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Introduction 

This document and references herein constitute a final report of the DARPA-funded VINT 
Project (Virtual InterNetwork Testbed) at the Xerox Palo Alto Research Center. This 
project has been a collaboration between Xerox PARC, USC Information Sciences Institute 
and the Lawrence Berekeley National Lab. While much of the work was accomplished 
jointly, this report will focus primarily on contributions at Xerox. 

The goal of this project, as outlined in our original proposal, was to enhance the state 
of the art of network protocol design through the creation of a network simulator and 
related tools, and to validate this software by using it in our ongoing research. As described 
below, we have met these objectives. The VINT Project has made several releases of the ns 
simulator, the nam network animator and other related tools (e.g., topology generators). 
In addition, this simulator has been used in our ongoing research program, resulting in 
several technical papers on a range of topics. More importantly, the simulator has been 
widely adopted by a broad community of networking researchers and has been used in a 
wide range of research reflected in scores of technical papers. 

ns simulator 

The primary development effort of the VINT project has been focused on the ns network 
simulator. Version 1 of the simulator was developed at the University of California at 
Berkeley prior to the start of the VINT project. This version, which had been used in 
important network research had two major drawbacks. First, the set of modules supporting 
network protocols and algorithms was fairly limited because it had only been used in the 
study of a limited number of research problems. Second, the simulator architecture was 
not ideal for future extensibility. 

Under the auspices of the VINT project ns was re-architected, reflecting a more modu- 
lar and extensible design. This new architecure is embodied in version 2 of the simulator. 
In addition, the functionality of the simulator, reflected in the number and kinds of network 
algorithms and protocols it implements, has been expanded dramatically. Additional func- 
tionality includes (but is by no means limited to) several routing protocols (both unicast 
and multicast), many variants of TCP, new router scheduling algorithms, multicast trans- 
port protocols, wireless networking and web caching. Several ancillary tools have also been 



released to support such things as network animation, scenario generation and topology 
generation. Specific contributions at Xerox to the simulator include modules supporting 
model-based and trace-based generation of simulator traffic, router scheduling algorithms 
(e.g., DRR), web caching functionality (server, proxy and client modules), and functional- 
ity for support of real-time services (signalling protocol, scheduling and admission control 
algorithms, token bucket filters). In addition we made contributions to the core simulator 
infrastructure in areas such as event scheduling, random number generation, random vari- 
able support and scaling, and we contributed to the development of the network animator 
nam. 

The VINT project has made several releases of ns version 2 (the most recent being 
version 2.1b6 in January of this year.) It has gained widespread acceptance among the 
networking research community and it has had a broad impact on the work of this commu- 
nity. Anecdotally, it is by far the most commonly used simulator by researchers interested 
in the design and testing of new protocols and algorithms for the Internet. This is reflected 
in the following: 

• The simulator has been downloaded by hundreds of sites worldwide. 

• The mailing list for users of the simulator (ns-users@mash.cs.berkeley.edu) generates 
several hundred messages per month. 

• It is by far the most commonly used simulator in papers submitted to major academic 
conferences (such as Sigcomm and Infocom.) 

• Many pieces of contributed code have been produced by the user community, further 
enhanching the functionality of the simulator. 

The ns simulator is available at http://www-mash.cs.berkeley.edu/ns/. Additional infor- 
mation about the simulator and the broader contributions of the project is available in [1]. 
The network animator, nam, is described in [5]. 

Research Using ns 

A critical factor in the success of the VINT project is that the software it has produced has 
been employed to support ongoing network research of the project members. Subjecting the 
simulator to the stress of daily use has served to validate its design, highlight weaknesses, 
and inform continuing improvements and development of the simulator. This strategy is 
largely responsible for producing a piece of software that has widespread use and impact. In 
this section we describe some of the ways in which ns has been used in research. We confine 
our discussion to work performed at Xerox PARC. More complete listings of research 
making use of ns can be found at http://www-mash.cs.berkeley.edu/ns/ns-research.html 
and http://netweb.usc.edu/vint/publications.html. 

Measurement-Based Admission Control 

The purpose of this research was to compare the performance of several measurement-based 
admission control algorithms that had been proposed in the literature. Little comparison 



among these algorithms existed previously. This study required the addition of new func- 
tionality to ns to implement a scheduling algorithm for real-time services, a signalling 
protocol to support admission control, and the admission control algorithms themselves. 
The architecture embodied in version 2 of the simulator greatly facilitated this task. Specif- 
ically, the modular architecture enabled clean separation of functionality where appropriate 
(e.g., between measurement-based admission control algorithms and load estimators) and 
the object-oriented nature of the simulator provided a convenient platform on which to 
program several different admission control algorithms. This study is described in [4]. In 
addition to the valuable insights learned from this study, we hope that by implementing 
the existing algorithms in the simulator, it will be much easier for researchers proposing 
new algorithms to evaluate their algorithms. 

Core-Stateless Fair Queueing 

Core-Stateless Fair Queueing (CSFQ) is an algorithm whose aim is to provide isolation from 
misbehaving flows and fairness between flows without requiring core routers to maintain 
per flow information. This provides the benefits of Fair Queueing while overcoming its 
scalability problems. CSFQ was evaluated using simulation to compare its performance 
to that of FIFO scheduling with tail dropping, FIFO scheduling with RED, and DRR. 
This simulation study exposed one of the key benefits of ns. We were able to leverage the 
existing broad range of functionality available in ns (e.g., TCP, DRR, RED, UDP) and 
avoid duplication of work. Hence, researcher effort could be focused on implementing and 
studying a new algorithm (CSFQ) while avoiding duplication of previous implementation 
efforts. The results of the CSFQ study are presented in [7]. 

Web Caching 

We also used ns in a study of web caching. The goal of this research was to design a scalable 
web cache consistency architecture. The simulation evaluation consisted of a comparison 
of the proposed architecture to other schemes, such as Time-To-Live based algorithms and 
traditional invalidation approaches. As in the admission control work described above, the 
modular nature of the simulator facilitated the implementation of these competing designs 
(e.g., as different variants of web caches.) This work resulted in significant new web-related 
functionality in ns, including support for web servers, proxy caches and clients. A more 
complete description is available in [8]. 

Asymptotic Behavior of SRM 

In another study, ns was used to study the global loss recovery in Scalable Reliable Mul- 
ticast (SRM). One interesting aspect of the simulations in this study is that they did not 
use the existing node and routing structures in ns. This study was interested in scaling 
behavior and at the time it was performed, many of the subsequent enhancement to ns 
that improved its scaling were not yet available. Nonetheless, the simulator was beneficial 
to this study as the node and routing structures could be replaced easily with components 
specially tailored for the problem at hand while retaining the core simulator event handling 



mechanism. This demonstrates that as important as the particular protocol and algorithms 
implemented in the simulator is the extensible framework that allows the simulator to be 
modified to support virtually any problem requiring event driven simulation. This study 
of scaling in SRM is reported in [6]. 

Service Priority and Adaptive Applications 

This study examined the impact of multiple levels of scheduling priority on delay adaptive 
applications (e.g., VAT audio tool). As with our other work, having a simulator with the 
existing functionality of ns limited the amount of work needed to perform the study. In this 
case, we only needed to add different receiver behaviors to the simulator, taking advantage 
of existing traffic generation, router and link functionality. This work is reported in [2]. 

Priority Dropping and Layered Video 

While the prior work looked at scheduling priority, the final study we mention examined the 
effect of drop priority on layered video applications. Prior work had posited that priority 
dropping had poor incentive properties while providing good performance. In this study, 
with the aid of simulation, we showed that the performance of priority dropping was not 
as good as expected while the incentive properties were better than anticipated. This work 
is described in [3]. 
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Abstract 

New protocols and algorithms are being developed to 
meet changing operational requirements in the Inter- 
net. Simulation is a vital tool to quickly and inexpen- 
sively explore the behavior of these new protocol across 
the range of topologies, cross-traffic, and interactions 
that might occur in the Internet. This paper describes 
ns, a widely used, multi-protocol network simulator de- 
signed to address the needs of networking researcher- 
s. Ns provides multiple levels of abstraction to per- 
mit simulations to span a wide-range of scales, emula- 
tion, where real-world packets can enter the simulator. 
We describe the ns architecture and examine the range 
of ways simulation and ns are used in networking re- 
search. 

Keywords:    network protocol design, simulation, In- 
ternet protocols, split-language programming, ns, nam 

1    Introduction 

In recent years, the Internet has grown significantly in 
size and scope, and as a result new protocols and al- 
gorithms are being developed to meet changing opera- 
tional requirements in the Internet. Examples of such 

"This research is supported by the Defense Advanced Re- 
search Projects Agency (DARPA) through the VINT project 
at LBL under DARPA Order E243, at USC/ISI under DARPA 
grant ABT63-96-C-0054, at Xerox PARC under DARPA grant 
DABT63-96-C-0105. 

t Originally published in March, 1999, this technical report 
was updated in September, 1999 (one section was moved and 
a number of typos were fixed). This technical report has been 
accepted to appear in IEEE Computer Magazine. 

requirements include quality of service support, multi- 
cast transport, security, mobile networking, and policy 
management. Development and evaluation of protocol- 
s and algorithms for these domains requires answering 
many design questions. Although small-scale evalua- 
tion in a lab, wide-area testbeds, and custom simu- 
lators can all be valuable, each has significant short- 
comings. These approaches often lack the wide mix 
of traffic and topologies found in real networks, they 
can incur substantial expense, and repetition of exper- 
iments under controlled conditions can be difficult. 

Multi-protocol network simulators can provide a rich 
environment for experimentation at low cost. A com- 
mon simulation environment used across disparate re- 
search efforts can provide substantial benefits to the 
networking community. These benefits include im- 
proved validation of the behavior of existing protocols, 
a rich infrastructure for developing new protocols, the 
opportunity to study large-scale protocol interaction 
in a controlled environment, and easier comparison of 
results across research efforts. 

The VINT project is attempting to facilitate the de- 
sign and deployment of new wide area Internet pro- 
tocols by providing network.researchers with an im- 
proved set of simulation tools. This paper presents the 
VINT simulation framework and describes how it aims 
to meet many of the simulation needs of the network 
research community. We begin by identifying the re- 
quirements of a multi-protocol network simulator, after 
which we describe how VINT's ns simulator address- 
es these requirements. We then present the software 
architecture of ns, which provides an extensible frame- 
work within which new protocols can be developed. 
We then show several examples of ways in which ns 
has been used in protocol design and development, and 



we evaluate the success and shortcomings of the VIN- 
T effort. We conclude by discussing previous work on 
network simulation and related topics, and by describ- 
ing future challenges. A companion paper describes 
nam, the network animation companion to ns [12]. 

Ns is publicly available at http://www-mash.cs. 
berkeley.edu/ns/ and has been widely used by net- 
work researchers. 

Alternatives to a Common 
Simulator (sidebar) 

Testbeds and laboratory experiments are also impor- 
tant approaches to network research. Since they use 
real code, experiments run in testbeds or labs automat- 
ically capture important details that might be missed 
in a simulation. This approach also has drawbacks; 
testbeds are expensive to build, testbeds and labs can 
be difficult to reconfigure and share, and they have lim- 
ited flexibility. In addition, some networking phenom- 
ena such as wireless radio interference can be difficult 
to reproduce experimentally, thus making it difficult to 
compare or evaluate protocol designs. 

Protocol design using simulation usually begins with 
an individual investigator's simulations of isolated pro- 
tocol elements using small-scale topologies and simpli- 
fied/static assumptions about higher and lower level 
protocols. Because the startup costs are so high, no 
individual group has the resources to create a com- 
prehensive and advanced networking simulation envi- 
ronment, leading to a lack of standardization and re- 
producibility of simulations constructed by different 
groups of designers. In the current paradigm, directly 
comparable data would be available only if each indi- 
vidual designer implemented, within their own simu- 
lator, all of the competing mechanisms. Very few re- 
search groups have the resources to do this, and it is 
often most effective to have a simulation component 
constructed by those who know most about the partic- 
ular protocol represented by the component. 

Related Work (sidebar) 

Network Simulators Network simulation has a 
very long history. Ns itself is derived from REAL [22], 
which is derived from NEST [11]. Although we cannot 
list all relevant network simulators here, this section 
describes distinguishing features of network simulators 
and compares prominent examples with ns. 

Simulators have widely varying focuses. Many tar- 
get a specific area of research interest such as a partic- 

ular network type or protocol like ATM or PIM mul- 
ticast. Others, including ns, REAL, OPNET [10], and 
INSANE [25] target a wider range of protocols. The 
most general of these provide a simulation language 
with network protocol libraries (e.g. Maisie [3] and 
OPNET [10]). Very focused simulators model only the 
details relevant to the developer. 

The engine of ns and other network simulators is a 
discrete event processor. Several complementary ap- 
proaches have been taken to improve accuracy, per- 
formance, or scaling. Some simulators augment event 
processing with analytic models of traffic flow or queue- 
ing behavior (for example, 00 [29] and fluid network 
approximations [23]) for better performance or accura- 
cy. 

Parallel and distributed simulation is a second way 
to improve performance. Several simulators support 
multiprocessors or networks of workstations [22, 3, 31]. 
Although ns is focused only on sequential simulation, 
the TeD effort has parallelized some ns modules [31]. 

Abstraction is a final common approach to improv- 
ing simulator performance. All simulators adopt some 
level of abstraction when choosing what to simulate. 
FlowSim was the first network simulator to make this 
trade-off explicit [2]. As discussed in "Abstracting Sim- 
ulation" , ns supports several levels of abstraction. 

A number of different simulation interfaces are pos- 
sible, including programming in a high-level scripting 
language, a more traditional systems language [3], or 
sometimes both [10]. Some systems focus on allow- 
ing the same code to run in simulation and a live net- 
work (for example, x-Sim [6] and Maisie [3]). Most 
systems augment programming with a GUI shell of 
some kind Ns provides a split-level programming model 
where packet processing is done in a systems language 
while simulation setup is done in a scripting language. 
Nam [12] provides visualization output and is currently 
being enhanced to support simple scenario editing. 

Network Emulation. Early work in network emu- 
lation included the use of "flakeways" (gateways that 
could alter or drop packets) and were used for early 
TCP/IP tests. More recent work has included spe- 
cial purpose stand-alone network emulators support- 
ing packet delays and drops [1, 33]. These systems are 
usually implemented as kernel drop-in modules that 
intercept the IP layer packet forwarding path and thus 
appear to end stations as routers. Their capabilities 
are generally limited to simple packet manipulations 
and don't provide for interference from simulated cross 
traffic. Moreover, these systems do not include a gen- 
eral simulation capability as provided by ns. 



2    Simulation Needs of 
Researchers 

Simulation allows the evaluation of network protocols 
under varying network conditions. Studying protocols, 
both individually and as they interact with other pro- 
tocols, under a wide range of conditions is critical to 
explore and understand the behavior and characteris- 
tics of these protocols. The VINT project, through the 
ns simulator and related software, provides several crit- 
ical innovations that broaden the range of conditions 
under which protocols can be evaluated while making 
this experimentation tractable: 

• Abstraction: Varying simulation granularity al- 
lows a single simulator to accommodate both de- 
tailed and high-level simulations. Networking pro- 
tocols are studied at many levels, both at the de- 
tail of an individual protocol, and in the aggrega- 
tion of many data flows and interaction of many 
protocols. The abstraction mechanisms in ns al- 
low researchers to examine both of these issues 
without changing simulators, and to validate ab- 
stractions by comparing detailed and abstract re- 
sults. 

• Emulation: Most simulation experiments are 
confined to a single simulated world including 
only those protocols and algorithms included in 
the simulator. However, emulation, which allows 
a running simulator to interact with operational 
network nodes, can be a powerful tool in protocol 
design. 

• Scenario generation: Testing protocols under 
an appropriate set of network conditions is criti- 
cal to achieve valid and useful results. Automat- 
ic creation of complex traffic patterns, topologies, 
and dynamic events (i.e., link failures) can help 
generate such appropriate scenarios. 

• Visualization: Tools that allow researchers to 
understand more easily the complex behavior in 
a network simulation are needed. Given the com- 
plex range of behaviors, and the large scale of the 
networks involved, merely providing tables of sum- 
mary performance numbers does not adequately 
describe the behavior of the network. Visualiza- 
tion adds a dynamic representation to network 
behaviors, allowing researchers to develop better 
protocol intuition and aiding protocol debugging. 
Nam, a network animation tool, is described in a 
companion paper [12]. 

• Extensibility: The simulator must be easy to ex- 
tend in order to add new functionality, explore a 
range of scenarios, and study new protocols. Ns 
employs a split programming model designed to 
make scripts easy to write and new protocols effi- 
cient to run. 

In addition to these innovations, several engineering 
issues have substantial impact on a simulator's usabil- 
ity. First among these is the availability of a wide 
range of protocol modules in the simulator. This al- 
lows easy comparison of different approaches. It also 
reduces simulation development time enabling the re- 
searcher to focus on those aspects of the simulation 
relevant to the design question being studied. Second, 
validated protocols against which new variants can be 
compared are needed. Validation of TCP is illustrated 
in a separate paper [15]. Other protocols are validated 
in ns to the degree warranted by their maturity. Final- 
ly, given the significant number of protocol modules 
in ns and the interactions among them, mechanisms 
to prevent modifications in one module from breaking 
functionality in another are needed. To this end, ns 
includes many automated test suites that keep unin- 
tentional changes in behavior from creeping into the 
simulator. 

In the following sections we expand on the innova- 
tions in ns and we describe its innovative software ar- 
chitecture. 

3    VINT and the ns Simulator 

The VINT project aims to bring a change in current 
protocol engineering practices by enabling the study of 
protocol interactions and scaling using a common sim- 
ulation framework with advanced features. The public 
distribution of our system has helped to reduce the du- 
plication of effort expended in the networking research 
and development community. 

As mentioned above, the ns simulator includes sev- 
eral special features targeted at supporting large s- 
cale, multi-protocol simulations. These features in- 
clude an alternative configuration for large-scale sim- 
ulations, a capability to interface the simulator to a 
live network, automated simulation scenario genera- 
tion facilities, and visualization. In the remainder of 
this section we describe the first three of these features. 
Visualization is described in a companion paper [12]. 

3.1    Abstracting Simulation 

Computer resource limitations such as memory and 
processing time often constrain the number of net- 
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Figure 1: Session-level abstraction allows sub- 
stantially larger numbers of multicast group 
members in the same amount of memory. 

Figure 2: Validation of abstract simulations. 

work objects (nodes, links and protocol agents) that 
can be simulated in a packet-level simulation. A scal- 
able network simulator accommodates wide ranges of 
variation in each kind of network object, data in tran- 
sit, and information collected. There are three com- 
plementary approaches to scaling a simulator: tuning 
the implementation, removing unnecessary simulation 
detail, and supporting parallelism. Other researchers 
have successfully explored parallel network simulation, 
and multiple efforts to parallelize ns are currently un- 
derway elsewhere (see "Related Work" for references 
to these approaches). Our efforts are focused on tun- 
ing our implementation and providing multiple levels 
of protocol abstraction. By eliminating less important 
details, substantial savings can be realized while pre- 
serving the basic validity of the model. 

VINT provides several levels of abstraction in n- 
s. The default simulator provides a detailed model 
with hop-by-hop packet forwarding and dynamic rout- 
ing updates. Centralized routing replaces routing mes- 
sages with a centralized computation, saving process- 
ing time and memory in exchange for slightly different 
timing in routing changes. Session-level packet for- 
warding replaces hop-by-hop packet flow with a pre- 
computed propagation delay [21]. Algorithmic routing 
replaces shortest-path routing with tree-based routing, 
transforming 0(n logn) memory requirements to O(n). 
Each abstraction sacrifices some details to save mem- 
ory, so abstractions must be applied only when appro- 
priate. 

By adjusting the simulation abstraction level, a us- 
er is able to trade off simulator performance versus 

packet-level accuracy. Increasing the level of abstrac- 
tion provides the ability to perform increasingly large 
simulations, while decreasing the level of abstraction 
provides for a more realistic simulation. The session 
level simulator can abstract many details of links, n- 
odes, and cross-traffic. Simulations can be run in both 
detailed and session level mode side-by-side to compare 
the performance and accuracy across the different lev- 
els of abstraction. Figure 1 shows the memory savings 
possible from session-level simulations for a particular 
scenario with large multicast groups. 

The cost of abstraction is simulation accuracy. The 
degree to which accuracy is sacrificed, and the impact 
of this sacrifice on the validity of the results, varies 
greatly between simulation scenarios. For example, 
while the details of a particular media's approach to 
segmentation and reassembly are important for LAN 
simulations, they can be reflected adequately in the 
link's packet loss rate for higher-level WAN simula- 
tions. 

To insure that abstraction does not substantially al- 
ter simulation results, Figure 2 shows how we validate 
simulations at small scale before projecting results at 
larger scales [21]. A quantitative analysis of SRM per- 
formance across detailed and session simulations sug- 
gests that while the timing of individual SRM events 
does vary, average aggregate behavior changes by only 
3-9% in the cases we examined. Finally, we are also 
working on hybrid abstractions in which different por- 
tions of the same simulation operate in detailed and 
session levels of abstraction. 
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Figure 3: Emulation: live network traffic passes 
through simulated topology and cross-traffic. 

merit, but an experimental version has already proven 
useful in diagnosing errors in protocol implementation. 
For example, researchers at UC Berkeley have devel- 
oped the MediaBoard, a shared whiteboard application 
using a version of the SRM protocol supported in the 
MASH toolkit [27]. The simulator is placed between 
groups of live end stations communicating using SRM. 
Multicast traffic passing between groups must traverse 
the simulator, and is subject to the dynamics of its 
simulated network. Visualization of traces taken with- 
in the simulation environment reveals end station re- 
transmissions triggered by packets dropped or delayed 
within the simulated network. This use of emulation 
has helped to pinpoint time-dependent behaviors of the 
MediaBoard that are otherwise very difficult to diag- 
nose. 

3.2    Emulation interface 

Ns includes an emulation interface which provides a 
method for network traffic to pass between real-world 
network nodes and the simulator. In combination with 
the simulator's tracing and visualization facilities, em- 
ulation provides a powerful analysis tool for evaluat- 
ing the dynamic behavior of protocols and their im- 
plementations in end systems. An emulation scenario 
is constructed by placing the simulator as an interme- 
diate node (or end node) along an end-to-end network 
path, as illustrated in Figure 3. The simulator contain- 
s a simulated network, and passes live network traffic 
through the simulation, subjecting it to the dynamics 
of the simulated network. The simulator's scheduler 
is synchronized with real-time, allowing the simulated 
network to emulate its real-world equivalent so long 
as the simulated network can keep pace with the real 
world events. 

Emulation is useful beyond conventional simulation 
in evaluating both end system and network element 
behavior. With emulation, end system protocol im- 
plementations can be subjected to packet dynamics 
(e.g. drops, re-ordering, delays) that are difficult to 
reproduce reliably in a live network. Furthermore, by 
capturing traffic traces of live traffic injected into the 
simulation environment, visualization tools may be em- 
ployed to evaluate the end system's dynamic respons- 
es. In the converse situation, network element behav- 
ior (e.g., a queueing or packet scheduling discipline) 
may be evaluated in relation to live traffic generated 
by real-world end stations. Such simulations are use- 
ful in identifying undesirable network element behavior 
prior to deployment in live networks. 

The ns emulation facility is currently under develop- 

3.3    Scenario Generation 

In ns, a simulation scenario defines the input con- 
figuration for a simulation run. Scenarios are made 
up of several components: a network topology, includ- 
ing the physical interconnects between nodes and the 
static characteristics of links and nodes, traffic models 
which define the network usage patterns and locations 
of unicast and multicast senders, and test generation, 
which creates events such as multicast group distribu- 
tions (receivers joining and leaving) and network dy- 
namics (node and link failures) designed to stress an 
implementation. Automated generation of scenarios is 
important in the evaluation of protocol robustness. It 
allows researchers to cover much larger portions of the 
operational space than is possible through manual re- 
configuration. Furthermore, by subjecting competing 
protocols to identical scenarios, meaningful compara- 
tive studies can be performed. 

Topology Ns supports both pre-defined and auto- 
matically generated network topologies. Pre-defined 
topologies may be created manually or chosen from a 
topology library ranging from simple topologies to the 
topologies of real operational networks. Tools that au- 
tomatically generate topologies provide the ability to 
create random topologies according to a set of speci- 
fied parameters such as degree of connectivity, levels of 
hierarchy, and other features. Rather than create our 
own topology generation tools from scratch, we sup- 
port the Georgia Tech Internetwork Topology Models 
(GT-ITM) package which creates flat random network- 
s using a variety of edge distribution models, as well 
as hierarchical and transit-stub networks. In addition, 
the tiers system can be used to create three-level hier- 



archical topologies similar to the transit-stub GT-ITM 
topologies [7]. 

The key challenge in topology generation is coming 
up with topologies that embody relevant characteris- 
tics of real networks. Once accomplished, the ns frame- 
work easily allows simulation of any generated topolo- 
gy. Hence, if new and better topology generation tools 
are developed in the future, using their output in n- 
s likely requires at most a simple format conversion 
program. 

Traffic Models Traffic generation support or load li- 
braries provide a synthetic application workload mod- 
el. For example, application traffic generation, call pat- 
terns, and multicast group membership dynamics may 
be included in a load library. As with the topology 
libraries, load libraries may be derived from empirical 
data, analytic models, or generated randomly to al- 
low "what-if" investigation of particular parts of the 
operating region, even if that region is not currently 
observable in operational networks. 

Ns provides a wide variety of source models that can 
be used in conjunction with both unicast and multicas- 
t transport protocols. At present, supported protocols 
include reliable delivery transport (e.g. several TCP 
variants, SRM), and unreliable transports with vari- 
ous semantics (e.g. RTP and UDP). For simulations 
of TCP, both bulk data and interactive sources are 
available. The former can model an FTP application 
while the latter, based in part on a model developed 
from traffic traces [8], models Telnet-like applications. 
We simulate web traffic with models based on Mah's 
measurements [24]. Other source models are available 
for non-flow controlled applications. These include a 
constant bit rate source, on-off sources using either ex- 
ponential or Pareto distributions (the latter useful in 
generating self-similar traffic [37]), and a source that 
generates traffic from a trace file. 

The composable framework of ns makes adding new 
traffic models fairly easy, and encourages construction 
of compound models out of the individual componen- 
t. In simulations of Receiver-driven Layered Multicast 
(RLM), for example, a multi-layered video source was 
created by combining several CBR streams [28]. A 
similar approach was used to incorporate correlations 
of burstiness across layers in another study involving 
layered video [4]. 

In creating a simulation scenario, specifying individ- 
ual traffic sources generated by the source models pro- 
vided by ns is not always sufficient. Instead, in large 
network simulations, configuring a set of sources that 
in the aggregate generate suitable background traffic 

with desired characteristics (e.g., aggregate bandwidth, 
burstiness, self-similarity, etc.) is a challenge. Develop- 
ing tools to help users synthesize simulation scenarios 
is an area of ongoing work in the VINT project. 

Test Generation Choosing an appropriate set of 
test conditions for a simulation experiment is nev- 
er simple, and evaluating the correctness of a proto- 
col can be a daunting task. We developed a frame- 
work for Systematic Testing of Protocol .Robustness 
by Evaluation of Synthesized Scenarios (STRESS) [19, 
20] in order to reduce the effort needed to identify 
pathological cases of protocol behavior. As the name 
implies, this framework integrates systematic synthe- 
sis of test scenarios with the VINT simulation environ- 
ment of ns. We are in the process of developing auto- 
matic test generation algorithms for multicast proto- 
cols. These methods were applied to multicast routing 
protocol studies in ns. Several design errors were dis- 
covered and corrected with the aid of STRESS; the 
detailed results are presented in [19]. 

Future work in this area will consider the effect of a 
wider range of network failures on multicast routing. 
We will also investigate systematic methods for perfor- 
mance evaluation and sensitivity analysis of end-to-end 
protocols such as multicast transport. In addition, we 
plan to use the emulation interface in ns to conduct 
systematic conformance testing and performance pro- 
filing of actual protocol implementations. 

4    Software Architecture 

The ns software is constructed in a way intended to 
promote extension by users. The fundamental ab- 
straction provided by the software architecture is "pro- 
grammable composability". In this model, simulation 
configurations are expressed as a program rather than 
as a static configuration or through a schematic cap- 
ture system. A simulation program composes objects 
dynamically into arbitrary configurations to effect a 
simulation configuration. By adopting a full fledged 
programming model for simulation configuration, the 
experimentalist is free to extend the simulator with 
new primitives or "program in" dynamic simulation 
"event handlers" that interact with a running simula- 
tion to change its course as desired. 

Rather than adopt a single programming language 
that defines a monolithic simulation environment, we 
have found that different simulation functions require 
different programming models to provide adequate 
flexibility without unduly constraining performance. 
In particular, tasks like low-level event processing or 



packet forwarding through a simulated router require 
high performance and are modified infrequently once 
put into place. Thus, they are best served by an imple- 
mentation expressed in a compiled language like C++. 
On the other hand, tasks like the dynamic configura- 
tion of protocol objects and the specification and place- 
ment of traffic sources are often iteratively refined and 
undergo frequent change as the research task unfolds. 
Thus, they are best served by an implementation in a 
flexible and interactive scripting language like Tel [30]. 

To this end, ns exploits a split programming model, 
where the simulation kernel—i.e., the core set of high- 
performance simulation primitives—is implemented in 
a compiled language (C++) while simulations are de- 
fined, configured, and controlled by writing an "ns sim- 
ulation program" expressed in the Tel scripting lan- 
guage. This approach can be a boon to long-term 
productivity because it cleanly separates the burden 
of simulator design, maintenance, extension, and de- 
bugging from the goal of simulation itself—the actu- 
al research experiments—by providing the simulation 
programmer with an easy to use, reconfigurable, and 
programmable simulation environment. Moreover, it 
encourages a programming style that leads to an im- 
portant separation of mechanism and policy: core ob- 
jects that represent simple and pure operations are free 
of built-in control policies and semantics and can thus 
be easily reused. 

In our split programming model, fine-grained simula- 
tion objects are implemented in C++ and are combined 
with Tel scripts to effect more powerful, higher-level 
"macro-objects". For example, a simulated router is 
composed of demultiplexers, queues, packet scheduler- 
s, and so forth. By implementing each primitive in 
C++ and composing them using Tel a range of router- 
s can be simulated faithfully. We can string together 
the low-level demultiplexers, queues, and schedulers to 
model an IP router perhaps with multicast forwarding 
support, or instead arrange them into a configuration 
that models a high speed switch with a new scheduling 
discipline. In the latter case, the switch could be easily 
extended with protocol agents (implemented entirely in 
Tel) that modeled an experimental signaling protocol. 
Performance also guides our split programming mod- 
el. Low-level event-level operations like route lookups, 
packet forwarding, and TCP protocol processing are 
implemented in C++, while high-level control opera- 
tions like aggregate statistics collection, modeling of 
link failures, route changes, and low-rate control pro- 
tocols are implemented in Tel. Careful design is nec- 
essary to obtain a desirable trade-off between perfor- 
mance and flexibility, and this division often migrates 

during the course of a protocol investigation. 
This composable macro-object model is naturally ex- 

pressed using object-oriented design, but unfortunate- 
ly, at the time we designed ns, Tel did not provide sup- 
port for object-oriented programming constructs nor 
did it provide very effective programming constructs 
for building reusable modules. Thus, we adopted an 
object-oriented extension of Tel. Of the several Tel 
object extensions available at the time, we chose the 
Object Tel (OTcl) system from MIT [36] because it 
required no changes to the Tel core and had a partic- 
ularly elegant yet simple design. We further adopted 
a simple extension to OTcl called TclCL (for Tel with 
classes) that provides object scaffolding between C++ 
and OTcl and thereby allows an object's implementa- 
tion to be split across the two languages in congruence 
with our split programming model [27]. 

With the OTcl programming model in place, each 
macro-object becomes an OTcl class and its complexi- 
ty is hidden behind a simple-to-use set of object meth- 
ods. Moreover, macro-objects can be embedded within 
other macro-objects, leading to a hierarchical architec- 
ture that supports multiple levels of abstraction. As an 
example, high-level objects might represent an entire 
network topology and set of workloads, while the low- 
level objects represent components like demultiplexers 
and queues. As a result, the simulation designer is free 
to operate at a high level (e.g., by simply creating and 
configuring existing macro-objects) at a middle level 
(e.g., by modifying the behavior of an existing macro- 
object in a derived subclass) or at a low level of ab- 
straction (e.g., by introducing new macro-objects or s- 
plit objects into the ns core). Finally, class hierarchies 
allow users to specialize implementations at any one 
of these levels, for example extending a "vanilla TCP" 
class to implement "TCP Reno". The net effect is that 
simulation users can implement their simulation at the 
highest level of abstraction that supports the level of 
flexibility required, thus minimizing exposure to and 
the burden associated with unnecessary details. 

5    Research with Ns 

Network research simulations can often be categorized 
into one (or more) of a few broad themes. These in- 
clude selecting a mechanism among several options, ex- 
ploring complex behavior, and investigating unforeseen 
multiple protocol interaction. This section uses exam- 
ples from the broad base of ns-based simulations in 
the networking community to demonstrate instances 
of each theme. 



Selecting a Mechanism As in most design activ- 
ities, much of the time spent in protocol design, re- 
design, and debugging concerns evaluation of the var- 
ious alternatives to accomplishing a goal. Ns has seen 
broad use in developing TCP variants and extensions, 
exploring reliable multicast protocols, and in consider- 
ing packet scheduling algorithm in routers. 

As an example, ns has been used to explore sev- 
eral TCP variants and extensions such as selective 
acknowledgments [13], forward acknowledgments [26], 
explicit congestion notification (ECN) [14], and pac- 
ing [35]. These efforts were aided by the existence of a 
simulator-specific TCP implementation. By omitting 
application-specific baggage such as memory manage- 
ment and IP fragmentation, ns users were able to focus 
on the research issues such as packet retransmission 
policies and throughput. 

Exploring Complex Behavior Complex behavior 
often takes the form of unexpected self-organization 
of dynamic systems. Examples include synchroniza- 
tion of periodic network traffic such as routing updates, 
TCP "ACK compression" in asymmetric or congested 
networks, undesired or unpredicted differential treat- 
ment of TCP flows due to RTT variations, contention 
for bandwidth reservations, and "ACK implosion" for 
large-scale reliable multicast protocols. In each of these 
domains, simulation has been a useful tool in helping 
to identify and understand these phenomena. 

Error recovery in the Scalable Reliable Multicast (S- 
RM) [17] is an example of exploration of complex be- 
havior with ns. SRM was designed to support reliable 
group communication for large group sizes. It uses 
a probabilistic-based NACK protocol to achieve relia- 
bility. A receiver detecting a loss multicasts negative 
acknowledgement to the group. Each group member 
who has the missing data prepares to repair the error. 
To avoid repair implosion (everyone sending the repair 
at once), repairs are delayed by a random amount pro- 
portional to the estimated distance between the par- 
ticipants. While the original simulations of SRM were 
done in a stand-alone simulation tool, an SRM imple- 
mentation has been added to ns, where it has been 
widely used to study SRM recovery behavior over a 
wide range of topologies [32] and variants [34]. This 
research was enabled by the public availability of of 
SRM in a well-documented simulator. 

Comparing Research Results: A common re- 
search challenge is comparing a new protocol design 
against existing protocols. Comparisons of full pro- 
tocols are often difficult because they may require a 

particular operating system or may not be widely avail- 
able. By providing a publicly available simulator with 
a large protocol library, ns has become an ideal "virtual 
testbed" for comparing protocols. 

The reliable multicast community have used ns wide- 
ly for protocol comparison. In addition to the S- 
RM variants previously described, Hänle used ns to 
compared the Multicast File Transfer Protocol [18], 
and DeLucia considered representative-based conges- 
tion control [9]. 

Multi-protocol interactions Multiple protocol in- 
teractions include the impact of protocol operation at 
one layer upon another layer (e.g. http on TCP, reser- 
vations on datagram delivery) or the interaction of un- 
related protocols (e.g. the effect of uncontrolled traffic 
sources on congestion-controlled traffic flows or routing 
stability on transport layer performance). The prob- 
lem with studying protocol interactions is that it re- 
quires twice the effort of studying a single protocol: 
the designer must understand and implement proto- 
cols at all the relevant layers. Ns reduces this effort by 
providing a validated library of important protocols. 

RED and TCP snooping are two examples where n- 
s greatly aided protocol studies exploring interactions 
between TCP and router queueing policies (RED) and 
TCP and wireless networking (Snoop). Random Ear- 
ly Detection (RED) queue management suggests that 
routers should detects incipient congestion (before run- 
ning out of buffer capacity) and signal the source [16]. 
Early work on RED began on an ancestor of ns; RED 
is now a standard part of the simulator. Snooping pro- 
poses that TCP performance can be improved if router- 
s replay TCP segments löst due to transmission failure 
over a wireless hop [5]. Both of these approaches ben- 
efitted from the rich ns protocol library. 

Protocols Investigated With Ns 
(sidebar) 

Ns has been used to develop and investigate a number 
of protocols: 

• TCP behavior: selective acknowledgements, for- 
ward acknowledgments, explicit congestion notifi- 
cation, rate-based pacing, over asymmetric links 
(satellite) 

• router queuing policies: random early detection, 
explicit congestion notification, class based queue- 
ing 



• multicast transport: Scalable Reliable Multicast 
(SRM) and variants (RPM, scalable session mes- 
sages), PIM variants, router support for multicast, 
congestion control, protocol validation and test- 
ing, reliable multicast 

• multimedia: layered video (RLM), audio and 
video quality-of-service, transcoding 

• wireless networking: SNOOP and split-connection 
TCP, multi-hop routing protocols 

• protocol response to topology changes 

• application-level protocols: web cache consistency 
protocols 

References to some specific papers can be found 
in the text and at the web page http://www- 
mash.cs.berkeley.edu/ns/ns-research.html. As an ex- 
ample of ns's use in networking community, it was the 
most commonly used simulator at SIGCOMM '98. 

6    Evaluation 

The VINT effort has benefited from the contributions 
of a wide number of users. The project itself spans four 
geographically-dispersed groups of developers, and the 
user community includes more than 200 institutions 
world-wide (based on messages posted to the mailing 
list). Ns includes a large amount of code contribut- 
ed from this user community. Currently, we have two 
mechanisms for adding contributed code from users: 
we can point to the contribution on a "Contributed 
Code" web page, or we can incorporate the contribut- 
ed code into the main ns distribution (typically with 
documentation and a validation test program). Code 
integrated into the main distribution will track ns as 
it evolves; experience stresses the importance of the 
automated validation tests in this process. 

Although the ns user community has been steadi- 
ly growing, there will always be times when a re- 
searcher finds it more convenient to write stand-alone 
code or to choose an alternative general-purpose sim- 
ulator. A custom simulator can address exactly the 
problem faced by a researcher. Even though ns's ab- 
straction techniques allow two orders of magnitude s- 
caling, a researcher's custom simulator can get exactly 
the correct scaling behavior. Finally, a new simulator 
will avoid the cost of learning ns. However, we have 
found that researchers often underestimate the amount 
of infrastructure required to build a new simulator and 
interpret its results. 

Wide use of a common simulation platform provides 
some very serendipitous effects, however. By provid- 
ing a rich collection of alternatives and variants for 
frequently used functionality (e.g. for TCP and queue- 
ing variants), ns encourages researchers to incorporate 
these alternatives into the parameter space of their own 
simulations. Without the infrastructure of ns or a simi- 
lar environment, it seems unlikely researchers would be 
able to cover such a rich parameter space due to the 
additional cost of developing such infrastructure. This 
is particularly true of experimental new approaches. 
For example, RED queue management in ns has been 
widely used in a range of simulations well before it was 
standardized and available in products. This availabil- 
ity has helped understanding and acceptance of RED 
and helped other researchers anticipate how their pro- 
tocols will behave in future networks. 

A disadvantage of ns is that it is a large system with 
a relatively steep initial learning curve. Availability of 
a tutorial (contributed by Marc Greis) and continuing 
evolution of the ns documentation has improved the 
situation, but ns's split programming model remains a 
barrier to some developers. As described in "Software 
Architecture", the choice of the fine-grain object de- 
composition is intentional because it allows two levels 
of programming. Simple scripts, topology layout, and 
parameter variation can often be done exclusively in 
OTcl. Although C++ is required to implement most 
new protocols, ns's object-oriented structure makes it 
fairly easy to implement variants of existing protocols. 
For completely new protocols, the large set of existing 
modules promotes re-use by the advanced programmer 
as is evident in ns' existing protocols and classes. 

7    Conclusions 

Simulation in network research plays the valuable role 
of providing an environment in which to develop and 
test new network technologies without the high cost 
and complexity of constructing testbeds. While not a 
complete replacement for testbeds, a standard frame- 
work for simulation used by a diverse set of researchers 
increases the reliability and acceptance of simulation 
results. Despite the benefits of a common framework, 
the network research community has largely develope- 
d individual simulations targeted at specific studies 
due to the considerable effort required to construct a 
general-purpose simulator. Because of the special pur- 
pose nature of such simulators, studies based on them 
often do not reflect the richness of experience derived 
from experimentation with a more extensive set of traf- 
fic sources, queuing techniques, and protocol models. 



The VINT project, using ns as its simulator base 
and nam as its visualization tool, has constructed a 
common simulator containing a large set of models for 
use in network research. By including algorithms still 
in the research phase of development, users of the sim- 
ulator are able to explore how their particular work in- 
teracts with these future techniques. Furthermore, be- 
cause of the many protocols and models included with 
the system, researchers are often able to modify and 
construct their own simulations based on the provided 
models with relative ease. In several cases, modules 
developed outside the VINT project have been incor- 
porated as a standard component to the simulator. We 
intend to further foster such contributions, and expect 

them to increase in the future. 
While the VINT project so far has been relatively 

successful in achieving its goals, it remains to be seen 
how well the VINT project and the ns simulator will 
address the challenges of building on this success. The 
VINT project is an ongoing experiment in providing 
and using a multi-protocol simulator that allows re- 
searchers in the network research community to more 
easily build on each others' work. Future challenges for 
the VINT project include the development of mecha- 
nisms for the successful integration of code contributed 
by the user community, reducing the learning curve for 
using ns, further developing tools for large-scale simu- 
lations with a diverse traffic mix, and providing tools 
for newer areas of research such as mobility and higher- 

level protocols. 
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Abstract 

A key question in the definition of new services for 
the Internet is whether to provide a single class of re- 
laxed real-time service or multiple levels differentiated 
by their delay characteristics. In that context we pose 
the question: is service priority useful in networks? 
We argue that, contrary to some of our earlier work, to 
properly address this question one cannot just consider 
raw network-centric performance numbers, such as the 
delay distribution. Rather, one must incorporate two 
new elements into the analysis: the utility functions 
of the applications (how application performance de- 
pends on network service), and the adaptive nature of 
applications (how applications react to changing net- 
work service). This last point is especially crucial; 
modern Internet applications are designed to tolerate 
a wide range of network service quality, and they do so 
by adapting to the current network conditions. Most 
previous investigations of network performance have 
neglected to include this adaptive behavior. 

In this paper we present an analysis of service pri- 
ority in the context of audio applications embodying 
these two elements: utility functions and adaptation. 
Our investigation is far from conclusive. The defini- 
tive answer to the question depends on many factors 
that are outside the scope of this paper and are, at 
present, unknowable, such as the burstiness of future 
Internet traffic and the relative offered loads of best- 
effort and real-time applications. Despite these short- 
comings, our analysis illustrates this new approach to 
evaluating network design decisions, and sheds some 
light on the properties of adaptive applications. 

'This research was supported in part by the Advanced Re- 
search Projects Agency, monitored by Fort Huachuca under 
contracts DABT63-94-C-0073 and DABT63-96-C-0105. The 
views expressed here do not reflect the position or policy of 
the U.S. government. 

1    Introduction 

The Internet has traditionally provided applications 
with a single class of best-effort service. The perfor- 
mance requirements of elastic applications, such as file 
transfer and electronic mail, allow them to adapt to 
the changing delays and bandwidth provided by this 
service. More recently, the increasing bandwidth of In- 
ternet links as well as the increasing processing power 
of end hosts has focused widespread attention on the 
desire to use the Internet for the transport of real- 
time multimedia content, such as audio and video. 
The architecture and protocols needed to support the 
more stringent requirements of these applications have 
been the subject of considerable research and discus- 
sion in recent years. New resource reservation proto- 
cols, scheduling algorithms and admission control algo- 
rithms have been proposed in the academic literature.1 

Recently, two components of a new Internet architec- 
ture have been moved to Proposed Standard in the In- 
ternet Engineering Task Force (IETF): the reservation 
protocol RSVP [3, 17] and new network element ser- 
vices Guaranteed [12] and Controlled-Load [16] service 
(see also [2, 13] for overviews of this architecture). The 
key break from best-effort service, where sources need 
not notify the network before transmitting packets, is 
that for these real-time services flows must request ser- 
vice from the network - specifying their desired quality 
of service and their proposed traffic characterization - 
and the network can accept or reject their requests. 

One issue that arose in the discussion of the Controlled- 
Load2 service (and in the earlier Controlled-Delay ser- 
vice, which was supplanted by the Controlled-Load ser- 
vice) is whether or not to offer more than one priority 
level of service; that is, whether to have multiple lev- 
els of scheduling priority within the Controlled-Load 
service.3   The current service definition offers only a 

'The literature is far too vast to review here, but see [4, 5, 
6, 7, 9, 15, 18] and references therein for a few representative 
examples. 

3 Controlled-Load service is a relaxed real-time service that 
provides low delay and low loss, but does not provide delay 
bounds. 

3The analogous question remains even if real-time applica- 
tions are supported by a best-effort network service, a solution 
advocated by some in the community. That is, would these 
applications be better suited by a single class of best-effort ser- 
vice (as exists today) or by multiple levels of service differen- 
tiated by delay?    Our treatment remains valid,  although we 



single level of service, but the question remains as to 
what benefits offering additional levels of service would 
provide.4 Offering multiple levels of service carries 
with it the cost of additional complexity to deal with 
signaling the priority level, merging reservations with 
different priority levels, and scheduling overhead. We 
do not discuss those costs here, but instead ask only 
how large a benefit multiple priority levels might offer. 
Clearly if such benefits are minimal then there is no 
need to incur the additional complexity; if the benefits 
are significant then one needs to more carefully assess 
the complexity costs. 

At first glance, the benefit of multiple priority lev- 
els seems obvious. After all, applications have a wide 
spectrum of delay constraints, from interactive confer- 
encing with its need for small network delays to play- 
back of stored video which can easily tolerate large 
network delays. Given this wide disparity in delay re- 
quirements, it seems only natural that one can increase 
the overall welfare by offering different levels of service. 
One can model this analytically (following a very sim- 
ilar model in [14]). 

In the following simple example with two kinds of 
applications we compare a network with two priority 
classes to one with a single class of FIFO service. Let 
Ui denote the performance level, or utility, of applica- 
tion * as a function of average network delay. Let V de- 
note the total utility, or total value, of the applications: 
V = U\ + Ü2- Consider a network with a single link 
modeled by an exponential server (of rate /* = 1) and 
flows modeled by Poisson arrival processes. Consider 
two types of network clients, with Poisson arrival rates 
T = 0.25 and with U\ = 21-lOt/i and U2 = 2-d2 where 
di represents the average queueing delay delivered to 
client j.5 Thus, we have two clients with different sen- 
sitivities to delay.  If we use FIFO service in the net- 
work, then d\ = d2 = 2 and so VFIF° = 1. (1-0.5) 
If we use strict priority service, with preemption, and 
give client 1 priority, then di = (1_p25) = 4/3 and 

= 8/3 and VpTiority = 7.   Thus, "*■«   —   (l-0.25)(l-0.5) 
the strict priority scheduling algorithm is more efficient 
- delivers a higher value of V at the same bandwidth 
- than FIFO. In fact, when compared to all possible 
scheduling algorithms, the strict priority scheduling al- 
gorithm gives the most efficient feasible allocation of 
delay for this simple example. 

However, this model ignores an important aspect 
of the problem. Specifically, network utility does not 
depend only on the characteristics of the packet de- 
livery services provided, but also on how applications 
deal with different levels of network service. Modern 
network applications, in contrast to the rigid audio 
and video applications designed for more predictable 

would need to consider different mixtures of traffic including 
best-effort as well as real-time applications. 

* Offering service priority is one form of service discrimina- 
tion within the Internet, where different packets receive differ- 
ent service. Service discrimination can take several other forms; 
a network may provide unreserved or reserved service, service 
may be differentiated by dropping priority, or a network may 
provide pre-emptable and non-pre-emptable reserved services. 

5Recall that the average delay in the M/M/l queueing net- 
work considered here is just d = ^tr) ■ 'f we nave two priority 
levels, with arrival rates r% and rj respectively, then the delays 
are given by d, = j^r^j and d2 = (ll_ri)(£_ri_r2y 

data delivery services such as the telephone network 
or cable-TV transmission infrastructures, are adaptive; 
that is, they adapt to the current network conditions. 
This adaptation can take on several forms; in this pa- 
per we consider a class of applications known as delay 
adaptive. We describe these applications in more detail 
in Section 2. Such adaptivity is now a central piece of 
the accepted design philosophy in the Internet. The 
ability of application adaptivity to cope with changing 
network conditions has strong bearing on the question 
we ask here. After all, if adaptive applications can 
adjust essentially without degradation under any rea- 
sonable network conditions, there would never be any 
need for multiple levels of service. In fact, some have 
made precisely this claim when arguing for a single 
level of service. 

Whatever the extent of adaptivity's ability to mask 
network delay and jitter (i.e., changes in delay), it is 
certainly clear that because of this active adjustment, 
the dependence of an adaptive application's utility on 
the network service is quite complicated. Simply put, 
such adaptivity renders simplistic analyses such as the 
one above invalid. How an application reacts to the 
network service determines how its performance de- 
pends on the network service, and the application's 
performance sensitivities (to delay, loss of fidelity, or 
both) determines what adaptation algorithm is most 
appropriate. As we shall see, for a given packet deliv- 
ery service the delay experienced can be less in a very 
delay-sensitive application than in a delay-insensitive 
one, because the former will use an adaptation al- 
gorithm that aggressively attempts to reduce delays. 
Yet, despite adaptivity's centrality as an Internet ap- 
plication design paradigm, most performance analyses 
of network designs are performed without careful at- 
tention to the adaptive nature of applications.6 The 
central purpose of this work is to illustrate how one 
can incorporate the behavior of adaptive applications 
into the performance analysis of a network design de- 
cision. It turns out that differences in delay (and jit- 
ter) in network service can largely be masked by this 
adaptive behavior for applications that are sensitive 
to only one of delay or fidelity. Thus, the simplis- 
tic analyses based on rigid applications are mislead- 
ing. However, applications that are sensitive to both 
delay and fidelity achieve significant performance ben- 
efits from additional priority levels under some traffic 
loads. Therefore, while adaptation is very effective, it 
is not a universal panacea. 

These results do not translate into a facile answer 
to the question of whether or not to offer multiple lev- 
els of Controlled-Load service. Instead, they serve as 
a cautionary note against simplistic conclusions based 
on the analysis of more static applications, and also 
against the ability of adaptivity to remove all sensi- 
tivity to performance variations. Our study also high- 
lights our current state of ignorance about how the 
perceived performance of audio and video applications 
depend on the underlying network dynamics. We hope 
that by clarifying the gaps in the current understand- 
ing future work can begin closing them. 

sSome work, such as in [8, 10], do analyze different adapta- 
tion algorithms, but their purpose was to refine the adaptation 
algorithm, not ask what implication adaptation had for network 
design. 



The remainder of this paper is organized as fol- 
lows. Section 2 describes the class of applications we 
consider in this paper, and then discusses several forms 
of adaptive behavior. Section 3 presents the results of 
simulation experiments that study the impact of differ- 
ent classes of delay on the performance of applications. 
We conclude in Section 4 with a discussion of the im- 
plications of our findings. 

2    Adaptive Applications 

In this section, we describe the class of applications 
that motivates our work. We begin by describing what 
we refer to as adaptive applications.7 Then we describe 
two adaptation algorithms, appropriate for use by au- 
dio applications, that we use in our later simulations. 
We focus on these audio applications because it is in 
this domain that adaptive algorithms have been most 
widely utilized. The extent to which delay adaptation 
is applied to video remains to be seen, but we expect 
the methodology we use here could be applied to video 
algorithms as well. Finally, we present our model of 
utility functions and describe the four classes of appli- 
cations we consider. 

2.1    Delay Adaptation 

Consider a real-time audio or video application in the 
Internet. Such an application will typically sample 
its media source (e.g., an audio input device or video 
frame grabber) and then send packetized data over the 
network. Each packet experiences a variable amount 
of queueing delay in the network, in addition to the 
fixed propagation and transmission delays (assuming 
all packets follow the same path). Thus, the packet 
stream generated by the source arrives at the desti- 
nation perturbed by the variable network delay. The 
receiver can remove some or all of the jitter induced 
by the network by buffering packets for later playback. 
We refer to the time for which a packet is buffered at 
the receiver as its playback delay. We refer to the play- 
back point as the total delay from when a packet is sent 
until it is played at the receiver. For real-time data, 
such as audio or video, if a constant playback point is 
maintained for all packets then there is no loss of fi- 
delity. Otherwise, the incoming signal is distorted and 
so there is a loss of fidelity in the application. 

Determining the playback point for each packet is 
a key issue in the design of these applications. Any 
playback strategy can make use of timestamps in pack- 
ets, such as those provided by the Real-time Trans- 
port Protocol (RTP) [11], to determine the relative 
send times of successive packets, and thus need not as- 
sume synchronized clocks at the sender and receiver. 
If the receiving application knows a priori the maxi- 
mum possible delay experienced in the network it can 
buffer the first packet for this maximum before play- 
ing it. This will enable the receiver to remove all jit- 
ter from the signal, since all subsequent packets (other 
than those that may be lost in the network) will arrive 
before their playback points, thereby maintaining the 

TApplication adaptivity can actually take several forms. In 
this paper we consider the specific class of delay-adaptive ap- 
plications. Rate-adaptive applications vary their sending rate 
in response to changing network conditions. 

proper offset from the previous packet. However, nei- 
ther the current Internet best-effort service, nor the 
proposed Controlled-Load real-time service provides 
applications with information about maximum network 
delays. While the proposed Guaranteed Service does 
provide delay bounds, it is an expensive service to 
provision (precisely because it provides delay bounds), 
and therefore is not likely to be widely utilized. 

Since these applications must operate in environ- 
ments where no end-to-end delay bound is known, they 
must be prepared to adjust the playback point of pack- 
ets based on changing network conditions. That is, 
the application determines dynamically (in ways we 
describe below) how long to buffer each packet before 
playing it out. Buffering will remove some of the jitter 
introduced by the network, but periodic adjustments 
to the playback point will cause some distortion in the 
received signal. Hence, the application's performance 
is not merely a function of the service provided by the 
network. Rather, it is also a function of both the to- 
tal delay in playing back the data (including network 
and playback delays) and the distortion incurred by 
varying the playback point over time. 

Different applications will have different levels of 
sensitivity to these performance measures. Through- 
out this paper we characterize applications by the de- 
gree to which they care or do not care about each of 
delay and distortion. We simplify our study by con- 
sidering four prototypical applications: those that care 
about both delay and distortion, those that care about 
delay only, those that care about distortion only, and 
those that care about neither. The notion of "car- 
ing" or "not caring" (or "sensitivity" and "insensitiv- 
ity" which we use equivalently) are relative terms. For 
instance, even a delay insensitive application, such as 
the playback of recorded audio, has some delay con- 
straints dictated by the user (e.g., delays of minutes, 
or several seconds, might not be tolerable). Similarly, 
a distortion insensitive application, such as an interac- 
tive session in which some distortion can be tolerated, 
also has limits to this tolerance (e.g., the speech need 
not be faithfully reproduced, but it must at least be 
intelligible). Our point, when using the terms "not 
caring" or "insensitive", is that these applications will 
be able to tolerate larger delays, or larger distortions, 
than other applications while still achieving acceptable 
performance. 

2.2    Adaptation Algorithms 

We expect the particular adaptation algorithms em- 
ployed by delay adaptive applications to vary. For ex- 
ample, an interactive application may employ an adap- 
tation algorithm that attempts to reduce the playback 
delay (and hence the total delay). Such a strategy, 
which we will refer to as aggressive adaptation, in- 
creases the risk that some packets will arrive after their 
scheduled playback points, in which case they will have 
to be dropped or the playback point will have to be 
adjusted. In either case, the resulting signal is sig- 
nificantly distorted. Alternatively, a non-interactive 
application, such as playback of recorded content or a 
one-way broadcast, may employ a more conservative 
adaptation algorithm, choosing larger playback delays 
and reducing the probability that packets arrive after 



their playback points. 
We now describe two adaptation algorithms, which 

we refer to as conservative and aggressive, that we 
use later in our simulations. These algorithms are ap- 
propriate for use by audio applications that generate 
blocks of data interspersed with periods of silence (as 
would be generated by a silence suppression mecha- 
nism). The general strategy they employ is to pick a 
playback point for the first packet in each talkspurt 
such that all packets within the talkspurt will (ideally) 
arrive before their respective playback points. When 
a packet arrives late (i.e., after it should have been 
played) the adaptation algorithm has two choices. It 
can discard the packet, or it can play the packet and 
adjust the playback points of subsequent packets in 
the talkspurt. It is unclear in general which strategy 
is better. For the purposes of this study we adopt the 
latter strategy based on previous studies (e.g., [1]) that 
have observed correlations in packets with large delays 
and on our own simulations that have shown that late 
packets generally arrive in bursts; given the choice be- 
tween discarding several packets or introducing some 
jitter, the latter seems preferable. 

The conservative algorithm fixes the playback point 
of the first packet to a predetermined value. All sub- 
sequent packets maintain the same playback point as- 
suming they arrive in time. When a packet arrives 
late, the playback point is doubled and this new play- 
back point is used for all subsequent packets. Hence, 
the playback point is adjusted upward but never down- 
ward. This algorithm attempts to maintain fidelity at 
the expense of higher delay. The second algorithm is 
more aggressive, yielding lower delay at the expense of 
increased distortion. It is taken from the adaptation 
algorithm in the Visual Audio Tool (VAT) developed 
at Lawrence Berkeley National Laboratory with minor 
modifications.8 This algorithm estimates a measure of 
variance based on the difference in delay between suc- 
cessive packets. At the start of each talkspurt a new 
playback delay is computed using the previous offset 
and the estimate of variance. 

2.3    Performance Measures and Utility Functions 

The performance of an adaptive application can be 
characterized by two measures: delay and distortion. 
These measures are a function of both the packet de- 
livery service and the adaptation algorithm. Delay in- 
cludes both delays experienced in the network as well 
as playback delays. Distortion captures changes in the 
playback point. For our delay measure, we use the av- 
erage of the delay experienced by each packet. Thus, 

Delay ■■ £,* 

where di is the delay experienced by packet i and n is 
the total number of packets. For distortion, an individ- 
ual distortion value is first computed for each packet 
as follows: 

disti = min( ,thresh) 
U — ti-i 

utmty   

\ 

Figure 1:  General form of utility functions for delay 
and distortion. 

where ti is the send time of packet i, and thresh is 
a constant, set to 2 in our experiments. Including 
the difference in send times of successive packets in 
the denominator gives higher weight to intra- rather 
than inter-talkspurt adjustments in the playback point. 
thresh bounds the maximum per packet distortion penalty 
(at 40 ms since inter-packet times, *,- — ti-i, are 20 ms 
within talkspurts in our source model.) The overall 
measure of distortion is merely the average of the per- 
packet measures: 

Distortion ■■ J2j disti 

'Source code for the VAT application, including its ad apt a 
tion algorithm, is available at http://www-nrg.ee.lbl.gov/vat. 

We normalize these values so that they are reported in 
milliseconds of distortion per packet. 

From the delay and distortion performance mea- 
sures, we derive measures of application performance 
or utility using utility functions. The general form of 
the utility functions we use (for both delay and distor- 
tion) is shown in Figure 1. These functions have the 
following characteristics. First, below some threshold 
(thiowcr in the figure), applications do not suffer any 
perceptible effects from delay or distortion. Second, 
above another threshold (i/»Upp«r), applications derive 
no utility. Finally, between thiowcr and thuppeT, util- 
ity degrades linearly. Total utility for an application is 
merely the product of its individual delay and distor- 
tion utility values: 

Utot = Udel X Udii 

An application must receive good performance on both 
measures to achieve high overall utility, and poor per- 
formance on either leads to overall unhappiness. For 
each of the utility functions, we vary the values of 
thiower and th^pper to capture the relative sensitivity 
or insensitivity of applications to each of delay and dis- 
tortion. Thus, for sensitive applications, thiowcr and 
thUpper will be set to lower values than for insensitive 
ones. 

The relationship between performance measures and 
application utility is certainly not a simple as the model 
we use. For instance, actual functions are likely not 
linear, may depend on how performance varies in time 
rather than on static measures, and may involve sub- 
tle interactions between delay and distortion. How- 
ever, we believe that our simple model captures the 



most important aspects of performance and utility, and 
at the very least is sufficient for this initial investiga- 
tion. Subsequent research into the true nature of these 
utility functions would provide useful guidance for our 
modeling; at present, the relevant literature is quite 
sparse. 

3    Simulations 

We used discrete event simulation to study the ef- 
fects of service priority on application utility given 
our model of applications and their utility described 
above. Our simulation environment built on version 
2 of the ns simulator developed at the University of 
California at Berkeley. To the base simulator, which 
provides event management, measurement functions, 
packet transmission and traffic generation, we added 
additional functionality, such as adaptation algorithms, 
utility functions and priority queueing, needed to carry 
out our experiments. In this section we first describe 
our simulation methodology, and then report our re- 
sults. 

3.1    Simulation Model 

The purpose of our simulation experiments was to com- 
pare the utility of a network providing a single level 
of service for real-time applications to one providing 
two levels of service in the simplest possible network 
context. The simulation topology consisted of a sin- 
gle 2Mbps link connecting two nodes.10 Each simula- 
tion consisted of a set of source/receiver pairs gener- 
ating background load on the network and test appli- 
cations whose performance and utility was measured. 
This study is concerned with real-time applications, so 
we assume the existence of real-time services in the 
network. However, since we directly control the level 
of offered load in our experiments (by adjusting the 
number of source/receiver pairs in the network), we 
did not need to model resource reservation or admis- 
sion control functions explicitly in the simulated net- 
work. Instead, we assume that all traffic in the network 
has passed an admission control test, has an installed 
reservation, and is receiving real-time service. No best- 
effort traffic was included in the simulations. We dis- 
cuss the implications of this later in Section 4. When 
testing a single level of service, all packets are served in 
a single FIFO queue. For priority service, we used two 
FIFO queues served in strict priority order (without 
pre-emption). When reporting our results, we refer to 
these as the FIFO and Priority tests, respectively. We 
will also sometimes refer to the high priority service in 
the Priority tests as Level 1 service, and the low pri- 
ority as Level 2.  In all experiments, offered load was 

9The ns 
simulator is available at http://www-mash.cs.berkeley.edu/ns. 
Our extensions to the simulator, and the simulation scripts 
we ran to generate the results in this paper can be found at 
ftp://ftp.parc.xerox.com/pub/net-research/sigmetrics98. 

10If, as many have claimed, there is a single bottleneck link 
on any network path, then the simple topology is sufficient to 
understand the behavior of application adaptation algorithms. 
The verification of this claim, or a better understanding of the 
effect of queueing delays at multiple hops, is a subject for future 
study. 

controlled and enough buffers provisioned so that there 
were no dropped packets. 

Each experiment was repeated with the test appli- 
cations using the conservative and aggressive adapta- 
tion algorithms described in Section 2.2. In addition, 
experiments were run with a non-adaptive, or rigid, 
receiver algorithm, which we describe in Section 3.2.2. 
At a given level of offered load, measures of delay and 
distortion were computed for each algorithm (conser- 
vative, aggressive, rigid) and for each network service 
(FIFO, Priority Level 1, Priority Level 2). The perfor- 
mance measures were mapped into application utility 
as follows. First, we chose an appropriate adaptation 
algorithm for each of the four types of applications (re- 
call the two by two taxonomy of applications based on 
their level of sensitivity to each of delay and distor- 
tion.) Applications that were sensitive to both delay 
and distortion and applications that were sensitive to 
delay only used the aggressive algorithm.11 Applica- 
tions that were sensitive to distortion only, and those 
that were sensitive to neither, used the conservative 
algorithm. 

Given an application's performance sensitivities and 
adaptation algorithm, utility values for each kind of 
service were computed. The following values of thiower 
and thuppcT were used. For delay sensitive utility, we 
used values of thiOWer — 50 ms and thuppcr — 100 ms. 
For delay insensitive utility, we set thiower = 1000 ms 
and thv 2000 ms. For distortion sensitive appli- 
cations we used thiower = .25 ms/pkt and thuppiT 

1.0 ms/pkt. For distortion insensitive applications, we 
set thtowcr = 2.5 ms/pkt and thuppeT = 10.0 ms/pkt. 
The delay sensitive values are set to represent toler- 
ances for interactive applications.12 The delay insensi- 
tive utility is appropriate for non-interactive playback 
applications, but where response time does matter to 
the user (i.e., pointing and clicking and receiving stored 
audio over the network). Deciding on distortion val- 
ues for utility was difficult without a better sense of 
the actual effect of playback distortion on users. We 
chose values such that distortion sensitive and insensi- 
tive applications perceived distortion in very different 
manners. 

Two different kinds of source models were used in 
the simulations. Test sources were represented by an 
on/off source model that generates "talkspurts" and 
idle periods like those generated by voice data with si- 
lence suppression. Sources transmit 200 byte, packets 
at a rate of 80kbps during "on" periods and are silent 
during "off" periods. These parameters are consistent 
with 8 KHz 8-bit mu-law PCM audio sent in 20 ms 
frames with 40 bytes of overhead per packet. Both the 
on and off times were taken from exponential distribu- 
tions with a 500 ms average. 

Background traffic was generated by capturing a 
trace of low frame rate video taken of one of the au- 
thors during a network videoconference.    The trace, 

"While it should come as no surprise that this algorithm 
is appropriate for delay sensitive distortion insensitive appli- 
cations, it is not clear a priori which algorithm is better for 
applications that are sensitive to both delay and distortion. 
We determined, through experimentation, that the aggressive 
adaptation algorithm was more effective than the conservative 
adaptation algorithm for these applications. 

12Note that in addition to the variable delay captured by 
these utility functions, there will be other fixed sources of delay. 



which lasts for approximately 1,400 seconds and has 
an average rate of 32kbps, was produced by the vie 
video program.13 Within a single simulation run, mul- 
tiple sources sending from this trace started at ran- 
dom points in the trace file to avoid synchronization. 
This background traffic is more bursty than the traf- 
fic generated by the on/off source model. Space pre- 
vents us from presenting data using additional kinds 
of background traffic, such as other source models or 
video traces produced with different codecs or content. 
However, as we discuss in Section 4, additional traf- 
fic models would not provide us with a more definitive 
answer to our question. 

Each data point in the graphs below is an average 
of 20 simulation runs each with different seeds to the 
random number generator. Individual runs lasted for 
5,000 simulation seconds. 

For each scenario (adaptation algorithm, service 
discipline) the number of sources generating background 
traffic was varied to generate different load levels. Our 
results are generally reported as a function of utiliza- 
tion, with each point on the x-axis representing a fixed 
number of background sources. These values are re- 
ported in terms of percentage of the link bandwidth 
generated by the background and test sources together. 
For the Priority experiments, 25% of the background 
traffic was in Level 1 (high priority) and 75% was in 
Level 2. All traffic in our experiments represents real- 
time traffic. 

In reality, best-efFort traffic will continue to make 
up an important part of Internet traffic. Our analysis 
does not suffer by omitting best-effort traffic from the 
model, since we assume it would receive lower priority 
than real-time traffic, and therefore would not impact 
the delays seen by real-time traffic. However, the pres- 
ence of best-effort traffic would impact the amount of 
real-time traffic in the network. If one assumes, for in- 
stance, that 20% of network traffic will be best-effort, 
then utilization levels higher than 80% in our exper- 
iments fall outside of expected operating conditions. 
Thus, an important, but unanswerable, question in an- 
alyzing our results is how much of the link bandwidth 
will be taken by best-effort traffic. If it is a large per- 
centage, then one need only consider fairly low levels of 
real-time utilization, and there the comparison of two 
levels of priority versus one is quite different than at 
higher levels of utilization. 

3.2    Results 

We present our results in three stages. First, we present 
"raw" data of queueing delays and jitter induced by the 
network. This shows the service provided by the net- 
work, before any processing by the applications. Then 
we add the application performance and utility to our 
analysis in the context of non-adaptive applications. 
Finally, we present results of experiments using the 
adaptive algorithms described earlier. This incremen- 
tal approach demonstrates the importance and impact 
of the specific characteristics of applications (i.e., their 
utility and adaptation algorithms) we consider. 

The vie program 
http://www-nrg.ee.lbl.gov/vic/. 
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Figure 2: Delay trace at 55% utilization 

3.2.1    Raw Network Performance 

Figure 2 shows a plot of delay versus time over a 50 
second simulation interval for a single test source in 
the FIFO case and for test sources in each level in the 
Priority case. Average utilization is 55% in both ex- 
periments. Histograms of delay (over a 500 second sim- 
ulation interval) are shown in Figure 3. These graphs 
depict, as expected, that the service provided by Level 
1 is better than that of Level 2 and of FIFO, and that 
FIFO was better than level 2 (although we were sur- 
prised by how small this latter difference was in the 
histograms). The unanswered question is whether or 
not these performance differences matter significantly 
to applications. Consider first the average delays: 0.71 
ms for Level 1 and 6.73 ms for Level 2. While in abso- 
lute terms, this difference is significant, it is likely to be 
dwarfed by other sources of delay in the network, such 
as propagation time. Hence, if average delay matters, 
then one may conclude that multiple levels of service 
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Figure 3: Delay histogram at 55% utilization. 

does not provide significant benefits to applications. 
However, the tails of the delay distributions are dra- 
matically different. For example, the maximum delay 
experienced for Level 1 and Level 2 are 30 and 100 ms, 
respectively. In contrast to the averages, the differ- 
ences between these figures are likely to be significant 
to some applications (e.g., interactive ones). Hence, 
it is apparent that one cannot address the design is- 
sue we raise here without considering the effect of the 
network service on the applications that use it. Specif- 
ically, how do applications adapt to the service, and 
how do they ultimately perceive the service? 

3.2.2    Rigid Application Performance 

We first consider the relationship between network ser- 
vice and application performance in the context of rigid 
applications that do not adapt to current network con- 
ditions. Rigid applications remove network jitter by 
maintaining a constant playback point for all packets. 
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Figure 4: Distortion for rigid applications. 

That is, all packets are buffered so that the sum of their 
network and playback delays are equal. Packets that 
arrive after their playback points must be discarded. 
This receiver behavior maintains perfect fidelity as long 
as packets arrive "in time", but degrades when pack- 
ets arrive late. While such an application is impracti- 
cal for the Internet (because applications have no way 
of knowing where to set the playback point when the 
first packet arrives in a way that will produce an ac- 
ceptable level of distortion), we consider its behavior 
here to motivate the need to include adaptation in our 
analysis. 

For rigid applications, the delay performance mea- 
sure is merely the fixed delay experienced by all pack- 
ets. To measure distortion, we assign a penalty of 120 
ms (or three times the maximum penalty incurred by 
the adaptive algorithms) for each packet that arrives 
late and is dropped by the application.14 The playback 
point for a rigid application is determined by the utility 
functions for delay. A delay sensitive application using 
the rigid playback algorithm sets its playback delay to 
25 ms, half the delay threshold at which utility starts 
to degrade, while delay insensitive applications set the 
playback delay of the first packet to 500 ms.15 

"Relating the distortion measure of rigid and adaptive ap- 
plications is problematic, as it involves comparing the cost of 
late packets dropped by the application to the cost of adjusting 
the playback algorithm. Given our performance measures and 
utility functions, utility starts to degrade at .2% packet loss and 
utility is zero when packet loss reaches .8% for distortion sensi- 
tive rigid applications. For distortion insensitive applications, 
the corresponding thresholds are 2% and 8%. 

15Choosing the playback point for rigid applications is also 
problematic. If the application has knowledge about the queue- 
ing delay of the first packet it receives, it could set the playback 
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Figure 5: Rigid application utility for delay/distortion 
sensitive and delay sensitive applications. 
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Figure 6: Rigid application utility for distortion sensi- 
tive and delay/distortion insensitive applications. 

Figure 4 shows distortion as a function of offered 
load for rigid applications. For both delay sensitive 
and insensitive applications, data are shown for FIFO 
service (all traffic in a single service class) and for each 
of two levels in the Priority service case. With a low 
delay threshold (set for a delay sensitive application) 
there is no distortion up to about 20% utilization for 
the FIFO case. Beyond that, distortion starts to in- 
crease, deteriorating rapidly beyond 40% utilization. 
In the case of priority service, the Level 1 traffic expe- 
riences negligible distortion up to levels of utilization 
exceeding 80%.16 The distortion of the Level 2 traffic 
is similar to the distortion of the FIFO service with 
the increases occurring at slightly lower levels of load. 
When the playback point of the rigid application is set 
to satisfy delay insensitive applications, no distortion 
is experienced (except at very high loads with Level 
2 and FIFO service) as the playback point is large 
enough to enable almost all packets to arrive before 
their playback times. 

These figures indicate how much distortion (result- 
ing from discarded late packets) applications experi- 
ence. However, they do not provide any indication 
about the effect that this distortion has on applica- 

point optimally (i.e., to the delay value at which utility starts 
to degrade) and minimize packet loss. However, without this 
information, it can only guess. We used half the optimal value 
as the playback point, and set the minimal playback point of 
the adaptive algorithms to the same value to make the perfor- 
mance comparisons fair. 

16Recall, the X axis is total offered load; hence in the Priority 
experiments, 80% load consists of 20% high priority traffic and 
60% low priority traffic since we hold the ratio of high to low 
priority fixed at 1:3. 

tion performance. We employ the utility functions de- 
scribed in Section 2.3 to each of 4 classes of applications 
(characterized by their relative sensitivity or insensi- 
tivity to each of delay and distortion) for the FIFO 
case and for each level of service in the priority case. 
The results are shown in Figures 5 and 6. Applications 
that are sensitive to both delay and distortion achieve 
high utility up to about 25% load with FIFO service, 
then performance deteriorates rapidly. Applications 
that are only sensitive to delay and not to distortion 
experience this performance degradation at higher lev- 
els of load (45%). Applications that are sensitive to 
distortion only and applications that are not sensitive 
to either performance measure achieve high utility, ex- 
cept at the very highest levels of load. 

In the Priority case, Level 1 service allows all ap- 
plications to achieve high utility at all levels of load. 
Above load levels of 45%, Level 2 is only useful for 
applications that are insensitive to delay. 

3.2.3    Adaptive Application Performance 

We now consider the impact of the aggressive and con- 
servative playback algorithms described in Section 2.2. 
To make comparisons between these algorithms as fair 
as possible, the minimum playback delay at the start 
of a talkspurt was set to 25 ms in the aggressive al- 
gorithm. This is consistent with the playback delay in 
the rigid algorithm. Within a talkspurt, when a packet 
arrived late and the playback point was adjusted, the 
minimum additional playback delay was set to 5 ms. 
The initial playback delay for the conservative algo- 
rithm was also 25 ms.    We repeated our simulation 
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Figure 7: Delay for adaptive applications. 
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Figure 8: Distortion for adaptive applications. 

experiments, computing delay and distortion for each 
algorithm in the FIFO test and for both levels of ser- 
vice in the Priority case. Delay measures as a function 
of load are shown in Figure 7 and distortion measures 
are shown in Figure 8. 

These figures demonstrate that the two adaptation 
algorithms offer tradeoffs of delay for distortion. The 
aggressive receiver gives lower delays and higher dis- 
tortion than the conservative algorithm at equivalent 
load levels. For example, with FIFO service, the ag- 
gressive receiver's delay is 51.2 ms while the conser- 
vative algorithm yields an average delay of 165.8 ms 
at 60% utilization (Figure 7). At the same load, the 
algorithms yield distortion values of .57 and .00071, re- 
spectively (Figure 8). However, these figures also show 
that while adaptation can reduce one quantity at the 
expense of the other, there is little adaptation can do 
to reduce both. So, as we shall see, applications that 
are sensitive to both delay and distortion are the most 
vulnerable to network service variations. 

When two levels of service are available, the higher 
priority level always gives applications better service at 
high levels of load. However, the relative difference be- 
tween Level 1 and Level 2 service depends on the adap- 
tation algorithm. For instance, the difference between 
Level 1 and Level 2 delays is smaller with the aggres- 
sive algorithm than with the conservative algorithm. 
Conversely, the difference in distortion between Level 
1 and Level 2 is small with the conservative algorithm 
and large with the aggressive algorithm. These differ- 
ences affect the relative utility applications receive in 
different service levels. We next look at application 
utility as a function of the application's performance 
sensitivities. 

Figures 9 and 10 show utility as a function of offered 
load for different types of applications. Each applica- 
tion uses the adaptation algorithm that is best suited 
for it.17 With FIFO service, applications that are sen- 
sitive to both delay and distortion receive good service 
(i.e., high utility) only at low levels of load. Utility 
starts to decrease at utilization levels of about 40% 
of the link bandwidth as the adaptation algorithm is 
unable to meet both the delay and distortion require- 
ments of the application, simultaneously. When high 
priority service is used, performance does not deterio- 
rate. Applications that are sensitive to delay and not 
distortion maintain high utility up to 60% utilization 
with FIFO service, as the adaptation algorithm can op- 
timize the performance measure about which the appli- 
cation cares the most. At higher loads (> 60%), high 
priority service does improve the performance of these 
applications. The applications that are only sensitive 
to distortion use the conservative adaptation algorithm 
to minimize distortion and achieve high utility at all 
but the highest levels of offered load with FIFO ser- 
vice. Hence, these applications derive no benefit from 
priority service, except in extreme conditions. Finally, 
applications that are insensitive to both delay and dis- 
tortion also do not benefit from priority service (except 
at very high loads), given that their performance re- 
quirements are such that they are satisfied at most load 
levels with FIFO service. 

1TThat is, the two kinds of applications that are sensitive to 
delay use the aggressive algorithm and the other two use the 
conservative algorithm. 
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Figure 9: Adaptive application utility for de- 
lay/distortion sensitive and delay sensitive applica- 
tions. 

3.2.4    One or Two Levels 

The previous results showed, not surprisingly, that some 
applications achieve higher utility with high priority 
service than without it, and the magnitude of the dif- 
ference depends on the characteristics of the applica- 
tion (its performance sensitivities) and on the level of 
the ambient traffic. However, by itself, this does not 
provide an answer to the question of the number of ser- 
vice levels that should be offered in the network. After 
all, better service always helps some applications, but 
at the same time it gives worse service to other ap- 
plications. Hence, the answer depends on how much 
better two levels of service makes the overall network 
service. There is not a single best way to answer this 
question. We consider two alternatives. 

The first, and perhaps most obvious approach is to 
consider the impact of multiple levels of service on total 
network utility. This method is fraught with problems. 
For instance, it depends on the mix of different kinds of 
applications in the network, the absolute value of util- 
ity achievable by each application, and on an incentive 
mechanism that impacts the mapping of application 
to service level. Nonetheless we proceed forward us- 
ing the results of our previous experiment. We assume 
that there are equal amounts of each kind of applica- 
tion, that only the applications that are sensitive to 
both delay and distortion use the higher priority ser- 
vice, and that all applications have the same maximum 
utility.18   Figure 11 shows the average utility per ap- 
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"The actual mapping of applications to service levels de- 
pends on the incentives of using each class, which are not in- 

Figure 10:  Adaptive application utility for distortion 
sensitive and delay/distortion insensitive applications. 

plication as a function of offered load. Below 40% uti- 
lization, two levels of service offers no increase in util- 
ity. Above 40% load, service priority does offer modest 
advantages, with the benefit increasing with load. In 
contrast, Figure 12 shows total utility for rigid applica- 
tions. Relative to the adaptive applications, these re- 
sults present a stronger, but possibly misleading, case 
for multiple levels of service. 

In addition to looking at the impact on total net- 
work utility, it is important to ask what effect service 
levels has on particular classes of applications. That is, 
independent of total utility, it may be important for a 
network to make sure that it serves all classes of appli- 
cations adequately. In this case, the relevant question 
to ask is, for a given service discipline, at what level 
of offered load is an application no longer well-served 
by the network. We can ask this question in the con- 
text of our earlier results (see Figure 9). When only a 
single FIFO service class is offered, applications that 
are sensitive to delay and distortion start to suffer a 
loss in utility at utilization levels of 40%. When these 
applications use priority service, the network provides 
them with useful service at very high load. Assuming 
the other application types use the lower priority ser- 
vice, it is important to consider the levels of utilization 
at which the network no longer satisfies these applica- 
tions. As is evident from the previous graphs, the delay 
insensitive applications do not suffer by using the lower 
priority service. The delay sensitive and distortion in- 

cluded in our analysis. However, given our previous results, we 
assume that if priority service is available, it will be used only 
by applications sensitive to both delay and distortion, since 
these are the applications that derive the most benefit from it. 
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Figure 12: Average utility for rigid applications. 

sensitive applications do suffer a bit when using the 
lower priority service: the level of utilization at which 
they no longer achieve utility of 1 decreases from over 
60% to 50%. Nonetheless, when looking at all appli- 
cation classes, multiple levels of service increases the 
load levels at which the network can satisfy all of them. 
This suggests that multiple service levels may be worth 
deploying according to this criterion. 

4    Discussion 

Previous studies of application adaptivity have com- 
pared algorithms, focusing on such performance mea- 
sures as the percentage of late packets for a given 
packet stream and adaptation algorithm.[8, 10] We be- 
lieve ours is the first study to incorporate this adaptive 
behavior into consideration of a network design ques- 
tion. Our study provides no definitive answer to the 
question of whether multiple service priorities should 
be provided for real-time traffic in the Internet. Our 
results showed that with a single level of service, per- 
formance of some applications starts to degrade at uti- 
lization levels below 50%. These applications would 
benefit from two levels of service, and other applica- 
tions are able to tolerate a lower priority service, yield- 
ing higher total network utility. However, the ultimate 
answer to our question depends on several characteris- 
tics of the future Internet, about which we are uncer- 
tain. First, how bursty will aggregate traffic be? We 
have presented results for a single kind of background 
traffic produced by multiplexing a moderate number 
of low frame rate video sources.   Results from addi- 

tional experiments, not shown here due to space limi- 
tations, showed that the burstiness of background traf- 
fic can be viewed as a knob that can be varied. With 
smoother background traffic and FIFO service, perfor- 
mance does not degrade until higher levels of utiliza- 
tion are reached. Therefore, the relative benefits of pri- 
ority service are smaller and only occur at higher levels 
of utilization, making a weaker case for multiple levels 
of service. The converse is true with burstier back- 
ground traffic. One should not take too seriously the 
absolute values of the utilization levels presented here; 
by making the traffic even burstier, one could make the 
levels of utilization at which performance degrades, ar- 
bitrarily small. We do not yet know if future Internet 
traffic will be smooth enough everywhere to obviate 
the need for multiple levels of service, or will the lev- 
els of burstiness be such that multiple service priorities 
are unambiguously desirable. In any event, additional 
simulations of either less bursty or more bursty traffic 
will not resolve this. 

Second, what will the ratio of best-effort to real- 
time traffic be in the network? For example, if future 
network traffic consists of 90% best-effort traffic then 
the relevant utilization levels for real-time traffic in our 
simulations would only be 10%. At this level of load, 
for all but the burstiest traffic imaginable, real-time 
traffic always receives low delay and distortion, even 
with a single level of service. Delay and distortion 
would be absorbed by best-effort applications, which 
are well-suited to handle the performance degradation. 
Just as a few years ago one would not have predicted 
the tidal wave of web traffic, we cannot, at this point, 
predict the extent to which the Internet will be used 
for real-time applications. 

Finally, what are the nature of utility functions of 
real-time applications? While we believe we have cap- 
tured the essential characteristics of these functions, 
actual thresholds and functions may be significantly 
different. Ultimately, our simulation model can pro- 
vide an answer to the larger question given an ade- 
quate set of parameters, but the model itself cannot 
resolve these questions. Hence, a more definitive an- 
swer requires a much better understanding of network 
applications, traffic mix and utility functions. 

While we do not provide an unambiguous answer 
to the initial question we posed, our results do yield 
other key observations. First, application adaptivity 
is not a panacea. Our simulations showed that adap- 
tive algorithms can very successfully remove distortion 
at the receiver, or they can reduce delay. However, 
achieving both low delay and low distortion is diffi- 
cult under moderate load with bursty traffic. Hence, if 
there are applications that are sensitive to both perfor- 
mance measures, then under certain traffic conditions, 
adaptivity may not be enough. In this case, service 
discrimination inside the network is needed to provide 
these applications an acceptable level of performance. 

Finally, we obtained different results for rigid and 
adaptive applications, further emphasizing the impor- 
tance of including realistic application behavior in the 
analysis. While we demonstrate this point in the con- 
text of one specific network design question, we believe 
it has widespread applicability. For example, when 
considering other questions, such as whether or not the 
network should provide multiple levels of dropping pri- 



ority, appropriate models of applications are needed. 
Conversely, if nothing else, this study has shown us 
that previous research (such as [14]) that models ap- 
plications as rigid and does not take application adap- 
tivity into account can lead to incorrect or misleading 
results. In the Internet, design analyses must incorpo- 
rate the adaptive nature of applications. 
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Abstract 

In this paper, we analyze the relative merits of uni- 
form versus priority dropping for the transmission of 
layered video. We first present our original intuitions 
about these two approaches, and then investigate the 
issue more thoroughly through simulations and anal- 
ysis in which we explicitly model the performance of 
layered video applications. We compare both their per- 
formance characteristics and incentive properties, and 
find that the performance benefit of priority dropping 
is smaller than we expected, while uniform dropping 
has worse incentive properties than we previously be- 
lieved. 

1    Introduction 

A common question facing network designers is what 
functionality the Internet should offer, and whether 
to place that functionality in the interior of the net- 
work (in network routers) or at its edges (in hosts). 
When evaluating new network control mechanisms, it 
is not enough to merely consider network-centric crite- 
ria, such as the local effects on queue sizes at routers, or 
the end-to-end delays provided by a particular network 
architecture. Rather, because the ultimate purpose of 
the network is to support applications, one must eval- 
uate the impact of the proposed mechanisms on appli- 
cation performance.1 If the proposed mechanisms re- 
quire significant additional complexity in the network 
infrastructure, their adoption should only be consid- 
ered if they provide significant benefits to a large (or 

'This research was supported in part by the Advanced Re- 
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contracts DABT63-94-C-0073 and DABT63-96-C-0105. The 
views expressed here do not reflect the position or policy of 
the U.S. government. 

1 We will use the terms application performance and appli- 
cation utility interchangeably. 

extremely important) segment of applications.2 

For example, a priority dropping mechanism will 
increase the dropping probability of low priority pack- 
ets while protecting high priority packets from frequent 
loss. However, in and of itself, the change in drop rates 
for different traffic does not indicate whether the con- 
trol mechanism significantly improves the performance 
of applications. The desirability of drop priority de- 
pends crucially on its impact on application perfor- 
mance. That aspect of the issue, which has received 
comparatively little attention so far, is the focus of our 
paper. 

This paper is devoted to the question of drop pri- 
ority for the transmission of layered video in contexts 
where packet drops, rather than packet delays, are 
the primary determinant of application performance. 
In such cases, we ask: should the Internet retain the 
currently predominant uniform dropping mechanism, 
where all data packets are treated equally with respect 
to dropping, or should the Internet adopt a priority 
dropping mechanism where lower priority packets are 
dropped before higher priority ones? We specifically 
focus on the implications of these network dropping 
mechanisms for application performance.3 To this end, 
we consider a class of layered video applications and in- 
troduce a simplified model of their performance; this 
model is extremely primitive, but nonetheless high- 
lights several open questions about the characteris- 
tics of network video applications. Using both discrete 
event simulation and analytical models, we assess the 
impact of different network dropping schemes on appli- 
cation performance and on their incentive properties. 

2 Alternatively, one would consider adopting network de- 
signs that allowed a significantly higher level of link utiliza- 
tion without significant application performance degradation; 
in this case no single user is substantially better off in terms 
of application performance, but the increased utilization im- 
plies that there are many more such satisfied users. Of course, 
the desirability of any new network level mechanism depends 
on the level of mechanistic complexity introduced; however, we 
adhere to the philosophy that one should only consider adop- 
tion after the significance of the benefit is demonstrated, and so 
the consideration of implementation complexity comes after the 
analysis of the potential benefits. We only address the latter 
(the potential benefits) and not the former (the implementation 
complexity) in this paper. 

3We do not discuss the mechanisms for implementing drop 
priority, such as whether these priority levels are indicated in 
packets in TOS bits, or signaled as part of the multicast join 
message. 



Much to our chagrin, we find that many of our previ- 
ously held opinions and assumptions about the perfor- 
mance of packet dropping algorithms and the incen- 
tives they provide to applications are either wrong, or 
are only true in the context of specific network condi- 
tions. In particular, we find that while priority drop- 
ping performs better in general than uniform dropping, 
the magnitude of the difference is smaller than we ex- 
pected. At the same time, we find that uniform drop- 
ping has worse incentive properties than we thought. 

We hasten to note that we do not offer specific con- 
clusions about whether or not the Internet should offer 
drop priority for layered video applications. Our re- 
sults are ambiguous on this point - there are some con- 
ditions where drop priority yields significant benefits, 
and other conditions where it doesn't- and there are 
many relevant issues (such as implementation complex- 
ity) that are outside of our ken. Instead of making a 
specific recommendation about priority dropping, our 
goal is to illustrate more generally the basic approach 
of considering application performance in conjunction 
with network control mechanisms. 

In the next section we provide background about 
the question of network dropping algorithms that mo- 
tivated this work, and identify three central questions 
to be addressed. In Section 3 we outline our general 
model of application utility, along with the simulation 
and theoretical frameworks used in this study. In Sec- 
tions 4 and 5 we present the results of our investi- 
gations into the performance and incentive aspects of 
priority and uniform dropping. We conclude with a 
discussion in Section 6. 

2    Background 

A key challenge in sending video over the Internet is 
matching the transmission rate to the currently avail- 
able bandwidth. One approach is to employ rate adap- 
tive coding algorithms [2, 3] in which the parameters 
of the coding algorithm can be adjusted periodically 
to match the available network bandwidth. However, 
this strategy is problematic for multicast transmission 
[12, 14] since, in general, there is not a single bottle- 
neck bandwidth available between the source and all 
receivers; some paths will have more available band- 
width than others. Choosing a single transmission rate 
(at any instance in time) will either unnecessarily con- 
strain those receivers with higher bandwidth paths or 
congest the lower bandwidth paths leaving some re- 
ceivers with high loss rates. In response, Deering [5] 
and others [9, 11, 15, 16] proposed using layered cod- 
ing algorithms4 to transmit video data, striping differ- 
ent layers across different IP multicast groups [4]. In 
this scheme, a receiver only subscribes to those groups 
for which sufficient network capacity exists. Thus, in 
a heterogeneous network, each receiver is able to ad- 
just its level of subscription to receive an appropriate 

4 Layered coding algorithms, such as described in [9, 11], par- 
tition the encoded signal into several layers. The base layer en- 
codes a fairly primitive rendering of the image, and higher lay- 
ers encode increasingly finer enhancements to the image. Lay- 
ered coding algorithms thus provide several different levels of 
encoding simultaneously. A receiver can choose how may layers 
to receive, and the more layers that are available to decode, the 
higher the resulting picture quality. 

Performance 

Figure 1: A representation of application performance 
as a function of load with perfectly smooth traffic. The 
maximal performances of priority and uniform drop- 
ping are the same, and RLM achieves this optimal 
level. The uppermost curve depicts the performance 
level achieved if the link had infinite bandwidth. The 
load level marked by B denotes the bandwidth of the 
bottleneck link. 

amount of traffic. 
Such a layered encoding and transmission scheme 

lends itself to the use of priority dropping. Packets be- 
longing to the base layer of a hierarchically encoded 
video stream can be marked as high priority while 
packets belonging to each successive enhancement layer 
can be marked as successively lower priority. Dur- 
ing times of congestion, the network can preferentially 
drop the low priority packets, protecting the base layer 
from significant loss. Shifting loss away from more im- 
portant and towards less important packets improves 
the picture quality. For this reason, priority dropping 
(for layered encodings) was considered by many in the 
Internet community to be an extremely promising ap- 
proach for digital video. 

However, in their recent work on Receiver-driven 
Layered Multicast [12] (RLM), McCanne et al. argue 
against this use of priority dropping.5 Their argument 
is best illustrated by Figure 1 (based on a similar figure 
in their paper) which plots the application performance 
(which, in the case of digital video, is synonymous with 
picture quality) as a function of offered load for uni- 
form and priority dropping when capacity is fixed. In 
addition, the uppermost curve shows the quality of the 
picture as a function of load with unlimited link ca- 
pacity (and therefore no packet drops.) Underlying 
this figure is the implicit assumption that there is a 
bottleneck rate below which there is no dropping, and 
above which all excess packets are dropped. That is, 
the output rate equals the input rate whenever the in- 
put rate is below the bottleneck rate, and the output 
rate is equal to the bottleneck rate whenever the input 
rate is greater than the bottleneck rate. As the figure 

5While the introduction of this paper makes remarks about 
the inadvisability of priority dropping (as we outline below), 
we should note that in this paper RLM is also described as a 
way to cope with the current uniform dropping infrastructure 
(regardless of what one thinks of priority dropping). Moreover, 
the bulk of the paper is devoted to the design of the RLM algo- 
rithm itself - an admirable exercise in elegance and scalability - 
and the discussion of the relative merits of uniform and priority 
dropping is clearly not the central focus of the paper. 



shows, up to the bottleneck load the application per- 
formance of the two dropping schemes is equal because 
no packets are dropped in either case. Beyond the 
bottleneck load, the performance of uniform dropping 
degrades because no additional packets are transmit- 
ted, and packets are dropped uniformly from all layers; 
the performance of priority dropping remains constant 
since only packets from the lower priority levels are 
dropped. Thus, as illustrated by Figure 1, uniform 
and priority dropping both attain the same maximal 
performance, and the performance curves only differ 
when excess load is offered. 

As discussed by McCanne et al. [12], this behav- 
ior has implications for the incentives faced by users. 
Under uniform dropping, users maximizing their own 
performance would restrain their usage to the bot- 
tleneck rate. Priority dropping, on the other hand, 
does not provide any penalty for sending low prior- 
ity packets that are dropped inside the network, and 
so users (at least based solely on application perfor- 
mance) would not mind sending faster than the bot- 
tleneck rate.6 Thus, uniform dropping provides better 
performance-based incentives than priority dropping. 

Priority dropping, however, has the advantage that 
the application need not determine the bottleneck rate 
precisely to achieve optimal performance. In contrast, 
to achieve the optimal performance with uniform drop- 
ping, the application must identify the bottleneck rate 
precisely because performance degrades if the trans- 
mission rate is higher (or lower) than the bottleneck 
rate. 

RLM [12] is a host-based algorithm that responds 
to current network conditions (as measured by packet 
drops) to achieve the appropriate bandwidth level. Mem- 
bers leave a level (i.e., leave the multicast group asso- 
ciated with that level) when their overall drop rate 
(across all levels) becomes too high; in addition, they 
periodically perform experiments by joining a level to 
test if the drop rate with the addition of the new level 
is sufficiently low. RLM's innovative design coordi- 
nates the activities among the various members of the 
multicast group so that these experiments don't inter- 
fere with each other. Under the conditions explored in 
[12], where the traffic is rather smooth (».e., CBR-like), 
RLM successfully achieves the bottleneck bandwidth, 
and does so in a scalable manner for large multicast 
groups. We have indicated this on Figure 1 by mark- 
ing RLM's performance level at the peak of the priority 
and uniform dropping curves. 

One can summarize (with appropriate additional 
caveats) the three basic tenets of the arguments against 
priority-dropping: (1) uniform dropping achieves (es- 
sentially) the same optimal level of performance as pri- 
ority dropping (i.e., the peaks of the curves are nearly 
the same), (2) RLM achieves (close to) optimal perfor- 
mance, and (3) uniform dropping provides incentives 
for users to reach the optimal operating point whereas 

6The impact of users not constraining their usage of lower 
priority packets is not clear, nor can it be evaluated in the sim- 
ple settings we investigate here. If there is only a single bottle- 
neck in the network, then there are no ill-effects of sending lower 
priority packets that will be dropped at that bottleneck. Nega- 
tive consequences only arise in more complicated settings where 
these destined-to-be-dropped packets congest one or more links 
upstream of the bottleneck. It is not clear how significant a 
phenomena this is. 
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Figure 2: A representation of our intuition about ap- 
plication performance as a function of average load 
with bursty traffic. Priority dropping achieves a sig- 
nificantly higher maximal performance level than uni- 
form dropping. Moreover, RLM's performance is sig- 
nificantly below the maximal performance achievable 
under uniform dropping. As before, the uppermost 
curve depicts the performance level achieved if the link 
had infinite bandwidth, and the load level marked by 
B denotes the bandwidth of the bottleneck link. Note 
that since the x-axis represents average load and traf- 
fic is bursty, the performance of priority dropping can 
increase beyond the bottleneck rate. 

priority dropping does not provide performance-based 
incentives to constrain usage. While these arguments 
certainly have an initial appeal, we must admit that 
after reading [12] we were not entirely convinced by 
them. In the spirit of full disclosure we now discuss 
the intuition that (mis)guided us as we embarked on 
our research program. 

The assumption underlying Figure 1 is that packet 
dropping occurs only when the bottleneck rate is ex- 
ceeded, and then all excess packets (i.e., all packets 
exceeding the bottleneck rate) are dropped. This is a 
reasonably good approximation when network traffic 
is quite smooth, like CBR traffic, but Internet traffic 
is not typically CBR-like. In fact, Internet traffic is 
characteristically quite bursty [8, 10], and bursty traf- 
fic results in packet drops even when long-term aver- 
age transmission rates are well below bottleneck rates. 
With bursty traffic, there will be some packet drops 
at all significant utilization levels, thereby producing a 
performance gap between priority and uniform drop- 
ping even below the bottleneck rate. Consequently, our 
initial hypothesis when undertaking this work was that 
in the presence of bursty traffic (similar to what we 
envision is present in the Internet), priority dropping 
would significantly outperform uniform dropping. By 
this we mean the optimal performance achievable with 
priority dropping would be much higher than the high- 
est performance achievable with uniform dropping; in 
essence, we imagined that with bursty traffic the per- 
formance curves would look more like Figure 2 than 
like Figure 1. 

RLM uses packet drops as a signal of congestion, 
joining and leaving levels based on the current drop- 
ping rate. In this manner, RLM attempts to match its 
transmission rate to the bottleneck bandwidth. When 
traffic is bursty, however, the bandwidth available at 



the bottleneck (and perhaps even the location of the 
bottleneck itself) can fluctuate significantly. Moreover, 
these fluctuations occur on time scales much shorter 
than the response times of host-based mechanisms (which 
require at least the round trip time between the bot- 
tleneck and the receiver to respond). We assumed 
that any attempt to adjust, at the endpoint, to rapid 
fluctuations at the router was doomed to fail. Conse- 
quently, our initial hypothesis was that, under bursty 
conditions, adaptive mechanisms implemented at the 
endpoints would perform significantly worse than the 
optimal performance under uniform dropping, and cer- 
tainly much worse than the performance achieved with 
priority dropping. As shown in Figure 2, our initial as- 
sumption was that RLM, or indeed any similar adap- 
tive algorithm used with uniform dropping, would re- 
sult in performance significantly below the peak of the 
uniform dropping curve. 

Lastly, there is the issue of incentives. The per- 
formance curves in Figures 1 and 2 depict the perfor- 
mance of a single application given a fixed (smooth in 
Figure 1 and bursty in Figure 2) traffic load. The peaks 
of these curves identify points that are optimal for that 
individual application. However, in constructing net- 
work mechanisms we are typically more interested in 
achieving global or social optima, where the total per- 
formance - the performance of all applications - is op- 
timized. There are many models of congested systems 
where the individually optimal point, often called the 
Nash equilibrium [7], is quite far from the socially op- 
timal outcome [13]; the reasoning in [12] about the 
incentives provided by uniform dropping did not make 
the necessary distinction between individually and so- 
cially optimal outcomes. While uniform dropping pro- 
vides performance-based incentives to constrain usage 
(and priority dropping did not), this does not at all 
imply that under uniform dropping the joint behavior 
resulting from applications seeking their individually 
optimal points will result in socially optimal, or close 
to socially optimal, outcomes. Despite this fact, our 
initial assumption about incentives was that uniform 
dropping's incentive properties were still far superior 
to those of priority dropping. 

Thus, our initial assumptions were quite different 
from those embedded in the arguments against priority 
dropping advanced by McCanne et al. in [12]. To 
resolve these fundamentally conflicting intuitions and 
arguments, we set out to answer three basic questions 
about uniform and priority dropping: 

1. Do uniform and priority dropping achieve the 
same optimal performance? To what extent does 
the answer depend on the burstiness of traffic, 
and is the difference ever significant? 

2. Can RLM (as an example of a control mechanism 
used with uniform dropping) achieve the optimal 
performance under uniform dropping? Again, 
does the answer depend on the burstiness of traf- 
fic? 

3. What incentives do these different dropping mech- 
anisms present to individual applications?    Do 
operating points where each user is individually 
optimal differ from the socially optimal operating 
point? 

To address these questions, we use simulation and 
analysis of simple models of layered video applications 
transmitting over a network. The simulation models 
are, by necessity, crude approximations because we 
know little about the traffic and performance charac- 
teristics of future layered video sources, and even less 
about the likely nature of future background traffic. 
The analytical models suffer from these same draw- 
backs but, in addition, tractability requires even fur- 
ther simplification. Thus, we make no pretense that 
the models we used are realistic in any precise sense; 
they merely illustrate some of the basic issues involved, 
and highlight areas where future research is needed. 
These simulation and analytical models are presented 
in the following section. 

3    Simulation and Analytical Models 

In this section we describe our simulation and analyt- 
ical models of applications and the network. For our 
purposes here, an application has two somewhat dis- 
tinct aspects: its offered load (the nature of the packet 
stream the application transmits over the network) and 
its performance characteristics (how application per- 
formance depends on the network service those pack- 
ets receive). The basic assumptions about the perfor- 
mance characteristics embedded in the analytical and 
simulation models are quite similar in spirit, and we 
describe them first. We then describe the network and 
traffic aspects of the simulation model, and then those 
of the analytical model. 

3.1    Basic Assumptions about Performance of Lay- 
ered Video 

We represent the performance of an application by a 
utility function. This function maps the service re- 
ceived into some performance (or utility) level deliv- 
ered to the end user. Below we describe a model for 
layered video, our canonical application, but it may 
well apply to other layered applications. 

The canonical representation of layered video we 
use throughout this paper consists of some fixed num- 
ber L of layers. Each layer is characterized by a traffic 
stream and a potential value it provides to the appli- 
cation. One expects the per bit value to decrease with 
additional layers; the most value is derived from the 
information encoded in the base layer, and the rela- 
tive value of bits in the enhancement layers decreases. 
For each layer / let a(l) denote the bandwidth and f(l) 
denote the per-bit value. We assume that /(/) is a 
non-increasing function.7 If all packets are success- 
fully received (we assume delay is not an issue, only 
dropping, so we ask only if, not when, packets are re- 
ceived), then the total utility is merely ^2I=1 a(l)f(l). 

Define F(l) = £^=1 f(k)a(k) to be the total utility of 
all layers up to /. 

Our utility functions describe, in the presence of 
loss, how much value an application derives from the 
set of packets it actually receives. Since utility is a sub- 
jective measure that depends in large part on human 

TAs / increases, the value of layer / decreases. Hence, higher 
layers (in terms of their index) will have lower drop priority 
and lower layers will have higher drop priority. 



perception (so it may vary from person to person) and 
on the characteristics of the coding algorithm used (so 
it may vary from implementation to implementation if 
different encoding schemes are used), the range of ap- 
plicability of any particular utility function is limited. 
Rather than choose a single utility function and claim 
that it accurately represents the truth about applica- 
tion utility, we instead examine a family of extremely 
simple utility functions in an attempt to understand 
what impact different utility functions have on the re- 
sults of our study. 

We assume that the utility of each layer is inde- 
pendent of the other layers' utilities.8 The utility of 
a given layer is a function of the loss experienced in 
that layer; we represent this by a non-decreasing func- 
tion g(z) with g(0) = 0 and g(l) = 1, where z is the 
fraction of packets received in the layer. Thus, if d(l) 
is the fraction of packets dropped in layer / then the 
total utility is given by: 

5>(Q/(/)rfl - <*(!)) (1) 

To explore the impact of different utility functions, we 
use functions of the form g(z) = zm, m > 0. The 
nonlinearities for m ^ 1 could be due to characteristics 
of the coding algorithm, human perceptual factors, or 
both. 

3.2    Simulation Framework 

We use discrete event simulation to study the perfor- 
mance of uniform and priority dropping. Our simula- 
tor, which used version 2 of the ns network simulator as 
a starting point and added new functionality as needed, 
incorporates the utility functions described above, as 
well as the relevant source models and network con- 
trol mechanisms.9 Below we describe the application 
source models, the router queueing and dropping algo- 
rithms, and the network topology. 

Source models: We use an abstract layered source 
model that captures two essential characteristics of lay- 
ered video traffic: (1) the instantaneous traffic in each 
layer varies over time, and (2) there is high correlation 
between the instantaneous traffic in each layer (one 
might expect factors such as motion or scene change 
that lead to changes in bit rate to have impact across 
layers). The layered source model is built out of indi- 
vidual layers. We first describe the traffic in the base 
layer (/ = 1) and then describe the traffic generated by 
the higher layers. 

We divide time into discrete intervals of length Ai, 
and. let t be the index of the time intervals. Let nt be 
the number of packets sent in time interval t. All nt 

packets are sent back-to-back at a starting time chosen 
at random from a uniform distribution within the in- 
terval. In every time interval t, the rate nt is selected 

8In [1] we also consider utility models that capture depen- 
dency between layers, where the dropping rate in one layer may 
effect the utility of another layer. Such dependencies arise in 
many coding algorithms. 

9The ns simulator is available at http://www-mash.cs. 
berkeley.edu/ns. Our extensions to the simulator, and the sim- 
ulation scripts we ran to generate the results in this paper 
can be found at ftp://ftp.parc.xerox.com/pub/net-research/ 
breslau/dropping. 

independently from the following random distribution: 
nt = 1 with probability *-jr-, and n{ = PA + 1 — P with 
probability -p. This model produces hi-low sources 
that generate either nt = 1 packet per interval or 
nt = PA + 1 - P packets per interval (and A con- 
tinues to describe the average number of packets per 
interval). Note that when P = 1, this model produces 
CBR-like traffic with nt = A. Increasing P yields in- 
creasingly bursty traffic. Throughout our simulations, 
we use Ai = 1 second, and A = 4 packets per interval. 
All packets have size s = 1000 bytes. 

The higher layers are slight modifications of this 
model. We impose the requirement that f(l)a(l) = 
/(l)o(l) so that all layers contribute equal value; for 
convenience, we assume 4U| is an integer. Then, for 
each time interval of the base layer (of length Ai), we 
create yrfi subintervals of length Ai A,^i 

^i/(i)- As in 
the base layer, a certain number n of packets are sent 
back-to-back in each of these subintervals, starting at 
some uniformly distributed starting time. Inter-layer 
correlations are captured by using the same value of 
nt in each subinterval Ai (for all layers /) of a given 
base interval Ai; that is, a number nt is chosen for 
each time interval t for the base layer, and this nt is 
used to govern the transmissions in each subinterval 
(for each higher layer) of the interval 1 Thus, as nt 

varies randomly, all layers adjust their sending rates in 
concert. 

For our simulations, we typically use a{l) = 2,-1o(l) 
and /(/) = 21-'/(l), so each layer potentially con- 
tributes a unit of value.10 With Ai = 1 second, A = 4 
packets per interval, and s = 1000 bytes, we have aver- 
age transmission rates per layer of 32kbps, 64kbps and 
128kbps, etc. 

Dropping and Scheduling Algorithms: Under 
uniform dropping, all packets have equal drop proba- 
bility. We use tail drop in most of our experiments; a 
packet arriving at a full queue is dropped, otherwise it 
is queued for later transmission. We also use Random 
Early Detection [6] (RED) as our dropping algorithm 
in some experiments. 

The priority dropping algorithm is slightly more 
complex and involves dropping on both input and on 
output. When a packet arrives and the queue is full, 
rather than dropping the arriving packet (as with drop 
tail) the arriving packet is queued and a packet (the 
latest in the queue) of the lowest priority among those 
packets in the queue is dropped. Dropping on output 
is also performed in order to prevent transmission of 
already queued low priority packets from causing later 
drops to higher priority packets. Dropping on output 
uses a threshold parameter Q, with 0 < £ < 1. A 
packet in layer / at the front of the queue is dropped 
if the total number of packets in the queue of higher 
priority than / is greater than C times the total num- 
ber of buffers; otherwise, the packet is transmitted. 
This heuristic allows low priority packets to be sent 
when the probability is small that they will cause sub- 
sequently arriving higher priority packets to arrive at 

10The decreasing per-bit value per layer is fundamental to our 
model. However, the grouping of bits into layers is arbitrary. 
We chose to hold the per-layer value constant, implying an 
increasing rate per layer. Our analytical model is not burdened 
by this somewhat arbitrary decision. 
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Figure 3: Simulation Topology 

a full queue. We used the value C = 0-6 m our simu- 
lations (both here, and in the subsequent places where 
parameter ( is invoked).11 

In the experiments described in this paper, we used 
a simple FIFO scheduling algorithm with the two drop- 
ping algorithms described above. We have also simu- 
lated uniform and priority dropping with Fair Queue- 
ing. Results of these experiments are reported in [1]. 

Topology: We use a very simple topology in our 
experiments (shown in Figure 3) to assess the impact 
of different dropping strategies across a single bottle- 
neck link. There are n sources and receivers. There is a 
single bottleneck link, and high speed links (10 Mbps) 
connect each source to the bottleneck. All dropping 
occurs at the bottleneck link. Note that we do not ad- 
dress the issue of multiple receivers per source since it is 
irrelevant to priority dropping, and RLM deals grace- 
fully with large groups for uniform dropping. Thus, for 
clarity, we reduce the problem to its bare essentials by 
focusing on single receiver groups. 

Inputs for each experiment include the number of 
sources, the traffic parameter P used for each source, 
the bottleneck link bandwidth, and the number of buffers 
b at the bottleneck link. Unless otherwise stated, our 
simulations use eight sources and a bottleneck band- 
width of 4 Mbps. We use P = 1 or P = 5 to produce 
smooth or bursty traffic, respectively, and b = 60 or 
b = 20 to test the effect of buffer size on our results. 

3.3    Theoretical Framework 

We augment our simulation study with theoretical anal- 
ysis. We employ an extremely crude model that cap- 
tures some of the essential features but leaves out many 
details. The model complements the simulations since 
the theoretical model can incorporate a wider variety of 
traffic models (in terms of their drop rates as a func- 
tion of load) and the layers are infinitesimally small 
(avoiding effects due to the large size of the lower pri- 
ority layers). Below we describe the model; the results 
of the analysis are presented in the following sections. 

11 Designing an ideal priority dropping mechanism was not a 
goal of this research. We fully expect that one could improve on 
the priority dropping algorithm outlined here. However, exper- 
imentation has shown that this algorithm does accomplish our 
main goal which is to achieve high throughput while protecting 
higher priority packets from loss resulting from the transmis- 
sion of lower priority packets. 

Source Models: Rather than having a finite num- 
ber of discrete layers (labeled by 1), we model each flow 
as having a continuum of layers (labeled by x), each 
with an infinitesimal unit of bandwidth (i.e., a(x) = 1). 
Let r; denote the highest layer being sent by flow i. 
Since each layer consumes a unit of bandwidth, r; is 
also the total bandwidth sent by the i'th flow. The 
assumption that different flows send the same amount 
of bandwidth in each layer is clearly limiting, but it 
greatly simplifies our analysis and does not directly 
undercut our central concern, that being the trade- 
off between priority and uniform dropping. As before, 
/(x) is the potential value for each layer (if all pack- 
ets are received in that layer), and F(x) = J dyf(y) 
denotes the total potential value for all layers up to 

The performance of the network, from the perspec- 
tive of the i'th flow, is characterized by di(f, x) which is 
the drop fraction of packets in flow j, layer x, and where 
r describes the transmission rates of all flows. Note 
that the quantity di(r,x) can be interpreted as the 
drop rate (packets dropped per unit time), or the drop 
fraction (fraction of packets dropped), given that each 
layer consumes a single unit of bandwidth. The contin- 
uum version of the utility function given by Equation 
1 is: 

m = dxf(x)g(l -di(r,x)) 
Jo 

(2) 

Dropping Algorithms: We consider two forms 
of dropping behavior: uniform and priority dropping. 
For uniform dropping the basic principle is that there 
are no distinctions between layers as far as dropping is 
concerned: di(f,x) = di(r,y) for all x,y. For priority 
dropping the basic assumption we make is that the 
dropping rate for higher priority packets is completely 
unaffected by the presence of lower priority packets. 
In reality, priority dropping schemes will never achieve 
this perfection, but this assumption makes the model 
tractable. This means that di(f,x) is independent of 
all TJ as long as r,; > x (and this applies to j = i 
as well) and so, in particular, di(f, x) = di(f A x,x) 
(using the notation that a A b = min [a, b] and that 
(a A b)t = min[a,, 6]). 

Scheduling Algorithms: The basic behavior of 
the queueing system is represented by an increasing 
and convex (D" > 0) function D : SR+ i— 9J+. D{T) is 
the drop rate (packets dropped per unit time) resulting 
from a total traffic load of T; the drop fraction is given 
by D<i2"). We make the basic approximation that the 
total drop rate depends only on the total traffic load 
(and is not a function of the individual flow rates).13 

Thus, we must have: 

,   Jo 
dx di(f,x) = D{/ ^Tj) 

The canonical example we use for the function D 
is that of an M/M/l/b queue with unit service rate 

12Note that since a(x) = 1, f(x) is both the per-bit value 
and the per-layer value and we can leave out the term a(x) in 
the expression for F(x). 

13Note that since the throughput is bounded, we must have 
limr—oo D'{T) = 1, and so 0 < £>'(T) < 1 for all T; this fact 
will be relevant later in the paper. 



(modeling a bottleneck bandwidth of 1) and b buffers, 
so D(z) = zb+l 1]_Jb%i ■ In the limit of infinite b, this 
reduces to the perfect bottleneck model where D(z) = 
(z — 1)+ (where we use the notation x+ = max[0,x]). 
The buffer size parameter b can also be seen as de- 
scribing the smoothness of the traffic, with infinite 6 
describing infinitely smooth traffic.14 

We now compute the functions t/,(f, x) for uniform 
and priority dropping assuming FIFO scheduling.15 For 
uniform dropping, the loss rates are given by: 

3«no<Mh<P« llWIflc .La<g*<b - 80) bultora 

di(f,x) „ 0(E.-*) 

For priority dropping the loss rates are: 

di(r,x) = D'(^2TjAx) 
i 

The drop fraction of each layer (which is independent 
of the flow) is given by the incremental increase in the 
total drop rate when that layer is added on (ignoring 
all lower priority layers). 

We now use these simulation and theoretical frame- 
works to address our three key questions. 

4    Performance 

In this section we address the two questions concern- 
ing performance: (1) Do uniform and priority drop- 
ping achieve the same optimal performance? and (2) 
Can RLM achieve the optimal performance level un- 
der uniform dropping? We begin with results from our 
simulation experiments. 

4.1    Simulation Results 

Most of our simulation studies of performance are pre- 
sented in the following form. For a given choice of 
utility function and network scenario, we simulated 
the network with each source sending up to level / for 
/ = 1,... L under both priority and uniform dropping. 
In addition, we simulated all sources using RLM (with 
uniform drop). All simulations were run for 600 simu- 
lation seconds; data collected during an initial warmup 
period of 160 seconds was discarded. Per source util- 
ity was computed using as input the percentage of 
those packets sent during the 440 second period that 
were delivered to the receiver (in other words, we set 
(1 — d) = j where s is the number of packets sent in 
the layer and r is the number received). The data is 
presented on a single graph, with one curve describ- 
ing uniform drop, one curve describing priority drop, 
and a horizontal line depicting the performance level 
achieved by RLM. The horizontal axis indicates the 
number of levels sent by each source (for the uniform 
and priority drop tests). Average utility per source is 
plotted on the vertical axis. Below we present the main 
results from our simulations experiments. 

14Increasing the buffer size and decreasing the burstiness of 
traffic are roughly equivalent; they both decrease the dropping 
rate at a given level of throughput. In our theoretical model, we 
only vary the parameter b, but in our simulations we separately 
vary buffers and burstiness. 

lsSee [1] for the analogous treatment of the Fair Queueing 
scheduling algorithm. 

Figure 4: The top graph depicts the results with 
smooth (P = 1) traffic and large (6 = 60) buffers. 
The peaks of the priority and uniform dropping curves 
are 4.04 and 4.00, respectively. RLM achieves a perfor- 
mance of 3.73. The bottom graph depicts the results 
with bursty (P = 5) traffic and small (6 = 20) buffers. 
The peaks of the priority and uniform dropping curves 
are, respectively, 3.60 (priority) and 2.98 (uniform). 
RLM achieves a performance of 2.27. 

4.1.1     Burstiness and Buffer Size 

We first explore the effect of burstiness and buffer size 
on performance, using a linear utility function (g(z) = 
z). We vary the parameter P in our source model to 
control the burstiness of the traffic, and we vary the 
number of buffers, b, at the bottleneck link (4Mb) to 
control the ability of the switch to absorb bursts of 
packets. Figure 4 shows the results of two experiments, 
one where the number of packets sent per layer per 
interval is constant (i.e., P = 1) and the buffers are 
large (6 = 60, corresponding to 120 msec of buffering), 
and another where the traffic is burstier (P = 5) and 
the buffers smaller (6 = 20). 

For the case where the traffic is smooth and the 
buffers are large, the results are very much like those 
predicted in Figure 1. When offered load is less than 
the bottleneck link rate, uniform and priority dropping 
achieve the same utility. They both achieve the same 
maximum values, and then the performance of uniform 
dropping degrades as load increases, while the perfor- 
mance of priority dropping does not. RLM achieves 
nearly the same maximum utility.16 

The slight difference between RLM's utility and the maxi- 
mum utility achieved by uniform and priority dropping is due to 
the absence of a mechanism to insure fairness in FIFO schedul- 
ing, and different flows can send at different rates (that is, the 



Burstier data coupled with smaller buffers leads to 
markedly different results (as shown in the bottom 
graph in Figure 4). In this case, priority dropping 
achieves significantly higher average utility than uni- 
form dropping (3.60 vs. 2.98).17 The other striking dif- 
ference between the smooth and bursty scenarios is the 
relative performance of RLM. Its utility with bursty 
traffic and smaller buffers is 2.27, around two-thirds of 
priority dropping and about three quarters of uniform 
dropping. With bursty traffic, there are enough losses, 
even at relatively lower levels of utilization to prevent 
RLM join experiments from succeeding. Thus, as we 
suspected, the results with bursty traffic look more like 
Figure 2 than like Figure 1. 

One can relate these performance numbers to the 
equivalent amount of throughput being wasted. That 
is, with the exponential bandwidth per layer function 
a(l) — 2l_1a(l) we use in these simulations, the perfor- 
mance differential of between priority (3.60), uniform 
(2.98) and RLM (2.27) can be viewed as achieving use- 
ful throughputs of, respectively, 11.8, 6.92, and 4.08 (in 
units of the throughput of the base layer). The per- 
formance increase of 58% between RLM and priority 
dropping reflects roughly 1.3 additional layers (from 
3.60 — 2.27 = 1.33), which is equivalent to almost 
tripling the effective throughput. That is, while the 
priority dropping has a much higher effective through- 
put, the worth of these additional bits falls off so rapidly 
that the increase in utility is only 58%. If we use a lin- 
early increasing bandwidth per layer a(l) = / (see Fig- 
ure 5) the performance numbers are 4.5 (priority), 3.71 
(uniform), and 2.5 (RLM), corresponding to effective 
throughputs of 12.5, 8.84, and 4.50, respectively, again 
reflecting nearly a tripling of the effective throughput 
(and yielding an 80% increase in utility) when compar- 
ing priority to RLM. 

The impact of burstiness on RLM's ability to adapt 
can be further demonstrated with the following con- 
trived experiment where a single receiver performing 
RLM is adapting to available bandwidth in the face of 
bursty cross-traffic generated by a single on-off source 
with a sending rate of 6 Mbps, and exponentially dis- 
tributed on and off times with average 100 msec. In 
this case, even though the utilization is only 65%, RLM 
is unable to utilize the available bandwidth and achieves 
a performance figure of only 1.19. 

For completeness, we ran simulation of the two re- 
maining combinations of buffer size and burstiness (P = 
1 and b = 20; P = 5 and 6 = 60). The results (not 
shown here for lack of space) show that it is indeed 
both the burstiness of traffic and the size of buffers that 
account for the results described above. Bursty traffic 
presents opportunities for priority dropping to perform 
better than uniform dropping and also makes it more 

receivers are not all subscribed to the same levels). This un- 
equal allocation of resources leads to a slight decrease in to- 
tal utility, as bits sent in lower priority layers by one source 
could be replaced by more valuable bits of another source. This 
performance degradation suffered by RLM disappears when a 
scheduling mechanism that allocates equal shares per flow, such 
as Fair Queueing is used. 

17Note that this difference may be somewhat overstated in 
the sense that we only performed the uniform and priority tests 
with all senders sending the same number of layers. The best 
possible performance of uniform dropping may in fact occur 
when some flows are sending 3 layers and some are sending 4. 
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Figure 5: This graph depicts the results with bursty 
(P = 5) traffic and small (b = 20) buffers with a(l) = I. 
The peaks of the priority and uniform dropping curves 
are, respectively, 4.50 (priority) and 3.71 (uniform). 
RLM achieves a performance of 2.50. 

difficult for the RLM adaptation algorithm to find the 
optimal operating level. As expected, large buffers can 
absorb burstiness and mitigate its ill-effects on the per- 
formance of uniform dropping and RLM. 

4.1.2    Other Experiments 

We conducted many additional simulation experiments 
to explore the impact of various parameters on our re- 
sults. In particular we ran simulations with non-linear 
utility functions, different scheduling and dropping al- 
gorithms, varying bandwidth on the bottleneck link, 
and varying degrees of multiplexing. We briefly sum- 
marize those results here. A more detailed description 
is presented in [1]. 

To briefly summarize, in all of our experiments, pri- 
ority dropping performed better than uniform drop- 
ping. As expected, this performance advantage in- 
creased with increased burstiness, decreased buffer sizes, 
decreased multiplexing, and decreased bandwidth per 
flow; the effect of nonlinear utility functions was am- 
biguous, sometimes increasing and sometimes decreas- 
ing the ratio. Using Fair Queueing instead of FIFO 
scheduling had little effect on results, since our simu- 
lations had fairly homogeneous flows; this is not a sce- 
nario in which fairness mechanisms can be expected to 
have an impact. In addition, we tested the RLM mech- 
anism with RED [6], with little impact on results. 

While we anticipated the direction of these effects 
of various parameters on the results, we thought their 
magnitudes would be much bigger. The performance 
advantage of priority dropping over the optimal uni- 
form performance was quite modest; the biggest per- 
centile advantage was roughly 27% (achieved in the 
case of reduced multiplexing). Results in the next sec- 
tion shed further light on the limits of the difference. 

The performance advantage of priority dropping 
over RLM was somewhat more significant. For in- 
stance, in the case where the bottleneck capacity was 
reduced, priority dropping offered almost twice the 
performance of RLM. The performance advantage of 
priority over RLM had the same dependence on pa- 
rameters as did the priority versus optimal uniform 
dropping, except that the effect of nonlinearities was 



no longer ambiguous. When the nonlinearity was quite 
extreme (m = 100) the performance advantage was es- 
sentially infinite (2.37 versus 0.02), but under more 
moderate nonlinearities (m = 4) the performance ad- 
vantage was only 24%. While RLM did suffer under 
extremely bursty conditions, it was far more resilient 
than we had expected. This is partially due to the 
very rapid decrease in /(/); for instance, if the per-flow 
bandwidth allowed roughly four levels per flow, then 
if RLM could utilize only 50% of the available band- 
width its performance disadvantage was a mere 25% 
(because it would get three out of the available four 
layers). When, as in Figure 5, the function /(/) de- 
creased less rapidly, the relative performance of RLM 
was significantly poorer. 

4.2    Theory 

We now turn to our theoretical model to provide addi- 
tional insight about the performance results obtained 
through simulation. In particular, we derive results 
that are not bound to the particular layered source 
model used in simulations. To address the relative per- 
formance of uniform versus priority dropping, we first 
consider a single flow. The utility for uniform dropping 
is given by: 

u(r) = g(l - ^l)F(r) (3) 

The utility for priority dropping is given by: 

«(r) =   /  dxf(x)g(l - D'(x)) (4) 
Jo 

We start with a case that we can solve exactly: an 
M/M/l/b queue with 6=1, g(z) = zm for m > 0, and 
/(*) = (T+^TT forp > 0 (soF (x) = l-ji^p). Here, 
1 — d(r, x) = j^r in the uniform case, and 1 — d(r, x) = 

(12x)i in tne priority case. Letting U(T) denote the 
utility at a given sending rate r, in the uniform case 
we have u(r) = (1 + r)-m(l — (1 ' ) and so the max- 

imizing T value is given by 1 + r = (1 + £)P and the 

maximal utility is a = „(1 + m) * . In the priority 
case, we have u(r) = /Q

r dxp{l + x)~(p+1)(l + z)~2m = 

5^(1 - (1 + r)-(p+2m)), and so the maximal utility 
is just tt = 2n

p,   . Let R denote the ratio of maximal 

priority utility up" to maximal uniform utility uum. 
Setting w = £ yields: 

R = 
upri       (1 -I- w)<-1+w~ 
uuni   — 2 + tU 

This is a decreasing function in w so R attains its max- 
imal value in the limit £ —► 0+, and there R = § ss 
1.359...,18 

We can numerically compute the ratio R for more 
general cases, varying 6, m, and p. We also consider the 

"Note that the case of p = 0 is ambiguous, so we only con- 
sider the limit. Setting p = 0 in the formula for F yields a 
different answer than setting p = 0 in the formula for / and 
then integrating; the limit is consistent with the formula de- 
rived from /, not F, in the case of p = 0. 

function f(x) — ße~ßx and do similar computations. 
The results are summarized below. 

Typically R decreases with b; the performance ad- 
vantage of priority dropping decreases as the traffic 
gets smoother (or, equivalently, the buffering gets larger). 
When varying the rate of decrease in f(x) we find that 
the ratio decreases with p (when f(x) = .     P+1 ) as 

long as p > 0 but has a peak at intermediate values of 
ß (when f(x) = ße~ßx). This is consistent with the 
intuition that priority dropping is of no use when the 
values /(x) drop off too fast (so only the base layer 
is of significant value) or too slowly (so discriminating 
between layers is of little use). The dependence on m 
is somewhat more subtle; for b = 1 the maximal ra- 
tio occurs for large m, but for greater values of b the 
maximal ratio occurs for small m; we do not have an 
explanation for this behavior. 

Note that in no case do we attain a higher value for 
R than f. While the roughly 36% increase in perfor- 
mance achieved by priority dropping is certainly sig- 
nificant, we must admit that we had expected priority 
dropping to achieve higher levels of improvement under 
at least some conditions. We now conjecture that as 
long as F and D are smooth around the origin, this ra- 
tio is the highest possible. Our reasoning is as follows. 
We assume that for a given g and F, the ratio R is 
highest when D(z) « z2 for small z. This is reasonable 
since higher powers (e.g., D(z) w z3) give lower ratios 
(as shown by our data for higher values of b), fractional 
powers (e.g., D(z) « z15) mean D is not smooth near 
the origin contrary to our assumption, and D(z) « z 
produces a smaller ratio (since D'(z) sa —^ is roughly 
constant for small z if the leading term in D(z) is lin- 
ear, and so the ratio is increased if we remove the linear 
term from D). Moreover, we assume that for such ini- 
tially quadratic D(z), the ratio R increases when we 
substitute (g(z))2 for g(z), as suggested by our data 
for increasing m. Lastly, for g(z) = zm the perfor- 
mance for large m does not depend on F (as long as it 
is smooth near the origin, so —^ has a finite nonzero 
limit as r —► 0+). Thus, it appears that the result that 
Rmax = f does not depend on the details of D (aside 
from the leading term around the origin) or F, and is 
reached in the limit of g(z) = zm for diverging m. We 
are not able to prove this conjecture; whether or not 
Rmax = f remains the most interesting open theory 
question arising from our study.19 

Thus, one of our preconceived notions, that of pri- 
ority being able to achieve extremely large improve- 
ments over uniform dropping, is likely wrong. Further, 
using the same model, we find that priority dropping 
does not outperform uniform dropping in call cases. It 
is straightforward to show that if g is a step function 
(g(z) = 0 if x < 7 and g(z) = 1 if x > 7 for some 
threshold 0 < 7 < 1) then uniform dropping outper- 
forms priority dropping.  However, one can show that 

19This bound is violated if we allow £>(*) to have a singularity 
at the origin, such as D(z) ss z1*. In particular, when we look 
at the M/M/l/b formulae for 0 < b < 1, where D(z) a z1+h, 
we find that R diverges as m becomes infinite and b vanishes. 
We don't know what such singular D(z) functions would signify 
(perhaps extreme burstiness), or if they are accurate represen- 
tations of reality, but we do not address such singular cases in 
this paper. 



if g is concave then priority dropping outperforms uni- 
form dropping. 

So far our theory has compared uniform and pri- 
ority drop for only a single flow. We can extend our 
analysis to the multiple flow case without much ad- 
ditional complication. Consider the case where there 
are n flows; when f denotes the transmission rates 
then the utilities are given by equations 3 and 4. It 
is straightforward to show that, in the uniform case, 
the total utility ^"=1 «; is maximized when r, = r, 
for all i, j. Similarly, in the priority dropping case the 
total utility is maximized when all Ti are infinite. Con- 
sequently, the n-flow maximization problem with drop- 
ping function D(z) yields the same optimality results, 
for both the uniform and priority dropping cases, as 
the 1-flow maximization problem with dropping func- 
tion D(z) = 5Ii£i. Thus, the generalized form of our 
conjecture is that with an arbitrary number of flows 
(with the same conditions of smoothness on D and F), 
the maximal ratio of the total utilities of priority drop- 
ping to uniform dropping is bounded above by'|. 

5    Incentives 

The previous results compared the performance of pri- 
ority dropping to the optimal uniform dropping per- 
formance, and to that achieved by RLM. However, in 
this discussion we assumed that system-wide optimal- 
ity was the only goal. We now remove that assump- 
tion and address our third question: what incentives 
do different dropping mechanisms present to applica- 
tions? This issue has two aspects: (1) the properties of 
Nash equilibria in the presence of performance-based 
incentives, and (2) the effect of nonperformance incen- 
tives on these Nash equilibria. We now discuss these 
two aspects in turn. 

5.1    Nash Equilibria 

We first assume that there are no usage incentives 
other than performance. When using priority drop 
users have no performance-based incentive to constrain 
usage, whereas they do when using uniform drop. In 
this section we demonstrate that this does not neces- 
sarily imply that uniform drop naturally leads to so- 
cially optimal operating points. We return to our the- 
oretical model, initially considering FIFO scheduling, 
and investigate what happens when there are n indi- 
vidually optimizing users; that is, we assume that users 
adjust their transmission level so as to maximize their 
own utility. 

Consider the case of perfectly smooth traffic (mod- 
eled by setting b = oo in the M/M/l/b model), so 
D(z) = (z — 1)+. Then the maximal utility for a 
given user with priority dropping is at least F(A-), with 
equality holding if all other users have TJ > £. Thus, 
the socially optimal point, and the Nash equilibrium 
point, is any vector r such that r, > i for all j. 

For uniform dropping, the utility for a given user 
sending at rate x, with r sent by everyone else, is 
u{x) = ff(min[l, I+(n

1_1)r])f (i)- First we compute 
the socially optimal outcome (in which we know r; = 
TJ as we argued earlier), so we maximize the func- 
tion u(r) = ff(min[l, £])F(r).  Note that for nr < 1, 

u(r) = F(r) and F(r) is nondecreasing, so a maximal 
point must exist with nr > 1. For nr > 1, assum- 
ing all first derivatives exist, we can calculate a'(r) = 
9(^)F'(r)-g'(^)F(r)^. Note that rf'(r) < F{r). 
If g is concave, then we also have g'(-^) < nrg(^) 
and thus u'(r) < 0 for nr > 1 and so at least one so- 
cially optimal operating point has nr = 1. However, 
there are cases with nonconcave g where the socially 
optimal operating point has nr > 1. Consider, for in- 
stance, the case where g(z) is a step function (with the 
step at 2 = 7 < 1). Then, the socially optimal value is 
given by nr = ^ > 1 with per-flow utility F(^). 

Next, we compute the Nash equilibrium. The equi- 
librium occurs when gj = 0 when x = r. Thus, at 
the equilibrium value r we must have g(^)F'(r) = 

5'(n?)-^(7')fnr)T' Consider the case where g(z) = zm. 
Then, the socially optimal value is nr = 1 for all m > 1 
and the Nash equilibrium is reached when yfcj- = 21. 
For the case where f(x) = (1 — x)+, the Nash equi- 

librium is r  =  -.—■£-.    The per-flow utility  at this 

Nash equilibrium is n~m
2M_?.m.)( ,_jg )m. This per- 

flow utility, and the total utility, vanish in the limit 
of large n or large m. The socially optimal per-flow 
utility is ^-(1 — ^) for m > 1, and so the total utility 
(1 — jL) approaches unity in the large n limit. 

These results show that even when traffic is com- 
pletely smooth (i.e., in the infinite b limit), the Nash 
equilibria and the socially optimal operating points can 
be quite different; in particular, the Nash equilibrium 
can asymptotically (in the limit of large n) have zero 
total utility whereas the socially optimal point has 
full unit total utility. Thus, the performance-based 
incentives provided by uniform dropping do not lead 
to socially optimal, or even adequate, outcomes with 
FIFO scheduling. While we cannot solve these mod- 
els exactly for burstier traffic, numerical computations 
for various choices of b and m for f(x) = (1 — x)+, 
f(x) = /     P +1   and f(x) = ßt~ßx show that these 
results continue to hold. 

The intuition behind these results is that when a 
single user increases her usage, the penalty of that in- 
creased usage (in terms of an increased drop rate) is 
spread among all users, but the benefit (in terms of in- 
creased throughput) goes exclusively to the increasing 
user. Thus, the equilibrium occurs not when the ben- 
efit equals the penalty (which is the socially optimal 
point), but when £-'th of the penalty equals the ben- 
efit, and this occurs only for much larger load levels 
(and this effect is magnified for larger n). 

The above results show that the distinction between 
Nash and socially optimal operating points is signifi- 
cant when FIFO scheduling is used with uniform drop- 
ping. However, when uniform dropping is used with 
Fair Queueing, the first-order conditions for Nash equi- 
librium become identical to those for the socially opti- 
mal outcome. This is because the penalty for increased 
usage is born exclusively by the user with the highest 
sending rate, and so this user makes the socially opti- 
mal penalty/benefit tradeoff. Thus, with Fair Queue- 
ing, uniform dropping does indeed provide the proper 



SjTWogifP - 1) if mc .L»ig*<b - 00) buflw» 

Figure 6: This graph compares the individually opti- 
mal and socially optimal operating points with P = 5 
and b = 60. The curve 'Uniforml' describes the case 
when all 8 flows are sending the same number of lev- 
els (determined by the reading on the horizontal axis). 
Clearly the socially optimal operating point is when 
all flows are sending the first four levels. The curve 
"Uniform2' depicts the results when the 7 background 
flows are sending the first four levels, but the single 
test flow is sending up to the level determined by the 
reading on the horizontal axis. The utility of this flow 
is maximized when sending the first five levels. Thus, 
the socially optimal level is not a Nash equilibrium. 

incentives. 
The simulations do not have exactly analogous be- 

havior because the large granularity of the flow layers; 
each level consumes a significant amount of bandwidth, 
particularly the higher levels, and so typically one finds 
multiple equilibria rather than the single equilibrium 
points found in the simple theory models. Nonetheless, 
we can observe, as shown in Figure 6, that the socially 
optimal operating points are not Nash equilibria. The 
socially optimal result is to have each flow sending the 
first four levels, but when the background flows are 
held fixed at that level, a single test flow maximizes its 
utility by sending the first five levels. 

One response to these dire results about Nash equi- 
libria is that users won't be selfish and will just use 
RLM, which seems to achieve fairly reasonable results 
even for large n. This may very well be true. If such 
compliance is to be expected, then one can also expect 
users to use RLM with priority dropping to restrain 
usage, thereby removing the one problem with priority 
dropping. For instance, in the scenario with P = 5 
and b = 60, RLM with priority dropping achieves a 
performance of 3.19 (versus 2.96 with uniform drop- 
ping) and constrains usage to only sending levels 1 
through 3, plus occasionally level 4. The performance 
of RLM with priority dropping can be further improved 
by adjusting the dropping level at which RLM leaves 
a level (or considers a join experiment to have failed), 
thereby tuning the tradeoff between performance and 
bandwidth usage. 

The behavior of RLM in the context of priority 

20While typically Fair Queueing does provide better incen- 
tives than FIFO, in general when users are heterogeneous the 
Nash equilibria under Fair Queueing are not socially optimal. 
This result holds in our example because users have the same 
utilities and flow structure. See [13] for a fuller discussion. 

dropping is relatively insensitive to the burstiness of 
the traffic because the operating point need not be 
precisely at the bottleneck bandwidth. Thus, prior- 
ity dropping is only a problem if we are worried about 
incentives, and in that case both priority and uniform 
dropping have problems (with FIFO scheduling). 

Another response to the results about Nash equi- 
libria is that there may be other sources of incentives 
that might make the Nash equilibria more palatable. 
These other incentives also presumably apply to pri- 
ority dropping, and so usage would be constrained in 
both cases. We now address these other incentives. 

5.2    Nonperformance Incentives 

Above we assumed that the only incentives were re- 
lated to the performance of the application itself. How- 
ever, users clearly face other forms of incentives. The 
total bandwidth available to a user is limited to the 
speed of their access line, and for many users this ac- 
cess line is fairly slow (either a modem, or a shared Tl); 
in addition, some hosts are quite limited in their net- 
work I/O. For any of these reasons, traffic from one ap- 
plication can have a performance impact on the user's 
other applications; e.g., one's video traffic might con- 
gest one's own web traffic. Moreover, in some cases the 
Internet access charges are based, at least in part, on 
usage. Thus, we assume that there is some slight dis- 
incentive to send traffic. This seems compatible with 
reality given that most users do not usually send or 
receive traffic that they know is worthless. It is impor- 
tant to note that these incentives can either be applied 
to the sender or the receiver of the traffic, depend- 
ing on the application (who is deriving value from the 
application) and the context (whose access line is con- 
gested). 

We model this usage-constraining incentive by ap- 
plying a cost c for each unit of bandwidth. While this 
conjures up the idea of a per-bit price, that is not what 
is implied; in reality this usage-constraining incentive 
can come from any one of a number of nonmonetary 
sources, but it is most easily modeled by assigning a 
cost for transmission. If the incentive is placed on the 
sender, the cost is applied for each unit of bandwidth 
sent, and if the incentive is placed on the receiver, the 
cost is applied for each unit of bandwidth received (i.e., 
we assume that there is no receiver disincentive for 
packets that never arrive). A user maximizes utility 
minus cost. In the case of perfectly smooth traffic, an 
infinitesimally small c applied to the sender will pro- 
vide incentive to operate at the bottleneck through- 
put; the excess traffic is completely worthless, and any 
nonzero disincentive is enough to throttle throughput 
back to the bottleneck capacity. However, if the incen- 
tive is present at the receiver, there is no constraint 
on usage, since no additional traffic arrives. Thus, ap- 
plying incentives at the receiver involves somewhat of 
a paradox; we wish to prevent receivers from joining 
layers that will be mostly dropped, but need to do so 
by applying incentives only for those packets that are 
not dropped. 

We can extend our theory model to look at this 
question for more general traffic loads, still with a sin- 
gle flow. We first consider only priority dropping, and 
assume that c is the cost of the incremental layer r (it 



doesn't matter what the "charge" is for other layers, 
that will just be a fixed cost in these equations, ignor- 
ing income effects21). If the incentives are applied at 
the sender, the maximality condition is U'(T) = c but if 
incentives are applied at the receiver, the maximality 
condition is u'(r) = c(l — D'(T)). From the expression 
in equation 4, we find that the resulting equation is: 

Sender Incentives f(r)g(l — D'(r)) = c 

Receiver Incentives f(r)g(l — D'(r)) = c(l — D'(r)) 

The relevant question is whether or not usage is sta- 
bilized for any nonzero c; by stabilized we mean that 
all solutions for r are finite for any nonzero c. When 
the sender is "charged" usage is stabilized if either 
liirir^oo /(r) = 0 or limz—0+ g(z) = 0. When the re- 
ceiver is "charged" usage is stabilized if limz_0+ ^^ = 
0 and D'(z) < 1 for all finite z. Note that these 
are sufficient but not necessary conditions, but we ex- 
pect them (or other sufficient conditions) to hold quite 
widely. 

For the example treated in Section 4 with 6 = 1 
and f(x) = p(l + r)-(p+1) and g(z) = zm, we find: 

-i 
Sender Incentives l + r = ci,+2m+1 

-i 
Receiver Incentives 1 + r = c'-*3"1-1 

If we have p > 1 and m > 0 then usage is always 
stable in both the sender and receiver incentive cases; 
the usage levels decrease with increasing p and m. 

Thus, for a wide range of conditions, usage stabi- 
lizes even if incentives apply only for received packets 
(although at higher levels of usage than if incentives 
apply for sent packets). While there is clearly no sta- 
bilization for b = oo when receivers are "charged" (this 
case violates the D'(z) < 1 assumption), numerical 
computations show that stabilization occurs for all fi- 
nite 6, and for other choices for / and g. The point 
is that with even slightly bursty traffic, some fraction 
of packets get through and so joining a layer that is 
almost completely useless (because of the high drop 
rates) is discouraged because the user is "charged" for 
the packets that do get through. 

These nonperformance incentives also improve the 
nature of the Nash equilibrium under uniform drop- 
ping. We can return to our simple model and compute 
the Nash equilibrium after adding a small "charge" c 
for usage. One way to compare the relative effective- 
ness of these nonperformance incentives in the priority 
and uniform dropping cases is to look at the values 
of c for which they achieve r values that are compa- 
rable to the socially optimal r value for c = 0.22 In 
the cases we computed, for sender "charging", priority 
dropping required lower levels of nonperformance in- 
centives to restrain usage to these levels. Thus, these 
incidental sender incentives can more easily restrain 
usage in priority dropping than prevent the poor Nash 

1 Income effects are where the marginal utility of money de- 
pends on the total amount. 

22This is a somewhat arbitrary comparison, but it is asking 
how large do these nonperformance incentives have to be to 
restrain usage to a given level, and choosing the socially optimal 
level for c = 0 as that level seems like a reasonable choice. 

equilibria under FIFO service with uniform dropping. 
When receivers incur these nonperformance incentives, 
the usage levels of uniform and priority dropping are 
roughly comparable (with the c values needed to re- 
strain usage for priority dropping being slightly higher 
than those needed for uniform dropping). Note that, as 
expected, both uniform and priority dropping required 
significantly higher levels of these incentives when the 
receiver incurred them. 

In light of these results, at the very least both uni- 
form and priority dropping have problems with incen- 
tives, and one might make a reasonable case that pri- 
ority dropping, because it is more easily restrained 
by sender-incurred nonperformance incentives, actu- 
ally has better incentive properties than uniform drop- 
ping. 

6    Discussion 

This paper is devoted to a comparison of uniform and 
priority dropping in the fairly narrow context of layered 
video applications. Our results are both humbling and 
ambiguous.   "Humbling" because some of our precon- 
ceived notions were wrong, and "ambiguous" because 
the results do not provide a clear answer to whether 
adopting priority dropping would provide significant 
benefit to layered digital video applications.   Priority 
dropping certainly does result in higher performance 
than uniform dropping when g, the utility function, is 
concave.   However, contrary to our expectations, the 
performance advantage of priority dropping over the 
optimal uniform dropping performance is quite mod- 
est. Moreover, we conjecture that there is a universal 
upper bound of roughly 36% on this performance gap. 

However, the real point of comparison for uniform 
dropping is not the optimal point on the uniform drop- 
ping curve, which is an ideal point that we cannot reli- 
ably achieve in practice, but instead is the performance 
level achieved by an actual endpoint adaptation algo- 
rithm.    For the comparisons in this paper, we used 
the RLM algorithm as an example of such an algo- 
rithm since we are aware of no algorithm that per- 
forms better.   Here too we were surprised; the RLM 
adaptation algorithm is far more resilient than we ex- 
pected. Under some rather extreme conditions - very 
bursty background traffic or high degrees of nonlinear- 
ity - RLM performed quite poorly; however, contrary 
to our initial expectations, RLM managed to achieve 
fairly adequate performance in a very broad range of 
less extreme conditions.   Our current explanation for 
this is that when f(l) decreases rapidly (as was the case 
in our simulations), one can use only a small fraction 
of the available bandwidth and still attain reasonable 
performance, since most of the value lies in the first 
few layers.  While our expectations about the perfor- 
mance differences were irrationally exuberant, we do 
not want to minimize the fact that priority dropping 
achieved performance improvements of 50% to 100% 
over RLM in many settings.   Thus, the performance 
improvements offered by priority dropping are indeed 
significant, and the conjectured bound of roughly 36% 
is not an indication of the relative performance of pri- 
ority dropping to RLM, or to any other endpoint adap- 
tation algorithm. 



While the performance properties of uniform drop 
were unexpectedly good, the incentive properties of 
uniform drop with FIFO service were, at least in the- 
ory, surprisingly poor. Moreover, these incentive prop- 
erties, or more particularly the performance at the 
Nash equilibrium, were especially bad with a large pop- 
ulation of flows. Using Fair Queueing instead of FIFO 
largely alleviates these incentive problems for uniform 
dropping. 

In contrast, the incentive aspects of priority drop- 
ping may not be as bad as advertised. While priority 
dropping does provide poor performance-based incen- 
tives, even minimal amounts of nonperformance incen- 
tives will rectify the situation. In fact, when these 
usage-constraining incentives are incurred at the sender 
and when FIFO service is used, usage is more easily 
constrained in the priority dropping case than in the 
uniform dropping case. 

Thus, we end up with somewhat of a paradox. If 
one takes the incentive issues seriously, then priority 
dropping may be better than uniform dropping, at 
least with FIFO service. But if one conjectures that 
instead users will be well-behaved and use RLM with 
uniform dropping in spite of their own personal in- 
centives, then one could just as easily conjecture that 
users would use RLM (or some similar protocol) with 
priority dropping, which would yield better overall per- 
formance at the same level of bandwidth consumption. 
Thus, the argument that incentives are the reason to 
prefer uniform dropping to priority dropping is only 
valid if one believes that Fair Queueing (or some other 
protocol that enforces fairness) is used, or that the 
sender-based nonperformance usage constraining in- 
centives, whatever their origin, are vanishingly small. 

We hasten to note that this is only an initial study 
of this rather fundamental question. There are many 
unresolved questions about the performance and incen- 
tive properties of uniform and priority dropping. How- 
ever, we think the most pressing open questions left by 
our study are those concerning the nature of applica- 
tion utility functions. We do not, nor does the research 
community we suspect, have a sense of whether our 
utility models capture the essential aspects of reality. 
Knowing how to best model application utility would 
provide much-needed guidance to network designers in 
their analysis of network performance, and may lead 
to more definitive answers to the questions posed here. 
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Abstract—Relaxed real-time services that do not provide guaranteed loss 
rates or delay bounds are of considerable interest in the Internet, since these 
services can achieve higher utilization than hard real-time services while 
still providing adequate service to adaptive real-time applications. Achiev- 
ing this higher level of utilization depends on an admission control algo- 
rithm that does not rely on worst-case bounds to guide its admission de- 
cisions. Measurement-based admission control is one such approach, and 
several measurement-based admission control algorithms have been pro- 
posed in the literature. In this paper, we use simulation to compare the per- 
formance of several of these algorithms. We find that all of them achieve 
nearly the same utilization for a given packet loss rate, and that none of 
them are capable of accurately meeting loss targets. 

I. INTRODUCTION 

In an effort to better support applications with real-time con- 
straints, several new per-flow packet delivery services have been 
proposed for the Internet (e.g., [24], [26]).1 Lying between the 
extremes of hard real-time services (which provide worst-case 
guarantees) and the vagaries of the current best-effort service are 
soft real-time services that provide an enhanced quality of ser- 
vice without making hard guarantees. Specifications for these 
services might provide a delay target, rather than a bound, and 
permit periodic excursions above this target [6], or they might 
specify that the service provides low delay and low loss without 
quantifying actual performance [26]. 

One key difference between hard and soft real-time services is 
the nature of their admission control algorithms. Hard real-time 
services necessarily use parameter-based admission control al- 
gorithms that are based on worst case bounds derived from the 
parameters describing the flow; these algorithms typically result 

This work was begun while Lee Breslau and Scott Shenker were with the Xe- 
rox Palo Alto Research Center. At Xerox, this work was supported in part by the 
Defense Advanced Research Projects Agency, monitored by Fort Huachuca un- 
der contract DABT63-96-C-0105. Sugih Jamin!s research is supported in part 
by the NSF CAREER Award ANI-9734145 and the Presidential Early Career 
Award for Scientists and Engineers (PECASE) 1998. Additional funding is pro- 
vided by MCI WorldCom, Lucent Bell-Labs, and Fujitsu Laboratories America, 
and by equipment grants from Sun Microsystems Inc. and Compaq Corp. 

'Here we are restricting our attention to services that make per-flow assur- 
ances; we are not addressing services that only give aggregate service assur- 
ances, such as the recent Differentiated Services proposals [5], [22], since they 
do not rely on per-flow admission control. 

in low network utilization in the face of bursty network traffic. 
Soft real-time services can use less stringent admission control 
algorithms. It has long been recognized that measurement-based 
admission control algorithms (MBACs) are more appropriate for 
these soft real-time services [6], [18]. Because they base admis- 
sion control decisions on measurements of existing traffic rather 
than on worst-case bounds about traffic behavior, MBACs can 
achieve much higher network utilization than parameter-based 
algorithms while still providing acceptable service [19]. Of 
course, traffic measurements are not always good predictors of 
future behavior, and so the measurement-based approach to ad- 
mission control can lead to occasional packet losses or delays 
that exceed desired levels. However, such occasional service 
failures are acceptable given the relaxed nature of the service 
commitment provided by soft real-time services. 

In designing a measurement-based admission control algo- 
rithm, one can conceivably have two goals. One is to pro- 
vide a parameter that accurately estimates a priori the level 
of service failures that will result. The other is to achieve the 
highest possible utilization for a given level of service failures. 
Several measurement-based admission control algorithms have 
been proposed in the literature (see, for example, [7], [10], [11], 
[13], [14], [15], [16], [17], [19], [20], [21]) and they implicitly 
or explicitly seek to achieve one or both of these design goals. 

The proposed algorithms, although embracing similar goals, 
differ in four important ways. First, some algorithms are prin- 
cipled, based on solid mathematical foundations such as Large 
Deviation theory, and others are ad hoc, in that they lack a the- 
oretical underpinning. Second, the specific equations used in 
making admission decisions are quite different. Third, while 
all algorithms have a parameter that varies the level of achieved 
performance and utilization (by making the algorithm more or 
less aggressive), some algorithms attempt to calibrate this pa- 
rameter and have it serve as an accurate estimate of the resulting 
performance, while others leave the parameter uncalibrated; in 
the latter case it is assumed the network operator will learn ap- 
propriate parameter settings over time. Fourth, the measurement 
processes used to produce an estimate of network load are very 



different; they range from a simple point sample estimate, to 
an exponentially weighted average, to estimates based on both 
the mean and variance of measured load. Thus, the space of 
measurement-based admission control algorithms is both heav- 
ily and broadly populated. 

Somewhat surprisingly, given the number of papers on the 
subject, no comprehensive comparison of these algorithms ex- 
ists. Previous comparisons (including our own previous work on 
the subject) look only at a few test cases, and then only for a few 
of the algorithms [20], [21]. In this paper we extend this previ- 
ous work by considering more (although by no means all) of the 
proposed algorithms, and by subjecting them to more extensive 
tests. In all of these tests we use packet losses as the defini- 
tion of a service failure.2 We evaluate the algorithms according 
to how well they are able to meet the two goals of MBACs. 
First, we compare the performance frontier or loss-load curve 
(we will use these terms interchangeably) achieved by each al- 
gorithm; the loss-load curve depicts the rate of losses that occur 
at a given level of utilization. Second, for those algorithms that 
attempt to predict the resulting level of losses, how close is the 
resulting performance to the target? 

On the first goal, we find that even though the algorithms are 
derived from diverse motivations and theories, they all produce 
essentially the same performance frontier. The particular theory 
upon which they are based and the specific admission equations 
they use seem to be of little consequence. Regarding the second 
goal, we find that none of the algorithms achieve the specified 
performance targets consistently. However, some algorithms do 
somewhat better than others; whether these differences are im- 
portant, and whether future algorithms can do better, remains an 
open question. 

The remainder of this paper is organized as follows. In the 
next section we describe the algorithms we include in our study 
and briefly review previous performance comparisons of the al- 
gorithms. In Section III we describe our simulation method- 
ology and present experimental results comparing the perfor- 
mance frontiers of the various algorithms. In Section IV we 
study the extent to which algorithms can accurately predict the 
resulting loss level. We summarize our findings in Section V. 

II. MEASUREMENT-BASED ADMISSION CONTROL 

ALGORITHMS 

To give the context necessary for discussing our results, in 
this section we very briefly describe the six admission control 
algorithms whose performance we study. These algorithms rep- 
resent a broad, though not complete, sample of existing MBACs. 
Each algorithm has two key components: a measurement pro- 
cess that produces an estimate of network load, and a decision 
algorithm that uses this load estimate to make admission con- 
trol decisions. After presenting each of the six algorithms, we 
elaborate on some common features of the algorithms. 

For the purposes of this study, we assume that applications 
use a signaling protocol, such as RSVP [3], to make their re- 
quests for service to the network. These service requests con- 
tain a traffic descriptor describing the worst case behavior of the 

2 Violations of a delay target may also be a relevant characteristic. However, 
for the fixed buffer regime we study, this is sufficiently similar to loss and so we 
do not treat it separately. 

application traffic. The traffic descriptor takes the form of a to- 
ken bucket with parameters r and b denoting the token rate and 
bucket depth, respectively.3 We measure the quality of the ser- 
vice delivered in terms of packet drops. Soft real-time services 
are typically intended to be scalable, therefore we only consider 
MBACs that require no per-flow state; that is, the measurements 
are taken on the aggregate traffic, not on individual flows. Since 
measurement is done on the aggregate and admission control 
decisions are made on a per flow, rather than a per packet basis, 
implementation overhead is not critical [20] and is not explored 
in this paper. 

Some admission control algorithms do not fit within the 
framework we consider and are excluded from our study. For 
example, we do not include one of the MBACs described in [13] 
because it depends on per-flow (rather than aggregate) measure- 
ments. In addition to excluding algorithms that require per-flow 
measurements, we also do not consider algorithms that make 
any assumptions, either implicitly or explicitly, about the av- 
erage behavior of flows. For example, we do not include the 
MB AC presented in [16] because it computes a per-flow average 
estimate and assumes that all arriving and departing flows con- 
form to that average. We only consider algorithms that make 
no assumption about what a flow's contribution will be to ag- 
gregate load beyond the worst case parameters supplied by the 
flow. Similarly, when a flow departs the network, its prior con- 
tribution to aggregate load can only be determined by measuring 
subsequent aggregate load. 

Following are brief sketches of the six admission control al- 
gorithms we compare: 
• Measured Sum (MS). The Measured Sum algorithm [20] ad- 
mits a new flow if the sum of the token rate of the new flow and 
the estimated rate of existing flows is less than a utilization tar- 
get times the link bandwidth. A time window estimator is used 
to derive the estimated rate of existing flows. 
• Hoeffding Bounds (HB). The admission control algorithm 
described in [11] computes the equivalent bandwidth for a set of 
flows using the Hoeffding bounds. A new flow is admitted if the 
sum of the peak rate of the new flow and the measured equiva- 
lent bandwidth is less than the link utilization. An exponential 
averaging measurement mechanism is used to produce the load 
estimate. 
• Tangent at Peak (TP). Four measurement-based admission 
control algorithms are presented in [13]. The first algorithm, 
based on the tangent at the peak of an equivalent bandwidth 
curve computed from the Chernoff Bounds, admits a new flow 
if the following condition is met: 

np(l - e~sp) + e-*pv < p, (1) 

where n is the number of admitted flows, p is the peak rate of 
the flows, s is the space parameter of the Chernoff Bound, v is 
the estimate of current load, and p. is the link bandwidth. This 
algorithm uses a point sample measurement process. 
• Tangent at Origin (TO). A second algorithm presented in 
[13] uses a tangent to the equivalent bandwidth curve at the ori- 
gin. Here, a new flow is admitted if the following equation is 

3 Some of the admission control algorithms require a peak rate p. Following 
[11], the peak rate is computed from the token bucket parameters as p = r + 
b/T, where T is the basic measurement interval used by the algorithm. 



satisfied: 
e3pV < ft. 

This admission control algorithm also uses the point sample 
measurement process.4 

• Measure CAC (MC). The Measure admission control algo- 
rithm [7], which is based on large deviation theory, admits a new 
flow if the sum of the peak rate of the flow and the estimated 
bandwidth of existing flows is less than the link bandwidth. The 
estimated bandwidth takes as input a target loss rate and makes 
use of the scaled cumulant generating function of the arrival pro- 
cess. 
• Aggregate Traffic Envelopes (TE). The admission control 
algorithm in [21] uses measurements of the maximal traffic en- 
velopes of the aggregate traffic, capturing variability on different 
time scales. Both the average and variance of these traffic en- 
velopes, as well as a target loss rate, are used as input into the 
admission algorithm. 

The brief descriptions presented above ignore the details of 
the individual algorithms, but the key point is that the algorithms 
differ both in their underlying theory and in the specific mea- 
surement and admission control equations they use. While these 
differences are what we seek to understand in this paper, certain 
similarities are worth noting. For instance, each of these algo- 
rithms has one component that derives a load estimate based on 
measured traffic and another component that makes an admis- 
sion decision using this load estimate. Rather than treating each 
algorithm as a monolithic block, it is possible in some cases to 
pair the estimation process of one algorithm with the decision 
process of another. This allows us to ask whether differences 
in performance derive from the estimation process, the decision 
process, or both. We undertake this "mix and match" analysis in 
Section III. 

In addition to the equations that form the basis of the algo- 
rithms described above, there are also certain MBAC features 
that address specific practical concerns. For instance, when a 
new flow is admitted to the network, the existing load estimates 
will not immediately reflect the presence of the new flow. In 
such a case, the network runs the risk of admitting too many 
flows before recognizing that load has increased. To prevent 
this situation, some of the algorithms (MS, HB, MC) artificially 
increase the load estimate to account for a newly admitted flow. 
This feature, while included in the specifications of three algo- 
rithms, can be seen as an independent mechanism that can be 
applied to any of them. We eliminate this feature as a source of 
performance differences between algorithms by including it in 
all of the algorithms in our performance comparison.5 

A final observation is that each of the admission control equa- 
tions has one or more parameters that control their operation. 
For example, the MS algorithm has a utilization target that af- 
fects how many flows will be admitted, the MC and TE algo- 
rithms use a target loss rate, and the HB algorithm has a pa- 
rameter that indicates the probability that the actual bandwidth 

4 A third algorithm presented in [13] is equivalent to the HB algorithm. As 
described above, the fourth algorithm is excluded because it depends on per- 
flow measurements. 

5 Results of simulations not included in this paper show the importance of this 
feature. Under highly dynamic conditions, performance can degrade if estima- 
tion algorithms do not account for the presence of newly admitted flows. 

requirement exceeds the estimates. While these parameters were 
(2) not all intended as tuning parameters by the designers of the al- 

gorithms, adjusting these parameters will make the algorithms 
either more conservative or more aggressive with regard to the 
number of flows they admit. Hence, instead of providing a sin- 
gle level of performance, each algorithm enables a range of loss 
rates and utilizations depending on the values of these param- 
eters. Thus, we describe the utilization performance of these 
algorithms by their loss-load curves or performance frontiers. 

This paper is an extension of our earlier work [20]. In that pa- 
per we compared three different measurement-based admission 
control algorithms (MS, HB, and an acceptance region based 
MBAC from [14] which was later generalized in [13]) and one 
simple parameter-based admission control algorithm. These al- 
gorithms were compared for several different traffic loads (simi- 
lar to those we use here, to be described in Section III-A) and on 
single link and multiple link network topologies (as we discuss 
in Section III-A, we only use a single link network topology in 
this paper). The simulation results in the earlier paper were de- 
ficient in several respects. The algorithms were only tested at 
one parameter value setting. Such point comparisons cannot de- 
scribe the entire performance frontier provided by an admission 
control algorithm, and so do not adequately characterize the per- 
formance of an MBAC. Moreover, for the particular parameter 
values and traffic models used in [20], the admission control al- 
gorithms recorded no losses, so only the utilization figures could 
be compared. Also, there was no attempt to compare the target 
loss rate with the actual loss rates, so there are no results analo- 
gous to those in Section IV. Thus, this previous work did not ad- 
equately answer the relevant question: how well do the various 
MBACs satisfy the two goals of measurement-based admission 
control? 

There have been few other attempts to systematically com- 
pare the performance of measurement-based admission control 
algorithms. The closest work is [21], in which the performance 
of the TE algorithm is compared to that of HB and the algo- 
rithm specified in [19].6 The authors of [21] compare utiliza- 
tion achieved for particular quality of service targets, and do not 
compare the performance frontiers of the algorithms; however, 
the main thrust of [21] is on achieving accurate loss estimates, 
and to evaluate success along that dimension it is not necessary 
to investigate the entire performance frontier. 

In one other related piece of work, in a short (three page) 
discussion paper [4] we briefly review some of the research pre- 
sented here and then use that to argue that the research agenda 
in measurement-based admission control should address certain 
policy issues (such as how to allocate admission between large 
and small flows, and between flows traveling many hops and 
those traveling fewer hops). 

III. PERFORMANCE FRONTIERS 

In this section we evaluate how well each of the six algorithms 
performs with respect to the first goal: achieving high network 
utilization and low packet loss. We first describe our simulation 
methodology and present our basic results for the MBACs with 

6Based on communication with the author of [11], we do not interpret the 
parameter in HB as a performance target; however, one could easily make that 
interpretation, and that is what is done in [21]. 



several different source models. We then focus on three spe- 
cific issues: the impact of heterogeneous traffic, a comparison 
between MBACs and an ideal parameter-based algorithm, and 
implications of long range dependent traffic on measurement- 
based admission control. Throughout the discussion and accom- 
panying figures, we refer to the algorithms by the abbreviations 
introduced in the previous section: MS, HB, TO, TP, MC, TE. 

A. Simulation Methodology 

We use discrete event simulation to generate performance 
frontiers for each algorithm. Simulations were carried out us- 
ing the ns network simulator.7 In order to understand the behav- 
ior of the algorithms in the most simple case, we used a simple 
topology in which admission control was employed on a single 
bottleneck link. While interesting issues may arise when study- 
ing admission control in a multi-link scenario, the basic per- 
formance aspects of these algorithms are most easily revealed 
in this simpler one-link configuration, particularly since the ad- 
mission control decisions for each of the algorithms are made 
on a link-by-link basis. Further, we expect that issues arising 
in a multi-link scenario (e.g., discrimination against larger flows 
and flows traversing longer paths [4], [19]) are independent of 
the particular algorithms and are, therefore, orthogonal to the 
questions we ask here.8 

A simulation experiment consists of a random process of flow 
arrivals. Each flow requests service from the network using a 
simple resource reservation protocol, and it is admitted or re- 
jected according to the specifics of the algorithm in question. 
A rejected flow departs the network without sending any data 
packets and does not retry its service request again. A flow that 
is accepted sends data packets for a flow lifetime chosen from a 
random distribution. Packets are generated according to a source 
model selected for the flow when it is created. 

We use two kinds of source models in our experiments. The 
first is an ON/OFF source, in which the source transmits at a con- 
stant rate during a randomly chosen ON period, and then remains 
idle for a randomly chosen OFF time. The second kind of source 
model uses a trace of video traffic to drive the simulation. The 
specific parameters are described below. Packets generated by a 
source are subject to policing by a token bucket filter. The to- 
ken bucket parameters (rate and bucket depth) are included in 
the reservation request that is handed to the admission control 
module. 

For each simulation, the average utilization and packet loss 
rate are measured. Data collected during an initial warmup pe- 
riod are discarded. All simulations were repeated using different 
seeds to the random number generator. The number of repeti- 
tions and the length of each simulation were varied depending 
on the underlying variability of the source model and offered 
load used in each experiment. The averages across all repeti- 
tions are reported in our results. 

In all experiments, the bottleneck link bandwidth is 10 Mbps. 
Unless otherwise noted, packets are 128 bytes long, and there is 

7http://www-mash.cs.berkeley.edu/ns/. 
8This is not to say we don't think these issues are interesting. In fact, given 

the results we present here, we make the case in [4] that these issues of dis- 
crimination mentioned above should be considered more seriously by MBAC 
researchers. 

buffering for 160 packets at the bottleneck link. In most of our 
experiments, the total offered load (in terms of the number of 
flows requesting service) is high, leading to a high call rejection 
rate. While the actual rejection rates may be unrealistically high, 
it is in the regime of overload that the behavior of the admission 
control algorithms is most interesting. 

Each of the algorithms has several parameters that control 
how much history is maintained by the estimation algorithm. 
We tried, when possible, to use parameter settings suggested in 
the original references. However, in some cases we found that 
changing these values yielded better performance. We suspect 
that this is due to differences between our source models and of- 
fered load and those used by other researchers. In all cases, we 
used those parameter values that yielded the best performance 
in our experiments. 

B. Results 

Our first experiments use homogeneous on/off sources with 
exponentially distributed on and off times (325ms average). The 
transmission rate during on periods is 64kbps, making the aver- 
age rate 32 kbps. The token rate and bucket depth are set to 
64 kbps and 1 packet, respectively (assuring no loss at the to- 
ken bucket filter). These parameters are consistent with PCM 
coded voice that might be produced by an IP telephony appli- 
cation. On average each source consumes about .3% of the 
link bandwidth. Flow inter-arrival times are exponentially dis- 
tributed with a mean of 400 ms. Flow lifetimes, which are also 
exponentially distributed, have a mean of 300 seconds. We re- 
fer to this traffic model as the EXP1 source. Simulations were 
run for 6000 simulation seconds; data collected during the first 
1500 seconds was discarded. Each simulation was repeated 5 
times with different seeds to the random number generator. 

Results for this experiment are shown in Figure 1. This graph 
plots the packet loss rate on a log scale as a function of link uti- 
lization. A performance frontier is shown for each of the six al- 
gorithms.9 It is difficult to distinguish between the performance 
frontiers in the graph, indicating that all of the algorithms yield 
very similar performance. That is, they all permit essentially 
the same choices in the tradeoff between loss rate and utiliza- 
tion. Further, the very slight differences in performance are not 
of practical importance, because even if one algorithm yields a 
marginally higher loss rate than another at a given level of uti- 
lization, the loss rates can be made equivalent with extremely 
small changes in utilization. Because there is variance in both 
the x and y values in the figure (i.e., a given MBAC input pa- 
rameter determines both the utilization and packet loss rate), 
and these variations are highly correlated and not normally dis- 
tributed, we do not depict these variations as error bars in our 
graphs. However, the variance across simulation runs is small. 

In some cases, the interfaces between the estimation and deci- 
sion components of each algorithm are such that the estimation 
process of one can be used with the decision process of another. 
When this was possible, we "mixed and matched" the various 
components. Specifically, the MS, HB, TO and TP decision al- 

9 Because utilization is not an independent variable in these experiments, data 
points are not plotted for the same x values for each algorithm. The actual num- 
ber of points plotted varies across algorithms, but we have covered an overlap- 
ping range on the x axis for each curve. 
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Fig. 1.   Performance frontiers of measurement-based admission control algo- 
rithms with EXP1 traffic 

gorithms were run with the Time Window, Exponential Aver- 
aging, and Point Sample estimators in order to understand the 
degree to which each component impacts the results. Figure 2 
shows the results for these three estimators with the four differ- 
ent decision algorithms. Relative to Figure 1, the slight varia- 
tions across algorithms have been reduced. This result demon- 
strates two things. First, the conclusion above that each algo- 
rithm has nearly the same performance frontier does not depend 
on any particular coupling between estimation and decision pro- 
cesses. Second, the reduced variance indicates that it is the esti- 
mation process, and not the decision algorithm that is responsi- 
ble for the slight variations in Figure 1. 

We performed additional experiments using the following 
source models: 

• EXP2 - in this source model, the peak rate is increased by 
a factor of 10 (640 kbps versus 64 kbps) relative to the EXP1 
source while the average rate is held constant, leading to a 
burstier source model. 
• POO 1 - this is an on/off source with the same averages as the 
EXP1 source. However, they are taken from a Pareto distribu- 
tion. Flow lifetimes are taken from a lognormal distribution with 
a median of 300 seconds following [2], [9]. The aggregation of 
these sources produces traffic that is long range dependent [8], 
[25]. 
• STARWARS - this source model is taken from a trace file 
produced by an MPEG encoding of the Star Wars motion picture 
[12]. Each source starts from a random place within the trace 
file in order to avoid correlation among the sources. This source 
model differs from the previous ones in that it has a higher aver- 
age rate (350kbps vs 32kbps) resulting in a lower degree of mul- 
tiplexing, and it is characteristic of traffic produced by a video 
source rather than an on/off model. With this source model, 
packets are 200 bytes long and there are 500 packet buffers at 
the bottleneck link. 
• HET - this experiment consists of a mix of six different on/off 
sources, with varying average rates, idle times and burst times. 
Each arriving flow chooses from among these source models at 
random. All flows have the same leaky bucket parameters, so 
they appear identical to the admission control algorithm. 

The results from these experiments (not shown here) reveal 
that our basic result holds across different traffic models. That is, 
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in the presence of burstier sources, long range dependent traffic, 
lower multiplexing, traffic derived from a video trace, and het- 
erogeneous traffic (with identical token bucket parameters), all 
of the algorithms achieve roughly the same performance fron- 
tier. In addition, we repeated the experiments with the EXP1 
traffic source and more moderate offered load (yielding a lower 
call rejection rate.) The essential results were unchanged under 
these conditions. 

C. More on Heterogeneous Traffic 

We now briefly return to the issue of heterogeneous traffic. 
In the simulation with heterogeneous traffic described above, all 
flows had identical token bucket parameters, and so were indis- 



Fig. 3.  Peak rate versus token rate versions of the MS admission control algo- 
rithm with heterogeneous traffic 

tinguishable to the admission control algorithms. The results 
in this case were consistent with those in the homogeneous ex- 
periments. We now ask what happens when the token bucket 
parameters are no longer identical, allowing the admission con- 
trol algorithms to admit them differentially. Not surprisingly, 
when the flows are distinguishable, different admission control 
algorithms lead to different mixtures of traffic, and hence to dif- 
ferent performance frontiers. To illustrate this, we consider an 
experiment where each arriving flow used one of the follow- 
ing two source models, chosen with equal probability. The first 
source model was the Star Wars trace introduced above. This 
trace had an average rate of approximately 350 kbps. In order 
to accommodate its burstiness, the token bucket parameters are 
r = 800kbps and b = 200A;&. The second source model was 
a Constant Bit Rate (CBR) source sending at 800 kbps. The 
token bucket parameters for this source are r = 800kbps and 
b = 1Mb (to hold a single packet). 

Figure 3 shows results for this heterogeneous traffic mix with 
2 admission control algorithms. The first is the Measured Sum 
(MS) algorithm, which uses the token rate of the new flow. The 
second algorithm is a variant of Measured Sum using the peak 
rate (computed as p = r + b/T, with T = 500ms in our ex- 
periments) of the incoming flow, rather than its token rate, in 
the admission control equation. The first version of the MS al- 
gorithm does not discriminate between the two kinds of flows 
because they have the same token rates. This leads to a traffic 
mix that is made up of roughly equivalent numbers of the two 
kinds of flows. The peak rate algorithm, on the other hand, dis- 
criminates against the trace driven flows, as they have a higher 
peak rate (1200kbps vs. 800kbps). This leads to a traffic mix in 
which the CBR sources outnumber the video sources by a ratio 
of approximately 3:1. Consequently, the peak rate algorithm has 
a better performance frontier than the token rate algorithm. We 
introduced the peak rate version of the MS admission control 
algorithm to accentuate the extent of discrimination. One finds 
similar, but less extreme, results when comparing the six admis- 
sion control algorithms we have discussed in this paper under 
heterogeneous traffic loads with distinguishable flows. 

Note that the traffic mix admitted by the peak-rate algorithm 
is, in the aggregate, less bursty than the one admitted by the 
token rate algorithm; thus, the loss rate experienced at an equiv- 

alent utilization is lower than is experienced with the token rate 
admission control algorithm. In general, when admission con- 
trol algorithms admit different mixtures of flows, the aggregate 
traffic will have different degrees of burstiness, and so the per- 
formance frontiers will no longer be the same. Thus, in the face 
of heterogeneous and distinguishable flows, MBACs don't nec- 
essarily produce the same performance frontier. 

One might think that this would undercut our observation 
about the equivalence between various MBACs. However, we 
think that the question of which traffic mixture should be admit- 
ted is one of policy, not efficiency. Clearly one could minimize 
the loss rates by admitting only CBR-like flows, but such a limi- 
tation would be unwise as it would preclude bursty sources from 
obtaining reasonable service. Admission control algorithms that 
happen to pick less bursty flows to admit, while providing supe- 
rior performance frontiers (in the presence of heterogeneous and 
distinguishable traffic) are not necessarily more desirable and in 
fact have only made one particular policy choice out of a broad 
range of possible choices. 

D. Comparison with an Ideal Algorithm 

We now elaborate on our result that all of the algorithms have 
similar performance frontiers. With so much effort going into 
the design of measurement-based admission control algorithms, 
one might have assumed that the effort would lead to improved 
performance. Our simulations suggest quite the opposite, that 
even very simple ad hoc algorithms achieve the same perfor- 
mance frontier as more complicated and more principled ones. 
Given this, we ask two questions. First, why are the differences 
in performance between the algorithms so small? Second, are 
there untapped advantages not yet realized by any of these algo- 
rithms or are they in fact all performing at or near some optimal 
level? To answer these questions, we construct an "ideal" algo- 
rithm. 

Consider our initial experiment with the EXP1 traffic source. 
In this simulation, all flows in the network were homogeneous 
exponential on/off sources. The aggregate traffic generated by 
these sources has no long term correlation. Further, the time 
scale at which individual sources change between the idle state 
and the active state (100s ms) is shorter than the time scale at 
which new flows are admitted to the network (seconds). Thus, 
it is impractical for the admission control algorithm to attempt 
to adjust to short term fluctuations in traffic (i.e., on the time 
scale of bursts). Given that there are no long term correlations 
in the aggregate traffic, the ideal strategy for admission control 
is to keep long term average load constant. While this might 
present a challenge in reality, it is trivial in our simulation envi- 
ronment when we have homogeneous flows with no long term 
correlations. Hence, for present purposes we define the Quota 
algorithm, which does not depend on measurements. This sim- 
ple algorithm admits a newly arriving flow if there are less than 
n flows currently receiving service, and rejects the flow other- 
wise. The parameter n controls how conservative or aggressive 
the algorithm is. While this algorithm is helpful in better under- 
standing the limits of the performance of MBACs, it is imprac- 
tical in any real setting since it requires homogeneous flows. 

Figure 4a plots the performance frontiers for the Quota algo- 
rithm and for one of the measurement-based algorithms (MS) 



0.01 

.'■* 

0.0O1 S*^* 

0.0001 
jS\*' 

■ 

1*05 

^s*y 

1*46 
s "'" MS —<— 

Quota —w— 

0.92 0.94 
UtHiaflon 

2400 

Sknutaton TTm« (at 

(b) 

Fig. 4. (a) Performance frontiers for MS and Quota algorithms with EXP1 traf- 
fic (b) Number of admitted flows as a function of time for the MS algorithm 

with the EXP1 traffic. As the figure shows, the Quota algo- 
rithm outperforms the measurement-based algorithm; across the 
load levels tested, the loss rate for the measurement-based algo- 
rithm is between 50% and 250% higher than that of the Quota 
algorithm. Figure 4b plots the number of admitted flows as a 
function of time for one simulation with the Measured Sum al- 
gorithm; a similar plot for the Quota algorithm yields an essen- 
tially straight line (the offered load is sufficiently high so that a 
new flow arrives very soon after a flow leaves, making the ad- 
mitted load very close to constant). The MS algorithm mimics 
the Quota algorithm fairly well, but there is significant variation 
in the number of admitted flows. Similar variations in load oc- 
cur when using the other MBACs we evaluated. Note that for 
the same average utilization, increased variability in load leads 
to higher loss rates. Thus, with the EXP1 traffic model, it is pre- 
cisely these variations in admitted load that leads to the worse 
performance frontier for the measurement-based admission con- 
trol algorithm. Is this variation inevitable, or can MBACs even- 
tually match the performance of the Quota algorithm? 

There are two distinct causes for this variation leading to 
the performance degradation relative to the Quota algorithm. 
The first is the way that the measurement-based algorithms 
must deal with the arrival and departure of flows. Because the 
measurement-based algorithms we consider use aggregate rather 
than per-flow measurements, they do not know how much a de- 

parting flow was contributing to the previous estimate of load.10 

Measurement-based algorithms must therefore wait before ad- 
mitting a new flow until new measurements reflect the departure 
of the previous flow. During this time, additional flows may 
depart, and the number of flows in the system may drop. The 
Quota algorithm on the other hand, with its perfect but unreal- 
istic knowledge of the departing flow, can immediately admit a 
new flow. Similarly, when a new flow is admitted to the system, 
measurement-based algorithms must assume worst case behav- 
ior about the new flow until new measurements reflect its pres- 
ence. In contrast, the Quota algorithm can admit flows based on 
their average behavior and need not delay further admissions. 

The second factor leading to variation in the number of ad- 
mitted flows is that measurement-based admission control al- 
gorithms, by their reliance on measurements of current traffic, 
must necessarily respond to significant fluctuations in the load 
even when the number of flows has not changed. That is, the 
MBAC cannot distinguish between having too many flows ad- 
mitted and a long fluctuation to a higher level of aggregate traffic 
by a fixed set of flows; not being able to detect the difference, 
the MBAC is forced to turn away flows during such a fluctuation 
even when there are too few flows present and similarly, if the 
current flows fluctuate to a lower level of traffic, the MBAC is 
forced to admit flows even when too many are already present. 

Note that there is an inherent tension between the two fac- 
tors that cause MBAC performance to degrade relative to the 
Quota algorithm. To avoid adapting to short term fluctuations 
in load, longer measurement intervals are suggested [15], [19]. 
Longer measurement intervals, on the other hand, will only slow 
down the reaction of the measurement-based algorithms to the 
departure and arrival of flows. Therefore, it is likely that these 
two factors will prevent any measurement-based algorithm from 
ever performing as well as the Quota algorithm. 

If MBACs could emulate the Quota algorithm, then they 
would all have the same performance frontier, and our results 
in Section III-B would be rendered obvious. However, the dis- 
cussion above shows that MBACs cannot accurately emulate the 
Quota algorithm. The surprise in our results in Section III-B is 
that the set of MBACs we tested all had such similar deviations 
from the ideal behavior of the Quota algorithm. One might have 
thought (indeed, we did think) that different admission control 
equations and different measurement procedures would make a 
difference in how well this ideal was followed; our results sug- 
gest that this is not the case." 

E. Long Range Dependence 

Before turning to the second goal of MBACs (performance 
targets) we briefly discuss long range dependence and its ef- 
fect on admission control. Long range dependence has been 
observed in video traffic [1], [12] and may also arise from the 

10In addition, some signaling protocols may not even provide explicit tear- 
down messages, exacerbating the problem of updating estimates when flows 
depart the network. 

11 Our fuller set of simulations (not presented here) suggest that the length 
of the averaging periods, and the way in which new flows are treated, are much 
more important than the equations themselves in determining how close MBACs 
come to the performance frontier of the Quota algorithm. This is consistent 
with the observations above about the two causes of the variations, since they 
both relate to measurement intervals and the treatment of new flows, and are 
orthogonal to the specific equations used in the admission decision. 
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Fig. 5.  Measurement-based algorithm vs. Quota Algorithm for long range de- 
pendent traffic 

aggregation of audio traffic [11], two traffic classes that may 
be subject to admission control. Results for the POOl traffic 
source showed that our basic result, that the various MBACs 
have similar performance frontiers, remains unchanged in the 
face of long range dependent traffic. However, the relative per- 
formance of the Quota algorithm, held up as an ideal algorithm 
in the previous Section, is quite altered by the presence of long 
range dependent traffic. 

Above we showed that the Quota algorithm, which admits a 
fixed number of flows, performs better than the measurement- 
based algorithms with the EXP1 traffic source (which does not 
give rise to long range dependent aggregate traffic.) We repeated 
these experiments using the POOl traffic source. Results are 
shown in Figure 5, and for clarity we again show only the Mea- 
sured Sum algorithm and the Quota algorithm. With long range 
dependent traffic, we see the opposite results. In this case, the 
measurement-based algorithm performs better than the Quota 
algorithm (which one can think of as a simple, if unrealistic, 
parameter-based algorithm). The explanation for this is straight- 
forward. The long range dependent traffic exhibits variations 
over long time scales. By keeping the number of flows fixed, 
the Quota algorithm does nothing to smooth these variations. 
The measurement-based algorithm, on the other hand, is able 
to adjust the number of flows admitted in response to the varia- 
tions. As the aggregate load increases, departing flows need not 
be replaced by new ones, and when load decreases additional 
flows can be admitted. 

We believe the implications of this are important. The orig- 
inal arguments for using measurement-based admission control 
claimed that the worst-case behavior of bursty traffic is far worse 
than the average case, and that it is hard a priori to know the av- 
erage behavior of a bursty traffic flow. Since the average behav- 
ior is unknown, any parameter-based algorithm must be based 
on worst-case parameters, leading to low network utilization. 
However, our results here indicate that that argument should be 
taken one step further. Even if the average behavior of traffic 
flows were known, the existence of long range dependent traffic 
would still mandate the need for measurement-based admission 
control in order to adapt to these long time scale fluctuations. 
Thus, while it has previously been suggested that long range 
dependence may present certain challenges for measurement- 

based admission control [11], [23] (and we do not disagree 
with those arguments), we believe that long range dependence 
also provides additional motivation for the use of measurement- 
based admission control. When the time scale of flow arrivals 
and departures is shorter than that of the ebb and rise of traf- 
fic, measurement-based admission control enables the network 
to react to these traffic fluctuations. 

These results on long range dependence also shed light on 
another issue. Some have argued that our basic result—that 
the performance frontiers of MBACs are very similar—follows 
quite directly from the observation that all algorithms seek to 
mimic the Quota algorithm. In Section III-B we found that there 
are inherent limitations to how closely any MBAC can mimic 
the Quota algorithm. Our results about long range dependence 
further show that mimicking the Quota algorithm is not always 
the optimal behavior. 

IV. PERFORMANCE TARGETS 

Results in the previous section showed that all the 
measurement-based algorithms are capable of making the same 
tradeoff between utilization and loss. However, network opera- 
tors who will deploy these algorithms may be interested in more 
than just knowing that the algorithms achieve the same tradeoff. 
Rather, it may be important for a network operator to know how 
to end up at a particular point on the performance frontier, so 
that a desired loss rate can be achieved. When comparing algo- 
rithms, it is important to ask to what extent their input parame- 
ters are useful in predicting actual performance. An algorithm 
that allows an operator to control resulting performance will be 
preferred over one that does not. 

We note that not all of the designers of the algorithms we 
study intended their algorithms to be tunable, nor did they all 
make claims about how well the algorithms were able to meet a 
particular performance target. Hence, we undertake this evalua- 
tion not to judge whether a particular algorithm meets its design 
objectives. Rather, we begin with the observation that each algo- 
rithm has one or more parameters that can be adjusted to control 
performance. We ask whether these parameters are able to pro- 
vide functionality that network operators may find useful. 

The tuning parameter in the TP and TO algorithms represents 
the space parameter of the Chernoff Bound used to compute 
the equivalent bandwidth curve upon which the algorithms are 
based. As such, this parameter does not represent a meaningful 
performance target. One may then ask whether this parameter 
can be mapped into a useful performance value in a determinis- 
tic way. For instance, if a particular parameter value in the TO 
algorithm always yields the same loss rate, then the parameter 
can be useful in predicting actual performance. However, a re- 
view of our simulation results shows that this is not the case. As 
an example, with the TP algorithm, a parameter value of 4.0e-7 

yields loss rates of .0098, .0018 and less than 10-7 with the 
POOl, EXP1 and Star Wars sources, respectively. These kinds 
of inconsistencies were also observed with the TO algorithm. 
Thus, the tuning parameter in the TO and TP algorithms can not 
be used to predict actual performance. 

The MS algorithm has a parameter, v, which represents a cap 
on the fraction of the link bandwidth that can be used by traffic 
subject to admission control. As such, its semantics are easily 



understood, and we can ask whether it is useful as a utilization 
target. Simulation results indicate that it is not. For example, 
with the EXP1 traffic source, when v = 1.0, average utilization 
is 94% of the link bandwidth. With the EXP2 traffic source, uti- 
lization is only 75% of the link bandwidth with the same value 
oft». Further, even if the utilization target was consistently met, 
we question the value of this parameter as a performance target. 
We expect loss rate to be a more relevant parameter, since loss 
rate directly affects user performance. 

The HB algorithm uses a parameter, e, to represent the proba- 
bility that the stationary bandwidth requirement of a set of flows 
exceeds the computed equivalent bandwidth of the flows. In 
practice, this does not turn out to be a useful predictor of loss. 
For example, in the simulations shown previously, we typically 
use values of e above .9. Further, these values do not map into 
actual loss in any consistent manner. For example, with e = .9, 
the loss rates are .00045, .005 and less than 10-7 with theEXPl, 
POOl, and Star Wars source models, respectively. 

Algorithm Source 
Model 

Target 
Loss Rate 

Actual 
Loss Rate 

TE EXP1 10~B 1.9 x 10-5 

TE EXP1 10-* 4.8 x 10-* 
TE Star Wars 10~B 5.5 x 10-4 

TE Star Wars 10-* 4.4 x 10~a 

TE EXP2 10~ö 3.1 x 10~5 

TE EXP2 10-* 1.8 x 10~a 

TE POOl io-e 1.3 x 10-* 
TE POOl io~* 4.1 x 10-* 
MC EXP1 10~B 1.1 x 10-4 

MC EXP1 10"* 2.4 x 10-4 

MC Star Wars 10-« 3.0 x 10-3 

MC Star Wars 10-* 4.5 x 10~3 

MC EXP2 10~ö 1.7 x 10"4 

MC EXP2 10-* 2.0 x 10-4 

MC POOl io-° 1.2 x 10~* 
MC POOl 10-* 1.6 x 10-* 

TABLE I 

TARGETED VERSUS ACTUAL Loss RATES FOR THE TE AND MC 

ALGORITHMS 

The final two algorithms, TE and MC, use target loss rate as 
a tuning parameter. Table I shows both the target and actual 
loss rates for both algorithms and several traffic sources. These 
data show that the algorithms are unable to achieve performance 
close to their targeted performance in a consistent manner. In- 
deed, for each algorithm the table shows examples in which the 
actual loss rate is both higher and lower than the target, some- 
times by 2 or 3 orders of magnitude. While the TE algorithm 
comes closer to its targets in general, it still misses by a couple 
of orders of magnitude in some cases. As such, even though the 
targets are achieved under certain scenarios, they do not predict 
performance reliably. 

In sum, none of the algorithms provide tuning parameters that 
are useful as performance targets. At best, these parameters can 
be seen as largely uncalibrated knobs that can increase or de- 
crease utilization and loss. 

V. CONCLUSIONS 

In this paper we compared several different measurement- 
based admission control algorithms. We evaluated the algo- 
rithms according to two criteria. First, what tradeoff of loss and 
load do they each achieve? This criterion shows how well the 
algorithms are able to balance the conflicting goals of providing 
good quality of service to individual users and achieving high 
network utilization (i.e., satisfying many users). Here our re- 
sults were unambiguous. Across a range of traffic sources, all 
the algorithms, whether ad hoc or principled, achieved nearly 
identical performance. This result argues that there is no partic- 
ular performance benefit of one over the others. Our study also 
yielded several additional insights about measurement-based ad- 
mission control. First, we showed that for many algorithms, 
the measurement estimation and admission decision processes 
can be decoupled. Second, differences in performance caused 
by flow heterogeneity are a matter to be addressed by policy, 
rather than by algorithmic differences. Third, simulation results 
showed that measurement-based admission control algorithms 
not only cope well with long range dependence in traffic, in 
some circumstances they are more adept at handling it than are 
parameter-based algorithms. 

The second criterion we used to evaluate the algorithms was 
the extent to which they provided performance tuning knobs that 
allow network operators to set a target performance level for the 
network. Such a knob would allow the network operator to de- 
cide where on the performance frontier the network should op- 
erate. Here the results were less impressive. None of the algo- 
rithms was able to reliably match actual performance to targeted 
performance levels. Thus, we believe that for any of these al- 
gorithms, network operators will need to monitor actual perfor- 
mance in order to learn appropriate parameter settings. On the 
other hand, some algorithms did better than others in this regard 
in the sense that they tended to get closer to targets on average 
than others. While the magnitude of the errors was in all cases 
large enough to call into question the value of the knobs as per- 
formance targets, whether or not this difference is important is a 
subject of debate. The ability of future algorithms to improve in 
this regard is an open question. 
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Abstract 

Protocol design requires understanding state distribut- 
ed across many nodes, complex message exchanges, 
and with competing traffic. Traditional analysis tools 
(such as packet traces) too often hide protocol dynam- 
ics in a mass of extraneous detail. 

This paper presents nam , a network animator that 
provides packet-level animation and protocol-specific 
graphs to aid the design and debugging of new net- 
work protocols. Taking data from network simulators 
(such as ns) or live networks, nam was one of the first 
tools to provide general purpose, packet-level, network 
animation. Nam now integrates traditional time-event 
plots of protocol actions and scenario editing capabil- 
ities. We describe how nam visualizes protocol and 
network dynamics. 

Keywords: network protocol visualization, packet- 
level animation, Internet protocol design, network sim- 
ulation, ns, nam 

1    Introduction 

Designers of network protocols face many difficult 
tasks, including simultaneous monitoring of the state 
of a potentially large number of nodes (for example, 
in multipoint protocols), understanding and analyzing 
complex message exchange, and characterizing dynam- 
ic interactions with competing traffic. 

'This research is supported by the Defense Advanced Re- 
search Projects Agency (DARPA) through the VINT project 
at LBL under DARPA Order E243, at USC/ISI under DARPA 
grant ABT63-96-C-0054, at Xerox PARC under DARPA grant 
DABT63-96-C-0105. 

t Originally published in March, 1999, this technical report 
was updated in November, 1999 (one section was moved, some 
text was added and rewritten, and a number of typos were fixed). 
This technical report has been accepted to appear in IEEE Com- 
puter Magazine. 

Traditionally, packet traces have been used to ac- 
complish these tasks. However, packet traces have two 
major drawbacks: they present an incredible amount of 
detail, which challenges the designer's ability to com- 
prehend the data, and they are static, which hides an 
important dimension of protocol behavior. As a result, 
detailed analysis frequently becomes tedious and error- 
prone. Although network simulators such as ns [2] can 
easily generate numerous detailed traces, they provide 
limited help in analyzing and understanding the data. 

Network-specific visualization tools address this 
problem, allowing the user to take in large amounts 
of information quickly, to visually identifying patterns 
in communication, and to better understand causali- 
ty and interaction. This paper presents nam , a net- 
work animator that provides packet-level animation 
and protocol-specific graphs to aid the design and de- 
bugging of new network protocols (Figure 1). Nam 
was one of the first tools to provide general purpose, 
packet-level, network animation. Recent work has inte- 
grated traditional time-event plots of protocol actions 
and added scenario editing capabilities. Nam benefits 
from a close relationship with ns, the VINT project's 
network ns [2] which can collect detailed protocol infor- 
mation from a simulation. With some pre-processing, 
nam can also be used to visualize data taken directly 
from real network traces. 

Related Work (sidebar) 

Network protocol visualization has been explored in 
many contexts, beginning with static protocol graphs, 
and visualization of large-scale traffic, more recently 
including simulation visualizations and editors. 

Graphs of packet exchanges are very useful at un- 
derstanding cause-and-effect in complex protocols like 
TCP. Work at MIT [10] and the University of Ari- 
zona [3] is typical: graphs show time against TCP se- 
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Figure 1: Basic nam operation. 



quence numbers on a 2-D graph, possibly with annota- 
tions to show special events. Similar time-event graphs 
have proven useful in understanding reliable multicast 
behavior in SRM [5]. Although nam graphs are not 
as detailed as the most sophisticated of these graph- 
s, they are integrated with the packet animation and 
time control. We plan to develop APIs to allow the 
end-user to annotate graphs with the details relevant 
to their protocol or protocol modifications. 

Several groups have looked at visualization of large, 
static network data sets. Important questions include 
use of layouts based on real-world geography or net- 
work topology, how best to use animation, color, and 3- 
D. More generally, many researchers tackled the prob- 
lem of visualization of complex data (for an overview 
of several approaches, see Robertson et al. [9]). Sys- 
tems like these share the principle that multiple linked 
views are essential in visualizing complex data. Nam 
adopts this principle. It organizes visualization around 
the main topology view, from which a number of spe- 
cialized views may be derived. These systems tend 
to focus on representing aggregate network data (traf- 
fic flows) to understand and monitor traffic patterns, 
rather than the packet-level detail necessary to design 
new protocols. 

Several Network simulation systems include explicit 
support for visualization, either customized to a partic- 
ular end-application or more general. Opnet includes 
visualization capabilities and Simphony [7] explicitly 
includes packet-level animation. Nam differs from this 
work by supporting different views of the data (packet 
animation and time-event graphs). 

Nam is quite late in providing a GUI front-end to 
defining new simulations. Systems such as Opnet and 
Parsec [1] have provided this capability for some time. 
CMU's ad-hockey was designed explicitly to support 
node movement [11]. We believe GUI network edi- 
tors are of most benefit to novice users or users run- 
ning small simulations, we advocate using a scripting 
language to construct large or complex simulations. 
Nam's editing capabilities are therefore not as complete 
as other similar systems since nam outputs a script 
which can be extended by hand to access complete ns 
functionality. 

2    Nam Basics 

Nam interprets a trace file containing time-indexed 
network events to animate network traffic in several 
different ways (Figure 2). Typically this trace is gen- 
erated from an ns simulation, but it can also be gener- 
ated by processing data taken from a live network to 

ns simulation  *»^ nam 

network              j* 
data ^^ pre-   ^" 

^r processing 
other  «*^ 
sources 

packet animations 
-optional y -automaticiayout 
"filtering  "         - relative layout 

- wireless layout 

protocol graphs 
-TCP 
-SRM 

Figure 2: Block diagram of nam. 

produce a nam trace. Nam usually runs off-line with 
the traces stored on disk, but it can also play traces 
from a running program through a Unix pipe. 

A nam input file contains all information needed for 
the animation: both the static network layout and dy- 
namic events such as packet arrivals, departures, and 
drops and link failures. Wireless networking simula- 
tions include node location and movement. 

Figure 1 shows a typical nam session. On the top 
left, the main window shows packet animations. The 
visual size and speed of packets is proportional to pack- 
et length and the link bandwidth and delay; link 2-3 is 
full of TCP data moving along the top and return ac- 
knowledgement traffic along the bottom in the reverse 
direction. Packet color is used for different things; in 
this case it differentiates two different data streams 
(black and blue) and a red packet carrying a conges- 
tion signal. Packets move from node to node along 
links, and are queued up when links are full (for exam- 
ple, there is a large queue near node 2 corresponding 
to the busy link between nodes 2 and 3). Below it (in 
the same window) are several statistical summaries of 
what is happening. Boxes labeled "monitors" corre- 
spond to parameters of protocols running on particu- 
lar nodes. The graph across the bottom of the window 
shows the utilization of a link as a function of time. 
The smaller bottom-right window is zoomed in on part 
of the same network. The window on the center-right 
shows a protocol-specific time-event graph of a partic- 
ular flow on a given link. In this case, it plots TCP 
sequence numbers against time using different symbols 
to show data packets, acknowledgements, and acknowl- 
edgements which include explicit congestion informa- 
tion. 

Multiple copies of nam may be executed simultane- 
ously, in which case they may be driven in lock-step. 
With this synchronized, simultaneous ability to visual- 
ize the output of more than one simulation trace file, 
side-by-side comparisons are made possible. Such com- 
parisons are especially useful for investigating protocol 
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Figure 3: Packet animation in nam. 

sensitivity to input parameters in the same simulation 
scenario (as in [5], for example). 

3    Packet Animation 

The core of nam is packet animation. Figure 3 shows 
a typical packet animation (taken from [13]). Three 
variants of the TCP protocol are being used to send 
data from web servers on the right to clients on the 
left. Animation here allows the viewer to quickly take 
in the status of each part of the network (the top link 
is severely congested and dropping packets, the middle 
link is slightly busier than bottom link), and to quick- 
ly compare the algorithms (the middle variation has 
one extra magenta packet while the top version sends 
many back-to-back packets). Nam allows the anima- 
tion speed to be adjusted and played forwards or back- 
wards, making it easy to find and examine interesting 
occurrences. 

The first step in a new animation is displaying the 
network topology. Nam has three different topology 
layout mechanisms to accommodate different needs. 
The default is an automatic layout algorithm based 
on a spring-embedder model [6]; Figure 4 shows an ex- 
ample of this result. It assigns attractive forces on all 
links and repulsive forces between all nodes, and tries 

to achieve balance through iteration. Automatic lay- 
out can produce reasonable layouts of many networks 
without explicit user guidance, but it may not pro- 
duce satisfactory results of complicated networks. As 
a remedy, nam allows the user to graphically adjust 
the resulting layout. 

For smaller topologies, relative layout is possible. 
The user specifies the relative directions of links (left, 
up, down). Nam places nodes relative to each other 
using link directions; link length is set proportional to 
its bandwidth and delay. Relative layout works very 
well for small topologies and has the desirable property 
that packet movement rate is consistent with link delay 
and bandwidth. The network in Figure 3 uses relative 
layout. Disadvantages of relative layout are that the 
user must specify the directions of each link, that not 
all networks have a planer representation that satis- 
fies delay constraints, and relative layout of a topology 
containing very different delays can result in very short 
links. For example, the 10Mb/s, 1ms delay links on the 
left of Figure 3 are too short to observe packet flow 
when shown at the same scale as the 800Kb/s, 100ms 
central link. 

Finally, wireless layout assigns associates each node 
with a physical location in a constrained area. Each 
node's position is given by its 3-D coordinate (only the 
two dimensions are currently used for visualization) in 
the area and its velocity vector. Wireless visualizations 
typically lack explicit links. 

Packet animation is straightforward once the topol- 
ogy is laid out. Trace events indicate when packets 
enter and leave links and queues. Packets are shown 
as rectangles with arrows at the front; queues as arrays 
of squares (see the left window of Figure 1). Packets 
can be colored based on codes set in the simulator or 
pre-processing to identify source and destination pairs. 
When queues fill, packets are literally dropped, shown 
as small rolling squares falling to the bottom of the 
display. 

The only difficulty we encountered in implementing 
packet animation is that some events are not present in 
the trace file but must be generated on-the-fly. Our de- 
sign philosophy was to make the trace file as explicit as 
possible, but some trace events are animation specific 
and so must be dynamically constructed. One example 
is identifying when a dropped packet leaves the screen. 
This event is not known by the simulator. 

Users can control animation playback rate to focus 
on interesting parts of the simulation. VCR-like but- 
tons control forwards or backwards playback, while a 
slider sets playback rate. Because some simulations 
include dead time, periods of no packet activity can 
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optionally be skipped. Interesting events in the trace 
can be annotated, allowing a user to jump to those 
events. 

The animation window is interactive. Clicking on 
packets, links, and nodes brings up pertinent informa- 
tion, including statistics (described next). 

In addition to packet animation, we have experi- 
mented with ways to visualize other information. Node 
color and shape can be specified, for example, to indi- 
cate membership in a multicast group. Protocol agents 
represent state of a protocol instance at an end-node. 
Agents can be displayed as small labeled rectangles at- 
tached to nodes. 

Figure 4 shows one example of non-packet-level an- 
imation. This figure shows the topology of a portion 
the Internet multicast backbone (mbone) as of 1998. 
To determine if mbone loss was primarily in the core 
network or the edges we measured loss rates for various 
links. In the figure, different loss rates are shown with 
color which changes over time. 

We have also found nam useful for application-level 
visualization. In Figure 5 we use nam to visualize cache 
coherence algorithms in a hierarchical web cache. Node 
types are shown with shapes (the clients and server are 
hexagons while caches are circles), Cache status (valid 
or out of date) is shown with node color. Algorithm 
status (refreshing a cache, etc.) is shown with rings 
around nodes. 

4    Network Statistics 

The animation component of nam only displays a sub- 
set of the simulation details present in the trace output. 
Additional information, such as packet headers or pro- 
tocol state variables, are handled by other nam compo- 
nents. The statistics component provides three ways 
to display this additional information. First, clicking 
on any of the displayed objects (e.g. packets and pro- 
tocol agents) will bring out a one-shot panel showing 
object-specific information. Second, continuous moni- 
toring of all available object-specific information may 
be achieved by associating a monitor with entities of 
interest. Monitors remain associated with an object 
until explicitly removed by the user or until its under- 
lying object is destroyed. These monitors are displayed 
in a pane in nam's main window, as illustrated in Fig- 
ure 1. Third, nam uses panes (the black stripes in 
Figure 1) in the main window to display bandwidth u- 
tilization and packet losses on links. Clicking on a link 
brings out a selection panel, which allows the user to 
open a new pane to display bandwidth utilization or 
packet loss on the link. 



5    Protocol-specific Graphs 

In addition to detailed examination of individual sim- 
ulation entities, nam supports protocol-specific rep- 
resentations of information with time-event graphs 
(where time is plotted against events such as an ad- 
vancing sequence number or message transmission). 
These graphs have long been used to understand TCP 
behavior, and more recently to understand timer inter- 
action in scalable reliable multicast [5]. 

Currently nam supports protocol graphs for TCP 
and SRM. We plan to make this facility more generic 
through a pluggable API for supporting other proto- 
cols. Figure 6 shows SRM (center right) and TCP 
(bottom center and bottom right) time-event graphs. 
When a graph is first brought up a nam filter scans 
the trace file to extract the relevant information for a 
specific flow or protocol. 

The advantage of integrating these views with nam 
is that graphs and packet animation are synchronized. 
Moving a time slider or by clicking on an interesting 
event in any view updates the time in all views. Each 
trace event is displayed in the consistent way (i.e., col- 
or, shape, etc.) across views to help the user coordinate 
events. 

7    Future Work and Conclusions 

Nam development is on-going. A number of incremen- 
tal improvements are desired or planned. For example, 
we would like to improve scenario editing capabilities, 
and add support for entering mobile node tracks [11]. 
We would also like to experiment with adding audio 
capabilities to the simulator. Two major focuses of fu- 
ture work remain. First, we would like to make nam 
much easier to extend, providing better internal APIs 
to allow users to add custom controls to the output and 
to control object rendering. An example application 
would allow users to interactively control node colors 
to indicate application-specific groups or characteris- 
tics. Second, we are just beginning to understand how 
to visualize large scale protocol actions. More work in 
this area is needed. 

Network protocol visualization is easy to dismiss s- 
ince its contributions to protocol development are indi- 
rect. Broader use of nam suggests that visualization is 
more than just a tool for fancy demos, but that it can 
substantially ease protocol debugging and help under- 
stand dynamic behavior. Because of these reasons, a 
growing number of researchers have used nam in their 
work and papers [12, 8]. 

6    Scenario Creation and 
Editing 

We use nam in two very complementary ways to assist 
in scenario creation. First, we have recently extended 
nam to include a scenario input facility. Using a tradi- 
tional drawing approach the user can add nodes, links, 
protocol agents. Nam then saves this scenario as an ns 
simulation script (in Tel) which will be processed by 
the simulator. 

Second, the ns scenario generator uses nam to visu- 
alize large scenario topologies. The scenario generator 
constructs these scenarios using tools such as Georgia 
Tech's ITM [4]. Nam with autolayout then presents the 
topology to the user for acceptance or regeneration. 

Graphical scenario creation with nam is very appro- 
priate for small scenarios with a few nodes and links. 
We have been happy with the design choice of using 
nam to produce scripts for these cases while starting 
with scripts directly for larger, more complex, or auto- 
mated simulations. For the ns target audience of proto- 
col designers, the effort required to learn Tel syntax is 
small and this is more than offset in these scenarios by 
the finer control afforded and the ability to use looping 
constructs in place of repeated manual point-and-click 
operations. 
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Abstract 

The development and deployment of a large-scale, wide-area 
multicast infrastructure in the Internet has enabled a new- 
family of multi-party, collaborative applications. Several of 
these applications, such as multimedia slide shows, shared 
whiteboards, and large-scale multi-player games, require re- 
liable multicast transport, yet the underlying multicast in- 
frastructure provides only a best-effort delivery service. A 
difficult challenge in the design of efficient protocols that 
provide reliable service on top of the best-effort multicast 
service is to maintain acceptable performance as the protocol 
scales to very large session sizes distributed across the wide 
area. The Scalable, Reliable Multicast (SRM) protocol [6] 
is a receiver-driven scheme based on negative acknowledg- 
ments (NACKs) reliable multicast protocol that uses ran- 
domized timers to limit the amount of protocol overhead in 
the face of large multicast groups, but the behavior of SRM 
at extremely large scales is not well-understood. 

In this paper, we use analysis and simulation to investi- 
gate the scaling behavior of global loss recovery in SRM. We 
study the protocol's control-traffic overhead as a function of 
group size for various topologies and protocol parameters, 
on a set of simple, representative topologies — the cone (a 
variant of a clique), the linear chain, and the binary tree. 
We find that this overhead, as a function of group size, de- 
pends strongly on the topology: for the cone, it is always 
linear; for the chain, it is between constant and logarithmic; 
and for the tree, it is between constant and linear. 

1    Introduction 

The advent and deployment of IP Multicast [5] has enabled 
a number of new applications [17, 10, 9, 7, 22] that utilize 
large-scale multipoint communication over wide-area inter- 
networks. IP Multicast extends the traditional, best-effort 
unicast delivery model of the Internet architecture to enable 
efficient multipoint packet delivery. In this model, the net- 
work delivers a packet from a source to an arbitrary number 
of receivers by forwarding a copy of that packet along each 
link of a distribution tree rooted at the source subnet (or, de- 
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pending on the routing protocol, at a rendezvous point [4] or 
core router [1]). As with unicast, IP multicast is not reliable 
— packets might be dropped at any point along the distri- 
bution tree. However, many new multicast applications like 
shared whiteboards, webcast tools, and distributed simula- 
tion are not tolerant of packet losses. Whiteboard state, for 
example, is persistent; if a piece of a drawing update is lost, 
the application cannot leave the drawing in an incomplete 
state. Instead, that application must recover the missing 
packet to repair the damaged portion of the drawing. In 
short, this particular application, and in fact a large class of 
emerging applications, require a reliable multicast transport 
protocol. Although mechanisms for reliable unicast trans- 
mission are comparatively well-understood and have proven 
extremely successful (e.g., TCP), making multicast reliable 
at large scales remains a formidable challenge. 

A fundamental problem in the design of a reliable mul- 
ticast protocol is the well-known message implosion [6, 19] 
problem. Reliable transport protocols rely on some form 
of feedback between or among communicating end-points to 
confirm the successful delivery of data. While some proto- 
cols rely on positive acknowledgments or ACKs (signalling 
the successful receipt of data), others rely on negative ac- 
knowledgments or NACKs (signalling the failure to receive 
expected or desired data). Positive acknowledgment-based 
schemes are successful for reliable unicast transport but scale 
poorly in the multicast case when there are many receivers. 
In this case, each delivered packet causes a flood of positive 
acknowledgments sent from the receivers back to the source, 
overwhelming either the source or the intervening routers, if 
not both. 

A number of solutions to the ACK implosion problem 
have been proposed. Log-based reliable multicast [8] uses 
logging servers to constrain recovery traffic to localized groups 
of receivers. TMTP [24] and Lorax [12] construct a hierarchy 
in the form of a tree, in which multiple identical ACKs are 
fused together before they are propagated up the tree toward 
the root. RMTP [13] uses a similar approach based on trees 
that are (statically or dynamically) configured into the net- 
work rather than constructed by the application. XTP [2] 
takes a markedly different approach, however, and instead 
multicasts control traffic to all end-points. To limit the pro- 
liferation of this control traffic, XTP employs a "slotting and 
damping" algorithm: a receiver waits for a random amount 
of time before generating control traffic and cancels that 
message if some other hosts multicasts the same informa- 
tion first. The algorithms in SRM [6] elaborate this simple 
yet powerful primitive with adaptive timers that improve 
performance across wide-area, heterogeneous networks. 



While TMTP, Lorax, and RMTP limit recovery traffic 
using unicast transmission over an artifically constructed hi- 
erarchy, XTP and SRM limit recovery traffic using multicast 
transmission and explicit suppression. Although this latter 
approach is potentially more robust because it does not re- 
quire an elaborate protocol for tree construction, mainte- 
nance, and reconfiguration, it also entails potentially more 
overhead because recovery traffic is multicast to the entire 
group and not just to those members impacted by the packet 
loss. To address this problem, [6] proposes that their SRM 
reliable multicast framework be cast as two complementary 
pieces: a global recovery component that ensures the delivery 
of all desired data across the entire multicast session, and a 
local recovery component that constrains the reach of recov- 
ery traffic to the multicast neighborhoods where packet loss 
occurs. Although [6] focuses primarily on global recovery, 
the SRM authors argue that local recovery is an important 
and necessary optimization to scale their protocol to large, 
heterogeneous sessions. Since then, several promising ap- 
proaches to local recovery have been proposed [11, 14] and 
the problem remains a focal point of ongoing research. 

Even though a viable local recovery strategy is criticial 
to SRM's scalability, in certain configurations (e.g., where 
packet loss occurs near the root of the distribution tree), the 
degree to which local recovery enhances performance may be 
limited and the protocol's overall performance may strongly 
depend on that of the global recovery scheme. Hence, we 
claim that a thorough understanding of global recovery in 
SRM is not only important in and of itself, but will also 
be useful in predicting the performance of SRM even when 
coupled with local recovery. 

In this paper, we use analysis and simulation to inves- 
tigate the scaling behavior of global loss recovery in SRM. 
We study the growth control traffic (measured by NACK 
counts) as a function of group size for various topologies 
and protocol parameters, on a set of simple, representative 
topologies — the cone, the linear chain, and the binary tree. 
We find that the number of NACKs, as a function of group 
size, for the cone is always linear, for the linear chain is be- 
tween constant and logarithmic, and for the tree is between 
constant and linear. 

The rest of this paper is organized as follows. We start 
with a brief overview of the SRM protocol in Section 2. Sec- 
tion 3 summarizes related work- In Section 4, we describe 
our simulation methodology. We discuss the effects of vary- 
ing the protocol parameters for the various topologies in 
Sections 5, 6, and 7, and conclude in section 8. 

2    Overview of SRM 

SRM is a NACK-based, fully-decentralized reliable multi- 
cast protocol originally described by Floyd, et al., in [6]. The 
SRM framework builds on Clark and Tennenhouses's princi- 
ple of Application Level Framing (ALF) [3], which provides 
an elegant solution to the problem of reliable-multicast API 
design because its flexibility offers applications the oppor- 
tunity to actively participate in the loss-recovery procedure. 

To avoid ACK-implosion, SRM uses NACKs. Receivers 
detect losses from discontinuities in sequence numbers (or by 
other means with a generic data naming scheme [20]) and 
transmit NACKs as a request for retransmission of the lost 
data1. A randomized algorithm determines when a receiver 

transmits a NACK. These NACKs are multicast to the entire 
group so that any receiver, in particular the closest receiver 
with the requested data, may generate a repair in response 
to a NACK. The repair messages are also multicast to the 
entire group, so that all receivers that missed that packet can 
be repaired by a single response. The repair message traffic 
likewise makes use of the randomized timer algorithm. 

To avoid NACK implosion, receivers that observe a NACK 
for data that they too have not received do not send their 
own NACK2 and await the repair data. The goal of the ran- 
domized NACK transmission algorithm is to minimize the 
number of duplicate NACK messages sent. To accomplish 
this, each receiver delays the transmission of a NACK by an 
amount of time given by the expression 

backoff   =    D • (Ci + C2r) 

where backoff is the amount of delay, D is an estimate of 
the one-way delay from the receiver to the source that gen- 
erated the lost data packet, C\, C2 are non-negative protocol 
constants, and r is a uniformly distributed random number 
in [0,1]. This random delay provides receivers with the op- 
portunity to suppress the transmission of similar pending 
NACKs; that is, delaying the transmission of NACKs by a 
random amount increases the likelihood that a NACK from 
one receiver is delivered to another receiver before that re- 
ceiver sends its own NACK, and thus, reduces the total num- 
ber of NACKs. Figure 1 illustrates the suppression mecha- 
nism in SRM. 

As in [6], we call C\D the deterministic delay and C2Dr 
the random delay. The deterministic-delay component in- 
duces suppression effects across receivers situated at vary- 
ing distances from the point of loss (e.g., a chain topology), 
while the random-delay component induces suppression ef- 
fects across receivers situated at equal distances from the 
point of loss (e.g., a star topology). We say that a receiver's 
timer fires if no suppressing NACK has been received when 
its backoff period has expired. 

Since NACKs are multicast to the group, any receiver 
that has the data can respond, not just the original source. 
However, we again have the potential for a control-traffic 
storm if all hosts respond simultaneously. Thus, to avoid 
repair-packet storms, SRM reuses its NACK suppression 
machinery to limit the'number of redundant repair pack- 
ets. Because both NACKs and repairs are sent to the entire 
multicast group, we call this the SRM global recovery mech- 
anism. 

A number of performance metrics have been used to 
characterize recovery schemes for reliable multicast, but two 
widely used metrics are:3 (1) the degree of duplicate control 
traffic, and (2) the recovery latency. The first metric can 
be summarized as the average number of NACKs sent for 
each dropped packet, which clearly depends on the size of 
the group experiencing the loss. We denote this number by 
N(G), where G is the number of members experiencing the 
loss. The larger this metric, the less effective the random- 
ized timer algorithm is at suppressing duplicate NACKs and 

:To be true to the original intentions of the SRM designers, we 
must admit that our use of the term "NACK" is somewhat inaccurate 
since it implies that the underlying protocol generates NACKs to 
guarantee that all data is eventually received by all receivers. In fact, 

SRM is receiver-reliable and does not require that all receivers obtain 
all data. Instead, receivers issue "repair requests" to repair only those 
data wanted. For this paper, we use the terms "NACK" and "repair 
request" interchangeably. 

2 More precisely, they scale their transmission timer awaiting a 
response. All receivers, if they have not received the repair data, will 
eventually transmit a NACK. 

3The metrics we describe here ignore topological heterogeneity, 
where not all receivers are identical. More detailed performance met- 
rics would measure the latencies on a per receiver basis. 
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avoiding NACK implosion. N(G) is a non-decreasing func- 
tion of G, so the suppression performance for large group 
sizes is a critical factor in SRM's performance. 

We define the second metric, the loss-recovery latency, 
as the time delay between the instant a packet drop is de- 
tected to the time at which the first NACK is sent (from 
the perspective of a particular session member). Recovery 
latencies for these randomized algorithms typically decrease 
as group sizes increase, so the sensitivity of latency on group 
size is not of primary importance in the scaling behavior of 
SRM. 

In this paper, we focus on the performance of SRM with 
large group sizes; that is, roughly speaking, the asymptotic 
scaling limit. Thus, we focus on the number of duplicate 
messages and do not address latency performance. Since 
the timer mechanisms for NACKs and repair messages are 
similar, we restrict our attention to NACKs. Therefore, our 
paper addresses the following question: how does the num- 
ber of duplicate NACK messages increase as the group size 
grows? In short, what is the scaling behavior of N(G) in 
SRM? 

The scaling behavior of SRM depends both on the topol- 
ogy of the underlying network as well as the details of the 
timer algorithm. To explore the relationship between topol- 
ogy and scaling behavior, we experimented with three simple 
network topologies: the cone (a variant of a clique), line, and 
tree, shown in Figures 2 and 3 While these topologies are 
instructive because they explore the behavior of SRM under 
extreme toplogies, they are by no means exhaustive. 

The scaling behavior also depends on several aspects of 
the timer algorithms. We focus on two such factors. First, 
we look at the dependence of the scaling behavior on the 
constants Ci and CT.. There are several applications, such 
as large-scale multi-player games that are highly interactive, 
for which low-latency loss recovery is important, and the 
choices of C\ and Ci critically impact this. In general, the 
expected latency to transmit the first NACK upon detecting 
a loss is bounded above by (C\ + Cilf)D, where / is a 
function of the network topology and is always at least 2. 
Thus, there is a trade-off between recovery latency and the 

choices of C\ and Ci. In particular, smaller values of these 
constants lead to better latency, but also to increased N(G). 
The need for low latency by many applications motivates our 
work on investigating the (Ci,Ci) parameter space, and in 
particular, our consideration of 0 < C\ < 1 (little or no 
deterministic suppression). 

We also briefly consider the case where C\ and C2 are 
a function of the location in the topology; this aspect of 
our work was inspired by the results on adaptive timers in 
[15]. There, the timer constants were set in response to 
the number of duplicates observed and the latency of the 
responses, and this naturally led to the parameters being 
different for different members — e.g., members located at 
different depths in a tree would have different settings. We 
do not directly address the dynamic nature of these timer 
adjustments, but merely study how location dependence in 
C\ and Ci changes performance. 

We then investigate how the scaling behavior depends 
on the accuracy of the delay D. In SRM, the ith group 
member estimates Dy, j = 1, 2,... n, j / i, the delay from 
itself to each of the other members of the group. Delay esti- 
mates are calculated from round-trip time (RTT) informa- 
tion which is derived from timestamps in session messages of 
the SRM protocol. Since the protocol's control bandwidth 
is limited to a constant fraction of the total available ses- 
sion bandwidth, the estimated RTT does not readily track 
changes in actual delay for large session sizes4. We study 
how RTT estimation might affect asymptotic scaling behav- 
ior in the different topologies by comparing performance in 
two extreme cases: one with exact RTT estimations and one 
where all members have the same hardwired RTT estimate. 

3    Related Work 

In this section, we summarize some important prior work 
related to the analysis of SRM. The seminal work of Floyd 
et al. [6] simulated group sizes of up to a few hundred nodes 
ranging across a set of simple topologies. They showed that 
it was often possible to choose values of C\ and C2 that 
resulted in N(G) scaling as a constant independent of G. In 
particular, picking C\ = C2 = 2 achieved this for the chain 
topology, and picking Ci = VG resulted in constant scaling 
for the star topology (a special case of the cone topology 
in our work). Using simulations they demonstrated that 
N(G) < 4 for random trees with bounded degree for session 
sizes of up to 100. They also proposed an adaptive algorithm 
to dynamically adjust Ci and Ci based on past information 
for better performance. 

Our work extends their important findings in two ways. 
First, we investigate performance for session sizes of up to 
two orders of magnitude larger than in [6], thus improving 
our collective understanding of SRM's asymptotic behavior. 
Reassuringly, our results agree with [6] where the experi- 
ments overlap. More generally, we have assessed in detail 
the behavior of N{G) as a function of C\ and Ci. Not only 
do these results help us predict the performance of SRM, but 
they could influence the design of related sub-components of 
SRM, e.g., the choice of bounding values of C\ and Ci in 
the proposed adaptive algorithm. A more recent paper [15] 
studied scaling behavior for group sizes up to 200 members, 
with C\ = 0 and C2 set adaptively. 

In addition, Nonnenmacher and Biersack [18] looked at 
the effect of timer distribution on scaling behavior and showed 

4Even in the case of a single TCP connection, where RTT estimates 
are gathered on every ACK, the sender's RTT-estimator is known to 
often be inaccurate [21]. 



that exponentially distributed timers yield better scaling 
properties. They found that having this distribution de- 
pend on the group size could result in improved scaling. We 
do not address the effects of different timer distributions at 
any great length in this paper. 

This paper is primarily concerned with global recovery 
in SRM with constant C\ and Ci- Variants of SRM have 
been proposed that use local recovery, in which NACKs and 
repairs are not sent to the entire group. [6], [14] look at two 
methods to limit the range of these methods: hop-scoping, 
and local recovery groups. [15] considers methods for adap- 
tively setting the values for C\ and Ct- We do not consider 
any of the local recovery methods, nor adaptive timer set- 
ting. Thus, our work should not be seen as a statement 
about how SRM-like protocols should function in the fu- 
ture, when they may well incorporate such features, but 
rather as an attempt to study the current deployed version 
of SRM with its use of global recovery. Our hope is that 
understanding this basic version of the protocol may inform 
future design efforts to improve it. 

4    Simulation Methodology 

In our simulations, we studied three classes of network topolo- 
gies: cone, linear chain, and binary tree, each with a single 
source. The cone is a topology where each member has 
the same delay 8 to every other member, and a distance 
A from the source. Similarly, for the linear chain and the 
binary tree, ö represents the link delay between adjacent 
members, and A is the link delay from the source to the 
closest member(s). Figures 2 and 3 show A and ö for the 
three topologies. 

We are only modelling the behavior of NACKs, so we 
need only consider the receivers that suffer losses. Thus, we 
only consider the case where the loss occurs on the link ad- 
jacent to the source 5. This causes little loss of generality, 
since if the loss occurs elsewhere we need only model the 
topology beneath the loss point. Note, however, that then 
the size of the group we are considering, G, is the size of the 
loss group - the number of members experiencing a particu- 
lar packet loss - and not always the size of the entire group. 
Session messages in SRM give members knowledge about 
the size of the entire group, but not about the size of the 
loss group. If members knew the size of the loss group they 
might also be able to employ various forms of local recovery 
(hop-scoped recovery, or local recovery groups) that would 
more directly address the NACK traffic problem (not just 
limiting the number of NACKs, but also the portion of the 
group they are sent to). Thus, we do not consider varying 
the timer constants with group size, as in [18], as this does 
not seem like a realistic possibility. 

Furthermore, we assume that losses are detected imme- 
diately when the next packet arrives. Since a packet is deliv- 
ered to different receivers at different absolute times, losses 
are detected at different times. This typically allows the 
receivers closer to the source to suppress the NACKs from 
receivers further away. One of the key points in our investi- 
gation is how the setting of the timer constants affects this 
behavior. 

We used the VINT network simulator ns [16] for our 
work. In its original form, ns turned out to have prolific 
memory usage with heavy-weight nodes, links, and multicast 
routing infrastructure, and could not support more than a 
few hundred nodes on an ordinary workstation.   However, 
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Figure 2: Linear Chain Topology:  the X-ed packet marks 
the location of packet loss. 

we took advantage of ns's extensible object-oriented archi- 
tecture and made several modifications and extensions to 
it. Using the basic ns framework for event handling, we 
extended the simulator to support regular topologies with 
static routing without explicit routing table state. These 
modifications and extensions to ns enabled large-scale sim- 
ulations of up to 50,000 nodes. 

Losses occur on the link closest to the source, and are 
thus shared by all receivers in the group. We measure the 
average number of NACKs generated in response to a loss. 
The variation between different measurements is induced by 
the randomness in the recovery algorithm we are studying. 
We ran between 30 and 50 simulations of each case to com- 
pute the average value of the metrics, depending on the vari- 
ance of the measured samples. Table 1 summarizes notation 
used in the rest of this paper. 

Figure 3: Binary tree and cone topologies: the X-ed packet 
marks the location of packet loss. 

Symbol Description 

A Delay from source to the closest receiver 
S Delay of link connecting receivers 
R A/<S 
G Group size 
N Average number of copies of a single NACK 
L Average NACK latency caused by backoff 
Di Estimate of one-way delay from node i 

to the source node 
backoff*, 
at host i 

Di x (Ci + C2 x n) 
where, r< are uniformly distributed 
random variables in [0,1] 

U Absolute time at which receiver i's timer fires 

'Measurements reported in [23] show that most correlated losses 
occur close to the source. 

Table 1: Summary of notation 

In the following sections, we present our analytical and 



Simulation results for the three topologies: cone, line and 
binary tree. 

5    Scaling in the Cone Topology 

The cone topology can be used to model the case of a broad- 
cast LAN. If the source is on the LAN then A = 5 but 
when the source is off the LAN, the delay from the LAN to 
the source is much greater than the LAN propagation time, 
yielding A >> 5. In general, the cone can be used to model 
a topology where all receivers have similar round-trip time 
estimates to the source. In practice, RTT estimators tend 
to be coarse-grained resulting in clusters of receivers with 
similar RTT values. 

We use the following probabilistic analysis to compute 
the expectation of N(G). Because all the receivers are at the 
same distance from the loss in a cone, the deterministic back- 
off component has no impact on the number of duplicates 
(all timers have the same constant offset). The average de- 
lay in transmitting the first NACK depends on the expected 
value of the minimum timer and is given by A(Ci + ^j)- 
This result follows directly from noting that the expectation 
of the minimum of G uniformly distributed random variables 
in [0,1] is pjpj-. The number of duplicates is equal to the 
expected number of timers that fire within [tmin,tmin + 8], 
where tmi„ is the value of the smallest timer. Since back- 
offs are uniformly distributed in [Ci A, (Ci -I- C2)A], we can 
easily compute this expectation. Defining a = -^-^ we have, 

E[N] u+ 
Ga a < 1 

Q>  1 

Thus, the number of duplicates is roughly linear in the group 
size. [6] reports a similar result for the star topology, which 
is a cone with A = S. Observe that this linear dependence 
applies regardless of whether the delay estimates are accu- 
rate or not. If the estimated value of the delay (assuming 
all members achieve the same estimate) is larger than the 
true estimate, then the number of duplicates is smaller, but 
the dependence on G is still linear. Our simulations, shown 
in Figure 4, confirm this result. 
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Figure 4: In the cone topology, N(G) grows linearly in G, 
where a = ^ and Ci > 0, C2 > 0. 

N{G) grows roughly linearly for any fixed timer distri- 
bution. However, as shown by Nonnenmacher and Biersack 
[18], if one makes the distribution dependent on the size of 

the loss group then one can change this linear scaling. For 
instance, if one takes a bimodal distribution such that with 
a probability p = % a receiver sends a NACK immediately 
upon detecting a loss, and with probability 1 - p sends a 
NACK after a delay 8, then as G diverges N{G) is given by 
o(l—e~a)+Ge~a. By tuning a one can lower the slope of the 
linear dependence, and if one sets a = In G the growth is log- 
arithmic, not linear. One can remove the linear term entirely 
by considering the scheme where each receiver picks a num- 
ber k from an exponential distribution with average £ and 
sets the backoff to k5. This is essentially a discrete version 
of the exponential distribution considered by Nonnenmacher 
and Biersack [18]. Here, the average number of NACKs is 
E(N) — a and the average latency is E(L) = l^'s_a. One 
can show that this achieves the lowest latency for a given 
number of NACKs (or equivalently, the smallest number of 
NACKs for a given latency) in the asymptotic limit. How- 
ever, as we argued earlier, schemes that have the timer dis- 
tribution depending on G are perhaps of little interest since 
the parameter G must be the size of the loss group, and once 
one has this information it might be better used in some lo- 
cal recovery approach rather than using it merely to tune 
the timer parameters. 

6    Linear Chain 

For the linear chain topology, we first consider the case 
where RTT estimation is exact. When Ci > 0 and Ci > 0, 
the data in Figure 5 suggests that N(G) is constant in G. 

Urn: Estimated RTT, C1 = 1.0, C2 = 1.0 

1000 1500 2000 
Qroup Siza, Q 

Figure 5: N(G) is a constant for A/<5 = 1,10,100,1000, with 
exact RTT estimation and Ci = C2 = 1. Similar results 
hold for other Ci and C2 as long as C\ > 0. 

We now show that in this parameter range there is a 
bound k on the maximal number of NACKs sent. Receiver 
i picks Ci(A+(i-l)<5) < backoff{ < (Ci+C2)(A+(i-l)<5). 
Consider some message sent at time t = 0, and assume that 
losses are detected immediately. Receiver i detects the loss 
at time (A+(i—1)6) and sends its NACK (if not suppressed) 
no later than a time (A + (i - 1)5) + (Ci + C2XA + (i - 
1)J) and no sooner than (A + (i - 1)6) + Ci (A + (i - 1)<5). 
Therefore, receiver i and receiver j cannot both send NACKs 
if, assuming j > i, 

(Ci+C2)(A+(i-l)S)+(j-i)8 < (j-i)5+5+Ci(A+(j-l)5) 

This follows by recalling that it takes time (j — i)S for i's 
NACK to propagate from i to j.   Thus, the first member 



on the line suppresses all but the next k members, where 
k is given by k = L^rJ- Thus, N{G) is bounded above 
by k + 1. The simulations suggest that the average number 
N(G) is much less than this upper bound, and in particular, 
is independent of R. 

For C\ > 0, the value of N(G) appears, as shown in 
Figure 6, to be roughly independent of Ci. The dependence 
on C\ is also shown in Figure 7, where, for a fixed G, N 
decreases with increasing C\ as expected. 

'Ej:u 

LIT» Estimated OTT, 0 a 10,000 

NV\ 

C1 > 0.001 
C1 » 0.1 
CI a 1.0 

CI * 10.0 

V^-*. 

Figure 6: ./V as a function of C\ and C^- 

Un«: EsttmatMl RTT, Q » 10,000 

1*05     0.0001      0.001        0.01 0.1 1 10 100 

Figure 7: N as a function of C\. 

When Ci = 0, there is no deterministic delay and the 
preceding argument fails. In fact, it appears that N(G) 
diverges slowly with the group size G, as shown in Figure 8. 
We can argue that N(G) does not grow faster than a certain 
expression derived below (but are not able to provide a lower 
bound). The probability that node i is not suppressed is 
bounded above by the probability that it is not suppressed 
by the members ahead of it in line. This occurs if and only 
if (ignoring ties) the backoff timer U = min{ti,...ti-i}. 
Considering the case A = S for convenience. Using the 
notation z+ — max[0, z], we have 

Approximating I~H=i    (1 — |) as e  a ^->i=> 7 and then not- 

m6 .no, o j=1 ' ss e~yln' and substituting into the in- 
tegral, we see that this expression diverges as In In G. 

We now consider the case where there is no RTT esti- 
mation, and all receivers use the same hardwired delay esti- 
mate D. Note that since deterministic delay is useless when 
round-trip times are not used (all members have the same 
deterministic delay), C2 = 0 results in no suppression at all, 
and N{G) = G. This is true independent of topology; if 
there is no RTT estimation, then one needs C2 > 0 or else 
N(G) = G, and N(G) is independent of Ci. 

Figure 9 shows N(G) for the case Ci = 0 and C2 = 1 and 
fixed RTT. The growth, for all values of R = y appears to 
be logarithmic. Similar logarithmic-like behavior is observed 
in simulations with different values for C2 and D. 

The following probabilistic analysis suggests why, for 
Ci = 0 and C2 = 1, N(G) grows as a logarithmic func- 
tion of the group size. The backoffs are picked in the range 
[0, D). We first compute the probability that the NACK at 
node i is not suppressed. The following condition must hold, 
for i's timer to fire: 

dj+rj5 + dji    >   di+ri5,Vj£i 

where dj is the one-way delay to receiver j from the source 
and dij is the one-way delay from receiver i to receiver j. 
n, TJ are uniformly distributed random numbers picked in 
[0,1] by the random timer mechanism. We then must have: 

n    <    rj, Vj <t (1) 
rj5 + 2dij    >    ri5,'ij>i,and (2) 

(3) 

(4) 

da    > S.Vdi: 

n6    <    25 + rj5, Vj >i 

Line: Estimated RTT, C1 = 0, C2 = 1 

500 1000 1500 2000 
Group Size, G 

2500 3000 

Pr[U = min{ti,... U-i}\U = x] =   JJ  Pr[tj > x] Figure 8: N(G) diverges as A/S = 1,10,100,1000, with RTT 
estimation, Ci = 0, Ci = 1. 

j=i-i 

=   [J  (l-x/jS)+ 

and so, changing variables, 

N(G) < £/ n (1-^ 

From equation 4 above, we can conclude that a NACK 
at node i cannot be suppressed by a NACK at a later node. 
The condition for suppression at node i is therefore rt < 
min{n,r2,r3, ■ ■ ■ ,n-i). Thus, P[i fires] = \ and so E[N] = 

S<=f p[* fires] Ä In G +0.577. Similar logarithmic growth 
is seen empirically for larger C2- The behavior of N(G) for 
the line case is summarized in Table 6. 



Line: Fixed RTT, C1 = 0, C2 = 1 

a 
z 

o < z 
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Figure 9: N(G) grows as a logarithmic function of G for 
A/5 = 1,10,100,1000, fixed delay (no RTT estimation), 
d = 0, C2 > 0. N(G) = lnG + 0.577, when Cx = 0,C*2 = 1. 

Line: Estimated RTT, C1 = 0 

1000 1500 2000 
Group Size, G 

3000 

Figure 10:  N(G) converges to a constant when C2 = y/~D 
for the linear chain. 

With C\ = 0, N(G) grows as lnlnG for the linear chain 
topology. In order to reduce this growth in N(G) to a con- 
stant, while still retaining C\ = 0 for the sake of low latency, 
we can make C2 a function of the delay from the source. This 
follows the work Liu et al. who propose, in [15], using a new 
adaptive timer algorithm. Analysis similar to the previous 
case (equation (4)) shows that the number of duplicates is 
bounded by a constant when we use C2 = D' for any e > 0. 
This is because 

G       -ij=.-l 
dy_ 

The graph in Figure 10 shows that N(G) converges to a 
constant for e = 0.5. We should note that because we do 
not have a lower bound for the case of C2 fixed (e = 0). Our 
simulation results show that N(G) diverges for e = 0, but 
our analytical proof is only for e > 0. 

7    Binary Tree 

In the binary tree topology (Figure 3), N(G) grows linearly 
with G when RTT is not estimated, as shown in Figures 11 
and 12. The slope of this linear growth depends on C2 and 
D (the fixed RTT). This linear behavior is in contrast with 
the logarithmic behavior observed in the line topology, but 
similar to the behavior in the cone topology. When RTT is 
known exactly, we still have linear behavior for C\ = 0, as 
shown in Figure 12. The slope of this linear growth depends 
on both j and C2- 

Tree: Fixed RTT = D, C1 = 0, C2 = 1 

200      400      600       800      1000     1200     1400    1600    1800 
Group Size, G 

Figure 11: With G\ = 0, C2 > 0 and without RTT esti- 
mation, N(G) scales linearly with G for different values of 
R = A/6. 

Tree: Estimated RTT, C1 = 0, C2 = 

(3 
z 

0   200  400  600  800  1000 1200 1400 1600 1800 
Group Size, G 

Figure 12: With C\ = 0, C2 > 0 and with accurate RTT 
estimation, N(G) scales linearly with G for different values 
of R = A/8. 

However, as soon as we have C\ > 0, D(G) appears to 
asymptotically reach a constant. Figure 13 shows the func- 
tion N(G) for different values of 0 < Ci < 1. The growth 
law for intermediate G is linear, and then the slope decreases 
as G increases. For all cases where we have been able to 
reach sufficiently large G, the slope continues to decrease 
until N(G) goes to a constant. 

When Ci > 0, we see that the asymptotic scaling behav- 
ior depends on whether deterministic suppression or ran- 
domized suppression is dominant in reducing the number of 



A/6 RTT Ci c2 N(G) Figure 

1,10,100,1000 Fixed Ci >0 c2 >o Logarithmic 
(In G + 7, when C\ = 0, C72 = 1) 

9 

1,10,100,1000 Fixed Ci >0 G2 = O Linear (JV(G) = G) 
1,10,100,1000 Estimated Ci >0 G2 >0 Constant (< 4) 5 
1,10,100,1000 Estimated Ci =0 c2 >o Diverges 12 

Table 2: Scaling behavior in the linear chain topology 

NACKs. In cases where deterministic suppression is dom- 
inant, the asymptotic scaling is constant. Scaling is lin- 
ear when suppression depends on the randomized suppres- 
sion. In Figure 16, these two important effects are evident: 
as A/6 increases, deterministic suppression becomes weaker 
and randomized suppression is more effective. For large val- 
ues of A/6 > 100, backoff timer ranges are large enough and 
the average separation between timers grows. 

We now try to illustrate this behavior in a different form. 
The function £ plotted against G is shown in Figure 14. 
This ratio appears to be a linear functions of G, with the 
slope depending on C\. If we label the slope of this line by 
m and the intercept by /, we have, for small Gi and large 
G, the following form for N: 

n 
N   = 

Binary Tree: 0 < C1 < 1, C2 = 1 
-T T— 

mG + f 

The fit parameters m and / are functions of C\ and C2. 
This linear fit applies over a wide range of C\, G2 values. 
This functional form for N(G) is consistent with our obser- 
vation of a linear increase for small values of G, followed by 
this slope decreasing and the curve flattening to a constant. 
In particular, note that limG-n» N —> ^, a constant for a 
given value of C\ and G2. Thus, the slope of this functional 
fit in Figure 14 yields the asymptotic value for N(G). Fig- 
ure 15 shows this dependence on a log scale. ^ decreases 
with increasing C\ as expected. 

120 
Tree: Estimated RTT, C1 < 1.0, C2 = 1.0 

2000 3000 4000 
Group Size, G 

6000 

Figure 13: N(G) in the binary tree for R = A/6 = 1, accu- 
rately estimated RTT and 0 < Gi < 1, G2 = 1. 

If we hold G fixed and vary R (the ratio of A to 6) we 
find that the dependence is not monptonic. Figure 17 shows 
this unimodal behavior. This behavior may be explained 
by the following reasoning. There are two kinds of sup- 
pression, deterministic and random, so-called depending on 
whether the possible firing times overlap or not. Determin- 
istic suppression decreases with R, but random suppression 

0  500 1000 1500 2000 2500 3000 3500 4000 4500 5000 
G/N(G) 

Figure 14: G/N vs. G in the binary tree for R = A/6 = 1, 
RTT estimated, 0 < C\ < 1, G2 = 1. 

Asymptotic valuta, 1/m 

Figure 15: ^ = limG-»oo D(G,C\) as C\ is varied. G2 = 1 

increases with R. Thus, as R is increased we first see an 
increase as the deterministic suppression becomes less effec- 
tive, and then see a decrease as random suppression becomes 
dominant and deterministic suppression is no longer much 
of a factor (and so cannot decrease significantly further). 

With C\ = 0, and Ci > 0, N(G) grows linearly with G. 
In order to reduce this growth in N(G) to a constant, while 
still retaining C\ = 0, as we did for the linear chain topology, 
we make G2 a function of the delay from the source. The 
adaptation algorithm described in [15] results in G2 values 
that increase roughly linearly in D, the distance of a receiver 
from the source. 

Here we do not model the dynamics of the adaptation, 
but instead merely insert the dependence on D directly. We 
consider several variants, with G2 increasing as D, D , and 
VD. Figure 18 shows the results of these simulations. We 



A/6 RTT Ci c2 N(G) Figure 
1,10,100,1000 Fixed Ci >0 C2>0 Linear 12 
1,10,100,1000 Fixed Ci >0 c2 = o JV(G) = G 
1,10,100,1000 Estimated Ci =0 c2 >o Linear 12 
1,10 Estimated 0 < Ci < 1 c2 >o G/{mG + f) 

limG->oo G/(mG + f) = constant 13 
100,1000 Estimated 0 < Ci < 1 C2>0 Linear 16 

Table 3: Scaling behavior in the tree topology 

Tree: Estimated RTT, C1 = 0.S, C2 = 1 Tre«: Estimated RTT, CI • 0.5, C2 -1 

1500      2000      2500 
Group Size, G 

3500      4000 

Figure   16:      N(G)   in   the   binary   tree   with   A/6 
1,10,100,1000, RTT estimated, Cx = 0.5, C2 = 1. 

find that C2 needs to be "super-linear" in D to make scaling 
constant. 

8    Conclusions 

In this paper, we used analysis and simulation to study 
the scaling behavior of global loss recovery in SRM. The 
SRM protocol is NACK-based and uses a randomized, timer- 
based decentralized algorithm to reduce NACK implosion. 
We use the number of NACKs N(G) generated in response 
to a loss, as a metric for scalability. The two protocol pa- 
rameters, C\ and C2, govern the deterministic and random 
delays in the firing of a NACK from a receiver. There is 
a trade-off between low-latency loss recovery and the num- 
ber of NACKs - in general, making these parameters small 
leads to lower latency, but usually at the expense of poorer 
asymptotic scaling. We study N(G) as a function of group 
size, G, for various protocol parameters, on a set of simple, 
representative topologies — the cone, the linear chain, and 
the binary tree. 

In the cone topology, we find that random backoff is the 
dominant reason for suppression and scaling is linear. This 
linear scaling can be reduced by using a distribution that is 
dependent on the group size. The cone models topologies 
in which receivers have similar round-trip time estimates to 
the source. For the linear chain N(G) is between constant 
(when C\ > 0,C2 > 0, and RTT estimation is perfect), 
and logarithmic, when RTT is not estimated. In the tree, 
scaling is between constant (when C\ > 0,C2 > 0, and 
RTT estimattion is perfect), and linear, when RTT is not 
estimated. For the linear chain we show that C2 = Dc 

results in constant scaling even when C\ = 0, where D is 
the one-way delay to the source. Similarly, for the binary 
tree, C2 = D2 results in constant scaling. 

100 1000 
k>gR 

Figure 17: For small values of R, the round-trip times from 
the source to the receivers are distinguishable, and deter- 
ministic suppression effectively keeps the NACK count low. 
When A/6 increase, randomized suppression is the domi- 
nant cause for suppression. The "turning point" value of 
A/6 depends on the topology. 

We find that in topologies where deterministic suppres- 
sion is effective in reducing the number of duplicate NACKs, 
asymptotic scaling tends to a constant. For topologies in 
which randomized suppression is mainly responsible for elim- 
inating duplicates, asymptotic scaling is not constant, e.g., 
in the cone topology and in the binary tree with A » 6, 
N(G) grows linearly. 

In conclusion, we have shown that there is a rich parame- 
ter space in the SRM protocol and that the best asymptotic 
scaling performance is sensitive to the choice of these pa- 
rameters. We expect our results to be useful in obtaining a 
better understanding of the reasons for SRM's scaling prop- 
erties in different situations, and in aiding the design and 
analysis of future modifications to SRM and similar proto- 
cols that use multicast transmission and suppression. 
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Abstract 

Router mechanisms designed to achieve fair bandwidth al- 
locations, like Fair Queueing, have many desirable proper- 
ties for congestion control in the Internet. However, such 
mechanisms usually need to maintain state, manage buffers, 
and/or perform packet scheduling on a per flow basis, and 
this complexity may prevent them from being cost-effectively 
implemented and widely deployed. In this paper, we pro- 
pose an architecture that significantly reduces this imple- 
mentation complexity yet still achieves approximately fair 
bandwidth allocations. We apply this approach to an is- 
land of routers - that is, a contiguous region of the net- 
work - and we distinguish between edge routers and core 
routers. Edge routers maintain per flow state; they estimate 
the incoming rate of each flow and insert a label into each 
packet header based on this estimate. Core routers main- 
tain no per flow state; they use FIFO packet scheduling aug- 
mented by a probabilistic dropping algorithm that uses the 
packet labels and an estimate of the aggregate traffic at the 
router. We call the scheme Core-Stateless Fair Queueing. 
We present simulations and analysis on the performance of 
this approach, and discuss an alternate approach. 

1     Introduction 

A central tenet of the Internet architecture is that conges- 
tion control is achieved mainly through end-host algorithms. 
However, starting with Nagle [16], many researchers ob- 
served that such end-to-end congestion control solutions are 
greatly improved when routers have mechanisms that allo- 
cate bandwidth in a fair manner. Fair bandwidth allocation 
protects well-behaved flows from ill-behaved ones, and al- 
lows a diverse set of end-to-end congestion control policies 
to co-exist in the network [7].  As we discuss in Section 4, 

'This research was sponsored by DARPA under contract numbers 
N66001-96-C-8528, E30602-97-2-0287, and DABT63-94-C-0073, and 
by a NSF Career Award under grant number NCR-9624979. Addi- 
tional support was provided by Intel Corp., MCI, and Sun Microsys- 
tems. Views and conclusions contained in this document are those of 
the authors and should no be interpreted as representing the official 
policies, either expressed or implied, of DARPA, NSF, Intel, MCI, 
Sun, or the U.S. government. 

some maintain that fair bandwidth allocation1 plays a nec- 
essary, not just beneficial, role in congestion control [7, 19]. 

Until now, fair allocations were typically achieved by us- 
ing per-flow queueing mechanisms - such as Fair Queueing 
[7, 18] and its many variants [2, 10, 20] - or per-flow dropping 
mechanisms such as Flow Random Early Drop (FRED) [14]. 
These mechanisms are more complex to implement than tra- 
ditional FIFO queueing with drop-tail, which is the most 
widely implemented and deployed mechanism in routers to- 
day. In particular, fair allocation mechanisms inherently 
require the routers to maintain state and perform opera- 
tions on a per flow basis. For each packet that arrives at the 
router, the routers needs to classify the packet into a flow, 
update per flow state variables, and perform certain opera- 
tions based on the per flow state. The operations can be as 
simple as deciding whether to drop or queue the packet (e.g., 
FRED), or as complex as manipulation of priority queues 
(e.g., Fair Queueing). While a number of techniques have 
been proposed to reduce the complexity of the per packet 
operations [1, 20, 21], and commercial implementations are 
available in some intermediate class routers, it is still un- 
clear whether these algorithms can be cost-effectively imple- 
mented in high-speed backbone routers because all these al- 
gorithms still require packet classification and per flow state 
management. 

In this paper we start with the assumption that (1) fair 
allocation mechanisms play an important, perhaps even nec- 
essary, role in congestion control, and (2) the complexity 
of existing fair allocation mechanisms is a substantial hin- 
drance to their adoption. Both of these points are debat- 
able; developments in router technology may make such al- 
gorithms rather inexpensive to implement, and there may 
be solutions to congestion control that do not require fair 
allocation (we discuss this point more fully in Section 4). 
By using these two assumptions as our starting points we 
are not claiming that they are true, but rather are only 
looking at the implications if indeed they were true. If one 
starts with these assumptions then overcoming the complex- 
ity problem in achieving fair allocation becomes a vitally 
important problem. 

To this end, we propose and examine an architecture and 
a set of algorithms that allocate bandwidth in an approxi- 
mately fair manner while allowing the routers on high-speed 
links to use FIFO queueing and maintain no per-flow state. 

'We use the max-min definition of fairness [12] which, while not 
the only possible candidate for fairness, is certainly a reasonable one 
and, moreover, can be implemented with only local information. 



In this approach, we identify an island of routers2 and dis- 
tinguish between the edge and the core of the island. Edge 
routers compute per-flow rate estimates and label the pack- 
ets passing through them by inserting these estimates into 
each packet header. Core routers use FIFO queueing and 
keep no per-flow state. They employ a probabilistic drop- 
ping algorithm that uses the information in the packet la- 
bels along with the router's own measurement of the aggre- 
gate traffic. The bandwidth allocations within this island of 
routers are approximately fair. Thus, if this approach were 
adopted within the high speed interiors of ISP's, and fair al- 
location mechanisms were adopted for the slower links out- 
side of these high-speed interiors, then approximately fair 
allocations could be achieved everywhere. However, this 
approach, like Fair Queueing [7] or RED [9], still provides 
benefit if adopted in an incremental fashion, although the 
incremental adoption must be done on an island-by-island 
basis, not on a router-by-router basis. 

We call this approach Core-Stateless Fair Queueing (CSFQ) 
since the core routers keep no per-flow state but instead use 
the state that is carried in the packet labels.3  We describe 
the details of this approach - such as the rate estimation 
algorithm and the packet dropping algorithm - in Section 2. 

Such a scheme cannot hope to achieve the nearly-perfect 
levels of fairness obtained by Fair Queueing and other so- 
phisticated and stateful queueing algorithms. However, our 
interest is not in perfection, but only in obtaining reason- 
able approximations to the fair bandwidth allocations. We 
derive a worst-case bound for the performance of this algo- 
rithm in an idealized setting. This bound is presented in 
Section 2. 

This worst-case analysis does not give an adequate guide 
to the typical functioning of CSFQ. In Section 3 we present 
results from simulation experiments to illustrate the perfor- 
mance of our approach and to compare it to several other 
schemes: DRR (a variant of Fair Queueing), FRED, RED, 
and FIFO. We also discuss, therein, the relative mechanistic 
complexities of these approaches. 

The first 3 sections of the paper are narrowly focussed 
on the details of the mechanism and its performance (both 
absolute and relative), with the need for such a mechanism 
taken for granted. In Section 4 we return to the basic ques- 
tion of why fair allocations are relevant to congestion con- 
trol. Allocating bandwidth fairly is one way to address what 
we call the unfriendly flow problem; we also discuss an alter- 
nate approach to addressing this problem, the identification 
approach as described in [8]. We conclude with a summary 
in Section 5. A longer version of this paper, containing 
proofs of the theoretical results as well as more complete 
pseudocode, can be found at http://Hww.cs.cmu.edu/~isto 
ica/csfq. 

2    Core-Stateless Fair Queueing (CSFQ) 

In this section, we propose an architecture that approxi- 
mates the service provided by an island of Fair Queueing 
routers, but has a much lower complexity in the core routers. 
The architecture has two key aspects. First, to avoid main- 
taining per flow state at each router, we use a distributed 

algorithm in which only edge routers maintain per flow state, 
while core (non-edge) routers do not maintain per flow state 
but instead utilize the per-flow information carried via a la- 
bel in each packet's header. This label contains an estimate 
of the flow's rate; it is initialized by the edge router based 
on per-flow information, and then updated at each router 
along the path based only on aggregate information at that 
router. 

Second, to avoid per flow buffering and scheduling, as re- 
quired by Fair Queueing, we use FIFO queueing with prob- 
abilistic dropping on input. The probability of dropping a 
packet as it arrives to the queue is a function of the rate 
estimate carried in the label and of the fair share rate at 
that router, which is estimated based on measurements of 
the aggregate traffic. 

Thus, our approach avoids both the need to maintain 
per-flow state and the need to use complicated packet schedul- 
ing and buffering algorithms at core routers. To give a better 
intuition about how this works, we first present the idealized 
bit-by-bit or fluid version of the probabilistic dropping algo- 
rithm, and then extend the algorithm to a practical packet- 
by-packet version. 

2.1    Fluid Model Algorithm 

We first consider a bufferless fluid model of a router with 
output link speed C, where the flows are modelled as a con- 
tinuous stream of bits. We assume each flow's arrival rate 
n(£) is known precisely. Max-min fair bandwidth alloca- 
tions are characterized by the fact that all flows that are 
bottlenecked (i.e., have bits dropped) by this router have 
the same output rate. We call this rate the fair share rate of 
the server; let a(t) be the fair share rate at time t. In gen- 
eral, if max-min bandwidth allocations are achieved, each 
flow i receives service at a rate given by min(r((t),a(t)). 
Let A(t) denote the total arrival rate: A(t) = ^2"=1 ri(t). If 
A(t) > C then the fair share a(t) is the unique solution to 

C = ^min(r<(t),a(t)), (1) 

If A(t) < C then no bits are dropped and we will, by con- 
vention, set a{t) = max, r;(t). 

If r;(t) < a{t), i.e., flow i sends no more than the server's 
fair share rate, all of its traffic will be forwarded. If j\(t) > 
a(t), then a fraction r ^ 7t) of its bits will be dropped, so 
it will have an output rate of exactly at(t). This suggests a 
very simple probabilistic forwarding algorithm that achieves 
fair allocation of bandwidth: each incoming bit of flow » is 
dropped with the probability 

(2) 

2By island we mean a contiguous portion of the network, with 
well-defined interior and edges. 

3Obviously these core routers keep some state, but none of it is 
per-flow state, so when we say "stateless" we are referring to the 
absence of per-flow state. 

When these dropping probabilities are used, the arrival 
rate of flow i at the next hop is given by min[rj(t), a(t)]. 

2.2    Packet Algorithm 

The above algorithm is defined for a bufferless fluid system 
in which the arrival rates are known exactly. Our task now 
is to extend this approach to the situation in real routers 
where transmission is packetized, there is substantial buffer- 
ing, and the arrival rates are not known. 
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Figure 1:   The architecture of the output port of an edge 
router, and a core router, respectively. 

We still employ a drop-on-input scheme, except that now 
we drop packets rather than bits. Because the rate esti- 
mation (described below) incorporates the packet size, the 
dropping probability is independent of the packet size and 
depends only, as above, on the rate n(r) and fair share rate 
a(t). 

We are left with two remaining challenges: estimating 
the rates r<(t) and the fair share a(t). We address these two 
issues in turn in the next two subsections, and then discuss 
the rewriting of the labels. Pseudocode reflecting this algo- 
rithm is described in Figure 2. We should note, however, 
that the main point of our paper is the overall architecture 
and that the detailed algorithm presented below represents 
only an initial prototype. While it serves adequately as a 
proof-of-concept of our architecture, we fully expect that the 
details of this design will continue to evolve. 

2.2.1    Computation of Flow Arrival Rate 

Recall that in our architecture, the rates r,-(t) are estimated 
at the edge routers and then these rates are inserted into 
the packet labels. At each edge router, we use exponential 
averaging to estimate the rate of a flow. Let t* and J* be 
the arrival time and length of the k'h packet of flow i. The 
estimated rate of flow i, r,, is updated every time a new 
packet is received: 

new 
(1- }1?  + 

T*/K   ol 
1  t (3) 

where T*  = if — t*  ' and if is a constant.   We discuss 

the rationale for using the form e-T> 'K for the exponential 
weight in Section 2.7. In the longer version of this paper 
[22] we show that, under a wide range of conditions, this 
estimation algorithm converges. 

2.2.2    Link Fair Rate Estimation 

In this section, we present an estimation algorithm for a(t). 
To give intuition, consider again the fluid model in Sec- 
tion 2.1 where the arrival rates are known exactly, and as- 
sume the system performs the probabilistic dropping algo- 
rithm according to Eq. (2). Then, the rate with which the 
algorithm accepts packets is a function of the current esti- 
mate of the fair share rate, which we denote by a(t). Letting 
F(S(t)) denote this acceptance rate, we have 

F(a(t)) = £min(r,-(0,o(0). (4) 

Note that F(-) is a continuous, nondecreasing, concave, and 
piecewise-linear function of a. If the link is congested (A(t) > 
C) we choose a(t) to be the unique solution to F(x) = C. 
If the link is not congested (A(t) < C) we take a{t) to be 
the largest rate among the flows that traverse the link, i.e., 
a(t) = maxi<,<n(r'i(t)). From Eq (4) note that if we knew 
the arrival rates r,(t) we could then compute a(t) directly. 
To avoid having to keep such per-flow state, we seek instead 
to implicitly compute a(t) by using only aggregate measure- 
ments of F and A. 

We use the following heuristic algorithm with three ag- 
gregate state variables: a, the estimate for the fair share 
rate; A, the estimated aggregate arrival rate; F, the esti- 
mated rate of the accepted traffic. The last two variables 
are updated upon the arrival of each packet. For A we use 
exponential averaging with a parameter e-T'A" where T is 
the inter-arrival time between the current and the previous 
packet: 

= (l-e-r/*-)i+e- T/Ka 
(5) 

where A0id is the value of A before the updating.   We use 
an analogous formula to update F. 

The updating rule for a depends on whether the link is 
congested or not. To filter out the estimation inaccuracies 
due to exponential smoothing we use a window of size Kc. 
A link is assumed to be congested, if A > C at all times dur- 
ing an interval of length Kc. Conversely, a link is assumed 
to be uncongested, if A < C at all times during an interval 
of length Kc- The value a is updated only at the end of an 
interval in which the link is either congested or uncongested 
according to these definitions. If the link is congested then 
a is updated based on the equation F(a) = C. We approxi- 
mate F(-) by a linear function that intersects the origin and 
has slope F/a0id- This yields 

~     C 
CXold — 

F 
(6) 

If the link is not congested, a„eu, is set to the largest rate 
of any active flow (i.e., the largest label seen) during the 
last Kc time units. The value of aneu, is then used to com- 
pute dropping probabilities, according to Eq. (2). For com- 
pleteness, we give the pseudocode of the CSFQ algorithm in 
Figure 2. 

We now describe two minor amendments to this algo- 
rithm related to how the buffers are managed. The goal of 
estimating the fair share a is to match the accepted rate to 
the link bandwidth. Due to estimation inaccuracies, load 
fluctuations between o's updates, and the probabilistic na- 
ture of our algorithm, the accepted rate may occasionally 
exceed the link capacity. While ideally the router's buffers 
can accommodate the extra packets, occasionally the router 
may be forced to drop the incoming packet due to lack of 
buffer space. Since drop-tail behavior will defeat the purpose 
of our algorithm, and may exhibit undesirable properties in 
the case of adaptive flows such as TCP [9], it is important 
to limit its effect. To do so, we use a simple heuristic: every 



on receiving packet p 
if (edge router) 

i =classify(p); 
p.label = estimate_rate(r;,p); /* use Eq. (3) */ 

prob =max(0,1 — a/p.label); 
if (prob >unif_rand(0, 1)) 

a =estimate_a (p, 1); 
drop(p); 

else 
a =estimate.o (p, 0); 
enqueue(p); 

if (prob > 0) 
p.label = o; /* relabel p */ 

estimate_a (p, dropped) 
estimate_rate(/l,p); /* est. arrival rate (use Eq. (5))*/ 
if (dropped == FALSE) 

estimate_rate(F,p); /* est. accepted traffic rate */ 

if(A>C) 
if (congested == FALSE) 

congested = TRUE; 
start-time = crt-time; 

else 
if (crtJime > startJime + Kc) 

a = ax C/F; 
startjtime = crtJtime; 

else /* A<C */ 
if (congested == TRUE) 

congested = FALSE; 
start-time = crt-time; 
tmpja = 0; /* use to compute new a */ 

else 
if (crtJime < start Jime + Kc) 

tmp-a —max(tmp.a, p.label); 
else 

a = tmpjx; 
start-time = crt-time; 
tmpja = 0; 

return a; 

Figure 2: The pseudocode of CSFQ. 

time the buffer overflows, a is decreased by a small fixed per- 
centage (taken to be 1% in our simulations). Moreover, to 
avoid overcorrection, we make sure that during consecutive 
updates a does not decrease by more than 25%. 

In addition, since there is little reason to consider a link 
congested if the buffer is almost empty, we apply the fol- 
lowing rule. If the link becomes uncongested by the test in 
Figure 2, then we assume that it remains uncongested as 
long as the buffer occupancy is less than some predefined 
threshold. In this paper we use a threshold that is half of 
the total buffer capacity. 

2.2.3    Label Rewriting 

Our rate estimation algorithm in Section 2.2.1 allows us to 
label packets with their flow's rate as they enter the island. 
Our packet dropping algorithm described in Section 2.2.2 
allows us to limit flows to their fair share of the bandwidth. 
After a flow experiences significant losses at a congested link 

inside the island, however, the packet labels are no longer 
an accurate estimate of its rate. We cannot rerun our es- 
timation algorithm, because it involves per-flow state. For- 
tunately, as note in Section 2.1 the outgoing rate is merely 
the minimum between the incoming rate and the fair rate 
a. Therefore, we rewrite the the packet label L as 

Lnew = min(Low, a), (7) 

By doing so, the outgoing flow rates will be properly repre- 
sented by the packet labels. 

2.3 Weighted CSFQ 
The CSFQ algorithm can be extended to support flows with 
different weights. Let Wi denote the weight of flow »'. Re- 
turning to our fluid model, the meaning of these weights 
is that we say a fair allocation is one in which all bottle- 
necked flows have the same value for ^"-. Then, if A(t) > C, 
the normalized fair rate a(t) is the unique value such that 
y"]"_, W|- min (a, £*r) = C. The expression for the drop- 

ping probabilities in the weighted case is max (0,1 — a^)- 
The only other major change is that the label is now ri/wt, 
instead simply r*. Finally, without going into details we 
note that the weighted packet-by-packet version is virtually 
identical to the corresponding version of the plain CSFQ 
algorithm. 

It is important to note that with weighted CSFQ we can 
only approximate islands in which each flow has the same 
weight at all routers in an island. That is, our algorithm 
cannot accommodate situations where the relative weights 
of flows differ from router to router within an island. How- 
ever, even with this limitation, weighted CSFQ may prove 
a valuable mechanism in implementing differential services, 
such as the one proposed in [24]. 

2.4 Performance Bounds 

We now present the main theoretical result of the paper. 
For generality, this result is given for weighted CSFQ. The 
proof is given in [22]. 

Our algorithm is built around several estimation proce- 
dures, and thus is inherently inexact. One natural concern 
is whether a flow can purposely "exploit" these inaccuracies 
to get more than its fair share of bandwidth. We cannot 
answer this question in full generality, but we can analyze a 
simplified situation where the normalized fair share rate a 
is held fixed and there is no buffering, so the drop probabil- 
ities are precisely given by Eq. (2). In addition, we assume 
that when a packet arrives a fraction of that packet equal to 
the flow's forwarding probability is transmitted. Note that 
during any time interval [ti, ^2) a flow with weight w is enti- 
tled to receive at most wa(t2 — ti) service time; we call any 
amount above this the excess service. We can bound this 
excess service, and the bounds are independent of both the 
arrival process and the length of the time interval during 
which the flow is active. The bound does depend crucially 
on the maximal rate R at which a flows packets can arrive 
at a router (limited, for example, by the speed of the flow's 
access link); the smaller this rate R the tighter the bound. 

Theorem 1 Consider a link with a constant normalized fair 
rate a, and a flow with weight w. Then, the excess service 
received by a flow with weight w, that sends at a rate no 
larger than R is bounded above by 



2.7    Miscellaneous Details 

r„K" (l + /n£) + f, (8) 

where ra — aw, and Imax represents the maximum length of 
a packet. 

By bounding the excess service, we have shown that in 
this idealized setting the asymptotic throughput cannot ex- 
ceed the fair share rate. Thus, flows can only exploit the 
system over short time scales; they are limited to their fair 
share over long time scales. 

2.5 Implementation Complexity 

At core routers, both the time and space complexity of our 
algorithm are constant with respect to the number of com- 
peting flows, and thus we think CSFQ could be implemented 
in very high speed core routers. At each edge router CSFQ 
needs to maintain per flow state. Upon each arrival of each 
packet, the edge router needs to (1) classify the packet to a 
flow, (2) update the fair share rate estimation for the cor- 
responding outgoing link, (3) update the flow rate estima- 
tion, and (4) label the packet. All these operations with 
the exception of packet classification can be efficiently im- 
plemented today. 

Efficient and general-purpose packet classification algo- 
rithms are still under active research. We expect to lever- 
age these results. We also note that packet classification 
at ingress nodes is needed for a number of other purposes, 
such as in the context of Multiprotocol Label Switching 
(MPLS) [4] or for accounting purposes; therefore, the classi- 
fication required for CSFQ may not be an extra cost. In ad- 
dition, if the edge routers are typically not on the high-speed 
backbone links then there is no problem as classification at 
moderate speeds is quite practical. 

2.6 Architectural Considerations 

We have used the term flow without defining what we mean. 
This was intentional, as the CSFQ approach can be applied 
to varying degrees of flow granularity; that is, what consti- 
tutes a flow is arbitrary as long as all packets in the flow 
follow the same path within the core. In this paper, for con- 
venience, a flow is implicitly defined as a source-destination 
pair, but one could easily assign fair rates to many other 
granularities such as source-destination-ports. Moreover, 
the unit of "flow" can vary from island to island as long 
as the rates are re-estimated when entering a new island. 

Similarly, we have not been precise about the size of these 
CSFQ islands. In one extreme, we could take each router 
as an island and estimate rates at every router; this would 
allow us to avoid the use of complicated per-flow scheduling 
and dropping algorithms, but would require per-flow classi- 
fication. Another possibility is that ISP's could extend their 
island of CSFQ routers to the very edge of their network, 
having their edge routers at the points where customer's 
packets enter the ISP's network. Building on the previous 
scenario, multiple ISP's could combine their islands so that 
classification and estimation did not have to be performed 
at ISP-ISP boundaries. The key obstacle here is one of trust 
between ISPs. 

Having presented the basic CSFQ algorithm, we now return 
to discuss a few aspects in more detail. 

We have used exponential averaging to estimate the ar- 
rival rate in Eq. (3). However, instead of using a constant 
exponential weight we used e~T^K where T is the inter- 
packet arrival time and K is a constant. Our motivation 
was that e~ ' more closely reflects a fluid averaging pro- 
cess which is independent of the packetizing structure. More 
specifically, it can be shown that if a constant weight is used, 
the estimated rate will be sensitive to the packet length dis- 
tribution and there are pathological cases where the esti- 
mated rate differs from the real arrival rate by a factor; 
this would allow flows to exploit the estimation process and 
obtain more than their fair share. In contrast, by using a 
parameter of e~T^K, the estimated rate will asymptotically 
converge to the real rate, and this allows us to bound the 
excess service that can be achieved (as in Theorem 1). We 
used a similar averaging process in Eq. (5) to estimate the 
total arrival rate A. 

The choice of K in the above expression e~T*K presents 
us with several tradeoffs. First, while a smaller K increases 
the system responsiveness to rapid rate fluctuations, a larger 
K better filters the noise and avoids potential system insta- 
bility. Second, K should be large enough such that the esti- 
mated rate, calculated at the edge of the network, remains 
reasonably accurate after a packet traverses multiple links. 
This is because the delay-jitter changes the packets' inter- 
arrival pattern, which may result in an increased discrep- 
ancy between the estimated rate (received in the packets' 
labels) and the real rate. To counteract this effect, as a rule 
of thumb, K should be one order of magnitude larger that 
the delay-jitter experienced by a flow over a time interval of 
the same size, K. Third, K should be no larger than the 
average duration of a flow. Based on this constraints, an 
appropriate value for K would be between 100 and 500 ms. 

A second issue relates to the requirement of CSFQ for a 
label to be carried in each packet. One possibility is to use 
the Type Of Service byte in the IP header. For example, by 
using a floating point representation with four bits for man- 
tissa and four bits for exponent we can represents any rate 
between 1 Kbps and 65 Mbps with an accuracy of 6.25%. 
Another possibility is to define an IP option in the case of 
IPv4, or a hop-by-hop extension header in the case of IPv6. 

3    Simulations 

In this section we evaluate our algorithm by simulation. To 
provide some context, we compare CSFQ's performance to 
four additional algorithms. Two of these, FIFO and RED, 
represent baseline cases where routers do not attempt to 
achieve fair bandwidth allocations. The other two algo- 
rithms, FRED and DRR, represent different approaches to 
achieving fairness. 

• FIFO (First In First Out) - Packets are served in a 
first-in first-out order, and the buffers are managed 
using a simple drop-tail strategy; i.e., incoming pack- 
ets are dropped when the buffer is full. 

• RED (Random Early Detection) - Packets are served 
in a first-in first-out order, but the buffer manage- 
ment is significantly more sophisticated than drop-tail. 
RED [9] starts to probabilistically drop packets long 
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Figure 3: Simulation results for a 10 Mbps link shared by N flows, (a) The average throughput over 10 sec when N = 32, 
and all flows are UDPs. The arrival rate for flow i is (i + 1) times larger than its fair share. The flows are indexed from 0. 
(b) The throughputs of one UDP flow (indexed 0) sending at 10 Mbps, and of 31 TCP flows sharing a 10 Mbps link. 

before the buffer is full, providing early congestion 
indication to flows which can then gracefully back- 
off before the buffer overflows. RED maintains two 
buffer thresholds. When the exponentially averaged 
buffer occupancy is smaller than the first threshold, no 
packet is dropped, and when the exponentially aver- 
aged buffer occupancy is larger than the second thresh- 
old all packets are dropped. When the exponentially 
averaged buffer occupancy is between the two thresh- 
olds, the packet dropping probability increases linearly 
with buffer occupancy. 

• FRED (Flow Random Early Drop) - This algorithm 
extends RED to provide some degree of fair band- 
width allocation [14]. To achieve fairness, FRED main- 
tains state for all flows that have at least one packet 
in the buffer. Unlike RED where the dropping deci- 
sion is based only on the buffer state, in FRED drop- 
ping decisions are based on this flow state. Specif- 
ically, FRED preferentially drops a packet of a flow 
that has either (1) had many packets dropped in the 
past, or (2) a queue larger than the average queue size. 
FRED has two variants, which we will call FRED-1 
and FRED-2. The main difference between the two 
is that FRED-2 guarantees to each flow a minimum 
number of buffers. As a general rule, FRED-2 per- 
forms better than FRED-1 only when the number of 
flows is large. In the following data, when we do not 
distinguish between the two, we are quoting the results 
from the version of FRED which performed better. 

• DRR (Deficit Round Robin) - This algorithm [20] rep- 
resents an efficient implementation of the well-known 
weighted fair queueing (WFQ) discipline. The buffer 
management scheme assumes that when the buffer is 
full the packet from the longest queue is dropped. DRR 
is the only one of the four to use a sophisticated per- 
flow queueing algorithm, and thus achieves the highest 
degree of fairness. 

These four algorithms represent four different levels of 
complexity. DRR and FRED have to classify incoming flows, 
whereas FIFO and RED do not. DRR in addition has to 
implement its packet scheduling algorithm, whereas the rest 

all use first-in-first-out scheduling. CSFQ edge routers have 
complexity comparable to FRED, and CSFQ core routers 
have complexity comparable to RED. 

We have examined the behavior of CSFQ under a vari- 
ety of conditions. We use an assortment of traffic sources 
(mainly TCP sources and constant bit rate UDP sources,4 

but also some on-off sources) and topologies. Due to space- 
limitations, we only report on a small sampUng of the sim- 
ulations we have run.5 All simulations were performed in 
ns-2 [17], which provide accurate packet-level implementa- 
tion for various network protocols, such as TCP and RLM 
[15] (Receiver-driven Layered Multicast), and various buffer 
management and scheduling algorithms, such as RED and 
DRR. All algorithms used in the simulation, except CSFQ 
and FRED, were part of the standard ns-2 distribution. 

Unless otherwise specified, we use the following parame- 
ters for the simulations in this section. Each output link has 
a capacity of 10 Mbps, a latency of 1 ms, and a buffer of 64 
KB. In the RED and FRED cases the first threshold is set to 
16 KB, while the second one is set to 32 KB. The averaging 
constants K (used in estimating the flow rate), Ka (used in 
estimating the fair rate), and Kc (used in making the deci- 
sion of whether a link is congested or not) are all set to 100 
ms unless specified otherwise. The general rule of thumb 
we follow in this paper is to choose these constants to be 
roughly two times larger than the maximum queueing delay 
(i.e., 64KB/10Mbps = 51.2 ms).6 Finally, in all topologies 
the first router on the path of each flow is always assumed 
to be an edge router; all other routers are assumed without 
exception to be core routers. 

We simulated the other four algorithms to give us bench- 
marks against which to assess these results. We use DRR as 
our model of fairness and use the baseline cases, FIFO and 

4This source, referred to as UDP in the remainder of the paper, 
has fixed size packets and the packet interarrival times are uniformly 
distributed between [0.5 X avg, 1.5 X avg), where avg is the average 
interarrival time. 

5 A fuller set of tests, and the scripts used to run them, is available 
at http://HWB.cs.cmu.edu/~iatoica/csfq 

6It can be shown that by using this rule an idle link that becomes 
suddenly congested by a set of identical UDP sources will not ex- 
perience buffer overflow before the algorithm detects the congestion, 
as long as the aggregate arrival rate is less than 10 times the link 
capacity (see [22]). 
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RED, as representing the (unfair) status quo. The goal of 
these experiments is to determine where CSFQ sits between 
these two extremes. FRED is a more ambiguous bench- 
mark, being somewhat more complex than CSFQ but not 
as complex as DRR. 

In general, we find that CSFQ achieves a reasonable de- 
gree of fairness, significantly closer to DRR than to FIFO 
or RED. CSFQ's performance is typically comparable to 
FRED's, although there are several situations where CSFQ 
significantly outperforms FRED. There are a large number 
of experiments and each experiment involves rather complex 
dynamics. Due to space limitations, in the sections that fol- 
low we will merely highlight a few important points and omit 
detailed explanations of the dynamics. 

3.1    A Single Congested Link 

We first consider a single 10 Mbps congested link shared by 
TV flows. The propagation delay along the link is 1 ms. We 
performed three related experiments. 

In the first experiment, we have 32 UDP flows, indexed 
from 0, where flow i sends i + 1 times more than its fair 
share of 0.3125 Mbps. Thus flow 0 sends 0.3125 Mbps, flow 
1 sends 0.625 Mbps, and so on.. Figure 3(a) shows the av- 
erage throughput of each flow over a 10 sec interval; FIFO, 
RED, and FRED-1 fail to ensure fairness, with each flow get- 
ting a share proportional to its incoming rate, while DRR 
is extremely effective in achieving a fair bandwidth distri- 
bution. CSFQ and FRED-2 achieve a less precise degree of 
fairness; for CSFQ the throughputs of all flows are between 
-11% and +5% of the ideal value. 

In the second experiment we consider the impact of an 
ill-behaved UDP flow on a set of TCP flows. More precisely, 
the traffic of flow 0 comes from a UDP source that sends at 
10 Mbps, while all the other flows (from 1 to 31) are TCPs. 
Figure 3(b) shows the throughput of each flow averaged over 
a 10 sec interval. The only two algorithms that can most 
effectively contain the UDP flow are DRR and CSFQ. Un- 
der FRED the UDP flow gets almost 1.8 Mbps - close to 
six times more than its fair share - while the UDP only gets 
0.396 Mbps and 0.361 Mbps under DRR and CSFQ, respec- 
tively. As expected FIFO and RED perform poorly, with 
the UDP flow getting over 8 Mbps in both cases. 

In the final experiment, we measure how well the al- 
gorithms can protect a single TCP flow against multiple 
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Figure 5: Topology for analyzing the effects of multiple con- 
gested links on the throughput of a flow. Each link has 
ten cross flows (all UDPs). All links have 10 Mbps capaci- 
ties. The sending rates of all UDPs, excepting UDP-0, are 
2 Mbps, which leads to all links between routers being con- 
gested. 

ill-behaved flows. We perform 31 simulations, each for a 
different value of N, N = 2 • • • 32. In each simulation we 
take one TCP flow and N - 1 UDP flows; each UDP sends 
at twice its fair share rate of ^Mbps. Figure 4 plots the 
ratio between the average throughput of the TCP flow over 
10 seconds and the fair share bandwidth it should receive 
as a function of the total number of flows in the system N.. 
There are three points of interest. First, DRR performs very 
well when there are less than 22 flows, but its performances 
decreases afterwards. This is because the TCP flow's buffer 
share is less than three buffers, which significantly affects 
its throughput. Second, CSFQ performs better than DRR 
when the number of flows is large. This is because CSFQ is 
able to cope better with the TCP burstiness by allowing the 
TCP flow to have several packets buffered for short time 
intervals. Finally, across the entire range, CSFQ provides 
similar or better performance as compared to FRED. 

3.2    Multiple Congested Links 

We now analyze how the throughput of a well-behaved flow 
is affected when the flow traverses more than one congested 
link. We performed two experiments based on the topology 
shown in Figure 5. All UDPs, except UDP-0, send at 2 
Mbps. Since each link in the system has 10 Mbps capacity, 
this will result in all links between routers being congested. 

In the first experiment, we have a UDP flow (denoted 
UDP-0) sending at its fair share rate of 0.909 Mbps. Fig- 
ure 6(a) shows the fraction of UDP-0's traffic that is for- 
warded versus the number of congested links. CSFQ and 
FRED perform reasonably well, although not quite as well 
as DRR. 

In the second experiment we replace UDP-0 with a TCP 
flow. Similarly, Figure 6(b) plots the normalized TCP through- 
put against the number of congested links. Again, DRR and 
CSFQ prove to be effective. In comparison, FRED performs 
significantly worse though still much better than RED and 
FIFO. The reason is that while DRR and CSFQ try to allo- 
cate bandwidth fairly among competing flows during conges- 
tion, FRED tries to allocate buffers fairly. Flows with dif- 
ferent end-to-end congestion control algorithms will achieve 
different throughputs even if routers try to fairly allocate 
buffer. 
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Figure 6: (a) The normalized throughput of UDP-0 as a function of the number of congested links, (b) The same plot when 
UDP-0 is replaced by a TCP flow. 

Algorithm delivered dropped 
DRR 601 6157 
CSFQ 1680 5078 
FRED 1714 5044 
RED 5322 1436 
FIFO 5452 1306 

Algorithm mean std. dev 
DRR 6080 64 
CSFQ 5761 220 
FRED 4974 190 
RED 628 80 
FIFO 378 69 

Table 1: Statistics for an ON-OFF flow with 19 competing 
TCPs flows (all numbers are in packets). 

Algorithm mean time std. dev 
DRR 25 99 
CSFQ 62 142 
FRED 40 174 
RED 592 1274 
FIFO 840 1695 

Table 2: The mean transfer times (in ms) and the corre- 
sponding standard deviations for 60 short TCPs in the pres- 
ence of a UDP flow that sends at the link capacity, i.e., 10 
Mbps. 

3.3    Coexistence of Different Adaptation Schemes 

In this experiment we investigate the extent to which CSFQ 
can deal with flows that employ different adaptation schemes. 
Receiver-driven Layered Multicast (RLM) [15] is an adaptive 
scheme in which the source sends the information encoded 
into a number of layers (each to its own multicast group) and 
the receiver joins or leaves the groups associated with the 
layers based on how many packet drops it is experiencing. 
We consider a 4 Mbps link traversed by one TCP and three 
RLM flows. Each source uses a seven layer encoding, where 
layer i sends 2,+4 Kbps; each layer is modeled by a UDP 
traffic source. The fair share of each flow is 1Mbps. In the 
RLM case this will correspond to each receiver subscribing 
to the first five layers7. 

The receiving rates averaged over 1 second interval for 
each algorithm are plotted in Figure,7. Since in this experi- 
ment the link bandwidth is 4 Mbps and the router buffer size 

7More precisely, we have S~] _   2,+4 Kbps = 0.992 Mbps. 

Table 3: The mean throughputs (in packets) and standard 
deviations for 19 TCPs in the presence of a UDP flow along 
a link with propagation delay of 100 ms. The UDP sends at 
the link capacity of 10 Mbps. 

is 64 KB, we set constants K, Ka, and Kc to be 250 ms, 
i.e., about two times larger than the maximum queue de- 
lay. An interesting point to notice is that, unlike DRR and 
CSFQ, FRED does not provide fair bandwidth allocation 
in this scenario. Again, as discussed in Section 3.2, this is 
due to the fact that RLM and TCP use different end-to-end 
congestion control algorithms. 

3.4    Different Traffic Models 

So far we have only considered UDP, TCP and layered mul- 
ticast traffic sources. We now look at two additional source 
models with greater degrees of burstiness. We again con- 
sider a single 10 Mbps congested link. In the first exper- 
iment, this link is shared by one ON-OFF source and 19 
TCPs. The ON and OFF periods of the ON-OFF source 
are both drawn from exponential distributions with means 
of 100 ms and 1900 ms respectively. During the ON period 
the ON-OFF source sends at 10 Mbps. Note that the ON- 
time is on the same order as the averaging intervals K, Ka, 
and Kc which are all 100 ms, so this experiment is designed 
to test to what extent CSFQ can react over short timescales. 

The ON-OFF source sent 6758 packets over the course of 
the experiment. Table 1 shows the number of packets from 
the ON-OFF source dropped at the congested link. The 
DRR results show what happens when the ON-OFF source 
is restricted to its fair share at all times. FRED and CSFQ 
also are able to achieve a high degree of fairness. 

Our next experiment simulates Web traffic. There are 
60 TCP transfers whose inter-arrival times are exponentially 
distributed with the mean of 0.05 ms, and the length of each 
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Figure 7: The throughput of three RLM flows and one TCP flow along a 4 Mbps link 

transfer is drawn from a Pareto distribution with a mean of 
20 packets (1 packet = 1 KB) and a shaping parameter of 
1.06. These values are consistent with those presented in 
the [5]. In addition, there is a single 10 Mbps UDP flow. 

Table 2 presents the mean transfer time and the corre- 
sponding standard deviations. Here, CSFQ performs worse 
than FRED, mainly because it has a larger average queue 
size, but still almost one order of magnitude better than 
FIFO and RED. 

3.5    Large Latency 

All of our experiments so far have had small link delays (1 
ms). In this experiment we again consider a single 10 Mbps 
congested link, but now with a propagation delay of 100 ms. 
The load is comprised of one UDP flow that sends at the 
link speed and 19 TCP flows. Due to the large propagation 
delay, in this experiment we set the buffer size to be 256 KB, 

and K, Ka, and Kc to be 400 ms. Table 3 shows the aver- 
age number of packets of a TCP flow during a 100 seconds 
interval. Both CSFQ and FRED perform reasonably well. 

3.6    Packet Relabeling 

Recall that when the dropping probability of a packet is 
non-zero we relabel it with the fair rate a so that the label 
of the packet will reflect the new rate of the flow. To test 
how well this works in practice, we consider the topology in 
Figure 8, where each link is 10 Mbps. Note that as long as 
all three flows attempt to use their full fair share, the fair 
shares of flows 1 and 2 are less on link 2 (3.33 Mbps) than 
on link 1 (5 Mbps), so there will be dropping on both links. 
This will test the relabelling function to make sure that the 
incoming rates are accurately reflected on the second link. 
We perform two experiments (only looking at CSFQ's per- 
formance). In the first, there are three UDPs sending data 



Figure 8: Simulation scenario for the packet relabeling ex- 
periment. Each link has 10 Mbps capacity, and a propaga- 
tion delay of 1 ms. 

Traffic Flow 1 Flow 2 Flow 3 
UDP 3.36 3.32 3.28 
TCP 3.43 3.13 3.43 

Table 4:   The throughputs resulting from CSFQ averaged 
over 10 seconds for the three flows in Figure 8 along link 2. 

at 10 Mbps each. Table 4 shows the average throughputs 
over 10 sec of the three UDP flows. As expected these rates 
are closed to 3.33 Mbps. In the second experiment, we re- 
place the three UDPs by three TCPs. Again, despite the 
TCP burstiness which may negatively affect the rate esti- 
mation and relabeling accuracy, each TCP gets close to its 
fair share. 

3.7    Discussion of Simulation Results 

We have tested CSFQ under a wide range of conditions, 
conditions purposely designed to stress its ability to achieve 
fair allocations. These tests, and the others we have run 
but cannot show here because of space limitations, sug- 
gest that CSFQ achieves a reasonable approximation of fair 
bandwidth allocations in most conditions. Certainly CSFQ 
is far superior in this regard to the status quo (FIFO or 
RED). Moreover, in all situations CSFQ is roughly compa- 
rable with FRED, and in some cases it achieves significantly 
fairer allocations. Recall that FRED requires per-packet 
flow classification while CSFQ does not, so we are achieving 
these levels of fairness in a more scalable manner. However, 
there is clearly room for improvement in CSFQ, as there are 
cases where its performance is significantly below that of its 
benchmark, DRR. We do not yet know if these are due to 
our particular choices for the estimation algorithms, or are 
inherent properties of the CSFQ architecture. 

4    Why Are Fair Allocations Important? 

In the Introduction we stated that one of the underlying as- 
sumptions of this work is that fairly allocating bandwidth 
was beneficial, and perhaps even crucial, for congestion con- 
trol. In this section we motivate the role of fair allocations in 
congestion control by discussing the problem of unfriendly 
flows, and then presenting two approaches to this problem; 
we end this section with a discussion of the role of punish- 
ment. In what follows we borrow heavily from [7], [3], and 

[8], and have benefited greatly from conversations with Steve 
Deering and Sally Floyd. We should note that the matters 
addressed in this section are rather controversial and this 
overview unavoidably reflects our prejudices. This section, 
however, is merely intended to provide some perspective on 
our motivation for this work, and any biases in this overview 
should not undercut the technical aspects of the CSFQ pro- 
posal that are the main focus of the previous sections. 

4.1    The Unfriendly Flow Problem 

Data networks such as the Internet, because of their reliance 
on statistical multiplexing, must provide some mechanism to 
control congestion. The current Internet, which has mostly 
FIFO queueing and drop-tail mechanisms in its routers, re- 
lies on end-to-end congestion control in which hosts curtail 
their transmission rates when they detect that the network 
is congested. The most widely utilized form of end-to-end 
congestion control is that embodied in TCP [11], which has 
been tremendously successful in preventing congestion col- 
lapse. 

The efficacy of this approach depends on two fundamen- 
tal assumptions: (1) all (or almost all) flows are cooperative 
in that they implement congestion control algorithms, and 
(2) these algorithms are homogeneous - or roughly equiv- 
alent - in that they produce similar bandwidth allocations 
if used in similar circumstances. In particular, assumption 
(2) requires, in the language of [8], that all flows are TCP- 
friendly.8 

The assumption of universal cooperation can be violated 
in three general ways. First, some applications are unre- 
sponsive in that they don't implement any congestion con- 
trol algorithms at all. Most of the early multimedia and 
multicast applications, like vat, nv, vie, wb and RealAudio 
fall into this category. Second, some applications use con- 
gestion control algorithms that, while responsive, are not 
TCP-friendly. RLM is such an algorithm.9 Third, some 
users will cheat and use a non-TCP congestion control al- 
gorithm to get more bandwidth. An example of this would 
be using a modified form of TCP with, for instance, a larger 
initial window and window opening constants. 

Each of these forms of noncooperation can have a sig- 
nificant negative impact on the performance obtained by 
cooperating flows. At present, we do not yet know how 
widespread noncooperation will be, and thus cannot assess 
the level of harm it will cause. However, in lieu of more 
solid evidence that noncooperation will not be a problem, 
it seems unsound to base the Internet's congestion control 
paradigm on the assumption of universal cooperation. We 
therefore started this paper with the fundamental assump- 
tion that one needs to deal with the problem of unfriendly 
flows. 

8 Actually, the term TCP-friendly in [8] means that "their arrival 
rate does not exceed that of any TCP connection in the same cir- 
cumstances." Here we use it to mean that the arrival rates are 
roughly comparable, a property that should be more precisely called 
TCP-equivalent. We blur the distinction between TCP-friendly and 
TCP-equivalent to avoid an overly unwieldy set of terms in this short 
overview. However, we think the distinction may be rendered moot 
since it is unlikely that congestion control algorithms that are not 
TCP-equivalent but are TCP-friendly - i.e., they get much less than 
their fare share - will be widely deployed. 

9Although our data in Section 3.3 showed RLM receiving less than 
its fair share, when we change the simulation scenario so that the TCP 
flow starts after all the RLM flows then it receives less than half of 
its fair share. This hysteresis in the RLM versus TCP behavior was 
first pointed out to us by Steve McCanne [15]. 



4.2    Two Approaches 

There are, in the literature, two genera] approaches to ad- 
dressing the problem of unfriendly flows. The first is the 
allocation approach. Here, the router itself ensures that 
bandwidth is allocated fairly, isolating flows from each other 
so that unfriendly flows can only have a very limited impact 
on other flows. Thus, the allocation approach need not de- 
mand that all flows adopt some universally standard end- 
to-end congestion control algorithm; flows can choose to re- 
spond to the congestion in whatever manner best suits them 
without unduly harming other flows. Assuming that flows 
prefer to not have significant levels of packet drops, these 
allocation approaches give an incentive for flows to use end- 
to-end congestion control, because being unresponsive hurts 
their own performance. Note that the allocation approach 
does not provide an incentive for flows to be TCP-friendly 
(an example of an alternative end-to-end congestion control 
algorithm is described in [13]), but does provide strong in- 
centives for drop-intolerant applications to use some form 
of end-to-end congestion control.10 Of course, the canoni- 
cal implementations of the allocation approach, such as Fair 
Queueing, all require significant complexity in routers. Our 
goal in this paper was to present a more scalable realization 
of the allocation approach. 

The problem of unfriendly flows can be addressed in an- 
other manner. In the identification approach, as best exem- 
plified by [8], routers use a lightweight detection algorithm 
to identify unfriendly flows, and then explicitly manage the 
bandwidth of these unfriendly flows. This bandwidth man- 
agement can range from merely restricting unfriendly flows 
to no more than the currently highest friendly flow's share11 

to the extreme of severely punishing unfriendly flows by 
dropping all of their packets. 

This approach relies on the ability to accurately identify 
unfriendly flows with relatively lightweight router mecha- 
nisms. This is a daunting task. Below we discuss the process 
of identifying unfriendly flows, and then present simulation 
results of the identification algorithm in [8]; we are not aware 
of other realizations of the identification approach. 

One can think of the process of identifying unfriendly 
flows as occurring in two logically distinct stages. The first, 
and relatively easy, step is to estimate the arrival rate of 
a flow. The second, and harder, step is to use this arrival 
rate information (along with the dropping rate and other 
aggregate measurements) to decide if the flow is unfriendly. 
Assuming that friendly flows use a TCP-like adjustment 
method of increase-by-one and decrease-by-half, one can de- 
rive an expression (see [8] for details) for the bandwidth 
share S as a function of the dropping rate p, round-trip 
time R, and packet size B: S « "RJV *°r some constant 7. 
Routers do not know the round trip time R of flows, so must 
use the lower bound of double the propagation delay of the 
attached link; this allows flows further away from the link to 
behave more aggressively without being identified as being 
unfriendly.12 

Algorithm Simulation 1 Simulation 2 
UDP TCP-1 TCP-2 TCP-l TCP-2 

REDI 0.906 0.280 0.278 0.565 0.891 
CSFQ 0.554 0.468 0.478 0.729 0.747 

10As we discuss later, if flows can tolerate significant levels of loss, 
the situation changes somewhat. 

11 If identification were perfect, and this management goal achieved, 
all flows would get their max-min fair allocations. However, we are 
not aware of any algorithm that can achieve this management goal. 

12We are not delving into some of the details of the approach layed 
out in [8] where flows can also be classified as very-high-bandwidth 
but not necessarily unfriendly, and as unresponsive (and therefore 
unfriendly). 

Table 5: (Simulation 1) The throughputs in Mbps of one 
UDP and two TCP flows along a 1.5 Mbps link under 
REDI [8], and CSFQ, respectively. (Simulation 2) The 
throughputs of two TCPs (where TCP-2 opens its conges- 
tion window three times faster than TCP-1), under REDI, 
and CSFQ, respectively. 

To see how this occurs in practice, consider the following 
two experiments using the identification algorithm describee! 
in [8], which we call RED with Identification (REDI).13 In 
each case there are multiple flows traversing a 1.5 Mbps link 
with a latency of 3 ms; the output buffer size is 32 KB and 
all constants K, Ka, and Kc, respectively, are set to 400 
ms. Table 5 shows the bandwidth allocations under REDI 
and CSFQ averaged over 100 sec. In the first experiment 
(Simulation 1), we consider a 1 Mbps UDP flow and two 
TCP flows; in the second experiment (Simulation 2) we have 
a standard TCP (TCP-1) and a modified TCP (TCP-2) that 
opens the congestion window three times faster. In both 
cases REDI fails to identify the unfriendly flow, allowing it to 
obtain almost two-thirds of the bandwidth. As we increase 
the latency of the congested link, REDI starts to identify 
unfriendly flows. However, for some values as high as 18 ms, 
it still fails to identify such flows. Thus, the identification 
approach still awaits a viable realization and, as of now, 
the allocation approach is the only demonstrated method to 
deal with the problem of unfriendly flows. 

4.3    Punishment 

Earlier in this section we argued that the allocation ap- 
proach gave drop-intolerant flows an incentive to adopt end- 
to-end congestion control. What about drop-tolerant flows? 

We consider, for illustration, fire-hose applications that 
have complete drop-tolerance: they send at some high rate 
p and get as much value out of the fraction of arriving pack- 
ets, call it x, as if they originally just sent a stream of rate 
xp. That is, these fire-hose applications care only about the 
ultimate throughput rate, not the dropping rate.14 In a com- 
pletely static world where bandwidth shares were constant 
such "fire-hose" protocols would not provide any advantage 
over just sending at the fair share rate. However, if the fair 
shares along the path were fluctuating significantly, then 
fire-hose protocols might better utilize instantaneous fluctu- 
ations in the available bandwidth. Moreover, fire-hose pro- 
tocols relieve applications of the burden of trying to adapt 
to their fair share. Thus, even when restrained to their fair 
share there is some incentive for flows to send at signifi- 
cantly more than the current fair share.15 In addition, such 

13We are grateful to Sally Floyd who provided us her script im- 
plementing the REDI algorithm. We used a similar script in our 
simulation, with the understanding that this is a preliminary design 
of the identification algorithm. Our contention is that the design of 
such an identification algorithm is fundamentally difficult due to the 
uncertainty of RTT. 

14 Approximations to complete drop-tolerance can be reached in 
video transport using certain coding schemes or file transport using 
selective acknowledgements. 

"These fire-hose coding and file transfer methods also have some 



fire-hoses decrease the bandwidth available to other flows 
because packets destined to be dropped at a congested link 
represent an unnecessary load on upstream links. With uni- 
versal deployment of the allocation approach, every other 
flow would still obtain their fair share at each link, but that 
share may be smaller than it would have been if the fire-hose 
had been using responsive end-to-end congestion control. It 
is impossible to know now whether this will become a seri- 
ous problem. Certainly, though, the problem of fire-hoses 
in a world with fair bandwidth allocation is far less dire 
than the problem of unfriendly flows in our current FIFO 
Internet, since the incentive to be unfriendly and the harm- 
ful impact on others are considerably greater in the latter 
case. As a consequence, our paper emphasizes the prob- 
lem of unfriendly flows in our current FIFO Internet, and is 
less concerned with fire-hose flows in an Internet with fair 
bandwidth allocation. 

Nonetheless, the fire-hose problem should not be ignored; 
flows should be given an incentive to adopt responsive end- 
to-end congestion. One possible method is to explicitly pun- 
ish unresponsive flows by denying them their fair share.1 

Punishment is discussed as one possible bandwidth man- 
agement approach in [8] (the approach described there is 
informally referred to as RED-with-a-penalty-box). Accu- 
rately identifying flows as unresponsive may be far easier 
than identifying them as unfriendly. However, as we saw 
in our simulations, doing so in the context of the identifi- 
cation approach is far from a solved problem; the challenge 
is to determine if a flow has decreased usage in response to 
increases in overall packet drop rates [8]. 

Identifying unresponsive flows is more straightforward 
in the allocation approach, since here one need only deter- 
mine if a flow has had significantly high drop rates over a 
long period of time. As a proof of concept we have imple- 
mented a simple identification and punishment mechanism. 
First, we examine off-line the last n dropped packets and 
then monitor the flows with the most dropped packets. Sec- 
ond, we estimate the rate of each of these monitored flows; 
when a flow's rate is larger than a x a (a > 1), we start 
dropping all of its packets. Third, we continue to monitor 
penalized flows, continuing punishment until their arrival 
rate decreases below b x a (b < 1). Using the parameters 
a = 1.2, 6 = 0.6, and n = 100, we applied this algorithm to 
Simulation 1 in Table 5; the UDP flow was identified and 
penalized in less than 3 seconds. Our task was easy because 
the identification of unresponsive flows can be based on the 
result (packet drops over long periods of time) rather than 
on trying to examine the algorithm (detecting whether it 
actually decreased its rate in response to an increase in the 
drop rate). Note also that the allocation approach need only 
distinguish between responsive and unresponsive in the pun- 
ishment phase, an inherently easier task than distinguishing 
friendly from unfriendly. 

In summary, to provide incentives for drop-tolerant flows 
to use responsive end-to-end congestion control, it may be 
necessary to identify, and then punish, unresponsive flows. 

overhead associated with them, and it isn't clear whether, in practice, 
the overheads are greater or less than the advantages gained. How- 
ever, one can certainly not claim, as we did above for drop-intolerant 
applications, that the allocation approach gives drop-tolerant appli- 
cations a strong incentive to use responsive end-to-end congestion 
control algorithms. 

16Another possible method, used in ATM ABR, is to have network 
provide explicit per flow feedback to ingress nodes and have edge 
nodes police the traffic on a per flow basis. We assume this is a too 
heavyweight a mechanism for the Internet. 

CSFQ with this punishment extension may be seen as a 
marriage of the allocation and identification approaches; the 
difference between [8] and our approach is largely one of 
the relative importance of identification and allocation. We 
start with allocation as fundamental, and then do identifica- 
tion only when necessary; [8] starts with identification, and 
then considers allocation only in the context of managing 
the bandwidth of identified flows. 

5    Summary 

This paper presents an architecture for achieving reasonably 
fair bandwidth allocations while not requiring per-flow state 
in core routers. Edge routers estimate flow rates and insert 
them into the packet labels. Core routers merely perform 
probabilistic dropping on input based on these labels and 
an estimate of the fair share rate, the computation of which 
requires only aggregate measurements. Packet labels are 
rewritten by the core routers to reflect output rates, so this 
approach can handle multihop situations. 

We tested CSFQ, and several other algorithms, on a wide 
variety of conditions. We find that CSFQ achieve a signifi- 
cant degree of fairness in all of these circumstances. While 
not matching the fairness benchmark of DRR, it is compara- 
ble or superior to FRED, and vastly better than the baseline 
cases of RED and FIFO. We know of no other approach that 
can achieve comparable levels of fairness without any per- 
flow operations in the core routers. 

The main thrust of CSFQ is to use rate estimation at the 
edge routers and packet labels to carry rate estimates to core 
routers. The details of our proposal, such as the estimation 
algorithms, are still very much the subject of active research. 
However, the results of our initial experiments with a rather 
untuned algorithm are quite encouraging. 

One open question is the effect of large latencies. The 
logical extreme of the CSFQ approach would be to do rate 
estimation at the entrance to the network (at the customer/ISP 
boundary), and then consider everything else the core. This 
introduces significant latencies between the point of esti- 
mation and the points of congestion; while our initial sim- 
ulations with large latencies did not reveal any significant 
problems, we do not yet understand CSFQ well enough to 
be confident in the viability of this "all-core" design. How- 
ever, if viable, this "all-core" design would allow all interior 
routers to have only very simple forwarding and dropping 
mechanisms, without any need to classify packets into flows. 

In addition, we should note that it is possible to use 
a CSFQ-like architecture to provide service guarantees. A 
possible approach would be to use the route pinning mech- 
anisms described in [23], and to shape the aggregate guar- 
anteed traffic at each output link of core routers [6]. 

One of the initial assumptions of this paper was that 
the more traditional mechanisms used to achieve fair allo- 
cations, such as Fair Queueing or FRED, were too complex 
to implement cost-effectively at sufficiently high speeds. If 
this is the case, then a more scalable approach like CSFQ 
is necessary to achieve fair allocations. The CSFQ islands 
would be comprised of high-speed backbones, and the edge 
routers would be at lower speeds where classification and 
other per-flow operations were not a problem. However, 
CSFQ may still play a role even if router technology ad- 
vances to the stage where the more traditional mechanisms 
can reach sufficiently high speeds. Because the core-version 
of CSFQ could presumably be retrofit on a sizable fraction 



of the installed router base (since its complexity is roughly 
comparable to RED and can be implemented in software), 
it may be that CSFQ islands are not high-speed backbones 
but rather are comprised of legacy routers. 

Lastly, we should note that the CSFQ approach requires 
some configuration, with edge routers distinguished from 
core routers. Moreover, CSFQ must be adopted an island 
at a time rather than router-by-router. We do not know if 
this presents a serious impediment to CSFQ's adoption. 
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Abstract 

The rapid increase in web usage has led to dramatically 
increased loads on the network infrastructure and on in- 
dividual web servers. To ameliorate these mounting bur- 
dens, there has been much recent interest in web caching 
architectures and algorithms. Web caching reduces network 
load, server load, and the latency of responses. However, 
web caching has the disadvantage that the pages returned 
to clients by caches may be stale, in that they may not be 
consistent with the version currently on the server. In this 
paper we describe a scalable web cache consistency archi- 
tecture that provides fairly tight bounds on the staleness of 
pages. Our architecture borrows heavily from the literature, 
and can best be described as an invalidation approach made 
scalable by using a caching hierarchy and application-level 
multicast routing to convey the invalidations. We evaluate 
this design with calculations and simulations, and compare 
it to several other approaches. 

1    Introduction 

The world-wide-web has become an important component 
of the global information infrastructure. The rapid increase 
of web usage has imposed a heavy load on the network and 
server infrastructure, and significant delays are not uncom- 
mon. To mitigate the effects of this increased usage, there 
has been much recent interest in developing and deploying 
techniques for web caching (see, for example, [8, 29, 33] 
and references therein).   Web caching has several benefi- 
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cial effects: it lowers the load on servers, reduces the overall 
network bandwidth required, and lowers the latency of re- 
sponses. 

However, web caching does have (at least) one serious 
disadvantage. If a page has been modified after being stored 
in a cache, the version of the page delivered to the requesting 
client1 may be inconsistent with the server's version of that 
page. We call such inconsistent pages stale, and call consis- 
tent pages fresh; the degree of staleness is the delay between 
when the page was changed on the server and when the pre- 
vious version was delivered. To make this precise, consider 
the version of the page that was delivered to the client. Let 
t = M be the time the delivered version was first rendered 
invalid by being modified at the server. Let t = R be the 
time the cache responds to the client's request for that page. 
We then define the staleness2 to be max(0, R — M). 

For many pages, being significantly stale is not a serious 
problem. For some pages, however, clients may care a great 
deal if the pages are substantially stale. For instance, it 
is clear that pages devoted to current news stories {e.g., 
CNN) should be as fresh as possible. Other examples of 
pages that are sensitive to being stale - we will call such 
pages perishable - are catalogs, product information, and 
code distribution pages. Perishable pages need not have 
zero staleness {i.e., a news page could be a minute or so 
out of date without serious harm), but they should not be 
significantly stale. 

One could most easily meet the freshness needs of per- 
ishable pages by circumventing caching; this can be accom- 
plished by marking pages as uncacheable, or by merely ex- 
pecting users to manually hit the "reload" button. However, 
since some perishable pages are likely to be quite popular 
- news sites in particular - one would like to ensure the 
relative freshness for these pages while retaining the advan- 
tages of caching. Because there is a finite latency between 
the server and the cache, it is impossible to guarantee abso- 
lute freshness (i.e., true consistency between what the cache 

We use the term client to refer to a browser or other user process 
at the end host that generates requests for pages. 

2Note that even if the staleness is zero by this definition, the page 
may be out of date when it actually arrives at the client due to changes 
made at the server while the data was in transit to the client; this, 
however, is not a problem with the caching infrastructure - since this 
source of inconsistency occurs even if the request was sent directly 
from the client to the server rather than being handled by a cache - 
and so we do not consider it part of being stale. 



delivers and the current version at the server) without insti- 
tuting write-locking on servers.3 While write-locking is sen- 
sible for keeping file systems consistent, it makes less sense 
for web pages,4 since write-locking merely masks the under- 
lying reality that the content delivered is different than the 
content the server thinks is most current. Thus, the most 
practical goal is to merely limit the degree of staleness - i.e., 
to achieve loose consistency - rather than trying to achieve 
strict consistency. We believe such loose-consistency guar- 
antees should be sufficient for the vast majority of perishable 
pages. 

In this paper we focus on the design of a scalable web 
cache consistency architecture that meets this goal. Our de- 
sign retains the benefits of web caching (as listed above), 
while providing fairly tight limits on the degree of staleness 
of delivered pages. Of course, as we review in Section 2, 
there has been much previous work on techniques to achieve 
various degrees of consistency for web pages; the architec- 
ture we propose combines many of the features of these pre- 
vious proposals, melding them together in a scalable fashion. 
Moreover, our proposal can easily be extended to support 
the pushing of data, in which modified pages are sent to 
caches even before clients have requested them. 

Since we envision, at least initially, that a small frac- 
tion of pages are perishable, our design can be restricted to 
those pages that axe deemed by the server to be perishable; 
that is, our proposal does not change how caches handle 
nonperishable pages and only modifies how caches handle 
perishable ones. Our design does make use of a caching hi- 
erarchy. However, this hierarchy can be replaced by a cache 
mesh, as we describe in Section 3.2. 

We evaluate this design in two ways. We first investigate 
its behavior analytically in a very simplified setting, and 
then present simulation results in a somewhat more realis- 
tic setting. In both cases we compare our proposed design 
against several other schemes. 

This paper is addressing the question of design, not of 
deployment. That is, we are asking: can one design such 
a scalable web consistency architecture? We are most def- 
initely not addressing the question of whether such an ar- 
chitecture, once designed, should be deployed (although we 
discuss this question briefly in Section 7) since the question 
of deployment is a complicated cost/benefit tradeoff involv- 
ing many nontechnical factors, such as the future usage of 
the web and the economics of the ISP business. However, de- 
ployment can only occur if a scalable web consistency archi- 
tecture exists, and our contribution here is to demonstrate 
that such a design is indeed possible. 

This paper has 7 sections. We begin in Section 2 by re- 
viewing several of the previous approaches to ensuring con- 
sistency. We present our approach in Section 3, starting 
with our basic scheme and then adding in the ability to 
push pages. We then evaluate this design analytically in 
Section 4 and through simulations in Section 5. We discuss 
additional design issues in Section 6, and conclude with a 

3If the cache receives a request for a page, obtains a fresh version 
of the page from the server, and then delivers the page to the client, 
the page would still be stale when delivered if the page was modified 
on the server between the time the server sent the page to the cache 
and when it arrived at the cache. The only way to avoid this would 
be to write-lock the page during the interval while the page was being 
delivered to the cache. 

4The crucial distinction between file systems and web pages, in 
terms of the role of write-locking, is that web pages have a single 
logical writer (the hosting server) whereas files have many logical 
writers (they can be written from many hosts). Merging multiple 
writers requires strict consistency, whereas handling multiple readers 
does not. 

brief discussion of our results in Section 7. We include esti- 
mates of cache state and network bandwidth requirements 
in an appendix. 

2    Previous Approaches 

All web caching proposals attempt to achieve some degree of 
consistency, but the approach taken to achieve consistency 
depends greatly on the degree of consistency desired. In this 
section we briefly review three basic approaches to consis- 
tency. These approaches function both as inspirations for 
our proposed architecture and also as benchmarks against 
which we evaluate our design in Sections 4 and 5. 

2.1    Time-To-Live 

The simplest way to achieve some limited form of consis- 
tency is to associate a time-to-live with each page. When a 
request arrives at a cache after the TTL for the requested 
page has expired, the cache sends an If-Modified-Since (IMS) 
message to the server (or parent cache) to determine if the 
version held by the cache is still valid. If the TTL is fixed 
then the staleness is bounded by this TTL (plus the latency 
between the server and the cache). Setting small values of 
the TTL provides fairly tight consistency guarantees, but 
also mitigates against some of the benefits of web caching, 
since many IMS requests will be forwarded to the server even 
though the page is still valid. The limit of TTL=0 generates 
an IMS for every request, thereby guaranteeing no staleness; 
we call this scheme poll-always. 

It has long been known that files exhibit the property 
that the longer they have gone unmodified, the longer they 
are likely to go unmodified [3, 4]. In [7] this insight was 
used to develop an adaptive TTL scheme in which the TTL 
is set, at the first request after each TTL expiration, to 
be proportional to the page's age (current time minus the 
last modification time); the algorithm takes, as a parameter, 
the constant of proportionality (called the update threshold 
in [15]) used to update the TTL. However, adaptive TTL 
schemes do not give an upper bound on the staleness of a 
page, since the TTL can grow without bound. 

2.2    Invalidation 

In the TTL approach, the cache can only guess as to whether 
a page is still valid. A very different approach to consistency 
requires servers to send explicit invalidation signals to caches 
when pages are modified. The invalidation approach is most 
easily explained, as we do below, when considering only the 
interaction between a server and a client without caches as 
intermediaries; later, when presenting our design, we will 
discuss the role of invalidations in the presence of proxy 
caches. 

In its simplest incarnation, an invalidation scheme works 
as follows: each server keeps track of all clients who have 
requested a particular page and then, whenever that page 
changes, notifies those clients. We say that servers have 
an invalidation contract with the clients so that clients are 
assured that they will be informed of any changes to pages 
they have read. 

While invalidation schemes are effective in limiting stale- 
ness, they incur the cost of requiring the server to keep state 
on every client of each page. Thus, this approach does not 
scale well in the limit of many readers per page; both the 
state required to store the list of readers, and the OS and 



network burden of having to contact every reader of a page 
when it changes, grow linearly in the number of readers.5 

This scaling problem can be overcome by using multi- 
cast to transmit the invalidations. By assigning a multicast 
group to each page, and having clients join the groups asso- 
ciated with the pages they have accessed, the burden on the 
server is greatly reduced; the server need not keep any read- 
ership state, and need only send a single invalidation mes- 
sage to inform the group of any page modifications. Such 
an approach is described in [28], and the somewhat related 
idea of pushing content (rather than sending invalidations) 
via multicast is described in [23, 27, 28]. However, while 
multicast solves the scaling problems at the server, it cre- 
ates (following the law of conservation of difficulty) another 
one at the routers. The state required by such schemes 
in routers is substantial, easily on the order of hundreds 
of thousands of addresses (judging by the proxy traces in 
[19]); this is certainly too much for many currently deployed 
routers. Moreover, the rate at which clients would be join- 
ing and leaving multicast groups, as they read and discard 
pages, will likely create an unscalable overhead on the rout- 
ing infrastructure [17]. 

A recent proposal [9] includes information about related 
pages in responses to page requests; this information may 
include invalidations and delta-encoded page updates. It 
can be used to greatly improve consistency on average but 
it does not provide staleness assurances. 

2.3    Lease 

The lease approach to consistency combines features of the 
TTL and invalidation approaches; see [13] for the basic ref- 
erence on leases in file systems, and see [31] for applications 
of these ideas to web caching. In the simplest version of 
this approach, whenever a cache stores a page, it requests a 
lease from the server. Whenever a page changes, the server 
notifies all caches who hold a valid lease of the page; the 
invalidation contract applies only while the lease is valid. If 
a cache receives a request for a page with an expired lease, 
it renews the page's lease by sending an IMS to the server 
before responding to the request. While the lease is valid, 
the approach is exactly like invalidation, but the expiration 
of leases resembles the TTL approach. One wants to choose 
the length of the lease so that the number of readers hold- 
ing valid leases remains reasonably small when writes are 
made, but most reads occur while the lease is still valid. 
In distributed file systems, leases are usually short (seconds 
or minutes) [4], but in the Web context using overly short 
leases makes the scheme roughly equivalent to TTL. 

Yin et al. [31] presented two volume lease algorithms 
aimed at reducing validation traffic of short leases. They 
assign a long lease to every page, and a short lease to sets 
of pages called volumes. A cache must renew a lease when- 
ever either the page lease or the volume lease expires. The 
advantage of this approach is that the overhead of renew- 
ing the short leases is amortized over the many pages in a 
volume. 

3    Our Approach 

Our approach borrows quite freely from these previous ap- 
proaches. It is based primarily on multicast-based invalida- 

Also, in the oversimplified version just described, there are ro- 
bustness problems when servers lose their state or when network par- 
titions occur. These robustness issues can be addressed, as we shall 
see in Section 3. 
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Figure 1: Example of a single multicast caching hierarchy. 
The arrows indicate the propagation directions of heart- 
beats. 

tions, but avoids the scalability problem by using a hierarchy 
of caches.6 The multicast groups are associated with caches, 
not pages, and the caches send heartbeats to each other that 
are the equivalent of cache-to-cache volume leases. In con- 
trast to a previous use of volume leases [31], the unit of our 
lease is all pages in a cache, instead of a single page or page 
group. Caches maintain a server table in order to locate 
where servers are attached to the hierarchy. Invalidation 
messages for a page, which may be sent both up and down 
the hierarchy, are filtered so as to limit the scope of distri- 
bution. Client requests are forwarded through the caching 
hierarchy to the server or to the first cache containing a 
valid copy of the requested page.7 We first describe the ba- 
sic protocol and then describe how to add pushing to the 
architecture. 

3.1    Simple Description of Protocol 

To describe the algorithm most compactly we first consider 
the special case where all caches are infinite, all pages are 
part of this consistency architecture, there is a single sta- 
ble caching hierarchy with all caches having synchronized 
clocks, and no caches fail (although we make no assumption 
about the reliability of communication between caches). As- 
pects of the design associated with more realistic settings are 
addressed in Section 6. The descriptions given here (and in 
Section 6) are rather cursory and informal; a more complete 
and detailed description of the entire protocol can be found 
in [32]. 

Hierarchy The caching hierarchy (Figure 1) is glued to- 
gether by multicast. Each parent cache owns a unique mul- 
ticast group, in the sense that it is responsible for allocating 
the group address, and it is the only sender in the group. 
Each child cache joins the group owned by its parent. Thus, 
parents need not know who their children are, and children 
can choose their parents freely as long as cycles are pre- 
vented, and that is easily accomplished with a convention 
on assigning each cache to one of a few levels - e.g., leaf 
caches, intermediate caches, and top-level caches - and re- 
quiring that parents always outrank their children. We do 
not address the issue of hierarchy establishment and mainte- 
nance; see [25] for one approach to these issues. We discuss 
alternatives to the use of a hierarchy later in this section. 

Heartbeats The hierarchy is kept alive by heartbeats. Each 
group owner sends out a periodic heartbeat message to its 

6We discuss alternatives to a hierarchy in Section 3.2. 
TAn extension that allows requests to bypass the caching hierarchy, 

thus reducing response latency, is described in Section 6. 



associated multicast group; let r be the time period be- 
tween heartbeats. The heartbeat functions as a volume lease 
of length T to its children; this lease applies to all pages 
sent by the cache to its children. The time period of the 
lease starts when the message was generated (reflected in 
its timestamp), not when it was received. Typically r will 
be significantly less than T (^ = 5 in our simulations) so 
that if one or a few consecutive heartbeat are lost - which 
is a possibility since we are not sending them reliably - the 
lease won't expire unnecessarily. Each child cache compares 
the current time to the last heartbeat's timestamp (or, more 
precisely, the highest timestamp among all received heart- 
beats). If this time gap ever reaches T then the lease on all 
pages from that server expires and all such pages are marked 
as invalid. 

Invalidations On top of these heartbeats we piggyback ex- 
plicit invalidations. We need only invalidate pages that have 
been requested (by a client or another cache) after they were 
last rendered invalid; we call these read pages. Each heart- 
beat message contains a list of all read pages that have been 
rendered invalid at the parent cache within the last time 
period T. Thus, if a read page is rendered invalid at the 
parent cache at time t = 0 then by time t = T each child 
cache has either received a heartbeat with an invalidation for 
that page, or has expired the lease from that parent cache 
(and thereby rendered the page invalid). A child cache that 
had a previously valid copy of the page will mark it invalid 
and propagate the invalidation if and only if the page was 
previously read; otherwise it ignores the invalidation. 

Attaching Servers In addition to heartbeats going down 
the hierarchy, we also have a set of heartbeats traveling up 
the hierarchy from servers towards the top-level cache. To 
describe this, we first define how servers attach to the hierar- 
chy. Each web server is attached to a cache (not necessarily 
a leaf cache) in the hierarchy, which we call the server's 
primary cache. Upon attaching, each server must reliably 
unicast a JOIN message to its primary cache. This message 
is forwarded upwards (by each cache to its parent cache) via 
reliable unicast until it reaches the top-level cache. We say 
that the parent cache sources a server from a child cache 
if it receives that server's JOIN message from a child cache 
(and has not received a LEAVE message for that server; we 
define LEAVE messages below). Each cache has a listing of 
those servers it sources (i.e., those servers attached below 
it); we call this list the server routing table (Figure 2). If a 
cache does not source a server, we say that its server routing 
table entry for the server points to the parent cache. Note 
that the top-level cache knows about all servers attached in 
the hierarchy. 

Servers send (via unreliable unicast) periodic heartbeats 
to their primary cache, also piggybacking invalidations of 
any read pages as we described above. Similarly, every child 
cache who sources at least one server must unicast heart- 
beats to its parent, along with piggybacked invalidations. A 
cache can ignore invalidations for unread pages (pages that 
are not in residence in the cache are automatically consid- 
ered unread pages). Invalidations are thus propagated from 
the server to every cache from which the page has been read. 
If a cache Cl is closer to the server than cache C2 along this 
propagation path, we call Cl an upstream cache (compared 
with C2); otherwise, we call it a downstream cache. Each 
upstream cache is said to maintain an invalidation contract 
with its immediate downstream cache(s) for any page that 
has been read by a downstream cache. 
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Figure 2: An example of server routing table setup. Routing 
table entries are shown in parentheses next to each cache. 
Each entry is in the form (S,C), where C is the next hop 
cache towards server S. A "*" indicates a default entry. The 
arrows show how requests flow from a client to the server, 
and how responses flow in the reverse direction. 

When a time period T has passed without cache Cl hear- 
ing from cache C2 from whom it sources a server, cache C2 
and all the servers sourced from cache C2 are removed from 
cache Cl's server routing table. Cache Cl then sends a 
LEAVE message to its parents and children, notifying them 
that those servers are no longer sourced from cache Cl, and 
therefore all of the pages from those servers should be con- 
sidered invalid. (More details are described in Section 6.) 
LEAVE messages are a form of invalidation, and are in- 
cluded in the heartbeats (rather than being sent reliably). 

Handling Requests We now describe how client requests 
are handled, as illustrated in Figure 2. Clients can attach to 
any cache in the hierarchy; we call this the client's primary 
cache. In particular, a client can attach to its own local 
cache (i.e., the browser's cache) and then use a nearby proxy 
cache as a parent cache (as they typically do now). When 
a client requests a page, it sends the request to its primary 
cache. The primary cache, and recursively all caches the 
request visits, first checks to see if the page is resident in the 
cache. If it is not, then the cache forwards the request to 
the next cache designated by the server routing table. When 
the request is fulfilled, by either the originating server or 
by some intermediary cache, the response takes the reverse 
path through the caching hierarchy towards the client. The 
reverse path is automatically set up because every cache 
has an open HTTP connection to the the requester before 
it responds. 

3.2    Discussion 

We list below three important properties of this scheme 
(proofs can be found in [32]). As stated above we assume a 
stable hierarchy, synchronized clocks, and the proper func- 
tioning of caches, but make no assumptions about the reli- 
ability of communication. 

Property 1 // there are no invalidations in transit or wait- 
ing to be sent, then if a cache C in the hierarchy has a page 
P marked as invalid, then no downstream cache considers P 
valid (i.e., it is either invalid or not in residence). 

Property 2 When a cache C receives an invalidation for a 
page P marked as invalid, it may safely discard the invalida- 
tion without affecting the resulting state of all downstream 
caches. 



Property 3 Assume that each cache uses the same timeout 
period T. Consider a server SI, a client attached to cache 
C2 requesting the page, and assume that there are H cache- 
hops between SI and C2. Then the maximal stateness of a 
page hosted on Si delivered to the client is HT. 

Property 2 follows directly from Property 1. Together they 
allow us to reduce redundant invalidation traffic. Property 
3 sets an upper bound of page staleness for every cache in 
the hierarchy. 

We believe this scheme is a scalable approach to web 
cache consistency, and is essentially an application-level ver- 
sion of multicast distribution of invalidations. To clarify this 
analogy, consider a design which has a multicast group per 
version of a page and in which requesting the page is equiv- 
alent to joining the group for that version of the page; when 
a version of the page is rendered invalid, invalidations are 
sent to the group associated with that version, and multicast 
routing makes sure the invalidation ends up at every client 
and cache that has that version of the page. This is exactly 
what happens in our design, except that our design has no 
explicit notion of groups, and all "routing" of invalidations 
is done by the caches keeping track of the read pages and 
forwarding invalidations for those read pages.8 The use of 
heartbeats facilitates robustness and failure detection. 

Before proceeding, we elaborate on the use of caching 
hierarchies in this design. Our protocol requires application 
level routing to route messages among clients, servers and 
caches. Cache hierarchies provide a simple way to do this, 
but there are other possible cache organizations. The only 
requirement is that the cache organization provides source- 
independent and acyclic application-level routing of mes- 
sages between servers and caches. That is, there must be a 
single (application-level) path between a cache and a server, 
and when superimposed, the set of paths to a server from 
all caches is loop-free. A cache mesh, in addition to a cache 
hierarchy, can also accomplish this goal. 

We see the tradeoff between a mesh and a hierarchy as 
follows. The hierarchy provides a simple mechanism to re- 
duce the (application-level) routing state in caches. This 
is particularly true at the leaves of the hierarchy, since a 
cache only needs explicit information about servers below 
it in a hierarchy. A mesh, on the other hand, eliminates 
the bottleneck of a root cache at the expense of increased 
state at other caches. Since a mesh organization has neither 
implicit information about cache location, as is provided by 
the default parent entry in a hierarchy, nor aggregable cache 
address allocation as is available in IP routing [12], reducing 
the routing state at caches is difficult. In addition, the lack 
of aggregation implies increased processing and communica- 
tion overhead to establish and maintain the routing state. 
For example, information about changes in server state must 
be propagated to all caches in the mesh. 

Given this tradeoff, we see the choice of a hierarchy as 
reasonable for the following reasons. First, it places the 
largest burden on a smaller number of caches (root or other 
high level caches) that are most easily engineered to meet 
this load. Engineering all caches to meet the state require- 
ments of a mesh is likely a more difficult problem. Sec- 
ond, estimates of the load on root caches, provided in Ap- 
pendix A, indicate that the load on the root caches is man- 
ageable. Therefore, in this paper we describe our design in 
the context of a cache hierarchy, nevertheless, it works for 

Note that our analogy to application-level multicast is completely 
unrelated to our use of real multicast to communicate between parent 
and child caches. 

both meshes and hierarchies. Moreover, hybrid approaches 
are possible; for instance, leaf caches could be attached to a 
general mesh topology, reducing the state requirements on 
leaves and reducing traffic in the core. 

Above we assumed an ideal environment for the sake 
of discussion, however, our design is capable of handling 
various issues related to more realistic contexts: e.g., clock 
skew, finite cache, failure recovery, incremental deployment, 
etc. We address these issues briefly in Section 6, and refer 
the interested reader to [32] for additional details. 

3.3    Adding Push to the Architecture 

There is one aspect of performance that caching cannot im- 
prove: the latency suffered by the first request to an un- 
read page. The concept of pushing data from the server to 
caches is of some interest, precisely because it reduces this 
first access latency so dramatically. While pushing is not 
directly related to caching, it fits within our architecture 
and addresses an important web performance issue, so we 
have included it in our design. We now briefly present a 
simple proposal for pushing. One only wants to push pop- 
ular pages that are likely to be read before they are modi- 
fied again. Servers could identify pages that are sufficiently 
popular that they should be pushed, or clients could request 
certain pages be pushed (see [32] for designs of that flavor). 
Here we present a more adaptive algorithm that chooses 
which pages to push based on the request and writing pat- 
tern. We call this scheme selective push. 

Rather than pushing the entire page, we push only the 
delta's from the previous version of the page, which are typi- 
cally rather small [19]. On the way up the caching hierarchy 
the updates are sent via reliable unicast. On the way down, 
we use a single unreliable multicast sent to a cache's mul- 
ticast group. Pushing the page does not remove the need 
for sending invalidations for the previous version, since the 
data could be lost in transit. 

We use a heuristic to decide if a page is sufficiently pop- 
ular to be pushed. We do not make a single global decision 
about whether or not to push a page; instead, each cache, 
and the originating server, make their own independent de- 
cision about whether or not to push the page. Every cache 
(and the server) keeps a counter Ap (initialized to 0) and a 
push bit for each of its pages. If the bit is 1, the cache will 
forward all pushed updates of the page to all of its down- 
stream caches. The heuristic uses three positive constants: 
6, 7, and ß. Whenever a cache receives an invalidate of 
page P, it sets Ap — Ap — 7; whenever it receives a re- 
quest for P, it sets Ap — Ap + ß. If Ap > 9 for some 
threshold 6, the cache (or the server) sets the push bit of 
the page to 1; otherwise the push bit is set to 0. In ad- 
dition, we let each downstream cache notify its immediate 
upstream cache when a pushed page is first read; these read 
notifications are forwarded recursively until they hit a read 
page. This allows caches who have pushed the page to still 
get accurate readings on whether the pushed page was read 
downstream before the page was invalidated. 

Recent work has addressed the issue of pushing web 
pages. Continuous Multimedia Push (CMP) [24] assigns a 
unique multicast group to every popular page and contin- 
uously multicasts pages to their groups. They found that 
multicast push is preferable to caching only when pages are 

'Unreliable distribution is sufficient, since pushing affects perfor- 
mance and not correctness of the protocol. However, one could use 
SRM [11] or other reliable multicast protocol for this distribution; we 
have not done so in our simulations to reduce complexity, but it is a 
very natural design choice. 



very popular and change very frequently. LSAM [27] as- 
signs one multicast group per "topic"; popular pages of sim- 
ilar topic {e.g., SuperBowl) are multicast to a unique group 
when they are created or modified. Our scheme is similar in 
spirit to these approaches, but quite different in implemen- 
tation. We use application-level "routing" of pushes that 
is equivalent to multicast, and we adaptively decide which 
pages are sufficiently popular to push. 

4    Analytical Performance Evaluation 

If we assume, as we will throughout this paper, that caches 
are effectively infinite,10 then the behavior of our web caching 
consistency protocol can be analyzed on a per-page basis; if 
no meta-state or page data is deleted from a cache due to 
space considerations, then the message generation behavior 
(i.e., invalidations, etc.) for a given page is independent of 
what happens for all other pages.11 We now analytically 
evaluate the performance of our proposed protocol in a very 
simple setting. We consider a single client, a single cache, 
and a single server. The client sends out requests (reads) 
for a particular page, and the server modifies (writes) that 
page. 

We compare several different web consistency approaches. 
The first, omniscient TTL (OTTL), is not a realistic scheme, 
but it provides a useful benchmark; in this scheme caches 
magically know when a page has been modified and only 
send the IMS request in those cases. The second is poll- 
always (PA) which, as we discussed in Section 2, is just a 
TTL approach with TTL=0. The other two are variants of 
our invalidation scheme: our basic invalidation scheme with 
no page pushing (BINV) and our invalidation scheme with 
pages always pushed (PINV).12 To make the modeling eas- 
ier, we assume there is no delay between when invalidations 
are generated and their being sent out (i.e., invalidations 
don't wait for the next heartbeat). Thus, all of the protocols 
described here provide the same level of strong consistency; 
if we ignore page modifications made after the server has re- 
sponded to a request and before the response arrives at the 
cache, then there are no stale pages delivered by any of these 
protocols. We do not study the looser policies of adaptive 
TTL or fixed TTL here because their finite timeout peri- 
ods makes the analysis intractable; we evaluate them using 
simulation in Section 5. 

Since none of these algorithms depends on absolute time, 
we care only about the patterns of reads and writes arriving 
at a cache. We can characterize the behavior of these algo- 
rithms by describing which messages get sent upon one of 
these four events: a read following a write (WR), a read fol- 
lowing a read (RR), a write following a write (WW), and a 
write following a read (RW). Let FRR, FRW, FWR, FWW de- 
note the average rate at which the patterns RR, RW, WR, 
and WW occur, respectively. We model the reading and 
writing as Poisson processes of rate r and w, respectively, 
and so the frequencies of events can be computed as follows: 

FRR = Fww FRW = FWR = T+w '■"■"" r+w > - "■" •"" (r+tu) ' 
Table 1 summarizes the bandwidth usage, server hit count, 

and cache response delay of each protocol for these four 
events.    The relative performance in terms of server hit 
counts and response time holds regardless of the read and 

10See Appendix A for further discussion of this assumption. 
11 The only degree of interaction is the number of pages over which 

the overhead of heartbeats is shared. 
12PINV can be seen as a version of -mirroring in which updated 

pages are automatically mirrored at remote sites. 

OTTL PA BINV PINV 

RR delay: 0 
bw: 0 
he: 0 

delay: 2 di 
bw:  2b,MS 
he:  1 

delay: 0 
bw: 0 
he: 0 

delay: 0 
bw: 0 
he: 0 

RW bw: 0 bw: 0 bw:  fc,nv bw: 
bP+bi„v 

WR delay: d\ + di 
bw: bp + biMS 
he: 1 

delay: di + ii 
bw: bp+biMS 
he:  1 

delay: di + d? 
bw: bp + bGET 
he: 1 

delay: 0 
bw: 0 
he: 0 

WW bw: 0 bw: 0 bw: 0 bw: 
bp + binv 

Table 1: Table of bandwidth, server hit count, and delays 
for each of the four events: RR, RW, WR, WW. binv is the 
cumulative size of a repeated set of invalidation messages. 
bp is the average size of a page, be ET is the size of an HTTP 
GET request. 6/MS is the size of an IMS request. bntf is 
the size of a read notification message. d\ is one way delay 
of IMS, GET, invalidation and responses. d2 is the one way 
delay of transmitting a page from server to cache. 

write rates. PINV completely eliminates server hits,13 and 
BINV and OTTL have the same server hit count, which is 
less than PA. The same ordering applies to response time: 
PINV has no delays, OTTL and BINV have an intermediate 
level of delay, and PA has the most delay. The bandwidth 
comparison of these algorithms is less clear and, in some 
cases, depends on the values of the various parameters. 

For convenience, we assume biMS = binv = bntf = baET, 
and let bcti denote this size. Since these are all small packets, 
we do not introduce significant errors by ignoring the size 
differences. Notice that OTTL uses less bandwidth than 
any other scheme. PA uses less bandwidth than BINV if 
and only if 2r < w; the tradeoff is between PA sending 
an IMS and response on reads following reads versus BINV 
sending an invalidate message on writes following reads. PA 

uses less bandwidth than PINV if and only if (£)2 < —f*-. 
Lastly, PINV uses less bandwidth than BINV if and only if 

If one assumes the size of pages dominates the size of the 
control messages then the limit of bca = 0 may provide some 
insight. When bcti — 0 then all the protocols except PINV 
require the same bandwidth (pages are transmitted when- 
ever a modified page is first read). BINV has the same per- 
formance, in terms of server hit counts and response times, 
as the OTTL, our idealized benchmark. BINV has lower 
response time and server hit count than PA. This perfor- 
mance gap grows as the reading rate increases, since BINV's 
advantage is that it need not contact the server (thereby in- 
curring server hit counts and delay) when a valid page is 
read; when the read rate is much lower than the write rate, 
few of the requests find a valid page at the cache, but as the 
read rate increases more of these requests find a valid page 
at the cache. Thus, if the bandwidth of control messages can 
be ignored, then the main performance criteria separating 
BINV from PA are server hit counts and response times, not 
bandwidth, and these performance gaps become more sig- 
nificant as the reading rate increases. PINV eliminates hit 
counts and delays but at the cost of increased bandwidth. 

In order to make our analysis in this section tractable, we 
assumed a very idealized environment and did not consider 
every protocol. In the next section we will use simulations 
to evaluate all of the consistency protocols in a somewhat 

13Of course, this reduction in server hits comes at the cost of the 
server pushing the data; however, we believe that the cost of answer- 
ing a request may be higher than that of pushing a page update. 



more realistic setting. 

5    Simulations 

In this section we use simulations, performed using the ns [2] 
simulator, to evaluate the performance of our proposal, and 
to compare it to several other approaches. In particular, we 
investigate the performance of our basic invalidation proto- 
col (BINV), along with the variants selective push (SINV) 
and push-always (PINV), and compare them to poll-always 
(PA), adaptive TTL (ATTL), fixed TTL (FTTL) and om- 
niscient TTL (OTTL). 

We evaluate these various web cache consistency pro- 
tocols using two categories of metrics: user-centric metrics 
and infrastructure-centric metrics. The user-centric metrics, 
which quantify the user's level of satisfaction with the ser- 
vice provided, are client response time14 and staleness. We 
measure staleness in three ways: the maximum and aver- 
age staleness taken over all pages, and the percentage of 
pages which are delivered stale (stale hit rate). Most pre- 
vious papers on web consistency used stale hit rate as the 
only metric for staleness; we prefer to emphasize the aver- 
age staleness, since staleness is not a binary property. That 
is, how out-of-date a page is, not just whether or not the 
page is stale, may be important. The infrastructure-centric 
metrics quantify (aspects of) the burden placed on the net- 
work infrastructure by these various protocols; we measure 
the total network bandwidth (in byte-hops), the bandwidth 
at the server, and the rate of (GET and IMS) requests at 
the server. 

Recall that several of these algorithms have adjustable 
parameters that control their performance: the heartbeat 
rate h for the invalidation-based algorithms, the TTL value 
for FTTL, and the threshold for ATTL. We are not inter- 
ested in measuring the tradeoff between staleness and band- 
width achievable by each of these protocols. Rather, we 
assume low average staleness is a performance requirement 
and ask how much bandwidth and delay are incurred by the 
protocols to achieve a particular level of staleness. There- 
fore, we set the heartbeat rate for BINV to be 10 per minute 
and then vary the parameters for FTTL and ATTL so that 
they all have roughly equivalent average staleness.15 The 
additional parameters required in SINV are set as follows: 
7=1 (invalidation constant), ß = 2 (request constant), 
6 = 8 (push threshold). 

We begin our simulations with a very basic scenario, and 
then later describe several additional scenarios. The results 
show that our invalidation scheme can achieve the same stal- 
eness as the TTL approaches with lower response time and 
overhead. The advantages are most pronounced for popular 
pages which do not change often. 

5.1    Basic Scenario 

In this scenario we consider a single two-level caching hier- 
archy (5 leaf caches and a top-level cache) embedded in a 
simple network topology, as shown in Figure 3. As we dis- 
cussed in Section 4, if we treat the caches as infinite then 
the behavior attributed to each page is independent of other 
pages. Consequently, we choose the workload in our basic 
scenario to have only a single page so that we can focus 
more narrowly on how the performance of these consistency 

14The latency between sending a request and complete receipt of 
the response. 

15We are not able to accomplish this in all cases. We elaborate on 
this below. 

Top-tovel cache 

Figure 3: Network topology in the basic scenario. All links 
between server/clients and leaf caches have 10Mb bandwidth 
and 2ms delay. All links among caches and the dummy node 
have 1.5Mb bandwidth and 50ms delay. 

protocols depends on the reading and writing patterns of a 
page. This single page, chosen to be 1KB in size, is read and 
written according to Poisson processes with average rates r 
(per-client) and w, respectively. We consider two cases: a 
write-dominated (WD) page, where the read rate (per-client) 
is one per 2.5 hours and the write rate is 1 per 15 minutes 
(f = 10); and a read-dominated (RD) page, where the read 
rate (per-client) is 1 per 2 minutes and the write rate is 1 
per 10 minutes (^ = 5). 

We now describe some of the simulation details. The 
IMS and GET messages are 43 bytes, and each invalidation 
record adds an additional 32 bytes to a heartbeat. Because 
in reality the header of a heartbeat is amortized over many 
pages, we ignore it in these single-page simulations. The 
RD and WD simulations were run for approximately one 
day and five days (simulation time), respectively, with the 
initial 7 and 15 minutes taken to be a warmup period (for 
the RD and WD simulations, respectively). 

Tables 2 and 3 show the results for RD and WD pages, 
respectively. Because of the sensitivity of the results to the 
tuning parameters, exactly matching the average staleness 
across protocols is difficult. When confronted with this, we 
chose parameter values for ATTL and FTTL that yielded 
slightly higher average staleness than our BINV benchmark 
(e.g., 8.37 and 11.9 msec versus 8.06 msec in Table 2). This 
gives us a lower bound on the overhead and delay incurred 
for the ATTL and FTTL to match the staleness of BINV. 
We first discuss the RD case, and begin by comparing BINV 
to the TTL-style protocols. Compared with PA, BINV uses 
26% less bandwidth, has 27 times less server hit count and 
10 times faster response time. Because FTTL and ATTL 
are required to maintain the same low staleness as BINV, 
they both have small TTL values (ATTL threshold equals 
0.0105 and FTTL time-to-live equals 9.5 seconds) and there- 
fore behave like PA. Their bandwidth is slightly higher and 
their response time and server hit count are much higher 
than those of BINV. BINV's performance is similar to that 
of OTTL, but it has slightly higher bandwidth consumption 
due to its invalidation overhead. Comparing BINV to PINV, 
we find, as expected, that pushing data reduces response 
time and eliminates server hits while increasing bandwidth 
by only about 6%. Because the read rate is so much higher 
than the write rate, updated pages are eventually fetched 
from the server, so pushing them out immediately for this 
read-dominated workload does not incur additional band- 
width overhead. SINV's performance is very close to that 
of PINV. 

Turning to the WD case, we see that the problem of 
matching the average staleness across the tunable proto- 
cols is exacerbated. This is due to the fewer number of 
stale hits (in absolute terms) in a write-dominated work- 



BINV ATTL 
(0.0105) 

FTTL 
(9.5) 

OTTL PA SINV PINV BINV ATTL 
(0.01) 

FTTL 
(12) 

OTTL PA SINV PINV 

AS 8.06 8.37 11.9 0.00 0.00 0.34 0.09 AS 15.6 16.2 17.5 0.00 0.00 2.47 0.88 
MS 4.95 17.00 8.43 0.00 0.00 1.08 0.21 MS 6.44 26.46 10.47 0.00 0.00 1.25 0.94 
SR 0.38 0.15 0.27 0.00 0.00 0.06 0.05 SR 0.54 0.12 0.34 0.00 0.00 0.26 0.16 
TB 6.90 8.73 8.42 5.75 9.33 7.35 7.38 TB 18.16 23.04 22.67 15.55 23.83 19.45 19.53 
CR 0.06 0.53 0.48 0.05 0.61 0.04 0.04 CR 0.18 0.49 0.44 0.12 0.53 0.12 0.12 
SH 123 2684 2324 124 3300 8 0 SH 124 2290 1880 126 2583 8 1 
SB 158.4 694.1 617.4 147.9 824.2 153.9 153.6 SB 158.6 607.2 560.9 150.3 694.5 154.0 153.6 

Table 2: Statistics of a read-dominated page in the basic 
scenario. AS: average staleness (millisecond); MS: maxi- 
mum staleness (second); SR: stale hit rate (%). TB: total 
bandwidth (MB-Hop). CR: client response time (second). 
SH: server hits. SB: server bandwidth (KB). 

BINV ATTL 
(0.1) 

FTTL 
(80) 

OTTL PA SINV PINV 

AS 1.22 544.4 13.1 0.00 0.00 1.22 0.00 
MS 0.29 76.19 3.11 0.00 0.00 0.29 0.00 
SR 0.42 0.84 0.42 0.00 0.00 0.42 0.00 
TB 1.40 1.41 1.41 1.35 1.42 1.40 6.16 
CR 0.41 0.60 0.61 0.46 0.62 0.41 0.26 
SH 155 224 230 151 236 149 1 
SB 184.7 193.7 194.9 179.1 197.2 184.8 275.4 

Table 3:  Statistics of a write-dominated page in the basic 

load. Nonetheless, the data show that BINV's performance 
advantage is now reduced. For the time-to-live value shown 
in the table, FTTL has worse staleness than BINV, nearly 
the same bandwidth but only about 50% longer response 
time and 50% higher server hit count. ATTL has worse 
average staleness while the other metrics are comparable to 
FTTL. PA has performance very similar to FTTL (reflecting 
the very small TTL used in FTTL). Again, PINV achieves 
very low response time and server hit count, but this time 
at the cost of a factor of 4 in bandwidth consumption. Note 
that SINV behaves like BINV in this WD case, but behaved 
more like PINV in the RD case; this was the goal of the 
adaptive algorithm in SINV, to actively push pages only 
when they are read-dominated. 

These results are completely consistent with the theo- 
retical analysis of Section 4. The major benefits of inval- 
idation schemes (over TTL-based schemes) are savings of 
response time and server hit count, and these benefits are 
much more pronounced in the read-dominated case. Adding 
push increases these advantages further, but at the cost of 
significantly more bandwidth in the WD case. 

In this basic scenario, and in each of the following scenar- 
ios, we assume that the heartbeat rate h is greater than the 
write rate w times the number of cache-hops H. This will 
likely be true for the vast majority of pages, however there 
are some pages, such as those containing stock quotes, that 
will change faster than jj. If such pages are also popular, 
our invalidation approach will deliver a significant fraction 
of pages stale (since the invalidations are still in transit from 
server to leaf cache); see [32] for more details. Such pages 
are better delivered using multicast techniques, such as Con- 
tinuous Multicast Push [24]. 

5.2    More Complex Topology 

In the second scenario, to test the effect of having a more 
complicated network topology, we took a 3-level caching hi- 
erarchy (leaf, intermediate, and top-level), with a branching 

Table 4: Statistics of a read-dominated page in a more com- 
plex topology. 

BINV ATTL 
(0.01) 

FTTL 
(95) 

OTTL PA SINV PINV 

AS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
MS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
TB 6.38 6.47 6.45 6.24 6.48 6.38 26.68 
CR 0.76 0.91 0.89 0.76 0.91 0.76 0.68 
SH 131 192 186 130 193 131 1 
SB 156.1 156.8 156.5 154.2 161.0 156.1 274.8 

Table 5: Statistics of a write-dominated page in a more 
complex topology. 

ratio of 2 at each level, and embedded it into a 300 node 
random transit-stub network topology created by the GT- 
ITM [5] topology generator. The top-level cache and all. 
intermediate caches are on transit nodes. All leaf caches are 
in the stub network associated with the transit node where 
the parent intermediate cache resides, and each intermediate 
cache is in a different stub network. 

Tables 4 and 5 present the results from simulations on 
this topology with RD and WD pages, respectively. The 
basic relative trends in the data appear unaffected by intro- 
ducing a more complicated topology. For the RD page, the 
TTL approaches have worse response time and server hit 
counts than BINV, and the push approaches offer reduced 
response time, server hit counts, and staleness without in- 
curring any additional bandwidth. Compared with the RD 
case, BINV's advantages are greatly reduced in the WD case. 

5.3    More Complex Workload 

The Poisson workload used so far is not intended to be an 
accurate model of reality; rather, it is merely a simple test 
case. We have augmented the simulations presented here 
with simulations on a wide variety of other workloads. We 
have considered compound pages, where the page contains 
multiple objects (such as embedded graphics). We have also 
considered reading and writing processes that are heavy- 
tailed and processes that are uniformly distributed. The re- 
sults from these simulations are presented in [32]. Those re- 
sults were qualitatively similar to these presented here, and 
space limitations prevent us from including them. However, 
we do want to present data from one additional workload. 

Our previous data was generated using artificial read and 
write processes. To get a sense of a more realistic scenario, 
we now consider a trace-driven workload consisting of the 
read sequence of a single page extracted from a real trace. 
We pick two pages, one popular and one unpopular, from a 
5-day segment of the UCB Home-IP trace [14], and apply 
the consistency algorithms to the two pages. The popular 
page has 62,582 requests, and the unpopular page has 21. 
No page modification data is available for these traces, so we 
used a Poisson model with an average of one modification 



BINV ATTL 
(0.0015 

FTTL 
(8) 

OTTL PA SINV P1NV BINV ATTL 
(0.013) 

FTTL 
(12) 

OTTL PA SINV PINV 

AS 1.32 1.36 1.65 0.00 0.00 0.05 0.01 AS 9.88 12.5 12.2 0.00 0.00 0.73 0.43 
MS 4.69 10.90 8.76 0.00 0.00 2.11 0.18 MS 7.15 20.77 11.42 0.00 0.00 1.81 1.38 
SR 0.07 0.04 0.06 0.00 0.00 0.01 0.01 SR 0.41 0.27 0.30 0.00 0.00 0.09 0.06 
TB 27.16 75.15 62.07 22.03 91.75 27.07 27.07 TB 7.16 9.19 8.88 6.01 9.92 7.56 7.58 
CR 0.01 0.45 0.33 0.01 0.60 0.01 0.01 CR 0.09 0.74 0.67 0.09 0.93 0.05 0.05 
SH 119 39087 25182 119 58124 2 1 SH 128 2543 2154 128 3260 8 1 
SB 72.6 8342 5380 41.8 12381 64.8 64.1 SB 198.7 754.5 669.8 180.5 936.3 194.8 192.3 

Table 6: Statistics of a popular page in the UCB Home-IP 
trace. 

Table 8:  Statistics of a read-dominated page in the basic 
scenario with 3% per-link loss rate. 

Table 7: Statistics of an unpopular page in the UCB Home- 
IP trace. 

BINV ATTL 
(0.2) 

FTTL 
(2800) 

OTTL PA SINV PINV BINV ATTL 
(0.03) 

FTTL 
(135) 

OTTL PA SINV PINV 

AS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 AS 34.9 544.4 333.1 0.00 0.00 34.9 1.22 
MS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MS 4.40 76.19 76.19 0.00 0.00 4.40 0.29 
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SR 0.84 0.84 0.84 0.00 0.00 0.84 0.42 
TB 279.8 281.8 279.2 279.2 283.0 279.8 2781.5 TB 1.59 1.57 1.54 1.50 1.59 1.59 6.27 
CR 0.61 0.80 0.80 0.77 0.83 0.61 0.55 CR 0.53 0.93 0.95 0.75 0.89 0.53 0.36 
SH 18 19 21 17 21 18 0 SH 155 239 222 151 239 149 1 
SB 42.5 43.1 43.5 42.6 43.5 42.5 217.5 SB 224.3 236.5 219.1 223.0 238.8 212.1 316.4 

Table 9:  Statistics of a write-dominated page in the basic 
scenario with 3% per-link loss rate. 

per hour (based on data in [10]). With this modification 
rate, the popular page is read-dominated, and the unpopular 
page is write-dominated. Tables 6 and 7 present the results 
from simulations for these two pages. 

These results are consistent with our previous results. 
The only novelty here is the fact that for the popular page 
the IMS overhead of the TTL approaches is more evident. 
In order to maintain the same staleness as BINV, ATTL 
required 3 times as much bandwidth as BINV, and FTTL 
more than doubled bandwidth. 

5.4    The Effect of Packet Losses 

Up to this point, our simulations do not include any packet 
losses. We now return to our basic scenario and introduce 
per-link packet loss rates in order to evaluate the effect of 
packet losses on the consistency protocols. 

In our protocol, both invalidations and pushed updates 
are sent out via unreliable multicast. When packet loss is 
present, we expect that performance will degrade. Because 
invalidations are piggybacked in several consecutive heart- 
beats, but pushes are sent only once, we expect that inval- 
idations are less vulnerable to packet loss than pushes. In 
order to test these expectations, we introduced 3% per-link 
losses into our basic scenario. For the network shown in 
Figure 3, 3% per-link loss rate corresponds to end-to-end 
loss rates between 3% and 6% (which is intended to match 
the loss rates of between 2.65% and 5.28% found in [22]). 
Results are shown in Tables 8 and 9; the data presented are 
averages over 9 runs. 

Packet loss increases the bandwidth and response time 
for all the protocols. BINV's stale hit rate and average stal- 
eness increase slightly, and the maximum staleness increases 
significantly, because the lost invalidations need at least an- 
other heartbeat interval to reach leaf caches. SINV behaves 
similarly to BINV but, as expected, PINV, is more signifi- 
cantly affected by packet loss; its average staleness and max- 
imum staleness are increased substantially. 

When loss rate grows even bigger, some caches will time 
out due to consecutively lost heartbeats, and our failure re- 
covery mechanism will be triggered (see Section 6). This will 

impose a transient increase in response latency (because all 
affected cached pages are invalidated, and an IMS will be 
generated by the next request). 

5.5    Related Work 

There have been several recent papers comparing the effec- 
tiveness of TTL and invalidation approaches: Worrell [30], 
Gwertzman and Seltzer [15], and Cao and Liu [6]. Wor- 
rell claimed that when FTTL has similar bandwidth con- 
sumption as unicast invalidation, it has 20% stale hits, and 
therefore concluded that unicast invalidation is preferable 
for strong consistency. Gwertzman and Seltzer argued that 
bimodal lifetime of web pages makes ATTL the preferred 
choice; their trace-driven simulation showed that ATTL had 
few stale hits (<5%) and took much less bandwidth than 
unicast invalidation. Using real systems in trace-driven ex- 
periments, Cao and Liu confirmed that ATTL had few stale 
hits, but they found that'ATTL and unicast invalidation had 
similar bandwidth usage. Moreover, they found that unicast 
invalidation at times led to increased latency because of the 
message processing overhead at the server. 

Our results differ from those in previous work for a cou- 
ple of reasons. Compared to simple unicast invalidation, our 
invalidation protocol can avoid much of the redundant inval- 
idation traffic. Thus, in most cases, it takes less or the same 
bandwidth as ATTL while achieving the same level of page 
staleness and resulting in much less server load and client 
response time. At the same time, our work is somewhat 
complementary to the previous investigations. Because we 
focus on single-page workloads when evaluating this pro- 
tocol, we are able to identify more precisely the effect of 
different reading and writing processes on the results. In ad- 
dition, we focus on average staleness, rather than the stale 
hit rate, as the crucial staleness metric. Finally, because we 
assume that perishable pages require very low staleness, we 
focus our simulations on operating regimes with much lower 
staleness measures than previous studies. 



6    Additional Design Issues 

We have presented the basic design of our protocol in an 
ideal environment with infinite caches that never fail, a sin- 
gle stable hierarchy with synchronized clocks, and with all 
pages included in the architecture. In this appendix we dis- 
cuss additional aspects of the design to cope with more re- 
alistic settings. 

Clock Skew In Section 3 we assumed that the clocks in the 
caching hierarchy were perfectly synchronized. However, if 
the maximal clock skew between a cache and its upstream 
and downstream neighbors is bounded by e then the cache 
timeout period should be T—e instead of T. We assume that 
in typical cases T >• e so this modification in the protocol 
will have little impact. 

Finite Cache Caches are, in reality, finite. While we argue 
in Appendix A that our design does not require unrealisti- 
cally large amounts of state in caches, it is important that 
the design can cope with situations where the cache has ex- 
ceeded its capacity. First, to keep the invalidation contract 
in force, a cache need only remember the meta-data (the 
URL and the last-modification time) about the page, and 
can freely discard the actual contents of the page. Second, 
if the cache is forced to discard the meta-data itself, then 
it must send an invalidation for that page to its children 
and/or its parent depending on whether the page has been 
read from those directions. While this may impact perfor- 
mance, the correctness of the protocol is unaffected. 

Failure Recovery The algorithm as described deals with 
the case where a cache fail-stops. However, it does not de- 
scribe how a cache can recover from a failure. We require 
that caches recover in a naive state; that is, they invalidate 
all pages in the cache and send a LEAVE message to their 
parent and child caches. This allows all affected invalidation 
contracts to be broken before the cache reattaches. We have 
the following property: 

Property 4 As long as caches that have failed recover in a 
naive state then the three properties in Section 3.1 hold even 
in the presence of failures and recoveries. 

One remaining problem is how to recover the server rout- 
ing entries that were evicted during a partition or lost during 
a failure. There are two cases. First, if a parent cache Cl 
times out a child cache C2 from whom it sourced servers, it 
needs to send a JOIN-QUERY after hearing from C2 again. 
Cl can piggyback the JOIN-QUERY in a heartbeat, just as 
it does with invalidations. Second, if C2 times out Cl, C2 
needs to send Cl a JOIN which contains its server routing 
table, i.e., all of the servers from which it has heard JOINs. 
In both cases, when Cl recovers its routing table, it needs 
to notify its parent of its current routing table. 

Direct Request Using a hierarchy (or cache mesh) to for- 
ward requests to servers can introduce significant delay [1]. 
Because requests in our hierarchy might travel both up and 
down the hierarchy, this risk of delay is higher. However, 
we can extend our design so that the client's primary cache 
can, upon a cache miss, go directly to the server to get 
the data. When the cache receives the data, it then, after 
handing the data to the client, establishes the invalidation 
contract by sending a pro forma request up the hierarchy. 

The pro-forma request is used merely to establish the re- 
quired correct state in the hierarchy, and does not elicit a 
reply of data from the caches or the server. The pro-forma 
carries with it the Last-Modified time of the page returned 
by the server. It stops being forwarded when it hits a cache 
which has that version of the page, or meta-data for it, in 
residence. If the pro-forma hits a cache (or server) that has 
a more recent version of the page in residence, an invalidate 
is generated and sent back down the path. If the pro-forma 
hits a cache with a valid older version of the page, no action 
need be taken since an invalidate is on the way. In this man- 
ner, the caching hierarchy provides invalidations while the 
delivery of actual web pages bypasses this hierarchy. This 
alleviates some of the disadvantages of a web caching hierar- 
chy, such as parent cache overloading and increased response 
time [26]. 

Multiple Hierarchies and Multi-Homing There will obvi- 
ously be multiple caching hierarchies in the Internet, al- 
though we expect the number to be relatively limited (less 
than, say, 100). Our design can easily be extended to handle 
these multiple hierarchies by having the Top-level cache of 
one hierarchy contact caches in other hierarchies. This can 
be accomplished using a single multicast group comprised 
of the members of all Top-level caches. Each top-level cache 
multicasts its heartbeats to this group, as well as to its multi- 
cast group in its own hierarchy. Whenever a top-level cache, 
call it TLC1, gets a request for an unknown web server, it 
queries the server about its top-level cache, call it TLC2, 
and then forwards the request to TLC2 as if TLC2 were a 
parent cache. 

While our design requires that a server only attaches to 
a single cache in a given hierarchy, we allow it to attach to 
multiple hierarchies; we call this a multi-homed server. The 
design works without significant modification. 

Supplying Service to a Subset of Pages We do not expect 
that all pages will need the level of consistency provided by 
our architecture. In order to provide invalidations on a sub- 
set of all web pages, we propose a new HTTP header field 
that describes whether or not the page should be subject 
to this consistency architecture. The simplest approach is 
to have the server set this field. There are some situations 
where it might be appropriate to allow a client to set this 
field, thereby requesting invalidation service for the page. 
Of course, the server must be willing to support this ser- 
vice by participating in the sending out of heartbeats and 
invalidations. There are some subtle issues in both of these 
approaches which are too detailed to discuss here but are 
covered in [32]. 

Deploying in Existing Cache Hierarchies In order to im- 
plement our protocol in existing cache hierarchies, we can 
enhance ICP [29], the de facto inter-cache communication 
protocol, to support our consistency protocol. Four new 
types of ICP messages are needed: heartbeat, JOIN, LEAVE, 
request notification, and PUSH. If direct request is desired, 
another message type, pro forma is needed. Because these 
messages do not interact with existing ICP messages, adding 
them to ICP is straightforward. 

7    Conclusion 

In this paper we have presented and evaluated a web cache 
consistency protocol based on invalidation.   Our proposal 



builds on previous work in the literature, combining the 
ideas of multicast invalidations with volume leases and in- 
corporating them within a caching hierarchy to make the 
design more scalable. Our performance evaluation suggests 
that when the heartbeat rate h is larger than the writing 
rate times the number of hops (wH), then the invalidation 
approach is very effective in keeping pages relatively fresh. 
When pages are write-dominated, then the invalidation ap- 
proach offers few advantages since all the protocols, if they 
are to ensure freshness, must go back to the server to get a 
valid page. However, when pages are read-dominated, which 
we think will be the common case for perishable pages (e.g., 
CNN and other news pages), then the invalidation approach 
offers significant reductions in server hit counts and client re- 
sponse time. In both cases, our invalidation scheme requires 
similar or less bandwidth than the TTL-style protocols. 

Our analysis focused exclusively on the technical aspects 
of the protocol. However, the remaining questions, and the 
barriers to deployment, may be more economic and institu- 
tional in nature. Our design uses a set of relatively stable 
and well-managed caching hierarchies (though it can work 
with other cache organizations). Currently this does not 
describe the current state of web caching, and so assuming 
the existence of caching hierarchies may seem like a dubi- 
ous foundation on which to build our architecture. How- 
ever, the institutional trends in ISPs appear to be one of 
consolidation, and in the future these large ISPs may very 
well provide such a caching hierarchy as part of their ser- 
vice (and the mirroring service provided by ©Home is some 
evidence in this direction). Moreover, the hierarchy we en- 
vision does not require central management (since parents 
need not know the list of their children explicitly) nor must 
it be deployed ubiquitously to be useful, so the barriers to 
its realization are somewhat reduced. 

In addition, the deployment of any such a web cache 
consistency protocol would only be undertaken if ISPs de- 
termine that there is sufficient demand for relatively fresh 
versions of perishable pages. It seems clear that perishable 
pages comprise only a small fraction of current web usage. 
On this basis one might be tempted to dismiss the consis- 
tency problem as unimportant. However, if the web is to 
serve as the foundation on which much of the information 
infrastructure is built, then perhaps it should be augmented 
to meet the needs of this class of pages. 

Clearly the whole issue of deployment, depending as it 
does on such unknowables as the future usage and economics 
of the web, and the nature of the ISP business, is far beyond 
our ken. We only caution that the growth path of the web 
caught many of us by surprise, and we should be humble in 
our confidence to predict, based on its current usage and ex- 
isting institutional arrangements (where we expect the case 
for its deployment is weak) whether the future of the web 
would be significantly aided by deploying such a consistency 
architecture, and whether it is organizationally feasible. Our 
goal here was merely to demonstrate that it is indeed tech- 
nically feasible. 
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A    Estimation of State and Bandwidth Requirements 

Our architecture requires cache state and inter-cache com- 
munication in order to provide loose consistency. In this 
section we provide some very crude estimates on the cache 
state and inter-cache bandwidth required by our scheme. 
These estimates, which should not be taken as a definitive 
quantitative statement about the overhead of the protocol, 
indicate that the scheme is indeed feasible. 

A.l    State Requirements 

Our protocol introduces two additional items into the cache 
state: page metadata and the server routing table. We first 
estimate the amount of metadata that might be stored in 
a cache. If we assume that that a top-level cache holds no 
more than 320 million pages (the estimate of all publicly 
indexable web pages [18]), and one meta-data record con- 
tains 80 bytes (which is enough for a URL, last-modification 
time, push counter and several flags), this results in about 
25.6GB of metadata. This is quite small compared to mod- 
ern large caches [16], and is dwarfed by the storage require- 
ments needed to store the actual pages. 

Next, we estimate the size of the server routing table. 
The top-level cache, if there is only a single hierarchy, has a 
list of every server. We assume there are roughly 4 million 
web servers (Netcraft's web server survey [20]). The result- 
ing size of the server routing table is on the order of 32MB, 
assuming 4 bytes to store each server address and 4 bytes for 
each child cache address. This again poses no challenge to 
well-equipped caches. Thus, for the purposes of analyzing 
our design, we can reasonably assume that caches are effec- 
tively infinite (at least as far as meta-data is concerned). 

A.2    Invalidation traffic 

Our design generates an invalidation every time a read page 
is written, and we now seek to estimate how much traffic this 

produces. Let's characterize every page P by a reading rate 
Tp and a writing rate wp. The number of invalidations gen- 
erated by a page is bounded above by raax[rp,wp]; we will 
call a page write-dominated if rp < wp and read-dominated 
if rp > wp. A bound on the invalidation rate for a given 
cache is Y"]D .        .   max£rp,u;p] where the sum is over all £—*P in cache L       ' i 

valid pages in the cache. 
We first estimate the traffic seen at a top-level cache. 

If there is significant logical locality to requests, so that 
pages tend to be more frequently requested by clients close 
to them in the hierarchy, then there will be many pages 
that are never cached at the top-level cache. However, we 
have no way of estimating the extent of this effect, and so 
will assume the worst case that all pages are indeed cached 
at the top-level cache. We estimate that the entire Web 
has 1 billion pages, which is three times the size of pub- 
licly indexable pages [18]. To estimate rp and wp, we use 
numbers from the DEC proxy traces cited in [10]. This 
trace covers a large population (7400 distinct clients), and 
contains 505,000 requests of 204,000 distinct pages over a 
period of 2 days. Most pages, roughly 80%, have only 
one access in the trace, and we consider these to be write- 
dominated pages. It is difficult to estimate rp from the 
trace due to its limited duration. Instead, we use the av- 
erage number of such pages read by each user, then extend 
that rate to the web population. In the DEC trace, about 
50% of the requests went to these write-dominated pages. 
We can compute the read rate of such pages by each user: 
0-5 * SSIgSO * 2t24i36oo = 0.0002 (request/user/second). We 
now extend this to the entire web user population. It is es- 
timated that the web has 151 million users as of December, 
1998 [21], and we assume that 1% of these users are as active 
as those in the DEC trace, and the rest are 100 times less ac- 
tive. This yields a total sum of rp over all write-dominated 
pages of 0.0002 * (1.51 + 149.49 * 0.01) * 106 = 601 (invali- 
dation/second). 

We consider the other 20% of pages read-dominated. 
Prom figures in [10], we conservatively estimate their av- 
erage change rate as once every 1 hour (wp = 0.00028 per 
second). Without any evidence on which to base a more ed- 
ucated guess, we conservatively assume that 0.1% of all Web 
pages are sufficiently popular to be read-dominated. Recall 
we estimate there are 1 billion web pages, so the sum of wp 
over all read-dominated pages is 0.00028 * 0.001 * 109 = 280 
(invalidations/second). 

If we assume that each invalidation is repeated 5 times, 
and 32 bytes per invalidation, this yields a total traffic level 
of (280 4- 601) * 1280 = 1.1Mbps. Repeating this calculation 
for the AT&T trace in [10] yields an estimate of 1.7Mbps. 

We next estimate the traffic at an intermediate-level cache. 
We assume that the DEC and AT&T traces are reasonable 
representatives of intermediate-level caches; using their es- 
timates of the number of readers and the number of pages 
in residence (rather than the global numbers used in the 
top-level estimates), we arrive at estimates of 75Kbps and 
90Kbps for the DEC and AT&T traces, respectively. 

The above estimates assume all pages are included in 
the consistency architecture; we do not expect that most 
pages will be considered perishable, and so the consistency 
architecture will be carrying all web pages only a small frac- 
tion of the total web traffic. Moreover, we completely ne- 
glected any locality of reference, and made rather generous 
assumptions about the number of popular pages (.1% of the 
web!). Nonetheless, in spite of these rather pessimistic as- 
sumptions, the overall bandwidth levels are rather reason- 
able. 


