logic gate. Given sufficient noise margins, an
optical logic gate regenerates a noisy or attenuated data stream with fresh pulses that are derived from a power supply or clock,
such that timing, amplitude, shape, etc., are completely restored. This type of all-optical repeater may eliminate the need for
high-speed, high-power electronic repeaters in long-haul transmission.

Currently, the most popular multiplexing technique for long-haul communications and local-area optical networks is wave-
length division multiplexing (WDM), in which each low bandwidth source channel is assigned a slot in the optical frequency
spectrum. WDM has the advantage that multiplexing and demultiplexing can be performed by spectrally selective, passive,
optical elements. However, due to the difficulties in developing a large array of stable wavelength sources, the individual
channels in a WDM system may exceed data rates of 10 Gb/s [8,9], which may be of sufficient bandwidths that other advan-
tages of optical switching and logic devices, such as the elimination of the optoelectronic conversion process [10], potentially
lower power, and the use of deep optical circulating delay lines [11] for contention resolution, may play a role in the choice of
implementation technology. :

More complex operations are required in packet switched optical networks [10, 12]. In these networks, at each node, a
packet header is decoded, which determines the direction in which to route the packet. Header recognition is a simple digital
correlation operation, but must be performed at the bit rate. Typical implementations based on optical switches [13] perform
this operation in parallel, which results in a 1/N loss where N is the number of bits in the header. In order to reduce the latency
at each node and avoid the fanout loss, a digital comparator, or shift register, could be used instead, based on optical logic gates.
In addition. optical logic could be used for contention resolution, real-time encryption/decryption, and other complex tasks as
well. Therefore. intelligent digital optical processing may'play a significant role in the development in the next generation of
high-speed optical communications networks.

1.2.2 Digital Optical Computing and Processing

Determining what role optics should play in general-purpose computing is an open question. The technological lead, resources,
and infrastructures that electronics enjoy may be insurmountable for general-purpose optical computing. Even a compelling
optical technology may not be enough to impact the future of digital computing, but there is potential in niche areas which are
discussed in this section.

Simple digital optical logic circuits have been demonstrated [14, 15] and proposed [16], which pave the way for more
complex systems. However, many of these studies have been based on optical switches or gates that do not completely satisfy
the requirements for digital logic. For example, the nonlinear Fabry-Perot etalon [17] is a two-terminal device which must be
biased about an operating point with a holding beam and is very sensitive to variations in device parameter (i.e. the transfer
characteristics vary from device to device). All of these factors preclude their use in complex systems. The logic gates studied
in this thesis. on the other hand, do not suffer from these problems and could serve as fundamental building blocks in more
complex systems. ‘

In the absence of high space-bandwidth optical interconnections, bit-serial computation and signal processing [18] is a
promising application area, especially when the problems of interest can be processed in a highly pipelined manner [19].
Genera! purpose optical computers [20] have even been demonstrated using the bit-serial approach. One potential limitation
for ultra-fast digital optical computing is the memory store. It has been shown, however, that an optical delay line can be
used to implement a general machine [16], at the cost of increased latency. These tradeoffs are based on the transformations
of computational origami [21]. Even more computational capacity can be realized with the combination of optical logic gates
with optical interconnection, for which the power of the interconnection network allows for the efficient mapping of problems
that would be difficult to process electronically [22].
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1.3 Requirements for Digital Switching and Logic Devices

Routing switches and logic elements must possess certain properties in order to function properly within a system. The major
distinction made here between switching elements and logic gates is that switching elements physically direct electrons or
photons from one or more input ports to one or more output ports, while logic gates replace electrons or photons on the input
ports with “new” electrons or photons derived from a power supply which then appear at the output ports. The requirements
for a switching device are much less stringent than those for a logic device and will be discussed first. Additional requirements
for an optical logic device are discussed in the following section.

1.3.1 Switching Devices

Optical routing switches are typically used just in the first switching stage to reduce data bandwidth to a level that electronics
can handle in subsequent stages. These switching elements use a control to physically direct light from one or more input
ports to one or more output ports and thus can be used to implement multiplexing and demultiplexing functionality. The
routing decision is based either on the intensity of the signal inputs or by the presence of an externally derived control which
is independent of the switching fabric. Therefore, the control is typically not of the same format as the data, meaning that the
output of the switch cannot directly serve as the control for another switch [3]. As a result, this type of routing switch has fewer
requirements than a logic gate.

The most important requirement of a switching device is high contrast operation. In binary transmission, the contrast

"determines the threshold level which separates the high and low states. Higher contrast gives larger noise margin, resulting in

lower bit-error-rate (BER). For the output of a switching element, the overall contrast depends both on the contrast of the data
stream (the difference in signal level between the two binary states which depends on the modulation ratio at the input of the
transmission line and on the transmission line itself) and the contrast of the switching operation.

Another important requirement is switch transparency. If the switch is lossy oronly a small fraction of the input is diverted to
the output by the switching action, then high-speed, single-shot detection may become impossible, resulting in information loss.
This does not mean that the switching operation must provide gain, though. For high-contrast output, saturation of an external
amplification stage can be used to restore the data signal levels, but the gain recovery time may limit the data rate and introduce
inter-symbol interference, the contrast at the output of the amplifier may be reduced, and complete logic level restoration (as
discussed later for optical devices) is not obtained. The amount of gain is also limited due to amplified-spontaneous emission
(ASE) noise, which increases the noise floor. .

Routing switches do not have signal level restoration (in the absence of external amplification or level shifting) and the
outputs may degrade due to loss or crosstalk and therefore BER may suffer from a long cascade of switches. If data pass
through many levels of switching, such as in a multi-level implementation of an N:N crossbar or the binary tree structure
required for 1:N or N:1 multiplexors or demultiplexors constructed from 1:2 or 2:1 switches, then gain and level! restoration
as mentioned previously may be a necessity, subject to the limitations discussed in addition to ASE noise. Three-terminal
operation also becomes necessary when many levels of switching elements are used such that the operation of the switch in
unidirectional, which prevents any light entering the output ports from affecting the operation of the switch.

Therefore. inorder to implement more complex, multi-level switching fabrics, or to handle data-dependent (i.e. self-routing)
switching operations, switching elements must have the additional properties and fulfill the more demanding requirements of a
fogic gate. Itis in these applications that most all-optical switching devices are inadequate, as discussed in section 1.4.

1.3.2 Logic Devices

A digital logic gate performs a Boolean operation on one or more binary inputs. All inputs and outputs are of the same physical
format thus allowing control to be distributed throughout the switching fabric [3] such that one data stream can contro! another.
The logic gate completely restores signal integrity and timing by replacing the electrons or photons at the input with new
electrons or photons from the power supply that go to the output.

Logic levels (i.e. 0 or I in digital logic) are physically represented by signal levels, which may be voltage or current
for electronics; or for the representationally richer case of optical logic, amplitude, phase, polarization, or color, and are
differentiated by a threshold nonlinearity. Information is carried by the logic level and is determined by the interpretation
of the signal level (based on the threshold). Since the signal level can be altered during a logic operation, small noise or loss
can accumulate throughout the computation and cause information loss. A digital representation of information avoids this
degradation if the signal level is restandardized at each step [23]. Restandardization means that the signal levels are restored to
values (that are the same throughout the system) which represent valid logic states. As a result, a small deviation about a valid
logic level propagates at most one stage and the logic level remains intact (within the allowable noise margin). The is termed
logic level restoration.
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nMOS inverter o transfer function

supply (Vdd)
input
_ JI output

Figure 1.1: nMOS inverter circuit and associated transfer function. Near the threshold voltage is a region of small-signal gain.
Large-signal gain is also provided (Vs > Vin) and the high and low output states are saturated.

The properties required by a digital electronic [24] or optical [25] logic device are well known. Perhaps the most important
requirements, upon which many other requirements depend, are gain, saturation, and'threshold. These characteristics are illus-
trated in Figure 1.1, which shows the sigmoidal input-output relationship for a simple nMOS inverter. At the most fundamental
level. a region (typically near the input threshold) of differential or small signal gain in the input-output transfer function, where
a small change in the input produces a large change in the output, is required (but not sufficient) for a restoring logic gate [26].
Small-signal gain provides sharp switching characteristics and allows for low modulation depth on the input signal biased about
the threshold level to produce high contrast switching. Outside the linear region of small-signal gain, saturated levels are key
to providing large noise margin by attenuating small variations in the input about valid logic levels (i.e. inputs lying within the
“on™ and “off™" regions shown in the figure), thus producing little change in the output.

Restoration of the logic level prevents accumulation of errors due to attenuation or crosstalk by providing fresh gate output
levels directly from the power supply. In the case of an optical gate, logic level restoration must include, in addition to power
levels. beam shape and position, pulse duration, color, polarization, and timing [25]. These levels are standardized throughout
the entire system typically by the common power supply and ground. Standardization is possible because small-signal gain and
saturated levels in the nonlinear transfer function allow for a wide tolerance to the variation in operational characteristics of the
devices in the system [24].

Large-signal gain means that the output of the gate is larger than the input required (at least threshold) to switch the gate.
Without large-signal gain, fanout, in which the output of a gate provides inputs to many gates in order to implement arbitrary
logic functions, 1s impossible. Most optical logic gates cannot intrinsically provide large-signal gain, and in fact, the output is
typicatly much smaller than the input. Although a separate, external amplification stage can be used, this may limit the bit rate
and result in reduced contrast and increased BER when the amplifier noise exceeds the device noise margins. A logic gate with
intrinsic gain, in which a small input controls a large power supply, does not suffer this source of noise. '

Additional requirements for synthesis of arbitrary logic and switching are logical completeness and cascadability. A com-
plete set of logic functions must include inversion [24]. Inversion is a basic function of MOSEFET electronics and the inverter
structure forms the basis towards implementing more complex Boolean operations such as multi-input and logically complete
NOR. Cascadability means that the output of one gate can directly drive the input to the next and allows the direct implemen-
tation of multi-level logic. Logic level restoration and inputs and outputs of the same format are therefore crucial to allowing
cascadability. :

The most successful logic devices have three orthogonal ports (which can be separate in time, space, wavelength, or polar-
ization) and input-output isolation. A three-terminal device, such as an electronic transistor, ensures that the output of the gate
depends only on the inputs and the output does not perturb the operation of the gate [24]. This input-output isolation results in
one-way operation and prevents downstream noise which enters the output port from affecting the operation of the gate. There
are many examples of two-terminal devices in optics. The problem with two-terminal devices is that they work equally well
in either direction [25]. The classic examples are the laser [27] (a two-terminal device with gain) and nonlinear Fabry-Perot
etalon [17] which, when critically biased [28], can switch either through the input or through an unwanted reflection back into
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the output.

1.3.3 Optical Devices

The main additional requirement for an optical logic device is operation independent of the relative phase between the beam or
pulse of light that induces the switching operation and the one that is switched. Phase-sensitivity is not an issue in electronic
devices since the phases of the interacting electrons are continuously randomized from phonon collisions [3]. Phase insensitive
logic operation s critical in optics because of the coherence of laser sources and since phase is difficult to control in complex
systems due to the small optical wavelength. An optical logic gate can be made insensitive to relative phase by using the
interaction between optical inputs of orthogonal polarizations or inputs that are spectrally resolved in angle or frequency such
that there is no linear interference, but there may be nonlinear interference.

Material nonlinearity is a necessary requirement in order to implement an optical logic gate. The desire for a low loss,
ultrafast gate opposes the desire for low switching energy which can be achieved via the use of resonant nonlinearity. Because
of the large loss associated with resonant nonlinearity, most ultrafast optical switching and logic gates utilize a much smaller
nonresonant nonlinearity. A detailed exploration of the effect of loss on optical soliton logic gates is presented in section 5.3.

It is also desirable for the nonlinear coupling between the interacting optical fields to depend only on intensity, but this can
only be guaranteed in certain situations, such as with orthogonal circular polarizations in bulk isotropic media [2,29]. Other
situations can reduce phase-dependent nonlinearity by using the accumulating phase difference between orthogonally polarized
hinear eigenmodes of naturally or artificially birefringent media to wash out the phase-dependent nonlinear effects.

1.4 Digital Optical Switching and Logic Devices

optical Kerr gate, nonlinear optical loop mirror (NOLM) or Sagnac gate, and the terahertz optical asymmetric demultiplexor
(TOAD) and its variants. Even though these devices may possess a region of small-signal gain, only the NLDC has saturated
levels 1n the device input-output curve and none intrinsically provide a robust way to obtain large-signal gain. As a result, the
main requirements for these devices are those of a single-stage switch, the most important of which is high contrast, which
results from complete switching. :

In many of these devices, complete switching occurs upon accumulation of a 7t differential nonlinear phase shift. This phase
1> between two independent components of the same beam or pulse and is not to be confused with the relative phase between
control and data as discussed earlier on phase-insensitive operation. The accumulated nonlinear phase shift can be written

generically

Some of the most promising all-optical devices for ultrafast switching and logic are the nonlinear directional coupler (NLDC),

2mna

AD =8 |A|*d, (1.1)
Af

-

where 1~ 15 the nonlinear Kerr coefficient defined by the total index n = ng +n2|A|, Ay is the free-space wavelength, d is the
interaction length, A is the electric field amplitude of the light that induces the switching operation, and 8 is a constant factor
determined by the nonlinear interaction. The phase shift is proportional to the nonlinear index, the peak intensity, and the
interaction length, and can be made large by an increase in any one of these parameters. At the output of the device, this phase
shift manifests nself as an amplitude change, either as a rotation of the polarization followed by an analyzer or due to coherent
beam combining at an output coupler. .

Even though silica has a small nonlinear index for example (see Appendix D), low loss fiber can provide very long inter-
action lengths o with tight transverse confinement [30]. thus making fiber based switching devices very popular [3]. Because
switching occurs within the fiber, the control and data must be of different wavelengths and/or polarizations in order to avoid
the power loss in coupling in the absence of phase locking and in order to discriminate the switched data from the control at
the output. As a result, operation independent of the relative phase between data and control is achieved, but group-velocity
or birefringence walkoff limits the interaction length (the walkoff must be less than the pulse durations) and therefore the data
rate. These devices are now discussed individually in some detail. :

1.4.1 Nonlinear Directional Coupler

This nonlinear switching device is based on the directional coupler as shown in Figure 1.2. The linear directional coupler relies
on the coherent interaction between two waveguides placed near each other. The coherent interaction is due to evanescent
overlap between fields confined within the individual waveguides and results in periodic energy exchange between the guides.
The presence of nonlinearity frustrates this coherent exchange by detuning the waveguides and can result in intensity-dependent
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guide 1 coupling region  bar

input

guide 2
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Figure 1.2: Directional coupler. In linear operation, energy is exchanged periodically between guides in the coupling region.
Nonlinear operation can frustrate this coupling, resulting in controlled switching.

switching between the output ports. The NLDC was originally proposed [31] as an alternative to bistable switching devices such
as the nonlinear Fabry-Perot etalon. More recently, it has received much attention, particularly in the capacity of a prototype
all-optical switching device [32], and for ultrafast optical demultiplexing [33].

In the limit of weak coupling between identical guides. the coupled mode equations for the NLDC are

—i_aT =KA3+kfn3|A1|2A1 . » (1.2)
0A> ‘ '
--i-szl :KAl+kfnz|A2|2A;v_, ‘ (1.3)

~ where K is the linear coupling constant, and A; and A represent the electric field amplitudes in guides 1 and 2 respectively.
Assuming no nonlinearity, the amplitude in each guide can be written

9°A,

—aT:":"K:Al = A{z) = a;cos(Kz)+ b sin(Kz) _ (1.4a)
32 =—K"Ar = A>(z) = a>cos(xz) + basin(Kz). (1.4b)
With the boundary conditions A{ (0) = Ag and A>(0) = 0. the coefficients by = a» = 0, leading to the result
A1(z) = Apcos(K2) - (1.52)
A-(z) = Apsin(Kz). ‘ (1.5b)

The output intensities at the bar and cross ports are given by
1i(d) = lycos® (nd/ Leon) - (1.62)
I(d) = lysin® (7d [ Leon) - : (1.6b)

where the coherence length is defined Leon = 7/K and is the length over which light is completely coupled from one guide to
the other and back. Therefore, for a half-beat length coupler with d = Lcon/2, input into guide | emerges at the output from
guide 2 (cross state). :

In nonlinear operation, using the nonlinear coupled-mode equations, the fractional intensity in each guide is written [31]

hd) 1)) e i’i‘i[ir (1.72)
I ~ Leon Uert) ) | o
CIY P 2 ‘ 1.7b
Iy 2 ¢ Lcohiylcrit ' ) (176)

where cn() is a Jacobi elliptic function. As before, this solution assumes that there is no light initially launched into guide 2.
The critical intensity is defined as )

[]]

Ay
nLeon’

(1.8)

Iy =
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Figure 1.3: Operation of half-beat length nonlinear directional coupler. For low power, or linear, operation, the input pulse exits
the cross port (guide 2) while in nonlinear operation, the central portions of the pulse, which exceed the critical intensity, exit
the bar port (guide 1) with the wings exiting the cross port.

and represents the input intensity for which the light is divided equally between the two output ports {31]. For a half-beat length
coupler, the critical intensity results in a 7 phase shift for the field in guide 1, and 8 = 1 in equation 1.1. Above the critical
intensity. the fraction of light exiting the bar port increases towards unity. This two-terminal device performs a switching
operation since photons from the data stream are directed into one of two output ports.

A half-beat length NLDC is shown schematically in Figure 1.3, where a low-power data pulse couples to the cross port while
a high-power data pulse remains in guide 1 (bar state). The high-power case can be understood intuitively by considering the
nonlinear increase in the core index which more strongly guides the light, thus detuning the coupler. Notice that only the central
portion of the high-power pulse exceeds the critical intensity and remains in guide 1. This effect is called partial switching, or
pulse breakup. and is characteristic of many optical switching devices and results in reduced integrated energy contrast [33]. In
fact. partial switching is a problem with all of the non-soliton devices discussed in this section. Solutions to this problem are the
use of square pulses [34] such that the intensity is constant across the pulse duration, or the use of temporal solitons [35-37],
which propagate unchanged and tend to switch as a unit because of uniform phase across the pulse profile [38].

Figure 1.4 shows a plot of the switching fraction into the bar output port versus normalized peak pulse intensity launched
into guide 1 for the half-beat length NLDC. The solid curve shows the fraction of the light that remains in the bar state assuming
a constant ntensity square-top pulse as given directly by equation 1.7a. The curve for the soliton case has similar shape with
sharp switching characteristics [35], but the switching intensity threshold is about twice the critical intensity because the induced
nonlinear phase is half that of the plane wave case, as shown in section 2.2. The dashed curve shows the light fraction assuming
a non-soliton sech?() input intensity profile and takes into account partial switching which leads to reduced contrast operation
as indicated by the greatly reduced switching fraction. In either case, at low input levels, all of the light switches over to the
cross port. while at high inputs, most of the light exits the bar port.

Direct cascadability can also be addressed using Figure 1.4, where the dotted line represents the input threshold for which
the output of the bar port exceeds Ic;. Figure 1.5, which shows the transfer function for each port of the device, provides the
same information more clearly, As shown in the figure, for a square-top pulse, an input intensity greater than 1.1 I is required
to exceed the threshold intensity at the bar port. In this case, the output of the bar port can be used as the input to another
device resulting 1n 50% switching of that second device. Therefore, much higher inputs than 1.1 /. are necessary to cascade
to another device. but. due to the lack of large-signal gain and in the absence of external amplification, any optical losses in
the system will eventually result in the degradation of the signal level to the point that switching ceases. The situation is worse
in the case of a nonuniform pulse. Here, a peak input intensity of greater than 1.6 e is required for at least 50% switching
of a subsequent device. Indeed, because of partial switching. attempts at cascading two such devices have met with limited
success [39]. A final point to note is that when designed as a half-beat-length coupler in linear operation, the NLDC transfer
function has quasi-saturated levels which attenuate fluctuation in the input level and allow for some noise margin.

As described so far. the NLDC is a two-terminal device whose switching operation is determined by the intensity of the
input signals. A three-terminal version can also be constructed by using a high-power control pulse to switch a low-power data
pulse as shown in Figure 1.6, but this device is not directly cascadable either due to the lack of large-signal gain and inconsistent
signal representation (using different wavelengths). The control pulse must be of different central frequency or polarization in
order to avoid phase-sensitivity and to extract the data at the output with zero background. Experimental demonstrations have
used different frequencies because of the large difference in coherence lengths between orthogonal polarizations [33]. There
are still partial switching problems if the control pulse does not have constant amplitude. An additional problem is dispersive
walkoff, which will be discussed in more detail for the Kerr gate. A recent demultiplexing demonstration [33] used a longer
control pulse length and allowed the data pulse to walk-through the contro} to achieve complete switching, and therefore, high
contrast. Lengthening of the control pulse means that the separation between data pulses needs to be larger, thereby reducing
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Figure 1.4: Switching fraction into the bar port for a half-beat length NLDC versus input peak intensity. The fraction into the
cross port is inverse of the curves shown. The solid curve is for a square-top pulse while the dashed curve is for a non-soliton
sech®() intensity profile pulse indicating incomplete switching. The dotted curve shows the threshold for which the bar state
output exceeds the critical intensity.

the data rate and increasing the switching energy, but also allows for some tolerance to timing jitter.

Because of the region of small-signal gain shown in Figure 1.5, it is possible to obtain large-signal gain with this device,
based on the process of light-induced symmetry breaking [40]. as originally studied using a phase-dependent interaction be-
tween light input into each port. The input into port 1 is biased with a “power supply” or clock pulse near the critical intensity,
which is an unstable operating point. Due to small-signal gain, a weak control input into port 2 is amplified, resulting in
complete switching into either the bar or cross state depending on the relative phase between the inputs in ports 1 and 2. For
a multiple of 27 relative phase, the inputs add constructively and the output emerges from the bar state, while for 7t relative
phase. the inputs add destructively causing the output to emerge from the cross state. This switching is critically dependent
on the relative phase between the data and control, and therefore cascadability may be difficult to achieve if the phase of the
output depends on the intensity of the inputs. It also appears that such a device would be sensitive to variation in waveguide
parameters.

A phase-independent version of this three-terminal device with gain can be realized using weak amplitude to initiate switch-
ing into the bar port. thereby providing a controlled inversion operation at the cross port. This device must therefore meet the
more demanding requirements of a logic gate. Again, if port | is biased by a clock pulse at some level less than the critical
intensity such that the clock exits the cross port, then additional light of orthogonal polarization or color entering port 1 can
activate switching into the bar port. Therefore, logic level restoration is obtained since only the power supply or clock pulse
(from the cross port) is passed to subsequent gates when the control pulse is blocked by an analyzer or spectral amplitude filter.
For instance, referring to Figure 1.5, for bias in port 1 of 0.8 /s, then an additional contribution of 0.6 I, (for cross-phase
modulation coefficient of 2/3) can cause complete switching into the bar port. This example illustrates a gain of 1.3, which is the
maximum for the standard device and may not be achievable in practice because there is strong variation in switching intensity
with power supply and device variations will not allow for level standardization. It is clear that the larger the small-signal gain,
the less the input required to switch the state of the device. Because of the ripples in the transfer function, a control pulse of
intensity 1.2 will allow for an output level of 0.2 at the cross port, thereby significantly reducing the contrast of the gate. When
the switching is incomplete, though, the small-signal gain may be less than unity, precluding the possibility for large-signal
gain, as illustrated by the transfer function for the non-soliton sech?() (in intensity) pulse. '
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‘anurc 1.6: Three-terminal half-beat length NLDC. The control pulse is of a different color or polarization than the data pulse.

1.4.2 Kerr Gate

The optical Kerr gate was proposed as an ultrafast photonic gating device [41]. In the implementations discussed here, the
Kerr gate is a three-terminal device in which data is either passed or blocked at the output. Since logic-level restoration is
not possible. this device is simply an optical switch. The bulk geometry is shown in Figure 1.7. By virtue of the difference
between self-phase modulation and cross-phase modulation, the gate beam A induces a differential phase shift which rotates
the polarization of the signal beam Aa, as long as there is nonzero projection of the polarization of A» onto a direction orthogonal
to the polarization of A;. Assuming plane waves interacting at small angles, the total electric field at the input can be written

E(0) = £[A;(0)e™" + cos 0A2(0)e ™" + cc] + 9 [sin BA,(0)e i 4 cc]', (1.9)

where 0 is the angle that the polarization vector of A» makes with the x axis, which is the assumed polarization direction of A;.
Note that in practice beams must be used in order to spatially separate A and A; at the output, where the angle of interaction
is greater than the diffraction angle of either beam such that the beams are spatially resolvable in the far field. An additional
consideration when dealing with beams (or pulses as in the fiber geometry) is that partial switching occurs analogous to the
situation with the NLDC. For simplicity, the plane-wave analysis is used and is sufficient for the present purposes.
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Figufc 1.7: Bulk Kerr gate geometry. The polarization of the signal (or data) A; rotates based on the intensity of the gate (or
control) A;. In the absence of A, Az is blocked by the analyzer at the output. For A, of sufficient intensity, A is transmitted by

the analyzer.

After a propagation distance d in the nonlinear medium, the polarization components accumulate linear and nonlinear phase

Ay(d) = A, (0)e*od P (1.10)
A (d) = An, (0)0d P2 (1.11)
As(d) = Az, (0)e™ 0!, : (1.12)

where the nonlinear phases are written as

21 d B 2
bl - A (P L 2A 1A ()] dz )
o= /0 [1412) + Ax (1 +28|42,() ] ¢z (1.13)
. ofd - )
@ = ——2:'” [(Al (2) + An(2)* + 24 |42 (2) ] d= (1.14)
5 Jo ‘
2mny (4 e ] alge
@3 =52 [ a0 + 201410 + A2l (115)

The factor 2A denotes the cross-phase modulation coefficient and is equal to 2/3 in isotropic media. Assuming that |A;| >
{As]. thus precluding the possibility for large-signal gain, and that there is no absorption or power exchange throughout the
interaction. the nonlinear phase induced on A: can be simplified to

21ns

®a = =—A(0)Pd - | (1.16)
A[ »
2mns )
O, =20=—|A;(0)|"d, (1.17)
) " hs v
with the differential change in phase between the polarization components of A, written
27n-
Ad):cb;,-qh,:—x"—-[l—zzx] 141 (0)]*d, (1.18)
f

such that § = 1 — 2A.
In terms of a Jones vector, the output A> before the analyzer can be written

. . iAD
A'v(d) :Ag(O)e'kode"Dzﬁ‘ [ cos e ] (1.19)

- sinB
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The transmission of a linear polarizer (analyzer) oriented at an angle ¢ relative to the x axis is {42]

cos>¢  sin¢cosd .
sinpcos¢  sin’¢ } : (1.20)

re=|
The output intensity of the signal beam after passing through the analyzer is therefore

hL(d) :.12 (0) [sin2 ci)cos2 o+ cos?Bcos* o+ sin® O sin® 0] (121

&

+2cosOsinBcosdsindpcosAP ] ,

where the intensity /2(0) = ggcng IAg(O)]2 /2.
Typically, & = 8+ 7/2 so that complete extinction is obtained with no nonlinear phase shift, thus implementing a pass gate.

In this case. the output intensity is
L(d) = 21,(0) cos?65in>6[1 — cos AD]. (122)

In order to maximize the contrast of the device, 8 = 1/4, leading to the final result

I(d) = 12(0) sin® (AD/2). (123)

Therefore. a minimum of a 7 phase shift is again needed for complete switching, but over switching results when A® > 1. A
contrast ratio can be defined based on the difference between the high and low output states of a single port

Ix(d) Ihigh - Il(d) |low

P= () |hign + 12(d)iow (129
In the case of the pass gate, p = 1, assuming an analyzer with perfect extinction.
An inverter can also be realized by setting ¢ = 8. The output intensity is ‘
I(d) = 1:(0) {1 - 2cos* @sin° @ [1 —cosAd}}. .(1.25)
Agan. 0 = /4 maximizes the contrast, leading to the result
I(d) = 1,(0) [1 — sin” (Ad/2)] , (1.26)
with A® = % for complete extinction of the signal. The contrast ratio of the Kerr gate inverter is
sin’ (A/2) 0<p<l. - (1.27)

= 2 sin’ (A0)2)

Now the contrast 1s imited by the precision to which the intensity of the gate beam can be controlled in order to exactly achieve
the condition A® = x for complete extinction of the signal.
: Figure 1.8 shows the input-output relationships for the pass gate and inverter geometries. The maximum small-signal gain
occurs when A® = (2m+ 1) n/2, but, since /; > [>. small-signal gain is always much less than unity. In addition, there are
quasi-saturated levels for AQ = mm, where m is a positive integer. The most important point to note is that over switching can
occur. As Ad increases towards T, the pass gate switches on and the inverter switches off, but as A® increases past 7, the pass
gate switches off and the inverter switches on. Therefore. there are no true saturated levels giving rise to stable states insensitive
1o vanations 1n the gate beam intensity. '

Because of the condition /; (0) 3> /2(d). large-signal gain is not intrinsically possible with the Kerr gate either. In other
words. it takes a high intensity gating beam to switch a small intensity signal beam. External amplification can be used to bring
the high output state after the analyzer to the level required for switching a subsequent stage, but because of the over-switching
problems inherent in the device, this process may not stable and could eventually lead to attenuation of the signal level after
a long cascade of devices due to unavoidable amplitude fluctuations. This process can be made stable through the use of a
saturating amplifier, but the gain recovery time of the amplifier will place a limit on the data rate.

As an example of the switching intensities needed for the Kerr gate, consider a 1 cm thick sample of fused silica, with
nh = 3.3% 1071 cm?/W at Ay = 1.55 um (see Appendix D). In this situation, a gate intensity of /, (0) = 700 GW /cm? is
required. This intensity can be lowered by orders of magnitude by goingtoa fiber geometry in which the interaction length can
be extended to many km’s, as shown in Figure 1.9. For a 1 km fiber gate, /;(0) = 3.5 MW /cm?. Another advantage of the fiber
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Figure 1.8: Transfer functions for the Kerr gate. The solid curve shows the normalized output versus induced phase shift A®
for the pass gate geometry, while the dashed curve shows the same information for the inverter.
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Figure 1.9: Fiber Kerr gate geometry. The gate and data pulses are of different central wavelengths. The gate pulse is timed
to co-propagate with and extract one data pulse. Wavelength-division multiplexing (WDM) couplers launch the gate pulse into
the interaction region and extract the gate pulse at the output for background-free operation. The bulk analyzer shown can be
replaced by an in-fiber polarizer.

geomelry 1n communications situations is that there is no need to couple the signal, or data, pulses out of and back into the fiber
in order to achieve the desired switching operation. ‘ '

Since the pump and data pulses must be separated at the output for background-free operation (i.e. high contrast), the two
pulses must be of different color. An additional constraint is that the fiber must be polarization preserving. or birefringent, in
order to keep the polarization of the data pulses from randomly evolving due to thermal or stress variations. As a result, the
polarization components of the data pulses pick up a nonzero relative phase due to the intrinsic birefringence

A (d) = Az, (0)e*xdei®2 (1.28)
Az (d) = Ay (0)eM e, (1.29)

where ky = 2mn /Ag, ky = 2nny /Ay and n, and ny are the indices of refraction along the principal axes of the fiber. The final
polarization state without the gate pulse is in general elliptical, but the original state of polarization can be recovered using a
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Figure 1.10: Pulse walkoff in fiber Kerr gate geometry. The fiber length is denoted by d, but the interaction length is limited
to the birefringent or dispersive walkoff distance L. This diagram illustrates the dispersive walkoff between the gate and same-
polarized data. The birefringence walkoff between the two components of the data pulse is similar.

compensator plate. Now, the nonlinear phases are written

@, =22 14,(0)|°d ( (1.30)
®a, =282 14,(0))7d, (1.31)
f .

where the factor of 2 in the x phase is due to the interaction between waves of different frequency, and the four-wave mixing
terms have been neglected. The differential phase is ' :

47'['1:

(1= 44 (0)d, (132)
/

Ad =

which. when A = 1/3. is a factor of 2 larger than in the bulk geometry due to the increased cross-phase modulation coefficient
between ditferent colors in the same polarization state.

In an early Kerr gate demultiplexing experiment in fiber [43], it was recognized that birefringent and dispersive walkoff
would limit the performance of the device due to the long interaction lengths needed to obtain a 7 phase shift with low switching
energies. The result of walkoff is the reduction of the interaction distance as given by the length of the fiber, as shown in
Figure 1.10. 10 an effective interaction distance given by one of the walkoff lengths. If the gate and data pulses have temporal
duration 1. then the walkoff lengths can be defined ‘

o T -~ cT

T k@) = K(wg)] T Inx—nyl
o T T
Tk {wg) - k(0] T K(og)’

Ly (1.33)

(1.34)

Ldisp

where k' (w,) and k' (w,) are the group delay coefficients for the polarization components at the data wavelength, k() is the
group delay coefficient at the gate wavelength, Aw ~ 1/7 is the approximate spectral separation (by one FWHM), and K (o)
is the group delay dispersion coefficient. For T = 1 ps pulses (for a data rate ~ 100 Gb/sec with pulse separation 10 1), typical
walkoff lengths in silica fiber are Lyire = 30 m for |ny — ny| ~ 1075 and Lgip = 35 m, using k() = —2.79 x 1078 ps?/um
from Appendix D. :

The birefringence walkoff length is the distance over which the two polarization components of the data pulse maintain
overlap by at least their temporal FWHM. This is also the distance over which the gate pulse and the orthogonal polarization
of the signal pulse maintain overlap. The dispersive walkoff length is the distance over which the gate pulse and the same
polarization of the signal pulse maintain overlap. In the worst-case scenario, the gate pulse propagates down the fast (slow)
axis of the fiber and has the greater (lesser) group velocity. The interaction distance is therefore limited to the minimum of
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Figure 1.11: Diagram of the two-terminal nonlinear optical loop mirror in the intensity-dependent switching mode.

the birefringent and dispersive walkoff distances. The best-case is for the gate to propagate .down the fast (slow) axis and
have the lesser (greater) group velocity. Here, the interaction distance is limited to the birefringent walkoff length between the
polarization components of the data pulse.

The effective interaction distance can be increased to twice the walkoff length by launching the slower pulse one pulse
duration ahead of the faster pulse, but this technique still does not solve the underlying problem. Birefringent walkoff can be
effectively eliminated by cross-axis splicing the polarization maintaining fiber such that the distance between each splice is
less than the walkoff length Ly [43]. The effects of dispersive walkoff can be reduced by decreasing the spectral separation
between the data and gating pulses, thus limiting the data rate because 1/~ Aw, or by equally spacing the central wavelengths
about the zero dispersion wavelength such that both pulses travel with the same group velocities. This does not allow for both
pulses to be temporal solitons, however.

A recent fiber Kerr gate demonstration used a 1.5 cm length of silica fiber (which is about Lgjsp for the experimental pulse
duration) to perform demultiplexing of a 460 Gb/s data stream [44]. In the experiment, the peak gate intensity 43 GW/cm?
(about 5 nJ pulse energy) resulted in a gating efficiency of less than 10%. A m phase change requires peak gate pulse intensity of
nearly 235 GW/cm* (about 25 nJ pulse energy), which, except for the benefits of compactness and increased coupling efficiency,
eliminates the original advantages of going to the fiber geometry.

1.4.3 Nonlinear Optical Loop Mirror

The nonlinear optical loop mirror [38], or NOLM, has been used extensively in ultrafast all-optical demultiplexing experi-
ments [45.46]. Studies have also focused on the use of NOLMs to realize simple logic gates [45] and more complicated logic
circuits [16]. The most basic two-terminal configuration is shown in Figure 1.11. A pulse which enters port 1 is split at a 2x2
fiber coupler into two counter-propagating pulses which recombine at the coupler. For a perfectly symmetric device, the pulses
constructively interfere at the coupler and exit from port 1, thus acting as a mirror. Deviations from symmetry result in light
exiting both ports 1 and 2. In nonlinear operation of a non-symmetric device, the pulse intensity can control the ratio of light
exiting each output port. ' '
Immediately after the coupler, the field amplitude in each counter-propagating direction of the loop can be written

A3 =14, Al = Ageiter (1.35)
Ay = irA, ' Al = Azt (1.36)

when it is assumed that no light enters port 2. The unprimed quantities represent the amplitudes before propagation around the
loop while the primed quantities are after propagation around the loop and just before the coupler. The phases around the loop
are allowed to be different as justified later. Here ¢ is the (real) amplitude transmission coefficient and r is the (real) amplitude
reflection coefficient. When the angle of incidence is less than the critical angle (as it must be here), there is a 7 phase shift upon
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reflection from one of the coupler interfaces. Since the 3dB fiber coupler is symmetric, this phase is distributed symmetrically
with the reflection coefficient in each direction. The amplitudes at the output ports are then

Al = 1A + iy = itrA, e [1 + e"A“’] (1.37)
L= tA, +irAly = Ay et [t"'e’mb - rz] , (1.38)
where A® = ¢cw — Occw- Finally, the output intensities are written

=271 {1 +cosAd] ] = 41,71 - r?] cos? (AD/2) (1.39)
I =1 — 41, r*[1 = ') cos® (AD/2), : (1.40)

assuming a lossless system such that r> +1° = 1.
For the original NOLM device which switches based on the intensity of the incoming data pulses, the phases are

2mn, (L 2nnyL
beew = koLt 52 [ IAs(2) Pz~ koLt 52 Aa(O)F (141)
e Jo A .
2mns L ) 21noL ’
dew=hol+ o2 [ IAs(2)P den koL + = 14O, (142)
f /0 f
where the differential phase is. written
2nnsL 2 2 2nnsL 2
a0 = T2 (143 (0)1 - 1As(0)7]] = 557 [1-27] Iy (O)F, (143)
f ’ f

and 8 = 1 — 2r°. For a symmetric device in which r* = 0.5, the phase shift is zero and all the light exits port 1, independent
from the strength of the nonlinear interaction. Therefore, the loop must be unbalanced in order for self-switching to occur, in
which the light exits port 2. ' :

An example of the self-switching of the NOLM is shown in Figure 1.12, which plots the peak intensity in each of the two
output ports (assuming square-top pulses) using r* = 0.25. This figure is different than Figure 1.8 of the Kerr gate, which plots
the switching fraction, not the output intensity. This is done here to emphasize the low contrast of the two-terminal NOLM.
Like the Kerr gate. over switching can occur for input intensity beyond that required for A® = m, thus making this device
difficult to cascade. It should also be noted that partial switching will occur if square-top or soliton pulses are not used.

Because the self-switching behavior is similar to the two-terminal NLDC, a three-terminal NOLM with large-signal gain
can be constructed in the same way, by biasing the device with a strong power supply or clock pulse and using a weaker
control or data pulse (of different polarization or color) to initiate switching, thereby providing complete logic level restoration.
Unhke the NLDC, the NOLM switching function does not possess saturated levels, thus making the device sensitive to input
fluctuations. but also allowing for multiple intensity levels for the clock pulse (spaced by even intervals on the figure) to achieve
inverting operation. Because the switching intensity is fixed at 1 /2A for the coordinate system used in the figure, the large-
signal gain can be arbitrarily high (subject to limitations placed by nonlinear absorption, for example). The output from either
port 1 or port 2 can be used. The contrast from port 1 is unity. but since this is also the input port, a coupling loss must be taken
both at the input and at the output in order to extract the switched data.

The contrast of the NOLM at output port 2 is

2R =r (144
-2 - o
which is maximized when r= = 0.5. The peak intensity required for a 7 phase shift is
A
/ (1.45)

I = ———7—
YTl -2r)

which is infinite when ~ = 0.5. Here, the intensity /; represents the data pulse intensity plus any additional control pulse
intensity. For example. /| = laua -+ 2Alconrol. in the case of the biased device. The minimum required intensity is when r = 0,
but the contrast is 0. Therefore, in the two-terminal or biased three-terminal NOLM, there is a tradeoff between high contrast
operation and tow switching intensity (energy).

Some of these problems can be solved by using a balanced (r?=0.5) and un-biased three-terminal NOLM ([47]. This
configuration is shown in Figure 1.13, in which an external control pulse of different polarization or wavelength is used to




Final Report AFOSR F49620-95-1-0431, Spatial Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder = . 21

induced phase change A¢

0.07 2.0 4.0m 6.0 8.0m
8 T T T
g -
m .
= ___portl
3 port 2
S 4r i
-
3
2y /’
- N
- 2" / \ /I“
o N / \ !
’ \ / \ ’
_ / \ / \ /
/’ ~ 4 \ / \ ;
O = -~ e I \\ // i A g 1 Nt
0 2 4 6 8

input intensity (arb. units)

Figure 1.12: Switching characteristics of the two-terminal NOLM. If a non-square-top or non-soliton pulse is used, the output
energy will not follow the intensity curve and the energy contrast will be reduced over the ideal case of unity for port 1 or
as given by equation 1.44 for port 2. The amplitude reflection coefficient of the 2x2 fiber coupler is set to r = 0.5, giving a
reflectance of r* = 0.25.

switch a much weaker data pulse by inducing a 7 phase shift on the counter-clockwise pulse via cross-phase modulation. In
this case. the phases of the counter-propagating pulses can be written

2mn-L

Occw = koL+24

Ocw = koL.

lAcu(0)]* (1.46)

where Ay is the amplitude of the control pulse, which co-propagates Accw and therefore counter-propagates Acw, inducing
negligible nonlinear eftect on the latter. For orthogonal polarizations, 2A = 2/3, while for different wavelengths, 2A =2. In
this device. the switching intensity and contrast are independent of r, because the change in phase is

2mnal
As

AD =2A At (0))F (1.47)

and the contrast at output port 2 is p = 1 assuming that the control pulse intensity can be maintained to achieve A® = 7.

Due to the long interactions lengths of 10 km or more [46], these switching elements suffer from polarization or dispersive
pulse walkoff (unlike the fiber Kerr gate, the control pulse does not have to be of different polarization and wavelength).
Walkoff can be minimized by using cross-spliced polarization maintaining fiber or choosing the control and data wavelengths
symmetrically about the zero dispersion wavelength [45]. as discussed for the fiber Kerr gate. Recent experiments have achieved

demultiplexing of 100 Gbit/s data streams [48] in a 6 km loop using 1 pJ control pulses, and two-stage cascadability using low
birefringence fiber loops with an amplification stage in between [49]. '

1.4.4 Terahertz Optical Asymmetric Demultiplexor

The terahertz optical asymmetric demultiplexor [50], or TOAD, was developed to reduce the long latency inherent in the NOLM
and reduce switching energies by asymmetrically positioning a thin, highly (resonant) nonlinear element on one side of center
of a fiber loop mirror, as shown in Figure 1.14. The fiber nonlinearity is not utilized and therefore the fiber loop can be on the
order of meters in length rather than kilometers. ‘
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Figure 1.13: Three-terminal NOLM in two-pulse configuration. Wavelength division multiplexing (WDM) or polarizing (PBS)
couplers transfer the control pulse into and out of the loop with nearly unity efficiency. For polarizing couplers, the fiber loop
must be polarization maintaining. The control pulse only propagates counter-clockwise, and only interacts strongly with the
counter-clockwise component of the data pulse. ‘
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Figure 1.14: Three-terminal terahertz optical asymmetric demultiplexor. The nonlinear phase shift is provided by the control
pulse excitation of an asymmetrically placed nonlinear element. :

The TOAD switch works similarly to the three-terminal NOLM by imposing a 7 phase shift in one arm (direction) of the
loop. and cannot be configured as a true logic gate. The differentiating factor from the NOLM is that a thin nonlinear element
excited by the control pulse is responsible for the nonlinear phase shift induced on the data pulses. In the diagram, pulses
1-3 pass through the nonlinear element before the control pulse and experience no nonlinear phase shift in the clockwise and
counter-clockwise parts because the nonlinear element is in the un-excited state. As a result, there is no differential phase
shift (A® = 0) and the pulses exit the input port (or reflect). Pulses 5-8 pass through the element after the control pulse, but
now each direction experiences a nonlinear phase shift, but, given constraints of long relaxation time of the nonlinear element
as discussed later, experience no significant differential phase shift and also exit the input port. Pulse 4, on the other hand,
switches out the other port because the clockwise propagating part of the pulse passes through the nonlinear element before the
control pulse and experiences no nonlinear phase shift, but the counter-clockwise part reaches the nonlinear element just after
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excitation by the control pulse and experiences a nonlinear phase shift. If the differential phase shift A® = , then the pulse

will exit the output port.
The counter-clockwise and clockwise phases can be written

2nd

Occw =hL+ATM(t;—tczl+2M/vg) (1.48)
f
2nd ‘
¢cw:k0L+ATM(ti_tcll): ’ (1.49)
f

where #; is the time that the clockwise portion of the i"" pulses reaches the nonlinear element, #; + 2Ax/v, is the time that the
counter-clockwise portion of the same pulse reaches the nonlinear element, #.y is the time that the control pulse excites the
nonlinearity, and v, is the group velocity. The time-dependent nonlinear index change is written

An(t) = /0 “R(T) [Aculr — 1) P dt £>0 (1.50)
-0 ' <0, (151)

where R(1) is a nonlinear response function, typically of the form of an exponential decay. It is clear that, assuming an

instantaneous rise time,
1,-<rcu<t,-+2Ax/vg, (1.52)

in order to switch the i"" pulse. A much more complete analysis has been performed [51], with the basic conclusion that the
nonzero length of the nonlinear element places a restriction on the minimum duration of the switching window, which must be
at least twice the transit time through the element plus the rise time of the nonlinearity. The relaxation time of the nonlinearity
sets the lower bound on the frame time because the nonlinear material must be in the ground state before re-excitation by
another control pulse. These requirements are expressed by [50]

Trise + 2Tlr.msu < Thu L Tran < Tfmmev ) (1-53)

where T, is the rise-time of the nonlinearity and can usually be considered instantaneous. Tynsii is the transit time through
the nonlinear element, Ty, is the time between adjacent bits in the data stream, Tgyy 1S the fall time of the nonlinearity and does
not have to be instantaneous as in the other devices which require Ty < Tpis and Trume is the frame time for time-division
multiplexed data. The fall time Tgy must be greater than the time difference 2Ax/v, between when the two parts of the same
pulse pass through the nonlinear element so that the clockwise and counter-clockwise portions accumulate approximately the
same nonhinear phase shift. A disadvantage is that only one data pulse can be switched within the relaxation time of the
nonlinear element. so that the switching events must occur at least Tg, apart. Unlike the other devices, the TOAD is relatively
insensitive to tming jitter between the control and data pulses. All that is required is that the control pulse arrives (up to one
bit time) at the nonlimear element before the intended data pulse. The amount of timing jitter that can be tolerated is limited to
" Thi = Thse: ‘

Because the nonlinearity need not be instantaneous (and in fact the fall time must be long), very large. resonant nonlinearity,
such as that prnducéd by real particle excitation and decay. can be used. The optical path length of the nonlinear element must
be less than that between the element and center and. since the nonlinear phase shift is proportional to the product of nonlinear
index. control pulse intensity. and the thickness of the nonlinear element, the latter is perhaps the main limitation on high
contrast, low energy switching for THz data streams. A recent demonstration [52] showed single-pulse demultiplexing of
250 Gbit/s data with 0.8 pJ switching energy.

A related device. based on a Mach-Zehnder configuration with asymmetric placement of a nonlinear element in each of the
two arms (where the difference between the distance from the coupler to each element is Ax), has also been demonstrated [53].
As in the TOAD device. a control pulse is used to excite the nonlinear elements, where the time difference between the excitation
of each element leads to a switching window of duration Ax/vy, but again, large-signal gain cannot be realized. Because the
two arms are physically distinct, any differential environmental variations can disturb the operation of the gate, but the effect is
less important for an integrated device.

Another variation, which perhaps is more akin to the fiber Kerr gate, is the so-called ultrafast nonlinear interferometer [54],
or UNL. This device is shown in Figure 1.15. The input data pulses split equally along the polarization axes of birefringent fiber.
Because the group velocity is different along each axis, the polarization components walk-off from each other in time. The
time difference between the leading and trailing components allows for asymmetric excitation of the nonlinear element by a
strong gate pulse such that the leading pulse is affected only by the amplification process of the device (the device is electrically
pumped) and the trailing pulse is affected by the device after gain saturation by the strong gate. Therefore, due to sub-ps carrier
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Figure 1.15: Three-terminal ultrafast nonlinear interferometer. A differential phase shift is imparted onto the data pulse at the
semiconductor optical amplifier (SOA) by asymmetric excitation with the gate pulse.

heating and gain depletion, and virtual electronic processes, both differential amplitude and phase changes are induced between
the data components. Long-lived carrier population and thermal nonlinearities ensure that no differential change is induced
between subsequent data pulse components. After traveling through another length of birefringent fiber with fast and slow axes
reversed. the components overlap at an analyzer biased to produce the desired logic operation. For example, if the analyzer
is set to pass the data pulse in the absence of the gate pulse, then the device will act as an inverter, albeit without logic level
restoration and large-signal gain. :
Like the TOAD, the switching rate is limited by the gain recovery time of the SOA, but it should be noted that only enough
recovery time is needed so that the control pulse can induce another Tt phase shift. If only TDM de-multiplexing is performed,
then recovery time only limits the frame period, while the bit rate is limited by the optical thickness of the element and the rise
time of the nonlinearity. For switching operations that occur on a bit-by-bit basis, then the 7 phase shift recovery time places
the main limitation on bit rate, which can be as high as 100 Gb/s [55]. A recent experiment [11] demonstrated the cascadability
of this three-terminal device by implementing a 40 Gb/s inverting shift register. A fiber amplifier was used to bring the inverted
data output of the device up to the necessary 0.1 pJ switching energy.

1.5 Optical Soliton Logic Devices

The devices discussed in the previous section all suffer from drawbacks that may limit their use in cascaded digital logic
and switching systems. Except for variations of the nonlinear directional coupler (NLDC) and nonlinear optical loop mirror
(NOLM). none of these switching devices has complete logic level restoration with large-signal gain. In the standard config-
urations. the data pulse itself is transmitted to the output. The strong control pulse only initiates the switching and is thrown
away afterwards. As a result, the transmitted data is never restored allowing signal level variations to build up over time. The
roles of control and data can be reversed such that weak “power supply” pulses are passed on to subsequent gates, and are
controlled by strong data pulses. Here, restoration is almost complete, with the lack of obtaining a valid signal level without
external amphificaion which introduces ASE noise and bandwidth limitations. The biased three-terminal NLDC and NOLM
have complete logic level restoration because of large-signal gain. but the gain of the NLDC is very limited and suffers from
low contrast in practice, and the NOLM does not possess saturated levels and is lossy in order to achieve high contrast.

In the three-terminal configurations, these devices are only directly cascadable when using control or gate pulses of or-
thogonal polarization to the data pulses. Cascadability is achieved simply by using a half-wave plate to rotate the polarization
of the output to serve as a control input. Using different colors also allows for cascadability, but the system becomes more
complicated. In the first realization, the output of the gate must be converted through some nonlinear process such as three- or
four-wave mixing. to the appropriate control input color. A second realization is to alternate the correct control color at each
stage such that no wavelength conversion is necessary, but this may require two device-designs in order to achieve optimum
performance. These two-color schemes are the only way to cascade the fiber Kerr gate, since different colors are necessary in
the fiber geometry, and the NLDC, because the use of different polarizations greatly reduces the switching performance [33].

The Kerr gate, NOLM, and terahertz optical asymmetric demultiplexor (TOAD) all suffer from over switching, although
saturated gain in the nonlinear element can clamp the total induced phase shift in the latter device. In each of these three
devices, a control intensity higher than that required for a 7 phase shift will cause over switching [45] and result in reduced
contrast. Therefore. each gate in the system must be precisely toleranced if high contrast operation is required, but because of
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unavoidable variations, the signal level will be attenuated through a long cascade with eventual loss of the logic level.

The performance of all of the devices, except TOAD, is reduced considerably by walkoff and incomplete switching. Means
of reducing walkoff were discussed for each device, but it should be noted that, since the use of orthogonal polarizations is
more practical for cascadability considerations, cross-axis splicing is an elegant solution. Because square-top pulses possess
high frequency components at the leading and trailing edges leading to rapid pulse broadening, the most robust way to eliminate
incomplete switching is to use temporal solitons for the control and data pulses. The use of temporal solitons can also reduce
or eliminate walkoff by the mechanism of temporal trapping [56,57].

The limitations of these devices motivates the study of a new class of devices based on optical solitons, which make full
use of the soliton properties. Because solitons are threshold phenomena, they are natural carriers of digital information. Below
a critical power or energy, a nonlinear wave will asymptotically disperse, but above the critical power or energy, a nonlinear
wave will evolve into one or more stable (possibly higher-order) solitons. Therefore, binary logic levels can be represented by
the amount of detected power or energy, or even by spatial or temporal size (a soliton could readily pass through a spatial or
temporal aperture, while the majority of a dispersive wave would not). A related issue is resolvability. Since solitons beat the
linear diffraction/dispersion limits, a logic gate (without absorption) could be arbitrarily long. This property is used to great
advantage in the soliton collision and dragging gates as discussed later, where a small angular/frequency change (induced by a
nonlinear phase shift less than 7) manifests itself as a resolvable spatial/temporal shift.

Other benefits arise from the use of solitons in digital logic systems. Solitons are stable to weak perturbations meaning
that the soliton tends to maintain its shape in the presence of material inhomogeneities or input profile variations, which is an
important property for logic restoration. In fact, the original amplitude and shape can be restored even after absorption by the
use of adiabatic amplification. This property is useful for logic restoration and in long haul communications. Additionally, in
. some cases. solitons will maintain their shape even after collision with another soliton, which turns out to be a disadvantage
for optical switching. The logic gates presented in this thesis use a configuration in which the interaction is inelastic such that
soliton shape is not necessarily maintained after collision. The most important benefit to optical switching is that solitons (or
nonlinear waves in general) can exert a force on one another, unlike light in linear propagation. These forces can alter the
direction in space or velocity in time of one or both solitons resulting in a switching or logical operation.

In order to achieve low switching energy per gate operation, the ideal optical soliton logic gate should be based on one
of the three geometries that allow for complete three-dimensional confinement [2]: 1-D temporal solitons in fiber, 2-D spatio-
temporal solitary waves in slab waveguides, and 3-D light bullets. The advantage of spatio-temporal solitary waves over
temporal solitons for switching and logic is the removal of one or two transverse dimensions of linear confinement. This allows
for spatial parallelism (without the loss of ultrafast temporal pipelining) and the freedom to use spatial interactions with much
easier output state discrimination [2,58] than their temporal counterparts [59] in order to implement amplitude keyed logic for
eventual conversion to the electronic domain. Even though one dimension of spatial parallelism is lost, the 2-D solitary wave
has the important advantages over the 3-D “light bullet” case in that it should be more easily realizable experimentally {60], and
the slab waveguide geometry allows for the possibility for tailoring of the dispersion properties [61], photolithographic circuit
definition, and cooling through the area of the substrate. The (2+1)-D case also presents an efficient test bed allowing for the
study of the effects of higher-order terms in the evolution equation by retaining full spatio-temporal dynamics without resorting
to the time-consuming (3+1)-D simulation. '

The remainder of this section briefly discusses two soliton-based logic gates based on the trapping interaction. These gates
satisfy the requirements for a logic device, including large signal gain and logic level restoration. The first device is the temporal
soliton dragging gate [62]. and the second is the related spatial dragging gate [58]. which is the main subject of this thesis. Note
that other soliton interactions can be used for logic devices and are discussed further in Chapter 5.

1.5.1 Temporal Soliton Dragging Gate

The soliton trapping [62} and dragging [59] gates are based on the temporal trapping mechanism [56,57]. Two nonlinear
waves of different polarization and/or wavelength propagate down a fiber with different group velocities. If they are initially
overlapping in time, in linear propagation, one will reach the end of the fiber before the other. In nonlinear propagation though,
they can trap each other through nonlinear attractive forces such that they both propagate at the same group velocity. In this
case, each wave must experience a frequency shift in order to propagate at the common, weighted-mean, group velocity. The
two nonlinear waves do not need to be of the same size (in terms of pulse area) in order for trapping to occur [57], and the
frequency shift experienced by the smaller wave is greater than that experienced by the larger wave. -
Figure 1.16 shows the generic three-terminal gate geometry. In the most basic geometry as shown, these gates perform an
inversion operation in which the pump is passed in the absence of the signal and blocked by a spectrél filter or time gate (as
discussed later) in the presence of the signal. Note that the signal is always blocked at the output and the pump of one gate
becomes the signal of the next, resulting in true three-terminal operation. Since the pump pulse may be passed on to later gates,
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Figure 1.16: Temporal soliton trapping/dragging gate. Soliton pump pulses (always present) initially overlap in time with (non-
soliton) data or signal pulses of different wavelength and/or polarization. Cross-induced chirp causes the pump and signal to
propagate with the same group velocity. This frequency shift must be resolvable for the trapping gate. The change in group
velocity becomes an arbitrarily large timing shift after propagation through a dispersive fiber delay line. For the dragging gate,

it is convenient for it to be a temporal soliton in order to maintain its shape after propagation through many tens to hundreds of
meters of fiber. thereby ensuring logic level restoration. The trapping and dragging gates use pulses of the same wavelength but
with orthogonal polarizations. Note that similar type gates can be constructed using pulses of different wavelength [63], based
on the analogous trapping mechanism [64], but this gate is not readily cascadable because frequency shifters are necessary
to drive the subsequent gate, while in the case of different polarizations, a wave plate can be used to rotate the output pump
polarization to the correct state. In either case, the gate operation is independent of the relative phase between the pump and

The soliton trapping gate relies on a resolvable spectral shift of the pump soliton [62], so that an unshifted pump will pass
through a spectral bandpass filter while a shifted pump (in the presence of the signal) will not. This results in amplitude keyed
logic and 1s compatible with common high-speed optical detectors for eventual conversion into an electronic signal. In order for
this to oceur. the fiber birefringence must be sufficiently large to produce the necessary difference in group velocity between the
pulse propagating down the slow axis and the pulse propagating down the fast axis, which when compensated due to trapping,
results 1n a spectrally resolved shift. The pump and signal pulses must also be of nearly the same amplitude so that the shift is
not weighted preferentially towards the signal. As a result, this gate cannot provide significant large-signal gain. In fact, the
first experimental demonstrations {62, 65] used solitons of 300 fs duration and 42 pJ energies for the pump and signal. A final
note is that. because complete trapping can occur in a few soliton periods, the gate length need only be a few tens of meters in

logic gate utilizes the fiber dispersive delay line as a “Jever-arm” in order to allow a weak
control or signal soliton to “drag”™ a strong pump in time [3]. In this way, even a small spectral shift of the pump (i.e. less
than a 7 phase shift induced by a weak signal pulse) can result in a large time delay due to non-zero group delay dispersion.
Because the pump is a temporal soliton and does not broaden in time, a resolvable temporal shift can be achieved by choosing

(1.54)

where the frequency shift Aw is a function of the pump and signal pulses and the birefringencc, and kgL is the group-delay
dispersion. Therefore. there is a tradeoff between gain and fiber birefringence (which determine the amount of spectral shift) and
gate length. If the pump were a linearly dispersive wave, broadening occurs at the same rate as the temporal delay (neglecting

Temporal dragging logic must be time-shift keyed, which is still fully cascadable in the optical domain (but may limit bit
rate somewhat) for a clocked system, but not compatible with high-speed electronic detection. Detection can be achieved by
using a trapping gate in the last stage [3] or an ultrafast optical gating mechanism, such as the Kerr gate. One problem with
time-shift keyed logic is that the dragged pump is difficult to remove from the system (although it is blocked by the polarization
beam splitter at the output of every second dragging gate) and may cause interference in subsequent switching stages. Note that,
in contrast to the problems imposed by birefringent walkoff on the previous fiber gates, the temporal soliton trapping/dragging




Fin_aI Report AFOSR F49620-95-1 -0431, Spatiél Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder 27

Figure 1.17: Temporal soliton dragging NOR gate geometries. Diagram a) shows a two-input soliton dragging gate which
implements NOR. Diagram b) show two cascaded single-input soliton dragging gates which also implements NOR.

gates use birefringent walkoff (in combination with nonlinear cross-phase modulation) to induce the switching operation. The
only constraint is that the walkoff length should be greater than about one soliton period because the bulk of the interaction
occurs within that distance [66]. o

The first demonstration [59] of temporal soliton dragging was of a two-input, logically complete NOR gate. Two possible
realizations of this logic gate are shown in Figure 1.17, where the first geometry is the one used in the experiment. In this
experiment, the 300 fs pump pulse had energy of 132 pJ. while the non-soliton control pulses had 30 pJ energy, realizing a
gain of 4.5 with high contrast. The fiber length was 75 meters, giving a gate latency of 360 ns. A cascading demonstration
was also performed using a geometry similar to that shown in Figure 1.17 a). This demonstration suffered from the effects of
Raman amplification, in which lower spectral components of a pulse are amplified at the expense of higher spectral components,
resulting in asymmetric temporal broadening of the pump pulse, and may limit cascadability due to the shift in mean frequency.
When both control pulses are present, the output of the device is sensitive to the relative phase between the control inputs.

Using the geometry of b), a follow-on work [66] obtained switching with reduced control pulse energy and no phase
sensitivity. In this demonstration, a 500 fs, 54 pJ pump pulse was used along with 6 pJ control pulses. The pulse durations
were lengthened and energies were lowered to reduce the effects of Raman gain. For this geometry, the length of fiber between
the coupling region for each control pulse need only be that required for the interaction to occur (about 75 meters in this case).
The long dispersive delay line (350 meters) can be placed at the end in order to achieve the timing shift due to the spectral
shift induced by either control. This is one instantiation of the more general time-domain chirp architecture [3]. Dragging was
obtained with lower control pulse energies because each control pulse completely overlapped the pump pulse in time, resulting
in a stronger interaction than in the partial overlap geometry of a). :

Subsequent extensions to the time-domain chirp architecture used 30 m of moderately birefringent fiber in which the spectral
shift occurred, followed by 2 km of polarization maintaining fiber as the dispersive delay line to obtain the timing shift [3]. In
this case. the control pulse energy was about 1 pJ. Another modification used a short (~ 2 mm), highly nonlinear semiconductor
as the nonlinear chirping element, followed by 600 m of fiber. Control energies were on the order of 100 pJ because the control
and pump were slightly offset in time to achieve spectral shift upon trapping due to the lack of strong group velocity mismatch
in the semiconductor. : \

These trapping and dragging interactions are described by the coupled, temporal NLS equations [67]
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where Ak is the difference between the group delay coefficients, and the reduced time is defined T = 1 — kyz with kj, being the
average group delay coefficient. Here, the group-delay dispersion coefficients are assumed equal and A; and A; represent the
orthogonal polarizations. Note that the vector four-wave mixing terms have been neglected due to unavoidable intrinsic, stress-
induced, or bend-induced birefringence which leads to accumulating phase difference between the orthogonal polarizations.
Much more will be said about this fundamental system of equations in later chapters of this thesis.

1.5.2 Angular Deflection Gate based on Spatial Soliton Dragging

Spatial dragging gates [58] are one instantiation of a more general class of angular deflection logic gates studied in this thesis.
The first spatial trapping gate was demonstrated experimentally [68] using spatial solitons of the same polarization (i.e. phase-
dependent), but propagating at different angles. Due to cross-focusing, which is the spatial analogy to cross-phase modulation,
the solitons mutually attract and under the right condition, form a trapped pair. The analogous temporal trapping interaction
between two temporal solitons of different color (and hence different group velocities), has been studied analytically [64] and
experimentally [63]. The direct spatial analogy to the Islam temporal trapping [62] and dragging [59] gates is the interaction
between spatial solitons in the orthogonal eigenpolarization states of a uniaxial crystal [69]. In linear propagation, these
eigenstates would normally walk-off in space, but nonlinear cross-focusing causes trapping or dragging to occur. A different
arrangement, which is the one used in this thesis, has also been analyzed theoretically [58,70], in which the interaction occurs
between tilted orthogonally-polarized spatial solitons in linearly isotropic media. The temporal analog to this interaction is
temporal solitons of different color and orthogonal polarization. _ '

The use of solitons or solitary waves in optical logic is critical in that solitons beat the diffraction and/or dispersion limit over
distances much longer than the characteristic linear lengths. Here, the main interest is in the use of lateral spatial confinement
over distances larger than the linear diffraction distance. The key idea is illustrated in Figure 1.18, which shows the basic
angular deflection logic gate. A pump soliton (left-hand side) propagates the length of the gate (which is assumed to be in
a slab waveguide geometry) and passes through a spatial aperture at the output, forming the high output state of the device.
Because the spatial soliton does not diffract, the size of the aperture can be the same as the size of the wave at the.input,
independent of the actual gate length.

The switching operation is performed by disturbing the propagation of the pump beam such it does not exit the spatial
aperture. thus providing the low output state of the device. This can be accomplished by inducing a change in propagation
angle which leads to a spatially-resolved shift at the output. If the beam propagates linearly (as shown on the right-hand side),
a spatially-resolved shift can only be produced by inducing a change in the propagation angle (with a change in phase across
the aperture of the beam of at least m) that is greater than twice the linear diffraction angle. In nonlinear soliton propagation, an
induved dngle change that is less than linearly resolvable (i.e. less than a 7 phase change across the spatial aperture) results in
a difterential spatial shift which can be integrated over non-diffracting propagation such that a spatially-resolvable shift occurs
at the output. Thus. as shown in the figure, the gate length must be at least the minimum resolvable dragging distance, which
depends on the spatial width of the soliton beam and the amount of angular change, much like the case of the deflection of a
lincar pump by a much larger angle and well within the linear diffraction length.

The angular change is produced through the nonlinear interaction between the pump and another, orthogonally-polarized
beam. called the signal, which initially overlaps the pump and propagates at a non-zero relative angle. The signal beam must
be strong enough to induce a nonlinear index change felt by the pump through cross-focusing. If the pump propagates linearly,
then large-signal gain is not possible because the signal beam is necessarily stronger. In this case, there is no mutual nonlinear
interaction and the nominal effect of the signal is to create a nonlinear prism which deflects the pump in the direction of the
signal. The deflection angle depends on the relative propagation angle and intensity of the signal, with the maximum angle
occurring when the pump is completely guided, or trapped, by the signal. Therefore, the angle 8 must be at least the diffraction
angle of the pump because the deflected pump will be nonlinearly guided by the signal, which may be a spatial soliton in the
limiting case. ' '

If the pump is a spatial soliton, then large-signal gain is possible, but the interaction is more complicated due to mutual
nonlinear coupling: .

-
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Figure 1.18: Logic gate geometry based upon the light-induced deflection of an optical “pump” beam away from a spatial

aperture at the output. At one extreme, the pump can propagate nonlinearly as a spatial soliton (left), or at the other extreme,
the pump can propagate linearly and diffract (right). Deflection is induced by the cross nonlinear interaction with a signal beam
which is tilted with respect to the pump. The dashed contours represent the deflected pump.
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Figure 1.19: Transfer function for spatial soliton dragging logic gate demonstrating small-signal gain and saturated levels. The
pump and signal are fundamental solitons of width wo. The signal soliton amplitude is varied to obtain the increasing input

power as indicated on the horizontal scale. This transfer curve illustrates a large-signal gain of 2.0, as discussed in section 5.4.

where. for consistency with temporal interaction equations, the angle of propagation 6 of the signal A, (which is analogous
to group delay) is included explicitly in the paraxial approximation such that © = k/ko. Here, kg is the wavenumber, n3 is
the nonlinear Kerr index. and A, is the pump envelope. This is the base system of equations used in Chapter 5 for the study
of the interaction between spatial solitons. Now, during propagation, each beam affects the other through cross-focusing. If
farge-signal gain 1s realized, then the pump exerts a greater attractive force on the signal than the signal does on the pump.
Nevertheless. as mentioned previously, only a small angular deviation of the pump is needed. As in the case with the linear
pump. two interaction scenarios can occur: each soliton simply deflects the other, or they form a bound, orbiting pair propa-
gating at the weighted-mean angle [58]. The former is typically referred to as dragging [59], while the latter is referred to as
trapping [65]. Soliton trapping is more likely to occur when the relative propagation angle is small and the solitons are nearly
the same size. while deflection, or dragging, occurs for large angles and/or large gain. Note also that the optimal interaction
may not occur in complete trapping, in which case part of the signal, the “shadow” [71], may remain bound to the pump, while
the rest propagates at a much larger angle as an unbound linear diffractive wave. Therefore, this interaction will be generically
referred to as dragging since the high gain situation is of ultimate interest. :

Figure 1.19 shows a typical input-output relation for the spatial dragging logic gate. Note that the same function would be
obtained for the temporal dragging gate as well. The most important feature to note is the region of small-signal gain at the
input threshold level near 0.3, surrounded by saturated levels. The transfer function shows that the dragging gate has the same
operational characteristics as an nMOS inverter [26], as shown in Figure 1.1. Here, the role of the electric power supply is
provided by the pump wave and the role of the gate voltage is played by the signal wave. The presence of small-signal gain at
the threshold level allows the output to be driven low with very sharp switching characteristics. The threshold level is the point
on the curve in which the input and output levels are the same. For an input level beyond threshold, the output of the device
is switched into a valid low state; therefore, the threshold level is the minimum input signal level required to switch the output
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state of the device, and determines the operating point on the transfer curve where large signal gain is unity. When small signal
gain is greater than unity at the threshold level, then the input switching level can be chosen such that large signal gain and
contrast greater than unity can be obtained. The transfer curve is terminated by saturated levels, showing that over switching
is not possible. As a result, when operating well into the “on” and “off” regimes, small variations in the input signal level are
attenuated and do not affect proper gate operation, thus providing large noise margin. A more detailed examination of soliton
logic gates, based on spatial interactions, is presented in Chapters 5 and 6.

Because these gates have two inputs and only one output, they are three-terminal devices with input-output isolation. Only
the undeflected pump is passed on to subsequent gates, and it is important that the pump propagate stably over the length of
the gate with little change in its physical parameters. This allows for restoration of not only the logic level (because of small-
signal gain), but also restoration of timing, position, polarization, color, and shape, which is crucial to cascaded operation [25].
Cascading of these gates can result in more complex logic functionality, as discussed in the next paragraph. Since the pump and
signal have orthogonal polarizations, the interaction between them is phase insensitive. In the case of linear polarizations, this
is not strictly true because of the presence of phase-dependent vectorial four-wave mixing terms in the nonlinear polarization.
Here, it is assumed that these terms can be neglected because of waveguide birefringence, which causes each polarization
to propagate with a different phase velocity. This assumption is valid when the interaction length is much greater than the
birefringence beat-length. :

In analogy with tempora! dragging logic gate [66] of Figure 1.17 b), logically complete, n-input NOR gates can be imple-
mented with spatial dragging in an n-stage system in which a cascaded pump is dragged to the side and blocked by the presence
of a signal in any stage, thereby producing a low output, as shown in Figure 5.35 for a two-input NOR. In this implementation,
the same pump is passed through two (or more) subsequent stages, so that standardized output levels (in terms of both the
inverter and the multi-input NOR) may not obtained due to absorption incurred in the additional stages. Complete logic level
restoration is not strictly obtained either, because broadening of the pump in the presence of absorption also depends on total
propagation distance, as discussed in section 5.3, such that the shape is not necessarily restored. However, complete logic level
restoration is not necessary for a small cascade of gates (just as with electronic pass gates) and it is important to note that the
pump soliton is the one that passes through multiple levels. Absorption will be the ultimate limit to the fan-in (number of
stages) of this type of NOR gate. Another implementation, in which the total length of a multi-input NOR gate is held constant,
so that the length of each signal input stage gets smaller with the degree of fan-in, results in both standardized output levels and
complete restoration, and is discussed in more detail in sections 5.4.3 and 6.3.2. :

The main benefit of the spatial dragging logic gate over the temporal dragging gate is that amplitude keyed logic is straight-
forward to implement while providing gain. In the spatial case, an aperture can be used to discriminate the output. For temporal
dragging though. an ultrafast time gating mechanism is required to implement amplitude keyed logic instead of the more natural
time-shift keved logic [3]. A spectral filter is all that is necessary to implement amplitude keyed logic for temporal trapping,
but the leverage of the dispersive delay line is lost and gain cannot be provided. Therefore, only the spatial dragging geometry
has the simultaneous advantages of simple output state determination and the leverage of non-diffracting propagation which

*allows for large-signal gain. Additional advantages are spatial parallelism, as discussed previously, and latency. Typical spatial

soliton logic gates as studied in this thesis are on the order of cm’s long, while typical temporal soliton gates are on the order
of 10's of m's. This results in a factor of 1000 reduction in latency. Much shorter temporal solitons can be used to reduce the
length of the fiber-based gates, but higher-order temporal effects can cause problems as discussed in Chapter 6.

Spatial dragging of purely spatial solitons loses the advantages of gate-level temporal pipelining and low energies (due to
complete confinement) of the temporal dragging gates. though, and spatial dragging between non-soliton pulses could yield
partial switching behavior with low contrast, as shown in previous sections. That is why, in Chapter 6, this thesis studies spatial
dragging of spatio-temporal solitary waves in order to retain the best features of short gate lengths, ultrafast operation and
temporal pipelining, and low switching energies. The spatial dragging gate utilizing spatio-temporal solitons is perhaps the
only all-optical switching and logic technology that satisfies all of the requirements for digital switching and logic and has the
potential for implementation into large scale systems utilizing the high degrees of spatial and temporal parallelism available to
optics.

Figure 1.20 shows the generalization of the deflection gate architecture to the use of 2-D spatio-temporal solitary waves.
Utilization of fully-confined spatio-temporai waves allows for low energy operation and the additional flexibility to use spatial
and/or temporal interactions. Here the focus is on spatial dragging, but temporal trapping/dragging may also occur and allow
for the reduction of the requirements on allowable timing jitter between the pump and signal. Note that after the first gate,
timing is restored in the system (because only the undeviated pump clock stream is passed) such that jitter no longer becomes
a concern. Also, since the solitary wave does not disperse, temporal pipelining can be employed at the gate level, resulting in
very high throughput which is independent of actual gate length. This architecture maps well onto the processing of a large
number of independent data streams, such as ultra-fast time-division multiplexed transmission, bit-serial computation [20], and

bit-serial digital signal processing {18], as discussed briefly in section 1.2. (
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Figure 1.20: Spatio-temporal solitary wave dragging logic gate. A pump solitary wave (left) will propagate the length of the
gate and pass through a spatial aperture at the output. In the presence of a tilted, orthogonally-polarized signal (right), mutual
deflection will cause the pump to shift to the side and not pass through the aperture. The inset schematically shows the input-
output relation for the gate. The threshold level is set at the point where the input and output are equal. This gate performs an
inversion operation and can achieve large-signal gain.
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It is important to make clear that dragging is an asymmetric interaction. The nonlinear waves are brought into temporal
and/or spatial coincidence in linear propagation, such that they overlap at the beginning of nonlinear propagation. For a
symmetric interaction, such as collision, the waves are brought into coincidence in purely nonlinear propagation where the
nonlinear interaction forces are present both before and after the point of overlap. These interaction forces are symmetric in
that the net change in frequency or angle is zero (the change before complete overlap is exactly compensated by the equal and
opposite change after overlap), but with a small (not resolvable) residual temporal or spatial shift. Since the dragging interaction
is asymmetric, the nonlinear interaction forces occur only after the point of overlap such that the frequency or angular change
is not compensated. This is the key point in understanding the advantages of soliton dragging over other, symmetric, collision

geometries.




Chapter 2

Optical Solitons

Outside of the communications, switching, and computing applications, optical solitary waves and optical solitons (and solitons
in general) are interesting in their own right. An entire field of mathematics is devoted to the study of nonlinear integrable
equations and their soliton solutions [131]. These nonlinear equations are associated with a linear scattering problem and time-
evolution equation. The bound-state eigenvalues of the linear scattering equation correspond to the soliton solutions and only
those solutions remain in the asymptotic limit of large time (or long distance). The nonlinear evolution of an arbitrary initial
condition is described by decomposing into the linear eigenfunction basis set given by the scattering problem. These eigenvalues
are then iso-spectrally evolved and transformed back to the original space using the inverse scattering transformation [73,161,
162]. Thus thesis will not make direct use of the inverse scattering transform because in general the multi-dimensional vector
nonlinear wave equations employed are not known to be integrable [163] and can be solved instead via more simple numerical
and approximate analytical techniques. ’

Numerous examples of these integrable and non-integrable nonlinear wave equations exist in physics, but the examples
from optics are most closely related to this thesis. There are many mechanisms of optical nonlinearity through which solitons
or sohtary waves can form, many of which will be discussed in section 2.1. The most ubiquitous example is the optical
Kerr nonlinearity (section 2.2), which gives rise to the integrable (1+1)-D nonlinear Schrodinger (or NLS) equation, in both
spatial (section 2.3) and temporal (section 2.4) forms. The multi-dimensional NLS equation (section 2.5) is not known to be
integrable [ 163] and describes the propagation of optical waves with additional dimensions of linear and nonlinear behavior.
With surtable modifications. the NLS equation serves as the basis for describing the soliton behavior necessary for the logic
gates studied in this thesis.

2.1 Historical Background

A solitary wave 1s a nonlinear wave phenomenon that propagates without change. The most notable recorded discovery of a
solitary wave occurred in 1834 when J. Scott Russell observed a solitary water wave in the Edinburgh-Glasgow canal [164,165].
Through laboratory experiments, Russell deduced that the wave speed is proportional to its amplitude, i.e. taller waves travel
faster than shorter waves. This wave phenomenon is termed a gravity wave. He also deduced that an arbitrary initial profile
will asymptotically evolve into multiple solitary waves, and that two solitary waves, with the taller one overtaking the shorter
one. will interact and emerge undistorted [ 165]. These solitary waves were later called solitons by Zabusky and Kruskal [166].
In 1871 and 1876. respectively, Boussinesq and Lord Raleigh showed that, by assuming that the length of the solitary wave is
much greater the water depth, such a solitary wave has a sech?() amplitude profile. At this point it was realized that the length
of the solitary wave is inversely proportional to its amplitude. such that a shorter wave is longer than a taller wave.

The governing nonlinear wave equation for shallow water waves was derived by Korteweg and deVries in 1895 [167], now

known as the KdV equation:

du du 0u
-a—l-+6u-a;+'873"—'0, ) . 2.1

written in normalized form where u is the normalized amplitude of the wave as a function of position and time. In 1955,
Fermi. Pasta, and Ulam [168] studied a numerical model closely related to discrete KdV, and in 1965, Zabusky and Kruskal
numerically solved the KdV equation with periodic boundary conditions [166] and found that two or more KdV solitary waves
do not break up upon collision. This particle-like nature led them to coin the term “soliton”. In this thesis, the term solitary
wave is used when it is not known that the nonlinear wave is indeed a soliton.

34
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The first study of solitary wave phenomena in optics was the self-trapping of one- and two-dimensional filaments [169].
This was one study out of a large body of theoretical work that arose from experimental observations of beam filamentation
due to self-focusing in liquids [170], bulk glasses and crystals [171,172], and atomic gases [173]. Self-focusing was also
determined responsible for anomalously low stimulated Raman scattering threshold intensities [174]. It was quickly realized in
numerical studies based on the radial NLS equation [175] that two-dimensional nonlinear propagation could become unstable
when diffraction does not balance self-focusing, leading to a focusing singularity. In fact, in two and three dimensions, the
operating point representing the stationary solution where nonlinearity and diffraction balance is unstable, and results in the
well-known critical collapse or blow-up phenomenon due to form instability [176], referred to as large-scale self-focusing [177]
in two spatial dimensions. At some point in the process of focusing to a point, the beam breaks up into many filaments giving
rise to small-scale self-trapping [178,179] and is a result of modulational instability such that small transverse amplitude or
phase perturbations cause a plane wave (or large scale filament) to decay into individual beams whose subsequent propagation
dynamics depend on the scale of the perturbation [178].

Blow-up is an unphysical manifestation of the multi-dimensional NLS equation and indicates that the original assumptions
used in the derivation of the equation break down. One mechanism of arresting this behavior is to include saturation of the
nonlinear index [180, 181], resulting in stable self-trapping, thus explaining the stability of small-scale filaments. Another
numerical study [179] showed the formation of small-scale filaments by following the self-focusing of a beam and subsequent
breakup into an annular structure with the center portion resembling a small-scale filament. This ring structure was a result
of the analysis being based on a radial nonlinear wave equation and by symmetry is the only structure possible, but will be
indicative of an experimental situation in an isotropic medium in which strict radial symmetry of the initial conditions is
maintained. The full picture of filamentary structure via transverse instability can only be captured with a two-dimensional
analysis [178]. It was also realized that other higher-order nonlinear effects such as Raman and Brillouin scattering arrested
collapse. The vector nonlinear wave equation derived in Chapter 3 includes non-paraxial terms which should also be included
in the study of two-dimensional self-focusing, and will always prevent self-focusing to transverse cross-sectional areas smaller
than order 2°. :

In 1972, Zakharov and Shabat [73] published the seminal paper on the inverse scattering transform for the (1+1)-D spatial
optical NLS equation. A year later, Hasegawa and Tappert | 132] derived the (1+1)-D temporal NLS equation for single-mode
optical fiber and proposed the use of temporal solitons as data carriers for long-haul communications. It wasn’t until 1980,
though. that the first temporal optical soliton was observed experimentally [182]. This experiment was made possible by
the availability of low-loss optical fiber in the anomalous dispersion regime (i.e. wavelengths longer than about 1.28 ym in
fused silica fiber) and the color-center laser producing ps pulses in that regime. More recent work has focused attention on
the modifications of the base NLS equation required to adequately describe long distance, short-pulse propagation in fiber.
These modifications include: higher-order dispersion [30]. such as third- and fourth-order; optical shock [183] (also called self-
steepening or the intensity-dependent group-velocity [184]); and stimulated Raman scattering [185, 186] (responsible for the
soliton self-frequency shift [145,187]). Spatial optical solitons have also been realized experimentally in liquid CS; [188,189],
glass {118.120] and AlGaAs [190] slab waveguides, and in CS- cells using highly elliptical beams [191] to avoid critical
collapse inherent in (2+1)-D nonlinear propagation [175]. Much more theoretical and experimental attention has been paid to
temporal solitons, though. due to their potential for important applications, such as long-distance fiber communications.

The previous paragraphs discussed optical solitons formed through the Kerr nonlinearity, but there are other nonlinear
mechanisms 1n optics that also allow for solitons or solitary wave behavior. It has been known since the early 1970s that a
third-order like nonlinearity can be obtained by cascading two second-order nonlinearities, such as occurs with the interaction
between a fundamental and a field generated through DC rectification [192] or a generated second-harmonic [193]. The former
mechanism has been shown theoretically [194, 195] to be described by the Davey-Stewartson (or Benny-Roskes) equation that
exhibits stabilized 2-D spatio-temporal solitons [162]. but to date. these solitons have not been observed experimentally. The
latter mechanism has generated a new field of study in nonlinear optics as a means of producing extremely large, ultrafast third-
order nonlinear effects [196]. Second-harmonic cascading been shown theoretically [197,198] and experimentally to support
bright spatial [199] and temporal solitons.

Other nonlinear mechanisms that support solitons include: formation of temporal solitons in the Stokes pulse via stimulated
inter-pulse Raman scattering (SRS) [200,201]. dark 1-D [84] and stable 2-D vortex [202] spatial solitons in self-defocusing
media with thermal nonlinearity, plasma filaments in air {203]. and so-called photorefractive solitons [204]. These nonlinear
mechanisms do not respond on the fs time scales of the Kerr and cascaded nonlinearities and, as a result, may not be as useful
for ultrafast optical switching. : '
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2.2 Preliminaries

This thesis concentrates on bright one-dimensional spatial solitons and multi-dimensional spatio-temporal solitary waves in
media exhibiting optical Kerr nonlinearity. The entire class of dark solitons are omitted from study because they have nonzero
boundary conditions at infinity, implying the requirement of infinite power/energy. This boundary condition can be relaxed
somewhat by embedding a dark stripe or vortex within a localized bright diffracting background. A multi-dimensional hybrid ~
bright/dark solitary wave, or symbion, may also exist for either bright in time and dark in space (which might be important for
materials with 1> < 0 and normal dispersion [205]), or bright in space and dark in time (which might be important for materials
with n, > 0 and normal dispersion). : : .

In one dimension of space, a spatial soliton exists through the balance between linear diffraction and nonlinear self-
focusing [73,169]. In time, a temporal soliton exists through the balance between linear dispersion and nonlinear self-phase
modulation [132]. Kerr-type (nonresonant and non-dispersive) refractive nonlinearity is responsible for both self-focusing and
self-phase modulation and is the fundamental requirement for the so-called nonlinear Schrodinger (NLS) solitons in optics
which are the subject of this thesis. In one dimension, NLS solitons are stable, meaning that small amplitude or phase pertur-
bations do not upset the balance between the opposing linear and nonlinear effects.

Under special conditions on the amplitude and beam width/pulse duration, optical solitons can form when the total refractive

index is well-described by the expression
: n=no+n; |A|2, (2.2)

where ny is the linear index of refraction at some frequency wp and na is the total ultrafast nonlinear index, or Kerr index, with
units of cm>/V2. and A is the electric field envelope with units V2/cm?®. The definition of the nonlinear index in terms of the
third-order susceptibility, given by equation 3.59, was chosen such that the above expression for the total refractive index is '
valid. A further generalization includes the quintic contributionto the refractive index through ultrafast %),

n =no+ng|A|2+n§ﬁ|A|4, C(23)
where the effective quintic index, with units cm*/V*4, is defined as

ns .
St =y — —, 2.4
13 14 g . (24)

ignoring the cascaded contribution. The direct quintic index ny is discussed in section 3.1.3. In this case, the relative dielectric
constant takes the form
. E=n"= IZé+2Holl:|A|: + 2ngny |A]4+ el (2.5)
It is now scen that the second term in the definition of n§ is the result of taking the square-root of the dielectric constant to
obtain the refractive index. An additional contribution, produced through the process of cascading between the fundamental
and third-harmonic. is derived in the multiple-scales analysis of section 3.2.
The quintic nonlinearity will be used in the multi-dimensional solitary wave case as a means for providing stability, but first
1-D spatial and temporal solitons as described by the cubic NLS equation will be discussed in detail.

2.3 1-D Spatial Optical Solitons

Spatial solitons result from the balance between linear diffraction and nonlinear self-focusing as shown in Figure 2.1. In one
transverse spatial dimension, these solitons are stable such that the balance between the linear and nonlinear effects prevents
small amplitude or phase perturbations from destroying the soliton. If a perturbation acts to widen the soliton, nonlinear self-
focusing overpowers diffraction to restore balance. In the opposite case, if a perturbation narrows the soliton, linear diffraction
overtakes self-focusing. :

The analytical study of spatial solitons begins with the scalar Helmholtz equation which describes the propagation of a
monochromatic beam in weakly inhomogeneous media

VA+KA=0 (2.6)

where E = $A(x.y.2)e™" 4+ cc is the time-harmonic electric field, k = won(r,0)/c is allowed to have weak spatial variation,
and the over bar indicates the presence of a fast phase variation due to propagation. Assuming for the moment that k has no
spatial variation, equation 2.6 can be transformed into the spatial frequency, or Fourier, domain

[+ K2+ k] A = KA, : -» @




Final Report AFOSR F49620—95-1-043 1, Spatial Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder 37

diffraction self-focusing soliton

{=
L=}
=}
]
o
]
Q
<]
=
Q

Figure 2.1: Illustration of the balance between linear diffraction and nonlinear self-focusing in the formation of a spatial optical
soliton. The 1/e* beam radius is plotted along with the dashed lines which represent the phase fronts.

where k.. k, and k. are spatial frequency variables representing the Cartesian components of the optical wave vector. The

solution to this equation is
VAi + k2 = ko, (2.8)

which describes the momentum sphere of isotropic propagation and prescribes one spatial frequency component when the other
two are known. This sets up an initial-value problem for propagation, such that when the electric field is known on a plane
for example. guaranteeing that two of the three components of momentum are known, propagation to another parallel plane
at an arbitrary distance is then fully determined by specifying the third component using equation 2.8. If z is the direction of
propagation. then the initial-value problem has the solution in the Fourier domain

Alk kyy2) = VTN A G k0), 2.9)

where A(k,.k,.0) is known by the Fourier transform of the initial field on the input plane. The field distribution A(x, y, z) at the
observation plane is calculated by the inverse Fourier transform of A(ky, ky,z). Linear diffraction is described in more detail in
section 2.3.2 and Chapter 4.

In media of isotropic symmetry class with Kerr-type nonlinear index n2, the inhomogeneous wave number is

2 ) R ]
k‘(|A|)=k6+2k6£lA|' (2.10)
where the quintic nonlinear index is neglected. Substituting into equat/.ioh 2.6 results in

VA+KRA+ U2 |APA=0. ‘ @.11)
ng :

This equation describes the (2+1)-D spatial propagation of a beam in a weakly inhomogeneous, weakly nonlinear medium.
Since the 1-D spatial soliton is of present interest, it is assumed that the beam is confined inthe y dimension by a slab waveguide.
As a result, assuming that the linearly guided and nonlinear soliton envelopes are separable, i.e. -

A(x,y,2) = D(»)A(x,2), ' (2.12)
where ®(y) represents the guided profile and is real and of unity magnitude, the nonlinear Helmholtz equation 2.11 reduces to

A 0°A

25 22, 027
57 T ThoA+ 2k ClAlTA=0 (2.13)
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and is the starting point for the following analysis of 1-D spatial solitons.

Note that the effects of waveguide confinement have been formally neglected in equation 2.13. This omission can be
remedied by using an effective wavenumber Beff and nonlinear coefficient ngff determined by the appropriate modal overlap
integrals, but the analysis in the next two sections neglects the effects of transverse waveguide confinement for simplicity. The
fully confined case of 2-D spatio-temporal solitary waves in a slab waveguide is discussed in full in Appendix C.

2.3.1 The Non-Paraxial Fundamental Soliton

A soliton is by definition a stationary solution, therefore, using the field amplitude ansatz
A(x,z) = A(x)eP* ‘ (2.14)
in equation 2.13, the stationary transverse envelope becomes the eigenfunction of the ordinary nonlinear differential equation

d?A(x)
dx?

+ [~ B+ 22 A ) =0, @15)

where B° is the eigenvalue and B represents the total wavenumber and contains both linear and nonlinear contributions.
The transverse envelope is assumed to be of the form [169]

Mﬂ#%mm(iD, " 2.16)
wo

where Ay is the real amplitude and wy is a measure of the beam width. Since the soliton is non-diffracting, there is no transverse
phase variation. The stationary solution is given by

1 n . ,
Ao = 1= = BNAY)
| . A2 ‘ ‘
Bkt — = k2 |1+ 220 (2.18)
wg ngy

with the total wavenumber B = kg + kfn:Ag/Z when the induced nonlinearity is small.
Since equation 2.13 is invariant under the unitary transformation

b cos® sin@ ][ x
[ N } - [ —sin® cos6 | [ z ] .(2'19)

a more general stationary solution is given by

cos@ ¥ —sinB '] eiB[cosO :’+sin6.\/] . (2.20)

v

A(¥.Z) = Ap sech [

Wwo ]

Equation 2.20 is a fully linear and nonlinear non-paraxial solution when the optical field polarization is in the y direction such
that vectorial effects are absent. Unfortunately, it is mathematically and numerically difficult to propagate this (or other) solu-
tion using the evolution equation 2.13; therefore, a common practice is to reduce this full Helmholtz equation to a parabolic
one so that robust numerical techniques based on finite-difference or split-step methods, and analytic techniques such as the
scattering/inverse-scattering transform, can be used. This procedure is carried out formally in Chapter 3 for the fully vec-
torial (3+1)-D and (2+1)-D evolution equations which uncovers the linear and nonlinear physics buried in the second-order
equation 2.6, but done in an ad-hoc manner in the next section for the (1+1)-D case. ’

2.3.2 The Paraxial Fundamental Soliton

Paraxial propagation is described about some mean direction of propagation. For simplicity, choosing z to be this direction, the
electric field envelope is assumed to be of the form

A(x,2) = A(x,z)e™0?, 2.21)
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where kg = Wono/c is the bulk propagation constant or wave number. The fast phase due to propagation is explicitly removed
from the transverse envelope so that the slowly-varying amplitude (SVA) and paraxial approximations can be made. Substituting
this expression into the nonlinear Helmholtz equation 2.13, and making the approximation

1A 8aA ny 942 A
24 /9,2 = = 2 : 222
0°4/02°| = 3~ |33 + 332 T 00 < |2kodA /2] (2.22)
results in the (1+1)-D spatial NLS equation
aA 83A A N2 2 ’
2iky=— + = +2k5—|A]°A=0. . 2.23
iko 5=+ 37 + 2k~ A (223)

The first two terms in equation 2.23 simply describe linear diffraction in the paraxial approximation which is seen by taking
a transverse spatial Fourier transform

A__B: L Ap=Aoe Bk
5, = inA = A(z) = A(0)e , (2.24)

and reduces the =-directed accumulated phase from the maximum value kg to ko [1 - kf / 2kg] due to the off-axis projection of the
phase-velocity onto the mean direction of propagation z. This expression only allows for propagation in one direction (along zor
very near to it) and is the result of the using the slowly-varying amplitude approximation which reduces the Helmholtz equation
to a uni-directional wave equation. The SVAA is valid when backscattered radiation from linear or nonlinear inhomogeneity
can be neglected to a given order of approximation, as discussed in Chapter 3.

Figure 2.2 illustrates diffraction in spatial frequency space. For full (2+1)-D spatial diffraction in isotropic space, the
surface of allowed k vectors is a sphere. Diffraction in (1+1)-D as shown in the figure is represented by slicing the sphere with
a plane passing through the origin, resulting in a circle. The paraxial approximation represents this circle as a parabola and
is valid for small transverse spatial frequencies (small angular bandwidths). Linear propagation is described by appropriately

phasing each transverse spatial frequency component A(ky) with exp(ik.z), where k: = k(z) — k2 in the non-paraxial case and
k- & ko — k% /2ky in the paraxial case. : . '

Figure 2.3 shows the diffraction of an initial sech(x/wg) profile beam over 5 confocal distances. Here the confocal distance
Zy = m wjj/ 2 is twice the Rayleigh range, which represents the distance over which the FWHM intensity pattern increases by

\/2 1. Note that the intensity FWHM is 1.7627wyq [30].
Neglecung the diffraction term in equation 2.23 results in the nonlinear equation

0A 2
i—a—_-+k/llglAl'A =0, (2.25)
where k, = ux /¢ is the free-space wavenumber. The solution to this equation is written in the real space domain as
Alx.2) = €9 A4(x,0) (2.26)

with the nonlinear phase accumulation ' .
oM (x.2) = kyma / A D) 2. (2.27)
0

For small z = A:. the nonlinear phase is approximated by the expression
oM (x. Az) & kyna |A(x, Az/2) 7 Az (2.28)

which is second-order accurate in Az. This nonlinearly induced phase is illustrated in Figure 2.4 for propagation distance Az
and peak amplitude chosen such that the maximum nonlinear phase is 4 radians. '

The spatial frequency space is the natural domain in which to solve the linear diffraction problem, while real space is the
natural domain in which to solve the nonlinear problem (ignoring diffraction). This insight will be used in the development of
the split-step Fourier method outlined in Chapter 4, which efficiently implements nonlinear propagation by switching between
the two domains for linear diffraction and nonlinear refraction.

1 Unlike the case for Gaussian beams, in the case of a sech(), this distance is not the same as that obtained by interpolating the far-field diffraction pattern,
which results in a confocal distance 1.605m2wg/A
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paraxial’

nonparaxial

40

Figure 2.2: k-space diagram graphically showing the z-projected wavenumber k. as a function of the transverse wavenumber k.
The paraxial approximation is illustrated by the dashed curve. The transverse spatial frequency spectrum of a beam is shown in
order 1o illustrate propagation by associating k. with every &, of the spectrum. The paraxial approximation is good for small kx

but breaks down for larger k, where the associated value for k. deviates significantly from the exact result.
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intensity FWHM 25 um. After propagating 5 Zp, where Z, = T:zwg/k = 1.85 mm is the confocal distance, the intensity FWHM
broadens to 140 ym. '
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Figure 2.4: The nonlinear phase (dashed curve) induced by an electric field envelope (solid curve). The induced phase is
proportional to the local intensity and in a material with positive Kerr nonlinearity, tends to reduce the phase velocity of the
central portion of the beam resulting in a focusing. or lensing. effect.

Now, looking for a paraxial soliton solution, the stationary ansatz 2.14 is substituted into equation 2.23 with the result

d'jr(_;‘) + 2k [~B+ Ky lA(x) | atx) =o. _ (2.29)

Assuming the fundamental soliton form of equation 2.16. the amplitude and phase become

ho= —— |™0 (2.30)
i\'o wWo n»
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Figure 2.5: Spatial soliton beam of initial sech(x/wg) amplitude profile, where wy = 14.2 ym and intensity FWHM 25 um.
Even after propagating 5 Zy, where Zy = 1.85 mm, the beam width and position are unchanged.

= 1/2kowi = kA3 /2, (2.31)
0 f 0 )

where the amplitude is the same as in the non-paraxial solution and [ represents the slow phase nonlinear correction to the
fast phase linear wavenumber ko. The total wavenumber kg + [ is the same as that obtained in the non-paraxial case given by
equation 2.18 when wy > A. The nonlinear correction to the wave number f is half that obtained for a plane wave of amplitude
Ay, and simply reflects the fact that the soliton does not have constant amplitude.

The full paraxial solution is written

A(x,y,2) = l v/ :—(‘) d(v) sech <—L> ellko*1/ongle (2.32)

kowo wo

where the incarly guided profile ®(y) and linear wavenumber ky are added for completeness. Spatial soliton propagation using
the spht-step numerical scheme of section 4.2.1 is shown in Figure 2.5 with wo = 14.2 um. After a propagation distance of
5 Z,. the soliton 1s unchanged, thereby beating the limits imposed by linear diffraction as shown in Figure 2.3, which would
result in spatal broadening by a factor of 5.6. '

Detining the optical intensity with units W/em?

Epcn ) 1 )
Axyg) = = |A(xy2) = ﬁlA(x.y.:)l . (2.33)
and neglecting the nonlinear contribution to the index and impedance, the intensity of the fundamental soliton is written
Ixy.z) = —2 d3(y) sech? [ X ), (2.34)
2/"7“'6”3 Wo

for nx in units of V2/¢m*. The power of the soliton is
P(z) = / / Ixoy. dxdy = 25— / @7 (y)dx : (2.35)
k}:won:

and has units of W', Note that fsechz(x/wo)d_v = 2wy.

From these expressions, it is clear that the peak intensity of the soliton increases inversely proportionally to the square of
the width and the power of the soliton increases inversely proportionally to the width, so that a narrow soliton requires more
power to launch and propagate than a broader one.

A further generalization of the paraxial soliton solution is given by

—02\ 5% cuB-
A(x,z) = Ag sech ("—W—O—> eOkex+Be] ' (2.36)
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Substituting this expression into the NLS equation 2.23 results in

1 no '
— /o 2.37
A= owo V2 _ @37

8 = 8k /ko (2.38)
1 Sk?
B= T~ T (2.39)

which is the paraxial version of equation 2.20. Notice that, like the non-paraxial soliton solution, the NLS soliton solution has
two free parameters: the width wy and angle of propagation 8.

2.4 1-D Temporal Optical Solitons

Temporal optical solitons result from the balance between linear dispersion and nonlinear self-phase modulation (SPM). In
order to arrive at this one-dimensional system, the temporal soliton is confined transversely in an optical fiber. Even though the
nonlinearity of silica glass is very small, optical fiber is an ideal system in which to perform experimental studies because of the
very low linear loss ~ 0.2 dB/km (~ 5 X 10~7 cm™!) and long interaction lengths [30]. Because a temporal soliton is inherently
a one-dimensional nonlinear phenomenon described by the NLS equation, stability is guaranteed as it is in the one-dimensional

spatial case.
The scalar wave equation describing temporal propagation in fiber is
aZA. ) a - nons a 2 5 -
— 4k {wg+iz=— |A+2—= o +iz-| |A[FA=0, = 240
a:2+ ( 0+lar) c? [ oty Al _ (240)

where the electric field E = %Z (x,y,2,1)e"" + cc and Raman scattering has been neglected. The wave number function of

the operator (;’-7 is interpreted by its Taylor expansion [194]. as shown in equation 2.44. Here, parenthesis enclose function
arguments. while braces and brackets are used for grouping. The effects of Raman scattering are considered in section 2.4.3.
Equation 2.40 describes the evolution of the pulse envelope, therefore soliton solutions are termed envelope solitons, in contrast
to field soliton solutions of other nonlinear wave equations such as KdV.

In the following analysis it is assumed that A has the separable form A = d(x,y)A(z,t), where @ is the transversely guided
profile of unity magnitude. The effects of transverse guidance will be neglected for simplicity, as already done in equation 2.40.
In Appendix C. the derivation in the case of spatio-temporal propagationin a slab waveguide is presented in full.

The linear part of equation 2.40 has the simple solution in the temporal frequency domain

A(Aw, 7) = 20+ 4 (Aw 0). (2.41)

The term Ao describes some (small) frequency variation about the central frequency wp. Similar to the case for linear diffrac-
tion. linear dispersive propagation is fully described by phasing each temporal frequency component A(wg + Aw) using the
appropriate dispersive wave number k(wp + A). )

The variation in wavenumber & with wavelength is shown in Figure 2.6 for bulk silica glass, where waveguide dispersion is
neglected. The linear and nonlinear optical properties of silica are discussed in more detail in Appendix D. Also shown is the
wavelength dependence of the group delay coefficient, which is related to the wavenumber by k' = dk/dw, and can be evaluated
in two forms - '

K(w) = % [n(m) + ?a—'(.;(mﬂ)] o 2.42)
k()= % [n(x) _}\a,;(}\x)] , ' (243)

It is clear from the figure that when A > 1.28 um, shorter wavelengths are delayed less than longer wavelengths, meaning that
shorter wavelengths (higher frequencies) travel with a greater group velocity than longer wavelengths. This is the anomalous
dispersion regime and is the regime in which bright temporal solitons can form with positive Kerr nonlinearity.

Much effort has been placed on using waveguide dispersion of fiber to tailor the overall dispersion characteristics. One
example of this is dispersion-shifted fiber, in which the zero value of group-delay dispersion is shifted to longer wavelengths,
particularly near 1.55 um where the fiber loss is minimum. Double or quadruple clad fiber has flattened dispersion character-
istics where the GDD is small and nearly uniform over a 25 nm range [30]. Both of these examples are used mainly for linear
propagation where dispersion is not compensated by SPM. Appendix D briefly covers the effects of waveguide parameters on
the overall linear dispersion relation.
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Figure 2.6: Wave number and group delay versus wavelength for bulk silica. The dashed vertical line separates the normal
(NGDD) and anomalous (AGDD) dispersion regimes. The spectrum of a 16.5 fs intensity FWHM sech() pulse with time-
bandwidth product 0.316 is also shown. Linear dispersive propagation occurs by phasing each temporal frequency component
using the appropriate wave number. '

2.4.1 The Non-SVEA Fundamental Soliton

It is not known that equation 2.40 has a general solution. There are solutions for specific material parameter values when the
full dispersion relation k*(w) is truncated at a given order. This truncation amounts to making the slowly-varying envelope
approximation {SVEA), although the standard SVEA keeps terms only up to second-order in time derivatives and results in the
temporal NLS equation.

An analyuie solution to equation 2.40 has been obtained [206] keeping linear dispersion terms up to fourth-order in time
derivatives and all nonlinear terms, excluding Raman scattering. To fourth order, the linear dispersion is

p 0 5 .., 0 - m 0" : '
k- ((.l)() + lé?) ~ ky +21k0k0§ - [k(’) +/(()k0] —aﬁ | , (2.44)
) 4

! 12 g i a
+ 3 [3kg™ + 4oy’ + kokg ]ﬁ'

i 1 n 83

With this approximation, equation 2.40 can be rewritten

9°A
9:° or

] "2 I I, %A ~  2ikf 0 1 92 5 -

J— - 4 L L - 2 . 2 tt? A 2 -0
15 [BRE + 4KOkE + koK) =5+ 2mom |k + == 50 = 5 55| 1APA=0

] 1 " a3A—
- 5 [3K0kE + ko] 53 (2.45)

X

a:

" - ,a/‘i " "
+ koA + 2ikokg = - (kG + koky) )

o

Notice that the SVAA has not been made, even though the SVEA has been made to fourth-order in time derivatives. Equa-
tion 2.45 will still be referred to as a non-SVEA equation because it includes two orders of time derivatives beyond the standard
SVEA equation.

A solitary wave solution to equation 2.45 is given by [206]

A(z.1) = Ag sech (%) ¢lB—d0r) , (2.46)
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where the expressions for the quantities Ag, v, To, B and 8w can be found in the reference. One important property of the solution
is that all of the parameters are determined by the material constants; there are no free parameters so only one solitary wave
profile can be a self-consistent solution. This is unlike the NLS case in which there are two free parameters - width/duration
(or amplitude) and propagation angle/frequency [117]. A condition on the existence of the solution 2.46 is that the material
dispersion parameters kg, ko' and kg are negative, which can be accomplished using quadruple-clad fiber for example [207].

Another property of this solution is that, like the non-paraxial spatial soliton solution of the previous section, there is no
backscatter of radiation from the induced inhomogeneity due to the nonlinear index. This is because the wave is a stationary
state and does not change with propagation, therefore there is no energy loss due to scattering. The stability properties of this
non-SVEA solution have not been studied to date, and it should be pointed out that experimental realization may be difficult
due to the restrictive nature of the solution.

2.4.2 The SVEA Fundamental Soliton

Writing the field amplitude in terms of a fast propagation phase and slowly-varying envelope,

A(z.1) = A(z,1)e*, (2.47)
and substituting into equation 2.40, the (1+1)-dimensional scalar nonlinear wave equation usually considered for soliton prop-
agation in optical fiber [132] is obtained

dA ,0A PA_ama, o '
Diko | S0 + ko2 | — okt S5 + 263 AP A =0, (248)
0z or or* ng

where the slowly-varying amplitude and envelope approximations have been made. The quan'tity in brackets simply indicates
that the wave nominally moves at the group velocity vy = 1/ky. This quantity can be simplified by making the transformation
into the reduced time coordinates
T=t-k: (2.49)
Z=c '

and noting that

d dT 0 9Z2Jd d (2-'50)

&~ or T aroz or
i—£i+a—z—a———k’—a—+3— (2.51
3" %or "oz %ar 'z >
With these substitutions, equation 2.48 can be written
0A 0°A AN '
2ikg= — koky == + 2kg—|A|"A =0, 52
o032 ‘OI‘(JaT_ + %0 IAI (2.52)

which is the temporal nonlinear Schrodinger (NLS) equation.” Apart from a scaling factor, this equation is the same as the
(1+1)-D spatial NLS equation. For bright soliton solutions analogous to equation 2.32, it is clear that kj < 0, meaning that the
wave propagates in the anomalous dispersion regime. :

By using the transformation 2.49, the coordinate system is changed such that the pulse moving with the group velocity 1/kg
is stationary on the reduced time axis T, instead of moving on the time axis 1 at the group velocity. This results in the leading-
order frequency-dependent correction to the wavenumber kg being proportional to the group-delay dispersion coefficient ki,
or ~

1, 5
k(w) & ko + 5Aork{,’. (2.53)

where kg = k(wp) and Aw = ® - Wyp. ,
The linear part of equation 2.52 has a simple solution in the temporal frequency domain

A(bw.z) = 168124 (A, 0). (2.54)

Analogous to paraxial linear spatial diffraction, linear dispersion is described by phasing each temporal frequency component
with the appropriate quadratic phase factor £%089°2/2 in this case where SVEA was made such that higher-order dispersion is
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Figure 2.7: Effect of negative group-delay dispersion on a 16.5 fs quasi-monochromatic wavepacket with A ¢ = 1.55 um. The
initial sech() packet is shown on the left and the dispersed packet on the right. The electric field oscillation at optical frequencies
is shown for illustrative purposes.
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Figure 2.8 Dispersion of a pulse of initial sech(T /7o) amplitude profile, where Ty = 9.36 fs and intensity FWHM duration
10.5 fs. After propagating 5 Zy, where Zg = nt3/2|kgl = 4.93 mm = 2Lp/m is the dispersive confocal distance and Lp is the
standard dispersion length, the pulse FWHM broadens to 91.5 fs.

neglected. The dispersion of a wavepacket is illustrated in Figure 2.7 in the time domain. Even though group delay dispersion is
an envelope phenomenon, the local phase of the envelope affects the underlying carrier. The figure indicates that in the dispersed
envelope, higher frequencies move towards the pulse leading edge (negative time) and lower frequencies move towards the
trarthng edge (positive time). characteristic of the AGDD regime.

Figure 2.8 shows the effect of group-delay dispersion on a 16.5 fs FWHM pulse envelope over the dispersive equivalent
distance of 5 Z,. Note that higher-order dispersive effects must be considered for this wavepacket, but are presently neglected
for illustrative purposes. The definition of Z; is obtained by using the substitution Tg = wo /kolkg| in the definition of the
confocal distance used for spatial diffraction of the sech(x/uy) profile. With the consideration of only group-delay dispersion,
the broadening of the temporal profile depends on the magnitude of GDD, not the sign. The chirp of the carrier does depend on
the sign of GDD. as shown in Figure 2.7.

The nonlinear part of equation 2.52 has the solution '

A(T.z) = €T3 4(0) (2.55)

with the nonlinear phase accumulation

OMH(T,2) = kyna /0: |A(T,Z) dz. (2.56)
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Figure 2.9: Effect of positive self-phase modulation on a 16.5 fs quasi-monochromatic wavepacket where the initial sech()
packet is on the left and the nonlinearly modulated packet on the right, with 7t peak nonlinear phase change. Positive self-phase
modulation reduces the phase velocity proportionally to the square of the field envelope resulting in an instantaneous frequency
shift (top right). such that the pulse leading edge is downshifted and the pulse trailing edge is upshifted.

Because of the nonlinear phase modulation, there is an instantaneous frequency change across the pulse envelope. This fre-
quency shiftis defined as .
aoNt 9|A(T,Az/2)|

5 L Il S e St A

oo = & —kynaAz 37 ’,
and is known as self-phase modulation (SPM) [30]. This effect is illustrated in Figure 2.9. The frequencies at the center of the
pulse are not shifted because the derivative there is zero. At the inflection points of the envelope the derivative is maximum
resulting in the largest frequency shift such that the leading edge is downshifted while the trailing edge is upshifted for positive

SPM. Therefore. in the anomalous dispersion regime, the leading edge will travel with a slower group velocity than the trailing |
edge. The net effect is a narrowing, or compression. of the pulse and a temporal soliton results from the dynamical balance
between positive SPM and linear dispersion in the anomalous regime. This balance is the reason for the existence of stable

temporal solitons. In the normal regime, pulse lengthening 1s enhanced due to positive SPM.

It 1s clear from Figure 2.9 that, even though the envelope amplitude is unchanged, SPM alters the phase and hence the
spectral content. This phenomenon is known as SPM-induced spectral broadening and is shown in Figure 2.10 by comparing
the temporal Fourer transforms of the two wavepackets in Figure 2.9, where significant spectral broadening has occurred. In
the absence of asymmetric, higher-order effects. spectral broadening is symmetric about the central frequency.

By analogy with the 1-D spatial soliton, the existence of a temporal soliton of the form

(2.57)

T\ -
A(T‘ ) =Ao sech (;—) (‘IB‘ , (258)
0 .

is postulated where 315 the nonlinear wave number correction. Using this trial solution in equation 2.52 results in

A: — ‘;;"(" (7 59)
L A(]”:t(:, -
B = —ky 215 = kmaAG/2. (2.60)

In order for the amplitude Ay to be real, kg < 0. which is the anomalous dispersion regime as anticipated. By comparing the
expression for the amplitude in the temporal and spatial cases. there is a correspondence between the temporal duration and
spatial width give by 1o = \/—kgkj wo. also indicating that k, < 0 in order for 7o to be real.

The full SVEA temporal soliton solution is then

- 1 -k T : M [9.2] .
Alxy2.T)= — oo O(x,y)sech | — e‘[k"—"O/“TO]“, (2.61)
To kgn2 To ’

where the guided profile ®(x.y) and linear wave number kg are added for completeness. The numerical propagation of a
temporal soliton is shown in Figure 2.11 over 5 Zy. As for the spatial soliton, the pulse duration and position in the reduced
time coordinate frame are unchanged.
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Figure 2.10: Self-phase modulation induced spectral broadening. The peak nonlinear phase change is 7, resulting in spectral
broademing by greater than a factor of 2. Subsequent pulse compression utilizing the appropriate net negative group-delay
disperston will result in a pulse shorter than the initial pulse.
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Figure 2.11: Temporal soliton pulse of initial sech(T /7o) profile, where 7o = 9.36 fs and intensity FWHM duration 16.5 fs.
After propagating S Z. where Zy = 4.93 mm, the pulse duration and position are unchanged.

The optical intensity is given by

I{x,y,2.T) =

2/([‘[8'13

R : / kJI Y
_505'1(_‘;‘)_0 d(x,y) sech?

(=)

(2.62)

where the spatial variation of the linear refractive index responsible for transverse guidance is retained. The optical power of

the soliton is

P(:.T)=

Eocn()kg/\eff
2kf‘t%n3

ch? I—
To ’

(2.63)
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and the effective transverse spatial area is defined by the expression

1 | '
A= — / / n(x,y) ®*(x,y) dxdy. (2.64)
ny
The total energy of the soliton is then ‘
!
E= _ng"_okﬂ . (2.65)
kf‘[ong

with the same scaling as the 1-D spatial soliton.
As was done for the spatial paraxial soliton solution, the temporal SVEA soliton solution can be generalized to the form

T — 8k o - .
A(z,T) = Ag sech (-T—O—Z> ¢lB=80T] (2.66)
0
Substituting into the temporal NLS equation 2.52 results in

, , Kino . A

A =-— 2.67

0 k()llg‘l% ( )

K S

P 2.68

b=z (2.68)

8kjy = dwky . (2.69)

This result simply means that a change in optical frequency 8w changes the linear wave number from kg to kg + 50)31\10’/2 and
the group delay from k) to ky + Swkg. Notice that the amplitude is unchanged which is the result of neglecting the third-order
dispersion contribution &y’ in the NLS equation.

2.4.3 Higher-Order 1-D Temporal NLS Solitons

Taking the temporal nonlinear wave equation one order of approximation beyond SVEA results in the modified NLS, or mNLS,

equation
0A A i 0’A '
Vibn — — ] ,II_____. ’III__-
-‘I‘O o: I‘OI‘O Y 3‘()‘0 Y& : (270)
SR L ) ng kg AP A
2= A" A+ dikmy | — - = | ——=— =0.
+k0r10| | +’f"'[c 2] aT -

A similar equation ‘was previously considered [140] but lacked the correct form of the shock term. As shown in Chapter 3,
this is the order at which the effects of stimulated Raman scattering also appear for the given scalings. Raman scattering is a
dissipative effect and is considered in the next section on higher-order temporal effects.

A solution to the mNLS equation is given by

T —08kyz\ -
A(z.T) = Ag sech (——T—"—> eilBe=d0T] , (.71)
0 -
with the following parameter values
" k k!ll
A} = 2% 2.72)

a 6kfngt8 [no/c - k6/2]

1 Swik! Skl
- 4 Sk 0 0 2.
p= =gz [+ 80k + =2+ = (273)
8(1)21\"” 14)”
- k" 0 _ )
Skgy = dwkg + > 61_8 2.74)
k 3k
Sw = 9 0 (2.75)

4 [ng/c—Ky/2] - 2_k6’7'

The only free parameter is the pulse duration Tg, which allows for multiple solitons of different durations/amplitudes to be used
for switching.. Stability has not been investigated theoretically, but numerical simulation verifies that the solution propagates
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stably. Note that this solution is a generalization of that obtained previously [140] in which temporal walkoff in the reduced
time coordinate frame was not allowed, resulting in no free parameters. This is explained further below.

There are two special cases of interest in which 8k, = 0 and 8w = 0. When 8ky = 0, there is no pulse walkoff in the
reduced-time coordinate frame. In this case there are no free parameters [140] since the pulse duration is now fixed at the value

1
ko

Bl o= . 2.76)
Oleig=o 6 [Swklt + 1802k ] 279

Another way of expressing this relationship is to determine the value of TOD needed to sustain a given pulse duration. There-
fore, choosing the pulse duration g as a “free” parameter, the following conditions hold

2gko — /43T — 16 [no/c — K /2]’
) [no/c - k6/2]

K| " __ 680k T3

0 18kp=0 " " 38017 — 1"

Q2.77)

80y o =
(2.78)

where the *-* sign was chosen in front of the square-root as the proper solution which is verified by numerical simulation.
The other interesting case is when 8w = 0, meaning that the original choice of center frequency wy is a solution to the
mNLS equation. This can only occur when the material dispersion parameters satisfy the condition

6k [no/c — ky/2)

K gm0 = i , (2.79)
such that the change in group delay is written
kg [no/c — ky /2]
5"'6[&»:0 = —T. (2.80)

Note that T, remains a free parameter. The temporal walkoff in the reduced time coordinate frame can be eliminated by
redefining the coordinate transformation as T =1 — (ky + Sk

A special case of mNLS, written in normalized form, is known to be integrable [208]
d°1

: 3
+luffu+iB [——‘+6|u[” a"] =0 2.81)

Qu 10 2 0u
oT- oT

i—+ -3
dz  20T-
because 1t 1s a member of the NLS hierarchy and has an associated scattering problem and inverse scattering transform. This
equation is not of nterest here because, like the general mNLS solution with 8w = 0, it places restrictions on the material con-
stants which may not be feasible to satisfy. Instead, this thesis deals with more general, non-integrable cases using parameters
of materials currently in use for nonlinear optical switching.

2.4.4 Higher-Order Temporal Effects

The previous section considered additional non-SVEA terms to the NLS equation that still allowed for analytic soliton-like
solutions. This section considers additional terms that result from the scalar, temporal reduction of the full evolution equa-
tion derived 1in Chapter 3 for use in spatio-temporal propagation. The additional terms included here that are not present in
equation 2.70 are fourth-order dispersion (FOD) and stimulated Raman scattering;:

0A A i 2’4 1 %A
i 20 g g D T I
2iko 5= = koko 57 skoko 575 + 7hoko 573
n k) 3lAA
c 2 oT

(2.82)
+ ?J\(')?ﬂi |A|2A +dikng [
ng

kf : 2 ng I\IO 0 e 2 _
+ 2.{Lf+lno [C =537 /0 Rr(T)|A(T —1)|"AdTt=0.

Here, k3" is the fourth-order dispersion coefficient, n is the nonlinear Kerr index, and Rg(t) is the Raman response function.
To date. there is no known analytic solution to this equation. As a result, the effects of these higher-order temporal terms on the
fundamental NLS soliton are now discussed.
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Figure 2.12: Effects of linear dlspersmn on a sech() pulse with initial intensity temporal FWHM of 16.5 fs. Based on the
dispersion properties of fused silica. the group-delay dispersion (GDD) coefficient kg < 0, the third-order dispersion (TOD)
coefficient A7 > 0. and the fourth-order dispersion (FOD) coefficient k5" < 0. The propagation distance in each figure is 5 Z.

Higher-Order Linear Dispersion
First. the effects of higher-order linear dispersion will be considered in the absence of nonlinearity. In this case, equation 2.82
reduces to 5 '
i w0'A
2ikg=— — kok) == — =kok( ==
0g; ~hhogr — 3t g
The group delay as a function of frequency, as shown in Figure 2.6, can be written K (w) = ky + AK'(Aw), where the approxi-
mation

0A 4 0°A 1, m0'A
+ shoke" 573 = 0- (2.83)

Ak’(Au)) Awkll + lAm o+ A(n3k”” (2.84)
Y

is made and is cubic in frequency dev1anon about wyg.

The effects of linear dispersion on a temporal wavepacket are shown in Figure 2.12. The top plot shows temporal broadening
due to GDD alone. and is based on the same data used for Figure 2.8. The symmetry of the broadening can be understood by
considering the change in group delay, which is linear in Aw. Therefore, symmetric deviation about the center frequency results
in anti-symmetric deviation in group delay about kg, such that

K (000 £+ Aw) 2 k£ AWK . } (2.85)

As a result. GDD leads to symmetric broadening. with red-shifted frequencies tralhng blue-shifted frequencies in the AGDD
regime.
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Figure 2.13: Effects of higher-order linear dispersion on a temporal soliton with initial intensity temporal FWHM of 16.5 fs.
The initial (dashed curve) and final (solid curve, after 5 Zg) temporal envelopes are shown on the left plot, while the initial
(dashed) and final (solid) spectral envelopes are shown on the right. The soliton is delayed by 7.25 fs and narrows slightly to
16.2 fs.

The second plot shows temporal broadening due to TOD alone. In this case, the group delay
1, 5
K (wo £ Aw) = ko + 5Aorkg’, (2.86)

which results in a symmetric change in group delay with frequency. This expression indicates that both red-shifted and blue-

shifted frequencies will move towards the leading edge (TOD<O) or trailing edge (TOD>0). For positive TOD as shown, the

peak will be delayed in the reduced time coordinate frame with steepening of the trailing edge and oscillations in the tail [30].
The third plot shows the effect of FOD alone. The group delay can be written

\

i :
K(wo+ Aw) &~ ky + gAco3k6”’, (2.87)

which. ike GDD. 1s anti-symmetric. Again, broadening will be symmetric, but with much stronger change in group delay for
frequencies far removed from wg. FOD can either enhance (same sign) or oppose (opposite sign) the broadening due to GDD.
As shown 1n the plot. the FOD coefficient of fused silica is small enough that its effect is negligible for the choice of initial
pulse duration and propagation distance.

Finally. the fourth plot shows the temporal broadening due to the combined effects of all dispersion terms. In fact, the
full disperston relation using the Selimeier coefficients for fused silica (see Appendix D) is used, but the primary effects arise
from GDD and TOD. Because of TOD. broadening is asymmetric. The signs of GDD (<0) and TOD (>0) indicate that TOD
opposes the change in group delay due to GDD when Aw > 0. and enhances the change due to GDD when Aw < 0, as shown
in Figure 2.6 Therefore. the broadening of the red-shifted trailing edge will be increased while broadening of the blue-shifted
feading edge will be reduced. Opposite to the case of TOD alone. the peak is now slightly advanced.

The eftect of higher-order dispersion on a temporal soliton is shown in Figure 2.13, as described by the evolution equation

2 » 3 4
2ik0%—é — kok! g_r—’i - %k(,k{;’ g’ri‘ + l—lz-kokg” gri; + 2k3%(:) lAFA =0, (2.88)
where n2 = ng + o Jo Re(1)dT is the total instantaneous nonlinear refractive index. Because AGDD is balanced with self-
phase modulation, the soliton is delayed by 7.25 fs in the reduced coordinates. This delay is primarily the result of positive
TOD. and is similar to the case previously discussed with TOD acting alone on a linear pulse, where the delay was 7.08 fs. The
peak of the spectrum is also downshifted, as shown on the right-hand plot, which corresponds to the delay experienced in time.
Except for the delay. in real space, the soliton is mostly unaffected by higher-order dispersion, a testament to (1+1)-D stability.

Optical Shock

Optical shock [183] is the first-order time derivative of the nonlinearity and gives rise to an intensity-dependent group de-
lay [ 184). The evolution equation describing nonlinear refraction and optical shock is

ng k] olAFA _
]———» s =0. (2:89)

dA’ ANy s
ik 4 2 = AL" ik s | =2 - 29
_lL()a: +-L0"0 |A] A+41Lfr1_[c >
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Figure 2.14: Effects of optical shock on a 16.5 fs wavepacket for a propagation distance of 1.5 Zy. The left-hand plot shows
the initial (dashed) and final (solid) temporal intensity envelopes and indicates slight narrowing to 16.3 fs and delay of the peak
by 5.68 fs. The right-hand plot shows the initial (dashed) and final (solid) spectral envelopes and indicates spectral broadening
from 19.1 THz to 33.9 THz due to SPM with asymmetry caused by shock.

The optical shock expression obtained here has two contributions, one (proportional to phase delay) directly from Maxwell's
equation in the time derivative of the nonlinear polarization. and one (proportional to group delay) due to the removal of the
SVE approximation by one order. '

Expressing the field envelope as 4
A=Al (2.90)

equation 2.89 can be written as the coupled differential equations

d|A| na [k, ny ~ 0|A|
—_—=6=|= - — A" == 291
d: ml2 ¢ | oT ( 2
© 00 ~ ons [K ny - aO
= mkmaiAT e = |2~ A == 291b
- ]II_ " [ 2 ¢ ! I aT . ( )
The tirst equation has the simple solution

ATz = [Alz = v TH. (2.92)

where the intensits -dependent group velocity is defined

= (2.93)
o [ -]’

e - i

Vigy

Therefore, the group velocity is reduced with increasing intensity.
The self-steepeming effect due to optical shock is shown in Figure 2.14. The peak is delayed more than the wings resulting
in a steepening of the trailing edge. An estimate of the ime delay of the peak is

! “
7 ["—“ - /ﬁ] . (2.94)

3
T2 c 2
which gives the value AT = 5.73 fs using the parameters of the simulations. This compares very well with the value of 5.68 fs
obtained by numernically locating the peak. The second plot shows that the spectral broadening due to self-phase modulation (as
shown in Figure 2.10) becomes asymmetric, with slight down-shift of the peak corresponding to delay in the temporal domain.
The steepening of the trailing edge results in broad frequency content. Therefore, dispersion must be considered, which
dissipates steepening. The following evolution equation well describes the effects of shock and dispersion

LOA LA i A 1, 0%
21/\()5‘5— kokg 5-;"73 - gk()ko 5'7_—1 + 'l—ikolxo '8"'7_—4 (2.95)

Y TN ) no ki dAIPA
+ 2k — A" A+ dikng {—C———zg] —lé—lr—:O,

ngy
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Figure 2.15: Effects of optical shock and higher-order dispersion on a 16.5 fs wavepacket for a propagation distance of 5 Zp.
The left-hand plot shows the initial (dashed) and final (solid) temporal intensity envelopes and indicates slight narrowing to
15.8 fs and overall (centroid) delay of 13.7 fs. The right-hand plot shows the initial (dashed) and final (solid) spectral envelopes
and indicates asymmetry due to shock and TOD.

and 1s used for the simulation results presented in Figure 2.15, using the fundamental soliton A=sech(T /1p) as the initial
condition. Dispersion dissipates the shock and the balance between AGDD and SPM stabilizes the pulse. As a result, the effect
of shock 1s to delay the entire pulse. The overall delay of 15.8 fs is due to both shock and positive TOD, where the delay without

shock 1s 7.25 fs. as shown in Figure 2.13.

Raman Scattering

This section considers the full evolution equation 2.82. which includes higher-order dispersion, shock and Raman scattering.
The Raman nonhinearity is described via the full Raman response function [186] for a single resonance: '

 Rye™™sin (Qg1)

29
O (2.96)

Rg(1)

where Qp = \ Q. — ¥° /4 1s the optical phonon frequency, Q; is the natural oscillation frequency and ¥ is the damping constant.
Raman scattening results in a continuous frequency down-shift by providing gain at lower frequencies at the expense of higher
frequencies. as discussed 1in Appendix B. This effect is often referred 1o as the soliton self-frequency shift [145]. In the AGDD
regime. the downshitted frequencies travel with a greater group delay (slower group velocity) thereby delaying the wave in the
reduced time coordinates. as shown in Figure 2.16.

Spectral narrowing and downshift are clearly seen on the right-hand plot. The peak of the Raman gain in fused silica is
13.2 THz tor 829 rad/ps). The peak of the downshifted spectrum is about 80 rad/ps below the knee of the high frequency
side of the curve. indicating that the low frequencies are amplified and the high frequencies are attenuated, resulting in spectral
narrowing. Spectral four-wave mixing continuously creates new frequencies, called the Stokes (low-frequency) and anti-Stokes
(high-frequency ) side bands. allowing for a Raman downshift which exceeds the original spectral bandwidth. The manifestation
of these effects n the temporal domain is temporal broadening (due to spectral narrowing) and delay (due to downshift). Note
that the delay of 20.0 fs is only slightly greater than the delay of 13.7 fs without the Raman term. This indicates that, in this
case. the Raman effect is about the same order as the other higher-order temporal effects, but because of the large, continuous
spectral downshift, the Raman term will manifest itself over much longer distances and eventually dominate. ’

2.5° 2-D and 3-D Spatio-Temporal Solitary Waves

The propagation and interaction of multi-dimensional spatio-temporal solitary waves, which are stationary in both space and
time. is of ultimate interest to this thesis. These multi-dimensional nonlinear phenomena are termed solitary waves instead of
solitons because. like solitons, they are stationary, but may not satisfy the additional properties of solitons such as inelastic
collisions (which preserve the soliton eigenvalues) and integrability of the defining equations. Like temporal solitons in fiber,
these multi-dimensional solitary waves are fully confined, either by complete nonlinear self-confinement in the case of the 3-D
light bullet or with one dimension of linear confinement by a planar waveguide in the 2-D self-confined case, such that the
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Figure 2.16: Effects of Raman scattering, including shock and higher-order dispersion, on a 16.5 fs wavepacket for a propaga-
tion distance of 5 Zg. The left-hand plot shows the initial (dashed) and final (solid) temporal intensity envelopes and indicates
broadening to 27.4 fs and overall (centroid) delay of 20.0 fs. The right-hand plot shows the initial (dashed) and final (solid)
spectral envelopes and indicates spectral narrowing from 19.1 THz to 11.7 THz and overall downshift by 4.23 THz.

energy requirement is low. A brief discussion of 2-D spatio-temporal solitary waves is presented here with more detail on
propagation and interaction provided in Chapter 6.

" The most straightforward means of describing the propagation of 2-D spatio-temporal solitary waves is the direct extension
of the (1+1)-D nonlinear Schrodinger (NLS) equation

_9A 9°A ,0°A
211\0—3—. + -é-:? - k()l\'

A Lt ala=0 2.97)
vorT? %09 ’
but it is well known that the solitary wave solutions are unstable to propagation [209]. This instability can result in critical
collapse. or blow -up. when nonlinearity overtakes diffraction/dispersion, or in broadening when diffraction/dispersion overtakes
nonhinearity. In the case of (2+1)-D spatial and spatio-temporal in the AGDD regime, and (3+1)-D spatio-temporal in the AGDD
regime. blow-up is the result [176), which indicates that the evolution equation does not take into account additional physics
which arrest this behavior. The inclusion of non-paraxial and non-SVEA terms results instead in spatio-temporal broadening.

Since the pump must propagate the length of the logic gate undisturbed (i.e. with final size about the same as the initial
sizet. mechanisms to stabilize propagation need to be investigated. Multi-dimensional propagation can be stabilized by the
incluston of a surtable nonlinear index saturation mechanism [2.210] such as ultrafast quintic nonlinearity of opposite sign to
the cubic Kerr nonlinearity. i.e. n=ng+na lA]: +n§t |Al* where A is a scalar field and n§T < 0 accounts for the refractive
part of the effective quintic nonlinearity. Examples of this type of saturation behavior are the nonresonant nonlinearities of
semiconducting AlGaAs [ 143] at sub-half bandgap or the organic single-crystal PTS [125.147]. Ultrafast saturation from the
quintic nonlmeanity 1s the stabilization mechanism discussed in this thesis, but it should be noted that the balancing between
third-order dispersion (plus space-time focusing) and shock as shown in section 2.4.3 for 1-D temporal solitons may also serve
as a stabilization mechanism for multi-dimensional propagation [139].

The scalar (2+1)-1> cubic-quintic NLS equation is

JdA  0°A 9-A e
Diko—— + —= — kokll —< + 2k —
ko3 + 57 ~hokoggz =R

2 ”Sﬁ 4
[[AI +FIAI ]A:O. (2.98)
Along with the quintic term, any additional terms to the (2+1)-D nonlinear evolution equation that have comparable effect
must also be considered. and the conditions determined under which they can be neglected. This motivates the multiple-
scales derivation of Chapter 3, in which a full vectorial derivation directly from Maxwell’s equation is performed and results
in a coupled. non-paraxial. non-slowly-varying envelope (SVE). first-order vectorial differential equation for the propagation
of orthogonal linear polarizations including nonlinear couplings with the weak longitudinally-projected field. In Chapter 6,
reduced, paraxial, versions of these equations are used to study the propagation of a single pump solitary wave and the vectorial
interaction between pump and signal solitary waves. It is shown that quintic index saturation can stabilize against the effects of
other, comparable. higher-order terms. ’ '

The scalar equation suitable for the propagation of a single spatio-temporal nonlinear wave under the conditions of present
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interest is, from section 3.2.3,

0A 0°A 4 0°A n0PA Ky A

i
2ikos—+ 5= — kokg 575 — Fkoko 375 — 175753 2.99
kot gz ~hokogrr — 3N 55 T aTex (299)
1, .,,0% ANK L2 , ng kp d|AI*A
+ Ekokollﬁ+2k070’|’4| A+4lkan ?— —2- 5T

k 2 [ng ky] o = 2
Nl
+ 2k 1A*A =0.
ny
The first term in equation 2.99 is the first-order propagator along the z direction. The reduced time transformation T =t — kjz,
where A is the group-delay, is made such that propagation is nominally stationary in the new coordinate system. Paraxial
diffraction along the x direction and group-delay dispersion are represented by the next two terms, where kg is the group-delay
dispersion coefficient and describes pulse lengthening under the SVE approximation. Third-order dispersion, with coefficient
kjy'. and space-time focusing [144] follow, and are the first non-SVE corrections. The space-time focusing term describes the
(paraxial) curvature of the energy front due to spatio-temporal diffraction. The final linear term is fourth-order dispersion.

The first nonlinear term in equation 2.99 represents third-order nonlinear refraction followed by optical shock. The follow-
ing terms describe the Raman nonlinearity. The effective quintic nonlinear index ngff consists of three distinct contributions:
directly from the fifth-order polarization, from the product of the third-order polarization with itself due to the reduction from
Mawwell's equations to a first-order equation, and a “‘cascaded™ contribution due to the nonlinear coupling between the funda-
mental and third-harmonic. which can be tuned via phase-matching [211]. A simple estimate of the size of the cascaded quintic
nonhinear index suggests that [134] n§ —2011%, which is negative as desired for multi-dimensional stability.

The imual conditions used in the simulations of Chapter 6 are the numerically-computed eigenmodes of the normalized
scatar (2+13-D cubie-quintic NLS equation:

Ou 9°u 07

l'a_i-f—8_.{'_3_+SST_;+2'“|:”+2q|ul4u:0‘ ' (2.100)

where the following definitions are made: « = kgwo+/n2/noA where n2 = ng + ﬁ Jo” Rr(1)dT is the total instantaneous non-

hnear refractine index. 2= 2/ 2kowi. F=x/wo. T =T/woy/ |kokiy|. s = —sign (ky), and ¢ = nonﬁff/ngkéu'g with wg a measure of
the transverse spatial width of the solitary-wave. For a bright spatio-temporal solitary wave with n> > 0, operation must be in a
region ot anomalous group-delay dispersion (AGDD) such that s = +1. The symmetry of this cubic-quintic equation allowsitto
be transformed 1nto an ordinary differential equation [2] and subsequently solved via standard fourth-order Runge-Kutta [212].

The enstence of a radially-symmetrie stationary solution to equation 2.100 of the form

w(#.7.2) = U(p)exp(if3) (2.101)
is postulated. where p = ¥ + T-. Substituting this ansatz into equation 2.100 results in the ordinary nonlinear differential
cquaton

d°U  1dU R . '
— -+ 2U"+2qU" - =0, 2.102
dp? +p(!p [2U-+2q BjU =0. (2.102)

which has fundamental and higher-order solutions corresponding to increasing optical energies, physical size, and number of
zero crossings of the tield [2]. )

For the purposes of optical switching. only the fundamental eigenmode solutions to equation 2.102 are of interest, which
possess the minimum size and energy [2]. It should also be noted that the higher-order modes are unstable to angular per-
turbations even with a saturating nonlinearity [213]. There is a family of such fundamental solutions of different widths and
amplitudes parameterized by the value of ¢. Using the relationship between the field amplitude A and the normalized amplitude
u. the g parameter can be rewritten as :

eff 2
ng' |A
_ Aol (2.103)
n2Ug
where |Ag] and Uy are real and represent the peak value of the field amplitude in real and normalized units respectively. Now

the quintic nonlinear index nﬁff is written in the convenient form

= — 22 (2.104)

sat
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where Agy is a real constant saturation amplitude. With this definition, the total refractive index seen by a scalar field is

sat

AP s
n=ng+n |:1 — 1'4,[ :l A7, (2.105)

such that, for a peak field amplitude |Ao| = /GAgu, the induced nonlinear index will be reduced from the purely Kerr value of
nato [l —alna, where 6= |AOI2 /AL, is the saturation parameter. The definition 2.104 is used so that the form of equation 2.105
is consistent with the first two terms of the Taylor expansion of the two-level system saturation [214].

Including only the cubic and quintic contributions as shown in equation 2.105 cannot result in true saturation. When 1> > 0
and nﬁﬁ < 0 as in the situation here, the induced nonlinearity reaches a peak at |A|2 = AZ,/2, then decreases and eventually
becomes negative when |A|2 > Agm. This behavior is an indication that higher-order terms in the material polarization expansion
may need to be included, but one experimental measurement of the induced nonlinear index in PTS at Ay = 1.064 um shows
that this roll-over into a negative contribution does indeed occur [147]. Nevertheless, when ¢ < 0.5, equation 2.105 mimics
true saturation behavior. : ‘

Combining equations 2.103 and 2.104 and substituting into the eigenvalue equation 2.102 and noting that UOZ/ =

|Ao]” /AL, results in the following ordinary differential eigenvalue equation

d*U 1dU U*
) + _ + 2 l b )
dp- pdp U

sat

]U3—BU:O. (2.106)

Figure 2.17 illustrates a few fundamental eigenmode solutions of equation 2.106 calculated as a function of peak normalized
amplitude (' using the normalized saturation amplitude Usy = V/16.0. The heavy solid line (Up = 1) corresponds to the
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Figure 2.17: Fundamental eigenmodes of equation 2.106 plotted as a function of peak normalized amplitude. Here, the normal-
ized saturation amplitude Usy = 4, and 6 = 0.0625.0.125.0.25, 0.5, and 0.6 for Up = 1.0, 1.41, 2.0, 2.83, and 3.1, respectively.
The inset plots show energy ratio (top) and normalized FWHM (bottom) as a function of Uy, with asterisks denoting the
positions of the eigenmodes in the main figure.

saturation parameter ¢ = 0.0625, while the heavy dashed line (Up = 2.83) corresponds to ¢ = 0.5. The top inset shows the
energy ratio as a function of peak amplitude when the 6 = 0.0625 eigenmode is used as the signal spatio-temporal wave. When
using 6 = 0.5 for the pump, the energy ratio is 1.712. The energy ratio increases with increasing o, but when ¢ > 0.5, the
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induced index as given by equation 2.105 begins to decrease from the maximum when o = 0.5. The lower inset shows the
variation in intensity full-width at half-maximum (FWHM). The FWHM initially decreases with o, reaches a minimum near
o = 0.5, then increases as 6 — 1. :

Figure 2.18 plots the 6 = 0.5 fundamental eigenmode (dashed curve) of equation 2.106 along with 0 = 0 eigenmodes (no
saturation, solid curves) of peak normalized amplitudes of Up = 2.83 and Uy = 1.94. The non-saturated Uy = 1.94 eigenmode

) SOT” T T T o ]
v [F ]
T 2.5- ]
= ]
Bt ]
£ 20z |
& - .
< 15- .
T 1.0- .
= 0.5- ]
= 0.0- ]

0 1 2 3 4

normalized radius p

Figure 2 I8 Numenically computed eigenmodes of equation 2.106 for the saturation parameter ¢ = 0.5 and normalized peak
amphtude £, = 2 83 (dashed curves) and for the saturation parameter 6 = 0 with Uy = 2.83 and Uy = 1.94 (solid curves). The

etfect ol saturation s to broaden the width of the eigenmode near the peak where the saturation has its greatest effect. The
space ime-bandw idth products are 0.312 for the saturated eigenmode and 0.242 for the non-saturated eigenmodes. :

1~ 1 sealed version ot the Uy = 2.83 non-saturated eigenmode with the same normalized half-width at half-maximum (HWHM)
of 0 5133 g the saturated 6 = 0.5 eigenmode. and will be used in Chapter 6 to compare the eftects of the higher-order temporal
terms on the pump with and without saturation in section 6.1. Note that for the same HWHM. the saturated eigenmode will
have a larger value of U, than the non-saturated one. The normalized FWHM of the intensity profiles of these eigenmodes is
1.027. while the FWHM of the 6 = 0.0625 signal eigenmode 1s 2.003.
Stability ot the cubie-quintic cigenmodes can be examined by the evaluation of the stability parameter [209]
S= f)i) (2.107)
: B
where P s the integration over the eigenmode profile and represents power in the 2-D spatial case and energy in the 3-D
spatio-temporal case. Stability is ensured when § > 0. w hich is true for (1+1)-D NLS propagation. otherwise, propagation
i» unstable. For (2+1)-D propagation, § = C. and for (3+1)-D. § < 0 [2]. The first condition is the result of the fact that the
power of the 2-D eigenmode is constant with respect 1o width and eigenvalue {169], such that an increase in width, which
reduces diffraction/dispersion, is exactly compensated by nonlinearity, and a decrease in width, which enhances nonlinearity,
is exactly compensated by diffraction/dispersion. The second condition results from the fact that the energy of the 3-D eigen-
mode decreases with decreasing width and increasing eigenvalue [2], which is opposite to the 1-D case, such that an increase
in width results in diffraction/dispersion overtaking nonlinearity, and a decrease in width results in nonlinearity overtaking
" diffraction/dispersion.
Figure 2.19 plots the eigenmode power (top) and stability parameter (bottom) versus eigenvalue for the (2+1)-D cubic-
quintic NLS equation 2.106. It is shown that, like the 1-D case, the power increases with increasing eigenvalue (decreasing
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Figure 2.19: Plot of power and stability versus nonlinear eigenvalue, indicating that quintic saturation results in stable (2+1)-D
ergenmodes. The asterisks denote the positions of the fundamental eigenmodes of Figure 2.17.

width). indicating stability, and S is always positive. The figure also indicates that eigenmodes with greater § (i.e. greater satu-
ration) are more stable than eigenmodes with small . The stability parameter asymptotically approaches zero with decreasing
B which ix expected since 6 — 0 as well.

Stable propagation of the o = 0.5 cubic-quintic eigenmode 15 verified by numerical simulation of equation 2.98, as shown
in Figure 2.20. The width parameter is chosen as wo = 39.6 um. which results in intensity spatial FWHM of 40.7 ym, and
temporal FWHM of 16.5 fs. The propagation distance is 15 Z,. over which the spatio-temporal solitary wave is unchangcd.\
The same stabihzed solitary-wave behavior occurs in the fully 3-D case as well {2]. The confocal distance Zy = 0.559k0w6
= 5.14 mm. and 1 calculated numerically. For the simulation, the parameters of fused silica (see Appendix D) are used at
7., = 1.55 um. The first section of Chapter 6 studies the effects of the higher-order terms of equation 2.99 on stability of this
o = 0.5 cubic-quinuic pump solitary wave eigenmode. and shows that stabilization does occur, albeit with some spatio-temporal

broadening due to Ruman scattering.
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Figure 2.20: Stable propagation of the o = 0.5 eigenmode of the cubic-quintic NLS equation without the effects of the higher-

order terms. The spatio-temporal wave of transverse FWHM 40.7 um and temporal FWHM 16.5 fs remains unchanged after
propagating 15 confocal distances. The contours are at -3 dB intervals relative to the peak intensity in each frame.




Chapter 3

The Vector Nonlinear Wave Equations

Optical nonlinear interactions generally fall into three regimes of operation: parametric, dynamic and transient coherent. Op-
erating very far from resonance, where the material simply serves as an intermediary for the interaction between coherent light
beams or pulses, is known as the parametric regime. In this regime, the nonlinear response is purely reactive (real nonlinear
susceptibilities) because material transitions are virtual, meaning that there is no exchange of energy between light and matter
because the nonlinear response is a result of wavefunction deformation and is essentially instantaneous and lossless. As aresult,
energy is conserved among the beams or pulses of light and the Manley-Rowe relations hold [215]. The particular parametric
case of the third-order nonlinear material polarization responsible for self-focusing and self-phase modulation is known as the
optical Kerr effect. and is of fundamental importance for the optical nonlinear Schrédinger-type (NLS-type) equations derived
in the chapter. _

The dvnamic and transient coherent regimes are resonant and differentiated by the ratio between the pulse duration and 73,
the transverse relaxation (or transverse dephasing) time of the resonant excited state. The transverse relaxation time is related
to the homogeneous linewidth by T» = 1/nl,. The homogeneous linewidth typically lies in the range GHz-THz for optical
materials at room temperature, but in solid persistent spectral hole burning materials at low temperature, I', can be as narrow
as 100 Hz [216]. Indeed. much effort is directed at finding materials with slow dephasing at low temperature (along with broad
inhomogeneous bandwidths) for applications in time-domain holography [217,218] and frequency-domain data storage [219].
Note that the inhomogeneous dephasing time is defined 75 = 1/nT';, where T; is the inhomogeneous linewidth. The longitudinal
relaxation time T; of the excited state leads to the “sluggish™ nature of nonlinearity and corresponds to the decay time-constant
of the induced population change of the excited state. .

The dynamic regime of optical nonlinearity occurs near resonance when the pulse duration is greater than T>. Operating
in the dvnamic regime ensures that light-induced coherence is lost within the pulse duration and is obviously satisfied by
continuous-wave irradiation. This nonlinearity produces real excitations because energy is exchanged between light and matter,
and due to resonant enhancement, nonlinearity can be very large, but at the expense of large absorption. The transient-coherent
regime is when the optical excitation is on a shorter time scale than T»; therefore light-induced coherence persists longer than
the excitation. Interesting effects arise in this regime such as [214] self-induced transparency (SIT), photon echos, and free-
induction decay, and may allow for large nonlinearity with small absorption (but long response time) for specially designed
pulses. : '

The parametric and dynamic regimes of operation are studied in this thesis for optical soliton switching and computing.
The tradeoft between the parametric and dynamic regimes is typically between low absorption and large (resonantly-enhanced)

" nontinearity. The simulations of soliton interactions in Chapter 5 include absorption, and material figures-of-merit are derived
in order to determine the maximum gain that can be obtained by the logic gate due to the presence of absorption in candidate
materials. These figures-of-merit show that the tradeoff must be made in favor of small nonlinearity and low absorption,
restricting attention mainly to the parametric regime of operation.

This chapter derives the fundamental nonlinear wave equation, which is a multi-dimensional and higher-order extension to
the nonlinear Schrodinger (NLS) equation, appropriate for describing propagation in media of isotropic symmetry class and,
with minor modifications. the cubic 432, 43m and m3m symmetry classes. These choices are motivated by the presently avail-
able materials fused silica (isotropic) and AlGaAs (cubic 43m), each of which satisfy the material figures-of-merit. Section 3.1
starts with Maxwell's equations and the material polarization expansion and derives the vector nonlinear Helmholtz equation.
In the parametric and dynamic regimes, the nonlinear polarization can be represented by a Taylor series expansion [220], and is
the approach taken here. The general integral forms of the first, third, and fifth terms of the polarization expansion are manipu-
lated into differential form thereby transforming the integral-differential nonlinear Helmholtz equation into a purely differential
one. The resulting second-order differential equation is difficult to handle numerically in multiple dimensions when long-time

61
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evolution is desired, as it is here. As a result, a first-order equation’is derived in section 3.2, with the two leading-order scales
of the Helmholtz equation removed, which can readily describe long-time evolution. This section uses the asymptotic multiple-
scales technique to derive the uni-directional, fully vectorial, nonlinear wave equation directly from Maxwell’s equations for
(3+1)-D propagation in weakly nonlinear media. This equation is reduced to forms suitable to describe the (1+1)-D spatial
and (2+1)-D spatio-temporal simulations presented in thesis which are the starting points for numerical analysis based on the

split-step method discussed in Chapter 4.

3.1 Derivation of the Vector Nonlinear Helmholtz Equation

In this section, the vector nonlinear Helmholtz equation valid for refractive and absorptive effects first-, third-, and fifth-order in
the electric field is derived. The forms of these polarizations are then specified and examined separately in detail. The complete
causal dispersive character of the linear susceptibility is retained in a compact time-domain formulation (Section 3.1.1) valid
for less than unity fractional temporal bandwidths, while the third-order response is reduced from full nonlinear dispersion
to the dominant time-domain forms describing the optical Kerr effect and fully dispersive stimulated Raman scattering (SRS)
(Section 3.1.2), and the fifth-order response is reduced to instantaneous form (Section 3.1.3) where dispersion is assumed weak

enough to be neglected.
The starting point for deriving the vector nonlinear wave equations is Maxwell’s equations, written in differential form:

JB
VxE = ~5 3.1)
. dD -
VxH = Jf+_87 - . (3.2)
vV-D = Pr 3.3)
V.-B = 0 (3.4)

where E is the electric field. H is the magnetic field, D is the electric displacement, B is the magnetic induction, J is the free
current (or source current) and py is the density of free charge. Boldfaced variables represent vector quantities. In the dielectric
media appropriate for studies in optics, J s = ps = 0. In order to couple the material response with the electromagnetic radiation,
Maxwell's equations must be amended with the constitutive relations '

B = uH (3.5)
D = gEE=¢E+P : . (3.6)
where £ 1s the relative material dielectric tensor, € is the free-space dielectric constant, P is the material polarization and gy is

the permeability of free-space. Note that the material is assumed to be non-magnetizable, i.e. u = uo.
Using the Maxwell’s equations 3.1 and 3.2 and the constitutive relation 35

0 0’D ‘
Vx[VxE]|=—-=(VxB)=—uy== .

x[VxE]= =5 (VxB)=—po5 =, 3.7)

which can be rewritten using the constitutive relation 3.6
10°E  0°P

x [V El o Mo . (38)

where ¢ = \/ i/ € is the velocity of light in free-space.
The material polarization P consists of linear and nonlinear contributions:
P:PL+PN['=PL+P(:)+P(3)+"': 3.9

where P! is the second-order polarization, etc, and the expansion of the material polarization in a Taylor’s series converges
when the material response is sufficiently nonresonant {220}, such as in the parametric or dynamic regimes.

Since this thesis is concerned with multi-dimensional and higher-order generalizations of the (NLS) equation, it is assumed

. that the lowest-order nonlinear contribution is P'>. The derivations are directly valid for the isotropic symmetry class, but are

also valid for cubic 432. 33m and m3m with minor modifications. In centrosymmetric media, such as media of isotropic or

cubic m3 and m3m symmetry classes, ¥ = 0, where { is a positive integer. Cubic classes 432, 43m and 23, have non-zero

%20, For the latter three cubic classes, second-harmonic generation can usually be neglected because the cubic classes are
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linearly isotropic and phase matching is difficult to achieve. In addition, resonant generation of radiation around DC due to
optical rectification can also be ignored because the phase velocity near DC is typically much smaller than the group velocity
of the optical driving field, although important effects can occur even in the nonresonant case [195], but are not considered in

this thesis.
Separating the linear and nonlinear parts of the material polarization, the fully vectorial, nonlinearly-driven wave equation
is
10°E | 0Pt 9PNt
Vx[VXE|+ === — = )= : : 3.10
X[ x ]+C2 o2 +Ho or? Ho or? ] ( )

or, in the alternate form .- JoNL
) 19°E  9°P o%P
V2E - V[V E] = = 2= — = = o5 3.11
[ ] 2o Ho o2 Ho o2 ( )
where the vector identity V x [V x E] = V[V-E] - VE is used. These equations are generally valid for nonlinear optics. The
forms of the polarizations are now specified.

The Material Polarization

The most general form for the linear material polarization, for example, including the full spatial and temporal response, is [221]
PL(r,1) = & / / R(r',1) - E(r—r,t —1)dr'dr, (3.12)
. —=Jo

which describes nonlocal behavior in space, such as diffusion of real carriers, and causal nonlocal behavior in time. By
emploving the electric dipole approximation [221]. and thereby ignoring optical activity as well, the spatial response will not
be considered in this thesis. Therefore, the material polarization convolution integrals describe only spatially localized material
response but still retain non-zero time response. The form taken for the linear polarization is then

Ph(r1) = eoj(;wﬁ(r.t)-E(r,t—t)dr, | (3.13)

where - is a contraction operator and the impulse-response function is allowed to vary spatially as would occur for layered
media. The hinear impulse-response function R is a second-rank tensor and causality requires that the response is zero for T <0
(for T < 0. the material polarization would depend on values of the field E(r — ) that haven't yet arrived), justifying the lower
bound on the integral. A second condition is that the response function must be real because both the driving field and material
polarization are real. Another common way of writing the linear polarization is

Ph(r,t) = 80/0 Rjt(r.T)Ex(r.r — 1)dT (3.14)

where j.k € {x.v.z} and the Einstein summation convention over repeated indices is used.
Similarly. the form for the third-order nonlinear material polarization is

P(:J(r.,)_—:eO///%(r.r,.t:.t;)fli(r,:—r,)E(r,z—‘cg)>< | (3.15)
0 Ju Jo :
E(I"I—T:;)d‘c]d'f:d'[:g‘ .

where the third-order impulse response function R is a fourth-rank tensor, : is a contraction operator and the induced material
polarization depends on the product of three fields. Here. spatial dispersion can additionally arise from the diffusion or prop-
agation of real particles. such as electrons or phonons (i.e. heat), which are created by the nonlinear light-matter interaction.
These eftects are neglected by assuming sufficient distance from resonance. As before, the third-order nonlinear polarization is
written in component form using the triple Einstein summation convention over repeated indices

PEB)(TJ)=€O/O/O/0Rjkzm(l‘,Tl,Tz‘Ta)Ek(l‘,t;'Tl)>< (3.16)
E/(r,t —T2)En(r,t — T3)dTdT2d 3.

The third-order nonlinear polarization is responsible for four-wave mixing effects such as nonlinear refraction (self- and cross-
focusing and self- and cross-phase modulation), Raman and Brillouin scattering, and third-harmonic generation.
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For ultrashort pulses with large temporal bandwidths, such that the excitation duration is much shorter than the medium
response time 77, the time-domain formulation of the nonlinear material response is the appropriate representation [150,220]
because the electric field can be considered a delta function and the convolution integral trivially evaluated. In the opposite limit
where the optical excitation lasts much longer than the material response time, the frequency-domain susceptibility formulation
is most commonly used, such as the case for the mixing of monochromatic beams, because the material response function takes
on a constant value. This thesis deals with an intermediate nonresonant situation for which part of the nonlinear response can
be considered instantaneous and hence represented by a constant in the frequency-domain, while part of the response is non-
inistantaneous such that the material polarization is nontrivial in either formulation. With these arguments in mind then, instead
of using the more general form for the third-order nonlinear impulse response function in equation 3.16 (which is valid for
nonresonant as well as near-resonant processes [220}). the following form can be used that is appropriate for the nonresonant

processes just discussed [145,222]

Rjklm(r7 Tl T?_vt:‘) = Rijlllz(r)S(Tl )5(12)8(13) (317)

+ R_};klrrx(r’Tl ,12)8(11 - 12)6(‘53)

where the constant Rﬁ, 1m(T) accounts for the strength of the instantaneous electronic, or Kerr, response and the Raman response

function [ 150] R‘}k ;w2 T1,T2) accounts for the slower nuclear response. This form does not describe general nonlinear disper-
sion. but does describe the most important effects to this thesis - nonlinear refraction (in both instantaneous and delayed forms)
and third-harmonic generation and down-conversion.

Raman scattering is a nonlinear refractive/absorptive effect that arises from the rotational or vibrational response of a
nucleus to the time-varying electric field. In the quantum picture, Raman scattering is the interaction between photons and
optical phonons (i.e. high-frequency phonons with non-zero dipole moments). This effect is described by a time-dependent
nonhinear refractive index [222] as evident by using the impulse response function of equation 3.17 in the convolution integral

of equation 3.16
P (r,1) = eoRY (D) EL(F. D Er(r 1) Em(r,) (3.18)

+ 80/0 R?k,,,,(r. T)Ei(r.t = T)E (r,t — T)En(r,2)dT,

where T = 1; = 7>, The Raman response is studied further in Appendix B.
The corresponding fifth-order polarization is

P (1.1) = EoR Yl P Ex (rVE(01) Em (.1 En(r. ) Eu(r,1), (3.19)

and 1~ treated only in instantaneous form responsible for nonlinear refraction.
Since the terms in the material polarizations depend on time history, it is useful to define the temporal Fourier-transform

pair
1 - .
E(r1)= o / E(r.0)e ™ do (3.20a)
E(rw) = /E(r.t)c"‘”dt (3.20b)

in order to examine the hinear and nonlinear polarizations in the temporal frequency domain. For compactness of notation,
all integrals without limits are taken to extend from —eo t0 +-eo. Using the Fourier transform relations and performing Tay-
lor's expansions in the temporal frequency domain. the convolution integrals of equations 3.14 and 3.18 can be rewritten in
differential forms for pulses of finite temporal bandwidths. as shown in sections 3.1.1 and 3.1.2, respectively. The reason for
writing the material response in differential form is'that the integral-differential wave equations 3.10 and 3.11 become purely
differential. Before this is done, though, the quasi-monochromatic representation, which is key to writing the material response
as differential operators on the pulse envelope, is examined.

The Quasi-Monochromatic Representation

In this thesis. the quasi-monochromatic representation of the optical field is used such that in the time-domain

E(r.)=+ [Rlrn)e™ + 5 (r,)e]. 321)

-

(3]
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Figure 3.1: Quasi-monochromatic wavepacket of fractional bandwidth 1 = 0.12. The left figure shows the representation in
time and the right figure shows the representation in frequency. The dotted lines in the time-domain plot illustrate the pulse

envelope.

The quasi-monochromatic representation assumes that the field has some finite bandwidth centered about the carrier frequency
. meaning that the fast temporal phase variation is removed leaving only slower temporal variation in the envelope. In fact,
the notion of an optical envelope has been shown to be valid down to the single-cycle regime [223], but the Taylor expansion
of the linear and nonlinear convolution integrals performed in the subsequent sections of this chapter does not converge in this
regime where the fractional temporal bandwidth approaches or even exceeds unity. For generality, the envelope still retains a
fast propagation phase variation, which is denoted by the over-bar. The quasi-monochromatic representation is illustrated more
clearly upon transformation into the temporal frequency domain

E(r.0)= [i(r.a)) *0{w—wy) + i’(r‘w) * O(w + wo)]

= [K(r.u;.—(1)(>)+i‘(r.w+wo)] (3.22)

tI[ —

where = 1s the convolution operator. In the following sections, these expressions will be used to examine the material response
in the temporal-frequency domain and define the susceptibility tensors.

The time and frequency domain representations of a quasi-monochromatic wavepacket are shown in Figure 3.1. The frac-
tional bandwdth is defined as the full-width at half-maximum frequency bandwidth AwrwHm divided by the center frequency

). A )
WpwW
n= FWHM (323)

) .
where the quasi-monochromatic representation is valid to the point where 1 ~ 1. In the multiple-scales analysis of section 3.2,m
will serve as a small expansion parameter; therefore, the situation of interest is when 1 < 1. Note that when the third-harmonic
is considered. an additional slowly-varying envelope about 3ex, must be defined. otherwise the fractional bandwidth of the

envelope A about the fundamental would exceed unity

3.1.1 The Linear Material Polarization

This section transforms the convolution integral of equation 3.14 into the temporal frequency domain representation PY(w). The
linear susceptibility is defined and Taylor-expanded such that the inverse Fourier transformation into the time domain results
in a much simpler differential representation of 3.14. The derivation is presented in detail here in order to shorten the similar
procedure used for the third-order polarization in the following section. : '

Using the time/frequency Fourier transform relation. the linear material polarization given by equation 3.14 can be rewritten
as

PjL(r.t)

%’T /0 Rix(r.7) [ / Ek(r,m)e‘i‘”[’_t]dm} dt

= 22()7'—{ [/G(I)Rjk(ryt)e’mdt] Ek(r’w)e—fu)lda)
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- / alr ) By (r, 0)e= doo (3.24)

where the order of integration is changed in the second step, O(1) is the unit step (Heaviside) function required by causality
and normally incorporated into the definition of R, and the linear susceptxblllty is defined

xji(r o) /G) Rji(r, ’C) Ddr, (3.25)

which guarantees that Y jx(—®) =X Jk( ) since R} is real. An interesting manifestation of causality in equation 3.25 is the
Kramers-Kronig relations. Equation 3.25 can be rewritten [224] '

v ) j
() = Xjk(w)*[_(;)—)"f'é%a]

— XJ/\(Q) '
= e (3.26)

where P represents the principal value. The linear susceptibility consists of real and imaginary parts X x = Re{x jk} +
i Im {1} so that equation 3.26 is rewritten

Re{xp(w)} = 1? / Ma@ (3.27)
Im{xpo)} = -= / Re x" : (3.28)

which are the linear Kramers-Kronig relations.
The linear material polarization is now written completely in the temporal frequency domain,

P}“(ryu)) [/ x,k(r.w,)Ek(r,u)l)e_iw"du),] eim’dl

€ e — .
= ‘—’2; [/ X/k(r.(.l)])é’ i, m)ldl‘] Ek(r‘ml)du)l
= e [aplr.0)Eilr.o)8(0 - oi)do,
= gy (r.0)E(r.o). (3.29)
which indicates that the linear polarization is simply the product of the linear dispersive susceptibility with the amplitude of the
temporal frequency spectrum of the field.
Substituting the wavepacket representatlon into equation 3.29 results in

Ph(r.0) = -ezﬂxjk(r.m) [Zk(r.m-mo)JrA;(r,ermo)] . 330

Since the wavepacket representation is centered about wy (and the conjugate about —y), equation 3.30 can be rewritten by
Tavlor-expanding yir. 0} about the central frequency wy (and —wy) .

(rw)= [X}A r, o) + Z[w ﬂ)u] axxjk(r,ﬁ))

P;' o’

]ik(r,w—mo) (3.31)
w=0)

) w+ - ax ilr, o =+
+§9 xjk(r,—wo) +2[) wol” | %u(r.0) Au(r,0+wp).

2 on’

w==—0n

Considering now only the linear polarization near the center frequency o, and defining @' = @ — wy, the polarization is inverse
transformed into the time domain

oo

P“’(rt) EO/[)(]A(rU)O z M

o } Ax(r, 0 )e @ dw

s=]1

w=wgn
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_ & _ o (o) Iy u(r,w)
= -2—/ [XJk(r!w0)+.§ o T e

] Ay(r, o )e 1o+ ol !

w=wp
_& |, U F o) AT ey
= [X}k(r:wO)Ak(t)'f‘x:lS! e W ol
& 0\ < i
= [Xjk (l‘,(ﬁo-i-lé;)Ak(r,t)]e Dot (3.32)

Here, the function of the operator is interpreted by its Taylor’s expansion about the central frequency .
Using equation 3.32, the vector Helmholtz equation 3.11 can be rewritten for the quasi-monochromatic envelope

VA (e - Oy S o INEET
aJ ke{xyz} ok

Z.liatz {f—‘j(rs’)e—iw + [Xjk (l‘,wo-l- lgt-) Zk(l‘»’)] e_i%l}

P (r,1)

R

with the corresponding conjugate expression. Here Pj-\'l‘* means the nonlinear polarization associated with the phase factor

¢~'"™' An additional equation is required to describe the evolution of any additional radiation well separated from g, such as
the third-harmonic. otherwise the fractional bandwidth of a single envelope would exceed unity and the functional representa-
tion of the linear material polarization would become invalid. '

Defining the linear dielectric tensor '

+2u9

eh (r.o) = 1+ (r,0), (3.34)
the vector Helmholtz equation becomes
”— » 0 QA(r.1) _ ‘
VAj(rg)e 0 — — N e = (3.35)
aj k€{xy.2} ok

19 [[L 3\ - o PPN ()
- j— —iwg g 7
- 02813{[8“ (r,wo+la,)AJ(r.t)]e ! '}+2/.10 Y .
The second-order time derivative of the linear polarization is evaluated

1o L a\+ i

—_— - i— | A, =iy

=57 { [elk ("‘”"‘L‘ar) AA(r.r)] e

1 0- .9 ab 1oL 0\~ —i
:C—z-{[yj—“zlm()'a't"“mo] [EJ‘ (r.(l)()'*'l‘aT)Ak(r.t)]}e 1o!

= —Ci: { [wo + :—aa?] ) [s‘jk (r.u)o+ 1%) Zk(r,t)] }e‘i‘*’o’. (3.36)

In general, the linear dielectric tensor is composed of 9 independent elements. For the purpose of this thesis, the material
symmetry classes will be restricted to those in which the linear dielectric tensor is isotropic. Isotropic refers to the case when
all three elements of this diagonalized tensor are equal [225]. i.e. :

_ e(w) 0 0
E(w) = 0 ¢gw) O , (3.37)
0 0 ¢

otherwise the material is anisotropic. The linearly isotropic symmetry classes are cubic and isotropic. Note that the isotropic
symmetry class is not a crystal class but a macroscopic description of liquids, gases or disordered or amorphous solids such as
glass.

The linear propagation and absorption functions are defined

a(r,w)] : _ 0’ (r,0) (3.38)

[k(r,m) +i 7 = i
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where k(r, ) is the frequency-dependent linear propagation constant and a(r, ) is the frequency-dependent linear intensity
absorption coefficient, and both are allowed to be functions of space to represent material inhomogeneity. The tensor notation
is dropped for the linearly-isotropic classes because the dielectric tensor becomes scalar. Assuming that linear absorption is
small compared to the propagation constant, equation 3.38 can be approximated

: 2
K3 (r, ) + ik(r, 0)(r, ©) & ‘;’— [k (r,0) + ek (r, 0)] (3.39)
where the following definitions are made:
gk (r.0) = Re {€"(r,0)} (3.40)
gh(r.m) = Im {e-(r,0)} . (3.41)

Now the linear propagation and absorption constants are written

K(r,o) = —(:)-._,:El;((r,u)) (3.42)

®
a(r,m) = ;s%(r,m)/ ek (r,0). (3.43)
With these replacements, the Helmholtz equation is now written
0 5 Wlrn) PE r)

V:Zj(l‘.lb)e—imot - = 2 —_ e it — 2up
9j, el ok or?

d , d 20 \]- .
—{k (r,m0+i§> [k <r..mo+ié7>+ion <r,w0+ia)j|Aj(r,t)}€ 1ol

where only the form of the nonlinear polarization remains to be specified.

(3.44)

3.1.2 The Third-Order Nonlinear Material Polarization

This section examines more closely the third-order material polarization, beginning first with the general response of nonlinear
refraction. Using the same steps as for the linear material polarization, the third-order response integral is transformed into
the temporal frequency domain. The frequency-domain representation is approximated for finite bandwidth excitation and
transformed back into the time domain. Using the results of Appendix A, the tensor structure is reduced for the isotropic (and
cubic 432, 33m and m3m) symmetry class. Finally, the fully general case is reduced to a form suitable for the description of
the nonresonant Kerr and Raman nonlinearities as previously discussed, which are used throughout the remaining chapters of
this thesis.

Following the procedure used for transforming the linear response integral in section 3.1.1, the nonlinear polarization 3.16
is written in the temporal frequency domain as :

P;-I'(l‘-w) = Eo///xjum(mll‘-wx-(1):'0)3)51(1’,(01)51(", wz) X (345)
E,(r.w3)8(0— 0 — 0 — w3)d0;dw2d w3,

where the factors of 1 /2w have been neglected for simplicity. and the third-order nonlinear susceptibility tensor is defined

Xjkll,,(w:l‘swn‘wz‘ws)E///9(11)9(T2)9(T3)Rjk1m(l',11,T:,Ta)>< : (3.46)
ei[mltl+0)212+m3t3]dt1d1'3d13.

The Heaviside functions are included to enforce causality with infinite limits of integration. Again, because the third-order
nonlinear response function Ry, is real,

X.jklm(w; r,—wp, -0y, _(1)3) = x;'klm(m; r,o, 0y, (D3)' (347)

In this thesis. the nonlinear processes of interest are those which are nearly frequency-degenerate, such that any generated
frequencies are near that of the driving field at @y, and those involving the third-harmonic. These latter third-harmonic processes
are discussed in Appendix A.
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Using the quasi-monochromatic representation 3.21, equation 3.45 can be written

Pj-”*(r, w) = 589///xju,,,(w;r,ml,w:,ws) X | (3.48)
‘ [X;.(l‘,ﬂ)] + (l)o)jl(l',(x)g - (Do)j,,,(l‘, 3 -—0)0)

+A(r, 0 — wo)A; (r, 2 + o) Am(r, 03 — 1)

(1,01 — 00) Ay (r, 02 — 00}k (1,03 + 00) | x
8((1) — ) —Wy— (D3)d(1)1d(1)3d0)3,
which is valid for fully-dispersive nonlinear refraction. Now, the third-order susceptibility tensor is Taylor-expanded in the

three frequency space [0, @2, w3} about the center frequency 0o and its conjugate —y. Taking the first term in equation 3.48
for example

L jiim (@301, 002, 03) A (01 + 09)A; (02 = ©00)Am (03 — ) = (349)
0%, ji1m( W03 @1, W, Wp)
Xjklm((ﬂo:—ﬂ)o,mo,wo)+[‘Dx + wg] == 3
@1 Wy =—wy
O ikim{ Wg; —Wg, W3, O
+ [(D: _ (Do] X.]klm( Oam‘, 0, W2 0)
- u}2=(1)0

O, jkim{Wo3 — o, Wg, W3)
a(D3

+ [w3 — o]

A (0] +00)A (w2 — wp)A (w3 — ),

where the spatial dependence is dropped for notational convenience here and throughout the rest of this section.
Using the proper Taylor expansions for the remaining terms in equation 3.48 and transforming back into the time domain
results 1n {c¢f equation A.10) :

(3 € 9 J O\ T :
P = N [Xjklm (u)o: —Wo+iz . Wotiz . wot lé;)Ak(?)Al(f)Am(f) (3:50)
: w0 +id 2 oo+ i) AE ()
+Xﬂ«‘lm wO-wO+lat~_u)(l%‘a,~w() laf k(t) [(t) m(’)

a a a by Y =<t — i
+X jkim (U)ozmo-*-igt--wo-i* lg--0)0+15;)Ak(1)A1(1)Am(f)] e ",

The operator arguments are interpreted as before and the derivative operations are only performed on the corresponding field
envelopes: thus, ordering of the field envelopes is important. Using the intrinsic and spatial symmetry properties discussed in
section A2, equation 3.50 reduces to (cf equation A.11)

) 3 d 0 O\, — =
P;3'+(’):—8€9 [X””<w0;_'m°+'a_r'm”+'E'm°+lé_t)Aj(t)Aj(t)Aj(’) 3.5

0 9 O\, =
‘ +_2xjkkj<w0;—w0+'(‘,_1'0)1)+l&'*wo'l”la_t)Ak(t)Ak(’)Aj(t)

+ Xjjkk (wo; —wo + iéa—.u)o+ ii.mo + ii>,?(t)zk(t)zk(t)] e,
1 o or)
where the subscripts j # k. ,

In general, as given by equation 3.46, all terms in the Taylor’s expansion of the third-order susceptibility about £+ have real
and imaginary parts. This is a result of retaining the fully dispersive character. As mentioned previously, this thesis is concerned
with the instantaneous and Raman responses. Even though the instantaneous response strictly means that the susceptibility does
not vary over the excitation bandwidth. this thesis retains both the real and imaginary parts of the “instantaneous” susceptibility
without considering the fully dispersive character. The reason for doing this is because the delayed response given by the Raman
effect should dominate the remaining dispersive terms. In contrast to the instantaneous susceptibility, the frequency dependence
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of the Raman susceptibility is retained such that the even-order terms in the Raman susceptibility expansion are real (giving
rise to nonlinear refraction effects) while the odd-order terms are imaginary (giving rise to nonlinear gain/absorption effects).
The full derivation including both the instantaneous and Raman nonlinear response is carried out in section B.3. The result,

given by equation B.78, is repeated here for convenience
3%
8 .
+2% 5 j (@03 —00. 00, o) A (D)A)

PJ(.3>+(;) = [xi‘j (@0: =0, 00, o) A3(1)A;(1)A; (1) ' (3.52)
i)

%1 (003 — 00 . 00, 0) A (1) Ak (1) Ax (1 )'] ™!

|

+2 { [ 2003 0)AS(1)A (1) +Xl}kkj(m0;0)Ak(t)Zk(t)] Aj(t)
€ A (A1) AL (1) A() ] =
"4‘{ Tﬁji‘ﬁi-"ﬂﬁu—La—,k’—l Aj(r)
ot ot
_b {[ RY A NA[ (1) g 024, (1)A(1)
8

4
oea(00:0) |05 (0) + A (A0 Aule)
0AL(1)A (1) N a?rj(z)zk(r)] Zk(z)} o
Xjjif(woi0)——=——+ Xjkk (003 0) _'Layz—l Aj(r)

" [B-Akg[):A i) A ,-gt)zAk(t)] Zk(})} i

The third-order polarization includes scalar and vectorial (coupled) forms of nonlinear refraction, two-photon absorption, first-
order Raman gain. and second-order dispersion of Raman nonlinear refraction. The phase-dependent vectorial terms are absent
it orthogonal circular polarizations are chosen as the basis set rather than linear polarizations [226). Here, the linear polarization,
or Cartestan. basis set was chosen because these polarizations are also the eigenvectors for a planar waveguide.

Detiming the Kerr nonlinear index, the two-photon absorption coefficient, the Raman nonlinear index, the Raman time
constant. and the Raman index dispersion coefficient, respectively,

ng = ;iaxe{xﬁjj,(m):—mo.wo.mo)} : (3.53)
B = %:—‘; Im {5 (007 =00 0. wp) } (3.54)
ng = ;t,lTOX'}ju(“’U‘O) | - | (3:35)
= i "R | (3.56)

X!;,‘H(U)l)lo) . ny +ng
l R"
Il%: mx”“((ﬂnlo). (3.57)

and the nonhinear anisotropy ratios

I R X3iii = Tl T
YW =W Xy Y& = e X = Tijeed Ty

equation 3.52 reduces to

P 1) = eonona{ [ 14,0+ 281400 F] A5 0) +1 (0Ac(1)Aele) e | (3:58)
+ E;% [ 14,00 +2ax A0 | A50) + YA () Ar()Ai(r) Jerion

' 0A;(1)A; AL (A |
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A1) 0AOAD £ | ey
+ Y. a,} jat Ak(t) e Wo
- St {a-Aj TR pRRSNCET UG
P NA()  PAOAN] = .
PR TR 1 o,

where the total instantaneous nonlinear refractive index and the overall nonlinear anisotropy factors are defined

na = ng +nR

2nkAx + ngr[Ar +Yr)
2 [nk + ng}

_ NEYK +NRYR
ng +ng

that for the isotropic symmetry class,

¢ +yx =1
Ar+2yr=1,

and under Kleinman symmetry, Ag = Yk and Ag = Y.

Chapter 4 though., the full Raman response can be used. The time-domain form is

(3)+ _
P () =

eononk { | 140" +23% )] Ajtr) YA (A1) f e

+ 'E:% [ ;)] + 25k lf\L(!)l:] Aj(n) +YKK}(!)Kk(t)Kk(t)}e"""O’

+ % [/0 RY (DA (1= 1A, (1 = DA (1)dT
+or /Om RY (DAL = 1AL (1 = DA j(1)dT
+YRA RY AOAL = DA (1 = A1) d

+YR/ R?”/(I)Z;(t—T)K‘(I—T)Zk(t)dt e~ io!
0

using instead the Raman susceptibility.

3.1.3 The Fifth-Order Nonlinear Material Polarization

The direct extension of the nonlinear polarization to fifth-order is. in the frequency domain,

P;S)(w)=Eo/////Xjumn,,(w‘-ml~€D:'<D3‘(D4,w5)X

Eg(on )E‘,(w:)E,,,(w;;)E‘,,(m)E,,(ws) X
8((1) —W) =Wy — 03— Wy — ms)dwldmgd(n3dm4dw5.

responsible for nonlinear refraction. written in the time-domain, is

(54 0y —
P70 =

71

(3.59)
(3.60)

(3.61)

Here. ng = [1 — fg]na. ng = frna, and fr represents the fractional Raman contribution to the ultrafast nonlinear index. Note

(3.62)
(3.63)

The form of equation 3.58 is suitable for the multiple-scales analysis of section 3.2 because the terms are easily ordered
based upon peak intensity and pulse duration. For the nonlinear Helmholtz equation of this section and the numerics of

(3.64)

In the numerics. the convolution integral with the Raman response function is easily evaluated in the temporal-frequency domain

(3.65)

Neglecting nonlinear dispersion and using the quasi-monochromatic wavepacket, the fifth-order nonlinear polarization at Wy

(3.66)
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g% [Xjklmno(mo; —Wyp, —Wp. Wp. Wo, (L)()) Kz (t)ZI‘ (t)zm(t)zﬂ (I)ZU (t)
+ Xjklmno(wO: —Wp. Wp. —Wo. Wo, (DO)_; (I)ZI(Z)Z_;([)K" (t)zﬂ (t)

ET
. T YA AYW? —iwg?
+ Xjklnum(wo’mOs ®p. W, —~Wo, —(DO)Ak ({)AI (I)Am(t)An(t)Aa(t) ]e ’

where there are sC- = 10 total terms.
From Appendix A, the fifth-order nonlinear refraction for isotropic symmetry is (cf equation A.23)

P () = é1%7(1)’11‘;‘;‘((00: — 0. g, Wp, Wo, o) €' X (3.67)
i) 4(0) + 2 () A () + -2— |4, ()] () P4 (r)
P2 IR A0+ 247 OAHDAL) ++ 34T 0ALA5(0)
ZOFFOA 0+ 3708040+ 5 AP MO 4]

where g # k # ! and Kleinman symmetry has been invoked for simplicity, leaving only one independent component of the sixth-
rank tensor [226]. Analogous to the cubic nonlinear index 7> and two-photon absorption coefficient B>, the quintic nonlinear
index and three-photon absorption coefficients are defined

Re {103 — 0, — o, W, 0o, o) } . L (3.68)

5 S .
B3 = —8£1'" {2/ @0 — 0. —o. 00, o, o) } . (3.69)

Note that the fully-dispersive fifth-order Raman response is not considered. In fact, the zeroth-order refractive part of the
fifth-order Raman response can be assumed to be included in the definition of ng, where ¥ j;;;;; is redefined to include bath the
instantancous and Raman contributions. ‘
Using the quintic nonlinear index and three-photon absorption coefficient, the fifth-order nonlinear refraction polarization
is tinally wnitten
(5i+ . Bs 1 3 i :
Pj (t)zﬁo[nolu-f-lm] ['Aj(!)l Aj(t)+‘5"Ak(r)| Aj(r) (3.70)

- n 2 ) N — .
k (')Al-(f)Aj(l) + g A |A,(1)!“Aj(r) e~ 1o

Again. the phase-dependent vectorial terms are included. but eventually will be removed due to the assumption of phase-velocity
mismatch between the orthogonal modes of a waveguide. which washes out their effects over distances longer than the beat
" length. The phase-dependent vectorial terms are rigorously absent for the circular polarization basis set [226].

An additional, effective, quintic refraction contribution arises from the cascaded interaction between the fundamental at wg
and the third-harmonic. This contribution will be derived in the multiple-scales analysis even though the result is valid for the
Helmholtz development of this section as well. This cascaded contribution is the higher-order analogy of second-harmonic
cascading. which leads to an effective third-order nonlinear refractive effect [193], and has been studied recently because of the
possibility for producing a large Kerr-like nonlinear index [196]. Note that an additional quintic contribution proportional to
the square of the cubic Kerr index is obtained in the next section, and is the result of the derivation of a first-order equation.

3.1.4 The Vector, Nonlinear Helmholtz Equation
Using the third- and fifth-order polarizations from sections 3.1.2 and 3.1.3, the nonlinear Helmholtz equation 3.44 can be written

V-2 Y Ar) _ | 3.71)
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-k (mo+i%> [k (w0+i—%> +io (wm—i%)] Aj(t)

-2 o 82| [wowaa—,]: [146) PA;0) + 28 o) PA 0

+YA (A1) |
1 a 2 < R ‘ 2—
57 | +is /0 RR () |4t — 0 Ajdn
e [R50 14x(e ~ ) PR
+YR/0 RY (DALt - DAj(r ~ T)ArdT

+Yr /0 RY (DA (t = T)A(r — )AdT

-7 [”""“*"2673;] [wo+ %] 2 {‘A;(ﬁl%(r) + 200

42 0P O PR + 5 AP R OT 0
OB OR) + A 0T OA)

+-§-!Ak(’)[:lAl(’)lzzj(t) :

Equation 3.71 describes the general evolution of multi-dimensional vector waves including the effects of full linear refractive
and absorptive dispersion. third-order nonlinear refraction, fully-dispersive third-order Raman scattering. and fifth-order non-
linear refraction (neglecting the third-harmonic cascading term) and two- and three-photon absorption. This equation also de-
scribes omni-directional and inhomogeneous propagation in that scattering from linear or nonlinearly-induced inhomogeneities
is fully treated. In fact. the only approximations made in the derivation from Maxwell’s equations lie in the material polariza-
tion. and the neglect of frequencies far removed from the fundamental wo which could be generated by a nonlinear interaction
such as third-harmonic generation (which will be treated in the multiple-scales analysis). _

The vector nonlinear Helmholtz equation has no known analytic solutions, although approximate stationary solutions to
reduced versions may be obtainable, for example for a scalar equation with truncated linear and nonlinear dispersion [139].
These approximate solutions must be numerically propagated in order to test for stability. Therefore, what is most useful for
the soliton and solitary wave propagation and interaction studies of this thesis is the nonlinear evolution of an initial vector field
distribution into the far field (of linear propagation). As a result, equation 3.71 must be treated as an initial value problem rather
than a boundary-value problem, which can only determine the equilibrium solutions, if any. Evolution over time is the most
natural. but also the most difficult because the nonlinear Helmholtz equation is differential in space and integral in time due to
linear and nonlinear dispersion. ‘ ‘ -

One numerical method to evolve a unidirectional wave by a second-order differential equation is the Nystrom method [227],
which is analogous to Runge-Kutta for first-order differential equations. Nevertheless, second-order equations such as 3.71 are
difficult 1o solve numerically for problems where long time/distance evolution is desired. The main contributing factor is the
leading-order scales, which leads to restrictive requirements on sampling. This difficulty plagues numerical techniques that
directly solve Maxwell's equations, such as finite-difference time-domain (FDTD) [228], as well, and motivates a different
approach in which a first-order, vector nonlinear evolution equation for the slowly-varying field envelope is utilized. This
equation is derived in section 3.2. :

The Helmholtz equation retains the fast variation due to propagation, which is approximately ¢*0%, For wide angular
spectra and backscattered radiation, this phase must be properly sampled. The largest propagating longitudinal or transverse
wave number is ko = 21t/A, where A is the material wavelength, and v =1 /A is the largest propagating spatial frequency.
The upper bound on sampling is given by the Nyquist limit, meaning that in order to properly sample the highest spatial
frequency, the samples must be at A/2 intervals or less. Two additional considerations must be made. The transverse wave
number for evanescent fields is larger than ko, and the linear interference between forward- and backward-propagating radiation
produces fringes with spacing A/2. Therefore, the spatial sampling must be A/4 or smaller in order to Nyquist sample these
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oscillations. As a result, sampling at A/10 is generally considered a rule of thumb for linear problems using a second-order
accurate numerical scheme [229]; for nonlinear problems, sampling at /100 is commonly used. When nonlinear evolution
into the far field is important (as it is here), it is difficult to formulate an accurate numerical technique that can resolve both
fast and slow scales, because these fast scales dominates the calculation and any variation occurring on a slower scale becomes
difficult to detect.

Much work has been done on a technique known as homogenization, in which the fast and slow scales are separated before
the numerical calculation. The multiple-scales analysis performed in the next section is a form of homogenization, where the
mean propagation phase and group velocity are removed in the development of a first-order evolution equation. Therefore,
the two shortest distance scales, which are order 1 and 1/ where € is a small parameter, are removed, with the leading-order
distance scale, 1/€2, representing diffraction and dispersion (which are far-field effects), and nonlinear self-focusing and self-
phase modulation. As a result, sampling can be larger than a wavelength since the finest scale to be resolved is that of the field
envelope. Of course, in the non-paraxial and non-SVEA regime, sampling still must approach A/2. The advantage here is that
the sampling scales inversely with the bandwidth of the envelope; in the other schemes based on the second-order equation, the
sampling is based on A, independent of the envelope. :

3.2 Multiple-Scales Derivation of the Nonlinear Wave Equation

This section uses the asymptotic method of multiple-scales to derive the basic equations needed for the theoretical and numerical
studies of optical solitons and their interactions presented in this thesis. Because of the numerical difficulties that the Helmholtz
equation 3.71 poses, a different approach to describing the nonlinear spatio-temporal evolution of wavepackets is developed in
this section. This equation is first-order in the evolution variable and possesses good scales in the sense that all fast variations
are removed.

The multiple-scales analysis separates the fast scales from the slow, resultingin a nonlinear wave equation that can describe
long time/distance evolution; this is especially important in the waveguide derivation of Appendix C where variation in one
transverse direction is fast. From the derivation, the multi-dimensional nonlinear Schrodinger (NLS) equation is obtained,
which evolves over a distance scale 1/€2, while higher-order terms that evolve over distance scales 1/€% and 1/€* are obtained
in subsequent sub-sections. The point of this-analysis is to remove the order 1 and 1/€ scales from the wave equation, allowing
for the use of much simpler numerical techniques.

At each step in the perturbation expansion, an evolution equation is derived that contains all terms with significant contri-
bution within some characteristic propagation distance. Higher-order equations subsequently extend the region of validity. The
first-order equation accounts for wave propagation of the optical carrier, which is sufficient over a few wavelengths over which
the field envelope does not change. A second-order envelope equation determines the group-velocity and is valid over distances
smaller than the characteristic diffraction/dispersion/nonlinear lengths. Paraxial diffraction, group-delay dispersion, and cubic
nonhnear refraction are added at third-order to reveal the multi-dimensional NLS equation. For distances well beyond the
characteristics lengths, higher-order perturbation theory is required. The fourth-order equation adds perturbations to the NLS
equation that describe linear and two-photon absorption and the first-order non-slowly varying envelope (non-SVEA) terms of .
third-order dispersion, space-time focusing, optical shock, and Raman gain. The fifth-order equation includes second-order
non-SVEA terms. non-paraxial terms, Raman index. dispersion. longitudinal field coupling, and quintic nonlinear refraction
with contribution due to third-harmonic cascading.

3.2.1 Multiple-Scales in Maxwell’s Equations

Once again, the starting point is Maxwell’s equations, written in a form appropriate for dielectric media

JH

VxE= -5 , (.72)
JE P
VXH—E()T);--l--a—t' (3.73)
V.E-—Llv.p ‘ _ , (3.74)
£
V.H=0, (3.75)

where the constitutive relations have been used to eliminate the electric and magnetic displacements. Spatial and temporal
functional dependence is generally neglected for simplicity. Note that, with the use of the constitutive relations, the vector
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Maxwell’s equations contain six unknowns in the vector electric and magnetic fields, but separate into eight equations relat-
ing those fields. The divergence equations are unnecessary, but will be retained in the analysis because they provide direct

relationships for the longitudinally-projected fields.
As before in the discussion of the linear and nonlinear polarizations, the quasi-monochromatic wavepacket representation

is used for both the electric and magnetic fields

E= %Ke—"“’o' + %§e'3f‘ﬂo' +cc (3.76)
H= %ﬁe—iw‘)' + %Te_3i")°' +cc, 3.7

where it is assumed that the fractional temporal bandwidths of the fundamental and third-harmonic envelopes are each less than
unity. The over-bar denotes the retention of a fast phase variation due to linear propagation. This fast phase will be explicitly
removed in the multiple-scales analysis. The mean direction of propagation is chosen to be along the z axis, which is fully
general for the isotropic symmetry class, but only strictly applies to cubic classes when propagation is nominally along one of
the crystal axes. The third-harmonic is included in order to obtain the cascaded contribution to the quintic nonlinearity.

With this wavepacket assumption, quasi-monochromatic Maxwell’s equations can be written in terms of the fundamental

envelopes A and B,

V x A =iy [wo+ig—t B (3.78a)
V xB=—ig [mo + i%] [sL (m0+ z%) A+ -%F“] (3.78b)
el mo+i2> [V-ﬂ:-—z-V-FNL - (3.78¢)
ot £
V-B=0. (3.78d)
B and in terms of the third-harmonic envelopes S and T. -

- 0= ,

VxS=iy 3(1)()+le T (3.79a%)

= . d L d — 2N s

V'XT-——IE() [3(1)0-{-15“8 (3(1)0+ta’)S+EOP3 ] (3.79b")

e (300412 )[V-§] = -2V B | (3.79¢")

- 0 a[ eo 3 ) .

V-T=0. (3.79d")

with the corresponding conjugate expressions. Here. the material polarization is separated into linear dispersive and nonlinear
parts. The fundamental and third-harmonic envelopes must satisfy the above equations in order that the total electric and
magnetic fields E and H. as given by equations 3.76 and 3.77 respectively, satisfy Maxwell’s equations.

Key to the multiple-scales analysis is the suitable choice of small parameters that serve to scale the slow variables. The
slow transverse variables are defined X = xx, Y = Ky, which are responsible for diffraction. The small parameter K ~ Afwy< 1,
where wy is a measure of the beam width, guarantees that the width of the transverse angular spectrum Akr ~ 21/ wq is small
compared to the linear propagation constant ko = 2nt/A. otherwise known as the paraxial assumption. In linearly isotropic
media. only even-order powers of the small parameter K occur in the derivation, and the standard paraxial approximation
truncates the diffraction expansion at X* resulting in the parabolic representation of the k-space surface. In this derivation, the
expansion will be taken to order x*, which goes one step beyond the paraxial approximation.

The slow time variable is defined T = 17, where N ~ Aw/wg < 1 is the fractional temporal bandwidth. The small parameter
1 allows for the representation of linear and nonlinear dispersion by Taylor expansion in terms of time derivative operators
instead of convolution integrals, as developed in section 3.1.1. Dispersion effects appear at all positive powers of 1. For
example. writing the linear dielectric constant in terms of real (dispersive) and imaginary (absorptive) parts

d d 0.
g- (mo-{- in;;) =} (mo + ing?) +ie%el (w0+ina—T—> , (3.80)
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the following expansion can be made

] T d 2 0° '
el (wo +iné7> = £k (o) +ms'5{(m0)(,—ﬁ - %‘515( ((no)-aT—2 (3.81)

3 3 4 4
B S CPN N W LT A
it (00)5r3+ o8 Q)5+ '

. N
+ g€ (00) = E¥MeY (o) 3=+,

where € is a small parameter that scales absorption and is defined later. If the envelope possesses fast temporal variations about
the carrier @y, i.e. greater than unity fractional bandwidth, then the slow variable T can not be defined and the dispersion
expansions are not valid. The slowly-varying envelope approximation (SVEA) truncates this expansion at 02, while the non-
SVEA development here extends the expansion to n* as shown. The imaginary part of the dielectric constant responsible for
linear absorption is scaled three-orders smaller than the real part in order to appear in the derivation as a first-order correction
to NLS. This is justified by noting that the development of the nonlinear polarization assumed that the optical frequencies were
not in one-photon resonance with the medium and by the fact that only materials with small linear absorption are of interest
for soliton switching, as discussed in Chapter 5, which amounts to the requirement that absorption is small over the diffraction
length. which is the length scale of NLS. .

Weak nonlinearity is assumed such that wave propagation is linear to lowest order. This is ensured by redefining the
envelopes as small - VA and vB for the fundamental - where the small amplitude parameter v ~ \/n2/no|A| scales the material
polarization expansion. Since third-order nonlinear effects contain the product of three fields, nonlinearity will enter the wave
equation two orders higher than first-order linear effects. which depend on only one field. Using the results of sections 312
and 3 1 3. the nonlinear polarization with time dependence centered about the fundamental frequency wp is

ﬁ?'l': v3£0110f13 { [ lAj|2 +2A|A I:} Kj—}-YZ;ZkKk} ‘ ‘(3.82)

+ iev3§—0EE {[ |Aj|2 +2Ax lfh!z} Aj"’YKA}AkAk}
2%,
. aA‘: aA_: — a/TK BK'KL -
"'T}V3€0"0"2TR{[ la-r]! +Ar Ia;l }AJ'HR[ aATj+ ajT Ax

2\/3 E{)Iloll% azlAjlz BZZZKJ + azz;f—‘/\ Zk
2 aT- oT- aT*

-

+ Ar

3 AR =
57 ]AJ+YR

s B3 3 s 6 2 a2 ol .
+ V' gy [,10’14+I§/\’-j] {[|A1| +§IAA-I +§|AJ‘| |Ak] +§|Aki |A1| :|Aj

(]

TR B (U,

3¢ -

138 -
-+ —g-xjjjj((l)oiz'(l)(p —Wy. —0)) {S, {Aj
where y = & # . The terms responsible for two-photon absorption are scaled one order smaller than the refractive parts so that
two-photon absorption also appears one order beyond NLS. This is also justified by noting that the development of the third-
order nonlinear polarization assumed distance from two-photon resonance. As shown in Chapter 5, it is desirable for soliton
switching (and true for nonlinear optical switching in general [1 15]) that two-photon absorption is weak relative to nonlinear
refraction. which appears at the order of the NLS equation. Note that the term responsible for three-photon absorption is
allowed 1o be the same size as fifth-order nonlinear refraction, however. The reasons for this are discussed later. The last term

describes third-harmonic downconversion, and the form is derived in section A.2.3.
The pertinent nonlinear polarization at the third-harmonic is (c.f. equation A.16)

~

2 a2 2 a2
+ [g A" AL + 3 |Ac]™A;

(]

+YKKZ'} + ZAKEI.'/T;K} } ;

3

SNL_ V'Eo TT3

Pii=— [xj77(30003 Wo, o, W0)A jA jA j (3.83)
+ 37 jux /(300 0o, o, W0) AxALA ] -
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The third-harmonic electric field S generated by this nonlinear polarization is assumed not to be present at the beginning of non-
linear propagation, but is generated by the fundamental through a non-resonantly phase-matched process. For a single incident -
linearly-polarized wave (at ), the only susceptibility tensor component that will produce a third-harmonic polarization within
the limit of the fifth-order derivation presented here is the scalar ) ;j; }-(3'030;(1)0, 0o, ). For other states of incident polarization,
or for the interaction between orthogonally-polarized waves of interest here, more components are required as shown.

The slow evolution scales are defined Z; = €'z, where propagation is assumed to be nominally along the z-direction and
.powers of € determine the scale of the overall variation of the envelope due to diffraction, dispersion, nonlinearity, and absorp-
tion. At each order i + 1 in the analysis, a differential equation in Z; is obtained which groups all envelope variations of size
¢+!. To this end, the envelopes are expanded in power series in €:

A=A +eA>+E A3+ ' (3.84)
§:€:§3+'-' '

B=B,+eB:+e Bi+---

T=¢Ti+-- '

The higher-order terms in the expansion represent corrections to the initial envelopes A and B,. Each step in the analysis forces
the long-distance behavior (at Z;) of the envelopes such that equation 3.84 remains a uniform asymptotic expansion. The scaling
for the third-harmonic S (in which the first contribution appears at the third-order of the analysis) is set to be consistent with
generation by the product of three fundamental envelopes A . The third-harmonic interacts with the fundamental to produce a
cascaded fifth-order nonlinearity [211] of sign and magnitude which are adjustable through phase-matching. Fifth and higher
odd-order harmonics could also be generated, but do not affect the nonlinear wave equation for the fundamental at the order of
the present derivation and are therefore ignored. '

The small parameters,  for the fractional angular bandwidth, n for the fractional temporal bandwidth, v for the fractional
change of the dielectric constant due to nonlinearity. and € as an overall scaling factor, determine the relative scaling among
terms (and physical effects) in the perturbative expansion. The perturbation expansion follows a particular connected path
through the three-dimensional lattice of terms indexed by powers of K, 11, and v; higher-order terms (more distant from the
origin) are always smaller. A particular physical situation determines the sizes of the small parameters relative to €, and allows
for the dernivation of the appropriate evolution equation. For example, a nonlinear spatio-temporal wave of short duration and
large transverse size will result in the scaling X = Nt=v = €. The terms associated with diffraction will then be driven to
higher order and the resulting evolution equation at third-order perturbation theory, or g, will be temporal NLS. Subsequent
orders £* and higher will reveal non-SVEA terms (and paraxial diffraction at €%). Conversely, a spatio-temporal wave of long
duration and narrow transverse size is described by the scalingn = x° = v = €7, moving the ultrafast terms to higher order and
vielding the spatial NLS equation at ¢ after transforming into a coordinate system to remove the group delay. Again, further
analyvsis will reveal non-paraxial terms (and group-delay dispersion) at £,

The most general equation, retaining as many terms as possible under the initial assumption of weakly nonlinear propagation
of a field envelope. occurs when all physical effects manifest themselves over commensurate distances of propagation and
results from the scaling x = = v = € One result of this condition is that the multi-dimensional nonlinear Schrédinger
(NLS) equation is obtained at order e, Any other choice of initial scalings, such as the scalings valid for the numerical
simulations presented later, would lead to one or more effects being less important than the others, resulting in the paraxial or
SVE approximation, as previously discussed. In terms of the slow variables, the time and space derivative operators become

d
2 e (3.85)
L0 .9 .0
V—_t$+.\é;+~5? (3.86)
—)fe—a——+‘£i+- a+s—+ez—+ :
Tax Ty Th|e ez, T ez,

where Z, is replaced by 2 so that uppercase represents slow (envelope) variables and lowercase represents fast (propagation
phase) variables. In the analysis, Zo represents zeroth-order perturbation theory with characteristic length scale on the order of
the carrier oscillation, Z; is first-order perturbation theory with length scale of group delay, Z; is second order resulting in NLS,
and so on. Note that now the field envelopes are functions of z and the slow variables, i.e., '

A= A(X,Y,Z>0,T,2), (3.87)

where the fast - dependence will be removed in the analysis.




Final Report AFOSR F49620-95-1-0431, Spatial Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder 78

Now, the quasi-monochromatic Maxwell’s equations for the fundamental can be written, in component form,

04 d d - ' 0]=
$ : S | — —— e =1 (€= X ‘ '88
£ 5aY [az-}-eazl -+ ]A_v g [mo+l€aT]B (3.88a)
d d — 04, 2=
v — —_— —E— = € — . .88b
5 &, A [ . 3].
% E-a—X- - 857 =iy [0)0 +lEa-7—_,] B, (3.88¢)

which is Faraday’s Law and relates the electric and magnetic fields such that a time-varying magnetic field serves as a source
for the orthogonal rotation of the electric field,

9B. [8 9 — ‘
5 - —_ | — —_— “ee s 3.8
X: Eap [az+8321 + ]B, | | (3.89a)
d1{.L 0 Y= . 2NL+
—I€p 0.)0+1€57;- [8 ((Do-*-lEaT)Ax-{— 80Px
d d — 0B
& et —f—— = 3.89b
¥ I:a:+€azl+ ]B,( aX ( )
—igg wo+ie—§— et (wo+is )Z +—2—F(NL)+-
A oT | or) " g ¥
0B, 0B,
z 8_87—88)’ = | (3.89¢)
AR 0 \ = |, 2NL)+]
—I€p _(DO+IEBT_ LE <(l)()+l€§f) A.+ —EEP: | R

which is Amperes Law (modified by Maxwell) and states thata time-varying electric displacement drives orthogonal circulation
of the magnetic field,

| 3\(oF oA [d o = - | |
L ' .__E __l — —— “ee - = .
€ (u)o+leaT> {sax +£a}, +[a:+£azl+ ]A} (3.90)
2 [ aP™t AN 1 3 s
——EE{E 3% + £ P12 +I:a—:»+85~2—1+"']P: ,

which 1s Gauss's Law and constrains the longitudinal electric field polarization in order to guarantee that the electric displace-
ment is divergence free, and finally

0B, 0B, [dB. 0B —o
®ox "% +[a; tez, " ]" ’
which states that there is no isolated magnetic charge and ensures the magnetic field is divergence free by proper choice of
longitudinally -polanized magnetic field. '

These equations serve as the starting point for the next section which presents the derivation of the (3+1)-D vector nonlinear
wave equation for the Cartesian polarization components. This choice of the polarization basis set is arbitrary. The reduced
dimensional derivation appropriate for nonlinear propagation in a planar waveguide is presented in Appendix C. In this case, a
(2+1)-D vector nonlinear wave equation results because of one dimension of linear confinement by the waveguide. Again, the
Cartesian polarization components are used, but now this choice is not arbitrary since the TE and TM modes of the waveguide
appear in orthogonal linear polarization states. Slight modification of the above set of Maxwell equations is necessary in the
guided case since. in one dimension transverse to the mean direction of propagation, the material polarization depends on
position, and the envelope in that dimension may no longer be slowly varying.

(391

3.2.2 Derivation of the (3+1)-D Higher-Order Vector Nonlinear Schridinger Equation

The propagation of and interaction between optical solitons is of primary interest to this thesis. The use of one field envelope
A does not preclude the description of multiple soliton interaction with arbitrary states of polarization. Indeed, a first-order
nonlinear wave equation will be derived for each polarization component in Cartesian coordinates, and any number of soliton
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envelopes of arbitrary polarization state can be decomposed into this basis set. For example, for the interaction between two
solitons of orthogonal linear polarizations, the initial conditions would be )

A= fx(X,Y,0,T) ' (3.90)
. Al_\' = fv(x; Y,O, T)v
where f, and f, represent the envelopes of the individual solitons. Using solitons of orthogonal circular polarizations,

1

Aie= [ (X 1,0, T)+ f-(X,Y,0,T)] (391)
Ay = -\’[—2[f+(x,y,o, T) - f-(X,Y,0,T)],
where _
£+ .
X.Y.0,T , 3.92
xyon == (3.93)

represent the soliton envelopes of right- and left-hand circular polarizations.
As a result of the choice of optic axis, %, the wave equations for the x and y polarizations will be identical in form due to
the isotropic and cubic symmetry. Now the terms are grouped in powers of €. At all orders, A, and A, satisfy similar equations,

while A. is different due to linear vector coupling in Maxwell's equations and the fact that propagation is along the z direction.

Order ¢ - Phase Velocity

At the lowest order, Maxwell’s equations constrain the phase velocity. Writing out the coefficients of €, in Cartesian form,

a;‘-l\ . =
X T = —iugWo B, } (3.942a)
3R, _~
§i = = ipowoBy ' (3.94b)
z 0 = iuywoBi., (3.94¢)

which allows the electric fields to be determined from the magnetic fields,

aE!_\‘

£ - = iEwoEL; (wo)A 1 : | (3.952)
7 agzn.r = —igowoek (o)A 1y (3.95b)
2r 0= igowoef (Wo)AlL, (3.95¢)
which allows the magnetic fields to be determined from the electric fields, and
?g—j- =0 (3.96)
aTBj— =0, (3.97)

which provide no new information.

It is immediately seen that the longitudinal electric and magnetic field polarizations are zero to this order, leaving only four
non-zero field components. This is expected since the projection of the electric polarization onto the propagation direction is
smaller than the transverse projections because of the initial choice of scalings. These scalings dictate that the fast propagation
variation is along z and the transverse variation (i.e. diffraction) is described by the slow variables X and Y.

Taking the : derivative of equation 3.94b and substituting equation 3.95a, the x-polarized electric field equation is written

4
e

= A, = Ao : (3.98)




Final Report AFOSR F49620-95-1-0431, Spatial Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder 80

where Ay, is a slowly-varying envelope, € = 1/ ¢2 and c is the speed of light in vacuum. The “+” sign is chosen here for
forward-going waves, and backward-going wave are neglected by the assumption of weak nonlinearity, which forces wave
propagation to be linear to this order. The same relation holds for Ay, By, and By,. The wavepackets travel in the z-direction

with some mean wavenumber kg, or propagation constant kp = 0 /819‘{((1)0) /c, resulting in the mean phase velocity vp =
0/ ko for the underlying carrier.
Using the expansion 3.84, the relevant equation at lowest order is
0°A;
0z°

which determines the phase velocity. The order g2 term emphasizes the fact that this equation is only accurate to order €.
Equation 3.99 allows the removal of the fast phase variation such that subsequent analysis will reveal approximate evolution
equations for just the slowly-varying field envelope. Note also that, since A, = 0, the total longitudinal field A; = O(g?), which
will be determined in the following section. :

= _K3Z,+ O(e?), (69)

Order ¢ - Group Velocity

The previous order determined the phase velocity of the underlying wavepacket carrier, this order determines the group velocity
of the wavepacket envelope. Faraday’s Law (equation 3.88a) results in

04>, 0A, — 0B\,
x: =t — = - B-
g Yoz, T WSty
azvr 82“ - aElv ‘
y: —=—++ = = iugWo B2y — o ==, ' (3.100a)
0z dZ, Y oT
while Amperes Law (equation 3.89a) results in
- aEDv aAEI\‘ . . L -
X a:' + 'a—zl- = 180(1)085;(((1)0)/41‘ _ ‘ -(3:1013)
945
—€ [ﬁb‘q(wo)+<ﬂo€§‘{(mo)] aTl'
A, aEl( a-glx . L A
Vi —a—:— “+ —az- = —!EOQ)QSK((D())A‘_"V (3.101b)
oA,
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Finally. in order to ensure divergence-free fields,

0A|, + 0A), 0Ax _
X oY F
aEh aEl\' aElz
+ =+
oX oY oz
Here. the divergence equations are used instead of the z-component of the curl equations because the former provide direct

relations for the longitudinal fields.
Performing the same steps used in the previous order, the equation governing Ay is

(3.102)

=0. (3.103)

aZXl‘ Ry . aZl,\' .Wo L L azlx
o K = ik g iy [ 2k (00) + ok (w0)] S (3.104)
The homogeneous solution to the left-hand side of equation 3.104 is
Az, = Az, | (3.105)

such that the right-hand side, which has the same phase factor, is secular. In order to suppress unbounded growth of the
particular solution for A>, (which would be e -¢'*0%)_and therefore ensure that equation 3.84 is a uniform asymptotic expansion,
this secular term must be set to zero, resulting in

A,

: 0A
21/&0-—8—2—- !
1

= (3.106)

.o ) [
=-iz [25&(0)0) +<nos'5{(mo)]
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Noting that

2k0k6:2%,/£'5((m0) l,/t-:‘gi(mo)+——(—00——1’—[5{'(030) (3.107)
¢ ¢ 2¢, /€% (o)

My ; s ¢!
=2z29£'5{(m0)+ ?29-815;((0.)0), o (3.108)
equation 3.106 can be rewritten |
' 0A |« , 0A |,
— = —ky==—+0 3.109
5z = fogr T o) (3.109)

which is the lowest-order evolution equation for the slowly-varying field envelope and has error of €, which represents higher-
order corrections that will be obtained in subsequent sections. Equation 3.109 well describes wavepacket propagation over
distances short compared to the dispersion/diffraction/nonlinear lengths, and subsequent analysis will increase the accuracy of
the approximate envelope wave equation by successive orders of €.

Making the substitutions A, = €Ay, 9/0z = €d/dZ,, and /0t = £3/0T, the overall evolution equation for the x-polarized

field envelope is currently
.a_Af + K A«
0: %o

which is accurate to order €. The error will be reduced to order g% by deriving the NLS equations in the next section. Equa-
tion 3.110 has the traveling solution ‘ '

= 0(e%), (3.110)

Ax(x,v.2.) = Ac(x, 3, 2,1 — kp2) (3.111)

where &/, is the group delay coefficient and vy = 1/kg is the group velocity coefficient. The solution reveals that to this order,
the envelope simply translates along the direction of propagation at the group velocity without change, which is clearly valid
within the spatial and temporal confocal ranges of propagation. :

Based on the derivation thus far, the fractional temporal bandwidth small parameter can be more formally defined. The
group-velocity appears one order of € later than the phase velocity, which implies the following relation
J0A

k(')-; ~ glkoAl, | , (3.112)

which. in the temporal frequency domain, is rewritten

. ' (3.113)

- - Kt
|AwkoA| ~ € |koA| = € ~ ‘Aml\—o
0

Since the group delay is defined

L ' L
Ex(ﬂ)o)+ woe (wo) £ (wo)

ko = ~ :
¢ 2¢, felg (o) ¢

which is approximately the phase velocity, it is seen that € ~ |Aw/wy| (more properly, 1| ~ |Aw/wp|); therefore, the small
temporal scaling parameter is the fractional bandwidth. For large fractional bandwidth approaching unity, more terms in the
Taylor expansion of the dispersion need to be retained to properly describe dispersion over the pulse bandwidth.

Using equations 3.102 and 3.103, the longitudinal field envelopes are written

(3.114)

_ i aAl_x aAl_v

Ax. = [ax + 37 ]+O(€) (3.115)
_ i [9By. 9By

B>. = E [-37(— 37 ] + O(g) . (3.116)
i 0Ax OAj
= o LoV J+o

The over-bar is removed because all components travel with the same phase velocity v. Again, substituting the amplitude
expansions. the total longitudinal electric field is

i oA, O0A,
A-= —
) ko[

==+ ay]+0(e ) _ (3.117)
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The slowly-varying longitudinal electric field envelope is driven by transverse derivatives of Ay and Ay, and thus arises from the
(paraxial) projection of the x and y polarizations onto the z axis.

Order €3 - The Multi-Dimensional NLS Equation

The multi-dimensional spatio-temporal nonlinear Schrodinger (NLS) equation shows up at this order in both the x and y po-
larization components of the electric field. The third-harmonic is also generated. The €3 terms from the quasi-monochromatic

Maxwell’s equations are

a;{ 2 az? v aZZV\' az ly a-Eg X

By T ez, oz, | MeoBnTHOGT | (3.1184)
0S3y =
TH: —3‘3“ = —3iugwoT 3
623“ ax-\\, azl\' az.,_ _ aF_,v
oz Taz, T ax - HoWeBy—rGy 3.
5z taz Toz, ox By HoGr | (3.118b)
EN _
TH: = 3ipowoT 3y,

-~

for the electric field envelopes of the fundamental and third-harmonic, and

.. 0By 9By 9By 9By _ 3.119
Yy T o 9z, 0z, G415

— o oE R (00) A 2
. L . L 2 R 1x (3)
—iEgWg | € (Wo)A3, + iEx (W, - = —
i€y 0{&( 0)A3, + i€ (o) 37 2 8T~+50P"
a L — L' aZL‘»
teor [Ey((wo)f‘:\ + 159{((00)-37
oT 3, - _
TH - TL = 3igpo€l (3020) S, + 6Py
aEB.r + aElt a_B—l.( BE;: _ 3.119b
a: Tz, Yoz, X (-1190)
_ . 9A., Ex (w9)0°A;, 2
. L oL = R Iy | < 5(3)
—igoWg [EK(%)A3)-+'Ey(((Do) Fr R 5772 +_55P-"
9 | . - ., (0Ay
+eo5T [ER(W)A:"-HE'K(U)O)_G—T_
aTs, - —
TH: S2 = ~3iegonel (3o0)5, — 6i00P, 3,
for the magnetic field envelopes. The final equations from the divergence of the electric displacement and magnetic field are
0A., 0As,  0A:.  0Aa
1 Y M 3: 2z
€5 + .
% (@o) [ 3X + 3y 3 + 821} (3.120)
d |0A 0A 0A-.
.| ' lx ly 2
+1€4 = : =
"‘i(“*’)ar{ax v B:] 0
95s:
TH: — =0
d:z
9Bx 0By 9By 9B _, 3.121
X oY 9z  9Z, (12D
dT 3.
TH: == =0,
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where an immediate simplification of equation 3.120 results by substituting equation 3.102

o G em
The third-order polarizations are written
P = gonona {lAleZu +2A A |2Zu +YZ¥)-—A_IX] | ' (3.123)
P = egnom [JAn,[* A1, + 28140 Ay +YALAL) |
7’(:33) %X.xm (30)0:030,(00&0)2?_( + i8—0X«w.vx(g"no'v“)Ov(00v‘”<>)7ﬁ\xl-‘ | (3.124)
1—,(\33) ;f’x_mr@wo,wo . mo)Al\ + 3—Xnvr(3ﬂ>o woywo,wo)Aleh

Here, the nonlinear polarizations consist of third-order nonlinear refraction for the fundamental and the source terms for the
third-harmonic driven by the fundamental.
As before, the equation governing A, will be developed first. Takmg the z derivative of equation 3.118b and substituting
equation 3.119a results in
Ay 0Ax, 041, 0Ar 0Bs,

s Tiko 5, +ikg 7z — iko = = ~ikoo ==+ : (3.125)

. {882: aBZ\' aBl\ a a
1HWo ;

341‘_571( )8A1x 3
oT 2 T eo

+iggwo | € (o)A, + i€ ()

which. after substitutions from order €7, can be rewritten

PAx o 94, 0°A,, 0%A;,

_)- = A — —ik - — — .
5z TRoAn =5 T GNT T axar (3120
PN CEENC ) DO SR S
oz, THOTT | TP\ e | YT T avaX
aB—L‘\ ko a;\_h l1 L 87{«,
—_———— e —— — & | E4 () WpE _—
52, " rown 9Z, €0 | € (o) + o ;(((Do)] 37
. ' (0% " a:Z . 3
i 5 o) + 2 ()] St 2}
Setting the secular term to zero results in
aAh az;‘—l 83.7{‘ (GRS Wy » 8321, )
‘ ‘x 8 ‘n -2 i L = !‘ ] X .
2iko 3z, oxT ot @ | (00) + 5785 (@0) | 57 (3.127)
— ) () \" ag“ aE‘)
2w Py ko | === =) Y
+ Zupyg — 1Ry [ a7, + MO aT ] — lppWo BZI
wy [ L Y ] 04,
—1— |& €3 (W) | ==
13 [&x (wo) + o & (®0)| ==

Using the relation dA,/9Z) = —k{dA,/dT and substituting from equation 3.100a, the right-hand side of equation 3.127
can be written '

(3.128)

2r.L! 2 ar—
2k, [aA« LO()AZ‘] a mo[fy}‘(mo)] 0 ALX'
aT |~ ac%ek (wg) 0T

Noting that

o) ! " W, ' 2 :
_l\()/\ —-(‘_') {E!‘ ((1)0) + E{;( ((J.)o) Z@%)ZS [Elj(((no)] } , : (3.129)
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substituting equation 3.129 for the right-hand side, and writing the nonlinear coupling in full, equation 3.127 reduces to

aA’.’.r 0A Lx a.’!A lx aZA 1x 1] aZA 1x
] x2 Tz kg (3130

2 N2 - 2
+2k6;3 []Al"|~Al"+2A |A‘YI Alx+'YA?f)' TX] = O(g).

., [0Ax
2iko | 57=+hogr + 3z,

<

Using the amplitude scaling relation Ay = €A+ €A, and the substitution

3 9 40
L =g T ' d
- =%z Tt iz, (313D

the slowly-varying envelope equations 3.109 and 3.130 can be written in lab coordinates

ToA: 04 A DA, 0%,
2"‘0[6: tho, ]+ e T kg (3.132)

2 112

+ 24372 [l 4+24 AP Ac+1A243] = O(e?).

At this point in the analysis, the full evolution equation for the field envelope is valid to order ¢>. Equation 3.132 is easily verified
by making the substitutions into the slow variables and amplitudes and comparing with the envelope equations obtained in this
and the previous order. Note that there are extra terms containing A», and As, that have not been obtained in the analysis thus far.
These terms, for example 324, /90X, 2A|A |*Axc, and YA3,A},. are all of order g% and higher and fall beyond the € accuracy
of the current state of the derivation. These terms will present themselves in the next sections as the accuracy improves.

The leading-order distance evolution scale Z; o< 1/€ of equation 3.132 represents the group delay, or group velocity. This
scale can be easily removed with the Galilean transformation T =1 — kyz, with the resulting leading-order scale (Z5 o< 1/€%)
representing diffraction/dispersion and self-focusing/self-phase modulation. This is a principal advantage of the first-order
equation over the Helmholtz equation. '

When the coordinate transformation T = t — k= is made and A, = 0, equation 3.132 is the (3+1)-D scalar NLS equation.
Combined with the corresponding equation for A,, equation 3.132 represents the coupled or vector NLS equations. The next
section will determine the first-order corrections to the vector NLS equations. Since there is no coupling from A; to A, or Ay,
or linear coupling from A, directly to A, to this order, the coupled NLS system is a fully vectorial one for isotropic and cubic
media. :

* The transverse and nonlinear scales become apparent at this order. The terms obtained at this order are g* smaller than the
terms obtained at order €. Therefore,
0°A,  0°A.
e

* By transforming nto the Fourier domain, the small parameter can be written

K=¢~ ——— =5sinb. (3.134)
ko
This relation indicates that the transverse momenta must be less than the propagation constant &g in order that X < 1, as shown
in Figure 2.2 for k,. When K > 1, evanescent wave propagation must be considered. The transverse FWHM momenta are
related to the width of the wavepacket by ky, ky ~ 21/wyp, where circular symmetry is assumed. This relation gives the scaling
K ~ 2./wy. Because sin® = k./ko < 1, the exact isotropic k-relation kf = ké — k3 - kf is reduced to the paraxial expression
k. & ko — k3 /2ky — k7 /2ky. as given by the spatial Fourier transform of the linear part of equation 3.132.
By the same arguments. the nonlinear scale is written

vee~ |2 A, (3.135)
no

which means that the nonlinear polarization expansion is well-ordered and converges when v < 1. This occurs when the induced
nonlinearity is weak compared to the linear index of refraction, as indicated.
Performing the same steps with the third-harmonic envelope results in

N
~ £~

k3Ax| - (3.133)

823‘3_(
o:?

- - 903 -3 -2
= <k2(300) S5~ 522 [ene300) A + 32ps(300)A1 B (3.136)
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which is recognized as a wave equation driven by a third-harmonic source term. The wavenumber for the third-harmonic is
defined k2 (3wo) = 9wjeR (3wo)/ ¢2. Because the driving polarization has the phase factor ¢2%0%, so must the third harmonic in

order for this equation to have a solution. The solution is then

9w} Yeeex( 3003 W, W, Wo) [A?ﬁ' 3AKA%,A1x]

=220 3.137
4c? 9kZ — k2(30) G137

S3X

)
where Ax is the cross-phase modulation coefficient for the Kerr nonlinearity. The resonant denominator indicates that the
strength of the third-harmonic grows near the phase-matching condition k(3p) = 3ko (or n(3ey) & n(wo)), but the unphysical
pole is a manifestation of the fact that the derivation is not valid at the resonant condition, for which initially exponential growth
of the third-harmonic would occur. The pole is not a problem in practice because the phase matching condition is difficult to
achieve in condensed, linearly isotropic media. In fact, for useful nonlinear dielectrics with low loss, it is typically true that in

the optical regime, n(3wg) > n(ty), which has important ramifications to multi-dimensional stability.
Using equation 3.122, the longitudinal electric field envelope at this order is

i [0A2. 0Ax  0Ay
Az, = — - =\ . 138
™ [az, X oY _ ©-438)
Combining the equation for the longitudinal electric field envelope with equation 3.115, the total longitudinal field envelope is
i [0A, 0A,] Kk @ [0A, OA, '
A.= — Jhx LY 07 | 2x Y 4 i .
: ko[ax+ay}+kga,[ax+ay]+0(” (3.139)

The form of the longitudinal field will be elaborated on in the next section.

Order £ - The non-SVEA Corrections

In this section. the first set of higher-order corrections to the NLS envelope equation are obtained which allow for the description
of the propagation of short pulses. These corrections are important in studies of propagation over distances greater than the dis-
persion/nonlinear lengths and are: linear and two-photon absorption, third-order linear dispersion, space-time focusing, optical
shock. and Raman scattering. The evolution of the third-harmonic is not considered in this section because any corrections
obtained here to the solution S3 of the previous order will not enter the final analysis. At €* then, the terms from Maxwell’s

equations are

oM, Ay A A 0Ay

1) £: -_ = . .
W& Sy~ "9z "z (3.1402)
9B
itoWoByx — Ho 3;—
9Ay  0Ay  0An,  O0A 0Ay '
1) v: - - = - - = = .
We: =5 +%z, Yoz, Tz, | (3-1400)
' = 0B;,
ipoWoByy — o 57
for the electric field envelope, and
B, 0Bs 0By 0B 0By,
@)z 2B 9By 9By 0B By (3.141)

o oz 9z, 9z, oz,

S A (00) 3%
) L . L 3x R. ol
~iggWg [Ex(‘”o)A‘j‘“L'e“(“"’) 9T ~ 2 oT?

L”l —
5 (o) 034, 2
—i X -z + iElj((,l)o)Alx-i- 'E—opy)

6 o73

ol o L, A £R(0) %A, , 2403
—_ A i L =
+EOaT |:£9((w0) 3x+l€9((0~)0) oT 5 T2 + son
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AL a§4x a§3J( aEZx aEl.r_aEB: _
V' T Tz, T dz, "oz,  oX

(3.141b)

_ L, Ay ()%
. L - L y_R y
—igoWp | €5 (o)A sy + i€ (o) ST 2 oT2
&% (wg) 3%A, - 254
- : e o i@yt Py
o | L — Ry axzy 59( ( 0) 9°A y 2 —(3)
+5057 [ex(wo)A3).+z£R(mo) 3T 5 372 _,!_80 )

for the magnetic field envelope. The final equations are from the divergence of the electric displacement and magnetic field

0A;, O0A3, 0As. 0A;. 0Ax
3): : = = = = 3.142
O Sx tor T Tz, oz (3.142)
3
’ aﬁia) N a—,;i ) 61—3(23)
€0€f (o) | 0X oY 0z
a§3‘ 8§3v 8—3.4- BE. 0B-. :
. ; ) : 3 = 0. 3.143
ax Tor T Tz, T ez, (3.143)
The third-order polarizations are written
P = eonons {2A [|A WP+ |A1y|2] Ao +Y [fo+2fy] s, } (3.144)
“which 1s the nonlinear polarization along the z-axis due to coupling between the transverse and longitudinal field, and
—4) y— -2 — 2— —2 —
P = ggnom: [2 Al Ane+ A1 A, + 28 |Ary [ Ane+ AT A2 (3.145)

+2A—A-1,\'K.:..\Zl.\’ + :’-AZ;_\EZ,\'KLK + 2YK1_\'ZZ_VZ;X]

+l£.;B: [|A 1P AL+ 28 |A l.\'lz‘zl-‘ + YKZ?-‘Z;" ]
dlanl . Ayl

2%;
) am\xl-\’ aA_‘l_rKlv -
—EO’IOII:TR{[ 3T +Ag 3T 3T + aT Aly )

with a similar expression for P ' The first set of terms in the transverse nonlinear polarization consist of mixed field envelopes
from different orders of the ﬁeld amplitude expansion because A», can be substituted for one A, for example, giving an extra
factor of €. The second set of terms represems two-photon absorption while the last set represents the first-order approximation

to Raman gain.
Following the same procedure used in the previous sections, the condition on the x polarization component at thls order is

A +YR

o- A,h aAqt aAz‘ aA'r( a“Ao( .
Ay =-— - x_ 22 .
9=2 +I‘0 = 2’1‘0[ LO T "0 aZ_ X2 3 146)
0°A>, 0°Ax | L U (1)8 v 827\.-7‘
B S R T 2 =0 =
aAh BQZ“ (.00 L’“ a3Z,X
—-/\oaz - azlaz~+ E;{(wo)+wosx(ﬂ)o) G €% (wo) 573
2—(4) a—“)
ll\fsl((l)O)A“ - —l&fP 4i[.1()0.)0 oT .
Upon further manipulation and the use of equation 3.130, the secular term becomes
E)A;( , 0Ax, 9Aa, a Any a 245, 9%Ao, .
—) X II 4
ko [ ot | TRz taxe t oy Rl (3-147)
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0A lLx

+2ikg——= + ikGE (W) A1 —

I\_(I)__a_ azAlx 82Alle
3z, "kodT |oxT " or?

j (3)
i oA 2 00 4k o ky] oPx
——koky =3+ 47 —L | =2 ==—=0(¢

where the third-order group-delay dispersion coefficient kg’ is

1 1 ' " 0.)2 "
gko%" =3 [El:i((mo) + o (o) + “625151 ((00)] — kokp- (3.148)

Once again using the amplitude scaling relation

Ay = €A + €2 An, + B4y, (3.149)

and the z scale relation
0 el il 19
0z 0z, 0Z, ~ 9Zy

(3.150)

the full slowly-varying envelope equation to this order is written

A, ,,0A,] . 0°Ac  0°A; , 0% Ay
2ikg ['5:+k0‘§‘]+fk00014.‘+'5?'+—5‘7—k0k6—a‘t—2- (3.151)

i@ K 3 [A PA
—skko 5E iy o TR

+ 252 (1A A+ 2814, Ac+ vaa;]
: ;

A2 2 B e
+ 22K [|Ax|-A_r +20x 1A A +y,<A;AX]
- ;

. ng kl a 2 2 Y
~+ 41/\'}‘!13 [? - —29] 5’- ['A.\'I A+ ZAIA_\‘I Ay +YA.\-A_\'] v

2012 alel2 a|Av|: aA;Ax aA;A). _ 5
_?_Ao;atn{[ 3T +Ar 37 A+ YR 37 t 57 A, p = O(7),

where o) = kft',’(m‘))/ku = k,E%(wo)/, /8‘5((0)0) is the linear absorption coefficient and K = B2/2kon: is the normalized two-
photon absorption coefticient [1 19]. The other additional terms to NLS are third-order dispersion, with coefficient ky', and the
so-called space-time focusing [144] term. The space-time focusing term is one of a more general class of terms denoted here
the space-time dispersion terms, and describes the (paraxial) curvature of the energy front due to spatio-temporal diffraction.
Following nonhinear refraction and two-photon absorption, optical shock is the first-order time derivative of the (vectorial) non-
linearity and gives rise to an intensity-dependent group delay. The optical shock expression obtained here has two contributions,
one directly from Maxwell's equation in the time derivative of the nonlinear polarization (proportional to phase delay), and one
due to the removal of the SVEA by one order (proportional to group delay). The fast term, proportional to the time derivative of
the (vectorial) intensity. is the first-order (linear) approximation to the Raman gain/loss function, with time constant tg defined
by equation 3.56. and results in amplification of low frequencies at the expense of high frequencies.

Solving equation 3.142 for A4 using the fact that As. has the same propagation phase as all other field components, the
contribution to the longitudinal field at this order is written

A __i_ 6A;;+6A3: 8A3X+8A3'\.
“Tloz, "9z, ox T ov

ko
o2 e apY apd
+ - e~ .
ko€o€ (wo) oX aY 0z

(3.152)

Combining this equation with A, and A3, the total longitudinal field is

(3 g L) B [ 2
A:‘[kfkgaz kg{["o] skoks P 351 155 5, | (3.153)
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i [PA A, P4 33Ay] i [onp{ +am”
B 51\-03— ox3  dxdy? + ov ' dvox®|  komp | Ox dy

~ Tomo {2A[|Ax| + Ayl ] [’BT‘F 3 ] +y[A7 +47] [ax ralig

where the nonlinear terms are defined _
NLE®) = s [IA_([:AX + 204, A +yA;’1A;] (3.154)
NLY = n, [|A.\‘|3A'\.+2A ]Axle}.-}—yAgA;] . (3.155)

There is a simple geometrical interpretation for the origin of the longitudinal field. Considering only linear propagation for
the moment, Figure 3.2 illustrates the relationship between the projections of the polarization onto the x and z directions given
an angle of propagation 8 with the z axis. In the Fourier domain, the ratio between the transverse and longitudinal components

X

' 9

®
A(k, e' "*EZ] |

Figure 3.2 Ongin of the longitudinal field projection. The field envelope A is decomposed into a plane-wave spectrum A,
with one member of that spectrum illustrated, propagating with angle 8. where sin® = k,/ko. The direction of polarization
1» orthogonal to the direction of propagation, and is decomposed into transverse (Ay) and longitudinal (A.) components. For
simplicity, tiltin the v direction is not illustrated. but is a straightforward extension of the present geometry.

s gnen by
- - ke -
A.= —tanbA, = —k—"Ax. (3.156)
This geometry is easily extended to include the y transverse direction, with the result

= —’kl— [k.\A_.\ + /\'_‘VA-\] = — kAc+ KAy

: (3.157)
: \/kl(wo+ Aw) — k2 — k2

o

The truncated Taylor's expansion. when transformed back 1o the real space domain, recovers the linear terms of equation 3.153.

Anzlogous to the projections of the transverse electric fields, the longitudinal field is also driven by the projections of the
transverse nonlinear polarizations onto the z-axis. The paraxial projections appear in the nonlinear terms of equation 3.153,
with additional contributions from the nonlinear coupling between the longitudinal and transverse fields.

Order €° - The non-Paraxial Corrections

The results of this section are derived mainly for the purpose of obtéining the form of the propagation equation, including
all commensurate terms through the fifth-order (or quintic) nonlinearity, which will be used later in the thesis as an ultrafast
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saturation mechanism to stabilize multi-dimensional solitary-wave propagation. The fifth-order nonlinearity obtained here
consists of three distinct contributions: directly from the fifth-order polarization, from the product of the third-order polarization
with itself, and a “cascaded” contribution. The second contribution is a result of the reduction to a first-order equation and the
cascaded contribution arises from the interaction between the fundamental and third-harmonic.

This derivation also illustrates the non-paraxial and analogous higher-order non-SVEA terms. The terms additional to
the quintic nonlinearity which show up are then: dispersion of linear absorption, fourth-order linear dispersion and the non-
paraxial spatial diffraction analog, second-order space-time dispersion, second-order shock (intensity-dependent group-delay
dispersion) and the spatial analog intensity-dependent diffraction, Raman index dispersion, and nonlinear coupling with the
longitudinal field. Some of these terms will be used in the remaining chapters of this thesis as well.

The two Maxwell’s equations that are necessary at this order are:

0As, 0As4 OA3  0As, 0A; 0A4
y ! - - - ~ — = = ' 3.158
Vi3 Yoz, Yoz, Tz, ez, X . OB
. = aE-t\'
iuoWo Bsy — Ho 37
9B,. 0Bs, 0B, 0Bi 0By 9B,
2) % By, 0Bsy 0By 00y 08y 90y _ , (3.159)
aY oz 0Z, dZ, 9z, 0z,
_ o Ry R (00) 9%3,  ER (@0) A
. L . 1. 7 LA R I X 2x
€000 [E_’R_(mo)ASJ + IEK(U)U) oT ) o972 ! 6 o732
L”" —_— a—
€5 (Wo) A — d0A 2
X | KY . L L 1x —(5)
A Aa, — =
[, = o 0A €k(00)PAx e () Py
| ek (00) Ay + iEf () = — X :
+€08T % (@o) A, + i€ (o) 3T 2 372 6 37>
L -— 2 —i 4 »
+igf(wg)A + —P, ] .
) &)
where the additional nonlinear polarization term is defined
5(5) . Bs 3004 6 a0 2]
P, =g l:n()lu-{-!'z?j‘_] { [IA]‘IJ + 3 l"‘l_\[ + g 1AL ]Al.\'[ ] A (3.160)
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+ mixed terms,

which are the fifth-order terms from equation 3.82. The first set of terms in the nonlinear polarization is the direct contribution
from %%, while the second set of terms is the cascaded contribution from the interaction between the fundamental and third-
harmoric. The third group of terms is the third-order nonlinear coupling with the z component of the electric field, the fourth
is the Raman index dispersion and the last represents the mixed terms involving Ajx, A, etc, which are not specified for

convenience.
Using the same method employed before. the following secular equation for the evolution of the slowly-varying x-component

of the electric field envelope is obtained:

aA4.r ] aAh}

. %A,
5z, Thar

oT?

QA3 | 0°Ay | 0%Ax

L _
+2ikg 7, * o + =3 (3.161)
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. 0Ax . Ky 9 [0%Ax | FAx] i, u 0%Ax,
+2‘k°?z';+'k°a°A2‘_'Eé? [ Xz +_a?2_] 3%k 575
aAlx ] aAlx ’ 1 [a4A lx a4A1x a4A lx]

5z, %G ~ag axs e T ars
1 {.kﬁ_kéf

62 azAl.\' azAlx 1 ////a4Alx
Tol2 & ar2[ax2 + ayﬁ]+12k°k° oT*

2 [a2p® a2  op?® 1Y 1970
) {, + =+ lkO — - T4 )
gonj | 0X° ~ dXoY 9X 4 0X* 4 oy?
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The third line from the end contains terms with spatial derivatives of the third-order nonlinear polarization. The first three of

these terms are vectorial resulting from the divergence equation, while the next two terms result from the reduction to a first-

order equation. All of these terms correct the curvature of k-space (which is now slightly anisotropic) due to nonlinearity, termed

here intensity-dependent diffraction. The next line contains first-order shock terms associated with two-photon absorption and

Raman scattering. and the second-order shock associated with nonlinear refraction. The last line contains an additional term

which is the result of the reduction to a first-order equation (discussed next, which contains further non-SVEA and non-paraxial
nonhinear contributions) and the cascaded and direct quintic nonlinearity.

Evaluating the remaining Z> derivative term results in

+ 2ikg

P,

/\f an(}) 'vaAl\ -aaA‘ aAl‘.
— = ikma |2JA L] == + AT =2 + 204 AL = 3.162
Yoo 9z, " A 5z, Tz, +2iih gz, (3.162)
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which contains effective quintic nonlinear terms from the product of the cubic nonlinearity with itself and additional intensity-
dependent diffraction and second-order shock terms. Keeping only the effective quintic nonlinear refraction terms
I\f aP(\»3) - N> 2 { 4 - - 14
— = k5| — Al A AN -y | AL ] A 3.163
l€()ll() 822 I‘O [ lxl it [ Y-] I l,\‘ 1x ( )
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which 1s stmilar in form to the direct contribution from x'*'.
This contribution can be more easily understood intuitively by considering the total scalar relative dielectric constant

(3 (QA[:) =n" (|A|:> = ng+ 2ngna |A|2 +2ngns ALY, | (3.164)

keeping terms only up to fourth-order in field. In a second-order equation, such as Maxwell’s equations or the Helmholtz
equation. n* is the relevant quantity for wave propagation. while in a first-order equation, n is the relevant quantity. Using the
appropriate Taylor's expansions,

n (|A|2) ~ no+na AP + [m— 2’:10] A%, | (3.165)

whi¢h has the direct ny contribution from %'*) and an indirect contribution manifested by the expansion of the square-root as
required in the first-order equation.

The cascaded interaction between the fundamental and third-harmonic produces another effective fifth-order nonlinear
interaction. Evaluating the third-harmonic down-conversion terms of the fifth-order polarization given by equation 3.161
, nsase . 3 ’
257 (11T A+ 387k A Anc+ 68% 1wl [Any [ Are (3.166)
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where Ax and yx are the cross-phase modulation and vector four-wave mixing coefficients for the Kerr nonlinearity (the third-
order Raman susceptibility cannot produce a third-harmonic) and the cascaded quintic nonlinear index is defined

nf:‘asc= 3 M(3w0;w0.m01(§0)x’;m(m0;30)0,-—(00,‘—0)0). (3.167)
32ng n3 — n?(3a)

This is the same form as the effective ny produced by the nonresonant interaction between the fundamental and second-
harmonic [194] mediated by %(2), which has received recent interest [196]. Resonant third-harmonic cascading has also recently
been studied [211], with results away from the phase-matching condition similar to that derived here.

Writing out all three contributions to the vectorial quintic nonlinearity results in

24 ng*c 1 n3 4 .

2kg— 1+ — - —=— ALl A (3.168)
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which will be used in the final higher-order NLS equation. Note that the coefficients of the intrinsic quintic nonlinearity are
only strictly valid for the isotropic symmetry class under Kleinman symmetry such that Ax = yx = 1/3 must also be used for
the cascaded contributions. .
Three-photon absorption, with coefficient 3, is included in this study for completeness and to allow for resonant enhance-
ment of the the quintic nonlinear index. The use of three-photon enhancement would violate the Kleinman symmetry assumed
in deriving the cross-phase modulation coefficients of the fifth-order susceptibility, however. In three-photon resonance, the
third-order susceptibilities responsible for third-harmonic generation and down conversion will also be enhanced. The imag-
inary parts of these susceptibilities would need to be considered as well, and is a straightforward extension to the present
derivation. In this situation, the third-harmonic cascading process would also produce an additional, effective, three-photon
absorption coefficient B§*¢. Three-photon resonance is not used in this thesis, but this discussion is provided as an illustration
of one means of enhancing the saturation effects of quintic nonlinear refraction.

3.2.3 Reduction to (1+1)-D Spatial and (2+1)-D Spatio-Temporal Equations

As mentioned previously, the scalings used for the derivation of the (3+1)-D spatio-temporal nonlinear wave equation are not
the same as those that are valid for the numerical simulations performed in this thesis. In fact, the result of the derivation is a far
more general vector equation than necessary for the simulations. This section reduces the full equation to simplified equations
that are more easily dealt with numerically while still describing the necessary physics.

In both cases. linear confinement in the y dimension is provided by a slab waveguide structure, as shown in Figure 1.20.
A detailed analysis of the influence of the waveguide is presented in Appendix C up to the order of the NLS equation. For
simplicity, these results are not used directly here, but some simplifications are used that are the result of the discussions in
Appendix D, which makes direct use of the waveguide equations derived in Appendix C. The main simplification is that all
phase-dependent terms in the nonlinear polarization are neglected under the assumption that the difference in phase velocity
between the TE and TM modes results in a beat length much shorter than the wave interaction distance.

The (1+1)-D Vector Spatial Nonlinear Wave Equation

In this situation, which describes the propagation and interaction among purely spatial solitons, the temporal derivatives and
the y transverse spatial derivatives can be neglected. Also, by setting € = 0.1, the diffraction and nonlinear small parameters
satisfyk =€, and v = €2. These scalings are appropriate for the numerical studies of Chapter 5. Note that in the (141)-D case
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of spatial solitons, quintic index saturation is not necessary for stability and will not be included because the expected intrinsic
value of n§f for the example material is too small to produce any noticeable effect.
Using these scalings, the appropriate evolution equation is

0A, 9’A 1 9%A
X4 0fx - T 10x 1
o -ifzkoaoA,r+ e 4k8 5 . (3.169)

2iko
+ 2kg% {11+ iK] A Ac+ 218+ KA |A},|2A,} —0,

with the corresponding coupled evolution equation for Ay. The first term in equation 3.169 is the ﬁrst-ordef propagator. Linear
absorption is next, followed by paraxial (second-order x derivatives) and non-paraxial (fourth-order x derivatives) diffraction.
Third-order nonlinear refraction and two-photon absorption including scalar and vectorial contributions (neglecting the phase-
dependent vector four-wave mixing terms) follow. .

Stimulated Raman scattering is not present in the cw case (although the Raman contribution to the instantaneous nonlinear
index is retained), and it is assumed that spontaneous Raman scattering, which has not been discussed, is negligible. Note that
the linear non-paraxial term is retained, while the nonlinear non-paraxial terms are neglected. This is justified by the fact that
v = €2, which places the nonlinear non-paraxial terms order €2 smaller than the linear non-paraxial term.

The (2+1)-D Vector Spatio-Temporal Nonlinear Wave Equation

Like the previous case. here one spatial dimension is neglected due to transverse confinement by a slab waveguide. Therefore,
the terms with v derivatives are not included, but all temporal derivatives must be retained, subject to the small scaling parame-
ters. Again, setting € = 0.1, the scaling of the small parameters appropriate for the simulations of Chapter 6 are: K = g2, =¢,
va = -, and vy = €. where Va ~ |na2/no|'/?|A], and v4 ~ [ns/no|/4|A|. The first two scales indicate that the non-SVEA terms
are more important than the non-paraxial terms. The temporal scaling parameter is larger than the spatial parameter because
short pulses are necessitated in this thesis by the desire for short propagation distances combined with the small anomalous
group-delay dispersion of available materials such as fused silica. The nonlinear scalings indicate that the cubic nonlinearity is
proportionally weaker than the quintic nonlinearity. Therefore, the quintic nonlinear terms will dominate over the second-order
non-SVEA nonlinear terms, and the latter can be neglected. Even though the strength of the Raman nonlinearity is about the
same as the instantaneous cubic Kerr nonlinearity, the spectral bandwidth of the spatio-temporal waves used in the simulations
exceeds the optical phonon resonance frequency. Therefore, a three-term approximation to the Raman response is insufficient to
correctly describe intra-pulse stimulated Raman scattering over the entire spectral bandwidth. For the simulations, it is assumed
that the full Ruman response enters at order €3 with the Kerr nonlinearity, as discussed in Chapter 4.

Using the scalings appropriate for the simulations then, the higher-order terms included in the reduced equation are the quin-
tic and Raman nonlinearities and those terms that are the result of the removal of the slowly-varying envelope approximation
by one order: third-order dispersion (TOD). space-time focusing [144], and optical shock {183]. The fourth-order dispersion
(FOD) term is also used. but the other second-order non-SVEA terms need not be included, as discussed above. In the reduced
time coordinate frame, where T = ¢ — kyz and Ay is the group delay at the center frequency wp, the (2+1)-D vector nonlinear
evolution equation takes the form ‘

2iko %Af + ikoOoAc + %:%5 ~ kokg %—?—5‘ - -;-f\oko ?;?; - i%’% (3.170)
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This equation is referred to simply as the higher-order, multi-dimensional vector NLS, or vector hNLS, equation.

The terms in equation 3.170 are, in order: propagation in the reduced-time coordinate frame, linear absorption, transverse
paraxial diffraction, group-delay dispersion, third-order dispersion, space-time focusing, fourth-order dispersion, nonlinear
self-/cross-phase modulation (SPM/CPM) and self-/cross-two-photon absorption, self-/cross-Raman amplification, vectorial
optical shock (two lines including nonlinear phase modulation and Raman amplification), Raman index dispersion, and quintic
nonlinear refraction (last three lines). The higher order non-SVEA terms of third- and fourth-order linear dispersion, optical
shock and Raman scattering were described in more detail in section 2.4, while the spatio-temporal terms are discussed in
section 4.1 and linear and two-photon absorption are discussed in section 5.3.




Chapter 4

Spatio-Temporal Diffraction and thé Split-Step
Numerical Method |

The nonlinear evolution equation derived in the previous chapter can be solved with a variety of numerical techniques. In fact,
the purpose of using the multiple-scales analysis was to remove the fast scales in order to reduce the complexity of the numerical
method This is in contrast to the vector nonlinear Helmholtz equation, which is second-order and possesses variations on the
order of an optical wavelength and requires more complex methods for numerical solution.

The principal methods in use today to solve first-order partial differential equations are the finite-difference [212,230]
and split-step methods [231,232]. The finite-difference method becomes cumbersome when dealing with multiple dimensions
and higher-order derivatives, such as those required for third- and fourth-order dispersion and non-paraxial diffraction. This
chapter examines the more aesthetic and intuitive split-step method. The split-step method solves, in alternating steps, the linear
diftraction problem in it's natural Fourier domain and the nonlinear, or inhomogeneous, problem in the real-space domain.

The split-step method is illustrated schematically in Figure 4.1. The prototype problem to be solved is propagation of an
imtial field through a volume with inhomogeneous (spatially-varying) dielectric constant. The split-step method can be applied
to quite general problems where the inhomogeneity is due to refractive, diffractive, or layered structures, but this thesis con-
centrates instead on inhomogeneity due to nonlinearity. Ignoring Fresnel reflections, the effect of an inhomogeneous dielectric
constant on a propagating field is the accumulation of a spatially-varying complex phase. Instead of accumulating this phase
continuously throughout propagation, the split-step method applies the phase (representing the inhomogeneity throughouta thin
Jlab1 at discrete points. Between these points, the field is propagated as if the medium were linear and homogeneous. The key
charactenstic of the split-step method is this alternation between linear diffraction and inhomogeneous phase accumulation, but
1t should be noted that the method, like the underlying first-order differential equation, is limited to unidirectional propagation
and cannot be used when the longitudinal variation of the inhomogeneity is strong enough to produce significant backscattered
radiation

Section 4 1 describes the exact spatio-temporal linear diffraction problem for isotropic media and examines the linear spatio-
temporal terms 1n the higher-order NLS equation. Section 4.2 derives the split-step method and discusses the application to
(1+1)-D spanal and (2+1)-D spatio-temporal propagation. Finally. section 4.3 covers issues related to the implementation of
the split-step method. with particular focus on the accuracy of the algorithm and how it scales with step size.

4.1 Linear Spatio-Temporal Diffraction

This section examines spatio-temporal propagation using the linear, scalar Helmbholtz valid for homogeneous, isotropic media.
Under these conditions. equation 3.44 can be written

A A
5:—:+VTA+/\ ((1)0-}-1-8—,)/‘—0 : 4.1

where the V {V TJ term is identically zero (because now V-D = 0 implies that V - E = 0) allowing for the consideration of a
scalar equation, V7 is the transverse Laplacian, and A is defined '

E(x.v.z.0)= ¢ [Z(x,_\',:.t)e"“’"” +T(x,y,z,t)ei‘“°’] , . 4.2)

94
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Inhomogeneous Propagation
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Figure 4.1: Representation of the split-step method. The top tigure shows the desired propagation problem with index variation
throughout the volume. The bottom figure shows the approximation used in the split-step method. The volume is divided
into slabs of thickness Az < L with the inhomogeneous index in each slab reduced to a spatially-varying phase applied at the
discrete positions along the mean propagation direction (represented by the heavy vertical lines) located at the midpoint of each
slab. The field is propagated between these midpoints as if the medium were homogeneous. ‘
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using the quasi-monochromatic representation as before.
The spatio-temporal Fourier transform pair is defined

\ ‘
E(x,y.z,t)= [5%] //E(kx,ky,Z,(l))ei[kT'rT_""]ddeu) (4.3)
E(kx,ky,z,w)=//E(x,_v,z,t)e’i[kT"T‘“”]drrdt (4.4)

where kr = k& + k,J represents the transverse spatial frequencies and rr = xf+ yy is the transverse position vector. The
spatio-temporal Fourier transform of the electric field becomes

- | -
E(kx,ky,z,(o) = 5 [A(k,\'-k,\‘-:‘(l)"wO) +A‘(anky:z»m+mO)] : . 4.5)

An equation will be developed that describes the evolution of the Fourier components with propagation distance, using the
transverse spatio-temporal Fourier transform of equation . 1. »

In chapter 3. the two leading-order temporal scales were removed from the evolution equation. The carrier oscillation
is removed by the use of the quasi-monochromatic representation, while forward-going propagation at the group velocity
is removed by the coordinate transformation 7 =1 — kyz. Using this transformation to the reduced-time coordinates, the
wavepacket becomes . .
Alxyz1) = A(x,y, 2, T —kgz). (4.6)

Then. by the Fourier shift theorem, A — A2 The evolution of the Fourier components of the wavepacket in reduced
coordinates is then

azieiAwk(')z - N = / ) - i | !
- [+ 3] A %0° 4 k2 (A0 + wp) A0 = 0, (4.7
which. upon application of the second derivative with z. becomes
a:i ai - » - ) 2,27 '
= 2iA(nk(’); + [k (A0 + wy) —k; — ki — b’ kG| A = 0. . 4.8

Equation 4.8 can be solved by assuming a solution of the form Z(:) = A(0) exp(yz). thereby removing the fast propagation
phase and producing a quadratic equation in'y ) ' '

¥+ 2i80kyy + [K*(Aw + wg) — kf — Aw’kG] = 0. (4.9)

with the tamiiar solution

Y= é {—21’Awk6 + \/[2;Awk;,] 4k (bw+wo) — k2 — kI - Aw%g]}

- ii\/;:(Au)-{-wo) — K2 — K2 — iAwk). (4.10)

This solution mcludes both forward and backward going waves (with the backward going wave traveling at twice the group
veloaity with respect to the reduced frame), but since it was assumed there is no inhomogeneity, these waves are uncoupled.
Therefore. the nitial conditions can be chosen such that only a forward going wave (the “+" sign) need be considered. This
is the crucial step in reducing the second-order differential equation into a first-order one and can be done exactly for linear
homogeneous problems.

The forward-going solution is written

Alke k.2 Aw) = €A (ke ky, 0, A00), @.11)

where A(O) is the transform of the initial field distribution in the transverse coordinates and time and

kre = /K2 (A0 + wo) — k2 — k2 — Awkg (4.12)

is the =-directed momentum of a particular Fourier component in the reduced coordinate frame. In equation 4.12, the full linear
phase is accounted for in dispersive, non-paraxial propagation. o
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Equation 4.11 shows that linear propagation can be described by appropriately evolving the phase of each spatio-temporal
frequency component of the wavepacket. The complex amplitude A (kx, ky, 0, Aw) of the wavepacket for each transverse spatial
and temporal frequency is known by specifying the initial field distribution for all time on a plane orthogonal to the direction
of propagation. Each point in the three-dimensional Fourier space (kx,ky, A®) has an associated longitudinal wavenumber
as prescribed by equation 4.12, which is multiplied by propagation distance to determine the proper phase for each spectral
component. .

A plot of the z-directed wavenumber is shown in Figure 4.2, where

k::ﬂkz(A(D-{—(Do)—kg (4.13)

in laboratory coordinates for one transverse spatial frequency, k.. When IQ becomes imaginary, i.e. when ky > k(Aw + ), -
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Figure 4.2: Spatio-temporal momentum space. This surface is calculated using the parameters of fused silica. The center
frequency of 3770 rad/ps corresponds to a free-space wavelength of 0.5 ym.

the associated Fourier component propagates with large attenuation. Here, & is set to zero for these evanescent waves for
clarity. As shown in the figure, the radius of curvature of the momentum surface increases with frequency. The transformation
to reduced-time coordinates removes the first-order slope of the surface, ky = #'(wp), where

" Ok(w
Pl = 2O (4.14)
O |p=wy
and results in the removal of a constant group delay, as shown in equation 4.12.
4.1.1 Spatio-Temporal Group- Velocity Space
The momentum surface given by k. can be approximated about the carrier frequency o by
! sz i }
k. (ke, A®) =~ k. (ky.0) + Awk(k;,0) + —2—kZ (ky,0), (4.15)
where 3 2
: k. (ky, ©) , 0%k, (kx, )
1 . o\ Ax " _ z\Rx»
k_(k,0) = 50 and k(k.,0)= 302 , (4.16)

w=wy W=y
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thereby giving the z-directed group-delay and group-delay dispersion as a function of transverse spatial frequency. Taking the
first and second derivatives of equation 4.13 with respect to frequency results in ‘

 koky koky

(1 — —

elh 0= Je-r klk0) | @17
k3k" _ k2 k! _kaIZ

k! (k, 0) = 2= k;(’:i %) 29 (4.18)

Noting that k. = ko cos8 = k,/ tan6, the approximate momentum space can be written

Aoky A0 [ K/ sin’@ kS
coseo > [—0 ———-0—] ; (4.19)

(k. ~ )
k-(kx, Aw) & kgcos O + cosO cos38 kg

This approximate expression yields some important insight into phenomena (termed here space-time dispersion effects) ob-
served in the numerical simulations of Chapter 6, as now discussed.
Since the group velocity v, = 1/ky, from equation 4.19. the z component of the group velocity is
ve:(ky 0) = vgcos® (4.20)
which is also known as space-time focusing [144]. Space-time focusing refers to the change in the z-projected group velocity
with the tilt angle of an off-axis plane wave component within the angular spectrum of the pulse and describes the natural
curvature of the energy front in the spatio-temporal diffraction of a narrow pulse. The z component of the group velocity is
plotted in Figure 4.3 versus transverse spatial frequency and wavelength (A = 2nc/w). The group velocity as a function of
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Figure 4.3: Spatio-temporal group velocity. This surface is calculated using the parameters of fused silica. The dashed curve
separates the regions of anomalous and normal group-delay dispersion.

spatial and temporal frequency is given by the expression

M 4.21)

vz (ke @) = k(w)k' ()’
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where @ = Aw + wo. This expression is the inverse of the generalization of equation 4.17, which gives the group-delay at the
central frequency wp. Note that in Figure 4.3, the group velocity is plotted versus wavelength instead of frequency.

Off-axis, the z-projected group delay dispersion coefficient K! can be negative even when material dispersion dictates that
K" (w) > 0. This occurs when

e ks 0 for K'(0) <=0 ' @22
anb=2"> 1 VA@F(@)/K(@) for K(@>0 22)

The boundary between the normal (k" > 0) and anomalous (k" < 0) regimes is shown in Figure 4.3. An effective anomalous
regime occurs because the curvature of the group velocity surface in the spatial-frequency direction varies along the temporal
frequency direction. When the spatial frequency curvature is large for small temporal frequencies and small for large temporal
frequencies, as is typically the case, a region of effective anomalous dispersion can exist, as illustrated in Figure 4.3. This effect
may have ramifications for spatio-temporal solitary waves, such that a region where ¥' < 0 may not be necessary for pulses
with sufficient angular bandwidth, but will not be explored in this thesis. Note that this is a spatio-temporal effect and does not
occur for purely temporal propagation. ' :
For completeness, Figure 4.4 shows the z-projected group-delay dispersion surface k! (k,®), where
(@)K (0) — kgk(@)K (0) — Kk (0)

1 —
k: (k:ym) - kg (kx’m) 3 (4.23)

is plotted as a function of wavelength. Figure 4.4 clearly shows the enlargement of the anomalous dispersion regime due to the
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“ Figure 4.4: Spatio-temporal group-delay dispersion. This surface is calculated using the parameters of fused silica. The dashed
curve separates the regions of anomalous and normal group-delay dispersion. .Note that GDD is in units fs>/um rather than

ps*/um.

angular curvature of the momentum space. It is also evident that temporal broadening, which to first order is determined by
the group-delay dispersion, varies off-axis. This is in large part due to the second-order space-time dispersion term obtained
in the multiple-scales analysis, which is perhaps more appropriately referred to as the true space-time focusing term. In the
anomalous regime, the projection of the wave onto the z-direction will broaden more with increasing angle, while in the normal
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regime, the broadening will first decrease and then increase as the group-delay dispersion passes through zero with increasing
angle. As a final note, the magnitude of z-projected third-order dispersion also changes dramatically with spatial frequency, as
evident from the steepness of the group-delay dispersion surface at high spatial frequencies in the anomalous regime.

4.1.2 Linear Spatio-Temporal Propagation

This section briefly examines (2+1)-D linear spatio-temporal propagation in order to provide a graphical representation of the
effects of space-time focusing. More detailed analysis of linear propagation is presented in Chapter 6. The initial condition for
propagation is a transform-limited spatio-temporal wave whose shape is calculated numerically as the lowest-order eigenmode
of the (2+1)-D NLS equation, and corresponds to the 6 = 0 solution obtained in section 2.5, with normalized peak amplitude
Uy = 1.94. Using the same parameters as the simulations in Chapter 6 (i.e. wg = 39.6 um), the spatio-temporal wave has spatial
full-width at half-maximum (FWHM) of 40.7 um and temporal FWHM of 16.5 fs with central wavelength 1.55 ym, leading to
fractional bandwidths of ¥ ~ 0.01 (not to be confused with the normalized interaction angle) and n ~ 0.1, respectively, which
indicate that temporal (non-SVEA) effects will dominate.

Figure 4.5 shows the result of propagation over 7.5 confocal distances under the paraxial and SVEA approximations, as
given by the (2+1)-D linear NLS equation,

94  0°A a;’f 0, (4.24)

koo + g hakog =

which only describes paraxial diffraction and group-delay dispersion. The (2+1)-D propagation geometry is illustrated in
Figure 1.20. in which two spatio-temporal waves initially overlap at z = 0, with one propagating at an angle (dashed contours)
such that the spatio-temporal frequency spectra are separated by twice the angular FWHM. This condition leads to a normalized
interaction angle K = 2, where K is defined in section 5.1.1, and translates to approximately twice the linear resolvability angle,
but is not exact because the waves are not Gaussian. The waves broaden by a factor of about 6.1 in each dimension after a
distance of 7.5 Z,. where the confocal distance Z is defined as twice the distance over which the FWHM increases by a factor
2 in linear propagation. Because there is no space-time focusing, the energy fronts have no curvature or tilt.

For comparison, Figure 4.6 shows propagation under the same initial conditions but with the exact Fourier phase given
by equation 4.12. In this case, the spatial broadening factor is 6.0, while the temporal broadening factor is 5.9. This slight
asymmetry is expected because the governing equation is not symmetric in space and time. First-order space-time focusing is
clearly shown in the on-axis spatio-temporal wave by the dashed curve, where the energy front is delayed (positive reduced
times) for oft-axis rays. The steepening of the leading edge (negative times) is also evident. This effect is the result of the
interaction between anomalous group-delay dispersion and positive third-order dispersion.

The off-axis wave exhibits more complicated structure. The mean tilt angle corresponds to a spatial-frequency shift of about
0.07 rad/um. which. from the group velocity and group-delay dispersion surfaces, produces a noticeable change in propagation
parameters as shown in Figure 4.6. In addition to curvature of the energy front, the nonzero tilt of the wave also causes a delay
of the central portion relative to the on-axis wave. The increase in the magnitude of z-projected group-delay dispersion with
increasing angle. or second-order space-time dispersion, is evident from the figure as well by the visible increase in temporal
broadening.

Because the parameters are the same as used for the spatio-temporal solitary wave simulations presented in Chapter 6, the
higher-order linear effects observed here will be present in the nonlinear simulations as well. The present section also shows
that the paraxial. SVEA NLS equation will not adequately describe spatio-temporal solitary wave propagation for the regime
of interest. .

4.1.3 The Linear Terms in the Higher-Order NLS equatibn

This section uses the exact expression for forward-going linear spatio-temporal propagation given by equations 4.11 and 4.12 in
the reduced time coordinate frame in order to obtain the linear terms in the evolution equations derived in the previous chapters.
This shows the equivalence between the descriptions in the Fourier domains and in the real-space domains and leads into the
discussion of the split-step numerical method.

Ignoring evanescent waves, i.e. K+ ks = k% < k*(Aw + wp), the z-directed momentum given by equation 4.12 can be
approximated about kr =0 ’ :
2k(Aw+wp) 8K (Aw+wp)

where only the first three terms of the Taylor expansion of the square-root are kept. The standard paraxial approximation
keeps only the first two terms in the expansion; this approximation is made in the NLS equation. Retaining more terms in the

kye 2 k(A + 0g) — — Awk) (4.25)
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Figure 4.5: Lincar ditfraction under the paraxial and SVE approximations of initially overlapping spatio-temporal waves with
tilted directions of propagation. The spatio-temporal waves of initial FWHM of 40.7 ym and 16.5 fs broaden to 247 ym and

" 99.8 fs after propagating 7.5 confocal distances. The dashed line indicates the position of the energy front (defined by the 1-D
temporal centroid) across the spatial profile, and the contours are spaced by 3 dB intensity intervals.
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Figure 4.0: Fully non-paraxial and non-SVEA linear diffraction of two spatio-temporal waves, one tilted with respect to the axis
of propagation. The on-axis spatio-temporal wave of initial FWHM of 40.7 um and 16.5 fs broadens to 246 um and 97.2 fs after
propagating 7.5 confocal distances. The dashed curve indicates the position of the energy front (defined by the 1-D temporal
centroid) across the spatial profile, and the contours are spaced by 3 dB intensity intervals.
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expansion beyond the first two relaxes the paraxial approximation, but evanescent modes must be neglected in order for the
expansion to converge. In this section, the first three terms will be kept in order to reproduce on a more intuitive basis the linear
corrections to NLS that were obtained in Chapter 3.

Equation 4.25 still contains full linear dispersion. The slowly-varying envelope approximation (SVEA) assumes that the
temporal variation of the envelope A is slow compared to the mean oscillation frequency wg. The frequency-domain interpreta-
tion is that the fractional bandwidth 1 = Aw/wy. where Aw is the FWHM of the spectral intensity envelope and @y is the central
frequency, is less than unity. These two measures are related by a factor called the time-bandwidth product. The dispersion
relation only needs to be known over the frequency range in which the wavepacket spectrum A is localized, implying that a
Taylor expansion of the dispersion relation is sufficient. Thus the narrower the frequency width (or the longer the duration),
the fewer terms in the Taylor expansion that need to be retained. The SVEA only keeps the first three terms in the dispersion
relation, but the first five terms will be used in this analysis for comparison with the more complete derivation in Chapter 3:

| S 1 l
k(A®+ o) & ko + Awk) + 50w kg + -6-Am3kg’ + EZA(D“I({)’“, ' (4.26)
which includes up to fourth-order dispersion. Using this expansion in equation 4.25 (which removes the mean group delay) and

keeping terms only up to fourth power in k7, Aw and their products,

A ! 2 L 300 1 4 40111
k. & ko + §Aw ky + BA(D ky + 274—Ac0 kg
.2 ‘ 4
k7 kr

T 2Tko+ Ak, + TA0KE] 8K

Lo, I ’ ‘
~ ko + 3807k + g0k + 700" (4.27)
_k - AWk, . A0 K B Aw*k) 3 i.
2k ko % 2ko 8k3

The terms vbtained in addition to those present in standard NLS are third- and fourth-order dispersion, space-time dispersion
and a non-paraxial correction. :
The space-time dispersion terms from equation 4.27 can be written

[ & Voo f o, K3 kG .
_ X it A I X 2 20 T M A0
STD = Awky [»l + 2“(:)] Awk, + 2.30) {k(, + 2% [ko 2 k()] } . (4.28)
Noting that &7 - k> = sin" 0 (& 07 in the paraxial approximation) the terms are written
ky o Aw” [ k) 2o kG
STD = Aw | —= — Kk —2 _sin"0—| . 4.2
[cose ”] T2 [cosO s ko (4.29)

To order 0°. these terms are the same as the associated terms in equation 4.19. The first space-time dispersion term (called space-
time focusing | 144]) describes the off-axis variation in group delay in reduced coordinates while the second term describes the
off-axts vanation in group-delay dispersion. At this level of approximation, the region of anomalous group-delay dispersion is
described by sin0 > | kk"/k" when k" > 0.
Concentrating tor the moment only on the spatial-frequency terms in equation 4.27 results in,
S,
k. = ko T ' (430
Figure 4.7 shows a plot of the fully non-paraxial k-space. the paraxial approximation given by the first two terms of equa-
tion 4.30. and all three terms of equation 4.30. The figure clearly shows that the three-term expansion better approximates
the exact A-surface than the two-term expansion given by the paraxial approximation, and is valid over much broader angular
bandwidths. . ,
In order to obtain the linear corrections to NLS in the real-space domain, equation 4.11 is written in differential form using
the approximated &,. from 4.27 .
%—*_‘ = i{k(, + éAmlk;; + éAw’kg’- + %Aw“k{)’” (4.31)

-l

k. [1 _Bwkgy Aw*kG  Aw’kg]  kp
2ko ko k3 2% | 8Kk
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Figure 4.7: IHustration of the paraxial approximation. The solid curve is the exact k-space representation for isotropic media.
The dashed curve is the paraxial approxnmanon while the dotted curve is thc first-order correction to the paraxial approximation.

Inverse Fourier transforming leads to

0A 8: ' 83 l o*

= . i ‘”” . 2

9 {" 205 “’ o= T 2370 373 “432)
WV ,_’mi_ﬂa: 1"_'o’i _Vilg
2L0 kodT k3 OT*  2kyoT: 83

which 1s rewritten 1in more familiar form by making the transformation A — A exp (ikoz) to remove the fast propagation phase
L 0A 0°A i 9° AL o'A
Zlk()a—: + V-;—A - I\()/\()’ ﬁ—: - 'ik()kgl aT.( /\0/\8” 373 (4.33)

=0

2 [ koA Lg," 83 kg 9°A]  ViA
ko OT ~ K OTZ " 2k dT2] 4k

which is the same as the linear part of equation 3.170 derived in Chapter 3.

4.2 Derivation of the Split-Step Method

The vector. higher-order nonlinear spatial 3.169 and spatio-temporal 3.170 wave equations can be written in the following
notational form , 5 :

Ac .2

5. = QA ‘ (4.34)

with a corresponding equation for Ay. Here, all linear and nonlinear effects are lumped into the operator Q. The forward-going
solution to equation 4.34 as a function of propagation distance z is written

Adle) = € A(0), NN
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where A,(0) is the initial value in space and time of the x-polarized envelope at z = 0. _
Equation 4.35 can be examined more closely by writing the operator in terms of linear homogeneous and inhomogeneous
parts 0 = O + Q™. Choosing a small propagation distance Az, and noting that O can be integrated directly, equation 4.35

reduces to X . :
Ax(Az) = 807+ 0 @] 4 (0). | (4.36)

The integral can be approximated to second-order accuracy inAz

'/(-)A:Q"[H(zl)dz/:AM{QIH(&/2)+[Z/_Az/z] %QIH(AZ/Z)-FO(AZZ)}({:I

. 1 A9 .
= OM(ac/2)ac+ 5 [¢ - 82/2)°| 5-0"M+0(ad)
- 0 “~
= 0™(Az/2)Ac+ O(AT), | : 43D
so that the propagation equation becomes o :
Ac(Az) = 310-+0% /2] 4 (0). (4.38)

Even though equation 4.37 is a second-order approximation to the integral of the nonlinear operator, there is no guarantee that
the actual implementation is second-order accurate, since self-consistent envelopes at Az/2 are unknown. The approximation
used in the split-step method is that these values are determined by a Az/?2 linear propagation step, thus neglecting the nonlinear
contribution. The result is that the nonlinear step is nominally first-order accurate, as shown in section 4.3.

The exponential can be rewritten in the well-known symmetrized form [232]

A(Az) = ¥ Q-0 ¥ 004 (0), : (4.39)

which is second-order accurate in Az and requires three operations for one longitudinal propagation step. This separation into
lincar and inhomogeneous steps is the main characteristic of the split-step method.
In order to verify the second-order accuracy of the splitting. the Taylor expansion of equation 4.39 is compared to that of

equation 4.38. First Taylor-expanding equation 4.38 results in
iAo+ oM Az A oam A AP [ Al ol AL am (A
A0 0] = ) 4 A [QL+ oM (T)] = [QLQL+Q1.QKH (__2_>
- AN AL oam (A am [ ADY]
+ " (7> 0"+ o™ (7) o™ <7> +0(a)). (4.40)

The Tavlor-expansion of the exponential operators in equation 4.39 to second-order is

(¥ O 0™ O [1 iGN - 5040+ o) ¢

2

vt (£)- 50 (£)er ()]

- o~

[1 +i925Q‘-— %Q‘LQL + O(A:‘)]

— 1A [QL+QIH (%)] _%"_ [Q‘LQ*L+Q‘LQIH <%>

(o (S)er(3))own

Since both of these expansions are the same to order A", the symmetrized representation 4.39 retains the second-order accuracy

of equation 4.38. .

It is clear from the discussion of section 4.1 that the linear operator is most naturally applied in the Fourier domain, where
time derivatives are converted into temporal frequency and space derivatives are converted into spatial frequencies. As a result,
the linear propagation steps are evaluated in the Fourier domain as follows,

5% 4,(0)= 7! {ei%;QLAX(O)}, v (4.42)
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where F~! is the inverse-Fourier transform operation, and QU is the Fourier phase function as given by equation 4.12 or 4.27

for example.
Now that the symmetrized representation is established, one further point needs to be addressed at this time. Propagation

over some distance occurs in steps of size Az. From equation 4.39, propagation over 2Az is described by
A (2Az) = ei%QLeiA:Qmei%;QLei%’-QLeiA:Qmei§QLAx(O)

— o O QM jia:Qh inQM ik O+ A(0) (4.43)

bl

which only requires five operations instead of six, because the two adjacent half-step linear operations coalesce into one full-
step linear operation, as shown in Figure 4.1. In general then, for N steps of size Az, the total number of operations is 2N + 1,

instead of 3N as suggested by equation 4.39.
The following section will examine the special case of spatial propagation appropriate for (1+1)-D spatial solitons in slab
waveguides with the split-step method. The generalization to the (2+1)-D spatio-temporal method is considered in section 4.2.2.

4.2.1 Nonlinear Spatial Propagation

The (1+1)-D nonlinear evolution equation appropriate for the spatial soliton studies presented in Chapter 5 is given by equa-
tion 3.169. repeated here for convenience:
0°A, 1 %A,

0A: . ' o '
5z T oot FT T 1 o (444

<

2ikg

+ 2k0%- {[1 +iK] AP Ar + 2 [A+ iKAK] |Ay|2Ax} =0,
0

where the non-paraxial nonlinear terms have been neglected due to weak nonlinearity, and the vector four-wave mixing term
neglected under the assumption of short waveguide birefringence beat length. The transverse y dimension is not considered due
10 hnear confinement by a slab waveguide. For simplicity, this equation does not include the modal-averaged coefficients due
to lateral confinement as derived in Appendix C.

Using equation 4.34, the linear and inhomogeneous split-step operators can be written

(PR UL BRI f RS,
O =pad " aae 2 ¥ fo [fo-+ioo |+ 55 = ko

O =k = \/ko [ko-+ 00 | k3 - ko (4.45)
O™ = kyns {[1+ KA +2[+ iKae] 14, (446)

Here. the expressions within the square-root are the exact (assuming weak absorption) operator and Fourier phase represen-
tations of linear spatial diffraction. A similar result was obtained previously [233], with a different, but equivalent, form of
the linear non-paraxial operator. That work did not consider the nonlinear, non-paraxial terms that were derived in Chapter 3,
but subsequent extensions [234] did consider those terms for a purely linear, spatially-varying refractive index. As mentioned
before. the nonlincarly-induced index for the present studies is small enough that these terms can be neglected.

For correctness with off-axis plane wave components, the linear absorption term must be applied in the Fourier domain;
however. these effects occur well beyond the order of the multiple-scales analysis in Chapter 3 due to the assumed order &>
smallness of the coefticient 0. A constant (with respect to angle) absorption, which can be brought outside the square-root, can
be applied in either the Fourier or real-space domain because of Parseval’s theorem. It is more convenient (and more correct in
terms of the precise behavior in the attenuation of off-axis energy flow) in the numerics to apply this term in the Fourier domain,
because. if applied in the real-space domain along with nonlinearity, there is an ambiguity whether to attenuate the envelope
before or after calculating the nonlinear effect. Two-photon absorption must be applied in the real-space domain along with
nonlinear refraction.

4.2.2 Nonlinear Spatio-Temporal Propagation

The (2+1)-D spatio-temporal nonlinear evolution equation used in the simulations of Chapter 6 was derived in Chapter 3. Using
the full Raman response in equation 3.170 results in:

0A 0°A, 9°A,
2ikg "T‘ + ikgCtgA, + = — kokj ==

- s wOCA, kb 33A;
0 ox® aT*

0373 ~ 'k 3T 0x2 (4:47)

i
- —kok
3ko




Final Report AFOSR F49620-95-1-0431, Spatial Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder 107

'

+ 11_2"0 (’)’”%4?: +2k3’;’£ [l+i:—::;K] [lAX|2+2AK |Ay|’-] A
+ dikgng [l + i;’:—ll(K] [”_CO_ - I:;g] E)_aT_ [|Ax12AAxv+2AK ]A.»"zAX]
+ %—{kfw;% [”;9 - 5;9] %} [/OmRR(r) AT D)2 Acdt
+AR /0 ) Rr(7) |A,(T — 1) Axdt
Y /0 " Re(V)A} (T — AT — I)A_‘.d'c]
casc 2 '
s {14 D e
+ 247 {%Hx 28k + Y] 'f:c ~ 5 -y 11254 } AT Ax

2

4 _fr a1 M3 2 '2 =)
" [—A+TJ "0,14} |Ax]"|Ay|" A= 0.

”casc

6
+ 2’\'6-5 { 5 +28¢ [2Ax +vx]

The full Raman response is used in the numerics because the spectral bandwidth of the spatio-temporal waves used in the
simulations exceeds the bandwidth of the Raman gain spectrum.
The linear operator is written
AL 1 9° Kk 00k K kg 04 oo

_ 10 kKo ko k o kK I 0
= kga 2072 6 o1 iz aTae T 24 97% T2 , (4.48)
0

A [k u)+’—a—— k m+'-—a—)+'a m+'—a— +a—2—'k’i——k
~ 0TIST o+ia | HIG{Worimr J1 T 52~ Mgy T

. .
Since the linear exponential operator is applied in the Fourier domain, resulting in an exponential phase function, the linear
propagation phase is written

O = /k(Aw + o) [k(Aw + ) + ia(Aw + 1)) — ki — Awky — ko, _ (4.49)

which is the exact linear phase &, as discussed in section 4.1 with the inclusion of weak linear absorption, but only strictly valid
here when &, < £{Am + wy) because of the addition of the nonlinear terms.
The argument of the nonlinear exponential operator is defined

AN 1 2 [ng ki) ONL» ,
NL . 0 0 2
= — kNLr+kNLy+i— | —=— 7| —=— 7. 4.50
Q A".{f S no[c 2] oT } ‘ @30
and is apphed in the real-space domain. The factor 1/A, 1s used to handle those nonlinear terms which cannot otherwise be
written in the form of equation 4.34, such as the last Raman term and the Kerr cross-phase modulation and all Raman terms
in the first-order shock. This factor serves to remove any fast phase variation (due to nonlinear refraction) from the nonlinear
terms, which are grouped as follows:

NL- = ng [1 +i:—:K] [|A.r|3+ 2Ak IA_\.IZ] Ax (4.51)
K
1 )
2= | Re(®) AT -9 At
4ng Jo
Ar [T A
+ ——/ Re(1) AL (T = ) Adr
4ngy Jo
+ l"—/ RR(T)ALT = 1)AL(T — 1)A,dT,
4ng Jo : :

cuasc
ny

1 n3
-= ——} A Ay : (4.52)

NL4 =ny { 1+
ny 2 ngny
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+n4{5+2AK[2AK+YA] ” [2A+¥] o |Ac|* |Ay]" Ax

Note that the factor 1/A, cancels out from some of the terms in NL- and all of the terms in NL4.
The nonlinear “index” produced by the last Raman term is proportional to the factor

Ay _ Al ifo-ed), (4.53)
Ac AL
Since all fast variations, such as the propagation phase, have been removed, ¢y and 0. (and thus their difference) have at most
order €° variation. The amplitude ratio serves as a normalizing factor to properly scale the size of the third Raman term in
proportion to the first and second. ‘ ,
The convolutional Raman response integrals of the intensity are evaluated using an equivalent Fourier identity, but it should
be noted that the resultant Fourier domain is different than the conventional temporal Fourier domain of the fields since it is

detined as the transform of the intensity. For example,

[ re@adr = 0F ade= 77 {r(@)F {Ia:F} s (454)
where zg1 8 is the Raman susceptibility, approximated by a single Lorentzian resonance
Ro
Q)= ——"g——. 4.55
xr(R2) ooy (4.55)

Stimulated Raman scattering is discussed in Appendix B.

4.3 Implementation and Accuracy of the Split-Step Method

The dernvation of the split-step method indicated that the operator splitting given by equation 4.39 was second-order accurate
i step-size Az In addition. the midpoint method used to evaluate the longitudinal integral of the nonlinear operator, as given
by equation 4.37. 15 also second-order accurate, but relies on the knowledge of the field at the midpoint position, which is
only approvimately provided by the half-step of linear propagation. As a result, when the magnitude of the field changes
sutiictently rapidly due to absorption, diffraction, etc.. the accuracy of the entire method may scale with step-size worse than -
quadratically  The reason for this is that self-consistency 1s not strictly maintained since linear and nonlinear propagation are
handled separately. meaning that the nonlinear phase accumulated over the interval Az may not be properly accounted for.

A simple. ituitinve explanation is provided by the consideration of the propagation of a spatial soliton using the split-step
method — Starting with an initially transform-limited beam. the first half-step of linear diffraction results in broadening, or
defocusmyg The subsequent full nonlinear step. based on a slightly erroneous field value. imparts a focusing quadratic phase
that over-compensates the phase curvature accumulated during the half step. The next full linear step first results in focusing to
a want (close to the onigimal soliton form). and then broadening. This process is repeated over the entire propagation distance.
It 15 clear that the beam approximately returns to its original soliton form only at distances which are multiples of the step
aze. and defocuses and refocuses in between. The actual error arises from the fact that the nonlinear phase is applied based
on an approvimate value for the field determined by finear propagation. The result is that the nonlinear phase may be no more
accurate than a simple. tirst-order, forward Euler scheme.

The eastest way to numerically determine the order of accuracy of an algorithm is to compare the results of simulation with
varying step size with that of “the best™ simulation (i.e. using a very small step size). Another approach is to compare the results
of simulation with an analytic solution, from which additional information can be gleaned, such as the absolute accuracy of
the simulation, including the algorithm and model. This is a straightforward procedure when using solitons because the exact
solution (in 1-Dy is known and doesn’t change (except for the usually unimportant nonlinearly-induced phase) with propagation.
Both methods are used here. '

In the following sections, numerical accuracy will be determined for various situations for both (1+1)-D spatial and (2+1)-
D spatio-temporal propagation. For each case, the normalized root-mean square, or RMS, error is calculated between the test

simulation and the reference:
P /z”Atest|_|Aref“3 :
= . (4.56)

- ZIArcfl i

where the field amplitude A% is calculated as a function of longitudinal step size.
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43.1 (1+1)-D Spatial

Figure 4.8 shows how the numerical accuracy scales with step size for a single soliton propagating without absorption. The
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Figure 4.8: Plot of percentage RMS error as a function of step size for the propagation of a single spatial soliton without
absorption using the split-step method. The data points represent results from the simulations while the lines represent error
scalings of first and second order. '

smallest step-size plotted in the figure is Az = Zy/1024. and the “exact” solution to which the others are compared is the result
obtained when Az = Z,/2048. The longitudinal step size is written in terms of the confocal distance Z, because the Raleigh
range Z,/2 1s generally considered as the distance over which noticeable changes of the wave appear in linear propagation.
Therefore. the lincar longitudinal steps in the split-step method must occur over distances much shorter than Z,.

The simulation is performed using the initial field profile sech(x/wg). where wo = 17.3 um, resulting in a spatial full-
width at halt-maximum (FWHM) of 30.5 um. meaning that the paraxial approximation is valid because the fractional angular
bandwidth x = 0.01. The propagation distance is 10 Zy. As shown in the figure, for large step sizes, the error decreases linearly
with decreasing step size. In addition. as step size decreases phase this linear region, there is a large region over which the error
scales quadratically, as naively expected. Finally. at the smallest step sizes, the scaling approaches linear again. The important
point to note 1s that there is a large region over which second-order accuracy is obtained. This result thus verifies the order of
the numerical method when stationary propagation is considered. but does not address the absolute accuracy when compared
to the exact analytical solution or the order of the method for non-stationary propagation, which may be different.

The comparison between the numerical method with the theoretical soliton solution without absorption is shown in Fig-
ure 4.9. This figure illustrates the same behavior as shown in Figure 4.8, except for the presence of a distinct error floor beyond
which the simulation can be no more accurate. It therefore makes no sense to decrease the longitudinal step-size below that
which reaches the error floor. ‘

The error floor is the result of discretization in the transverse dimension. Like the continuous NLS equation, the discretized
NLS equation used in the numerics possesses a set of eigenmode solutions, which are different than their continuous coun-
terparts. The numerical simulation is started with an eigenmode of the continuous NLS equation, which then evolves to an
eigenmode of the discretized equation during propagation, leading to the absolute error shown. For the results of Figure 4.9,
the 1024 element computational grid allows for 55 samples under the transverse spatial full-width at half-maximum (FWHM),
and 6 samples under the spatial-frequency FWHM. resulting in an error floor of 4 x 107%%, as shown in the figure. Increas-

- ing the computational grid to 8192 elements and simultaneously decreasing the transverse sampling interval by a factor of 4,
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Figure 4.9: Plot of percentage RMS error between split-step simulation and the exact analytic form in the propagation of a
single spatial soliton. The error decreases quadratically with step size, then reaches a floor at about 4 x 107%%. The lines

represent zeroth. first. and second order scalings.

with 221 samples under the spatial FWHM and 12 samples under the spatial-frequency FWHM, decreases the error floor to
2 . 1073 As the number of transverse samples becomes larger. the eigenmode of the discretized equations approaches that
of“the continuous equation. resulting in a decrease of the error. It is also found that increasing the number of samples under the
spatial-frequency FWHM has little effect on the error. ' '
In Chapter 5. simulations are performed in which the interaction between two spatial solitons of different widths is studied.
It 1» theretore necessary to evaluate the error as the soliton width decreases, such that propagation no longer satisfies the paraxial
approximation. Figure 4.10 plots error as a function of step-size for a pump soliton width wp, = 2.16 um, or FWHM 3.81 ym,
with fractional angular bandwidth x = 0.1. In addition. the induced third-order nonlinear fractional index v2 ~0.1, and the
propagation distance 1s 10 Z,, where Z is the confocal distance of the signal soliton of width wg = 17.3 um. Now, the step
s1ze 1» written in terms of the confocal distance of the pump, or Z,,, where Zy = [wo/w,,]zz,, = 64 Z,. Again, as shown in the
figure, there 1s a region where the error decreases quadratically with step size, but now the error floor is significantly greater at
0.04% . but is still acceptable for most situations. The simulation is performed on a 2048 element grid with 14 samples under
the spatial FWHM and 47 samples under the spatial frequency FWHM. Increasing the grid size to 8192 elements (with 55 and
37 samples respectively), reduces the error floor to 0.02%., a significant decrease, but still two-orders of magnitude higher than
the fully paraxial case. B
In this case. the transverse sampling is not the limiting factor. The main limitation is the fact that the simulation was
performed with a soliton width that leads to non-paraxial propagation. Even though the linear non-paraxial corrections are
included in the simulation, the scalings for k and v indicate that the nonlinear, non-paraxial terms are of about the same size
as the first linear non-paraxial correction, and should be included as well. As shown in section 2.3.1, the fully non-paraxial,
but also non-vectorial. spatial soliton solution is the same as the paraxial soliton, except for an unimportant nonlinear phase
factor. and is only valid when all relevant non-paraxial terms in the evolution equation are retained, which is not the case here
for simplicity.
These results indicate that the accuracy of the slit-step method scales second-order with longitudinal step size for stationary
- propagation. The accuracy must also be determined when attenuation due to linear and two-photon absorption is considered.
In this case. absorption causes broadening of the soliton, as discussed in Chapter 5. Linear absorption is applied in the Fourier
domain along with diffraction and is not expected to alter the order of the algorithm. Two-photon absorption, on the other hand,
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Figure 4.10: Plot of percentage RMS error between split-step simulation and the exact analytic form in the propagation of a
single spatial soliton in violation of the paraxial approximation. The error decreases quadratically with step size, then reaches
a floor at about 0.04% . The lines represent zeroth and second order scalings.

is applied in the real-space domain along with nonlinear refraction. Since two-photon absorption alters the amplitude based
upon the approximate field. it is possible that the accuracy of the split-step method scales less than quadratically. Aside from
absorption. the parameters of these simulations are the same as those used in generating the data of Figure 4.10.

Figure 4.11 shows that the error in fact decreases quadratically until the floor is reached, the same scaling as before. The
analytic solution used as the reference is obtained in section 5.3, but is only approximate. The small error floor (some of which
is due to non-paraxial propagation before broadening occurs) verifies that the analytic approximation is a good one. For all
single soliton simulations. at most 256 steps per Z, are sufficient to reach the error floor.

The final simulations to consider are those of the spatial soliton dragging interaction. During interaction, the soliton shapes
can change considerably, therefore it is not expected that the accuracy will scale second-order with step size. This is confirmed
in Figure 4.12. which shows that the accuracy is approximately order one-half, although there are small regions over which
the error scales lincarly with step size. Absolute accuracy can no longer be obtained because no analytic solutions exist to the
vectorial NLS equations for non-unity cross-phase modulation coefficient. The reference solution is obtained numerically with
longitudinal step size Az = Zo/2048, as before. Because the simulation is paraxial, with wo = 17.3 um for each soliton, only
1024 transverse samples are used, with 55 samples across the spatial FWHM.

Figure 4.13 shows the accuracy when the pump soliton propagates in the non-paraxial regime. Here, w, = 2.16 um, the
transverse grid is of size 2048, and the propagation distance is 10 Zy, as before. Even though the overall accuracy scales
approximately as order one-half, there is a region over which the scaling is order three-halves. There are similar regions in the
paraxial simulation of Figure 4.13 as noted, but these region are less pronounced. 4

The most important data obtained in the soliton interaction simulations of Chapters 5 and 6 is the contrast ratio of the logic
gate under various input conditions. The contrast ratio is not strongly sensitive to small variations in the fields at the output of
the gate, so it will depend weakly on the accuracy of the simulation. The contrast of a gate is generally considered acceptable
when it exceeds a given threshold. By how much it exceeds a given threshold is not important, therefore, some inaccuracy
in the calculation of the contrast can be tolerated. As a result, the spatial soliton interaction simulations of Chapter 5 use a
longitudinal step-size of Az = Z,/256, as mentioned in the single soliton results.
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Figure 4.11: Plot of percentage RMS error between split-step simulation and the approximate analytic form in the propagation
of a single spatial soliton with linear and two-photon absorption. The error decreases quadratically until it reaches a floor at
about 0.02% . The lines represent zeroth and second order scalings.

4.3.2 (2+1)-D Spatio-Temporal

It 15 expected that the accuracy of the split-step method for (2+1)-D spatio-temporal propagation is similar to that for (1+1)-D
spatial propagation. Because of the time-consuming nature of multi-dimensional simulations, this behavior is illustrated in this
section using the results of two simulations. The grid size for both simulations is 1024 by 1024, with 20 samples across the
spatial FWHM and 14 samples across the temporal FWHM. Most of the computational grid is unused, but the size and sampling
are set to be consistent for the more general simulations of Chapter 6. The effect of this is to reduce the absolute deviation
between simulation and exact results, but the order of accuracy will not be affected.

Figure 4.14 plots error as a function of step-size for spatio-temporal propagation using the (2+1)-D cubic-quintic NLS
equation. which has stationary solitary-wave solutions. as discussed in section 2.5. For this simulation, wy = 39.6 ym as
before and the propagation distance is 2 Zg. reduced mainly because of the computational time required for multi-dimensional
simulation. The results of the simulation are compared with the exact eigenmode which is computed numerically. ‘As in the
(1+1)-D case. the error scales second-order with step-size until an error floor is reached. Since comparison is made to an exact
numerical solution. the relative error would increase for longer propagation distances, thus requiring smaller Az to reach the
error floor. '

The final numerical result, shown in Figure 4.15, indicates that the accuracy is slightly better than first order when the full
numerical scheme discussed in section 4.2.2 is implemented for a scalar field. The error is computed using the numerical result
obtained with the step size Az = Zy/2048 as the reference. Again, due to computation considerations, the propagation distance
is 2 Zy. Even though the simulations of Chapter 6 use much longer distances, the short distance used here is not a limitation
because the accuracy scaling is independent of propagation distance. As before in the (1+1)-D spatial case, for most purposes,
256 steps per Z is sufficient, although in some cases shorter step sizes are used in Chapter 6 because of the longer distances
involved and the desire for quantitative information.
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Figure 4.12: Plotof percentage RMS error as a function of step size for the interaction between two (paraxial) spanal solitons of
the same size, including the effects of linear and two-photon absorption. The error decreases approximately as the square-root
of step-s1ze. The hne represents one-half order scaling.
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Frgure 4 13 Plot of percentage RMS error as a function of step size for the interaction between two spatial solitons of different
widths. including the effects of linear and two-photon absorption. The error decreases approximately as the square-root of
step-size. The lines represents three-halves and one-half order scalings.
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Figure 4.14: Plot of percentage RMS error between the split-step simulation and the exact numerical solution for stable spatio-
temporal solitary wave propagation. Only the effects of paraxial diffraction, group-delay dispersion, and third- and fifth-
order nonlinear refraction are included. The error decreases approximately second-order with step-size until a floor at about
9 107 1s reached. The lines represent zero and second order scalings. ‘
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Figure 4.15. Plot of percentage RMS error as a function of step size for stablhzed spatio-temporal solitary wave propagation,
including all relevant higher-order effects. The error decreases slightly better than first-order with step-size. The line represents
tirst order scaling.




Chapter 5
Conclusions

This thesis has developed the necessary framework for the study of general nonlinear, vectorial, spatio-temporal phenomena
with large spatial and temporal bandwidths. This framework was applied to the study of novel optical logic devices based
on the spatial interaction between 1-D spatial solitons and 2-D spatio-temporal solitary waves. These logic gates were found
to have the properties of full level restoration, fanout with large noise margin, and cascadability to implement arbitrary logic
functionality.

Chapter 1 provided motivation for the study of all-optical switching and logic devices, and covered the basic requirements
for these devices as well. The main differences between switching and logic devices is that an optical logic device regenerates
degraded data (given sufficient noise margins), has logic-level restoration, provides fanout, and ‘is cascadable. Many contem-
porary switching devices, which do not intrinsically possess these properties, were then discussed: the nonlinear directional
coupler. the Kerr gate. the nonlinear optical loop mirror, and the terahertz optical asymmetric demultiplexor. It was then shown
that the intrinsic limitations of these devices could be overcome through the use of optical solitons, which propagate without
dispersing and/or diffracting. In particular, the temporal and spatial soliton dragging interactions possess the necessary require-
ments of a three-terminal logic gate, and form the basis for the class of angular deflection logic gate studies of the later chapters,
for which a nonlinear phase shift less than 7 can produce a resolvable change in the output state of the device.

A detailed discussion of optical solitons was given in Chapter 2. Following the historical development of solitary wave
and soliton phenomena, 1-D spatial, 1-D temporal, and 2-D spatio-temporal solitons were discussed. In the 1-D cases, soliton
solutions were obtained for higher-order equations beyond the traditional (1+1)-D nonlinear Schrodinger equation. For the
spatial soliton. this corresponds to the scalar non-paraxial solution. while for the temporal soliton, solutions were shown for
equations that contained higher-order dispersive terms one or two orders beyond the slowly-varying envelope approximation
(but without Raman scattering). In the temporal soliton section, the effects of third- and fourth-order dispersion, optical shock,
and Raman scattering were discussed as well, which have ramifications for the spatio-temporal simulations of Chapter 6.
Finally. in the discussion on 2-D spatio-temporal solitary waves. fundamental eigenmode solutions to the (2+1)-D cubic-quintic
nonlinear Schriddinger equation were presented, and the stability of these eigenmodes was shown due to the ultrafast saturation
effect of a negative quintic nonlinearity. The effects of higher-order perturbations on these eigenmodes were discussed in
Chapter 6. ‘

The derivation of the fundamental nonlinear wave equations was presented in Chapter 3. First, the integral representation
of the material polarization expansion up to fifth order was transformed into compact differential operator forms suitable for
the quasi-monochromatic wave representation. Then, the fully vectorial, nonlinear Helmholtz equation was derived for optical
wavepackets centered about a single fundamental frequency. Because of the difficulties this second-order equation presents to
analytical and numerical solution, the following section derived via the multiple-scales perturbative technique, a fully vectorial,
first-order nonlinear wave equation that consistently includes terms two-orders beyond the slowly-varying amplitude, slowly-
varying envelope. and paraxial approximations, in addition to terms that describe the vectorial nonlinear coupling with the weak
longitudinally-projected field and nonlinear coupling with a weak third-harmonic wave which produces an effective saturating
quintic nonlinearity. This was the fundamental theoretical result of the thesis, and has application not only to the numerical
studies of later chapters, but to other areas of study as well. For example, considerable attention has been paid recently to (3+1)-
D nonlinear spatio-temporal propagation in the context of pulse splitting in the normal dispersion regime [152,153)]. Simplified
NLS-type models [ 154] have predicted pulse splitting, but it was also recognized that higher-order terms needed to be included
in order to follow the subsequent evolution of the split pulses, which have significant angular and spectral bandwidths. More
recent work has included scalar space-time non-paraxiality with shock [155], and NLS modified with Raman scattering [153].
These studies are able to qualitatively reproduce the asymmetric splitting behavior observed experimentally [153], but neglect
additional physical effects that were derived in this chapter that can also lead to asymmetry.
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Chapter 4 discussed linear spatio-temporal diffraction and the split-step numerical method used for the simulations in the
remaining chapters. Diffraction in linear homogeneous media can be performed exactly given the correct initial conditions.
The diffraction process can be viewed intuitively using the momentum space representation, which is generalized to include
spatio-temporal diffraction in dispersive media. The split-step numerical method treats inhomogeneous propagation in two
separate steps. The first step is linear homogeneous propagation over a distance short compared to the diffraction length
and inhomogeneous length. The second step treats the refractive effect of inhomogeneity due to changes in the linear and/or
nonlinear properties of the medium over the same distance. Using the symmetrized representation, the split-step method is
expected to be second-order accurate in step-size. However, in the presence of strong nonlinear effects, the accuracy can
drop to first-order or less. Even though the scaling can be worse than desirable, comparison of the numerical results to exact
analytical and numerical solutions show that sufficient absolute accuracy can be obtained in the simulations.

The heart of the soliton interaction studies for optical logic gates is Chapter 5, which considered logic gates based on spatial
soliton interactions. Specifically, the spatial collision and dragging interaction between orthogonally-polarized spatial solitons
were found to provide the best performance for logic gates. These interaction were then studied in detail using the threshold
contrast metric to find optimal operating parameters, where the dragging interaction generally produced better results. Then, the
effects of linear and two-photon absorption on the propagation of a single soliton were studied. Figures-of-merit were derived
to evaluate the suitability of a particular nonlinear material for soliton logic applications. The spatial collision and dragging
interactions were then evaluated in the presence of absorption with the conclusion that, due to shorter effective interaction
distances. the dragging interaction again provided better performance. Finally, using the metrics of small-signal gain, large-
signal gain. fanout. and noise margin common in electronics. logic gates based on these interactions were examined. Subsequent
cascaded studies show that a sequence of controlled inverters, in which the pump output of one stage divided by the fanout factor
serves as the signal input to the next stage, which in the asymptotic limit forms a stable ring oscillator, results in complete logic
Jevel restoration and fanouts of two or greater with large noise margin. An additional cascaded geometry, in which the pump
output of one stage serves as the pump input to a second stage, implements a two-input NOR gate. This gate was shown to
possess complete logic-level restoration as well, with fanouts of two or greater and logic levels compatible with the single-stage
inverter. These studies form the second major, systems-level, contribution of this thesis, and are perhaps the first time that such
studies have been undertaken for all-optical devices.

The final results chapter, Chapter 6, studied logic gates based on 2-D spatio-temporal solitary waves. Stabilized propaga-
tion against the higher-order effects of third- and fourth-order dispersion, space-time focusing, optical shock, and intra-pulse
sumulated Raman scattering, was demonstrated due to quintic index saturation. However, it was found that downshifting due
10 Raman scattering was the most detrimental effect to asymptotically stable propagation. Using this stabilized spatio-temporal
wave as the pump. logic gates based on the spatial dragging interaction were studied. The single-stage inverter was shown to
provide large-signal gains of two or greater, but cascaded operation proved more difficult due to the strong Raman downshift of
the pump which serves as signal inputs to subsequent gates. After equalizing the group velocities of the interacting waves in the
cascaded stages. the cross-Raman downshift caused strong energy depletion of the pump, which resulted in spatial broadening
and dispersive wave generation, and reduced contrast. Using a weaker proportion of Raman to Kerr nonlinearity (more appro-
priate for a material such as AlGaAs), fanouts of two or greater were obtained in cascaded operation of inverter and two-input
NOR gates with complete logic-level restoration.

The studies of this thesis pave the way for the experimental implementation of low-energy, ultrafast, all-optical logic gates
for a variety of apphcations such as communications switching, routing, and coding, and special-purpose digital computing.
The results show that. even though materials issues pose a great challenge for ultrafast systems with low average power,
experimental studies using existing materials are warranted and could lead to new capability not possible with current or future

clectronics.
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Appendix A

Symmetry Properties of the Nonlinear
Susceptibility Tensors

The symmetry properties derived in this appendix are the intrinsic index/frequency permutation symmetry and spatial symmetry.
The intrinsic symmetry is a fundamental property of the susceptibility tensors, while the spatial symmetry depends on the
particular choice of material class. The two triclinic classes are the only ones in which the number of independent elements
cannot be reduced. This thesis deals mainly with the isotropic symmetry class (i.e. glasses, liquids, gases), but the results are
valid for cubic 432 (i.e. LiFesOg), 43m (GaAs, CdTe) and m3m (Ge, Si, GaP, ZnSe, ZnTe) as well with minor modifications.
First. the intrinsic index/frequency permutation symmetry property is discussed in the general case of n'"-order nonlinear
polarization. Then. the spatial symmetries are discussed for the specific cases of the third-order and fifth-order polarizations.

A.1 The Intrinsic Permutation Symmetry

In order to present a general proof of the intrinsic permutation symmetry property. the fully dispersive n'"-order nonlinear
convolution integral is used: :

Pjn)(,) :%[) /0 -/0 Rjulu: uﬂ(T;.T:,....T")EaI (I‘—Tl) (A.1)
Ey,(1=12) .. .Eq,(t —t)dTidTs - -dT,.

The spatial dependence is dropped for convenience. The form of equation A.1 is a result of the application of time-invariance [220],
which. when combined with the causal nature of the response function, leads to the intrinsic permutation symmetry property,
as discussed later in this section. ,

Following the same steps used for transforming the linear response integral in section 3.1.1, the nonlinear polarization A.1
is written 1n the temporal frequency domain as :

P;Il‘((j)) :80\//1;::1 (.L"((D;(Dl,...,(1)11)E~(11(.(1)])_..>( (A2)
Eq, (0,)8(0—0) — ... — @,)dw; ...dw,.

where the n'* order nonlinear susceptibility tensor is defined

ng)l--<an (0w).....0) = /.4./@(121)...@(1,,) x

\ .
R (...t tontlgr,  dr,.

Joy Qn

Here, © is the Heaviside step function that explicitly enforces causality. Note that all factors of 1/2m, due to the definition of

the Fourier transform pair (given by equations 3.20a and 3.20b) in terms of the radial frequency w, are neglected for simplicity.
These factors cancel upon return to the time-domain representation.

In the non-degenerate frequency case of equation A.2, the n fields in the product can be arranged in any order with the

corresponding rearrangement of the indices and frequency arguments of the susceptibility tensor. There are n! such equivalent
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arrangements
X(j';t)luz.--un (005,00, .. --(Du)Eal (ml)E(lg (0)2) .- 'an,, () = : (A.3)
X(jl&),,ocz‘..ul (0; 0, 02, .. ., 01 Ea, (0n) Eoy (02) - Eq (@1) =
L o+ (@50, Ou -, 01) Bt (@n) Egy (@) -+ Eoq (01).

The field products in equation A.3 can appear in any order by the commutation of the multiplication operator (there are n!
equivalent arrangements of the fields) and results in the intrinsic index-frequency permutation symmetry of the ) tensors:

A s (OO0, @2 00 = X o (@30, 02, 01) = (A4)

n)

— .
e = Xm0y 0 (0, @y, Wy, -+ o, OF)-

For %' *'. the intrinsic permutation symmetry property states that

k(0 01 02, 03) = X jromt (03 @1, 03, 02) = (A.5)

im0 ©3. 0. ©3) = L jrmi( 03 02, 03, 01) =
Kok (3 3. 0. 02) = X jmis( 03 03, 02, O1),

tor example.

Full index-frequency permutation symmetry, or Kleinman symmetry, results when the n"-order interaction is non-resonant,
meaning that ¥'"" is real [215]. In the case of general %3 phenomena for example, Kleinman symmetry requires that all
one-. two-, and three-photon transitions are virtual (i.e. the medium is transparent to all frequencies involved), but in the case
of nonhinear refraction. the requirement applies to just the one- and two-photon transitions. It is apparent that the Manley-
Rowe relations hold under these conditions. Kleinman symmetry means that the first index/frequency pair takes part in the
permutation, with a total of (n+ 1)! arrangements. In addition, under Kleinman symmetry, the (n+ 1) frequency arguments can
be permuted independently from the indices [220]. For generality and to include the effects of one- and two-photon absorption,
Kleinmuan symmetry is not invoked for the third-order susceptibility in this appendix, although it is invoked for the fifth-order
susceptibihity 1n order to simplify the derivation, without loss of validity, as explained later.

A.2 Symmetries of x3)
In the case of the third-order polarization, equation A.2 reduces to

=03y . ~ . -

Pl =e0 [ [ [ tumtvionon.o) B E(:)En(o:) » (A6)

S(w—w) — w2 = W3)dwdwrdws.
The ¥ * tensor has 81 elements. The intrinsic permutation symmetry property is used in combination with the spatial symmetry
reductions to reduce the number of independent and nonzero elements for a given nonlinear process. The reductions due to
spatial symmetry are considered next.
For the more general case of the cubic crystal symmetry classes 432, 43m or m3m, there are 21 nonzero elements of the

7 * tensor of which only 4 are independent [220]:

(3 (3 i (2
l]]] X.(.K.Ll = .I\\\\ = Aeme (A7)
3 (3 KRR i1 (3 (3) (3)

Xk * Yoy = Lz = L = Xwvzz = Xzzee = Xazyy

3 k) (3 (3 3 3 3
ng)jk : X_(n'.:\ = Yoo = x\.\i,\ = X,(\':,z': = X(-JL = X(:)'g,\'

(3) (3 &Y 3 3 3 3
lek’kj : Z,lr\-\.\ =Y = X(\Lln = X(\:.z\ = Xg,t.l: = X(:;;z-:,

where j # k. For the isotropic symmetry class, only three clements are independent because of the additional requirement [220]

| .

Aside from using the spatial symmetries, equation A.6 cannot be further simplified until the nonlinear mixing process is

specified. In this thesis. the third-order processes of interest are the frequency-degenerate case of nonlinear refraction, third-

harmonic generation and third-harmonic downconversion. The latter two processes, in cascade, result in effective fifth-order
nonlinear refraction at the fundamental frequency. These three processes are now discussed separately.
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A.2.1 Nonlinear Refraction

Using the quasi-monochromatic approximation 3.21. equation A.6 can be written for nonlinear refraction

P§3)+(ﬂ)) = %///Xjum(w;whmz,m) x ' (A9)

[ A% (@1 + wo)A; (02 — 009)Ap (w3 — o)
+Ai () — o)A (@2 + wo) Ay (003 — o)
+A (0] — 00)A; (2 — wo) A%, (034 @p)] X
3w — 0y — 02 — 3)dw|dw2dws,

with corresponding equation for the conjugate third-order nonlinear polarization with time dependence centered about —y.
Now, the third-order susceptibility tensor is Taylor-expanded about the center frequencies g and —wy. Taking the first term in
equation A.9 for example

L jiim (@: 01, 02,03)A% (0 + wg)A (2 — wo)Am (03 — wp) =

Y, jkim{ 0o 01, W, W)
X jktm{ W03 —Wo. o, 0o) + {01 + W] . 3 +--
0 ) =—p
O jtim(Wo s —Wo, 02, 00)
+ [w> — wo] Xkt 3 - +--
©2 Wy =Wy
O ikt W3 — W0, 00, O3
+ors — o) X jkim{ 003 —Wo, Wo, ©3) T I
: a(‘o:‘ w3=0g )

Al () + wp)A; (W2 = ) A (w3 — wy).

It 1» evident that each term in the susceptibility expansion is subject to the spatial symmetry reductions. but the fact that the
derivative terms are subject to the intrinsic index-frequency permutation symmetry is less obvious. In order to see this, the
proper Tavlor expansions are used in equation A.9 which is subsequently transformed back into the time domain, using a
procedure simular to that outlined in section 3.1.1. The result s

i3 € d d 0 N
P : +(’) = §0 [Xjklm(wﬂl -y + ‘5;~(')\)+ 1511)1)'{" ig[')"k(’)Al(’)Am(’) (A~10)

!

d _d d e
,+ X jkim (w(,:wu+ IE' — Wy + lg.(l)\)+l’a‘[‘>Ak([)Al (1)Am(1)

+ % Wy 0 +i§~ U))+12 — (), -Hi Ac()A (DAL (1) | e™"™
Ljkim . Wo o ( ar’ (Y] ot k i m .

where the operator arguments are interpreted as the Taylor expansion about the frequency variable and the derivative operations
are only pertormed on the corresponding field envelopes: thus. ordering of the field envelopes is important. After the derivative
operators have been applied to the appropriate envelopes. the ordering of the envelopes is no longer important, and the arguments
of the susceptibihity (with the corresponding indices) can be permuted. It is now evident that index-frequency permutation
symmetry holds. : ,

The combination of the spatial symmetry reductions with the intrinsic permutation symmetry property is now used to reduce
the general. fully-dispersive case of nonlinear refraction and the special case of the Raman susceptibility.

Fully Dispersive Nonlinear Refraction

Applying first the spatial symmetry reductions of the more general cubic classes to equation A.10 results in the following
tabulation of terms

0 0 3\ ..
D Xiii (‘“ﬂl—mn'*fg;.ﬂ)o-kl'a-;,wo+ta—t>Aj(t)Aj(t)Aj(t)

. .9 .9 .
1) Xjjjj (m”;w(’+'a_z’~m0+'5;’w0+'57>Aj(t)Af(t)Aj(r)
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d ) ? ,
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d 9
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d d
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° .
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.0
ot '
0 9 .
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d d
3) Xjkkj | Wos— (1)0+1 w0+i5;,m0+ia_

3) X}AL]
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( o

( )
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2) Xk (030 (00+l wo+la ) :

(o )

( )

( )

a - .0
Wo; (l)o+l (1)0+lat (1)0+Ié-t-
. ,a E 2 .
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The same numbered terms are identical by the use of the intrinsic mdex frequency permutation symmetry property, thus reduc-
ing equation A.10 10

URIES 3£O a a a . .
Pj‘ (1) =— 3 I:XJ‘UJ((DO (1)0+l(.7,'.(i)u+la,w0+l§>AJ(1)A’,‘(1)AJ‘(1) (All)

.d ) )
+ 2Xjkkj(w():_w0+ l() LWy + la (1)0+Ia )A‘( )Ak(I)Aj(I)
a a a o — iyt
+ Ajjir| Wi =W +iz o+ iz (W +im A5 (DAL)AL ()| ™
where J = k. Itis evident that equation A.11 is also valid for instantaneous nonlinear refraction by simply removing the time
derivatives from the arguments of the susceptibilities.
For the isotropic symmetry class, the following relationship holds

%jjjj (@0 =wo. 0y 00) = 27 1k (W03 —p. Wo. o)
+ % k4 (W03 —00. Wo, Wo)

and. under Kieinman symmetry, X,u,(wo —Wy. Wy. W) = X, (Wi —0p. W, wg). These relationships are valid in both the
fully dispersive and instantaneous cases. The instantaneous case is shown for brevity.

The Raman Susceptibility

Now. considering the special case of stimulated Raman scattering as fdiscussed‘in Appendix B, equation A.10 reduces to
(3)+
PRJ (’) {71“111 ((l)() l“) [Ak Al( )] Am( ) . (A.12)

+X?k1,,, (m;i%) [Ak(t)A,‘(t)] Am(t)} o ir

Now, the derivative operator argument operates on the product between two envelopes enclosed in brackets. Notice that since
the Raman susceptibility is a function of one frequency argument, the intrinsic permutation symmetry only applies to the two
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envelopes inside the brackets. Applying the spatial symmetries results in
ARPT
D (moua—,) [ A504,0)] 4100
D e

2 Apw | 0o

(o5
(o
) B (w
(
(s
(

9,J|Q) 3)]::; QJ

3) X,A,A Wo: i

2) XJLJL Wy i

Yo oo

4) X,u, Wy i

QJSJ|QJ

\/\/v\_/\_/\ /\/
>
e . N
=
B
~
=
>
bl
=

4 Xy (wo vz [AA( )AZ(f)}Aj(W

Again, the same numbered terms are identical by the intrinsic index-frequency permutation symmetry. With these reductions,
equation A.12 can be written :

Aj(r) (A.13)

This expression 15 the generalization to higher-order terms of the result obtained for the study of the Raman effect in AlGaAs
waveguides | 151]. Note that. for the isotropic class

(A.14)

R _ 4R R
X3iii = 2Lgjant Xjik
and. invoking Klcinman symmetry, 'x'}jkk = x’}k”.
A.2.2 Third-Harmonic Generation
The general form of the instantaneous polarization at the third harmonic driven by the fundamental at wy is
3 & —3i
P;[;Zj(t) = —ij/m(3w0:wn.0)o,wo)Ak(f)At(f)Am(t)e 3ig! (A.15)

where the frequency dependence is neglected for simplicity. This is not an approximation as such because in the multiple-scales
analysis of Chapter 3, the frequency dependence of the third-harmonic susceptibility plays no role to the order of the derivation.
Using the spatial symmetry properties, the terms in the third-harmonic polarization are

1) x_,'jjj(3(1)o:(1)o,(l)o,(DQ)AJ(I)AI(I)A](t)
2) %k (3woi o, o, wo) Aj(1)Ac(r)Ax(?)
2) ek (300; wo, wo, wo) Ak (t)A j(£)Ak(t)
2)  Xjkkj(300; 000, 0, 00) Ak (t)Ax(t)A (7).
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The intrinsic permutation symmetry property forces the last three terms to be equal. The polarization is then

Prirci()= g [X“ff(3“’0 9. @o. W) A(1)A(1)A,(¢) (A.16)
- 3204 (3000300, 00, 00) AR DAK(1)A(1) | 7, ~
where, for the isotropic symmetry class,
%7 (30903 0. . o) = 3x jik; (30003 Wo, Wo, Wo) (A1)

Note that these expressions are generally valid even under the conditions of three-photon resonance, neglecting frequency
dispersion. '

A.2.3 Third-Harmonic Downconversion
Again neglecting frequency dependence, the form for the polarization at the fundamental due to mixing between the third-
harmonic and the fundamental is ~

(3)+ )
Prupi(t) = Ky

[ ki (003 3. —o, —o) Sk (£)A7 (1)A,,(¢) (A.18)

)
+jitm (0 —Wo. 3000, —wo) AL (1) S1(1) A5 (1)
3t (00— 0. ~0, 300) AL (VAT ()Su(r) | €79,

where § is the envelope of the third-harmonic. Using the spatial symmetries, the terms in the polarization are

1) Xjjji(00: 300, — 00, —wo) Sj(£)A5(r)A} (¢)
1) Xjjjj(®o: —wg. 300, —0) A ;(t )Sj(1)A5()
1) ij}.j(u)o.—(,\)u_—(l)o,3(00)Aj( ) _/( )SJ( )

,-\
~
—
X
bl
—
~ -~
P
—
—
~
—

2) A j jkk (003 30, —0y. =) S
3) ik (@os =0 3wy, —wo) AG(r)Sk(
3) k(003 —0y. —wo. 3wo) AG(1)AL (1) (1)

2>

3) k(s 3wg. g, —wo) Sk(r)A}(r)
2)  wjujrl{wo: —0o. 3wg. —wo) AL (1)S;(1)A
3) Xjkjk((i)o;'—(.00.—(1)0.3(1)())A;(1)A;'(1)Sk(1)

("8
—

X jikj (003 300y, —wg. —wy) Sk (1) A (1) AT (1)
) L jrk (00: =00 30g. —wo) Ax (1) Sk (1) A5 (1)
) Wk (00 —wy. = 3wo) Ap ()AL (1) S (),

which is in the same form as nonlinear refraction. This is cxpccled because in both cases, there are only two non-degenerate

[ 25 OS]

frequencies.
The nonhinear polarization for third-harmonic downconversion is

P(Tal)l-l;j(t) o [qu(ﬂ)o.3030 — . —p) S;(1)A%(1)A5(r) (A.19)
+ijkk,(wo.3f1)().—wo.—wo)sk( JAL(1)AS(2)
+ ijkk(m(llz;(;)().-wo.—ﬁ)o)Sj(t)Az.(t)A;(t)] e~ oo |
For the tsotropic symmetry class,

% jji (03 30, =0, —p) = 2% jixj (@03 3wg, —Wo, —Wo)
+ x]]“\(th 3(1)03 —o, —(DO) )

as before.




Final Report AFOSR F49620-95-1-0431, Spatial Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder 137

A.3 Symmetries of %) - Quintic Nonlinear Refraction and Three-Photon Absorp-
tion
In the case of the fifth-order polarization, equation A.2 reduces to

P}S)(m) = 50/ . '/Xjklnuw(m;wl v .,@5)51(((01)5[ ((JJ:)E,,,(OJ3)E,,(LO4) X (A.20)
Eo(ws)8(@ — @) — 0 — 003 — 04 — W5)d 01 d02d03d03dWs.

The %) tensor has 729 elements. Even though the development of the third-order polarization is valid for both the isotropic
and cubic 432, 43m and m3m symmetry classes and processes other than nonlinear refraction, the fifth-order polarization is
developed only for isotropic symmetry and instantaneous response. This is a simplification that has no consequences in the
multiple-scales analysis. Any frequency dependence will appear one order later than the instantaneous response. In addition,
fifth-harmonic generation is also not described because the influence of the fifth-harmonic on the fundamental occurs well

beyond the order of the multiple-scales derivation.
In the time-domain then, the fifth-order instantaneous polarization for nonlinear refraction is written

P ()= ' , (A21)

EO * *
™ [Xjklmnu (0g; —Wg. —p. Wg. 0, o)Az (1)A] (1)Am()An(1)As(r)

N

+ X jitmno (005 —Wo. Wo. —wo. 0o, W )AL (1) A (1)A7(
+ X jktmno (W03 — W . Wo. Wo. —Wo. wo)A
+ X jitmno (W0; — 0. 0o, Wo. Wo. —Wo)A% (1
+ X jktmno (W03 Wo. —Wg. — 9. Wo. Wo)Ag
+ Xjkhnno(wO'»m& —Wg. Wy. —Wy. Wo)A(*
+ X jktmno (W03 Wp. —Wo. Wo. Wy. —Wo)Ak(r
)
)

Spatial symmetry of the isotropic class results in 183 nonzero terms of the sixth-order tensor, with 30 independent:

Xiijiii  Xjjikk  Xjjkakk o Xjjkkjy o Xjjjkjk o Xjjkjkjo Xjijkkj
jjkjjk  Xjkjkjj  Xjkjkrk  Xjkjjkj  Xjkjjjk — Kjkkjkk Xjkkjjj
ikkkjk  Xjkkkkj  Xjjkkt  Xjjkikt Xjjkik  Xjkjkit  Xjkjikt
Ljkjuke  Ljkkj Xjkight  Xgkipk o Xjkktji - Xjkikjl Xkt jk
Ljkkitj X jkiikj

where j 2 & = /. Using Kleinman symmetry (which is not strictly valid near three-photon resonance), the fifth-order polarization
responsible for nonlinear refraction and three-photon absorption can be written

P}S‘“’(t) = ;% {ijjjjj(@)lfﬁ)(y —Wy. 0g. Wy. W) [IOIAj(t)|4Aj(t)]
5 jkkk(Wo: =Wy . — o, Wg. Wo, W) X
(#1000 AT (045 0) + 6 ax(0) A0
+10y jjxx (@0 =Wy . =W, Wo, Wo, W) X
(34320430 + 43042 () + 6 4,0 1A A1)
+ 15 jurui 0o . —Wo, — W, Wo, Wo, Wo) X

[P A3 003 1) + 242043004 1)+

sl Pl an) b
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where ¥ ki = Xjjjjkk- In this case, Kleinman symmetry means that there are no one-, two-, three-, four-, or five-photon

resonances. As mentioned previously, these processes (except for the possibility of three-photon absorption) are assumed weak

at the very least for materials of interest.
Now, using the relationship [235]

Xjjjjii=S%jjkkkk = 15%jjkkits (A22)
the fifth-order polarization is finally written
3¢ ‘ _
P (1) = T27i(000; . = o, W, o, o) €' X (A:23)

A0 A0+ 21401 400+ 2 14,0 e 4500
AP A4 0+ 247 0AOAL) ++34H08E 04,0
2 AP AROAS )+ AT OAOAL) + 5 WO IO P A

A similar result has been obtained previously {226]. The first three and last terms are phase-independent and give rise to
titth-order self- and cross-nonlinear refraction. The second line contains phase-dependent couplings between two polarizations.
These terms are rigorously absent for the orthogonal circular polarization basis set [226], and are neglected here under the
assumption of differing phase velocities between the orthogonally-polarized linear eigenmodes of a slab waveguide. The last
three terms contain all three field components and can be neglected. This is justified in the multiple-scales analysis where it
i shown that. in the paraxial approximation, the projection of the field onto the direction of propagation is one order smaller
than the transverse projections and therefore, in the fifth-order polarization, all three components do not enter to the order of

the denvation.




Appendix B

The Raman Response Function and Raman
Susceptibility |

This appendix examines the third-order nonlinear response given by

PJ(.3)(r,t) = eoRN,,(T)E(r.1)Ey(r,1)Ep(r,1) (B.1)

o [ RSnlr. OBt~ E(rt —~ DEn(r 1)
0

which consists of instantaneous (Kerr) and delayed (Raman) parts. Specifically, the second term. or the Raman response, is
examined in detail here. The spatial dependence will be dropped in what follows. '

The first section presents a classical derivation of the Raman susceptibility based upon a simple spring-mass model for
molecular vibration. The second section derives the Raman gain coefficient which is the quantity measured experimentaily.
The final section takes the third-order polarization given by equation B.1 and approximates the convolution integral for finite-
bandwidth excitation. The resulting form is more suitable for analytic representation. '

B.1 Origin of The Raman Response

The Raman response typically arises from the motion of a molecule in response to a driving electromagnetic field. This is in
contrast to the electronic response which involves oscillation of the electron cloud relative to the nucleus. producing a radiating
dipole. A molecule can undergo rotational or vibrational motion. but since this thesis is mainly concerned with nonlinear media
in the solid-state, it 1s assumed that the vibrational motion dominates. ,

In order to derve the Raman response function, assume that there are N identical harmonic oscillators per unit volume,
where each oscillator represents one molecule. For simplicity. only the 1-D scalar case is considered so that the vibrational '
coordinate 1s represented by X (7). Newton's second law [230] states that '

mw = F"Y1). (B.2)
dre- .
where m is the mass and. in the case of the harmonic oscillator (or simple spring-mass system), F'%(r) represents the total force
on the molecule and includes the force of the driving field and the natural restoring force via Hook's Law.
The electrical driving force on the molecule can be derived by first considering the electrostal_ic stored energy density [237]

= —¢[E(1)E(1)], | (B.3)

“~

where € is the total material dielectric constant. For simplicity, keeping only the contribution from molecular vibration, the

dielectric constant can be written
£ = e[l + Na(X)], | (B.4)

where g is the free-space dielectric constant, and « represents the molecular polarizability (not the linear absorption coefficient
which is not considered in this Appendix). which is necessarily a function of the normal coordinate of vibration X, ie. the

139
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driving force is a function of the offset from the rest position. Taking a two-term Taylor expansion of the polarizability results

in
oot |
X)) ra+X 5 (B.5)
o % |yeq
where 0 is the polarizability at the rest position and the first derivative is the differential polarizability.
Now, the electrostatic stored energy can be written
‘ da ' ‘
E=L0 14N g+ X o [E(r)-E(1)]. (B.6)
2 0X |y—o
The force exerted on a unit volume of polarizable material is then .
0E g da ‘
Flt)= —= — =— E(t)-E(t B.7
=55 =7 ax|, [EO-EED, . ®.7)
where the force is divided by N to represent the force per molecule. The total force can now be written
v g oQ
F ) = = —| [E(@t) -E(@t)]—kX(t). B.8
=75 55| E0-BWI-kX(0) ®3)
Here. & 1s the spring constant representing the restoring force of the molecule.
The equation of motion for the oscillator is then
Joled
X(1) ., [;,7]0[5(:) -E(1)]
T drr +pX () = 2m ! (B-9)

where the natural oscillation frequency Q¢ = \/k/m. With the inclusion of a phenomenological damping term proportional to
the velocity of vibration. the equation of motion becomes

o 2] [E()-E()

2m

d*X(t dx .
———( ) +Y-—(1) +Q;X(:.r) =

dr* dr (B.10)

which 1 the equation of motion for a damped harmonic oscillator. Transforming into the temporal frequency domain results in

the solution

. L € |92
[—Q’—iQy+Q}]X(Q):-—{2;—;:]&?{5(’)'5(1)}(9)
e~ [’»:L, {Téf‘fgf‘_’),ﬁf)}' | B
- f

which gives the expression for the molecular vibration spectrum.
Now. the material polarization is defined :
P(t)=Nu(r) . (B.12)

where the induced dipole moment of the molecule is
oa
ulr) = o X)E(r) ~ &9 |00 + X (1) 5 E(r)
X=0
e oo o '
=g oo+ F ' {X(Q)} 3% E(r). (B.13)
‘ X=0.

The nonlinear part of the material polarization due to Raman scattering can be written

PY(1) = eoF T {XM Q) FAEQ) - E(0)} ()} E(r). (B.14)

5




T O I ————//////
Final Report AFOSR F49620-95-1-0431, Spatial Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder 141

Stokes shift O THz

-40 —-20 0 20 40
6 P
R i3 =
o 4 R
X 2t EE X
= i E =
N~ O‘ jl o~
£ 1 E
Q E &)
~— 2 20
;X _4? ........ —g—lmx
e T

PTIPRY L LA &y

-300 -200 -100 0 100 200 300

Stokes shift Q rad/ps
Figure B.1: Real and imaginary parts of the Raman susceptibility for fused silica. Here, y=10.4 THz = 65.6 rad/ps, Qf =
14.2 THz = 89.0 rad/ps. and. at Ay = 1.55 um, Ry = 2.62 x 1012 cm? /W - ps®. The heavy solid curve is the imaginary part
and the thin solid curve is the real part. For positive Stokes shift Q, the imaginary part leads to gain, while for negative Stokes
shift. the imaginary part leads to loss. The dashed curves indicate the three-term Taylor approximation which is valid within
the range + 5 THz. The dotted curve is the frequency-domain convolution of a 16.5 fs sech() pulse.

where the Raman susceptibility takes the form

N [oa]” I R
RO :E— — = = = — 0 . B.15
X 2m [0X |, Q;—_Q-—iQY Q}—Qz—iQY ¢ )

The real and imagmary parts of the Raman susceptibility appropriate for silica [141] are shown in Figure B.1. Note that for
Q > Q,.y. the susceptibility ¥R(Q) — 0 because the time-scale of the driving field is too short for the molecule to respond.
Transforming back into the time domain

P (1) = g0 {RR (1) * [E(1) - E(0)]} EC1). S (B.16)
where the Raman response tunction is defined |
"R Roe~"/*sin (Qgr)O(1) '
RR ()= F'{ ——t == B.17
=7 {Q] o iy O , (B.17)
and Qg = \//Qj —v*/4. Written in integral form
P (1) = eﬂf RR(TE(t — 1) - E(t = T)E(t)d. (B.18)
0

The Raman response function for silica is shown in Figure B.2.

B.2 The Raman Gain Spectrum

The previous section derived the form of the Raman susceptibility and Raman response functions for a single Lorentzian line.
In typical experimental situations, the Raman susceptibility is mapped out by measuring the Raman gain versus the difference
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Figure B.2: Raman response function for fused silica: Y= 65.6 rad/ps, Qg = 13.2 THz = 82.7 rad/ps, and, at Ay = 1.55 um,
R, =2.62 =107 c¢m? /W -ps°.

frequency between two monochromatic beams: the pump beam and the probe (Stokes or anti-Stokes) beam. The probe beam

experiences exponential gain or loss at the expense of the pump.
This theoretical treatment of Raman gain begins with the scalar nonlinear coupling between two monochromatlc plane

waves tfor simplicity :
E(z.1) = A ( )e ifkp —m,r]+ A (2)e '[k_‘-:—u)xr]_’_cc‘ (B.19)

such that only the inter-pulse etrects of stlmulated Raman scattering are treated.
Since this analysis deals with monochromatic beams, the temporal frequency domain is the natural space in which to derive

the Raman gain coefticient. Transforming the electric field then

E(z.w)= lAp( 2)e*r:8(w — mp)+%A;,(:)e—“r:5(w+m,',) (B.20)

A0 - 0) + 24T B0+ ),

K| —t

and ignoring hnear absorption and diffraction, the scalar nonlinear wave equation in the temporal frequency domain is

-

TEOL, Clo)E@ + S (@00 oE@E@EL) ®21

e

+ %//XR(‘D!Q)E(UH)E(wg)E(m-—Q)d(n]dm3 :FO,

where Q = »; + m- and initially both the electronic Kerr and Raman susceptibilities are considered.
The nonlinéar polarizations of interest are those that drive the wave equation at @, or ;. These polarizations are

- 391 & 2
Pelwp) = 2 (XX =0p.0p.0,) 14| . (B.22)
+2xK(m,,; — Wy, Wy, Wp) |A_y|2] A,,e""nﬂ

[7 ((.L)\,—(.l)‘ Wy, 0 .\').lelz . (B23)
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+2xK (@5 —0p, 0p, ) ]Aplz] Ages?

Pr(wp) = %//XR((D;Q) [A5,ApS(01 +@p)8(02 — wp) (B.24)
+ ApArS(0) — 0p)(w2 +0p) ]A,,S(o)— Q—w,)e*r*dm dw,
£o R . -
+3 / / X (0: ) [A.YA.VS(w1+ws)8(wz ;)
T+ AALB(0) — 0,)3(02 +0y) | A4,8(0 — Q= 0p)rdando;
+2 [ [ 09 [ap;8(01 - 0p)3(0: +0)

+ A}ApS(0; + wy) (w2 — ©p) ] AS(0— Q= o) e*P*do dan

Pe(w;) = %//XR((U;Q) :A;A.\,S(ml-;-m_,.)S(m:—w:,) (B.25)
L AALS () — 0,)8(0: +0) ] Asd(0 - Q- wy)e dwdwn
+ %//XR((D;Q) A5 ,8(01 -+ 07)8(002 = )
+ApALS (o =03 (w2 + @) ]A-vﬁ(w—ﬂ—ms)ef‘.":dwxdwz
+ %//XR((D;Q) :A_\A;,S(u)l - 0,)8(02 + )

+ALAS(0] + 0p)8(w2 — (n,-)] Ap(0— Q- wp)e* dwdw,,

where the intrinsic symmetry property was used in the instantaneous polarization and the four-wave mixing terms (20),, - Oy,
ete) are m."lLLlLd Evaluation of the Raman susceptibility integrals results in

Petwop) = 2 [ (:0) 1ap P+ [ (0,:0) 42 @pi00p = 0)] I pape (B.26)
F’R(m\)=%{x"(w\. VA [ (0,:0)+ 3" (045 0, — 0p)] |A,,13}A,\.e""-‘=. (B.27)

Detining the nonlinear indices

ng(w) = 51(3—(1)77@{)(“(0);—@.(9.(0)} | (B.28)
1
nR(w,Q)—mx [ Q)}. : (B.29)

where Q = ©, — m,. and making the slowly-varying umplnude approximation (SVAA)

Ap, L OAp,
a;g < 2ikp, ag . (B.30)
the coupled nonlinear evolution equations become
aA " C Y '
2ikn 2L 4 2K nilwp) [ me(@p O, 1o (B.31)
"o P n{wp) ng(wp)
.0 Q »
+ [2+ ng{w,.0) +ng(w, )] |A.s-|'}Ap
ng(wp)
30 3
+i4c2" Im {x¥(0p: —wp. 0p.@p) } |4, P Ap

303 2 2
463” [21/;1 {xX(0p; -0y, 0;,05) } + §Im {XR((DP‘,Q)}] |Ag|"Ap =0
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2ik, Qs 4 2kf"K(mJ) { [1+ na(®:.0 } 1A, (B.32)
oz ((DJ) ll](((l)
4 [2 n nR((D:\-.O) +'1R(U)Sv —Q)] ]Aplz}AA
. ng (wy)

w?
+ lic‘:‘: Im {XK(U),\‘; “‘OJA-,Q)AA.Q)S)} IA_V‘ZA‘,-

2 2 )
zi(i)z‘ [ZIm [7¥ (05 ~wp, wp, 05) } + §Im {xR(w,,-;——Q)}J |Ap|°A;=0,

where I'm {xK } corresponds to self- and cross-two-photon absorption and is always negative, and the Raman gain/loss suscep-
tibility component given by Im {x (@ O)} 0 by (anti) symmetry. Note that now the ratio between the cross- and self-phase

modulation coefficients no longer equals 2 in general, a fact previously noted [238].
Considering only the imaginary part of the Raman susceptlblhty responsible for Raman gain for simplicity, the coupled

equations can be rewritten

0A k '
L= L I {xR(0,;Q)} AL A, (B.33)
0z 4ng,
0A; Kk 2
== = I xR (0 Q) } AP Ay, (B.34)
0z  4n?
where n,. = mwp). n, = n(w,) and Im {XR}(—Q)} = — Im {x*(Q)} from equation B.60.
\!ulupl\ ing equation B. 33 by A}, and addmty to the conjugate of equation B.33 multiplied by A, results in
oA, k
JL’ = — L Im {x?(0,;Q) }|A 1A (B.35)
0z 2n;, ’
Detinmg the optical intensity » .
Io) = s—““iﬂl A(@)], (B.36)
“equation B 35 can be rewritten
olp R .
_— - N \»l ; -
0: s()cnf,n\ Im {X (w,, Q) } . r (B-37)

Pertorming the same steps with equation B.34 results in

a’.\ —_ k.\

ol, _ SR
3 = aoenin Im{xM (0 Q) } Il (B.38)

Adding these two equations in order to obtain the evolution of the total optical intensity indicates that intensity is not conserved.
Since the imteracting tields are monochromatic plane waves. this directly implies that optical energy is not conserved, because
energy 1y supplied to molecular oscillations, then dissipated through the damping term.

What ts conserved by this system of equations is total photon number. Defining the photon flux

E()('H((l))

d(w) = Alw)]* B.39
(@) = 2= (o) (B.39)
the coupled equations for the evolution of the photon flux are

2%, k,.A R o

—_ = =1 | b, .

5 o m{y"(wp: Q) } DDy (B.40)

a‘b l\ ‘I) R ! ‘

— 1 Q) PP B.4
3 = o I (0aQ)} 2,0, _ (B.41)

e
where it is apparent that total photon number is conserved.
Now, back to the original purpose of defining the Raman gain coefficient. Typically, when |A,,[ >> |Ay | the depletion of
the pump is negligible. reducing the coupled equations to just

0A,(z)

ks
oz an: {

R (0,:9Q) }4p(0) P As(2). (B.42)
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where the z dependence has been restored. Now equation B.42 can be easily solved
Ay(2) = e¥ORA(0), | (B43)
where the Raman gain is defined as

21

The quantity typically reported in the literature as the Raman gain constant is, from equation B.38,

ky '
Gr = 555 Im (1" (05 Q) HApl* = galp. (B.44)
¥ .

ks

gocninp

gR = Im{x}0:Q)}, : " (B.45)

and has units of cm/W. For example, in silica-core fiber. a gain constant of g = 1.86 x 10~ cm/W was measured for the peak

Stokes shift of 13.2 THz (440 cm™!) with a pump wavelength of 532 nm [141], and in Alg 24Gag 76 As slab waveguide, a gain

constant of gg = 7 x 1078 cm/W was measured for a peak shift of 8.4 THz (280 cm™!) with pump wavelength 515 nm [151].
For the Raman susceptibility given by equation B.15. the real and imaginary parts are

oy fo]
Re{x"(Q)} = 3 (B.46)
[Q} - 92] + Q2
Ro&2
I {x*(Q)} = oy (B47)
@3- 0]+
so that the Raman gain constant can be written
Rok Q
o= e S
: r ;Q;-—Q-] +Q-y-
The peak of the imaginary part occurs at the frequency
[ . . . RUE
203 - v + [ - 4705 + 1602}
Quux = 6 - . (B.49)

For weak damping ¥ <2 Q. the frequency at peak gain Quax & Qr = Qy. and the line width of the gain & y. It is useful to
obtain an expression for . Solving equation B.49 then. ‘

2 ' /-‘_—_‘\—— a
' Q; = Q”‘J‘\’I Y-+ 4gll-n;lx - Qr—nur ) (BSO)

so that ©, can be determined when the line width y and peak down-shift Qua are known. which can be easily obtained from
experimental data.

The resonance approximation to equation B.15 is common in the literature. Taking Q ~ Q; and after a series of straightfor-
ward manipulations, the susceptibility reduces to

. Ry/Q
Q) ———————— )
xr(€2) 0, -0 i (B.S1)
with real and imaginary parts '
Ro [, - Q] /Q
Re{x¥(Q)} ~ —‘)—[—f—ﬁ— (B.52)
| 4[Q-Q) +v
I {7R(Q)} & ——FV/E (B.53)

- 4[QI—Q]:+'Y2.
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Figure B.3: Raman gain and index spectra for fused silica. calculated from the data in Figure B.1. The Raman index is defined
" by equation B.29, and the Raman gain constant is defined by equation B .45.

Now, the Raman gain coefficient for the Stokes beam becomes

_ Rk, 1/Q
~ ggcn.n-

. (B.54)
PR +v/4

gr(Q

The Stokes dow n-shift frequency that experiences maximum gain is then given by

4Q) +/4Q3 - 3y '
r . (B55)

6

Qrax &

Note from equation B.15 that Ry has units of m-/V3.s". In the International System (SI) of units, the free-space dielectric
constant has the value € = 8.854 x 1071° C/N-m>, which also has units F/m, or W-s/V>.m. For silica fiber, Ry = 5.03 x
10715 em® V73S which for 2, = 1.55 um, equals 2.62 x 107! cm®/W - ps™.

B.3 The Raman Susceptibility

Using the same steps as used for the linear material polarization in section 3.1.1, the Raman response integral is transformed
into the temporal frequency domain. The frequency-domain representation is approximated for finite bandwidth excitation and
transformed back into the time domain in a form that can be easily incorporated into the theory and numerics of subsequent
chapters. This result is compared to that obtained directly from the Taylor-expansion of the time-domain form of equation B.1.
Finally. using the results of Appendix A, the third-order polarization is reduced to a form suitable for the isotropic and cubic
33nt symmetry classes. Section A.2 discusses the intrinsic permutation symmetry property of the fully dispersive case and the
reduction to the Raman response, and the spatial symmetry properties of the chosen classes as they relate to 3.
Writing the driving fields in their Fourier-domain representation, the Raman response of equation B.1 becomes

A0 =¢0 [ K@) [ Bulon)e™t=ldo, [ Bilwn)e B r)ae

=0 [ [ umles QB B0 En(t)e™ ¥dordon, (B.56)
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where Q = @, + 05 is the Stokes (Q < 0) or anti-Stokes (€2 > 0) frequency and the third“order Raman nonlinear susceptibility

is defined
X]}klrrx(w;g) = /@(T)R]Rklm(‘c)elgrdt ) (B.57)

and x'}klm( -Q) = x?g,m(Q) because the Raman response function is real. It is evident that the Raman susceptibility is subject
to the Kramers-Kronig relation discussed in the context of the linear susceptibility. :

The imaginary part of the susceptibility Im {x®(Q)}, where Xr(Q) = Re {xR(Q)} +iIm {x*(Q)}, is proportional to the
Raman gain, which is typically the quantity measured in experiments, as discussed in the previous section. Therefore, it is
useful to have a relationship between the imaginary part of the Raman susceptibility and the Raman response function. The

inverse Fourier transform of equation B.57 results in
RR(1)0() = / R (0: Q) ¥ dQ. (B.58)

Through the Kramers-Kronig relation, the real part of the Raman susceptibility can be determined from the imaginary part
and the response function evaluated by relation B.58. Alternatively, the Raman response function can be determined directly
from Im {',:R(Q) }. Since the Raman response function is real, by equation B.57, the real part of the Raman susceptibility is
symmetric and the imaginary part anti-symmetric. Note that equation B.58 can be rewritten A

R} (1)0(1) = / [Re{x}(@:Q)} +ilm {x*(0;Q)}] [cos (Qt) — isin (Q1)]dQ

- / Re{xR(0:Q)} cos (Q)dQ+ / Im{xR(:Q)} sin(Q1)dQ, | (B.59)

where the anti-symmetric terms integrate to zero. Because the left-hand side of the equation is zero when T < 0, it must be true
that the two integrals on the right-hand side are equal and opposite when T < 0, leading to the relation

:2/Im{xR(m;Q)}sin(Qr)dQ, (-B‘60)

whent> 0.
The nonlinear polarization is now written in the temporal frequency-domain

Ao = [ [ [ (i QB0 Bl En(r)e™ dordard™dr
=& [ [ amlo: Q) Exlon)Erlen) { / E,,,(f)ei["”gl’zlt}d(n,dwg
:%//X?khn(m;g)gk(wl)E.I(U)Z)Em(m—g)dwldwl' . ‘ (B.61)

Using the Fourier-domain wavepacket representation and keeping only the terms producing a polarization near wo, e.g. the
terms responsible for nonlinear refraction and nonlinear gain/absorption, the polarization becomes

=i 3) 80 . .
P o) = 2 / / Xl @:02) : (B.62)
[A; (01 +00)A; (02 = wp) A, (0 — Q—wo) +
Ao — 0y)A] (02 +0g)An(w—Q— o) +
Ar(®) — wo)A; (w2 — o)A}, (0 — Q+ )] dwydwy,
where j.k.I.me {x.v.z}. The Raman response is typically at low frequencies (when compared to optical frequencies), for

example, the peak of the Raman gain in fused silica is at 13.2 THz. Therefore the strongest response will occur when £ is near

that peak. For the last term of equation B.62, Q & 2wy and x&(2w) ~ 0 from section B.1.
In order to arrive at a simpler time-domain representation, the Raman susceptibility tensor of equation B.62 is Taylor-

expanded about Q = 0. The Taylor expansion is

X_Fl-{“m((.l)o:Q) = le{klrn(wo;o) (B.63)
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ax‘l}khn(mo M| + (‘00)

+ [(Dl =+ (J.)()] 20
: W) =FWy
aXRklm((DO; Fwo + 032)
s F ag) TR oo
- =z

Using these expansions, the integral of the Raman susceptibility is approximated as
Bt ()= / / L8+ [ + o] o8 + [0 = ol 4} (B.64)
At (o) + o)A (w2 — wo)An(r, 0 — Q — wp)dw do: '
+ 2 [ [ {4 (o= ool + o2+ ool +--} x
A0y — w0)A] (02 + 00p) A (00— Q — wp)dw dw2

where the following shorthand notation is used

AR = A pam(0030) (B.65)
R _ Sk @03 001 — o) _ % (03 — @0 + @2) (B66)
8031 a(,[)-a . :
W=y (])2=u)0
K = Bx?k,,,,(mo; ) + o) OX il @03 0 + 02) B.67)
- a(l)l - 8(1)2 )
w=—wg W =—1g

Now equation B.64 can be written in the time-domain. For example, inverse- -transforming the first integral of equatlon B. 64

n.+ XR///AL @) + 0)A; (w3 — ) X

An(®~ 0, — w1 — 0p)dw;dwre™ ™ dw

"—X" ///(1)|+(l)() (1)!+(.00)A1(0.)3—(1)0)>(

Am((l) w; — Wy — mo)dmldu)ge"""'du)-k e

— __x ///Am _w”d(l) A‘(U-)l'i‘w()) l(l)ﬂdwl X

(JJ-' _ wo)e-imzldw_,e-iu)or

+ xa ///A,,, ”""dw’[ml+wo],§;(w1+mo)e""‘”l’dm|><

l(w“ -y ) —m)zldm:e—iu)ol 4.

= % [XRAz(r)A,(r) +i1§laAazr(’)A1(t) + (B.68)
a4y A, ] Anlt) e
Using equation B.57. the coefficients
AF =1 =i [O@RY, mde= . (B.69)

Note that ¥® s purely imaginary because it is proportional to the slope of the Raman gain at zero frequency Now the first term

of the Raman polarization can be written
R aAL )A[([)

Pl(e;)‘* = % {XRAZ-(I) (1) +ix — +] A,,,(t)e"i“’o'

d : .
E'Olelm (0‘)0' ot )[Ak )Al(t)]Am(t)e—‘mO’» - (B.70)
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where the derivative argument acts on the quantity in brackets. Combining this expression with that obtained for the second
integral in equation B.64 results in

401 = 2 [ (001 ) WA + AT 0] fnt)e @)

Here, the function of the operator is interpreted by a Taylor expansion about zero frequency.
An alternative approach is to start with the time-domain convolutional representation given by equation 3.18, rewritten here

in component form
(3)+ — Eg = R 1. —i(l)ol B 72
Py (t)= 8 Jo Rijim( )ALt 1A (t = T)An(t)e” 0 dT ' (B.72)

+ %[) R_}]?klm(r)Ak(t - T)A; (I - T)Am (t)e—imord‘r'

Defining s = r — T, the delayed fields can be Taylor-expanded about ¢

Als) = A0 +—1) 22| + b=} FA) e
= (-5 +§az‘:§’> . (B73)
Sdbsti(uling into the convolution integral results in
P () = 2 [ A0A(0) +ADAT (O] An()e™ | Buntor (B.74)
- _882 [aAZ(;)rA’(I) + aA‘(;)’A; (t)] An(1)e™ ' /Om TR (T)dT

Using equation B.57. it is clear that equations B.71 and B.74 are the same. Defining the constant

TRz X = /) TR (DT , (B.75)
equations B.71 and B.74 can be simplified to
Prrall) = %x?“,,,(cbo:O) At A0 +Ad0)A] (1)) Anlr)e™ (B.76)
_ _5897.]%["'[8'4;(;)1/41(') +aAk(ta)’A,‘(t)]Am(,)e-w
- 221 (0:0) [a:AZ ) azA‘g,):A i (')] At 4.

The first-order term in the Raman expansion is a linear approximation to the Raman gain/loss curve. The second-order term is
a parabolic approximation to the dispersion of the Raman nonlinear refractive index. The next correction for the Raman gain is
third-order cubic as evident by the fact that the imaginary part of the susceptibility is anti-symmetric.

The total induced third-order polarization including the instantaneous and Raman contributions can then be written

3 € [ K - .
Pl (6) = 2 { afm0: =00, 00.00)AT ()AL (1) A1) ®.77)
At 00300, 0. 00) AR(1)A] (1) Am (1)

+X;‘(k1,,.(0)010)(5~ Wy —mO)Ak(I)AI(I)A;n(t) +

uunl0:0) [ ALA(E) + ALD)AF ()] An (o) €™

_Epop QAL (1A (1)  DAk(1)A](2) iyt
] Tjkl:n [ ot + ot Am(’)e

f R o) [a:A;(,)A,(,) 824 (1)4; (1)

- ij“m s + 32 }A,,,(t)e—lmor.
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Using the spatial and intrinsic symmetry reductions from section A.2, equation B.77 becomes

3eo

P (1) = 220 5 og: ~00.00,00)A5 (DA, (040

8
+2x K j(000: —000. 00, o) Af (1) Ax(1) A (F)

5, {03 — 0. @0, W0)A} (AR (D)AL(1) | €™

20080030045 (114 (0) + 2 (00:00AL (DA (0] A1)

+x 5 a(©00:0) [AZ(r)Aj(t) +A;(I)Ak(t)] Ak(r)}e—i‘”of

iy or Jkkj ot

& {[ R 8A}(r)Aj(r)+TR aAZ,(t)Ak(t)]Aj(t)

. 0°A%(1)A (1) w 0AL(H)AL(t
XL + X ka,)z‘ a0

» [azA;,(,)A,-m .\ azA}-(r)Ak(r)] A (,)}e-w,

X jjkk FYs %2

which 1s the form used in the multiple-scales analysis.

150

(B.78)




Appendix C

Derivation of the (2+1)-D Vector Nonlinear
Schrodinger Equation for a Slab Waveguide

This appendix reduces the full (3+1)-D NLS evolution equation for nonlinear spatio-temporal propagation in homogeneous
media to the (2+1)-D equation appropriate for propagation in a planar waveguide structure that supports TE and TM modes. The
key to this derivation is the use of separation of variables in which the functional form of the one-dimensional linearly-guided
profile is separated from the envelope in the unguided dimensions. To lowest order (sec. C.1), this separation of variables results
in the well-known effective index approximation. which reduces the dimension of the problem. At higher orders, the concept of
effective index is extended to the linear dispersive (secs. C.2 and C.3) and nonlinear terms (sec. C.3). The resulting nonlinear
wave equation is the (2+1)-D reduced version of the (3+1)-D NLS equation (with the transverse dimension y removed), with
effective values of the material parameters which represent the influence of the transversely guided modes.

Section D.2 of Appendix D evaluates the effective linear dispersion coefficients for a generic three-layer slab waveguide
structure. The results of this analysis for typical waveguide parameters justify certain approximations made in this multiple-
scales derivation in order to obtain an NLS equation for the waveguide modes. ‘

The waneguide geometry is shown in Figure C.1. By symmetry, the waveguide supports two sets of modes, transverse
electric (TE) and transverse magnetic (TM), which are of orthogonal linear polarizations. Thus. the use of the Cartesian
polanization basts set is not arbitrary. The initial electric and magnetic field envelopes are written

— : d : ATk
A =:U ()-.(0(,+ ,s(-ﬁ) ATE(X.Z, T)eP s (C.1

: J -~

+5VIM o+ is.—) B™(X.Z,.T)eP
) aT

) AT

+zy™ (\ 0 + '%7) BT™(X.Z,.T)eP" =

— X Jd . AT
B :.—.\"“< o~ 16— | BTM(X.Z,. T)eP e Cc2
V=g e ey ) B )é ‘ (©2)

P 0\ e AT
+ ;\%L'g”‘ (\ N Tf) ATH(X.Z,. )P
: [f

:o 9\ -
s (-““”' - 'Ea_r) ATE(X.Z:. )P,

such that the interaction between waveguide modes is handled explicitly by the choice of slowly-varying envelopes ATE and
B™. The waveguide mode profiles UTF and V™ are unitless with the components UTE and V™ normalized to unity.
Therefore, the envelopes AlTE and B'lrM have units V/m, while A.,“E/nTE and B]TM/nTM have units of A/m. The constants
NTE = powy/BTE and n™ = powo/B™ represent the material impedance seen by the TE and TM modes [239]. These
impedances have units V/A = Ohms. :

The frequency-dependence of U and V is included to describe the variation of guided profiles (and effective index) with
wavelength, which simplifies the analysis [194]. Note that the waveguide modes do not have z variation. This approximation
fixes the modes such that they cannot change with propagation and is valid when the induced nonlinear index is small compared
to the linear index variation of the waveguide, which is the case assumed here. In fact, typical nonlinear index changes are onthe
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H, TE

'ny

Figure C.1- Waveguide geometry used for (2+1)-D derivation. The linear refractive index varies along the y- -direction, which
gives e to distinct sets of TE (electric field polarized along x) and TM (magnetic field polarized along x) modes.

order of 1075 = 1074, while weakly guiding waveguide structures have An ~ 10-3 = 1072. Only one TE and one TM mode are
constdered and are assumed to be fundamental modes (no zero crossings of the field). but this assumption is not a requirement
for the general case derived here. Extension to multiple. higher-order modes. is straightforward [99]. but not necessary in this

thesis.
Guided modes typically have profile variations on the order of a few wavelengths, therefore v is taken to be a fast variable

such that
d d

. . .[9 d , 0
V“"55§+"5;+‘[8:+8821+5 azz+~~~]. (C.3)

Because of this change. Maxwell's equations need to be suitably modified. The modification of Faraday's and Ampere’s Laws
1s straightforward:

0A. [a 0 - 9l
"a,T‘{E +eéz—l+-~]A\ = iy [‘””’Ea_f] B, . (C4)
.. [9 d - 0A. 1=
i [a: + SB—Z, +-- ] A —E— 35X = iy [u)o + 'EaT] X » (C.5)
X 0A, 0A, 1=
2 5—87 —_ 'g l/.l() [(D0+ lsar] B;_, (C6)
. 0B, [0 d = _ ,
- [a;“azl +--|By= _ (C.7)
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y: [582+£a_i—,+"']§‘_5%%: . | - (C.8)
—ig [wo + isair] [EL <y, 0o+ ie%) Ay + %FS‘H‘H]
z: e%% - aaE; = , _ » (C9)
_‘i€o [mo + is%] [aL (y, 0o + isa—z;_—) Z; + %?F(ZNLH] .
Gauss’s Law, on the other hand, is not quite so straightforward because the dielectric consfant now has variation in the y

direction. This change is

21 3\~
—a; [8 (y,(l)0+l€ﬁ_->A'\v] (C.10) .

+€Lvy(no+i8—a— sa—;'—‘+ i+g_.a_+... A.S =
QFEST ) \"ox T T oz, :

NL
B 2 EaT’.(rNL)+ +ai_’§ )++ i+€i+.. 1—,(NL)+
€ X oy Jdz  0dZ, : '
Finally. the magnetic field divergence equation is
0B, 0B, [dB. 0B ‘
o N | e =0, C.11
EaxJ’a,\-““[a: Tz, T ] (10

With these changes from the (3+1)-D derivation noted. the waveguide derivation can begin.

C.1 Order ¢ - Effective Indices and Phase Velocity

At the lowest order. Maxwell’s equations result in

(TM) £: %f’ - a—a@ = ipowoBix | (C.12)
(TE) ¥: Q% = ipgwoBiy (C.13)
(TE) 2 %‘_" = —ippwyB)-. (C.14)
which allows the electric fields to be determined from the magnetic fields,
(TE) %: ?—g'— - Z%— = —igoWoER (¥, W0)Al1L (C.15)
(TM) §: a—f-'— = —iEgWoEr (1 W)A1, (C.16)
(TM) 2: E-)aET' = iggWoER (¥, Wo)A:, (C.17)

which allows the magnetic fields to be determined from the electric fields, and

dlnek (v.wy) 0A 0A.
R\ e ly Iz
™ Al =
M) —5— % "=
0B, N 0B1: _
oy dz
which relate the v and z polarization components and offer no additional information. To this order, all six field components are
nonzero. Equations C.12, C.16, C.17 and C.18 determine the TM mode and equations C.13, C.14, C.15, and C.19 determine
the TE mode. N

0 (C.18)

(TE) 0, | (C.19)
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TE Mode
Working first with the TE mode, taking the z derivative of equation C.13 and substituting equation C.15 results in
0°A 0B). —
-?2-1}- = g [-a—:: + iaomoslg‘((y, (.l)o)A]y] . (C.20)
Substituting equation C.14 for B,
> 194
TE]= . Ix | . L
- = —_— €5 (y,00)A1x ], C.21
[BTE] " AL = imowo [ o 3 + iggwoEg (¥, Wo) 1.:} \( )
which, upon rearrangement, yields the eigenvalue equation
a:A : 2 )
= 4 [BT] - (3 00) p AL (C22)
oy-

Equation C.22 is a function of only the fast variable y and determines the TE guided profile UTE(y,wp) and effective propagation
constant BTE. Since the envelope ATE(X,Z;, T) cancels, equation C.22 can be written as

27/TE s
8—9%"’—) = {[B")" - (3. w0) } UTE (3, 00). (C23)

This equation is most appropriate for waveguide structures with continuous variation of the refractive index, but in general, is
not sufticient to determine the guided profile [240]. The constraint provided by the finite one-dimensional power of the guided
mode provides the necessary additional information. _

For waveguide with discontinuous, or step, variations in refractive index, equation C.23 can be solved in each homogeneous
region and linked through the appropriate boundary conditions. These boundary conditions are the continuity of the tangential
clectric and magnetic fields across the dielectric interfaces. For the TE mode, A, and B. are continuous, and by equation C.14,

"9, /01 1s continuous [239]. Therefore, the boundary conditions are given by the continuity of

aU;rE(Vv (,00)

T (C.24)

UTE(v.0g) and
Determination of the magnetic field components of the TE mode. UTE(y.wg) and U:TE(_v. wg), is not necessary since the wave
equations will be developed for the vector electric field.
For a known index and guided amplitude profile, the dispersion relation can be written as an overlap integral. This can be
seen by multiplying equation C.23 by UTE and integrating. resulting in

[k (v.wp) [U_\TE]Zd_v—f ['a'%‘%}:d’\'

T4 (C25)

(67" =

TM Mode

The TM guided profile 1s most easily obtained using the magnetic field. Taking the z derivative of equation C.16 and substituting
equation C.12 results in '

FBix _ . Ay . =
S = iE00oe (v:0) [—a—v‘ + Iuo(DoBu] : (C.26)

Substituting equation C.17 for A,

R 9B, dlnel (v.w9) 9B
_[pT™M1 . — _ b R Lx
[B™] "B\, = |: P ay y

— ouoWFER (¥, @0)Bix, (C27)

which. upon rearrangement, yields the eigenvalue equation

V™M (y.wg)  9lnek (v, w0) JV™M(y, o) _ (C.28)

0y* dy dy
{ [BTM] : - kz(.v’ (1)0)} VxTM(y’ wO)y
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which again is most appropriate for continuous index variation. ‘
For step variations, the boundary conditions for the TM mode are the continuity of B, and A; across any dielectric interface.

Using equation C.17 for A; leads to the continuity of
1 aviM(y. @)

(C29)
eg (nwo) Oy

VIM(y.00) and

In order to facilitate the derivation of the TE and TM nonlinear wave equations, the ¥ and £ components of the electric field
associated with the TM mode must be obtained. From equation C.16 '

™ BTM ™
V. Y (y,00) = = Ve " (. o)
v n™egwoeg (v, 00)
B™ 17,
== |:K(\ (DO)] vx (yv 0.)0), ‘ (C30)
which determines the y component, and from equation C.17

V.M (v 09) =
@ n™equwoey (vowg) 0y

.ATM ™
__iB oV, ™ (y, o) (C.31)

k2 (v.wo) oy '

which determines the = component. These expressions are fully non-paraxial in the guided dimension because of the choice of
v as a fast variable.

Note that the  profile of equation C.31 depends on a transverse derivative. The major contribution to this transverse
derivative is the transverse wavenumber. 'When the transverse wavenumber is small (as is the case for low-order modes in a
strongly-guiding structure, or for modes in a weakly-guiding structure), the mode angular spectrum remains close to the z-axis,
meaning that V.M < VIM, which is the paraxial condition. Even though the paraxial condition is imposed on the unguided
envelopes A and B by the choice of the slow transverse variable X. it does not need to be imposed on the guided profiles U and
V" which depend on the fast variable y. Later in the derivation (sec. C.3). though, this condition will be imposed in order to
simplify the nonlinear polarization.

The dispersion relation for the TM mode can be obtained in a similar manner to that for the TE mode, with the result

o A gy 2 Finel (v.ang) "
Ji3 (. 0) VMYt f [ 255 v 4R (VM

FVP Ty .

[Bmlﬁ___

The ergenvalue equation C.28 can be recast into a more familiar form in terms of the y-component of the electric field.
Substituting VM v ) o E!K(y. o) V.M (. wg) into C.28 results in [159]

V™M y.wg)  dlnel (x.wg) V™M (y wq)
ov: dy dy

O%Inej (v.00) 1 - ' '
——;\T——V\T M(."~ wy) = {[BTM] — k(v (1)0)} V_\.TM(y, wp).

(C.33)

C.2 Order ¢” - Group Velocity

Similar to the (3+1)-D derivation, this order determines the group delay of the TE and TM envelopes, except that now the
group-delay has contributions from both the material and waveguide dispersions. The waveguide dispersion is responsible
for the difference in TE and TM group delays. which can be tailored somewhat by the choice of waveguide parameters. In a
weakly-guiding structure, the group delays will be nearly equal when the material is linearly isotropic as is the case here.

Another difference from the (3+1)-D derivation is the inclusion of the frequency-dependence of the waveguide mode [194].
The first-order dispersion of the waveguide mode is included as

0ATE(X,Z;,T) BT

3T , (C.34)

Az, = Ax+iUTE (v, 00)
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where Aa, is the second term in the electric field expansion and is composed of an unknown component A';r and the first term
in the electric field expansion obtained at the previous order which now includes dispersion of the waveguide profile. The other
components of the electric and magnetic fields are handled similarly.

From Maxwell's equations then, Faraday’s Law results in

0A.. 0A4s 0Aj, = 9B,

(TM) #: = === 7z - inowoBac — Ho = (C.35)
(TE) ¥ aaK;‘ + %;2" - a;;“ = ipwoBa uoaaETl" : (C.36)
(TE) 2: %7% - ?g‘"—‘ = i#oﬂ)oﬁz:—#o?%, | (C.37)
while the modified Ampere’s Law gives
(TE) £ aaE; - ai:-“ - %i‘l“ = —iggWoex (¥, Wo)Ax | (C.38)
| +e0 € (v, 00) + moéﬁ (7o) a—axri
(TE) §: agf + aaB;; - aab;: = —iggwoeR (3 Wo)Azy (C.39)
+€ [Ek(y, ) + WoeR (¥, coo)] -é%
(TM) Z: %E}‘—‘— a;i 7“ —iggWyEs (¥. o)Az ("C-40)
+€o [E!}\(_V, wp) +w0€5('(.\" (00)} QE;—
Finally. the divergence laws give -
(TM) a—E-’%——zm + €% (. 00) [a;' ag‘?, + ag_‘::: + %Kzlj (C.41)
+i____ae!;('£()_:: al %K% +ig (. “’O)air F&)Z\l + ?a’;’} =0
(TE) 0By, , 0By 9B 0B, (C.42)

ax T o e ooz,

TE Mode

Now the emvelope equation for the TE mode is derived. Tka«V the z-derivative of equauon C.36, and substituting equation C.38
and the v-denivative of equation C.37, results in

a'Aﬂ\ B'A I} l) l a A]- a Al\
—_t = o M .
5= T o £ (V00 = 3o+ Srex (C43)
0A KoY 0A
T[; l\ ) 1x
- —i— E ) WoEk (v,
. 635 0B,, 0°B\y
—1i
IJUa aT Hu Wy —=—— ()Z —HO S 3+ a aT
After substituting from order €, the TE mode equation reduces 10
O R
a:: a.\_g (‘2 7{(.\~w0) 2 — (C44)
94 941, ] Olnex (y.wo) 94,
_; TE lx —k(v.® K L ey R\ Iy
B 9z, (v wo)k' (v, o) 3T o Py a
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Using C.34, equation C.44 can be written

VA, | PAy

L
=+ =3
0z° dy*

+20 “’0 ek (v.00) A%, | (C.45)

2 s 1 a3UTE' BZTE
—i[{[BTE] ~ K(y.00) } UTF (3.020) - xay(z )} ol

aXl_‘] _ diney (y,wo) 04,

ax X !
~2i [BTE——‘—+k(y,mo)k (3.00) = % =

0Z,
The left-hand side can be reduced by taking a frequency derivative of equation C.23,

U7 (3, 0o)

{ (B8]~ kv 00) }UT® (o) = =253 = cas
- Ziiwo {87 - <0 wo) } UTE(y. wo).
which. upon substitution, results in
a(.f'+ aa?" R (v.wp)As, = | (C4T)
=2i [BTE %ZZ—': + k(. w9)K' (v, 00) aaZTl"] - alne{%'({“ ) 8(_;7)(1)-
—ta—m;{[BTF] —E(»uw}uIE(.v,wwa—’_‘f;%“i@

L —
:—”iBTF aA" B'n.'a‘h _—alnEK("wO) aA]‘\-
dy oX
Equation C.47 1s 1n the form Lu = f where L is an opuramr and f is the forcing function. By the'Fredholm alternative
theorem [194]. this equation has a solution-if and only if {«}. f) = 0. where u,, is the homogeneous solution. i.e. Liy = 0. The
homogeneous solution for Z_’«_‘ is just the TE mode so that 1, =< U?h(i\'.u)(,) ™2 In order to guarantee a‘unique solution then,

TE aAI TE B TEqTE OAL TE 2
B [UTF(v.wg)] dv+ BB T [UTF (v wg)] " dy (C.48)
. l
183“' TN _TE]. : : dlnek (v.wp)
ET)‘(—L»'[“ BTE): / l'ﬂ-“U.umu‘“(_\-.m(,\-+)—(1\ =0.
which can be written in the simpler form
9ATE T aA
C.49
5z =P (C.49)

1
N aBTM :[ﬁ“‘ B“] [‘ (V. m“)UT!: (v wy [aln£K ¥ ) /a\]d\
. —
X 2BTE [ [UTE (v, 0)) dy

Note that the TE-mode group-delay is defined as
plt = ——, (C.50)

which can be evaluated from the eigenvalue equation C.23 or the TE dispersion relation C.25. The TE-mode group velocity is
defined as \Tl" =1/p™.

The exlm term in equation C.49 indicates linear coupling between the TM and TE modes due to the variation of the TM
mode along the x direction, thus serving as a source term for the TE mode. This effect arises because of the differing rates of
diffraction on either side of a dielectric interface and does not occur in homogeneous regions; in the (3+1)-D case, the dielectric

“interface" is due to nonlinearity, which occurs at order €, and this term appears with the vectorial nonlinear couplings at order
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€°. Since the TE mode travels with the natural phase delay BTE, and the extra component generated by the TM mode is driven
with the phase delay B™, there is a coherence length. Leoh = [BTM BTE]~1, over which the effects of this term are important.
It is assumed that the propagation lengths of ultimate interest (~ Z2) are much longer than this coherence length (~ Z;) so that
the generation of a new TE component averages to zero. and the term can be neglected.

TM Mode

Performing the same steps with the TM mode results in

3%Bo,  0°Ba, O€% (»w0) 3Ba  » -
R

- k=(y Bsy = C.5l1
0z* dy* dy dy +E 0 @0)Bae (€51
0B 9B,,] Olnek (y,m0) 3B,
) ™ 1x k x R y
1[[3 A == + k(v )k’ (¥, o) 7 |t oy X
2 dlne (y.wo) 831’9’“‘.
owp dy 0yoT
Taking a frequency derivative of equation C.28 allows C.51 to be written
OBy, 9By, Oeg(hw0) 3By o
2 2 _ =L 4+ k= (y,00) B>, = C.52
92 a)_: a)' a-‘. + (.\ 0) 2 ( )
ad

s, 0B o [0lnek (v, w0) | 3°B),
. O TMY= _ 1.2/, 90k . 9 X Ly
T {[B J =Koz "o [ 3y 3yoT

3B, 9B ] Olnek (v,wo) 9B,
2i |BT™M === Bic 4 k(v ok (v ) "]— A1 %0) 9B,
oy oX

Z,
b [alnex()‘.wo)} 0°B),

RRF ar T

_ 9B, .0B,,] Olnek (v.wo) 9B,
._._QIBTM[TZLI-__‘I_BTM aT!} %‘ aXl

Agam using the Fredholm alternative theorem. equation C.52 is written in group-delay form

o™ _prw 9817 0B]

Cs3
oz " K (€9
QATE oy [UTF (v o) VM (. mo)[alnEK (3 p)/0y]d>
+i—e [[ BT
aX : -»BNI[VTM (v, (00)] dv
The ettective TM-mode group-delay coefficient 1s
™
BT\i B » » (C54)

amo '

where B 15 obtaned from equation C.28 or the TM dispersion relation C.32.

C.3 Order ¢’ - Coupled Nonlinear Schrodinger Equations

The nonlinear Schridinger equation appears at this order for both the TE and TM modes. The difference between the re-
sults obtained here and those obtained in the (3+1)-D derivation is the appearance of effective material constants representing
diffraction and nonlinearity. Because of the linear coupling between the TE and TM modes due to transverse index variation,
diffraction in the unguided transverse direction is modified slightly from the linear homogeneous case. Note that this effect
does not show up in purely scalar analysis [194]. but, except in the strongly-guided case, can be neglected nonetheless. The
effective nonlinearity is given by modal overlap integrals of the material nonhnear coefficient with the appropriate wavegunde
profiles for self- and cross- phase modulation.
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At this order, the second derivative with frequency of the mode profiles associated with A; and B, must be included, along
with the first derivative with frequency of the mode profiles associated with Az and Bj:

0ATE(X,Z;,T) ST

Asx = Ag, +iUTE (v, 00) T (C.55)
Q- 0°ATE(X,Z;, T) ;ate.
—EUEE (,V,wo)——l—afg—'-—e'ﬁ s
Again, ng is the unknown component of the electric field.
Now, Maxwell’s curl equations result in
oAy, 0As, Ay Ay, 3B
™) % S B = .
(TM) *: 5= 75 =%z, ~ 0z, o0k (C.36)
0As3, 0As, 0A |, aA‘v- an\
TE) y: - - ~ — B = .
(TB) ¥: 5= +3z t oz, ~ox — HoWFnTHGT (C37)
04>, 0A B>,
(TE) £ 2 ZE5 oo Bs. — o= (C58)
oX ay oT
and
0By. 0By, 0B - 0By, -
(TE) £: 2 — 2 = =2 = b = —iegOoel (1 00)Aze (C59)

dy 9z 0z, 0Z,
0A>,
+&o [ (v w0)+mosx(y. o) } — —2ingP|;,

. ' () 1 d-A X
+igg [eff;(.v.mo) 05'5(( w)}—“

-, aElt agl\' aEh aBZ:_ . L. —_ ' :
:(TE) Vv 3: + azl + 37, " ox —IE()COQER(_\,Q)())A_*{_V ‘ | (C.60)

' aK‘v‘. .
+&9 [Egj;(.\‘- wy) + (005!]{(.\1 Wo) J a—T'- - 210)0”,(.3)

. ' . Wy " a:K .
+igg [5!;‘((.\‘-0)0) + T()El& (> wo)] _aT_’i‘
, 0By 0By . L vy
(TM) pois —a}— - a_\' = —Iﬁow()ER(_\'.wo)Ajz : (C61)

: 0A-.
+&9 [E!K (v.09)+ (1)(]8!}'{ (v ) ] a—TT - waopfi)

. " a:K -
+i€y (€ [ lx(( ) + —Eli( ) )} ‘é‘T—;
where the third-order polarizations are written, for example.
3 2 2 b e
P‘“’zeonong(y){[ |A1_‘|'+2AIA|\{ +2A ]A1:|']A1,‘+y[A1_\A+Al:]Ah}. (C.62)

The Maxwell divergence equations give

aE'lK (_V, (-DO)
Jy

(TM)

0As,  0A3.  0Ax 3/31:] (C.63)

Ay,
A+ €5 (1. wo)[ e TR TR T A
. < 1 2

.ae%(.vva) aZZ,\- +i E (\ o ) d aZ"\ + af_‘lx + aZZ: axl:
o ot TERIGE ST T Tz
10ek (v.wo) 3%, 1 yu > {94y  9AL
4+ — =
T2 | 9y ' oz
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3B. 0Bs, 0By, 0By  0Bi: _ _
(TE) X T 3 + 72 + 32, =0. (C.64)

TE Mode
As before, taking the z-derivative of equation C.57, and substituting equation C.59 and the y-derivative of equation C.58, results
in
3323( %43, — 9%A, 0%,  0°Ay - 0%Ax '
—_ + 3 k ,W00)Az = — -~ — = = C6
3= T TH A= — 5z, T aex T amx (C.65)
a"g" a E"‘ aE‘\\- aElv P (3)
joWg =— — [HyWo === — 200pHo P
+.u()a aT pOa aT l.uO 0 aZ ‘/JO 0 an OAuO 1x

_,'(lﬁ L . Ly, E)A_‘ '} % L azxu
2 [ek (. 00) + w0g (v, 0)| 7 + 50 [ (0)-+ 226K (00 S

t

Using the appropriate substitutions from order € and order €, this equation can be written

0°Ay  0%*A3 s —
a_}* ayll‘ 4 K3 (3, 00) A = (C.66)
9%A,, 04 %A, 0%A;
K (. = -2 < a
3z, ~ 2kl wo)k (s “) 57 322 o
8 A
— “ +{[/\ ¥, (0p) ] + k(». (D())/\” (y, 00) } aT (3)
_ ’__a_ alnex(),wo) 94, - alnsx(y,u)o) 0As, -
owg dv oXoT oy ox
With the substitution of C.55, the terms on the left-hand side of equation C.68 containing A3y become
0°Ay,  0°A3 A -
a-;‘ + —8—3— + k(v wg)Ax = (C67)
aqz' 827\4 - -
a_;‘ + a\'-'-}‘ +I\"(\'. U)Q)A“
AL,
420 [BTERTE ~ k{y. o)t (- 00)| S
a \ A
{[ ] +BTERTE — [k (v )] —k(_v.wo)k”(,\xmo)} aT{"
’ ’ 2ZTE
~ 2 [BTFRT — k. u)o)k'(,v.w(,)]'UllT ®'(y.00) 575
Now. equation C.66 reduces to
9°A;,  97A:
a--h a\_;‘ + k(v 09)A3, (C.68)

‘ 9An, JAn, oTE0AL  0°Ap  0%Aj
__QIBTE{ +pTE } _2ipTE aZL _ axé' _ az’i'
2 i

2 rparer) 0°AL A"

+ { [BTE} +BTI:BTE } r+2BTEUTE (5, 0% )aTa]ZI

oT*

— TE L e
oA, 9 dineg (y, o) | 9°A},
ot 'dmo 3y aXoT

+ 2B U (3. 00)
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~ ialne‘i(y, ®o) 1y 8°B) _ dlneg (v, wo) 04y,
oy Y axaT oy X

2 3
- 2('00#013{.\') !

which has homogeneous solution 7{; o< UTE(y, mo)eiﬁm:. Applying the Fredholm alternative theorem to the right-hand side of
equation C.68 gives the following condition

A, :aATE 0ATE 2 '
2B [aai +B' Fra azl ]/[U.xTE(.V-wo)] dy (C.69)
OAl" TE']” TE- ren)| AL 9ATF TE 2
+[axl —{[ﬁ ] +BP } 972 +TZI:—]/[UX (%, @0)] " d»

ATE :8"A
- 2p™ [az BT ] [ 0T 00)UT (3, 00)dy

+ 20083 [ATEATE [ nato) [UTE (v 00)]
n 2”0,\,} {2AIBTMI3ATE +.Y[BTM]3AlTEne?.i[BTM—BTE]:} x
/m( ) V(00 UTE 00)] =+ [V™ (3, 00) UTE(y. ) }d\

™ dlneg (y.0 .
i ZB e /—n—\—o—)VTM( o) Uy (y, wo)dy

9XoT ©
9 BTM ™ ATE dlnek (v, 0)
SB™-B ]/ C RV yT™,, TE, ., '
tioxeT ¢ wo[ R Vy  (y, 00) Uy (v, o) dy

IM. y dlnes; (.
2B: o™ -o7: | »——;—w“"—)"”‘( . 00)UTE(y, wo)dy = 0.

X

v
Using equation C .49, the ATE terms with Z; derivatives are written

_opTE OAT"

- 0Z,dT
32B™ T JUTEYTE l\j\’T"'U”[alns (3. 6o}/ 0¥]dy
axoT ¢ [ UTE dy

I 107 S TE :
Uy = 2 TAL [Tyt (€70

—_
24TE ZATE a
T [ = [T g [ e e
|

BTP’+BTA1’ 9- BTM :H’»T\'—ﬂn
2BTE . OXOT

' ™ TE [Pnde o] TE [ 8nek o) |
a:A'lrE f v‘ (J" |: o ]d-\ ’- v.\' U.\- +— d_\

0x? ABTET [ VM dy

—i

= [VIMUTERInelg (v.0) /25y

Finally. using these expressions and defining the effective diffraction and nonlinear coefficients, the evolution equation becomes

2TE aA-, ST aAf dAT" Tga A\ BTEBTE"a Al e
o7 0Z,
TF ~spm TE—xpm

) 1')
232 |ATE| ATE + 443 A|BMIPATE =0,
where the phase-dependent terms arising from the x projections of the TM mode have been dropped. This is justified because
the terms that show up at this order are significant over the distance scale Z (and farther), and the phase dependent terms
are assumed to have coherence length Lo, ~ Z;, and therefore average away for NLS propagation. For the same reasons, the
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phase-dependent terms in the nonlinear polarization are also dropped, because they have a phase factor 2B™-B™ a5s0ciated

with them, and coherence length Leon/2.
The diffraction coefficient is defined as

ek (vwp) dek (vwg)
pymure [ 5] oy pvure | 255y

oTE -
ABTERT™™ [ [UTE] dy [ [VIM)* dy

(C.73)

which has primary contribution from linear homogeneous diffraction and an additional contribution arising from the linear
coupling between the two waveguide modes. This latter contribution is assumed small and © taken as unity. In the case of a
step-index waveguide. this assumption is well justified by noting that the derivative of the dielectric function results in a delta
function. which, in the integrals in the numerator, serves to sample the value of the product of the modal envelopes at each
interface. With a finite number of interfaces, these contributions will be much smatler than the continuous summation given by

the integrals in the denominator.
The effective self- and cross-phase modulation coefficients are defined

) [ TEC, 4 ,
’IIE—spm = f"-(.‘) [U\ ({v (1)0)] dy . (C.74)
i JIUTE) dy
TE-xpm _ {12() (U, wo)y_\-m 2 coo)]:d.\" Ces)
i JUTEFay

Note that in writing the effective nonlinear coefficient for cross-phase modulation that it was assumed that V:TM LK VM yTE,
which s vahd for weak guidance. Due to the overlap between the TE and TM modes, the effective ratio between the self-
phase modulation and cross-phase modulation coefficients may not equal the intrinsic value 2A, because, in general, piE—spm #

FE =
120
Taking the results from this and the previous order. the nonlinear wave equation for the TE mode in laboratory units is

. [9ATE L9ATE] 92T n9*ATE
~:RTE . TE _ RTEQRTE
2B 3 +B v =P 57 - (C76)
. ., ”;l'E—spm Ca ,nIE—me .
+245 = |ATEATE - kg 2——a|B™]|"ATE= 0.

ny ng

TM Mode
Pertorming the same steps with the x-component of the magnetic field results in
9°Bs, - . 9°By, Olngj (v.wo) 3By,
L kT (Vo) By, + — — 2 2= Cc7
FE (v-00)Bs, dy- oy dy : €7D

| 98- i 0B- 0B,. 0°By, 0°B,,
_ 21[3’1.\1 [az.( +B1M a—f‘} _ 2’BTM lx _ 1x i
1

0z, ox* oz
- 225 ~=TM
([ B e g o) 2

oT 079z,

+=TM L. n
T AL 8, n™ 9 [a'"%(—““’(’)] 9°Byy

R TEE L T e
in_ﬂ‘ialndj{(_\'. W) o )B:Z]TE n™ dlnek (y, wo) a'g;y
nTE a'\. \ y.Wo aTaX ‘nTE a'v aX
dlnek (v.0 ap  9p?
+2in™wy % LY 00) py_% Ty

dv Iz oy oz |’
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which has homogeneous solution E; o< VIM(y, mo)eiﬁnii. Applying the Fredholm alternative theorem to the right-hand side of
equation C.77 gives the following condition

aBIM ,aBTM 0BT .
:RTM 2 T™ ™ 2
2if [az, B =+ 3z J/[Vx (7, w0)] " dy (C.78)
°B™ ™2, atmgrve | 9°B1Y | 9°BIM ™ 2
+[ ax? —{[B |"+™8p } T T oz ]/[Vx (. 00)] " dy

0?B™M 1 0°B
_ T™ 1 ™ ™
2 [3218T P aT ]/Vx (5 @0) Vi M(y, wo)dy

+ 2n0k}IBlTMIZB}-M/ng(_\') [‘f\TM()',mo)]aVXTM(y,(oo)dy
2npk
+ B;’Mf {2ABTM lATEI BTM_*_.Y[-,BTE BTM] [ATE] BTM* 2A(BTE—pT™]: }x ,

[ o) (U300 V™ (5. 0) VM3, 00)dy

n™ o2 ATE dlnek (v, m '
i[pTE-™]: / [ " ° }UTE(y.wo)vJM(y.mo)d.v

nTE aXoT ¢ ¥
n™ a'ATE SIBTE-B™): 0 aln{i{‘ (v, wo)
d BTE-B ]/ R TE ™ ,
+i nTE axaT ¢ 8(1)0[ 3 Uy E(y, 00) VM (v, wo)dy
n™ aATE [BTE-B™]: dlnek (v, o)
d Y42 ip™-p ]/ N ' TE ™ _
+ 2 nE X e R Uy =(y, o)V, ™ (y.wo)dy = 0,

where again it was assumed that VIM « V™, UTE such that the = component of the nonlinear polarization Py. can be neglected.
As before, using equation C.53, the B™ terms with Z; are rewritten, allowing the solvability condition to be reduced to
geq 1 g y

aBT™ ,aBTM L 9™ 4 0*BT
T™ 2 T™ ™Y 2y TMATM" Y 21
2ip 3z, P "oz, } O oy PR (€.79)
‘”'l\l spin . 'TM xpm
+2 l\() 'BIMI BTM + 4/\ —;—A |ATl‘l BTN[ O
no

where the phase-dependent terms arising from the x projections of the TE mode have been dropped. The phase-dependent terms
in the nonhnear polarization are also dropped. The diftraction coefficient is defined as

s [ s o],
o™=1- TMRTE [ [1TM]2 £ ' (C.80)
ABTMBTE T (VTN dy [ [UTF] dy
which is again taken as unity. and the effective self- and cross-phase modulation coefficients are defined
na(v) [VIM |’ VIM(y wg)dy
nTM—spm J [ .y (¥ @o)d) (C.81)
/ [‘ ‘T‘“"d\‘
_ na(y L’TF(\ ux VTM ¥, ) VTM , Wg)dy
Téoxpm _ J 1209 | 1 V™M 00) V™ (3, 00)d , (C.82)

VM dy

Taking the results from this and the previous order, the nonlinear wave equation for the TM mode in laboratory units is

ZiBTM [aBTM . BTM' a?TM a:BTM _ BTM ﬁTM” aZBTM (C83)
0z or ox? or?
T\1 —spm . nTM Xxpm
‘8 1 IBTMI-BTM+4k’.’_2____A|ATEl BTM 0.

no ng
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As mentioned previously, these results are obtained strictly for the purposes of illustration of the effects of transverse
guidance, which, in the weak guidance approximation, results is effective linear and nonlinear coefficients. The modified NLS
equations are not used for the simulations directly, but the effective linear coefficients are evaluated in Appendix D for the
purposes of obtaining the birefringence beat length and the group-velocity walkoff length.




Appendix D

Optical Properties of Fused Silica

The numerical simulations presented in this thesis make use of the material parameters of fused silica. The reasons for this
choice are numerous: fused silica is highly transparent in the visible and infrared with small linear and two-photon absorption
and ultrafast non-resonant nonlinearity, has anomalous group-delay dispersion at the telecommunications wavelengths around
7.; = 1.55 pm, has high damage threshold, is well characterized, and has well-developed technology for fabrication into slab
and cvlindrical waveguide devices. The main downside. though, is the relatively small nonlinear coefficient. Because of this
fact. other nonresonant nonlinear materials, such as AlGaAs and PTS, will ultimately need to be studied, but fused silica serves
as a useful material on which to base initial investigations and the results obtained should be generalizable to other materials.

The first section discusses the optical properties of fused silica in bulk, while the second section looks at glass slab waveg-
uides. in which the linear properties are modified due to transverse confinement.

D.1 Properties of Bulk Fused Silica

For comparison, linear and nonlinear properties of fused silica and other candidate materials are shown in Table D.1. The other
materials are presented here because optical properties are used in Chapter 5 to derive figures of merit for use in spatial soliton
switching.

For the spatio-temporal simulations, the linear index dispersion and nonlinear Raman dispersion need to be discussed.
Appendix B covers the Raman response function and Raman susceptibility spectrum for fused silica. The linear index dispersion
is typically given by a Sellmeier-type relation of the form

{ 32
n*(A) = 1+ZX?’—)\2. (D.1)
j=1 J
where 7 are the resonance wavelengths and B are the associated oscillator strengths. Table D.2 lists the coefficients for fused
silica [30].

(" Matenal | fusedsilica | 39% Pb sthcate | PTS [ Al;3Gag.As |
reference (30} (156} [125] [127]
7o (um) 1.55 1.064 1.6 1.55
ny 1.444 1.774 1.8 34

kg (ps=/pm) | =279 x 10~° 1.17 x 1077 > 0? 1 x 1070 [157]
a(cm™T) 0.1 0.1 0.37 0.15

nl (cmY/W) | 3.3x10°1° 22x10°15 2.2x 10772 1.2x10°1

BL (cm/W) 55%x 10" 72x10°7 | <50x10°1° ~0P

), (cm*/W-) ? ? —8x 10772 | —5x 107> [143]

“ absorption at Ay = 1.3um used [158] .
b three-photon absorption is estimated at Bl =0.055 x 10~'8 cm®/W [127]

Table D.1: Linear and nonlinear properties of promising materials for nonlinear optical switching. The values for the linear
absorption coefficient are valid for slab waveguide geometries and are dominated by waveguide scattering.

165
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[7j | resonance wavelength ; (um) | oscillator strength B; ]

1 0.0684043 0.6961663
2 0.1162414 0.4079426
3 9.896161 0.8974794

Table D.2: Sellmeier coefficients for fused silica.

A plot of index dispersion over visible to near IR is shown in Figure D.1." The refractive index n determines the phase
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Figure D.1: Linear refractive index n and group index n for fused silica. The zero dispersion wavelength A,q = 1.27 um divides
the boundary between the normal dispersion regime (A < Azg) and the anomalous dispersion regime (A > Aq). The curves are

marked for therr values at 1.55 ym.

velocity v, = ¢/n. where ¢ is the speed of light in free-space. The material propagation constant k = wn/c is also referred to
here as the phase delay coefficient, since it is related to the inverse phase velocity. Of more relevance to this thesis, though,
are the group velocity and the group delay coefficient. The group velocity is the velocity at which a quasi-monochromatic
wavepacket travels. which is in general different than the phase velocity, and is most easily calculated from the group delay
coefticient. The group delay coefficient is the frequency derivative of the phase delay:

yzﬁzg[uwg—ﬂ =l - ©2)

where n, is the group index. Now, the group velocity is

= — (D.3)

The group index is also plotted in Figure D.1. showing that, over the spectral range plotted, the group velocity is less than the
phase velocity. which is generally true away from resonance.
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Another useful relation is the calculation of group delay based on the change of index with wavelength. Noting that

2nc 0 A 0 ' :
_ 9 __ MO D4
=T T e 2mc oA’ (D4)
the group delay can be written

1 on
K==n-A=|. D.5
c [n ax] (D5)
Group-delay dispersion describes the variation in group delay across a wave packet spectrum and is requnsible for pulse
broadening in linear propagation. The group-delay dispersion coefficient is calculated

y 0%k L[ on 0°n

Y= =e [2am ‘”amz] (DO
_ B
T 2mc” oA

Figure D.2 plots group-delay dispersion over the waﬁclength range 0.5 - 2.0 um. The zero-dispersion wavelength is also shown

T " A B B B T
. A= 1.27um .
0.05 : ,

i : anomalous dispersion |

0.00 § i

" normal dispersion

~0.05} . .

group—delay disp k" ({s¥/pum)

! 1 | ! — 1 1

0.6 0.8 1.0 1.2 14 1.6 1.8 2.0
wavelength A (in um)

Figure D.2: Group-delay dispersion k" for fused silica. The zero dispersion wavelength A,q = 1.27 ym divides the boundary
between the normal dispersion regime (A < A;4) and the anomalous dispersion regime (A > A.). The curve is marked for its
value at 1.55 pym. .

on this plot to emphasize that, since group-delay dispersion is zero at this location, a wavepacket should propagate without
change. Of course. this is not strictly true, because any wavepacket has nonzero bandwidth and will broaden because the slope
(called third-order dispersion) and curvature (fourth-order dispersion) of group-delay dispersion are nonzero at this wavelength.

Higher-order dispersion becomes important for broad temporal bandwidths. The simulations of spatio-temporal solitons in
this thesis use the higher-order dispersion coefficients because such broad bandwidths are present. Third-order dispersion is
calculated from

(D.7)

= _a_l 1 [ 9°n 8311]

5o = 3 T
A4 °n .o
e [337’2”‘3?] |
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Fourth-order dispersion is calculated from

*k 1[. o*n a*n
m_ Ok _ 11400 5on D38
=3 = ¢ [48(1)3 ‘*’aw] D5
AS d-n ?n 0%
= g [lzar oA+ ax4]

Plots of third and fourth-order dispersion for fused silica are shown in Figure D.3.
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Figure D 3 Higher-order dispersion for fused silica. Third- (solid curve) and fourth-order (dashed curve) dlspemons are plotted

versus wanelength. The curves are marked for their values at 1.55 ym.

As a summary of this section, the appropriate dispersion coefficients for bulk fused silica at the communications wavelength

7.= | 55 ym are histed in Table D.3.

[ coefficient | bulk SiO> | units |
ny 1.444 .
%o 5854 | I/um
ko 4.875 fs/um
K 007791 | fs*/um
ke 0.1511 | fs*/um
ky" -0.4931 | fs*/um

Table D.3: Calculated dispersion coefticients for bulk fused silica at A = 1.55 um.

D.2 Properties of Glass Waveguides

The waveguide geometry of interest is shown Figure C.1. This sections derives the TE and TM eigenvalues and modal profiles
in this three-layer slab case, and evaluates the modal phase delays BTE and B™ and the effective linear coefficients derived in

Appendix C.
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A cross-sectional view is shown in Figure D.4. Since the structure is piece-wise separable, the following definition is used
which represents phase delay in each layer

) - 27'l:n 7 2 )
k= 0 g = [—T’] , (D.9)

where nf = €;. Note that it is assumed that the magnetic permeability is the same in all regions.

y
1
n, cladding K
d/2
n, core _>_.z
-d/2
n, cladding (

Figure D.4: Cross-sectional view of three-layer slab waveguide geometry. In general, the refractive indices of the two cladding
layers are different. leading to an asymmetric structure.

D.2.1 Derivation of TE Mode

The solution for the TE mode must satisfy equation C.23. repeated here for convenience

27TE .. e A
oD (1) - o)} uFra). (D-10)

along with the boundary conditions C.24. It is clear that. depending on the size of [BTE]  relative to k:(_\'.m). equation D.10 has
two types of solutions:
UIE =a;e™" +a:e” ™" when [BTE] s k(. ) . (D.11)
UTE = bye™" 4 bae™™" when [BTE]’ < K(y. w).
The transverse wave numbers are defined
o =[BT - K (w) | (D.12)
K = Kn0) - BT

It is clear that in order to satisfy the boundary condition of finite one-dimensional power, the modal profiles must decay in
the cladding regions, implying that the effective longitudinal wave number BTE is greater than the bulk propagation constant of
the cladding. This also implies that, in order to satisfy the continuity boundary conditions, the field in the core region cannot
decay, such that the effective longitudinal wave number is less than the bulk propagation constant of the core.

With that in mind. the following piecewise solution is posed

aye” oY y>d/2
UTE(v.w) = { bcos(Kay+0) —d/2<y<d/2 ~(D.13)
are*»¥ y< —df2
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where the solution in the core region is written in the form of a cos() function w1thout loss of generality. Note that the non-
decaying solutions in the cladding regions have been eliminated. Imposing the boundary conditions at y = d/2 yields the

following constraints

aje~4? = beos (k2,d /2 + ¢) (D.14)
—ayyar e = —xybsin(Kayd/2 + 9), (D.15)

which can be divided to obtain
= tan(Kd/2+6). (D.16)

Similarly for the fields aty = —d/2,
are~ 4% = bcos (—Ka,d/2+0)
C£3ya3€—a3-‘d/: = —Kg).b sin (—szd/2 +0)

& tan (kayd/2 - 0). (D.17)

Koy

=

Now there are two equations and one unknown - ¢. Forcing both equations to give the same value for ¢ results in the
condition

20T+ 30TF = kayd £, (D.18)

where p is a nonzero integer and the phases are defined
OTE = 2tan™! (0, /Ka,) = Koyd +20 £ 01 (D.19)
O1E = 2tan™! (03, /K2y) = Koyd — 20 £ mim. (D:20)

Detining the effective index

Ky = \/ K3 = [BTE) = koy /3 — g, (p21)

the equation for the modal eigenvalue can be written

2kody/nd - nZg— 01" — 01 = 2pm, (D.22)

which can be solved numerically via the bisection method. The phases are rewritten as

”2 bt n:

oTE=20an~! [ L2 (D23)
-,

Q,IE =2tn! | e e — 13 . (D.24)
\ / '1% ot ngﬁ-

With ny. and hence B'F, known, K2y, O}y, O3, and ¢ can be calculated. From this information, the overall profile can be

calculated 5
cos (Ka,d/2 +0)e~®ul=dIA vy 472

UTE(yv,0)=b { cos (K2, ¥+ 0) —d/2<y<d[2 (D.25)
cos (Kayd/2 = ¢)eul+A y < —d/2

where b is an arbitrary (real) constant. In Appendix C, this constant is taken as unity.

D.2.2 Derivation of TM Mode

The solution for the TM mode must satisfy equation C.28, ‘repeated here for convenience

V™M (y.wp) _ dlneg (»,@0) V™ (y,m0) _
0y- dy dy -

{[B™)* - (3,00 VM (3,00),

(D.26)
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along with the boundary conditions C.29. When taking the boundary conditions into account at each interface, the eigenvalue
equation to be solved in each homogeneous region is [159]

07 VIM(y, 2 2
| xay(zy o {[BTM] —k'(y,wo)}VxTM(yv o), (D:27)

which has the same form as for the TE mode.
Following the same steps used in the previous section yields the equation for the TM effective index

2kody/n3 —nZg— o1 — o3M = 2pm. (D.28)

The phases are defined

2 " 2
"5 Il'ﬁ- -_ n‘]'
=V | =kyd+2¢'£nm , (D.29)
nf‘ / "% —_ ngﬂ-
niy/nie—n3
2V el ) = kayd—20/ £ mm, (D.30)
niy/n3- nig

¢TM =2tan™"

¢§M =2tan"!

and the overall profile can be written
cos (Kayd/2 +¢')e™ b=dl2 y> d/2

VIM(y,0) = { cos(kay+¢) —d/2<y<d/2 (D31)
cos (Kayd/2 = ¢')e®»ldl vy < —d/2

D.2.3 Linear Waveguide Dispersion Properties

This section calculates the dispersion coefficients for the TE and TM modes, taking into account both the material and waveg-
uide dispersions. The waveguide structure is assumed to be three-layer, as illustrated in Figure D.4.
The Sellmeier coefficients for three glass compositions [ 160] are given in Table D.4. These compositions are representative

[ coefficient |  SiO» [ GeO,:SiO (0.135:0.865) | B203:Si02 (0.133:0.867) |

Ay 0.069066 0.064270 0.061900
A> 0.115662 0.129408 0.123662
As 9.900559 9.425478 9.098960
B, 0.696750 0.711040 0.690618
B 0.408218 0.451885 0.401996
B 0.890815 0.704048 0.898817

Table D.4: Sellmeier coefficients for representative glass compositions suitable for waveguide fabrication.

of glasses which are common for fiber and integrated waveguide devices. Because of the variability of glass properties between
different melts and processing conditions, the coefficients for fused silica (Si0») in this table are slightly different than those
listed in Table D.2. _

The three most important effective waveguide quantities to this thesis are the difference in the phase delays between the
TE and TM modes, the difference in the group delays, and the effective group-delay dispersion coefficients. The first quantity
leads 10 a beat length between the modes defined by

2n 7Lf

loew = = .
TR

(D.32)

When the propagation distance is much greater than the beat length, then phase-dependent terms in the nonlinear polariza-
tion can be neglected as done for the simulations in Chapters 5 and 6, and the phase-dependent linear couplings derived in
Appendix C for the slab waveguide geometry can also be neglected.
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The second quantity leads to temporal walkoff, defined by
Twalkoff = AB'z, (D.33)

where AB' = BTE' — BT™' s the differential group delay coefficient, z is the propagation distance, and the effective TE and TM
group delay coefficients are defined by equations C.50 and C.54. When the walkoff time is greater than the temporal duration
of interacting pulses, then the interaction distance is limited to the walkoff distance, as defined by equation 1.33. As shown
in Chapter 6 though, this birefringent walkoff can be beneficial in order to counteract the temporal walkoff due to the strong
Raman down-shift of the pump solitary wave. ’ ‘

The final quantity, group-delay dispersion, is only important for the spatio-temporal studies in Chapter 6. In this case, a
negative group-delay dispersion (AGDD) coefficient allows for the formation of a bright solitary wave. The magnitude of this
coefficient determines the ratio between transverse width and duration (and spatial width), with small magnitude leading to
short duration and large magnitude leading to long duration.

These three quantities for A = 1.55 um are plotted as a function of core thickness in Figures D.5 and D.7 for symmetric
waveguides, and in Figures D.6 and D.8 for asymmetric waveguides, with air serving as the upper cladding layer. The waveguide
compositions shown consist of SiOz core with B»03:Si0> cladding, and GeO,:SiO; core with SiO; cladding. These figures
indicate that the use of asymmetric guides leads to shorter beat lengths and greater differential group delays.

. For the spatial soliton logic gates studied in section 5.4, the gate lengths were 2.63 cm, indicating that ltey < 2.63 cm.
Numerical simulation has shown that the phase-dependent effect of the vectorial four-wave mixing terms is nearly eliminated
when the device length is greater than about 5 lyeq,. Therefore, for the spatial dragging gates, lhear < 5 mm. This criterion is met
by the asymmetric waveguide of Figure D.8, for core thicknesses of about 4.5 um or less.

The spatio-temporal logic gates of section 6.3'have gate lengths of 8 Zy = 13.2 cm, so that lpey < 25 mm. This constraint can
be met by all waveguide structures except for the first symmetric waveguide with SiO» core. There is an additional constraint in
the spatio-temporal case. however. As discussed in section 6.3, due to the Raman down-shift, in cascaded operation, group delay
birefringence is necessary to equalize the group velocities of the downshifted signal and clean pump in all cascaded stages. This
differential group delay is about 2.3 to 2.8 fs/um, which can only be obtained by the second asymmetric guide of Figure D.8
with core thickness about 2 um. Note, though, that the first asymmetric guide nearly fulfills this additional requirement as well.
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Figure D.5: Linear properties of silica (SiOa) core, B.03:SiO» symmetric clad slab waveguide versus core thickness. All
quantities are evaluated at Ay = 1.55 um. The birefringent beat length lpey 1s defined by equation D.32, and the differential
group delay AP;, leads to temporal walkoff defined by equation D.33. For comparison, the GDD coefficient for the core
material is -0.02745 fs*/um, and -0.03865 fs*/um for the cladding.
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Figure D.6: Linear properties of silica (SiO2) core. B203:Si02 lower clad and air upper clad slab waveguide versus core
thickness. The dispersive properties of air are neglected for simplicity. All quantities are evaluated at Ay = 1.55 ym. The
birefringent beat length lyey is defined by equation D.32, and the differential group delay Af, leads to temporal walkoff defined
by equation D.33. For comparison, the GDD coefticient for the core material is -0.02745 fs-/um, and -0.03865 fs? /um for the
lower cladding.




" Final Report AFOSR F49620-95-1-0431, Spatial Soliton Interactions, S. Blair & K. Wagner, U. Colorado, Boulder

group delay disp gy (£57pm)

waveguide thickness (in um)

0.2

0.1

0.0

-0.1

— '70:'—r T T T T A
g B E
E E\ lbest -:
60 = . 3

é £, === 4B, ]
< £ ]
B 205 ]
s E E
- 40= 3
« o4 A -
g z
- 302— \\ é
S = \ 3
g = =
= 20 - 3
S ot :
— z ]
© = 4
2 10z I
8

~0.016 ST e 7
- TE -
-0.018 - R ™
-0.020 - N -
~0.022 - N -
! \\\\ ;
-0.024 - 3
: i
~0.026 - ]
‘ - 1
2 3 4 D 6 7 8

differential group delay (in fs/mm)

175

Figure D.7: Linear properties of GeO3:SiO: core. silica (S10z) symmetric clad slab waveguide versus core thickness. All
quantities are evaluated at Ay = 1.55 um. The birefrningent beat length Iy is defined by equation D.32, and the differential
group delay AP}, leads to temporal walkoft defined by equation D.33. For comparison, the GDD coefficient for the core
material is -0.01733 fs>/um, and -0.02745 fs* /um for the cladding.
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Figure D.§: Linear properties of GeOa:SiO; core. silica (S10z) lower clad and air upper clad slab waveguide versus core
thickness. The dispersive properties of air are neglected for simplicity. All quantities are evaluated at A, = 1.55 um. The
birefringent beat length ., is defined by equation D.32. and the differential group delay A}, leads to temporal walkoff defined
by equation D.33. For comparison. the GDD coefticient for the core material is -0.01733 fs/um, and -0.02745 fs*/um for the
lower cladding.
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