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FOREWORD 

Dear Workshop Participant 

Welcome to the Second Workshop in Defense Applications of Signal Processing and to 
Starved Rock Resort. In the tradition of its predecessor, held at Victor Harbor, South 
Australia in June 1997, the objective is to gather world-class researchers for stimulating and 
thought provoking discussion on signal processing as it relates to defense applications. While 
DASP 97 succeeded in bringing together about 55 researchers from both defense laboratories 
and universities in the USA and Australia, on this occasion, there are about 60 participants, 25 
from Australia and 35 from the USA, again with a mix of lab people and academics. 

The motivation for this second workshop was developed at the first one. The venue, time of, 
and kind of conference has changed many times in the intervening two years, and, at times, it 
has seemed doomed not to happen. That it has is largely due to the efforts of a few people 
who have worked hard over the last few months to bring us all together there at this time. 
They are: 

Mark Smith (Georgia Tech), Bill Moran (Flinders Uni and CSSIP), Alan Lindsey (Rome 
Lab), Jim Schroeder (CSSIP), Lang White (Adelaide Uni and CSSIP), Major Michele 
Gaudreault (AOARD), Marian Viola (DSTO), Jon Sjogren (AFOSR) 

We also wish to pay tribute to the funding bodies for this Workshop. They are: 

The Electronic and Surveillance Laboratories of DSTO, 
US Defense Advanced Research Projects Agency (DARPA), 
US Air Force Office of Scientific Research (AFOSR) and 
Asian Office of Aerospace Research and Development (AOARD). 

We wish to thank them all for their generosity in making this event possible. 

The workshop will open with a welcome reception on Sunday evening. During the course of 
the workshop registrants may wish to engage in tennis or swimming, go horseback riding or 
hiking, or participate in any of the other recreational activities available at the Park. The 
formal program will conclude with lunch on Thursday. A field trip to Chicago for our 
Australian guests, complete with a boat tour of the city, shopping at the Navy Pier (ride the 
Ferris wheel!) and then Chicago-style pizza is planned for Thursday afternoon and evening. 

Our aim, as last time, is to foster collaboration among the various communities represented 
here and, in particular, between the US and Australian researchers in defense signal 
processing. To this end, we have put together a formal program of lectures and poster 
sessions, together with several more informal events. We hope that you will work and play 
together over the next few days. Attend the talks and poster sessions, but above all interact 
with participants other than the ones you see regularly. Make sure that, when you leave here, 
you have found at least one person from the other side of the Pacific with whom you have 
agreed to "Keep in touch" or "Exchange ideas" or better still "Collaborate". By doing so you 
help to make this workshop a success. 
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Nonuniform Linear Antenna Array Design and Signal 
Processing for DOA Estimation of Gaussian Sources 

Yuri I. Abramovich1 and Nicholas K. Spencer 
Cooperative Research Centre for Sensor Signal and Information Processing (CSSIP), 

SPRIBuilding, Technology Park, Mawson Lakes S.A. 5095, Australia 

E-mail: yuri6cssip.edu.auand nspencer6cssip.edu.au 

This paper discusses the problem of direction-of-arrival (DOA) estima- 
tion for Gaussian sources that are arbitrarily correlated — from indepen- 
dent to fully correlated. For independent sources, the antenna array design 
is governed by two competing considerations: maximum aperture, that in- 
clines towards increasing sparsity for a given number of array sensors, and 
identifiability, that tends to exclude extreme sparsity. For fully correlated 
sources, these two competing criteria are augmented by a third which allows 
for the initialisation of DOA estimation by the generalised spatial smooth- 
ing (GSS) technique. The maximum number of fully correlated sources is 
in turn an important factor in the GSS algorithm and subsequent array ge- 
ometry design. We present a geometry optimisation technique that permits 
accurate DOA estimation of arbitrarily correlated sources. 

Key Words: sparse linear arrays, direction-of-arrival estimation, multimode, independent 

1.    INTRODUCTION 

In many direction-finding applications, the number of antenna elements available 
for the construction of an array is limited, in which case the problem of optimum 
antenna geometry for a fixed number of elements M naturally arises. For linear 
arrays, solutions to this problem belong to the class of nonuniformly-spaced linear 
arrays (NLA's), also known as sparse or aperiodic arrays, and several different 
approaches currently exist which seek the "best" design. 

Meanwhile, speculations regarding optimum sparse geometry have mostly been 
made for the independent (Gaussian) source model. In particular, the well-known 
suggestion that the minimum-redundancy criterion is appropriate for (integer) NLA 
geometry optimisation [1] is based on the simple fact that such geometries generate 
a contiguous ("gapless") set of spatial covariance lags. For independent Gaussian 

'Supported in part by the INTAS SASPARC grant. 
1 



2 YURI I. ABRAMOVICH AND NICHOLAS K. SPENCER 

sources, this property immediately allows for the unambiguous estimation of up to 

m<^M{M-l) (1) 

DOA's by the direct augmentation approach (DAA) of Pillai et al. [2]. 
On the other hand, it has been demonstrated in [3] that for arbitrary and in 

particular fully correlated Gaussian sources, manifold ambiguity leads to non- 
identifiability. Furthermore, it has been demonstrated by Proukakis and Manikas 
[4] that scenarios with an ambiguous manifold (i.e. with linearly dependent manifold 

"steering" vectors) always exist for sparse arrays. 
This property obviously means that the number of identifiable arbitrary (fully) 

correlated sources in sparse antenna arrays is always significantly less than the 
number of antenna elements. Even for uniform M-element antenna arrays, the 

traditional spatial smoothing technique [5] allows for unambiguous DOA estimation 

of up to ^f^- fully correlated sources. 
For sparse antenna arrays, the spatial smoothing technique is not directly appli- 

cable. Consequently, some provisions are necessary to enable initialisation of the 
DOA estimation procedure at the very least. Obviously, the number of identifiable 

(and initialised) DOA's should be predefined and limited to 

M ,„s 
m <C — (2) 

Thus, when non-uniform antenna geometry is optimised for DOA estimation of 
arbitrarily correlated sources, the following (competing) provisions are to be made: 

1. A certain number of repetitive sub-arrays (partial arrays) are embedded into 
the original geometry, which allows for generalised spatial smoothing for a small pre- 
defined number of fully correlated sources. This allowance excludes non-redundant 
geometries and even those with the minimum redundancy. 

2. Given some number of redundancies, we have to achieve: 

(i) A fully augmentable geometry to provide identifiability for the maximal 

number of uncorrelated (Gaussian) sources. 

(ii) Proper dimensionality of the (co-array) manifold of the co-array for the 
synthetic partial arrays so that the predefined number of uncorrelated (Gaussian) 

sources, m, is exceeded. 

(iii) The maximal total aperture as well as the maximal aperture for the co- 
array of the synthetic partial array to enhance DOA estimation accuracy for the 

independent and fully correlated sources accordingly. 

2.    PARTIAL ARRAYS 

Suppose that we have M antenna sensors and wish to construct the "optimal" 
NLA. Further suppose that the sensor positions d = [0, d%, d3, ..., C(M] are re- 
stricted to integer values (usually measured in half-wavelength units). The meaning 
of "optimal" needs to be defined carefully from the perspective of the discussion 

above. 
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We consider the DOA estimation problem for some small pre-specified maximum 
number of coherent signals m (of arbitrary configuration) using the special class of 
partial-array NLA geometries and the corresponding generalised spatial smoothing 

(GSS) algorithm. 
Let the co-sequence of an array d be its set of M — 1 consecutive intersensor 

separations [ie. differences), while its co-array is the sorted set of M(M — l)/2 
differences. We define a partial array to be a group of nonuniform linear non- 
contiguous sub-arrays of identical co-sequence structure [6]. Associated with each 
partial array are its multiplicity K (number of occurrences or instances), order I 

(number of co-sequence elements involved), and aperture a. A given NLA will have 
n embedded partial arrays, with a total of TV instances. The GSS technique may be 
applied to a NLA providing it yields at least one partial array of multiplicity K > m 
and order I > m, where m is the number of fully correlated signals. Examples of 
partial arrays and their properties are more fully discussed in [7]. 

The GSS algorithm introduced in [6] consists of an initialisation step followed by 
local ML refinement. The initialisation step is based on the PA-MUSIC approach 
involving all appropriate partial arrays. 

Suppose that an NLA yields a total of N partial arrays, each of multiplicity «;,-, 
order 4 and aperture a,- (i = 1,...,N). Let y,-- be a (£{ + l)-variate snapshot 
vector corresponding to the jth instance (j = 1,..., K,-) of the ith partial array. If 
any instance of a partial array occurs as a mirror-image (ie. in reverse order), then 
the corresponding snapshot vector is observed by reversing the order of antenna 
samples and taking the complex conjugate of the vector. Thus for each partial 

array we may define the (4 + 1) x (4 + 1) partial array covariance matrix by spatial 
smoothing to be 

Ki 

Ri^J^Vijyfj. (3) 

Let Gi be the noise eigen-subspace of R{, then G,- consists of at least one eigenvector 
(since m < M). The PA-MUSIC technique is: 

find    max fPA (0) := min j^ a? (Ö) Gi Of a, ($) (4) 
>=i 

where a;(#) is the (4+l)-variate manifold ("steering") vector which corresponds to 
the given partial array geometry. Evidently this approach eliminates non-coinciding 
ambiguities. More specifically, the co-array of the synthetic partial array that is 
constructed by all of the properly averaged covariance lags produced by all of the 
partial arrays, should have a manifold dimensionality that exceeds the pre-defined 
number of fully correlated sources. Thus the effectiveness of DOA estimation de- 
livered by GSS is directly related to the number, variety and K^a-properties of the 

available partial arrays. For this reason, the sum Yll=i a] = A could be treated 
as a cost function for antenna geometry optimisation. Details of the three-stage 
optimisation approach appear in [7]. 
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3.    EXAMPLE RESULTS 

The following example illustrates array geometry optimisation results for an M = 
16 element array. The initial choice Mi = 10 gives us the starting-point 10-element 

non-redundant Sverdlik array [8] 

4V = [0-1,6> 10,23,26,34,41,53,55]. (5) 

The exhaustive tree search of stage two yields 37 candidate gap-free geometries, each 
with 14 elements and 36 redundancies. The integer programming maximisation of 
stage three finds that of these candidates, one in particular is the best (in the search 
range £ = 3 and c e [1,18]), since with the addition of two sensors (8,19) it yields 

the 16-element NLA 

d55 = [0,1,5,6,8,10,19,23,26,34,37., 41,44,52,53, 55] (6) 

having the maximal cost function A = 38467 (and 65 redundancies). Thus we have 

partitioned our M — 16 elements in this example by {Mi = 10, M2 = 4, M3 = 2}. 

Note that this three-stage optimisation search took a few days computing time on 
a modern workstation, even with its rather modest search range. At this point, 
we have no alternative but to assume that any NLA rich in partial arrays for a 
restricted search set {£, c} will be similarly superior for a more expansive set. 

Indeed, Table 1 shows the «^-distribution and Fig. 1 illustrates the a-distribution 
of partial arrays for d55 for the expanded search range £ G [3,5] and c G [1,30], 
whence we find A — 99441. This array performs better than the 16-element ULA 
because of the large numbers of embedded partial arrays, each of significant aper- 
ture. The minimum-redundancy array of comparable total aperture (Ma = 58) 
has 13 elements , so we could consider ^55 to be a type of "optimal" solution 
by the introduction of only three additional elements to the minimum-redundancy 

structure. 

TABLE 1 
Partial array distribution by multiplicity (K) and order (£) for d5s 

for m = 3 and the search range £ £ [3, 5] and c 6 [1, 30]. 

1 K 3 4 5 6 7 8 9   1 

3 40 9 0 0 0 0 0 

4 33 3 0 0 0 0 0 

5 12 0 0 0 0 0 0 

4.    PRACTICAL APPLICATION: FREE-CHANNEL ADVICE FOR 
HIGH-FREQUENCY SURFACE-WAVE RADARS 

One of the areas for practical applications of non-uniform linear array methodol- 
ogy is in clear-channel advice for HF over-the-horizon radars, specifically for surface- 
wave radars. In most realistic situations, selection of the operational frequency for 
such radars should be performed with respect to the the directional spectrum of 
the external noise. Accordingly, clear-channel advice sub-systems should incorpo- 
rate DOA estimation capabilities. Current HF surface-wave radars usually exploit 
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10 20 30 
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40 

FIG. 1.    Aperture histogram of partial arrays embedded in ^55. 

uniform linear arrays with a "digital receiver per element" architecture in its main 
target detection module. It is, however, too expensive to duplicate this architec- 
ture for the clear-channel advice module. The number of digital receivers for such 
a module is limited and should be used with the maximal external noise DOA 

estimation efficiency. 
Figure 2 illustrates the practical results on external noise DOA estimation, ob- 

tained from the experimental surface-wave over-the-horizon facility located in North- 
ern Australia [9]. It depicts the MUSIC generated DOA's from a full 32-element 
uniform antenna array (top) compared to a similar set of DOA's produced form a 
16-element non-uniform sub-array (middle) and from a 9-element sub-array (bot- 
tom). Both the 16- and 9-element sub-arrays have been selected from the original 
32-element ULA within the original aperture in a fully augmentable manner. 

The presented figure illustrate DOA's of multiple external noise sources as a 
function of the repetition period ("sweep") number. Direct comparison of this data 
makes it clear that all three sets of DOAs are operationally identical for this typical 
frequency. 

5.    SUMMARY 

We have considered a problem involving nonuniformly spaced linear array geom- 
etry optimisation, in the context of enhancing the performance of modern super- 
resolution techniques in spatial spectrum (DOA) estimation. This optimisation 
problem has been reduced to a simplified form where effective techniques can be 
applied, based on dynamic programming principles. 

Optimisation efficiency in terms of spectral (DOA) estimation accuracy has been 
analysed elsewhere [6], and in most cases is found to be very high and significantly 
superior to the conventional ULA geometry coupled with standard MUSIC-type 
routines. 

Real-data processing involving external HF interference DOA estimation justifies 
the choice of NLA geometry for the frequency management subsystem of modern 
HF OTH radars. 
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Abstract - This paper presents measures of performance of simplex signaling in a circular trellis-coded modulation 
(CTCM) scheme. Background is given on both CTCM and simplex signaling. The CTCM system is shown to give 
substantial coding gain when compared to conventional BPSK. Performance is also shown to improve as trellis size 
increases. 

I. INTRODUCTION 

Trellis-coded modulation (TCM) provides a means by which band-limited channels can reap the benefits of error control 
coding by combining coding and modulation into a single step. This coding/modulation step is accomplished by integrating a 
multi-level or multi-phase signaling constellation with a state-oriented encoder, such as a convolutional encoder. Where a 
binary block code might use a binary phase-shift keyed (BPSK) modulator to transmit each of the coded bits individually, a 
TCM scheme would choose one signal from the constellation to represent a number of the coded bits at one time. In TCM the 
tradeoff is decoder complexity for coding gain. 

Recently, circular trellis-coded modulation (CTCM) has been proposed [2-10]. Also known as high-dimensional trellis- 
coded modulation (HDTCM), CTCM takes the basic concepts of TCM (such as signal partitioning) and applies them to achieve 
coding gain on a power-limited channel, such as a spread-spectrum channel, by using a high-dimensional signaling 
constellation. A CTCM system can be viewed as a block code with trellis structure in the sense that source data is encoded 
block-by-block independently. Additionally, CTCM satisfies a so-called "state constraint," which specifies that the starting 
state of a particular source data block must equal the ending state. This property alleviates the need to set tail information bits 
to zero to drive the encoder to the "all-zero" state, a necessary procedure in conventional TCM. 

In [10], the assignment of transmission symbols from a simplex signaling constellation is investigated for use in CTCM, 
where a source alphabet size of four is emphasized. This paper takes these symbol assignments and determines performance 
criteria in the form of distance distributions and bounds on the bit-error performance of the system. It will be shown that the 
CTCM system provides substantial coding gain when compared to BPSK modulation. 

II. BACKGROUND 
A.    Simplex Signaling 

For arbitrary dimensions   N >M -1, M simplex signals exist for unit pulse energy if there exist M signals of 
S = {sl,s2,---,sM}'m'N dimensions such that: 

Is,- -Sj\  = V2M        i * 7,1 <i, j<M (1) 

where si = [sa,sn,---,siN], and si!c e {-1,0,1}, 1< i<M,l<k<N. A simplex signal constellation can be loosely defined as a 

set of signals that are equidistant from each other and energy equivalent [11]. Simplex signals are not orthogonal, but they 
achieve the same error probability as an equally likely orthogonal signaling set while using less energy. Hence, simplex 
signaling is employed when transmission energy is constrained. 

The three-dimensional simplex will be emphasized in this paper.  It is desired to create simplex signals utilizing number of 
dimensions (usually much) greater than three. For example, one three-dimensional simplex signal might be 

s = [1,0,-1,0,-1,0,0,0] (2) 
In this case, eight dimensions exist and dimensions 1, 3, and 5 are occupied. Additionally, shorthand notation can be used to 
describe simplex signals. Equation (2) can be denoted as [1,-3,-5], for example. This notation indicates non-zero pulses in 
dimensions one, three, and five, and their associated polarities. There is only one simplex that utilizes only dimensions 1, 3, 
and 5 and contains the signal in (2) as a member. Using shorthand notation, the matrix expression for this simplex is 

S = [(l   3   5);(1   -3   -5);(-l   3   5);(-l   -3   5)f. (3) 



Note that the negative of (3) and, furthermore, any simplex, is also a simplex. By using all 8 dimensions, many Simplexes can 

be formed that contain (2). E.g. S = [(1 -3 -5);(-l 4 6);(2 3 -6); (-2 -4 5)f, which is just one of dozens of 

Simplexes that contain (2) as a member. 

B.    Circular Trellis-Coded Modulation 

The trellis-coded modulation scheme introduced in [2,3], the so-called circular trellis-coded modulation (CTCM), is the 
backbone of this research. A straightforward way to think of CTCM is as a block code with trellis structure. That is, individual 
source data blocks are mapped to a particular path through the trellis instead of an output data block. The mapping of the 
source data blocks to trellis paths is one-to-one. The CTCM scheme is characterized by the following four parameters: N 
(dimensionality of the transmitted signal space), n (size of the source alphabet), D (trellis depth), and B (input source symbol 
sequence length, or block length). 

The CTCM system can be described by these four parameters in the form (N,n,D,B). The number of trellis states in CTCM is 
determined by S = nD. Source alphabet size of n=A is emphasized in this paper. Trellis depth refers to the number of 
transitions needed for a given state to reach any other state in the trellis. The block size denotes the size of the input source 
block as well as the number of transitions in a legal trellis path. The block size must be greater than or equal to the trellis depth 
plus one (B > D + 1). 

One drawback of conventional TCM is that the decoder must know the starting state of the encoder before transmission. 
This is usually accomplished by "padding" the source data with additional zeros to force the encoder to an all-zero state before 
additional source data is encoded. CTCM alleviates this problem by forcing the starting and ending states of a particular block 
to be the same. This property of CTCM is known as the state constraint [2,7,8]. 

The state constraint is satisfied through proper design of the state table. A state table lists, for every state in the trellis, what 
the next state transition will be for any given input symbol. Since a 4-ary source is emphasized in this paper, the state table will 
have a number of rows equal to the number of states in the trellis, and four columns which correspond to each of the four source 
symbols. The design of the state table is achieved through the use of a Zech logarithm table, and is discussed in detail in [2], 
which also presents computer code capable of generating state tables for arbitrary source alphabet size n and trellis depth D. 
Only one state table exists for a given pair of n and D. An example of a state table is shown in Table I. 

The transmission symbol table is a look-up table analogous to the state table. Both the state and transmission symbol tables 
contain entries for all trellis states and all possible source symbols. However, where the state table defines the next state 
transition given the current state and current input, the transmission symbol table describes what symbol is transmitted when 
transiting to that next state. Given the state table and the transmission symbol table, the trellis is completely described. A trellis 
diagram can then be constructed with all trellis states, their associated transitions, and the related symbols [2,3]. 

III. SIMPLEX SIGNALING PERFORMANCE FOR 16-STATE TRELLIS 

With the problem of symbol assignment addressed in [4,11], the performance of CTCM using simplex signals will be 
explored in this section. Specifically, a 16-state CTCM trellis will be emphasized. Two methods will be employed in the 
performance analysis: distance distributions and bounds on the bit error rate of the system. Performance using various block 
sizes will be compared. The bounds on the bit error rate will also be compared to the performance of BPSK. 

A. Distance Distributions 

One method of measuring the performance of an CTCM system is known as a "distance distribution." A distance distribution 
is a histogram-type distribution that is created by measuring the distance from all the legal paths in the trellis to one reference 
path [3,5]. In general, there are m. paths with distance d. from the reference path. The distance value dQ is usually zero and the 

distance from the reference path to itself is zero, hence the value of m0 is one. The first non- zero multiplicity (other than mQ) 

occurs at what is called the minimum Euclidean distance, which is denoted by d . . 
TABLE I. CTCM STATE TABLE FOR 16-STATE TRELLIS (n=4, D=2). 

Current State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

u 

u 
Z 

0 Input l 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2 

1 input 2 6 10 16 3 12 15 11 4 9 7 14 13 8 5 1 

2 input 4 7 1 8 12 3 5 14 2 13 6 11 9 16 15 10 

3 input 10 12 2 15 7 6 16 13 1 14 3 9 11 5 8 4 



The reference path is typically chosen to be the "all-zero" path. The all-zero path is the path taken through the trellis for a 
source input of exclusively zero symbols. For a block size of B, a group of B consecutive zero source symbols maps to the all- 
zero path. Note that, for a source alphabet size of n = 4, the zero source symbol corresponds to two zero bits. 

The parameter known as dfree refers to the free Euclidean distance of the trellis-coding scheme.   This parameter is very 

important in determining performance gain of any CTCM trellis [2,5]. Nfrge, which denotes the multiplicity of codewords (legal 

trellis paths) with distance dfrgg from the reference path, is equally important. 

For a particular trellis, df    can be defined as [1]: 
-il/2 

dfree = min I>2(*„A) vfoHfo} (4) 

where an and b   denote two codewords and the function d    denotes the squared Euclidean distance between the two 

codewords,   dfrgg can be defined in a more straightforward manner as the minimum Euclidean distance between two legal 

codewords that have the same starting state and ending state in an CTCM trellis [2]. For a given trellis and simplex signals with 
unit pulse amplitude, this can be expressed as: 

dfree=j8(D + \) (5) 

where D denotes the depth of the trellis. Additionally, recall that the minimum block size is equal to the trellis depth plus one, 
i-e-B«« = D+1- 

In terms of the distance distribution, d,    is the largest value dmin can attain for a particular trellis. Obviously, it is desired to 

force dmin to reach d.. Additionally, it is desired to minimize N, gg, the multiplicity at distance dfree, and it is known that dmin 

dominates the error performance for high signal-to-noise ratios [3,5]. Therefore, reaching the value of d,gg and minimizing the 

value of A^    for a particular trellis ensures optimal performance. 

As discussed in [4,11], there are 24 possible transmission symbol tables that can be constructed for a CTCM trellis with a 
source alphabet size of n = 4. Using a transmitted signal space dimensionality ofN=8 and 10, all possible symbol assignments 
were determined by using the computer program in [4]. Distance distributions were then calculated for each of the 24 possible 
symbol assignments. 

In [6], a 12-dimensional assignment was investigated. Table II lists values for N .  and d2
mm for this 12-dimensional 

assignment, as well as the two distributions (for N = 8 and 10) that reach df    discussed in [4]. Distributions for block sizes of 

B = l and B = 8 were not included in [6]. 
Through investigation of Table II it can be seen that the 12-dimensional case reaches d,    at a block size of Z?=6, which is 

smaller than the block sizes required for either the 8 or 10-dimensional cases. However, when comparing the values of N,    for 

the three cases, the 12-dimensional value ofNfree is significantly higher than the other two cases. It can then be concluded that 

the 8- and 10-dimensional assignments achieve better performance than the 12-dimensional assignment while using less 
bandwidth. In the 8-dimensional case, the bandwidth reduction is 1/3. 

A. Bit-Error Performance 

Bit-error probabilities cannot be computed for CTCM in a closed form. To obtain exact Pbe curves, the system would have 

to be simulated. However, bounds on the bit-error probability can be computed, which will give a rough estimate of system 
performance. Additionally, the actual Pbe curves will asymptotically approach the upper bound on Pbg for high signal-to-noise 

ratios [3]. The upper bound on Pbg was derived in [3] and the resulting equation is shown in (7): 

MAB     f 
(6) 

where B is the block size, k is the number of bits per symbol, Aßj. is the number of mismatched bits in the source sequences 

associated with codeword 1 and codeword j, d^k is the Euclidean distance between codewords 1 and y, EJN   is the signal to 

noise ratio, M is the number of legal codewords, and Q(-) represents the Gaussian Q-function. Equation (7) gives a performance 
benchmark for the system. It will be used to determine system performance for various block sizes and symbol assignments. 



TABUE II. COMPARISON OF MINIMUM DISTANCE VALUES AND MULTIPLIC [TIES FOR 16- STATE TRELLIS. 

Dim. 5 = 3 5 = 4 5 = 5 5 = 6 5 = 7 5 = 8 

d2 ■   N ■ "mm l,min d2 •   N ■ "mm    'mm d2 ■   N ■ "mm ll mm d2 ■   N ■ "mm l,min d2 ■   N ■ "mm  "mm d2-   N ■ "mm l,min 

JV = 8 
A/=10 
N =12 

12          4 
12          1 
12          1 

14          4 
14          8 
16          1 

20         16 
20         21 
20         1 

20          6 
22         12 
24         37 

24           28 
24          21 

24         32 
24         24 

Fig. 1 shows the best Pb union bound curve (as determined by testing all 24 symbol assignments), for block sizes of B = 3 

through 7, using N = 8 dimensions in signaling. The error probability improvement with increasing block size is easily seen 
from this plot. This is in agreement with Shannon's theorem, in that, the more data that is encoded at a time, the better the error 
performance will be. 

Additionally, as expected, the error performance is asymptotically approaching a limit. That is, the improvement in the Pbe 

union bound in going from B = 3 to B = 4 is far greater than the improvement shown in going from B = 6 to B = 7. The 
performance of BPSK is also shown in the plot as a reference point. For B = 7, the CTCM scheme provides a gain of 
approximately 5 dB over BPSK. 

IV. SIMPLEX SIGNALING PERFORMANCE FOR 64-STATE TRELLIS 

A. Distance Distributions 

Distance distributions for the 64-state trellis were calculated in the same manner as the 16-state distributions discussed in 

Section III. From (6), it can be seen that the free Euclidean distance is defined as dfree = yßi for the 64-state trellis, an increase 

over the value of df    = "v24 for the 16-state case. 

Dimensionality values of N = 10, 12, 16, 20, and 24 can be used in construction of the transmission symbol table for a 64- 
state trellis. Each of these five N values were used in the construction of transmission symbol tables and their corresponding 
distance distributions.   As in the 16-state case, several "good" distributions existed for each combination of block size and 

dimensionality. Table III lists the values of d 2min and Nmin for the best distribution for each combination of N and B. 

In examining Table III, the primary characteristic that is noticed is that there is no distribution, for any combination of N and 

B, that reaches the free Euclidean distance value of d.£g = -y/32. It is not clear why this is the case, although there are a number 

of possible of explanations [4]. The most obvious explanation is that the block sizes tested have not increased to the point that 
df    can be attained. That is, certain assignments may reach d,    for larger block sizes than those tested, say, B=20. However, 

this imposes a huge computational limitation, since the run-time for the 2?=10 cases is on the order of days. 

B. Bit-Error Performance 

The union bound on the probability of bit error for the 64-state trellis can be computed in the same manner as the 16-state 
trellis by utilizing (7). For comparison purposes, Fig. 2 shows Pbg union bound curves for a block size of B = 7. The plot 

compares performance using 10-dimensional and 24-dimensional signaling for the 64-state trellis. Additionally, the union 
bound curve for the best 16-state case (from section III, N= 8) is shown, along with the BPSK performance curve. 

Since the 64-state trellis gives a wide range in the number of dimensions that can be utilized in constructing the transmission 
symbol table, the two extremes of N = 10 and N = 24 were chosen to be included in Fig. 2. The plots are culled from the 
symbol assignments that yield the best distance distributions for the respective dimensionalities. Improvement over the 16-state 
trellis is easily noticed from the plot. Additionally, the 24-dimensional case offers improvement over the 10-dimensional case, 

with a gain of over 0.5 dB present at a block size of B = 1 and Pbg value of 10"6. 

10'1 . 

« 0   w 
e—o  B=> 

'P^, > «    B=5 
4 »   8=6 
Q B   B=7 
     BPSK 

i^oyv N. 

v\\\    \ 
\vv \\      \ 

TABLE ffl 
COMPARISON OF MINIMUM DISTANCE VALUES AND MuLTiPuernES FOR 

64- STATE TRELLIS. 

Block Size iV=10 iV = 12 N = U iV = 20 N = 24 

a   m a   m a   m a   m a   m 
5 = 4 16    9 16  4 16    4 16    4 20  32 
5 = 5 20   11 20  25 22  35 22   10 22   10 
5 = 6 20    3 24  21 24    3 24    3 24    3 
5 = 7 24    7 28   21 28   14 30  21 30   14 
5 = 8 28   24 30   16 28    8 30   16 30   16 
5 = 9 28   18 30   18 28    9 30   18 30   18 
5 = 10 28   10 30  20 28   10 30  20 30  20 

Fig. 1. Union bound on bit-error probability for 16-state trellis (5 
= 3 through 7), and BPSK. 
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BPSK 
16states,N.= 8 
64 states, N = 10 
64 states, N = 24 

Whether or not this 0.5 dB improvement is significant would be subject to the specific design problem. Since 24- 
dimensional signaling gives a 240% increase in bandwidth over the 10-dimensional case, the bandwidth/performance trade-off 
would need to be weighed heavily.   However, since the improvement does exist, an increase in the dimensionality of the 

transmitted signal space is a viable route that can be explored to 
improve the bit-error rate of the system. 

The 64-state trellis demonstrates nearly 5.5 dB of gain over BPSK 
at B = 7. At larger block sizes, if the minimum distance value moves 
closer to d,ee, the improvement over BPSK would increase further. 

Additionally, by increasing the size of the trellis (to 256 states, etc.), 
and thus the value of d,   , further improvement would be seen. 

However, the drawback of increasing the block size and the size of 
the trellis is that the decoding algorithm would also increase in 
complexity, if throughput is to be maintained [2]. 

Fig. 2. BPSK performance and bit-error probability union bounds 
for B = 7 (5 = 16 and 64, N = various). 

V. CONCLUSIONS 

This paper has examined the performance of simplex signaling in a circular trellis-coded modulation scheme. Both Euclidean 
distance distributions and bounds on bit-error performance are examined as performance benchmarks. Performance is shown to 
improve as various parameters (such as block size and trellis size) are increased. 
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Spatial time-frequency distributions (STFDs) have been recently shown 
to be a powerful tool for solving direction finding and blind source separa- 
tion problems for multi-sensor array receivers. These spatial distributions 
are the natural means to deal with source signals that are localizable in 
the time-frequency domain. This paper examines the eigenstructure of the 
spatial time-frequency distribution matrices. It is shown that improved es- 
timates of the signal and noise subspaces are achieved by constructing the 
subspaces from the time-frequency signatures of the signal arrivals rather 
than from the data covariance matrices. This improvement is more evident 
in low signal-to-noise ratio (SNR) environment and in the cases of closely 
spaced sources. The paper considers the MUSIC technique to demonstrate 
the advantages of STFDs and uses it as grounds for comparison between 
time-frequency and conventional subspace estimates. 

Key Words:  time-frequency analysis; subspace analysis; time-frequency MUSIC; spatial 
time-frequency distributions; array signal processing 

1.    INTRODUCTION 

Although the applications of the spatial time-frequency distributions to blind 
source separation and DOA problems using multiple antenna arrays in nonsta- 
tionary environments have been introduced in [1,2], yet so far there has not been 
sufficient analysis that explains their offerings and justifies their performance. The 
aim of this paper is to examine the eigenstructure of the spatial time-frequency 
distribution matrices and provide statistical analysis of their respective signal and 
noise subspaces. The paper shows that the subspaces obtained from the STFDs are 
robust to both noise and angular separation of the waveforms incident on the array. 
This robustness is primarily due to spreading the noise power while localizing the 
source energy in the time-frequency domain. By forming the STFD matrices from 

This work was supported by ONR under Grant #N00014-98-1-0176. 
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the points residing on the source time-frequency signatures, we in essence, increase 
the input signal to noise ratio, and hence improve subspace estimates. 

This paper is organized as follows. Section 2 presents the signal model and gives 
a brief review of the definition and basic properties of the spatial time-frequency 
distributions. In Section 3, we consider nonstationary environment characterized 
by frequency-modulated (FM) source signals, and show the potential improvement 
in direction-of-arrival (DOA) estimation using STFDs. Section 4 examines the 
performance of the direction finding MUSIC technique based on the covariance and 
STFD noise subspace estimates. 

2.    BACKGROUND 
2.1.    Signal Model 

In narrowband array processing, when n signals arrive at an m-element array, 
the linear data model 

x(t)=y(*)+n(*)=A(e)d(t) + n(t) (1) 

is commonly assumed, where the m x n spatial matrix A(0) = [a(#i)...a(0n)] 
represents the mixing matrix or the steering matrix, and a(0j) are the steering 
vectors. Due to the mixture of the signals at each sensor, the elements of the m x 1 
data vector x(t) are multicomponent signals, whereas each source signals di(t) of 
the nxl signal vector d(t) are often a monocomponent signal. n(t) is an additive 
noise vector whose elements are modeled as stationary, spatially and temporally 
white, zero-mean complex random processes, independent of the source signals. 
That is, 

E[n(t + r)nH(t)} = <T6(T)I and  E[n(t + r)nT(f)] = 0 for any r (2) 

where 6{r) is the Kronecker delta function, I denotes the identity matrix, a is 
the noise power at each sensor, superscript H and T respectively denote conjugate 
transpose and transpose, and E{-) is the statistical expectation operator. 

In equation (1), it is assumed that the number of sensors is larger than the 
number of sources, i.e., m > n. Further, matrix A is full column rank, which 
implies that the steering vectors corresponding to n different angles of arrival are 
linearly independent. We further assume that the correlation matrix 

R*x = £[x(*)x" (*)] (3) 

is nonsingular, and the observation period consists of N snapshots with N > m. 
Under the above assumptions, the correlation matrix is given by 

R^ = E[x(t)xH(t)] = A(0)RddA" (0) + erl, (4) 

where Rdd = E[d(t)dH(t)] is the signal correlation matrix. For notational con- 
venience, we drop the argument © in equation (1) and simply use A instead of 
A(0). 

2.2.    Spatial Time-Frequency Distributions 
The spatial time-frequency distributions (STFDs) based on Cohen's class of time- 

frequency distribution were introduced in [1] and its applications to direction find- 
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ing and blind source separation have been discussed in [2] and [1], respectively. In 
this paper, we focus one key member of Cohen's class, namely the pseudo Wigner- 
Ville distribution (PWVD) and its respective spatial distribution. Only the time- 
frequency (t-f) points in the autoterm regions of PWVD are considered for STFD 
matrix construction. In these regions, it is assumed that the crossterms are negli- 
gible. The discrete form of pseudo Wigner-Ville distribution of a signal x(t), using 
a rectangular window of odd length L, is given by 

L-l 

Dxx(t,f)=    £    *(* + T)x'(*-T)e-'4"'\ (5) 

where * denotes complex conjugation. The spatial pseudo Wigner-Ville distribution 
(SPWVD) matrix is obtained by replacing x(t) by the data snapshot vector x(f), 

L-l 

D„(t,/)=    J    x(i + r)x"(i-T)e-^. (6) 

Substitute (1) into (6), we obtain 

D«(*,/) = Dyyfo/) + 2Re[Dyn(<,/)] + Dnn(*,/). (7) 

We note that Dxx(f, /), Dyy(i, /), Dyn(f, /), Dny(f, /), and Dnn(t, /) are matrices 
of dimension m x m, whereas the source TFD matrix Ddd(*,/) is of dimension 
n x n. Under the uncorrelated signal and noise assumption and the zero-mean 
noise property, the expectation of the crossterm TFD matrices between the signal 
and noise vectors is zero, i.e., E \Dyn(t, /)] = E [Dny(*, /)] = 0, and it follows 

E [Dxx(*, /)] = Dyy(t, f) + E [Dnn(t, /)] = ADdd(i, f)AH + E [Dnn(*, /)]. (8) 

For narrowband array signal processing applications, the mixing matrix A holds 
the spatial information and maps the auto- and cross-TFDs of the source signals 
into auto- and cross-TFDs of the data. 

It is noted that relationship (8) holds true for every (t, f) points. In order to 
reduce the effect of noise and ensure the full column rank property of the STFD 
matrix, we consider multiple time-frequency points. This allows more information 
of the source signal t-f signatures to be included into their respective subspace 
formulation. Joint-diagonalization [3] and time-frequency averaging are the two 
main approaches that have been used for this purpose [1, 2, 4]. In this paper, we 
only consider averaging over multiple time-frequency points. 

3.    SUBSPACE ANALYSIS FOR FM SIGNALS 

In this paper, we focus on frequency modulation (FM) signals, modeled as 

d(t) = ft («),..-, dn(t)}T = [D1e?*«\...,Dne**'>V]T, (9) 
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where Di and ifri(t) are the amplitude and phase of tth source signal. For each 
sampling time t, ck(t) has an instantaneous frequency fi(t) = ^^p-- To simplify 
the analysis, we assume that the FM signals are mutually uncorrelated over the 
observation period. That is, 

1   N 
^5>(*)<*J(*) = 0       for i # j, ij = 1,...,n. (10) 

In this case, the signal correlation matrix in (4) is 

Rdd = diag [£>?, i = 1,2, ...,n] 

where diag[-] is the diagonal matrix formed with the elements of its vector valued 
arguments. The *th diagonal element of TFD matrix Ddd(<, /) in (8) is given by 

L-l 

Ddidi{t,f)=    J]    JD?e^(*+T)-,/,'(*-r)]-J'4'r/r. (11) 

Assuming that the third-order derivative of the phase is negligible over the window 
length L, then fr = ^^^, and ^(t ■¥ T) - ^{t - T) - A-nfr = 0. Accordingly, 

2 

Ddidi(t,f)=    Y,    DJ = LDl (12) 

Similarly, the noise STFD matrix Dnn(t, /) is 

L-l 

DB»(*,/)=    Yl    n(t + r)nH(t-r)e-^fT. (13) 

2 

Under the assumption of temporally and spatially white noise, the statistical ex- 
pectation of Dnn(t, /) is given by 

L-l 
2 

£[Dnn(*,/)]=    £    E[n(t + T)nH(t-r)]e-^T=aI. (14) 
 L-l T-—s— 

Therefore, when we select the time-frequency points along the t-f signature or the 
IF of an FM signal, the SNR in model (8) is LD?/a, which has an improved factor 
L over the one associated with model (4). 

The pseudo Wigner-Ville distribution of each FM source has a constant value 
over the observation period, providing that we leave out the rising and falling 
power distributions at both ends of the data record. For convenience of analysis, 
we select those N — L + 1 t-f points of constant distribution value for each source 
signal. Therefore, the averaged STFD over the time-frequency signatures of n0 

signals, i.e., n0(N - L + 1) t-f points, is given by 

. n„ N-L+l 

fl-^-t+i)S S D»(,"/",)' <15) 
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where /,,i is the instantaneous frequency of the qih signal at the ith time sample. 
The expectation of the averaged STFD matrix is 

D = E [Öl = — V) [LDlai$p)*
H{Op) + al] = -A°R°dd(A-°)H + *I,  (16) 

L     J Tin . ^0 

where R{jd and A0, respectively, represent the signal correlation matrix and the 
mixing matrix constructed by only considering n0 signals out of the total number 
of signal arrivals n. 

It is clear from (16) that, when n0 signals are selected, the SNR improvement 
becomes G = L/n0 (we assume L > n0 throughout this paper). Therefore, from 
the SNR perspective, it is better to select (t, /) points that belong to individual 
signals, and to separately evaluate the respective STFD matrices. Accordingly, 
STFD-based direction finding is, in essence, a discriminatory technique in the sense 
that it does not require simultaneous localization and extraction of all unknown 
signals received by the array. With STFDs, direction finding can be performed 
using STFDs of a subclass of the impinging signals with specific time-frequency 
signatures. In this respect, the proposed direction finding technique acts as a 
spatial filter, removing all other signals from consideration and, subsequently, saves 
any downstream processing that is required to separate interference and signals 
of interest. It is also important to note that with the ability to construct the 
STFD matrix from one or few signal arrivals, the well known m > n condition 
on source localization using arrays can be relaxed, i.e., we can perform direction 
finding or source separation with the number of array sensors smaller than the 
number of impinging signals [5]. From the angular resolution perspective, closed 
spaced sources with different t-f signatures can be resolved by constructing two 
separate STFDs, each corresponds to one source, and then proceed with subspace 
decomposition for each STFD matrix separately, followed by a appropriate source 
localization method (MUSIC, for example). The drawback of performing several 
direction finding using different STFD matrices is clearly the need for repeated 
computations of eigendecompositions and source localizations. 

4.    SIMULATIONS 
The t-f MUSIC is introduced in [2], where the angles of arrival are estimated by 

locating the highest peaks of the spectrum provided by using the noise subspace of 
the STFD matrix, rather the covariance matrix, which is the case in conventional 
MUSIC. 

The following example compares the performance of conventional and t-f MUSIC. 
Consider a uniform linear array of 8 sensors separated by half a wavelength. Two 
chirp signals emitted from two sources positioned at angle $i and 62- The start 
and end frequencies of the chirp signal of the source at #i are wsi = 0 and wei = T, 

while the corresponding two frequencies for the signal of the other source at 62 are 
djS2 = 7T and we2 = 0, respectively. The noise used in this simulation is zero-mean, 
Gaussian distributed, and temporally white. The noise power, a, is adjusted to 
give the desired SNR = —I0log(a). 
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Fig. 1 displays the variance of the estimated DOA 61 versus SNR fro the case 
(61,62) = (-10°, 10°). The curves in this figure show the theoretical and experi- 
mental results of the conventional MUSIC and t-f MUSIC (for L=33 and 129). The 
CRB is also shown in Fig. 1. Both impinging signals are selected when performing 
t-f MUSIC (n0 = n = 2). We assume that the number of signals is correctly esti- 
mated for each case. Simulation results are averaged over 100 independent trials 
of Monte Carlo experiments. The advantages of t-f MUSIC in low SNR cases are 
evident from this figure. 

5.    CONCLUSIONS 
The advantages of STFD-based direction finding over traditional direction finding 

methods using data covariance matrices were demonstrated using the MUSIC algo- 
rithm. The t-f MUSIC technique outperforms the conventional MUSIC technique 
in the two situations of low SNR and closely spaced sources. Detailed performance 
analysis of DOA-based STFD is given in reference [6]. 
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We consider the problem of adaptive reception of a multipath Direct- 

Sequence Spread-Spectrum (DS-SS) signal in the presence of unknown cor- 

related SS interference and additive impulsive noise. The proposed SS 

receiver structure is comprised by a vector of adaptive chip-based Hampel 

non-linearities followed by an adaptive Auxiliary-Vector linear tap-weight 

filter. The non-linear receiver front-end adapts itself to the unknown pre- 

vailing noise environment providing robust performance over a wide range 

of underlying noise distributions. The adaptive Auxiliary-Vector linear tap- 

weight filter allows rapid SS interference suppression with a limited data 

record. Numerical and simulation studies offer comparisons with the con- 

ventional Minimum-Variance-Distortionless-Response (MVDR) SS receiver 

[6]-[9] as well as MVDR filtering preceded by vector adaptive chip-based 

non-linear processing [10]. 

Key Words:   Spread spectrum communication; impulse noise; adaptive filters 
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0.    INTRODUCTION 

Signal detection in the presence of impulsive channel noise has been considered 

extensively in the past (for example in [l]-[3] and references therein), while de- 

tection of a direct-sequence spread-spectrum (DS-SS) signal under similar channel 

conditions has been studied in [4], [5], and [10]. Receiver proposals in [4], [5] involve 

the use of either a conventional signature matched filter or a majority-vote receiver 

1This work was supported by AFOSR under contract F49620-93-C-0063. 
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(hard-limiter non-linearity per chip followed by signature matched-filtering). In 
[4] it is reported that neither one of the above proposals is universally effective 
against the combination of SS interference and non-Gaussian impulsive noise. In 
[10], adaptive receivers are developed that are comprised by a vector of adaptive 
chip-based non-linearities followed by an adaptive linear tap-weight filter. The 
structures proposed in [10] tap the relative merits of both non-linear and linear 
signal processing and exhibit superior BER performance in the presence of com- 
bined impulsive and SS interference. In particular, the non-linear receiver front- 
end adapts itself to the unknown prevailing impulsive noise environment, while the 
adaptive linear tap-weight filter that follows the non-linearly processed chip samples 
combats effectively the SS interference. This article enhances our previous work in 
[10] in the following aspects. The receiver design objective is shifted to superior 
bit error rate (BER) performance under rapid short-data-record adaptation. In 
addition, the signal model is generalized to account for multipath signal reception 
and a new Hampel-type non-linear pre-processor is considered that encompasses 

the pre-processors considered in [10] as special cases. 

1.    SIGNAL MODEL 

The baseband received signal is viewed as the aggregate of the multipath received 
SS signal of interest with signature code S0 of length L (if T is the symbol period and 
Tc is the chip period then L = T/Tc), K - 1 multipath received DS-SS interferers 
with unknown signatures S*, k — 1,...,K — 1, and non-Gaussian (impulsive) 
interference. For notational simplicity and without loss of generality, we choose a 
synchronous signal set-up. We assume that the multipath spread is of the order of a 
few chip intervals, M, and since the signal is bandlimited to B = 1/TC the channel 
is modeled as a tap-delay line with M + 1 taps spaced at chip intervals Tc. After 
conventional chip-matched filtering and sampling at the chip rate over a multipath 
extended symbol interval of L + M chips, the L + M data samples are organized 

in the form of a vector r given by 

K-l   M 

r=EE ck,my/E^(bkSkttn + 6JSJ>ro + b+S+J + n (1) 
k=0 m=0 

where, with respect to the k-ih SS signal, Ek is the transmitted energy, H, b^, and 
b% are the present, the previous, and the following transmitted bit, respectively, and 
{cfc,m} are the coefficients of the frequency-selective slowly fading channel modeled 
as independent zero-mean complex Gaussian random variables that are assumed 
to remain constant over several symbol intervals. Sjt]m represents the 0-padded 
by M, m-cyclic-shifted version of the signature of the k-th SS signal S*, S^m is 
the O-filled (L - m)-left-shifted version of Sfc,0, and S£m is the 0-filled (L - m)- 
right-shifted version of Sj^o- Finally, n represents additive complex non-Gaussian 

impulsive noise. 
For conceptual and notational simplicity we may rewrite (1) as follows: 

r = %/^6ow<l
0?MF + I + n (2) 

where w£'MF = Ylm=o co,mSo,m is the effective (channel processed) signature of 
the SS signal of interest (signal- 0) and I identifies comprehensively both the Inter- 
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Symbol and the SS interference present in (1). We use the subscript R-MF in our 
effective signature notation to make a direct association with the RAKE Matched- 
Filter receiver that is known to correlate the signature So with M +1 size-L shifted 
windows of the received signal (that correspond to the M + l paths of the channel), 
appropriately weighted by the conjugated channel coefficients c0,m, m = 0,..., M. 
In our notation, this RAKE operation corresponds to linear filtering of the form 
WJUMF   r, where H denotes the Hermitian operation. 

2.    RECEIVER ARCHITECTURE AND ALGORITHMIC 
DEVELOPMENTS 

For the multipath signal model of the previous section, the general receiver struc- 
ture under consideration is given in Fig. 1. The receiver consists of a non-linear 
front-end in the form of a vector of parametrized non-linearities g(r; •) : CL+M —► 
ßL+M ( f0iioweci Dy linear filter post-processing by an L + M complex tap-weight 

filter w. The non-linear pre-processor considered in this present work employs 
Hampel-typenon-linearitiesg(r;a1,a2,a3) = [g(r1;a1)a2,aa) ••• g(rL+M;ai,a2, 
03)]    where T denotes the transpose operation and 

x, if |x| < <*!,   0 < c*i 

«ljfr, if <*i < \x\ <a2,   0<«i<a2 

ffEg"i]§p   ifa2<|*|<a3,   0<a1<a2<a3     
() 

0, otherwise . 

g(x;ai,a2,a3)= < 

In (3) x is a complex number and \x\ denotes the magnitude of x. The linear 
region of the Hampel non-linearity has the effect of passing the observations undis- 
torted. The non-linear regions either completely reject (remove) or "correct" the 
observations. The latter is considered as an adjustment of the magnitude while 
maintaining the phase. The parameters ai,a2, and 0:3 are positive cut-off param- 
eters to be determined adaptively. The Hampel pre-processor is a generalization of 
the puncher and clipper pre-processors considered in [10]. 

In [10] the linear filter post-processor was chosen to be the Minimum-Variance- 
Distortionless-Response (MVDR) solution for the non-linearly processed data vec- 
tors. Adaptive SS interference suppression with MVDR post-processing has two 
shortcomings that we attempt to improve upon in this article. First, the adaptive 
optimization computational complexity may be prohibitive for mobile SS receivers 
due to the (L + M) x (L + M) autocorrelation matrix inversion operation. This is 
particularly true for systems with large spreading gain L. Second and most impor- 
tant, the data estimated adaptive implementation of the MVDR filter w^DR(N) = 

[W^R-HNJW^MP]-
1
 R-1(N)wrMF, where Rg(N) = £ J2n=i g(*n)g(r„)H is 

the sample average estimate of the autocorrelation matrix over a data record of 
N Hampel processed input vectors, exhibits disappointing short data record per- 
formance. Data records of size many times the input vector dimension L + M are 
necessary to approach satisfactorily the BER performance of the ideal WJ^DR filter, 
i.e. the filter that assumes perfectly known R~1. In the following we address those 
two issues of reduced optimization complexity and superior small-sample-support 
performance in the context of what we call auxiliary-vector processing. 
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We consider the class of linear filter post-processors w in Fig. 1 that are "dis- 

tortionless" in the w£'MF vector direction of interest, i.e. wBwJH,p = ||W£MF|| so 
that no cancelation of the signal of interest takes place. This filter class is the set 

of all filters that can be written in the form 

w (o) _ w(o)       _ „gns (4) 
AV — WIIR-MF        /*   ** v   ' AV — "||R-MF1, 

(o) 

(0) 
R-MP 

where, for notational simplicity, w<°> ,, = „WfeMF„ denotes the normalized RAKE 

matched filter for the SS signal of interest 0, p* is a complex scalar, and Qs is a 
vector in the L + M complex space that is orthonormal with respect to w|^_MP|(: 

QgiShUi = ° and IIQ6!^1- (5) 
The superscript g that appears in (4) is intended to serve as a reminder that any 

specific choice for the scalar fi and the vector Q needs to account for the non-linear 
Hampel pre-processor g(-) in Fig. 1. The receiver architecture that incorporates 

post-filtering by w$ in (4) is shown in Fig. 2. 
In contrast to minimum output variance optimization that leads to the optimum 

W^DR filter [10], we propose to choose an "auxiliary vector" Qs that satisfies 
the orthonormality constraint in (5) and maximizes the magnitude of the cross- 
correlation between points (a) and (b) of the receiver structure in Fig. 2. Standard, 

Lagrange multipliers derivation shows that this vector is 

R    «r(°) f«r<°>"        ft    w(0) W(0) 

_ KSW||R-MF]|    ~    (W||R.Mp||ltgW||l>.MF||JW||B.MF|| (g) 

K<MF„ - (wi^R.wS^nJw^l1' 
Then, the complex scalar weight p* in the receiver structure of Fig. 2 is chosen to 
be the value that minimizes the Mean-Square (MS) error between points (a) and 
(c). Direct application of the Yule-Walker theorem shows that this MS-optimum 

value of /ig is 

ßg=
Qg^8J*vrF". (7) >-MF|| 

QgtfRgQs 

This filter design approach can be generalized to cover processing with multi- 

ple auxiliary vectors of the form wJS? = W
||R.MF|| ~ Efei A*f Qf > where each Qf' 

i = l,--,P, is orthonormal with respect to wjj^MP||. The weighted auxiliary 

vectors are conditionally optimized in a sequential fashion as follows: Qf and 
/xf are chosen as before, in (6) and (7), respectively. Given Qf and pf, Qf is 

set to be the orthonormal to wjj^MP|| vector that maximizes the magnitude of 

the cross-correlation between (wj^m-n ~ /*?Qi) g(r) and QfHg(r)- Given Qi > 
/if, and Qf, the weight value //f is chosen to minimize the MS error between 

(
W

JJRLF|| 
- A*?Qi) g(r) and A*f*Qf Hg(r)- Inductively, we can obtain similar ex- 

pressions for Qf+1 and fi+1 given Qf, //f, • • •, Qf, fif,l<P<P. The auxiliary 
vector   generation   procedure   may stop when   the cross-correlation   magnitude 

(w^-EL^fQff RsQf+i falls below a prespecified threshold value. 
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The auxiliary vector filter wAV defined above has two major advantages in com- 
parison with the WMVDR that was used in [10]. The first advantage has to do 
with the pertinent optimization computational complexity. While both filters are 
a function of the RAKE matched filter WR_MF and the Hampel pre-processed in- 
put data autocorrelation matrix Rg, no matrix inversion operation is required 
for the auxiliary-vector filter. The second and most important advantage has 

to do with the short data record behavior of the filter estimators wAV (N) and 
WMVDR(N) that are based on an N—point estimate of the autocorrelation matrix 

Rg(N) = jj J2n=i g(rn)ß(rn)H- The variance of wAV (N) is significantly lower than 

the variance of w^DR(N) and this translates to superior short data record perfor- 
mance as seen in the next section. Of course, as N —+ oo, wAv (N) —+ wAv and 
WLVDR(N) —> w^DR with probability one, and in general vr\J ^ wJ^DR. So, this 
is a case of trading bias for lower variance. 

To complete the algorithmic developments for a fully adaptive implementation of 
the DS-SS receiver in Fig. 2, we turn our attention to the Hampel cut-off parameters 
<*i, «2, »3- Adaptive cut-off parameter optimization can be pursued exactly as in 
[10], in the form of a decision driven, Minimum Bit-Error-Rate (MBER) stochastic 
approximation recursion. 

3.    NUMERICAL AND SIMULATION STUDIES 

We examine DS-SS signal transmissions with speading gain L = 63 in the pres- 
ence of 5 SS interfering signals and impulsive noise. The normalized synchronous 
signature cross-correlation of the interfering signals with the signal of interest is ap- 
proximately 25% while the signature codes of the interferers are nearly orthogonal to 
each other. The communication channel is modeled as a multipath Rayleigh fading 
channel with 4 paths and zero mean complex Gaussian fading coefficients of variance 
0.5 (i.e. i?{|cj;)rn|

2} = 0.5) for all paths m = 0,- -,3 and all SS signals k — 0,---,5. 

The average total received interfering signal energies Ek Sm=o ^{kfc.ml2} are set 
equal to 9,10,11,12, and \ZdB for k = 1,2, •••,5, respectively. The impulsive 
channel noise is modeled according to the familiar e-mixture disturbance model 
fe{x) = (1 — e)fo(x) + cfi{x) where e £ [0,1] accounts for the probability under 
which the noise is /i() distributed. The nominal pdf /o(-) is taken to be 0-mean 
complex Gaussian with variance «TQ = 1. The "contaminating" pdf/i(-) is assumed 
to be 0-mean complex Gaussian with variance o\ — J2

(TQ (f2 = 1,000) and e is set 
equal to 0.2. 

In Fig. 3 we compare the BER behavior of the conventional MVDR filter, the 
Hampel-MVDR filter, and the Hampel-AV (Auxiliary-Vector) filtering procedures 
developed herein. All cut-off parameter and filter estimates are based on a data 
record of 128 samples. The multipath fading channel is assumed to remain constant 
during adaptation and the BER induced by each receiver for each channel is aver- 
aged over 100 randomly drawn channels and 10 receiver realizations per channel. 
As seen in Fig. 3, the superiority of the Hampel-AV adaptive receivers is apparent. 

To study the effect of the sample support size on the BER performance of the 
adaptive receivers under examination, we fix the average total received energy of 

the SS signal of interest at Eo Ylm=o -^{lco,m|2} = 12dB and we repeat the studies 
of Fig. 3 as a function of the data record size. Fig. 4 demonstrates the superiority 
of AV post-filtering over the whole data support range of practical interest. 
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Abstract— Currently a large area of research is being devoted to compressed domain content-based compression due to the 
JPEG-2000 and MPEG-7 requirements. Current compression quantization techniques are not geared to extract models of image 
structures as a part of the compression process due to the fact that the they are geared to attain maximum compression ratio for the 
lowest cost. Additionally the entropy encoding processes leave the compressed data unrecognizable due to its need to completely 
randomize the data for maximum compression. Recently there has been much work in wavelet and fractal methods for texture and 
shape segmentation as well as data compression. These methods contain implicit models for shape and texture coding as a natural 
part of the compression process. We thus develop a method for wavelet fractal compression which extracts and codes shape and 
texture primitives. This method makes use of the Mallat Gaussian derivative basis set and an implicit Markov shape and texture 
model. 

I. Introduction 

Recently there has been much interest in defining the relationship between wavelets and fractals [5]. We will first dis- 
cuss a particular type of wavelet developed by Stephane Mallat which uses the Gaussian Derivative for a basis set. Secondly we 
will discuss how the properties of this wavelet can be used to enhance the block quantization process in wavelet fractal encoding. 
We will then show the parallels between he wavelet fractal block quantization process and a well known Wavelet Markov model 
and use the properties of the model to enhance the compression process. We will then describe how this Markov model can be used 
to integrate texture and shape into the compression process. Finally we will describe the image reproduction process and show an 
application of our compression method. 

n. Gaussian Derivative Wavelet 

The high g(x) and low h(x) pass elements of the Gaussian derivative wavelet transform are often cascaded in a filter 
bank structure as is shown in Figure 1. This methodology is a computationally efficient means of dividing a signal into organized 
set of frequency bands. One type of filter bank structure is the Mallat [14] multiresolution frequency bank or MRA for short. A 
particular implementation of this transform know as the dyadic MRA structure. This particular implementation of the MRA uses 
the Gaussian derivative[14] basis set as shown in. As we shall show later the Gaussian derivative has many desirable properties 
useful in signal and image analysis including an ability to accurately reveal boundaries and edges in signals and imagery minimal 
artifact production in image reproduction.The result is a an extremely effective means of detecting singularities (edges) in a signal. 

If we represent our gaussian ga(x) Mallat [14] uses an elegant technique for two dimensional decomposition which lends itself 

to image compression and is the basis of our wavelet fractal method. The algorithm consists of first preprocessing an image with a 
multiscale wavelet decomposition as described by Mallat. In two dimensions the lowpass is performed as a separable transform as 
shown in Figure 3 and the highpass is done as the 1-D transform in X and Y dimensions independently. 

W = (w]/(*,y), Wfay))j BZ (1) 

The X and Y highpass functions are then combined to form modulus edge image and gradient edge image as is described in equa- 
tions 2 and 3. 

M/(x,y) = J\wlf(x,y)\2+ \wfa,y)\2 (2) 

A/(x,y) = arg(W]/(x,y) + w2/(x,y)) (3) 
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The difference between Mallat in his two dimensional biorthogonal transform and the ordinary orthogonal Harr two 
dimensional transform is that he does not subsample his images as in the 1 dimensional case and that he applies only one filter in 
the X and Y directions to compute a polar representation for modulus maxima for each of the high pass bands. Thus, Mallat has 
only two high pass bands which can be represented in terms of x and y or polar representation. 

IV. Fractal Encoding 

We now describe the process of fractal quantization. Classic fractal compression is described in terms of Harr basis 
sets and cross scale approximation which is in effect performed due to the averaging process in fractal compression. There are 
essentially three parameters needed for fractal reconstruction as was discussed in Jaquin and Fischers's techniques and indicated in 
equation 1 

/(*) = Tf(x) = ULf(x) + b = QLf(2x)+b (4) 

where f(x) is the image to be transformed and T is a contractive operator with unique fixed point f. Encoding f means finding and 
operator T having a fixed point fapproximately equal to f while decoding is equivalent to finding the fixed point f by iterating T 
starting with an image selected at random. ULrepresents the transformation applied to the domain blocks which both grey levels 
and decimates; QL represents a simpler UL that simply scales the already decimated domain blocks, and b is the intensity offset 

applied to the domain blocks. Note that f, b e V where V is a discrete and finite dimensional space. JaquinflO] describes this block 
matching between scales in terms of a Markov operator since in a pure fractal (Global IFS) [3] intensity and geometric matching 
occurs at all wavelet scales whereas in Jaquin's fractal approximation it occurs between two wavelet scales. 

Instead of using the Harr basis set we insert the Mallat Gaussian derivative wavelet transform into the fractal 
compression. It is also interesting to note as shown in that the biorthogonal spline has a much more localized frequency response 
than the Harr basis set [5]. This fact is extremely important in the fractal reconstruction process since the Harr basis contains many 
high frequency artifacts in reproduced images due to its sharp spatial domain cutoff. The Gaussian derivative spline has a much 
smoother spatial cutoff and thus much less tendency to create artifacts in imagery, as is shown in the frequency plot below looking 
at all models of fractal encoding we realize that the trend is to reconstruct an object from its low frequency components to its high 
frequency components. In the wavelet fractal case this method approximates wavelet coefficients across scales. This model fits 
with the fractal method since low frequency corresponds to large scale. We also know that the Mallat multiresolution decomposi- 
tion happens in dyadic scales which, in the Harr basis set case, corresponds to blocks which are dimensions are powers of 2 in size. 
Thus we shall keep with this framework for the Gaussian derivative basis set. Putting this in the context of the wavelet transform 
we re-write equation 4 by inserting equation 1 as: 

Wtf - i/(*.y) = QLWjKx#) + b (5) 

Thus we build our reconstructed image from the low frequency or large scale images first and then eventually reconstruct the final 
image. Note that his process use the wavelet decomposition to explicitly separate scales by frequency. Thus for a given block size 
we only have information that is fits that particular scale. 

V. Localized Texture Coding 

In order to determine the intensity offset or b parameter from equation 5 between two scales we find the blocks that 
best match eachother between two scales In traditional fractal encoding we do this do an exhaustive LMS search of range to 
domain blocks and take the block with the lowest difference. If we look at wavelet theory however we find that such exhaustive 
block matching is unnecessary. The reason stems from observing the properties of a Markov wavelet model described with by 
Luettgen and Willsky[12] 

To represent this Markov random field we define a given node in the quad tree structure as s, its children nodes as 

saNW,saNE,saSE,sasw and its parent node as sy where y shifts the wavelet coefficients from parent sy to child s. Now, 

defining a MRF on a 2N x 2N lattice, a state at the mth level represents the values of the MRF at 16(2 ~ m - 1) points. This set 

of points is denoted as Ts and it is the union of 4 mutually exclusive subsets. In general we can divide Ts into four set sets of 

4(2Ar_m(s)-l) points in a similar fashion, and we denote these subsets as Tsi,ie {NW,NE,SE,SW} .   Now if we have the 
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random variable Z representing the current state of any Ts at any stage of the tree then we insert our local IFS relationship as 

Zt = QLZT+b (6) 

defined in the fractal wavelet context as 

Zre^-i/fcy) Z^W^xy) (7) 

thus the basic probabalistic Markov relationship is defined as 

Pzt,tersa\zrTers(
z

P
tersa\ZT'Tsrs)    = Pzrtersa\zrTerJZftersa\zrTeTs,^ (8> 

This relationship defines regions of constant texture. For any region of constant texture the slope of the energy 
decay across scales remains fixed. This energy decay also known as the Lipschitz or Holder exponent, also closely related to frac- 
tal dimension [15], can be characterized in detail by the Markov model. If we select some a where 0 < a < 1 and the function f(x,y) 
is uniformly Lipschitz over an open set of reals if there exists a constant K such that for all points (x,y) of this open set 

MJ{x,y)ZK(2/) (9) 

a represents slope of the decay function at any given spatial point in an image. The b parameter a linear approximation of a 
between any scales if it is computed using the localized markov approach since a seeks to characterized the decay across scales 
within cone of influence of the transform. This cone of influence resides within the spatial boundaries of the quadtree in our case 
because of the dyadic decomposition of the wavelet transform in this area. 

VI. Localized Shape Coding 

To find a mapping QL from shape to texture for a particular object we need an efficient mechanism for determining a 
geometric mapping. If we recall, range and domain blocks in traditional fractal encoding are obtained by subsampling the image 
and then matching each range block to every possible domain block in an image[10]. Needless to say this encoding process takes 
an extremely long time and is one of the major drawbacks of traditional fractal encoding. 

To simplify the process of range to domain block matching thus finding the mapping for QL in equation 5 we classify 
the range and domain blocks by summing the blocks' gradient angle parameters since these gradient are accurate indications of 
energy and direction within each block. Jaquin used a similar procedure in his classification of blocks in traditional fractal encod- 
ing, by applying the centered operator to each block. Now with Mallat's wavelet decomposition energy direction is already indi- 
cated as a natural part of the process/Thus the operation of block classification thus becomes a lookup table procedure rather than 
an exhaustive matching process. Both range and domain block position in the image are stored. The block rotation value is also 
determined by applying the appropriate flip that makes the block gradient angles match most closely 

In addition to block matching the shape contour information about objects in the scene can be also included in the 
compressed object by encoding around modulus maxima values. This also is a crude form of quantization around blocks with 
energy above a given threshold since energy with the Gaussian derivative is centered around the edges or zero crossings of the 
encoded of the encoded image. This process can be used to associate groups of blocks in conjunction with the localized texture 
metrics. Other well known shape grouping algorithms may also be employed such as chain coding. 

VII. Object Quantization 

Rate distortion in a wavelet fractal sense is handled by how many wavelet scales are used in the decomposition of the 
image. [7] The number of scales starts with the largest scale, and thus largest range block used. We go to the next lower scale and 
thus next smaller range block in a quadtree form if we do not find an adequate match between range to domain block. This process 
is now described in terms of classic rate distortion. 
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Traditional quantization deals with Q [17] as the set of admissible scalar frequency quantization choices and T as the 
complete spatial tree and S as the pruned spatial tree where 5 < T. In our model based approach instead of S our tree structure is 
pruned according to some model preconfigured model.  We denote this tree model SM which consists of the set of nodes which 
characterize our texture and shape region of interest. 

Our model optimization problem seeks to solve the traditional rate distortion problem where a frequency quantizer 

q*Q 

min     D{q,SM)  subject to R(q,SM)<Rbudgel (10) 
qeQ,SM<T 

where D(q,SM) and R(q,SM> represent the distortion and rate respectively associated with the frequency and spatial quantizer 

choices qe Q and SM<T 
As in conventional cost/optimization, this constrained optimization problem can be solved by unconstraining it via the 

Lagrange multiplier X > 0, which quantifies the trade-off between rate and distortion and minimizing the unconstrained Lagrangian 

cost 

J(q, SM) = D(q, SM) + XR(q, SM) (11) 

We now use the quantization process Q to define a simple model by the average holder exponent for the range of 
scales over which modulus maxima for a given object are computed. Since b is a linear approximation of the Holder exponent 
between two scales and we wish to define the wavelet transform across a range of scales we can approximate this as 

Thus for a region of constant texture a measurement of a can be determined using the average value of b for a given 
range of encoding scales s denoted 5 {s:0 < s <N-1.} and this as is computed as: 

JV-l 

"s~ifr <I2> 

Thus we segregate and prune regions of our image by restricting °Oj to be less than a certain maximum 

o„ <max(o„ ) (13) as s 

Because this quantization process naturally removes regions of low intensity around the modulus maxima and the 
modulus maxima define shape boundaries of objects our texture quantization methodology naturally finds the boundaries of 
objects and encodes them. Shapiro noticed that the natural decay of frequency between scales can be exploited to optimize the 
compression process by eliminating wavelet coefficients that fall below some threshold. For encoded texture and shape objects our 
procedure does not make this assumption but encodes the spectrum assuming our Markov model where spectral intensity can 
increase or decrease across scales. Our quantization method is applied within individual objects to optimize their overall quality. 
Variation of texture and shape definitions will result in different compression ratios depending on the size of the uniformity and 
size of the texture and shape region. 

Vin. Decoding 

Because our frequency mapping proceeds from low to high frequency our reconstruction process simply proceeds by 
iterating our compressed parameters on the low pass image. For each scale the iterative procedure forms the approximation of the 
next higher lowpass image and is then lowpass filtered and the process is repeated. This process thus removes all blocky artifacts 
in the image while still revealing the image features. The above technique leads to a direct reconstruction method as to in the fol- 
lowing equation 

J = J 
while (j > 0) 

sj+1 * = QL&J /*(H/*I.H/+D+* (14) 

endwhile 
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Thus in the compressed file our first step is to upsample compressed lowpass image and then use the stored fractal 
local iterated function parameters on it to reconstruct the original image building each new scale from the previous lowpass image. 
The image can be restored to any desired resolution simply by stopping the reconstruction process at a given scale. This iterative 
procedure is only order 0(N) where N is the number of image blocks for all scales and thus can be performed real time with no 
special hardware. Thus this approach is a significant advance over the Mallat alternating projections reconstruction method 
because it is extremely efficient in its reconstruction speed. 

DC. A Compression Application 

We now define a compression application which will allow us to exploit the advantages of our methodology while still 
retaining good overall compression performance. It is well known that tranditional wavelet entropy encoding methods outperform 
fractal and wavelet fractal compression methods by pure PSNR to compression ratio performance. Thus we will only encode those 
regions of the image where detailed object analysis is required and leave the rest to be coded by traditional wavelet entropy meth- 
ods[5], [15]. In our application we encode the region around Lenna's face with our encoding method .  We maintain high quality 
around the facial region by compressing at a lower compression ratio around the face than in the rest of the image. We set our 
quantization procedure Q by which then specifies the objects that we encode. We quote two metrics for image PSNR quality. One 
for the region within Lenna and one for the overall image PSNR. Compression ratio is given for the overall image. Our results 
show that our overall image quality is less that that of traditional methods but at the higher compression ratios the image quality 
within the region of interest of our object surpasses that of the conventional methods. Thus by combining compression and recog- 
nition in one operation we can preserve image quality in those regions which have particular interest to the user and demphasize 
the background. This region of the image is now content addressable for recognition purposes in the compressed domain given that 
its compressed data (namely b values) were recognized by our quantization scheme Q such that they are the model Markov struc- 
ture SM. 

Compress Ratio: 4:1 8:1 16:1 32:1 64:1 

Bits/Pixel: 2.0 1.0 0.5 .25 .125 

Object PSNR(db] :      35.6 33.7 32.2 31.5 30.25 

Image PSNR(db; :      39.0 36.2 33.2 30.2 27.54 

JPEG PSNR(db) :      44.0 38.1 33.0 28.5 - 

EZW PSNR(db) - 39.6 36.3 33.17 30.23 

Figure 1. Compression Ratio vs. PSNR on 512x512 Lenna 8bpp (preliminary) 

X.Conclusion 

The fractal-wavelet method offers a significant improvement over existing techniques because of its unified approach 
to image analysis and compression. The fractal wavelet method itself gives naturally higher compression and better reproductive 
quality than conventional DCT-based methods for specific regions of interest. By its wavelet frequency division process, it gives a 
more natural organization to existing fractal methods and allows more accurate block matching. As a result of its modulus maxima 
shape representation it gives a shape to texture content-based approach to compressed file organization. By its gradient based 
block matching technique it is significantly faster than existing wavelet-fractal compression methods. 
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Abstract 
Utilizing coherent pulse Doppler radar waveforms and feature extraction signal 
processing techniques, a rotary -wing aircraft's rotor design such as main rotor 
configuration (single, twin tandem, twin coaxial, etc), number of blades (2,3,4,5, etc), 
tail rotor blade count and configuration (cross, X, star, etc) can be determined. Such 
information can be used to assist in the classification and identification of the aircraft. 
This paper describes the development of a high fidelity coherent pulse Doppler radar time 
domain signature simulator for military rotary-wing aircraft targets. The simulator 
model's radar cross section (RCS) backscatter of the rotary-wing aircraft's airframe, main 
rotor blades, main hub section, and tail rotor blades as a function of time. The simulator 
also has models for simple clutter and noise, which can be added to the target return at 
any desired signal-to-clutter (S/C) and/or signal-to-noise (S/N) levels. 

1. The Doppler Signature of a Rotary-Wing Aircraft 
Figure 1 illustrates a typical military helicopter in forward flight. The main rotor blades 
are rotating in a clockwise direction as viewed from the top, with the tail rotor blades 
rotating in the plane of the drawing from top-to-bottom. 

ft   Advancing 
Blade 

Retreating 
Blade 

Figure 1. Helicopter in Forward Flight 
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If we assume that a pulse Doppler radar is viewing the aircraft of Figure 1 from the left 
along the flight path, the helicopter will exhibit several Doppler signatures to the radar 
processor. These will include positive Doppler shifts of the airframe, the advancing main 
and tail rotor blades, and the advancing elements of the hub region. Negative Doppler 
shifts will result from the retreating blades and retreating hub region scatters. 

Figure No. 2 shows the complex magnitude time domain signature from the return of an 
actual military helicopter including noise and clutter. Figure 3 illustrates the power 
spectrum density of the signal (16384 point complex FFT). The recording pulse Doppler 
radar was aboard an instrumented aircraft in flight, thus the shifted clutter line. The 
helicopter was on an approaching profile in forward flight, resulting in additional 
Doppler shift of the airframe (i.e. skin). Centered around the helicopter airframe is the 
hub region returns and the advancing & retreating blade returns. 

Figure 2. Magnitude Time Domain Data of RW Aircraft in Clutter and Noise 

Clutter Une 

8000 12000 14000 16000 

Figure 3. PSD of Time Domain Signal 
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Feature extraction of the radar signal can be achieved by selecting only the regions in the 
PSD that are of interest (i.e. skin, hub, blade, etc), and performing an inverse complex 
FFT to return the data to the time domain. Figure 4 illustrates such a process for the 
advancing blade flash region. 

2000   4000   6000   8000   10000  12000  14000  16ÖQ0  18000 

Figure 4. Time Domain - Advancing Blades 

Analysis of Figure 4 reveals one main rotor blade "flash", two main rotor sweep-tip 
"flashes", and eight tail rotor "flashes". This information, combined with data from the 
retreating blade spectrum, can significantly characterize a given rotary-wing aircraft. 

2.  Rotary-Wing Signature Simulator 
Figure 5 illustrates the coherent time-domain rotary-wing radar backscatter signature 
simulator developed at Georgia Tech Research Institute. Helo-Sim consists of models 
for: 

1. advancing main rotor blades 
2. advancing tail rotor blades 
3. retreating main rotor blades 
4. retreating tail rotor blades 
5. hub signature (both advancing and retreating) 
6. airframe (skin signature) 
7. white noise 
8. distributed clutter 
9. radar waveforms 
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10. 3-D dynamic environment for the radar platform and rotary-wing target 

r^\ 

HUB   " 
MODEL 

,-*i   ;    -        .  \ 

NOISE 
MODEL 

Coherent l/Q Time Domain 

Figure 5. Pulse Doppler Radar Rotary-Wing Target Signature Simulator 

The blade modeler generates returns based on the physical and dynamic properties of the 
main rotor and tail rotor blades of the aircraft. Variables include; blade length, major 
axis, minor axis, composite or all-metal, sweep-tip design of the main rotor blade, 
number of blades (main and tail), configuration of the tail rotors (cross, X, star, etc), and 
the rotation rate of the main and tail sections. The skin, noise, and hub models are based 
on probability estimators with user defined mean a variance settings. The radar model 
defines the radar wavelength and pulse repetition frequency. 

Figure 6 is several complex time domain magnitude signatures generated by Helo-Sim 
for a hypothetical 4-blade main rotor/2-blade tail rotor helicopter. Subplots (a), (b), (c), 
and (d) illustrates the forward blade, hub, skin, and retreating blade signatures 
respectfully. 

Figure 7 shows the composite complex time domain signature for the complete rotary- 
wing signature with added noise. Figure 8 illustrates the complex magnitude FFT for the 
signal of Figure 7. Review of Figure 7 indicates the helicopter's skin line, hub, and blade 
spectrums. 

3.  Summary 
Researchers at Georgia Tech have developed a high fidelity pulse Doppler radar signature 
simulator for rotary-wing aircraft. Unique properties of a given helicopter, such as its 
main rotor blade design, tail rotor design, and hub structure can be characterized. 
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Simulated time domain signatures from the modeled helicopter can be presented to 
special radar processors for testing information to a non-cooperative target recognizer. 
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Figure 6. Helo-Sim Generated R/W Time Domain Signatures 
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Figure 7. Composite R/W Time Domain Signature (Helo-Sim) 
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Figure 8. FFT Magnitude of Composite R/W Signature (Helo-Sim) 
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Comparison of Selected Features for Target Detection in 
Synthetic Aperture Radar Imagery 

Tristrom Cooke* Nicholas J. Redding^ Jim Schroeder* Jingxin Zhang5 

Abstract 

Several methods are available that capture the statistics of radar imagery. The best features, in the sense 
of man made target discrimination, are expected to be different for different types of natural background, and 
for different objects of interest such as vehicles. We demonstrate that discrimination of natural background 
and man made objects using low resolution Synthetic Aperture Radar imagery is possible using multiscale 
autoregressive (MAR), multiscale autoregressive moving average (MARMA) models, and singular value 
decomposition (SVD) methods. We use the model coefficients, moments of the model residual vectors, a 
subset of eigenvectors, and moments of the selected eigenvectors, as features for target discrimination. All 
the test imagery used here was 1.5 metre resolution. 

Keywords: multiscale models, singular value decomposition, automated target detection, synthetic aperture 
radar, natural background. 

1    Introduction 

Characterising the natural background or clutter environment in synthetic aperture radar (SAR) imagery is an 
important step in developing better automated target detection (ATD) tools. The ability to discriminate one 
type of background from another can lead to the use of adaptive ATD algorithms which go beyond merely looking 
for radar bright objects. These models capture the variation in the statistical properties of a given region in an 
image. Natural backgrounds exhibit different statistics than man made objects, which we exploit as a means of 
discrimination. In this work we use Multiscale Autoregressive(MAR) models, Multiscale Autoregressive Moving 
Average (MARMA) models, and Singular Value Decomposition (SVD) techniques to derive features sensitive 
to the statistical differences between background clutter and man made objects such as vehicles. 

2    Multiscale Modeling Methods 

Multiscale methods have been applied to the problem of target detection and recognition in SAR imagery by 
Irving et al [1] and Subotic et al [2]. These methods differ from more traditional image analysis methods in 
that they operate on a sequence of related images, each being a view of the same scene at a different resolution, 
rather than a single high-resolution image. In our work, this sequence of images is organised as a hierarchical 
multiscale stack, where the resolution decreases from fine to coarse by a fixed factor progressively up through 
the levels of the stack. The models we impose on these stacks are generalisations of those used in ordinary time 
series. In this context, the level number (or scale index) plays the equivalent role to time. 
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tcooke@cssip.edu.au 
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In [3] and [4], it was shown that multiscale autoregressive (MAR) models are effective in discriminating 
vehicle-sized objects from natural background in SAR imagery. Here we further quantify target discrimination 
performance using receiver operating characteristic (ROC) curves estimated from a larger data set. We also con- 
sider the wider class of multiscale autoregressive moving average (MARMA) processes. These are generalisations 
of ARMA models in time series analysis, and they contain MAR processes as a special case. 

A multiscale stack is a sequence {X^} of images indexed by level number m = 0,..., M, where M is a 
positive integer. Level 0 is the highest resolution image, and the resolution decreases by a factor of two in going 
from each level to its successor. The set of pixels at level m is 

5(m) = {(i,j) : i = 0,.. .,im - U = 0,.. .,jm - 1} . 

The state of pixel (i, j) in 5(m) is X^, a random variable which may be real or complex. Every pixel in 
every level except M has a parent pixel in the level above it. The parent of pixel (i, j) in level m is the pixel 
(idiv2, jdiv2) in level m + 1, where div is the integer division operator (i.e. the remainder is discarded). The 
ancestor of (i, j) at level m + k (provided m + k < M) is the pixel (idiv 2k,j div 2k). Every pixel in every level 
except the first has four children in the level below it. The children of (i, j) in 5(m) are the four pixels (2i, 2j), 
(2i, 2j+ 1), (2i +1,2j) and (2*4-1,2j +1), all in 5(m-1). Note that im = 2~ki0 and jm = 2~kjo, and that both 
i0 and jo must be greater than or equal to 2M. 

The multiscale stacks used in this work were generated using coherent quadtree averaging and by use of a 
discrete wavelet transform; no significant differences between the two methods have been noted so far. The 
input to this process, a complex image of a region of interest at the highest resolution available, becomes level 
0 of a complex multiscale stack {Z^}, m = 0,..., M. Each of the higher levels is generated from the level 
immediately below it with the resolution decreasing by a factor of two at each successive level. The state of 
each pixel at each level above the first is given by the arithmetic mean of the states of its children. So 

y(">) _  *  (y-i™-1)   i   y(m-l)    ,   7(m-l)    ,   7{m-l)       \ 
Aij      — 4 ^21,2.7     + ^2i,2j + l "+" z,2i+l,2j + Z/2i+l,2j+l)   • 

Once the complex stack has been generated, each level is converted to decibels (log detection). This procedure 
produces a second multiscale stack X = {X^}, m = 0,..., M, which is the input to the model fitting and 
classification procedures. 

A MAR process defined on a multiscale stack X satisfies 

R(m) 
yW_   V^ „(»») y("»+*) ,   <r(™) (U 

■*-ij     *   2—i    k    JVidiv2*,jdiv2k ^ **ij       ' v   ; 

where R(m) is the order of the process for level m, Q™' is zero mean noise, and the coefficients a{',..., a^TO) 
are real valued model parameters. An intercept term can be added to each level if required. The same coefficients 
apply to all pixels on the same level, but the coefficients for different levels need not be the same. For each level m, 

the 4jm) are independent and identically distributed, i.e. f(m) = {$*)}, (i,j) G S^, is a spatially stationary, 
strictly white noise field. We further assume that the noise fields of two different levels are independent. 

To define a MARMA process on a multiscale stack X, we simply augment the above process like so: 

R(m) Q(m) 
v(m) —   V^ „(m) v(m+k) .    V^ h(m)Am+k) ,   Am) ,<s\ 
-A-ij     —   2-J     k     ^Lidiv2k,jdiv2k ~*~  L-/ Uk    N div 2*, j div 2<= x *»«'j       ' K   ' 

k=l fc=l 

Here b^\ ..., ^Q?^ 
are ^e coefficients of a multiscale moving average process. 

The MAR process has a likelihood function which readily decomposes into a product of terms for each 
pixel and is amenable to computation. This makes likelihood approaches to model fitting and to classification 
straightforward, as demonstrated in [2]. By contrast, the likelihood function for MARMA is unwieldy. Iterative 
least squares techniques need to be used for model fitting, and likelihood based classification is problematic. We 
address this last issue by trying to use the fitted coefficients under the model as the input to the classification 
procedure, rather than trying to classify on the image data directly. 
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3    Singular Value Decomposition Method 

An SVD feature approach, unproven and still in relative infancy, involves the analysis of high range resolution 
(HRR) profiles [10, 5] for ATD/R systems. Singular Value Decomposition (SVD) analysis of HRR data reveals 
that the range-space eigenvectors corresponding to the largest singular value accounts for more than 90 percent 
of target energy, thus it may be that the eigenvectors can be used as a target detection statistics. HRR analysis 
has so far concentrated on ATR so it is not clear what value may accrue to ATD algorithms based upon this 
approach. For a SAR image the analogy would be to use sequences of cross track pixels from a region of interest. 

The motivation for interest in HRR SVD techniques within the USAF is an attempt to bridge the gap 
between MTI mode and SAR stripmap mode of wide area surveillance systems. MTI is good at detecting 
moving targets, but ineffective against stationary targets. SAR likewise is ineffective against moving targets 
but capable of accurately imaging stationary targets. It is possible that the SVD produces a useful feature 
space for SAR imagery not previously exploited. 

A possible approach can be outlined as follows. Let X be a size N x M matrix containing a region of interest 
from a detected or complex SAR image. This would consist of N range bins or cross track pixels and M along 
track focussed strips. The SVD decomposition results in 

U = Eigenvectors of [XXT] = [wi, «2, ■■■UN], 

V = Eigenvectors of [XTX] = [vi,v2, ...VM], 

A = diag[\ii,X22, ■■■XMM]- 

The eigenvectors «,- correspond to the magnitude ordered eigenvalues A,-, and represents energy from a target 
range profile (cross track pixels). Likewise, eigenvectors v, span the along track subspace. It is predicted that 
the target energy is concentrated in eigenvectors ux and vx. If the region of interest contains clutter only, it 
is predicted that the eigenvectors are evenly distributed in their components. A simple linear discriminant or 
other classifier can then be designed to classify a region as target or clutter only. 

4    Other Selected Features/Discriminators 

Along with the features previously discussed, numerous other features for magnitude only data such as maximum 
target intensity, Karhunen Loeve Transform (KLT) based methods and background distribution models (such 
as the U,V and W measures for K-distribution parameter estimation described in [8]) have also been considered. 
After extensive testing over a large and realistic database containing 53961 background and 22084 target samples, 
it was found that the best single feature found to date for target detection is the V measure for the estimation 
of the parameters of the K distribution. 

A number of co-occurrence matrix features have already been described in Redding [9]. Lie [7] contains 
another set of co-occurrence based texture features, such as the 'busyness', Weber's contrast, 'average contrast' 
and 'homogeneity'. This paper also outlines an algorithm for efficiently calculating these measures. 

There are many different ways in which an image can be decomposed into a weighted sum of orthonormal 
basis functions, where the weights can be used as features. Ghosal and McKee [6] for instance use a Zernike basis, 
while Rong and Bhanu [11] derive three features based on the means and moments of an image's coefficients in 
a Gabor basis. 

A set of features that seems very promising for target detection is the SVD of the FFT. Although no firm 
physical explanation has been found for this, the first row of the first matrix produced by the SVD yields a 
reasonably good ROC curve as shown in Table 3. The best 5 other features (maximum intensity, one FFT 
coefficient, variance, skewness and a parameter derived from the KLT) gave a similarly good ROC. Choosing 
the best 8 features from all of the features tested (maximum intensity, 4 SVD of FFT coefficients, one FFT 
coefficient and the skewness) gave a FAR of about 7.8 percent for a PD of 90 percent. 
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Clearly, Automatic Target Detection can be considered as a form of target classification, wherein just 
two classes exist: Target only or Background Clutter only. It may be advantageous to approach ATD as 
a pattern classification problem and explore the use of modern classifiers such as Support Vector Machines 
(SVMs) or Neural Networks (NNs) to name just two possible techniques. The potential use of SVMs for target 
discrimination is summarised in [9]. 

5    Results 

The multiscale models described in the previous section were each fitted to samples of "Background," "Grass- 
land," "Woodland," and "Vehicles" extracted from 1.5m resolution SAR imagery. Additionally, eigenvectors 
from an SVD were computed from the magnitude imagery. The imagery was collected during trials of DSTO's 
Ingara airborne SAR. There were 53 samples of the background class, 256 samples of homogeneous grass, 256 
samples of woodland, and 159 samples of the same vehicle from different orientations. Each sample was a 16 x 16 
matrix of complex SAR data which was processed into a four level stack. Model fitting was accomplished by 
transforming each stack into a 256 x 4 data matrix suitable for use as input into the standard time series fitting 

routines in MatLab. 

For this work, we only estimated the coefficients for level 0 of the multiscale stack. Four different models 

were fitted to the SAR data: 

• a second order autoregression denoted MAR(2); 

• a second order autoregression denoted MAR(3); 

• a fourth order autoregression, MAR(4); and 

• a second order autoregressive moving average denoted MARMA(2,2). 

Table 1 summarises the performance of the multiscale techniques using the area under the ROC curves derived 
from coefficients and/or residual vector moments under several multiscale model cases. In most cases, the 
coefficients vary quite widely and the two populations overlap to varying extents. However, linear discrimination 
works (albeit with some error) for certain model sizes. Several model orders are invoked: MAR(2), MAR(3), 
MAR(4), and MARMA(2,2), over regions of interest (ROI) sized 8 x 8, 16 x 16, and 32 x 32. The complex 
multiscales are created either by complex quadtree averaging or by use of a "dbl" wavelet transform; the results 
are similar. We caution, however, that the background clutter is reasonably homogeneous without additional 
cultural features, and that the targets are comparatively strong. In all cases the targets are multiple images of 
the same vehicle from different orientations. 

Quadratic discriminant rules were also formulated from the training data for each of the multiscale models. 
Classifiers based upon these rules performed poorly relative to the linear discriminant rules. Examination of the 
scatterplots indicate a possible reason for this. The fitted coefficients of each class are quite widely dispersed 
with plenty of outliers. As a result, the sample covariance matrices needed for quadratic discriminators would 
be poor estimators of the underlying population covariance matrices. We are currently exploring the use of a 
Support Vector Machine (SVM) as an alternative to linear discriminant classifiers. 

Typical results from use of SVD derived features (over 16 x 16 region size) for the target discrimination 
task are shown in Table 2. Specifically, area under the ROC curve using both the «i and vi eigenvector, or 
32 coefficients total input into the linear discriminant is shown, and results from using just the moments of the 
Ui and vi eigenvectors. It can be seen that using the variance of the first two eigenvectors produced a perfect 
ROC curve. However, recall that these results are obtained on "ideal" data in that the background clutter is 
homogeneous, the target signal strength is high. It can be seen from Table 3 that testing on low contrast data 
results in an obvious degradation in target discrimination performance. 

For the features used in Table 3 which are based only on the magnitude of the radar return, a larger data 
set with more realistic contrast levels was available for testing. This data set was extracted from a large image 
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MAR Model Area Comments/Features 
MAR(2) 
MAR(2) 
MAR(2) 
MAR(3) 
MAR(4) 
MAR(4) 

.560 

.928 

.922 

.910 

.999 

.990 

159 Vehicles/Grass, 8x8 Regions, MAR Coefficients 
159 Vehicles/53 Backgrounds, 16 x 16 Regions, Intensity Data, Peak Freq Difference 
159 Vehicles/53 Backgrounds, 16 x 16 Regions, Intensity Data, Min Freq Location 
159 Vehicles/Grass, 16 x 16 Regions, MAR Coefficients 
159 Vehicles/Grass, 16 x 16 Regions, 3 MAR Coefficients/3 Residual Vector Moments 
159 Vehicles/Grass, 16 x 16 Regions, 4 Residual Vector Moments 

MARMA(2,2) 
MARMA(2,2) 
MARMA(2,2) 
MARMA(2,2) 
MARMA(2,2) 
MARMA(2,2) 
MARMA(2,2) 

.998 

.990 

.990 

.980 

.970 

.940 

.930 

159 Vehicles/Grass, 32 x 32 Regions, MARMA Coefficients 
159 Vehicles/Grass, 16 x 16 Region, MARMA Coefficients/Variance of Residual Vector 
300 Vehicles/Grass, 16 x 16 Region, MARMA Coefficents/Variance of Residual Vector 
327 Vehicles/Grass, 16 x 16 Region, MARMA Coefficents/Variance of Residual Vector 
159 Vehicles/Woods, 16 x 16 Region, MARMA Coefficents/Variance of Residual Vector 
159 Vehicles/Woods, 16 x 16 Region, MARMA Coefficents/Variance of Residual Vector 
159 Vehicles/Woods, 16 x 16 Region, MARMA Coefficents/Variance of Residual Vector 

Table 1:   Estimated area under a ROC curve for linear discriminant applied to the features derived from 
multiscale models 

SVD Vectors Area Comments/Features 

«l,Wi 

tli.Wi 

.994 

.964 

.964 

.836 

.533 

159 Vehicles/53 Backgrounds, 8x8 Region, «i and vi Used 
159 Vehicles/53 Backgrounds, 8x8 Region, Mean of «i ,«i 
159 Vehicles/53 Backgrounds, 8x8 Region, Variance of ui ,vi 
159 Vehicles/53 Backgrounds, 8x8 Region, Skewness of «i ,ui 
159 Vehicles/53 Backgrounds, 8x8 Region, Kurtosis of «i,t>i 

«i,t)i 

tii.tii 

«i,t>i 
«l,t)l 

«i,t)i 

.993 

.926 

.927 

.888 

.720 

159 Vehicles/53 Backgrounds, 16 x 16 Region, «i and t>i Used 
159 Vehicles/53 Backgrounds, 16 x 16 Region, Mean of u\ ,v\ 
159 Vehicles/53 Backgrounds, 16 x 16 Region, Variance of «i,ui 
159 Vehicles/53 Backgrounds, 16 x 16 Region, Skewness of «i,t>i 
159 Vehicles/53 Backgrounds, 16 x 16 Region, Kurtosis of u\ ,v\ 

Table 2: 
SVD 

Estimated area under a ROC curve for linear discriminant applied to the features derived from an 

into which were inserted 512 real targets at a variety of contrasts. A prescreening algorithm was applied to 
this large image, which resulted in the extraction of 76045 64 x 64 images (although only an 8 x 8 subset of 
this, corresponding roughly to the target pixels, was used for the calculation of the features). 53961 of these 
contained background, while 22084 contained inserted targets. This larger data set is much more challenging 
than the complex data set, as can be seen by a comparison of the area under the ROC curves for the Maximum 
Intensity, which was 0.974 for the smaller complex data set, but 0.845 for the new data set. 

6    Conclusions 

Our results show that linear discrimination of three types of natural background in SAR imagery, "woodland," 
"background," and "grassland", from man made bright objects is possible using 16 x 16 samples when the 
classification is made using the fitted coefficients and residual vector moments under one of several multiscale 
models. The autoregressive component of "grassland" is first order on average, while that of "woodland" is 
second order. Adding a first order moving average component improves the classification accuracy beyond that 
attainable using pure multiscale autoregression. The data are very clean, thus more extensive testing of the 
MAR and MARMA method on low resolution SAR data would be necessary before conclusions can be made. 

The SVD methods worked exceptionally well on the clean data, especially using the variance of just two 
eigenvectors as a two element feature vector. Unfortunately, the results degrade significantly when tested against 
lower contrast and higher clutter data. The SVD still produced better discrimination than most other individual 
features on this data. 
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SVD/K/FFT 
K Parameters 
K Parameters 
K Parameters 

Ml 

«i 

«i 
Not Applied 
Not Applied 

FFT 
FFT 

K/FFT/SVD 
SVD/FFT 

SVD-FFT/K 

Area 
.821 
.851 
.795 
.726 
.840 
.841 
.841 
.845 
.974 
.778 
.926 
.901 
.915 
.967 

Comments/Features 
All Clutter and Contrasts, 8x8 Region, U Measure Used as feature 
All Clutter and Contrasts, 8x8 Region, V Measure Used as Feature 
All Clutter and Contrasts, 8x8 Region, W Measure Used as Feature 
All Clutter and Contrasts, 8x8 Region, Variance of «i 
All Clutter and Contrasts, 8x8 Region, Variance of vi 
All Clutter and Contrasts, 8x8 Region, Eigenvector «i Used as Feature 
All Clutter and Contrasts, 8x8 Region, Eigenvector «i Used as Feature 
All Clutter and Contrasts, 8x8 Region, Max Intensity Used as Feature 
786 Vehicles/4096 Backgrounds, 8x8 Region, Max Intensity Used as Feature 
All Clutter and Contrasts, 8x8 Region, Real FFT Coefficient Used 
786 Vehicles/4096 Backgrounds, 8x8 Region, Real FFT Coefficient Used 
All Clutter and Contrasts, 8x8 Region, 5 Best Features Combined 
All Clutter and Contrasts, 8x8 Region, 8 SVD of FFT Used as Feature 
786 Vehicles/4096 Backgrounds, 8x8 Region, 9 Best features Combined 

Table 3: Estimated area under a ROC curve for linear discriminant applied to the features derived from an 
SVD, K Distribution Parameters, and FFT Coefficients Using a Range of Contrast and Clutter Ratios 
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In this paper, we consider turbo equalization for fast-fading frequency- 

selective channels when perfect channel state information is not available 
at the receiver. The receiver performs channel estimation/equalization and 

decoding in an iterative fashion using soft-decisions. Simulation studies of 
a turbo equalizer based on our recently proposed single stage joint channel 
estimation and equalization algorithm demonstrate the impressive perfor- 
mance of turbo equalization. 

Key Words:  communication systems, equalization, MAP estimation, iterative decoding 

1.    INTRODUCTION 
Transmission channels of modern high data rate, high mobilility, digital commu- 

nication systems often exhibit both fast-fading and intersymbol interference (ISI) 
characteristics. As a consequence, equalization can sometimes seem an overwhelm- 
ingly difficult task. Nevertheless, new turbo equalizers have been developed, and 
have proved to be very effective in compensating for both the fast-fading and the 
ISI effects in these channels. 

Turbo processing originally arose in the context of channel coding for error correc- 
tion [2] in additive white Gaussian noise (AWGN) channels. The term turbo refers 
to the fact that the data is processed multiple times in a feedback arrangement 
before a final digital decision is made. Recently, turbo processing has been demon- 
strated in the context of equalization for coded data transmitted over fast-fading 
ISI channels [3, 4, 5]. In each of these works, perfect channel state information has 
been assumed to be available to the equalizer. 

In the absence of perfect channel state information, traditional (non-turbo) adap- 
tive equalizers use least mean squares (LMS) or recursive least squares (RES) algo- 
rithms to directly update linear FIR equalizer coefficients [6, 7]. Explicit estimation 
of the channel is avoided, but these equalizers are unable to adequately compensate 
for the fast-fading environment. 
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An alternative approach is to separately estimate the channel, and provide the 
estimates on-line to an equalizer. Channel estimators which learn and exploit the 
statistics of the channel with Kaiman filtering and prediction have been demon- 
strated to have improved performance in the fast-fading frequency-selective envi- 
ronment [8, 9, 10]. For flat-fading channels (i.e. not frequency-selective, no ISI), 
this approach may be realized using pilot symbols and interpolation [11]. 

Recently, a more integrated approach to channel estimation and equalization 
has evolved, known as per-survivor processing (PSP) [12]. Based on maximum 
likelihood sequence estimation (MESE), channel estimates are formed using Kaiman 
filters along each of the surviving hypothesis paths in the MESE trellis. Thus 
there is a different channel estimate for each state in the trellis, and the result 
is joint channel and data estimation. PSP has been demonstrated to outperform 
conventional techniques in fast-fading ISI channels [12], and reduced complexity 
algorithms have been proposed [13, 14, 15, 16]. Unfortunately, the PSP approach 
is not suited to the turbo structure because MESE entails hard decisions. 

The maximum a posteriori (MAP) algorithm [17,18] has received much attention 
as an alternative to MESE for equalization. This is because it provides optimal soft 
decisions in contrast to the hard decision MESE approach. When the a posteriori 
probabilities are retained as soft decisions, the algorithm is often referred to as 
the APP algorithm [19]. Unlike MESE, there is no concept of a surviving path to 
each state, and therefore where joint equalization and channel estimation is to be 
achieved, channel estimates must be based only on the trellis state. Our recent 
work [1, 20] provides a generalized framework for achieving this by expanding the 
trellis state-space. In flat-fading channels, the algorithm reduces to that described 
in [21, 22]. 

This paper focusses on incorporating our APP equalizer [1, 20] (with joint chan- 
nel estimation) into a turbo processing structure. The receiver performs channel 
estimation/equalization and decoding in an iterative fashion using soft decisions. 
Simulation studies of a turbo equalizer based on our recently proposed single stage 
joint channel estimation and equalization algorithm demonstrate the impressive 
performance of turbo equalization. 

2.    TURBO EQUALIZATION 
In this section we consider the motivation for turbo equalization and review 

turbo processing principles in the context of equalization for coded data transmitted 
over fast-fading ISI channels. We then describe a turbo equalizer configuration 
incorporating our APP equalizer (with joint channel and data estimation) as well 
as an alternative using a single channel estimate. 

2.1.    The Optimal Receiver 
It is well known that the optimal receiver for any communication system takes all 

available information (on the channel, modulation format, coding, a priori knowl- 
edge of data source statistics, for example) into account in finding a joint estimate 
of all the unknown parameters, which includes the transmitted data. Even if it 
were possible to design such a complicated receiver, the computational burden 
would more than likely be prohibitive. Furthermore, modularity is important in 
any practical system. Thus, from both design and implementation considerations, 
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FIG. 1.    Transmission system with turbo equalization. 

it is desirable to separate the receiver into a cascade of processing subsystems (or 
stages). 

Prom an information theoretic point of view, hard decisions at the output of any 
processing stage result in a loss of information. Soft decisions reflect confidence in 
the decision, and this information may be further utilized by subsequent processing 
stages. However, even if soft decisions are passed between all stages, the overall 
processing may be far from optimal. This is because later stages benefit from infor- 
mation derived at earlier stages, but not vice versa. This has motivated iterative 
(i.e. turbo) processing at the receiver where soft decisions from later stages (e.g. 
decoding) are fed back as a priori information to earlier stages (e.g. equalization) 
to refine decisions. 

2.2.    Turbo Equalization 
For illustration of turbo equalization in this paper, we consider the simplest con- 

figuration with two stages, i.e. an equalization stage and a decoding stage. The con- 
cepts are easily extended for turbo equalization with further stages (corresponding 
to outer coding or turbo coding, for example). 

Fig. 1 shows the complete transmission system. The information available to the 
receiver consists of the channel output (in the form of a set of sufficient statistics 
from the matched filter at the receiver front-end), and any a priori information on 
the transmitted symbols (e.g. pilot symbols, zero-tailing). 

The equalizer (first stage) takes the channel output and forms soft estimates of the 
transmitted symbols. The decoder (second stage) then uses these soft estimates and 
knowledge of the coding algorithm to form soft estimates of the original data, and 
in doing so, forms a refined estimate of the transmitted symbols. These estimates 
are then passed back to the equalizer as a priori transition probabilities for the 
next iteration of equalization and decoding on the same data block. This feedback 
(iteration) process repeats, either until the data estimates converge, or until a 
processing delay limit is reached. 
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Important in the implementation of turbo processing is the concept of extrinsic 
information for each stage. This is the information about the data estimates, which 
is generated from the processing at that particular stage. In subsequent turbo 
iterations, this extrinsic information must not be included in the input to that same 
stage of processing (hence the two subtractions of information at each iteration in 
Fig. 1). 

Formally, the information about the rc-th transmitted symbol at the output of 
stage d may be written in terms of log-likelihood ratios as 

Ld,n = Ld,n + Led,n (*) 

where La
d is the a priori information (consisting of information available to the 

receiver and extrinsic information contributed by other stages of processing), and 
Ld n is the extrinsic information for stage d. 

The relationship (1) holds only if the soft decisions input to the stage (represented 
by La

d n) are independent over time n. For the case of a channel with memory 
(due to ISI or correlation in the fading), this will not be true as information at the 
output of the equalizer will be correlated. Further, by the very nature of coding, the 
refined estimates of the transmitted symbols will also be correlated. Fortunately, 
these correlations dominate symbols which are closely located, and therefore may 
be overcome by interleaving the data between coding and transmission through the 
channel as shown in Fig. 1. 

2.3.    Joint Channel Estimation fc Equalization 
In the absence of perfect channel state information at the receiver, the APP 

equalizer forming the first stage of the turbo configuration (as shown in Fig. 1) 
can be implemented in one of two ways. Firstly, a separate channel estimator may 
be used to provide channel state information to the APP algorithm. Secondly, 
a more sophisticated joint channel estimation and equalization may be achieved 
using an APP equalizer with expanded state-space as described in [1]. The latter 
configuration is the focus of this paper. 

The operation of the APP algorithm may be represented by a state trellis [7]. It 
accepts a priori symbol probabilities (soft inputs) and produces a posteriori symbol 
probabilities via the forward-backward recursions [19]. At each time n, and for each 
state transition ij in the trellis, the following expression needs to be evaluated: 

V27T0-2 *0 

where zn is the output of the receiver matched filter, a2 is the observation noise 
variance, and L_1 

Zn,ij = 22 Xn-l,ij fn,l (3) 
1=0 

where L is the length of the channel, {£n,y} are the data hypothesis values repre- 
sented by the transition ij for which the calculation is being made, and fn,t is the 
time-varying channel impulse response. 

If the channel, fnj, is known exactly, or estimates, /„,«, are provided to (3) 
by a separate channel estimation algorithm, then the state trellis for the channel 
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has Q(L~1} states, where Q is the size of the modulation symbol set (e.g. Q = 8 
for 8-PSK), and L is the number of taps in the FIR channel model (i.e. channel 
memory). The key to achieving joint channel estimation and equalization with a 
MAP receiver is to expand the state space of the trellis to Q^p+L~1>i states, where 
P is the number of additional hypotheses. This expansion ensures that there is 
enough extra memory in the trellis to estimate the channel fn<iti for each trellis 
state i in (3). Minimum mean square error (MMSE) estimators can then be used 
with these additional hypotheses to provide a different channel estimate for each 
state in the trellis [1]. The channel estimate takes the form: 

p 

fn,l,i = 2J hl,*,P Z«-P (4) 

where /^,i,p are the MMSE channel coefficients corresponding to the hypothesis of 
state i. 

Since channel estimation is performed as part of the receiver signal processing, 
the receiver front-end is non-coherent. When phase-shift keying (PSK) is used for 
the transmitted symbols, pilot symbols are required to resolve the phase ambiguity 
within the equalizer. These pilot symbols are handled seamlessly by the APP algo- 
rithm. However, they incur a penatly in SNR and reduce the effective bandwidth 
used to transmit the data. (Note that the expanded state equalizer [1] is quite 
general in that it is not restricted to PSK modulation, and can be modified for 
differentially encoded transmission [20]). 

3.    SIMULATIONS 

The performance of a turbo equalizer incorporating our APP equalizer (with joint 
channel and data estimation) is demonstrated here by simulation of a binary PSK 
system. At the transmitter, the message is convolutionally encoded with rate 1/2 
(octal generators (133,171), code memory 6). Following interleaving, pilot symbols 
are added (1 : 8) to the symbol sequence transmitted over a fast-fading channel. 
Here we consider both a flat, and a two-path (symbol period T spaced) ISI fast- 
fading Rayleigh channel with Doppler spreading described by Jakes' spectrum. The 
normalized fading rate, f^T = 0.5, in both cases. The APP equalizer is symbol 
spaced, and uses P = 3 for channel prediction of the flat channel, whilst in the 
two-path case, a larger prediction order (here P = 6) is necessary to adequately 
estimate the ISI. In both simulations, up to five turbo iterations are carried out 
by the receiver. Fig. 2 shows the impressive BER performance gains achievable 
with turbo iterations (numbered 1 to 5). For reference, the BER performance of 
a non-iterative equalizer/decoder with perfect channel state information (CSI) is 
also shown. Missing data points are associated with low BER, and are the subject 
of ongoing (longer) simulations. 
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IDEA — A Signals Analysis Package for ELINT 
Processing and Extraction 

Stephen D. Elton and Jennifer A.L. Newman 
Electronic Warfare Division, Defence Science and Technology Organisation, 

Department of Defence, P.O. Box 1500, Salisbury, SA 5108, Australia 

The purpose of this article is to review the functionality of a radar signals 
analysis package that has been developed for the processing and extraction 
of ELINT information. At the same time we highlight some of the technical 
challenges that face a radar intercept receiver in collecting and analysing 
the signals that make up the modern radar signal environment. 

Key Words: IDEA, ELINT, radar signal analysis, pulse trains, deinterleaving. 

I.    INTRODUCTION 

Electronic intelligence, or ELINT, involves the collection of signals intelligence 
through the interception of non-communications electromagnetic emissions. Sig- 
nals of interest may originate from a variety of man-made electromagnetic sources 
including radars, transponders, data links and identification friend or foe (IFF) [9]. 
However, our interest here will be limited to radar-based ELINT. Because of the 
wideband nature of the modern ELINT receiver, a radar signal of interest (SOI) 
will often be recorded in the presence of other, possibly many, interference signals 
and the SOI must be isolated through deinterleaving processing before detailed 
parametric information can be extracted from the signal. In the context of radar 
signal analysis, deinterleaving refers to the process of isolating signals from a time 
interleaved record of pulsed radar emissions. In addition to basic intelligence gath- 
ering which involves collecting, analysing and locating the sources of the intercepted 
radar emissions, strategic ELINT operations are used to build radar emitter libraries 
or data bases. These libraries are then employed in tactical missions by a radar 
intercept receiver for emitter identification purposes, including threat warning. 

In this article we provide an overview of the functionality of a signals analysis 
package dedicated to ELINT processing and extraction and in so doing, highlight 
some of the technical challenges that face a radar intercept receiver in processing the 
signals associated with the modern radar signal environment. IDEA, the Interactive 
Deinterleaver for ELINT Analysis is a software package for laboratory use that 
incorporates a number of tools that would be familiär to an experienced ELINT 
analyst, but also includes several novel signal processing methods that have been 
developed by researchers at the Defence Science and Technology Organisation. 
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A generic ELINT signal classification syslem. 

2.    EEINT PROCESSING AND EXTRACTION 
In the case of pulsed radar emissions, ELINT processing and extraction is gen- 

erally carried out by analysing a series of digital pulse descriptor words (PDWs) 
that is created by the radar intercept receiver. A PDW may be viewed as a feature 
vector that characterises each pulse recorded by the receiver in a compact fashion. 
A generic ELINT system that illustrates this concept is shown in Fig. 1. Typical 
signal descriptors include pulse angle of arrival (AOA), radio frequency (RF), pulse 
width (FW), pulse amplitude (FA), and pulse time of arrival (TOA), together with 
intra-pulse features such as within-pulse phase and frequency modulation. From 
these parameters one can deduce the pulse repetition interval (PHI) of a signal 
which corresponds to the time difference of arrival (TDOA) between two successive 
pulses, as well as the scan period between consecutive radar sweeps. 

Pulse AOA is an important signal discriminator for isolating a SOI since it cannot 
be influenced by a radar emitter in a deceptive manner. Other parameters, such 
as RF and PPJ, can be and frequently are modified on a pulse-by-pulse basis by 
a modern radar source, either as a means of providing radar emitter performance 
enhancement, or as a method of defeating the intercept receiver. Significantly, 
pulse-by-pulse signal agility has the potential to confuse an intercept receiver and 
may lead to signal fragmentation. This can be a particularly serious problem in 
automated processing systems and may result in multiple radar emitters being re- 
ported by an intercept receiver, rather than a single emitter with parameter agility. 
A major challenge to radar signal intercept analysis is to add an additional layer of 
information processing to the analysis sequence to correct for signal fragmentation. 

With the advent of precision digital receiver technology, electronic fingerprinting 
can, in principle, provide a means of assisting with the deinterleaving process and 
involves the extraction of a unique signature from a radar signal. However, signal- 
to-noise-ratio considerations do come into play with these methods and may inhibit 
the performance of some of the techniques currently under investigation [5]. 

3.    THE IDEA SIGNALS ANALYSIS PACKAGE 
In this section we provide an overview of the functionality of IDEA and concen- 

trate on recent enhancements to the package. An earlier review appeared in [2]. 

3.1.    Background 
IDEA is a computer-based signals analysis package written in C++ and designed 

to run on Unix workstations. As IDEA's name would suggest, there is a strong 
emphasis on interactivity by the human operator and this is intrinsic to IDEA'S 
design philosophy. The interactivity is realised through a range of visualisation and 
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FIG. 2.    The main processing window of IDEA. 

analysis tools that are made available to the operator via a graphical user interface. 
A number of data viewers and signal detector windows also update automatically 
as a new tool is invoked, but retain the previous view (plotted in a different colour) 
so that the effect of the new tool can be assessed visually. In addition to the signal 
analysis tools, IDEA contains an in-built signal generation capability, allowing the 
user to generate a range of synthetic time interleaved signals of varying complexity. 

3.2.    IDEA'S Tree Structure 
The main processing window of IDEA is shown in Fig. 2. In this example a data 

file has been loaded and a Deinterleaving tool employed to process the PDWs created 
for the signals that make up the data record. The hierarchical tree structure shown 
in Fig. 2 has been built up through analysis and represents a unique and powerful 
approach to deinterleaving processing that is one of IDEA'S main strengths. Each 
node of the tree is labelled according to the analysis technique that was used to 
create it, including input parameters that are employed by an analysis tool. Once 
a SOI or portion of a SOI has been isolated through processing and a node created 
for it, the pulses of that node may be operated on further by a number of other 
tools; the intent being to reveal additional parametric information on the signal. 
Nodes may also be grouped together within the IDEA tree structure and this is a 
particularly useful facility when looking for evidence of signal fragmentation. 

3.3.    Processing Tools 
3.3.1.    Data Viewers 
The data View tools make up the first set of tools that are likely to be used 

by an ELINT analyst and include: As Text viewers, TOA Raster plots, parameter 
Histograms, Parameter vs. Time plots, and Parameter vs. Parameter viewers. The 
Histograms may be used to help isolate a SOI by setting up a Parametric Filter 
within IDEA, which is essentially a parameter-based band-pass filter. The Param- 
eter vs. Parameter viewers on the other hand, could be used to cue a cluster-based 
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deinterleaving tool. In Fig. 3 we show an AOA vs. RF plot which clearly illus- 
trates the presence of three radar sources and suggests that the Closfer Analysis 
tool, also within IDEA, could readily deinterleave the three signals. The results 
of cluster analysis for this particular data set are shown in the tree structure of 
IDEA'S main processing window in Fig. 2, where the nth feature vector, x(n), for 
cluster processing has been defined in terms of the RF and AOA measurements via 

x(n) — [rf(n) aoa(n)]'. (1) 

3.3.2. Signal Detectors 
The signal Defection tools provide an alternative means of recognising the pres- 

ence of a particular type of signal embedded in an interleaved data record and 
include TDOA histograms of various forms. The TDOA histograms may be viewed 
as autocorrelation devices and reveal information on the PRts of interleaved signals, 
e.g., see [9]. This information could then be used to prime a pulse TOA-based se- 
quence search algorithm. The Primed Sequence Search tool within IDEA is another 
method of isolating a SOI and searches for repetitive patterns in the arrival time 
sequence recorded for a signal [6]. 

3.3.3. Deinterleaving Tools 
The Deinterleaving tools supported by IDEA include Parametric Filters and a 

Primed Seqoence Search algorithm as previously stated. The tools also include an 
Auto Sequence Search technique [7], the essence of which is arguably the workhorse 
deinterleaving method for a large number of fielded radar intercept receivers. 

Closfer Analysis makes up the final Deinterleaving tool. In the context of ELINT 
processing and extraction, cluster analysis seeks to assign a sequence of N feature 
vectors {x(0), x(l), ..., x(N-1)} derived from a buffer of N radar pulses, where 
x(n) £ Kp, to a finite number of source classes by searching for structure in a 
multi-dimensional feature space. IDEA contains an unsupervised neural network 
algorithm for cluster analysis that is also self-evolving in that the network adapts 

52 



IDEA — A SIGNALS ANALYSIS PACKAGE FOR ELINT PROCESSING 

AlVQ CJuasr AM«y«Jc 
.. .'. 7— —r-  

FIG. 4.    The IDEA cluster analysis dialogue box. 

itself to the number of radar emitters or emitter modes detected in a data buffer. 
An early version of the method has been reported in [3] and the dialogue box for 
IDEA's current implementation of the algorithm is shown in Fig. 4. 

Despite the strength of cluster analysis as a deinterleaving tool, it can be vulnera- 
ble to emitter agility. Consider, for example, a radar source that hops between three 
different RFs while its other parameters remain constant. A cluster-based deinter- 
leaving technique might report the intercepted signal as three separate emitters. 
One possible solution to help remedy this situation is to re-group those pulses from 
the three clusters as a trial merge within IDEA and compute a TDOA histogram 
for the pooled pulses. The resulting TDOA histogram could then be compared 
with the TDOA histogram computed for each of the individual clusters prior to 
merging the data. If the TDOA histogram for the pooled pulses is more "ordered" 
compared to that obtained for each of the non-pooled pulse TDOA histograms, the 
merge should be allowed and the signals re-associated. This type of processing is 
essentially a visual implementation of the entropy-based scheme outlined in [1]. 

3.3.4-    Signal Analysers 
The IDEA Analysis tools operate on a SOI once it has been isolated from other 

signals. The tools currently include a histogram-based method for revealing the 
clock period that is used to generate the PRI sequence of a discrete jittered signal [9] 
and recursive estimators for the mean PRI and TOA phase parameters of a signal. 
To illustrate the latter, consider the following model-based approach to pulse TOA 
analysis in which the nth pulse TOA, tn, for a signal is modelled as 

tn = «0 + nT + an,    n = 0, 1, ..., N - 1, (2) 

where t^ and T are constant parameters denoting the TOA phase and mean PRI 
respectively, and an is a Gaussian jitter random variable with distribution A/"(0, o^). 
Least squares estimators for t^ and T have been reported in [4] and implemented 
in IDEA. Results for the least squares estimator of T are shown in Fig. 5. 

4.    CONCLUDING REMARKS 
The interactive nature of IDEA emphasises the important role that a human op- 

erator can play in the laboratory-based analysis of EEINT data. It also highlights 
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the types of skills that can be brought to bear by an experienced analyst, par- 
ticularly as they relate to visual pattern recognition and a synergistic approach to 
EEINT problem solving. To translate these skills into an autonomous system where 
signal intercept and analysis is carried out automatically, e.g., see [8], represents 
one of the major technical challenges facing the ELINT community today. 
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The paper describes results obtained by applying the Wigner-Ville dis- 
tribution to high frequency line-oF-sight radar measurements of a surrogate 
theatre ballistic missile during powered flight. The Wigner-Ville distribu- 
tion is able to discriminate between target and interfering transient events 
and to accurately determine the instantaneous Doppler law oF the target. 
It is a useful pre-processing step For determining the instantaneous received 
signal level and the coherent processing loss due to target acceleration. 

Key Words: time-frequency, high frequency radar, theatre ballistic missile 

1.    INTRODUCTION 
In this paper we describe the results obtained by applying the Wigner-Ville distri- 

bution (WVD) to measurements obtained From a high Frequency (HF) line-oF-sight 
radar. The measurements were oF an accelerating surrogate theatre ballistic missile 
(TBM) target during powered Flight immediately Following launch. We have shown 
that the WVD is able to discriminate between the accelerating target and a inter- 
fering transient event which produces a similar Doppler spectrum to the target and 
hence a potentially confusing display at the radar output. The WVD is also able 
to accurately determine the instantaneous Doppler law oFthe target, at a temporal 
resolution comparable with the radar sweep (or pulse) duration. Knowledge oF the 
instantaneous Doppler law is applied to the problem of determining the coherent 
processing loss due to target acceleration, and to determining the instantaneous 
received signal level. For an example of time frequency distributions applied to HF 
skywave data (not oF accelerating targets) see [1]. 

The paper is set out as Follows. We provide background to the data used in 
section 2. Next we provide a signal model and justify the selection of the WVD 
as the one of many potential time-Frequency distributions which may have been 
applied. We present our results in section 4 and provide our conclusions in section 5. 

2. BACKGROUND 
During September 1997 Four surrogate TBMs were launched from a site in north- 

ern West Australia to test a variety of TBM launch detection sensors, one of the 
l 
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sensor suite was a bistatic HF line-oF-sight radar. The radar was positioned tens of 
kilometres from the launch site and it operated at a carrier frequency of approx- 
imately 25MHz. The radar waveform was linear frequency modulated continuous 
wave (EFMCW) and the repetition frequency (WRF) was 50Hz. A set of coherent 
measurements were collected, each oF 5s duration and there was a short inter-dwell 
gap between each coherent measurement interval. The choice oF waveForm and low 
WRF meant that Doppler measurements oFthe high velocity target were ambiguous 
For most oF the flight. The long coherent integration time (CIT) increased radar 
sensitivity although the target acceleration decreased the coherent processing gain 
achieved and limited the accuracy oF velocity measurements. 

3.    SELECTION OF THE WIGNEK-VILEE DISTRIBUTION 

The data consisted oF complex time series which correspond to sequences oF co- 
herent measurements From the particular azimuth range cells which contained the 
target. Preliminary analysis suggested that the Following signal model would be 
appropriate. 

z(t) = A<32*V°l+^ + c(«) + n(t) (1) 

For {t : 0 < t < T) where A is the complex amplitude, ~Jo,ß are the linear FM 
parameters, c(t) represents clutter, n(t) represents noise and T is the coherent 
integration time (CIT) oFthe radar. In the case oF a bistatic HF line oF sight radar, 
c(t) includes contributions such as; the direct signal from the transmitter, range 
sidelobes from the direct signal, additional targets, say from a booster stage in a 
multi-stage rocket and meteor and ionospheric scatter. In general, both the clutter 
and noise are unknown, although we assume the relative energy is such that 

W°T »1 (2) 
[/„T|c(()Pdt + j;T|n(()Pd(] 

and thereby consider z(t) as deterministic with unknown parameters, unknown 
clutter and background noise, and high signal to clutter plus noise energy ratio. 
The objective is to determine Jo and ß as part oF the task oF establishing the 
accelerating target dynamics. 

Next we discuss the suitability oF using the Wigner-Ville distribution (WVD) to 
determine Jo and /?. We consider the case oF continuous time signals For convenience 
in the subsequent derivations, although the results extend to discrete time sequences 
in a straightforward manner. Complete expositions on the WVD and instantaneous 
Frequency estimation are given in [2-4] and the reFerences therein. 

3.1.    Definition of the Wigner-Ville distribution 
The WVD of a deterministic signal z(t) is defined as 

W,(t, 7) = £° z(* + £)*"(* - \)e-J2,7rdr (3) 

here * denotes conjugation. x(£) is a continuous time analytic signal, and 

z(t) = ar(*)+jH[x(t)] (4) 
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for a real signal z(t) and the Hilbert transform operator H. Let 2(7) be the Fourier 
transform of z(t) and X(J) the Fourier transform of x(t). For z(t) to be analytic 
then 

/2X(7) j>o 
Z(7) = { x(7) 7 = 0 (5) 

{    o    7<o 

The requirement that z{t) in (3) be analytic is motivated by: 

1. Recognition that the quadratic Form in (3) introduces interaction Features, or 
cross terms, between individual additive components oF z(t). Enforcing that z(t) 
be analytic at least eliminates cross terms generated by interaction between the 
symmetric positive and negative Frequency components of a real signal x(i). 

2. Additional computational savings realisable when restricting the domain of 
W(t, 7) to the halF plane J > 0. 

In many radar applications z(t) is the output oF quadrature demodulation in the 
radar receiver. The signal is complex but not necessarily zero For J < 0. In this case 
z(t) can be used directly in (3) without enForcing (5) provided W(t, 7) is evaluated 
over the Full t, J plane. 

3.2. WVD of a single linear FM signal 
Consider the WVD For a single component linear FM signal. Let 

z(t) = A(32*V°i+%l2l   For t € (-oo.oo) (6) 

with complex amplitude A, initial Frequency 7o and chirp rate ß, then it can be 
shown that 

W(tJ) = \A\2-6(J-[Jo + Pt]) (7) 

The WVD oF a single component complex linear FM signal shows ideal concentra- 
tion in the time Frequency plane along the instantaneous Frequency (IF) law oF the 
signal. The instantaneous frequency law, Ji(t) = 7o + ßt, can be determined by 

7?(f) = ^-[W(*,7)] vt (8) 

For signals which are not purely deterministic, such as that in (1), the instantaneous 
Frequency law may be estimated using (8) to give an IF estimate %(t). 

3.3. WVD of multi-component signals 
The WVD can become uninterpretable when there are more than a modest num- 

ber of component signals with comparable energy. Consider the two additive com- 
ponent signal 

z(t) = Ap(t) + Bq(t) (9) 

with complex scalars A and ~B and the component energy constraint 

/oo raa 
b(i)|2d<«/      \q(t)\2dt (10) 

-oo J—oo 
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The WVD of z(t) may be written in terras oF the signal components p(t) and q(t) 

Wz(tJ) = \A\2Wp(tJ) + AB*Wpq(tJ) (11) 

+BA*Wqp(t,J) + \T3\2Wq(tJ) 

The WVD oF the sum oF the two components jt{t) and q(t) is the sum oF the 
individual WVD oF each component Wp and W, (anto-terms) plus the cross WVD 
between components Wpq and Wqp. The individual auto and cross WVD are scaled 
by the appropriate products oF the scalars A and B. 

Given the constraint (10), and assuming now that one is primarily interested 
in determining the IF law J?(t) oF component p(i), the relative interpretability oF 
Wz(i, J) will De determined by the scalars A and B. BA^B then 

Wz(tJ)*\A\2Wp(tJ) (12) 

and 7f (t) will be well estimated by (8). For A « B all terms in (11) will contribute 
to W2 making interpretation and estimation based on W2 difficult. With A ^ B 

\A\2 Wp(t,7) ^ Aß* W„(t,7) + BA* Wqp(t, 7) (13) 

+|B|2Wg(tJ) 

and Wz will be oF little use in determining J? (t). 

3.1.    WVD of transient signals 
Consider a single component signal which is non-zero For only a small Fraction oF 

the radar CIT. Eet s(i) be an arbitrary Finite energy signal with ™ ^T and define 
z(t) as 

zu\ _ | 5(*) tc-Y<t<tc + Y /j2) 
\   0    otherwise 

with Y < tc < T — Y- Spectrum analysis procedures which assume stationarity 
which are applied to z(t) will not capture the transient nature oF this signal. Any 
stationary spectrum estimate will appear broadband, oF the order ^ Hz bandwidth 
or greater, depending on s(t), and may be contused with the spectrum oF signals 
such as that in (1). 

The WVD has time and Frequency marginal properties which ensure that the 
time and Frequency support oF z(t) are captured in the distribution. The time 
marginal property |z(*)|2 = f^ W2(t, J)dj indicates that For z(t) in (14) Wz ^ 0 
only in the interval tc~Y <t <tc + Y- Hence, Wz captures the transient nature 
oFz(i). 

3.    RESULTS 
We have applied the WVD in the Following ways; to assist with discriminating 

between accelerating and transient targets or scatterers, to determine the target 
instantaneous Doppler law, and to determine the instantaneous received target 
energy law and the processing loss caused by the target acceleration. 
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3.1.    Accelerating target v. transient 
Figures 1 and 2 (left) show the range-Doppler (RD) maps generated For two 

separate beam steer directions measured during the same CIT. In figure 1 the 
accelerating target is visible as a large smear in Doppler at range cell 7. In figure 2 
(left) the transient meteor scatterer is visible at range cell 19, which is also smeared 
in the Doppler domain. We seek improved discrimination between the accelerating 
and the transient scatterers. Figures 2 (right) and 3 (left) show the WVD computed 
from the time series corresponding to the mentioned range cells. The instantaneous 
Doppler law oF the accelerating target is visible and so is the transient behaviour of 
the meteor scatterer. The WVD is able to discriminate clearly between these two 
types oF scatterers. 

3.2.    Instantaneous Doppler law 
The instantaneous Doppler law has been extracted From the peak oF the WVD 

shown in figure 2 (right) according to (8). CITs prior to and later than this mea- 
surement interval have also been analysed using the WVD, with the instantaneous 
Doppler law again estimated From the peak according to (8). Appropriate smooth- 
ing oF the estimates using polynomial models reduces estimate variance, allows 
Doppler law prediction into the inter-dwell intervals and can be easily integrated 
to produce phase law estimates. The sequence oF unsmoothed Doppler estimates 
shown in figure 3 (right) covers an interval oF approximately 10 CITs. Clearly, 
it is possible to determine accurate instantaneous Doppler sequences, with tem- 
poral resolution oF approximately the sweep duration, as compared with the CIT 
For conventional Doppler processing (20ms v. 5.12s). Note that the target second 
stage motor ignited at approximately 18s and that accurate time oF ignition can be 
determined From the instantaneous Doppler law. 

3.3.    Instantaneous energy law 
Knowledge oF the instantaneous Doppler law can also be used to construct a 

demodulation reFerence signal, s(t). This signal has unity amplitude and instanta- 
neous Frequency law which is the conjugate oF the estimated instantaneous Doppler 
law oF the target, i.e. the instantaneous Frequency law oF z(t). s(t) can be used to 
demodulate z(t) giving the approximately stationary time series z'(t). 

z'(t) = z(t) ■ s(t) (15) 

The instantaneous energy oF the demodulated time series is 

f(t) = G\z'(t)\2 (16) 

where G is some smoothing operator. The instantaneous energy is shown in figure 4 
(left), which shows three different levels oF local smoothing, (i.e. different G). 

3.3.    Processing loss due to target acceleration 
The processing loss due to target acceleration compared with a comparable target 

oF constant velocity can be determined, one contrasts standard Doppler processing 
applied to the time series z(t) and to the demodulated version z'(t).   It can be 
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FIG. 1. Range-Doppler map showing the accelerating target smeared in Doppler in range 
cells 6 and 7. The direct wave from the transmitter and ground clutter is visible surrounding 0Hz 
Doppler and centered in range cell 2. The coasting spent first stage of the two stage TBM can be 
seen at range cell 6 with 10Hz Doppler. 

seen from figure 4 (right) that the processing loss is approximately lOdB for this 
particular CIT. 

5.    CONCLUSIONS 
The Wigner-Ville distribution has been applied to HF line-oF-sight radar measure- 

ments oF a TBM launch. This approach has assisted with discriminating between 
the accelerating target and transient meteor scatterers. It has provided estimates 
oF the Doppler law oF the target at a temporal resolution oF approximately 20ms 
compared with standard processing which had a temporal resolution oF 5.12s. It 
has also allowed determination oF the instantaneous energy law oF the target and 
has provided an estimate oF the processing loss when standard Doppler processing 
is applied to a rapidly accelerating target. 
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PIG. 2. (Left) Range-Doppler map showing the transient meteor scatterer in range cell 19. 
It is difficult to discriminate between this smeared feature and the smeared accelerating target 
shown in the previous figure. (Right) WVD of the time series containing the accelerating target 
from range cell 7 in figure 1. Second stage ignition occurred at 18s. 
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FIG. 3. (Left) WVD of the time series containing the transient meteor scatterer from range 
cell 19 in figure 2 (left). (Right) Doppler v. elapsed time. Computed using the WVD. The gaps 
are due to missing sweeps during the radar interdwell gap and some lost instantaneous Doppler 
detections at either end of individual radar CIT. The plot is a sequence of point measurements, 
one per radar sweep, and not a continuous line. 
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FIG. 4. (Left) Instantaneous energy law v.  elapsed time for the interval 16.5s to 21.5s 
after launch. The three curves correspond to 1 (..), 11 (- -) and 19 (-) sample zero phase moving 
average smoothing. (Right) The Doppler spectrum computed over the full CIT for the original 
time series (-.) and for the demodulated time series (-). The processing loss caused by assuming 
a constant velocity target is approximately lOdB in this case. 
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This paper is concerned with colored noise matched filtering when the 
noise covariance is unknown a priori. Both principal components analysis 
and canonical correlation analysis require knowledge of the noise covari- 
ance matrix and its inverse. Furthermore, neither of these methods yield 
an optimal representation of the noise subspace for rank one detection 
problems even when the covariance is known. The multistage Wiener filter 
is shown to be optimal when the noise covariance is unknown in the sense 
that it determines the best noise subspace representation and reduced-rank 
approximation as a function of rank. 

Key Words:  rank reduction, signal representation, signal compression. 

1.    INTRODUCTION 

Classical detection problems in radar, sonar and communications determine the 
presence or absence of a target signal observed in noise. It is common to assume 
that all signals are independent Gaussian random processes as a starting point in 
the analysis. Under these conditions, the solution is found by analyzing the target 
(or desired) signal and the noise statistics. The target analysis is achieved through 
the use of prior knowledge under the hypothesis that the target is present. This step 
may utilize a steering vector, a matched field processor or correlation information 
such as a CDMA code. The noise covariance can not be assumed to be known 
in practical problems, and the noise statistics must be estimated. This paper is 
concerned primarily with the estimation of the noise statistics and the impact that 
it has on the detection problem. 

Define an TV-dimensional signal vector s, which can be considered to be a radar 
steering vector, the output from a matched field processing routine for sonar or a 
correlation vector used in communications. Let the iV-dimensional test vector x be 
the observed vector being considered for target presence or absence. If the N x N 
noise covariance matrix R is known a priori, then a popular constant false alarm 

l 
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rate (CFAR) test is given by 

A=' _£.*'    ^ V, (1) sffR- 
Ho 

where #1 denotes the target present hypothesis, H0 is the null hypothesis and rj is 

a threshold determined by the false alarm rate [1-3]. 
The numerator of the test statistic in (1) is the output power of a colored noise 

matched filter \Hz, where the whitened signal vector is v = R_1/2s and the 
whitened data vector is z = R_1/2x. The test then compares the ratio of the col- 
ored noise matched filter's output power and the output noise power to a threshold. 
The expected value of the numerator and the denominator are identical when a tar- 
get is absent in the known covariance case, and the mean value of the logarithm 
of the left-hand side of (1) is 0 dB. The mean value of this test statistic increases 
when the target is present as a function of the signal-to-interference plus noise ratio 

(SINR). Note that the colored noise matched filter output is identical to the output 

of a Wiener filter g = R_1s: y = vHz = gffx. 
The estimation of the noise covariance is considered in Sect. 2, along with dis- 

cussions pertaining to sample support, complexity and rank reduction. An analysis 
of the colored noise matched filter is then studied in Sect. 3, where the multistage 
Wiener filter is derived from an optimization of the noise subspace representation 
as a function of rank. Simulation results are also depicted in Sect. 3 to demonstrate 
algorithm performance. The summary is presented in Sect. 4. 

2.    NOISE COVARIANCE ESTIMATION 

A maximum likelihood estimate is often used to replace the covariance matrix 
when the true covariance matrix is not known. Replacing the matrix inversion in 
(1) with this estimate results in a normalized form of the celebrated sample matrix 

inversion (SMI) algorithm [4]. 
Many attributes of the SMI algorithm may not be obvious to the casual observer. 

For example, the number of samples required for the statistics to converge in an 
SINR sense is at least 2JV independent and identically distributed (iid) snapshots. 
Also the computational complexity grows as 0(iV3) due to the matrix inversion re- 
quirement in the CFAR test, where O(-) denotes the highest order of the underlying 
polynomial and at least 2N samples are used in the covariance estimation. 

The detection of small signals in competing noise requires that the signal space 
be enlarged to obtain a subspace where the signal and noise can be separated with 
sufficient resolution. This fact has led to adaptive processing in two and more 
dimensions using, for example, spatial, temporal, Doppler and polarization degrees 
of freedom. An impact of increasing both the number of dimensions in the signal 
space (for signal discrimination) and increasing the bandwidth of each dimension 
in that space (for resolution) is that the parameter N quickly becomes very large. 

The critical problem which occurs as N increases is satisfying the requirement for 
at least IN iid samples for covariance estimation. This is particularly difficult in 
the radar and sonar problems, where the samples are taken from disparate spatial 
locations. In other words, the training region for estimating the noise statistics is 
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in the range domain. Thus the sensor must estimate the noise statistics in the test 
cell using data which is increasingly distant as the parameter N increases. 

Rank reduction is a method to potentially reduce the sample support and com- 
putational complexity requirements of these large dimensional problems. The goal 
here is to find a low rank subspace that can accurately represent the noise present 
in the test cell. If the rank is reduced from N to M < N, then the sample support 
requirement and the computational complexity can both be reduced accordingly. 
Some approaches have been proposed to solve this problem from a statistical frame- 
work, however they really presuppose the estimation of the noise covariance matrix. 

The principal components inverse (PCI) and eigencanceler algorithms utilize a 
low rank estimate formed by those eigenvectors of the SMI covariance matrix which 

correspond with the largest eigenvalues [5-7]. The cross-spectral metric (CSM) uses 
a low rank estimate composed of those eigenvectors of the SMI covariance matrix 
which actually maximize the SINR (this solution has been shown to be generally 
different than that obtained by PCI and the eigencanceler) [8-11]. One key attribute 
of the CSM method is that it solves the optimal signal representation problem (for 
the noise process) with an eigenvector basis. Therefore optimal compression of the 
noise subspace is obtained by the CSM relative to an eigenvector basis. The CSM 
achieves this capability due to its target signal dependency, a feature lacking in the 
PCI and eigencanceler algorithms. 

Unfortunately the damage has already been done in these cases since the averag- 
ing to obtain the original covariance matrix (or an eigenvector basis for the space 
spanned by its columns) needs to be accomplished first. If N is reasonably large, 
then it quickly becomes unreasonable to assume that there is a region of space large 
enough to support the 2N or more samples which are iid with the noise present 
in the test cell. That is, the clutter and interference are not capable of retaining 
the properties of stationarity and homogeneity over extended regions. Note that 
computing the eigendecomposition is equivalent to computing the inverse from an 
information perspective, and that computing the inverse is equivalent to having 
solved the full-rank problem. Thus, the PCI, eigencanceler and CSM methods 
can all be considered as attempts at reducing the rank to improve performance 
after having to compute the original full-rank solution. While it is true that the 
"larger" eigenvectors may be estimated with lower sample support, they generally 
span a suboptimal subspace and cannot compensate for problems such as a lack of 
homogeneity. 

Finally, it is mentioned that canonical correlation analysis (CCA) [12-14] is not of 
use in classical rank one signal detection problems. While one could use canonical 
coordinates with the SMI covariance matrix, the solution degenerates to the direct 
solution of the full-rank Wiener filter. CCA therefore falls into the category of 
requiring the full-rank solution while not even motivating rank reduction for this 
problem. 

3.    COLORED NOISE MATCHED FILTERING 

What is really desired is a method to obtain the normalized colored noise matched 
filter without knowledge of either the true or SMI noise covariance matrices. In ad- 
dition, it is desireable to obtain this result while simultaneously only using those 
training samples which are most correlated with the noise in the test cell. Therefore 
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it is necessary to obtain a low rank subspace which is optimized in the sense that 
it provides the optimal representation of the noise in the test cell using the noise in 
the training data. Note that this is an information theoretic solution which must 
be solved before the full-rank problem is formulated. Now consider explicitly solv- 
ing this optimal representation problem without knowledge of the noise covariance 

matrix, its inverse or its eigenstructure. 
The first step in the optimization process is to recognize that the white noise 

matched filter, s (assumed for convenience to be a unit vector), is the best solution 
without prior knowledge of the noise covariance. All of the remaining information 
(and coloring) that is not accounted for in the white noise matched filter "lives" in 

its orthogonal complement sx. Define the first basis vector to be s. 
Consider the implementation of a full-rank Wiener filter in sx to estimate the 

colored noise projected into the rank one subspace s. This yields a partitioned- 
form processor called a generalized sidelobe canceler [11], and is well known to 
be equivalent with the original colored noise matched filter for the target signal 

with known noise covariance. While this result is useful, it cannot be the solution 
currently sought since it requires knowledge of the noise covariance. 

Another approach is to pick the optimal rank one subspace in sx for estimating 
the colored noise that "leaked" through the filter s, without knowledge of the noise 
covariance. This solution is easily verified to be the white noise matched filter vXod0, 
which is the cross-correlation vector between the first stage white noise matched 
filter output d0 = sffx and the data vector xo = Bx in sx (where B is the (N — 
l)x N projection matrix into sx, termed a blocking matrix). Define the next basis 

generating vector as the unit vector hi = i"a:0d0/||rar0doII- Also define the scalar 
Wiener filter gi as the optimal linear filter for estimating do from rfi = hf xo. The 

first stage subspace estimation error is then given by e\ = do — g*d\. 
Next a recursion is developed which optimizes the remaining basis selection for 

i = 1,2,..., N - 1. Define Bj as the projection operator into hx, which yields the 
data vector Xj = B,x,_i. Then the cross-correlation vector rXiei maximizes the 
noise residual in hx without knowledge of the noise covariance matrix. The next 
basis generating vector is then chosen to be the vector h,+i = r^ei/lk»^^!!- Now 
define the scalar di+i = hf+1Xi. The Wiener filter g1+i, of dimension i + 1, is the 

optimal linear filter which estimates do from the vector d,+i = [ rfi • • • d,+i ] . 

The error at each stage is then given by a = d0 — gfdj. This stage-wise max- 
imization of the colored noise residual combines a whitening innovations with a 
correlation operator that converges to the colored noise matched filter. 

The algorithm described thus far determines an optimal basis which has been 
constructed to provide the best estimate of the residual noise at each stage. Unfor- 
tunately the required Wiener filter at stage i is a vector of length i. A simplificaton 
is achieved, however, through the realization that the output can be mapped to the 

input by the following relation: 

11^11 = 11^*11. (2) 

The result of (2) unifies the decoupled stages of the innovations procedure while si- 
multaneously decomposing the vector Wiener filter into a nested multistage Wiener 
filter [15-18] composed only of scalar weights w;,- (see Fig. 1). The ratio of the out- 
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FIG. 1.    The multistage Wiener filter for N=5. 
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FIG. 2.    The relative performance of reduced-rank processors. 

put power of this filter to the output noise power yields an identical CFAR. test to 

(1): 

A = IfoT 
To 

s"R 
fR s  H0 

(3) 

where 7To = E |eo|#o| • This filter demonstrates the following properties: 1) The 

colored noise matched filter is exactly obtained without a matrix inversion; 2) The 
multistage Wiener filter generates a nonunitary diagonalization of the covariance 
where the diagonal elements are mean-square error values; 3) The most correlated 
signal energy is represented in the fewest spectral coefficients of this decomposition; 
and 4) Optimal signal compression is obtained by truncating the multistage Wiener 
filter. 

An example is now considered to demonstrate the relative performance of the 
multistage Wiener filter, the cross-spectral metric and the principal components 
algorithms. Consider a 16 element array with half-wavelength spacing. There are 
5 jammers present whose directions of arrival are -60°, -30°, -17°, 14° and 34°, 
and whose signal-to-noise ratios in dB are 30, 32, 27, 30 and 29, respectively. The 
minimum mean square error, which is also the output power of the colored noise 
matched filter, is 3.3440 dB while the white noise matched filter output power is 
23.1077 dB. The convergence as a function of rank for these reduced-rank processors 
then explicitly evaluates the relative signal representation and compression capa- 
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bility of the algorithms. The results, depicted in Fig. 2, demonstrate the superior 
performance of the multistage Wiener filter. 

4.    SUMMARY 

The multistage Wiener filter is derived from a new optimization procedure. This 
procedure directly demonstrates that the filter simultaneously performs whitening 
via an innovations process and correlation on the whitened data in a stagewise 
manner. This result is interpreted as a colored noise matched filter implementation 
and more clearly explains the optimal properties of the filter structure. 
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ABSTRACT 

The Probabilistic Least Squares Tracking (PLST) algorithm is a recursive way of estimating both the states and 
associations of mixture models and a Kaiman predictor/filter version of this algorithm is considered. The problem 
of deinterleaving superimposed stable pulse trains from multiple radars can be formulated as a mixture process in 
both the state transition and measurement models. Using a simple switched version of the PLST Kaiman filter the 
states and associations can be estimated. The estimated associations are the indicator variables identifying which 
pulse is associated with each pulse train and is the information required to deinterleave the various pulse trains. 

1. Introduction 

Consider M independent sources which are dynamically varying in time according to a linear state 
space representation and a set of measurements where at each time instant the measurement 
comes from only one of the M sources, i.e., the measurements can be considered samples of a 
mixture of the M sources. The Probabilisitc Multi-Hypothesis Tracking (PMHT) algorithm of 
Streit and Luginbuhl [1,2] allows the estimation of both the states and the measurement to model 
associations by a clever application of the EM algorithm. An alternative is to use a least squares 
approach; and a Probabilistic Least Squares Tracking (PLST) method has recently been proposed 
by Krieg and Gray [3,4,5] and compared with PMHT. 

An important electronic warfare problem in the identification of transmitted radar signals is the 
deinterleaving problem - this is the problem in which the superimposition of a series of pulses, 
each series being termed a pulse train, from different radars are received by a single receiver and 
the times of arrival of each pulse are then accurately measured. The problem of separating the 
constituent different pulse trains given just the time of arrival of each pulse is known as the 
deinterleaving problem. The times of arrival (TOA's) of stable pulse trains (i.e., pulse trains with 
constant pulse repetition intervals (PRI)) can be formulated as a state space representation [6,7,8] 
and some approaches to the deinterleaving problem using this approach have been proposed [8,9]. 

In this paper we modify previous formulations of this problem and of PLST by introducing a 
mixtures model into the state transition equation that is coupled to the mixtures model for the 
measurements. This coupling is through the associations that are explicit to the PLST algorithm 
and provide a simple way for the practical implementation of recursive PLS Kaiman filters. 
The results of the application of this approach to a simple three pulse train deinterleaving problem 
is given. 
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2. Kaiman Predictor and Filter Estimation - PLS Approach 

Consider a mixture model, where, at time tk, the measurements gk are generated by one of M 
linear models, i.e., 

Htä + ul 
M Z*=i 

depending on which model generates the )fe-th data point. For each linear model, the time varying 
Hp are assumed known and the w.1 represent independent noise processes, each with a noise 
covariance Rk. The unknown states, &p

k, are to be estimated and vary according to 

*ft = Fk
wAP) +*w where EfcW} = <&(P)<5H 

In the PLS approach a set of the assignments, ak, to be estimated from the data are introduced - 
the ak, are zero or one depending on whether the measurement gk at time tk was generated by 
the p* source. The ap

k can be interpreted as the probability that the measurement at time tk 

originated from the p* source. The problem of estimating both the unknown states xk
p) and the 

weights ap
k has been termed probabilistic least squares (PLS) [3], and a batch algorithm for this 

was presented in [4] and a recursive least squares was derived in [5]. 

The Kaiman filter derivation of the PLS approach is to niinimise the following expression w.r.t the 
unknown states and associations. 

M , M 

&i=Zk-Hp^. and   gl^A-Fl^ 

M 

£ 
v=l 

jk=jk-,+I«}
2
ä~ *z+Xfif or & 

where 

subject to the constraint 

2>t
(v°=l     V   k 

The recursive solutions for the PLS Kaiman predictor, ££+1/it, and the PLS Kaiman filtered output, 
Xk/k, are then given by 

2k*+i/t — r*2t*/* 

and 
£*+l/*+l = Äk+1/k + ^t+ilZt+l ~ fik+1£.k+i/kj 

where the Kaiman gain, Kk+1, is given by 

v-P   _ iZ,P   l2 pP        uPT vP ~l 

"■k+l ~ lM*+li   /*+l/*+l'n*+l-f\t+l 
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The recursion being finally completed by the following update equations for the error covariances 
of the predicted and filtered states. 

pp    -pppp pp7 + o 
rk+llk      rkrklkrk    T Vt; t 

and 
pp     _i _ pp   -i ,IZP \

2
IJP

T
 J>P-

1
JIP 

II.^II.A.1      -fixi/i      T1MWJ   "jfc+l^M-l"**! t+l/ft+1 *+l/t 

Similarly to previous approaches the estimated associations are given by 

As is their wont, the equations are nonlinear but coupled in such a manner that allows, at each 
time instant, an iterative, but computationally demanding, solution. 

3. The Deinterleaving of Stable Pulse Trains 

The deinterleaving problem, discussed earlier, may be formulated as a state space problem, by 
defining the state of the i-th stable pulse train, &p by 

, r<ri 

where t[p) is the precise time of last occurrence of a pulse from the p* pulse train and T% is the 
pulse repetition interval which is allowed to be time varying, but with a very small variance 
[6,7,8,9]. 

To allow for the fact that k is the received pulse number index rather than time, a switched 
transition matrix of the form 

K = \ 
1 = 

F2 = 

1   I] , 
if the pulse at time tk+1 originates from the p source 

1  ol 
.0   iJ 

otherwise 

with the corresponding measurement covariances 

lei,,,,        1 a =  '      jitter 

#H 
if the pulse at time tk+1 originates from the pAsource 

otherwise 
[0   0} 

a=Lo oj 
The measurement matrix is time and pulse train invariant and is given by Hp = [l   0] 
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The PLS method can be applied in either a recursive Kaiman filter or batch mode. Here we 
consider the recursive mode described above whereby given fekik, cck} we use the Kaiman filter to 

get it+iit+i and directly calculate ak+v These two steps are coupled through the error terms and 
must be done iteratively for each k. This necessitates some initialisation which is detailed below. 
The switched nature of the transition matrix can be handled by hard limiting the associations and 
dynamically using them to determine which model for the transition matrix should be 
implemented. 

The iteration at time instant tk+i may be summarised as 

(1) Initialise the associations using prediction errors g*+i(0) = Zk+i - flf+Aiti* 

(2) Calculate the a£+1(0)'s. 

(3) For «=1,2,... till convergence 

(3.1) Update the covariances and gains according to 

/*„,(») = Fp
kP

p
m(ncom)F? + <£ where FP,QP are determined by ö£». 

^+1(")={af+1(«-l)}2^(")<i(d +{^(n-V}2Hp
+1PU(n)HpT

+iy
l 

(3.2) Update the state estimates according to 

&i»+i(») = #K*0O + CWkw ~ Hp
+tf*UnC0J} 

(3.3) Recalculate the association estimates according to 

d+i(n) = zk+i -#*+Ä*+i(") and consequently ap
+1(n) 

(3.4) Form "hard assignments" by 

find v= arg max {ap
+1(n)} and set ap

k+l = 6pv. 
p 

(4) end n = nconv 
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An example application of this are three stable pulse trains with PRIs and start times of 
[1,-^2+0.4, n][ and [0,0.3,4.1] respectively. The initialisation of the algorithm used the actual 
measured times of the first three pulses and the PRIs are randomly set within 2.5% of the exact 
PRI. The tight restriction on the intialisation of the PRIs and the fact that the number of pulse 
trains is assumed known need further investigation but could be overcome by first preprocessing 
the data with some histogramming technique. The covariances were initialised by setting 

5    01 
which is ten times the assumed model noise covariance matrix. Note the use of a 

high variance on the time of last occurence of the p-th pulse and the small variance on the PRIs. 

P" = Mil 

At each time update of the Kaiman filter the iteration described above was repeated 10 times. The 
times of arrival were jittered by adding Gaussian noise of standard deviation of 0.01 i.e., 1% of the 
smallest PRI, and 32 data samples were used. 

Plotted below is a sample run showing the difference between the exact and the estimated 
associations using the PLST Kaiman filter just running forward in time. Two errors were made at 
times around 4 and 13. 
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Plotted below is a sample run of the Kaiman filter estimates of the TO As of the three pulse trains 
and their PRIs when (a) the exact associations are known and (b) when these are estimated as 
outlined above. Close agreement was obtained. 

(a) Associations known exactly (b) Associations estimated 

Results averaged over an ensemble of realisations indicated that on average about 3 errors per 32 
points resulted. At the same time the corresponding errors in the state estimates were very small 
indicating that deinterleaving rather than parameter estimation was important for this example. 
However for other examples the converse situation can occur. 
4. Summary 
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The problem of deinterleaving pulse trains can be formulated in state space using mixture models 
for both the measurement and state transition equations. These are coupled through the unknown 
set of associations. A simple modification of the PLST algorithm allows this to be recursively 
solved using a Kaiman filter. Smoothing can readily be incorporated by considering a batch 
process and could show a significant decrease in the errors. 

Simulations indicate that, provided good initialisation can be obtained, the approach does show 
some promise although many issues associated with initialisation need resolution. 
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Array Element Localisation 
Using Simulated Annealing 

Michael V. Greening 
Defence Science and Technology Organisation, 
Salisbury Site, MOD Building 79, P.O. Box 1500, 
Salisbury, S.A., 5108, Australia 

Abstract 

Array processing techniques such as beamforming or matched field processing require 
accurate knowledge of the location of individual elements in the array. For horizontal 
arrays laid on the ocean floor, relative arrival times measured across the array from 
nearby implosive sources are often used to aid in estimating the sensor positions. 
However, the inverse problem of determining the sensor positions from the relative 
arrival times is both nonunique and ill-conditioned. This paper shows how simulated 
annealing can be used to solve this inverse problem. Synthetic studies show that 
relative sensor locations can be exactly found while tests with real data show an 
improvement in array gain comparable to the theoretical limit obtained from a 
perfectly known array. 

Introduction 

Remotely deployed systems often contain horizontal or vertical arrays mounted 
on the ocean floor and used to acoustically monitor areas of the ocean. One prob- 
lem with remotely deployed systems is accurately determining the sensor positions 
in the array. Conventional beamforming is often considered to require sensor po- 
sition estimates accurate to within A/10 where A is the wavelength of the signal 
measured.1 More advanced array processing techniques such as adaptive beamform- 
ing or matched field processing require even more accurate estimates of the sensor 
positions. 

One technique often used to help estimate the sensor positions in remote systems 
is to employ transient sources near the array and measure the arrival times of the 
signals across the array. If the location of the sources and the travel times to 
the sensors are known, then the location of all the sensors in the array can be 
unambiguously determined using triangulation from three sources. However, the 
source locations are often only known approximately and the travel times from 
source to sensor are often unknown with the arrival times at any sensor only known 
relative to the arrival times at other sensors. Unknown source positions can allow 
for a rotation or translation of the combined system of sensors and sources without 
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a change in the arrival times. Also, a given set of relative arrival times for a single 
source can be exactly reproduced by decreasing the source range while increasing the 
curvature of the array. Thus, the inverse problem of estimating the sensor positions 
from relative arrival times and with unknown source locations is both nonunique 
and ill-conditioned. The problem involves searching a multidimensional space of 
estimated sensor and source positions to minimize the error between the measured 
and predicted relative arrival times. One technique designed specifically to search 
ill-conditioned, multidimensional spaces is called simulated annealing.2 This paper 
will show how to apply this technique to the problem of locating the sensors in a 
remotely deployed system. Both synthetic and real data will be examined and some 
recommendations on the number and location of sources will be given. 

I    Methodology 

This section shows how to apply simulated annealing to the problem of locating a 
horizontal array mounted on the ocean floor. For the real data, a set of light bulbs3 

imploded near mid-depth was used as transient sources and the relative arrival 
times of the direct arrival and surface reflection were measured across the array. 
The problem then is to use simulated annealing to find a set of source and sensor 
locations which will reproduce the relative arrival times. 

Simulated annealing involves a series of iterations in which the unknown pa- 
rameters (ie. source and sensor locations) are perturbed. For each iteration, the 
relative arrival times of the direct arrival and surface reflection are calculated for 
the modelled parameters. The modelled arrival times are then compared with the 
measured arrival times and the total time error E is given as an estimate of the 
goodness of fit of the modelled source and sensor positions to their true values. For 
successive iterations, the change in error AE is calculated. If the error has decreased 
(AE < 0), the new parameter configuration is accepted. If the error has increased 
(AE > 0), the new configuration has a probability P of being accepted with the 
probability being drawn from the Boltzmann distribution: 

P(AE) = exp(-A£/T), (1) 

where T is a controlling parameter analoguous to temperature in the physical process 
of annealing. Accepting some perturbations which increase E allows the algorithm 
to escape from local suboptimal minima in the search space. Decreasing T with 
successive iterations decreases the probability of accepting an increase in error, and 
the algorithm eventually converges to a solution which should approximate the global 
minimum. 

Two factors involved in developing an efficient and effective simulated annealing 
algorithm are the method of decreasing the temperature T, and the method of 
perturbing the unknown parameters. A starting temperature T0 was chosen which 
allows at least 90% of all perturbations to be accepted. A number of perturbations 
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r? are then performed before decreasing the temperature according to Tj+i — aTj, 
where a < 1. The process is terminated when further temperature steps do not 
result in a lower error. The values of 77 and a to use depend on the difficulty of the 
inversion. Increasing both 77 and a should decrease the final error but also increases 
the number of iterations and time required. An estimate of 77 and a can be obtained 
by using synthetic data and chosing 77 and a large enough that the final error is 
zero or the resulting sensor locations are accurate to within an acceptable tolerance. 
With real data, 77 and a can be initialized to the values obtained from the synthetic 
study and then increased until a further increase in their values does not decrease 
the final error. 

The method of perturbing the parameters can have a major effect on the effi- 
ciency of simulated annealing. Changing only one parameter at a time allows the 
algorithm to converge for a sensitive parameter while continuing to search for less 
sensitive parameters. Changing multiple parameters in one perturbation allows for 
quicker convergence when coupled parameters are involved and also allows for easier 
jumping between local minima. For our problem, the unknown parameters are the 
source and sensor locations along with the bottom depth, which was assumed to 
be known only within 20 m for the purposes of the study. For every perturbation 
a source, sensor or bottom depth is randomly chosen to be changed. If a source is 
picked, the position of only a single source is changed for a given perturbation. If 
a sensor is picked, either a single sensor, multiple sensors or the entire array can 
be changed in the following manner. The entire array can be changed by shifting 
it horizontally or by rotating it about some angle. A single sensor can be changed 
by changing its distance or bearing from the previous sensor without moving other 
sensors, providing that the separation between pairs of sensors does not exceed the 
length of cable joining them. Multiple sensors can also be changed by moving all 
sensors before or after the sensor picked as above by the same change given to that 
sensor. Finally, when changing a parameter, it is changed in one of two ways. Either 
a new value is picked within a Gaussian distribution centered on the current value 
or a new random value is chosen from the entire allowable range for that parameter. 

After the simulated annealing algorithm stops, a gradient descent algorithm was 
applied using the result of the simulated annealing as the initial estimate. This is 
used to ensure that the absolute minimum of the current trough is found and can 
help to speed up simulated annealing after a suitably cool temperature is reached. 

II    Results 

The simulated annealing algorithm for array element localisation was tested on 
both real and synthetic data. The real data was collected at the RDS-2 trial in 
November 1998 in 110 m water in the Timor Sea off the northern coast of Australia. 
The data examined was collected on the ULITE array deployed by the Space and 
Naval Warfare Systems Center (SPAWAR), San Diego, CA., USA. 
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The planned deployment of the ULITE array and light bulbs is shown in Fig. 1. 
The array consists of three arms of 32 sensors tied in the center and with each arm 
containing a slight curvature to break the left/right symmetry from the arm. The 
planned light bulb locations were at mid-depth with three light bulbs on each side 
of each arm, approximately 100 m distance from the arm. Using Fig. 1 to generate 
synthetic data, the simulated annealing algorithm was tested with the following 
uncertainties: the center of the array was assumed to be known to within 100 m; 
the bearing or range to any sensor was unrestricted except that the range between 
a pair of sensors could not be greater than the length of cable separating the pair; 
the horizontal position of a light bulb was assumed to be known within 100 m; 
the depth of a light bulb was assumed to be known only within 20 m; the water 
depth was assumed to be known within 20 m. With the above uncertainties, if the 
relative arrival times were known exactly (ie. not digitised), then the relative array 
shape and light bulb positions were found exactly. Absolute positions could shift or 
rotate as long as all light bulb positions stayed within the allowed uncertainty. If 
the relative times were only known within a digitisation sample, then the relative 
position of any sensor could shift from its true relative position by as much as the 
distance travelled by sound within the time of the digitisation sample. Increasing the 
number of light bulbs decreases the positional shift introduced by the digitisation. 
The relative arrival times of the direct arrival and bottom reflection for the light 
bulb at (100 m, 300 m) is shown in Fig. 2. 
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Figure 1: Trial layout plan Figure 2: Relative arrival times 

The estimated shape of the ULITE array is shown in Fig. 3 along with the 
shape estimated by SPAWAR. Although ground truth is unavailable, the similarity of 
shape provides some confidence that the correct shape was obtained. The SPAWAR 
estimate assumed fixed light bulb locations at mid-depth and at the recorded GPS 
positions. The simulated annealing technique used at DSTO allowed uncertainties 
of 100 m in the horizontal location, and 20 m in the depth of a light bulb. This 
makes the technique more robust to errors in estimated light bulb positions and 
allows for drift in the light bulb as it is lowered to depth. For individual arms of 
the array, the relative shapes estimated by DSTO and SPAWAR are very similar as 
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shown in Fig. 4. Although the relative shapes of individual arms are very similar, 
the relative shapes of the entire array show a difference of a 2° rotation in the 
direction of the northward pointing arm relative to the other two arms. The reason 
for the difference between the two estimated shapes is believed to be caused by the 
location of the light bulbs, which were not as tightly concentrated along the arms 
of the array as in the plan. Consider a light bulb which is near endfire to one arm 
and near broadside to another. A shift in the light bulb position can cause a large 
change in the relative arrival times across the broadside array but very little change 
across the endfire array. Thus, having many light bulbs near endfire of one arm 
can cause a relative shift in the heading between two arms of the array with little 
difference in the relative arrival times. Determining the number and location of light 
bulbs required to accurately estimate an array shape is array dependent. A study 
of a single, nearly linear, array of 200 m length showed that four light bulbs with 
two along one side, one along the other side and one near endfire always provided 
solutions accurate to within the digitisation rate, provided that the light bulbs were 
within 200 m of the array. 
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Figure 3: Estimated trial layout        Figure 4: Estimated shapes of array arms 

The errors between the measured and modelled arrival times are shown in Fig. 5. 
Each horizontal line shows the error in arrival times for both the direct arrival and 
surface reflection from all light bulbs. Nearly all errors fall within the digitisation 
sample size of 0.002 sec, providing further confidence that the true array shape is 
well approximated. Sensor 32 is the outermost sensor on the northward pointing 
arm of the array and was connected to a surface buoy. It is believed that the buoy 
was causing this sensor to move and thus, an accurate estimate of its position could 
not be found, and it contains large errors in the arrival time estimates. This was 
also found by SPAWAR. This sensor is not plotted in Fig. 3. 

A final indication of the accuracy of the estimated array shape can be obtained 
by finding the array gain provided when using the estimated shape in beamforming. 
Beamforming was performed using the eastward pointing arm on an 80 Hz tonal 
target at 100° relative to North. Only the 16 sensors that were cut for 24 Hz are 
used.   The beamformed output is shown in Fig.   6 and indicates an approximate 
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Figure 5: Arrival time errors Figure 6: Beamformed output of east arm 

6 dB gain when the estimated array shape is used compared to a linear array. This 
matches the theoretical loss for a signal arriving on the curved array but processed 
assuming a straight array. Again, this is a strong indication that the true array 
shape is well represented. 

Ill    Summary 

This paper has shown how simulated annealing can be used to accurately per- 
form array element localisation on remotely deployed systems. Synthetic studies 
have shown that the relative sensor positions can be determined within the accu- 
racy defined by the digitisation rate if sufficient light bulbs are employed nearby 
along the array and at endfire to the array. Tests with real data agreed well with 
an independently performed localisation estimate, and also improved the response 
of conventional beamforming to approximately the theoretical limit. 
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We describe an algorithm for finding Pareto-optimal paths in a multi- 

criteria shortest path problem. We use the algorithm to find approximate 
solutions to the problem of guiding a mobile object such as a submarine 
from one location to another, through a field of sensors at known positions, 
within a fixed time period and with minimum probability of detection. 

1.    INTRODUCTION 

Our goal is to guide a submarine from one location to another, through a field of 
sensors at known positions, within a fixed time period and with minimum proba- 
bility of detection. The techniques presented here can be used in other applications 
- for example, to find approximately optimal flight paths for aircraft [7], or to plan 
paths requiring obstacle avoidance in robotics [6]. The mathematical problem that 
underpins our approach is a discrete one involving undirected graphs, and we first 

discuss that. 

2.    A MULTICRITERIA OPTIMISATION PROBLEM 

We are given a directed graph Q = [V,£], where V and £ are the finite sets 
of vertices and edges respectively, and specified start vertex s and target vertex 
t. We allow more than one edge between a pair of vertices, so that we will be 
able to incorporate multiple speed options in our application. We are also given 
k non-negative functions fi,f2,—,fk defined on £, where for each j = 1,2, ...,k, 
the number fj(e) represents a cost associated with the edge e € £, such as a 
measurement of the time required to traverse e or of the danger of being detected 

whilst on e. 
A path from vertex v to vertex v' in Q is usually described as a sequence of edges 

p = (ei, e-ii •■•! er_i), where ej is an edge joining Vi to Vj+i for i = 1,2,..., r — 1, and 
v\ = v and vT = v'. We only consider paths that start at s, and so we say that a 
path is a path to the vertex v if it is a path from s to v. We assume that there 
is at least one path to every vertex in V, and include here the 'trivial path to s' 
containing only the vertex s as this is needed to initiate our algorithm. 

The classical shortest path problem arises when there is only one cost function, 

and the task is to find a path p from s to t with minimal cost ci(p) = J2eeP /i(e)> 
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where the sum is taken over all those edges e that form p. There are many efficient 
polynomial time algorithms, such as Dijkstra's algorithm, for doing this. 

In the multicriteria shortest path problem (where k > 1), we let Cj(p) = X)eeP fj(e) 
for each j, and C(p) = (ci(p),c2(p),...,cfc(p)) be the costvector associated with the 
path p. There is a natural partial order on cost vectors defined by C(p) < C(p') if 
and only if cj(p) < Cj(p') for j = 1,..., k. We say that a path p to a vertex v domi- 
nates another path p' to the same vertex if C(p) < C(p'). As there may be no single 
dominant path to t, the problem is one of finding Pareto-optimal paths, which are 
those that are not dominated by any other path; that is, those corresponding to 
minimal cost vectors. Each such path is optimal in that no improvement can be 
achieved in one cost function, without worsening at least one of the others. 

The task of determining all Pareto-optimal paths is computationally complex. 

Typically, ad hoc single Pareto-optimal paths are found using methods such as 
the weighted sum approach, the £-constraint method and goal programming. Ge- 

netic algorithms have also been used, but their effectiveness is closely tied to the 

method used to assign fitness [1]. Recent literature also describes algorithms that 

simultaneously find all Pareto-optimal paths [2],[3],[5]. 
In practice there may be more than one path to a specified vertex corresponding 

to a given cost vector C(p), and we say that all such paths are equivalent. For many 
applications it is sufficient to determine just one Pareto-optimal path to t for each 
minimal cost vector. Tung and Chew [8],[9] give such an algorithm that does this 
for simple graphs. In the next section we describe modifications to this algorithm 
that improve its efficiency and make it appropriate for non-simple graphs. 

3.    THE PARETO ALGORITHM 

The basic Pareto algorithm determines one Pareto-optimal path to t for each 
minimal cost vector. It iteratively generates paths from the start vertex s. At each 
iteration it selects a path p = (ei,e2,...,er_i), the test path, to some vertex v', 
and analyses all one-edge extensions [p : e] = (ei, e2,...,er_i,e), where e is an edge 
joining v' to a neighbouring vertex v. It uses pruning criteria to reject an extension 
as inadmissable if it is either dominated by a known path to v, or if it can be shown 
that each possible completion of [p : e] to a path to t is equivalent to, or dominated 
by, one already found. The latter is decided using a heuristic that provides a lower 

bound for the cost of such completions. 
The algorithm uses a vertex labelling scheme to keep track of possible test paths 

at each iteration, and selects from amongst these on the basis of a selection function 

that incorporates the heuristic. 

3.1.    Components of the algorithm 
We briefly discuss the important selection function and pruning criteria before 

describing the Pareto-algorithm. 

3.1.1.    Selection function 
Although only one selection function is required for the basic Pareto-algorithm, 

we introduce a family of such functions that may be used in a later modification of 

the algorithm. 
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A selection function assigns a numerical value to each potential test path. To see 
how, we first let a = (ai,ot2, —,ak) denote a vector of non-negative weights such 
that tra = 1, where the trace tr of a vector is the sum of its components. The 
special weight vectors S^\ where j — 1,..., k, for which the jth coordinate is 1 and 
the others all equal 0, and positive weight vectors a, for which each a,- is positive, 
will be important. 

For each a and each path p, we let Wa(p) = ot\Ci{p) + ... + QfcCfc(p), and for 
each vertex v, ha(v) = mmpWa(p), where the minimum is taken over all paths 
from v to t. (In particular, Wsu) = Cj for each j.) Note that the weights reflect 
the relative influence of the cost functions only if the cost functions fj have similar 
numerical ranges. The values ha(v) are easily computed by applying Dijkstra's 
algorithm to the simple graph Q' = [V,£'], obtained by putting an edge between 
two vertices v' and v whenever there is at least one edge between them in Q, and 
weighting that edge by the minimum of Wa{e), where the minimum is taken over 
all edges between v' and v in Q. We let pa denote the path constructed to t for 
which Wa(pa) = ha(s). We can assume that pa is Pareto-optimal, although this 
will require us to modify Dijkstra's algorithm if some of the a,- equal 0. 

For each positive weight vector a, we define the selection value Sa(p) of a path p to 
a vertex v to be Sa (p) = Wa (p)+ha(v). It gives a lower bound on the corresponding 
weighted sum of costs of paths to t that are extensions of p. The Pareto algorithm 
uses such a selection function, choosing a test path at each iteration from amongst 
those known paths with minimum selection value. It is easy to check that the 
positivity of a ensures that a selected test path cannot be dominated by any other 
path to the same vertex, and so must be Pareto-optimal. 

3.1.2.    Pruning criteria 
Clearly the number of potential test paths may grow exponentially with the 

number of vertices and edges in Q, and so it is essential to eliminate unnecessary 
paths as soon as possible. 

For each vertex v and integer 1 < j < k, let Qj(v) = mmp Cj(p), where the 
minimum is taken over all paths from v to the target vertex t; that is, qj(v) = 
hsu)(v). Furthermore, let Q(v) = (qi(v),q2(v), ...,qk(v)). Then an extension [p : e] 
of the current test path p to v' to vertex v is rejected, in the sense that it is not 
added to the set of possible test paths, if either 

(PI) C([p : e]) > C(p') for some known path p' to v, or 

(P2) C([p : e]) + Q(v) > C{p'), where p' is a known path to t. 

The first condition identifies extensions to v that are dominated by a known path 
to v. The second identifies extensions that can at best be completed to paths that 
are equivalent to or dominated by known ones. This is a valid rejection criterion 
because we only want one path from each equivalence class of Pareto-optimal paths. 

Let To be the set of Pareto-optimal paths constructed to t when calculating 
Q(t) and ha(s) for the chosen a. We can use T0 to seed the pruning process. As 
Dijkstra's algorithm is quadratic, it may be worthwhile generating a reasonably 
large set r0 by including paths pa for several choices of a. 
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3.2.    The steps of the Pareto algorithm 
We briefly describe the essential steps of the Pareto algorithm as follows: 

Al Fix a selection function Sa (most commonly a = (l/k,l/k,...,l/k)), and 
use Dijkstra's algorithm to calculate the corresponding values ha(v), and Q(u), for 
each vertex v. Generate additional paths in T0 if desired. 

A2 Let £ denote the set of possible test paths, and T the set of known Pareto- 
optimal paths to *, at the current iteration The algorithm is initialised by setting 
£ equal to the trivial path (that is, the path with no edge) and T = T0. 

A3 Pick a test path p by finding the path in £ that has the minimum selection 
value. If there are no such paths, stop. Remove p from £. 

A4 For each one-edge extension [p : e] of p, 

(i) reject [p: e] if it satisfies either (PI) or (P2), with p' 6 T , or 

(ii) if [p : e] is an admissible path to t, add [p : e] to T, and go to step A5, or 

(iii) if [p : e] is an admissible path to a vertex other than t, calculate its selection 
value and add [p : e] to £. 

Go to step A3. 
A5 For each path p' in £ to vertex v, reject p' if C(p') + Q(v) > C([p : e\). 

Return to step A4. 

When the algorithm stops, T contains a complete set of inequivalent Pareto- 
optimal paths, one for each cost vector. They have been found in increasing order 
of the selection values. 

It is worth mentioning the labelling scheme that keeps track of the paths that 
are generated. Each vertex v ^ s is given a finite sequence of labels 6l{v),62(v),... 
, where each label represents a path to v, and where 0n(v) is assigned to v the 
nth time it is used to produce an admissible one-edge extension of a test path. 
The labels are assigned iteratively in the following sense. Suppose that the vertex 
v is used for the nth time when an edge e from v' to v is added to a test path 
p to produce an admissible extension [p: e], and suppose that 6z{v') is the label 
corresponding to p. Then we set 0n(v) = [e,i,C([p : e])]. The third component 
C([p : e]) is not used to specify a path, but just to record the cost of [p : e]. The 
scheme is initialised by setting 61(s) = [-, -,0]. 

3.3.    Locating special Pareto-optimal paths 
We describe modifications to the Pareto algorithm that may be used when it is 

sufficient to find Pareto-optimal paths to t that satisfy certain cost restrictions, as 
will be the case in our application. 

Suppose firstly that we wish to locate only Pareto-optimal paths p' that satisfy 
prescribed bounds on some or all of their costs. For example, we may require 
cm{p') < rm for some m's, where the rm give the bounds. Then the pruning 
criteria should be modified by adding: a one-edge extension [p : e] of the test path 
p to vertex v is rejected if 

(P3) cm(\p : e]) + qm(v) > rm for the relevant m. 

If such bounds are given for every m then Wa(p') < ain + ... + akTk for every 
weight vector a - (exi, ...,ak). This suggests an additional pruning criterion: that 
[p : e] be pruned if 
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(P4) Sa([p : e]) > aiTi + ... + c*kTk,where a is the index of the selection function 
in use. 

In our application, we will seek a Pareto-optimal path to t of least danger for 
which the time cost is at most some prescribed amount. Such a path can be found 
efficiently by updating the right hand side of (P3) and (P4) on the basis of the least 
dangerous known Pareto-optimal path which does not exceed the time limit. 

4.    APPLICATION TO SUBMARINE TRANSIT PATHS 
As stated earlier, the aim is to direct a submarine from one location to another, 

through a field of sensors at known positions, within a fixed time period and with 
minimum probability of detection. If we make a number of simplifying assumptions, 
we can use the graph searching techniques described in previous sections to produce 
a near-optimal path. 

4.1.    Discrete formulation 
For simplicity, we assume that the problem is two dimensional, in the sense that 

the object is constrained to move in a bounded two dimensional region called the 
transit region. We place a grid on the transit region so that the start and goal 
locations correspond to grid points, and assume that the grid size is sufficiently 
large (for a submarine, no less than lkm) that we may ignore such complications 
as 'turning circles'. We also assume that the object is constrained to move in a 
straight line at constant speed from one grid point to a neighbouring grid point, 
and that only a finite number of speeds are permitted. 

4-1.1.    The graph and objective functions 
The grid points form the vertices of a graph Q. There may be more than one 

edge joining a pair of adjacent vertices, one for each of the permitted speeds of the 
object. So it is useful to denote an edge by an ordered triple (v,v',z) if it connects 
vertices v and v' and the object is travelling z units per second between them. 

Associated with each edge are costs corresponding to danger or the probability of 
detection by the sensors when traversing the edge, and time to cover that distance. 
Both depend on the speed of the object and the grid size. The first cost function 
fi(v,v',z) simply measures the time taken to traverse the edge (v,v',z). 

To measure the danger, we need to know the probability in a fixed time period of 
detection at each point. To simplify things, we assume that the probability Pm(r, z) 
of detection in the fixed time period by the mth sensor depends only on the distance 
r of the object from the sensor and on its speed z, that it is independent of the 
probability of detection at any other sensor, and does not change with time. In 
practice, values of Pm (r, z) are computed for a discrete set of distances and speeds 
using a complicated model that may also take into account such things as type and 
depth of sensor, type of submarine and local topography. 

Under these assumptions, the probability of not being detected at position x in 
the fixed time period by one of M sensors is N(x,z) = ]~[m=i(l ~ Pm(rm,z)), 
where rm is the object's distance from the mth sensor. We can use any one of a 
number of methods to determine an average probability iV(„>V',z) of non-detection 
in the fixed time period when travelling along the edge (v,v',z), and from this we 
can calculate an approximate probability of non-detection whilst on (v,v',z). The 
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probability of non-detection on a path p is then the product of the probabilities 
of non-detection on the edges that make up p. Since we want an additive cost 
function, we take logarithms. So the second cost function, which we have loosely 
called the danger, can be defined as f2{v,v',z) = /i(w,v',z) |ln (l - #(„,„',*)) |. 
Since 1 - N(v,v\z) € [0,1] for each edge, we minimise the probability of detection 
by minimising fa. 

4.2.    Solving the discrete problem 
To find the Pareto-optimal path p* that satisfies a time constraint and gives the 

lowest probability of detection, we use a version of the algorithm that incorporates 
the modifications described above. We assume that r, the maximum time allowed to 
move from the start to the goal location, is achievable but less than the minimum 
time required for the least dangerous paths from s to t; that is, qi(s) < r < 

min{ci(p) :c2(p) = *}(*)}• 
We add a step to the Pareto-algorithm which enables us to choose a selection 

function Sa = S(a,i-a) that leads to the desired solution more quickly. As a guide 
to how to do this, we observe that ci{pa) decreases as a increases. So we may 
do a binary search on the parameter a, using Dijkstra's algorithm, to identify an 
approximately optimal value of a, in the sense that the corresponding path pa has 
time cost at most r and lowest possible danger amongst all those paths constructed. 
This value of a determines the selection function Sa used in the Pareto algorithm. 

4.3.    Experimental results 
Efficiency of computation may be improved by adopting a heirachical or multi- 

resolution approach. An approximate path p(1) is obtained using a course grid on 
the transit region. This grid is then restricted to a subregion that includes p^, 
and refined. In this way, a sequence (p(n)) of approximate paths is determined. 
As n increases, the submarine is given increased flexibility to change direction and 
speed. Efficiency can also be improved using some of the more sophisticated data 
management techniques available when coding the algorithm. 

The attached figure shows approximately optimal paths obtained for one sensor 
geometry with different time constraints, under the assumption that the probability 
model for each sensor is the same and that only two speeds were possible. Both 
paths are shown on the danger-map corresponding to the lower speed, and the 
darker sections of each path correspond to higher speeds. A heirachical approach 
was used on a transit region of 62km x 62km, starting with a grid with spacing 
3.26km and ending after the second iteration with a grid with spacing 1.63km. The 
longest CPU time for path construction was less than 1 second. 

This technique can be used to deal with situations in which three dimensional 
motion is allowed, and directionally biassed sensors used. However, the appropriate 
probabilities must be available and there will be a heavier computational burden. 
We could also add additional constraints (pruning criteria) to allow for such require- 
ments as the need for a diesel submarine to recharge its batteries near the surface, 
thus increasing its probability of detection, after extended periods submerged. 
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Figure 2: Approximate safe paths with time contraints of (1) 500min (ii) 428min 
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QUANTUM ALGORITHMS 

K. J. Harrison 

Department of Mathematics and Statistics, Murdoch University, WA 6150, AUSTRALIA 

We outline the basic framework of quantum computing, and describe 
some key quantum algorithms and their applications. We also identify 
the crucial role of the Fourier transform in some of these algorithms. It 
is reasonable to expect that new, more powerful algorithms can be found 
which further exploit the Fourier transform in its various forms. 

1.    ORIGINS 

Simulating quantum mechanical processes on conventional computers is gener- 
ally computationally infeasible. Such a simulation typically involves an exponential 
slowdown in time compared to the evolution itself, since the amount of information 
needed to describe the evolving quantum system in classical terms grows expo- 
nentially with time. However in 1981 Feynman [7] suggested that it ought to be 
possible to turn this around and treat it as opportunity rather than an obstacle. 
He argued that by regarding the measurements obtained from experiments carried 
out on certain types of quantum mechanical devices as the results of complex com- 
putations, it might be possible to perform certain computational tasks beyond the 
reach of any conceivable conventional computer. 

This vision of Feynman has stimulated research in various directions, including, 
of course, the search for ways of building devices that can function usefully as 
quantum computers. But is this really worth doing? Would quantum computers 
be significantly more powerful than conventional computers? Benioff [1] showed as 
early as 1980 that any computation that could be done by a conventional computer 
could, in principle, also be done by a quantum computer. Within the next ten or 
so years formal models of quantum computing had been developed and a number 
of contrived problems that could be solved more efficiently on quantum computers 
had been discovered [6], [2] [12]. 

However the first real breakthrough came in 1994 when Shor [13] presented an 
efficient quantum algorithm for factorization. This generated a great deal of ex- 
citement because no such conventional algorithm is known. It is widely suspected 
(but not proven) that none exists and that factorization is NP-hard. Indeed the 
very difficulty of factorizing large numbers is the key to the security of many com- 
mercially used encryption schemes. These will be rendered useless, of course, if the 
implementation of Shor's algorithm on quantum computers becomes a reality. 
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The next big step was taken in 1996 by Grover [8], [9], who presented a quantum 
search algorithm which gave a quadratic improvement over existing search meth- 
ods. He has since adapted the key idea of his search algorithm to develop efficient 
quantum algorithms for solving problems not immediately related to searching [10]. 

In recent years efforts have been made to unify known quantum algorithms within 
various frameworks. For example, in 1995 Kitaev [11] recognized the crucial role 
of the Fourier transform of various finite Abelian groups, and exploited this in 
developing other algorithms for solving group-related problems. On the other hand, 
in a very recent paper [3] interesting and potentially powerful links were made 
between quantum algorithms and multi-particle interferometer experiments. 

2.    MODELS FOR COMPUTATION 

All models of 'reasonable' conventional computers are equivalent, in the sense 
that any universal machine can simulate any other machine with at most a 'poly- 
nomial' slowdown. It suits our purpose here to describe conventional computers 
as devices that store binary digits (bits) in locations known as registers. These 
bits can be read (measured) at any time and they can be used as the inputs for 
Boolean functions. The outputs of these functions can then be stored in the reg- 
isters, overwriting the existing values if necessary. In this setting a conventional 
algorithm is merely a sequence of Boolean functions, together with the appropriate 
bookkeeping that tracks the locations of the inputs and outputs of these functions. 
These functions are usually Boolean gates which act on just a few bits at a time. 
Such an algorithm can be represented graphically as a Boolean network or circuit. 
We apply an algorithm by prescribing the initial state of the registers (i.e. a binary 
string describing the values of the stored bits), and then applying the functions 
in the prescribed order. The output of the algorithm is just the final state of the 
registers. 

Many commonly used Boolean functions (such as AND) are not 1-1. So the 
algorithms described above are not reversible, in the sense that we cannot always 
recover the initial state from the final one. However by including extra bits (in 
registers commonly called scratch pads), we can assume that we are working with 
1-1 functions and our algorithms are reversible. To see this, let B(n) denote the 
set of all Boolean n-strings x = xix2x3 - ■ ■ x„, where x, € B = {0,1} for each i, and 
suppose that / : £?<"> -» £<m>. Then the function F : B<n+m> -» ß("+m) defined 
by F(x,y) — (x,y@f(x)), where © denotes the bitwise exclusive or (XOR), is 1-1. 
Since the evolution of isolated quantum systems is reversible, models of reversible 
computing are more adaptable to quantum computation. 

Whereas the fundamental unit of conventional information is the bit, the corre- 
sponding unit of quantum information is the quantum bit or qubit. The quantum 
state of single qubit system is a unit vector \tp) in a two-dimensional complex inner 
product space, which we denote by B or B^. The space B has a distinguished 
orthonormal basis whose elements are labelled |0) and |1), and so the state \tp) of 
the qubit can be expressed as a linear combination 

|V>) = a |0) + b |1), where a, b e C and \a\2 + \b\2 = 1. (1) 
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A measurement of |^>) can be regarded as a projection onto one or other of the 
basis vectors |0) or |1). The outcome is not deterministic. In fact we obtain the 
result |0) with probability \a\2 and |1) with probability |fc| . 

The state of an n-qubit quantum system is a unit vector \ip) in a complex inner 
product space of dimension 2", which we denote by B^. This can be regarded as 
a tensor product of n copies of B. The distinguished basis of the quantum state 
space ß(") consists of all states in which each qubit has a definite value, either |0) 
or |1). These states are known as the classical states of the system, and can be 
labelled as binary n-strings \x) = |a;ia;2 • • -xn), where each Xj € B. Thus if B^ 
denotes the set of all binary n-strings we can express \ip) in the form 

\xp) =   y^   ax \x), where each ax € C and    ^   \ax\   = 1. (2) 
igst") ieß(n) 

If we measure all n qubits of the system in parallel, the state of the system becomes 
one of the classical states, and the probability of obtaining any one such state \x) 
is \ax\ . 

A quantum algorithm can be described in the following simple manner. We start 
with the n qubits in a classical initial state such as |000... 0) and then apply a 
unitary transformation. This is usually a product of standard quantum gates that 
act on just a few qubits at a time. The output of the computation is then obtained 
by measuring some or all of the qubits. 

The probabilistic nature of the output of a quantum algorithm is an important 
difference from conventional computing. Unless the final state is one of the classical 
states rather than a superposition, repetitions of a quantum algorithm can produce 
different results. 

Conventional computers can store and rotate vectors, and can simulate the quan- 
tum measuring process of projecting onto mutually orthogonal axes. So conven- 
tional computers can do anything quantum computers can do. The difference is in 
the speed and storage requirements. For example, merely to represent on a con- 
ventional computer a typical state \ip) of an n-qubit quantum system, we need to 
store the 2" coefficients ax as in (2). 

3.    ALGORITHMS 

The first quantum algorithms were given by Deutsch [4] [5] [6], and were designed 
to determine whether a given Boolean function possesses certain global properties, 
(i.e. joint properties of all the function values). The aim is to use a minimum num- 
ber of function evaluations. By concentrating on global properties the algorithms 
are attempting to exploit the parallelism inherent in quantum mechanics. 

3.0.1.    Deutsch's algorithm 
The algorithm now known as Deutsch's algorithm has evolved since its first ap- 

pearance in 1985. In its most recent and powerful form we are given a function 
/ : i?(") —> B, and are told that / is either constant or balanced, that is, the values 
of / are either all the same or there are equally many zeroes and ones, (2™-1 of 
each, in fact). The problem is to decide whether / is constant or balanced. Any 
conventional algorithm may require as many as 2n_1 + 1 function evaluations, but 



Deutsch's algorithm requires only one application of Uf, the quantum version of /, 
and 0(n) applications of standard quantum gates and register measurements. 

The advantage of this quantum algorithm over conventional methods is lost, how- 
ever, if we allow errors into our computations. If we are satisfied to guess whether 
/ is balanced or constant on the basis of a number of function evaluations, then we 
can guess correctly with probability 1 - e using 0(log(l/e)) evaluations. Since we 
can have an exponentially good probability of success with just polynomially many 
trials, the problem cannot really be regarded as hard. 

3.0.2.    Simon's algorithm 
In 1993 Bernstein and Vazarini [2] gave a variation of Deutsch's problem which 

is hard conventionally and which showed for the first time that quantum compu- 
tation is significantly more powerful than conventional computation. Simon [12] 
soon followed with a simpler example. Simon's algorithm has turned out to be 
quite significant since it established a pattern that has been subsequently used and 
generalized. 

In Simon's problem we are given a Boolean function / : ß(n) -t 5(n) which 
we are told is 2 - 1 and has unknown period f, i.e. f(x) = f(y) if and only if 
y = x © £, x, y G B(n). The problem is to determine the period £. Since / has 
2n_1 distinct values, if we try to solve the problem simply by searching through 
the values of / we may need as many as 2n~1 + 1 values before we find a match 
(and hence the period £)• A similar exponential number of evaluations is needed 
in order to guarantee any given probability of success if the observations are noisy. 
However the quantum algorithm presented by Simon achieves a given probability 
of success in determining £ with 0(n) observations, even in the presence of noise. 

3.0.3.    Shor's algorithm 
Shor's algorithm [13] is a method for factorizing a given positive integer N. It 

does this by solving an equivalent problem, that of finding the order of any number 
y coprime to N. (This is the least positive integer r for which yr = 1 modiV.) The 
algorithm has essentially the same formal structure as Simon's algorithm, but it 
uses a quantum version of the discrete Fourier transform (DFT). A key ingredient of 
Shor's algorithm is the use of an efficient quantum circuit for evaluating the DFT 
for ZN, the additive group of integers mod AT. The quantum Fourier transform 
(QFT) for ZN requires O (log iV)2) steps, which is an exponential improvement on 
both the standard method (0(N2)) and the fast Fourier transform (O(NlogN)). 

3.0.4-    Grover's algorithm 
In its original form Grover's algorithm gave a method of speeding the identifica- 

tion of a particular object in a large data base. If the data base has size JV, then 
it takes N/2 look-ups to be guaranteed a 50% chance of finding the one we want. 
Grover [8] presented a quantum algorithm which is almost certain to succeed after 
0(y/N) 'observations'. 

In the quantum setting of Grover's algorithm, the unknown object is represented 
as a 'marked' classical state w in B^, where N = 2n. The algorithm starts by 
preparing the balanced superposition s = 2_n/2 X^.6B(„) \x)- K we measure tne 

system now, the chance of obtaining w is merely 1/iV. The key to the algorithm 
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is a unitary operator U which rotates this state towards u. This operator U is 
the product of two reflections. The first of these is the quantum equivalent of 
the characteristic function of w, and the second reflection is associated with the 
superposition s. After ny/N/4 applications of U, the state of the system is very 
close to uj, and so a measurement will now almost certainly produce w. 

Since Grover's algorithm gives a quadratic improvement over conventional search 
methods, the question naturally arises as to whether quantum computers have the 
potential to do even better. In other words, is there a quantum search algorithm 
that requires significantly less than ivyfN/4 observations? It turns out that no such 
algorithm exists. In order to distinguish all possible values of the marked state, it 
is necessary to have at least y/N/2 observations [14]. Grover's algorithm exceeds 
this bound by less than 12%. 

This algorithm has since been adapted to develop efficient quantum algorithms 
for estimating means and standard deviations of statistical distributions [10]. 

4.    FOURIER TRANSFORMS 

It has recently been recognized [3],[11] that all of these key quantum algorithms, 
except for Grover's, solve problems that can be expressed in group theoretic terms 
as examples of finding 'hidden subgroups' of a finite Abelian group. In each case 
the algorithm begins by preparing a superposition of states using the quantum 
version of the appropriate Fourier transform. For the algorithms of Deutsch and 
Simon, the underlying group is Zg and the Fourier transform is a Walsh-Hadamard 
transformation. For Shor's algorithm Zw is the underlying group, and in this case 
we use the quantum equivalent of the standard discrete Fourier transform. The 
point of the Fourier transform is that it useful in recognizing periodicity. The 
role of periodicity is plainly visible in Shor's problem, but it has also been shown 
[3] to be present in disguised forms in the problems of Deutsch and Simon. In 
[11] Kitaev devised new quantum algorithms for computing stabilizers of actions of 
finite, Abelian groups. These too were based on quantum versions of the appropriate 
Fourier transform, and for which he also gave efficient algorithms. 

As noted in [3], we can expect to find other problems associated with the subgroup 
structure of groups that turn out to be amenable to efficient quantum computation. 
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Object Enhancement in Time-Frequency Scans of 
Communications Environments 

John Hefferan 

Communications Division, DSTO 

In this work we apply a nonlinear morphological filter with a one-dimensional 
structure element to the task of improving the "visibility" of several signals of interest 
(SOI). Two dimensional time-frequency scans representing a series of wideband 
snapshots of a communications environment are analysed. The morphological filter 
approach is compared with conventional thresholding and with no filtering. It is 
found that the morphological filter can improve the SOI visibility at specified levels of 
environment noise. Signals considered include frequency hopping and time co- 
incident multi-tone transmissions. 

Key Words: Morphological filters; time-frequency scans 

0.    INTRODUCTION 

The analysis of how spectral information varies over time has been the source of much research in recent 
times (see [1] for a recent review). Much of the work has been aimed at developing transforms which may 
be applied to time domain signals and thereby produce a set of characteristic features in the time-frequency 
domain. However, in wideband scans of communications environments, signals of interest are often 
represented as an increase in energy in a single frequency bin in the spectral FFT "snapshot". This coarse 
resolution, necessary to capture wideband environments, means that employing conventional transforms 
provides little benefit in detecting the presence of a SOI when compared with the observation of the level 
of spectral energy at specific frequencies and times. 

Representation of these wideband scans as a two dimensional rasterised image presents visual observers 
with, essentially, a task in image recognition. The task becomes one of detecting the presence or absence of 
a SOI based on the carrier level representation observed in the scan. Further observations such as co- 
incident transmissions or transmissions related in time or frequency may also further characterise a 
particular SOI. 

In this work we have applied morphological filter techniques to the task of improving the "visibility" of 
several signals of interest present in two-dimensional time-frequency scans of a communication 
environment. 

1.    MORPHOLOGICAL FILTERS 

Morphological filters are well known in the field of image processing [2,3,4]. Essentially, they are a class 
of nonlinear filters capable of enhancing the features and boundaries present in noise contaminated objects. 

As noted in the literature [2] a nonlinear closure filter can be defined for any linear space (eg: R2 and R3). 
Closing of a set X by B is defined as 

(X ® B) Q B (1) 

Here, X represents the image and B is the set called the "structure element". The operators © and 0 are 
respectively, the Minkowski sum and difference operators [2]. The operator © is also called the dilation of 
XbyB,ie: 
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X@B = {h\[(B')hnx]*0} (2) 

Here, B' is the reflection of set B, ie 

B' = {-b:beB} (3) 

Dilation of X by B is thus the set of all non-zero intersections between set X and all h translations of the 
reflection of the structure element, B. Erosion of X by B may be defined by 

X 9B = {Ai(5)/.cX} (4) 

Erosion of X by B is the set of all A translations of the structure element B which are contained within set 
X. We can see from (1) therefore, that closure can be thought of as the dilation of set X by B followed by 
the erosion of the result by B. 

Usually, the structure element B, is a sphere (in R3) or disc (in R2). Hence, applying the closure filter is 
analagous to rolling or sliding the sphere or disc around the outside of the object for dilation, then around 
the inside of the dilated object for erosion, thereby altering the "morphology" of the original object. 
Closure also has the property of idempotence, which means that applying the closure operation more than 
once has no further effect on the result. 

2.    A MORPHOLOGICAL FILTER FOR NARROWBAND AND FREQUENCY HOPPING 
SIGNALS 

In the case of two dimensional time-frequency scans of a communications environment, spectral signatures 
of various emissions can be viewed as individual noise contaminated objects which vary as a function of 
time. For narrowband emissions, with an appropriate selection of EFT size, the object can be contained 
entirely within one "spectral bin". When this is done there is no (or negligible) correlation between adjacent 
frequency bin components at any given time t. Hence, we can define a simplified structure element as the 
one dimensional column vector B, of dimension M x 1. In this work, M is defined as the "window-length" 
of the morphological filter. 

For the case of M = 3 we have; 

5 = (5) 

The application of a closure filter to a 2D time-frequency scan using this structure element involves sliding 
B along M adjacent time samples in the scan and performing a dilation. This is then followed by a scan 
with an erosion operation, as defined in (4) above, again using B. In this present work the closure operation 
on the scan has been augmented by a number of other operations. 

Firstly, a data reduction step is carried out where the noise floor of the scan is estimated and then an 
appropriate threshold level set. The threshold level (T), below which data is removed, is set at 

T = mean(X) + 2a (6) 

Here a is the standard deviation of the distribution of background noise levels in the scan. The effect of 
thresholding is to remove much of the low-level background noise in the scan and leave only candidate 
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objects of level greater than 2 standard deviations above the noise floor mean. Following the data reduction 
by thresholding, a modified dilation operation is applied. 

In this work the dilation is preceeded by setting 

(X n B)" = max(X n B) (7) 

for each h translation of B applied to X. This effectively sets each element of the intersection equal to the 
maximum in that intersection. The dilation is then applied to the (X n B)" term The purpose of this 
operation is to reduce the effect of short duration fades in any narrowband object present in the image. 

During the erosion phase, the application of B with M=3 effectively removes objects of less than three time 
divisions duration. This "decluttering" of the image is designed to remove short duration spurious 
interferers and higher level background impulsive noise present in the scan. 

3.   THE COMMUNICATIONS SYSTEM 

Simulated communication scans of different emission types have been generated and applied to one of 
three filters. The emission types considered were: 

1. A single Narrowband tone. The tone (Asin(2nfc t)) commences at time ti and ends at time t2. Here, 
0< {ti ,t2} < T where T is the time of the final spectral estimation of the environment. The fc term is 
the carrier frequency of the emission; 

2. Several adjacent narrowband tones, co-incident in time. Here, the tones are defined by Asin(27c(fc 
+nf,j)t) where fd is the separation between adjacent tones and n is an element of {n: Inl = 
0,1,2,3,4,...}. Once again the tones start at ti and t2 where 0< {ti ,t2} < T as above; 

3. Frequency hopping narrowband emissions. A series of tones with randomly changing frequency 
steps were generated. 

Each of these emissions was contaminated with Additive White Gaussian Noise (AWGN) of varying levels 
and then filtered using one of the filters described below. 

Scans of the received signals were constructed by taking successive spectra of the time domain signal and 
assembling the spectra into a two dimensional (time-frequency) file. In this case the files were Nf = 512 
frequency bins wide by Nt = 155 successive spectral samples. 

The filters compared in this work were: 

1. No filter. Here, the noise contaminated scan is passed through unchanged; 

2. Threshold Filter. The noise floor is estimated and a threshold level set as in (6) above. Scan 
data above the threshold level is passed unchanged whereas data below the threshold is 
filtered out; 

3. Modified Morphological Closure Filter. A modified form of the morphological filter 
implementing the closure operation with a structure element as in (5) was implemented. The 
dimension of the structure element (M) was able to be varied. 

The "quality" of the filtered scans was then estimated and compared over different noise levels and with 
different filter types used in the filtering stage. The performance of the filters was measured in several 
ways. 
Firstly, the filtered scan (Xf) was compared with a scan of the original transmission (S). The sum squared 
error between the two scans was calculated at differing noise levels. 
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1 N C 
SquaredError = — £ 

"f = l 
x ,.-s. (8) 

Here, N = Nf x Nt, the total number of data elements in each scan and {XJ e X}, {Si e S}. 

Secondly, an attempt has been made to estimate the "visibility" of the signal of interest (SOI) in the filtered 
scan. Here, visibility is also relevant as it indicates the ease with which specific SOI could be detected by 
visual inspection of a rasterised representation of the 2D time-frequency scan. The visibility of the SOI 
(Vsoi) can be estimated by calculating the ratio of the SOI average intensity after filtering, mean(SOIo), to 
the level of the background noise floor after filtering. This can be expressed as; 

Vm = mean(SOIo)/mean(X f) (9) 

4.   RESULTS 

The squared error obtained when each of the filters is used with received scans at different noise levels is 
shown graphically in Figure 1 for the case of the Frequency Hopping SOI. The noise level is measured as 
the Carrier to Noise ratio (CNR) in dB. From this graph it can be seen that, as expected, the threshold filter 
substantially reduces the square error compared with no filter as the noise level increases. The further 
reduction in squared error obtained when the morphological filter is used is due to the filtering of all clutter 
less than M=3 raster periods in length. 

SOI visibility for M = 2 and M = 3 is depicted in Figures 2 and 3 respectively. In Figure 3 it can be seen 
that the morphological filter with M = 3 gives very high visibility at lower background noise floor levels. 
However, as the noise increases, the morphological filter performance degrades giving, at best, a 4dB 
improvement in CNR over threshold filtering. The degradation in the morphological filter performance is 
due to the presence of large bursts of noise and the increasing number of fades in the SOI. The filter will 
remove fragments of the SOI when the fades produce excessive segmentation. 

5.    CONCLUSION 

The modified morphological filter developed in this work has been shown to reduce the error in received 
time-frequency scans of an AWGN channel with several different SOI. For a given value of background 
noise, the morphological filter is seen to perform better than conventional thresholding of the input scan 
and also when no filtering is used. 

For the signals tested, the M=3 morphological filter has been shown to increase the SOIo/noise floor ratio 
providing approximately a 4dB gain in CNR over threshold filtering. This would effectively extend the 
detectable range of a SOI to an automated or manual detection system. 

A potential application of this filter includes that of a "front-end" for a signal classifier system The ability 
of the filter to increase the visibility of frequency hopping signals could also be developed. 
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ABSTRACT. 
Speaker identification has become an increasingly useful tool in areas such as forensics and for military 
applications. Commonly used speaker identification systems are based on statistical based models to represent 
speech [1]. A speaker is chosen by its likelihood function for a given statistical model. In practical situations, it is 
common for more than one speaker to be present. 

The focus of this paper is to determine if there is an advantage in segmenting speakers before forming the log- 
likelihood scores for test speech utterances. Our aim is to segment the speakers without adversely increasing the 
processing required for speaker identification. Consequently, this constraint was reflected in the implementation 
of the segmentation algorithm. 

Experimental results, based on marked data, have shown the performance of the segmentation algorithm varies 
depending on the set of speakers. It has been found that segmentation performance is estimated to be between 70 
and 95 percent. An improvement to the performance of speaker identification was also observed, after 
segmentation had been performed. 

1.0 Introduction. 
Speaker identification has been the subject of research from the mid seventies through to the present day. Early 
speaker identification approaches used long-term averages of acoustic features such as the pitch [2], [3]. Long 
term averaging smoothed out phonetic variations leaving the speaker's vocal tract shape. This approach requires 
integration over long periods of speech, of the order of 20s. Other approaches compared individual phonetic 
sounds that compose the utterance [4], [5]. This comparison gave a measure of the distance from one speaker to 
another rather than the textual information. These methods used hidden Markov models for phonetic structure 
detection. Another commonly used approach is based on neural networks [6], [7]. This uses a closed set of 
speaker training data to form decision boundaries for the speakers. 

We used two speaker identification approaches a statistical model and a neural net-based approach [8]. The 
statistical model system uses a Gaussian mixture model to represent the statistical information for the speaker's 
speech. Training data is used to form the parameter set of the model. Speaker identification is then achieved by 
obtaining log-likelihood scores for test utterances for a given speaker model. The speaker chosen is the one that 
gives the maximum log-likelihood score. 

The focus of this paper is to find a computationally efficient algorithm to separate a set of speakers before 
identification. The speakers are segmented into two groups and used to form log-likelihood scores against each 
speaker model. The identified speaker is chosen to be the maximum in the class and the furthest away from the 
background speakers. 

Speaker separation has appeared in the literature. Chen, Brown, and Bovey [9] developed an algorithm for speech 
segmentation for the work environment. This algorithm used pre-captured speech samples of potential speakers 
and found use as an audio indexing system. 
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Cohen and Lapidus [10] investigated the problem of unsupervised speech segmentation in telephone conversions. 
In this case, no a priori speaker information was assumed. This algorithm accepted dual telephone speech data, 
detected events of simultaneous speakers, and then segmented the speech assigning each to a group. Takagi and 
Itahashi [11] clustered Japanese utterances using seven prosodic feature vectors. Sugiyama, Murakami and 
Watanabe [12] investigated speech segmentation and clustering for an unknown number of multiple signal sources 
based on ergodic hidden Markov models where each speaker corresponded to a single signal source. Other 
segmentation algorithms that have been reported include those in [13] and [14]. 

The outline of this paper first reviews speaker identification based on statistical models. This is followed by the 
description of the speaker segmentation algorithm. Finally, experiments were then used to determine the 
effectiveness of this algorithm and to determine if it provides an improvement to speaker identification. 

2.0 Review of the Speaker Identification based on Statistical Models. 
Common speaker identification systems are based on statistical models. The speech first undergoes preprocessing 
including speech activity detection, and conversion to its corresponding cepstral coefficients. These coefficients 
describe predominate physiological factors that distinguishes one person's voice from another [1]. 

Statistical models are formed using Gaussian mixture models (GMMs) these are weighted summations of 
Gaussian functions each having their own mean and variance. These weightings, means, and variances form the 
parameter set for a particular speaker. The parameter set can be estimated using the expectation maximization 
algorithm or a form of vector quantisation from a source of training data. 

The probability of a feature vector, xt, given a parameter set, A, is given by, 

i=i 

where 

bi{*)=(2*rE r ^4(*~A)^1(*~A)}- (2) 

The parameter set for the GMM is denoted as X = {/?,, ßt, £,•} for i = 1,... M with the constraint that 

M 
V Pi -1. It is assumed that the time observations for the feature vectors, X,, are statistically independent of 
i=i 

each other. Consequently, the probability for a series of observations for a given model is, 

p{x\X)=f[p{xt\X). (3) 

Speaker identification is achieved by choosing the maximum probable model given the observation vectors, 

S = argmaxPr(At|x). (4) 
\<k<S 

Bayes theorem allows us to rearrange Eqn (4) to give, 

p{x\\hM ... 
1<*<S 
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Eqn (5) can be reduced from the fact that certain probabilities equate to unity or have no direct influence on the 
maxima. Consequently, speaker identification is obtained by choosing the maximum likelihood of the observation 
vectors given a model formulized as, 

S = aigmaxp(x\Xk). (6) 

A further simplication is made from statistical independence and use of logarithms to yield, 

T 

5 = argmax£log/?(x/|At). (7) 
»=i 

Intuitively, if there are observations that do not belong to the true speakers this effects the log-likelihood scores 
and may force a bias unto the result. 

3.0 Segmentation Algorithm. 
The paradigm for the segmentation algorithm is to partition the speech waveform into separate segments. Each of 
these segments belongs to a speaker, and is consequently referred to as utterance units. The locations of these 
utterance units are denoted by their start and stop positions in the speech waveform. The statistical parameters for 
the target speakers were already known. The target speaker statistical models initiate the partitioning of the 
utterance units into separate groups. Each group, corresponding to a speaker, form observation vectors for each 
person in the conversation. Normalized log-likelihood scores are obtained for the target speakers against each 
group. The most likely speaker has the maximum likelihood score and furthermost distance from the background 
speaker. A more detailed discussion of the paradigm's steps now follow. 

In some practical situations, such as telephone conversions, not only is there more then one speaker but other 
types of signal as well. These signals include dial tone frequency modulation, faxes, or modems. It is necessary to 
first remove those signals that are not speech. The details of this processing is not discussed in detail here, but the 
end result of this initial processing produces speech data that has been converted to a 16 bit linear format. 

Once in the proper format a speech activity detector is used to produce indexing to locate utterance units. The 
utterance units are extracted from the speech with use of an energy envelope detector. The time duration used in 
this detector was of the order of three second long, and formed continuous speech energy samples. 

Generally, a region where the signal has a large energy concentration corresponds to "voiced" speech. It is these 
regions that contain physiological information about the speaker and are used to train statistical models. To 
determine the utterance location the signal energy must exceed a threshold. This threshold value is dynamically 
set in the sense that it adapts to environmental noise changes. To determine the threshold value an estimate of the 
signal to noise ratio is obtained by sorting the energy vector from lowest to highest value. Signal and noise energy 
estimates are obtained from the lower and upper quarters of the sorted energy vector. The value of the threshold is 
formulated by an equation, being a function of SNR, and takes into account the absence of speech signals. 

To this point, the resulting speech segments are regions where the signal energy exceeds the calculated threshold 
and belongs to either speaker. However, for better performance it is desirable to have as many feature vectors 
assigned to a segment as possible. To achieve longer time duration segments the length and distance between 
segments are noted. The desire is to concatenate segment to form longer segments. If the distance between the two 
adjacent segments is less than the syllabic rate then the two segments are concatenated. This procedure is followed 
for the entire signal with the resulting utterance unit lengths being several words long. On completion of the 
concatenation process, the utterance units of smaller length are discarded to minimize the variance of the speaker 
log-likelihood estimates. 

The utterance units are normalized and used to generate cepstral coefficients of time duration lengths of 20ms. 
The coefficients are formed from an auto-correlation function and taking the inverse Fourier transform of the 
logarithm of the spectrum. The first ceptral coefficient is discarded since it corresponds to the power of the signal 
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and does not convey information about the speech process. Finally, the mean of the coefficients is subtracted and 
the result is passed on to form speaker log-likelihood score. 

Log-likelihood scores are obtained using Gaussian mixture models whose parameters are for the target speakers. 
The result is an array of log-likelihood scores against each target speaker and utterance units. Each element of the 
array is obtained by, 

'*=i>gpföpo. (8) 

Where 3c/ denotes the cepstral coefficient for the /""utterance unit and f'^time observation. The relationship 

between the target speakers is used to determine which group the utterance unit belongs. The log-likelihood array 
can be viewed as a set of segmentation feature vectors for a set of observations. The feature vector are formed 
from the log-likelihood score for each target speaker [15], and the time observations correspond to the utterance 
units. The task now is given these feature vectors, for a set of observations, to separate them into two separate 
groups. 

From the set of feature vectors two vectors are chosen that give the maximum separation distance between them 
assuming each belongs to each speaker. An initial projection vector is formulated using these two feature vectors. 
This projection vector is constructed in such a way that the common information is subtracted. The resultant 
projection operator places the feature vectors, for each time observation, into positive and negatives half spaces 
that separate the speakers. 

Iteration is used to re-estimate the projection vector. The projected observations are sorted and percentiles of the 
feature vectors are grouped. The percentile is increased after each iteration. This process chooses feature vectors 
that best describe the group. A common feature for each group is extracted from the principle component of the 
singular value decomposition and the corresponding projection vector reconstructed. After the completion of the 
iteration the resulting projection vector is used to segment each speaker onto a half space. 

Once the utterance units have been grouped then the overall log-likelihood for each group is obtained by the 
summation of the individual log-likelihoods for each utterance unit. Speaker identification can then be made. 

4.0 Experimental results. 
In this section an example is given to demonstrate the segmentation algorithm and to show the affect that mixed 
speakers has on log-likelihood scores. The second experiment performed evaluates the effectiveness speaker 
segmentation before performing speaker identification. The conclusions drawn from this experiment were based 
on several conversations. 

Figure 1 shows a scatter plot for a two-person conversation illustrating each speaker has been separated. Figure 2 
presents the result of the log-likelihood scores for the mixed speakers. This figure also gives the log-likelihood 
scores after the two speakers have been separated. The true speaker was speaker number 1. Before splitting the 
maximum log-likelihood corresponded to speaker number two, and after splitting it corresponded to the correct 
speaker. The intent of this plot was to demonstrate the fact that, in some cases, a speaker can bias the true log- 
likelihood scores. Preliminary results have shown there is an improvement in speaker identification using 
splitting in the testing procedure. 

5.0 Conclusion. 
This paper has reported on the hypothesis that speaker separation improves the performance oi speaker 
identification. The situation investigated was for the two-speaker case. Utilizing the information in the log- 
likelihood scores of the utterance unit made it possible to separate the speakers. Regrouping and adding the log- 
likelihood scores results in a set of scores for each speaker. We then evaluated speaker identification to determine 
weather splitting improves the performance of the overall speaker identification. 
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I.    INTRODUCTION 

There are several signal processing applications where a variety of sensors are 
available for measuring a given process, however physical and computational con- 
straints may impose the requirement that at each time instant, one is able to use 
only one out of a possible total of M sensors. There is also growing interest in 
flexible sensors such as multi-mode radar which can be configured to operate in one 
of many modes for each measurement. In such cases, one has to make the deci- 
sion: Which sensor (or mode of operation) should be chosen at euch time instant 
to provide the next measurement. It may also happen that one can associate with 
each type of measurement a per unit-of-time measurement cost, reflecting the fact 
that some measurements are more costly or difficult to make than others, although 
they may contain more useful or reliable information. The problem of optimally 
choosing which one of the M sensor observations to pick at each time instant is 
called the sensor scheduling problem. The resulting time sequence which at each 
instant specifies the best sensor to choose is termed the sensor schedule sequence. 

Several papers have studied the sensor scheduling problem for systems with lin- 
ear Gaussian dynamics where linear measurements in Gaussian noise are available 
at a number of sensors (see [1] for the continuous-time problem and [7] for the 
discrete-time problem). For such linear Gaussian systems, if the cost function to 
be minimized is the state error covariance (or some other quadratic function of the 
state), then the solution has a nice form: the optimal sensor schedule sequence can 
be determined a priori and is independent of the measurement data (see [1], [7] for 
details). This is not surprising; since the Kaiman filter covariance is independent 
of the observation sequence. 

In this paper we study the discrete-time sensor scheduling problem when the 
underlying process is a finite state Markov chain that is observed in white noise. 
The signal model is as follows: At each time instant, observations of a Markov 
chain in white noise are made at M different sensors. However, only one sensor 
observation can be chosen at each time instant. The aim is to devise an algorithm 
that optimally picks which single sensor to use at each time instant, in order to 
minimize a given cost function. We will show that unlike the linear Gaussian case, 
the optimal sensor schedule in the HMM case is data dependent. This means that 
past observations together with past choices of which observation to pick influence 
which observation to choose at present. 

l 
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2 KraSHNÄMÜKTHY 

In our recent work [4], we formulated the HMM sensor scheduling problem and 
presented an infinite dimensional dynamic programming functional recursion for its 
solution. An approximate algorithm was then presented in [4] which was based on 
discretizing the dynamic programming recursion to a finite grid. 

The main contribution of this paper is to present an optimal finite dimensional 
solution to the HMM sensor scheduling problem. Indeed we show that the solution 
to the dynamic programming equation is piecewise linear and convex. An algorithm 
is given for computing these piecewise linear segments. The finite dimensional 
scheduling algorithms presented in this paper are similar to those recently used 
in the operations research (see [6] for a tutorial survey) and in robot navigation 
systems [3] for the optimal control of Partially observed Markov Decision Processes 
(PÖMDP). However, our problem has the added complexity that the cost function 
is quadratic function of the information state - whereas the standard PÖMDP 
problem consists of a cost that is linear in the information state. We show that by a 
novel change of coordinates, the problem can be re-expressed as a standard Hidden 
Markov Model control problem and optimally solved using similar algorithms to 
those use for solving PÖMDPs. 

2.    SIGNAL MODEL AND PROBLEM FORMULATION 

Let k = 0,1,... denote discrete time. Assume X* is an 5-state Markov chain 
with state space {ei,... ,eg}. Here e* denotes the S-dimensional unit vector with 
1 in the i-th position and zeros elsewhere. This choice of using unit vectors to 
represent the state space considerably simplifies our subsequent notation. Define 
the S x S transition probability matrix A as 

A = [ujilsxs where ap = P(Xk = ei\Xk-i = ej),       i,j G {1,... ,'S}. 

Denote the initial probability vector pio of the Markov chain as 

TO = [wo(«)]sxi where n0(i) = P(X0 = i),  i £ {1,... ,'S}. 

2.1.    Sensor Scheduling Problem 
Assume there are L noisy sensors available which can be used to give measure- 

ments of Xk- At each time instant k, we are allowed to pick only one of the L 
possible sensor measurements. Motivated by the physical and computational con- 
straints alluded to in the introduction, we assume that having picked this sensor, 
we are not allowed to look at any of the other L — 1 observations at time k. 

Let Uk G {1,... L} denote the sensor picked at time k. The observation measured 
by this sensor is denoted as ykfak)- Suppose at time k, we picked the Zth sensor, 
i.e. Uk — I, where Z G {1,... ,L}. We assume that the measurement yk(l) of the 
Z-th sensor belongs to a known finite set of symbols öi(Z),Ö2(Z), ■ • • ,ÖM;(0- That 
is the Z-th sensor can yield one of Mi possible measurement values at a given time 
instant. For Uk G {1,... , L}, denote the symbol probabilities as bi(uk = Z, j/fc(«fc) = 
Om(l)) = P(yk(uk) = öm(uk)\Xk = euuk = I), i = 1,2,... ,'S. These represent 
the probability that an output Om(l) is obtained given that the state of the Markov 
chain is e* and that the Zth sensor is chosen. The symbol probabilities are assumed 
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HMM SENSOR SCHEDULING 

known. Finally define the symbol probability matrix 

" h(uk,Om(uk)) 

B(uk,Om(uk)) = diag . : 

_bs{uk,Om{uk)) 

Finally, for notational convenience let 

cj> = (A,B(l,öm(l))),    J = 1,...,Z,    m, = l,...,Mi (1) 

denote the entire parameter vector which comprises of the transition probability 
matrix and all the symbol probabilities of all the L sensors. 

Let Yk = {u!,U2,... ,uk,yi{ui),y2{ui),... ,yk(uk)} so that Yk represents the 
information available at time k upon which to base estimates and sensor scheduling 
decisions. The sensor scheduling and estimation problem proceeds in three stages 
for each fc = 0,1,... ,N -1, where N is a fixed positive integer 
1) Scheduling: Based on Yk we generate uk+\ — fik+\(Yk) which determines 
which sensor is to be used at the next time step. 
2) Observation: We then observe yk+i(uk+i) where uk+i is the sensor selected 
in the previous stage. 
3) Estimation: After observing yk+i(uk+i) we generate our best estimate Xk+\ 
of the state of the Markov chain Xk+i as Xk+\ = E{Xfc+i |I*+i}. Here Xk denotes 
the Hidden Markov Model filtered state estimate at time k + 1 defined as 

s 
Xk+1 = E{Xk+1 | Yk+1 } = J> P(Xk+1 = ej | Yk+1),        X0 = TT0. 

i-l 

Note that the state estimate Xk+\ is dependent on the scheduling sequence of 
sensors picked from time 1 to k + 1, i.e. «i,... ,u/t+i (since it depends on Yk+i). 

With these steps in mind, we define the sensor scheduling sequence 

ß = {ßl,ß2,--- ,ßN} 

and say that the scheduling sequences are admissible if ßk+i maps Yk to {1,... , M}. 
Note that ß is a sequence of functions. 

We assume the following cost is associated with estimation errors and with the 
particular sensor schedule chosen. If based on the observation at time k, the decision 
is made at time k to choose the Z-th sensor, I £ {1,... , L} at time k+1, i.e. «fc+i = /, 
the instantaneous cost incurred at time k is 

(Xk - Xk)'Rk(l)(Xk - Xk) + ck(Xk,l)}. (2) 

Here Rk(l), I = 1,2... ,L are known positive definite weighing matrices and 
our aim is to find the optimal sensor schedule to minimize the total accumulated 

cost Jft from time 1 to N over the set of admissible control laws: 

N-l N-l 

Jß = E{ £ (Xk - Xk)'Rk(uk+i)(Xk - Xk) + J2 ck(Xk,uk+l)} + E{(XN - XN)'RN(XN - XN)} 
k-0 fc=0 

(3) 
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FIG. 1.    The Sensor Scheduling and Estimation Problem 

where uk+1 = fik+i(Yk). 
The above objective (3) can be interpreted as follows: The minimization of the 

first summation results in the optimal sensor schedule that minimizes the weighted 
mean square error in the state estimate of the Markov chain state Xk. In particular 
if Rk is set as the identity matrix for all time k, minimization of 3) yields the optimal 
sensor uk 6 {1,2,... , L} to pick at each time instant k, k — 1,2,... , N to yield 
the minimum mean square error state estimate of the Markov chain. The weight 
terms Rk(l) allow different sensors I € {1,2,... ,1} to be be weighed differently. 
The time index in Rk allows us to weigh the state estimate errors over time. 

The second summation term reflects the cost involved in using a sensor (i.e. the 
unit time sensor charge) when the the Markov chain is in a particular state. The 
final term is the terminal cost at time N. 

2.2.    Information State Formulation 
As it stands, the above HMM sensor scheduling problem is a partially observed 

infinite horizon stochastic control problem. As is standard with such stochastic 
control problems - in this section, we convert the partially observed stochastic 
control problem to a fully observed stochastic control problem defined in terms of 
the iriformution state [5]. 

The information state at time k, which we will denote by -Kk—column vector 
of dimension S, is merely the conditional filtered density of the Markov chain Xk 

given the observation history Yk. That is nk(i) = P(Xk = ei\Yk), i = 1,2,... ,S. 
Also because we have assumed that Xk is a unit vector e {ei,... , e^}, we straight- 
forwardly have 7Tjfc = Xk. (This is one of the notational advantages of depicting the 
state space by unit vectors). 
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HMM SENSOR SCHEDULING 

The information state irk is a sufficient statistic to describe the current state of a 
HMM (see [2] and [5]. The information state update is computed straightforwardly 
by the HMM state filter (also known as the "forward algorithm" ) 

B(uk+1,yk+i(uk+1))A'irk a) 

*k+1     I'sB(uk+1,yk+1(uk+1))A>Kk 
{V 

where I5 represents an 5-dimensional vector of ones. 
Let Vtj, denote the set of all information states n that can be achieved by the 

sensors given the parameter vector <f> defined in (1). That is, 

V* = {n e tis : I's« = 1,    0<7r(i)<lforallie{l...,5}} (5) 

Using the smoothing property of conditional expectation, the cost functional of 
(3) can be rewritten in the form 

JV-1 

J„ = E{CN(TTJV) + 52 Ck(itk,ßk+1 (TT*))} (6) 
*=0 

5 

CN(KN) = 5J(e» _ XN)'RN(ei - XN) 7TJV(0I 
»=1 

Ck(nk,uk+1) = 52 [(ei ~Xk)'Rk(uk+i){.ei -Xk) + ck(ei,uk+i)j nk{i) 
»=1 

s 

I 
»=1 

Co(ir,u) = 52 Me».«) + (e» - TT0)'Ro{ui){ei - n0)] 7r0{i). 

Substituting for Xk = irk in in the above equations, after some algebraic manipu- 
lations we can write Ck as a quadratic function of the information TT as follows: 

Ck (7r*, «fc+i) = -Tr'kRk (ufc+i) irk + g'k (uk+i )nk (7) 

where gk(u) denotes the S dimensional vector with elements 

gk(ei,uk+1) =Rk(ei,ei,uk+1) + ck(ei,uk+i),       i = l,2...,S. (8) 

We now have a fully observed control problem in terms of the information state 
TV: Find an admissible control law, /z, which minimizes the cost functional of (6), 
subject to the state evolution equation of (4). 

2.3.    Examples and Applications 
1.  Optimal Filtering versus Prediction Consider the tracking problem of 

measuring the state of a target from radar derived measurements. Assume that the 
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target's coordinates evolve according to a finite state Markov chain Xk with known 
transition probability matrix A. Assume that at each time instant k we have two 
choices: 
(i) «* = 1: obtain a radar derived noisy measurement of the target position yk{uk = 
1). Assume that the noise density and hence the symbol probability matrix B(uk = 
l,yk) is known. After observing the targets position yk(uk = 1), we compute the 
best filtered estimate of the target's position Xk by using the HMM filter. Let 
c(Xk, 1) denote the cost of using the radar when the target's true position is Xk. 
For example, the cost c(Xk) 1) would typically be large when the target Xk is close 
to the radar tracker. 
(ii) uk = 2: Do not observe the target state. This is equivalent to choosing B(uk = 
2,yk) = J, as the observation yk then contains no information of the state of the 
Markov chain Xk. Without using the radar for observing the target, we can only 
compute the best predicted estimate of the target via a Hidden Markov model state 
predictor. Eet c(Xk,2) denote the cost of not using the radar. 

In addition to the cost of using the radar c(Xk,uk), we also incorporate into 
our cost function the mean-square estimation error of the target's coordinates. 
Suppose our aim is to chose at each time between uk = 1 (obtaining a radar derived 
observation and using a HMM filter) versus uk = 2 (not making a measurement and 
using a HMM predictor) to minimize the cost function in (3). Then the problem is 
identical to the sensor scheduling problem posed above. 

2. Optimal Quantization Problem: Given an S state Markov chain Xk 

observed in noise, consider the following joint source coding and estimation problem 
which seeks to compute the optimal tradeoff between quantization bits, channel 
transmission cost and state reconstruction. Suppose at each time k, one has to 
choose between the following L possibilities: Quantize the observation to I bits and 
transmit these I bits over the channel at a transmission cost of c(l, Xk), I = 1,... , L. 
The receiver, seeks to recover the best estimate of Xk, i.e. the minimum mean 
square state estimate subject to the channel transmission cost c(l,Xk). The cost 
function is then identical to (3). The sensor scheduling problem then yields the 
optimal answer to how many of bits one must quantize the observations at time k 
to minimize the transmission and reconstruction cost. 
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ABSTRACT 

This paper proposes intelligent virtual advisers and animated scenes in virtual realities as an appropriate 
technological aid for Situation Awareness. It then outlines the ATTITUDE agent architecture as a basis for building 
intelligent virtual advisers. 

1. Introduction 

Endsley ([1]) defines Situation Awareness (SA) as follows. 

"Situation awareness is the perception of the elements in the environment within a volume of 
time and space, the comprehension of their meaning, and the projection of their status in the 
near future." 

As perception, comprehension and projection characterise mental attributes, SA is understood as a 
mental phenomenon, and in the absence of anthropomorphism, is understood to be about human 
minds. So viewed, SA is not a computer system or a screen, it is a state of human awareness. 

Technologies and technological aids are often introduced to enhance the state of human 
awareness, and so the advancement of SA is partly about psychology, partly about technology, 
and partly about the integration of the two. The concept of a Common Reference Picture1 (CRP), 
is often cited as the technological solution to SA. I am less than enthused by the CRP 
recommendation and in [2] cast a critical eye over each of its common, reference and picture 
components. The term picture is typically used to refer to a (possibly fused) track display. As a 
general technological aid to SA, track displays place considerable cognitive burden on the 
commander. This paper proposes a radical alternative to track displays as the primary 
technological aid for SA. 

2. Virtual Advisers 

In a command and control setting, SA is acquired by being informed about what is going on in the 
world. In our daily lives we are likewise informed of what is going on through the news services, 
with print, radio, television and the Internet serving as the dominant forms. The last two afford the 
advantage of being able to supplement the text, photographs and sounds of the first two with a 
dynamic imaging capability. Television news broadcasts typically involve news presenters, weather 
presenters, sports presenters, reporters, expert interviews, diagrams, graphs and video footage. 
The various individuals are assembled as advisers to the viewer and the visual footage is engaged 

1 Common Operating Picture in the US, Joint Operating Picture in the UK 
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wherever possible to refine the mental images that the viewer otherwise forms from the spoken 
and written words. News broadcasts provide the viewer with SA by carefully assembling these 
various components to tell a story. 

Military commanders within command and control centres should perhaps acquire SA through 
facsimiles of news broadcasts, and in some sense, existing staff briefs to these commanders are a 
comparatively limited attempt to do just that. But while these proposed military news broadcasts 
would offer potential advantages over traditional briefings, they would still be impeded by some 
drawbacks. 
1. The news broadcast approach to SA is people based and therefore lacks portability. Platform 

based radar operators or fighter controllers do not have the luxury of a team of advisers to 
provide them with news broadcasts relevant to their SA. 

2. The news broadcast approach to SA engages visual footage wherever possible, but in the 
military context, the information available is often confined to terse military messages without 
direct visual footage. 

3. Being people based, the news broadcast approach to SA is typically a one off performance by 
the various advisers. Ideally the viewer should be able to observe the news when it is 
convenient for them to do so, and be able to rewind and replay parts of the presentation. 

4. The news broadcast approach to SA delivers information, but prevents the viewer from 
interactively conversing with the advisers to further enhance their SA 

In response to these difficulties I offer the following suggestions. 
1. The news broadcast should be deliverable by software in addition to people. This facilitates 

greater portability. 
2. Where appropriate, 2 and 3 dimensional virtual reality animations of military messages should 

be constructed to provide animated movie footage of the events being described. 
3. The advisers in conventional news broadcasts should be replaced by virtual advisers in the 

software. They will provide a story telling counterpart in the software. 
4. The virtual advisers should be intelligent. They should be repositories of particular expertise 

and be capable of interacting with the user about their area of expertise. The aim is to deliver 
virtual people who interact with the user, their environment, and one another, to meet the 
user's SA needs. 

3. ATTITUDE 

The remainder of this paper concerns itself with how we construct intelligent virtual advisers, 
independently of their animated form and their animated environments. In particular, it promotes 
as a solution, the ATTITUDE software product being developed at the Defence Science arid 
Technology Organisation. The predecessor to ATTITUDE was designed as an intelligent controller 
for an AEW phased array radar, and so it is worth noting that the virtual advisers made available 
to a commander need not necessarily exist locally. They could perform various functions, be 
distributed across various platforms in the battlespace, and be made accessible to the commander 
through networking and an avatar form. 

To understand why ATTITUDE delivers a framework for developing virtual people, it is necessary 
to appreciate its motivation. The current computer science paradigm began in the 1940s with a 
communicative gulf, with a human user flush with conceptualisations at one extremity and the 
computer as a complex electronic switching device at the other. The current computer science 
paradigm has sought to bridge this gulf by dragging the computer closer to the user by embedding 
human conceptualisation within the machine and then interfacing those conceptualisations to the 
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user as if primitive thereafter. Thus we have seen the familiar progression of machine languages, 
assembly languages, floating point arithmetic, higher level languages, graphical user interfaces, 
and speech processing systems. If we continue to pursue this paradigm, then at the automation 
limit we would interact with the computer as if it were another user, and we would predict and 
explain its behaviour in a similar manner to how we predict and explain human behaviour. 

AUTOMATION 
i m fe^Mfe^fegfea^        (Automation Limit) 

Computer Communicative Gulf User 

Figure 1: Automation Paradigm 

Humans predict and explain the behaviour of other humans by ascribing mental attitudes to them, 
such as beliefs, desires, expectations, fears, hopes, et cetera, and when expressing these and other 
mental attitudes, the syntax of the expression always assumes the form 

<subject> <attitude> that <propositional expression 
The following examples illustrate 

Fred believes that the sky is blue Tom expects that it will rain Mary hopes that Tom is insightful 
Expressions having this syntactic form are called propositional attitude expressions and the beliefs 
et cetera that they denote are termed propositional attitudes. In a propositional attitude 
expression: the subject, e.g. Fred, expresses which individual has the propositional attitude; the 
propositional expression, e.g. the sky is blue, expresses some assertion about the world; and the 
attitude, e.g. believes, expresses the kind of response the subject has toward the proposition. With 
subtle modification, propositional attitude observations such as 

Fred believes that the sky is blue 
can be transformed into propositional attitude instructions like 

Fred believe that the sky is blue. 
The latter is an instruction, commanding software agent Fred to believe that the sky is blue. A 
mechanism of this form allows us to not only predict and explain software behaviour at the 
automation limit, but to also program software behaviour at the automation limit. The use of 
propositional attitude instructions as primitive programming instructions I call attitude 
programming and ATTITUDE is so named because it practices attitude programming. ATTITUDE 
therefore satisfies two quite different motivations for virtual advisers: one emanating from a 
refinement of the current computer science paradigm, and the other coming from a strategy for 
enhancing SA. 

4. Individuals With Attitude 

Interacting with the World 

In individual ATTITUDE agents, the world is described by the propositional expressions within 
propositional attitude instructions. The world of every ATTITUDE agent is understood as a world 
of facts in which, in their most primitive form, the facts are expressed as atomic formulae having 
the syntactic form (<relation> <termi> ... <termk>). Each term represents an object and the 
relation identifies some relationship between those objects, e.g. (taller Clinton Howard). In Classical 
First Order Logic, the terms denoting objects are recursively grounded in symbols, variables and 
functions. In ATTITUDE, terms are expressions recursively formed from symbols, variables, 
functions, Booleans, integers, reals, subexpressions, indexed expressions, schedules, events, 
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scenarios, individuals and groups. As a consequence, ATTITUDE individuals can form very 
sophisticated structures to describe the world, including recursively self-referencing structures1. 

Individual ATTITUDE agents operate by being embedded in the world. To facilitate this interaction 
they are often equipped with sensors and effectors that allow them to observe and alter the world. 
An individual's conception of the world will often be limited by what they can experience, and this 
could range from a world of radar tracks through to a sophisticated virtual reality world. The 
individual's conception of the world is realised by the relations and objects that it is able to 
consider, and it is the sensors and effectors role to manage the interaction between events in the 
world and the propositional expressions within the individual. Attitudes exist to facilitate control 
of sensors and effectors. 

Interacting with One Another 

Individual ATTITUDE agents also interact socially. This is facilitated by the role of subjects within 
propositional attitude instructions. The instruction Fred believe that (blue sky) is an instruction to 
individual Fred to believe that the sky is blue, and so when it is executed by a second agent Tom, 
it causes an instruction to believe that the sky is blue to be sent from Tom to Fred. Individuals are 
able to communicate beliefs in this way. Expectations, anticipations and desires can also be 
exchanged between individuals. 

Subjects can also include groups of individuals. Groups are simple sets of individuals and Boolean 
algebra operators are provided to include and preclude individuals from group membership. 
Groups can also be formed through queries. Issuing the query ?who ask if believe that (blue sky) 
will store in variable ?who the group of individuals who believe that the sky is blue. The interaction 
of individuals enables the collective to arrive at outcomes which none of the participating 
individuals might arrive at alone. 

Determining Behaviour 

The behaviour of each individual is determined by the propositional attitude instructions that it 
invokes in response to social and environmental cues. Each individual is designed to exhibit certain 
routine behaviours that are applicable to its domain of expertise. These are coded in routines, 
which comprise an atomic proposition goal and a state transition network of propositional attitude 
instructions. Routine execution involves navigating control through the transition network of 
instructions, with each instruction succeeding or failing. The routine is designed so that the atomic 
proposition goal will be satisfied if a successful path of execution can be found from the start node 
to a terminal node of the network. Routines provide a procedural approach to knowledge 
representation [5]. 

In addition, the believe attitude accommodates Horn clause beliefs for reasoning. Instructions such 
as Fred believe that (son ?x ?y) if (& (male ?x) (parent ?y ?x)) then make Fred believe the 
propositional expression (son ?x ?y) if (& (male ?x) (parent ?y ?x)). Each individual is able to engage 
their inference engine to reason about rules of this sort. Beliefs provide a declarative approach to 
knowledge representation [5]. 

1 In mathematical terms this means that a set theoretic meta-theory for the model theory [3] of an ATTITUDE 
ontology may need to be a non-well founded set theory [4]. 
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5. Automated Awareness 

To succeed as an SA adviser, an ATTITUDE individual must be capable of assembling its own 
awareness of the world. When engaging the world, we rarely attend to individual facts in the 
world. 

!.<" *   -i,;,; 

P'ffrrV- &&&&&&s^jta 

Figure 2: Animated Event and Scenario 

In assessing the typical mental snapshot picture animated in the left of Figure 2, we are inclined to 
represent it as a set of facts, perhaps as 

Ei = { (at locll (blue_asset tgt3)), (at loc42 (faker tgt7)), 
(at loc42 (low_altitude tgt7)), (at loc42 (approaching tgt7 tgt3))}. 

Sets of facts are termed events in ATTITUDE and Boolean algebra combinations of events are 
formed as scenarios. The right of Figure 2 illustrates a scenario formed from two events. The term 
situation is used collectively for events and scenarios. Situation awareness is about being aware of 
situations, not facts or objects per se, and all inference within ATTITUDE is conducted relative to 
situations. Among other things, this allows ATTITUDE individuals to perform "what if' and 
knowingly counterfactual reasoning, by reasoning about possible events with known scenarios. [6] 
expands upon the simplified details presented here. 

The author recommends a five-step approach in devising an ATTITUDE individual. 
r Situation F Situation 

• 

>'w A* 
i 
 i Boutiu&& 

i 
.                       Routines 

v>j Situation *J 'Situation 

Routines Routines 

Figure 3: Automating Awareness 

Step 1 involves deciding the type of objects and relations that lie within the scope of the 
individual's expertise. This is best done formally, so that the logical dependencies between those 
object and relation types are well defined. The individual will not understand facts that cannot be 
expressed in those terms. Step 2 involves deciding the foreseeable events that are of interest to the 
individual. These events may comprise a lattice structure if fragments of events of interest are also 
of interest. For each event of interest, one or more routines are defined to identify when those 
events have occurred and to identify the individual's involvement with those events. The situations 
accommodated by step 2 will comprise all the situations which can be generated from the events 
of interest and which can be serviced collectively by the routines designed to service the events 
comprising it. 

As depicted in the top left of Figure 3, routines for the foreseeable events may not suffice as the 
unforeseeable might occur. To guard against this, step 3 advocates further expanding the set of 
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routines so that they include a topologically well separated set for which the space of possibilities 
is approximately covered. The inclusion of routines that roughly accommodate any situation 
increases the likelihood of any given situation being satisfactory handled by the individual, but as 
the top right of Figure 3 shows, it provides no guarantee. Consequently, as illustrated in the 
bottom left of Figure 3, step 4 is to allow the routines to operate with tolerance, so that each can 
be successfully executed with events similar to those intended. This secures completeness, in the 
sense that the individual will always respond to any given situation, though possibly with a 
degraded level of performance for unforeseen situations. Two approaches to tolerance have been 
developed for ATTITUDE, one based upon fuzzy inference ([7]) and the other upon Bayesian 
inference ([8]). Only the latter has been implemented to date. It involves the association of 
conditional probability tables with beliefs so that the internal structures produced by the inference 
engine can be interpreted as Bayesian networks, thereby enabling the probability of the query, 
including conditional queries, to be computed. 

The fifth and final step is to accept that, while the routines of step 4 will always be able to deal 
with any situation that can arise, their manner of dealing with some situations will be less than 
satisfactory. Consequently step 5 is to incorporate routine adaptation capabilities, as depicted in 
the bottom right of Figure 3. A case-based approach for ATTITUDE was initiated in [9]. It applied 
weakest precondition semantics to the execution traces of ATTITUDE routines to learn the 
conditions under which each routine is likely to succeed, and then applied the Viterbi algorithm to 
select the routine that is most likely to achieve a nominated goal in the current situation. Another 
approach, based upon routine generation through genetic algorithms, is about to commence. 
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A common focusing algorithm for Ultra-Wideband, Wide-Angle (UWBWA) 
SAR systems is the delay-sum backprojector which coherently sums the 
SAR data. It is very robust to perturbations of the radar platform, but 
does require a huge amount of computation. In this paper, the Quadtree 
Backprojection algorithm, which approximates the backprojector, is pre- 
sented and its characteristics are analyzed. The Quadtree algorithm has 
log2 JV stages, so it is possible to measure the focusing performance of each 
intermediate stage and perform early detection of targets. 

1.    INTRODUCTION 

Various SAR focusing algorithms have been developed for low frequency, wide- 
band radar, because low frequency (less than 1 GHz) signals have much better 
foliage penetration (FOPEN) and ground penetration (GPEN) capability, mak- 
ing them well-suited to detecting camouflaged targets or buried targets (e.g., land 
mines). At these low frequencies, the requirement of fine cross-range resolution 
demands a very long synthetic aperture. In turn, this leads to a very large integra- 
tion angle, which increases the possibility that severe motion errors occur during 
the SAR data collection process. As a result, fast imaging algorithms based on the 
FFT are handicapped by non-uniform spatial sampling of the collected data. 

2.    DESCRIPTION OF QUADTREE ALGORITHM 

The impulse response of the UWBWA SAR data collection process occupies a 

hyperbolic contour in the space-time domain, because the energy which was origi- 
nally concentrated in a single point target in the space domain (a;, z) spreads out 
over a hyperbola in the space-time domain (x, t). For each point (x, z) in the image, 
the delay-sum backprojection algorithm coherently sums the collected SAR data 
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along this hyperbola in the space-time domain: 

JV-l 

I(x,z)=Y/D(a,TXtZ,a) (1) 
a=0 

th where I{x,z) is the output image, D(a,t) is the radar data recorded at the a 
aperture point, and TX]Z]Q is the time delay corresponding to the distance between 
the image position (x, z) and the ath aperture point. When the computed time 
delay lies between signal samples, a bilinear interpolation is done to get the value 
for the summation (1). Backprojection is like a matched filter, but it is a space- 
variant computation since the shape of the hyperbola changes with range. 

There are two important advantages of the the delay-sum backprojection algo- 
rithm: (1) simple motion compensation, and (2) localized processing artifacts. The 
simplicity of the computation which relies on a distance calculation means that 
there is no requirement to have a regularly spaced array, as required in FFT-based 
algorithms. However, there might be a need to change the relative weighting when 
doing the coherent summation to avoid "hot spots" in the final image. 

The most notable disadvantage of backprojection is its computational complexity 
(order JV3, forNxN pixels, N sensors) as opposed to FFT-based algorithms such 
as the oj-k method (order N2 logN). 

2.1.    Quadtree Algorithm 
A Quadtree is a general way of representing an algorithm, or data structure, 

in a hierarchical tree structure. The Quadtree for UWBWA SAR Processing was 
first introduced in [1] where a divide and conquer decomposition of the Delay-sum 
Backprojector was described. The radix-2 Quadtree algorithm has two features: 

• Instead of coherently adding the data from all sensors, the summation is done 
two sensors at a time. As a result, we must form "virtual sensors" from two 
neighboring sensors at every iteration stage. 

• Instead of computing the exact values of the image at all points in the ground 
patch at full resolution, use a multi-resolution scheme to approximate the final 
image. In this case, a ground patch is divided iteratively into a 2x2 set of subpatches 
at each stage. 

At each iteration stage, the generation of new aperture points and new sub-images 
(sub-patches) can be described as a "parent-child" structure that is typical of tree- 
structured recursive algorithms (Fig. 1). 

2.2.    Interpolation and Beamforming 
The core computation of the Quadtree image former is a two-sensor delay-and- 

sum beamformer, where the delay is recalculated at each iteration based on the 
distance between the new ground-patch centers and either the parent or child aper- 
ture positions. In the parent nodes, the radar data is aligned for the distance 
between the parent aperture positions and the parent ground patch center. When 
the beamforming is done, its output data must be aligned for the distance between 
the child aperture positions and the child ground-patch centers. These distance 
calculations are time-consuming because they involve square roots which then gen- 
erate indices into the parent data.  More than half of the total operations in the 
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FIG. 1.      Tree structure of the quad-tree algorithm. 

Quadtree are involved in calculating indices. In general, several parent data val- 
ues are selected by the indexing, and bilinear interpolation is done as part of the 
two-point beamforming. 

3.    OPERATION COUNT 

The original Quadtree [1] was a radix-2 algorithm, but we have recently extended 
the algorithm to a mixed-radix form [2]. In this section, we summarize the number 
of operations (x, ± , ^/r) required in the mixed-radix Quadtree algorithm. We 
make the following definitions: 

L = number of apertures combined at each stage 
K x K array of new image centers generated at each stage 
Npl = number of Parent apertures at the t-th iteration 
Nci = number of Child apertures at the Mh iteration 
Ntce - number of Time (range) samples in a child node 
Mpi = number of Parent ground patches at the tth iteration 
Mc£ = number Child ground patches at the «h iteration 

We assume that L = K, so the aperture dividing factor equals the image patch 
expansion. Finally, we assume that we start with an equal number of apertures 
and image patch samples TV = K?. The relationships between these numbers is: 

Nt ci K = K?~e   Mrf = M^Ä" = Ä* N, tee; Kp- 

The following four steps are analyzed: 

1. Distance from each child aperture to the child ground-patch centers requires 
multiply, add and square roots to compute Nc Mc

2 distances at each stage: 

t=i e=i 

K     ,     0 fr-2p+l 

K-V '      K-l 
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2. The distance from Parent apertures to Child range bins which is done NtcNpM? 

times at each stage: 

3. Interpolation which only needs multiplications and additions and is done NtcNpM"c 

times at each stage: 

J2^NpeM% = pK^+l 

4. Coherent Summation which is done Nd{K - 1) times at each stage: 

£ NAK - 1) = J2(K - l)K*-< = KP - 1« ^ 
£=1 £=1 

Thus, the total number of computations is: 

Ä" 
— + 2pK2p+1 + Kp - 1 « ^2(^ZT + 2KlogK N)       b = l0g* ^ 

4.    MULTIRESOLUTION ENERGY MEASURE 

The internal data structure of the Quadtree algorithm can be written as vs [r, a,m,n] 
where s is the stage number, r is the range bin number, a is the aperture point 
index and (m,n) are the coordinates of the ground patch center position. In the 
Quadtree, the raw data is a function of only (r,a), but is gradually localized into 
the (x z) coordinates as the iterations progress. The (r,a) dimensions contract 
and the (m, n) dimensions expand at each stage, representing finer sampling of the 

image patch. .        , 
A multiresolution measurement scheme can be constructed by summing the 

squared data within each subimage patch to obtain an Energy Distribution Function 

defined versus (m,n): 

Es [m, n] = £ X) \Vs fr' a'm' n512 

r      a 

The s-th stage has 2s"1 image centers, so the domain for (m,n) grows with a. 
Figure 2 shows a set of images of E,(m, n) at each stage of a radix-2 QuadTree. In 
this figure we can see large signal regions in the early stages of the image become 
focused in the later stages. As the number of subimage centers grows, the regions 
with higher energy shows the locations where targets are likely to be found. A new 
target detection algorithm has been based on this focusing sequence [5]. 

5.    HARDWARE IMPLEMENTATION 

In surveillance applications the UWBWA SAR might be fielded in an unmanned 
airborne platform, so the constraints of power and size will drive the implemen- 
tation   Our approach is to explore the use of a Context Switching Reconfigurable 
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FIG. 2.    Energy Measure for all levels of the Quadtree (first stage is the raw data). 

Computer (CSRC) being developed by Lockheed-Sanders under the DARPA Adap- 
tive Computing Systems program. 

A CSRC has multiple-layers of logic, called contexts, which can be switched 
on a single clock cycle. Each context implements a particular function (multiply- 
add, DSP operation, I/O, etc.). As an algorithm executes, it switches context 
to accelerate a given function. The device allows for data to be shared between 
contexts and also has RAM to implement local data storage. We are developing only 
a single node to benchmark the acceleration of the distance and index calculations 
for the inner loops of the Quadtree. 

5.1.    Jump Level 
Our approach to accelerating the Quadtree is run several stages of the algorithm 

and then to switch to another algorithm like w-k or backprojection. If we do most 
of the Quadtree iterations then the FFTs for the uj-k algorithm should be small 
enough to be run on individual processors. 

It is important to realize that the Quadtree algorithm produces data in aperture 
and range, not in image coordinates. If a final high-resolution image is desired there 
are two choices. The Quadtree algorithm can be carried out to the trivial case of 
one aperture, one pixel per image section, and one range cell per image section. 

As a second option the aperture-range data in each subimage can be focused using 
either delay-sum or w-fc backprojection. The number of iterations of the Quadtree 
algorithm employed before final focusing is referred to as the jump level. In the 
hardware effort by Georgia Tech, Sanders, and ARL to create a real-time UWB SAR 
imager, delay-sum backprojection is used to create a final high-resolution image 
from Quadtree data. This technique has proven to be faster and more accurate 
than the Quadtree algorithm alone [3]. 

The squared distance calculations in the Quadtree algorithm can be formulated 
as two real adds per range cell, with significant overhead per subimage-aperture 
combination.   This is very effective for the larger subimages, but the overhead 
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Computation time vs. stages of quadtree employed 

123456789 
Stages of quadtree prior to delay-sum focusing 

FIG. 3.     Computation time as a function of the number of quadtree levels used before jumping 
to a backprojector to finish. In this case, the computation starts with an array of 2048 apertures, 
spaced by 11.25 cm.   The image size is 1536 (downrange)  x 512 (crossrange).   Downrange x 
crossrange resolution is 3.75 cm x 11.25 cm. 

becomes burdensome for the smaller subimages in the final few Quadtree stages. 

Using this formulation of the Quadtree algorithm, and a delay-sum backprojector 
specifically coded for fast imaging of Quadtree data, computation times were com- 
pared for different jump levels from the Quadtree to the delay-sum backprojector. 
One result, in this case showing that the Quadtree should be used to reduce a 2048 

sensor array to no fewer than 32 apertures, is shown in Fig. 3. 
Each subimage can also be focused at later stages using the w-k backprojector, 

but the w-k algorithm requires sensors to be evenly spaced along a linear array. If 
the sensors are necessarily spaced along a wandering path, as in airborne synthetic 
arrays, the Quadtree can be used to synthesize an evenly spaced virtual array. 
The optimal approach to this depends on the characteristics of the flight path, 
but results show that several stages of the Quadtree algorithm should be used 
to gradually approach a linear array. Then the w-k backprojector is expected to 
provide the best solution to high-resolution focusing of Quadtree data. 
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An objective function that measures the deviation from smoothness for a 
space-time preprocessor anti-jam filter is developed. A linear combination 
of noise eigenvectors is formed to produce the desired space-time weights for 
minimizing GPS signal distortion based on minimization of the objective 
function. It is demonstrated that the smoothness of the spectrum char- 
acterizing the space-time preprocessor across angle and frequency depends 
on the choice of the space-time delay in the objective function. 

Key Words:  GPS; anti-jam filter; preprocessor; power minimization; smoothing 

0.    INTRODUCTION 

GPS is known to provide significant force enhancement capability. This force 
enhancement capability has been demonstrated in every U.S. military operation 
since (and including) the Gulf War, but with this capability is a concern about 
the vulnerability of the GPS signal to jamming. The jamming threat is serious 
because of the physical design of the GPS system. The received power from the 
GPS satellites is approximately -157 dBW. Many jammers available on the arms 
market today either already cover the GPS frequencies, or can be modified to do 
so. A space-time preprocessing filter prior to the GPS correlators is one of several 
proposed methods for suppressing jammers. However, this type of filter also induces 
some distortion of the desired GPS signal. 

It is known that tapped-delay line preprocessing of a spread spectrum signal 
introduces distortion of the desired GPS signal. Characterization of this type of 
distortion in time-only preprocessing has been previously studied in [2]. We here 
consider the space-time extension of such an interference suppression algorithm 

1 This research was supported by the Air Force Office of Scientific Research under grant no. 
F49620-97-1-0275. 
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proposed in [4] to effectively null both wideband and narrowband jammers while 

minimizing GPS signal distortion. 

1.    POWER MINIMIZATION BASED JOINT SPACE-TIME 
PREPROCESSOR 

In the joint processing approach, each sample value input to the GPS receiver 
is formed from a linear combination of samples across both space and time. The 
space-time weights are realized through a tapped-delay line behind each digitized 
baseband antenna, as shown in Figure 1. The output of the preprocessor is then 
fed to a standard digital GPS receiver. The goal of the preprocessor is to suppress 
jammers as best as possible while simultaneously passing as many undistorted GPS 
signals as possible. Note that the anti-jam space-time filter will not be optimized 

for any one GPS satellite signal in terms of maximizing the SINR. The advantage of 
this approach is that the anti-jam space-time filter remains a separate component 

so that a standard digital GPS receiver may be employed. 
The criterion for determining the optimal set of space-time weights is premised on 

the fact that the respective power levels of the desired GPS signals are significantly 
below the noise floor, as well as below the respective power levels of the potential 
jammers. The goal then is to drive the power of the preprocessor output down 
to the noise floor. This approach serves to place point nulls at the respective 
angle-frequency coordinates of strong narrowband interferers and spatial nulls in 
the respective directions of broadband interferers. 

In order for the GPS receiver to provide accurate navigation information, it is 
necessary to track the signals from at least four different GPS satellites. Given the 
parallax error associated with GPS satellites at near-horizon relative to the aircraft, 
it is generally desirable to track the respective signals from a larger number of GPS 
satellites, e.g., twelve. It is desired then that the preprocessor "pass" unaltered 
as many GPS signals as possible. Thus, the magnitude of the multidimensional 

Fourier transform of the space-time weights should be as flat (smooth) as possible 
in the spectrum as a function of frequency and angular dimensions. The goal then 
is achieve a desired smoothness while simultaneously nulling both wideband and 
narrowband interferers. This motivates the minimization of an objective function 
that measures the deviation from smoothness. 

1.1.    Theoretical Development 
A space-time power minimization based preprocessor for GPS was proposed in 

[4] for anti-jam protection. The output power of the space-time preprocessor is 
minimized under the constraint that the value of the first tap of the tapped-delay- 
line behind the reference element be unity. This is not necessarily the optimum 
constraint to reduce GPS signal distortion while nulling out the wideband and 
narrowband jammers. An alternative approach is taken here in which the space- 
time weights are expressed as a linear combination of the noise eigenvectors of the 
space-time correlation matrix, thereby insuring the desired nulling of jammers. The 
coefficients for linearly combining the noise eigenvectors are determined as those 
which minimize an objective function that measures the deviation from smoothness. 

The NM x NM space-time correlation matrix is denoted K, where M is the 
number of antennas and N is the number of taps per antenna. K can be expressed 
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as 

K = Ks + <r„2I 
(1) 

where <r„ is the power of the noise per tap per antenna assumed without loss of 
generality to be both temporally and spatially white. Ks is the noise-free space- 
time correlation matrix. Since the GPS signals are at least 16 dB below the noise 
floor prior to the correlation with any one satellite's PN code, the contributions 
of the GPS signals to K, are here considered negligible. We here assume that the 
number of jammers is such that not all degrees of freedom are consumed for jammer 
cancellation purposes. In this case, K, is not full rank so that it can be formed 

from the K < NM eigenvectors of K associated with the K largest eigenvalues 
An NM x (NM - K) matrix E* is formed from the NM - K eigenvectors of 

K associated with the smallest eigenvalue (of multiplicity NM - K) equal to the 
noise power, a»2; these are the noise eigenvectors. 

EJV = [eK+i,eK+2,....,eNM]. (2) 

The 2D FFT of the j-th noise eigenvector is expressed in terms of a spatial fre- 
quency, //, and an angular digital frequency, w, which are defined as follows. First 
for sake of simplicity, we here assume a linear array of identical antennas equi- 
spaced by d = A/2 along a line, where A is the wavelength associated with the LI 
frequency. In this scenario, the spatial frequency is defined as 

H — 27r-sin0 7T sin 0 

where 0 is the angle-of-arrival (AOA). The angular digital frequency is defined as 
u - 2rr-£ where A/ is the frequency offset relative to the LI frequency and Fs is 
the sampling rate. 

With these definitions, the 2D FFT of the j-th noise eigenvector may be expressed 
as 

where f(^w) = fM(ß)®fN(u). Now fM(//) and fN(u) are respectively defined 

fa (A*) = [1, ei", e?2",..., eJW-^f 

as 

(4) 

fjv(«) = [1, e**, e^,..., ci<"-iVjT. (5) 

Any of the noise eigenvectors when viewed as a space-time weight vector places a 
null at the angle-frequency coordinate (/i,-,Wi) of the i-th narrowband jammer 

iH{m,ui)Bj = Q 

and a spatial null in the direction of the *-th wideband jammer 

f^.wJe^O. 

(6) 

(7) 
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We desire to find a linear combination of these noise eigenvectors such that the 
2D FFT spectrum is as smooth as possible. We seek therefore to minimize the 

objective function 

IT K NM 

47T2 J_v J-ir ,=K+1 

•xi. + +„ ~* - \v*       7* z\r*AT  To minimize (8) let us form a vector with respect to z   = [ZK+1'
Z

K+2> ■■■>zNMi     x" v ' 

a(jt,u) = [SK+I{LI,U)), ...,sNM(lJ;u)]T■ (9) 

We can now redefine our problem as minimizing 

— fV   f   \eimtie?nu -zHs{n,u)\2dndu. (10) 
4TT2 y_. y_,' 

We now will utilize the complex vector minimization methods described in [1]. 

Using the notation from [1], we are solving for z such that 

Vz.' 
(11) .Wf f \ejm,iejnu - zHs{n, u) fdpdu > = 0. 

Applying complex vector differentiation yields 

{ f   f .(,,«).*(*«)«*/«*-} z = f f e-^e-^s(^)d,d. .   (12) 
I. J—jr J—v  ' s T ' 

(NM-K)x(NM-K) (NM-K)Xl 

Due to the limits of integration, the left hand side of (12) reduces to the Identity 

matrix and (12) simplifies to 

z=KmeK+i,-X,meNM]T (13) 

where S»m = 6n®Sm with Sn = [*(»),..., *(» - W ~l))V «f 
S = \8{m),..., S(m - (M - l))f where S(n) is the Kronecker Delta function^ 
This implies that the solution of (8) is based on selecting the same component of 
each noise eigenvector where the selected component depends upon the values of 
m and n. Now (13) is used to linearly combine the noise eigenvectors to form the 

space-time weight vector h where 

h = Ejvz*. (14) 

Any space-time delay factor e^'V™ may be chosen for the objective functum. 
The following simulations illustrate that choosing the space-time delay as m -     2 

and „ = ä^i maximiZes the desired smoothness of the 2D FFT associated with h. 

2.    SIMULATIONS 

Two scenarios are presented to illustrate the importance of choosing the best 
space-time delay. The simulations employ an M = 7 element equi-spaced linear ar- 
ray with N = 7 taps at each antenna as depicted in Figure 1. Table 1 summarizes 
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the values used in both scenarios. The narrowband jammers have different fre- 
quency offsets relative to the LI frequency. Since we are assuming a 20MHz receiver 
bandwidth at each antenna, the noise floor was determined to be at ~l30dBW after 
bandpass filtering at each antenna. 

The first scenario utilizes a space-time delay of m = 0 and n = 0 while the second 
scenario utilizes a space-time delay of m = 3 and n = 3. Both scenarios deal with 
maximizing the smoothness associated with the objective function to generate h. 
Figure 2 illustrates the smoothness of the 2D FFT spectrum of h associated with the 
first scenario while Figure 3 illustrates the smoothness associated with the second 
scenario. Notice the contrast in smoothness associated with each simulation. While 
both scenarios provide the desired nulls for both the narrowband and wideband 
jammers, the second scenario provides the smoothest 2D spectrum across space 
and frequency of all possible space-time delays. 

TABLE 1 
Simulation Parameters 

Jammer Type SNR AOA Bandwidth 

Wideband -100 dBW -60° 20 MHz 

Jammer Type " SNR AOA Frequency(rel.to LI) 

Narrowband -110 dBW -40° 
Narrowband -100 dBW -20° 
Narrowband -110 dBW 0° 
Narrowband -105 dBW 20° 
Narrowband -105 dBW 40° 

-8 MHz 

-5 MHz 

1MHz 
5 MHz 

8 MHz 

3.     CONCLUSION 
An objective function that measures smoothness for a space-time preprocessor 

was presented. By maximizing the smoothness of the objective function, a space- 
time weight vector is formed from a linear combination of noise eigenvectors. It was 
shown that choosing a specific space-time delay in the objective function exhibited 
the desired smoothness across space and frequency, thereby minimizing GPS signal 
distortion. 
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Abstract 

In this paper, we investigate the use of Hidden Markov Models for detection and recognition of Anti-Tank 
Guided Missiles (ATGMs). ATGMs produce thermal energy that can be received by infrared sensors. The problem 
is to recognize the ATGM thermal signals in IK sensor data as quickly as possible. The algorithm presented in 
this paper employs temporal processing followed by a Hidden Markov Model classifier. The performance of the 
approach is measured experimentally on a set of synthetically generated IK images with embedded ATGM thermal 
signatures. 

1    Introduction 

Anti-Tank Guided Missiles (ATGMs) pose a dangerous threat to tank crews. ATGM detection methods attempt to 
provide warning to the crew so that evasive action can be taken or countermeasures can be launched to neutralize 
the threat. Working with available on-board IK sensors, these algorithms must be able to detect ATGM firings as 
early in the game as possible to allow time for appropriate response. ATGM thermal signatures, as measured using 
high quality sensors, have a well-defined characteristic that can be used to discriminate threats from non-threats 
(detection) as well as discriminate one type of ATGM from another (classification). 

Examples of ATGM signals (intensity vs. time) are plotted in Figure 1. The first one, corresponding to the 
HOT missile, has two "bright" peaks at the beginning of the signature. These are a consequence of the two stage 
motor of this missile. The second signature characterizes the MILAN missile. It has a single stage motor, which 
results in a profile with a single peak. Finally, the TOW missile is propelled by a two-stage motor with a .05 second 
boost and a .1 second sustain stage. ATGM signatures as seen through on-board IK sensors have low signal to noise 
ratios (SNKs), typically resulting in either poor detection rates or unreasonably high false alarm rates. Examples of 
this are shown in Figure 2, which depicts the noisy signatures obtained from the IK sensor for HOT, MILAN, and 
TOW ATGMs. The SNKs make classification a challenging problem. In addition, noise in the background can make 
detection difficult as well. Figure 3 shows three examples of time histories for randomly selected background pixels. 
As can be seen, these pixels have signatures that can easily be confused with those of an ATGM. 

The goal of an ATGM warning system is to detect and classify a missile threat as soon as possible so that 
appropriate measures can be taken. Given that typical ATGM flight times are generally only slightly more than 
10 seconds, it is desirable to perform detection in one second or less. As if turns out, the onboard IK sensor used 
for detection has limited spatial resolution. This in conjunction with the missile's linear trajectory being pointed 
directly toward the sensor results in the signature information residing in a single pixel position. That is, each pixel 

"This work was sponsored in part by US-Army CECOM under contract DÄÄB07-94-C-M756. 
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Figure 1: Examples of ideal ATGM sequences. 
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Figure 2: Examples of ATGM sequences as observed through on board IE sensors. 

position (as a function of time) represents either noise or a potential ATGM signature. Consequently, we examine 
the 1-B time histories associated with the pixel positions in an attempt to detect and classify ATGM signatures. 

Owing to constraints on computational complexity, we approach the detection problem in a hierarchical fashion, 
which allows the processing to focus on the image regions that most likely represent an ATGM threat. In the first 
stage of the approach, we employ a simple temporal processing routine to remove obvious noise/clutter pixel positions 
from further consideration. This first stage effectively converts the 3-D IK data into a set of 1-B candidate signals. 

The temporal processing procedure consists of first filtering along the temporal dimension generally on a per pixel 
basis. Each pixel in the filtered frame is compared with a spatially weighted threshold. If the pixel value exceeds 
the threshold, the pixel location is marked as an ATGM candidate location and passed on for addition testing. All 
pixel positions failing this threshold test are removed from further consideration. 

One can also perform the temporal processing hierarchically by dividing the image frames into contiguous sub- 
blocks, computing the average for the sub-blocks, and then applying the temporal filtering to these block averages. 
Temporally filtered blocks whose pixels exceed a spatially weighted threshold are then subdivided into smaller blocks 
with repeated application of the temporal filtering. Hierarchical processing of this type can be effective when ATGM 
signal variations straddle two or more pixel positions. 

132 



°'72www^ 

0.4 0.6 
Time (sec) 

Figure 3: Examples of background noise signals. 

2    HMMs for ATGM Detection and Classification 

With the IK images now converted into a set of 1-D time signals, the task at hand is to determine if any of these 
signals constitutes a threat and, if so, determine the type of threat. This is an M-class classification problem, where 
M — 1 of the classes correspond to ATGMs, and the remaining class constitutes noise signatures. To address this 
classification problem, we investigated the use of Hidden Markov models (HMMs), as this technique has proven to 
be effective in speech recognition and target recognition problem areas [1, 2, 3]. For this application, we view the 
mechanics associated with the ATGM engines as a process that produces a heat signature. The heat signature is 
observed by the IK sensor, and is the only observation available to us. We assume that the engine process can 
be modeled as Markov, that is, represented reasonably well by a finite state machine where at every time instance 
a transition is made between states if,q1,...,qT, and an observation sequence O = öi,Ö2,---,ör, is generated 
according to a probability density function associated with that state. 

The basic assumption of the HMM is that the successive observation samples produced by the same state are 
assumed to be independent of each other and the time t, and that the probability of a state transition depends only 
on the previous state [4]. Therefore, the joint probability of the state sequence q being generated by the Markov 
model and the observation sequence O being generated by that state sequence can be calculated by the product 

P(0, q|p, A,B) - pq0 Y[ aqt-igtbgt (Dt), 
«=i 

where pi = P(g° = i) is the probability of the initial state, A = [a^] is the transition probability matrix, and bqt (öt) 
is the probability density of the observation Dj at state ql. 

2.1    Estimation of tEe HMM parameters 

To employ HMMs for the ATGM classification problem, the parameters are chosen to optimize a specific criterion, 
given the training data. The general approach is to use Maximum Likelihood Estimation (MEE), which attempts to 
maximize the likelihood of the training data given the model of the correct class. MEE is usually achieved by using 
the Expectation-Maximization (EM) algorithm, an example of which is the Baum-Welch algorithm [4]. 

Assume that the quantities available are the observations O, the latest estimates of the unknown probabilities in 
the model A, and an assumed initial-state distribution pi, i = 1, • • •, 5,. The procedure sets up a reestimation formula 
that is at least as good as the previous initial estimate. Baum first proved the solution to this problem is to maximize 
an auxiliary function that leads to an increase in the overall likelihood of a new set of HMM parameters. The auxiliary 
function then can be expanded and separated into components based on individual parameters. These components 
lead to closed form solutions for the reestimation of the model set parameters. To compute the likelihood efficiently, 
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we use a recursion involving forward and backward (FB) probabilities. The procedure underlying the computation 
of FB probabilities is as follows. 

1. Forward probability: 
For t — 1, • ■ •,T;   i = 1, • • •, 3, the forward probability, Ui(i), which represents the probability of the partial 
observation sequence Oi, O2, • ■ •, üt and state Sj at time t, given the model A, is computed using: 

(a) Initialization: 

(b) Induction: 

(c) Termination: 

CEi(i) = -pik(oi), 

Ot+iO') = 

N 

^ut(i)ut] 
i=i 

bjfPt+i), 

l<i<J?. 

1 5 t< T - 1,1 < j < TT. 

N 

P(O|A) = J>T(0- 
i=l 

2. Backward Probability: 
For t = T, T - 1, • • •, 1; i = 1, • • •, 'S, the backward probability, ~ßt(i) which represents the probability of the 
partial observation sequence öf+i,ö{+2,• • • ,ÖT and state Sj at time *, given the model A, can be computed 
by: 

(a) Initialization: 

(b) Induction: 

JM») = 1, 1 E i < N. 

N 

t = T-l,T-2,---,l,l<i<TJ. 

The reestimation formulas for the coefficients of the mixture density, i.e., Cjm,pjk, and I^, are 

C]k     = 
ELE£I-*(**) 

=    EUltU,k)-Ot 
EL-*(**) 

Ljk 
E*=i 'ftO'i*) • (Qi - Pjfc) • (P* - m) 

HUliihk) 

where 72 (j, k) is the probability of being in state j at time t with the fcih mixture component accounting for öt, i.e., 

1t(j,k) = MJ)MJ) 
ELxMJYßtU) 

Cjk^(Oi,jijk,Tjk) 
,M 

Em=l c3k^(ül,ßjk, Tjk) 

and \P is a Gaussian density, with mean vector jBjm and covariance matrix Tjm for the mth mixture component in 
state j. The mixture gains cjm satisfy the stochastic constraint 

M 

Sei ■jm 

m—1 

L'jm 

=    1, 1<3<7?, 

Z   0, 1 < j < ~N, 1 < m < M, 
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so that the PDF is properly normalized. 
The recognition of an unknown firing sequence involves computing the likelihood of the observation sequence 

given each HMM model. The likelihood computation takes the most likely state sequence through the model for the 
final score. For this we use the Viterbi algorithm, its main advantage being that it considers computation of disjoint 
paths separately. 

3    Experimental Results and Discussions 
To assess the utility of HMMs for ATGM signature detection and classification, a set of synthetic data was generated 
using software from GTRI [5]. The imaging sensor was modeled with the GTSENSE package. A 3D representation 
of the White Sands missile range was used to obtain the background imagery, which was rendered using GTSCENE. 
The ATGM signatures are based on the Meppen ATGM live tests conducted in May 1998. 

The simulated ATGM warning system was configured to be mounted on a stationary platform and contained 
four IE sensors. Each sensor had a field of view of 90 and 14.25 degrees in the horizontal and vertical orientations 
respectively and operated at a rate of 500 frames per second. A 360 degree field of view was obtained by pointing 
each sensor to a different cardinal direction. The focal plane array had 256 x 32 pixels and was obtained with a 
uniformly spaced sampling pattern that mapped the world onto a flat plane. 

The experiments performed involve 1) detection of the ATGM signatures against a set of randomly selected 
background pixel signals; and 2) a classification test among 3 target types: HOT, MILAN, and TOW. 

1. Detection 

Background pixel signals were chosen from synthetic sensor images. These signals were obtained by randomly 
choosing background pixels located outside the neighborhood of the real signature from each training image. 
The set of background signals is divided into subsets of 200 training sequences and 100 testing sequences. Each 
sequence contains 100 samples. Experiments are performed using 25 samples/sequence obtained by decimation 
and also by using the full undecimated sequences directly to determine if complexity could be reduced without 
loss in detection performance. Three simple features were used, all of which were derived by temporal filtering 
(with different coefficient values). Table 1 shows the detection performance of the baseline HMM at 25 and 
100 samples per sequence as a confusion matrix that tabulates the correct detection and false alarms. 

2. Classification 

Here we investigate the capability of the HMM to distinguish among three target types: HOT, MILAN, and 
TOW. The training and testing in this stage repeats the same procedure described in the previous part. A set 
of training sequences was selected from the available pool of sequences, and the remaining sequences were used 
for testing. This process was repeated 200 times using different subsets of the sequence pool. A small amount 
of noise was added to the set at each run. An average was taken over the 200 runs to assess the performance. 
Table 2 shows the classification performance of the baseline HMM at 25 and 100 samples per sequence as a 
confusion matrix that tabulates the correct and incorrect classifications. 

It can be seen from Table 1 and Table 2 that HMMs are highly capable of both detecting and classifying the 
ATGM sequences and the background noise signals when the original sequences are subsampled by a factor of 5 and 
20 (100 and 25 samples per sequence, respectively). The detection/classification of each system is 99%/91.3% for a 
100-sample system, and 100%/88.7% for the 25-sample system, that we investigated. 

In summary, ATGM detection and classification is a relatively new problem that has arisen from the recent 
introduction of low-cost anti-tank weaponry. The development of an onboard early ATGM warning system is expected 
to have a significant impact on the safety of tank crews. At this point in time, no no such system exist that provide 
reliable detection and threat classification, operating under the above-mentioned sensor quality limitations and 
response time constraints. The work reported in this paper represents a first step toward providing a solution to the 
early ATGM warning system problem and might be used as a benchmark for future work. Our conclusion is that 
HMMs provide a promising approach for rapid threat detection. The next aspect of the problem we plan to study is 
detection and discrimination in the presence of gun flashes, which can cause false alarms. 
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(a) (b) 
Percent Classified as Percent Classified as 

Targets Unknown Targets Unknown 
Targets 

Unknown 
100 

0 
0 

100 
Targets 

Unknown 
98 
0 

2 
100 

total percent detection = 100 total percent detection = 99 

Table 1: The effect of the number of the observation length on the detection performance evaluated on the testing 
data set: (a) T = 25 samples and (b) T = 100 samples. 

(a) (b) 
Percent Classified as Percent Classified as 

HOT MIEAN TOW HOT MIEAN TOW 
HOT 

MIEAN 
TOW 

77 
5 
1 

2 
90 
0 

21 
5 

99 

HOT 
MIEAN 
TOW 

6 
2 

1 
92 
0 

15 
2 
98 

total percent recognition = 88.7 total percent recognition = 91.3 

Table 2: The effect of the number of the observation length on the classification performance evaluated on the testing 
data set: (a) T = 25 samples and (b) T = 100 samples. 
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Thomson's Multiple-Window (MW) method is applied to the problem 
of target detection in HF sky-wave radar. The MW method makes minimal 
assumptions about the noise environment, is specifically designed for short 
data segments and has high resolution. These properties suggest that the 
MW method may be useful in dealing with some of the challenges of target 
detection in skywave radar. The performance of a simple MW detector and 
a conventional CFAR detector are compared using data from the Jindalee 
skywave radar. 

1.    INTRODUCTION 

This paper investigates the application of Thomson's Multiple Window (MW) 
method to the problem of target detection in HF skywave radar. The motivation 
is to overcome performance limitations of conventional target detectors in dealing 
with inhomogeneous noise environments. The performance of conventional and 
MW-based detectors are analysed in some simple scenarios, using both synthetic 
and real data. Conclusions are drawn as to the feasibility of the MW detector and 
areas for further research are identified. 

The paper is organised as follows. In section 2 we provide background to the 
problem at hand. In section 3 we briefly describe the MW approach to detection 
and illustrate its performance by comparing it with a conventional Constant False 
Alarm Rate (CFAR) detector using a simple data model. In section 4 we carry 
out a similar performance comparison by injecting sysnthetic targets into real noise 
data from the Jindalee radar. Conclusions are presented in section 5. 

2. BACKGROUND 
HF skywave radars use ionospheric refraction to detect and track targets over vast 

coverages and at ranges of up to 3000 km. A fundamental design requirement for a 
target detector in skywave radar is that it perform effectively in an inhomogeneous 
noise environment which can include radar system noise, surface clutter returns, 
meteor returns, atmospherics and various forms of radio-frequency interference. 

l 
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Surface clutter Target signal 

Range 

Doppler 

FIG. 1.      A dwell of raw Jindalee data, showing signal power on a grey-scale ÄRD display. 
The left and right hand edges of the display correspond to 0Hz Doppler shift. 

For aircraft surveillance the radar revisit time is typically of the order of tens of 
seconds and must generally be assumed greater than the correlation time of the 
noise. This means that for each revisit the target detector is required to provide 
CFAR candidate detections to the tracking system, given minimal prior information 
about the noise environment. Moreover, the number of available data samples per 
revisit is generally relatively small. 

The Jindalee skywave radar transmits a repetitive, linear sweep, frequency- 
modulated continuous-wave signal and processes the received signal using an ap- 
proximate, 3-dimensional matched filter for azimuth, range and Doppler. The pro- 
cessing includes pre-processing to excise transients due to atmospherics and meteor 
returns, data windowing to control sidelobe leakage and CFAR processing to es- 
timate local noise power statistics using samples from a neighbourhood of each 
Azimuth-Range-Doppler (ARD) cell (see [1] and references therein for a discussion 
of CFAR processing algorithms). An example dwell of data, in raw ARD format, is 
shown in figure 1. The advantages of this conventional approach are low to moder- 
ate computational load and good performance over a moderate range of operating 
conditions. However, because CFAR processing requires a neighbourhood of ARD 
space, there is the potential for bias due to the inhomogeneity of the noise statis- 
tics. This can result in a non-uniform false alarm rate and degraded probability of 
detection, both of which can degrade tracking performance. 

Thomson's Multiple-Window (MW) method[2, 3, 4] provides a relatively new 
method for CFAR detection of harmonic lines in unknown Gaussian noise. Impor- 
tantly, the MW method makes minimal assumptions about the noise environment, 
is specifically designed for short data segments and has high resolution. In essence, 
the MW method uses a series of orthogonal data windows to generate multiple, 
independent realisations of the noise process in the frequency domain, based on a 
single coherent radar dwell. This means that the MW method can estimate local 
noise statistics without recourse to neighbouring ARD samples, thereby avoiding 
the potential bias of conventional CFAR processing. 
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3.    THE MUETIPEE-WINDOW METHOD 
We now briefly describe the MW method of target detection, contrasting it with 

conventional CFAR processing. Detailed expositions of the MW method can be 
found in [2, 3, 4]. For simplicity we apply the MW method in the sweep/Doppler 
domain only, and this is done independently in each Azimuth-Range (AR) cell. We 
also assume that there is at most one target per AR cell, though the results are 
valid for multiple targets, provided that the targets are well separated in Doppler. 

For ideal targets the received discrete-time signal in any given AR cell, prior to 
Doppler processing, can be modelled as a harmonic line in coloured noise: 

x[n] = pexp(j2irfori) + z[n];    n = 0,... , N - 1 (1) 

where the constants /o and p. are the Doppler frequency and complex amplitude 
of the target, respectively, and N is the number of sweeps within a coherent radar 
dwell (typically < 128). The noise z[n] is assumed to be a stationary, zero-mean, 
complex, Gaussian random process with power spectral density S(f). The target 
detection problem is defined in terms of the binary hypothesis test Ho : p = 0 
versus Hi : ß ^ 0, to which the usual Neyman-Pearson criterion is then applied. 

Doppler processing in skywave radar conventionally employs data windowing to 
avoid sidelobe leakage from very strong surface clutter returns. In this paper we 
use as an example the minimum 4-sample Blackman-Harris window. In contrast, 
the MW method employs an orthonormal set of windows {v /t}^1, each of which 
satisfies the N x N Toeplitz matrix eigenvalue problem [2] 

Vvk = \kVk,     [V\mn = ————  (2) 
ir{m — n) 

For any specified analysis bandwidth W the multiple windows have a maximal 
energy concentration property within the band / € (—W,W), which is measured 
by the eigenvalues {A*}. This allows the windows to be arranged in descending 
order of fractional energy concentration, 1 > Ao > Ai > • • • > AJV-I- Although 
sidelobe leakage decreases with increasing W, this must be traded against reduced 
frequency resolution. 

For any chosen W only the first K windows are retained, the remainder being 
discarded due to poor sidelobe performance. Thomson[3] suggests the choice K = 
2NW - 1 or K = 2NW - 3 to minimise sidelobe leakage. For W = 4/N the first 
multiple window has sidelobe performance similar to that of the abovementioned 
Blackman-Harris window, so this value of W will be used for comparison purposes 
in this section. 

For a single, arbitrary Doppler window w[n] it is straightforward to show using 
(1) that the windowed Discrete Fourier Transform (DFT) of x[n] at /o, denoted by 
Vw(fo), is a complex Gaussian random variable distributed as 

Vw(fo)~Ctf(pVG,S(fo)). (3) 

where G is the net processing gain of the window, G = (2n=ö WM)2 and we as- 
sume, without loss of generality, that all windows are normalised to unit incoherent 
power gain, YLn=o w[n]2 = 1- It is important to note that, in deriving (3), it is also 
assumed that S(f) is slowly varying within the analysis band \f — /o| < W. 
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0.8 

/ ■ ' 
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FIG. 2. Comparison oF performance oF the MW detector with conventional unwindowed 
(Optimal) and windowed (Blackman-Harris) detectors at various values OFFFA, in Gaussian noise. 
Note that For the latter two detectors the noise power spectral density S(/o) = f2 is assumed 
known a priori, while For the MW detector it is unknown. In all cases the target SNR is defined 
as N\ß\2/cr2. The MW detector uses N = 128, W = Z/N, K = 5. 

It follows from (3) that, provided /0 is known, the (matched filter) estimate 
ß = yw(fo)/VG of fl is obtained from a single realisation of yw(fo)- Also, if 
S(fo) = <r2 is known then the decision rule for the Neyman-Pearson detector is 
expressed in terms of the likelihood ratio 

KVw) 
M/o)|2 _ G|/*ls Ho 

H, 
(4) 

It is straightforward to show that l(yw) has a non-central chi-squared distribution 
with two degrees of freedom[5], l{yw) ~ x'2(2, d), where d is the output target SNR, 
given by d = G\fl\2/a2. 

In practice, however, a single realisation of yw(fo) is not sufficient to satisfy the 
Neyman-Pearson criterion for detection because S(fo) is unknown. The role of 
conventional CFAR processing is to estimate S(/o) by sampling neighbouring ARD 
cells. In favourable (ie. homogeneous) noise conditions the effective number of in- 
dependent samples is large, (say, tens of samples) and the noise estimate is unbiased 
and of very low variance. Achieved performance in this case will therefore approach 
that of the detector in (4), which is shown in figure 2 over a wide range of PFA 

values, with the Blackman-Harris window and with no window ("optimal"). As 
discussed in section 2, however, the performance of a conventional CFAR detector 
can be significantly degraded if the noise is inhomogeneous. 

In contrast with the above, the orthonormal multiple windows can be used to 
generate K approximately independent realisations of the windowed DFT, denoted 
by the vector y = [j/o(/o) ■ ■ ■ VK-itfo)]1'■ Again, under the assumption of slowly 
varying S(f) in the analysis band |/ - /o| < W, it can be shown that 

y~CN{ßV,S{fo)I) (5) 

where V = [y/Uo   • ■ •   \/GK-\Y is the vector of net processing gains for the 
individual multiple windows. Applying least-squares regression analysis[4, 5] to (5) 
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one obtains the decision rule for the Neyman-Pearson detector, 

l{y)-2(y-(iV)»(y-itV)it (6) 

which is distributed as non-central F, 

l(y)~F'(2,2K-2,dMw)- (7) 

where <4iw = Gs(}oj is tne output target SNR, p, = VTy/Gtot and <3tot = VTV = 

SfczJo ^* *s *^e total) net processing gain of the K multiple windows. It follows 
from (6) and (7) that S(/o) need not be known to achieve any desired PFA, though 
Pr> is of course strongly dependent on 5(/o) through 4w> The performance of 
this MW detector is included in figure 2. 

To interpret figure 2, note that there are two key factors that govern MW detector 
performance. First is the total processing gain Gtot of the multiple windows, which 
for the present case is around 2.5 dB better than the Blackman-Harris window, 
independent of PFA- Second, and much more significant here, is the number of 
degrees of freedom, 2K - 2 = 8 in (7) which, when expressed in terms of SNR 
"gain", is strongly dependent on PFA, particularly at low to moderate numbers of 
degrees of freedom. 

Of the three PFA values in figure 2, the middle one (PFA=0.001) is most typical 
of the Jindalee radar. For real skywave radar data, in a region of homogeneous 
noise, one therefore expects the performance of the MW detector to be of the order 
of a few dB poorer than a conventional detector using the Blackman-Harris window. 
To confirm this a Monte-Carlo-type analysis is carried out in the next section using 
real noise data from the Jindalee radar. 

4.    ANALYSIS USING JINDAEEE NOISE DATA 
To more accurately tune the MW detector for typical operating conditions, syn- 

thetic coloured noise was generated by approximating some real Jindalee data using 
a 4th order AR process. PD was then calculated by injecting synthetic targets into 
realisations of the AR noise, from which the optimum values for the MW detector 
were estimated to be W = 5/N, K = 6. The effect of pre-whitening the radar data, 
as discussed in [2, 4] for example, was also investigated. For this purpose a simple 
high-pass FIR bandpass filter was used to suppress surface clutter and was imple- 
mented using the filtfilt algorithm from MATEAB, so as to avoid filter transients. 
It was found that pre-whitening generally improved detection performance and the 
optimum values W = 4/iV, K = 7 were estimated. 

The performance of the tuned MW detectors was then estimated for a single dwell 
of Jindalee data by injecting synthetic targets, as described in [6]. The dwell used 
was representative of benign operating conditions, similar to that of figure 1, except 
that there were no meteor returns present. The "conventional CFAR detector" used 
for comparison in this section is one of a number of detectors that can be invoked 
in the Jindalee radar. 

False alarm performance was first analysed as a function of Doppler shift, by 
dividing Doppler space into a series of bands and summing up all detections in 
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FIG. 3. Achieved PFA oF (a) conventional CFAR detector, (b) MW detector without 
pre-whitening and (c) with pre-whitening. The desired PFA is indicated by the horizontal line. 
Also, we use N = 128, with W = 5/JV, K = 6 in Figure (b) and W = i/N, K = 7in Figure (c). 

the absence of injected targets. The results of figure 3 indicate that the false 
alarm performance of the conventional and MW detectors is generally reasonable 
for most Dopplers of interest, taking into account expected statistical fluctuations. 
The MW detector appears to produce the most uniform PFA, and it is evident from 
figures 3(b) and (c) that pre-whitening mitigates sidelobe leakage near the surface 
clutter returns. 

To estimate PD two subsets of the ARD dwell data were used, consisting of 1250 
and 684 cells in the high and low (near clutter) Doppler regions, respectively. The 
results of figure 4(a) show that, even with pre-whitening, the detection performance 
of the MW detector is roughly 3 dB poorer than a conventional detector at high 
Doppler. This is roughly consistent with the model results of section 4 and is 
accounted for by the larger number of degrees of freedom used by the conventional 
detector. In figure 4(b) it is evident that the performance gap is even greater near 
surface clutter. The cause of this is unclear, but is presumably related in some way 
to sidelobe leakage. 

5.    CONCLUSION 
It is concluded that for skywave radar the simple MW detector analysed in this 

paper is, in general, unlikely to rival a detector using conventional CFAR processing. 
Although it may be possible to demonstrate superior performance for the MW 
detector in more complicated examples of Jindalee noise data, it is clear that the 
smaller number of degrees of freedom used by the MW detector put it at an unfair 
disadvantage from the outset. A fairer approach would be to generalise the MW 
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MW without pre-whlteningi 
MW with pre-whitening 
conventional detector 

SNR (dB) 

FIG. 4. Comparison of Po For the MW detector and a conventional CFAR detector in (a) 
a high Doppler, clutter-free region and (b) a low Doppler, near-clutter region oF ARD space. A 
typical value of PFA was used. The SNR axes For both plots are the identical, with each minor 
tick mark on the corresponding to 1 dB. For the MW detector the values W = i/N, K = 7 were 
used with pre-whitening, while W = 5/JV, K = 6 were used without pre-whitening. 

technique to multi-dimensional processes (see [7], for example) thereby allowing 
the MW detector to exploit extra degrees of freedom from the range and azimuth 
dimensions. However, in terms computational load and ease of implementation, 
a more practical approach may be to construct a hybrid detector in which the 
multiple Doppler windows are used simply to provide extra degrees of freedom to 
a conventional CFAR processor. 
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Xbstract 

The parametric adaptive matched filter (PXMF) For space-time adaptive processing is introduced via the matched filter (MF), multichannel 
linear prediction, and the multichannel EDU decomposition. Two alternative implementations of the FSMF are discussed. Issues considered 
include sample training data size and constant False alarm rate. Probability oF detection is estimated using simulated phased array radar data 
For airborne surveillance radar scenarios, and signal-to- interference-plus-noise ratio is estimated For airborne phased array radar measurements. 
For large sample sizes, the PÄMF performs almost as well as the HF; performance degrades slightly For small sample sizes. In both sample 
size ranges the FXMF is tolerant to targets present in the training set. 

I. INTRODUCTION 

This paper presents a new model-based space-time adaptive processing (STAP) algorithm for airborne surveillance 
phased array radars operating in Gaussian interference. STAP is an area of current interest to the Air Force Research 
Laboratory (AFRL) for programs such as the Advanced Airborne Surveillance Program (AASP), Multi-Channel Air- 
borne Radar Measurement (MCARM), and the Space Based Radar (SBR). The airborne/spaceborne surveillance radar 
application presents specific challenges and constraints, but detection performance, computational load, and secondary 
(training) data requirements are key issues in all cases. STAP for radar target detection was proposed first by Brennan 
and Reed [2]. The method of [2] consists of: 
1. interference covariance matrix estimation from target-free training data 
2. weight vector calculation 
3. test statistic formation and threshold comparison. 
The threshold exhibits a dependence on the true covariance matrix. Consequently, the constant false alarm rate (CFAR) 
property is lost. A modification to attain CFAR was proposed in [3]. A key result of [2] is the rule-of-thumb, referred to as 
"Brennan's rule", for training data support so that 3 dB normalized signal-to-interference-and-noise ratio performance is 
attained. Specifically, the Brennan rule states that for an array with a ~JN element-pulse (or spatio-temporal) product, 
~K = 2~J~N independent, identically-distributed, target-free training data vectors are needed to attain performance 
corresponding to a 3 dB level below optimum. The training data support requirement increases drastically as the problem 
dimensionality grows (increased J and/or N). Moreover, the training data support available in practice is limited by the 
temporal and spatial non-stationarity of the interference. Also, system characteristics, such as fast-scanning arrays and 
receiver bandwidth, impose further restrictions on the amount of training data that can be collected effectively. 

Calculation of the weight vector in the conventional method requires the inverse of the ~JN x J7V spatio-temporal 
interference sample covariance matrix. This operation has a computational cost on the order of 0(J3W3), which 
grows exponentially with increased problem dimensionality. Thus, it is imperative to reduce the training data and 
computational requirements of STAP algorithms for real-time applications. Parametric (or model) -based methods offer 
a high-performance alternative to conventional joint-domain architectures and their various approximations [4], as well 
as to reduced-rank techniques [5]. For radar applications, parametric-based methodologies were formulated first for 
single-channel systems [7]. More recently, the method has been extended to multichannel systems [8], [9], as well as to 
multichannel systems in non-Gaussian clutter environments [10]. The method of this paper is based on approximating 
the interference spectrum with an auto-regressive (AR) model of low order. The fact that a low-order AR model provides 
an accurate representation of simulated and measured interference for a variety of system and scenario conditions leads 
to reduced computational requirements. Furthermore, the modeling fidelity is attained using a small fraction of the 
Brennan rule training data set, thus presenting reduced secondary data requirements. In addition, the method offers 
significant improvement in detection performance over the conventional adaptive matched filter (AMF) [3]. Specifically, 
it is demonstrated herein that with a large sample support the PAMF approximates closely the detection performance 
of the optimal known-covariance matched filter (MF) [3]. It is demonstrated also that the PAMF provides significantly 
improved detection performance over the AMF using only a small fraction of the secondary data required by the AMF. 
Furthermore, the PAMF is tolerant to the presence of targets in the secondary data, for both small and large secondary 
data set sizes. 

Multichannel parameter identification methods constitute an inherent part of the PAMF. The identification algorithms 
considered herein are the Strand-Nuttall (SN) and the least-squares. 
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II. PHASED ARRAY RADAR DETECTION 
A side-looking linear phased array radar configuration is considered herein, with J array channels and a coherent 

processing interval (CPI) of N pulse repetition intervals (PRI's). A binary hypothesis test is applied to the JN-eleraent 
complex baseband array measurement vector, x £ ÜJN. one CPI is the time elapsed during the collection of returns 
from ~KT range bins, and the data collected in one CPI is referred to as the data cube. The data vector contains 
an unwanted disturbance d € ÜJN with positive definite covariance matrix Rd, and may contain an additive desired 
signal ae with fixed but unknown complex amplitude "a" and known signal steering vector e e ÜJN. The disturbance 
consists of partially-correlated clutter c, directional broadband interference (jamming) i, and thermal white noise w, 
with covariance matrices Rc, Rj, and R™, respectively. It is assumed that the disturbance components are additive and 
pairwise independent, and each is a stationary, zero-mean, Gaussian-distributed process. Thus, x ÜN(ue,Kd), that is, 
x satisfies the complex normal distribution with mean ae and covariance Rd = Rc + R? + R«,. The binary detection 
problem is to select between hypotheses F0 : a = 0 and Hi : a ^ 0, given a single realization of x. For each pulse in the 
CPI, the array output sequence is processed to generate a scalar detection test statistic, which is compared to a threshold. 
If the test statistic exceeds the threshold, Hi is declared, otherwise, H0 is selected. In practice, Rd is unknown, and 
must be estimated from data considered to be "signal free". This constitutes the adaptive detection problem. In 
the conventional approach, Rd is replaced with its maximum likelihood estimate obtained from ~K <KT independent 
"secondary" or "training" data vectors dk, k = 1,2,..., Jf, with dk UN(0,Hd). For these conditions, the maximum 
likelihood estimator is the sample matrix estimator, Kd = ^ £)£Li d*df. Adaptive detection in radar systems of the 
type considered herein is accomplished by a "moving window" processing approach, wherein the detection test is applied 
to each range bin in the data cube. The range bin selected for testing at a particular instant is referred to as the "primary 
data". The filter applied to the primary data is generated adaptively, utilizing the secondary data to design the filter 
and to extract information relevant to the determination of the threshold. In this paper a detection method is presented 
that uses prediction error filtering (PEF), in which the filter coefficients contain the disturbance correlation information 
in compact form. These filters use a time series representation of the data. Thus, it is convenient to introduce the 
sequence representation of the data as x(n), n = 0,1,... TV - 1, with x(n) G ÜJ, and x = [xT(0)... xT(7V - 1)]T. 

Defining corresponding sequences for the disturbance process and its components, the detection problem is re-stated 
as: 

F0:   x(ri) = d(n) n = 0,1,... JV - 1 m 

Hi:   x(n) = ae(n) + d(n) n = 0,1,. ..TV - 1. y ' 

The target steering vector sequence e(n) is of the form e(n) = ^e*2™?,3e(~fis), n = 0,1,... TV -1 where 'fid and ~fis are 
the target normalized Doppler and spatial frequencies, respectively, and e(n) € ÜJ is the target spatial steering vector, 
defined as e(n) = ^-[1 e*2**' .. .e*a»<J-i)7..f. 

Thus, the concatenated (block) target steering vector e is of the form e = [eT(0)... eT(TV - l)]T. A similar definition 
holds for other sequences. Block vector and vector sequence representations are used interchangeably throughout this 
paper. 

III. MATCHED FILTER CONFIGURATIONS 

For known Rd and unknown signal amplitude, a CFAR test statistic was proposed in [3]. This test statistic takes the 
form „     ,    „ 

A       - le*R*xl (2) AMF -   S^B (2) 

where MF denotes matched filter. This test is a normalized version ofthat proposed in [2]. For the AMF test statistic, 
the unknown Rd is replaced by its maximum likelihood estimate Rd, so that 

and is referred to as the CFAR AMF.The MF and AMF detection statistics admit various interpretations, each providing 
unique insight, one interpretation is derived from the matrix square-root factorization of the sample block covariance 
matrix and provides the reason for the matched filter name. A second interpretation is based on the relation that exists 
between multichannel linear prediction and the multichannel (or block) EDÜ decomposition, and provides the insight 
for the PAMF, which is the main motivation for this development. That groundwork is laid out next in the context of 
the MF, but the approach is valid also for the AMF. Eet s = Rd 

2e and v = Rd 
2x. The MF test statistic is expressed 
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Notice fhaf under {he null hypothesis v has identify covariance. Thus, the transformation Rj5is a block whitening 
filter for the disturbance. Under the alternative hypothesis, however, the target component in x is rotated and scaled by 
the whitening transformation. This requires that the whitening transformation be applied also to the defector steering 
vector, e, so that the rotated and scaled steering vector, s, matches the rotated and scaled target component in x. 
The numerator of AMF is a matched filter. The normalization provided by the denominator term results in CFAR 
performance. An alternate interpretation of AMF is obtained by utilizing the block EBU decomposition of Rd, which is 
of the form R<* = ADAH. In this relation, A € ZJJN*JN is a lower block-triangular matrix with 7x7 identify matrices 
along the main block diagonal, and D € fjJNxJN JS a block-diagonal matrix with Hermifian matrices Dj € Cjxj, 
i = 0,1,..., TV — 1 along the main block diagonal. The matrix A-1 is of the form 

A"1 

h [O] ... [O] 
Af(l) IJ [O] ...   [O] 
A?(l) A?(2) lj ... 

A]Ql) Ä#_x(2) '.'.'. lj 

(5) 

where lj is the 7x7 identify matrix, and fhe block element matrices A e CJ*J have no specific structure. These 
matrices are defined with fhe Hermifian operator in order to allow for consistent notation between various model 
identification algorithms. The rows of A-1 denote fhe matrix coefficients of fhe nth-order multichannel linear predictor 
for fhe process x(n). The corresponding matrix Dn is fhe covariance mafrix of fhe nfh-order prediction error vector. 
In terms of fhe block EDU decomposition and applying fhe square-roof factorization of D, fhe inverse of fhe block 
covariance mafrix can be represented as Rj1 = A-HD_1A-1. Using this in eq (2) gives 

lu^B-^l2 

AMF
 
=   u"B-i« (6) 

where fhe block vectors u = A~xe and e = A_1x have been defined implicitly. The block vectors e and v contain fhe 
multichannel element vectors e(n) and v(n), and these are given by 

«(«) = £Lo A*(*)x(n - *) n = 0,1,..., TV - 1 

p(n) = Dnh £2=o A£(A)x(n - *) n = 0,1,...,7V - 1 U 

respectively, with for all n. This implies fhaf e(n) is fhe output of an rci/l-order moving-average (MA) filter in block mode, 
with input fhe block vector x. Such a filfer is denoted as HA(n). Since these filter coefficients are fhe linear prediction 
coefficients, fhe vectors in fhe sequence {e(n)\n = 0,1,. ..,7V — 1} are uncorrelafed in pairs (given fhe minimization 
criterion associated with linear prediction). This step is equivalent to temporal whitening of fhe input data sequence, 
{x(n)\n = 0,1,...,7V-1}. Furthermore, e(n) is fhe nih prediction error vector with covariance mafrix B„. Thus, 
for all n, fhe covariance mafrix of v{n) is fhe identify mafrix, lj. Since fhe transformation generates uncorrelafed 
elements along fhe spatial dimension at each time instant, this step is a spatial whitening transformation (or spatial 
block whitening filfer). Thus, fhe vector sequence {p(n)|n = 0,1,...,7V — 1} is temporally and spatially uncorrelafed. 
Similar expressions are obtained for fhe rotated block steering vectors u and s. Thus, fhe MF statistic can be viewed as 
fhe magnitude squared (power) of fhe inner product between fhe two block vectors v and s, where v is a concatenation 
of fhe filtered data sequence, and s is a concatenation of fhe filtered defector steering sequence. This quantify is then 
normalized by fhe inner product of fhe filtered defector steering sequence, as shown above. For fhe adaptive case, fhe 
mafrix coefficients are replaced with fheir estimates. 

IV. PARAMETRIC MATCHED FILTER 

The above discussion suggests an approximation to fhe MF with a simplified structure. First, for both residuals, e 
and v in (1) and (2), respectively, retain only fhe vector sequence for fhe filfer of order P where 1 < P < 7V — 1. Second, 
let fhe MA filtering step be a moving window rather than a block window. These two modifications imply fhaf fhe 
temporal and spatial filters have a sequential form: 

,   P 
p(n) = Dp2 52 AH(A;)x(n -k + T) n = 0,1,..., TVE - 1 (8) 

fc=o 

where, Dp is fhe covariance mafrix of fhe P*ft-order predictor error (Pift-order filtering path), and 7VE = TV - P. The 
above-defined filfer outputs have fhe same symbols as fhe corresponding variables in fhe MF, but this is adopted to 
limit fhe number of symbols introduced. The intended case should be clear from fhe context. In fhe present context, 
{e(n)\n = 0,1,..., TVC - 1} is fhe output sequence of a MA(P) filfer in moving- window mode and with input fhe data 
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Fig. 1.   Detection Architecture of PMF 

sequence {x(n)\n = 0,1,...,TV - 1}. If the matrix coefficients {AH(k)\k = 0,1,..., P} and Dp are determined as the 
PJh-order linear prediction coefficients and the predictor error covariance matrix, respectively, and if a system of order 
P is an appropriate model for the disturbance, then the MA filter output sequence vectors are uncorrelated in pairs and 
Dp is the covariance matrix of e(n) i.e., under the stated conditions, the MA(P) filter is a whitening Elter. In addition, 
vector sequence {v(n)\n = 0,1, ...,7f{ - 1} is also temporally uncorrelated, and each sequence element has covariance 
matrix lj. Lastly, the block vector v has J(N-P) elements. In general, one or more of the conditions for whitening is 
not met, and consequently the Elter output sequence has residual color (non-white). Thus, e(n) and v(n) are referred 
to hereafter as the temporal and spatio- temporal residual sequences, respectively. As a result of the two modifications 
to the MF, the steering sequence is filtered analogously. That is, the temporal and spatio-temporal steering residual 
sequences are given by 

p 
s(n) = D;^Ai?(A;)e(n-Jfc-l-P) n = 1,1,...,7V„ - 1 (9) 

*=o 
where 7VU = 7Ve = IV - P, and the block vector s has ~J(N - P) elements. Based on the above discussion, the parametric 
MF (PMF) detection statistic is defined as 

A-PMF —     _jv-.P-l (10) 

An architecture for the PMF is shown in Fig. 1. Since the PMF is an approximation to the MF, it is likely that 
it lacks CFAR performance. Although difficult to prove analytically, simulation-based analyses indicate that the PMF 
offers CFAR-like behavior for a variety of cases. 

V. PARAMETRIC ADAPTIVE MATCHED FILTER 

When the filter parameters are unknown, they must be estimated adaptively, and multichannel linear prediction can be 
applied to estimate parameters Dp and AH(k) of the MA(P) filter using the secondary data. Furthermore, model types 
such as time series (besides the AR) and state variables can be used in the context of this method [11]. Additionally, 
for each model type there are alternative parameter identification algorithms, and implementation structures (such as 
tapped delay lines or lattice filters for time series). This range of options provides a general form to the parametric 
adaptive MF (PAMF) detection statistic, denoted as APAMF- The form of the APAMF is as in eq (10), but the quantities 
are generated using estimated parameters obtained via an appropriate model identification algorithm. Thus, the PAMF 
is formulated as a data-adaptive version of the PMF, further generalized to include a wide variety of whitening filter 
types. An architecture for the PAMF is presented in Fig. 2. As for the previous case, all variables in the PAMF 
equations and in Fig. 2 are distinct to those of other detection statistics, but the same symbols are used for notational 
simplicity. The PAMF lacks the CFAR property because the estimation error in the filter parameters is a function of the 
true disturbance covariance matrix. In addition, the estimation error varies as a function of the parameter estimation 
algorithm applied. This is true even with knowledge of the best model order. Nevertheless, the results in Section VII (as 
well as others not included) indicate that some PAMF configurations (distinct filter implementations) exhibit CFAR-like 
behavior over a wide range of parameters and conditions, analogous to the PMF. 

Implementation of the PAMF as in Fig. 2 requires selection of a model type to represent the disturbance (null 
hypothesis condition), a parameter identification algorithm, and a whitening filter configuration. The work reported 
herein focuses on multichannel AR model types, and two multichannel identification algorithms; namely, the Strand- 
Nuttall (SN)[12], [13] and least-squares (LS) [14] algorithms. Since each algorithm has distinct characteristics and 
performance in the context of the PAMF, the two configurations are denoted as PAMF-SN and PAMF-LS, respectively. 

148 



PRIMARY 
DATA i(")   fc TEMPORAL 

WWTENMO 
PUTER 

SPATIAL 
WHITENING 

BLOCK FILTER 

v(n) 

SECONDARY 
DATA 
rKn)           to 

i . i 1 

" TEST 
FILTER 

PARAMETERS 
ESTMATION 

DETECTION 
TEST STATISTIC 
CALCULATION 

STATISTIC 

 **~ APAMF 

' 
U(n) 

' STEERING 
SEQUENCE 

' 
i, 

TEMPORAL 
WHITENING 

FILTER 

SPATIAL 
WNITENINO 

SLOCK FILTER 

i(n) 

Fig. 2.  Detection Architecture oF PÄHF 

I «n-1) an-2) I 1 d(n-P) 
DELAY pi_ 

AH(P) 

4^ D-1« -v(n) 

Fig. 3.   Tapped Delay Eine Implementation for MÄ (P) Filter 

The inverse of an AR model is an MA model, and {he MA whitening Elfer is implemented herein as a multichannel 
tapped delay line. Linear state variable models and associated identification algorithms are considered in [11], [15]. 
Specification of the AR(P) system, automatically specifies the inverse MA(P) system. For a given system order, the 
number of AR(P) (or MA(P)) complex-valued parameters is ~J2T, without considering the J(J2

+1) distinct elements of 
the residual covariance matrix. Fig. 3 shows a tapped delay line for an MA(P) temporal whitening filter, followed by 
the spatial whitening block filter generated using the residual covariance matrix. Due to lack of space, the interested 
reader is referred to [11] for implementation details of the model identification algorithms. 

VI. PERFORMANCE ANALYSES 

A. Definitions und üriteria 

Two different power measures were adopted. The first is the per-pulse, per-channel, input SINR, defined as SINR/w = 
^r , where a is the target amplitude (as defined previously), and a\ denotes the variance (power) of each element of 

the disturbance vector at each time instant. The second measure is the output SINR for the MF, SINR=|a|2e-tfR^"d
1e. 

SINR is useful for comparing detection performance of STAP algorithms and test statistics (including the MF), and 
analytic expressions for ~PD are available as functions of SINR (in the case of the MF test statistic). However, SINR 
requires knowledge of the true disturbance block covariance matrix. SINR/jv can be established in most cases, but 
analytic expressions are unavailable. Thus, SINR is adopted for simulated data analyses, and SINR/AT for MCARM 
data analyses. In addition, clutfer-fo-noise ratio (CNR) and jammer-to-noise ratio (JNR) are defined as per-pulse, 
per-channel variance ratios. Defection analyses with simulafed data evaluate probability of defection (PD) for a fixed 
value of probability of false alarm (PFA); whereas analyses with measured data evaluate the defection fest statistics. A 
high value of the test statistic implies a high TD since for the methods considered herein the test statistic is the outpuf 
SINR, and for the conditions considered herein Tn is a monof onically-increasing function of output SINR. In all analyses 
the time-averaged sample residual covariance is used. 

2?. Detection Performance Using Simulated Hadar Data 

A modified version of the airborne surveillance phased array radar clutter model in [16] was used to generate simulafed 
radar data (this software is based on analytic models similar to those in [4]). Temporal de-correlation effecfs caused 
by infernal clutter motion are included by multiplying the mfh lag of the clutter model ACS by a factor of the form , 
where pt is the one-lag clutter temporal correlation coefficient. The parameter pi is a function of fhe pulse repetition 
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frequency (PRF), the radiation wavelength, and {he standard deviation of the clutter velocity components. Simulation- 
. based detection performance results are presented for two analyses with typical radar system parameters and scenario 
conditions. The first analysis compares the performance of three detection statistics (FAMF-SN, FAMF-ES, and CFAR 
AMF) via plots of TD vs. SINK. For the first analysis, 7 = 4 array channels and TV = 32 pulses. Thus, this is referred 
to as the 7 « TV Analysis. The second analysis compares the ~PD obtained with the FAMF-SN and the FAMF-ES at 
one SINK value, SINK = 9 dB. In this second analysis, 7 = 14 and TV - 16; this is the 7 « TV Analysis. 

7 « TV Analysis: All cases considered in this analysis have in common the parameters listed in Fig. 4, as well 
as fu = 0.0, 'fu = 0.3336, aw = 1 (normalized receiver noise standard deviation), and CNR = 40 dB. Crab angle 
(g), secondary data size (K), and the presence of jamming are variable, as specified next. TD as a function of SINE 
is presented for three scenario cases: Case 1 is for g = 0 deg and no jamming. Case 2 is for g = 20 deg and no 
jamming. Case 3 is for g = 0 deg and two barrage jammers; one jammer is at fjs = - 0.35 with JNR = 45 dB, and 
the other jammer is at fjs = 0.2 with JNR = 50 dB. For each case, two values of secondary data size are considered: 
JT = 27TV = 256 and ~K = 27 = 8. Due to limitation of space only sample plots are provided in this paper. Detailed 
results will be presented at the conference as well as in a companion refereed journal publication. Fig. 4 presents TD vs. 
SINK for the scenario and system conditions listed above. In this figure the MF curve (solid line) is the upper bound 
in performance. This curve was calculated using the analytic relation in [3]. For the other statistics, each TD value 
estimate is determined via Monte Carlo (MC) analysis. First, a threshold is determined that provides TFA = 0.01 using 
JVMC = 50 repetitions of ~NPFA = 2,000 independent data realizations each. Second, this threshold is used to estimate 
TD, also using WMc = 50 repetitions of TStPFA = 2,000 independent data realizations each. The CFAR AMF curve 
(dotted line) is a spline interpolation to 0.2 dB spacing of simulation-based results (obtained with JT = 277V = 256) 
generated at an interval of 1.0 dB along the SINK axis. TD results for the parametric test statistics were calculated at 
3 dB SINR intervals to reduce simulation time. In all cases and for both sample size conditions, P = 3 provided the 
best performance for the FAMF test statistics, which is less than the Nuttall upper bound, T^SNU = 4.24, and the ES 
constraint, TLsu = 25.40. Additional results of our investigation not reported here provide the following observations. 
First, the FAMF using small sample size out-performs the CFAR AMF using large sample size. Second, the FAMF-ES 
and the PAMF-SN perform similarly. Third, for large sample size (K = 256), the FAMF performs close to the optimal 
MF. And fourth, for small sample size (K = 8), the FAMF performance degrades several percentage points relative 
to the large sample case, but remains close to the optimal MF. These observations are valid also for a wide variety of 
scenario and system conditions, although the relative performance of these two FAMF versions can vary. Systems in 
which the number of channels is approximately the same as the number of pulses constitute one such example. 

7 « 7V Analysis: Table 1 presents TD results at SINR = 9 dB and K = 256 for the three cases considered. As in 
the first analysis, 'fis = 0.0; however, fu = 0.1624, which is much closer to the clutter ridge than the value used for 
the detection plots. Besides TD, the table includes the calculated standard deviation of the estimated TD, denoted as 
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Case MF CFAR AMF PAMF-SN (F=I) PAMF-ES (P=I) 
Crab Angle (deg) Nö. öf Jammers ~PD ?n SD(Pß) TD SB(TD) ?D SD(PD) 

0 0 0.8635 0.4571 0.0397 0.4523 0.1017 0.8474 0.0109 
20 0 0.8635 0.4610 0.0382 0.2160 0.1015 0.8277 0.0276 
0 2 0.8635 0.4565 0.0375 0.3906 0.1018 0.8469 0.0111 

TÄBEEI 

DETECTION PERFORMANCE OF THE PÄMF FOR THE THREE SIMULATION CASES AT SINR = 9DB (J 14; N = 16; K = 256; fta = 0.1624) 

SD[PD]. The MF and AMF statistics are presented also. Model order is P = 1 for both parametric methods (here 
'PSNU = 0.86 and Tisu = 14.87). Inspection of Table 1 indicates the lack of CFAR for the parametric detection 
statistics, although the variability in Pj> for the PAMF-ES is only on the order of 2is as good as or better than in Figs. 
4. The performance of the PAMF-SN is comparable to or less than that of the AMF, which is a noticeable degradation 
in relation to the results in Figs. 4. This is foretold by the Nuttall upper bound. 

Ü. Detection Terjormunce Using Measured Ttadar Data 

MCARM database [17] analyses were carried out using one elevation channel, four azimuth channels, and thirty-two 
pulses from acquisition 575, flight 5 (file rl050575). Range bins (RBs) 142 through 469, inclusive, are used (range- 
dependent power loss is compensated). Two distinct filter adaptation procedures were applied to study the effects of 
secondary data size and content. In Procedure A a fixed-window filter is designed using K = 2JN = 256 RBs, selected 
as RBs 142 through 269, inclusive, and RBs 341 through 468, inclusive. A single fixed-window filter is designed, and 
the detection test statistic is generated for RBs 270 through 340, inclusive. In Procedure B a moving-window filter is 
designed using K = 2J = 8 RBs. The moving window consists of eleven adjacent RBs: [four secondary bins — one 
guard bin — test bin — one guard bin — four secondary bins]. This 11-bin window is applied with RB 270 and RB 
340 as the first and last test bins, respectively, and the window is slid from bin-to-bin between these two edge RBs. 
Target-present and target-absent conditions are studied by inserting artificial targets with an SJ]VP/JV of -30 dB at RBs 
291 and 293, and with an STNHIN of -10 dB at RBs 238, 269, 373, and 400. Disturbance power ( ) is estimated as a 
five-bin average, centered on the RB in which the target is placed. All targets have Ju = 0.0 and ~fu = 0.1. Model order 
values P = [2,3,4] were evaluated for each algorithm and procedure, and the model with best performance was selected. 
The selection criteria was a combination of highest target peak value, and lowest false-target peak values. Model orders 
3 and 4 performed similarly in most cases. The moving-window CFAR AMF filter required diagonal loading of the 
sample block covariance (at 55 dB below the maximum diagonal element). A typical plot is shown in Fig. 5. Detailed 
results will be presented at the workshop as well as in a companion journal paper. Fig. 5 is for the fixed-window filter, 
shows that the PAMF fixed-window filter (with K = 256) bring out the targets at RBs 291 and 293 with at least 25 
dB (almost 30 dB for the PAMF-ES) above the 0 dB mean value. Also, the highest background peak is at least 15 dB 
below the lowest target peak for the PAMF test statistics. The AMF fails to produce a peak at the target RB locations 
due to the four large-amplitude targets (-10 dB) with the same steering vector in the secondary data. Additional results 
for the case of a moving-window filter as well as fixed window-filter will be presented at the workshop. 

VII. SUMMARY AND CÖNCEUSIÖNS 

The parametric-based approach introduced herein combines the use of prediction error filtering methods with model 
identification algorithms to achieve data whitening, which is then followed by matched filtering. This method is referred 
to as the parametric adaptive matched filter (PAMF). The PAMF admits a variety of distinct implementations, based 
on the model identification algorithm used and the whitening filter architecture adopted. Herein the Strand-Nuttall 
(SN) and the multichannel formulation of the least-squares (ES) method, both for AR models, were considered. 

Detection performance results were reported for a simulated radar data analysis involving the two PAMF algorithms 
and the CFAR AMF. Airborne radar measurements collected from the AFRE MCARM program were processed to 
generate detection test statistic vs. range bin, at specific input SINR levels. This establishes an algorithm's ability to 
extract the signal from the range bin under test and to reject unwanted disturbance processes. 

The parametric methods out-perform the AMF, providing a significant detection performance enhancement for both 
simulated and measured data. Specifically, for simulated data, the PAMF methods with sample support satisfying 
the "Brennan rule" perform close to the known-covariance MF. For simulated data and small sample support, the 
performance of both PAMF statistics is still close to that of the MF curve. However, for cases wherein the number of 
array elements is approximately the same as the number of pulses, the PAMF-ES maintains its level of performance, 
but the PAMF-SN degrades significantly. Of relevance, the PAMF is tolerant to the presence of targets in the secondary 
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Fig. 5.   PÄMF-ES and ÄMF Test Statistics (fixed-window filter) 

data, for both small and large secondary data sets. Comparative performance evaluation of the PAMF and other 
dimensionality-reducing methods is an on-going acivity, to be reported in the future. 

A current limitation of the PAMF is the lack of CFAR property. This is due to the dependence of the estimation 
error in the filter parameter estimators on the "true" disturbance covariance. Furthermore, the estimation error varies 
from one parameter estimation algorithm to another, with the FAMF-ES providing the most CFAR-like behavior. 
Considerable progress towards CFAR-like behavior has been realized by utilizing the error covariance matrix estimated 
using the prediction error filter residuals, rather than the model-based estimate obtained from the parameter estimation 
algorithms. CFAR options for the PAMF is an area of current research. 

other current and future work covers the combination of the parametric-based processing method with detection rules 
other than the MF. This is being considered for the case of compound-Gaussian clutter disturbance statistics also. 
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Abstract 

A multiple sensor target tracking algorithm is presented. The algorithm combines polar 
coordinate data from a range-angle sensor, such as a RADAR and an angle-only sensor, such 
as an acoustic array, and outputs Cartesian coordinate track data. This non-linear estimation 
problem is solved using a set-based estimation technique, which does not rely on statistical 
assumptions about the sensor measurement noise. Issues including data association and 
data-fusion are automatically solved using this approach. 

1 Introduction 

Tracking targets using sampled noisy range and angle radar measurements is a difficult 
problem. It is further complicated when the aim is to combine this with sampled noisy 
angle-only measurements from a passive sensor [1]. There are several reasons for this. 
Firstly, target tracking is generally performed in an x-y Cartesian coordinate system whereas 
sensor measurements are made in a range-bearing coordinate system. This results in a non- 
linear estimation problem which is difficult to solve [2]. Secondly, tracking using passive 
sensors is also a highly non-linear estimation problem and also results in an unobservable 
system which makes conventional statistical estimation techniques difficult to apply [1,2]. 
Thirdly, conventional statistical estimation approaches involve making assumptions about 
the sensor measurement noise, most commonly- that it is Gaussian stationary noise. The 
problem is that in real sensor systems, the noise is biased, non-Gaussian and non-stationary, 
due to effects such as dynamic video quantization, digital sampling quantization, receiver 
saturation, finite numerical precision, etc. Finally, combining data from active and passive 
sensors is generally treated as a separate problem, commonly termed jointly as 'data- 
association' and 'data-fusion'. This is generally solved as a statistical hypothesis testing 
problem which relies on the statistical assumptions mentioned previously, and these 
assumptions are often flawed. 

This paper presents an alternative approach which utilizes set-based estimation principles [5]. 
Set-based estimation assumes as little as possible about the system other than to place 
bounds on those quantities to be estimated or any uncertainties (measurement errors). This 
leads to a recursive procedure whereby the estimate at time k is the set Q.(k) which is 

k 

consistent with an initial set S0 and all the measurement sets St up to time k, Q.{k)=C\Si . 

A fundamental problem is to obtain feasible representations for the sets [5]. A 
representation must accurately and tightly bound the true parameters and any uncertainties, 
and be computationally tractable. Common representations include polytopes and ellipsoids. 
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In this paper, rectangles are the chosen representation. Although rectangles do not yield the 
tightest bound, they are easily represented and provide a tractable solution to this problem. 
Another important advantage of this approach is that it yields a robust algorithm despite the 
highly non-linear nature of the problem. Finally, the data-association and data-fusion 
problems are solved automatically using this approach. Set-based estimation, also commonly 
called 'bounded-error estimation', is a simple technique which has been applied, successfully, 
to solving target tracking problems [3,4]. In [4] an algorithm similar to the one proposed 
here is developed for a single sensor tracking application. This paper extends the work to 
the case of two dissimilar sensors. 

An outline of this paper is as follows. Section 2 formulates the problem to be solved. The 
sensor - target geometry, and the target and measurement models are presented. Section 3 
presents the set-based estimation algorithm that performs target tracking and data- 
association and data-fusion. Section 4 concludes the paper. 

2 Problem formulation 

The sensor and target geometry is illustrated in Figure 1. The set-based algorithm presented 
here recursively computes the rectangular set over-bounding the x and y coordinates at time 
index k that are consistent with all the observations up to time index k. 

Figure 1 Sensor and target geometry 

A rectangular set is aligned with the x-y coordinate system and is parameterized by upper 
and lower bounds in x and y; the current state estimate is an element of the current set 
estimate denoted by 

x~Wfc***d$fi   | (1) 

yJ^\k)>y>yAk\k) 

Vy,J^\k)>Vy>Vy>J^k\k) 

s(k\k)e Q,(40= 

The state vector for this estimation problem can be defined by 
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The state equation assumes a constant heading constant velocity target and is given by 

s(£ + l|£) = Fs(4fe) 0 

F = 

T 

I \T-1 

l\ I 

^)=[RRte)eR(£)f+[%;*eJT 

kp^'Kp^-kp^ 
eR(0     eB(*) 

() 

Such bounds are easily defined in practice and are more robust than assuming a statistical 
distribution. Referring to equation (1), note that the state is defined in Cartesian coordinates, 
therefore the measurements must be transformed from polar to Cartesian coordinates. 

U 

ZR(£)eQR(£)=<U,j 
z

RAk)+£RAk)>x>zm-£RAk)\ 

^(^)=RR(^)sin0R(^)+^ 

sJ(/fe)=RR(fe)coseR(/fe)+J'R 

() 

Xn 

e«(^)=(ßR(A)+eRMÄe(^)+ee)-(KR(fc)-eR)sin(ßeCfe)-Eo) 

e^(^)=(Rß(^)+eR)cos(Re(^)-e6)-(RR(^)-eR)cos(ßfl(^)+ee) 

Ä 
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z<E(k)e£lE(k)=\x,r. J- -      »   \pC T™ iX p   / 

tan6E(£) 
J^ <5 

() 

8 = EiM*cosefl 

Figure 2 Passive sensor measurement transformation 

Figure 3 Radar sensor measurement transformation 
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3 Set-based tracking algorithm 

i at(k-i\k-i) k as{k\k-\) 

as(k\k)=aXk\k-\)[\ ciR(k)f] tosik) 6 

Q^^Q^-OflQR^) 

o 

tort  K^+e*^   if^W+e'W^.JfcM 

J-Klh\j^\k-i) ^zRAk)+eR
y(k)>Jimx(k\k-i) 

^l|  ;"kimn(*-l)    >f-imn(*)=-imn(^-l) 
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»^Wh\v.{k\k-\\  ifjmin(^)=jmin(^-i) 

N 

Cls{k\k)=Cls(k\k-\)^\€iE{k) 

QB(k) 

Q,($k-l) 

Q,{k\k) 

s(^-l)efii^-l)= 

17>x>ll 

17>j>10 

z'E(£)e QE(k)={c,j:\j-x + 3\<4}. 

Step 1 yields the following boundaries: 

(x < 25, j < 17),(x > 17, j < 17),(x < 18, y > 10),(x > 10, j > 10) 

(X<17,J>9),(X<17,J<17),(X>11,J>3),(^>11,J<11) 

Step 2 yields the following consistent boundaries: 

(X>17,J<17),(X<17,J<17),(X>11,J<11) 

Step 3 yields the following final boundaries 
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ste)eQ,(^)= 

17>x>ll 
17>j>10 

-\>vy>\ 

Note in this case the boundaries have not changed. This is due to the fact that rectangles 
due not tightly over-bound the intersection of two sets. Step 4 has been omitted for 
simplicity. Finally, the set-based tracking algorithm is easily initialized by assigning an 
arbitrarily large set to Cls (o). 

4 Conclusions 

Set based estimation techniques provide the basis for robust and simple tracking where one 
is required to work with non-linear coordinate systems or where assumptions of Gaussian 
and stationary noise are inappropriate. The set based tracker also has the benefit of simple 
implementation in fixed point arithmetic microprocessors. It is well known that in practical 
tracking systems, ad hoc techniques are usually employed to improve Kaiman filter stability 
including fixing Kaiman gains after a few track updates or reverting to alpha-beta trackers 
with fixed gains. Set based tracking has no such problems as there is no matrix inversion. 
The techniques also lends itself well to manoeuvre detection. 

The technique described in this paper is being investigated as the basis for a distributed 
sensor tracking system including integrated data association and sensor management where 
there are communication bandwidth constraints. 

Simulation results will be presented at the workshop. 
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Source Localization with Distributed Electromagnetic Component 
Sensor Array Processing 

Chong-Meng Samson See *and Arye Nehorai "* 

Abstract 

We propose an approach to achieve high-performance localization of multiple sources using a small 
aperture array of spatially-distributed electric and magnetic component sensors. The approach 
is based on exploiting of all available electromagnetic information along with the time delay in- 
formation. Using simulated data, we demonstrate that this approach outperforms both a single 
vector-sensor and scalar-sensor arrays in accuracy of direction-of-arrival (DOA) estimation. 

1    Introduction 
The problem of estimating electromagnetic wave parameters using sensor arrays has attracted 
significant attention over recent years and lead to the development a number of high resolution 
algorithms, such as MUSIC, ESPRIT and WSF. These algorithms have focused on direction-of- 
arrival estimation in such areas as wireless communications and radar. 

Most existing array processing methods rely on the spatial diversity of the sensor array to 
estimate the DOA. A drawback of this approach is that the performance accuracy becomes highly 
dependent on the size of the array's electrical aperture. In many applications, the array is expected 
to operate over a wide frequency range. To avoid ambiguities in the array manifold, the physical 
size of such broadband array is constrained by the highest operating frequency and the number 
of sensors. Poorer performance at lower frequencies will result due to their larger wavelengths, 
especially when small number of receiver channels is available. The costly approach to alleviate 
this problem is to aim for larger "unambiguious" array geometry by increasing the number of 
receiver channels. Another way to overcome this problem is to use multiple sets of sensor arrays 
where each set is optimized to operate over a smaller bandwidth. This may not be feasible in 
mobile- or fast-deployment sensor array applications. Hence, there is a need to develop DOA 
estimation methods that use a small-aperture array that achieve good performance over a wide 
operating frequency. 

The DOA estimator's performance can be improved by using polarization-sensitive sensor array 
to exploit the polarization diversity of the signals by estimating their signal polarization parameters 
along with their DOA [2] [3] [4]. In a recent development, Nehorai and Paldi [1] introduced 
the concept of vector-sensor array processing where the complete electromagnetic information 
of the signal is measured and processed. They apply the Poynting relationship between the 
electric and magnetic measurements to enable estimation of the DOA of multiple signal sources 
using a single vector-sensor. Direction-finding with a vector sensor (SuperCART antenna array) 
was demonstrated in [7]. Since it does not rely on spatial diversity, a DOA estimator using a 
single vector sensor should exhibit consistent performance over its operating frequency band and 
should easily work with wide-band signals[l]. When operating as an array of vector sensors, the 
electromagnetic and time-delay measurements can be simultaneously used to estimate the DO As. 
This allows the use of smaller aperture-arrays while maintaining good performance over a wide 
frequency bandwidth. However, employing an array of vector sensors may be expensive because 
large number of receivers is necessary. For example, a 3-vector sensors array will require an 
I8-channel receiver. 
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This paper proposes a simple and effective alternative for achieving good DOA estimation 
performance with small aperture-arrays. The approach uses an array of spatially distributed scalar 
magnetic and electric sensors. We shall call the proposed array as distributed electromagnetic 
component array (DEMCA). It is assumed that the array of scalar magnetic and electric sensors 
should, in aggregate, measure at least the all the 3D electric and magnetic components of the 
electromagnetic wave. The proposed DEMCA will afford the following three advantages: Firstly, 
the full electric and magnetic field components measure by the magnetic and electric sensors; 
thereby effectuating derivation of the sources' directional information. Secondly, their spatial 
distribution will allow extraction of additional sources' directional information by way of the 
differential-delay measurements. Finally, DEMCA's structure will significantly economize the 
number of receivers needed to simultaneously utilize the time-delay and complete electromagnetic 
information for DOA estimation. 

2    Measurement Model 

Adopting the conventions in [1], the measurement model of the vector sensor is given by 

YE(t) 
YH(t) 

h 
(ux) 

VQws(t) + eE(t) 
(1) 

where 
0        —uz      Uy 

(ux)=      uz       0      —uz     , (2) 
—uy     ux       0 

u is the unit direction vector from sensor to source and ux, uy and uz are the x, y and z components. 
The matrices V, Q and vector w are given by 

Q 

— sin öi    —cos0\ sin 02 
cos 8\     — sin 0i sin 02 

0 cos 02 

cos 03     sin 03 
— sin #3    cos 03 

(3) 

(4) 

and 

w = (5) 
COS 04 

j sin 04 

where 0i, 02, 03 and 04 are the azimuth, elevation, ellipse's orientation and ecentricity angle. 
Extending from (1) and assuming that the signal sources are narrowband, we can write the 

measurement model of the distributed component sensor array in a multiple source environment 
as [6] 

y*(*) 
yH{t) 

X>(0«H(*) + 
fe=i 

eE(t) 
eH(t) (6) 

a(0<*>) r(0f,0j)o Is 
(UfcX) 

»(*) 

VfcQfcWfc 

where 0^ = [O^,0^,0^,9%^ denotes the directional and polarization parameters of the kth 

source signal. r(0x>02) is a diagonal matrix whose «^diagonal entry is given by [r(0i,02)W = 
On (01,02)eJWcTn, where T„ is the differential delay of the signal source between the nth component 
and the phase center and an(0i,02) is the response of the nth component sensor; uic is the carrier 
frequency and f2 is a selection matrix elements of 1 and 0. For example, when orthogonal triads 
of magnetic and electric sensors are used, Ci = 16- If an additional x electric-component sensor is 
used, the selection matrix becomes 

n 10   0   0   0   0 

I6 
(7) 
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Prom (6), observe that the electromagnetic sources directional information are all embedded in 

r(fl*,^)n I3 
(UfcX) 

This allows the differential delay measurements resulting from diverse placement of the component 
sensors and electromagnetic field measurements to be jointly exploited in estimating the source 
parameters. Given both the complete electromagnetic and spatial information, good parameter 
estimation with a smaller aperture array can be expected over a wide frequency range. It suffices to 
point out that the distributed-component sensors array model in (6) generalizes the vector-sensor 
array [6]. 

We can express (6) compactly in matrix form as 

y(t) = As(t) + n(t) (8) 

where 
A=[a(0<1>)..-a(0<d>)] (9) 

ands(t) = [Sl(t)...sd(t)]T. 

3    Cramer Rao Bound 

We use the Cramer-Rao bound (CRB) to examine the performance gain achievable by our ap- 
proach. Using the notations, statistical assumptions and results in [1] [6], the CRB is given by 

(10) 

where 

C„.6(0) =  ^MJ-1}, 
J =   btr((l B U) □ (D*ncD)6T) 

P    = 
u   = 
n = 
D   = 

E(s(i)s*(t)), 

PCA^AP + ^IJ-^AP, 
I-A(AÄA)-aA/f, 

[DW...DW...DW...D«], 

D<*>    = 
Öa(Ö(fe)) 

0    = [ö(i)r...0(«)r]r 

and where a2 is the noise power and N is the number of independent snapshots. In order to 
circumvent the intrinsic singularities due to the reference coordinate system, the mean square 
angular error (MSAE) was proposed in [1] and is given by 

MSAEcr ± N[C0S2 OiCcrbWl) + Ccrtffla)]. (11) 

4    Numerical Example 

By using a numerical example, we shall demonstrate the greater efficacy of the distributed elec- 
tromagnetic component sensor array (DEMCA) processing when it is compared with scalar-array 
processing that relies on an electric-only, diversely polarized and co-polarized antenna array. Since 
the motivation of this development is the design of a small-aperture sensor array, we shall make 
the comparison based on the principle of "equal aperture, equal number of channels". We assume 
a six-channel receiver and use a six element uniform circular array in this analysis. This will allow 
the comparison between the performance of a vector-sensor as well as a six element diversely and 
co-polarized array with the proposed DEMCA. The diversely-polarized array used in this study is 
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Distributed EM 
Component Sensor 
Array 

Electric-only 
DiverselyPolarized 
Array 

X-electric only 
(copolarized Array 

Figure 1: Array Geometry of Distributed EM Component Sensor Array, x-electric (co-polarized) array 
and electric-only diversely polarized array. EX(HX), E„ (H„) and E2(H2) are the electric (magnetic) 

component sensors. 

an array of x, y and 2-electric component sensors. The difference between the diversely-polarized 
and the proposed sensor array is that the former uses only electric component sensors while the 
latter uses both electric and magnetic component sensors to form a six-element sensor array with a 
six-channel receiver. The three sensor arrays are depicted in Figure 1. Note that the inter-element 
spacing is fixed at Amax = 37^, where c is the speed of light and fmax is the maximum operating 

frequency. 
An example of the DOA estimation performance as a function of frequency is shown in Figure 2. 

We considered two uncorrelated sources with &&= [1°, 10°, 45°, 0°]T and 0&= [5°, 9°, -45°, -5°]T. 
The signal-to-noise ratio is fixed at lOdB. Therein the inter-element spacing of the uniform circular 
array is fixed at jf—. Observe from the figure that the distributed EM sensor array has consistent 
performance over ä'wide operating bandwidth. In addition, it achieved four orders of magnitude 
of gain in accuracy of DOA estimation over the x electric array and one order of magnitude over 
the electric-only, diversely-polarized array at j^ = 0.3. This result clearly demonstrates the 
gain obtainable from the full exploitation of the spatial and electromagnetic information afforded 

by DEMCA. 
Figure 3 plots the DOA estimation performance as a function of the azimuthal angle of separa- 

tion between uncorrelated two sources having lOdB SNR. The normalized operating frequency is 
fixed at -J— = 0.3. The graph shows that the proposed DEMCA demonstrates significant perfor- 
mance gam especially for closely-spaced sources. This feature is particularly useful in applications 
with short integration time or at low signal-to-noise ratio. 

5    Concluding Remarks 

We have presented a new approach for the localization of electromagnetic sources through the joint 
exploitation of spatial diversity and electromagnetic information using spatially-distributed electric 
and magnetic componet sensors. Performance analysis via numerical examples illustrated the 
potential gain of the proposed approach over the scalar and diversely polarized array. The analysis 
indicated that the distributed component EM sensor array should allow the use of small array 
apertures while maintaining desired resolution and performance accuracy over a wide operating 

bandwidth. 
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Figure 2: CRB vs Frequency, -f: DEMCA. o : Diversely polarized dipole array. -: Vector sensor. 
Scalar array of omni-directional sensors.  X : Scalar array of x-electric sensor (dipole). 
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Figure 3: CRB vs Angular Separation 
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Support vector machines are investigated as a method for performing 
nonlinear equalization in communication systems. The support vector ma- 
chine has the advantage that a smaller number of parameters for the model 
can be identified in a manner that does not require the extent of prior in- 
formation or heuristic assumptions that some previous techniques require. 
An enhanced method of using a bank of support vector machines allows 
utilization of previously detected symbols to increase performance. Sim- 
ulation results are compared against results from other researchers using 
techniques such as neural networks and decision feedback. We find that 
the support vector machine generalizes well given a set of training data, 
with the tradeoff typically being decreased performance from the optimum 
Bayesian solution. 

Key Words: nonlinear equalization; support vector machine; SVM; ISI; decision feedback 

0.    INTRODUCTION 

A support vector machine (SVM) [2] embodies the concepts of generalized learn- 
ing theory developed by Vapnik [8] and others. A SVM uses training data as an 
integral element of the function estimation model as opposed to simply using train- 
ing data to estimate parameters of an apriori model using maximum likelihood 
techniques. In this sense, it is more general in terms of noise and correlation prop- 
erties than methods such as radial basis function (RBF) networks [4]. Furthermore, 
the optimization, or learning, method of SVMs is more manageable and generalizes 
better than techniques such as Volterra niters [1, 5] and neural networks [3]. 

These are strong motivations for investigating the use of SVMs for nonlinear 
equalization, or more appropriately detection. In the case of equalization, it is 
desirable that a modem require a small set of training data to characterize the 
transmission channel. Also, the model should be efficient for real-time applications. 
SVMs train with relatively small amounts of data, and once training of the SVM 
has completed, the detection stage is efficient, comparable to Volterra filters and 
neural networks. 

1 
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SEBALD AND BUCKLEW 

e(n) 

«(n) 
nonlinear 
channel —rO~n 

x(n) x(n — 1) a:(ji - M + 1) 

SVM equalizer 
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FIG. 1. Model of the nonlinear transmission system, originating from Chen, et al. [3]. 

Standard SVM results are compared against that for a neural network presented 

in [3]. Then results for a SVM-bank (SVMB) structure are compared against that 
for a decision-feedback equalizer presented in [6]. The latter system has the ad- 
vantage that it uses detected symbols to modify decision boundaries. The result is 
increased performance over the standard SVM in typical communication channels 

having appropriate signal-to-noise ratios (SNR). 

1.    DETECTION VIEWED AS PATTERN RECOGNITION 

As pointed out in [3], equalization may be viewed as a classification problem. 
In such a scenario, the output of a communications channel can be grouped as 
a vector and used as the input to a classification machine whose output should 
match as best as possible some delayed version of the original signal entering the 
channel. Figure 1 shows a discrete-time pulse amplitude modulation model of a 
communications channel. The transmitted data sequence, u(n), is an independent, 
equiprobable binary sequence taking values {—1,-f-l}. The output of the channel, 
x(n) G M., is the sum of a deterministic, nonlinear function of u(n), x(n), and an 
additive noise, e(n). The goal of the equalizer is then to mimic the desired output 
u(n — D). Call the equalizer detection output u(n — D). 

The deterministic portion of the channel model consists of a linear, finite impulse 
response (FIR) filter followed by a polynomial nonlinearity. Let 

JV-l P 

x(n) = VJ hkV.(n — k),    and    x(n) — \^^CpXp(n), 

where {hk} are the FIR filter coefficients and {cp} are the polynomial coefficients. 
By grouping the output of the channel into vectors 

T 
x(n) = [x(n)  x(n-l)  ...   x(n-M+l)] 

and taking the desired classification to be a training sequence input to the channel 
delayed by D samples, i.e., yn = u(n - D), a SVM can be trained to solve the 
detection problem. Varying the delay D results in different performance of the 
equalizer because the correlation between u(n — D) and x(n) changes with D. 
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NONLINEAR EQUALIZATION USING SVMS 3 

2.    SVM 
A SVM is a method for separating clouds of data in the feature space, i.e., the 

space generated from nonlinear mappings of the pattern space data x(n), using an 
optimal hyperplane. Given an input vector x, an SVM classifies according to 

y = sign{/(x)} 

where y is the estimate to the classification and 

f{x) = J2aiVMxi) ■ $(x) + b = X>i2/.#(x;,x) + 6. (1) 
«es «gs 

Here {a,} are Lagrange multipliers, S is the set of indices for which x, is a support 
vector, i.e., a vector for which a,- ^ 0 after optimization, and K(•, ■) : RM x 
MM i->- M. is a kernel satisfying the conditions of Mercer's theorem [7, 8]. We see 
in (1) that after training, only a subset of the training data enters the model (i.e., 
data reduction) and operations are only performed on data in the pattern space, 
not in the feature space (i.e., more manageable than previously studied nonlinear 
techniques). 

According to Vapnik [8], for training data which is non-separable the dual opti- 
mization problem is to maximize 

L .    L 
w(a) = J2ai ~ Ö Yl aiajyiyjK(xi>xj) 2   . 

«=1 i,j=l 

under constraints 

^J<*J7/J = 0,    and    0 < a; < C,    i=l,...,L. 
=i 

where increasing C penalizes errors more heavily [2]. This is a quadratic program- 
ming problem that may be solved with traditional optimization techniques. 

Preliminary studies on character recognition problems [8] suggest that the type 
of SVM kernel is inconsequential so long as the capacity is appropriate for the 
the amount of training data and complexity of the classification boundary. In the 
simulations here the polynomial kernel K(x, z) = (x • z + l)d is used exclusively. 
The polynomial order d is a parameter which controls the capacity of the SVM. 
The greater d, the more complex classification boundary the SVM can create. 

3.    SIMULATIONS AND RESULTS 
The constellation points are the noise-free channel outputs resulting from the var- 

ious inputs and are classified according to the value of D. Let the noise-free chan- 
nel outputs be grouped as a vector x(re) = [x(n) x(n — 1) ... x(n — M + 1)] . 
Then the constellation sets and classification regions can be expressed as CSito = 
{x(n)|w(n - D) = s,} and R,i>D = {x(n)|w(n -£>)=*<}, f = 1,2. The opti- 
mum classifier assumed here is the Bayesian maximum likelihood detector under 
conditions of equiprobable probabilities and zero/one cost [7]. 
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TABLE 1 

Simulation statistics for a standard SVM detector. 

D ■* e,train -* e,test ■fe.unproc "e, train VPtMst *c,unproc Nsv ■i'msv 

0 0.163 0.172 0.602 0.0166 0.00722 0.00825 205 10.0 

1 0.0458 0.0589 0.905 0.00727 0.00473 0.00408 66.5 9.40 

2 0.0366 0.0421 0.503 0.00800 0.00575 0.00506 51.1 9.30 

The first simulation is with the nonlinear channel x(n) = x(n) -0.9 x3(n), i(n) = 

u(n) + 0.5 u(n - 1), additive white Gaussian noise of power a\ = 0.2, and SVM 
parameters M = 2, C = 5 and d = 3. Results are an average of ten trials with 
500 samples in the training set and 5000 samples in the test set. Statistics for the 
simulations are given in Table 1. Most encouraging is that the standard deviations 
for probability of error for the SVM are approximately one eighth of the probability 
of error, and the error probabilities for training and test data are approximately 
the same. This confirms that the SVM is very good at generalizing. 

We now test the behavior of the SVM on a channel having zero-mean, colored 
noise with E[e(n)e(n - 1)] = p. Figure 2 shows an example SVM classifier for 
channel x(n) = x(n) + 0.1 x2(n) + 0.05x3{n), x{n) = 0.5 ti(n) + ti(n - 1), <r2 = 0.2, 
p = 0.48, M = 2, D = 0, d = 3, and C = 5. The number of trials, training samples 
and test samples were the same as in the previous simulation. Region R+I,D is 
shaded while R-I,D is left unshaded. Included on the pattern space is the signal 
constellation where C+i,u is marked by a large • and C_I,D is marked by a large 
x. Training data is also displayed, using a small o to indicate u(n — D) = +1 and a 
small x to indicate u(n — D) = — 1. The optimum Bayesian solution is given in [3]. 
The SVM chooses a decision boundary similar to the optimum and is logical in terms 
of the training data. The optimum i?_i,o for this example includes a disconnected 
region, but the SVM cannot match the polygon nature of the optimum. 

A third example compares the SVM bit error rate (BER) against the opti- 
mum BER as a function of SNR for the channel x(n) = x(n) + 0.2 i2(n), x(n) = 

0.3482u(n) + 0.8704u(n- 1) + 0.3482u(n - 2), p = 0.48, M = 3, D = 1, d = 3, 
and C = 0.1. The number of training samples was again 500, while the number of 
trials and test samples were varied to compensate for greater relative variance for 
low BER estimates. The BER results, given in Fig. 3, show that the SVM requires 
approximately 2.0-2.5 dB more SNR to match the Bayesian performance. Above 
15 dB SNR, the SVM result is essentially the same as the neural network solution 

given in [3]. 
The last simulation considers channels having severe ISI for which the standard 

SVM detector does not perform well. It has been shown for linear channels [6] 
that, depending upon the nature of the ISI, significantly better performance can 
often be achieved by incorporating previously detected symbols into the detector. 
This concept is exemplified in the decision feedback equalizer (DFE). The decision 
feedback idea can be incorporated into an SVM by simply lengthening its input 
vector by appending previous SVM outputs. That is, let 

x(n)=[ar(n)  x(n - 1)  ...   x(n - M + 1)  u(n - D - 1)  ...   u(n-D-M')]T 
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FIG. 2. Example of typical classification 
region of a standard SVM detector. 
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FIG. 4. A bank of SVMs with selection based upon the state of previous decisions. Each SVM 
constructs a different decision boundary based upon the constellation for a given state. 

where M' is the number of previously detected symbols fed back. We call this 
approach the decision feedback SVM (DFSVM). A DFSVM with correct decisions 
fed back is called the perfect DFSVM (PDFSVM).     . 

Chen, et al. [4] described an important property of the pattern space related to 
previously detected symbols and proposed a novel method of utilizing this property 
in their system. The SVM can be altered to utilize the same ideas by building a 
bank of SVMs controlled by a state machine having previously detected symbols 
as an input. This approach is illustrated in Fig. 4. Individual SVMs are optimized 
using subsets of training data conditioned upon previous symbols. 

The channel model for this last example is that studied by Proakis in [6] for 
DFE. That channel is linear, i.e., x(n) = x(n), with output x(n) = 0.407u(n) + 

0.815u(n — 1) + 0.407u(n — 2). The parameters for the various types of SVM in 
the simulation were M = 2, D = 1, d = 3, and C = 0.5. For the DFSVM and 
PDFSVM M' = 1. The added noise was white. The number of training samples 
was 500, and results were averaged over ten trials. The number of test points was 
varied to account for variation in BER. The optimum non-ISI binary signaling is 

^e.opt = 2er^c(\/^)' wnere erfc(-) is the complimentary error function and 7 is the 
SNR for a real channel.   Figure 5 shows the performance as a function of SNR 
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FIG. 5. Average BER for the SVM, SVMB, DFSVM, and PDFSVM detectors compared 
against the optimum binary, non-ISI detector. 

for the various SVM approaches. The SVMB outperforms the DFSVM, requiring 

approximately 2.0 dB less SNR to achieve the same BER, and it performs about 

the same as the DFE of [6]. 

4.    SUMMARY 

Simulations have shown that the SVM provides a robust method for address- 
ing nonlinearities in communication channels exhibiting ISI. The method performs 
as well as neural networks and Volterra filters, and has several advantages over 
these methods. The use of a bank of SVMs controlled by a state machine allows 
incorporation of decision direction. This significantly increases performance for 
certain channel scenarios. Currently, the SVM can only be used in block adaptive 
applications since no sample-by-sample adaptive version is known to exist. 
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Abstract 

This paper represents the first phase of an ongoing investigation into the nature of 
sinusoidal types of random processes associated with real world phenomena. While 
perfect sinusoids exist only in the mathematical sense, their use as an approximation 
model in relation to real world phenomena has, and continues to be widespread; often 
with much value. The motivation for this work is the belief that knowledge of their 
deviation from such a model can provide additional useful information. The focus of this 
paper is on sinusoids in relation to random processes associated with rotating machinery. 
The tools used include mathematical limit theorem results, standard signal processing 
tools including spectral estimation and Kaiman filtering, and basic statistics. Some 
noteworthy results include the normality of amplitude and frequency, characterization of 
the same as stationary random processes, and potential to improve condition monitoring 
of rotating machinery. 

1. Introduction 
The concept of a sinusoid arises in the study of phenomena in practically every area of 
science and engineering. Examples include vibration of rotating machinery [SHW], 
species extinction rates [RAS], earthquake prediction [SAF], atmospheric wind profiles 
[WIS], sonar [JOH], heart rate variability [MMM], and music quality, to name just a very 
few. However, a true sinusoid only exists in the mathematical sense. Even a sine wave 
generator does not generate a perfect sinusoid. A perfect sinusoid is characterized by 
three constants, namely, amplitude, frequency and phase. Because the phase parameter 
reflects only the relation of the sinusoid to the time at which the sinusoid is first 
observed, the value of this parameter is dictated by the observer. Both amplitude and 
frequency, however, are subject to change over time. And so it is these parameters which 
will be the focus of this paper. It is worth pointing out that the frequency of a sinusoid is 
simply the inverse of its period, since in many applications it is period, and not frequency 
variability that is of interest. 

2. Amplitude and frequency (or period) variability can occur slowly over time (relative 
to the period of the sinusoid), as well as within a single period. Here, the period refers 
to the time period associated with 360 degrees of angle. In many rotating machinery 
applications the speed of the machine will vary to some degree slowly over time. If 
the basic natures of the associated signals, such as vibration, sound or pressure, are 
not influenced by the slow-time variations, then it may be possible to recover truly 
periodic signals by performing a time-to-angle transformation [LSI]. Even then, 
however, there may well remain intracycle variability of sinusoidal data. 
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2. Tools Used for Analysis 
The tools used for analysis of the data include (I) the minimum variance (MV) and 
associated autoregressive (AR) spectral families, along with their theoretical convergence 
properties [FFS], (ii) standard power spectral density (PSD) estimates, (iii) extended 
Kaiman filtering , (iv) fixed order AR models and (v) histogram, scatter plot, and 
correlation coefficient information. The families of MV and AR spectra are used to 
identify nominally sinusoidal components, and to provide input to the extended Kaiman 
filter for tracking the time-varying amplitude and frequency of a real sinusoid. The PSD 
is used primarily for comparative purposes because it is the tool of choice for analysis of 
frequency information contained in (assumedly stationary) random processes. Fixed order 
AR models are used in an attempt to better characterize the time-varying behavior of 
amplitude and frequency estimates. Finally, basic statistical tools, including histogram 
and moment estimates, are used to get a better idea of the distributional properties of 
frequency and amplitude information. 

2. The Machinery Data to be Analyzed 
The data chosen for analysis is from the Westland Helicopter data base [WES]. This data 
base includes vibration data taken from a military helicopter under well controlled test 
conditions, and for a variety of planted fault conditions. Our analysis will focus on the 
vibration associated with accelerometer number 6 for the no-fault condition, and for a 
pinion bearing fault near to the measurement location. The data were originally sampled 
at 103116.08 Hz. Because of the preponderance of energy below 20,000 Hz, this data was 
decimated by a factor of 5.The no-fault data was chosen because of the presence of a very 
strong sinusoidal component at 3150 Hz. This affords us the opportunity to study a real 
world sinusoid without complications associated with a significant amount of noise 
corruption. The pinion bearing data was chosen for two reasons. Since the strength of this 
strong sinusoid was notably attenuated, this afforded the opportunity to study a 
potentially more complex real world sinusoid. It also provided the opportunity to explore 
the potential for using only sparse information associated with a single sinusoid, as 
opposed to the totality of information contained in a PSD, to characterize the influence of 
a mechanical fault. It should be noted that the above frequency of interest corresponds to 
a number of component gear mesh frequencies, but not to the spiral bevel pinion gear 
mesh frequency, which is 1109 Hz. Moreover, the pinion bearing theoretical defect 
frequency is at 311 Hz. 

3. Analysis 
The top plots in Figure 1 show the raw and band pass filtered time series corresponding 
to the no-fault and fault conditions. It is interesting to note that the influence of the fault 
is to enhance the modulation, while decreasing the peak level of the sinusoid. Neither of 
these influences is to be expected, given the nature of the fault. In fact, the expected 
influence would be an increase of energy at the bearing defect frequency; which in this 
case is 311 Hz. But the PSD plots in Figure 1 reveal a decrease of energy at that 
frequency, and an increase at a slightly lower frequency. Other than this very low 
frequency region, the only significant difference due to the fault is the peak values at 
approximately 3150 Hz. The plots of the filtered data in this region show that there 
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appear to be two sinusoidal components in this region, regardless of the fault. The fault 
results in a reduction of the stronger peak on the order of 15 dB. 

Recall, however, that our goal is not to mathematically decompose a real sinusoid into 
true sinusoids, but rather to capture its time-varying amplitude and frequency 
characteristics. To this end, we proceed now to investigate the convergence properties of 
the MV(n) and AR(n) spectra as n goes to infinity. In [FFS] it was shown that the MV(n) 
spectra converge monotonically to the line spectrum associated with sinusoids. It was 
also shown that the corresponding AR(n) spectra converge to infinity at the same 
frequencies, while converging to the continuous PSD at all other frequencies. While not 
shown here due to space limitations, the MV(n) and AR(n) estimated spectra for the no- 
fault and faulted raw data clearly suggest the presence of a true sinusoid at 
approximately 3150 Hz. The same cannot be said of the spectra for the fault data. Even 
though the MV(n) spectra do not exhibit the asymptotic 3 dB drop between orders, as 
predicted in [SHL], they also do not suggest convergence. The Corresponding AR(n) 
spectra exhibit the same multiple peak structure as that of the PSD in Figure 1. So it is 
possible that it is this increased modulation effect, relative to the no-fault data, that is 
responsible for the non-convergence behavior of these spectra. 

Since the spectra use lagged-product correlation estimates, it is also possible that the lack 
of exhibited convergence could be due, in part, to statistical variability associated with 
these estimates. While there has been some progress in obtaining the statistics of the 
AR(n) [LS2] and MV(n) [LIS] correlation-based estimates for mixed spectrum random 
processes, our analysis here will not consider this statistical influence due to the risks of 
distracting the reader from more fundamental issues, and of a very lengthy and involved 
analysis. Recall, that the goal of this paper is to explore both the nature of real sinusoids 
and the tools we have chosen to use for that purpose. We believe that the MV(n) and 
AR(n) spectral families have significant potential for that purpose. But how they are used 
is equally important. For example, it is commonly held that such spectra, for high enough 
orders, can capture all the important spectral information in a given bandwidth without 
the need for filtering. However, when attempting to take advantage of the convergence, 
as opposed to modeling capabilities of the MV(n) and corresponding AR(n) spectra, there 
is a definite advantage in filtering. In particular, for the no-fault data the MV(n) spectra 
were noted to have completely converged, as the n=40, 80 and 160 spectra are identical. 
This strongly suggests the existence of a true sinusoid. However, the corresponding 
AR(n) spectra did not exhibit the corresponding +3 dB asymptotic increase per order 
doubling. Since the sinusoid at approximately 3150 Hz is not a true sinusoid, this 
contradictory behavior is not totally unexpected; especially in view of the PSD 
information in Figure 1. There, it is observed that while there appear to be two closely 
spaced sinusoids for both the no-fault and fault data, the no-fault data has one very 
dominant peak. The fact that the MV spectrum has lower resolving ability than the 
corresponding AR spectra would explain this contradictory behavior. Specifically, at 
lower orders both spectra would exhibit behavior consistent with a single sinusoid, while 
at higher orders the AR spectra would actually reduce in magnitude with the emerging 
presence of two peaks. This behavior of these spectra for the fault data is more obvious. 
Since both the PSD in Figure 1 and the AR spectra suggest two sinusoids of relatively 
equal power, it would appear to support our speculation regarding the reason for the 
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contradictory behavior of the MV and AR spectra. It is our belief that the convergence 
properties of the families of MV and AR spectra offer significant potential for 
characterization of random processes involving real sinusoids. However, from these 
results, as well as a similar contradictory behavior noted in their use in the analysis of 
diesel vibration [SHW], it is apparent that more research is needed to better understand 
their joint behavior for real sinusoids. 

In order to attempt to capture the time-varying amplitude and frequency behavior of the 
real sinusoid at approximately 3150 Hz, as opposed to modeling it as two true sinusoids, 
we used an extended Kaiman filter (EKF), similar to that used in [SHW]. Specifically, 
the band pass filtered data was assumed to consist of a single sinusoid plus white noise. 
The sinusoid amplitude and frequency were modeled as uncorrelated random walks. The 
choice of this model is based, to a large extent, on our ignorance of their true behavior. 
As will be seen, however, it provides a sufficient characterization to allow more realistic 
models to be studied. A variety of model covariance values, as well as band pass filters 
were investigated. The results were extremely robust with respect to all of these. 
Furthermore, for both the no-fault and fault data the EKF model captured 99.999% of the 
total energy in the data. 

The time-varying amplitudes and frequencies for the no-fault and fault data are illustrated 
in Figure 2. There are clear differences in these time series for the no-fault versus the 
fault data. For example, the heavier frequency modulation behavior associated with the 
fault data results in temporal regions wherein the filtered data is close to zero. These 
regions cause the EKF to lose tracking ability, and yield frequency estimates which are 
well outside of the actual range of activity; hence the very large excursions in estimated 
frequency. These excursions are periodic, with a period corresponding to the modulation 
period of approximately 0.05 sec. The frequency and amplitude histograms for the no- 
fault and fault data are shown in Figure 3. The frequency histogram for the fault data was 
truncated in order to alleviate the frequency estimates related to poor EKF tracking. Both 
frequency and amplitude information is dramatically influenced by the presence of the 
fault. Recall that the frequency range of interest here has no known relation to the 
characteristic frequency region associated with such a fault. Nonetheless, such strong 
differences suggest that there may well be other frequency regions of equal, if not greater 
ability to capture the presence of a fault. 

Scatterplots of frequency versus amplitude for the no-fault and fault data are shown in 
Figure 4. Again, there is a distinct difference between the no-fault and fault conditions. 
The no-fault condition reveals a mild negative correlation (-0.41) between amplitude and 
frequency. For the fault condition the correlation is almost zero (0.07). The very narrow 
range of frequencies for the real sinusoid shown in Figure 4 results in the very peaked 
nature of the fault histogram. Even though the overall correlation between frequency and 
amplitude information is only modest for the no-fault data, and is essentially zero for the 
fault data, the coherence analysis suggested that there are indeed correlations in specific 
frequency ranges. 
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To further explore the time series structure of the frequency and amplitude estimates 
provided by the EKF then MV(n) and AR(n) tools used to analyze the measurement data 
were applied. One notable result indicated in the MV spectra is the presence of a strong 
sinusoidal component (0 dB) in the no-fault frequency time series at twice the frequency 
being studied. This component, shown in figure 5, is essentially absent (- 90 dB) for the 
fault condition. In this same time series the AR spectra indicate a very clear difference in 
the continuous spectral structure between the no-fault and fault conditions. In particular, 
the no-fault frequency time series exhibits an AR(2) shape, with a spectral peak around 
2000 Hz. For the fault condition it becomes an AR(1) shape, and increases by 20 dB at 
lower frequencies. A closer look at the low frequency behavior of these spectra of 
required that the frequency and amplitude time series be decimated in order to take 
advantage of the convergence properties of the MV and AR spectra (c.f. [SHL] for a 
detailed discussion). These data were decimated by a factor of 10. Application of the MV 
and AR tools to this data revealed that for the no-fault condition the 20 Hz modulation 
behavior discussed above is revealed as strong sinusoidal components at this same 
frequency in both the frequency and amplitude MV (and AR) spectra. There is no 
evidence whatsoever of such a periodicity in the frequency time series for the fault data.; 
even though the amplitude time series for both the no-fault and fault conditions retains a 
20 Hz periodicity. 

5. Summary and Conclusions 
The purpose of this effort was to investigate the potential of a combination of signal 
processing and basic statistical tools for characterization of real sinusoids. This was done 
in the context of sinusoids associated with no-fault and fault vibration data from a 
military helicopter power system. The fault addressed was a pinion bearing fault having a 
characteristic fault frequency of 311 Hz. Rather than investigating this frequency region 
it was decided to investigate the region around 3150 Hz. In that region it was observed 
that not only were strong sinusoids present, but that the bearing fault had a significant 
influence of the data structure. For both the no-fault and fault conditions it was noted that 
two sinusoidal components spaced 20 Hz apart were present, but that the fault resulted in 
a significant attenuation of one of the two. The 3150 Hz frequency happens to be a gear 
mesh frequency. Because it is also the 10th harmonic of the fault frequency it is possible 
that it is the 10th harmonic which is responsible for the change in the spectral structure in 
this region. However, since it is a relatively high harmonic, and since the change was so 
significant, one might posit that there are other influences of the fault on the power 
system vibration characteristics. While there is no direct support here for such 
speculation, the investigation resulted in a number of very significant findings. First, it 
was found that a model for a single real sinusoid, having time-varying amplitude and 
frequency, was able to completely characterize the band pass data including the two 
theoretical sinusoidal components. Analysis of the amplitude and frequency time series 
provided some novel insight into the real sinusoid that goes well beyond a simplistic two- 
sinusoid model suggested by traditional spectral analysis. For example, it was noted that 
even though the amplitude and frequency of the real sinusoid associated with the fault 
data was close to zero, there was a strong correlation in specific frequency regions. It was 
also found that the frequency and amplitude data both had a strong periodic component at 
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approximately two times the frequency of interest, regardless of machine condition. 
While the same was true for the amplitude time series in the range corresponding to the 
fault frequency, for the frequency time series the presence of the fault all but eliminated 
any periodic behavior. Finally, both histogram and scatter plot information revealed such 
distinct differences between the no-fault and fault conditions that discernment of these 
two conditions based on this information would be trivial. It is not the intent to suggest 
that information related to a single real sinusoid should be used instead of classic fault 
frequency information. However, our analysis suggests that a fault may influence data in 
a far greater way than has been considered to date. 
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Figure 1. Plots of raw and filtered no-fault (left) and fault (right) data (Top); PSD estimates of the above 
data (Bottom). 
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Figure 2. EKF frequency (left) and amplitude (right) estimates for filtered no-fault (top) and pinion bearing 
fault (bottom) filtered data. 

179 



Histogram of EKF Frequency Estimate tor Acell. #6 Filtered No-Fault Data Histogram of EKF Amplitude Estimate for Accel. #6 Filtered No-Fault Data 

3135 3140 31eo 3165 3145 3150 3155 
Frequency (Hz) 

Histogram of EKF Frequencies for Filtered Pinion Brg. Fault Data 

150 200 250 300 350 400 450 500 
Amplitude 

Histogram of EKF Amplitude Estimates for Accel.#6 Brg. Fault Filtered Data 

3090   3100   3110   3120   3130   3140   3150   3160   3170   3180   3190 
Frequency (Hz) 

100 150 
Amplitude 

Figure 3. Histograms of frequency (left) and amplitude (right) estimates for no-fault (top) and fault 
(bottom) data 
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Figure 4. Amplitude versus frequency scatterplots for the filtered no-fault (left) and fault (right) data. 
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It is difficult to track change in telecommunication networks when the 

logical structure is dynamic. Measures oF network difference are required 
to indicate significant changes oF concern. This paper discusses possible 
approaches towards developing suitable measures oF change. 

'Key Words: network management, change detection, graph matching 

1.    INTRODUCTION 

There are various problems requiring the ability to measure network change. In 
the management and control of dynamic telecommunication systems, the early de- 
tection oF significant network events and abnormal trends is an important network 
performance monitoring capability providing advance warning oF possible Fault con- 
ditions [19], or at least assisting with the identification oF causes and locations oF 
known problems. Such capabilities are increasingly necessary as telecommunica- 
tion networks become more complex and dynamic, For example large heterogeneous 
enterprise networks [3]. 

Network performance monitoring is typically undertaken using statistical tech- 
niques to analyse variations in traffic distribution [9, 11] or changes in topology 
[20]. Network visualisation techniques are also used to monitor changes in telecom- 
munication networks [1]. A useful complement to these approaches is a measure oF 
change in the network, capturing both topology and traffic flow, to highlight when 
and where in the network significant events may be occurring [18]. Other network 
management tools can then be Focussed on likely problem regions of the network for 
Further analysis. This paper provides an overview of approaches being investigated 
to identify a suitable measure oF network change For such applications. 

A measure oF network change can be determined by representing a given network, 
observed at time t, by a directed graph (digraph). Edge direction can be used to 
indicate the direction oF traffic flow between two adjacent nodes in the network with 
an edge label representing traffic flow. A second graph can be used to represent the 
same network at a later time t + At, where At is some arbitrary time interval. This 
second graph can be compared with the original graph using a measure of network 
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difference between the two graphs to indicate the degree of change occurring in 
the network over the time interval At. By continuing network observations over 
subsequent time intervals, the graph difference measures provide a trend of the 
network's dynamic behaviour as it evolves over time. 

The problem then becomes one of Ending good graph distance measures that are 
sensitive to significant change events but insensitive to typical variations in network 
topology or flow. Following from this, is the requirement to detect significant events 
given a suitable distance measure. The detection problem is not being considered in 
this paper. In addition to a graph distance measure, it is also necessary to readily 
identify where in the network significant change events have occurred. This requires 
the association of location with measured change. 

2.    GRAPH MATCHING 
The communications network being considered is represented as a graph. A graph 

consists of a set of vertices representing network nodes, and a set of edges which are 
ordered pairs of vertices; a pair of vertices denote the endpoints of an edge. Two 
vertices are adjacent if they are the endpoints of some edge. 

DEFINITION 2.1. A directed and labelled yraph G is a 6-tuple Ü = (V, E, Zv, ~LE, 

p, v) where: 

• V is a finite set of primitive objects called vertices; 
• Zv is a finite set of labels (for the vertices); 
» p : V =»• ~Lv is a function assigning labels to vertices; 
• E C V x V is the set of edges; 
• ~LE is a finite set of labels (for the edges); 
• v : E =>• ~LE is a function assigning labels to edges. 

Edges are directed with the vertex pair (i, j) G E denoting traffic How from node 
i to node j in the network. Vertex labels p are used to uniquely identify network 
nodes while edge labels v are assigned traffic flow parameters measured over some 
time interval At. The number of vertices in Ü is denoted |F| and likewise the 
number of edges |E|. 

Two graphs can be considered the same if a graph isomorphism exists between 
them [2]. Graph isomorphisms can be detected by mapping the vertices of one 
graph (?i onto the vertices of a second graph G2- A valid vertex mapping is found 
if the edge structure of Gi is preserved in C?2 by the mapping. If all the vertices of 
(?i can successfully be mapped to all the vertices of C?2, a graph isomorphism has 
been found [7]. 

A technique known as error correcting graph matching (ecgm) can be used to 
measure the distance or dissimilarity between two graphs. Unlike strict graph 
isomorphism detection, this approach enables inexact matching. Error correct- 
ing graph matching evaluates the minimum number of edit operations required to 
modify an input graph such that it becomes a graph isomorphism of some reference 
graph. This can include the possible insertion and deletion of edges and vertices, as 
well as possible label substitutions [15]. Generally, error correcting graph matching 
algorithms assign costs to each of the edit operations and use efficient tree search 
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techniques to identify the sequence of edit operations resulting in the lowest total 
edit cost [5, 13]. The resultant lowest total edit cost is a measure of the distance 
between the two graphs. 

Consider First changes in network structure or topology only. In general graph 
matching problems there exist more than one possible sequence of edit operations 
due to the occurrence of multiple possible vertex mappings. The ecgm algorithms 
search for the edit sequence that results in the minimum edit cost. However, with 
performance monitoring of a communications network, vertex label substitution 
is not a possible edit operation because vertex labels reference unique physical or 
logical nodes within a network. As a result, the combinatorial search reduces to 
the simple identification of elements (vertices and edges) inserted or deleted from 
one graph G?i to produce the other graph G2. 

If the cost associated with the insertion and deletion of individual elements is 1, 
the edit sequence cost becomes the difference between the total number of elements 
in both graphs, and all graph elements in common: 

DEFINITION 2.2. Let the graph C?i = {Vi,~Ei,jii,vx) represent the communica- 
tion network operating at time *i, and let G2 = (V2,'E2,p,2,v2) describe the same 
network at time t2, where t2 = h 4- At. The network edit distance. d(GuG2) is: 

d(GuG2) = \Vi\ + \V2\ - 2\Vi n V2\ + \Ei\ + IE2I - 2\Ei n E2| (1) 

Clearly the edit distance, as a measure of topology change, increases with increas- 
ing degree of change experienced by the network over At. Edit distance d(Gi, G2) 
is bounded below by d{Gi,G2) = 0 when G2 and G\ are isomorphic (i.e. there is 
no change), and above by d{GuG2) = \Vi\ + \V2\ + |Ei| + |E2| when C?i n G2 = 0, 
the case where the networks are completely different. 

The expression for graph edit distance provides a measure of difference between 
two graphs in terms of topology. While traffic How represented as edge labels v 
can also be incorporated into an ecgm algorithm, it is difficult to design a suitable 
cost function that satisfies both topology and traffic variations. For example, what 
is the relationship between traffic fluctuations of an order of magnitude compared 
to the insertion of a new vertex? Alternatively, could an integer representation 
of traffic flow be successfully mapped to a topology problem where the number 
of multi-edges indicate the volume of traffic flow? Such issues are currently being 
investigated. 

3.    GRAPH STRUCTURES 
Distance measures between graphs have also been proposed using graph matching 

techniques that focus on underlying structures or properties within the graphs. For 
example, finding the maximum common subgraph of two graphs is an indication of 
the commonality between graphs [10, 12]. These techniques tend to be based on 
subgraph isomorphism algorithms [14, 21]. 

An induced subgraph, where common vertices must have all incident edges in 
both graphs, can be defined as follows: 
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DEFINITION 3.1. The induced subgraph ~R oFa digraph Ü = (V, ~E, p, v) generated 
by the subset W of V is the digraph B = (W, ~Ew,fiw, v\v) where: 

» jiw '■ W =* ~Lv is the restriction of ja to W; 
• ~EW = ~E D W x W; 
• vw ■ % =¥ 1>B is the restriction oF v to Ew- 

A distance metric has been denned based on the determination oF the maximal 
common subgraph oF two graphs [6]: 

where mciB(üi,Ü2) denotes the maximal common induced subgraph oFC?i and C?2, 
and |G| denotes the number oF vertices in the graph G. There is no reason why the 
number oF edges could not be used as |G|. The resulting distance measure is still a 
metric and may prove useFul. 

It is interesting to note that this metric is related to error correcting graph 
matching [4]. 

The most general Form oF the distance metric (2) is given by: 

«"■•«w-'-Äi (3) 

where m(C?i, C?2) is a measure oF similarity between C?i and C?2, and M(C?i, Ü2) is 
a measure oF the size oF the problem. 

The size oF the problem may also be defined as the number oF vertices in the 
union oF the two graphs. This resulting distance measure: 

can also be shown to be a metric. 
In the telecommunications application, it seems natural to view the size oF the 

problem as the union oF the two graphs. Using the union rather than the larger oF 
the two graphs distinguishes variations in the size oF the smaller oF the two graphs. 
IF only the size oF the larger graph is used to represent problem size, the distance 
between graphs will remain unchanged even iF the smaller graph changes its size, 
assuming that the size oF the maximum common subgraph remains constant. This 
latter metric may provide a more accurate measure oF the relative graph difference. 

There are other approaches that may prove useFul in the application oF network 
change measurement. Instead oF measuring change by concentrating on network 
elements, as in the cases For ecgm and mcis, better indicators oF significant change 
could perhaps be obtained by examining higher level structures within the network. 
One such structure being investigated is that based on vertex neighbourhoods. 

An input graph C?i is used to generate a neighbourhood graph 7?i that contains 
an undirected edge between two vertices iF the same vertices in C?i share one or 
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more common adjacent vertices, i.e. are connected to common neighbours. Sim- 
ilarly a graph ]V2 can be generated from C?2. The distance between G\ and ~Gi 
is now derived from a graph matching distance measure taken between the two 
neighbourhood graphs ~N\ and ~N%. IF for example edges are deleted in ~N\ or 7V2, 
they have Far greater significance because two underlying vertices in Gi or G% are 
now no longer connected via common neighbours. It is unclear at this time what 
advantages such an approach might have, but it is expected to improve indications 
oF significant change in the underlying network. 

In addition to these techniques, the analysis oF graph adjacency matrices has 
been shown to yield useFul distance metrics between graphs. The adjacency matrix 
oF a graph G is defined as: 

DEFINITION 3.2. The adjacency matrix A = [a^] oF graph G is a \V\ x \V\ matrix 
where 

{o 
iFedge (i,j) G E 
otherwise 

IF the two graphs to be compared are uniquely labelled, it is possible to measure 
the difference between the graphs using a Hamming distance measure [16]. This 
metric defines the distance between the two graphs as the number oF elements 
in which their respective adjacency matrices differ. This approach is somewhat 
similar to the basic ecgm distance measure shown in equation (1). Analysis oF 
graph adjacency matrices using spectral graph theory [8] have also been shown to 
provide useFul graph distance measures [17]. 

i.    LOCATION OF CHANGE 
Consider the scenario where a graph distance measure has indicated that two 

digraphs G\ and C?2 have significantly different network topologies over a single 
time interval At. OF particular interest is the distribution oF this change during the 
transition from G\ to Ü2- The Following technique ranks all vertices within the two 
digraphs (C?i U G2) in increasing order oF the number oF network topology change 
events experienced by individual vertices. 

Differences between digraphs C?i and G2 are represented by a change matrix C 
that indicates where edges have been deleted from G\ or inserted into (?2- The 
matrix C has a row and column For every vertex contained within the two graphs. 
The existence oF a directed edge deleted from Gi (or inserted into G2) is represented 
in the matrix C = [eg] by the corresponding row column entry cjj = 1. Indices i 
and j denote the respective source and destination vertices oFthe deleted or inserted 
directed edge. Any edges (i,j) that remain incident to the same pair oF vertices 
in both G\ and G2 result in the corresponding entry By = 0, indicating that no 
change has occurred. For all other entries CJJ = 0. 

IF a permutation oF the matrix C is Found such that the row sums and column 
sums oF Ü are arranged in ascending order, entries in C where eg = 1 will tend 
to occupy a lower right block oF C. The corresponding row and column vertices 
will be ranked in ascending order oF the number oF incident edge deletion and/or 
insertion operations, with the last row and column vertex pair denoting the vertices 
that experienced the greatest change in the transition from graph G\ to Gi- 
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5.    CONCLUSION 

Several techniques have been presented that could successfully measure the de- 
gree of change occurring within a communications network. Preliminary simulation 
investigations into the use of ecgm and mcis distance metrics indicate that effec- 
tive change measurement is feasible. It is expected that applying ecgm or mcis 
distance metrics to graphs that represent higher level structures within the un- 
derlying network (e.g. common neighbours) should in general produce improved 
results. However, this is still to be confirmed. 
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This paper considers a situation in which a detection system is configurable in 
such a way as to provide multiple modes of operation that differ in their detection 
performance and geographical coverage. A technique for optimal mode selection 
based upon minimizing Bayesian risk is formulated and demonstrated for the case 

of a two-mode system. 

0.   PROLOGUE 
In the first Joint Australia/U.S. Workshop on Defence Signal Processing, held in Adelaide 

in 1997, two of the authors (Sinno and Cochran) presented a paper involving estimation 
using a configurable sensor system [6]. During the Workshop, Dr. Paul Miller of the 
Australian Defence Science and Technology Organisation told us about a real-world sce- 
nario in which searches for ground vehicles are carried out over vast uninhabited areas by 
helicopters outfitted with dual-mode radar systems. We understood the operating modes 
of the radar system to be such that they could be loosely described as "broad search" and 
"focused" modes and that the strategy for switching between modes during a search was 
left to the helicopter crew. 

We subsequently proposed a mathematical model of this kind of scenario and a Bayesian 
approach to choosing mode switching strategies [ 1 ]. This formulation made use of a payoff 
function consisting of two terms, one of which captures the performance of the sensing 
strategy in detecting the presence of a target in the search area and the other measuring its 
effectiveness at localizing the target. 

When we were invited to participate in the second Australia/U.S. Workshop, revisiting 
this problem and exploring an alternative approach that addresses a shortcoming of our 
technique in [1] seemed a natural way to connect our contribution with the previous 
Workshop and the many fine technical interactions it seeded. The approach in this paper is 
based upon Bayesian risk analysis and it eliminates concerns regarding correlation between 
the terms of the payoff function arising in our previous treatment of the problem. 

1.   INTRODUCTION 
This paper considers a situation in which a detection system is configurable in such a 

way as to provide multiple modes of operation that differ in their detection performance and 
geographical coverage. The development that follows focuses on the case of a detector with 
two operating modes: a "broad search" mode that provides wide coverage and a "focused" 
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mode that provides better detection performance but covers less area. The system is invoked 
in a sequence of tests to detect and localize a target within a framework that is formulated 
precisely in the following section. 

As noted in the Prologue, this problem was addressed in an earlier paper [1] using a cost 
functional approach in conjunction with a Bayesian method for incorporating the results of 
earlier tests in deciding which mode to use in each test. The approach presented here uses a 
more classical approach, based on minimization of Bayesian risk, that allows more precise 
designation of the priority of correct detection relative to that of correct localization. 

2.   PROBLEM SETUP 
The situation described above is modeled as follows. The entire region of interest C is 

partitioned into N disjoint cells Ci,..., CN- Operating in the broad search mode (Mode 
A), the detector tests for the presence of a signal source in C. In the focused mode (Mode 
E), however, the test may be applied to exactly one cell Cn. 

To account for difference in detector performance in the two operating modes, detector 
performance is modeled as arising from the problem of detecting a known signal in white 
gaussian noise of known variance. This model provides a well understood solution (i.e., 
the matched filter) in each test, admits several straightforward generalizations, and allows 
detection performance in Mode B to be distinguished from that in Mode A by simply raising 
the signal-to-noise ratio (SNR). More specifically, in each mode of operation the detector 
encounters a problem of the form 

H0 : X = N (1) 

Hx  : X = 5 + N 

where S is a known signal M-vector with energy ||5||2 = 1 and N is a zero-mean white 
gaussian M-vector having known variance a2; i.e., N ~ M\0, <r2I] where I is the n x. n 
identity matrix. Since ||5|| is fixed, the SNR (and hence the performance of the detector) 
in each mode can be adjusted by varying a2. 

Assuming at most one signal source is present, denote by Hi and H0 the events that 
the signal source is, respectively, present in and absent from C. Let h0 = H0 and, for 
n = 1,..., N, denote by hn the event that the signal source is present in cell Cn. With these 
definitions, Hi = U^=1/in. Regardless of whether it is operating in Mode A or Mode B, 
the system yields a decision -thn with 0 < n < N. 

Recall that the optimal solution, in terms of minimal probability of error, to a detector 
problem of the form (1) is a test on the inner product STX where the detection threshold 
is a function of the a priori probability that a signal is present [2, 5]. The probabilities 
of detection and false alarm for each test are given by error functions of the detection 
thresholds. In particular, the tests applied in both operating modes will be of this form, but 
their detection thresholds and probabilities of detection and false alarm will all be different 
(even when Mode B is applied to different cells) because of their dependence on Fr(/i„), 
n = 0,...,N. 

3.   A BAYESIAN RISK FORMULATION 
Using the notation of [5], define a random "state of nature" parameter 0 by 0 = n if 

h„ is true, n = 0,1,..., JV. A prior distribution for 0 is assumed and a test (i.e., a Mode 
A test or a Mode B test on a particular cell Cn) is chosen and performed yielding a binary 
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N+l possible tests 

Choose test that minimizes overall 
Bayesian risk (based on a loss function) 

Get measurement 
Set detector threshold to mining 
local error. Deduce an outcome: 

detect or no detect 

Use outcome to 
update priors 

Generate MAP decision 

FIG. 1.  Detection/localization algorithm. 

outcome o. If Pr(i?0|o) > Pr^ |o), the system decides for H0. Otherwise, the system 
decides in favor of the hypothesis hn having the largest posterior probability Pr(/in|o); 
i.e., in this case the system decision rule <f> takes the value n if hn has the largest posterior 
probability. As shown in [1], these posterior probabilities are straightforward to compute 
using the detection and false alarm probabilities of the chosen test, which follow from the 
(prior) distribution of 9. The overall algorithm is depicted schematically in FIG. 1. Note 
that, once a test is selected, the rule <f> for choosing a hypothesis hn based on the test's 
outcome is well defined. 

The approach to mode (i.e., test) selection is to choose the one that minimizes Bayes risk 
with respect to a pre-defined loss functional. Since the overall goal of the system is to both 
detect the signal source and localize it, with these two subgoals possibly being of unequal 
importance, a loss functional of the following form is used: 

£(M) = < 

0 d = 4> 
1 d^4>, <f>?0, and&^O 
d 0^0and0 = O 
C2 9 ^ <f> and 0 = 0 

With ci > 1, this functional imposes a greater penalty for a false alarm (i.e., deciding in 
favor of Hi when H0 is true) than for correct detection with incorrect localization (i.e., if i 
is correctly chosen, but the wrong cell is picked). With C2 > Ci, an even greater penalty 
is levied if the system decides in favor of Ho when a target is actually present. Depending 
on the application, the weights c\ and C2 can be chosen to adjust the relative importance of 
detection and classification in an intuitively appealing way. 
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With this loss functional, the risk is 

'd^PrHftnlM 

H(M) = < 

0 = 0 
n^O 

JV 

c2PrH/i0|^)+    Y    *T(-fhn\hk)  0^0 

and the Bayes average risk of the decision rule <f> is thus 

JV 

E[K(0, <i>)\e] = ci Pr(fco) Y ?r(-*hn\ho) 
n=l 

AT 

+£Pr(V> 
n=l 

JV 

c2 Pr(-F/i0|/i„) +    Y    FT(-*hk\hn) 
k=l,kjtn 

Since the decision rule <j> (and hence each decision -F/I„) depends on the probabilities 
of the hypotheses hk posterior to the test, this quantity depends on which test (mode) is 
selected. 

The mode is chosen to minimize the conditional expectation of the Bayes average risk. 
The posterior probabilities of each hn given a particular test and its outcome can be 
calculated using Bayes' rule, the prior probabilities of the hypotheses, and the detectors' 
probabilities of detection and false alarm. These calculations are given explicitly in [1]. 
Once a mode is selected and the test Tm is performed, the decision -fhn is completely 
determined by its outcome om € {0,1}; prior to performing the test, the only uncertainty 
about the decision arises because the outcome of the test is not yet known. The conditional 
expectation oftheBayesaverageriskforachosentestTmis2?oPr(öm = 0)+RiFr(oro = 
1) where 

JV 

Ho = E[R(0,4>)\O,om = 0] = ci Pr(ft0|om = 0) ]£Pr(-*Ä«|Ao,om = °) 
n=l 

JV 

+ Y Pr(/i„|om = 0) 
n=l 

and 

JV 

c2 Pr(-f/i0|/in,om = 0) +    Y    PrH/l*l/l">°™ = °) 

N 

Ü! = E[H(0,<f>)\0,om = 1] = ci Fr(/i0|om = 1) Y M^hn\ho,om = 1) 
n=l 

JV 

+ ^Pr(/i„|om = l) 
n=l 

JV 

c2Fr(-tfi0|fc„,om = 1) +    Y    Fr(-*/i*|/i„,oro = 1) 
k=l,kjtn 

The complexity of these expressions for Ho and Ri belie their relatively simple nature. 
There are two cases: 

• Case 1: tj> = 0 

7?o = c2Pr(5r
1iom = 0) 

Hx  = c2Pr(H1|om = l) 
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• Case 2: <j> = k > 0 

So = ci Fr(#o|om = 0) + Pr(ffi|oro = 0)[Pr(F1|om = 0) - Pr(ft*|om = 0)] 

Hi  = d Pr(Fo|om = 1) + Pr^ilo™ = lJfPr^lo.» = 1) - Pr(fcfc|om = 1)] 

The conditional probabilities in these expressions are exactly the post-test probabilities 
computed in [1]; the probabilities of the test outcomes are computed as follows. For a 
Mode A test, 

Pr(on = 0) = (l-P^JFrfffO + a-P/^) 
Pr(on = 1) = Td,A Pr(Fi) + Tf,A Pr(F0) 

and for a Mode B test, 

Pr(on = 0) = {l-4%)Fr(hn) + (l-P^)(l-Pv(hn)) 

Pr(o„ = l) = Pi5Pr(ftn) + pg(l-Pr(M) 

In these expressions, !>££ and P)^ are the probabilities of detection and false alarm, 
respectively, of the Mode B detector used on cell n. P<I,A and P/,A are the corresponding 
probabilities for the Mode A detector. 

To summarize, the decision rule <j> depends on the outcome of the test and the posterior 
probabilities of hn, n = 1,..., N. These can be computed before any test is actually run. 
Thus, for each candidate test, the expected risk may be calculated using Pr(om = 0) and 
Pr(om = 1) (which come from the detector performance figures) before running any tests. 
This allows the selection of the test of lowest Bayes risk, as proposed. 

4.   EXAMPLES 
The following two examples show the behavior of the two-mode detection/localization 

system operating in a five-cell (i.e., N = 5) scenario. The test signal and white gaussian 
noise vectors are of length M = 10 and the SNRs in the two modes are -3.1 dB and -6.1 
dB. The cost values are cj = 1.2 and ci = 2. In the first example (FIG. 2), the initial prior 
probabilities are Pr(fti) = .1472, Pr(/i2) = .0749, Pr(/i3) = .0935, Pr(/i4) = .1178, and 
Pr(/i5) = .0667. The posterior probabilities of the first test which are used as the prior 
probabilities in the second test, appear in the first column of the grid - and so forth. In 
this example, a signal source is actually present in cell 4 (indicated by a triangle in the 
upper right corner). The system chooses Mode A for the initial test (indicated by shading 
of the cells in the first column), does not detect (per the annotation beneath the column), 
and decides for H0 (indicated by lack of highlighted frame around any cell). Mode A is 
selected again in the second test, the system detects and chooses cell 1. Following test 2, 
the system runs in Mode B on cell 1, does not detect but decides for cell 4 because it has 
the highest posterior (and pi > 0.5). In test 4, the detector runs again in Mode B but on 
cell 4, detects and decides for cell 4. 

In the second example (FIG. 3), the initial prior probabilities are Pr(fti) = .2385, 
Pr(/i2) = .1006,Pr(/i3) = .1315, Pr(/i4) = .0239, and Pr(ft5) = .0056. In this example, 
a signal source is actually present in cell 3. It is interesting to note how the system switches 
from Mode B back to Mode A in test 4. 
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CellS .0179 .1047 .1313 .0151 

Cell 4 .0316 .1849 320 .9119 

Cell 3 .0251 .1468 .1841 .0211 

Cell 2 .0201 . .1176 .1475 .0169 

Celll JB95 2312 .0353 .0041 

Testl        Test 2        Test 3        Test 4 

outcome 0     outcome 1     outcome 0     outcome 1 

FIG. 2.  Behavior of the two-mode detector in a five-cell scenario (Example 1). 

Cell 5 .0015 .0088 .0133 .0178 .0020 

Cell 4 .0064 .0375 .0571 .0761 .0087 

Cell 3 .0353* .2064 
A 

3142 .4190 
A 

.9337 

Cell 2 .0270 .1579 .2403 .3205 .0366 

Celll .0640 .3745 .0479 .0639 .0073 

Testl Test 2 Test 3 Test 4       Test 5 

outcome 0     outcome 1     outcome 0     outcome 1     outcome 1 

FIG. 3.  Behavior of the two-mode detector in a five-cell scenario (Example 2). 

5.   DISCUSSION AND CONCLUSIONS 
Since beginning this work, the authors have become aware of some fine research on 

related problems involving mode-switchable sensors, most notably by K. Kastella and his 
colleagues (see, e.g., [3,4]). 

Work currently underway is examining the mean time to correct decision of the approach 
presented here for various operating parameters, choice of detection thresholds for the 
individual tests to minimize this mean time, and possible applications outside the context 
of the original problem. 
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Abstract 
Technology is changing the way in which telephone service can best be offered. Changes in regu- 
latory policy impact the way in which telephone service is allowed to be offered. The capital mar- 
ket's growing awareness of the money to be made in telecommunications has provided the 
business opportunity to build new and alternative systems. The combination of these trends will 
radically alter how the defense and intelligence communities deal with telephone systems, both as 
a target and as an enabling force. 

Introduction 
The telephone instrument sitting on your desk at work or at home is closely related in appearance 
and in electrical design to the telephone set of 100 years ago. From this it might be reasonable to 
presume that the underlying telephone network has stayed the same over that same interval and 
will stay the same in the future. In fact, neither of these presumptions is true. Technology is 
changing the way in which telephone service can best be offered. Changes in national and interna- 
tional regulatory policy impact the way in which telephone service is allowed to be offered. The 
capital market's growing awareness of the money to be made in telecommunications has provided 
the business opportunity to build new systems, often using alternative technologies. The combina- 
tion of these trends will radically alter how the defense and intelligence communities deal with 
telephone systems, both as a target and as an enabling force. 

In this paper we examine a few of these important changes. 

Historical Background 
To understand the impact of these technical, financial, and regulatory changes, it is useful to 
review certain aspects of the history of telephony. 

1. Until the last decade, telephony systems focused on voice traffic and adapted all other types of 
signals they carry (e.g., television, data and Fax) to conform to a network optimized for the 
transport of voice. 

2. The construction of telephone systems was highly capital-intensive, with most of the cost 
being concentrated in wire and other transmission facilities. As a result, long-distance tele- 
phony was expensive and usually billed proportionally to the distance covered by the call and 
its duration. Virtually all telephone systems were local or national monopolies, and, other than 
in North America, most were government-owned, government-run organizations known as 
"post, telephone, and telegraphs (PTTs)." They were "vertically integrated" in that the PTT 
supplied the telephone instrument and owned all of the assets needed to provide telephone ser- 
vice. 
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3. In virtually all countries, the services needed by businesses, such as long-distance calling and 
private branch exchanges (PBXs), were substantially overpriced in order to subsidize residen- 
tial and rural telephone service. 

4. In most countries the PIT employed many people and, in many countries, was an important 
conduit for graft to those running the government. These two factors have historically discour- 
aged the introduction of cost-saving or labor-reducing technology into those countries. 

The realization that good telecommunications are a prerequisite for national economic develop- 
ment has encouraged many countries to privatize their PTTs or, at the least, permit competition 
with the PTT. The rapid improvement in the technology needed to build telecommunications sys- 
tems and the associated falling cost has facilitated the development of these "parallel" systems. 
The opportunity to build and operate such systems at a profit has attracted a large amount of capi- 
tal from the financial marketplace. The combination of these factors is causing tremendous 
change in the way that systems are designed, built, and operated. 

The "Death of Distance" 
To determine the most economical design of a telephone network it is necessary to perform 
tradeoff analysis among the most costly components. Traditionally these have been the transmis- 
sion segment and the switching segment. Historically, the costs of transmission were high and the 
use of longer lines led to lower signal quality owing to the accumulation of noise in analog sys- 
tems. This is no longer true. The incredible improvement in the capability of optical fiber to trans- 
port telecommunications signal over the past twenty years can and will cause the complete 
reorganization of network topologies. 

Consider first the comparative cost trends shown in Figure 1. In general the cost of computation 
and packet routing has fallen over time at roughly the same rate that semiconductors have 
improved in speed. Circuit switching has improved somewhat faster but the most significant 
improvement is that in fiber-based transport. Better fiber, faster electronics, and the advent of 
wavelength division multiplexing (WDM) have lowered the cost of hauling a bit of information by 
several orders of magnitude over the past twenty years. Almost as important is that the signal's 
quality has become nearly independent of the distance over which it is hauled. The combination 
of these two, the virtual removal of transport cost as a consideration in pricing a call, and the near 
total maintenance of signal quality, led to what some have called "the death of distance" as a con- 
cern in the design of a telephone system and the price of a phone call. 

The impact of these facts on the topology of a telephone network can be seen in Figure 2. On the 
left is a network designed in the traditional world where switching costs less than transmission. In 
this world many layers of switches are employed, with the principal design goal being to mini- 
mize, on average, the distance over which a call is transported. Minimizing this distance, in turn, 
minimizes the cost of transporting the call and maximizes its quality. 

The right side of Figure 2 shows the effect of low-cost, high-quality transmission. After concen- 
trating calls locally they are all hauled to a central location for switching and distribution. End-to- 
end signal quality is better (compared to an analog transmission system), fewer switches are 
needed, and less control and signaling are needed. In every dimension costs are lowered and ser- 
vice is improved. 
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Figure 1: Comparative Trends in the Cost of Various Segments of a Telephone Network 

Figure 2: Cheaper Transport Will Encourage the Design of Networks with Longer Transmission Links and Fewer 
Switching Points 

The economic attractiveness of this approach has already encouraged the new entrants into the 
telecom marketplace to use it, and the presence of their lower-cost competition has encouraged 
the established organizations to emulate it as best they can. 

This type of network architecture has a number of defense implications, including the greater dif- 
ficulty of defending a geographically dispersed network. It also has the implication that a call 
thought by the caller to be a local one might, in fact, travel well out of the local area and back. 

Retailers, Wholesalers, and Resellers 
Until the middle 1970s in the U.S. and much more recently in the rest of the world, the organiza- 
tions which ran telephone networks were "vertically integrated," that is, they provided the tele- 
phone itself, the copper loop to the central office, the central office and its staff, and all of the 
switching and transmission equipment associated with hauling calls from one central office to 
another. Many of these organizations argued that there were cost advantages to this integration 
while others insisted that the quality of service to the customers could only be insured by operat- 
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ing their system as an integrated whole. Others yet claimed that national security drove the need 
for a completely government-owned, and therefore "single-vendor" system. 

Many of the conditions that supported these positions are now gone. Organizations needing to 
expand or improve their networks have become increasingly open to the approach of leasing 
rather than owning the necessary new assets. Countries seeking to privatize their networks have 
found it convenient in many cases to only privatize pieces of it. 

The past twenty years has seen a contrary trend, however. In this interval, there has been a grow- 
ing fractionation of the telephone business into "retailers," those who sell telecommunications 
services directly to customers, and "wholesalers," those who sell their telecommunications ser- 
vices to telecommunications retailers. 

In theory, any part (or all) of a telephone system can be sold at wholesale rates to a retailer. (A 
retailer with no physical plant whatsoever is usually called a "reseller" while one that does is 
termed "facilities-based.") Even so, and even though more of that will be seen over the next sev- 
eral years, the most important form of wholesalers at this time are the "transport providers" who 
sell fiber-optic transmission capacity to facilities-based retailers. This trend is being driven by a 
number of complementary considerations, including the following: 

1. High-quality bandwidth has become a non-scarce commodity, unlike twenty years ago when 
only a few had the resources or technical knowledge to build it. 

2. The rapid improvement in fiber-based technology gives a substantial cost advantage to that 
transport company which most recently installed its system. 

3. Network providers (e.g., the retailers) are now willing to lease transport (from wholesalers) 
rather than own it. 

4. It is possible to build a viable business proposition as a transport wholesaler (e.g., FLAG, 
Atlantic Crossing, and Project Oxygen), in that it is possible to borrow money to fund the 
business, to find suppliers (e.g., Lucent) to sell the necessary materials, and to find customers 
(e.g., the retailers) for the product (e.g., bits). 

5. Some entrants into the wholesale transport business have an economic edge over others, 
including some incumbent telephone organizations, since they serendipitously own right-of- 
way on which fiber-optic systems can be installed. Examples include power transmission 
companies, pipelines, and railroads (e.g., ENRON, Williams, and Qwest, respectively). 

What are the implications of this to the design and operation of telephone networks? There are 
two big ones. The first is that the network providers (the retailers) will shop for the best price 
available among many possible, essentially equivalent transport suppliers. An immediate corol- 
lary is that each retailer may change vendors whenever a cheaper transport alternative is found. 
The converse implication is that the transport providers will manage their assets aggressively to 
minimize their own costs, allowing them to keep their prices low and therefore to maintain their 
customer base. 

How men does this affect the defense establishment? The fact that there are a number of network 
providers and each of them has access to many transport vendors suggests the availability of a 
highly redundant and robust communications infrastructure, one capable of serving many users 
and surviving many local outages or failures. From the opposite perspective, that of attempting to 

196 



intercept or interdict the communications of an adversary, the availability of a highly diverse, and, 
in fact, time varying network of networks makes the targeting of that interception very difficult. 

The Death of the PTTs and the Rise of the RPOAs 
There is a growing international realization that modern telecommunications are needed to sup- 
port economic development. Unfortunately, the wholesale improvement of a country's telecom- 
munications infrastructure is a very expensive proposition. This has led to the decision in many 
countries to privatize their PTTs or, at the least, to permit some degree of competition with the 
national FIT, both serving as a mechanism to attract the investment capital needed to buy and 
install new equipment. This approach has been very effective when it has been applied, creating 
modern telecommunications capabilities and generally lowering the prices charged to consumers. 
It has also had the effect of moving the world away from the old model of government-owned, 
government-operated telephone systems and toward a new one in which national and transna- 
tional companies own and operate significant portions of national systems. Historically these 
companies have been the exception (e.g., the Bell System) and government ownership has been 
the rule. In international regulatory bodies (e.g., the CCTTT and now the ITU-T) the private com- 
panies were called "recognized private operating authorities (RPOAs)." The ultimate effect of 
countries resorting to the free market to build or rebuild their telephone systems is that the PTTs 
will fade as operators over time and that national and transnational RPOAs will grow to replace 
them. 

As competition with the PTTs is permitted, and as other regulatory barriers are lowered, new net- 
work providers will form at the international, regional, and local levels. At this time each of the 
aspirants for the role as a global network provider has at least one American corporate partner. 

The rise of global RPOAs will lead to the demise of the practice used by PTTs of establishing 
long term, "direct" transmission routes between each pair of countries. Such an example is shown 
in Figure 3. In this case, the PTTs of Brazil and Egypt have contracted with INTELSAT to create 
a direct link between their two countries. The modern model is shown in Figure 4. In this case, the 
national telephony systems, whether they be governmental PTTs or private organizations, contract 
with a global RPOA to haul their traffic. In some cases, the national organizations might lease a 
dedicated trunk group but in others the individual telephone calls will be routed through the 
RPOA's network on a path dependent on the instantaneous loading of the network. 

The emergence of these RPOAs further exacerbates the issues illuminated earlier regarding the 
retailing and wholesaling of telecommunications. The theoretical reliability and survivability of 
communications between any two points will improve and the cost will fall as technology 
improves and competition grows. The converse is also true. The ability to predict the pathway that 
an adversary's communications will take becomes that much harder as well. 
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Figure 3: An Example of International Trunk Groups Established Directly Between the PTTs in Egypt and Brazil 

Figure 4: Putative Example of a Network Built by a Recognized Private Operating Authority (RPOA) 

The Big Picture 
So what does the future hold? 

1. Companies, not countries, will be running the world's international (and, progressively, 
national) telephone networks. 

2. There will be less and less stability in who the telecom retailer is for a specific user and, in 
turn, less stability in who the transport provider is for each retailer and reseller. 

3. Packetized voice, particularly over "managed networks," will become reality at the national 
and international levels. 

From the perspective of national defense, these trends are two-edged. This multilayered redun- 
dancy implied by the increasing commercial marketplace bodes well for those wanting reliable 
communications, while complicating the life of those with the responsibility for intercepting or 
interdicting the communications of adversaries. 
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The broad goals of this research are to develop methods for using 
nonparametric, statistical tolerance intervals (1) to measure 
the performance of signal processing algorithms on real data and 
(2)to provide data-adaptive procedures for using such measures to 
adaptively control the performances of communication, detection, 
classification, localization, and tracking systems.The presentation 
is concentrated on the details of a specific example, the design of a 
nonparametric, constant false alarm rate (CFAR), data-adaptive 
detection threshold. 

The major objective is to develop methods for designing robust 
radar, sonar and communication systems using real measured 
data.Our approach is to provide the means, through application of 
tolerance regions, for such systems to quickly recognize the 
presence of a new, statistically different environment and 
quickly adapt to preserve or improve performance. Another 
objective is to develop methods that enable one to assess the 
performance of signal processing algorithms on real data so that 
the performances of different methods can be fairly compared 
using real data sets. 

Nonparametric, statistical tolerance regions provide a distribution 
free measurement of the range of experimental outcomes and of 
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the uncertainity of the observed range. Hence, tolerance regions 
have the potential to allow one to measure, assess, and control 
performance of signal processing algorithms on real data. 

Tolerance Regions,also called Tolerance Intervals (TIs),were 
defined and developed over a productive period of only a few 
years in the 1940's by the statisticians Wilks, Wald, Tukey, 
Robbins, and Scheffe.TIs were not applied in signal processing 
until recently. Streit and Luginbuhl,in their paper "Maximum 
Likelihood Training of Probabilistic Neural Networks",IEEE 
Trans. On Neural Networks,vol.5,pp.764-783,September 1994, 
used TIs and Gaussian mixtures to significantly extend the 
performance and design methodology of PNN classifiers. 

Real and Tufts, motivated by the above paper, conversations 
with Streit, and study of the original, statistical papers, 
derived a method for estimation of threshold values (or,in 
statistical terminology, quantiles) for signal detection and 
classification systems in which a prescribed value of 
probability of false alarm(PFA) is needed. The objective of Real 
and Tufts was to find, nonparametrically, from the observed 
training data, a maximum-likelihood small-interval estimate of 
the desired threshold ( or quantile). A confidence-interval 
interpretation can be made of the ROC-curves which 
result from this design procedure.Papers by Real and Tufts can 
be found in the January,1999, IEEE Signal Processing Letters and 
in the Proceedings of the 1999 IEEE ICASSP Conference. 

What are Tolerance Regions (TRs)? For simplicity let's discuss 
a univariate TR. First, a TR , consisting of a set of 
nonoverlapping intervals, is a random region. It is a random 
region because the endpoints of the intervals are functions of 
the training data. Second, these functions of the data are 
special and utilize order statistics, because only then can we 
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make precise probability statements about the underlying, 
unknown population. For example we can specify a probability, 
the "confidence level", that the coverage of the population 
by the TR is at least a specified value, called the "tolerance 
proportion". 

What are some other applications of TRs ? Real, Yannone, and 
Tufts, in their paper "Comparison of Two Methods for 
Multispectral 3-D Detection of Single Pixel Features in Strong 
Textured Clutter", Conf. Proc, IEEE MDSP^, July,1998, show 
how TRs can be used to compute and compare the ROC-curve 
performances of two different detection methods using only real, 
clutter-filled, image data. Qi Li and D. W. Tufts, in their 
paper "Principal Feature Classification", IEEE Trans Neural 
Networks 8, pp. 155-160 (Jan. 1997), show how to prune a large 
set of proposed features to obtain a smaller, but very 
effective, subset of features.This method can be improved by 
using tolerance regions to control the probability of 
misclassification.. 

In summary, application of tolerance-region concepts in the 
design of adaptive systems can provide performance which can be 
reliably controlled and predicted, based on real, measured data. 
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In this paper, we investigate the use of the sequences in the Prometheus orthonor- 
mal set (PONS) for application as codewords in orthogonal frequency division mul- 
tiplexing (OFDM) communication systems. The energy spreading properties of 
the PONS sequences are well suited to addressing the problem of controlling the 
peak-to-mean envelope power ratio (PMEPR) for OFDM systems. It is shown that 
the matrix consisting of the rows of the PONS matrix of order 2m, together with 
their antipodal counterparts, can be identified with a coset of the first-order Reed- 
Muller code RM(1, m) inside the second-order code RM(2, m), thereby establish- 
ing a connection between the PONS (and hence Shapiro) sequences, and classical 
error-correcting codes. 

The PMEPR values obtained for codewords in the PONS sets are, as may be ex- 
pected, similar to those attained by the construction based on general Golay comple- 
mentary pairs recently proposed by Davis and Jedwab. While the Golay construction 
generates many more codewords of a given length than do the PONS sequences, the 
PONS construction provides a complete orthogonal set of sequences which consist 
of Golay pairs. Generalization of the (classical) PONS construction can yield other 
(non-orthogonal) families. 
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I.    INTRODUCTION 

In orthogonal frequency division multiplexing (OFDM) modulation schemes, data is 
transmitted simultaneously over multiple equally spaced carrier frequencies, using fast 
Fourier transform (FFT) processing for modulation and demodulation. OFDM offers many 
advantages for transmission at high data rates over time-dispersive, fading and multipath 
channels at low signal-to-noise ratios [1]. The method has been proposed for digital audio 
and video broadcasting, with the IEEE 802.11 Draft Standard making use of OFDM for 
wireless local area networks (LANs). 

The principal difficulty with OFDM is the high peak-to-mean power ratio of uncoded 
OFDM signals. That is, when sinusoidal signals of n carriers add constructively, the peak 
envelope of the transmitted power is large—as high as n times the mean envelope power. 
The requirement for large peak transmitter power introduces a host of practical difficulties, 
particularly in mobile applications, where battery power is a constraint. Moreover, regu- 
latory limits on peak power reduces the effective range of OFDM transmissions, and may 
require power amplifiers to operate in regions where power is converted inefficiently. 

An idea which has emerged over the past few years is to use block coding to transmit 
across the n carriers only those binary sequences which lead to small peak-to-mean enve- 
lope power ratio (PMEPR). The first such approaches used exhaustive searches to identify 
the best sequences in terms of small PMEPR, and required large lookup tables for encoding 
and decoding. 

Recently, Davis and Jedwab [5], [6] announced a previously unrecognised connection 
between Golay complementary sequences, whose good PMEPR properties had long been 
recognised [2], [10], and second-order Reed-Muller codes, with good error correction 
properties and efficient algorithms for encoding and decoding. The essence of [5], [6] 
(see also [9]) is to allow transmission across the carriers only those II sequences belong- 
ing to a Golay complementary pair. While it had been known since work of Boyd [2] and 
PopoviC [10] that the use of Golay sequences as codewords to control the modulation of 
carrier signals results in OFDM with PMEPR at most 3 dB, the key contribution of Davis 
and Jedwab was to establish that in addition to controlled PMEPR properties, Golay se- 
quences also possess sufficient intrinsic structure to form a practical error-correction code. 

In an independent line of research, Byrnes [3] constructed a sequence of polynomials 
with coefficients El, each of which has a PMEPR at most 2 or, equivalently, a crest factor 
of \fi.. The coefficients in the polynomials occur as the rows of a 2TO x 2m matrix and are 
all orthogonal (a Hadamard matrix) and, when suitably normalised, form a complete or- 
thonormal basis for the space J? (0,27r) while preserving the flatness and unimodularity of 
the Shapiro polynomials [12]; see also [11]. In fact the rows occur as Golay complemen- 
tary pairs. In view of the "energy spreading" properties of this sequence of polynomials, 
which we hereafter term the Prometheus orihonormal set (PONS) [4], it is natural to ask 
what potential application they might find in OFDM-based communications systems. 

In this paper, we show that with P the PONS matrix of order 2"\ the 2m+1 x 2m matrix 
formed from the rows of P and its antipodal counterpart -P, can be identified with a sub- 
code of the second-order Reed-Muller code RM(2, m) under the mapping a? =? (-l)a:. 
Moreover, we show that the PONS sequences and their antipodal counterparts can be gen- 
erated as a coset of the first-order Reed-Muller code RM(1, m) with the classical Shapiro 
sequence used as a coset representative. Other properties of PONS notwithstanding, the 
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PONS sequences therefore amount to the first-order Reed-Muller code RM(1, m) with an 
additive offset. 

PONS is therefore one of the cosets identified by Davis and Jedwab as being suitable 
for application in OFDM. The more general Golay construction of Davis, Jedwab and 
Paterson generates many more codewords of a given length than a basic PONS sequence. 
However the PONS sequences of a given length form a maximal orthogonal set of such 
sequences. The PONS construction has some flexibility and so can generate many such 
maximal orthogonal sets of a given length. It would be of interest to know whether all of 
the codes of Davis, Jedwab and Paterson can be generated by the PONS construction. 

2. GOEAY SEQUENCES AND THE PONS CONSTRUCTION 
Let a = (a0,ai,...,an_i)and& = (60,&i,.-.,&n-i)> where a?, 6, € Z2. The aperi- 

odic autocorrelation of a at displacement I is üa(F) = J^i w"''~a,+l, where the summation 
is understood to be over only those integer values for which both i and i + I he within 
{0,1,..., n - 1}, and where a = £™IM. The sequences a and b are called a Golay com- 
plementary pair over 7,2 if Ca(£) + übTO = 0 for each I ^ 0. Any sequence which is a 
member of a Golay complementary pair is called a Golay sequence. With a slight abuse of 
notation, we will also refer to II sequences a0 and a1 as forming a Golay complementary 
pair, by which is meant that 

A(SP)(l) + A(B1)({) = 0,       I ?0, (1) 

where the aperiodic autocorrelation function A(s)(F) of a = [HQ ai... an_i] is defined: 

A(u)(l) = { Ew_1"i«w.   -n<l<Q 
0 otherwise. 

(2) 

The PONS construction of II matrices of order 2m, denoted ?2™, is presented in [3], 
and derives from the idea of the Shapiro transform of a unimodular sequence [12]. The 
presentation here is an inductive method based on a matrix concatenation rule presented 
by Byrnes [4]. Starting with the matrix 

P2 = 
1     1 
1 -1 

the concatenation rule 

r A Bl 
A' 
B 

=* 
A 
B 

-B 
A 

.B A_ 

(3) 

is applied, where A and B are two consecutive matrix rows. Thus the rule (3) means that 
the first row of F* is the concatenation of A = [1 1] and B = [1 - 1]; the second row 
of Tu is the concatenation of A and -B, and so on. To obtain the matrix P8, we first take 
the pair A, B to be the first two rows of Pi, and use the concatenation rule (3) to obtain 
the first four rows of T». Then we take the pair A, B to be the next two rows of Bj, and 
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use the rule (3) to obtain the next four rows of F8, and so on. The sequence of matrices 
constructed in this way will be termed the original PONS sequence to distinguish them 
from more general constructions [4]. 

3.    POEYPHASE PONS 
The PONS construction is capable of extension by the replacement of -1 by higher 

roots of unity. This provides codes with similar energy spreading properties to the 3E1 
construction but now with values in the powers of a root w of 1. We illustrate the idea with 
the case when a is a cube root of 1, say a = e2™/3. This time we start with the matrix 

P2 = w a- 
1   G7a a 

and the concatenation rule is 

\ A      B      Ü 
A   wB a2U 
A w2B   voC 

A] B      Ü      A 
B =f B   au w2A 
Ü B n2T3   wA 

Ü      A      B 
- Ü    wA w2B 

Ü w2A   wB 

(4) 

This rule is applied to three consecutive matrix rows A, B and V. The resulting codes 
are of length 3" and 3n such codes are produced which are orthogonal, thus producing a 
maximal (i.e. complete) orthogonal set. The aperiodic autocorrelations A(a) for these (as 
defined in (2)) satisfy an equation like (1) but with three terms. This gives an upper bound 
for their PMEPR of 3. Of special interest are the codes corresponding to w = i which are 
of length 4n. 

A(s?k+1)(l) + >l(a3*+2)(?) + A(uu+3)(l) = 0,       I/O, (5) 

for any k = 0,1,..., 3n_1 where the length of a5 is 3". 
This polyphase construction, together with the property of the aperiodic autocorrelations 

in equation (5), identifies triples of octary codewords with special correlation properties, 
and explains the fine structure behaviour of second-order octary cosets observed by Pater- 
son [9]. 

A.    OFDM TRANSMISSION 
An n-carrier OFDM signal is composed by adding together n equally spaced, phase- 

shifted sinusoidal carriers. Information is carried in the phase shift applied to each carrier. 
If M distinct, equally-spaced phase shifts are used, then we say that the OFDM system uses 
M-aty phase-shift keying, or M-PSKmodulation. With carrier frequencies jfo + j'fs, 0 < 
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j < n, the OFDM signal may be represented as the real part of the complex-valued function 

n-l 
3(a)(4) = £ ^^(Jo+i/.)^ (6) 

J=o 

where the information-bearing sequence a = (ao, ai,... a„_i), aj e ~ZM, is called an 
OFDM codeword and a — e2™/M is a complex M-th root of unity. This signal is trans- 
mitted for a length of time equal to l/jfs, called the symbol period. In practical systems, 
Ji is a power of 2. For M = 2, we have binary OFDM codewords and binary or BPSK 
modulation, and the present paper is restricted exclusively to this case. 

We define the instantaneous envelope power of the OFDM signal to be the function 
P(a)(4) = |3(a)(4)|2, and is an upper bound for the actual power Re(3(a)(£))2 of the 
OFDM signal. It is straightforward to show that 

n-l 

P(a)(4) =    J2 ^(a)We2^7*1 

Z=l-n 
n-l 

= U(u)(0) + 2 • Re ]T ü(*)(l)e2vlJ'1, 
i=i 

where Ü (B)(1) is the aperiodic auto-correlation function of the codeword a. From this last 
expression, we see that the time-averaged envelope power of 3(a)(4) is equal to n, and so 
the peak-to-mean envelope power ratio (PMEPR) of the signal is defined to be 

- sup P(a)(4). (7) 
n o<i<i 

A key idea from the work of Boyd [2] and later Popovid [10] is to consider codewords 
that are Golay complementary sequences. Suppose a0 and a1 are a Golay complementary 
pair of length-n vectors whose values are drawn from EEL Then we have: 

n-l 

P(a°)(4) + P(a1)(4)  =    £   [ü(a?)(l) + ü(a1)(l)] e^nln 

?=l-n 

= C(B0)(0) + t7(a1)(0) 

= 2ra, 

and hence 

0 '< P(a5)(4) < 2n,       j = 0,l. 

Thus the PMEPR associated with a multi-carrier signal modulated by a codeword a from 
a Golay complementary pair is at most 2, i.e. 3 dB. Since each PONS sequence is a Golay 
sequence, it immediately follows that PONS-based OFDM transmission systems guarantee 
a PMEPR of at most 3 dB. 

5.    REED-MUEEER CODES 

We consider Z2-valued sequences of length 2m. Let rc0 be the all-l's sequence. For 
i = 1,2,... ,m, let a;, be 2*_1 concatenated copies of the sequence comprising 2m~% O's 
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followed by 2m~l l's. Then x0, si, •.., xm form the rows of a generator matrix for the 
first-order Reed-Muller code RM(l,m). These sequences, together with the componen- 
twise products XiXj for 1 K i < j K m form the rows of a generator matrix for the 
second-order Reed-Muller code RM(2, m). 

A generator matrix U produces a code C in the sense that ^-linear combinations of the 
rows of U yields a set of length-ra Z2-valued vectors, called codewords. By a coset of C, 
we mean a set of the form a + C where a is some fixed vector, the coset representative, 
overZ2. 

Expressed in terms of Boolean functions, the general r-th order binary Reed-Muller 
code RM(r, m) of length 2m is defined to be the binary code whose codewords are the 
vectors identified with the Boolean functions of degree at most r in x0,xi,... ,xm-i. 
The code RM(r,m) is linear, and has minimum Hamming distance 2m~r [8]. The bi- 
nary Reed-Muller codes were first presented in 1954, and while they are arguably one of 
the best understood families of codes, it is only recently that the connection with Golay 
complementary sequences was established. The central result of [5], [6] is: 

THEOREM 5.1.   The codeword 

m—l m 

is a binary Golay sequence of length 2m for any permutation it of {1,2,..., m} and 
for any coefficients c? € {0,1}. 

The second term in equation (8) produces the 2m+1 codewords of the first-order Reed- 
Muller code RM(1, m), while the first term, interpreted as coset representative, generates 
m!/2 Boolean functions, each of which is identified with a codeword from RM(2,m). 
There are only m\/2 rather than m! such terms, since the expression Y^=i ^(«^(i+i) 
is invariant under the mapping n F? IT', where 7r'(k) = ir(m + 1 - k). 

Equation (8) therefore determines 2mra! binary Golay sequences of length 2"\ rep- 
resented as m!/2 distinct cosets of RM(l,m), each containing 2m+1 codewords. The 
existence of at least this many length-2m binary Golay sequences was noted in [7]. The 
code consisting of all sequences identified in Theorem 5.1 is a subcode of RM(2, m) and 
therefore has a minimum distance of at least 2TO-2. 

While the details of the encoding and decoding scheme are discussed at length in refer- 
ences [6], [9], the essence can be conveyed with a simple example from [5]. For m = 3 
there are three choices of coset representative, namely Xi^ +12^3 = 00010010, 11X3 + 
12X3 = 00010100, and xix2 + Z1X3 = 00000110. One of two coset representatives (say 
the first two) is selected according to the value of one data bit, and to this is added the en- 
coded value £j cjxj of four further data bits (ci, c2, c3, C4) to produce an 8-bit transmitted 
codeword with PMEPR at most 3 dB. 

For m = i, Table 1 in [6] explicitly lists the m!/2 = 12 coset representatives generated 
according to (8), representing a total of 244! = 384 length-16 binary sequences. By inspec- 
tion, the first coset representative in [6, Table 1] is equal (after mapping 0R1,1R-1) 

to the first row of the original PONS matrix of order 16 or, equivalently, the first 16 terms 
of the classical Shapiro sequence. Exhaustive calculation with this example shows that the 
whole coset of RM(1,4) generated by this particular coset representative according to (8) 
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produces all 16 rows of the original PONS matrix of order 16, together with their antipodal 
counterparts. 

THEOREH 5.2. The matrix consisting of the rows of the original TUWS matrix of 
order 2m, together with their antipodal counterparts, can be identified with a coset of 
the 'first-order Heed-fflvller code KM(l,m) Inside the second-order code H"M{2,m). 
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Increasingly, systems are being designed to account for impulsive be- 
haviour that may be present in signals, with one of the prominent statistical 
models used being the a stable distribution. Two techniques are presented 
that test for the level of impulsive behaviour, specifically by testing the pa- 
rameter Q. The bootstrap is used in both cases to approximate the distri- 
bution of the test statistics and in the setting of critical values. Simulation 
results show that both tests are able to distinguish between non-impulsive 
(Gaussian) and impulsive (non-Gaussian) a stable distributions. 

Key Words: impulsive interference, alpha-stable distribution, parametric bootstrap, char- 
acteristic function, goodness-of-fit tests 

1.    INTRODUCTION 

Statistical models that incorporate impulsive behaviour have found use in the 
analysis of atmospheric communication channels, underwater acoustic signals, radar 
systems, economic time series and biomedical signals [7]. The alpha stable (aS) 
distribution has been prominently used in many of these cases. This may be due to 
physical reasons - interference from spatially Poisson distributed scatterers is aS 
distributed - or merely due to its general form - it is a broad family of distributions. 

The aS distribution is a four parameter distribution defined in terms of its char- 
acteristic function 

<j>{t) = exp {jSt- | ct \a [1 - jßsgn(t)u>(t, a)]} 

where 

,,    .      f tan(a7i72) ,     a^l w(i,a) = -j 
(2/TT) log |«|   o = l 

l 
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and sgn(i) is the signum function [3]. Herein, a, 0 < a < 2, is the characteristic 
exponent, ß, -1 < ß < 1, the skewness parameter, c, 0 < c, the scale parameter 
and S, — oo < S < oo the location parameter. 

The characteristic exponent, a, is a measure of how impulsive the distribution 
is. The smaller a, the more impulsive is the aS distributed process, that is, the 
more outliers occur in an observed series. When a = 2, its maximum value, the aS 
distribution is equivalent to the Gaussian distribution. 

The degree of impulsiveness is an important feature in many applications. For 
example, in a radar application a detector designed for Gaussian interference may be 
used if a — 2, rather than a more complicated detector for signals in aS interference. 

To test impulsive behaviour we suggest a test for a. The procedures presented 
are applicable in principle to all four parameters, however we will focus on test- 
ing a only, and, more specifically, on the special case of testing for the Gaussian 
distribution (a = 2) against non-Gaussian, stable distributions. 

Throughout this paper we have used the parameter estimation procedure sug- 
gested by Koutrouvelis in [6]. By manipulation of the characteristic function of 
the aS distribution it was shown that estimators of the parameters could be found 
through a regression technique. The estimators are consistent and asymptotically 
unbiased. Tabulated values of the MSE (and a number of other statistical quanti- 
ties) of the estimators were presented for some parameter settings. These quantities 
were derived through Monte Carlo simulations in [6]. Expressions for the asymp- 
totic properties of the estimators are unavailable. 

In the following section we discuss the hypothesis testing problem for impulsive 
behaviour using bootstrap methods. Following this, a test procedure is derived 
in section 3 that tests for the value of a. An alternative approach, using the 
characteristic function is presented in section 4. In section 5, simulation results are 

presented and conclusions are drawn in section 6. 

2.    HYPOTHESIS TESTING WITH THE BOOTSTRAP 

The bootstrap is a simple automatic procedure that can take the place of analytic 
analysis. It can be used to estimate the sample distribution of statistics when 
standard methods cannot be applied. Observations are randomly resampled and 
the statistics re-computed - mimicking the process of repeating the experiment. 
When this is done a large number of times, the distribution of the re-computed 
values approximates the distribution of the statistic. The principle of hypothesis 
testing using the bootstrap is discussed in [4, 9]. 

Consider the aS family of distributions, indexed by the parameter vector p = 
[a ß c S]T £ V, F{p.p6-p}. Further, define two disjoint subsets of this family 
TQ = {F<p0} and T\ = {F^}. These two sets are indexed by parameter sets Vo 

and V\ which span the parameter space V, that is, Vo U VI — V and Vo fl V\ = 0 
Let the observations X = Xi,X2,... ,Xn be independent and identically dis- 

tributed having distribution Fp. We wish to test the hypothesis 

H: Fp 6 To     versus     K: Fp G T\ 

or alternatively, defined in terms of the parameter space 

H: p G Vo     versus     K:p£Pi 
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If we can assume X is symmetrically distributed about the origin, that is, ß = 0 
and 6 = 0, and we assume unit scale, c = 1, the hypothesis becomes one of testing 
the parameter a 

H: a = ao     versus     K: a ^ «o 

To test the hypothesis, we define a test statistic T(X) = T with distribution 
KT,P(X) = Pa{T < x} where Pp is the probability corresponding to Fp. We can 
now find the bootstrap estimator of the critical value q, q = K^\o (1 - 7), where 7 is 
the desired level of significance. The distribution of the test statistics of independent 
bootstrap resamples, T*, approximates the distribution of T. Consequently, q can 
be approximated by an order statistic of T*. 

Under some assumptions on the distribution of T under H and K, it has been 
K 

proven that the bootstrap test T(X) ^ 
H 

uniform in p [8]. 

^ q is asymptotically correct and consistently 

3.    TESTING THE a PARAMETER 
The test for a suggests the use of the test statistic 

T  = 
a- ao 

where a is an estimate of a derived from the observations and a& is an estimate of its 
standard deviation. This quantity is an approximate pivot, meaning its distribution 
is approximately independent of any unknowns. 

In Table 1, we present the proposed bootstrap based procedure for testing the a 
parameter. We also show the technique in block diagram form in Fig 1. Thick ar- 
rows indicate the bootstrap replications generated through the aS random number 
generator (RNG). Estimates of a&, the variance of the estimate a and 0%, the vari- 
ance of the bootstrapped estimates a* are obtained using nested bootstrap stages. 
Details can be found in [11]. 

<*o 

& X Parameter 
Estimation 

ffa 

T 

Variance 
Estimator p^ 

Test 
X* 
 =*, aS 

RNG 
Parameter 
Estimation —**. 

&*-& 

 *> 

y*~ 

^-} r-1 

T" 

Bootstrap 
Variance 

Estimator 
at ,"> 

«0 
or 
«1 

FIG. 1.    Block diagram of the bootstrap test for a. 
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Step 1. Parameter estimation. Find the parameter estimate a from the sample X. 

Step 2. Parametric resampling. Using a pseudo-random number generator, generate a 
random sample X* of the same size as X, from an QS distribution with parameter a. 

Step 3. Calculation of the bootstrap statistic. Prom X*, calculate T* 

Step 4. Repetition. Repeat steps 2 and 3 many times to obtain a total of B bootstrap 
statistics 7T, T2*,..., TB and the test statistic T. 

Step 5. Ranking. Rank the collection T?,T£,... ,TB into increasing order to obtain 
T^<T^<-<T(By 

Step 6. Test. A bootstrap test has then the following form: reject H if T < T(*c), where 
the choice of C determines the level of significance of the test and is given by C = \j(B+l)], 
where 7 is the nominal level of significance [4]. 

TABLE 1 
The  bootstrap   principle   for   testing  the   hypothesis   H   :   a   =   ao 

against K : a < ao- 

Importantly, the distribution of Ta is approximated by the distribution of 

and not by the distribution of K=2- or of a* - a. This has been shown to keep 
the actual level of significance closer to the nominal level [4, 11]. The bootstrap 
distribution of T* = ¥^& approximates the distribution of Ta = ^ff2- better 
under H than the distributions of a* — a approximates the distribution of a — «o 
in terms of finding the scaling or dispersion of T. 

4.    CHARACTERISTIC FUNCTION BASED TEST 

Differences between characteristic functions have been used extensively to test 
for changes in distributions. This is especially so for Gaussianity testing, where the 
technique originated [2, 5]. However, it was frequently noted that one of the major 
advantages of characteristic function (cf) based goodness-of-fit testing was that it 
could be adapted to test for almost any distribution, as long as the cf is specified. 
This lead to its recent application to testing for the aS distribution, against all 

other distributions, in [1]. 
Here, a parametric form of the cf based tests is formed to accommodate the 

additional knowledge / assumption that we are operating within a defined family 
of cfs. A parametric estimate of the cf of the generating process is compared to the 
cf of the distribution under H, (/>(t, p0), rather than a nonparametric estimate, such 
as the empirical characteristic function. This parametric estimate is found by using 
the estimated parameter values and the known form of the cf of aS distributions 

and is denoted <f>(t, p). 
In [10] it was found that the peak absolute difference between two cfs provided a 

good measure of the distance between the two distributions. Drawing on this, we 

214 



TESTING FOR IMPULSIVE INTERFERENCE 5 

define our test statistic to be 

T«£ = max \<f>(t, p) - 4>{t, po)| 

The parameter vector, p = [a ß c S]T, has all four parameters of the distribu- 
tion. This highlights an advantage of this test statistic over the statistic defined in 
section 3, namely, it incorporates all parameters into the test. This allows its use 
in a broader range of problems. 

The distribution of T§ is complicated and unknown, we again draw on the para- 
metric bootstrap to determine critical values. We will approximate this distribution 
by 

T* = max Mf,p*) -</>(*, p) |. 

The procedure is presented in Fig 2. 

PO Üharacteristi 
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*(* PO) -,c "\ 

3 

) 

v 

T 

1—   —1 
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X Parameter 

"Estimation 
I jharacteristi 
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tf(t.p) 

■^r 
X* 
 =»» 

*(« 
A 

cS 
RNG 

Parameter  =K Characteristic 
Function  ^ Estimation  ^ —*\. J- 

«0 or 
«1 

FIG. 2.    Block diagram of the characteristic function based test. 

5.    SIMULATION RESULTS AND DISCUSSION 
A simulation study was undertaken to determine the performance of the two 

tests. Here we consider ao = 2, that is, we are testing the hypothesis that the 
observations are Gaussian distributed against non-Gaussian aS distributed. This 
is probably the most important case to consider as it tests if the observations have 
bounded or infinite variance. 

Rejection rates for a number of values of a are presented in Tables 2 and 3 for 
observation sample sizes of 200 and 400 respectively. The nominal significance level 
was set at 10%, the number of bootstrap replications was 300 and 25 replications 
were used for the bootstrap variance estimator in the evaluation of the test statistics. 

TABLE 2 
Rejection rates (in %) for sequence lengths of 200 based on 300 replications. 

a 1.7 1.8 1.9 1.95 2 

T0 

97.0 
93.3 

88.0 
73.3 

56.3 
37.7 

27.0 
11.0 

7.7 
2.3 

Inspection of the results show that directly testing a through the Ta statistic 
yielded higher rejection rates than the cf based technique, T$. However, it should 
be remembered that the cf based test is simpler to adapt to the case were more 
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TABLE 3 

Rejection rates (in %) for sequence lengths of 400 based on 300 replications. 

a 1.7 1.8 1.9 1.95 2 

100 
100 

99.3 
95.3 

76.3 
61.3 

50.3 
29.0 

6.3 
0.3 

than one parameter is to be tested. The performance of the cf based test may be 
improved through the use of a pivotal statistic based on (j>(t,p)- 

As expected, rejection rates decrease as a approaches a0 = 2 and when fewer 
observations are available. The achieved level is well below the nominal level, 
especially for the un-standardised T^. 

6.    CONCLUSIONS 

Two tests have been presented for testing the parameter values of an aS distribu- 
tion. The bootstrap procedures implemented have been shown to allow the appro- 
priate setting of critical values for the test that have maintained the nominal level 
of significance. Although testing the a parameter directly yielded a more powerful 
test, it is to be noted that the characteristic function based procedure has a high 
degree of flexibility. Simulation results show that both reject the non-Gaussian al- 
ternatives tested with rates varying depending on the degree of impulsive behaviour 
and the number of observations available. 
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DASP99 Sessions 

Monday August 23 

9:00am-Lecture Session Ml (Chair-Bill Moran, Flinders University of South Australia) 

9:00-9:40     Doug Gray, CSSIP, SA, "Applications of Probabilistic Least Squares Tracking to Pulse Train 
Deinterleaving" 

9:40-10:20   John Benedetto, "Periodicity Detection and Multidimensional Irregular Sampling Algorithms" 

10:40am-Lecture Session M2 (Chair-Rick Johnson, Cornell University) 

10:40-11:20 Moeness Amin, Villanova University, Philadelphia PA, "Direction Finding Based on Spatial 
Time-Frequency Distribution Matrices" 

11:20-12:00 Ken Harrison, Murdoch University, Perth WA "Quantum Algorithms" 

1:00pm Poster Session (Chair - Jon Sjogren, Air Force Office of Scientific Research ) 

D. Cochran A Bayesian Risk Approach To Multi-Mode Detection 

J. Praschifka Investigation Of Target Detection In HF Skywave Radar Using Thomson?S Multiple Window 
Method 

K. Kastella, 
S. Musick 

Bias Estimation In An Association-Free Nonlinear Filter 

C. Hallam A Multicriteria Shortest Path Algorithm For Plotting A Safe Path Through A Field Of Sensors 

M. Zoltowski Smoothing Of Space-Time Power Minimisation Based Preprocessor For GPS 

P. Sherman On The Statistical Nature Of Real Sinusoids Associated With Rotating Machinery 

L. White Convergence Analysis Of An HMM Based Multiuser Detector For CDMA Channels With ISI 

8:00pm-Lecture Session M3 (Chair-Alan Lindsey, Air Force Research Laboratory /IFGC) 

8:00-8:40     Stella Batalama SUNY Buffalo, "Robust Adaptive Recovery of Spread-Spectrum Signals with 
Short Data Records" 

8:40-9:20     John Treichler, AST, Sunnyvale CA, "The Future of Telephone Networks" 
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Tuesday August 24 

8:00am - Lecture Session Tl (Chair-Lang White, University of Adelaide) 

8:00-8:40     Yuri Abramovich, CSSIP, SA, "Nonuniform Linear Antenna Array Design and Signal Processing 
for DOA Estimation of Gaussian Sources" 

8:40-9:20     J. McClellan, "Quadtree Focusing for UWB SAR" 

9:40am-Lecture Session T2 (Chair-Alan Lindsey, Air Force Research Laboratory /IFGC) 

9:40-10:20   Vikram Krishnamurthy, University of Melbourne, "Finite Dimensional Algorithm for Optimal 
Scheduling of Hidden Markov Models Sensors" 

10:20-11:00 Dale A. Lambert, DSTO, Salisbury SA, "Advisers With Attitude For Situational Awareness" 

11:00-11:40 A. Nehorai, "Source Localization with Distributed Electromagnetic Component Sensor Array 
Processing" (Presenter-A Nehorai) 

1:00pm - 7:00 Small Sphere Impulsive Targeting- Group Experiments 

8:00pm Poster Sessions (Chair-Gordon Frazer, DSTO) 

L Sciacca 

R. Mersereau, 
M. Smith 

N. Redding, 
J. Schroeder 

S. Elton 

B. Bullard 

M. Rangaswamy, 
J. Michels 

R. Bonneau 

D. Dudgeon 

Target Tracking With Dissimilar Sensors Using Set-Based Estimation 

A Hidden Markov Model Classifier For Anti-Tank Guided Missiles 

Comparison Of Selected Features For Target Detection In Synthetic Aperture Radar Imagery 

IDEA-A Signals Analysis Package For ELIOT Processing And Extraction 

Rotary-Wing Target Radar Signal Processing And Signature Simulator 

A Parametric Adaptive Matched Filter For Airborne Radar Applications 

A Model For Shape And Texture Content-Based Image Compression 

"ATR Performance Modeling And Estimation" 
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Wednesday August 25 

8:00am-Lecture Session Wl {Chair-Mark Smith, Georgia Tech) 

8:00-8:40     Don Tufts, University of Rhode Island, "Real CFAR: Nonparametric, Data-Adaptive Thresholding 
As an Example of Tolerance-Region Signal Processing" 

8:45-9:25     V. Veiten, "Automatic Target Recognition (ATR) Via Invariance Theory For IR And RF Sensors" 

9:30-10:10   Gordon Frazer," Wigner-Ville Analysis Of HF Radar Measurements Of Surrogate Theatre 
Ballistic Missile" 

10:25am - Poster Session (Chair-John Treichler, Applied Signal Technology, Inc.) 

A. Lindsey Performance Of Simplex Signaling In Circular Trellis-Coded Modulation 

J. Hefferan Object Enhancement In Time-Frequency Scans Of Communications Environments 

B. Moran On The Use Of The PONS Sequences For Peak-To-Mean Power Control In OFDM 

J. S. Goldstein Colored Noise Matched Filtering With Unknown Covariance 

M. Greening Array Element Localisation Using Simulated Annealing 

O. P. Kenny A Speech Segmentation Algorithm With Application To Speaker Identification 

A. Zoubir Testing For Impulsive Interference : A Bootstrap Approach 

J. Michels, 
B. Himed 

Space Tune Adaptive Processing (STAP) In Compound-Gaussian Airborne Radar Clutter 

l:00pm-Lecture Session W2 {Chair-Jim Schroeder, CSSIP, SA) 

1:00-l:40     J. Bucklew, "Nonlinear Equalization Using SVMs" 

1:40-2:20     Linda Davis, University of Adelaide, S A, "Turbo Channel Estimation and Equalization for Mobile 
Data Communications" 

2:20-3:00     Peter Shoubridge, DSTO, "Approaches to Measuring Network Change" 
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Thursday August 26 (Chair, Mark Smith, Georgia Institute of Technology) 

"Signal Processing in Defense Systems: The Future" 

8:00-8:30 Dennis Healy, DARPA 
8:30-9:00 Richard Linderman, AFRL 
9:00-9:30 Marian Viola, DSTO 

Panel Session, Q&A, Focus Groups 
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Sunday, August 22 

Schedule 

Wednesday, August 25 

7:00 pm 10:00 Welcome Reception 
Beverages, finger foods. 

Monday, August 23 

7:30 am 9:00 Breakfast / Registration 

9:00 10:20 Lecture Session Ml (2) 

10:20 10:40 Break 

10:40 12:00 Lecture Session M2 (2) 

12:00 1:00 Lunch / Posters 

1:00 3:00 Monday Posters 

3:00 6:30 Free Time 

6:30 8:00 Dinner 

8:00 9:20 Lecture Session M3 (2) 

Tuesday, August 24 

7:00 
am 

8:00 Breakfast 

8:00 9:25 Lecture Session Tl (2) 

9:25 9:40 Break 

9:40 11:50 Lecture Session T2 (3) 

11:50 1:00 Lunch 

1:00 7:00 Free Time / DASP99 Small 
Sphere Targeting Experiments 

7:00 8:00 Dinner 

8:00 10:00 Tuesday Posters 

7:00 
am 

8:00 Breakfast 

8:00 10:10 Lecture Session Wl (3) 

10:10 10:25 Break 

10:25 12:00 Wednesday Posters 

12:00 1:00 Lunch 

1:00 3:10 Lecture Session W2 (3) 

3:10 6:30 Free Time 

6:30 8:00 Dinner / Posters 

Thursday, August 26 

7:00 
am 

8:00 Breakfast 

8:00 9:30 "Signal Processing in Military 
Systems: The Future" 
Liriderman, Viola, Healy 

9:30 9:40 Break 

9:40 11:30 Panel Session, Q&A, Focus 
Groups 

11:30 12:30 Lunch 

1:00 Australian Guests Depart for 
Chicago 

3:00 4:30 Wendella Boat Tom- 

5:00 7:00 Navy Pier: Ferris Wheel, 
Shops 

7:30 10:00 Chicago-Style Dinner at 
Pizzeria DUE 

10:00 Depart for LaSalle 
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