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STRONG STABILITY PRESERVING HIGH-ORDER TIME DISCRETIZATION
METHODS

SIGAL GOTTLIEB*, CHI-WANG SHU?, AND EITAN TADMOR?

Abstract. In this paper we review and further develop a class of strong-stability preserving (SSP)
high-order time discretizations for semi-discrete method-of-lines approximations of partial differential equa-
tions. Termed TVD (total variation diminishing) time discretizations before, this class of high-order time
discretization methods preserves the strong-stability properties of first-order Euler time stepping and has
proved very useful especially in solving hyperbolic partial differential equations. The new contributions in
this paper include the development of optimal explicit SSP linear Runge-Kutta methods, their application
to the strong stability of coercive approximations, a systematic study of explicit SSP multi-step methods,

and a study of the strong-stability preserving property of implicit Runge-Kutta and multi-step methods.

Key words. strong-stability preserving, Runge-Kutta methods, multi-step methods, high-order accu-

racy, time discretization
Subject classification. Applied and Numerical Mathematics

1. Introduction. It is a common practice in solving time-dependent Partial Differential Equations
(PDEs) to discretize first the spatial variables to obtain a semi-discrete method-of-lines scheme. This is
then a system of Ordinary Differential Equations (ODEs) in the time variable which can be discretized and
solved by an ODE solver. A relevant question here is stability. For problems with smooth solutions, usually
a linear stability analysis is adequate. For problems with discontinuous solutions, however, such as solutions
to hyperbolic problems, a stronger measure of stability is usually required.

In this paper, we review and further develop a class of high-order strong-stability preserving (SSP) time
discretization methods for the semi-discrete method-of-lines approximations of PDEs. This class of time
discretization methods was first developed in [19] and [18] and was termed TVD (Total Variation Diminishing)
time discretizations. It was further developed in [6]. The idea is to assume that the first-order forward-Euler
time discretization of the method-of-lines ODE is strongly stable under a certain norm, when the time step,
At, is suitably restricted, and then try to find a higher-order time discretization (Runge-Kutta or multi-
step) that maintains strong stability for the same norm, perhaps under a different time-step restriction. In
[19] and [18], the relevant norm was the total variation norm: the Euler forward time discretization of the
method-of-lines ODE was assumed TVD, hence the class of high-order time discretization developed there
was termed TVD time discretizations. This terminology was kept also in [6]. In fact, the essence of this
class of high-order time discretizations lies in its ability to maintain the strong stability in the same norm
as the first-order forward Euler version, hence “strong stability preserving”, or SSP, time discretization is a
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more suitable term which will be used in this paper.

We begin this paper by discussing explicit SSP methods. We first give, in §2, a brief introduction for
the setup and basic properties of the methods. We then move in §3 to our new results on optimal SSP
Runge-Kutta methods of arbitrary order of accuracy for linear ODEs suitable for solving PDEs with linear
spatial discretizations. This is used to prove strong stability for a class of well-posed problems u; = L(u)
where the operator L is linear and coercive, improving and simplifying the proofs for the results in [13]. We
review and further develop the results in [19], [18] and [6] for nonlinear SSP Runge-Kutta methods in §4 and
multi-step methods in §5. Section 6 of this paper contains our new results on implicit SSP schemes. It starts
with a numerical example showing the necessity of preserving the strong stability property of the method,
then it moves on to the analysis of the rather disappointing negative results about the non-existence of SSP
implicit Runge-Kutta or multi-step methods of order higher than one. Concluding remarks are given in §7.

2. Explicit SSP Methods.

2.1. Why SSP methods?. Explicit SSP methods were developed in [19] and [18] (termed TVD time
discretizations there) to solve systems of ODEs

(2.1) (—id—tu = L(u),

resulting from a method-of-lines approximation of the hyperbolic conservation law,
(2.2) up = — f(u)s,

where the spatial derivative, f(u),, is discretized by a TVD finite difference or finite element approximation,
e.g., (8], [16], [20], [2], [9]; consult [21] for a recent overview. Denoted by —L(u), it is assumed that the
spatial discretization has the property that when it is combined with the first-order forward Euler time

discretization,

(2.3) u™! = w4+ AtL(u®),
then, for a sufficiently small time step dictated by the CFL condition,
(2.4) At < Atrg,

the Total Variation (TV) of the one-dimensional discrete solution u” := % Uil ySoS,4) does not
=8 —

increase in time, i.e., the following, so called TVD property, holds
(2.5) TV <TV@™),  TV@") =Y |jufy, —uj|
J
The objective of the high order SSP Runge-Kutta or multi-step time discretization is to maintain the

strong stability property (2.5) while achieving higher-order accuracy in time, perhaps with a modified CFL

restriction (measured here with a CFL coefficient, c)
(2.6) At < cAtrpg.

In [6] we gave numerical evidence to show that oscillations may occur when using a linearly stable,
high-order method which lacks the strong stability property, even if the same spatial discretization is TVD
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Fia. 2.1. Second-order TVD MUSCL spatial discretization. Solution after the shock moves 50 mesh points. Left: SSP
time discretization; Right: non-SSP lime discrelization.

when combined with the first-order forward Euler time discretization. The example is illustrative, so we
reproduce it here. We consider a scalar conservation law, the familiar Burgers’ equation

(2.7) 1“+(%w)x=o

with a Riemann initial data:

1 ifz <0
2.8 =4 0 =
(28) u(,0) {—oa if 7> 0.

The spatial discretization is obtained by a second-order MUSCL [12], which is TVD for forward Euler time
discretization under suitable CFL restriction.

In Fig. 2.1, we show the result of using a SSP second-order Runge-Kutta method for the time discretiza-
tion (left), and that of using a non-SSP second-order Runge-Kutta method (right). We can clearly see that
the non-SSP result is oscillatory (there is an overshoot).

This simple numerical example illustrates that it is safer to use a SSP time discretization for solving
hyperbolic problems. After all, they do not increase the computational cost and have the extra assurance of
provable stability.

As we have already mentioned above, the high-order SSP methods discussed here are not restricted
to preserving (not increasing) the total variation. Our arguments below rely on convexity, hence these
properties hold for any norm. Consequently, SSP methods have a wide range of applicability, as they can
be used to ensure stability in an arbitrary norm, once the forward Euler time discretization is shown to
be strongly stable!, i.e., [Ju® + AtL(u™)| < |lu”||. For linear examples we refer to [7], where weighted L?
SSP higher-order discretizations of spectral schemes are discussed. For nonlinear scalar conservation laws in
several space dimensions, the TVD property is ruled out for high-resolution schemes; instead, strong stability
in the maximum norm is sought. Applications of L>°-SSP higher-order discretization can be found in (3],
[9] for discontinuous Galerkin and central schemes. Finally, we note that since our arguments below are
based on convex decompositions of high-order methods in terms of the first-order Euler method, any convex

1By the notion of strong stability we refer to the fact that there is no temporal growth, as opposed to the general notion of
stability which allows a bounded temporal growth, |[u”|| < Const - ||u®|| with any arbitrary constant, possibly Const > 1.




function will be preserved by such high-order time discretizations. In this context we refer, for example, to

the cell entropy stability property of high-order schemes studied in [17], [15].

2.2. SSP Runge-Kutta methods. In [19], a general m stage Runge-Kutta method for (2.1) is written

in the form:
u©® =y,
(2.9) u(® :_g ((yi,ku("") + Atﬁi,kL(u(k))) , i >0, i=1,..,m
u™tl = ZT'(')").

Clearly, if all the §;’s are nonnegative, f;x > 0, then since by consistency Z;;IO a; ;= 1, it follows that
the intermediate stages in (2.9), «(, amount to convex combinations of forward Euler operators, with At

replaced by Z—?‘%At, We, thus, conclude

LEMMA 2.1. [19]. If the forward Euler method (2.3) is strongly stable under the CFL restriction (2.4),
[u™ + AtL(u™)|| < ||u®||, then the Runge-Kutta method (2.9) with B; 1 > 0 is SSP, |[u™!|| < |[u™|, provided
the following CFL restriction (2.6) is fulfilled,

(2.10) At < cAtpg, ¢=min Qik
ik Bik

If some of the f3;1’s are negative, we need to introduce an associated operator L corresponding to
stepping backward in time. The requirement for L is that it approximates the same spatial derivative(s) as
L, but that the strong stability property holds |[u™*!|| < ||u”||, (- either with respect to the TV or another

relevant norm), for first-order Euler scheme, solved backward in time, i.e.,

(2.11) u™t = u — AtL(u™).

This cén be achieved, for hyperbolic conservation laws, by solving the negative in time version of (2.2),
(2.12) u = f(u)a-

Numerically, the only difference is the change of upwind direction. Clearly, L can be computed with the
same cost as that of computing L. We then have the following lemma.

LEMMA 2.2. [19]. If the forward Euler method combined with the spatial discretization L in (2.8)
is strongly stable under the CFL restriction (2.4), ||u™ + AtL(u™)|| < ||u"||, and if Euler’s method solved
backward in time in combination with the spatial discretization L in (2.11) is also strongly stable under the
CFL restriction (2.4), |lu™ — AtL(u™)|| < ||u™||, then the Runge-Kutta method (2.9) is SSP [|u™+!|| < |lu™|l,
under the CFL restriction (2.6),

.
(2.13) At < cAtpp, c¢=min —2-,
wk - |Bikl

provided f3; 1. L is replaced by ﬁ@kﬂ whenever fB; i, is negative.
Notice that, if for the same k, both L(u*)) and L(u(*)) must be computed, the cost as well as storage
requirement for this k is doubled. For this reason, we would like to avoid negative ; ; as much as possible.

However, as shown in [6], it is not always possible to avoid negative B «.



2.3. SSP multi-step methods. SSP multi-step methods of the form:

m
(214) u“"’l = Z (aiu"“_i + AtﬂiL(un+l_i)) ’ 273 Z 0,

=1
were studied in [18]. Since 3" a; = 1, it follows that u™*! is given by a convex combination of forward Euler
solvers with suitably scaled At’s, and hence, similar to our discussion for Runge-Kutta methods we arrive

at the following lemma.

LEMMA 2.3. [18]. If the forward Euler method combined with the spatial discretization L in (2.3)
is strongly stable under the CFL restriction (2.4), |[u™ + AtL(u™)|| < ||[u™||, and if Euler’s method solved
backward in time in combination with the spatial discretization L in (2.11) is also strongly stable under the
CFL restriction (2.4), |[u — AtL(u™)|| < Ju™||, then the multi-step method (£.14) is SSP |ju™*!|| < [Ju”||,
under the CFL restriction (2.6),

. Qg
(2.15) At < cAtpg, c¢=min B’
provided B;L(-) is replaced by B;L(-) whenever B; is negative.

3. Linear SSP Runge-Kutta Methods of Arbitrary Order.

3.1. SSP Runge-Kutta methods with optimal CFL condition. In this section we present a class
of optimal (in the sense of CFL number) SSP Runge-Kutta methods of any order for the ODE (2.1) where
L is linear. With a linear L being realized as a finite dimensional matrix we denote, L(u) = Lu. We will
first show that the m-stage, m-th order SSP Runge-Kutta method can have, at most, CFL coefficient ¢ =1
in (2.10). We then proceed to construct optimal SSP linear Runge-Kutta methods.

PROPOSITION 3.1. Consider the family of m-stage, m-th order SSP Runge-Kutta methods (2.9) with
nonnegative coefficients a; . and B x. The mazimum CFL coefficient attainable for such methods is the one

dictated by the forward Euler scheme,
At < Atrg,

i.e., (2.6) holds with mazimal CFL coefficient c = 1.

Proof. We consider the special case where L is linear, and prove that even in this special case the maximum

CFL coefficient ¢ attainable is 1. Any m-stage method (2.9), for this linear case, can be rewritten as:

i—1
ul) = <1+ZAi,k(AtL>’““) uw®, i=1,.,m

k=0

where

i—1 i—1
Aip=B10,  Aip= aixdro+ Y Bk,
k=1 k=0

i—1 i—1
Ai,lc = Z ai,jAj‘k + Zﬂi,jAj,k—l, k=1,..,1-1.
j=k+1 j=k




In particular, using induction, it is easy to show that the last two terms of the final stage can be expanded

as

m
Anmo1 = Hﬂt,z—i
=1
m m k—2 ™m m
Amm—z =Y Brk-2 ( 11 51,1—1) (H ,Bl,l~1) +> ok | ] B
k=2 =1 k=1

I=k+1 I=1,l#k

1

For a m-stage, m-th order linear Runge-Kutta scheme A, = ﬁ Using Apm-1 = Hln;l Bri-1 = 71

we can rewrite

m ke m k-2

_ 1
Amm-z = Y ——— e +Z,Bk k-2 ( II ﬂ1,1’1> (H ﬂt,l-l) :

k=1 I=k+1 I=1
With the non-negative assumption on f; x’s and the fact Ay ;m_1 = HZ” 1B = 1. we have Bri—1 > 0 for
all I. For the CFL coefficient ¢ > 1 we must have ;‘ Zhk=l > 1 for all k. Clearly, Ap -2 = (m i is possible
under these restrictions only if B¢ r—2 = 0 and ﬂi—‘ =1 for all k, in which case the CFL coefficient ¢ < 1.
|

We remark that the conclusion of Proposition 3.1 is valid only if the m-stage Runge-Kutta method is
m-th order accurate. In [18], we constructed an m-stage, first-order SSP Runge-Kutta method with a CFL
coefficient, ¢ = m which is suitable for steady state calculations.

The proof above also suggests a construction for the optimal linear m-stage, m-th order SSP Runge-
Kutta methods.

PROPOSITION 3.2. The class of m stage schemes given (recursively) by:

(31) U(i) = TL(i—l) + AtL’lt(i_l), 7= 1’ ey TN — 1
m—2
ul™ = Z am,ku(k) + amm-1 (U(m‘l) + AtLu(m"')) ,
k=0

where a1 =1 and

1
(3.2) Uk = Eam_lykﬁl, k=1,..,m—-2

1
Amm—-1 = oy ) Um0 = 1- E Q&
m:

is an m-order linear Runge-Kutta method which is SSP with CFL coefficient ¢ =1,

At < Atpg.

Proof. The first-order case is forward Euler, which is first-order accurate, and SSP with CFL coefficient
¢ = 1 by definition. The other schemes will be SSP with a CFL coefficient ¢ = 1 by construction, as long as
the coefficients are non-negative.

We now show that scheme (3.1)-(3.2) is m-th order accurate when L is linear. In this case clearly

Al
&) = ) = = 0 P — _
u (1 + AfL) u <Z k' L — k) (AtL) ) U( )) i=1,...,m 1,




hence scheme (3.1)-(3.2) results in
m—2 J 'I ml
W™ = g ___k! = (ALLY* + IZ—_—_k' ol (ALL)* | u(©.
j=0. k=0

Clearly, by (3 2), the coefficient of (AtL)™ ! is am,mﬂl(—m”j—!l)! = (m_l-T)_w the coefficient of (AtL)™ is
Om,m—1 = =, and the coefficient of (AtL)° is

1 m—2
— > omg=1
T =0
It remains to show that, for 1 < k < m — 2, the coefficient of (AtL)* is equal to 4

1 m-—2 .' 1

(3.3) Pl Tha Z i TG 1 = A

This will be shown by induction. Thus, we assume (3.3) is true for m, then for m 4+ 1 we have, for 0 < k <
m — 2, the coefficient of (AtL)**! is equal to

3
N

m—1

(1 +1)!

1 ! 1 1
E+Dlm R +J_§k—;rlam+1’(k+l)(]~k—l)!_(k+1)! m—F) T 2 GmtL T

o~
ko

1 1 =1 (L +1)!
RIS ((m—k)! T2 (z+1)a’”"(z-k)!>
. L < SN
D ANCED I A (5]

1
BRCES]

where in the second equality we used (3.2) and in the last equality we used the induction hypothesis (3.3).
This finishes the proof.
Finally, we show that all the a’s are non-negative. Clearly oo = az1 = % > 0. If we assume oy ; >0
forall j =0,...,m — 1, then
. 1
Am+1,5 = ;am,]'—l 20, j=L.,m-1 AUmt+1,m = m >0,

and, by noticing that am41,; < @m,j-1 for all j =1,...,m, we have

m m
ami10 = 1— Zam+l,j >1- Zam,j—l =0.m
j=1 i=1

As the m-stage, m-th order linear Runge-Kutta method is unique, we have in effect proved this unique
m-stage, m-th order linear Runge-Kutta method is SSP under CFL coefficient ¢ = 1. If L is nonlinear,
scheme (3.1)-(3.2) is still SSP under CFL coefficient ¢ = 1, but it is no longer m-th order accurate. Notice
that all but the last stage of these methods are simple forward Euler steps.

We note in passing the examples of the ubiquitous third- and forth-order Runge-Kutta methods, which
admit the following convex — and hence SSP decompositions

3

(3.4) Z kl, (AtL)* = (I + AtL) + (I + AtL)®

- II
wl»—t

?“'H
—

§(I+AtL) + (I+AtL) + %(I+AtL)4.

OO|O-”

(3.5) (AtL)

E
Il
=)




TABLE 3.1
Coefficients o, ; of the SSP methods (3.1)-(3.2)

order m &m0 Qm 1 (4771 am,3 Om 4 Qm 5 Qm 6 Qm 7
1 1
1 1
2 2 2
1 1 1
3 3 2 6
3 1 1 1
4 8 3 1 24
5 1 3 1 1 1
30 8 6 12 120
6 53 1 3 1 L 1
144 30 16 18 48 720
7 103 5 U1 3 1 1 1
280 144 60 48 72 240 5040
8 2119 103 53 11 1 1 1 1
5760 280 288 180 64 360 1440 40320

We list, in Table 3.1, the coefficients o, ; of these optimal methods in (3.2) up to m = 8.

3.2. Application to coercive approximations. We now apply the optimal linear SSP Runge-Kutta
methods to coercive approximations. We consider the linear system of ODEs of the general form, with

possibly variable, time-dependent coefficients,

(3.6) %u(t) = L(t)u(t).

As an example we refer to [7], where the far-from-normal character of the spectral differentiation matrices
defies the straightforward von-Neumann stability analysis when augmented with high-order time discretiza-

tions.
We begin our stability study for Runge-Kutta approximations of (3.6) with the first-order forward-Euler

scheme (with (-,-) denoting the usual Euclidean inner product)
ut = u? + A, Lt )u”,
based on variable time-steps, t* := S0, ! At;. Taking L2 norms on both sides one finds
§=0 7 g
|u 2 = [u"|? + 2At, Re(L(t™)u™, u™) + (At,)?|L(E™")u"|?,
and hence strong stability holds, |[u™*!| < |u"|, provided the following restriction on the time step, Aty, is
mct,
At, < —2Re(L(#™")u™ u™)/|L{t")u™|?.

Following Levy and Tadmor [13], we therefore make the

AsSsUMPTION 3.1. (Coercivity). The operator L(t) is (uniformly) coercive in the sense that there exists
n(t) > 0 such that

(3.7) n() = inf Re(L(t)u,u)

_ > (.
i~ T L@e?



We conclude that for coercive L’s, the forward Euler scheme is strongly stable, ||I + At, L(t")|| < 1, if
and only if

Atp < 27(t7).

In a generic case, L(t™) represents a spatial operator with a coercivity-bound n(¢"), which is proportional
to some power of the smallest spatial scale. In this context the above restriction on the time-step amounts
to the celebrated Courant-Friedrichs-Levy (CFL) stability condition. Our aim is to show that the general
m-stage, m-th order accurate Runge-Kutta scheme is strongly stable under the same CFL condition.

Remark. Observe that the coercivity constant, 7, is an upper bound in the size of L; indeed, by Cauchy-
Schwartz, n(t) < |L(t)u| - |u]/|L(t)u|* and hence
|L(t)u| 1

lul = ()

(3.8) IL(#)]] = sup

To make one point we consider the fourth-order Runge-Kutta approximation of (3.6)

(3.9) k' = L{tM)u™

(3.10) k2 = L(t" %) (u" + A—Qt’ikl)

(3.11) B = L") (u” + 523’-‘-1;2)

(3.12) k' = L) (u™ + At k®)

(3.13) Wt =y 4 % [k’ + 2K+ 2K° + k“].

Starting with second-order and higher the Runge-Kutta intermediate steps depend on the time variation

of L(-), and hence we require a minimal smoothness in time, making

ASSUMPTION 3.2. (Lipschitz regularity). We assume that L(-) is Lipschitz. Thus, there exists a constant
K > 0 such that

K
(3.14) IL(t) — L(s)I| < ﬁlt — sl

We are now ready to make our main result, stating

PROPOSITION 3.3. Consider the coercive systems of ODEs, (8.6)-(3.7), with Lipschitz continuous coef-
ficients (3.14). Then the fourth-order Runge-Kutta scheme (3.9-8.13) is stable under CFL condition,

(3.15) At, < 29(t"),
and the following estimate holds

(3.16) fu™| < &3t 0.

Remark. The result along these lines was introduced by Levy and Tadmor [13, Main Theorem], stating the
strong stability of the constant coefficients s-order Runge-Kutta scheme under CFL condition At,, < Cen(t™).



Here we improve in both simplicity and generality. Thus, for example, the previous bound of Cy = 1/31 [13,
Theorem 3.3] is now improved to a practical time-step restriction with our uniform C; = 2.

Proof. We proceed in two steps. We first freeze the coefficients at ¢t = ", considering (here we abbreviate
Ln —_ L(tﬂ))

(3.17) §t = L™

(3.18) 7= LMu + %ﬁjl) =01+ é;—"L")u"

(3.19) 33 =L (u" + %ﬁ) =L" [I + -A;L"(I + %tﬁL”) u™
(3.20) 3t = L™ (u™ + At,5°)

(3.21) v =yt 4 —Aé’—'l [jl + 252 +25% + j4].

Thus, v*1! = Py(At, L™)u™, where following (3.5)

3

Py(At, L") := g+ 3(1 + AtL) + (I + AtL)? + l(I + AtL)*.

4( 24
Since the CFL condition (3.15) implies the strong stability of forward-Euler, i.e. ||+ At,,L"|| < 1, it follows
that ||Py(At,L™)|| < 3/8+1/3+1/441/24 = 1. Thus,

(3.22) "] < Ju”.

Next, we turn to include the time dependence. We need to measure the difference between the exact

and the ‘frozen’ intermediate values — the k’s and the j’s. We have

(3.23) K —-jl=0

(3.24) K- %= [L(t"+%) - L(t")] (I+ A’“ iy A

(3.25) W—43:LWH%9§%H—4)+[Mﬂ+%—Laﬂ]%?f
(3.26) kY — gt = L™ AL, (k% = 3°) + [L(t™) — L(t")] Atng.

Lipschitz continuity (3.14) and the strong stability of forward-Euler imply

K- At,
2n(t)

Also, since ||L"|| < - (tn), we find from (3.18) that |j2]| < |u™|/n(t"), and hence (3.25) followed by (3.27) and
the CFL condition (3.15) imply

(3.27) : k? — 7% < [u”| < Klu™].

Atn_o

(628) K -] < 5

K- At At, At. \2
72 n n n n < n
e 2n(t") PG I <=2 (27}(t”)> [u”] < 2K Ju"].

Finally, since by (3.19) 52 does not exceed, |j®| < n(t") —(1+ ﬁ(-tt%.j)|u“|, we find from (3.26) followed by (3.28)
and the CFL condition (3.15),

At K- At At At,
3.29 k4 _ a4 < n k‘i _ 23 + L n ( + > n
(3.29) W =3 < B = S e U e )

At < At,, )"‘
<K + u”| < 12K |u™|.
- ((n(t")) n(t") he) < 12K

10




We conclude that u™*7,
At
utt =t 4 —Eﬁ[z(k2 - +2(k -5+ (% - j“)],
is upper bounded by, consult (3.22), (3.27)-(3.29),

Aty
[ < o 4+ = [2K|u"| +4K|u"| + 12K|u"]]
< (1+ 3K At,)|u"|

and the result (3.16) follows. W

4. Nonlinear SSP Runge-Kutta Methods. In the previous section we derived SSP Runge-Kutta
methods for linear spatial discretizations. As explained in the introduction, SSP methods are often required
for nonlinear spatial discretizations. Thus, most, of the research to date has been in the derivation of SSP
methods for nonlinear spatial discretizations. In [19], schemes up to third order were found to satisfy the
conditions in Lemma 2.1 with CFL coefficient ¢ = 1. In [6] it was shown that all four stage, fourth-order
Runge-Kutta methods with positive CFL coefficient ¢ in (2.13) must have at least one negative f3;, and
a method which seems optiinal was found. For large scale scientific computing in three space dimensions,
storage is usually a paramount consideration. We review the results presented in [6] about strong stability
preserving properties among such low-storage Runge-Kutta methods.

4.1. Nonlinear methods of second, third and fourth order. Here we review the optimal (in the
sense of CFL coefficient and the cost incurred by L if it appears) SSP Runge-Kutta methods of m-stage,
m-th order, for m = 2,3, 4, written in the form (2.9).

PRrROPOSITION 4.1. [6]. If we require fB; ) > 0, then an optimal second-order SSP Runge-Kutta method
(2.9) is given by
4.1) u) = u™ + AtL(u™)
1 1 1
u"t! = 511," + Eu(]) + EAtL(u(l)),

with a CFL coefficient c = 1 in (2.10). An optimal third-order SSP Runge-Kutta method (2.9) is given by
uV) =y + AtL(u™)
(4.2) u® = gu“ + %um + AL ()
u™t = %u” + —g:u(?‘) + %AtL(u(z)),

with a CFL coefficient c=1 in (2.10).
In the fourth-order case we proved in [6] that we cannot avoid the appearance of negative f; x:

PROPOSITION 4.2. [6]. The four-stage, fourth-order SSP Runge Kutta scheme (8.9) with a nonzero
CFL coefficient ¢ in (2.18) must have at least one negative B; .-

We thus must settle for finding an efficient fourth-order scheme containing L, which maximizes the
operation cost measured by 3%, where ¢ is the CFL coefficient (2.13) and i is the number of Ls. This way
we are looking for a SSP method which reaches a fixed time T' with a minimal number of evaluations of L
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or L. The best method we could find in [6] is:

u® =™ 4 —1—AtL(u")

0 Dy B, I
(4.3) “(3)=2;32§go“n 5100020206010A L)+ %“m
70+ i s H
u""’lzéu"—i—EAtL(u") 360102070 O 4 LALE) + 37080703011<2>+; ® 4 AtL(u<3>)

with a CFL coefficient ¢ = 0.936 in (2.13). Notice that two Ls must be computed. The effective CFL
coefficient, comparing with an ideal case without Ls, is 0.936 x % = (0.624. Since it is difficult to solve the
global optimization problem, we do not claim that (4.3) is an optimal four stage, 4th-order SSP Runge-Kutta
method.

4.2. Low storage methods. For large scale scientific computing in three space dimensions, storage
is usually a paramount consideration. Therefore, low storage Runge-Kutta methods [22], [1], which only
require two storage units per ODE variable, may be desirable. Here we review the results presented in [6]
concerning strong stability preserving properties among such low-storage Runge-Kutta methods.

The general low-storage Runge-Kutta schemes can be written in the form [22], [1]:

uw® =y, du® =0,
du® = A;dulD + AtL(0Y), i=1,...,m,
(4.4) u® = (=1 4 Bidu®, i=1,...,m, Bj=g¢,

un+1 — u(m) ,

Only u and du must be stored, résulting in two storage units for each variable.
Following Carpenter and Kennedy [1], the best SSP third-order method found by numerical search in
[6] is given by the system

21 = 1/36c* + 36¢3 — 135¢2 + 84c — 12, 29 = 2%4+c—2
23 = 12¢* —18c® +18¢® — 11c+ 2, 24 36¢ct — 36¢® + 13¢? —8c+4
25 = 69¢® —62c® +28c — 8, 26 = 34c? —46¢ +34c¢? — 13c+2

~24(3¢ — 2)(c — 1)?
(322 — 21)2 — 12¢(c — 1)(323 — 21)

B, = 12¢(c — 1){329 — 21) — (324 — 21)? B. -
2 144¢(3¢c — 2)(c — 1) T8

—2124 +108(2c — 1)c® — 3{2c — 1)z
24z ¢(c — 1)* + 72¢zg + 72¢8(2¢ — 13)

4 = —21(6c2 —4c+ 1) + 323 4
27 Qe+ Dz -3(c+2)(2c-1)2 8

with ¢ = 0.924574, resulting in a CFL coefficient ¢ = 0.32 in (2.6). This is, of course, less optimal than
(4.2) in terms of CFL coefficient, but the low-storage form is useful for large scale calculations. Carpenter
and Kennedy [1] have also given classes of five-stage, fourth-order low-storage Runge-Kutta methods. We
have been unable to find SSP methods in that class with positive a; ; and B; . A low-storage method with
negative f; x cannot be made SSP, as L cannot be used without destroying the low-storage property.
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4.3. Hybrid multi-step Runge-Kutta methods. Hybrid multi-step Runge-Kutta methods (e.g.,
[10] and [14]) arc mecthods which combine the properties of Runge-Kutta and multi-step methods. We

explore the two-step, two-stage method:

(45) ’U/n_f_% = anu” + amu""l + At (ﬂgoL(un_l) =+ ﬂzlL(un)) ) azr > 0,
un-’rl — a30un—1 +a31un+%— + aszun
(4.6) +A (FooL(w"™") + B LW H) + foaL(w™) . 0y 20,

Clearly, this method is SSP under the CFL coefficient (2.10) if 8; 5 > 0. We could also consider the case
allowing negative f; +’s, using instead (2.13) for the CFL coefficicnt and replacing 8;x L by ﬂi,kf, for the
negative 3; 1’s.

For third order accuracy, we have a three parameter family (depending on ¢, aso, and asy):

Qog = 3¢ + 268
a0 = * + ¢
oy = 1- 362 - 263

B =c+2e%+c
2 + 2ai39 — 3¢ + 3agge + a3y I

(4.7) fao = o
ﬂ _ 5 — Q3p — 30/,3102 - 20{3103
e 6c + 6¢2

o3y =1 — a3 — a3
—5+ as0 + 9¢ + 3aspc — 3agic? — azic®

oz = =
The best method we were able to find is given by ¢ = 0.4043, azo = 0.0605 and as; = 0.6315, and has a
CFL cocfficient ¢ = 0.473. Clearly, this is not as good as the optimal third-order Runge-Kutta method (4.2)
with CFL coefficient ¢ = 1. We would hope that a fourth-order scheme with a large CFL coefficient could
be found, but unfortunately this is not the case as is proven in the following

PROPOSITION 4.3. There are no fourth-order schemes (4.5) with all non-negative ;.
Proof. The fourth-order schemes are given by a two-parameter family depending on ¢, a3g, and setting as;
in (4.7) with

-7 - 30 + 10c — 2(1306

Qa1 =

3 (3 + 8¢ + 4c?)
The requirement ap; > 0 enforces, consult (4.7), ¢ < % The further requirement apy > 0 yields
—% <c< % a3 has a positive denominator and a negative numerator for —% <e< %, and its denominator
is 0 when ¢ = —1 or ¢ = —3, thus, we require -2 < ¢ < —1. In this range, the denominator of a; is

negative, hence we also require its numerator to be negative, which translates to aszp < “T"i%. Finally, we

2 5
would require azy = 1 — az; — azq > 0, which translates to azo > & ((22;:11))((;;:3 ))(t:_;)lgoc. The two restrictions

on agp gives us the following inequality:

—7+10c _ *(2c+1)(2¢+3) + 7 - 10c
1+2¢ = (2c+1)2c—1)(c+1)? ’

which, in the range of —2 < ¢ < —1, yields ¢ > 1 — a contradiction. W
g 2 2
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5. Linear and Nonlinear Multi-step Methods. In this section, we review and further study SSP
explicit multi-step methods (2.14), which were first developed in [18]. These methods are 7-th order accurate
if :

(5.1) dai=1

=1
m m
ifa; = k (Z ik—’ﬂi) ., k=1,..,1
i=1 i=1

We first prove a proposition which sets the minimum number of steps in our search for SSP multi-step

methods.

PROPOSITION 5.1. For m > 2, there is no m-step, (m+1)-th order SSP method, and there is no m-step,
m-th order SSP method with all non-negative f;.

Proof. By the accuracy condition (5.1), we clearly have
m m

(5.2) > (e =Y P/ ()8
i=1 i=1

for any polynomial p(z) of degree at most r satisfying p(0) = 0.
When 7 = m + 1, we could choose

m

T
(53) w@) = [ e, o) =[G~
0 i=1
Clearly p'(1) = q(i) =0 for.i = 1,...,m. We also claim (and prove below) that all the p(i)’s, i = 1,...,m,
are positive. With this choice of p in (5.2), its right-hand side vanishes, while the left hand side is strictly
positive if all @; > 0 — a contradiction.

When r = m, we could choose

p(z) = z(m — )™ L.
Clearly p(i) > 0 for i = 1,...,m, equality holds only for ¢ = m. On the other hand, p'(i) = m(1 —i)(m —
i)™~2 < 0, equality holds only for i = 1 and ¢ = m. Hence (5.2) would have a negative right side and a
positive left side and would not be an inequality, if all ; and 8; are non-negative, unless the only nonzero
entries are a,, f1 and Bp,. In this special case we have a,, = 1 and 8; = 0 to get a positive CFL coeflicient
¢ in (2.15). The first two order conditions in (5.1) now leads to B, = m and 28,, = m, which cannot be
simultaneously satisfied.
We conclude with the proof of the
Claim.  p(i) = [1q(t)dt >0,  q(t) =TI, G —1).
Indeed, g(t) oscillates between being positive on the even intervals Iy = (0,1),fz = (2,3),... and being
negative on the odd intervals, I; = (1,2), I3 = (3,4),.... The positivity of the p(¢)’s for i < (m-1)/2 follows
since the integral of ¢(t) over each pair of consecutive intervals is positive, at least for the first [(m + 1)/2]

intervals,

p(2k+2)—p(2k)=/1 |q(t)|dt—/1 |q(t)|dt=/1 _/1 (1=8)(2=1t)...(m—t)dt

:/ Q=82 —1)...(m—1—t) x (((m—1t)] = |t)dt >0, 2k+1< (m+1)/2.

Iy
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For the remaining intervals, we note the symmetry of ¢(t) w.r.t. the midpoint (m + 1)/2, ie., g(t) =
(=1)™q{m + 1 — t), which enables us to write for i > (m +1)/2

(m+1)/2 i
p(i) = / q(t)dt + (—l)m/ glm+1—1t)dt
0 (m+1)/2

(met1)/2 (m+1)/2
(5.4) - / o()dt + (~1)™ / ()t
(¢}

m+1—1

Thus, if m is odd then p(i) = p(m + 1 —4) > 0 for ¢ > (m + 1)/2. If m is even, then the second integral on
the right of (5.4) is positive for odd ¢’s, since it starts with a positive integrand on the even interval, I, 1.
And finally, if m is even and ¢ is odd, then the second integral starts with a negative contribution from its
first integrand on the odd interval, I, 4.1, while the remaining terms that follow cancel in pairs as before; a
straightforward computation shows that this first negative contribution is compensated by the positive gain

from the first pair, i.e.,

2 m+2—1
plm+2—1)> / g(t)dt +/ g(t)dt > 0, m even, 1 odd.
0

m+1—1

This concludes the proof of our claim. W

We remark that [4] contains a result which states that there are no linearly stable m-step, (m + 1)-th
order method when m is odd. When m is even, such linearly stable methods exist but would require negative
a;. This is consistent, with our result.

In the remainder of this section we will discuss optimal m step, m-th order SSP methods (which must
have negative §; according to Proposition 5.1 and m step, (m — 1)-th order SSP methods with positive 8;.

For two-step, second-order SSP methods, a scheme was given in [18] with a CFL coefficient ¢ = %

(Scheme 1 in Table 5.1). We prove this is optimal in terms of CFL coefficients.

PROPOSITION 5.2. For two-step, second-order SSP methods, the optimal CFL coefficient ¢ in (2.15) is
1

3
Proof. The accuracy condition (5.1) can be explicitly solved to obtain a one-parameter family of solutions

1
ag =1-a, ,31=2—“§0tl, [32=—§0t1-

The CFL coefficient ¢ is a function of a3 and it can be easily verified that the maximum is ¢ = % achieved
— 4

ata; =;. N

We move on to three-step, second-order methods. It is now possible to have SSP schemes with positive
a; and ;. One such method is given in [18] with a CFL coefficient ¢ = § (Scheme 2 in Table 5.1). We prove
this is optimal in CFL coefficient in the following proposition. We remark that this multi-step method has
the same efficiency as the optimal two-stage, second-order Runge-Kutta method (4.1). This is because there
is only one L evaluation per time step here, compared with two L evaluations in the two-stage Runge-Kutta

method. Of course, the storage requirement here is larger.

PROPOSITION 5.3. If we require 3; > 0, then the optimal three-step, second-order method has a CFL

; -1
coefficient ¢ = 3.
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Proof. The coefficients of the three-step, second-order method are given by,

1

01=%(G"3ﬂ1—/32+/’3), ay = =3+ 201 — 20, 03=§(2—ﬂ1+ﬁ2+3ﬂ3)-

For CFL coeflicient ¢ > % we need %ﬁ > % for all k. This implies

200 > B = 6—4B1 — B2+ B3>0
2052>,32$—6+4,81—,32—4ﬂ3>0

This means that
B2 —PBs <6—4P;1 < —f2 — 453 = 203, < —30s.
Thus, we would have a negative 5. W

We remark that if more steps are allowed, then the CFL coefficient can be improved. Scheme 3 in Table
5.1 is a four-step, second-order method with positive a; and f3; and a CFL coefficient ¢ = %

We now move to three-step, third-order methods. In [18] we gave a three-step, third-order method with
a CFL coefficient ¢ ~ 0.274 (Scheme 4 in Table 5.1). A computer search gives a slightly better scheme
(Scheme 5 in Table 5.1) with a CFL coefficient ¢ = 0.287.

Next we move on to four-step, third-order methods. It is now possible to have SSP schemes with positive
a; and B;. One example was given in [18] with a CFL coefficient ¢ = } (Scheme 6 in Table 5.1). We prove this
is optimal in the CFL coefficient in the following proposition. We remark again that this multi-step method
has the same efficiency as the optimal three-stage, third-order Runge-Kutta method (4.2). This is because
there is only one L evaluation per time step here, compared with three L evaluations in the three-stage

Runge-Kutta method. Of course, the storage requirement here is larger.

PROPOSITION 5.4. If we require $; > 0, then the optimal four-step, third-order method has a CFL

coefficient ¢ = .

Proof. The coefficients of the four step, third order method are given by,

1 ‘ 1 3
@ = 6(24— 115, =26, + B3 —=2B1), a2 =—6+30 —Sfa—Fs+ 5h4,

3 1 1
043=4~§ﬂ1 +ﬁ2+§ﬂs—3ﬂ4, a4=‘6(—6+2ﬁ1—ﬂz+2ﬁ3+11ﬂ4)-

For a CFL cocfficient ¢ > % we nced (ﬁl—i > % for all k. This implies:

24 — 1381 — 232 + B3 — 234 > 0,-36 + 1861 — 582 — 683 + 984 > 0,
24 —90; + 682 + B3 — 1884 > 0,—6 + 261 — B2 + 203 + 964 > 0.

Combining these (9 times the first inequality plus 8 times the second plus 3 times the third) we get:
—4008s — 36083 > 0,
which implies a negative 5. W

We again remark that if more steps are allowed, the CFL coefficient can be improved. Scheme 7 in Table
5.1 is a five-step, third-order method with positive «; and §; and a CFL coefficient ¢ = % Scheme 8 in Table
5.1 is a six-step, third-order method with positive o; and 8; and a CFL coefficient ¢ = 0.567.
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TABLE 5.1

SSP multi-step methods (2.14)

10
11
12
13
14

15

steps

order

.

CFL (87} ,Bi
c
1 4 1 8 _2
2 575 5 5
1 3 1 3
3 0% 50,0
2 8 1 4
3 §7O:O7§ 5,0,0,0
421 25 _20 37
0.274 T 120 1°8
0.287 2973 351 623 1297 _ 49 1087
50007 1250 5000 625’ 507 2500
1 16 11 16 4
3 ﬁ503012_7 ?a0a07§
1 25 7 25 5
2 3_27070v0 39 ﬁ,070’01fﬁ
108 17 36 6
0.567 | 1% 0,0,0,0, L £ 0,0,0,0, <
20 7 1 1 481 _ 1055 037 _ 197
0.154 2)247 4718 19277 576 * 576 576
0.159 1989 2893 517 34 601613 _ 1167 130301 _ 82211
y 5000° 10000° 2000° 625 240000 640 7 80000 * 240000
5 | 7ar 81 1 237 165 _3
0.245 1280° 0’ 0’ O’ 256 10 128 0’ 0’0’ 1287 8
0.021 1557 1 1 2063 9 5323561 2659 904987 1567579 0
- 32000 32000° 120 48000’ 10 2304000 2304000’ 2304000’ 768000 ?
0077 | L1 711 185 _ 851 91 _ 151 199
N 47472406 24 64 ° 288 247 96 7 576
0085 | 113 8 7 8 52031 _ 26617 1412 _ 14407 6161
: 47507257507 100 18000 9000 * 375 9000 ’ 18000
0.130 7 3 4 0 71 291201 _ 198401 88063 0 _ 17969 73061
. 207102 157 1207 40 108000° 86400 * 432007 7 43200 432000

as =1—01 —op —ag —ay, B

=1
T 24

We now move on to four-step, fourth-order methods. In [18] we gave a four-step, fourth-order method
(Scheme 9 in Table 5.1) with a CFL coeflicient ¢ = 0.154. A computer search gives a slightly better scheme
with a CFL coefficient ¢ =~ 0.159, Scheme 10 in Table 5.1. If we allow two more steps, we can improve the
CFL coefficient to ¢ = 0.245, Scheme 11 in Table 5.1.

Next we move on to five-step, fourth-order methods. It is now possible to have SSP schemes with positive

o; and B;. The solution can be written in the following five-parameter family:

(55 + 9ap + 8axs + 9aq + 2455),

,82 = l (5 - 64(11 - 45a2 - 320[3 b 37&4 - 96,65) ,

24

Bs

Il
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-2—4 (5 + 320y + 27z + 40as + 59ay + 144,@5) ,

1
= ﬁ (55 - 64&1 - 63&2 - 64013 - 55014 - 96[35) .




We can clearly see that to get B2 > 0 we would need o < &, and also 81 > 33, hence the CFL coefficient
cannot exceed ¢ < %ll < % =~ 0.034. A computer search gives a scheme (Scheme 12 in Table 5.1) with a
CFL coefficient ¢ = 0.021. The significance of this scheme is that it disproves the belief that SSP schem