
Virtual InterNetwork Testbed (VINT): methods and systems

Final Report

For

Contract DABT63-96-C-0105

Prepared by

Xerox Corporation
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304

Sponsored by

Defense Advanced Research Projects Agency
3701 N. Fairfax Drive

Arlington, VA 22203-1714

Monitoring Agency

Directorate of Contracting
ATZS-DKO-I

P.O. Box 12748
Fort Huachuca, AZ 85670-2748

20000317 041
February 21, 2000

REPORT DOCUMENTION PAGE
Form Approved

OMB No. 0704.0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collections of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate of Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE

21 February 2000

3. REPORT TYPE AND DATES COVERED

Final Report 9-26-96 to 2-21-00

4. TITLE AND SUBTITLE

Virtual Internetwork Testbed (VINT): Methods and Systems

6. AUTHOR(S)

Lee Breslau

5. FUNDING NUMBERS

C: DABT63-96-C-0105

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Xerox Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, CA 94304

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Directorate of Contracting

Attn: ATZS-DKO-I

Post Office Box 12748

Fort Huachuca, AZ 85670-0414

10. SPONSORING/MENTORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release, Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The goal of this project, as outlined in our original proposal, was to enhance the state of the art of network protocol design
through the creation of a network simulator and related tools, and to validate this software by using it in our ongoing research.
As described below, we have met these objectives. This VINT Project has made several releases of the ns simulator, the nam
network animator and other related tools (e.g., topology generators). In addition, this simulator has been used in our ongoing
research program, resulting in several technical papers on a range of topics. More importantly, the simulator has been widely
adapted by a broad community of networking researchers and has been used in a wide range of research reflected in scores of
technical papers.

14. SUBJECT TERMS

ns simulator, Asymptotic Behavior of SRM, Measurement-Based Admission

Control, Core-Stateless Fair Queueing, Web Caching

15. NUMBER OF PAGES

95

16. PRICE CODE

17. SECURITY
CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY
CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500
00002IB

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18, 298-102

VINT Project Final Report

Xerox PARC

February 21, 2000

Introduction

This document and references herein constitute a final report of the DARPA-funded VINT
Project (Virtual InterNetwork Testbed) at the Xerox Palo Alto Research Center. This
project has been a collaboration between Xerox PARC, USC Information Sciences Institute
and the Lawrence Berekeley National Lab. While much of the work was accomplished
jointly, this report will focus primarily on contributions at Xerox.

The goal of this project, as outlined in our original proposal, was to enhance the state
of the art of network protocol design through the creation of a network simulator and
related tools, and to validate this software by using it in our ongoing research. As described
below, we have met these objectives. The VINT Project has made several releases of the ns
simulator, the nam network animator and other related tools (e.g., topology generators).
In addition, this simulator has been used in our ongoing research program, resulting in
several technical papers on a range of topics. More importantly, the simulator has been
widely adopted by a broad community of networking researchers and has been used in a
wide range of research reflected in scores of technical papers.

ns simulator

The primary development effort of the VINT project has been focused on the ns network
simulator. Version 1 of the simulator was developed at the University of California at
Berkeley prior to the start of the VINT project. This version, which had been used in
important network research had two major drawbacks. First, the set of modules supporting
network protocols and algorithms was fairly limited because it had only been used in the
study of a limited number of research problems. Second, the simulator architecture was
not ideal for future extensibility.

Under the auspices of the VINT project ns was re-architected, reflecting a more modu-
lar and extensible design. This new architecure is embodied in version 2 of the simulator.
In addition, the functionality of the simulator, reflected in the number and kinds of network
algorithms and protocols it implements, has been expanded dramatically. Additional func-
tionality includes (but is by no means limited to) several routing protocols (both unicast
and multicast), many variants of TCP, new router scheduling algorithms, multicast trans-
port protocols, wireless networking and web caching. Several ancillary tools have also been

released to support such things as network animation, scenario generation and topology
generation. Specific contributions at Xerox to the simulator include modules supporting
model-based and trace-based generation of simulator traffic, router scheduling algorithms
(e.g., DRR), web caching functionality (server, proxy and client modules), and functional-
ity for support of real-time services (signalling protocol, scheduling and admission control
algorithms, token bucket filters). In addition we made contributions to the core simulator
infrastructure in areas such as event scheduling, random number generation, random vari-
able support and scaling, and we contributed to the development of the network animator
nam.

The VINT project has made several releases of ns version 2 (the most recent being
version 2.1b6 in January of this year.) It has gained widespread acceptance among the
networking research community and it has had a broad impact on the work of this commu-
nity. Anecdotally, it is by far the most commonly used simulator by researchers interested
in the design and testing of new protocols and algorithms for the Internet. This is reflected
in the following:

• The simulator has been downloaded by hundreds of sites worldwide.

• The mailing list for users of the simulator (ns-users@mash.cs.berkeley.edu) generates
several hundred messages per month.

• It is by far the most commonly used simulator in papers submitted to major academic
conferences (such as Sigcomm and Infocom.)

• Many pieces of contributed code have been produced by the user community, further
enhanching the functionality of the simulator.

The ns simulator is available at http://www-mash.cs.berkeley.edu/ns/. Additional infor-
mation about the simulator and the broader contributions of the project is available in [1].
The network animator, nam, is described in [5].

Research Using ns

A critical factor in the success of the VINT project is that the software it has produced has
been employed to support ongoing network research of the project members. Subjecting the
simulator to the stress of daily use has served to validate its design, highlight weaknesses,
and inform continuing improvements and development of the simulator. This strategy is
largely responsible for producing a piece of software that has widespread use and impact. In
this section we describe some of the ways in which ns has been used in research. We confine
our discussion to work performed at Xerox PARC. More complete listings of research
making use of ns can be found at http://www-mash.cs.berkeley.edu/ns/ns-research.html
and http://netweb.usc.edu/vint/publications.html.

Measurement-Based Admission Control

The purpose of this research was to compare the performance of several measurement-based
admission control algorithms that had been proposed in the literature. Little comparison

among these algorithms existed previously. This study required the addition of new func-
tionality to ns to implement a scheduling algorithm for real-time services, a signalling
protocol to support admission control, and the admission control algorithms themselves.
The architecture embodied in version 2 of the simulator greatly facilitated this task. Specif-
ically, the modular architecture enabled clean separation of functionality where appropriate
(e.g., between measurement-based admission control algorithms and load estimators) and
the object-oriented nature of the simulator provided a convenient platform on which to
program several different admission control algorithms. This study is described in [4]. In
addition to the valuable insights learned from this study, we hope that by implementing
the existing algorithms in the simulator, it will be much easier for researchers proposing
new algorithms to evaluate their algorithms.

Core-Stateless Fair Queueing

Core-Stateless Fair Queueing (CSFQ) is an algorithm whose aim is to provide isolation from
misbehaving flows and fairness between flows without requiring core routers to maintain
per flow information. This provides the benefits of Fair Queueing while overcoming its
scalability problems. CSFQ was evaluated using simulation to compare its performance
to that of FIFO scheduling with tail dropping, FIFO scheduling with RED, and DRR.
This simulation study exposed one of the key benefits of ns. We were able to leverage the
existing broad range of functionality available in ns (e.g., TCP, DRR, RED, UDP) and
avoid duplication of work. Hence, researcher effort could be focused on implementing and
studying a new algorithm (CSFQ) while avoiding duplication of previous implementation
efforts. The results of the CSFQ study are presented in [7].

Web Caching

We also used ns in a study of web caching. The goal of this research was to design a scalable
web cache consistency architecture. The simulation evaluation consisted of a comparison
of the proposed architecture to other schemes, such as Time-To-Live based algorithms and
traditional invalidation approaches. As in the admission control work described above, the
modular nature of the simulator facilitated the implementation of these competing designs
(e.g., as different variants of web caches.) This work resulted in significant new web-related
functionality in ns, including support for web servers, proxy caches and clients. A more
complete description is available in [8].

Asymptotic Behavior of SRM

In another study, ns was used to study the global loss recovery in Scalable Reliable Mul-
ticast (SRM). One interesting aspect of the simulations in this study is that they did not
use the existing node and routing structures in ns. This study was interested in scaling
behavior and at the time it was performed, many of the subsequent enhancement to ns
that improved its scaling were not yet available. Nonetheless, the simulator was beneficial
to this study as the node and routing structures could be replaced easily with components
specially tailored for the problem at hand while retaining the core simulator event handling

mechanism. This demonstrates that as important as the particular protocol and algorithms
implemented in the simulator is the extensible framework that allows the simulator to be
modified to support virtually any problem requiring event driven simulation. This study
of scaling in SRM is reported in [6].

Service Priority and Adaptive Applications

This study examined the impact of multiple levels of scheduling priority on delay adaptive
applications (e.g., VAT audio tool). As with our other work, having a simulator with the
existing functionality of ns limited the amount of work needed to perform the study. In this
case, we only needed to add different receiver behaviors to the simulator, taking advantage
of existing traffic generation, router and link functionality. This work is reported in [2].

Priority Dropping and Layered Video

While the prior work looked at scheduling priority, the final study we mention examined the
effect of drop priority on layered video applications. Prior work had posited that priority
dropping had poor incentive properties while providing good performance. In this study,
with the aid of simulation, we showed that the performance of priority dropping was not
as good as expected while the incentive properties were better than anticipated. This work
is described in [3].

References

[1] Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, Padma Haldar,
Mark Handley, Ahmed Helmy, John Heidemann, Polly Huang, Satish Kumar, Steven
McCanne, Reza Rejaie, Puneet Sharma, Kannan Varadhan, Ya Xu, Haobo Yu, and
Daniel Zappala. Improving simulation for network research. To appear in IEEE Com-
puter, March 1999.

[2] Sandeep Bajaj, Lee Breslau, and Scott Shenker. Is service priority useful in networks?
ACM Sigmetrics, pages 66-77, June 1998.

[3] Sandeep Bajaj, Lee Breslau, and Scott Shenker. Uniform versus priority dropping for
layered video. In Proceedings of ACM Sigcomm, pages 131-143, September 1998.

[4] Lee Breslau, Sugih Jamin, and Scott Shenker. Comments on the performance of
measurement-based admission control algorithms. In IEEE Infocom, March 2000.

[5] Deborah Estrin, Mark Handley, John Heidemann, Steven McCanne, Ya Xu, and Haobo
Yu. Network visualization with the VINT network animator nam. To appear in IEEE
Computer, March 1999.

[6] Suchitra Raman, Steve McCanne, and Scott Shenker. Asymptotic behavior of global
recover in SRM. In ACM Sigmetrics, pages 90-99, June 1998.

[7] Ion Stoica, Scott Shenker, and Hui Zhang. Core-stateless fair queueing: Achieving
approximately fair bandwidth allocations in high speed networks. In Proceedings of
ACM Sigcomm, pages 118-130, September 1998.

[8] Haobo Yu, Lee Breslau, and Scott Shenker. A scalable web cache consistency architec-
ture. In Proceedings of ACM Sigcomm, pages 163-174, September 1999.

Improving Simulation for Network Research *

Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin Fall,
Sally Floyd, Padma Haldar, Mark Handley, Ahmed Helmy,

John Heidemann, Polly Huang, Satish Kumar, Steven McCanne,
Reza Rejaie, Puneet Sharma, Kannan Varadhan, Ya Xu,

Haobo Yu, Daniel Zappala

USC Computer Science Department Technical Report 99-702b

March 1999 (revised September 1999)f

Abstract

New protocols and algorithms are being developed to
meet changing operational requirements in the Inter-
net. Simulation is a vital tool to quickly and inexpen-
sively explore the behavior of these new protocol across
the range of topologies, cross-traffic, and interactions
that might occur in the Internet. This paper describes
ns, a widely used, multi-protocol network simulator de-
signed to address the needs of networking researcher-
s. Ns provides multiple levels of abstraction to per-
mit simulations to span a wide-range of scales, emula-
tion, where real-world packets can enter the simulator.
We describe the ns architecture and examine the range
of ways simulation and ns are used in networking re-
search.

Keywords: network protocol design, simulation, In-
ternet protocols, split-language programming, ns, nam

1 Introduction

In recent years, the Internet has grown significantly in
size and scope, and as a result new protocols and al-
gorithms are being developed to meet changing opera-
tional requirements in the Internet. Examples of such

"This research is supported by the Defense Advanced Re-
search Projects Agency (DARPA) through the VINT project
at LBL under DARPA Order E243, at USC/ISI under DARPA
grant ABT63-96-C-0054, at Xerox PARC under DARPA grant
DABT63-96-C-0105.

t Originally published in March, 1999, this technical report
was updated in September, 1999 (one section was moved and
a number of typos were fixed). This technical report has been
accepted to appear in IEEE Computer Magazine.

requirements include quality of service support, multi-
cast transport, security, mobile networking, and policy
management. Development and evaluation of protocol-
s and algorithms for these domains requires answering
many design questions. Although small-scale evalua-
tion in a lab, wide-area testbeds, and custom simu-
lators can all be valuable, each has significant short-
comings. These approaches often lack the wide mix
of traffic and topologies found in real networks, they
can incur substantial expense, and repetition of exper-
iments under controlled conditions can be difficult.

Multi-protocol network simulators can provide a rich
environment for experimentation at low cost. A com-
mon simulation environment used across disparate re-
search efforts can provide substantial benefits to the
networking community. These benefits include im-
proved validation of the behavior of existing protocols,
a rich infrastructure for developing new protocols, the
opportunity to study large-scale protocol interaction
in a controlled environment, and easier comparison of
results across research efforts.

The VINT project is attempting to facilitate the de-
sign and deployment of new wide area Internet pro-
tocols by providing network.researchers with an im-
proved set of simulation tools. This paper presents the
VINT simulation framework and describes how it aims
to meet many of the simulation needs of the network
research community. We begin by identifying the re-
quirements of a multi-protocol network simulator, after
which we describe how VINT's ns simulator address-
es these requirements. We then present the software
architecture of ns, which provides an extensible frame-
work within which new protocols can be developed.
We then show several examples of ways in which ns
has been used in protocol design and development, and

we evaluate the success and shortcomings of the VIN-
T effort. We conclude by discussing previous work on
network simulation and related topics, and by describ-
ing future challenges. A companion paper describes
nam, the network animation companion to ns [12].

Ns is publicly available at http://www-mash.cs.
berkeley.edu/ns/ and has been widely used by net-
work researchers.

Alternatives to a Common
Simulator (sidebar)

Testbeds and laboratory experiments are also impor-
tant approaches to network research. Since they use
real code, experiments run in testbeds or labs automat-
ically capture important details that might be missed
in a simulation. This approach also has drawbacks;
testbeds are expensive to build, testbeds and labs can
be difficult to reconfigure and share, and they have lim-
ited flexibility. In addition, some networking phenom-
ena such as wireless radio interference can be difficult
to reproduce experimentally, thus making it difficult to
compare or evaluate protocol designs.

Protocol design using simulation usually begins with
an individual investigator's simulations of isolated pro-
tocol elements using small-scale topologies and simpli-
fied/static assumptions about higher and lower level
protocols. Because the startup costs are so high, no
individual group has the resources to create a com-
prehensive and advanced networking simulation envi-
ronment, leading to a lack of standardization and re-
producibility of simulations constructed by different
groups of designers. In the current paradigm, directly
comparable data would be available only if each indi-
vidual designer implemented, within their own simu-
lator, all of the competing mechanisms. Very few re-
search groups have the resources to do this, and it is
often most effective to have a simulation component
constructed by those who know most about the partic-
ular protocol represented by the component.

Related Work (sidebar)

Network Simulators Network simulation has a
very long history. Ns itself is derived from REAL [22],
which is derived from NEST [11]. Although we cannot
list all relevant network simulators here, this section
describes distinguishing features of network simulators
and compares prominent examples with ns.

Simulators have widely varying focuses. Many tar-
get a specific area of research interest such as a partic-

ular network type or protocol like ATM or PIM mul-
ticast. Others, including ns, REAL, OPNET [10], and
INSANE [25] target a wider range of protocols. The
most general of these provide a simulation language
with network protocol libraries (e.g. Maisie [3] and
OPNET [10]). Very focused simulators model only the
details relevant to the developer.

The engine of ns and other network simulators is a
discrete event processor. Several complementary ap-
proaches have been taken to improve accuracy, per-
formance, or scaling. Some simulators augment event
processing with analytic models of traffic flow or queue-
ing behavior (for example, 00 [29] and fluid network
approximations [23]) for better performance or accura-
cy.

Parallel and distributed simulation is a second way
to improve performance. Several simulators support
multiprocessors or networks of workstations [22, 3, 31].
Although ns is focused only on sequential simulation,
the TeD effort has parallelized some ns modules [31].

Abstraction is a final common approach to improv-
ing simulator performance. All simulators adopt some
level of abstraction when choosing what to simulate.
FlowSim was the first network simulator to make this
trade-off explicit [2]. As discussed in "Abstracting Sim-
ulation" , ns supports several levels of abstraction.

A number of different simulation interfaces are pos-
sible, including programming in a high-level scripting
language, a more traditional systems language [3], or
sometimes both [10]. Some systems focus on allow-
ing the same code to run in simulation and a live net-
work (for example, x-Sim [6] and Maisie [3]). Most
systems augment programming with a GUI shell of
some kind Ns provides a split-level programming model
where packet processing is done in a systems language
while simulation setup is done in a scripting language.
Nam [12] provides visualization output and is currently
being enhanced to support simple scenario editing.

Network Emulation. Early work in network emu-
lation included the use of "flakeways" (gateways that
could alter or drop packets) and were used for early
TCP/IP tests. More recent work has included spe-
cial purpose stand-alone network emulators support-
ing packet delays and drops [1, 33]. These systems are
usually implemented as kernel drop-in modules that
intercept the IP layer packet forwarding path and thus
appear to end stations as routers. Their capabilities
are generally limited to simple packet manipulations
and don't provide for interference from simulated cross
traffic. Moreover, these systems do not include a gen-
eral simulation capability as provided by ns.

2 Simulation Needs of
Researchers

Simulation allows the evaluation of network protocols
under varying network conditions. Studying protocols,
both individually and as they interact with other pro-
tocols, under a wide range of conditions is critical to
explore and understand the behavior and characteris-
tics of these protocols. The VINT project, through the
ns simulator and related software, provides several crit-
ical innovations that broaden the range of conditions
under which protocols can be evaluated while making
this experimentation tractable:

• Abstraction: Varying simulation granularity al-
lows a single simulator to accommodate both de-
tailed and high-level simulations. Networking pro-
tocols are studied at many levels, both at the de-
tail of an individual protocol, and in the aggrega-
tion of many data flows and interaction of many
protocols. The abstraction mechanisms in ns al-
low researchers to examine both of these issues
without changing simulators, and to validate ab-
stractions by comparing detailed and abstract re-
sults.

• Emulation: Most simulation experiments are
confined to a single simulated world including
only those protocols and algorithms included in
the simulator. However, emulation, which allows
a running simulator to interact with operational
network nodes, can be a powerful tool in protocol
design.

• Scenario generation: Testing protocols under
an appropriate set of network conditions is criti-
cal to achieve valid and useful results. Automat-
ic creation of complex traffic patterns, topologies,
and dynamic events (i.e., link failures) can help
generate such appropriate scenarios.

• Visualization: Tools that allow researchers to
understand more easily the complex behavior in
a network simulation are needed. Given the com-
plex range of behaviors, and the large scale of the
networks involved, merely providing tables of sum-
mary performance numbers does not adequately
describe the behavior of the network. Visualiza-
tion adds a dynamic representation to network
behaviors, allowing researchers to develop better
protocol intuition and aiding protocol debugging.
Nam, a network animation tool, is described in a
companion paper [12].

• Extensibility: The simulator must be easy to ex-
tend in order to add new functionality, explore a
range of scenarios, and study new protocols. Ns
employs a split programming model designed to
make scripts easy to write and new protocols effi-
cient to run.

In addition to these innovations, several engineering
issues have substantial impact on a simulator's usabil-
ity. First among these is the availability of a wide
range of protocol modules in the simulator. This al-
lows easy comparison of different approaches. It also
reduces simulation development time enabling the re-
searcher to focus on those aspects of the simulation
relevant to the design question being studied. Second,
validated protocols against which new variants can be
compared are needed. Validation of TCP is illustrated
in a separate paper [15]. Other protocols are validated
in ns to the degree warranted by their maturity. Final-
ly, given the significant number of protocol modules
in ns and the interactions among them, mechanisms
to prevent modifications in one module from breaking
functionality in another are needed. To this end, ns
includes many automated test suites that keep unin-
tentional changes in behavior from creeping into the
simulator.

In the following sections we expand on the innova-
tions in ns and we describe its innovative software ar-
chitecture.

3 VINT and the ns Simulator

The VINT project aims to bring a change in current
protocol engineering practices by enabling the study of
protocol interactions and scaling using a common sim-
ulation framework with advanced features. The public
distribution of our system has helped to reduce the du-
plication of effort expended in the networking research
and development community.

As mentioned above, the ns simulator includes sev-
eral special features targeted at supporting large s-
cale, multi-protocol simulations. These features in-
clude an alternative configuration for large-scale sim-
ulations, a capability to interface the simulator to a
live network, automated simulation scenario genera-
tion facilities, and visualization. In the remainder of
this section we describe the first three of these features.
Visualization is described in a companion paper [12].

3.1 Abstracting Simulation

Computer resource limitations such as memory and
processing time often constrain the number of net-

5

o
E

100

80

60

40

20

 1 1 1 r i r ■ i i

detailed ^^

/°^ -

■ y/ -

. s* -

v session '—*"

f* i i i i i i i r

-

validate at small scale

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
number of group members

^_-.jttj-?»g35Sre^^y.«'^a*--fe^

small
testbed
experiments!
~'*^-:'&**^x&'zm&m>>f*ä^i

dlarge ^ I predicted
Itestbed §)*- «J large
«experiments! | results

revalidate (if possible) scale up in simuJation

Figure 1: Session-level abstraction allows sub-
stantially larger numbers of multicast group
members in the same amount of memory.

Figure 2: Validation of abstract simulations.

work objects (nodes, links and protocol agents) that
can be simulated in a packet-level simulation. A scal-
able network simulator accommodates wide ranges of
variation in each kind of network object, data in tran-
sit, and information collected. There are three com-
plementary approaches to scaling a simulator: tuning
the implementation, removing unnecessary simulation
detail, and supporting parallelism. Other researchers
have successfully explored parallel network simulation,
and multiple efforts to parallelize ns are currently un-
derway elsewhere (see "Related Work" for references
to these approaches). Our efforts are focused on tun-
ing our implementation and providing multiple levels
of protocol abstraction. By eliminating less important
details, substantial savings can be realized while pre-
serving the basic validity of the model.

VINT provides several levels of abstraction in n-
s. The default simulator provides a detailed model
with hop-by-hop packet forwarding and dynamic rout-
ing updates. Centralized routing replaces routing mes-
sages with a centralized computation, saving process-
ing time and memory in exchange for slightly different
timing in routing changes. Session-level packet for-
warding replaces hop-by-hop packet flow with a pre-
computed propagation delay [21]. Algorithmic routing
replaces shortest-path routing with tree-based routing,
transforming 0(n logn) memory requirements to O(n).
Each abstraction sacrifices some details to save mem-
ory, so abstractions must be applied only when appro-
priate.

By adjusting the simulation abstraction level, a us-
er is able to trade off simulator performance versus

packet-level accuracy. Increasing the level of abstrac-
tion provides the ability to perform increasingly large
simulations, while decreasing the level of abstraction
provides for a more realistic simulation. The session
level simulator can abstract many details of links, n-
odes, and cross-traffic. Simulations can be run in both
detailed and session level mode side-by-side to compare
the performance and accuracy across the different lev-
els of abstraction. Figure 1 shows the memory savings
possible from session-level simulations for a particular
scenario with large multicast groups.

The cost of abstraction is simulation accuracy. The
degree to which accuracy is sacrificed, and the impact
of this sacrifice on the validity of the results, varies
greatly between simulation scenarios. For example,
while the details of a particular media's approach to
segmentation and reassembly are important for LAN
simulations, they can be reflected adequately in the
link's packet loss rate for higher-level WAN simula-
tions.

To insure that abstraction does not substantially al-
ter simulation results, Figure 2 shows how we validate
simulations at small scale before projecting results at
larger scales [21]. A quantitative analysis of SRM per-
formance across detailed and session simulations sug-
gests that while the timing of individual SRM events
does vary, average aggregate behavior changes by only
3-9% in the cases we examined. Finally, we are also
working on hybrid abstractions in which different por-
tions of the same simulation operate in detailed and
session levels of abstraction.

Simulated Network

Packet Flows

Figure 3: Emulation: live network traffic passes
through simulated topology and cross-traffic.

merit, but an experimental version has already proven
useful in diagnosing errors in protocol implementation.
For example, researchers at UC Berkeley have devel-
oped the MediaBoard, a shared whiteboard application
using a version of the SRM protocol supported in the
MASH toolkit [27]. The simulator is placed between
groups of live end stations communicating using SRM.
Multicast traffic passing between groups must traverse
the simulator, and is subject to the dynamics of its
simulated network. Visualization of traces taken with-
in the simulation environment reveals end station re-
transmissions triggered by packets dropped or delayed
within the simulated network. This use of emulation
has helped to pinpoint time-dependent behaviors of the
MediaBoard that are otherwise very difficult to diag-
nose.

3.2 Emulation interface

Ns includes an emulation interface which provides a
method for network traffic to pass between real-world
network nodes and the simulator. In combination with
the simulator's tracing and visualization facilities, em-
ulation provides a powerful analysis tool for evaluat-
ing the dynamic behavior of protocols and their im-
plementations in end systems. An emulation scenario
is constructed by placing the simulator as an interme-
diate node (or end node) along an end-to-end network
path, as illustrated in Figure 3. The simulator contain-
s a simulated network, and passes live network traffic
through the simulation, subjecting it to the dynamics
of the simulated network. The simulator's scheduler
is synchronized with real-time, allowing the simulated
network to emulate its real-world equivalent so long
as the simulated network can keep pace with the real
world events.

Emulation is useful beyond conventional simulation
in evaluating both end system and network element
behavior. With emulation, end system protocol im-
plementations can be subjected to packet dynamics
(e.g. drops, re-ordering, delays) that are difficult to
reproduce reliably in a live network. Furthermore, by
capturing traffic traces of live traffic injected into the
simulation environment, visualization tools may be em-
ployed to evaluate the end system's dynamic respons-
es. In the converse situation, network element behav-
ior (e.g., a queueing or packet scheduling discipline)
may be evaluated in relation to live traffic generated
by real-world end stations. Such simulations are use-
ful in identifying undesirable network element behavior
prior to deployment in live networks.

The ns emulation facility is currently under develop-

3.3 Scenario Generation

In ns, a simulation scenario defines the input con-
figuration for a simulation run. Scenarios are made
up of several components: a network topology, includ-
ing the physical interconnects between nodes and the
static characteristics of links and nodes, traffic models
which define the network usage patterns and locations
of unicast and multicast senders, and test generation,
which creates events such as multicast group distribu-
tions (receivers joining and leaving) and network dy-
namics (node and link failures) designed to stress an
implementation. Automated generation of scenarios is
important in the evaluation of protocol robustness. It
allows researchers to cover much larger portions of the
operational space than is possible through manual re-
configuration. Furthermore, by subjecting competing
protocols to identical scenarios, meaningful compara-
tive studies can be performed.

Topology Ns supports both pre-defined and auto-
matically generated network topologies. Pre-defined
topologies may be created manually or chosen from a
topology library ranging from simple topologies to the
topologies of real operational networks. Tools that au-
tomatically generate topologies provide the ability to
create random topologies according to a set of speci-
fied parameters such as degree of connectivity, levels of
hierarchy, and other features. Rather than create our
own topology generation tools from scratch, we sup-
port the Georgia Tech Internetwork Topology Models
(GT-ITM) package which creates flat random network-
s using a variety of edge distribution models, as well
as hierarchical and transit-stub networks. In addition,
the tiers system can be used to create three-level hier-

archical topologies similar to the transit-stub GT-ITM
topologies [7].

The key challenge in topology generation is coming
up with topologies that embody relevant characteris-
tics of real networks. Once accomplished, the ns frame-
work easily allows simulation of any generated topolo-
gy. Hence, if new and better topology generation tools
are developed in the future, using their output in n-
s likely requires at most a simple format conversion
program.

Traffic Models Traffic generation support or load li-
braries provide a synthetic application workload mod-
el. For example, application traffic generation, call pat-
terns, and multicast group membership dynamics may
be included in a load library. As with the topology
libraries, load libraries may be derived from empirical
data, analytic models, or generated randomly to al-
low "what-if" investigation of particular parts of the
operating region, even if that region is not currently
observable in operational networks.

Ns provides a wide variety of source models that can
be used in conjunction with both unicast and multicas-
t transport protocols. At present, supported protocols
include reliable delivery transport (e.g. several TCP
variants, SRM), and unreliable transports with vari-
ous semantics (e.g. RTP and UDP). For simulations
of TCP, both bulk data and interactive sources are
available. The former can model an FTP application
while the latter, based in part on a model developed
from traffic traces [8], models Telnet-like applications.
We simulate web traffic with models based on Mah's
measurements [24]. Other source models are available
for non-flow controlled applications. These include a
constant bit rate source, on-off sources using either ex-
ponential or Pareto distributions (the latter useful in
generating self-similar traffic [37]), and a source that
generates traffic from a trace file.

The composable framework of ns makes adding new
traffic models fairly easy, and encourages construction
of compound models out of the individual componen-
t. In simulations of Receiver-driven Layered Multicast
(RLM), for example, a multi-layered video source was
created by combining several CBR streams [28]. A
similar approach was used to incorporate correlations
of burstiness across layers in another study involving
layered video [4].

In creating a simulation scenario, specifying individ-
ual traffic sources generated by the source models pro-
vided by ns is not always sufficient. Instead, in large
network simulations, configuring a set of sources that
in the aggregate generate suitable background traffic

with desired characteristics (e.g., aggregate bandwidth,
burstiness, self-similarity, etc.) is a challenge. Develop-
ing tools to help users synthesize simulation scenarios
is an area of ongoing work in the VINT project.

Test Generation Choosing an appropriate set of
test conditions for a simulation experiment is nev-
er simple, and evaluating the correctness of a proto-
col can be a daunting task. We developed a frame-
work for Systematic Testing of Protocol .Robustness
by Evaluation of Synthesized Scenarios (STRESS) [19,
20] in order to reduce the effort needed to identify
pathological cases of protocol behavior. As the name
implies, this framework integrates systematic synthe-
sis of test scenarios with the VINT simulation environ-
ment of ns. We are in the process of developing auto-
matic test generation algorithms for multicast proto-
cols. These methods were applied to multicast routing
protocol studies in ns. Several design errors were dis-
covered and corrected with the aid of STRESS; the
detailed results are presented in [19].

Future work in this area will consider the effect of a
wider range of network failures on multicast routing.
We will also investigate systematic methods for perfor-
mance evaluation and sensitivity analysis of end-to-end
protocols such as multicast transport. In addition, we
plan to use the emulation interface in ns to conduct
systematic conformance testing and performance pro-
filing of actual protocol implementations.

4 Software Architecture

The ns software is constructed in a way intended to
promote extension by users. The fundamental ab-
straction provided by the software architecture is "pro-
grammable composability". In this model, simulation
configurations are expressed as a program rather than
as a static configuration or through a schematic cap-
ture system. A simulation program composes objects
dynamically into arbitrary configurations to effect a
simulation configuration. By adopting a full fledged
programming model for simulation configuration, the
experimentalist is free to extend the simulator with
new primitives or "program in" dynamic simulation
"event handlers" that interact with a running simula-
tion to change its course as desired.

Rather than adopt a single programming language
that defines a monolithic simulation environment, we
have found that different simulation functions require
different programming models to provide adequate
flexibility without unduly constraining performance.
In particular, tasks like low-level event processing or

packet forwarding through a simulated router require
high performance and are modified infrequently once
put into place. Thus, they are best served by an imple-
mentation expressed in a compiled language like C++.
On the other hand, tasks like the dynamic configura-
tion of protocol objects and the specification and place-
ment of traffic sources are often iteratively refined and
undergo frequent change as the research task unfolds.
Thus, they are best served by an implementation in a
flexible and interactive scripting language like Tel [30].

To this end, ns exploits a split programming model,
where the simulation kernel—i.e., the core set of high-
performance simulation primitives—is implemented in
a compiled language (C++) while simulations are de-
fined, configured, and controlled by writing an "ns sim-
ulation program" expressed in the Tel scripting lan-
guage. This approach can be a boon to long-term
productivity because it cleanly separates the burden
of simulator design, maintenance, extension, and de-
bugging from the goal of simulation itself—the actu-
al research experiments—by providing the simulation
programmer with an easy to use, reconfigurable, and
programmable simulation environment. Moreover, it
encourages a programming style that leads to an im-
portant separation of mechanism and policy: core ob-
jects that represent simple and pure operations are free
of built-in control policies and semantics and can thus
be easily reused.

In our split programming model, fine-grained simula-
tion objects are implemented in C++ and are combined
with Tel scripts to effect more powerful, higher-level
"macro-objects". For example, a simulated router is
composed of demultiplexers, queues, packet scheduler-
s, and so forth. By implementing each primitive in
C++ and composing them using Tel a range of router-
s can be simulated faithfully. We can string together
the low-level demultiplexers, queues, and schedulers to
model an IP router perhaps with multicast forwarding
support, or instead arrange them into a configuration
that models a high speed switch with a new scheduling
discipline. In the latter case, the switch could be easily
extended with protocol agents (implemented entirely in
Tel) that modeled an experimental signaling protocol.
Performance also guides our split programming mod-
el. Low-level event-level operations like route lookups,
packet forwarding, and TCP protocol processing are
implemented in C++, while high-level control opera-
tions like aggregate statistics collection, modeling of
link failures, route changes, and low-rate control pro-
tocols are implemented in Tel. Careful design is nec-
essary to obtain a desirable trade-off between perfor-
mance and flexibility, and this division often migrates

during the course of a protocol investigation.
This composable macro-object model is naturally ex-

pressed using object-oriented design, but unfortunate-
ly, at the time we designed ns, Tel did not provide sup-
port for object-oriented programming constructs nor
did it provide very effective programming constructs
for building reusable modules. Thus, we adopted an
object-oriented extension of Tel. Of the several Tel
object extensions available at the time, we chose the
Object Tel (OTcl) system from MIT [36] because it
required no changes to the Tel core and had a partic-
ularly elegant yet simple design. We further adopted
a simple extension to OTcl called TclCL (for Tel with
classes) that provides object scaffolding between C++
and OTcl and thereby allows an object's implementa-
tion to be split across the two languages in congruence
with our split programming model [27].

With the OTcl programming model in place, each
macro-object becomes an OTcl class and its complexi-
ty is hidden behind a simple-to-use set of object meth-
ods. Moreover, macro-objects can be embedded within
other macro-objects, leading to a hierarchical architec-
ture that supports multiple levels of abstraction. As an
example, high-level objects might represent an entire
network topology and set of workloads, while the low-
level objects represent components like demultiplexers
and queues. As a result, the simulation designer is free
to operate at a high level (e.g., by simply creating and
configuring existing macro-objects) at a middle level
(e.g., by modifying the behavior of an existing macro-
object in a derived subclass) or at a low level of ab-
straction (e.g., by introducing new macro-objects or s-
plit objects into the ns core). Finally, class hierarchies
allow users to specialize implementations at any one
of these levels, for example extending a "vanilla TCP"
class to implement "TCP Reno". The net effect is that
simulation users can implement their simulation at the
highest level of abstraction that supports the level of
flexibility required, thus minimizing exposure to and
the burden associated with unnecessary details.

5 Research with Ns

Network research simulations can often be categorized
into one (or more) of a few broad themes. These in-
clude selecting a mechanism among several options, ex-
ploring complex behavior, and investigating unforeseen
multiple protocol interaction. This section uses exam-
ples from the broad base of ns-based simulations in
the networking community to demonstrate instances
of each theme.

Selecting a Mechanism As in most design activ-
ities, much of the time spent in protocol design, re-
design, and debugging concerns evaluation of the var-
ious alternatives to accomplishing a goal. Ns has seen
broad use in developing TCP variants and extensions,
exploring reliable multicast protocols, and in consider-
ing packet scheduling algorithm in routers.

As an example, ns has been used to explore sev-
eral TCP variants and extensions such as selective
acknowledgments [13], forward acknowledgments [26],
explicit congestion notification (ECN) [14], and pac-
ing [35]. These efforts were aided by the existence of a
simulator-specific TCP implementation. By omitting
application-specific baggage such as memory manage-
ment and IP fragmentation, ns users were able to focus
on the research issues such as packet retransmission
policies and throughput.

Exploring Complex Behavior Complex behavior
often takes the form of unexpected self-organization
of dynamic systems. Examples include synchroniza-
tion of periodic network traffic such as routing updates,
TCP "ACK compression" in asymmetric or congested
networks, undesired or unpredicted differential treat-
ment of TCP flows due to RTT variations, contention
for bandwidth reservations, and "ACK implosion" for
large-scale reliable multicast protocols. In each of these
domains, simulation has been a useful tool in helping
to identify and understand these phenomena.

Error recovery in the Scalable Reliable Multicast (S-
RM) [17] is an example of exploration of complex be-
havior with ns. SRM was designed to support reliable
group communication for large group sizes. It uses
a probabilistic-based NACK protocol to achieve relia-
bility. A receiver detecting a loss multicasts negative
acknowledgement to the group. Each group member
who has the missing data prepares to repair the error.
To avoid repair implosion (everyone sending the repair
at once), repairs are delayed by a random amount pro-
portional to the estimated distance between the par-
ticipants. While the original simulations of SRM were
done in a stand-alone simulation tool, an SRM imple-
mentation has been added to ns, where it has been
widely used to study SRM recovery behavior over a
wide range of topologies [32] and variants [34]. This
research was enabled by the public availability of of
SRM in a well-documented simulator.

Comparing Research Results: A common re-
search challenge is comparing a new protocol design
against existing protocols. Comparisons of full pro-
tocols are often difficult because they may require a

particular operating system or may not be widely avail-
able. By providing a publicly available simulator with
a large protocol library, ns has become an ideal "virtual
testbed" for comparing protocols.

The reliable multicast community have used ns wide-
ly for protocol comparison. In addition to the S-
RM variants previously described, Hänle used ns to
compared the Multicast File Transfer Protocol [18],
and DeLucia considered representative-based conges-
tion control [9].

Multi-protocol interactions Multiple protocol in-
teractions include the impact of protocol operation at
one layer upon another layer (e.g. http on TCP, reser-
vations on datagram delivery) or the interaction of un-
related protocols (e.g. the effect of uncontrolled traffic
sources on congestion-controlled traffic flows or routing
stability on transport layer performance). The prob-
lem with studying protocol interactions is that it re-
quires twice the effort of studying a single protocol:
the designer must understand and implement proto-
cols at all the relevant layers. Ns reduces this effort by
providing a validated library of important protocols.

RED and TCP snooping are two examples where n-
s greatly aided protocol studies exploring interactions
between TCP and router queueing policies (RED) and
TCP and wireless networking (Snoop). Random Ear-
ly Detection (RED) queue management suggests that
routers should detects incipient congestion (before run-
ning out of buffer capacity) and signal the source [16].
Early work on RED began on an ancestor of ns; RED
is now a standard part of the simulator. Snooping pro-
poses that TCP performance can be improved if router-
s replay TCP segments löst due to transmission failure
over a wireless hop [5]. Both of these approaches ben-
efitted from the rich ns protocol library.

Protocols Investigated With Ns
(sidebar)

Ns has been used to develop and investigate a number
of protocols:

• TCP behavior: selective acknowledgements, for-
ward acknowledgments, explicit congestion notifi-
cation, rate-based pacing, over asymmetric links
(satellite)

• router queuing policies: random early detection,
explicit congestion notification, class based queue-
ing

• multicast transport: Scalable Reliable Multicast
(SRM) and variants (RPM, scalable session mes-
sages), PIM variants, router support for multicast,
congestion control, protocol validation and test-
ing, reliable multicast

• multimedia: layered video (RLM), audio and
video quality-of-service, transcoding

• wireless networking: SNOOP and split-connection
TCP, multi-hop routing protocols

• protocol response to topology changes

• application-level protocols: web cache consistency
protocols

References to some specific papers can be found
in the text and at the web page http://www-
mash.cs.berkeley.edu/ns/ns-research.html. As an ex-
ample of ns's use in networking community, it was the
most commonly used simulator at SIGCOMM '98.

6 Evaluation

The VINT effort has benefited from the contributions
of a wide number of users. The project itself spans four
geographically-dispersed groups of developers, and the
user community includes more than 200 institutions
world-wide (based on messages posted to the mailing
list). Ns includes a large amount of code contribut-
ed from this user community. Currently, we have two
mechanisms for adding contributed code from users:
we can point to the contribution on a "Contributed
Code" web page, or we can incorporate the contribut-
ed code into the main ns distribution (typically with
documentation and a validation test program). Code
integrated into the main distribution will track ns as
it evolves; experience stresses the importance of the
automated validation tests in this process.

Although the ns user community has been steadi-
ly growing, there will always be times when a re-
searcher finds it more convenient to write stand-alone
code or to choose an alternative general-purpose sim-
ulator. A custom simulator can address exactly the
problem faced by a researcher. Even though ns's ab-
straction techniques allow two orders of magnitude s-
caling, a researcher's custom simulator can get exactly
the correct scaling behavior. Finally, a new simulator
will avoid the cost of learning ns. However, we have
found that researchers often underestimate the amount
of infrastructure required to build a new simulator and
interpret its results.

Wide use of a common simulation platform provides
some very serendipitous effects, however. By provid-
ing a rich collection of alternatives and variants for
frequently used functionality (e.g. for TCP and queue-
ing variants), ns encourages researchers to incorporate
these alternatives into the parameter space of their own
simulations. Without the infrastructure of ns or a simi-
lar environment, it seems unlikely researchers would be
able to cover such a rich parameter space due to the
additional cost of developing such infrastructure. This
is particularly true of experimental new approaches.
For example, RED queue management in ns has been
widely used in a range of simulations well before it was
standardized and available in products. This availabil-
ity has helped understanding and acceptance of RED
and helped other researchers anticipate how their pro-
tocols will behave in future networks.

A disadvantage of ns is that it is a large system with
a relatively steep initial learning curve. Availability of
a tutorial (contributed by Marc Greis) and continuing
evolution of the ns documentation has improved the
situation, but ns's split programming model remains a
barrier to some developers. As described in "Software
Architecture", the choice of the fine-grain object de-
composition is intentional because it allows two levels
of programming. Simple scripts, topology layout, and
parameter variation can often be done exclusively in
OTcl. Although C++ is required to implement most
new protocols, ns's object-oriented structure makes it
fairly easy to implement variants of existing protocols.
For completely new protocols, the large set of existing
modules promotes re-use by the advanced programmer
as is evident in ns' existing protocols and classes.

7 Conclusions

Simulation in network research plays the valuable role
of providing an environment in which to develop and
test new network technologies without the high cost
and complexity of constructing testbeds. While not a
complete replacement for testbeds, a standard frame-
work for simulation used by a diverse set of researchers
increases the reliability and acceptance of simulation
results. Despite the benefits of a common framework,
the network research community has largely develope-
d individual simulations targeted at specific studies
due to the considerable effort required to construct a
general-purpose simulator. Because of the special pur-
pose nature of such simulators, studies based on them
often do not reflect the richness of experience derived
from experimentation with a more extensive set of traf-
fic sources, queuing techniques, and protocol models.

The VINT project, using ns as its simulator base
and nam as its visualization tool, has constructed a
common simulator containing a large set of models for
use in network research. By including algorithms still
in the research phase of development, users of the sim-
ulator are able to explore how their particular work in-
teracts with these future techniques. Furthermore, be-
cause of the many protocols and models included with
the system, researchers are often able to modify and
construct their own simulations based on the provided
models with relative ease. In several cases, modules
developed outside the VINT project have been incor-
porated as a standard component to the simulator. We
intend to further foster such contributions, and expect

them to increase in the future.
While the VINT project so far has been relatively

successful in achieving its goals, it remains to be seen
how well the VINT project and the ns simulator will
address the challenges of building on this success. The
VINT project is an ongoing experiment in providing
and using a multi-protocol simulator that allows re-
searchers in the network research community to more
easily build on each others' work. Future challenges for
the VINT project include the development of mecha-
nisms for the successful integration of code contributed
by the user community, reducing the learning curve for
using ns, further developing tools for large-scale simu-
lations with a diverse traffic mix, and providing tools
for newer areas of research such as mobility and higher-

level protocols.

References
[1] AHN, J., DANZIG, P. B., Liu, Z., AND YAN, L. E-

valuation of TCP Vegas: Emulation and experiment.
In Proceedings of the ACM SIGCOMM (Cambridge,
Massachusetts, Aug. 1995), ACM, pp. 185-195.

[2] AHN, J.-S., DANZIG, P., ESTRIN, D., AND TIMMER-

MAN, B. Hybrid technique for simulating high band-
width delay computer networks. In Proceedings of the
ACM SIGMETRICS (Santa Clara, CA, USA, May
1993), ACM, pp. 260-261.

[3] BAGRODIA, R. L., AND LIAO, W.-T. Maisie: A lan-
guage for the design of efficient discrete-event simula-
tions. IEEE Transactions on Software Engineering 20,
4 (Apr. 1994), 225-238.

[4] BAJAJ, S., BRESLAU, L., AND SHENKER, S. Uniform
versus priority dropping for layered video. In A CM
SIGCOMM (Sept. 1998), pp. 131-143.

[5] BALAKRISHNAN, H., PADMANABHAN, V., SESHAN, S.,
AND KATZ, R. A comparison of mechanisms for im-
proving TCP performance over wireless links. In Pro-

ceedings of the ACM SIGCOMM '96 (Stanford, CA,
Aug. 1996), ACM, pp. 256-269.

[6] BRAKMO, L., AND PETERSON, L. Experiences with
network simulation. In Proceedings of the A CM SIG-
METRICS (1996), ACM.

[7] CALVERT, K., DOAR, M., AND ZEGURA, E. W. Mod-
eling Internet topology. IEEE Communications Mag-
azine 35, 6 (June 1997), 160-163.

[8] DANZIG, P. B., JAMIN, S., CäCERES, R., MITZEL,

D. J., AND ESTRIN, D. An empirical workload mod-
el for driving wide-area TCP/IP network simulations.
Journal of Internetworking: Research and Experience
3, 1 (Mar. 1992), 1-26.

[9] DELUCIA, D., AND OBRACZKA, K. A multicast con-
gestion control mechanism using representatives. Tech.
Rep. USC-CS TR 97-651, Department of Computer
Science, University of Southern California, May 1997.

[10] DESBRANDES, F., BERTOLOTTI, S., AND DUNAND, L.
OPNET 2.4: an environment for communication net-
work modeling and simulation. In Proceedings of the
European Simulation Symposium (Delft, Netherlands,
Oct. 1993), Society for Computer Simulation, pp. 609-
614.

[11] DUPUY, A., SCHWARTZ, J., YEMINI, Y., AND BA-

CON, D. NEST: A network simulation and prototyp-
ing testbed. Communications of the ACM 33, 10 (Oct.
1990), 64-74.

[12] ESTRIN, D., HANDLEY, M., HEIDEMANN, J., Mc-
CANNE, S., XU, Y., AND YU, H. Network visual-
ization with the VINT network animator nam. Tech.
Rep. 99-703, University of Southern California, Mar.
1999.

[13] FALL, K., AND FLOYD, S. Simulation-based compar-
isons of Tahoe, Reno, and SACK TCP. ACM Com-
puter Communication Review 26, 3 (July 1996).

[14] FLOYD, S. TCP and explicit congestion notification.
ACM Computer Communication Review 24, 5 (Oct.
1994), 10-23.

[15] FLOYD, S. Simulator tests. From ft-
p.y/ftp.ee.lbl.gov/papers/simtests.ps.Z, Oct 1996.

[16] FLOYD, S., AND JACOBSON, V. Random early detec-
tion gateways for congestion avoidance. ACM/IEEE
Transactions on Networking 1, 4 (Aug. 1993), 397-
413.

[17] FLOYD, S., JACOBSON, V., Liu, C.-G., MCCANNE,

S., AND ZHANG, L. A reliable multicast framework
for light-weight sessions and application level framing.
ACM/IEEE Transactions on Networking 5, 6 (Dec.
1997).

[18] HÄNLE, C. A comparison of architecture and perfor-
mance between reliable multicast protocols over the
MBone. Master's thesis, Institute of Telematics, Uni-
versity of Karlsrühe, 1997.

10

[19] HELMY, A., AND ESTRIN, D. Simulation-based
'STRESS' Testing Case Study: A Multicast Rout-
ing Protocol. In Proceedings of the International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (Montreal,
Canada, July 1998), IEEE, pp. 36-43.

[20] HELMY, A., ESTRIN, D., AND GUPTA, S. Fault-
oriented test generation for multicast routing pro-
tocol design. Formal Description Techniques &
Protocol Specification, Testing, and Verification
(FORTE/PSTV98), IF IP TC6/WG6.1 Join Interna-
tional Conference (Nov. 1998), 93-109.

[21] HUANG, P., ESTRIN, D., AND HEIDEMANN, J. En-
abling large-scale simulations: selective abstraction
approach to the study of multicast protocols. In Pro-
ceedings of the International Symposium on Modeling,
Analysis and Simulation of Computer and Telecom-
munication Systems (Montreal, Canada, July 1998),
IEEE, pp. 241-248.

[22] KESHAV, S. REAL: a network simulator. Tech. Rep.
88/472, University of California, Berkeley, Dec. 1988.

[23] KESIDIS, G., AND WALRAND, J. Quick simulation
of atm buffers with on-off multiclass markov fluid
sources. ACM Transactions on Modeling and Com-
puter Simulations 3, 3 (July 1993), 269-276.

[24] MAH, B. An empirical model of HTTP network traf-
fic. In Proceedings of the IEEE Infocom (Kobe, Japan,
Apr. 1997), IEEE.

[25] MAH, B. A. INSANE Users Manual. The
Tenet Group Computer Science Division, Uni-
versity of California, Berkeley 94720, may 1996.
http://HTTP.CS.Berkeley.EDU/"bmah/Software/
Insane/InsaneMan.ps.

[26] MATHIS, M., AND MAHDAVI, J. Forward acknowledge-
ment: Refining TCP congestion control. In Proceed-
ings of the ACM SIGCOMM '96 (Stanford, CA, Aug.
1996), ACM, pp. 281-291."

[27] MCCANNE, S., BREWER, E., KATZ, R., ROWE,

L., AMIR, E., CHAWATHE, Y., COOPERSMITH, A.,
MAYER-PATEL, K., RAMAN, S., SCHUETT, A., SIMP-

SON, D., SWAN, A., TUNG, T.-L., WU, D., AND

SMITH, B. Toward a common infrastructure for
multimedia-networking middleware. In Proceedings of
the 7th International Workshop on Network and Op-
erating Systems Support for Digital Audio and Video
(St. Louis, Missouri, May 1997), IEEE, pp. 39-49.

[28] MCCANNE, S., JACOBSON, V., AND VETTERLI, M.
Receiver-driven layered multicast. In ACM SIGCOM-
M (Stanford, CA, U.S.A., Aug. 1996), pp. 117-130.

[29] MIKLER, A. R., WONG, J. S. K., AND HONAVAR,

V. An object oriented approach to simualting large
communication networks. Journal of Systems Software
40 (1998), 151-164. huang folder: general simulator.

[30] OUSTERHOUT, J. K. Tel and the Tk Toolkit. Addison-
Wesley, Reading, MA, 1994.

[31] PERUMALLA, K., FUJIMOTA, R., AND OGIELSKI, A.
TED—a language for modeling telecommunication
networks. A CM SIGMETRICS Performance Evalu-
ation Review 25, 4 (Mar. 1998).

[32] RAMAN, S., MCCANNE, S., AND SHENKER, S.
Asysmptotic scaling behavior of global recovery in SR-
M. In Proceedings of the ACM SIGMETRICS (Madi-
son, WI, USA, June 1998), ACM, pp. 90-99.

[33] Rizzo, L. Dummynet: a simple approach to the eval-
uation of network protocols. ACM Computer Commu-
nication Review 27, 1 (Jan. 1997).

[34] SHARMA, P., ESTRING, D., FLOYD, S., AND ZHANG,

L. Scalable session messages in SRM. Sumbitted to
infocom '98?, USC technical report, Aug. 1997.

[35] VISWESWARAIAH, V., AND HEIDEMANN, J. Improving
restart of idle TCP connections. Tech. Rep. 97-661,
University of Southern California, Nov. 1997.

[36] WETHERALL, D., AND LINBLAD, C. J. Extending T-
cl for dynamic object-oriented programming. In Pro-
ceedings of the USENIX Tcl/Tk Workshop (Toronto,
Ontario, July 1995), USENIX, p. 288.

[37] WILLINGER, W., TAQQU, M., SHERMAN, R., AND

WILSON, D. Self-similarity through high-variability:
Statistical analysis of Ethernet LAN traffic at the
source level. In Proceedings of the ACM SIGCOM-
M (Cambridge, Massachusetts, Aug. 1995), ACM, p-
p. 100-113.

11

Is Service Priority Useful in Networks?

Sandeep Bajaj Lee Breslau Scott Shenker*
{bajaj,breslau,shenker}@parc. xerox.com

Xerox Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, CA 94304

Abstract

A key question in the definition of new services for
the Internet is whether to provide a single class of re-
laxed real-time service or multiple levels differentiated
by their delay characteristics. In that context we pose
the question: is service priority useful in networks?
We argue that, contrary to some of our earlier work, to
properly address this question one cannot just consider
raw network-centric performance numbers, such as the
delay distribution. Rather, one must incorporate two
new elements into the analysis: the utility functions
of the applications (how application performance de-
pends on network service), and the adaptive nature of
applications (how applications react to changing net-
work service). This last point is especially crucial;
modern Internet applications are designed to tolerate
a wide range of network service quality, and they do so
by adapting to the current network conditions. Most
previous investigations of network performance have
neglected to include this adaptive behavior.

In this paper we present an analysis of service pri-
ority in the context of audio applications embodying
these two elements: utility functions and adaptation.
Our investigation is far from conclusive. The defini-
tive answer to the question depends on many factors
that are outside the scope of this paper and are, at
present, unknowable, such as the burstiness of future
Internet traffic and the relative offered loads of best-
effort and real-time applications. Despite these short-
comings, our analysis illustrates this new approach to
evaluating network design decisions, and sheds some
light on the properties of adaptive applications.

'This research was supported in part by the Advanced Re-
search Projects Agency, monitored by Fort Huachuca under
contracts DABT63-94-C-0073 and DABT63-96-C-0105. The
views expressed here do not reflect the position or policy of
the U.S. government.

1 Introduction

The Internet has traditionally provided applications
with a single class of best-effort service. The perfor-
mance requirements of elastic applications, such as file
transfer and electronic mail, allow them to adapt to
the changing delays and bandwidth provided by this
service. More recently, the increasing bandwidth of In-
ternet links as well as the increasing processing power
of end hosts has focused widespread attention on the
desire to use the Internet for the transport of real-
time multimedia content, such as audio and video.
The architecture and protocols needed to support the
more stringent requirements of these applications have
been the subject of considerable research and discus-
sion in recent years. New resource reservation proto-
cols, scheduling algorithms and admission control algo-
rithms have been proposed in the academic literature.1

Recently, two components of a new Internet architec-
ture have been moved to Proposed Standard in the In-
ternet Engineering Task Force (IETF): the reservation
protocol RSVP [3, 17] and new network element ser-
vices Guaranteed [12] and Controlled-Load [16] service
(see also [2, 13] for overviews of this architecture). The
key break from best-effort service, where sources need
not notify the network before transmitting packets, is
that for these real-time services flows must request ser-
vice from the network - specifying their desired quality
of service and their proposed traffic characterization -
and the network can accept or reject their requests.

One issue that arose in the discussion of the Controlled-
Load2 service (and in the earlier Controlled-Delay ser-
vice, which was supplanted by the Controlled-Load ser-
vice) is whether or not to offer more than one priority
level of service; that is, whether to have multiple lev-
els of scheduling priority within the Controlled-Load
service.3 The current service definition offers only a

'The literature is far too vast to review here, but see [4, 5,
6, 7, 9, 15, 18] and references therein for a few representative
examples.

3 Controlled-Load service is a relaxed real-time service that
provides low delay and low loss, but does not provide delay
bounds.

3The analogous question remains even if real-time applica-
tions are supported by a best-effort network service, a solution
advocated by some in the community. That is, would these
applications be better suited by a single class of best-effort ser-
vice (as exists today) or by multiple levels of service differen-
tiated by delay? Our treatment remains valid, although we

single level of service, but the question remains as to
what benefits offering additional levels of service would
provide.4 Offering multiple levels of service carries
with it the cost of additional complexity to deal with
signaling the priority level, merging reservations with
different priority levels, and scheduling overhead. We
do not discuss those costs here, but instead ask only
how large a benefit multiple priority levels might offer.
Clearly if such benefits are minimal then there is no
need to incur the additional complexity; if the benefits
are significant then one needs to more carefully assess
the complexity costs.

At first glance, the benefit of multiple priority lev-
els seems obvious. After all, applications have a wide
spectrum of delay constraints, from interactive confer-
encing with its need for small network delays to play-
back of stored video which can easily tolerate large
network delays. Given this wide disparity in delay re-
quirements, it seems only natural that one can increase
the overall welfare by offering different levels of service.
One can model this analytically (following a very sim-
ilar model in [14]).

In the following simple example with two kinds of
applications we compare a network with two priority
classes to one with a single class of FIFO service. Let
Ui denote the performance level, or utility, of applica-
tion * as a function of average network delay. Let V de-
note the total utility, or total value, of the applications:
V = U\ + Ü2- Consider a network with a single link
modeled by an exponential server (of rate /* = 1) and
flows modeled by Poisson arrival processes. Consider
two types of network clients, with Poisson arrival rates
T = 0.25 and with U\ = 21-lOt/i and U2 = 2-d2 where
di represents the average queueing delay delivered to
client j.5 Thus, we have two clients with different sen-
sitivities to delay. If we use FIFO service in the net-
work, then d\ = d2 = 2 and so VFIF° = 1. (1-0.5)
If we use strict priority service, with preemption, and
give client 1 priority, then di = (1_p25) = 4/3 and

= 8/3 and VpTiority = 7. Thus, "*■« — (l-0.25)(l-0.5)
the strict priority scheduling algorithm is more efficient
- delivers a higher value of V at the same bandwidth
- than FIFO. In fact, when compared to all possible
scheduling algorithms, the strict priority scheduling al-
gorithm gives the most efficient feasible allocation of
delay for this simple example.

However, this model ignores an important aspect
of the problem. Specifically, network utility does not
depend only on the characteristics of the packet de-
livery services provided, but also on how applications
deal with different levels of network service. Modern
network applications, in contrast to the rigid audio
and video applications designed for more predictable

would need to consider different mixtures of traffic including
best-effort as well as real-time applications.

* Offering service priority is one form of service discrimina-
tion within the Internet, where different packets receive differ-
ent service. Service discrimination can take several other forms;
a network may provide unreserved or reserved service, service
may be differentiated by dropping priority, or a network may
provide pre-emptable and non-pre-emptable reserved services.

5Recall that the average delay in the M/M/l queueing net-
work considered here is just d = ^tr) ■ 'f we nave two priority
levels, with arrival rates r% and rj respectively, then the delays
are given by d, = j^r^j and d2 = (ll_ri)(£_ri_r2y

data delivery services such as the telephone network
or cable-TV transmission infrastructures, are adaptive;
that is, they adapt to the current network conditions.
This adaptation can take on several forms; in this pa-
per we consider a class of applications known as delay
adaptive. We describe these applications in more detail
in Section 2. Such adaptivity is now a central piece of
the accepted design philosophy in the Internet. The
ability of application adaptivity to cope with changing
network conditions has strong bearing on the question
we ask here. After all, if adaptive applications can
adjust essentially without degradation under any rea-
sonable network conditions, there would never be any
need for multiple levels of service. In fact, some have
made precisely this claim when arguing for a single
level of service.

Whatever the extent of adaptivity's ability to mask
network delay and jitter (i.e., changes in delay), it is
certainly clear that because of this active adjustment,
the dependence of an adaptive application's utility on
the network service is quite complicated. Simply put,
such adaptivity renders simplistic analyses such as the
one above invalid. How an application reacts to the
network service determines how its performance de-
pends on the network service, and the application's
performance sensitivities (to delay, loss of fidelity, or
both) determines what adaptation algorithm is most
appropriate. As we shall see, for a given packet deliv-
ery service the delay experienced can be less in a very
delay-sensitive application than in a delay-insensitive
one, because the former will use an adaptation al-
gorithm that aggressively attempts to reduce delays.
Yet, despite adaptivity's centrality as an Internet ap-
plication design paradigm, most performance analyses
of network designs are performed without careful at-
tention to the adaptive nature of applications.6 The
central purpose of this work is to illustrate how one
can incorporate the behavior of adaptive applications
into the performance analysis of a network design de-
cision. It turns out that differences in delay (and jit-
ter) in network service can largely be masked by this
adaptive behavior for applications that are sensitive
to only one of delay or fidelity. Thus, the simplis-
tic analyses based on rigid applications are mislead-
ing. However, applications that are sensitive to both
delay and fidelity achieve significant performance ben-
efits from additional priority levels under some traffic
loads. Therefore, while adaptation is very effective, it
is not a universal panacea.

These results do not translate into a facile answer
to the question of whether or not to offer multiple lev-
els of Controlled-Load service. Instead, they serve as
a cautionary note against simplistic conclusions based
on the analysis of more static applications, and also
against the ability of adaptivity to remove all sensi-
tivity to performance variations. Our study also high-
lights our current state of ignorance about how the
perceived performance of audio and video applications
depend on the underlying network dynamics. We hope
that by clarifying the gaps in the current understand-
ing future work can begin closing them.

sSome work, such as in [8, 10], do analyze different adapta-
tion algorithms, but their purpose was to refine the adaptation
algorithm, not ask what implication adaptation had for network
design.

The remainder of this paper is organized as fol-
lows. Section 2 describes the class of applications we
consider in this paper, and then discusses several forms
of adaptive behavior. Section 3 presents the results of
simulation experiments that study the impact of differ-
ent classes of delay on the performance of applications.
We conclude in Section 4 with a discussion of the im-
plications of our findings.

2 Adaptive Applications

In this section, we describe the class of applications
that motivates our work. We begin by describing what
we refer to as adaptive applications.7 Then we describe
two adaptation algorithms, appropriate for use by au-
dio applications, that we use in our later simulations.
We focus on these audio applications because it is in
this domain that adaptive algorithms have been most
widely utilized. The extent to which delay adaptation
is applied to video remains to be seen, but we expect
the methodology we use here could be applied to video
algorithms as well. Finally, we present our model of
utility functions and describe the four classes of appli-
cations we consider.

2.1 Delay Adaptation

Consider a real-time audio or video application in the
Internet. Such an application will typically sample
its media source (e.g., an audio input device or video
frame grabber) and then send packetized data over the
network. Each packet experiences a variable amount
of queueing delay in the network, in addition to the
fixed propagation and transmission delays (assuming
all packets follow the same path). Thus, the packet
stream generated by the source arrives at the desti-
nation perturbed by the variable network delay. The
receiver can remove some or all of the jitter induced
by the network by buffering packets for later playback.
We refer to the time for which a packet is buffered at
the receiver as its playback delay. We refer to the play-
back point as the total delay from when a packet is sent
until it is played at the receiver. For real-time data,
such as audio or video, if a constant playback point is
maintained for all packets then there is no loss of fi-
delity. Otherwise, the incoming signal is distorted and
so there is a loss of fidelity in the application.

Determining the playback point for each packet is
a key issue in the design of these applications. Any
playback strategy can make use of timestamps in pack-
ets, such as those provided by the Real-time Trans-
port Protocol (RTP) [11], to determine the relative
send times of successive packets, and thus need not as-
sume synchronized clocks at the sender and receiver.
If the receiving application knows a priori the maxi-
mum possible delay experienced in the network it can
buffer the first packet for this maximum before play-
ing it. This will enable the receiver to remove all jit-
ter from the signal, since all subsequent packets (other
than those that may be lost in the network) will arrive
before their playback points, thereby maintaining the

TApplication adaptivity can actually take several forms. In
this paper we consider the specific class of delay-adaptive ap-
plications. Rate-adaptive applications vary their sending rate
in response to changing network conditions.

proper offset from the previous packet. However, nei-
ther the current Internet best-effort service, nor the
proposed Controlled-Load real-time service provides
applications with information about maximum network
delays. While the proposed Guaranteed Service does
provide delay bounds, it is an expensive service to
provision (precisely because it provides delay bounds),
and therefore is not likely to be widely utilized.

Since these applications must operate in environ-
ments where no end-to-end delay bound is known, they
must be prepared to adjust the playback point of pack-
ets based on changing network conditions. That is,
the application determines dynamically (in ways we
describe below) how long to buffer each packet before
playing it out. Buffering will remove some of the jitter
introduced by the network, but periodic adjustments
to the playback point will cause some distortion in the
received signal. Hence, the application's performance
is not merely a function of the service provided by the
network. Rather, it is also a function of both the to-
tal delay in playing back the data (including network
and playback delays) and the distortion incurred by
varying the playback point over time.

Different applications will have different levels of
sensitivity to these performance measures. Through-
out this paper we characterize applications by the de-
gree to which they care or do not care about each of
delay and distortion. We simplify our study by con-
sidering four prototypical applications: those that care
about both delay and distortion, those that care about
delay only, those that care about distortion only, and
those that care about neither. The notion of "car-
ing" or "not caring" (or "sensitivity" and "insensitiv-
ity" which we use equivalently) are relative terms. For
instance, even a delay insensitive application, such as
the playback of recorded audio, has some delay con-
straints dictated by the user (e.g., delays of minutes,
or several seconds, might not be tolerable). Similarly,
a distortion insensitive application, such as an interac-
tive session in which some distortion can be tolerated,
also has limits to this tolerance (e.g., the speech need
not be faithfully reproduced, but it must at least be
intelligible). Our point, when using the terms "not
caring" or "insensitive", is that these applications will
be able to tolerate larger delays, or larger distortions,
than other applications while still achieving acceptable
performance.

2.2 Adaptation Algorithms

We expect the particular adaptation algorithms em-
ployed by delay adaptive applications to vary. For ex-
ample, an interactive application may employ an adap-
tation algorithm that attempts to reduce the playback
delay (and hence the total delay). Such a strategy,
which we will refer to as aggressive adaptation, in-
creases the risk that some packets will arrive after their
scheduled playback points, in which case they will have
to be dropped or the playback point will have to be
adjusted. In either case, the resulting signal is sig-
nificantly distorted. Alternatively, a non-interactive
application, such as playback of recorded content or a
one-way broadcast, may employ a more conservative
adaptation algorithm, choosing larger playback delays
and reducing the probability that packets arrive after

their playback points.
We now describe two adaptation algorithms, which

we refer to as conservative and aggressive, that we
use later in our simulations. These algorithms are ap-
propriate for use by audio applications that generate
blocks of data interspersed with periods of silence (as
would be generated by a silence suppression mecha-
nism). The general strategy they employ is to pick a
playback point for the first packet in each talkspurt
such that all packets within the talkspurt will (ideally)
arrive before their respective playback points. When
a packet arrives late (i.e., after it should have been
played) the adaptation algorithm has two choices. It
can discard the packet, or it can play the packet and
adjust the playback points of subsequent packets in
the talkspurt. It is unclear in general which strategy
is better. For the purposes of this study we adopt the
latter strategy based on previous studies (e.g., [1]) that
have observed correlations in packets with large delays
and on our own simulations that have shown that late
packets generally arrive in bursts; given the choice be-
tween discarding several packets or introducing some
jitter, the latter seems preferable.

The conservative algorithm fixes the playback point
of the first packet to a predetermined value. All sub-
sequent packets maintain the same playback point as-
suming they arrive in time. When a packet arrives
late, the playback point is doubled and this new play-
back point is used for all subsequent packets. Hence,
the playback point is adjusted upward but never down-
ward. This algorithm attempts to maintain fidelity at
the expense of higher delay. The second algorithm is
more aggressive, yielding lower delay at the expense of
increased distortion. It is taken from the adaptation
algorithm in the Visual Audio Tool (VAT) developed
at Lawrence Berkeley National Laboratory with minor
modifications.8 This algorithm estimates a measure of
variance based on the difference in delay between suc-
cessive packets. At the start of each talkspurt a new
playback delay is computed using the previous offset
and the estimate of variance.

2.3 Performance Measures and Utility Functions

The performance of an adaptive application can be
characterized by two measures: delay and distortion.
These measures are a function of both the packet de-
livery service and the adaptation algorithm. Delay in-
cludes both delays experienced in the network as well
as playback delays. Distortion captures changes in the
playback point. For our delay measure, we use the av-
erage of the delay experienced by each packet. Thus,

Delay ■■ £,*

where di is the delay experienced by packet i and n is
the total number of packets. For distortion, an individ-
ual distortion value is first computed for each packet
as follows:

disti = min(,thresh)
U — ti-i

utmty

\

Figure 1: General form of utility functions for delay
and distortion.

where ti is the send time of packet i, and thresh is
a constant, set to 2 in our experiments. Including
the difference in send times of successive packets in
the denominator gives higher weight to intra- rather
than inter-talkspurt adjustments in the playback point.
thresh bounds the maximum per packet distortion penalty
(at 40 ms since inter-packet times, *,- — ti-i, are 20 ms
within talkspurts in our source model.) The overall
measure of distortion is merely the average of the per-
packet measures:

Distortion ■■ J2j disti

'Source code for the VAT application, including its ad apt a
tion algorithm, is available at http://www-nrg.ee.lbl.gov/vat.

We normalize these values so that they are reported in
milliseconds of distortion per packet.

From the delay and distortion performance mea-
sures, we derive measures of application performance
or utility using utility functions. The general form of
the utility functions we use (for both delay and distor-
tion) is shown in Figure 1. These functions have the
following characteristics. First, below some threshold
(thiowcr in the figure), applications do not suffer any
perceptible effects from delay or distortion. Second,
above another threshold (i/»Upp«r), applications derive
no utility. Finally, between thiowcr and thuppeT, util-
ity degrades linearly. Total utility for an application is
merely the product of its individual delay and distor-
tion utility values:

Utot = Udel X Udii

An application must receive good performance on both
measures to achieve high overall utility, and poor per-
formance on either leads to overall unhappiness. For
each of the utility functions, we vary the values of
thiower and th^pper to capture the relative sensitivity
or insensitivity of applications to each of delay and dis-
tortion. Thus, for sensitive applications, thiowcr and
thUpper will be set to lower values than for insensitive
ones.

The relationship between performance measures and
application utility is certainly not a simple as the model
we use. For instance, actual functions are likely not
linear, may depend on how performance varies in time
rather than on static measures, and may involve sub-
tle interactions between delay and distortion. How-
ever, we believe that our simple model captures the

most important aspects of performance and utility, and
at the very least is sufficient for this initial investiga-
tion. Subsequent research into the true nature of these
utility functions would provide useful guidance for our
modeling; at present, the relevant literature is quite
sparse.

3 Simulations

We used discrete event simulation to study the ef-
fects of service priority on application utility given
our model of applications and their utility described
above. Our simulation environment built on version
2 of the ns simulator developed at the University of
California at Berkeley. To the base simulator, which
provides event management, measurement functions,
packet transmission and traffic generation, we added
additional functionality, such as adaptation algorithms,
utility functions and priority queueing, needed to carry
out our experiments. In this section we first describe
our simulation methodology, and then report our re-
sults.

3.1 Simulation Model

The purpose of our simulation experiments was to com-
pare the utility of a network providing a single level
of service for real-time applications to one providing
two levels of service in the simplest possible network
context. The simulation topology consisted of a sin-
gle 2Mbps link connecting two nodes.10 Each simula-
tion consisted of a set of source/receiver pairs gener-
ating background load on the network and test appli-
cations whose performance and utility was measured.
This study is concerned with real-time applications, so
we assume the existence of real-time services in the
network. However, since we directly control the level
of offered load in our experiments (by adjusting the
number of source/receiver pairs in the network), we
did not need to model resource reservation or admis-
sion control functions explicitly in the simulated net-
work. Instead, we assume that all traffic in the network
has passed an admission control test, has an installed
reservation, and is receiving real-time service. No best-
effort traffic was included in the simulations. We dis-
cuss the implications of this later in Section 4. When
testing a single level of service, all packets are served in
a single FIFO queue. For priority service, we used two
FIFO queues served in strict priority order (without
pre-emption). When reporting our results, we refer to
these as the FIFO and Priority tests, respectively. We
will also sometimes refer to the high priority service in
the Priority tests as Level 1 service, and the low pri-
ority as Level 2. In all experiments, offered load was

9The ns
simulator is available at http://www-mash.cs.berkeley.edu/ns.
Our extensions to the simulator, and the simulation scripts
we ran to generate the results in this paper can be found at
ftp://ftp.parc.xerox.com/pub/net-research/sigmetrics98.

10If, as many have claimed, there is a single bottleneck link
on any network path, then the simple topology is sufficient to
understand the behavior of application adaptation algorithms.
The verification of this claim, or a better understanding of the
effect of queueing delays at multiple hops, is a subject for future
study.

controlled and enough buffers provisioned so that there
were no dropped packets.

Each experiment was repeated with the test appli-
cations using the conservative and aggressive adapta-
tion algorithms described in Section 2.2. In addition,
experiments were run with a non-adaptive, or rigid,
receiver algorithm, which we describe in Section 3.2.2.
At a given level of offered load, measures of delay and
distortion were computed for each algorithm (conser-
vative, aggressive, rigid) and for each network service
(FIFO, Priority Level 1, Priority Level 2). The perfor-
mance measures were mapped into application utility
as follows. First, we chose an appropriate adaptation
algorithm for each of the four types of applications (re-
call the two by two taxonomy of applications based on
their level of sensitivity to each of delay and distor-
tion.) Applications that were sensitive to both delay
and distortion and applications that were sensitive to
delay only used the aggressive algorithm.11 Applica-
tions that were sensitive to distortion only, and those
that were sensitive to neither, used the conservative
algorithm.

Given an application's performance sensitivities and
adaptation algorithm, utility values for each kind of
service were computed. The following values of thiower
and thuppcT were used. For delay sensitive utility, we
used values of thiOWer — 50 ms and thuppcr — 100 ms.
For delay insensitive utility, we set thiower = 1000 ms
and thv 2000 ms. For distortion sensitive appli-
cations we used thiower = .25 ms/pkt and thuppiT

1.0 ms/pkt. For distortion insensitive applications, we
set thtowcr = 2.5 ms/pkt and thuppeT = 10.0 ms/pkt.
The delay sensitive values are set to represent toler-
ances for interactive applications.12 The delay insensi-
tive utility is appropriate for non-interactive playback
applications, but where response time does matter to
the user (i.e., pointing and clicking and receiving stored
audio over the network). Deciding on distortion val-
ues for utility was difficult without a better sense of
the actual effect of playback distortion on users. We
chose values such that distortion sensitive and insensi-
tive applications perceived distortion in very different
manners.

Two different kinds of source models were used in
the simulations. Test sources were represented by an
on/off source model that generates "talkspurts" and
idle periods like those generated by voice data with si-
lence suppression. Sources transmit 200 byte, packets
at a rate of 80kbps during "on" periods and are silent
during "off" periods. These parameters are consistent
with 8 KHz 8-bit mu-law PCM audio sent in 20 ms
frames with 40 bytes of overhead per packet. Both the
on and off times were taken from exponential distribu-
tions with a 500 ms average.

Background traffic was generated by capturing a
trace of low frame rate video taken of one of the au-
thors during a network videoconference. The trace,

"While it should come as no surprise that this algorithm
is appropriate for delay sensitive distortion insensitive appli-
cations, it is not clear a priori which algorithm is better for
applications that are sensitive to both delay and distortion.
We determined, through experimentation, that the aggressive
adaptation algorithm was more effective than the conservative
adaptation algorithm for these applications.

12Note that in addition to the variable delay captured by
these utility functions, there will be other fixed sources of delay.

which lasts for approximately 1,400 seconds and has
an average rate of 32kbps, was produced by the vie
video program.13 Within a single simulation run, mul-
tiple sources sending from this trace started at ran-
dom points in the trace file to avoid synchronization.
This background traffic is more bursty than the traf-
fic generated by the on/off source model. Space pre-
vents us from presenting data using additional kinds
of background traffic, such as other source models or
video traces produced with different codecs or content.
However, as we discuss in Section 4, additional traf-
fic models would not provide us with a more definitive
answer to our question.

Each data point in the graphs below is an average
of 20 simulation runs each with different seeds to the
random number generator. Individual runs lasted for
5,000 simulation seconds.

For each scenario (adaptation algorithm, service
discipline) the number of sources generating background
traffic was varied to generate different load levels. Our
results are generally reported as a function of utiliza-
tion, with each point on the x-axis representing a fixed
number of background sources. These values are re-
ported in terms of percentage of the link bandwidth
generated by the background and test sources together.
For the Priority experiments, 25% of the background
traffic was in Level 1 (high priority) and 75% was in
Level 2. All traffic in our experiments represents real-
time traffic.

In reality, best-efFort traffic will continue to make
up an important part of Internet traffic. Our analysis
does not suffer by omitting best-effort traffic from the
model, since we assume it would receive lower priority
than real-time traffic, and therefore would not impact
the delays seen by real-time traffic. However, the pres-
ence of best-effort traffic would impact the amount of
real-time traffic in the network. If one assumes, for in-
stance, that 20% of network traffic will be best-effort,
then utilization levels higher than 80% in our exper-
iments fall outside of expected operating conditions.
Thus, an important, but unanswerable, question in an-
alyzing our results is how much of the link bandwidth
will be taken by best-effort traffic. If it is a large per-
centage, then one need only consider fairly low levels of
real-time utilization, and there the comparison of two
levels of priority versus one is quite different than at
higher levels of utilization.

3.2 Results

We present our results in three stages. First, we present
"raw" data of queueing delays and jitter induced by the
network. This shows the service provided by the net-
work, before any processing by the applications. Then
we add the application performance and utility to our
analysis in the context of non-adaptive applications.
Finally, we present results of experiments using the
adaptive algorithms described earlier. This incremen-
tal approach demonstrates the importance and impact
of the specific characteristics of applications (i.e., their
utility and adaptation algorithms) we consider.

The vie program
http://www-nrg.ee.lbl.gov/vic/.

2060 20SS 2000 2006 2100

lll.iljUikJllI LlllhiilllL.l]
2005 2100

2005 2100

available

Figure 2: Delay trace at 55% utilization

3.2.1 Raw Network Performance

Figure 2 shows a plot of delay versus time over a 50
second simulation interval for a single test source in
the FIFO case and for test sources in each level in the
Priority case. Average utilization is 55% in both ex-
periments. Histograms of delay (over a 500 second sim-
ulation interval) are shown in Figure 3. These graphs
depict, as expected, that the service provided by Level
1 is better than that of Level 2 and of FIFO, and that
FIFO was better than level 2 (although we were sur-
prised by how small this latter difference was in the
histograms). The unanswered question is whether or
not these performance differences matter significantly
to applications. Consider first the average delays: 0.71
ms for Level 1 and 6.73 ms for Level 2. While in abso-
lute terms, this difference is significant, it is likely to be
dwarfed by other sources of delay in the network, such
as propagation time. Hence, if average delay matters,
then one may conclude that multiple levels of service

LEVEL f -
LEVEL 2 -

FIFO -

Figure 3: Delay histogram at 55% utilization.

does not provide significant benefits to applications.
However, the tails of the delay distributions are dra-
matically different. For example, the maximum delay
experienced for Level 1 and Level 2 are 30 and 100 ms,
respectively. In contrast to the averages, the differ-
ences between these figures are likely to be significant
to some applications (e.g., interactive ones). Hence,
it is apparent that one cannot address the design is-
sue we raise here without considering the effect of the
network service on the applications that use it. Specif-
ically, how do applications adapt to the service, and
how do they ultimately perceive the service?

3.2.2 Rigid Application Performance

We first consider the relationship between network ser-
vice and application performance in the context of rigid
applications that do not adapt to current network con-
ditions. Rigid applications remove network jitter by
maintaining a constant playback point for all packets.

LINK UTILIZATION

HÖH DELAY

3.5

LEVEÜI -•—
LEVEtZ -*--

FI^O -■••

3 I

f
1

2.5

2

"
1 ■
1

i 1.5
1

J "
OS

1

LINK UTILIZATION

Figure 4: Distortion for rigid applications.

That is, all packets are buffered so that the sum of their
network and playback delays are equal. Packets that
arrive after their playback points must be discarded.
This receiver behavior maintains perfect fidelity as long
as packets arrive "in time", but degrades when pack-
ets arrive late. While such an application is impracti-
cal for the Internet (because applications have no way
of knowing where to set the playback point when the
first packet arrives in a way that will produce an ac-
ceptable level of distortion), we consider its behavior
here to motivate the need to include adaptation in our
analysis.

For rigid applications, the delay performance mea-
sure is merely the fixed delay experienced by all pack-
ets. To measure distortion, we assign a penalty of 120
ms (or three times the maximum penalty incurred by
the adaptive algorithms) for each packet that arrives
late and is dropped by the application.14 The playback
point for a rigid application is determined by the utility
functions for delay. A delay sensitive application using
the rigid playback algorithm sets its playback delay to
25 ms, half the delay threshold at which utility starts
to degrade, while delay insensitive applications set the
playback delay of the first packet to 500 ms.15

"Relating the distortion measure of rigid and adaptive ap-
plications is problematic, as it involves comparing the cost of
late packets dropped by the application to the cost of adjusting
the playback algorithm. Given our performance measures and
utility functions, utility starts to degrade at .2% packet loss and
utility is zero when packet loss reaches .8% for distortion sensi-
tive rigid applications. For distortion insensitive applications,
the corresponding thresholds are 2% and 8%.

15Choosing the playback point for rigid applications is also
problematic. If the application has knowledge about the queue-
ing delay of the first packet it receives, it could set the playback

DELAY/DISTORTION SENSITIVE

LINK UTILIZATION

DELAY SENSITIVE

"•» 'a

\ \
LEVEL 1 -•—
LEVEL 2 -*•-

FIFO -■•-

■

□

\

a

■

h
>.«,■, ■ m *m

LINK UTILIZATION

Figure 5: Rigid application utility for delay/distortion
sensitive and delay sensitive applications.

DISTOFCTION SEC JSITIVE

\LEVELI -•—
\EVEL2 -*--
*T*IFO ■■■

■

'•i

\

■

t

t

i
1

b

LINK LmLIZATION

DELAY/CHSTORTION INSENSITIVE

UNK UTILIZATION

Figure 6: Rigid application utility for distortion sensi-
tive and delay/distortion insensitive applications.

Figure 4 shows distortion as a function of offered
load for rigid applications. For both delay sensitive
and insensitive applications, data are shown for FIFO
service (all traffic in a single service class) and for each
of two levels in the Priority service case. With a low
delay threshold (set for a delay sensitive application)
there is no distortion up to about 20% utilization for
the FIFO case. Beyond that, distortion starts to in-
crease, deteriorating rapidly beyond 40% utilization.
In the case of priority service, the Level 1 traffic expe-
riences negligible distortion up to levels of utilization
exceeding 80%.16 The distortion of the Level 2 traffic
is similar to the distortion of the FIFO service with
the increases occurring at slightly lower levels of load.
When the playback point of the rigid application is set
to satisfy delay insensitive applications, no distortion
is experienced (except at very high loads with Level
2 and FIFO service) as the playback point is large
enough to enable almost all packets to arrive before
their playback times.

These figures indicate how much distortion (result-
ing from discarded late packets) applications experi-
ence. However, they do not provide any indication
about the effect that this distortion has on applica-

point optimally (i.e., to the delay value at which utility starts
to degrade) and minimize packet loss. However, without this
information, it can only guess. We used half the optimal value
as the playback point, and set the minimal playback point of
the adaptive algorithms to the same value to make the perfor-
mance comparisons fair.

16Recall, the X axis is total offered load; hence in the Priority
experiments, 80% load consists of 20% high priority traffic and
60% low priority traffic since we hold the ratio of high to low
priority fixed at 1:3.

tion performance. We employ the utility functions de-
scribed in Section 2.3 to each of 4 classes of applications
(characterized by their relative sensitivity or insensi-
tivity to each of delay and distortion) for the FIFO
case and for each level of service in the priority case.
The results are shown in Figures 5 and 6. Applications
that are sensitive to both delay and distortion achieve
high utility up to about 25% load with FIFO service,
then performance deteriorates rapidly. Applications
that are only sensitive to delay and not to distortion
experience this performance degradation at higher lev-
els of load (45%). Applications that are sensitive to
distortion only and applications that are not sensitive
to either performance measure achieve high utility, ex-
cept at the very highest levels of load.

In the Priority case, Level 1 service allows all ap-
plications to achieve high utility at all levels of load.
Above load levels of 45%, Level 2 is only useful for
applications that are insensitive to delay.

3.2.3 Adaptive Application Performance

We now consider the impact of the aggressive and con-
servative playback algorithms described in Section 2.2.
To make comparisons between these algorithms as fair
as possible, the minimum playback delay at the start
of a talkspurt was set to 25 ms in the aggressive al-
gorithm. This is consistent with the playback delay in
the rigid algorithm. Within a talkspurt, when a packet
arrived late and the playback point was adjusted, the
minimum additional playback delay was set to 5 ms.
The initial playback delay for the conservative algo-
rithm was also 25 ms. We repeated our simulation

AGGRESSIVE

LEVEL 1 ■*-
LEVEL 2 -*--

FIFO ■■--

• ■

^---*'.'d

B, t-i-T"r:T-"T'7:r'?:'T":f ? T

AGGRESSIVE

LINK UTILIZATION

000
CONSERVATIVE

LEV|L 1 —-
LEVEL 2 -«--

:FiFO ■»■■

800 : i
■ 9

i l
OOO

; 6
400

f'*\

200

-
LINK UTILIZATION

Figure 7: Delay for adaptive applications.

LEVEL 1 -
LEVEL 2 ■

FIFO •

 .&£■*■'*■■ S-.-*:**'*-"

■ ■ r--^:ir-'S'!

LINK UTILIZATION

CONSERVATIVE

I " 5 2

8 '■■

LEVEL 1 -
LEVEL 2 -

FIFO •

LINK UTILIZATION

Figure 8: Distortion for adaptive applications.

experiments, computing delay and distortion for each
algorithm in the FIFO test and for both levels of ser-
vice in the Priority case. Delay measures as a function
of load are shown in Figure 7 and distortion measures
are shown in Figure 8.

These figures demonstrate that the two adaptation
algorithms offer tradeoffs of delay for distortion. The
aggressive receiver gives lower delays and higher dis-
tortion than the conservative algorithm at equivalent
load levels. For example, with FIFO service, the ag-
gressive receiver's delay is 51.2 ms while the conser-
vative algorithm yields an average delay of 165.8 ms
at 60% utilization (Figure 7). At the same load, the
algorithms yield distortion values of .57 and .00071, re-
spectively (Figure 8). However, these figures also show
that while adaptation can reduce one quantity at the
expense of the other, there is little adaptation can do
to reduce both. So, as we shall see, applications that
are sensitive to both delay and distortion are the most
vulnerable to network service variations.

When two levels of service are available, the higher
priority level always gives applications better service at
high levels of load. However, the relative difference be-
tween Level 1 and Level 2 service depends on the adap-
tation algorithm. For instance, the difference between
Level 1 and Level 2 delays is smaller with the aggres-
sive algorithm than with the conservative algorithm.
Conversely, the difference in distortion between Level
1 and Level 2 is small with the conservative algorithm
and large with the aggressive algorithm. These differ-
ences affect the relative utility applications receive in
different service levels. We next look at application
utility as a function of the application's performance
sensitivities.

Figures 9 and 10 show utility as a function of offered
load for different types of applications. Each applica-
tion uses the adaptation algorithm that is best suited
for it.17 With FIFO service, applications that are sen-
sitive to both delay and distortion receive good service
(i.e., high utility) only at low levels of load. Utility
starts to decrease at utilization levels of about 40%
of the link bandwidth as the adaptation algorithm is
unable to meet both the delay and distortion require-
ments of the application, simultaneously. When high
priority service is used, performance does not deterio-
rate. Applications that are sensitive to delay and not
distortion maintain high utility up to 60% utilization
with FIFO service, as the adaptation algorithm can op-
timize the performance measure about which the appli-
cation cares the most. At higher loads (> 60%), high
priority service does improve the performance of these
applications. The applications that are only sensitive
to distortion use the conservative adaptation algorithm
to minimize distortion and achieve high utility at all
but the highest levels of offered load with FIFO ser-
vice. Hence, these applications derive no benefit from
priority service, except in extreme conditions. Finally,
applications that are insensitive to both delay and dis-
tortion also do not benefit from priority service (except
at very high loads), given that their performance re-
quirements are such that they are satisfied at most load
levels with FIFO service.

1TThat is, the two kinds of applications that are sensitive to
delay use the aggressive algorithm and the other two use the
conservative algorithm.

DELAY/DISTORTION SENSITIVE

0.8
■

\ LEVEL 1 -•—
LEVEL 2 -i—

FIFO ■■•■

0.8 V \
■

04
v o

e

-

0.2

\ "o
■a

'a
«... v..

DISTORTION SENSITIVE

LINK UTILIZATION

DELAY SENSITIVE

LEVEL 1 -
LEVEL 2 -

FIFO -

UNK l/TILIZATION

Figure 9: Adaptive application utility for de-
lay/distortion sensitive and delay sensitive applica-
tions.

3.2.4 One or Two Levels

The previous results showed, not surprisingly, that some
applications achieve higher utility with high priority
service than without it, and the magnitude of the dif-
ference depends on the characteristics of the applica-
tion (its performance sensitivities) and on the level of
the ambient traffic. However, by itself, this does not
provide an answer to the question of the number of ser-
vice levels that should be offered in the network. After
all, better service always helps some applications, but
at the same time it gives worse service to other ap-
plications. Hence, the answer depends on how much
better two levels of service makes the overall network
service. There is not a single best way to answer this
question. We consider two alternatives.

The first, and perhaps most obvious approach is to
consider the impact of multiple levels of service on total
network utility. This method is fraught with problems.
For instance, it depends on the mix of different kinds of
applications in the network, the absolute value of util-
ity achievable by each application, and on an incentive
mechanism that impacts the mapping of application
to service level. Nonetheless we proceed forward us-
ing the results of our previous experiment. We assume
that there are equal amounts of each kind of applica-
tion, that only the applications that are sensitive to
both delay and distortion use the higher priority ser-
vice, and that all applications have the same maximum
utility.18 Figure 11 shows the average utility per ap-

LINK UTILIZATION

DELAY/DISTORTION INSENSITIVE

UNK LTTIUZATION

"The actual mapping of applications to service levels de-
pends on the incentives of using each class, which are not in-

Figure 10: Adaptive application utility for distortion
sensitive and delay/distortion insensitive applications.

plication as a function of offered load. Below 40% uti-
lization, two levels of service offers no increase in util-
ity. Above 40% load, service priority does offer modest
advantages, with the benefit increasing with load. In
contrast, Figure 12 shows total utility for rigid applica-
tions. Relative to the adaptive applications, these re-
sults present a stronger, but possibly misleading, case
for multiple levels of service.

In addition to looking at the impact on total net-
work utility, it is important to ask what effect service
levels has on particular classes of applications. That is,
independent of total utility, it may be important for a
network to make sure that it serves all classes of appli-
cations adequately. In this case, the relevant question
to ask is, for a given service discipline, at what level
of offered load is an application no longer well-served
by the network. We can ask this question in the con-
text of our earlier results (see Figure 9). When only a
single FIFO service class is offered, applications that
are sensitive to delay and distortion start to suffer a
loss in utility at utilization levels of 40%. When these
applications use priority service, the network provides
them with useful service at very high load. Assuming
the other application types use the lower priority ser-
vice, it is important to consider the levels of utilization
at which the network no longer satisfies these applica-
tions. As is evident from the previous graphs, the delay
insensitive applications do not suffer by using the lower
priority service. The delay sensitive and distortion in-

cluded in our analysis. However, given our previous results, we
assume that if priority service is available, it will be used only
by applications sensitive to both delay and distortion, since
these are the applications that derive the most benefit from it.

LINK UTILIZATION

Figure 11: Average utility for adaptive applications.

\ ^fc SERVICE PRIORITY -*-
\ ^> FIFO -*--
\ \
\ \

~^
\ \

v V
-» » , ■*

\

LINK UTILIZATION

Figure 12: Average utility for rigid applications.

sensitive applications do suffer a bit when using the
lower priority service: the level of utilization at which
they no longer achieve utility of 1 decreases from over
60% to 50%. Nonetheless, when looking at all appli-
cation classes, multiple levels of service increases the
load levels at which the network can satisfy all of them.
This suggests that multiple service levels may be worth
deploying according to this criterion.

4 Discussion

Previous studies of application adaptivity have com-
pared algorithms, focusing on such performance mea-
sures as the percentage of late packets for a given
packet stream and adaptation algorithm.[8, 10] We be-
lieve ours is the first study to incorporate this adaptive
behavior into consideration of a network design ques-
tion. Our study provides no definitive answer to the
question of whether multiple service priorities should
be provided for real-time traffic in the Internet. Our
results showed that with a single level of service, per-
formance of some applications starts to degrade at uti-
lization levels below 50%. These applications would
benefit from two levels of service, and other applica-
tions are able to tolerate a lower priority service, yield-
ing higher total network utility. However, the ultimate
answer to our question depends on several characteris-
tics of the future Internet, about which we are uncer-
tain. First, how bursty will aggregate traffic be? We
have presented results for a single kind of background
traffic produced by multiplexing a moderate number
of low frame rate video sources. Results from addi-

tional experiments, not shown here due to space limi-
tations, showed that the burstiness of background traf-
fic can be viewed as a knob that can be varied. With
smoother background traffic and FIFO service, perfor-
mance does not degrade until higher levels of utiliza-
tion are reached. Therefore, the relative benefits of pri-
ority service are smaller and only occur at higher levels
of utilization, making a weaker case for multiple levels
of service. The converse is true with burstier back-
ground traffic. One should not take too seriously the
absolute values of the utilization levels presented here;
by making the traffic even burstier, one could make the
levels of utilization at which performance degrades, ar-
bitrarily small. We do not yet know if future Internet
traffic will be smooth enough everywhere to obviate
the need for multiple levels of service, or will the lev-
els of burstiness be such that multiple service priorities
are unambiguously desirable. In any event, additional
simulations of either less bursty or more bursty traffic
will not resolve this.

Second, what will the ratio of best-effort to real-
time traffic be in the network? For example, if future
network traffic consists of 90% best-effort traffic then
the relevant utilization levels for real-time traffic in our
simulations would only be 10%. At this level of load,
for all but the burstiest traffic imaginable, real-time
traffic always receives low delay and distortion, even
with a single level of service. Delay and distortion
would be absorbed by best-effort applications, which
are well-suited to handle the performance degradation.
Just as a few years ago one would not have predicted
the tidal wave of web traffic, we cannot, at this point,
predict the extent to which the Internet will be used
for real-time applications.

Finally, what are the nature of utility functions of
real-time applications? While we believe we have cap-
tured the essential characteristics of these functions,
actual thresholds and functions may be significantly
different. Ultimately, our simulation model can pro-
vide an answer to the larger question given an ade-
quate set of parameters, but the model itself cannot
resolve these questions. Hence, a more definitive an-
swer requires a much better understanding of network
applications, traffic mix and utility functions.

While we do not provide an unambiguous answer
to the initial question we posed, our results do yield
other key observations. First, application adaptivity
is not a panacea. Our simulations showed that adap-
tive algorithms can very successfully remove distortion
at the receiver, or they can reduce delay. However,
achieving both low delay and low distortion is diffi-
cult under moderate load with bursty traffic. Hence, if
there are applications that are sensitive to both perfor-
mance measures, then under certain traffic conditions,
adaptivity may not be enough. In this case, service
discrimination inside the network is needed to provide
these applications an acceptable level of performance.

Finally, we obtained different results for rigid and
adaptive applications, further emphasizing the impor-
tance of including realistic application behavior in the
analysis. While we demonstrate this point in the con-
text of one specific network design question, we believe
it has widespread applicability. For example, when
considering other questions, such as whether or not the
network should provide multiple levels of dropping pri-

ority, appropriate models of applications are needed.
Conversely, if nothing else, this study has shown us
that previous research (such as [14]) that models ap-
plications as rigid and does not take application adap-
tivity into account can lead to incorrect or misleading
results. In the Internet, design analyses must incorpo-
rate the adaptive nature of applications.

References

[1] Jean-Chrysostome Bolot. End-to-end packet de-
lay and loss behavior in the Internet. In Pro-
ceedings of ACM Sigcomm, pages 289-298, San
Francisco, California, September 1993. ACM. also
in Computer Communication Review 23 (4), Oct.
1992.

[2] R. Braden, D. Clark, and S. Shenker. Integrated
services in the Internet architecture: an overview.
RFC 1633, Internet Engineering Task Force, June
1994.

[3] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog,
and S. Jamin. Resource ReSerVation protocol
(RSVP) - version 1 functional specification. Tech-
nical Report RFC 2205, Internet Engineering Task
Force, September 1997.

[4] David D. Clark, Scott Shenker, and Lixia Zhang.
Supporting real-time applications in an integrated
services packet network: Architecture and mech-
anism. In Proceedings of ACM Sigcomm, pages
14-26, August 1992.

[5] Domenico Ferrari, Anindo Banerjea, and Hui
Zhang. Network support for multimedia: A dis-
cussion of the Tenet approach. Computer Net-
works and ISDN Systems, 10:1267-1280, July
1994.

[6] Sally Floyd. Comments on measurement-based
admissions control for controlled-load services,
submitted to CCR, July 1996.

[7] Sugih Jamin, Peter B. Danzig, Scott J. Shenker,
and Lixia Zhang. A measurement-based admission
control algorithm for integrated services packet
networks. IEEE/ACM Transactions on Network-
ing, 5(l):56-70, February 1997.

[8] Sue B. Moon, Jim Kurose, and Don Towsley.
Packet audio playout delay adjustment algo-
rithms: performance bounds and algorithms.
Research report, Department of Computer Sci-
ence, University of Massachusetts at Amherst,
Amherst, Massachusetts, August 1995.

[9] Abhay K. Parekh and Robert G. Gallager. A gen-
eralized processor sharing approach to flow control
in integrated services networks: The single-node
case. IEEE/ACM Transactions on Networking,
l(3):344-357, June 1993.

[10] Ramachandran Ramjee, Jim
Kurose, Don Towsley, and Henning Schulzrinne.
Adaptive playout mechanisms for packetized au-
dio applications in wide-area networks. In IEEE
Infocomm, pages 680-688. IEEE, 1994.

[11] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson. RTP: A transport protocol for real-
time applications. RFC 1889, SRI Network Infor-
mation Center, January 1996.

[12] S. Shenker, C. Partridge, and R. Guerin. Specifi-
cation of guaranteed quality of service. RFC 2212,
Internet Engineering Task Force, September 1997.

[13] S. Shenker and J. Wroclawski. Network ele-
ment service specification template. Technical Re-
port RFC 2216, Internet Engineering Task Force,
September 1997.

[14] Scott Shenker. Fundamental design issues for the
future internet. IEEE Journal on Selected Areas
in Communications, 13(7), September 1995.

[15] C. Topolcic. Experimental internet stream proto-
col, version 2 (ST-II). RFC 1190, SRI Network
Information Center, October 1990.

[16] J. Wroclawski. Specification of the controlled-load
network element service. RFC 2211, Internet En-
gineering Task Force, September 1997.

[17] J. Wroclawski. The use of RSVP with IETF inte-
grated services. Technical Report RFC 2210, In-
ternet Engineering Task Force, September 1997.

[18] Lixia Zhang, Steve Deering, Deborah Estrin,
Scott Shenker, and Daniel Zappala. RSVP: A
new resource reservation protocol. IEEE Network
Magazine, 7(5):8-18, September 1993.

Uniform versus Priority Dropping for Layered Video*

Sandeep Bajaj Lee Breslau Scott Shenker
{bajaj,breslau,shenker}@parc. xerox, com

Xerox Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, CA 94304

Abstract

In this paper, we analyze the relative merits of uni-
form versus priority dropping for the transmission of
layered video. We first present our original intuitions
about these two approaches, and then investigate the
issue more thoroughly through simulations and anal-
ysis in which we explicitly model the performance of
layered video applications. We compare both their per-
formance characteristics and incentive properties, and
find that the performance benefit of priority dropping
is smaller than we expected, while uniform dropping
has worse incentive properties than we previously be-
lieved.

1 Introduction

A common question facing network designers is what
functionality the Internet should offer, and whether
to place that functionality in the interior of the net-
work (in network routers) or at its edges (in hosts).
When evaluating new network control mechanisms, it
is not enough to merely consider network-centric crite-
ria, such as the local effects on queue sizes at routers, or
the end-to-end delays provided by a particular network
architecture. Rather, because the ultimate purpose of
the network is to support applications, one must eval-
uate the impact of the proposed mechanisms on appli-
cation performance.1 If the proposed mechanisms re-
quire significant additional complexity in the network
infrastructure, their adoption should only be consid-
ered if they provide significant benefits to a large (or

'This research was supported in part by the Advanced Re-
search Projects Agency, monitored by Fort Huachuca under
contracts DABT63-94-C-0073 and DABT63-96-C-0105. The
views expressed here do not reflect the position or policy of
the U.S. government.

1 We will use the terms application performance and appli-
cation utility interchangeably.

extremely important) segment of applications.2

For example, a priority dropping mechanism will
increase the dropping probability of low priority pack-
ets while protecting high priority packets from frequent
loss. However, in and of itself, the change in drop rates
for different traffic does not indicate whether the con-
trol mechanism significantly improves the performance
of applications. The desirability of drop priority de-
pends crucially on its impact on application perfor-
mance. That aspect of the issue, which has received
comparatively little attention so far, is the focus of our
paper.

This paper is devoted to the question of drop pri-
ority for the transmission of layered video in contexts
where packet drops, rather than packet delays, are
the primary determinant of application performance.
In such cases, we ask: should the Internet retain the
currently predominant uniform dropping mechanism,
where all data packets are treated equally with respect
to dropping, or should the Internet adopt a priority
dropping mechanism where lower priority packets are
dropped before higher priority ones? We specifically
focus on the implications of these network dropping
mechanisms for application performance.3 To this end,
we consider a class of layered video applications and in-
troduce a simplified model of their performance; this
model is extremely primitive, but nonetheless high-
lights several open questions about the characteris-
tics of network video applications. Using both discrete
event simulation and analytical models, we assess the
impact of different network dropping schemes on appli-
cation performance and on their incentive properties.

2 Alternatively, one would consider adopting network de-
signs that allowed a significantly higher level of link utiliza-
tion without significant application performance degradation;
in this case no single user is substantially better off in terms
of application performance, but the increased utilization im-
plies that there are many more such satisfied users. Of course,
the desirability of any new network level mechanism depends
on the level of mechanistic complexity introduced; however, we
adhere to the philosophy that one should only consider adop-
tion after the significance of the benefit is demonstrated, and so
the consideration of implementation complexity comes after the
analysis of the potential benefits. We only address the latter
(the potential benefits) and not the former (the implementation
complexity) in this paper.

3We do not discuss the mechanisms for implementing drop
priority, such as whether these priority levels are indicated in
packets in TOS bits, or signaled as part of the multicast join
message.

Much to our chagrin, we find that many of our previ-
ously held opinions and assumptions about the perfor-
mance of packet dropping algorithms and the incen-
tives they provide to applications are either wrong, or
are only true in the context of specific network condi-
tions. In particular, we find that while priority drop-
ping performs better in general than uniform dropping,
the magnitude of the difference is smaller than we ex-
pected. At the same time, we find that uniform drop-
ping has worse incentive properties than we thought.

We hasten to note that we do not offer specific con-
clusions about whether or not the Internet should offer
drop priority for layered video applications. Our re-
sults are ambiguous on this point - there are some con-
ditions where drop priority yields significant benefits,
and other conditions where it doesn't- and there are
many relevant issues (such as implementation complex-
ity) that are outside of our ken. Instead of making a
specific recommendation about priority dropping, our
goal is to illustrate more generally the basic approach
of considering application performance in conjunction
with network control mechanisms.

In the next section we provide background about
the question of network dropping algorithms that mo-
tivated this work, and identify three central questions
to be addressed. In Section 3 we outline our general
model of application utility, along with the simulation
and theoretical frameworks used in this study. In Sec-
tions 4 and 5 we present the results of our investi-
gations into the performance and incentive aspects of
priority and uniform dropping. We conclude with a
discussion in Section 6.

2 Background

A key challenge in sending video over the Internet is
matching the transmission rate to the currently avail-
able bandwidth. One approach is to employ rate adap-
tive coding algorithms [2, 3] in which the parameters
of the coding algorithm can be adjusted periodically
to match the available network bandwidth. However,
this strategy is problematic for multicast transmission
[12, 14] since, in general, there is not a single bottle-
neck bandwidth available between the source and all
receivers; some paths will have more available band-
width than others. Choosing a single transmission rate
(at any instance in time) will either unnecessarily con-
strain those receivers with higher bandwidth paths or
congest the lower bandwidth paths leaving some re-
ceivers with high loss rates. In response, Deering [5]
and others [9, 11, 15, 16] proposed using layered cod-
ing algorithms4 to transmit video data, striping differ-
ent layers across different IP multicast groups [4]. In
this scheme, a receiver only subscribes to those groups
for which sufficient network capacity exists. Thus, in
a heterogeneous network, each receiver is able to ad-
just its level of subscription to receive an appropriate

4 Layered coding algorithms, such as described in [9, 11], par-
tition the encoded signal into several layers. The base layer en-
codes a fairly primitive rendering of the image, and higher lay-
ers encode increasingly finer enhancements to the image. Lay-
ered coding algorithms thus provide several different levels of
encoding simultaneously. A receiver can choose how may layers
to receive, and the more layers that are available to decode, the
higher the resulting picture quality.

Performance

Figure 1: A representation of application performance
as a function of load with perfectly smooth traffic. The
maximal performances of priority and uniform drop-
ping are the same, and RLM achieves this optimal
level. The uppermost curve depicts the performance
level achieved if the link had infinite bandwidth. The
load level marked by B denotes the bandwidth of the
bottleneck link.

amount of traffic.
Such a layered encoding and transmission scheme

lends itself to the use of priority dropping. Packets be-
longing to the base layer of a hierarchically encoded
video stream can be marked as high priority while
packets belonging to each successive enhancement layer
can be marked as successively lower priority. Dur-
ing times of congestion, the network can preferentially
drop the low priority packets, protecting the base layer
from significant loss. Shifting loss away from more im-
portant and towards less important packets improves
the picture quality. For this reason, priority dropping
(for layered encodings) was considered by many in the
Internet community to be an extremely promising ap-
proach for digital video.

However, in their recent work on Receiver-driven
Layered Multicast [12] (RLM), McCanne et al. argue
against this use of priority dropping.5 Their argument
is best illustrated by Figure 1 (based on a similar figure
in their paper) which plots the application performance
(which, in the case of digital video, is synonymous with
picture quality) as a function of offered load for uni-
form and priority dropping when capacity is fixed. In
addition, the uppermost curve shows the quality of the
picture as a function of load with unlimited link ca-
pacity (and therefore no packet drops.) Underlying
this figure is the implicit assumption that there is a
bottleneck rate below which there is no dropping, and
above which all excess packets are dropped. That is,
the output rate equals the input rate whenever the in-
put rate is below the bottleneck rate, and the output
rate is equal to the bottleneck rate whenever the input
rate is greater than the bottleneck rate. As the figure

5While the introduction of this paper makes remarks about
the inadvisability of priority dropping (as we outline below),
we should note that in this paper RLM is also described as a
way to cope with the current uniform dropping infrastructure
(regardless of what one thinks of priority dropping). Moreover,
the bulk of the paper is devoted to the design of the RLM algo-
rithm itself - an admirable exercise in elegance and scalability -
and the discussion of the relative merits of uniform and priority
dropping is clearly not the central focus of the paper.

shows, up to the bottleneck load the application per-
formance of the two dropping schemes is equal because
no packets are dropped in either case. Beyond the
bottleneck load, the performance of uniform dropping
degrades because no additional packets are transmit-
ted, and packets are dropped uniformly from all layers;
the performance of priority dropping remains constant
since only packets from the lower priority levels are
dropped. Thus, as illustrated by Figure 1, uniform
and priority dropping both attain the same maximal
performance, and the performance curves only differ
when excess load is offered.

As discussed by McCanne et al. [12], this behav-
ior has implications for the incentives faced by users.
Under uniform dropping, users maximizing their own
performance would restrain their usage to the bot-
tleneck rate. Priority dropping, on the other hand,
does not provide any penalty for sending low prior-
ity packets that are dropped inside the network, and
so users (at least based solely on application perfor-
mance) would not mind sending faster than the bot-
tleneck rate.6 Thus, uniform dropping provides better
performance-based incentives than priority dropping.

Priority dropping, however, has the advantage that
the application need not determine the bottleneck rate
precisely to achieve optimal performance. In contrast,
to achieve the optimal performance with uniform drop-
ping, the application must identify the bottleneck rate
precisely because performance degrades if the trans-
mission rate is higher (or lower) than the bottleneck
rate.

RLM [12] is a host-based algorithm that responds
to current network conditions (as measured by packet
drops) to achieve the appropriate bandwidth level. Mem-
bers leave a level (i.e., leave the multicast group asso-
ciated with that level) when their overall drop rate
(across all levels) becomes too high; in addition, they
periodically perform experiments by joining a level to
test if the drop rate with the addition of the new level
is sufficiently low. RLM's innovative design coordi-
nates the activities among the various members of the
multicast group so that these experiments don't inter-
fere with each other. Under the conditions explored in
[12], where the traffic is rather smooth (».e., CBR-like),
RLM successfully achieves the bottleneck bandwidth,
and does so in a scalable manner for large multicast
groups. We have indicated this on Figure 1 by mark-
ing RLM's performance level at the peak of the priority
and uniform dropping curves.

One can summarize (with appropriate additional
caveats) the three basic tenets of the arguments against
priority-dropping: (1) uniform dropping achieves (es-
sentially) the same optimal level of performance as pri-
ority dropping (i.e., the peaks of the curves are nearly
the same), (2) RLM achieves (close to) optimal perfor-
mance, and (3) uniform dropping provides incentives
for users to reach the optimal operating point whereas

6The impact of users not constraining their usage of lower
priority packets is not clear, nor can it be evaluated in the sim-
ple settings we investigate here. If there is only a single bottle-
neck in the network, then there are no ill-effects of sending lower
priority packets that will be dropped at that bottleneck. Nega-
tive consequences only arise in more complicated settings where
these destined-to-be-dropped packets congest one or more links
upstream of the bottleneck. It is not clear how significant a
phenomena this is.

Performance

Figure 2: A representation of our intuition about ap-
plication performance as a function of average load
with bursty traffic. Priority dropping achieves a sig-
nificantly higher maximal performance level than uni-
form dropping. Moreover, RLM's performance is sig-
nificantly below the maximal performance achievable
under uniform dropping. As before, the uppermost
curve depicts the performance level achieved if the link
had infinite bandwidth, and the load level marked by
B denotes the bandwidth of the bottleneck link. Note
that since the x-axis represents average load and traf-
fic is bursty, the performance of priority dropping can
increase beyond the bottleneck rate.

priority dropping does not provide performance-based
incentives to constrain usage. While these arguments
certainly have an initial appeal, we must admit that
after reading [12] we were not entirely convinced by
them. In the spirit of full disclosure we now discuss
the intuition that (mis)guided us as we embarked on
our research program.

The assumption underlying Figure 1 is that packet
dropping occurs only when the bottleneck rate is ex-
ceeded, and then all excess packets (i.e., all packets
exceeding the bottleneck rate) are dropped. This is a
reasonably good approximation when network traffic
is quite smooth, like CBR traffic, but Internet traffic
is not typically CBR-like. In fact, Internet traffic is
characteristically quite bursty [8, 10], and bursty traf-
fic results in packet drops even when long-term aver-
age transmission rates are well below bottleneck rates.
With bursty traffic, there will be some packet drops
at all significant utilization levels, thereby producing a
performance gap between priority and uniform drop-
ping even below the bottleneck rate. Consequently, our
initial hypothesis when undertaking this work was that
in the presence of bursty traffic (similar to what we
envision is present in the Internet), priority dropping
would significantly outperform uniform dropping. By
this we mean the optimal performance achievable with
priority dropping would be much higher than the high-
est performance achievable with uniform dropping; in
essence, we imagined that with bursty traffic the per-
formance curves would look more like Figure 2 than
like Figure 1.

RLM uses packet drops as a signal of congestion,
joining and leaving levels based on the current drop-
ping rate. In this manner, RLM attempts to match its
transmission rate to the bottleneck bandwidth. When
traffic is bursty, however, the bandwidth available at

the bottleneck (and perhaps even the location of the
bottleneck itself) can fluctuate significantly. Moreover,
these fluctuations occur on time scales much shorter
than the response times of host-based mechanisms (which
require at least the round trip time between the bot-
tleneck and the receiver to respond). We assumed
that any attempt to adjust, at the endpoint, to rapid
fluctuations at the router was doomed to fail. Conse-
quently, our initial hypothesis was that, under bursty
conditions, adaptive mechanisms implemented at the
endpoints would perform significantly worse than the
optimal performance under uniform dropping, and cer-
tainly much worse than the performance achieved with
priority dropping. As shown in Figure 2, our initial as-
sumption was that RLM, or indeed any similar adap-
tive algorithm used with uniform dropping, would re-
sult in performance significantly below the peak of the
uniform dropping curve.

Lastly, there is the issue of incentives. The per-
formance curves in Figures 1 and 2 depict the perfor-
mance of a single application given a fixed (smooth in
Figure 1 and bursty in Figure 2) traffic load. The peaks
of these curves identify points that are optimal for that
individual application. However, in constructing net-
work mechanisms we are typically more interested in
achieving global or social optima, where the total per-
formance - the performance of all applications - is op-
timized. There are many models of congested systems
where the individually optimal point, often called the
Nash equilibrium [7], is quite far from the socially op-
timal outcome [13]; the reasoning in [12] about the
incentives provided by uniform dropping did not make
the necessary distinction between individually and so-
cially optimal outcomes. While uniform dropping pro-
vides performance-based incentives to constrain usage
(and priority dropping did not), this does not at all
imply that under uniform dropping the joint behavior
resulting from applications seeking their individually
optimal points will result in socially optimal, or close
to socially optimal, outcomes. Despite this fact, our
initial assumption about incentives was that uniform
dropping's incentive properties were still far superior
to those of priority dropping.

Thus, our initial assumptions were quite different
from those embedded in the arguments against priority
dropping advanced by McCanne et al. in [12]. To
resolve these fundamentally conflicting intuitions and
arguments, we set out to answer three basic questions
about uniform and priority dropping:

1. Do uniform and priority dropping achieve the
same optimal performance? To what extent does
the answer depend on the burstiness of traffic,
and is the difference ever significant?

2. Can RLM (as an example of a control mechanism
used with uniform dropping) achieve the optimal
performance under uniform dropping? Again,
does the answer depend on the burstiness of traf-
fic?

3. What incentives do these different dropping mech-
anisms present to individual applications? Do
operating points where each user is individually
optimal differ from the socially optimal operating
point?

To address these questions, we use simulation and
analysis of simple models of layered video applications
transmitting over a network. The simulation models
are, by necessity, crude approximations because we
know little about the traffic and performance charac-
teristics of future layered video sources, and even less
about the likely nature of future background traffic.
The analytical models suffer from these same draw-
backs but, in addition, tractability requires even fur-
ther simplification. Thus, we make no pretense that
the models we used are realistic in any precise sense;
they merely illustrate some of the basic issues involved,
and highlight areas where future research is needed.
These simulation and analytical models are presented
in the following section.

3 Simulation and Analytical Models

In this section we describe our simulation and analyt-
ical models of applications and the network. For our
purposes here, an application has two somewhat dis-
tinct aspects: its offered load (the nature of the packet
stream the application transmits over the network) and
its performance characteristics (how application per-
formance depends on the network service those pack-
ets receive). The basic assumptions about the perfor-
mance characteristics embedded in the analytical and
simulation models are quite similar in spirit, and we
describe them first. We then describe the network and
traffic aspects of the simulation model, and then those
of the analytical model.

3.1 Basic Assumptions about Performance of Lay-
ered Video

We represent the performance of an application by a
utility function. This function maps the service re-
ceived into some performance (or utility) level deliv-
ered to the end user. Below we describe a model for
layered video, our canonical application, but it may
well apply to other layered applications.

The canonical representation of layered video we
use throughout this paper consists of some fixed num-
ber L of layers. Each layer is characterized by a traffic
stream and a potential value it provides to the appli-
cation. One expects the per bit value to decrease with
additional layers; the most value is derived from the
information encoded in the base layer, and the rela-
tive value of bits in the enhancement layers decreases.
For each layer / let a(l) denote the bandwidth and f(l)
denote the per-bit value. We assume that /(/) is a
non-increasing function.7 If all packets are success-
fully received (we assume delay is not an issue, only
dropping, so we ask only if, not when, packets are re-
ceived), then the total utility is merely ^2I=1 a(l)f(l).

Define F(l) = £^=1 f(k)a(k) to be the total utility of
all layers up to /.

Our utility functions describe, in the presence of
loss, how much value an application derives from the
set of packets it actually receives. Since utility is a sub-
jective measure that depends in large part on human

TAs / increases, the value of layer / decreases. Hence, higher
layers (in terms of their index) will have lower drop priority
and lower layers will have higher drop priority.

perception (so it may vary from person to person) and
on the characteristics of the coding algorithm used (so
it may vary from implementation to implementation if
different encoding schemes are used), the range of ap-
plicability of any particular utility function is limited.
Rather than choose a single utility function and claim
that it accurately represents the truth about applica-
tion utility, we instead examine a family of extremely
simple utility functions in an attempt to understand
what impact different utility functions have on the re-
sults of our study.

We assume that the utility of each layer is inde-
pendent of the other layers' utilities.8 The utility of
a given layer is a function of the loss experienced in
that layer; we represent this by a non-decreasing func-
tion g(z) with g(0) = 0 and g(l) = 1, where z is the
fraction of packets received in the layer. Thus, if d(l)
is the fraction of packets dropped in layer / then the
total utility is given by:

5>(Q/(/)rfl - <*(!)) (1)

To explore the impact of different utility functions, we
use functions of the form g(z) = zm, m > 0. The
nonlinearities for m ^ 1 could be due to characteristics
of the coding algorithm, human perceptual factors, or
both.

3.2 Simulation Framework

We use discrete event simulation to study the perfor-
mance of uniform and priority dropping. Our simula-
tor, which used version 2 of the ns network simulator as
a starting point and added new functionality as needed,
incorporates the utility functions described above, as
well as the relevant source models and network con-
trol mechanisms.9 Below we describe the application
source models, the router queueing and dropping algo-
rithms, and the network topology.

Source models: We use an abstract layered source
model that captures two essential characteristics of lay-
ered video traffic: (1) the instantaneous traffic in each
layer varies over time, and (2) there is high correlation
between the instantaneous traffic in each layer (one
might expect factors such as motion or scene change
that lead to changes in bit rate to have impact across
layers). The layered source model is built out of indi-
vidual layers. We first describe the traffic in the base
layer (/ = 1) and then describe the traffic generated by
the higher layers.

We divide time into discrete intervals of length Ai,
and. let t be the index of the time intervals. Let nt be
the number of packets sent in time interval t. All nt

packets are sent back-to-back at a starting time chosen
at random from a uniform distribution within the in-
terval. In every time interval t, the rate nt is selected

8In [1] we also consider utility models that capture depen-
dency between layers, where the dropping rate in one layer may
effect the utility of another layer. Such dependencies arise in
many coding algorithms.

9The ns simulator is available at http://www-mash.cs.
berkeley.edu/ns. Our extensions to the simulator, and the sim-
ulation scripts we ran to generate the results in this paper
can be found at ftp://ftp.parc.xerox.com/pub/net-research/
breslau/dropping.

independently from the following random distribution:
nt = 1 with probability *-jr-, and n{ = PA + 1 — P with
probability -p. This model produces hi-low sources
that generate either nt = 1 packet per interval or
nt = PA + 1 - P packets per interval (and A con-
tinues to describe the average number of packets per
interval). Note that when P = 1, this model produces
CBR-like traffic with nt = A. Increasing P yields in-
creasingly bursty traffic. Throughout our simulations,
we use Ai = 1 second, and A = 4 packets per interval.
All packets have size s = 1000 bytes.

The higher layers are slight modifications of this
model. We impose the requirement that f(l)a(l) =
/(l)o(l) so that all layers contribute equal value; for
convenience, we assume 4U| is an integer. Then, for
each time interval of the base layer (of length Ai), we
create yrfi subintervals of length Ai A,^i

^i/(i)- As in
the base layer, a certain number n of packets are sent
back-to-back in each of these subintervals, starting at
some uniformly distributed starting time. Inter-layer
correlations are captured by using the same value of
nt in each subinterval Ai (for all layers /) of a given
base interval Ai; that is, a number nt is chosen for
each time interval t for the base layer, and this nt is
used to govern the transmissions in each subinterval
(for each higher layer) of the interval 1 Thus, as nt

varies randomly, all layers adjust their sending rates in
concert.

For our simulations, we typically use a{l) = 2,-1o(l)
and /(/) = 21-'/(l), so each layer potentially con-
tributes a unit of value.10 With Ai = 1 second, A = 4
packets per interval, and s = 1000 bytes, we have aver-
age transmission rates per layer of 32kbps, 64kbps and
128kbps, etc.

Dropping and Scheduling Algorithms: Under
uniform dropping, all packets have equal drop proba-
bility. We use tail drop in most of our experiments; a
packet arriving at a full queue is dropped, otherwise it
is queued for later transmission. We also use Random
Early Detection [6] (RED) as our dropping algorithm
in some experiments.

The priority dropping algorithm is slightly more
complex and involves dropping on both input and on
output. When a packet arrives and the queue is full,
rather than dropping the arriving packet (as with drop
tail) the arriving packet is queued and a packet (the
latest in the queue) of the lowest priority among those
packets in the queue is dropped. Dropping on output
is also performed in order to prevent transmission of
already queued low priority packets from causing later
drops to higher priority packets. Dropping on output
uses a threshold parameter Q, with 0 < £ < 1. A
packet in layer / at the front of the queue is dropped
if the total number of packets in the queue of higher
priority than / is greater than C times the total num-
ber of buffers; otherwise, the packet is transmitted.
This heuristic allows low priority packets to be sent
when the probability is small that they will cause sub-
sequently arriving higher priority packets to arrive at

10The decreasing per-bit value per layer is fundamental to our
model. However, the grouping of bits into layers is arbitrary.
We chose to hold the per-layer value constant, implying an
increasing rate per layer. Our analytical model is not burdened
by this somewhat arbitrary decision.

High Speed Links

Bottleneck Rl Rn

-0

Figure 3: Simulation Topology

a full queue. We used the value C = 0-6 m our simu-
lations (both here, and in the subsequent places where
parameter (is invoked).11

In the experiments described in this paper, we used
a simple FIFO scheduling algorithm with the two drop-
ping algorithms described above. We have also simu-
lated uniform and priority dropping with Fair Queue-
ing. Results of these experiments are reported in [1].

Topology: We use a very simple topology in our
experiments (shown in Figure 3) to assess the impact
of different dropping strategies across a single bottle-
neck link. There are n sources and receivers. There is a
single bottleneck link, and high speed links (10 Mbps)
connect each source to the bottleneck. All dropping
occurs at the bottleneck link. Note that we do not ad-
dress the issue of multiple receivers per source since it is
irrelevant to priority dropping, and RLM deals grace-
fully with large groups for uniform dropping. Thus, for
clarity, we reduce the problem to its bare essentials by
focusing on single receiver groups.

Inputs for each experiment include the number of
sources, the traffic parameter P used for each source,
the bottleneck link bandwidth, and the number of buffers
b at the bottleneck link. Unless otherwise stated, our
simulations use eight sources and a bottleneck band-
width of 4 Mbps. We use P = 1 or P = 5 to produce
smooth or bursty traffic, respectively, and b = 60 or
b = 20 to test the effect of buffer size on our results.

3.3 Theoretical Framework

We augment our simulation study with theoretical anal-
ysis. We employ an extremely crude model that cap-
tures some of the essential features but leaves out many
details. The model complements the simulations since
the theoretical model can incorporate a wider variety of
traffic models (in terms of their drop rates as a func-
tion of load) and the layers are infinitesimally small
(avoiding effects due to the large size of the lower pri-
ority layers). Below we describe the model; the results
of the analysis are presented in the following sections.

11 Designing an ideal priority dropping mechanism was not a
goal of this research. We fully expect that one could improve on
the priority dropping algorithm outlined here. However, exper-
imentation has shown that this algorithm does accomplish our
main goal which is to achieve high throughput while protecting
higher priority packets from loss resulting from the transmis-
sion of lower priority packets.

Source Models: Rather than having a finite num-
ber of discrete layers (labeled by 1), we model each flow
as having a continuum of layers (labeled by x), each
with an infinitesimal unit of bandwidth (i.e., a(x) = 1).
Let r; denote the highest layer being sent by flow i.
Since each layer consumes a unit of bandwidth, r; is
also the total bandwidth sent by the i'th flow. The
assumption that different flows send the same amount
of bandwidth in each layer is clearly limiting, but it
greatly simplifies our analysis and does not directly
undercut our central concern, that being the trade-
off between priority and uniform dropping. As before,
/(x) is the potential value for each layer (if all pack-
ets are received in that layer), and F(x) = J dyf(y)
denotes the total potential value for all layers up to

The performance of the network, from the perspec-
tive of the i'th flow, is characterized by di(f, x) which is
the drop fraction of packets in flow j, layer x, and where
r describes the transmission rates of all flows. Note
that the quantity di(r,x) can be interpreted as the
drop rate (packets dropped per unit time), or the drop
fraction (fraction of packets dropped), given that each
layer consumes a single unit of bandwidth. The contin-
uum version of the utility function given by Equation
1 is:

m = dxf(x)g(l -di(r,x))
Jo

(2)

Dropping Algorithms: We consider two forms
of dropping behavior: uniform and priority dropping.
For uniform dropping the basic principle is that there
are no distinctions between layers as far as dropping is
concerned: di(f,x) = di(r,y) for all x,y. For priority
dropping the basic assumption we make is that the
dropping rate for higher priority packets is completely
unaffected by the presence of lower priority packets.
In reality, priority dropping schemes will never achieve
this perfection, but this assumption makes the model
tractable. This means that di(f,x) is independent of
all TJ as long as r,; > x (and this applies to j = i
as well) and so, in particular, di(f, x) = di(f A x,x)
(using the notation that a A b = min [a, b] and that
(a A b)t = min[a,, 6]).

Scheduling Algorithms: The basic behavior of
the queueing system is represented by an increasing
and convex (D" > 0) function D : SR+ i— 9J+. D{T) is
the drop rate (packets dropped per unit time) resulting
from a total traffic load of T; the drop fraction is given
by D<i2"). We make the basic approximation that the
total drop rate depends only on the total traffic load
(and is not a function of the individual flow rates).13

Thus, we must have:

, Jo
dx di(f,x) = D{/ ^Tj)

The canonical example we use for the function D
is that of an M/M/l/b queue with unit service rate

12Note that since a(x) = 1, f(x) is both the per-bit value
and the per-layer value and we can leave out the term a(x) in
the expression for F(x).

13Note that since the throughput is bounded, we must have
limr—oo D'{T) = 1, and so 0 < £>'(T) < 1 for all T; this fact
will be relevant later in the paper.

(modeling a bottleneck bandwidth of 1) and b buffers,
so D(z) = zb+l 1]_Jb%i ■ In the limit of infinite b, this
reduces to the perfect bottleneck model where D(z) =
(z — 1)+ (where we use the notation x+ = max[0,x]).
The buffer size parameter b can also be seen as de-
scribing the smoothness of the traffic, with infinite 6
describing infinitely smooth traffic.14

We now compute the functions t/,(f, x) for uniform
and priority dropping assuming FIFO scheduling.15 For
uniform dropping, the loss rates are given by:

3«no<Mh<P« llWIflc .La<g*<b - 80) bultora

di(f,x) „ 0(E.-*)

For priority dropping the loss rates are:

di(r,x) = D'(^2TjAx)
i

The drop fraction of each layer (which is independent
of the flow) is given by the incremental increase in the
total drop rate when that layer is added on (ignoring
all lower priority layers).

We now use these simulation and theoretical frame-
works to address our three key questions.

4 Performance

In this section we address the two questions concern-
ing performance: (1) Do uniform and priority drop-
ping achieve the same optimal performance? and (2)
Can RLM achieve the optimal performance level un-
der uniform dropping? We begin with results from our
simulation experiments.

4.1 Simulation Results

Most of our simulation studies of performance are pre-
sented in the following form. For a given choice of
utility function and network scenario, we simulated
the network with each source sending up to level / for
/ = 1,... L under both priority and uniform dropping.
In addition, we simulated all sources using RLM (with
uniform drop). All simulations were run for 600 simu-
lation seconds; data collected during an initial warmup
period of 160 seconds was discarded. Per source util-
ity was computed using as input the percentage of
those packets sent during the 440 second period that
were delivered to the receiver (in other words, we set
(1 — d) = j where s is the number of packets sent in
the layer and r is the number received). The data is
presented on a single graph, with one curve describ-
ing uniform drop, one curve describing priority drop,
and a horizontal line depicting the performance level
achieved by RLM. The horizontal axis indicates the
number of levels sent by each source (for the uniform
and priority drop tests). Average utility per source is
plotted on the vertical axis. Below we present the main
results from our simulations experiments.

14Increasing the buffer size and decreasing the burstiness of
traffic are roughly equivalent; they both decrease the dropping
rate at a given level of throughput. In our theoretical model, we
only vary the parameter b, but in our simulations we separately
vary buffers and burstiness.

lsSee [1] for the analogous treatment of the Fair Queueing
scheduling algorithm.

Figure 4: The top graph depicts the results with
smooth (P = 1) traffic and large (6 = 60) buffers.
The peaks of the priority and uniform dropping curves
are 4.04 and 4.00, respectively. RLM achieves a perfor-
mance of 3.73. The bottom graph depicts the results
with bursty (P = 5) traffic and small (6 = 20) buffers.
The peaks of the priority and uniform dropping curves
are, respectively, 3.60 (priority) and 2.98 (uniform).
RLM achieves a performance of 2.27.

4.1.1 Burstiness and Buffer Size

We first explore the effect of burstiness and buffer size
on performance, using a linear utility function (g(z) =
z). We vary the parameter P in our source model to
control the burstiness of the traffic, and we vary the
number of buffers, b, at the bottleneck link (4Mb) to
control the ability of the switch to absorb bursts of
packets. Figure 4 shows the results of two experiments,
one where the number of packets sent per layer per
interval is constant (i.e., P = 1) and the buffers are
large (6 = 60, corresponding to 120 msec of buffering),
and another where the traffic is burstier (P = 5) and
the buffers smaller (6 = 20).

For the case where the traffic is smooth and the
buffers are large, the results are very much like those
predicted in Figure 1. When offered load is less than
the bottleneck link rate, uniform and priority dropping
achieve the same utility. They both achieve the same
maximum values, and then the performance of uniform
dropping degrades as load increases, while the perfor-
mance of priority dropping does not. RLM achieves
nearly the same maximum utility.16

The slight difference between RLM's utility and the maxi-
mum utility achieved by uniform and priority dropping is due to
the absence of a mechanism to insure fairness in FIFO schedul-
ing, and different flows can send at different rates (that is, the

Burstier data coupled with smaller buffers leads to
markedly different results (as shown in the bottom
graph in Figure 4). In this case, priority dropping
achieves significantly higher average utility than uni-
form dropping (3.60 vs. 2.98).17 The other striking dif-
ference between the smooth and bursty scenarios is the
relative performance of RLM. Its utility with bursty
traffic and smaller buffers is 2.27, around two-thirds of
priority dropping and about three quarters of uniform
dropping. With bursty traffic, there are enough losses,
even at relatively lower levels of utilization to prevent
RLM join experiments from succeeding. Thus, as we
suspected, the results with bursty traffic look more like
Figure 2 than like Figure 1.

One can relate these performance numbers to the
equivalent amount of throughput being wasted. That
is, with the exponential bandwidth per layer function
a(l) — 2l_1a(l) we use in these simulations, the perfor-
mance differential of between priority (3.60), uniform
(2.98) and RLM (2.27) can be viewed as achieving use-
ful throughputs of, respectively, 11.8, 6.92, and 4.08 (in
units of the throughput of the base layer). The per-
formance increase of 58% between RLM and priority
dropping reflects roughly 1.3 additional layers (from
3.60 — 2.27 = 1.33), which is equivalent to almost
tripling the effective throughput. That is, while the
priority dropping has a much higher effective through-
put, the worth of these additional bits falls off so rapidly
that the increase in utility is only 58%. If we use a lin-
early increasing bandwidth per layer a(l) = / (see Fig-
ure 5) the performance numbers are 4.5 (priority), 3.71
(uniform), and 2.5 (RLM), corresponding to effective
throughputs of 12.5, 8.84, and 4.50, respectively, again
reflecting nearly a tripling of the effective throughput
(and yielding an 80% increase in utility) when compar-
ing priority to RLM.

The impact of burstiness on RLM's ability to adapt
can be further demonstrated with the following con-
trived experiment where a single receiver performing
RLM is adapting to available bandwidth in the face of
bursty cross-traffic generated by a single on-off source
with a sending rate of 6 Mbps, and exponentially dis-
tributed on and off times with average 100 msec. In
this case, even though the utilization is only 65%, RLM
is unable to utilize the available bandwidth and achieves
a performance figure of only 1.19.

For completeness, we ran simulation of the two re-
maining combinations of buffer size and burstiness (P =
1 and b = 20; P = 5 and 6 = 60). The results (not
shown here for lack of space) show that it is indeed
both the burstiness of traffic and the size of buffers that
account for the results described above. Bursty traffic
presents opportunities for priority dropping to perform
better than uniform dropping and also makes it more

receivers are not all subscribed to the same levels). This un-
equal allocation of resources leads to a slight decrease in to-
tal utility, as bits sent in lower priority layers by one source
could be replaced by more valuable bits of another source. This
performance degradation suffered by RLM disappears when a
scheduling mechanism that allocates equal shares per flow, such
as Fair Queueing is used.

17Note that this difference may be somewhat overstated in
the sense that we only performed the uniform and priority tests
with all senders sending the same number of layers. The best
possible performance of uniform dropping may in fact occur
when some flows are sending 3 layers and some are sending 4.

Bursy<P - 5) Mrtc ,SfflU[b - 20) boltofs

■

Priority -•—
Uniform -t—

RLM •■•-

~Z^^~~

// -

■

Figure 5: This graph depicts the results with bursty
(P = 5) traffic and small (b = 20) buffers with a(l) = I.
The peaks of the priority and uniform dropping curves
are, respectively, 4.50 (priority) and 3.71 (uniform).
RLM achieves a performance of 2.50.

difficult for the RLM adaptation algorithm to find the
optimal operating level. As expected, large buffers can
absorb burstiness and mitigate its ill-effects on the per-
formance of uniform dropping and RLM.

4.1.2 Other Experiments

We conducted many additional simulation experiments
to explore the impact of various parameters on our re-
sults. In particular we ran simulations with non-linear
utility functions, different scheduling and dropping al-
gorithms, varying bandwidth on the bottleneck link,
and varying degrees of multiplexing. We briefly sum-
marize those results here. A more detailed description
is presented in [1].

To briefly summarize, in all of our experiments, pri-
ority dropping performed better than uniform drop-
ping. As expected, this performance advantage in-
creased with increased burstiness, decreased buffer sizes,
decreased multiplexing, and decreased bandwidth per
flow; the effect of nonlinear utility functions was am-
biguous, sometimes increasing and sometimes decreas-
ing the ratio. Using Fair Queueing instead of FIFO
scheduling had little effect on results, since our simu-
lations had fairly homogeneous flows; this is not a sce-
nario in which fairness mechanisms can be expected to
have an impact. In addition, we tested the RLM mech-
anism with RED [6], with little impact on results.

While we anticipated the direction of these effects
of various parameters on the results, we thought their
magnitudes would be much bigger. The performance
advantage of priority dropping over the optimal uni-
form performance was quite modest; the biggest per-
centile advantage was roughly 27% (achieved in the
case of reduced multiplexing). Results in the next sec-
tion shed further light on the limits of the difference.

The performance advantage of priority dropping
over RLM was somewhat more significant. For in-
stance, in the case where the bottleneck capacity was
reduced, priority dropping offered almost twice the
performance of RLM. The performance advantage of
priority over RLM had the same dependence on pa-
rameters as did the priority versus optimal uniform
dropping, except that the effect of nonlinearities was

no longer ambiguous. When the nonlinearity was quite
extreme (m = 100) the performance advantage was es-
sentially infinite (2.37 versus 0.02), but under more
moderate nonlinearities (m = 4) the performance ad-
vantage was only 24%. While RLM did suffer under
extremely bursty conditions, it was far more resilient
than we had expected. This is partially due to the
very rapid decrease in /(/); for instance, if the per-flow
bandwidth allowed roughly four levels per flow, then
if RLM could utilize only 50% of the available band-
width its performance disadvantage was a mere 25%
(because it would get three out of the available four
layers). When, as in Figure 5, the function /(/) de-
creased less rapidly, the relative performance of RLM
was significantly poorer.

4.2 Theory

We now turn to our theoretical model to provide addi-
tional insight about the performance results obtained
through simulation. In particular, we derive results
that are not bound to the particular layered source
model used in simulations. To address the relative per-
formance of uniform versus priority dropping, we first
consider a single flow. The utility for uniform dropping
is given by:

u(r) = g(l - ^l)F(r) (3)

The utility for priority dropping is given by:

«(r) = / dxf(x)g(l - D'(x)) (4)
Jo

We start with a case that we can solve exactly: an
M/M/l/b queue with 6=1, g(z) = zm for m > 0, and
/(*) = (T+^TT forp > 0 (soF (x) = l-ji^p). Here,
1 — d(r, x) = j^r in the uniform case, and 1 — d(r, x) =

(12x)i in tne priority case. Letting U(T) denote the
utility at a given sending rate r, in the uniform case
we have u(r) = (1 + r)-m(l — (1 ') and so the max-

imizing T value is given by 1 + r = (1 + £)P and the

maximal utility is a = „(1 + m) * . In the priority
case, we have u(r) = /Q

r dxp{l + x)~(p+1)(l + z)~2m =

5^(1 - (1 + r)-(p+2m)), and so the maximal utility
is just tt = 2n

p, . Let R denote the ratio of maximal

priority utility up" to maximal uniform utility uum.
Setting w = £ yields:

R =
upri (1 -I- w)<-1+w~
uuni — 2 + tU

This is a decreasing function in w so R attains its max-
imal value in the limit £ —► 0+, and there R = § ss
1.359...,18

We can numerically compute the ratio R for more
general cases, varying 6, m, and p. We also consider the

"Note that the case of p = 0 is ambiguous, so we only con-
sider the limit. Setting p = 0 in the formula for F yields a
different answer than setting p = 0 in the formula for / and
then integrating; the limit is consistent with the formula de-
rived from /, not F, in the case of p = 0.

function f(x) — ße~ßx and do similar computations.
The results are summarized below.

Typically R decreases with b; the performance ad-
vantage of priority dropping decreases as the traffic
gets smoother (or, equivalently, the buffering gets larger).
When varying the rate of decrease in f(x) we find that
the ratio decreases with p (when f(x) = . P+1) as

long as p > 0 but has a peak at intermediate values of
ß (when f(x) = ße~ßx). This is consistent with the
intuition that priority dropping is of no use when the
values /(x) drop off too fast (so only the base layer
is of significant value) or too slowly (so discriminating
between layers is of little use). The dependence on m
is somewhat more subtle; for b = 1 the maximal ra-
tio occurs for large m, but for greater values of b the
maximal ratio occurs for small m; we do not have an
explanation for this behavior.

Note that in no case do we attain a higher value for
R than f. While the roughly 36% increase in perfor-
mance achieved by priority dropping is certainly sig-
nificant, we must admit that we had expected priority
dropping to achieve higher levels of improvement under
at least some conditions. We now conjecture that as
long as F and D are smooth around the origin, this ra-
tio is the highest possible. Our reasoning is as follows.
We assume that for a given g and F, the ratio R is
highest when D(z) « z2 for small z. This is reasonable
since higher powers (e.g., D(z) w z3) give lower ratios
(as shown by our data for higher values of b), fractional
powers (e.g., D(z) « z15) mean D is not smooth near
the origin contrary to our assumption, and D(z) « z
produces a smaller ratio (since D'(z) sa —^ is roughly
constant for small z if the leading term in D(z) is lin-
ear, and so the ratio is increased if we remove the linear
term from D). Moreover, we assume that for such ini-
tially quadratic D(z), the ratio R increases when we
substitute (g(z))2 for g(z), as suggested by our data
for increasing m. Lastly, for g(z) = zm the perfor-
mance for large m does not depend on F (as long as it
is smooth near the origin, so —^ has a finite nonzero
limit as r —► 0+). Thus, it appears that the result that
Rmax = f does not depend on the details of D (aside
from the leading term around the origin) or F, and is
reached in the limit of g(z) = zm for diverging m. We
are not able to prove this conjecture; whether or not
Rmax = f remains the most interesting open theory
question arising from our study.19

Thus, one of our preconceived notions, that of pri-
ority being able to achieve extremely large improve-
ments over uniform dropping, is likely wrong. Further,
using the same model, we find that priority dropping
does not outperform uniform dropping in call cases. It
is straightforward to show that if g is a step function
(g(z) = 0 if x < 7 and g(z) = 1 if x > 7 for some
threshold 0 < 7 < 1) then uniform dropping outper-
forms priority dropping. However, one can show that

19This bound is violated if we allow £>(*) to have a singularity
at the origin, such as D(z) ss z1*. In particular, when we look
at the M/M/l/b formulae for 0 < b < 1, where D(z) a z1+h,
we find that R diverges as m becomes infinite and b vanishes.
We don't know what such singular D(z) functions would signify
(perhaps extreme burstiness), or if they are accurate represen-
tations of reality, but we do not address such singular cases in
this paper.

if g is concave then priority dropping outperforms uni-
form dropping.

So far our theory has compared uniform and pri-
ority drop for only a single flow. We can extend our
analysis to the multiple flow case without much ad-
ditional complication. Consider the case where there
are n flows; when f denotes the transmission rates
then the utilities are given by equations 3 and 4. It
is straightforward to show that, in the uniform case,
the total utility ^"=1 «; is maximized when r, = r,
for all i, j. Similarly, in the priority dropping case the
total utility is maximized when all Ti are infinite. Con-
sequently, the n-flow maximization problem with drop-
ping function D(z) yields the same optimality results,
for both the uniform and priority dropping cases, as
the 1-flow maximization problem with dropping func-
tion D(z) = 5Ii£i. Thus, the generalized form of our
conjecture is that with an arbitrary number of flows
(with the same conditions of smoothness on D and F),
the maximal ratio of the total utilities of priority drop-
ping to uniform dropping is bounded above by'|.

5 Incentives

The previous results compared the performance of pri-
ority dropping to the optimal uniform dropping per-
formance, and to that achieved by RLM. However, in
this discussion we assumed that system-wide optimal-
ity was the only goal. We now remove that assump-
tion and address our third question: what incentives
do different dropping mechanisms present to applica-
tions? This issue has two aspects: (1) the properties of
Nash equilibria in the presence of performance-based
incentives, and (2) the effect of nonperformance incen-
tives on these Nash equilibria. We now discuss these
two aspects in turn.

5.1 Nash Equilibria

We first assume that there are no usage incentives
other than performance. When using priority drop
users have no performance-based incentive to constrain
usage, whereas they do when using uniform drop. In
this section we demonstrate that this does not neces-
sarily imply that uniform drop naturally leads to so-
cially optimal operating points. We return to our the-
oretical model, initially considering FIFO scheduling,
and investigate what happens when there are n indi-
vidually optimizing users; that is, we assume that users
adjust their transmission level so as to maximize their
own utility.

Consider the case of perfectly smooth traffic (mod-
eled by setting b = oo in the M/M/l/b model), so
D(z) = (z — 1)+. Then the maximal utility for a
given user with priority dropping is at least F(A-), with
equality holding if all other users have TJ > £. Thus,
the socially optimal point, and the Nash equilibrium
point, is any vector r such that r, > i for all j.

For uniform dropping, the utility for a given user
sending at rate x, with r sent by everyone else, is
u{x) = ff(min[l, I+(n

1_1)r])f (i)- First we compute
the socially optimal outcome (in which we know r; =
TJ as we argued earlier), so we maximize the func-
tion u(r) = ff(min[l, £])F(r). Note that for nr < 1,

u(r) = F(r) and F(r) is nondecreasing, so a maximal
point must exist with nr > 1. For nr > 1, assum-
ing all first derivatives exist, we can calculate a'(r) =
9(^)F'(r)-g'(^)F(r)^. Note that rf'(r) < F{r).
If g is concave, then we also have g'(-^) < nrg(^)
and thus u'(r) < 0 for nr > 1 and so at least one so-
cially optimal operating point has nr = 1. However,
there are cases with nonconcave g where the socially
optimal operating point has nr > 1. Consider, for in-
stance, the case where g(z) is a step function (with the
step at 2 = 7 < 1). Then, the socially optimal value is
given by nr = ^ > 1 with per-flow utility F(^).

Next, we compute the Nash equilibrium. The equi-
librium occurs when gj = 0 when x = r. Thus, at
the equilibrium value r we must have g(^)F'(r) =

5'(n?)-^(7')fnr)T' Consider the case where g(z) = zm.
Then, the socially optimal value is nr = 1 for all m > 1
and the Nash equilibrium is reached when yfcj- = 21.
For the case where f(x) = (1 — x)+, the Nash equi-

librium is r = -.—■£-. The per-flow utility at this

Nash equilibrium is n~m
2M_?.m.)(,_jg)m. This per-

flow utility, and the total utility, vanish in the limit
of large n or large m. The socially optimal per-flow
utility is ^-(1 — ^) for m > 1, and so the total utility
(1 — jL) approaches unity in the large n limit.

These results show that even when traffic is com-
pletely smooth (i.e., in the infinite b limit), the Nash
equilibria and the socially optimal operating points can
be quite different; in particular, the Nash equilibrium
can asymptotically (in the limit of large n) have zero
total utility whereas the socially optimal point has
full unit total utility. Thus, the performance-based
incentives provided by uniform dropping do not lead
to socially optimal, or even adequate, outcomes with
FIFO scheduling. While we cannot solve these mod-
els exactly for burstier traffic, numerical computations
for various choices of b and m for f(x) = (1 — x)+,
f(x) = / P +1 and f(x) = ßt~ßx show that these
results continue to hold.

The intuition behind these results is that when a
single user increases her usage, the penalty of that in-
creased usage (in terms of an increased drop rate) is
spread among all users, but the benefit (in terms of in-
creased throughput) goes exclusively to the increasing
user. Thus, the equilibrium occurs not when the ben-
efit equals the penalty (which is the socially optimal
point), but when £-'th of the penalty equals the ben-
efit, and this occurs only for much larger load levels
(and this effect is magnified for larger n).

The above results show that the distinction between
Nash and socially optimal operating points is signifi-
cant when FIFO scheduling is used with uniform drop-
ping. However, when uniform dropping is used with
Fair Queueing, the first-order conditions for Nash equi-
librium become identical to those for the socially opti-
mal outcome. This is because the penalty for increased
usage is born exclusively by the user with the highest
sending rate, and so this user makes the socially opti-
mal penalty/benefit tradeoff. Thus, with Fair Queue-
ing, uniform dropping does indeed provide the proper

SjTWogifP - 1) if mc .L»ig*<b - 00) buflw»

Figure 6: This graph compares the individually opti-
mal and socially optimal operating points with P = 5
and b = 60. The curve 'Uniforml' describes the case
when all 8 flows are sending the same number of lev-
els (determined by the reading on the horizontal axis).
Clearly the socially optimal operating point is when
all flows are sending the first four levels. The curve
"Uniform2' depicts the results when the 7 background
flows are sending the first four levels, but the single
test flow is sending up to the level determined by the
reading on the horizontal axis. The utility of this flow
is maximized when sending the first five levels. Thus,
the socially optimal level is not a Nash equilibrium.

incentives.
The simulations do not have exactly analogous be-

havior because the large granularity of the flow layers;
each level consumes a significant amount of bandwidth,
particularly the higher levels, and so typically one finds
multiple equilibria rather than the single equilibrium
points found in the simple theory models. Nonetheless,
we can observe, as shown in Figure 6, that the socially
optimal operating points are not Nash equilibria. The
socially optimal result is to have each flow sending the
first four levels, but when the background flows are
held fixed at that level, a single test flow maximizes its
utility by sending the first five levels.

One response to these dire results about Nash equi-
libria is that users won't be selfish and will just use
RLM, which seems to achieve fairly reasonable results
even for large n. This may very well be true. If such
compliance is to be expected, then one can also expect
users to use RLM with priority dropping to restrain
usage, thereby removing the one problem with priority
dropping. For instance, in the scenario with P = 5
and b = 60, RLM with priority dropping achieves a
performance of 3.19 (versus 2.96 with uniform drop-
ping) and constrains usage to only sending levels 1
through 3, plus occasionally level 4. The performance
of RLM with priority dropping can be further improved
by adjusting the dropping level at which RLM leaves
a level (or considers a join experiment to have failed),
thereby tuning the tradeoff between performance and
bandwidth usage.

The behavior of RLM in the context of priority

20While typically Fair Queueing does provide better incen-
tives than FIFO, in general when users are heterogeneous the
Nash equilibria under Fair Queueing are not socially optimal.
This result holds in our example because users have the same
utilities and flow structure. See [13] for a fuller discussion.

dropping is relatively insensitive to the burstiness of
the traffic because the operating point need not be
precisely at the bottleneck bandwidth. Thus, prior-
ity dropping is only a problem if we are worried about
incentives, and in that case both priority and uniform
dropping have problems (with FIFO scheduling).

Another response to the results about Nash equi-
libria is that there may be other sources of incentives
that might make the Nash equilibria more palatable.
These other incentives also presumably apply to pri-
ority dropping, and so usage would be constrained in
both cases. We now address these other incentives.

5.2 Nonperformance Incentives

Above we assumed that the only incentives were re-
lated to the performance of the application itself. How-
ever, users clearly face other forms of incentives. The
total bandwidth available to a user is limited to the
speed of their access line, and for many users this ac-
cess line is fairly slow (either a modem, or a shared Tl);
in addition, some hosts are quite limited in their net-
work I/O. For any of these reasons, traffic from one ap-
plication can have a performance impact on the user's
other applications; e.g., one's video traffic might con-
gest one's own web traffic. Moreover, in some cases the
Internet access charges are based, at least in part, on
usage. Thus, we assume that there is some slight dis-
incentive to send traffic. This seems compatible with
reality given that most users do not usually send or
receive traffic that they know is worthless. It is impor-
tant to note that these incentives can either be applied
to the sender or the receiver of the traffic, depend-
ing on the application (who is deriving value from the
application) and the context (whose access line is con-
gested).

We model this usage-constraining incentive by ap-
plying a cost c for each unit of bandwidth. While this
conjures up the idea of a per-bit price, that is not what
is implied; in reality this usage-constraining incentive
can come from any one of a number of nonmonetary
sources, but it is most easily modeled by assigning a
cost for transmission. If the incentive is placed on the
sender, the cost is applied for each unit of bandwidth
sent, and if the incentive is placed on the receiver, the
cost is applied for each unit of bandwidth received (i.e.,
we assume that there is no receiver disincentive for
packets that never arrive). A user maximizes utility
minus cost. In the case of perfectly smooth traffic, an
infinitesimally small c applied to the sender will pro-
vide incentive to operate at the bottleneck through-
put; the excess traffic is completely worthless, and any
nonzero disincentive is enough to throttle throughput
back to the bottleneck capacity. However, if the incen-
tive is present at the receiver, there is no constraint
on usage, since no additional traffic arrives. Thus, ap-
plying incentives at the receiver involves somewhat of
a paradox; we wish to prevent receivers from joining
layers that will be mostly dropped, but need to do so
by applying incentives only for those packets that are
not dropped.

We can extend our theory model to look at this
question for more general traffic loads, still with a sin-
gle flow. We first consider only priority dropping, and
assume that c is the cost of the incremental layer r (it

doesn't matter what the "charge" is for other layers,
that will just be a fixed cost in these equations, ignor-
ing income effects21). If the incentives are applied at
the sender, the maximality condition is U'(T) = c but if
incentives are applied at the receiver, the maximality
condition is u'(r) = c(l — D'(T)). From the expression
in equation 4, we find that the resulting equation is:

Sender Incentives f(r)g(l — D'(r)) = c

Receiver Incentives f(r)g(l — D'(r)) = c(l — D'(r))

The relevant question is whether or not usage is sta-
bilized for any nonzero c; by stabilized we mean that
all solutions for r are finite for any nonzero c. When
the sender is "charged" usage is stabilized if either
liirir^oo /(r) = 0 or limz—0+ g(z) = 0. When the re-
ceiver is "charged" usage is stabilized if limz_0+ ^^ =
0 and D'(z) < 1 for all finite z. Note that these
are sufficient but not necessary conditions, but we ex-
pect them (or other sufficient conditions) to hold quite
widely.

For the example treated in Section 4 with 6 = 1
and f(x) = p(l + r)-(p+1) and g(z) = zm, we find:

-i
Sender Incentives l + r = ci,+2m+1

-i
Receiver Incentives 1 + r = c'-*3"1-1

If we have p > 1 and m > 0 then usage is always
stable in both the sender and receiver incentive cases;
the usage levels decrease with increasing p and m.

Thus, for a wide range of conditions, usage stabi-
lizes even if incentives apply only for received packets
(although at higher levels of usage than if incentives
apply for sent packets). While there is clearly no sta-
bilization for b = oo when receivers are "charged" (this
case violates the D'(z) < 1 assumption), numerical
computations show that stabilization occurs for all fi-
nite 6, and for other choices for / and g. The point
is that with even slightly bursty traffic, some fraction
of packets get through and so joining a layer that is
almost completely useless (because of the high drop
rates) is discouraged because the user is "charged" for
the packets that do get through.

These nonperformance incentives also improve the
nature of the Nash equilibrium under uniform drop-
ping. We can return to our simple model and compute
the Nash equilibrium after adding a small "charge" c
for usage. One way to compare the relative effective-
ness of these nonperformance incentives in the priority
and uniform dropping cases is to look at the values
of c for which they achieve r values that are compa-
rable to the socially optimal r value for c = 0.22 In
the cases we computed, for sender "charging", priority
dropping required lower levels of nonperformance in-
centives to restrain usage to these levels. Thus, these
incidental sender incentives can more easily restrain
usage in priority dropping than prevent the poor Nash

1 Income effects are where the marginal utility of money de-
pends on the total amount.

22This is a somewhat arbitrary comparison, but it is asking
how large do these nonperformance incentives have to be to
restrain usage to a given level, and choosing the socially optimal
level for c = 0 as that level seems like a reasonable choice.

equilibria under FIFO service with uniform dropping.
When receivers incur these nonperformance incentives,
the usage levels of uniform and priority dropping are
roughly comparable (with the c values needed to re-
strain usage for priority dropping being slightly higher
than those needed for uniform dropping). Note that, as
expected, both uniform and priority dropping required
significantly higher levels of these incentives when the
receiver incurred them.

In light of these results, at the very least both uni-
form and priority dropping have problems with incen-
tives, and one might make a reasonable case that pri-
ority dropping, because it is more easily restrained
by sender-incurred nonperformance incentives, actu-
ally has better incentive properties than uniform drop-
ping.

6 Discussion

This paper is devoted to a comparison of uniform and
priority dropping in the fairly narrow context of layered
video applications. Our results are both humbling and
ambiguous. "Humbling" because some of our precon-
ceived notions were wrong, and "ambiguous" because
the results do not provide a clear answer to whether
adopting priority dropping would provide significant
benefit to layered digital video applications. Priority
dropping certainly does result in higher performance
than uniform dropping when g, the utility function, is
concave. However, contrary to our expectations, the
performance advantage of priority dropping over the
optimal uniform dropping performance is quite mod-
est. Moreover, we conjecture that there is a universal
upper bound of roughly 36% on this performance gap.

However, the real point of comparison for uniform
dropping is not the optimal point on the uniform drop-
ping curve, which is an ideal point that we cannot reli-
ably achieve in practice, but instead is the performance
level achieved by an actual endpoint adaptation algo-
rithm. For the comparisons in this paper, we used
the RLM algorithm as an example of such an algo-
rithm since we are aware of no algorithm that per-
forms better. Here too we were surprised; the RLM
adaptation algorithm is far more resilient than we ex-
pected. Under some rather extreme conditions - very
bursty background traffic or high degrees of nonlinear-
ity - RLM performed quite poorly; however, contrary
to our initial expectations, RLM managed to achieve
fairly adequate performance in a very broad range of
less extreme conditions. Our current explanation for
this is that when f(l) decreases rapidly (as was the case
in our simulations), one can use only a small fraction
of the available bandwidth and still attain reasonable
performance, since most of the value lies in the first
few layers. While our expectations about the perfor-
mance differences were irrationally exuberant, we do
not want to minimize the fact that priority dropping
achieved performance improvements of 50% to 100%
over RLM in many settings. Thus, the performance
improvements offered by priority dropping are indeed
significant, and the conjectured bound of roughly 36%
is not an indication of the relative performance of pri-
ority dropping to RLM, or to any other endpoint adap-
tation algorithm.

While the performance properties of uniform drop
were unexpectedly good, the incentive properties of
uniform drop with FIFO service were, at least in the-
ory, surprisingly poor. Moreover, these incentive prop-
erties, or more particularly the performance at the
Nash equilibrium, were especially bad with a large pop-
ulation of flows. Using Fair Queueing instead of FIFO
largely alleviates these incentive problems for uniform
dropping.

In contrast, the incentive aspects of priority drop-
ping may not be as bad as advertised. While priority
dropping does provide poor performance-based incen-
tives, even minimal amounts of nonperformance incen-
tives will rectify the situation. In fact, when these
usage-constraining incentives are incurred at the sender
and when FIFO service is used, usage is more easily
constrained in the priority dropping case than in the
uniform dropping case.

Thus, we end up with somewhat of a paradox. If
one takes the incentive issues seriously, then priority
dropping may be better than uniform dropping, at
least with FIFO service. But if one conjectures that
instead users will be well-behaved and use RLM with
uniform dropping in spite of their own personal in-
centives, then one could just as easily conjecture that
users would use RLM (or some similar protocol) with
priority dropping, which would yield better overall per-
formance at the same level of bandwidth consumption.
Thus, the argument that incentives are the reason to
prefer uniform dropping to priority dropping is only
valid if one believes that Fair Queueing (or some other
protocol that enforces fairness) is used, or that the
sender-based nonperformance usage constraining in-
centives, whatever their origin, are vanishingly small.

We hasten to note that this is only an initial study
of this rather fundamental question. There are many
unresolved questions about the performance and incen-
tive properties of uniform and priority dropping. How-
ever, we think the most pressing open questions left by
our study are those concerning the nature of applica-
tion utility functions. We do not, nor does the research
community we suspect, have a sense of whether our
utility models capture the essential aspects of reality.
Knowing how to best model application utility would
provide much-needed guidance to network designers in
their analysis of network performance, and may lead
to more definitive answers to the questions posed here.

References

[1] Sandeep Bajaj, Lee Breslau, and Scott Shenker.
Uniform versus priority dropping for layered video
- extended version. Preprint, June 1998.

[2] Jean-Chrysostome Bolot and Thierry Turletti. A
rate control mechanism for packet video in the in-
ternet. In Proceedings of the Conference on Com-
puter Communications (IEEE Infocom), Toronto,
Canada, June 1994.

[3] Jean-Chrysostome Bolot, Thierry Turletti, and
Ian Wakeman. Scalable feedback control for mul-
ticast video distribution in the internet. In Pro-
ceedings of ACM Sigcomm, pages 58-67, London,
England, August 1994. ACM.

[4] Stephen Deering. Multicast Routing in a Data-
gram Internetwork. PhD thesis, Stanford Univer-
sity, 1991.

[5] Steve Deering. Internet multicast routing: State
of the art and open research issues. Multimedia
Integrated Conferencing for Europe (MICE) Sem-
inar at the Swedish Institute of Computer Science,
Stockholm, October 1993.

[6] Sally Floyd and Van Jacobson. Random
early detection gateways for congestion avoid-
ance. IEEE/ACM Transactions on Networking,
1(4):397-413, August 1993.

[7] D. Fudenberg and J. Tirole. Game Theory. MIT
Press, Cambridge, Massacachusetts, 1991.

[8] M. W. Garrett and W. Willinger. Analysis, model-
ing and generation of self-similar VBR video traf-
fic. Computer Communications Review, 24(4), Oc-
tober 1994. SIGCOMM '94 Symposium.

[9] D. Hoffman and M. Speer. Hierarchical video
distribution over internet style networks. Pro-
ceedings of IEEE International Conference on Im-
age Processing, Lausanne, Switzerland, pages 5-8,
September 1996.

[10] Will E. Leland, Murad S. Taqqu, Walter Will-
inger, and Daniel V. Wilson. On the self-similar
nature of Ethernet traffic. In Deepinder P. Sidhu,
editor, Proceedings of ACM Sigcomm, pages 183-
193, San Francisco, California, September 1993.
ACM. also in Computer Communication Review
23 (4), Oct. 1992.

[11] S. McCanne and M. Vetterli. Joint source/channel
coding for multicast packet video. Proceedings of
IEEE International Conference on Image Process-
ing, Washington, DC, pages 25-28, October 1995.

[12] Steven McCanne, Van Jacobson, and Martin Vet-
terli. Receiver-driven layered multicast. In Pro-
ceedings of ACM Sigcomm, pages 117-130, Palo
Alto, California, August 1996.

[13] Scott Shenker. A game theoretic analysis of switch
service disciplines. Transactions on Networks,
3(6):819-831, 1995.

[14] Thierry Turletti. The INRIA videoconferencing
system IVS. Connexions, 8(10):20-24, October
1994.

[15] Thierry Turletti and Jean-Chrysostome Bolot. Is-
sues with multicast video distribution in heteroge-
nous packet networks. Proceedings of Sixth Inter-
national Workshop on Packet Video Portland, OR,
September 1994.

[16] M. Vishwanath and P. Chou. An efficient algo-
rithm for hierarchical compression of video. Pro-
ceedings of IEEE Interantional Conference on Im-
age Processing, Austin, TX, November 1994.

Comments on the Performance of
Measurement-Based Admission Control Algorithms

Lee Breslau
AT&T Labs - Research

75 Willow Road
Menlo Park, CA 94025

breslau@research.att.com

Sugih Jamin
EECS Department

University of Michigan
Ann Arbor, MI 48109-2122

jamin@eecs.umich.edu

Scott Shenker
International Computer Science Institute

1947 Center Street
Berkeley, CA 94704-1198
shenker @ icsi .berkeley.edu

Abstract—Relaxed real-time services that do not provide guaranteed loss
rates or delay bounds are of considerable interest in the Internet, since these
services can achieve higher utilization than hard real-time services while
still providing adequate service to adaptive real-time applications. Achiev-
ing this higher level of utilization depends on an admission control algo-
rithm that does not rely on worst-case bounds to guide its admission de-
cisions. Measurement-based admission control is one such approach, and
several measurement-based admission control algorithms have been pro-
posed in the literature. In this paper, we use simulation to compare the per-
formance of several of these algorithms. We find that all of them achieve
nearly the same utilization for a given packet loss rate, and that none of
them are capable of accurately meeting loss targets.

I. INTRODUCTION

In an effort to better support applications with real-time con-
straints, several new per-flow packet delivery services have been
proposed for the Internet (e.g., [24], [26]).1 Lying between the
extremes of hard real-time services (which provide worst-case
guarantees) and the vagaries of the current best-effort service are
soft real-time services that provide an enhanced quality of ser-
vice without making hard guarantees. Specifications for these
services might provide a delay target, rather than a bound, and
permit periodic excursions above this target [6], or they might
specify that the service provides low delay and low loss without
quantifying actual performance [26].

One key difference between hard and soft real-time services is
the nature of their admission control algorithms. Hard real-time
services necessarily use parameter-based admission control al-
gorithms that are based on worst case bounds derived from the
parameters describing the flow; these algorithms typically result

This work was begun while Lee Breslau and Scott Shenker were with the Xe-
rox Palo Alto Research Center. At Xerox, this work was supported in part by the
Defense Advanced Research Projects Agency, monitored by Fort Huachuca un-
der contract DABT63-96-C-0105. Sugih Jamin!s research is supported in part
by the NSF CAREER Award ANI-9734145 and the Presidential Early Career
Award for Scientists and Engineers (PECASE) 1998. Additional funding is pro-
vided by MCI WorldCom, Lucent Bell-Labs, and Fujitsu Laboratories America,
and by equipment grants from Sun Microsystems Inc. and Compaq Corp.

'Here we are restricting our attention to services that make per-flow assur-
ances; we are not addressing services that only give aggregate service assur-
ances, such as the recent Differentiated Services proposals [5], [22], since they
do not rely on per-flow admission control.

in low network utilization in the face of bursty network traffic.
Soft real-time services can use less stringent admission control
algorithms. It has long been recognized that measurement-based
admission control algorithms (MBACs) are more appropriate for
these soft real-time services [6], [18]. Because they base admis-
sion control decisions on measurements of existing traffic rather
than on worst-case bounds about traffic behavior, MBACs can
achieve much higher network utilization than parameter-based
algorithms while still providing acceptable service [19]. Of
course, traffic measurements are not always good predictors of
future behavior, and so the measurement-based approach to ad-
mission control can lead to occasional packet losses or delays
that exceed desired levels. However, such occasional service
failures are acceptable given the relaxed nature of the service
commitment provided by soft real-time services.

In designing a measurement-based admission control algo-
rithm, one can conceivably have two goals. One is to pro-
vide a parameter that accurately estimates a priori the level
of service failures that will result. The other is to achieve the
highest possible utilization for a given level of service failures.
Several measurement-based admission control algorithms have
been proposed in the literature (see, for example, [7], [10], [11],
[13], [14], [15], [16], [17], [19], [20], [21]) and they implicitly
or explicitly seek to achieve one or both of these design goals.

The proposed algorithms, although embracing similar goals,
differ in four important ways. First, some algorithms are prin-
cipled, based on solid mathematical foundations such as Large
Deviation theory, and others are ad hoc, in that they lack a the-
oretical underpinning. Second, the specific equations used in
making admission decisions are quite different. Third, while
all algorithms have a parameter that varies the level of achieved
performance and utilization (by making the algorithm more or
less aggressive), some algorithms attempt to calibrate this pa-
rameter and have it serve as an accurate estimate of the resulting
performance, while others leave the parameter uncalibrated; in
the latter case it is assumed the network operator will learn ap-
propriate parameter settings over time. Fourth, the measurement
processes used to produce an estimate of network load are very

different; they range from a simple point sample estimate, to
an exponentially weighted average, to estimates based on both
the mean and variance of measured load. Thus, the space of
measurement-based admission control algorithms is both heav-
ily and broadly populated.

Somewhat surprisingly, given the number of papers on the
subject, no comprehensive comparison of these algorithms ex-
ists. Previous comparisons (including our own previous work on
the subject) look only at a few test cases, and then only for a few
of the algorithms [20], [21]. In this paper we extend this previ-
ous work by considering more (although by no means all) of the
proposed algorithms, and by subjecting them to more extensive
tests. In all of these tests we use packet losses as the defini-
tion of a service failure.2 We evaluate the algorithms according
to how well they are able to meet the two goals of MBACs.
First, we compare the performance frontier or loss-load curve
(we will use these terms interchangeably) achieved by each al-
gorithm; the loss-load curve depicts the rate of losses that occur
at a given level of utilization. Second, for those algorithms that
attempt to predict the resulting level of losses, how close is the
resulting performance to the target?

On the first goal, we find that even though the algorithms are
derived from diverse motivations and theories, they all produce
essentially the same performance frontier. The particular theory
upon which they are based and the specific admission equations
they use seem to be of little consequence. Regarding the second
goal, we find that none of the algorithms achieve the specified
performance targets consistently. However, some algorithms do
somewhat better than others; whether these differences are im-
portant, and whether future algorithms can do better, remains an
open question.

The remainder of this paper is organized as follows. In the
next section we describe the algorithms we include in our study
and briefly review previous performance comparisons of the al-
gorithms. In Section III we describe our simulation method-
ology and present experimental results comparing the perfor-
mance frontiers of the various algorithms. In Section IV we
study the extent to which algorithms can accurately predict the
resulting loss level. We summarize our findings in Section V.

II. MEASUREMENT-BASED ADMISSION CONTROL

ALGORITHMS

To give the context necessary for discussing our results, in
this section we very briefly describe the six admission control
algorithms whose performance we study. These algorithms rep-
resent a broad, though not complete, sample of existing MBACs.
Each algorithm has two key components: a measurement pro-
cess that produces an estimate of network load, and a decision
algorithm that uses this load estimate to make admission con-
trol decisions. After presenting each of the six algorithms, we
elaborate on some common features of the algorithms.

For the purposes of this study, we assume that applications
use a signaling protocol, such as RSVP [3], to make their re-
quests for service to the network. These service requests con-
tain a traffic descriptor describing the worst case behavior of the

2 Violations of a delay target may also be a relevant characteristic. However,
for the fixed buffer regime we study, this is sufficiently similar to loss and so we
do not treat it separately.

application traffic. The traffic descriptor takes the form of a to-
ken bucket with parameters r and b denoting the token rate and
bucket depth, respectively.3 We measure the quality of the ser-
vice delivered in terms of packet drops. Soft real-time services
are typically intended to be scalable, therefore we only consider
MBACs that require no per-flow state; that is, the measurements
are taken on the aggregate traffic, not on individual flows. Since
measurement is done on the aggregate and admission control
decisions are made on a per flow, rather than a per packet basis,
implementation overhead is not critical [20] and is not explored
in this paper.

Some admission control algorithms do not fit within the
framework we consider and are excluded from our study. For
example, we do not include one of the MBACs described in [13]
because it depends on per-flow (rather than aggregate) measure-
ments. In addition to excluding algorithms that require per-flow
measurements, we also do not consider algorithms that make
any assumptions, either implicitly or explicitly, about the av-
erage behavior of flows. For example, we do not include the
MB AC presented in [16] because it computes a per-flow average
estimate and assumes that all arriving and departing flows con-
form to that average. We only consider algorithms that make
no assumption about what a flow's contribution will be to ag-
gregate load beyond the worst case parameters supplied by the
flow. Similarly, when a flow departs the network, its prior con-
tribution to aggregate load can only be determined by measuring
subsequent aggregate load.

Following are brief sketches of the six admission control al-
gorithms we compare:
• Measured Sum (MS). The Measured Sum algorithm [20] ad-
mits a new flow if the sum of the token rate of the new flow and
the estimated rate of existing flows is less than a utilization tar-
get times the link bandwidth. A time window estimator is used
to derive the estimated rate of existing flows.
• Hoeffding Bounds (HB). The admission control algorithm
described in [11] computes the equivalent bandwidth for a set of
flows using the Hoeffding bounds. A new flow is admitted if the
sum of the peak rate of the new flow and the measured equiva-
lent bandwidth is less than the link utilization. An exponential
averaging measurement mechanism is used to produce the load
estimate.
• Tangent at Peak (TP). Four measurement-based admission
control algorithms are presented in [13]. The first algorithm,
based on the tangent at the peak of an equivalent bandwidth
curve computed from the Chernoff Bounds, admits a new flow
if the following condition is met:

np(l - e~sp) + e-*pv < p, (1)

where n is the number of admitted flows, p is the peak rate of
the flows, s is the space parameter of the Chernoff Bound, v is
the estimate of current load, and p. is the link bandwidth. This
algorithm uses a point sample measurement process.
• Tangent at Origin (TO). A second algorithm presented in
[13] uses a tangent to the equivalent bandwidth curve at the ori-
gin. Here, a new flow is admitted if the following equation is

3 Some of the admission control algorithms require a peak rate p. Following
[11], the peak rate is computed from the token bucket parameters as p = r +
b/T, where T is the basic measurement interval used by the algorithm.

satisfied:
e3pV < ft.

This admission control algorithm also uses the point sample
measurement process.4

• Measure CAC (MC). The Measure admission control algo-
rithm [7], which is based on large deviation theory, admits a new
flow if the sum of the peak rate of the flow and the estimated
bandwidth of existing flows is less than the link bandwidth. The
estimated bandwidth takes as input a target loss rate and makes
use of the scaled cumulant generating function of the arrival pro-
cess.
• Aggregate Traffic Envelopes (TE). The admission control
algorithm in [21] uses measurements of the maximal traffic en-
velopes of the aggregate traffic, capturing variability on different
time scales. Both the average and variance of these traffic en-
velopes, as well as a target loss rate, are used as input into the
admission algorithm.

The brief descriptions presented above ignore the details of
the individual algorithms, but the key point is that the algorithms
differ both in their underlying theory and in the specific mea-
surement and admission control equations they use. While these
differences are what we seek to understand in this paper, certain
similarities are worth noting. For instance, each of these algo-
rithms has one component that derives a load estimate based on
measured traffic and another component that makes an admis-
sion decision using this load estimate. Rather than treating each
algorithm as a monolithic block, it is possible in some cases to
pair the estimation process of one algorithm with the decision
process of another. This allows us to ask whether differences
in performance derive from the estimation process, the decision
process, or both. We undertake this "mix and match" analysis in
Section III.

In addition to the equations that form the basis of the algo-
rithms described above, there are also certain MBAC features
that address specific practical concerns. For instance, when a
new flow is admitted to the network, the existing load estimates
will not immediately reflect the presence of the new flow. In
such a case, the network runs the risk of admitting too many
flows before recognizing that load has increased. To prevent
this situation, some of the algorithms (MS, HB, MC) artificially
increase the load estimate to account for a newly admitted flow.
This feature, while included in the specifications of three algo-
rithms, can be seen as an independent mechanism that can be
applied to any of them. We eliminate this feature as a source of
performance differences between algorithms by including it in
all of the algorithms in our performance comparison.5

A final observation is that each of the admission control equa-
tions has one or more parameters that control their operation.
For example, the MS algorithm has a utilization target that af-
fects how many flows will be admitted, the MC and TE algo-
rithms use a target loss rate, and the HB algorithm has a pa-
rameter that indicates the probability that the actual bandwidth

4 A third algorithm presented in [13] is equivalent to the HB algorithm. As
described above, the fourth algorithm is excluded because it depends on per-
flow measurements.

5 Results of simulations not included in this paper show the importance of this
feature. Under highly dynamic conditions, performance can degrade if estima-
tion algorithms do not account for the presence of newly admitted flows.

requirement exceeds the estimates. While these parameters were
(2) not all intended as tuning parameters by the designers of the al-

gorithms, adjusting these parameters will make the algorithms
either more conservative or more aggressive with regard to the
number of flows they admit. Hence, instead of providing a sin-
gle level of performance, each algorithm enables a range of loss
rates and utilizations depending on the values of these param-
eters. Thus, we describe the utilization performance of these
algorithms by their loss-load curves or performance frontiers.

This paper is an extension of our earlier work [20]. In that pa-
per we compared three different measurement-based admission
control algorithms (MS, HB, and an acceptance region based
MBAC from [14] which was later generalized in [13]) and one
simple parameter-based admission control algorithm. These al-
gorithms were compared for several different traffic loads (simi-
lar to those we use here, to be described in Section III-A) and on
single link and multiple link network topologies (as we discuss
in Section III-A, we only use a single link network topology in
this paper). The simulation results in the earlier paper were de-
ficient in several respects. The algorithms were only tested at
one parameter value setting. Such point comparisons cannot de-
scribe the entire performance frontier provided by an admission
control algorithm, and so do not adequately characterize the per-
formance of an MBAC. Moreover, for the particular parameter
values and traffic models used in [20], the admission control al-
gorithms recorded no losses, so only the utilization figures could
be compared. Also, there was no attempt to compare the target
loss rate with the actual loss rates, so there are no results analo-
gous to those in Section IV. Thus, this previous work did not ad-
equately answer the relevant question: how well do the various
MBACs satisfy the two goals of measurement-based admission
control?

There have been few other attempts to systematically com-
pare the performance of measurement-based admission control
algorithms. The closest work is [21], in which the performance
of the TE algorithm is compared to that of HB and the algo-
rithm specified in [19].6 The authors of [21] compare utiliza-
tion achieved for particular quality of service targets, and do not
compare the performance frontiers of the algorithms; however,
the main thrust of [21] is on achieving accurate loss estimates,
and to evaluate success along that dimension it is not necessary
to investigate the entire performance frontier.

In one other related piece of work, in a short (three page)
discussion paper [4] we briefly review some of the research pre-
sented here and then use that to argue that the research agenda
in measurement-based admission control should address certain
policy issues (such as how to allocate admission between large
and small flows, and between flows traveling many hops and
those traveling fewer hops).

III. PERFORMANCE FRONTIERS

In this section we evaluate how well each of the six algorithms
performs with respect to the first goal: achieving high network
utilization and low packet loss. We first describe our simulation
methodology and present our basic results for the MBACs with

6Based on communication with the author of [11], we do not interpret the
parameter in HB as a performance target; however, one could easily make that
interpretation, and that is what is done in [21].

several different source models. We then focus on three spe-
cific issues: the impact of heterogeneous traffic, a comparison
between MBACs and an ideal parameter-based algorithm, and
implications of long range dependent traffic on measurement-
based admission control. Throughout the discussion and accom-
panying figures, we refer to the algorithms by the abbreviations
introduced in the previous section: MS, HB, TO, TP, MC, TE.

A. Simulation Methodology

We use discrete event simulation to generate performance
frontiers for each algorithm. Simulations were carried out us-
ing the ns network simulator.7 In order to understand the behav-
ior of the algorithms in the most simple case, we used a simple
topology in which admission control was employed on a single
bottleneck link. While interesting issues may arise when study-
ing admission control in a multi-link scenario, the basic per-
formance aspects of these algorithms are most easily revealed
in this simpler one-link configuration, particularly since the ad-
mission control decisions for each of the algorithms are made
on a link-by-link basis. Further, we expect that issues arising
in a multi-link scenario (e.g., discrimination against larger flows
and flows traversing longer paths [4], [19]) are independent of
the particular algorithms and are, therefore, orthogonal to the
questions we ask here.8

A simulation experiment consists of a random process of flow
arrivals. Each flow requests service from the network using a
simple resource reservation protocol, and it is admitted or re-
jected according to the specifics of the algorithm in question.
A rejected flow departs the network without sending any data
packets and does not retry its service request again. A flow that
is accepted sends data packets for a flow lifetime chosen from a
random distribution. Packets are generated according to a source
model selected for the flow when it is created.

We use two kinds of source models in our experiments. The
first is an ON/OFF source, in which the source transmits at a con-
stant rate during a randomly chosen ON period, and then remains
idle for a randomly chosen OFF time. The second kind of source
model uses a trace of video traffic to drive the simulation. The
specific parameters are described below. Packets generated by a
source are subject to policing by a token bucket filter. The to-
ken bucket parameters (rate and bucket depth) are included in
the reservation request that is handed to the admission control
module.

For each simulation, the average utilization and packet loss
rate are measured. Data collected during an initial warmup pe-
riod are discarded. All simulations were repeated using different
seeds to the random number generator. The number of repeti-
tions and the length of each simulation were varied depending
on the underlying variability of the source model and offered
load used in each experiment. The averages across all repeti-
tions are reported in our results.

In all experiments, the bottleneck link bandwidth is 10 Mbps.
Unless otherwise noted, packets are 128 bytes long, and there is

7http://www-mash.cs.berkeley.edu/ns/.
8This is not to say we don't think these issues are interesting. In fact, given

the results we present here, we make the case in [4] that these issues of dis-
crimination mentioned above should be considered more seriously by MBAC
researchers.

buffering for 160 packets at the bottleneck link. In most of our
experiments, the total offered load (in terms of the number of
flows requesting service) is high, leading to a high call rejection
rate. While the actual rejection rates may be unrealistically high,
it is in the regime of overload that the behavior of the admission
control algorithms is most interesting.

Each of the algorithms has several parameters that control
how much history is maintained by the estimation algorithm.
We tried, when possible, to use parameter settings suggested in
the original references. However, in some cases we found that
changing these values yielded better performance. We suspect
that this is due to differences between our source models and of-
fered load and those used by other researchers. In all cases, we
used those parameter values that yielded the best performance
in our experiments.

B. Results

Our first experiments use homogeneous on/off sources with
exponentially distributed on and off times (325ms average). The
transmission rate during on periods is 64kbps, making the aver-
age rate 32 kbps. The token rate and bucket depth are set to
64 kbps and 1 packet, respectively (assuring no loss at the to-
ken bucket filter). These parameters are consistent with PCM
coded voice that might be produced by an IP telephony appli-
cation. On average each source consumes about .3% of the
link bandwidth. Flow inter-arrival times are exponentially dis-
tributed with a mean of 400 ms. Flow lifetimes, which are also
exponentially distributed, have a mean of 300 seconds. We re-
fer to this traffic model as the EXP1 source. Simulations were
run for 6000 simulation seconds; data collected during the first
1500 seconds was discarded. Each simulation was repeated 5
times with different seeds to the random number generator.

Results for this experiment are shown in Figure 1. This graph
plots the packet loss rate on a log scale as a function of link uti-
lization. A performance frontier is shown for each of the six al-
gorithms.9 It is difficult to distinguish between the performance
frontiers in the graph, indicating that all of the algorithms yield
very similar performance. That is, they all permit essentially
the same choices in the tradeoff between loss rate and utiliza-
tion. Further, the very slight differences in performance are not
of practical importance, because even if one algorithm yields a
marginally higher loss rate than another at a given level of uti-
lization, the loss rates can be made equivalent with extremely
small changes in utilization. Because there is variance in both
the x and y values in the figure (i.e., a given MBAC input pa-
rameter determines both the utilization and packet loss rate),
and these variations are highly correlated and not normally dis-
tributed, we do not depict these variations as error bars in our
graphs. However, the variance across simulation runs is small.

In some cases, the interfaces between the estimation and deci-
sion components of each algorithm are such that the estimation
process of one can be used with the decision process of another.
When this was possible, we "mixed and matched" the various
components. Specifically, the MS, HB, TO and TP decision al-

9 Because utilization is not an independent variable in these experiments, data
points are not plotted for the same x values for each algorithm. The actual num-
ber of points plotted varies across algorithms, but we have covered an overlap-
ping range on the x axis for each curve.

■ ■

• ^r^

•

Sie*1

■m^^1

^
V

>

MS —
HB —*—
TO ■« -
TP --B—

MC —»■-
TE - -o- -

OH 0.88 0.9 0.92

Utilization

Fig. 1. Performance frontiers of measurement-based admission control algo-
rithms with EXP1 traffic

gorithms were run with the Time Window, Exponential Aver-
aging, and Point Sample estimators in order to understand the
degree to which each component impacts the results. Figure 2
shows the results for these three estimators with the four differ-
ent decision algorithms. Relative to Figure 1, the slight varia-
tions across algorithms have been reduced. This result demon-
strates two things. First, the conclusion above that each algo-
rithm has nearly the same performance frontier does not depend
on any particular coupling between estimation and decision pro-
cesses. Second, the reduced variance indicates that it is the esti-
mation process, and not the decision algorithm that is responsi-
ble for the slight variations in Figure 1.

We performed additional experiments using the following
source models:

• EXP2 - in this source model, the peak rate is increased by
a factor of 10 (640 kbps versus 64 kbps) relative to the EXP1
source while the average rate is held constant, leading to a
burstier source model.
• POO 1 - this is an on/off source with the same averages as the
EXP1 source. However, they are taken from a Pareto distribu-
tion. Flow lifetimes are taken from a lognormal distribution with
a median of 300 seconds following [2], [9]. The aggregation of
these sources produces traffic that is long range dependent [8],
[25].
• STARWARS - this source model is taken from a trace file
produced by an MPEG encoding of the Star Wars motion picture
[12]. Each source starts from a random place within the trace
file in order to avoid correlation among the sources. This source
model differs from the previous ones in that it has a higher aver-
age rate (350kbps vs 32kbps) resulting in a lower degree of mul-
tiplexing, and it is characteristic of traffic produced by a video
source rather than an on/off model. With this source model,
packets are 200 bytes long and there are 500 packet buffers at
the bottleneck link.
• HET - this experiment consists of a mix of six different on/off
sources, with varying average rates, idle times and burst times.
Each arriving flow chooses from among these source models at
random. All flows have the same leaky bucket parameters, so
they appear identical to the admission control algorithm.

The results from these experiments (not shown here) reveal
that our basic result holds across different traffic models. That is,

0,01 -

—, r , _, __

0.0O1 /^

0.0001 <*

1*-05
■

19-OS «-'
MS —>—
HB —«—
TO -«—
TP —o—

. .
0« 0.M 0.92

Utilzafc*

(a) Time Window

0.01

0001

0.0001
■

1t>06

1*08
MS —H—
HB — *~
TO ■••*--
TP —O—

 J. 1 I i ■ .
0.92 0.94

UU»tton

(b) Exponential Averaging

(c) Point Sample

Fig. 2. Decision algorithms paired with diffe'rent estimators for the EXP1 source
model

in the presence of burstier sources, long range dependent traffic,
lower multiplexing, traffic derived from a video trace, and het-
erogeneous traffic (with identical token bucket parameters), all
of the algorithms achieve roughly the same performance fron-
tier. In addition, we repeated the experiments with the EXP1
traffic source and more moderate offered load (yielding a lower
call rejection rate.) The essential results were unchanged under
these conditions.

C. More on Heterogeneous Traffic

We now briefly return to the issue of heterogeneous traffic.
In the simulation with heterogeneous traffic described above, all
flows had identical token bucket parameters, and so were indis-

Fig. 3. Peak rate versus token rate versions of the MS admission control algo-
rithm with heterogeneous traffic

tinguishable to the admission control algorithms. The results
in this case were consistent with those in the homogeneous ex-
periments. We now ask what happens when the token bucket
parameters are no longer identical, allowing the admission con-
trol algorithms to admit them differentially. Not surprisingly,
when the flows are distinguishable, different admission control
algorithms lead to different mixtures of traffic, and hence to dif-
ferent performance frontiers. To illustrate this, we consider an
experiment where each arriving flow used one of the follow-
ing two source models, chosen with equal probability. The first
source model was the Star Wars trace introduced above. This
trace had an average rate of approximately 350 kbps. In order
to accommodate its burstiness, the token bucket parameters are
r = 800kbps and b = 200A;&. The second source model was
a Constant Bit Rate (CBR) source sending at 800 kbps. The
token bucket parameters for this source are r = 800kbps and
b = 1Mb (to hold a single packet).

Figure 3 shows results for this heterogeneous traffic mix with
2 admission control algorithms. The first is the Measured Sum
(MS) algorithm, which uses the token rate of the new flow. The
second algorithm is a variant of Measured Sum using the peak
rate (computed as p = r + b/T, with T = 500ms in our ex-
periments) of the incoming flow, rather than its token rate, in
the admission control equation. The first version of the MS al-
gorithm does not discriminate between the two kinds of flows
because they have the same token rates. This leads to a traffic
mix that is made up of roughly equivalent numbers of the two
kinds of flows. The peak rate algorithm, on the other hand, dis-
criminates against the trace driven flows, as they have a higher
peak rate (1200kbps vs. 800kbps). This leads to a traffic mix in
which the CBR sources outnumber the video sources by a ratio
of approximately 3:1. Consequently, the peak rate algorithm has
a better performance frontier than the token rate algorithm. We
introduced the peak rate version of the MS admission control
algorithm to accentuate the extent of discrimination. One finds
similar, but less extreme, results when comparing the six admis-
sion control algorithms we have discussed in this paper under
heterogeneous traffic loads with distinguishable flows.

Note that the traffic mix admitted by the peak-rate algorithm
is, in the aggregate, less bursty than the one admitted by the
token rate algorithm; thus, the loss rate experienced at an equiv-

alent utilization is lower than is experienced with the token rate
admission control algorithm. In general, when admission con-
trol algorithms admit different mixtures of flows, the aggregate
traffic will have different degrees of burstiness, and so the per-
formance frontiers will no longer be the same. Thus, in the face
of heterogeneous and distinguishable flows, MBACs don't nec-
essarily produce the same performance frontier.

One might think that this would undercut our observation
about the equivalence between various MBACs. However, we
think that the question of which traffic mixture should be admit-
ted is one of policy, not efficiency. Clearly one could minimize
the loss rates by admitting only CBR-like flows, but such a limi-
tation would be unwise as it would preclude bursty sources from
obtaining reasonable service. Admission control algorithms that
happen to pick less bursty flows to admit, while providing supe-
rior performance frontiers (in the presence of heterogeneous and
distinguishable traffic) are not necessarily more desirable and in
fact have only made one particular policy choice out of a broad
range of possible choices.

D. Comparison with an Ideal Algorithm

We now elaborate on our result that all of the algorithms have
similar performance frontiers. With so much effort going into
the design of measurement-based admission control algorithms,
one might have assumed that the effort would lead to improved
performance. Our simulations suggest quite the opposite, that
even very simple ad hoc algorithms achieve the same perfor-
mance frontier as more complicated and more principled ones.
Given this, we ask two questions. First, why are the differences
in performance between the algorithms so small? Second, are
there untapped advantages not yet realized by any of these algo-
rithms or are they in fact all performing at or near some optimal
level? To answer these questions, we construct an "ideal" algo-
rithm.

Consider our initial experiment with the EXP1 traffic source.
In this simulation, all flows in the network were homogeneous
exponential on/off sources. The aggregate traffic generated by
these sources has no long term correlation. Further, the time
scale at which individual sources change between the idle state
and the active state (100s ms) is shorter than the time scale at
which new flows are admitted to the network (seconds). Thus,
it is impractical for the admission control algorithm to attempt
to adjust to short term fluctuations in traffic (i.e., on the time
scale of bursts). Given that there are no long term correlations
in the aggregate traffic, the ideal strategy for admission control
is to keep long term average load constant. While this might
present a challenge in reality, it is trivial in our simulation envi-
ronment when we have homogeneous flows with no long term
correlations. Hence, for present purposes we define the Quota
algorithm, which does not depend on measurements. This sim-
ple algorithm admits a newly arriving flow if there are less than
n flows currently receiving service, and rejects the flow other-
wise. The parameter n controls how conservative or aggressive
the algorithm is. While this algorithm is helpful in better under-
standing the limits of the performance of MBACs, it is imprac-
tical in any real setting since it requires homogeneous flows.

Figure 4a plots the performance frontiers for the Quota algo-
rithm and for one of the measurement-based algorithms (MS)

0.01

.'■*

0.0O1 S*^*

0.0001
jS*'

■

1*05

^s*y

1*46
s "'" MS —<—

Quota —w—

0.92 0.94
UtHiaflon

2400

Sknutaton TTm« (at

(b)

Fig. 4. (a) Performance frontiers for MS and Quota algorithms with EXP1 traf-
fic (b) Number of admitted flows as a function of time for the MS algorithm

with the EXP1 traffic. As the figure shows, the Quota algo-
rithm outperforms the measurement-based algorithm; across the
load levels tested, the loss rate for the measurement-based algo-
rithm is between 50% and 250% higher than that of the Quota
algorithm. Figure 4b plots the number of admitted flows as a
function of time for one simulation with the Measured Sum al-
gorithm; a similar plot for the Quota algorithm yields an essen-
tially straight line (the offered load is sufficiently high so that a
new flow arrives very soon after a flow leaves, making the ad-
mitted load very close to constant). The MS algorithm mimics
the Quota algorithm fairly well, but there is significant variation
in the number of admitted flows. Similar variations in load oc-
cur when using the other MBACs we evaluated. Note that for
the same average utilization, increased variability in load leads
to higher loss rates. Thus, with the EXP1 traffic model, it is pre-
cisely these variations in admitted load that leads to the worse
performance frontier for the measurement-based admission con-
trol algorithm. Is this variation inevitable, or can MBACs even-
tually match the performance of the Quota algorithm?

There are two distinct causes for this variation leading to
the performance degradation relative to the Quota algorithm.
The first is the way that the measurement-based algorithms
must deal with the arrival and departure of flows. Because the
measurement-based algorithms we consider use aggregate rather
than per-flow measurements, they do not know how much a de-

parting flow was contributing to the previous estimate of load.10

Measurement-based algorithms must therefore wait before ad-
mitting a new flow until new measurements reflect the departure
of the previous flow. During this time, additional flows may
depart, and the number of flows in the system may drop. The
Quota algorithm on the other hand, with its perfect but unreal-
istic knowledge of the departing flow, can immediately admit a
new flow. Similarly, when a new flow is admitted to the system,
measurement-based algorithms must assume worst case behav-
ior about the new flow until new measurements reflect its pres-
ence. In contrast, the Quota algorithm can admit flows based on
their average behavior and need not delay further admissions.

The second factor leading to variation in the number of ad-
mitted flows is that measurement-based admission control al-
gorithms, by their reliance on measurements of current traffic,
must necessarily respond to significant fluctuations in the load
even when the number of flows has not changed. That is, the
MBAC cannot distinguish between having too many flows ad-
mitted and a long fluctuation to a higher level of aggregate traffic
by a fixed set of flows; not being able to detect the difference,
the MBAC is forced to turn away flows during such a fluctuation
even when there are too few flows present and similarly, if the
current flows fluctuate to a lower level of traffic, the MBAC is
forced to admit flows even when too many are already present.

Note that there is an inherent tension between the two fac-
tors that cause MBAC performance to degrade relative to the
Quota algorithm. To avoid adapting to short term fluctuations
in load, longer measurement intervals are suggested [15], [19].
Longer measurement intervals, on the other hand, will only slow
down the reaction of the measurement-based algorithms to the
departure and arrival of flows. Therefore, it is likely that these
two factors will prevent any measurement-based algorithm from
ever performing as well as the Quota algorithm.

If MBACs could emulate the Quota algorithm, then they
would all have the same performance frontier, and our results
in Section III-B would be rendered obvious. However, the dis-
cussion above shows that MBACs cannot accurately emulate the
Quota algorithm. The surprise in our results in Section III-B is
that the set of MBACs we tested all had such similar deviations
from the ideal behavior of the Quota algorithm. One might have
thought (indeed, we did think) that different admission control
equations and different measurement procedures would make a
difference in how well this ideal was followed; our results sug-
gest that this is not the case."

E. Long Range Dependence

Before turning to the second goal of MBACs (performance
targets) we briefly discuss long range dependence and its ef-
fect on admission control. Long range dependence has been
observed in video traffic [1], [12] and may also arise from the

10In addition, some signaling protocols may not even provide explicit tear-
down messages, exacerbating the problem of updating estimates when flows
depart the network.

11 Our fuller set of simulations (not presented here) suggest that the length
of the averaging periods, and the way in which new flows are treated, are much
more important than the equations themselves in determining how close MBACs
come to the performance frontier of the Quota algorithm. This is consistent
with the observations above about the two causes of the variations, since they
both relate to measurement intervals and the treatment of new flows, and are
orthogonal to the specific equations used in the admission decision.

0.01

0.001

/
*' s

0.0001 ■

l»-05 ■

.»■oe

MS —■—
Quota —x—

OS 0.82 0.84 0.88 0.88 0.9 0.92 0.94 0.98 0.98

Utilization

Fig. 5. Measurement-based algorithm vs. Quota Algorithm for long range de-
pendent traffic

aggregation of audio traffic [11], two traffic classes that may
be subject to admission control. Results for the POOl traffic
source showed that our basic result, that the various MBACs
have similar performance frontiers, remains unchanged in the
face of long range dependent traffic. However, the relative per-
formance of the Quota algorithm, held up as an ideal algorithm
in the previous Section, is quite altered by the presence of long
range dependent traffic.

Above we showed that the Quota algorithm, which admits a
fixed number of flows, performs better than the measurement-
based algorithms with the EXP1 traffic source (which does not
give rise to long range dependent aggregate traffic.) We repeated
these experiments using the POOl traffic source. Results are
shown in Figure 5, and for clarity we again show only the Mea-
sured Sum algorithm and the Quota algorithm. With long range
dependent traffic, we see the opposite results. In this case, the
measurement-based algorithm performs better than the Quota
algorithm (which one can think of as a simple, if unrealistic,
parameter-based algorithm). The explanation for this is straight-
forward. The long range dependent traffic exhibits variations
over long time scales. By keeping the number of flows fixed,
the Quota algorithm does nothing to smooth these variations.
The measurement-based algorithm, on the other hand, is able
to adjust the number of flows admitted in response to the varia-
tions. As the aggregate load increases, departing flows need not
be replaced by new ones, and when load decreases additional
flows can be admitted.

We believe the implications of this are important. The orig-
inal arguments for using measurement-based admission control
claimed that the worst-case behavior of bursty traffic is far worse
than the average case, and that it is hard a priori to know the av-
erage behavior of a bursty traffic flow. Since the average behav-
ior is unknown, any parameter-based algorithm must be based
on worst-case parameters, leading to low network utilization.
However, our results here indicate that that argument should be
taken one step further. Even if the average behavior of traffic
flows were known, the existence of long range dependent traffic
would still mandate the need for measurement-based admission
control in order to adapt to these long time scale fluctuations.
Thus, while it has previously been suggested that long range
dependence may present certain challenges for measurement-

based admission control [11], [23] (and we do not disagree
with those arguments), we believe that long range dependence
also provides additional motivation for the use of measurement-
based admission control. When the time scale of flow arrivals
and departures is shorter than that of the ebb and rise of traf-
fic, measurement-based admission control enables the network
to react to these traffic fluctuations.

These results on long range dependence also shed light on
another issue. Some have argued that our basic result—that
the performance frontiers of MBACs are very similar—follows
quite directly from the observation that all algorithms seek to
mimic the Quota algorithm. In Section III-B we found that there
are inherent limitations to how closely any MBAC can mimic
the Quota algorithm. Our results about long range dependence
further show that mimicking the Quota algorithm is not always
the optimal behavior.

IV. PERFORMANCE TARGETS

Results in the previous section showed that all the
measurement-based algorithms are capable of making the same
tradeoff between utilization and loss. However, network opera-
tors who will deploy these algorithms may be interested in more
than just knowing that the algorithms achieve the same tradeoff.
Rather, it may be important for a network operator to know how
to end up at a particular point on the performance frontier, so
that a desired loss rate can be achieved. When comparing algo-
rithms, it is important to ask to what extent their input parame-
ters are useful in predicting actual performance. An algorithm
that allows an operator to control resulting performance will be
preferred over one that does not.

We note that not all of the designers of the algorithms we
study intended their algorithms to be tunable, nor did they all
make claims about how well the algorithms were able to meet a
particular performance target. Hence, we undertake this evalua-
tion not to judge whether a particular algorithm meets its design
objectives. Rather, we begin with the observation that each algo-
rithm has one or more parameters that can be adjusted to control
performance. We ask whether these parameters are able to pro-
vide functionality that network operators may find useful.

The tuning parameter in the TP and TO algorithms represents
the space parameter of the Chernoff Bound used to compute
the equivalent bandwidth curve upon which the algorithms are
based. As such, this parameter does not represent a meaningful
performance target. One may then ask whether this parameter
can be mapped into a useful performance value in a determinis-
tic way. For instance, if a particular parameter value in the TO
algorithm always yields the same loss rate, then the parameter
can be useful in predicting actual performance. However, a re-
view of our simulation results shows that this is not the case. As
an example, with the TP algorithm, a parameter value of 4.0e-7

yields loss rates of .0098, .0018 and less than 10-7 with the
POOl, EXP1 and Star Wars sources, respectively. These kinds
of inconsistencies were also observed with the TO algorithm.
Thus, the tuning parameter in the TO and TP algorithms can not
be used to predict actual performance.

The MS algorithm has a parameter, v, which represents a cap
on the fraction of the link bandwidth that can be used by traffic
subject to admission control. As such, its semantics are easily

understood, and we can ask whether it is useful as a utilization
target. Simulation results indicate that it is not. For example,
with the EXP1 traffic source, when v = 1.0, average utilization
is 94% of the link bandwidth. With the EXP2 traffic source, uti-
lization is only 75% of the link bandwidth with the same value
oft». Further, even if the utilization target was consistently met,
we question the value of this parameter as a performance target.
We expect loss rate to be a more relevant parameter, since loss
rate directly affects user performance.

The HB algorithm uses a parameter, e, to represent the proba-
bility that the stationary bandwidth requirement of a set of flows
exceeds the computed equivalent bandwidth of the flows. In
practice, this does not turn out to be a useful predictor of loss.
For example, in the simulations shown previously, we typically
use values of e above .9. Further, these values do not map into
actual loss in any consistent manner. For example, with e = .9,
the loss rates are .00045, .005 and less than 10-7 with theEXPl,
POOl, and Star Wars source models, respectively.

Algorithm Source
Model

Target
Loss Rate

Actual
Loss Rate

TE EXP1 10~B 1.9 x 10-5

TE EXP1 10-* 4.8 x 10-*
TE Star Wars 10~B 5.5 x 10-4

TE Star Wars 10-* 4.4 x 10~a

TE EXP2 10~ö 3.1 x 10~5

TE EXP2 10-* 1.8 x 10~a

TE POOl io-e 1.3 x 10-*
TE POOl io~* 4.1 x 10-*
MC EXP1 10~B 1.1 x 10-4

MC EXP1 10"* 2.4 x 10-4

MC Star Wars 10-« 3.0 x 10-3

MC Star Wars 10-* 4.5 x 10~3

MC EXP2 10~ö 1.7 x 10"4

MC EXP2 10-* 2.0 x 10-4

MC POOl io-° 1.2 x 10~*
MC POOl 10-* 1.6 x 10-*

TABLE I

TARGETED VERSUS ACTUAL Loss RATES FOR THE TE AND MC

ALGORITHMS

The final two algorithms, TE and MC, use target loss rate as
a tuning parameter. Table I shows both the target and actual
loss rates for both algorithms and several traffic sources. These
data show that the algorithms are unable to achieve performance
close to their targeted performance in a consistent manner. In-
deed, for each algorithm the table shows examples in which the
actual loss rate is both higher and lower than the target, some-
times by 2 or 3 orders of magnitude. While the TE algorithm
comes closer to its targets in general, it still misses by a couple
of orders of magnitude in some cases. As such, even though the
targets are achieved under certain scenarios, they do not predict
performance reliably.

In sum, none of the algorithms provide tuning parameters that
are useful as performance targets. At best, these parameters can
be seen as largely uncalibrated knobs that can increase or de-
crease utilization and loss.

V. CONCLUSIONS

In this paper we compared several different measurement-
based admission control algorithms. We evaluated the algo-
rithms according to two criteria. First, what tradeoff of loss and
load do they each achieve? This criterion shows how well the
algorithms are able to balance the conflicting goals of providing
good quality of service to individual users and achieving high
network utilization (i.e., satisfying many users). Here our re-
sults were unambiguous. Across a range of traffic sources, all
the algorithms, whether ad hoc or principled, achieved nearly
identical performance. This result argues that there is no partic-
ular performance benefit of one over the others. Our study also
yielded several additional insights about measurement-based ad-
mission control. First, we showed that for many algorithms,
the measurement estimation and admission decision processes
can be decoupled. Second, differences in performance caused
by flow heterogeneity are a matter to be addressed by policy,
rather than by algorithmic differences. Third, simulation results
showed that measurement-based admission control algorithms
not only cope well with long range dependence in traffic, in
some circumstances they are more adept at handling it than are
parameter-based algorithms.

The second criterion we used to evaluate the algorithms was
the extent to which they provided performance tuning knobs that
allow network operators to set a target performance level for the
network. Such a knob would allow the network operator to de-
cide where on the performance frontier the network should op-
erate. Here the results were less impressive. None of the algo-
rithms was able to reliably match actual performance to targeted
performance levels. Thus, we believe that for any of these al-
gorithms, network operators will need to monitor actual perfor-
mance in order to learn appropriate parameter settings. On the
other hand, some algorithms did better than others in this regard
in the sense that they tended to get closer to targets on average
than others. While the magnitude of the errors was in all cases
large enough to call into question the value of the knobs as per-
formance targets, whether or not this difference is important is a
subject of debate. The ability of future algorithms to improve in
this regard is an open question.

ACKNOWLEDGEMENTS

We had many helpful conversations with Nick Duffield,
Sally Floyd, Richard Gibbens, Matt Grossglauser, Frank
Kelly, Ed Knightly, Andrew Moore and Jingyu Qui about the
measurement-based admission control algorithms discussed in
this paper. Patrick McDaniel provided valuable feedback on an
earlier version of this paper. We would like to thank Sandeep
Bajaj for his assistance with the implementation of some of the
admission control algorithms in the ns simulator. Sugih Jamin
would like to thank Don Hoffman, Debasis Mitra, Jeff Mogul
and Chuck Song for their support of this work.

REFERENCES

[1] RERAN, J., SHERMAN, R., TAQQU, M. S., AND WILLINGER, W. Long-
range dependence in variable-bit-rate video traffic. IEEE Transactions on
Communications 43, 2 (Feb. 1995), 1566-1579.

[2] BOLOTIN, V. "Modeling Call Holding Time Distributions for CCS Net-
work Design and Performance Analysis". IEEE Journal on Selected Areas
in Communications 72, 3 (Apr. 1994), 433-438.

[3] BRADEN, R., ED., ZHANG, L., BERSON, S., HERZOG, S., AND JAMIN,

S. Resource ReSerVation protocol (RSVP) - version 1 functional spec-
ification. Tech. Rep. RFC 2205, Internet Engineering Task Force, Sept.
1997.

[4] BRESLAU, L., JAMIN, S., AND SHENKER, S. Measurement-based ad-
mission control: What is the research agenda? In Proc. of IEEE/IFIP
Seventh International Workshop on Quality of Service (IWQOS '97) (Lon-
don, England, 1999).

[5] CLARK, D., AND WROCLAWSKI.J. An approach to service allocation in
the Internet. Internet draft, Internet Engineering Task Force, July 1997.

[6] CLARK, D. D., SHENKER, S., AND ZHANG, L. Supporting real-time
applications in an integrated services packet network: Architecture and
mechanism. In Proceedings of ACM Sigcomm (Aug. 1992), pp. 14-26.

[7] CROSBY, S., LESLIE, I., MCGURK, B., LEWIS, J. T, RUSSELL, R.,
AND TOOMEY, F. Statistical properties of a near-optimal measurement-
based cac algorithm. In Proceedings IEEE ATM '97 (June 1997).

[8] CROVELLA, M., AND BESTAVROS, A. Self-similarity in world wide web
traffic: Evidence and possible causes. IEEE/ACM Transactions on Net-
working 5,6 (Dec. 1997), 835-846.

[9] DUFFY, D., MCINTOSH, A., ROSENSTEIN, M., AND WILLINGER, W.
"Statistical Analysis of CCSN/SS7 Traffic Data from Working CCS Sub-
networks". IEEE Journal on Selected Areas in Communications 12, 3
(Apr. 1994), 544-551.

[10] DZIONG, Z., JUDA, M., AND MASON, L. A framework for bandwidth
management in ATM networks - aggregate equivalent bandwidth estima-
tion approach. IEEE/ACM Transactions on Networking 5, 1 (Feb. 1997),
134-147.

[11] FLOYD, S. Comments on measurement-based admissions control for
controlled-load services. Technical report, Lawrence Berkeley Laboratory,
July 1996.

[12] GARRETT, M. W., AND WILLINGER, W. Analysis, modeling and genera-
tion of self-similar VBR video traffic. Computer Communications Review
24, 4 (Oct. 1994). SIGCOMM '94 Symposium.

[13] GIBBENS, R., AND KELLY, F. "Measurement-Based Connection Admis-
sion Control". 15th International Teletraffic Congress (Jun. 1997).

[14] GIBBENS, R. J., KELLY, F. P., AND KEY, R B. A decision-theoretic
approach to call admission control in ATM networks. IEEE Journal on
Selected Areas in Communications SAC-13, 6 (1995), 1101-1113.

[15] GROSSGLAUSER, M., AND TSE, D. A framework for robust
measurement-based admission control. Computer Communications Re-
view 27,4 (Oct. 1997), 237-248. ACM SIGCOMM'97, Sept 1997.

[16] GROSSGLAUSER, M., AND TSE, D. N. C. A time-scale decomposition
approach to measurement-based admission control. In Proceedings of the
Conference on Computer Communications (IEEE Infocom) (New York,
Mar. 1999).

[17] GROSSGLAUSER, M., TSE, D. N. C. C, KUROSE, J., AND TOWSLEY,

D. A new algorithm for measurement-based admission control in inte-
grated services packet networks. In Proceedings of the Fifth International
Workshop on Protocols for High-Speed Networks (Antipolis, France, Oct.
1996).

[18] JAMIN, S., DANZIG, P., SHENKER, S., AND ZHANG, L. A measurement-
based admission control algorithm for integrated services packet networks.
In Proceedings of ACM Sigcomm (Sept. 1995).

[19] JAMIN, S., DANZIG, P. B., SHENKER, S. J., AND ZHANG, L. A
measurement-based admission control algorithm for integrated services
packet networks. IEEE/ACM Transactions on Networking 5,1 (Feb. 1997),
56-70.

[20] JAMIN, S., SHENKER, S., AND DANZIG, P. "Comparison of
Measurement-based Admission Control Algorithms for Controlled-Load
Service". Proceedings of the Conference on Computer Communications
(IEEE Infocom)'97 (Apr. 1997).

[21] KNIGHTLY, E. W., AND QIU, J. Measurement-based admission con-
trol with aggregate traffic envelopes. In IEEE ITWDC '98 (Ischa, Italy,
September 1998).

[22] NICHOLS, K., JACOBSON, V., AND ZHANG, L. A two-bit differentiated
services architecture for the Internet. Internet Draft, Internet Engineering
Task Force, May 1999. Work in progress.

[23] PAXSON, V., AND FLOYD, S. Wide area traffic: The failure of poisson
modeling. IEEE/ACM Transactions on Networking 3, 3 (June 1995).

[24] SHENKER, S., PARTRIDGE, C, AND GUERIN, R. Specification of guar-
anteed quality of service. RFC 2212, Internet Engineering Task Force,
Sept. 1997.

[25] WILLINGER, W., TAQQU, M., SHERMAN, R., AND WILSON, D. "Self-
Similarity Through High-Variability: Statistical Analysis of Ethernet
LAN Traffic at the Source Level". Proceedings of ACM Sigcomm'95
(Aug. 1995), 100-113.

[26] WROCLAWSKI.J. Specification of the controlled-load network element
service. RFC 2211, Internet Engineering Task Force, Sept. 1997.

Network Visualization with the VINT Network Animator Nam

Deborah Estrin, Mark Handley, John Heidemann,
Steven McCanne, Ya Xu, Haobo Yu

USC Computer Science Department Technical Report 99-703b

March 1999 (revised November 1999)*

Abstract

Protocol design requires understanding state distribut-
ed across many nodes, complex message exchanges,
and with competing traffic. Traditional analysis tools
(such as packet traces) too often hide protocol dynam-
ics in a mass of extraneous detail.

This paper presents nam , a network animator that
provides packet-level animation and protocol-specific
graphs to aid the design and debugging of new net-
work protocols. Taking data from network simulators
(such as ns) or live networks, nam was one of the first
tools to provide general purpose, packet-level, network
animation. Nam now integrates traditional time-event
plots of protocol actions and scenario editing capabil-
ities. We describe how nam visualizes protocol and
network dynamics.

Keywords: network protocol visualization, packet-
level animation, Internet protocol design, network sim-
ulation, ns, nam

1 Introduction

Designers of network protocols face many difficult
tasks, including simultaneous monitoring of the state
of a potentially large number of nodes (for example,
in multipoint protocols), understanding and analyzing
complex message exchange, and characterizing dynam-
ic interactions with competing traffic.

'This research is supported by the Defense Advanced Re-
search Projects Agency (DARPA) through the VINT project
at LBL under DARPA Order E243, at USC/ISI under DARPA
grant ABT63-96-C-0054, at Xerox PARC under DARPA grant
DABT63-96-C-0105.

t Originally published in March, 1999, this technical report
was updated in November, 1999 (one section was moved, some
text was added and rewritten, and a number of typos were fixed).
This technical report has been accepted to appear in IEEE Com-
puter Magazine.

Traditionally, packet traces have been used to ac-
complish these tasks. However, packet traces have two
major drawbacks: they present an incredible amount of
detail, which challenges the designer's ability to com-
prehend the data, and they are static, which hides an
important dimension of protocol behavior. As a result,
detailed analysis frequently becomes tedious and error-
prone. Although network simulators such as ns [2] can
easily generate numerous detailed traces, they provide
limited help in analyzing and understanding the data.

Network-specific visualization tools address this
problem, allowing the user to take in large amounts
of information quickly, to visually identifying patterns
in communication, and to better understand causali-
ty and interaction. This paper presents nam , a net-
work animator that provides packet-level animation
and protocol-specific graphs to aid the design and de-
bugging of new network protocols (Figure 1). Nam
was one of the first tools to provide general purpose,
packet-level, network animation. Recent work has inte-
grated traditional time-event plots of protocol actions
and added scenario editing capabilities. Nam benefits
from a close relationship with ns, the VINT project's
network ns [2] which can collect detailed protocol infor-
mation from a simulation. With some pre-processing,
nam can also be used to visualize data taken directly
from real network traces.

Related Work (sidebar)

Network protocol visualization has been explored in
many contexts, beginning with static protocol graphs,
and visualization of large-scale traffic, more recently
including simulation visualizations and editors.

Graphs of packet exchanges are very useful at un-
derstanding cause-and-effect in complex protocols like
TCP. Work at MIT [10] and the University of Ari-
zona [3] is typical: graphs show time against TCP se-

JKZ

Figure 1: Basic nam operation.

quence numbers on a 2-D graph, possibly with annota-
tions to show special events. Similar time-event graphs
have proven useful in understanding reliable multicast
behavior in SRM [5]. Although nam graphs are not
as detailed as the most sophisticated of these graph-
s, they are integrated with the packet animation and
time control. We plan to develop APIs to allow the
end-user to annotate graphs with the details relevant
to their protocol or protocol modifications.

Several groups have looked at visualization of large,
static network data sets. Important questions include
use of layouts based on real-world geography or net-
work topology, how best to use animation, color, and 3-
D. More generally, many researchers tackled the prob-
lem of visualization of complex data (for an overview
of several approaches, see Robertson et al. [9]). Sys-
tems like these share the principle that multiple linked
views are essential in visualizing complex data. Nam
adopts this principle. It organizes visualization around
the main topology view, from which a number of spe-
cialized views may be derived. These systems tend
to focus on representing aggregate network data (traf-
fic flows) to understand and monitor traffic patterns,
rather than the packet-level detail necessary to design
new protocols.

Several Network simulation systems include explicit
support for visualization, either customized to a partic-
ular end-application or more general. Opnet includes
visualization capabilities and Simphony [7] explicitly
includes packet-level animation. Nam differs from this
work by supporting different views of the data (packet
animation and time-event graphs).

Nam is quite late in providing a GUI front-end to
defining new simulations. Systems such as Opnet and
Parsec [1] have provided this capability for some time.
CMU's ad-hockey was designed explicitly to support
node movement [11]. We believe GUI network edi-
tors are of most benefit to novice users or users run-
ning small simulations, we advocate using a scripting
language to construct large or complex simulations.
Nam's editing capabilities are therefore not as complete
as other similar systems since nam outputs a script
which can be extended by hand to access complete ns
functionality.

2 Nam Basics

Nam interprets a trace file containing time-indexed
network events to animate network traffic in several
different ways (Figure 2). Typically this trace is gen-
erated from an ns simulation, but it can also be gener-
ated by processing data taken from a live network to

ns simulation *»^ nam

network j*
data ^^ pre- ^"

^r processing
other «*^
sources

packet animations
-optional y -automaticiayout
"filtering " - relative layout

- wireless layout

protocol graphs
-TCP
-SRM

Figure 2: Block diagram of nam.

produce a nam trace. Nam usually runs off-line with
the traces stored on disk, but it can also play traces
from a running program through a Unix pipe.

A nam input file contains all information needed for
the animation: both the static network layout and dy-
namic events such as packet arrivals, departures, and
drops and link failures. Wireless networking simula-
tions include node location and movement.

Figure 1 shows a typical nam session. On the top
left, the main window shows packet animations. The
visual size and speed of packets is proportional to pack-
et length and the link bandwidth and delay; link 2-3 is
full of TCP data moving along the top and return ac-
knowledgement traffic along the bottom in the reverse
direction. Packet color is used for different things; in
this case it differentiates two different data streams
(black and blue) and a red packet carrying a conges-
tion signal. Packets move from node to node along
links, and are queued up when links are full (for exam-
ple, there is a large queue near node 2 corresponding
to the busy link between nodes 2 and 3). Below it (in
the same window) are several statistical summaries of
what is happening. Boxes labeled "monitors" corre-
spond to parameters of protocols running on particu-
lar nodes. The graph across the bottom of the window
shows the utilization of a link as a function of time.
The smaller bottom-right window is zoomed in on part
of the same network. The window on the center-right
shows a protocol-specific time-event graph of a partic-
ular flow on a given link. In this case, it plots TCP
sequence numbers against time using different symbols
to show data packets, acknowledgements, and acknowl-
edgements which include explicit congestion informa-
tion.

Multiple copies of nam may be executed simultane-
ously, in which case they may be driven in lock-step.
With this synchronized, simultaneous ability to visual-
ize the output of more than one simulation trace file,
side-by-side comparisons are made possible. Such com-
parisons are especially useful for investigating protocol

fie \fews Analysis

« •* ► ►► i 29.15M4I Step:2£as

Ö
^

<D©

©•©

s—=-€>■©

Phase two: after Mte period
...NSSR drops due to queue overrun (at 23.1126)
...RBP paces second magenta packet (at 29.1271)

,/EE

Figure 3: Packet animation in nam.

sensitivity to input parameters in the same simulation
scenario (as in [5], for example).

3 Packet Animation

The core of nam is packet animation. Figure 3 shows
a typical packet animation (taken from [13]). Three
variants of the TCP protocol are being used to send
data from web servers on the right to clients on the
left. Animation here allows the viewer to quickly take
in the status of each part of the network (the top link
is severely congested and dropping packets, the middle
link is slightly busier than bottom link), and to quick-
ly compare the algorithms (the middle variation has
one extra magenta packet while the top version sends
many back-to-back packets). Nam allows the anima-
tion speed to be adjusted and played forwards or back-
wards, making it easy to find and examine interesting
occurrences.

The first step in a new animation is displaying the
network topology. Nam has three different topology
layout mechanisms to accommodate different needs.
The default is an automatic layout algorithm based
on a spring-embedder model [6]; Figure 4 shows an ex-
ample of this result. It assigns attractive forces on all
links and repulsive forces between all nodes, and tries

to achieve balance through iteration. Automatic lay-
out can produce reasonable layouts of many networks
without explicit user guidance, but it may not pro-
duce satisfactory results of complicated networks. As
a remedy, nam allows the user to graphically adjust
the resulting layout.

For smaller topologies, relative layout is possible.
The user specifies the relative directions of links (left,
up, down). Nam places nodes relative to each other
using link directions; link length is set proportional to
its bandwidth and delay. Relative layout works very
well for small topologies and has the desirable property
that packet movement rate is consistent with link delay
and bandwidth. The network in Figure 3 uses relative
layout. Disadvantages of relative layout are that the
user must specify the directions of each link, that not
all networks have a planer representation that satis-
fies delay constraints, and relative layout of a topology
containing very different delays can result in very short
links. For example, the 10Mb/s, 1ms delay links on the
left of Figure 3 are too short to observe packet flow
when shown at the same scale as the 800Kb/s, 100ms
central link.

Finally, wireless layout assigns associates each node
with a physical location in a constrained area. Each
node's position is given by its 3-D coordinate (only the
two dimensions are currently used for visualization) in
the area and its velocity vector. Wireless visualizations
typically lack explicit links.

Packet animation is straightforward once the topol-
ogy is laid out. Trace events indicate when packets
enter and leave links and queues. Packets are shown
as rectangles with arrows at the front; queues as arrays
of squares (see the left window of Figure 1). Packets
can be colored based on codes set in the simulator or
pre-processing to identify source and destination pairs.
When queues fill, packets are literally dropped, shown
as small rolling squares falling to the bottom of the
display.

The only difficulty we encountered in implementing
packet animation is that some events are not present in
the trace file but must be generated on-the-fly. Our de-
sign philosophy was to make the trace file as explicit as
possible, but some trace events are animation specific
and so must be dynamically constructed. One example
is identifying when a dropped packet leaves the screen.
This event is not known by the simulator.

Users can control animation playback rate to focus
on interesting parts of the simulation. VCR-like but-
tons control forwards or backwards playback, while a
slider sets playback rate. Because some simulations
include dead time, periods of no packet activity can

Figure 4: Link animation in a visualization of
mbone loss rates. Figure 5: Visualization of applications with

optionally be skipped. Interesting events in the trace
can be annotated, allowing a user to jump to those
events.

The animation window is interactive. Clicking on
packets, links, and nodes brings up pertinent informa-
tion, including statistics (described next).

In addition to packet animation, we have experi-
mented with ways to visualize other information. Node
color and shape can be specified, for example, to indi-
cate membership in a multicast group. Protocol agents
represent state of a protocol instance at an end-node.
Agents can be displayed as small labeled rectangles at-
tached to nodes.

Figure 4 shows one example of non-packet-level an-
imation. This figure shows the topology of a portion
the Internet multicast backbone (mbone) as of 1998.
To determine if mbone loss was primarily in the core
network or the edges we measured loss rates for various
links. In the figure, different loss rates are shown with
color which changes over time.

We have also found nam useful for application-level
visualization. In Figure 5 we use nam to visualize cache
coherence algorithms in a hierarchical web cache. Node
types are shown with shapes (the clients and server are
hexagons while caches are circles), Cache status (valid
or out of date) is shown with node color. Algorithm
status (refreshing a cache, etc.) is shown with rings
around nodes.

4 Network Statistics

The animation component of nam only displays a sub-
set of the simulation details present in the trace output.
Additional information, such as packet headers or pro-
tocol state variables, are handled by other nam compo-
nents. The statistics component provides three ways
to display this additional information. First, clicking
on any of the displayed objects (e.g. packets and pro-
tocol agents) will bring out a one-shot panel showing
object-specific information. Second, continuous moni-
toring of all available object-specific information may
be achieved by associating a monitor with entities of
interest. Monitors remain associated with an object
until explicitly removed by the user or until its under-
lying object is destroyed. These monitors are displayed
in a pane in nam's main window, as illustrated in Fig-
ure 1. Third, nam uses panes (the black stripes in
Figure 1) in the main window to display bandwidth u-
tilization and packet losses on links. Clicking on a link
brings out a selection panel, which allows the user to
open a new pane to display bandwidth utilization or
packet loss on the link.

5 Protocol-specific Graphs

In addition to detailed examination of individual sim-
ulation entities, nam supports protocol-specific rep-
resentations of information with time-event graphs
(where time is plotted against events such as an ad-
vancing sequence number or message transmission).
These graphs have long been used to understand TCP
behavior, and more recently to understand timer inter-
action in scalable reliable multicast [5].

Currently nam supports protocol graphs for TCP
and SRM. We plan to make this facility more generic
through a pluggable API for supporting other proto-
cols. Figure 6 shows SRM (center right) and TCP
(bottom center and bottom right) time-event graphs.
When a graph is first brought up a nam filter scans
the trace file to extract the relevant information for a
specific flow or protocol.

The advantage of integrating these views with nam
is that graphs and packet animation are synchronized.
Moving a time slider or by clicking on an interesting
event in any view updates the time in all views. Each
trace event is displayed in the consistent way (i.e., col-
or, shape, etc.) across views to help the user coordinate
events.

7 Future Work and Conclusions

Nam development is on-going. A number of incremen-
tal improvements are desired or planned. For example,
we would like to improve scenario editing capabilities,
and add support for entering mobile node tracks [11].
We would also like to experiment with adding audio
capabilities to the simulator. Two major focuses of fu-
ture work remain. First, we would like to make nam
much easier to extend, providing better internal APIs
to allow users to add custom controls to the output and
to control object rendering. An example application
would allow users to interactively control node colors
to indicate application-specific groups or characteris-
tics. Second, we are just beginning to understand how
to visualize large scale protocol actions. More work in
this area is needed.

Network protocol visualization is easy to dismiss s-
ince its contributions to protocol development are indi-
rect. Broader use of nam suggests that visualization is
more than just a tool for fancy demos, but that it can
substantially ease protocol debugging and help under-
stand dynamic behavior. Because of these reasons, a
growing number of researchers have used nam in their
work and papers [12, 8].

6 Scenario Creation and
Editing

We use nam in two very complementary ways to assist
in scenario creation. First, we have recently extended
nam to include a scenario input facility. Using a tradi-
tional drawing approach the user can add nodes, links,
protocol agents. Nam then saves this scenario as an ns
simulation script (in Tel) which will be processed by
the simulator.

Second, the ns scenario generator uses nam to visu-
alize large scenario topologies. The scenario generator
constructs these scenarios using tools such as Georgia
Tech's ITM [4]. Nam with autolayout then presents the
topology to the user for acceptance or regeneration.

Graphical scenario creation with nam is very appro-
priate for small scenarios with a few nodes and links.
We have been happy with the design choice of using
nam to produce scripts for these cases while starting
with scripts directly for larger, more complex, or auto-
mated simulations. For the ns target audience of proto-
col designers, the effort required to learn Tel syntax is
small and this is more than offset in these scenarios by
the finer control afforded and the ability to use looping
constructs in place of repeated manual point-and-click
operations.

Acknowledgments

Steve McCanne wrote the original version of nam
in 1990 at Lawrence Berkeley National Laboratory.
Marylou Orayani made substantial contributions to
nam as part of her work at Berkeley in 1995 and 1996.
Since 1997 nam has been maintained and enhanced by
the VINT research project at USC/ISI, LBL, and Xe-
rox PARC. Nam has also benefited from an enthusiastic
VINT and ns user community. We would like to thank
especially Elan Amir, Lee Breslau, Kevin Fall, Sally
Floyd, Ahmed Helmy, Polly Huang, Scott Shenker, and
Christos Papadopoulos. for their input to nam and this
paper.

References

[1] BAGRODIA, R., MEYER, R., TAKAI, M., CHEN,

Y., ZENG, X., MARTIN, J., AND SONG, H. Y.
PARSEC: A parallel simulation environment for
complex systems. IEEE Computer 31, 10 (Oct.
1998), 77-85.

[2] BAJAJ, S., BRESLAU, L., ESTRIN, D., FALL,

K., FLOYD, S., HALDAR, P., HANDLEY, M.,

I £ile \ VMTN« ; Help

Figure 6: Nam provides protocol-specific graphs which aide in specific investigations. A TCP time/sequence-
number graph is shown in the bottom center and bottom right windows. The center right window shows a plot of
SRM events against time.

HELMY, A., HEIDEMANN, J., HUANG, P., KU-

MAR, S., MCCANNE, S., REJAIE, R., SHARMA,

P., VARADHAN, K., XU, Y., YU, H., AND ZAP-

PALA, D. Improving simulation for network re-
search. IEEE Computer (2000). to appear, a pre-
liminary draft is currently available as USC tech-
nical report 99-702.

[3] BRAKMO, L. S., O'MALLEY, S. W., AND PE-

TERSON, L. L. TCP Vegas: New techniques for
congestion detection and avoidance. In Proceed-
ings of the ACM SIGCOMM '93 (San Francisco,
CA, Sept. 1993), ACM.

[4] CALVERT, K., DOAR, M., AND ZEGURA, E. W.
Modeling Internet topology. IEEE Communica-

tions Magazine 35, 6 (June 1997), 160-163.

[5] FLOYD, S., JACOBSON, V., Liu, C.-G., MC-

CANNE, S., AND ZHANG, L. A reliable multicast
framework for light-weight sessions and applica-
tion level framing. ACM/IEEE Transactions on
Networking 5, 6 (Dec. 1997).

[6] FRUCHTERMAN, T., AND REINGOLD, E. Graph
drawing by force-directed placement. Software -
Practice and Experience 21, 11 (Nov. 1991), 1129-
1164.

[7] HUANG, X. W., SHARMA, R., AND KESHAV, S.
The Simphony protocol development environmen-
t. submitted for publication to Infocom '99, July

1998.

[8] KERMODE, R. Scoped hybrid automatic repeat
request with forward error correction (SHAR-
QFEC). In Proceedings of the ACM SIGCOMM

(1998), pp. 278-289.

[9] ROBERTSON, G. G., CARD, S. K., AND

MACKINLAY, J. D. Information visualization us-
ing 3D interactive animation. Communications of
the ACM 36, 4 (Apr. 1993), 56-71.

[10] SHEPARD, T. J. TCP packet trace analysis. Tech.
Rep. 494, Massachusetts Institute of Technology,

Feb. 1991.

[11] THE CMU MONARCH PROJECT. The CMU
Monarch Project's ad-hockey visualization Tool
for ns scenario and trace files. Carnegie-Mellon
University, Aug. 1998.

[12] VARADHAN, K., ESTRIN, S., AND FLOYD, S. Im-
pact of network dynamics on end-to-end protocol-
s: Case studies in reliable multicast. In Proceed-

ings of the International Symposium on Comput-
ers and Communications (Aug. 1998). http://
www.isi.edu/~kannan/papers/iscc98.ps.gz.

[13] VlSWESWARAlAH, V., AND HEIDEMANN, J. Im-
proving restart of idle TCP connections. Tech.
Rep. 97-661, University of Southern California,
Nov. 1997.

Asymptotic Behavior of Global Recovery in SRM

Suchitra Raman, Steven McCanne
University of California, Berkeley
{suchi,mccanne}@cs.berkeley.edu

and
Scott Shenker

Xerox Palo Alto Research Center
shenker@parc.xerox.com

Abstract

The development and deployment of a large-scale, wide-area
multicast infrastructure in the Internet has enabled a new-
family of multi-party, collaborative applications. Several of
these applications, such as multimedia slide shows, shared
whiteboards, and large-scale multi-player games, require re-
liable multicast transport, yet the underlying multicast in-
frastructure provides only a best-effort delivery service. A
difficult challenge in the design of efficient protocols that
provide reliable service on top of the best-effort multicast
service is to maintain acceptable performance as the protocol
scales to very large session sizes distributed across the wide
area. The Scalable, Reliable Multicast (SRM) protocol [6]
is a receiver-driven scheme based on negative acknowledg-
ments (NACKs) reliable multicast protocol that uses ran-
domized timers to limit the amount of protocol overhead in
the face of large multicast groups, but the behavior of SRM
at extremely large scales is not well-understood.

In this paper, we use analysis and simulation to investi-
gate the scaling behavior of global loss recovery in SRM. We
study the protocol's control-traffic overhead as a function of
group size for various topologies and protocol parameters,
on a set of simple, representative topologies — the cone (a
variant of a clique), the linear chain, and the binary tree.
We find that this overhead, as a function of group size, de-
pends strongly on the topology: for the cone, it is always
linear; for the chain, it is between constant and logarithmic;
and for the tree, it is between constant and linear.

1 Introduction

The advent and deployment of IP Multicast [5] has enabled
a number of new applications [17, 10, 9, 7, 22] that utilize
large-scale multipoint communication over wide-area inter-
networks. IP Multicast extends the traditional, best-effort
unicast delivery model of the Internet architecture to enable
efficient multipoint packet delivery. In this model, the net-
work delivers a packet from a source to an arbitrary number
of receivers by forwarding a copy of that packet along each
link of a distribution tree rooted at the source subnet (or, de-

Proc. ACM SIGMETRICS '98/PERFORMANCE '98
Joint International Conference on Measurement &; Mod-
eling of Computer Systems, Madison, WI, USA, June
1998.

pending on the routing protocol, at a rendezvous point [4] or
core router [1]). As with unicast, IP multicast is not reliable
— packets might be dropped at any point along the distri-
bution tree. However, many new multicast applications like
shared whiteboards, webcast tools, and distributed simula-
tion are not tolerant of packet losses. Whiteboard state, for
example, is persistent; if a piece of a drawing update is lost,
the application cannot leave the drawing in an incomplete
state. Instead, that application must recover the missing
packet to repair the damaged portion of the drawing. In
short, this particular application, and in fact a large class of
emerging applications, require a reliable multicast transport
protocol. Although mechanisms for reliable unicast trans-
mission are comparatively well-understood and have proven
extremely successful (e.g., TCP), making multicast reliable
at large scales remains a formidable challenge.

A fundamental problem in the design of a reliable mul-
ticast protocol is the well-known message implosion [6, 19]
problem. Reliable transport protocols rely on some form
of feedback between or among communicating end-points to
confirm the successful delivery of data. While some proto-
cols rely on positive acknowledgments or ACKs (signalling
the successful receipt of data), others rely on negative ac-
knowledgments or NACKs (signalling the failure to receive
expected or desired data). Positive acknowledgment-based
schemes are successful for reliable unicast transport but scale
poorly in the multicast case when there are many receivers.
In this case, each delivered packet causes a flood of positive
acknowledgments sent from the receivers back to the source,
overwhelming either the source or the intervening routers, if
not both.

A number of solutions to the ACK implosion problem
have been proposed. Log-based reliable multicast [8] uses
logging servers to constrain recovery traffic to localized groups
of receivers. TMTP [24] and Lorax [12] construct a hierarchy
in the form of a tree, in which multiple identical ACKs are
fused together before they are propagated up the tree toward
the root. RMTP [13] uses a similar approach based on trees
that are (statically or dynamically) configured into the net-
work rather than constructed by the application. XTP [2]
takes a markedly different approach, however, and instead
multicasts control traffic to all end-points. To limit the pro-
liferation of this control traffic, XTP employs a "slotting and
damping" algorithm: a receiver waits for a random amount
of time before generating control traffic and cancels that
message if some other hosts multicasts the same informa-
tion first. The algorithms in SRM [6] elaborate this simple
yet powerful primitive with adaptive timers that improve
performance across wide-area, heterogeneous networks.

While TMTP, Lorax, and RMTP limit recovery traffic
using unicast transmission over an artifically constructed hi-
erarchy, XTP and SRM limit recovery traffic using multicast
transmission and explicit suppression. Although this latter
approach is potentially more robust because it does not re-
quire an elaborate protocol for tree construction, mainte-
nance, and reconfiguration, it also entails potentially more
overhead because recovery traffic is multicast to the entire
group and not just to those members impacted by the packet
loss. To address this problem, [6] proposes that their SRM
reliable multicast framework be cast as two complementary
pieces: a global recovery component that ensures the delivery
of all desired data across the entire multicast session, and a
local recovery component that constrains the reach of recov-
ery traffic to the multicast neighborhoods where packet loss
occurs. Although [6] focuses primarily on global recovery,
the SRM authors argue that local recovery is an important
and necessary optimization to scale their protocol to large,
heterogeneous sessions. Since then, several promising ap-
proaches to local recovery have been proposed [11, 14] and
the problem remains a focal point of ongoing research.

Even though a viable local recovery strategy is criticial
to SRM's scalability, in certain configurations (e.g., where
packet loss occurs near the root of the distribution tree), the
degree to which local recovery enhances performance may be
limited and the protocol's overall performance may strongly
depend on that of the global recovery scheme. Hence, we
claim that a thorough understanding of global recovery in
SRM is not only important in and of itself, but will also
be useful in predicting the performance of SRM even when
coupled with local recovery.

In this paper, we use analysis and simulation to inves-
tigate the scaling behavior of global loss recovery in SRM.
We study the growth control traffic (measured by NACK
counts) as a function of group size for various topologies
and protocol parameters, on a set of simple, representative
topologies — the cone, the linear chain, and the binary tree.
We find that the number of NACKs, as a function of group
size, for the cone is always linear, for the linear chain is be-
tween constant and logarithmic, and for the tree is between
constant and linear.

The rest of this paper is organized as follows. We start
with a brief overview of the SRM protocol in Section 2. Sec-
tion 3 summarizes related work- In Section 4, we describe
our simulation methodology. We discuss the effects of vary-
ing the protocol parameters for the various topologies in
Sections 5, 6, and 7, and conclude in section 8.

2 Overview of SRM

SRM is a NACK-based, fully-decentralized reliable multi-
cast protocol originally described by Floyd, et al., in [6]. The
SRM framework builds on Clark and Tennenhouses's princi-
ple of Application Level Framing (ALF) [3], which provides
an elegant solution to the problem of reliable-multicast API
design because its flexibility offers applications the oppor-
tunity to actively participate in the loss-recovery procedure.

To avoid ACK-implosion, SRM uses NACKs. Receivers
detect losses from discontinuities in sequence numbers (or by
other means with a generic data naming scheme [20]) and
transmit NACKs as a request for retransmission of the lost
data1. A randomized algorithm determines when a receiver

transmits a NACK. These NACKs are multicast to the entire
group so that any receiver, in particular the closest receiver
with the requested data, may generate a repair in response
to a NACK. The repair messages are also multicast to the
entire group, so that all receivers that missed that packet can
be repaired by a single response. The repair message traffic
likewise makes use of the randomized timer algorithm.

To avoid NACK implosion, receivers that observe a NACK
for data that they too have not received do not send their
own NACK2 and await the repair data. The goal of the ran-
domized NACK transmission algorithm is to minimize the
number of duplicate NACK messages sent. To accomplish
this, each receiver delays the transmission of a NACK by an
amount of time given by the expression

backoff = D • (Ci + C2r)

where backoff is the amount of delay, D is an estimate of
the one-way delay from the receiver to the source that gen-
erated the lost data packet, C\, C2 are non-negative protocol
constants, and r is a uniformly distributed random number
in [0,1]. This random delay provides receivers with the op-
portunity to suppress the transmission of similar pending
NACKs; that is, delaying the transmission of NACKs by a
random amount increases the likelihood that a NACK from
one receiver is delivered to another receiver before that re-
ceiver sends its own NACK, and thus, reduces the total num-
ber of NACKs. Figure 1 illustrates the suppression mecha-
nism in SRM.

As in [6], we call C\D the deterministic delay and C2Dr
the random delay. The deterministic-delay component in-
duces suppression effects across receivers situated at vary-
ing distances from the point of loss (e.g., a chain topology),
while the random-delay component induces suppression ef-
fects across receivers situated at equal distances from the
point of loss (e.g., a star topology). We say that a receiver's
timer fires if no suppressing NACK has been received when
its backoff period has expired.

Since NACKs are multicast to the group, any receiver
that has the data can respond, not just the original source.
However, we again have the potential for a control-traffic
storm if all hosts respond simultaneously. Thus, to avoid
repair-packet storms, SRM reuses its NACK suppression
machinery to limit the'number of redundant repair pack-
ets. Because both NACKs and repairs are sent to the entire
multicast group, we call this the SRM global recovery mech-
anism.

A number of performance metrics have been used to
characterize recovery schemes for reliable multicast, but two
widely used metrics are:3 (1) the degree of duplicate control
traffic, and (2) the recovery latency. The first metric can
be summarized as the average number of NACKs sent for
each dropped packet, which clearly depends on the size of
the group experiencing the loss. We denote this number by
N(G), where G is the number of members experiencing the
loss. The larger this metric, the less effective the random-
ized timer algorithm is at suppressing duplicate NACKs and

:To be true to the original intentions of the SRM designers, we
must admit that our use of the term "NACK" is somewhat inaccurate
since it implies that the underlying protocol generates NACKs to
guarantee that all data is eventually received by all receivers. In fact,

SRM is receiver-reliable and does not require that all receivers obtain
all data. Instead, receivers issue "repair requests" to repair only those
data wanted. For this paper, we use the terms "NACK" and "repair
request" interchangeably.

2 More precisely, they scale their transmission timer awaiting a
response. All receivers, if they have not received the repair data, will
eventually transmit a NACK.

3The metrics we describe here ignore topological heterogeneity,
where not all receivers are identical. More detailed performance met-
rics would measure the latencies on a per receiver basis.

Data loss

|) Source

mm Suppressed "5
/ NACK rp=a

u-"~"--vjt£J
Suppressed
NACK

Suppressed
NACK

Figure 1: Suppression in SRM

avoiding NACK implosion. N(G) is a non-decreasing func-
tion of G, so the suppression performance for large group
sizes is a critical factor in SRM's performance.

We define the second metric, the loss-recovery latency,
as the time delay between the instant a packet drop is de-
tected to the time at which the first NACK is sent (from
the perspective of a particular session member). Recovery
latencies for these randomized algorithms typically decrease
as group sizes increase, so the sensitivity of latency on group
size is not of primary importance in the scaling behavior of
SRM.

In this paper, we focus on the performance of SRM with
large group sizes; that is, roughly speaking, the asymptotic
scaling limit. Thus, we focus on the number of duplicate
messages and do not address latency performance. Since
the timer mechanisms for NACKs and repair messages are
similar, we restrict our attention to NACKs. Therefore, our
paper addresses the following question: how does the num-
ber of duplicate NACK messages increase as the group size
grows? In short, what is the scaling behavior of N(G) in
SRM?

The scaling behavior of SRM depends both on the topol-
ogy of the underlying network as well as the details of the
timer algorithm. To explore the relationship between topol-
ogy and scaling behavior, we experimented with three simple
network topologies: the cone (a variant of a clique), line, and
tree, shown in Figures 2 and 3 While these topologies are
instructive because they explore the behavior of SRM under
extreme toplogies, they are by no means exhaustive.

The scaling behavior also depends on several aspects of
the timer algorithms. We focus on two such factors. First,
we look at the dependence of the scaling behavior on the
constants Ci and CT.. There are several applications, such
as large-scale multi-player games that are highly interactive,
for which low-latency loss recovery is important, and the
choices of C\ and Ci critically impact this. In general, the
expected latency to transmit the first NACK upon detecting
a loss is bounded above by (C\ + Cilf)D, where / is a
function of the network topology and is always at least 2.
Thus, there is a trade-off between recovery latency and the

choices of C\ and Ci. In particular, smaller values of these
constants lead to better latency, but also to increased N(G).
The need for low latency by many applications motivates our
work on investigating the (Ci,Ci) parameter space, and in
particular, our consideration of 0 < C\ < 1 (little or no
deterministic suppression).

We also briefly consider the case where C\ and C2 are
a function of the location in the topology; this aspect of
our work was inspired by the results on adaptive timers in
[15]. There, the timer constants were set in response to
the number of duplicates observed and the latency of the
responses, and this naturally led to the parameters being
different for different members — e.g., members located at
different depths in a tree would have different settings. We
do not directly address the dynamic nature of these timer
adjustments, but merely study how location dependence in
C\ and Ci changes performance.

We then investigate how the scaling behavior depends
on the accuracy of the delay D. In SRM, the ith group
member estimates Dy, j = 1, 2,... n, j / i, the delay from
itself to each of the other members of the group. Delay esti-
mates are calculated from round-trip time (RTT) informa-
tion which is derived from timestamps in session messages of
the SRM protocol. Since the protocol's control bandwidth
is limited to a constant fraction of the total available ses-
sion bandwidth, the estimated RTT does not readily track
changes in actual delay for large session sizes4. We study
how RTT estimation might affect asymptotic scaling behav-
ior in the different topologies by comparing performance in
two extreme cases: one with exact RTT estimations and one
where all members have the same hardwired RTT estimate.

3 Related Work

In this section, we summarize some important prior work
related to the analysis of SRM. The seminal work of Floyd
et al. [6] simulated group sizes of up to a few hundred nodes
ranging across a set of simple topologies. They showed that
it was often possible to choose values of C\ and C2 that
resulted in N(G) scaling as a constant independent of G. In
particular, picking C\ = C2 = 2 achieved this for the chain
topology, and picking Ci = VG resulted in constant scaling
for the star topology (a special case of the cone topology
in our work). Using simulations they demonstrated that
N(G) < 4 for random trees with bounded degree for session
sizes of up to 100. They also proposed an adaptive algorithm
to dynamically adjust Ci and Ci based on past information
for better performance.

Our work extends their important findings in two ways.
First, we investigate performance for session sizes of up to
two orders of magnitude larger than in [6], thus improving
our collective understanding of SRM's asymptotic behavior.
Reassuringly, our results agree with [6] where the experi-
ments overlap. More generally, we have assessed in detail
the behavior of N{G) as a function of C\ and Ci. Not only
do these results help us predict the performance of SRM, but
they could influence the design of related sub-components of
SRM, e.g., the choice of bounding values of C\ and Ci in
the proposed adaptive algorithm. A more recent paper [15]
studied scaling behavior for group sizes up to 200 members,
with C\ = 0 and C2 set adaptively.

In addition, Nonnenmacher and Biersack [18] looked at
the effect of timer distribution on scaling behavior and showed

4Even in the case of a single TCP connection, where RTT estimates
are gathered on every ACK, the sender's RTT-estimator is known to
often be inaccurate [21].

that exponentially distributed timers yield better scaling
properties. They found that having this distribution de-
pend on the group size could result in improved scaling. We
do not address the effects of different timer distributions at
any great length in this paper.

This paper is primarily concerned with global recovery
in SRM with constant C\ and Ci- Variants of SRM have
been proposed that use local recovery, in which NACKs and
repairs are not sent to the entire group. [6], [14] look at two
methods to limit the range of these methods: hop-scoping,
and local recovery groups. [15] considers methods for adap-
tively setting the values for C\ and Ct- We do not consider
any of the local recovery methods, nor adaptive timer set-
ting. Thus, our work should not be seen as a statement
about how SRM-like protocols should function in the fu-
ture, when they may well incorporate such features, but
rather as an attempt to study the current deployed version
of SRM with its use of global recovery. Our hope is that
understanding this basic version of the protocol may inform
future design efforts to improve it.

4 Simulation Methodology

In our simulations, we studied three classes of network topolo-
gies: cone, linear chain, and binary tree, each with a single
source. The cone is a topology where each member has
the same delay 8 to every other member, and a distance
A from the source. Similarly, for the linear chain and the
binary tree, ö represents the link delay between adjacent
members, and A is the link delay from the source to the
closest member(s). Figures 2 and 3 show A and ö for the
three topologies.

We are only modelling the behavior of NACKs, so we
need only consider the receivers that suffer losses. Thus, we
only consider the case where the loss occurs on the link ad-
jacent to the source 5. This causes little loss of generality,
since if the loss occurs elsewhere we need only model the
topology beneath the loss point. Note, however, that then
the size of the group we are considering, G, is the size of the
loss group - the number of members experiencing a particu-
lar packet loss - and not always the size of the entire group.
Session messages in SRM give members knowledge about
the size of the entire group, but not about the size of the
loss group. If members knew the size of the loss group they
might also be able to employ various forms of local recovery
(hop-scoped recovery, or local recovery groups) that would
more directly address the NACK traffic problem (not just
limiting the number of NACKs, but also the portion of the
group they are sent to). Thus, we do not consider varying
the timer constants with group size, as in [18], as this does
not seem like a realistic possibility.

Furthermore, we assume that losses are detected imme-
diately when the next packet arrives. Since a packet is deliv-
ered to different receivers at different absolute times, losses
are detected at different times. This typically allows the
receivers closer to the source to suppress the NACKs from
receivers further away. One of the key points in our investi-
gation is how the setting of the timer constants affects this
behavior.

We used the VINT network simulator ns [16] for our
work. In its original form, ns turned out to have prolific
memory usage with heavy-weight nodes, links, and multicast
routing infrastructure, and could not support more than a
few hundred nodes on an ordinary workstation. However,

o
source *

-o- o
2

-o
G

Figure 2: Linear Chain Topology: the X-ed packet marks
the location of packet loss.

we took advantage of ns's extensible object-oriented archi-
tecture and made several modifications and extensions to
it. Using the basic ns framework for event handling, we
extended the simulator to support regular topologies with
static routing without explicit routing table state. These
modifications and extensions to ns enabled large-scale sim-
ulations of up to 50,000 nodes.

Losses occur on the link closest to the source, and are
thus shared by all receivers in the group. We measure the
average number of NACKs generated in response to a loss.
The variation between different measurements is induced by
the randomness in the recovery algorithm we are studying.
We ran between 30 and 50 simulations of each case to com-
pute the average value of the metrics, depending on the vari-
ance of the measured samples. Table 1 summarizes notation
used in the rest of this paper.

Figure 3: Binary tree and cone topologies: the X-ed packet
marks the location of packet loss.

Symbol Description

A Delay from source to the closest receiver
S Delay of link connecting receivers
R A/<S
G Group size
N Average number of copies of a single NACK
L Average NACK latency caused by backoff
Di Estimate of one-way delay from node i

to the source node
backoff*,
at host i

Di x (Ci + C2 x n)
where, r< are uniformly distributed
random variables in [0,1]

U Absolute time at which receiver i's timer fires

'Measurements reported in [23] show that most correlated losses
occur close to the source.

Table 1: Summary of notation

In the following sections, we present our analytical and

Simulation results for the three topologies: cone, line and
binary tree.

5 Scaling in the Cone Topology

The cone topology can be used to model the case of a broad-
cast LAN. If the source is on the LAN then A = 5 but
when the source is off the LAN, the delay from the LAN to
the source is much greater than the LAN propagation time,
yielding A >> 5. In general, the cone can be used to model
a topology where all receivers have similar round-trip time
estimates to the source. In practice, RTT estimators tend
to be coarse-grained resulting in clusters of receivers with
similar RTT values.

We use the following probabilistic analysis to compute
the expectation of N(G). Because all the receivers are at the
same distance from the loss in a cone, the deterministic back-
off component has no impact on the number of duplicates
(all timers have the same constant offset). The average de-
lay in transmitting the first NACK depends on the expected
value of the minimum timer and is given by A(Ci + ^j)-
This result follows directly from noting that the expectation
of the minimum of G uniformly distributed random variables
in [0,1] is pjpj-. The number of duplicates is equal to the
expected number of timers that fire within [tmin,tmin + 8],
where tmi„ is the value of the smallest timer. Since back-
offs are uniformly distributed in [Ci A, (Ci -I- C2)A], we can
easily compute this expectation. Defining a = -^-^ we have,

E[N] u+
Ga a < 1

Q> 1

Thus, the number of duplicates is roughly linear in the group
size. [6] reports a similar result for the star topology, which
is a cone with A = S. Observe that this linear dependence
applies regardless of whether the delay estimates are accu-
rate or not. If the estimated value of the delay (assuming
all members achieve the same estimate) is larger than the
true estimate, then the number of duplicates is smaller, but
the dependence on G is still linear. Our simulations, shown
in Figure 4, confirm this result.

80 ;
C2 = 1
C2 = 5 ——

C2 = 100 —•—

50 ■

40 •

30 ■

20 •

10

1500 2000
Qroup SJza, Q

Figure 4: In the cone topology, N(G) grows linearly in G,
where a = ^ and Ci > 0, C2 > 0.

N{G) grows roughly linearly for any fixed timer distri-
bution. However, as shown by Nonnenmacher and Biersack
[18], if one makes the distribution dependent on the size of

the loss group then one can change this linear scaling. For
instance, if one takes a bimodal distribution such that with
a probability p = % a receiver sends a NACK immediately
upon detecting a loss, and with probability 1 - p sends a
NACK after a delay 8, then as G diverges N{G) is given by
o(l—e~a)+Ge~a. By tuning a one can lower the slope of the
linear dependence, and if one sets a = In G the growth is log-
arithmic, not linear. One can remove the linear term entirely
by considering the scheme where each receiver picks a num-
ber k from an exponential distribution with average £ and
sets the backoff to k5. This is essentially a discrete version
of the exponential distribution considered by Nonnenmacher
and Biersack [18]. Here, the average number of NACKs is
E(N) — a and the average latency is E(L) = l^'s_a. One
can show that this achieves the lowest latency for a given
number of NACKs (or equivalently, the smallest number of
NACKs for a given latency) in the asymptotic limit. How-
ever, as we argued earlier, schemes that have the timer dis-
tribution depending on G are perhaps of little interest since
the parameter G must be the size of the loss group, and once
one has this information it might be better used in some lo-
cal recovery approach rather than using it merely to tune
the timer parameters.

6 Linear Chain

For the linear chain topology, we first consider the case
where RTT estimation is exact. When Ci > 0 and Ci > 0,
the data in Figure 5 suggests that N(G) is constant in G.

Urn: Estimated RTT, C1 = 1.0, C2 = 1.0

1000 1500 2000
Qroup Siza, Q

Figure 5: N(G) is a constant for A/<5 = 1,10,100,1000, with
exact RTT estimation and Ci = C2 = 1. Similar results
hold for other Ci and C2 as long as C\ > 0.

We now show that in this parameter range there is a
bound k on the maximal number of NACKs sent. Receiver
i picks Ci(A+(i-l)<5) < backoff{ < (Ci+C2)(A+(i-l)<5).
Consider some message sent at time t = 0, and assume that
losses are detected immediately. Receiver i detects the loss
at time (A+(i—1)6) and sends its NACK (if not suppressed)
no later than a time (A + (i - 1)5) + (Ci + C2XA + (i -
1)J) and no sooner than (A + (i - 1)6) + Ci (A + (i - 1)<5).
Therefore, receiver i and receiver j cannot both send NACKs
if, assuming j > i,

(Ci+C2)(A+(i-l)S)+(j-i)8 < (j-i)5+5+Ci(A+(j-l)5)

This follows by recalling that it takes time (j — i)S for i's
NACK to propagate from i to j. Thus, the first member

on the line suppresses all but the next k members, where
k is given by k = L^rJ- Thus, N{G) is bounded above
by k + 1. The simulations suggest that the average number
N(G) is much less than this upper bound, and in particular,
is independent of R.

For C\ > 0, the value of N(G) appears, as shown in
Figure 6, to be roughly independent of Ci. The dependence
on C\ is also shown in Figure 7, where, for a fixed G, N
decreases with increasing C\ as expected.

'Ej:u

LIT» Estimated OTT, 0 a 10,000

NV\

C1 > 0.001
C1 » 0.1
CI a 1.0

CI * 10.0

V^-*.

Figure 6: ./V as a function of C\ and C^-

Un«: EsttmatMl RTT, Q » 10,000

1*05 0.0001 0.001 0.01 0.1 1 10 100

Figure 7: N as a function of C\.

When Ci = 0, there is no deterministic delay and the
preceding argument fails. In fact, it appears that N(G)
diverges slowly with the group size G, as shown in Figure 8.
We can argue that N(G) does not grow faster than a certain
expression derived below (but are not able to provide a lower
bound). The probability that node i is not suppressed is
bounded above by the probability that it is not suppressed
by the members ahead of it in line. This occurs if and only
if (ignoring ties) the backoff timer U = min{ti,...ti-i}.
Considering the case A = S for convenience. Using the
notation z+ — max[0, z], we have

Approximating I~H=i (1 — |) as e a ^->i=> 7 and then not-

m6 .no, o j=1 ' ss e~yln' and substituting into the in-
tegral, we see that this expression diverges as In In G.

We now consider the case where there is no RTT esti-
mation, and all receivers use the same hardwired delay esti-
mate D. Note that since deterministic delay is useless when
round-trip times are not used (all members have the same
deterministic delay), C2 = 0 results in no suppression at all,
and N{G) = G. This is true independent of topology; if
there is no RTT estimation, then one needs C2 > 0 or else
N(G) = G, and N(G) is independent of Ci.

Figure 9 shows N(G) for the case Ci = 0 and C2 = 1 and
fixed RTT. The growth, for all values of R = y appears to
be logarithmic. Similar logarithmic-like behavior is observed
in simulations with different values for C2 and D.

The following probabilistic analysis suggests why, for
Ci = 0 and C2 = 1, N(G) grows as a logarithmic func-
tion of the group size. The backoffs are picked in the range
[0, D). We first compute the probability that the NACK at
node i is not suppressed. The following condition must hold,
for i's timer to fire:

dj+rj5 + dji > di+ri5,Vj£i

where dj is the one-way delay to receiver j from the source
and dij is the one-way delay from receiver i to receiver j.
n, TJ are uniformly distributed random numbers picked in
[0,1] by the random timer mechanism. We then must have:

n < rj, Vj <t (1)
rj5 + 2dij > ri5,'ij>i,and (2)

(3)

(4)

da > S.Vdi:

n6 < 25 + rj5, Vj >i

Line: Estimated RTT, C1 = 0, C2 = 1

500 1000 1500 2000
Group Size, G

2500 3000

Pr[U = min{ti,... U-i}\U = x] = JJ Pr[tj > x] Figure 8: N(G) diverges as A/S = 1,10,100,1000, with RTT
estimation, Ci = 0, Ci = 1.

j=i-i

= [J (l-x/jS)+

and so, changing variables,

N(G) < £/ n (1-^

From equation 4 above, we can conclude that a NACK
at node i cannot be suppressed by a NACK at a later node.
The condition for suppression at node i is therefore rt <
min{n,r2,r3, ■ ■ ■ ,n-i). Thus, P[i fires] = \ and so E[N] =

S<=f p[* fires] Ä In G +0.577. Similar logarithmic growth
is seen empirically for larger C2- The behavior of N(G) for
the line case is summarized in Table 6.

Line: Fixed RTT, C1 = 0, C2 = 1

a
z

o < z

0 500 1000 1500 2000 2500 3000 3500 4000
Group Size, G

Figure 9: N(G) grows as a logarithmic function of G for
A/5 = 1,10,100,1000, fixed delay (no RTT estimation),
d = 0, C2 > 0. N(G) = lnG + 0.577, when Cx = 0,C*2 = 1.

Line: Estimated RTT, C1 = 0

1000 1500 2000
Group Size, G

3000

Figure 10: N(G) converges to a constant when C2 = y/~D
for the linear chain.

With C\ = 0, N(G) grows as lnlnG for the linear chain
topology. In order to reduce this growth in N(G) to a con-
stant, while still retaining C\ = 0 for the sake of low latency,
we can make C2 a function of the delay from the source. This
follows the work Liu et al. who propose, in [15], using a new
adaptive timer algorithm. Analysis similar to the previous
case (equation (4)) shows that the number of duplicates is
bounded by a constant when we use C2 = D' for any e > 0.
This is because

G -ij=.-l
dy_

The graph in Figure 10 shows that N(G) converges to a
constant for e = 0.5. We should note that because we do
not have a lower bound for the case of C2 fixed (e = 0). Our
simulation results show that N(G) diverges for e = 0, but
our analytical proof is only for e > 0.

7 Binary Tree

In the binary tree topology (Figure 3), N(G) grows linearly
with G when RTT is not estimated, as shown in Figures 11
and 12. The slope of this linear growth depends on C2 and
D (the fixed RTT). This linear behavior is in contrast with
the logarithmic behavior observed in the line topology, but
similar to the behavior in the cone topology. When RTT is
known exactly, we still have linear behavior for C\ = 0, as
shown in Figure 12. The slope of this linear growth depends
on both j and C2-

Tree: Fixed RTT = D, C1 = 0, C2 = 1

200 400 600 800 1000 1200 1400 1600 1800
Group Size, G

Figure 11: With G\ = 0, C2 > 0 and without RTT esti-
mation, N(G) scales linearly with G for different values of
R = A/6.

Tree: Estimated RTT, C1 = 0, C2 =

(3
z

0 200 400 600 800 1000 1200 1400 1600 1800
Group Size, G

Figure 12: With C\ = 0, C2 > 0 and with accurate RTT
estimation, N(G) scales linearly with G for different values
of R = A/8.

However, as soon as we have C\ > 0, D(G) appears to
asymptotically reach a constant. Figure 13 shows the func-
tion N(G) for different values of 0 < Ci < 1. The growth
law for intermediate G is linear, and then the slope decreases
as G increases. For all cases where we have been able to
reach sufficiently large G, the slope continues to decrease
until N(G) goes to a constant.

When Ci > 0, we see that the asymptotic scaling behav-
ior depends on whether deterministic suppression or ran-
domized suppression is dominant in reducing the number of

A/6 RTT Ci c2 N(G) Figure

1,10,100,1000 Fixed Ci >0 c2 >o Logarithmic
(In G + 7, when C\ = 0, C72 = 1)

9

1,10,100,1000 Fixed Ci >0 G2 = O Linear (JV(G) = G)
1,10,100,1000 Estimated Ci >0 G2 >0 Constant (< 4) 5
1,10,100,1000 Estimated Ci =0 c2 >o Diverges 12

Table 2: Scaling behavior in the linear chain topology

NACKs. In cases where deterministic suppression is dom-
inant, the asymptotic scaling is constant. Scaling is lin-
ear when suppression depends on the randomized suppres-
sion. In Figure 16, these two important effects are evident:
as A/6 increases, deterministic suppression becomes weaker
and randomized suppression is more effective. For large val-
ues of A/6 > 100, backoff timer ranges are large enough and
the average separation between timers grows.

We now try to illustrate this behavior in a different form.
The function £ plotted against G is shown in Figure 14.
This ratio appears to be a linear functions of G, with the
slope depending on C\. If we label the slope of this line by
m and the intercept by /, we have, for small Gi and large
G, the following form for N:

n
N =

Binary Tree: 0 < C1 < 1, C2 = 1
-T T—

mG + f

The fit parameters m and / are functions of C\ and C2.
This linear fit applies over a wide range of C\, G2 values.
This functional form for N(G) is consistent with our obser-
vation of a linear increase for small values of G, followed by
this slope decreasing and the curve flattening to a constant.
In particular, note that limG-n» N —> ^, a constant for a
given value of C\ and G2. Thus, the slope of this functional
fit in Figure 14 yields the asymptotic value for N(G). Fig-
ure 15 shows this dependence on a log scale. ^ decreases
with increasing C\ as expected.

120
Tree: Estimated RTT, C1 < 1.0, C2 = 1.0

2000 3000 4000
Group Size, G

6000

Figure 13: N(G) in the binary tree for R = A/6 = 1, accu-
rately estimated RTT and 0 < Gi < 1, G2 = 1.

If we hold G fixed and vary R (the ratio of A to 6) we
find that the dependence is not monptonic. Figure 17 shows
this unimodal behavior. This behavior may be explained
by the following reasoning. There are two kinds of sup-
pression, deterministic and random, so-called depending on
whether the possible firing times overlap or not. Determin-
istic suppression decreases with R, but random suppression

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
G/N(G)

Figure 14: G/N vs. G in the binary tree for R = A/6 = 1,
RTT estimated, 0 < C\ < 1, G2 = 1.

Asymptotic valuta, 1/m

Figure 15: ^ = limG-»oo D(G,C\) as C\ is varied. G2 = 1

increases with R. Thus, as R is increased we first see an
increase as the deterministic suppression becomes less effec-
tive, and then see a decrease as random suppression becomes
dominant and deterministic suppression is no longer much
of a factor (and so cannot decrease significantly further).

With C\ = 0, and Ci > 0, N(G) grows linearly with G.
In order to reduce this growth in N(G) to a constant, while
still retaining C\ = 0, as we did for the linear chain topology,
we make G2 a function of the delay from the source. The
adaptation algorithm described in [15] results in G2 values
that increase roughly linearly in D, the distance of a receiver
from the source.

Here we do not model the dynamics of the adaptation,
but instead merely insert the dependence on D directly. We
consider several variants, with G2 increasing as D, D , and
VD. Figure 18 shows the results of these simulations. We

A/6 RTT Ci c2 N(G) Figure
1,10,100,1000 Fixed Ci >0 C2>0 Linear 12
1,10,100,1000 Fixed Ci >0 c2 = o JV(G) = G
1,10,100,1000 Estimated Ci =0 c2 >o Linear 12
1,10 Estimated 0 < Ci < 1 c2 >o G/{mG + f)

limG->oo G/(mG + f) = constant 13
100,1000 Estimated 0 < Ci < 1 C2>0 Linear 16

Table 3: Scaling behavior in the tree topology

Tree: Estimated RTT, C1 = 0.S, C2 = 1 Tre«: Estimated RTT, CI • 0.5, C2 -1

1500 2000 2500
Group Size, G

3500 4000

Figure 16: N(G) in the binary tree with A/6
1,10,100,1000, RTT estimated, Cx = 0.5, C2 = 1.

find that C2 needs to be "super-linear" in D to make scaling
constant.

8 Conclusions

In this paper, we used analysis and simulation to study
the scaling behavior of global loss recovery in SRM. The
SRM protocol is NACK-based and uses a randomized, timer-
based decentralized algorithm to reduce NACK implosion.
We use the number of NACKs N(G) generated in response
to a loss, as a metric for scalability. The two protocol pa-
rameters, C\ and C2, govern the deterministic and random
delays in the firing of a NACK from a receiver. There is
a trade-off between low-latency loss recovery and the num-
ber of NACKs - in general, making these parameters small
leads to lower latency, but usually at the expense of poorer
asymptotic scaling. We study N(G) as a function of group
size, G, for various protocol parameters, on a set of simple,
representative topologies — the cone, the linear chain, and
the binary tree.

In the cone topology, we find that random backoff is the
dominant reason for suppression and scaling is linear. This
linear scaling can be reduced by using a distribution that is
dependent on the group size. The cone models topologies
in which receivers have similar round-trip time estimates to
the source. For the linear chain N(G) is between constant
(when C\ > 0,C2 > 0, and RTT estimation is perfect),
and logarithmic, when RTT is not estimated. In the tree,
scaling is between constant (when C\ > 0,C2 > 0, and
RTT estimattion is perfect), and linear, when RTT is not
estimated. For the linear chain we show that C2 = Dc

results in constant scaling even when C\ = 0, where D is
the one-way delay to the source. Similarly, for the binary
tree, C2 = D2 results in constant scaling.

100 1000
k>gR

Figure 17: For small values of R, the round-trip times from
the source to the receivers are distinguishable, and deter-
ministic suppression effectively keeps the NACK count low.
When A/6 increase, randomized suppression is the domi-
nant cause for suppression. The "turning point" value of
A/6 depends on the topology.

We find that in topologies where deterministic suppres-
sion is effective in reducing the number of duplicate NACKs,
asymptotic scaling tends to a constant. For topologies in
which randomized suppression is mainly responsible for elim-
inating duplicates, asymptotic scaling is not constant, e.g.,
in the cone topology and in the binary tree with A » 6,
N(G) grows linearly.

In conclusion, we have shown that there is a rich parame-
ter space in the SRM protocol and that the best asymptotic
scaling performance is sensitive to the choice of these pa-
rameters. We expect our results to be useful in obtaining a
better understanding of the reasons for SRM's scaling prop-
erties in different situations, and in aiding the design and
analysis of future modifications to SRM and similar proto-
cols that use multicast transmission and suppression.

9 Acknowledgements

We would like to thank Hari Balakrishnan and Lee Breslau
for extremely useful feedback on this work. At Berkeley, this
research was supported by DARPA contract N66001-96-C-
8508, by the State of California under the MICRO program,
and by NSF Contract CDA 94-01156. At Xerox PARC, this
research was supported in part by the Advanced Research
Projects Agency, monitored by Fort Huachuca under con-
tracts DABT63-94-C-0073. The views expressed here do
not reflect the position or policy of the U.S. government.

References

[1] BALLARDIE, T., FRANCIS, P., AND CROWCROFT, J.

Binary tree, C2 = f(D)

Figure 18: When C2 = -D0'5 in the binary tree, N(G) has
improved scaling.

Core Based Trees (CBT) An Architecture for Scal-
able Inter-Domain Multicast Routing. In Proceedings of
SIGCOMM '93 (San Francisco, CA, Sept. 1993), ACM,
pp. 85-95.

[2] CHESSON, G. XTP/protocol engine design. In Proceed-
ings of the IFIP WG6.1/6.4 Workshop (Rüschlikon,
May 1989).

[3] CLARK, D. D., AND TENNENHOUSE, D. L. Architec-
tural Considerations for a New Generation of Proto-
cols. In Proceedings of SIGCOMM '90 (Philadelphia,
PA, Sept. 1990), ACM.

[4] DEERING, S., ESTRIN, D., FARINACCI, D., AND JA-
COBSON, V. An Architecture for Wide-Area Multicast
Routing. In Proceedings of SIGCOMM '94 (University
College London, London, U.K., Sept. 1994), ACM.

[5] DEERING, S. E. Multicast Routing in a Datagram In-
ternetwork. PhD thesis, Stanford University, Dec. 1991.

[6] FLOYD, S., JACOBSON, V., MCCANNE, S., LIU, C.-G.,
AND ZHANG, L. A Reliable Multicast Framework for
Light-weight Sessions and Application Level Framing.
In Proceedings of SIGCOMM '95 (Boston, MA, Sept.
1995), ACM.

[7] FREDERICK, R. Network Video (nv). Xe-
rox Palo Alto Research Center. Software on-line
ftp://ftp.parc.xerox.com/net-research.

[8] HOLBROOK, H., SINGHAL, S., AND CHERITON, D. Log-
Based Receiver-Reliable Multicast for Distributed In-
teractive Simulation. In Proceedings of SIGCOMM '95
(Boston, MA, Sept. 1995), ACM.

[9] JACOBSON, V., AND MCCANNE, S. LBL White-
board. Lawrence Berkeley Laboratory. Software on-line
ftp://ftp.ee.lbl.gov/conferencing/wb.

[10] JACOBSON, V., AND MCCANNE, S. Visual Audio
Tool. Lawrence Berkeley Laboratory. Software on-line
ftp://ftp.ee.lbl.gov/conferencing/vat.

[11] KASERA, S. K., KUROSE, J. F., AND TOWSLEY, D. F.
Scalable Reliable Multicast Using Multiple Multicast

Groups. In Proceedings of ACM SIGMETRICS Confer-
ence on Measurement & Modeling of Computer Systems
(June 1997).

[12] LEVINE, B. N., LAVO, D. B., AND GARCIA-LUNA-

ACEVES, J. The Case For Reliable Concurrent Mul-
ticasting Using Shared Ack Trees. In Proceedings of
ACM Multimedia '96 (Boston, MA, Nov. 1996), ACM.

[13] LIN, J. C, AND PAUL, S. RMTP: A Reliable Multicast
Transport Protocol. In Proceedings IEEE Infocom '96
(San Francisco, CA, Max. 1996), pp. 1414-1424.

[14] Liu, C.-G., ESTRIN, D., SHENKER, S., AND ZHANG,
L. Local Recovery in SRM. Submitted to IEEE Trans-
actions on Networking (1998).

[15] Liu, C.-G., ESTRIN, D., SHENKER, S., AND ZHANG,
L. Recovery Timer Adaptation in SRM. Submitted to
IEEE Transactions on Networking (1998).

[16] MCCANNE, S., AND FLOYD, S. The LBNL Net-
work Simulator. University of California, Berkeley.
http://www-mash.cs.berkeley.edu/ns/.

[17] MCCANNE, S., AND JACOBSON, V. vie: video con-
ference. Lawrence Berkeley Laboratory and Uni-
versity of California, Berkeley. Software on-line
ftp://ftp.ee.lbl.gov/conferencing/vic.

[18] NONNENMACHER, J., AND BIERSACK, E. W. Optimal
Multicast Feedback. IEEE Infocom (1998).

[19] PINGALI, D., TOWSLEY, D., AND KUROSE, J. F. A
comparison of sender-initiated and receiver-initiated re-
liable multicast protocols. In Proceedings of SIGMET-
RICS '94 (Santa Clara, CA, May 1994).

[20] RAMAN, S., AND MCCANNE, S. Generalized Data
Naming and Scalable State Announcements for Reliable
Multicast. Tech. rep., University of California, Berke-
ley, CA, June 1997.

[21] STEVENS, W. R. TCP/IP Illustrated, Volume 1
Protocols, first ed. Addison-Wesley, Dec. 1994.

The

[22] TURLETTI, T. INRIA Video Conferencing Sys-
tem (ivs). Institut National de Recherche en In-
formatique et an Automatique. Software on-line
http://www.inria.fr/rodeo/ivs.html.

[23] YAJNIK, M., KUROSE, J., AND TOWSLEY, D. Packet
Loss Correlation in the MBone Multicast Network.
IEEE Global Internet Conference (1996).

[24] YAVATKAR, R., GRIFFIOEN, J., AND SUDAN, M. A Re-
liable Dissemination Protocol for Interactive Collabora-
tive Applications. In Proceedings of ACM Multimedia
'95 (San Francisco, CA, Nov. 1995), ACM.

10

Core-Stateless Fair Queueing: Achieving Approximately Fair
Bandwidth Allocations in High Speed Networks*

Ion Stoica
CMU

istoica@cs.cmu.edu

Scott Shenker
Xerox PARC

shenker@parc.xerox.com

Hui Zhang
CMU

hzhang@cs.cmu.edu

Abstract

Router mechanisms designed to achieve fair bandwidth al-
locations, like Fair Queueing, have many desirable proper-
ties for congestion control in the Internet. However, such
mechanisms usually need to maintain state, manage buffers,
and/or perform packet scheduling on a per flow basis, and
this complexity may prevent them from being cost-effectively
implemented and widely deployed. In this paper, we pro-
pose an architecture that significantly reduces this imple-
mentation complexity yet still achieves approximately fair
bandwidth allocations. We apply this approach to an is-
land of routers - that is, a contiguous region of the net-
work - and we distinguish between edge routers and core
routers. Edge routers maintain per flow state; they estimate
the incoming rate of each flow and insert a label into each
packet header based on this estimate. Core routers main-
tain no per flow state; they use FIFO packet scheduling aug-
mented by a probabilistic dropping algorithm that uses the
packet labels and an estimate of the aggregate traffic at the
router. We call the scheme Core-Stateless Fair Queueing.
We present simulations and analysis on the performance of
this approach, and discuss an alternate approach.

1 Introduction

A central tenet of the Internet architecture is that conges-
tion control is achieved mainly through end-host algorithms.
However, starting with Nagle [16], many researchers ob-
served that such end-to-end congestion control solutions are
greatly improved when routers have mechanisms that allo-
cate bandwidth in a fair manner. Fair bandwidth allocation
protects well-behaved flows from ill-behaved ones, and al-
lows a diverse set of end-to-end congestion control policies
to co-exist in the network [7]. As we discuss in Section 4,

'This research was sponsored by DARPA under contract numbers
N66001-96-C-8528, E30602-97-2-0287, and DABT63-94-C-0073, and
by a NSF Career Award under grant number NCR-9624979. Addi-
tional support was provided by Intel Corp., MCI, and Sun Microsys-
tems. Views and conclusions contained in this document are those of
the authors and should no be interpreted as representing the official
policies, either expressed or implied, of DARPA, NSF, Intel, MCI,
Sun, or the U.S. government.

some maintain that fair bandwidth allocation1 plays a nec-
essary, not just beneficial, role in congestion control [7, 19].

Until now, fair allocations were typically achieved by us-
ing per-flow queueing mechanisms - such as Fair Queueing
[7, 18] and its many variants [2, 10, 20] - or per-flow dropping
mechanisms such as Flow Random Early Drop (FRED) [14].
These mechanisms are more complex to implement than tra-
ditional FIFO queueing with drop-tail, which is the most
widely implemented and deployed mechanism in routers to-
day. In particular, fair allocation mechanisms inherently
require the routers to maintain state and perform opera-
tions on a per flow basis. For each packet that arrives at the
router, the routers needs to classify the packet into a flow,
update per flow state variables, and perform certain opera-
tions based on the per flow state. The operations can be as
simple as deciding whether to drop or queue the packet (e.g.,
FRED), or as complex as manipulation of priority queues
(e.g., Fair Queueing). While a number of techniques have
been proposed to reduce the complexity of the per packet
operations [1, 20, 21], and commercial implementations are
available in some intermediate class routers, it is still un-
clear whether these algorithms can be cost-effectively imple-
mented in high-speed backbone routers because all these al-
gorithms still require packet classification and per flow state
management.

In this paper we start with the assumption that (1) fair
allocation mechanisms play an important, perhaps even nec-
essary, role in congestion control, and (2) the complexity
of existing fair allocation mechanisms is a substantial hin-
drance to their adoption. Both of these points are debat-
able; developments in router technology may make such al-
gorithms rather inexpensive to implement, and there may
be solutions to congestion control that do not require fair
allocation (we discuss this point more fully in Section 4).
By using these two assumptions as our starting points we
are not claiming that they are true, but rather are only
looking at the implications if indeed they were true. If one
starts with these assumptions then overcoming the complex-
ity problem in achieving fair allocation becomes a vitally
important problem.

To this end, we propose and examine an architecture and
a set of algorithms that allocate bandwidth in an approxi-
mately fair manner while allowing the routers on high-speed
links to use FIFO queueing and maintain no per-flow state.

'We use the max-min definition of fairness [12] which, while not
the only possible candidate for fairness, is certainly a reasonable one
and, moreover, can be implemented with only local information.

In this approach, we identify an island of routers2 and dis-
tinguish between the edge and the core of the island. Edge
routers compute per-flow rate estimates and label the pack-
ets passing through them by inserting these estimates into
each packet header. Core routers use FIFO queueing and
keep no per-flow state. They employ a probabilistic drop-
ping algorithm that uses the information in the packet la-
bels along with the router's own measurement of the aggre-
gate traffic. The bandwidth allocations within this island of
routers are approximately fair. Thus, if this approach were
adopted within the high speed interiors of ISP's, and fair al-
location mechanisms were adopted for the slower links out-
side of these high-speed interiors, then approximately fair
allocations could be achieved everywhere. However, this
approach, like Fair Queueing [7] or RED [9], still provides
benefit if adopted in an incremental fashion, although the
incremental adoption must be done on an island-by-island
basis, not on a router-by-router basis.

We call this approach Core-Stateless Fair Queueing (CSFQ)
since the core routers keep no per-flow state but instead use
the state that is carried in the packet labels.3 We describe
the details of this approach - such as the rate estimation
algorithm and the packet dropping algorithm - in Section 2.

Such a scheme cannot hope to achieve the nearly-perfect
levels of fairness obtained by Fair Queueing and other so-
phisticated and stateful queueing algorithms. However, our
interest is not in perfection, but only in obtaining reason-
able approximations to the fair bandwidth allocations. We
derive a worst-case bound for the performance of this algo-
rithm in an idealized setting. This bound is presented in
Section 2.

This worst-case analysis does not give an adequate guide
to the typical functioning of CSFQ. In Section 3 we present
results from simulation experiments to illustrate the perfor-
mance of our approach and to compare it to several other
schemes: DRR (a variant of Fair Queueing), FRED, RED,
and FIFO. We also discuss, therein, the relative mechanistic
complexities of these approaches.

The first 3 sections of the paper are narrowly focussed
on the details of the mechanism and its performance (both
absolute and relative), with the need for such a mechanism
taken for granted. In Section 4 we return to the basic ques-
tion of why fair allocations are relevant to congestion con-
trol. Allocating bandwidth fairly is one way to address what
we call the unfriendly flow problem; we also discuss an alter-
nate approach to addressing this problem, the identification
approach as described in [8]. We conclude with a summary
in Section 5. A longer version of this paper, containing
proofs of the theoretical results as well as more complete
pseudocode, can be found at http://Hww.cs.cmu.edu/~isto
ica/csfq.

2 Core-Stateless Fair Queueing (CSFQ)

In this section, we propose an architecture that approxi-
mates the service provided by an island of Fair Queueing
routers, but has a much lower complexity in the core routers.
The architecture has two key aspects. First, to avoid main-
taining per flow state at each router, we use a distributed

algorithm in which only edge routers maintain per flow state,
while core (non-edge) routers do not maintain per flow state
but instead utilize the per-flow information carried via a la-
bel in each packet's header. This label contains an estimate
of the flow's rate; it is initialized by the edge router based
on per-flow information, and then updated at each router
along the path based only on aggregate information at that
router.

Second, to avoid per flow buffering and scheduling, as re-
quired by Fair Queueing, we use FIFO queueing with prob-
abilistic dropping on input. The probability of dropping a
packet as it arrives to the queue is a function of the rate
estimate carried in the label and of the fair share rate at
that router, which is estimated based on measurements of
the aggregate traffic.

Thus, our approach avoids both the need to maintain
per-flow state and the need to use complicated packet schedul-
ing and buffering algorithms at core routers. To give a better
intuition about how this works, we first present the idealized
bit-by-bit or fluid version of the probabilistic dropping algo-
rithm, and then extend the algorithm to a practical packet-
by-packet version.

2.1 Fluid Model Algorithm

We first consider a bufferless fluid model of a router with
output link speed C, where the flows are modelled as a con-
tinuous stream of bits. We assume each flow's arrival rate
n(£) is known precisely. Max-min fair bandwidth alloca-
tions are characterized by the fact that all flows that are
bottlenecked (i.e., have bits dropped) by this router have
the same output rate. We call this rate the fair share rate of
the server; let a(t) be the fair share rate at time t. In gen-
eral, if max-min bandwidth allocations are achieved, each
flow i receives service at a rate given by min(r((t),a(t)).
Let A(t) denote the total arrival rate: A(t) = ^2"=1 ri(t). If
A(t) > C then the fair share a(t) is the unique solution to

C = ^min(r<(t),a(t)), (1)

If A(t) < C then no bits are dropped and we will, by con-
vention, set a{t) = max, r;(t).

If r;(t) < a{t), i.e., flow i sends no more than the server's
fair share rate, all of its traffic will be forwarded. If j\(t) >
a(t), then a fraction r ^ 7t) of its bits will be dropped, so
it will have an output rate of exactly at(t). This suggests a
very simple probabilistic forwarding algorithm that achieves
fair allocation of bandwidth: each incoming bit of flow » is
dropped with the probability

(2)

2By island we mean a contiguous portion of the network, with
well-defined interior and edges.

3Obviously these core routers keep some state, but none of it is
per-flow state, so when we say "stateless" we are referring to the
absence of per-flow state.

When these dropping probabilities are used, the arrival
rate of flow i at the next hop is given by min[rj(t), a(t)].

2.2 Packet Algorithm

The above algorithm is defined for a bufferless fluid system
in which the arrival rates are known exactly. Our task now
is to extend this approach to the situation in real routers
where transmission is packetized, there is substantial buffer-
ing, and the arrival rates are not known.

Edge Router ,

Flow 1 Rate Estimator +
Packet Labeling

\
buffe

Core Router —

r occupancy

\

>
-♦ Packet

Dropping *" 1 1 1-1
x

Flow n Rate Estimator +
Packet Labeling

Y Oei

Estimator

Figure 1: The architecture of the output port of an edge
router, and a core router, respectively.

We still employ a drop-on-input scheme, except that now
we drop packets rather than bits. Because the rate esti-
mation (described below) incorporates the packet size, the
dropping probability is independent of the packet size and
depends only, as above, on the rate n(r) and fair share rate
a(t).

We are left with two remaining challenges: estimating
the rates r<(t) and the fair share a(t). We address these two
issues in turn in the next two subsections, and then discuss
the rewriting of the labels. Pseudocode reflecting this algo-
rithm is described in Figure 2. We should note, however,
that the main point of our paper is the overall architecture
and that the detailed algorithm presented below represents
only an initial prototype. While it serves adequately as a
proof-of-concept of our architecture, we fully expect that the
details of this design will continue to evolve.

2.2.1 Computation of Flow Arrival Rate

Recall that in our architecture, the rates r,-(t) are estimated
at the edge routers and then these rates are inserted into
the packet labels. At each edge router, we use exponential
averaging to estimate the rate of a flow. Let t* and J* be
the arrival time and length of the k'h packet of flow i. The
estimated rate of flow i, r,, is updated every time a new
packet is received:

new
(1- }1? +

T*/K ol
1 t (3)

where T* = if — t* ' and if is a constant. We discuss

the rationale for using the form e-T> 'K for the exponential
weight in Section 2.7. In the longer version of this paper
[22] we show that, under a wide range of conditions, this
estimation algorithm converges.

2.2.2 Link Fair Rate Estimation

In this section, we present an estimation algorithm for a(t).
To give intuition, consider again the fluid model in Sec-
tion 2.1 where the arrival rates are known exactly, and as-
sume the system performs the probabilistic dropping algo-
rithm according to Eq. (2). Then, the rate with which the
algorithm accepts packets is a function of the current esti-
mate of the fair share rate, which we denote by a(t). Letting
F(S(t)) denote this acceptance rate, we have

F(a(t)) = £min(r,-(0,o(0). (4)

Note that F(-) is a continuous, nondecreasing, concave, and
piecewise-linear function of a. If the link is congested (A(t) >
C) we choose a(t) to be the unique solution to F(x) = C.
If the link is not congested (A(t) < C) we take a{t) to be
the largest rate among the flows that traverse the link, i.e.,
a(t) = maxi<,<n(r'i(t)). From Eq (4) note that if we knew
the arrival rates r,(t) we could then compute a(t) directly.
To avoid having to keep such per-flow state, we seek instead
to implicitly compute a(t) by using only aggregate measure-
ments of F and A.

We use the following heuristic algorithm with three ag-
gregate state variables: a, the estimate for the fair share
rate; A, the estimated aggregate arrival rate; F, the esti-
mated rate of the accepted traffic. The last two variables
are updated upon the arrival of each packet. For A we use
exponential averaging with a parameter e-T'A" where T is
the inter-arrival time between the current and the previous
packet:

= (l-e-r/*-)i+e- T/Ka
(5)

where A0id is the value of A before the updating. We use
an analogous formula to update F.

The updating rule for a depends on whether the link is
congested or not. To filter out the estimation inaccuracies
due to exponential smoothing we use a window of size Kc.
A link is assumed to be congested, if A > C at all times dur-
ing an interval of length Kc. Conversely, a link is assumed
to be uncongested, if A < C at all times during an interval
of length Kc- The value a is updated only at the end of an
interval in which the link is either congested or uncongested
according to these definitions. If the link is congested then
a is updated based on the equation F(a) = C. We approxi-
mate F(-) by a linear function that intersects the origin and
has slope F/a0id- This yields

~ C
CXold —

F
(6)

If the link is not congested, a„eu, is set to the largest rate
of any active flow (i.e., the largest label seen) during the
last Kc time units. The value of aneu, is then used to com-
pute dropping probabilities, according to Eq. (2). For com-
pleteness, we give the pseudocode of the CSFQ algorithm in
Figure 2.

We now describe two minor amendments to this algo-
rithm related to how the buffers are managed. The goal of
estimating the fair share a is to match the accepted rate to
the link bandwidth. Due to estimation inaccuracies, load
fluctuations between o's updates, and the probabilistic na-
ture of our algorithm, the accepted rate may occasionally
exceed the link capacity. While ideally the router's buffers
can accommodate the extra packets, occasionally the router
may be forced to drop the incoming packet due to lack of
buffer space. Since drop-tail behavior will defeat the purpose
of our algorithm, and may exhibit undesirable properties in
the case of adaptive flows such as TCP [9], it is important
to limit its effect. To do so, we use a simple heuristic: every

on receiving packet p
if (edge router)

i =classify(p);
p.label = estimate_rate(r;,p); /* use Eq. (3) */

prob =max(0,1 — a/p.label);
if (prob >unif_rand(0, 1))

a =estimate_a (p, 1);
drop(p);

else
a =estimate.o (p, 0);
enqueue(p);

if (prob > 0)
p.label = o; /* relabel p */

estimate_a (p, dropped)
estimate_rate(/l,p); /* est. arrival rate (use Eq. (5))*/
if (dropped == FALSE)

estimate_rate(F,p); /* est. accepted traffic rate */

if(A>C)
if (congested == FALSE)

congested = TRUE;
start-time = crt-time;

else
if (crtJime > startJime + Kc)

a = ax C/F;
startjtime = crtJtime;

else /* A<C */
if (congested == TRUE)

congested = FALSE;
start-time = crt-time;
tmpja = 0; /* use to compute new a */

else
if (crtJime < start Jime + Kc)

tmp-a —max(tmp.a, p.label);
else

a = tmpjx;
start-time = crt-time;
tmpja = 0;

return a;

Figure 2: The pseudocode of CSFQ.

time the buffer overflows, a is decreased by a small fixed per-
centage (taken to be 1% in our simulations). Moreover, to
avoid overcorrection, we make sure that during consecutive
updates a does not decrease by more than 25%.

In addition, since there is little reason to consider a link
congested if the buffer is almost empty, we apply the fol-
lowing rule. If the link becomes uncongested by the test in
Figure 2, then we assume that it remains uncongested as
long as the buffer occupancy is less than some predefined
threshold. In this paper we use a threshold that is half of
the total buffer capacity.

2.2.3 Label Rewriting

Our rate estimation algorithm in Section 2.2.1 allows us to
label packets with their flow's rate as they enter the island.
Our packet dropping algorithm described in Section 2.2.2
allows us to limit flows to their fair share of the bandwidth.
After a flow experiences significant losses at a congested link

inside the island, however, the packet labels are no longer
an accurate estimate of its rate. We cannot rerun our es-
timation algorithm, because it involves per-flow state. For-
tunately, as note in Section 2.1 the outgoing rate is merely
the minimum between the incoming rate and the fair rate
a. Therefore, we rewrite the the packet label L as

Lnew = min(Low, a), (7)

By doing so, the outgoing flow rates will be properly repre-
sented by the packet labels.

2.3 Weighted CSFQ
The CSFQ algorithm can be extended to support flows with
different weights. Let Wi denote the weight of flow »'. Re-
turning to our fluid model, the meaning of these weights
is that we say a fair allocation is one in which all bottle-
necked flows have the same value for ^"-. Then, if A(t) > C,
the normalized fair rate a(t) is the unique value such that
y"]"_, W|- min (a, £*r) = C. The expression for the drop-

ping probabilities in the weighted case is max (0,1 — a^)-
The only other major change is that the label is now ri/wt,
instead simply r*. Finally, without going into details we
note that the weighted packet-by-packet version is virtually
identical to the corresponding version of the plain CSFQ
algorithm.

It is important to note that with weighted CSFQ we can
only approximate islands in which each flow has the same
weight at all routers in an island. That is, our algorithm
cannot accommodate situations where the relative weights
of flows differ from router to router within an island. How-
ever, even with this limitation, weighted CSFQ may prove
a valuable mechanism in implementing differential services,
such as the one proposed in [24].

2.4 Performance Bounds

We now present the main theoretical result of the paper.
For generality, this result is given for weighted CSFQ. The
proof is given in [22].

Our algorithm is built around several estimation proce-
dures, and thus is inherently inexact. One natural concern
is whether a flow can purposely "exploit" these inaccuracies
to get more than its fair share of bandwidth. We cannot
answer this question in full generality, but we can analyze a
simplified situation where the normalized fair share rate a
is held fixed and there is no buffering, so the drop probabil-
ities are precisely given by Eq. (2). In addition, we assume
that when a packet arrives a fraction of that packet equal to
the flow's forwarding probability is transmitted. Note that
during any time interval [ti, ^2) a flow with weight w is enti-
tled to receive at most wa(t2 — ti) service time; we call any
amount above this the excess service. We can bound this
excess service, and the bounds are independent of both the
arrival process and the length of the time interval during
which the flow is active. The bound does depend crucially
on the maximal rate R at which a flows packets can arrive
at a router (limited, for example, by the speed of the flow's
access link); the smaller this rate R the tighter the bound.

Theorem 1 Consider a link with a constant normalized fair
rate a, and a flow with weight w. Then, the excess service
received by a flow with weight w, that sends at a rate no
larger than R is bounded above by

2.7 Miscellaneous Details

r„K" (l + /n£) + f, (8)

where ra — aw, and Imax represents the maximum length of
a packet.

By bounding the excess service, we have shown that in
this idealized setting the asymptotic throughput cannot ex-
ceed the fair share rate. Thus, flows can only exploit the
system over short time scales; they are limited to their fair
share over long time scales.

2.5 Implementation Complexity

At core routers, both the time and space complexity of our
algorithm are constant with respect to the number of com-
peting flows, and thus we think CSFQ could be implemented
in very high speed core routers. At each edge router CSFQ
needs to maintain per flow state. Upon each arrival of each
packet, the edge router needs to (1) classify the packet to a
flow, (2) update the fair share rate estimation for the cor-
responding outgoing link, (3) update the flow rate estima-
tion, and (4) label the packet. All these operations with
the exception of packet classification can be efficiently im-
plemented today.

Efficient and general-purpose packet classification algo-
rithms are still under active research. We expect to lever-
age these results. We also note that packet classification
at ingress nodes is needed for a number of other purposes,
such as in the context of Multiprotocol Label Switching
(MPLS) [4] or for accounting purposes; therefore, the classi-
fication required for CSFQ may not be an extra cost. In ad-
dition, if the edge routers are typically not on the high-speed
backbone links then there is no problem as classification at
moderate speeds is quite practical.

2.6 Architectural Considerations

We have used the term flow without defining what we mean.
This was intentional, as the CSFQ approach can be applied
to varying degrees of flow granularity; that is, what consti-
tutes a flow is arbitrary as long as all packets in the flow
follow the same path within the core. In this paper, for con-
venience, a flow is implicitly defined as a source-destination
pair, but one could easily assign fair rates to many other
granularities such as source-destination-ports. Moreover,
the unit of "flow" can vary from island to island as long
as the rates are re-estimated when entering a new island.

Similarly, we have not been precise about the size of these
CSFQ islands. In one extreme, we could take each router
as an island and estimate rates at every router; this would
allow us to avoid the use of complicated per-flow scheduling
and dropping algorithms, but would require per-flow classi-
fication. Another possibility is that ISP's could extend their
island of CSFQ routers to the very edge of their network,
having their edge routers at the points where customer's
packets enter the ISP's network. Building on the previous
scenario, multiple ISP's could combine their islands so that
classification and estimation did not have to be performed
at ISP-ISP boundaries. The key obstacle here is one of trust
between ISPs.

Having presented the basic CSFQ algorithm, we now return
to discuss a few aspects in more detail.

We have used exponential averaging to estimate the ar-
rival rate in Eq. (3). However, instead of using a constant
exponential weight we used e~T^K where T is the inter-
packet arrival time and K is a constant. Our motivation
was that e~ ' more closely reflects a fluid averaging pro-
cess which is independent of the packetizing structure. More
specifically, it can be shown that if a constant weight is used,
the estimated rate will be sensitive to the packet length dis-
tribution and there are pathological cases where the esti-
mated rate differs from the real arrival rate by a factor;
this would allow flows to exploit the estimation process and
obtain more than their fair share. In contrast, by using a
parameter of e~T^K, the estimated rate will asymptotically
converge to the real rate, and this allows us to bound the
excess service that can be achieved (as in Theorem 1). We
used a similar averaging process in Eq. (5) to estimate the
total arrival rate A.

The choice of K in the above expression e~T*K presents
us with several tradeoffs. First, while a smaller K increases
the system responsiveness to rapid rate fluctuations, a larger
K better filters the noise and avoids potential system insta-
bility. Second, K should be large enough such that the esti-
mated rate, calculated at the edge of the network, remains
reasonably accurate after a packet traverses multiple links.
This is because the delay-jitter changes the packets' inter-
arrival pattern, which may result in an increased discrep-
ancy between the estimated rate (received in the packets'
labels) and the real rate. To counteract this effect, as a rule
of thumb, K should be one order of magnitude larger that
the delay-jitter experienced by a flow over a time interval of
the same size, K. Third, K should be no larger than the
average duration of a flow. Based on this constraints, an
appropriate value for K would be between 100 and 500 ms.

A second issue relates to the requirement of CSFQ for a
label to be carried in each packet. One possibility is to use
the Type Of Service byte in the IP header. For example, by
using a floating point representation with four bits for man-
tissa and four bits for exponent we can represents any rate
between 1 Kbps and 65 Mbps with an accuracy of 6.25%.
Another possibility is to define an IP option in the case of
IPv4, or a hop-by-hop extension header in the case of IPv6.

3 Simulations

In this section we evaluate our algorithm by simulation. To
provide some context, we compare CSFQ's performance to
four additional algorithms. Two of these, FIFO and RED,
represent baseline cases where routers do not attempt to
achieve fair bandwidth allocations. The other two algo-
rithms, FRED and DRR, represent different approaches to
achieving fairness.

• FIFO (First In First Out) - Packets are served in a
first-in first-out order, and the buffers are managed
using a simple drop-tail strategy; i.e., incoming pack-
ets are dropped when the buffer is full.

• RED (Random Early Detection) - Packets are served
in a first-in first-out order, but the buffer manage-
ment is significantly more sophisticated than drop-tail.
RED [9] starts to probabilistically drop packets long

DRR -•—
CSFQ -*-■

FRED-1 -B--
FRED-2 -*■■-

RED -*--
FIFO -*-

1**

Flu«. Numb*
20 25

(a)

I 0.8
5

DRR -•—
CSFQ —
FRED -B--
RED -*■--
FIFO -*-

(b)

Figure 3: Simulation results for a 10 Mbps link shared by N flows, (a) The average throughput over 10 sec when N = 32,
and all flows are UDPs. The arrival rate for flow i is (i + 1) times larger than its fair share. The flows are indexed from 0.
(b) The throughputs of one UDP flow (indexed 0) sending at 10 Mbps, and of 31 TCP flows sharing a 10 Mbps link.

before the buffer is full, providing early congestion
indication to flows which can then gracefully back-
off before the buffer overflows. RED maintains two
buffer thresholds. When the exponentially averaged
buffer occupancy is smaller than the first threshold, no
packet is dropped, and when the exponentially aver-
aged buffer occupancy is larger than the second thresh-
old all packets are dropped. When the exponentially
averaged buffer occupancy is between the two thresh-
olds, the packet dropping probability increases linearly
with buffer occupancy.

• FRED (Flow Random Early Drop) - This algorithm
extends RED to provide some degree of fair band-
width allocation [14]. To achieve fairness, FRED main-
tains state for all flows that have at least one packet
in the buffer. Unlike RED where the dropping deci-
sion is based only on the buffer state, in FRED drop-
ping decisions are based on this flow state. Specif-
ically, FRED preferentially drops a packet of a flow
that has either (1) had many packets dropped in the
past, or (2) a queue larger than the average queue size.
FRED has two variants, which we will call FRED-1
and FRED-2. The main difference between the two
is that FRED-2 guarantees to each flow a minimum
number of buffers. As a general rule, FRED-2 per-
forms better than FRED-1 only when the number of
flows is large. In the following data, when we do not
distinguish between the two, we are quoting the results
from the version of FRED which performed better.

• DRR (Deficit Round Robin) - This algorithm [20] rep-
resents an efficient implementation of the well-known
weighted fair queueing (WFQ) discipline. The buffer
management scheme assumes that when the buffer is
full the packet from the longest queue is dropped. DRR
is the only one of the four to use a sophisticated per-
flow queueing algorithm, and thus achieves the highest
degree of fairness.

These four algorithms represent four different levels of
complexity. DRR and FRED have to classify incoming flows,
whereas FIFO and RED do not. DRR in addition has to
implement its packet scheduling algorithm, whereas the rest

all use first-in-first-out scheduling. CSFQ edge routers have
complexity comparable to FRED, and CSFQ core routers
have complexity comparable to RED.

We have examined the behavior of CSFQ under a vari-
ety of conditions. We use an assortment of traffic sources
(mainly TCP sources and constant bit rate UDP sources,4

but also some on-off sources) and topologies. Due to space-
limitations, we only report on a small sampUng of the sim-
ulations we have run.5 All simulations were performed in
ns-2 [17], which provide accurate packet-level implementa-
tion for various network protocols, such as TCP and RLM
[15] (Receiver-driven Layered Multicast), and various buffer
management and scheduling algorithms, such as RED and
DRR. All algorithms used in the simulation, except CSFQ
and FRED, were part of the standard ns-2 distribution.

Unless otherwise specified, we use the following parame-
ters for the simulations in this section. Each output link has
a capacity of 10 Mbps, a latency of 1 ms, and a buffer of 64
KB. In the RED and FRED cases the first threshold is set to
16 KB, while the second one is set to 32 KB. The averaging
constants K (used in estimating the flow rate), Ka (used in
estimating the fair rate), and Kc (used in making the deci-
sion of whether a link is congested or not) are all set to 100
ms unless specified otherwise. The general rule of thumb
we follow in this paper is to choose these constants to be
roughly two times larger than the maximum queueing delay
(i.e., 64KB/10Mbps = 51.2 ms).6 Finally, in all topologies
the first router on the path of each flow is always assumed
to be an edge router; all other routers are assumed without
exception to be core routers.

We simulated the other four algorithms to give us bench-
marks against which to assess these results. We use DRR as
our model of fairness and use the baseline cases, FIFO and

4This source, referred to as UDP in the remainder of the paper,
has fixed size packets and the packet interarrival times are uniformly
distributed between [0.5 X avg, 1.5 X avg), where avg is the average
interarrival time.

5 A fuller set of tests, and the scripts used to run them, is available
at http://HWB.cs.cmu.edu/~iatoica/csfq

6It can be shown that by using this rule an idle link that becomes
suddenly congested by a set of identical UDP sources will not ex-
perience buffer overflow before the algorithm detects the congestion,
as long as the aggregate arrival rate is less than 10 times the link
capacity (see [22]).

CSFO ~
FRED a ■

UDP-1 . UDP-tO

Sinki

UDP-K1 • UDP-KIO

Total Nur*oi ol Flows

Figure 4: The normalized bandwidth of a TCP flow that
competes with N — X UDP flows sending at twice their al-
located rates, as a function of N.

RED, as representing the (unfair) status quo. The goal of
these experiments is to determine where CSFQ sits between
these two extremes. FRED is a more ambiguous bench-
mark, being somewhat more complex than CSFQ but not
as complex as DRR.

In general, we find that CSFQ achieves a reasonable de-
gree of fairness, significantly closer to DRR than to FIFO
or RED. CSFQ's performance is typically comparable to
FRED's, although there are several situations where CSFQ
significantly outperforms FRED. There are a large number
of experiments and each experiment involves rather complex
dynamics. Due to space limitations, in the sections that fol-
low we will merely highlight a few important points and omit
detailed explanations of the dynamics.

3.1 A Single Congested Link

We first consider a single 10 Mbps congested link shared by
TV flows. The propagation delay along the link is 1 ms. We
performed three related experiments.

In the first experiment, we have 32 UDP flows, indexed
from 0, where flow i sends i + 1 times more than its fair
share of 0.3125 Mbps. Thus flow 0 sends 0.3125 Mbps, flow
1 sends 0.625 Mbps, and so on.. Figure 3(a) shows the av-
erage throughput of each flow over a 10 sec interval; FIFO,
RED, and FRED-1 fail to ensure fairness, with each flow get-
ting a share proportional to its incoming rate, while DRR
is extremely effective in achieving a fair bandwidth distri-
bution. CSFQ and FRED-2 achieve a less precise degree of
fairness; for CSFQ the throughputs of all flows are between
-11% and +5% of the ideal value.

In the second experiment we consider the impact of an
ill-behaved UDP flow on a set of TCP flows. More precisely,
the traffic of flow 0 comes from a UDP source that sends at
10 Mbps, while all the other flows (from 1 to 31) are TCPs.
Figure 3(b) shows the throughput of each flow averaged over
a 10 sec interval. The only two algorithms that can most
effectively contain the UDP flow are DRR and CSFQ. Un-
der FRED the UDP flow gets almost 1.8 Mbps - close to
six times more than its fair share - while the UDP only gets
0.396 Mbps and 0.361 Mbps under DRR and CSFQ, respec-
tively. As expected FIFO and RED perform poorly, with
the UDP flow getting over 8 Mbps in both cases.

In the final experiment, we measure how well the al-
gorithms can protect a single TCP flow against multiple

0
Gale way

TCP/UDP-0
Sink

-0
0 O- • o o- ■ o
UDP-IO UDP-ll UDP-KI UDP-KIO

Figure 5: Topology for analyzing the effects of multiple con-
gested links on the throughput of a flow. Each link has
ten cross flows (all UDPs). All links have 10 Mbps capaci-
ties. The sending rates of all UDPs, excepting UDP-0, are
2 Mbps, which leads to all links between routers being con-
gested.

ill-behaved flows. We perform 31 simulations, each for a
different value of N, N = 2 • • • 32. In each simulation we
take one TCP flow and N - 1 UDP flows; each UDP sends
at twice its fair share rate of ^Mbps. Figure 4 plots the
ratio between the average throughput of the TCP flow over
10 seconds and the fair share bandwidth it should receive
as a function of the total number of flows in the system N..
There are three points of interest. First, DRR performs very
well when there are less than 22 flows, but its performances
decreases afterwards. This is because the TCP flow's buffer
share is less than three buffers, which significantly affects
its throughput. Second, CSFQ performs better than DRR
when the number of flows is large. This is because CSFQ is
able to cope better with the TCP burstiness by allowing the
TCP flow to have several packets buffered for short time
intervals. Finally, across the entire range, CSFQ provides
similar or better performance as compared to FRED.

3.2 Multiple Congested Links

We now analyze how the throughput of a well-behaved flow
is affected when the flow traverses more than one congested
link. We performed two experiments based on the topology
shown in Figure 5. All UDPs, except UDP-0, send at 2
Mbps. Since each link in the system has 10 Mbps capacity,
this will result in all links between routers being congested.

In the first experiment, we have a UDP flow (denoted
UDP-0) sending at its fair share rate of 0.909 Mbps. Fig-
ure 6(a) shows the fraction of UDP-0's traffic that is for-
warded versus the number of congested links. CSFQ and
FRED perform reasonably well, although not quite as well
as DRR.

In the second experiment we replace UDP-0 with a TCP
flow. Similarly, Figure 6(b) plots the normalized TCP through-
put against the number of congested links. Again, DRR and
CSFQ prove to be effective. In comparison, FRED performs
significantly worse though still much better than RED and
FIFO. The reason is that while DRR and CSFQ try to allo-
cate bandwidth fairly among competing flows during conges-
tion, FRED tries to allocate buffers fairly. Flows with dif-
ferent end-to-end congestion control algorithms will achieve
different throughputs even if routers try to fairly allocate
buffer.

Numtar et ConQMbd LMM Numb* o< Congas tod Unto

(a) (b)

Figure 6: (a) The normalized throughput of UDP-0 as a function of the number of congested links, (b) The same plot when
UDP-0 is replaced by a TCP flow.

Algorithm delivered dropped
DRR 601 6157
CSFQ 1680 5078
FRED 1714 5044
RED 5322 1436
FIFO 5452 1306

Algorithm mean std. dev
DRR 6080 64
CSFQ 5761 220
FRED 4974 190
RED 628 80
FIFO 378 69

Table 1: Statistics for an ON-OFF flow with 19 competing
TCPs flows (all numbers are in packets).

Algorithm mean time std. dev
DRR 25 99
CSFQ 62 142
FRED 40 174
RED 592 1274
FIFO 840 1695

Table 2: The mean transfer times (in ms) and the corre-
sponding standard deviations for 60 short TCPs in the pres-
ence of a UDP flow that sends at the link capacity, i.e., 10
Mbps.

3.3 Coexistence of Different Adaptation Schemes

In this experiment we investigate the extent to which CSFQ
can deal with flows that employ different adaptation schemes.
Receiver-driven Layered Multicast (RLM) [15] is an adaptive
scheme in which the source sends the information encoded
into a number of layers (each to its own multicast group) and
the receiver joins or leaves the groups associated with the
layers based on how many packet drops it is experiencing.
We consider a 4 Mbps link traversed by one TCP and three
RLM flows. Each source uses a seven layer encoding, where
layer i sends 2,+4 Kbps; each layer is modeled by a UDP
traffic source. The fair share of each flow is 1Mbps. In the
RLM case this will correspond to each receiver subscribing
to the first five layers7.

The receiving rates averaged over 1 second interval for
each algorithm are plotted in Figure,7. Since in this experi-
ment the link bandwidth is 4 Mbps and the router buffer size

7More precisely, we have S~] _ 2,+4 Kbps = 0.992 Mbps.

Table 3: The mean throughputs (in packets) and standard
deviations for 19 TCPs in the presence of a UDP flow along
a link with propagation delay of 100 ms. The UDP sends at
the link capacity of 10 Mbps.

is 64 KB, we set constants K, Ka, and Kc to be 250 ms,
i.e., about two times larger than the maximum queue de-
lay. An interesting point to notice is that, unlike DRR and
CSFQ, FRED does not provide fair bandwidth allocation
in this scenario. Again, as discussed in Section 3.2, this is
due to the fact that RLM and TCP use different end-to-end
congestion control algorithms.

3.4 Different Traffic Models

So far we have only considered UDP, TCP and layered mul-
ticast traffic sources. We now look at two additional source
models with greater degrees of burstiness. We again con-
sider a single 10 Mbps congested link. In the first exper-
iment, this link is shared by one ON-OFF source and 19
TCPs. The ON and OFF periods of the ON-OFF source
are both drawn from exponential distributions with means
of 100 ms and 1900 ms respectively. During the ON period
the ON-OFF source sends at 10 Mbps. Note that the ON-
time is on the same order as the averaging intervals K, Ka,
and Kc which are all 100 ms, so this experiment is designed
to test to what extent CSFQ can react over short timescales.

The ON-OFF source sent 6758 packets over the course of
the experiment. Table 1 shows the number of packets from
the ON-OFF source dropped at the congested link. The
DRR results show what happens when the ON-OFF source
is restricted to its fair share at all times. FRED and CSFQ
also are able to achieve a high degree of fairness.

Our next experiment simulates Web traffic. There are
60 TCP transfers whose inter-arrival times are exponentially
distributed with the mean of 0.05 ms, and the length of each

(a) DRR
TCP

RLMt
RLM2
RLM3

h H»#»,^4^4 1
50 100 150 200 250

(b) CSFQ

30 100 ISO 200 250 300 400 450

(d) RED (e) FIFO

Figure 7: The throughput of three RLM flows and one TCP flow along a 4 Mbps link

transfer is drawn from a Pareto distribution with a mean of
20 packets (1 packet = 1 KB) and a shaping parameter of
1.06. These values are consistent with those presented in
the [5]. In addition, there is a single 10 Mbps UDP flow.

Table 2 presents the mean transfer time and the corre-
sponding standard deviations. Here, CSFQ performs worse
than FRED, mainly because it has a larger average queue
size, but still almost one order of magnitude better than
FIFO and RED.

3.5 Large Latency

All of our experiments so far have had small link delays (1
ms). In this experiment we again consider a single 10 Mbps
congested link, but now with a propagation delay of 100 ms.
The load is comprised of one UDP flow that sends at the
link speed and 19 TCP flows. Due to the large propagation
delay, in this experiment we set the buffer size to be 256 KB,

and K, Ka, and Kc to be 400 ms. Table 3 shows the aver-
age number of packets of a TCP flow during a 100 seconds
interval. Both CSFQ and FRED perform reasonably well.

3.6 Packet Relabeling

Recall that when the dropping probability of a packet is
non-zero we relabel it with the fair rate a so that the label
of the packet will reflect the new rate of the flow. To test
how well this works in practice, we consider the topology in
Figure 8, where each link is 10 Mbps. Note that as long as
all three flows attempt to use their full fair share, the fair
shares of flows 1 and 2 are less on link 2 (3.33 Mbps) than
on link 1 (5 Mbps), so there will be dropping on both links.
This will test the relabelling function to make sure that the
incoming rates are accurately reflected on the second link.
We perform two experiments (only looking at CSFQ's per-
formance). In the first, there are three UDPs sending data

Figure 8: Simulation scenario for the packet relabeling ex-
periment. Each link has 10 Mbps capacity, and a propaga-
tion delay of 1 ms.

Traffic Flow 1 Flow 2 Flow 3
UDP 3.36 3.32 3.28
TCP 3.43 3.13 3.43

Table 4: The throughputs resulting from CSFQ averaged
over 10 seconds for the three flows in Figure 8 along link 2.

at 10 Mbps each. Table 4 shows the average throughputs
over 10 sec of the three UDP flows. As expected these rates
are closed to 3.33 Mbps. In the second experiment, we re-
place the three UDPs by three TCPs. Again, despite the
TCP burstiness which may negatively affect the rate esti-
mation and relabeling accuracy, each TCP gets close to its
fair share.

3.7 Discussion of Simulation Results

We have tested CSFQ under a wide range of conditions,
conditions purposely designed to stress its ability to achieve
fair allocations. These tests, and the others we have run
but cannot show here because of space limitations, sug-
gest that CSFQ achieves a reasonable approximation of fair
bandwidth allocations in most conditions. Certainly CSFQ
is far superior in this regard to the status quo (FIFO or
RED). Moreover, in all situations CSFQ is roughly compa-
rable with FRED, and in some cases it achieves significantly
fairer allocations. Recall that FRED requires per-packet
flow classification while CSFQ does not, so we are achieving
these levels of fairness in a more scalable manner. However,
there is clearly room for improvement in CSFQ, as there are
cases where its performance is significantly below that of its
benchmark, DRR. We do not yet know if these are due to
our particular choices for the estimation algorithms, or are
inherent properties of the CSFQ architecture.

4 Why Are Fair Allocations Important?

In the Introduction we stated that one of the underlying as-
sumptions of this work is that fairly allocating bandwidth
was beneficial, and perhaps even crucial, for congestion con-
trol. In this section we motivate the role of fair allocations in
congestion control by discussing the problem of unfriendly
flows, and then presenting two approaches to this problem;
we end this section with a discussion of the role of punish-
ment. In what follows we borrow heavily from [7], [3], and

[8], and have benefited greatly from conversations with Steve
Deering and Sally Floyd. We should note that the matters
addressed in this section are rather controversial and this
overview unavoidably reflects our prejudices. This section,
however, is merely intended to provide some perspective on
our motivation for this work, and any biases in this overview
should not undercut the technical aspects of the CSFQ pro-
posal that are the main focus of the previous sections.

4.1 The Unfriendly Flow Problem

Data networks such as the Internet, because of their reliance
on statistical multiplexing, must provide some mechanism to
control congestion. The current Internet, which has mostly
FIFO queueing and drop-tail mechanisms in its routers, re-
lies on end-to-end congestion control in which hosts curtail
their transmission rates when they detect that the network
is congested. The most widely utilized form of end-to-end
congestion control is that embodied in TCP [11], which has
been tremendously successful in preventing congestion col-
lapse.

The efficacy of this approach depends on two fundamen-
tal assumptions: (1) all (or almost all) flows are cooperative
in that they implement congestion control algorithms, and
(2) these algorithms are homogeneous - or roughly equiv-
alent - in that they produce similar bandwidth allocations
if used in similar circumstances. In particular, assumption
(2) requires, in the language of [8], that all flows are TCP-
friendly.8

The assumption of universal cooperation can be violated
in three general ways. First, some applications are unre-
sponsive in that they don't implement any congestion con-
trol algorithms at all. Most of the early multimedia and
multicast applications, like vat, nv, vie, wb and RealAudio
fall into this category. Second, some applications use con-
gestion control algorithms that, while responsive, are not
TCP-friendly. RLM is such an algorithm.9 Third, some
users will cheat and use a non-TCP congestion control al-
gorithm to get more bandwidth. An example of this would
be using a modified form of TCP with, for instance, a larger
initial window and window opening constants.

Each of these forms of noncooperation can have a sig-
nificant negative impact on the performance obtained by
cooperating flows. At present, we do not yet know how
widespread noncooperation will be, and thus cannot assess
the level of harm it will cause. However, in lieu of more
solid evidence that noncooperation will not be a problem,
it seems unsound to base the Internet's congestion control
paradigm on the assumption of universal cooperation. We
therefore started this paper with the fundamental assump-
tion that one needs to deal with the problem of unfriendly
flows.

8 Actually, the term TCP-friendly in [8] means that "their arrival
rate does not exceed that of any TCP connection in the same cir-
cumstances." Here we use it to mean that the arrival rates are
roughly comparable, a property that should be more precisely called
TCP-equivalent. We blur the distinction between TCP-friendly and
TCP-equivalent to avoid an overly unwieldy set of terms in this short
overview. However, we think the distinction may be rendered moot
since it is unlikely that congestion control algorithms that are not
TCP-equivalent but are TCP-friendly - i.e., they get much less than
their fare share - will be widely deployed.

9Although our data in Section 3.3 showed RLM receiving less than
its fair share, when we change the simulation scenario so that the TCP
flow starts after all the RLM flows then it receives less than half of
its fair share. This hysteresis in the RLM versus TCP behavior was
first pointed out to us by Steve McCanne [15].

4.2 Two Approaches

There are, in the literature, two genera] approaches to ad-
dressing the problem of unfriendly flows. The first is the
allocation approach. Here, the router itself ensures that
bandwidth is allocated fairly, isolating flows from each other
so that unfriendly flows can only have a very limited impact
on other flows. Thus, the allocation approach need not de-
mand that all flows adopt some universally standard end-
to-end congestion control algorithm; flows can choose to re-
spond to the congestion in whatever manner best suits them
without unduly harming other flows. Assuming that flows
prefer to not have significant levels of packet drops, these
allocation approaches give an incentive for flows to use end-
to-end congestion control, because being unresponsive hurts
their own performance. Note that the allocation approach
does not provide an incentive for flows to be TCP-friendly
(an example of an alternative end-to-end congestion control
algorithm is described in [13]), but does provide strong in-
centives for drop-intolerant applications to use some form
of end-to-end congestion control.10 Of course, the canoni-
cal implementations of the allocation approach, such as Fair
Queueing, all require significant complexity in routers. Our
goal in this paper was to present a more scalable realization
of the allocation approach.

The problem of unfriendly flows can be addressed in an-
other manner. In the identification approach, as best exem-
plified by [8], routers use a lightweight detection algorithm
to identify unfriendly flows, and then explicitly manage the
bandwidth of these unfriendly flows. This bandwidth man-
agement can range from merely restricting unfriendly flows
to no more than the currently highest friendly flow's share11

to the extreme of severely punishing unfriendly flows by
dropping all of their packets.

This approach relies on the ability to accurately identify
unfriendly flows with relatively lightweight router mecha-
nisms. This is a daunting task. Below we discuss the process
of identifying unfriendly flows, and then present simulation
results of the identification algorithm in [8]; we are not aware
of other realizations of the identification approach.

One can think of the process of identifying unfriendly
flows as occurring in two logically distinct stages. The first,
and relatively easy, step is to estimate the arrival rate of
a flow. The second, and harder, step is to use this arrival
rate information (along with the dropping rate and other
aggregate measurements) to decide if the flow is unfriendly.
Assuming that friendly flows use a TCP-like adjustment
method of increase-by-one and decrease-by-half, one can de-
rive an expression (see [8] for details) for the bandwidth
share S as a function of the dropping rate p, round-trip
time R, and packet size B: S « "RJV *°r some constant 7.
Routers do not know the round trip time R of flows, so must
use the lower bound of double the propagation delay of the
attached link; this allows flows further away from the link to
behave more aggressively without being identified as being
unfriendly.12

Algorithm Simulation 1 Simulation 2
UDP TCP-1 TCP-2 TCP-l TCP-2

REDI 0.906 0.280 0.278 0.565 0.891
CSFQ 0.554 0.468 0.478 0.729 0.747

10As we discuss later, if flows can tolerate significant levels of loss,
the situation changes somewhat.

11 If identification were perfect, and this management goal achieved,
all flows would get their max-min fair allocations. However, we are
not aware of any algorithm that can achieve this management goal.

12We are not delving into some of the details of the approach layed
out in [8] where flows can also be classified as very-high-bandwidth
but not necessarily unfriendly, and as unresponsive (and therefore
unfriendly).

Table 5: (Simulation 1) The throughputs in Mbps of one
UDP and two TCP flows along a 1.5 Mbps link under
REDI [8], and CSFQ, respectively. (Simulation 2) The
throughputs of two TCPs (where TCP-2 opens its conges-
tion window three times faster than TCP-1), under REDI,
and CSFQ, respectively.

To see how this occurs in practice, consider the following
two experiments using the identification algorithm describee!
in [8], which we call RED with Identification (REDI).13 In
each case there are multiple flows traversing a 1.5 Mbps link
with a latency of 3 ms; the output buffer size is 32 KB and
all constants K, Ka, and Kc, respectively, are set to 400
ms. Table 5 shows the bandwidth allocations under REDI
and CSFQ averaged over 100 sec. In the first experiment
(Simulation 1), we consider a 1 Mbps UDP flow and two
TCP flows; in the second experiment (Simulation 2) we have
a standard TCP (TCP-1) and a modified TCP (TCP-2) that
opens the congestion window three times faster. In both
cases REDI fails to identify the unfriendly flow, allowing it to
obtain almost two-thirds of the bandwidth. As we increase
the latency of the congested link, REDI starts to identify
unfriendly flows. However, for some values as high as 18 ms,
it still fails to identify such flows. Thus, the identification
approach still awaits a viable realization and, as of now,
the allocation approach is the only demonstrated method to
deal with the problem of unfriendly flows.

4.3 Punishment

Earlier in this section we argued that the allocation ap-
proach gave drop-intolerant flows an incentive to adopt end-
to-end congestion control. What about drop-tolerant flows?

We consider, for illustration, fire-hose applications that
have complete drop-tolerance: they send at some high rate
p and get as much value out of the fraction of arriving pack-
ets, call it x, as if they originally just sent a stream of rate
xp. That is, these fire-hose applications care only about the
ultimate throughput rate, not the dropping rate.14 In a com-
pletely static world where bandwidth shares were constant
such "fire-hose" protocols would not provide any advantage
over just sending at the fair share rate. However, if the fair
shares along the path were fluctuating significantly, then
fire-hose protocols might better utilize instantaneous fluctu-
ations in the available bandwidth. Moreover, fire-hose pro-
tocols relieve applications of the burden of trying to adapt
to their fair share. Thus, even when restrained to their fair
share there is some incentive for flows to send at signifi-
cantly more than the current fair share.15 In addition, such

13We are grateful to Sally Floyd who provided us her script im-
plementing the REDI algorithm. We used a similar script in our
simulation, with the understanding that this is a preliminary design
of the identification algorithm. Our contention is that the design of
such an identification algorithm is fundamentally difficult due to the
uncertainty of RTT.

14 Approximations to complete drop-tolerance can be reached in
video transport using certain coding schemes or file transport using
selective acknowledgements.

"These fire-hose coding and file transfer methods also have some

fire-hoses decrease the bandwidth available to other flows
because packets destined to be dropped at a congested link
represent an unnecessary load on upstream links. With uni-
versal deployment of the allocation approach, every other
flow would still obtain their fair share at each link, but that
share may be smaller than it would have been if the fire-hose
had been using responsive end-to-end congestion control. It
is impossible to know now whether this will become a seri-
ous problem. Certainly, though, the problem of fire-hoses
in a world with fair bandwidth allocation is far less dire
than the problem of unfriendly flows in our current FIFO
Internet, since the incentive to be unfriendly and the harm-
ful impact on others are considerably greater in the latter
case. As a consequence, our paper emphasizes the prob-
lem of unfriendly flows in our current FIFO Internet, and is
less concerned with fire-hose flows in an Internet with fair
bandwidth allocation.

Nonetheless, the fire-hose problem should not be ignored;
flows should be given an incentive to adopt responsive end-
to-end congestion. One possible method is to explicitly pun-
ish unresponsive flows by denying them their fair share.1

Punishment is discussed as one possible bandwidth man-
agement approach in [8] (the approach described there is
informally referred to as RED-with-a-penalty-box). Accu-
rately identifying flows as unresponsive may be far easier
than identifying them as unfriendly. However, as we saw
in our simulations, doing so in the context of the identifi-
cation approach is far from a solved problem; the challenge
is to determine if a flow has decreased usage in response to
increases in overall packet drop rates [8].

Identifying unresponsive flows is more straightforward
in the allocation approach, since here one need only deter-
mine if a flow has had significantly high drop rates over a
long period of time. As a proof of concept we have imple-
mented a simple identification and punishment mechanism.
First, we examine off-line the last n dropped packets and
then monitor the flows with the most dropped packets. Sec-
ond, we estimate the rate of each of these monitored flows;
when a flow's rate is larger than a x a (a > 1), we start
dropping all of its packets. Third, we continue to monitor
penalized flows, continuing punishment until their arrival
rate decreases below b x a (b < 1). Using the parameters
a = 1.2, 6 = 0.6, and n = 100, we applied this algorithm to
Simulation 1 in Table 5; the UDP flow was identified and
penalized in less than 3 seconds. Our task was easy because
the identification of unresponsive flows can be based on the
result (packet drops over long periods of time) rather than
on trying to examine the algorithm (detecting whether it
actually decreased its rate in response to an increase in the
drop rate). Note also that the allocation approach need only
distinguish between responsive and unresponsive in the pun-
ishment phase, an inherently easier task than distinguishing
friendly from unfriendly.

In summary, to provide incentives for drop-tolerant flows
to use responsive end-to-end congestion control, it may be
necessary to identify, and then punish, unresponsive flows.

overhead associated with them, and it isn't clear whether, in practice,
the overheads are greater or less than the advantages gained. How-
ever, one can certainly not claim, as we did above for drop-intolerant
applications, that the allocation approach gives drop-tolerant appli-
cations a strong incentive to use responsive end-to-end congestion
control algorithms.

16Another possible method, used in ATM ABR, is to have network
provide explicit per flow feedback to ingress nodes and have edge
nodes police the traffic on a per flow basis. We assume this is a too
heavyweight a mechanism for the Internet.

CSFQ with this punishment extension may be seen as a
marriage of the allocation and identification approaches; the
difference between [8] and our approach is largely one of
the relative importance of identification and allocation. We
start with allocation as fundamental, and then do identifica-
tion only when necessary; [8] starts with identification, and
then considers allocation only in the context of managing
the bandwidth of identified flows.

5 Summary

This paper presents an architecture for achieving reasonably
fair bandwidth allocations while not requiring per-flow state
in core routers. Edge routers estimate flow rates and insert
them into the packet labels. Core routers merely perform
probabilistic dropping on input based on these labels and
an estimate of the fair share rate, the computation of which
requires only aggregate measurements. Packet labels are
rewritten by the core routers to reflect output rates, so this
approach can handle multihop situations.

We tested CSFQ, and several other algorithms, on a wide
variety of conditions. We find that CSFQ achieve a signifi-
cant degree of fairness in all of these circumstances. While
not matching the fairness benchmark of DRR, it is compara-
ble or superior to FRED, and vastly better than the baseline
cases of RED and FIFO. We know of no other approach that
can achieve comparable levels of fairness without any per-
flow operations in the core routers.

The main thrust of CSFQ is to use rate estimation at the
edge routers and packet labels to carry rate estimates to core
routers. The details of our proposal, such as the estimation
algorithms, are still very much the subject of active research.
However, the results of our initial experiments with a rather
untuned algorithm are quite encouraging.

One open question is the effect of large latencies. The
logical extreme of the CSFQ approach would be to do rate
estimation at the entrance to the network (at the customer/ISP
boundary), and then consider everything else the core. This
introduces significant latencies between the point of esti-
mation and the points of congestion; while our initial sim-
ulations with large latencies did not reveal any significant
problems, we do not yet understand CSFQ well enough to
be confident in the viability of this "all-core" design. How-
ever, if viable, this "all-core" design would allow all interior
routers to have only very simple forwarding and dropping
mechanisms, without any need to classify packets into flows.

In addition, we should note that it is possible to use
a CSFQ-like architecture to provide service guarantees. A
possible approach would be to use the route pinning mech-
anisms described in [23], and to shape the aggregate guar-
anteed traffic at each output link of core routers [6].

One of the initial assumptions of this paper was that
the more traditional mechanisms used to achieve fair allo-
cations, such as Fair Queueing or FRED, were too complex
to implement cost-effectively at sufficiently high speeds. If
this is the case, then a more scalable approach like CSFQ
is necessary to achieve fair allocations. The CSFQ islands
would be comprised of high-speed backbones, and the edge
routers would be at lower speeds where classification and
other per-flow operations were not a problem. However,
CSFQ may still play a role even if router technology ad-
vances to the stage where the more traditional mechanisms
can reach sufficiently high speeds. Because the core-version
of CSFQ could presumably be retrofit on a sizable fraction

of the installed router base (since its complexity is roughly
comparable to RED and can be implemented in software),
it may be that CSFQ islands are not high-speed backbones
but rather are comprised of legacy routers.

Lastly, we should note that the CSFQ approach requires
some configuration, with edge routers distinguished from
core routers. Moreover, CSFQ must be adopted an island
at a time rather than router-by-router. We do not know if
this presents a serious impediment to CSFQ's adoption.

References

[l] J.C.R. Bennett, D.C. Stephens, and H. Zhang. High speed,
scalable, and accurate implementation of packet fair queue-
ing algorithms in ATM networks. In Proceedings of IEEE
ICNP '97, pages 7-14, Atlanta, GA, October 1997.

[2] J.C.R. Bennett and H. Zhang. WF2Q: Worst-case fair
weighted fair queueing. In Proceedings of IEEE INFO-
COM'96, pages 120-128, San Francisco, CA, March 1996.

[3] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering,
D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge,
L. Peterson, K. K. Ramakrishnan, S. Shenker, and J. Wro-
clawski. Recommendations on queue management and con-
gestion avoidance in the internet, January 1998. Internet
Draft.

[4] R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow,
and A. Viswanathan. A Framework for Multiprotocol Label
Switching, November 1997. Internet Draft.

[5] M. E. Crovella and A. Bestavros. Self-similarity in world
wide web traffic evidence and possible causes. In Proceedings
of the ACM SIGMETRICS 96, pages 160-169, Philadelphia,
PA, May 1996.

[6] R. L. Cruz. SCED+: Efficient Management of Quality of
Service Guarantees. In Proceedings of INFOCOM'98, pages
625-642, San Francisco, CA, 1998.

[7] A. Demers, S. Keshav, and S. Shenker. Analysis and sim-
ulation of a fair queueing algorithm. In Journal of Inter-
networking Research and Experience, pages 3-26, October
1990. Also in Proceedings of ACM SIGCOMM'89, pp 3-12.

[8] S. Floyd and K. Fall. Router mechanisms to support end-
to-end congestion control, February 1997. LBL Technical
Report.

[9] S. Floyd and V. Jacobson. Random early detection for con-
gestion avoidance. IEEE/A CM Transactions on Networking,
1(4):397-413, July 1993.

[10] S. Golestani. A self-clocked fair queueing scheme for broad-
band applications. In Proceedings of IEEE INFOCOM'94,
pages 636-646, Toronto, CA, June 1994.

[11] V. Jacobson. Congestion avoidance and control. In Proceed-
ings of ACM SIGCOMM'88, pages 314-329, August 1988.

[12] J. Jaffe. Bottleneck flow control. IEEE Transactions on
Communications, 7(29):954-962, July 1980.

[13] S. Keshav. A control-theoretic approach to flow control.
In Proceedings of ACM SIGCOMM'91, pages 3-15, Zurich,
Switzerland, September 1991.

[14] D. Lin and R. Morris. Dynamics of random early detec-
tion. In Proceedings of ACM SIGCOMM '97, pages 127-137,
Cannes, France, October 1997.

[15] S. McCanne. Scalable Compression and Transmission of
Internet Multicast Video. PhD dissertation, University of
California Berkeley, December 1996.

[16] J Nagle. On packet switches with infinite storage. IEEE
Trans. On Communications, 35(4):435-438, April 1987.

[17] Ucb/lbnl/vint network simulator- ns (version 2).

[18] A. Parekh and R. Gallager. A generalized processor sharing
approach to flow control - the single node case. In Proceed-
ings of the INFOCOM'92, 1992.

[19] S. Shenker. Making greed work in networks: A game theo-
retical analysis of switch service disciplines. In Proceedings
of ACM SIGCOMM'94, pages 47-57, London, UK, August
1994.

[20] M. Shreedhar and G. Varghese. Efficient fair queueing using
deficit round robin. In Proceedings of SIGCOMM'95, pages
231-243, Boston, MA, September 1995.

[21] D. Stilliadisand A. Varma. Efficient fair queueing algorithms
for packet-switched networks. IEEE/ACM Transactions on
Networking, 6(2):175-185, April 1998.

[22] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair
queueing: Achieving approximately fair banwidth alloca-
tions in high speed nteworks, June 1998. Technical Report
CMU-CS-98-136, Carnegie Mellon University.

[23] I. Stoica and H. Zhang. LIRA: A model for service differ-
entiation in the internet. In Proceedings of NOSSDAV'98,
London, UK, July 1998.

[24] Z. Wang. User-share differentiation (USD) scalable band-
width allocation for differentiated services, May 1998. Inter-
net Draft.

A Scalable Web Cache Consistency Architecture*

Haobo Yu
USC/Information Sciences Institute

4676 Admiralty Way Suite 1001
Marina del Rey, CA 90034

haoboy@isi.edu

Lee Breslau
AT&T Labs-Research

75 Willow Road
Menlo Park, CA 94025

breslau@r esear ch. at t. com

Scott Shenker
International Computer Science Institute

1947 Center Street
Berkeley, CA 94704

shenker @icsi. berkeley. edu

Abstract

The rapid increase in web usage has led to dramatically
increased loads on the network infrastructure and on in-
dividual web servers. To ameliorate these mounting bur-
dens, there has been much recent interest in web caching
architectures and algorithms. Web caching reduces network
load, server load, and the latency of responses. However,
web caching has the disadvantage that the pages returned
to clients by caches may be stale, in that they may not be
consistent with the version currently on the server. In this
paper we describe a scalable web cache consistency archi-
tecture that provides fairly tight bounds on the staleness of
pages. Our architecture borrows heavily from the literature,
and can best be described as an invalidation approach made
scalable by using a caching hierarchy and application-level
multicast routing to convey the invalidations. We evaluate
this design with calculations and simulations, and compare
it to several other approaches.

1 Introduction

The world-wide-web has become an important component
of the global information infrastructure. The rapid increase
of web usage has imposed a heavy load on the network and
server infrastructure, and significant delays are not uncom-
mon. To mitigate the effects of this increased usage, there
has been much recent interest in developing and deploying
techniques for web caching (see, for example, [8, 29, 33]
and references therein). Web caching has several benefi-

*We would like to thank Mike Spreitzer and Marvin Theimer for
their collaboration in the early stages of this work. They are respon-
sible for many of the key ideas that inspired the design described
in this paper. We would also like to thank Pei Cao for several
helpful conversations. This research was supported by the Defense
Advanced Research Projects Agency (DARPA) through the VINT
project at USC/ISI under DARPA grant DABT63-96-C-0054 and at
Xerox PARC under DARPA grant DABT63-96-C-0105. Lee Breslau
and Scott Shenker were at Xerox PARC while this work was carried
out.

cial effects: it lowers the load on servers, reduces the overall
network bandwidth required, and lowers the latency of re-
sponses.

However, web caching does have (at least) one serious
disadvantage. If a page has been modified after being stored
in a cache, the version of the page delivered to the requesting
client1 may be inconsistent with the server's version of that
page. We call such inconsistent pages stale, and call consis-
tent pages fresh; the degree of staleness is the delay between
when the page was changed on the server and when the pre-
vious version was delivered. To make this precise, consider
the version of the page that was delivered to the client. Let
t = M be the time the delivered version was first rendered
invalid by being modified at the server. Let t = R be the
time the cache responds to the client's request for that page.
We then define the staleness2 to be max(0, R — M).

For many pages, being significantly stale is not a serious
problem. For some pages, however, clients may care a great
deal if the pages are substantially stale. For instance, it
is clear that pages devoted to current news stories {e.g.,
CNN) should be as fresh as possible. Other examples of
pages that are sensitive to being stale - we will call such
pages perishable - are catalogs, product information, and
code distribution pages. Perishable pages need not have
zero staleness {i.e., a news page could be a minute or so
out of date without serious harm), but they should not be
significantly stale.

One could most easily meet the freshness needs of per-
ishable pages by circumventing caching; this can be accom-
plished by marking pages as uncacheable, or by merely ex-
pecting users to manually hit the "reload" button. However,
since some perishable pages are likely to be quite popular
- news sites in particular - one would like to ensure the
relative freshness for these pages while retaining the advan-
tages of caching. Because there is a finite latency between
the server and the cache, it is impossible to guarantee abso-
lute freshness (i.e., true consistency between what the cache

We use the term client to refer to a browser or other user process
at the end host that generates requests for pages.

2Note that even if the staleness is zero by this definition, the page
may be out of date when it actually arrives at the client due to changes
made at the server while the data was in transit to the client; this,
however, is not a problem with the caching infrastructure - since this
source of inconsistency occurs even if the request was sent directly
from the client to the server rather than being handled by a cache -
and so we do not consider it part of being stale.

delivers and the current version at the server) without insti-
tuting write-locking on servers.3 While write-locking is sen-
sible for keeping file systems consistent, it makes less sense
for web pages,4 since write-locking merely masks the under-
lying reality that the content delivered is different than the
content the server thinks is most current. Thus, the most
practical goal is to merely limit the degree of staleness - i.e.,
to achieve loose consistency - rather than trying to achieve
strict consistency. We believe such loose-consistency guar-
antees should be sufficient for the vast majority of perishable
pages.

In this paper we focus on the design of a scalable web
cache consistency architecture that meets this goal. Our de-
sign retains the benefits of web caching (as listed above),
while providing fairly tight limits on the degree of staleness
of delivered pages. Of course, as we review in Section 2,
there has been much previous work on techniques to achieve
various degrees of consistency for web pages; the architec-
ture we propose combines many of the features of these pre-
vious proposals, melding them together in a scalable fashion.
Moreover, our proposal can easily be extended to support
the pushing of data, in which modified pages are sent to
caches even before clients have requested them.

Since we envision, at least initially, that a small frac-
tion of pages are perishable, our design can be restricted to
those pages that axe deemed by the server to be perishable;
that is, our proposal does not change how caches handle
nonperishable pages and only modifies how caches handle
perishable ones. Our design does make use of a caching hi-
erarchy. However, this hierarchy can be replaced by a cache
mesh, as we describe in Section 3.2.

We evaluate this design in two ways. We first investigate
its behavior analytically in a very simplified setting, and
then present simulation results in a somewhat more realis-
tic setting. In both cases we compare our proposed design
against several other schemes.

This paper is addressing the question of design, not of
deployment. That is, we are asking: can one design such
a scalable web consistency architecture? We are most def-
initely not addressing the question of whether such an ar-
chitecture, once designed, should be deployed (although we
discuss this question briefly in Section 7) since the question
of deployment is a complicated cost/benefit tradeoff involv-
ing many nontechnical factors, such as the future usage of
the web and the economics of the ISP business. However, de-
ployment can only occur if a scalable web consistency archi-
tecture exists, and our contribution here is to demonstrate
that such a design is indeed possible.

This paper has 7 sections. We begin in Section 2 by re-
viewing several of the previous approaches to ensuring con-
sistency. We present our approach in Section 3, starting
with our basic scheme and then adding in the ability to
push pages. We then evaluate this design analytically in
Section 4 and through simulations in Section 5. We discuss
additional design issues in Section 6, and conclude with a

3If the cache receives a request for a page, obtains a fresh version
of the page from the server, and then delivers the page to the client,
the page would still be stale when delivered if the page was modified
on the server between the time the server sent the page to the cache
and when it arrived at the cache. The only way to avoid this would
be to write-lock the page during the interval while the page was being
delivered to the cache.

4The crucial distinction between file systems and web pages, in
terms of the role of write-locking, is that web pages have a single
logical writer (the hosting server) whereas files have many logical
writers (they can be written from many hosts). Merging multiple
writers requires strict consistency, whereas handling multiple readers
does not.

brief discussion of our results in Section 7. We include esti-
mates of cache state and network bandwidth requirements
in an appendix.

2 Previous Approaches

All web caching proposals attempt to achieve some degree of
consistency, but the approach taken to achieve consistency
depends greatly on the degree of consistency desired. In this
section we briefly review three basic approaches to consis-
tency. These approaches function both as inspirations for
our proposed architecture and also as benchmarks against
which we evaluate our design in Sections 4 and 5.

2.1 Time-To-Live

The simplest way to achieve some limited form of consis-
tency is to associate a time-to-live with each page. When a
request arrives at a cache after the TTL for the requested
page has expired, the cache sends an If-Modified-Since (IMS)
message to the server (or parent cache) to determine if the
version held by the cache is still valid. If the TTL is fixed
then the staleness is bounded by this TTL (plus the latency
between the server and the cache). Setting small values of
the TTL provides fairly tight consistency guarantees, but
also mitigates against some of the benefits of web caching,
since many IMS requests will be forwarded to the server even
though the page is still valid. The limit of TTL=0 generates
an IMS for every request, thereby guaranteeing no staleness;
we call this scheme poll-always.

It has long been known that files exhibit the property
that the longer they have gone unmodified, the longer they
are likely to go unmodified [3, 4]. In [7] this insight was
used to develop an adaptive TTL scheme in which the TTL
is set, at the first request after each TTL expiration, to
be proportional to the page's age (current time minus the
last modification time); the algorithm takes, as a parameter,
the constant of proportionality (called the update threshold
in [15]) used to update the TTL. However, adaptive TTL
schemes do not give an upper bound on the staleness of a
page, since the TTL can grow without bound.

2.2 Invalidation

In the TTL approach, the cache can only guess as to whether
a page is still valid. A very different approach to consistency
requires servers to send explicit invalidation signals to caches
when pages are modified. The invalidation approach is most
easily explained, as we do below, when considering only the
interaction between a server and a client without caches as
intermediaries; later, when presenting our design, we will
discuss the role of invalidations in the presence of proxy
caches.

In its simplest incarnation, an invalidation scheme works
as follows: each server keeps track of all clients who have
requested a particular page and then, whenever that page
changes, notifies those clients. We say that servers have
an invalidation contract with the clients so that clients are
assured that they will be informed of any changes to pages
they have read.

While invalidation schemes are effective in limiting stale-
ness, they incur the cost of requiring the server to keep state
on every client of each page. Thus, this approach does not
scale well in the limit of many readers per page; both the
state required to store the list of readers, and the OS and

network burden of having to contact every reader of a page
when it changes, grow linearly in the number of readers.5

This scaling problem can be overcome by using multi-
cast to transmit the invalidations. By assigning a multicast
group to each page, and having clients join the groups asso-
ciated with the pages they have accessed, the burden on the
server is greatly reduced; the server need not keep any read-
ership state, and need only send a single invalidation mes-
sage to inform the group of any page modifications. Such
an approach is described in [28], and the somewhat related
idea of pushing content (rather than sending invalidations)
via multicast is described in [23, 27, 28]. However, while
multicast solves the scaling problems at the server, it cre-
ates (following the law of conservation of difficulty) another
one at the routers. The state required by such schemes
in routers is substantial, easily on the order of hundreds
of thousands of addresses (judging by the proxy traces in
[19]); this is certainly too much for many currently deployed
routers. Moreover, the rate at which clients would be join-
ing and leaving multicast groups, as they read and discard
pages, will likely create an unscalable overhead on the rout-
ing infrastructure [17].

A recent proposal [9] includes information about related
pages in responses to page requests; this information may
include invalidations and delta-encoded page updates. It
can be used to greatly improve consistency on average but
it does not provide staleness assurances.

2.3 Lease

The lease approach to consistency combines features of the
TTL and invalidation approaches; see [13] for the basic ref-
erence on leases in file systems, and see [31] for applications
of these ideas to web caching. In the simplest version of
this approach, whenever a cache stores a page, it requests a
lease from the server. Whenever a page changes, the server
notifies all caches who hold a valid lease of the page; the
invalidation contract applies only while the lease is valid. If
a cache receives a request for a page with an expired lease,
it renews the page's lease by sending an IMS to the server
before responding to the request. While the lease is valid,
the approach is exactly like invalidation, but the expiration
of leases resembles the TTL approach. One wants to choose
the length of the lease so that the number of readers hold-
ing valid leases remains reasonably small when writes are
made, but most reads occur while the lease is still valid.
In distributed file systems, leases are usually short (seconds
or minutes) [4], but in the Web context using overly short
leases makes the scheme roughly equivalent to TTL.

Yin et al. [31] presented two volume lease algorithms
aimed at reducing validation traffic of short leases. They
assign a long lease to every page, and a short lease to sets
of pages called volumes. A cache must renew a lease when-
ever either the page lease or the volume lease expires. The
advantage of this approach is that the overhead of renew-
ing the short leases is amortized over the many pages in a
volume.

3 Our Approach

Our approach borrows quite freely from these previous ap-
proaches. It is based primarily on multicast-based invalida-

Also, in the oversimplified version just described, there are ro-
bustness problems when servers lose their state or when network par-
titions occur. These robustness issues can be addressed, as we shall
see in Section 3.

Top-Level Cache

Intermediate each«

web server ' s « client uT) client (T)

Figure 1: Example of a single multicast caching hierarchy.
The arrows indicate the propagation directions of heart-
beats.

tions, but avoids the scalability problem by using a hierarchy
of caches.6 The multicast groups are associated with caches,
not pages, and the caches send heartbeats to each other that
are the equivalent of cache-to-cache volume leases. In con-
trast to a previous use of volume leases [31], the unit of our
lease is all pages in a cache, instead of a single page or page
group. Caches maintain a server table in order to locate
where servers are attached to the hierarchy. Invalidation
messages for a page, which may be sent both up and down
the hierarchy, are filtered so as to limit the scope of distri-
bution. Client requests are forwarded through the caching
hierarchy to the server or to the first cache containing a
valid copy of the requested page.7 We first describe the ba-
sic protocol and then describe how to add pushing to the
architecture.

3.1 Simple Description of Protocol

To describe the algorithm most compactly we first consider
the special case where all caches are infinite, all pages are
part of this consistency architecture, there is a single sta-
ble caching hierarchy with all caches having synchronized
clocks, and no caches fail (although we make no assumption
about the reliability of communication between caches). As-
pects of the design associated with more realistic settings are
addressed in Section 6. The descriptions given here (and in
Section 6) are rather cursory and informal; a more complete
and detailed description of the entire protocol can be found
in [32].

Hierarchy The caching hierarchy (Figure 1) is glued to-
gether by multicast. Each parent cache owns a unique mul-
ticast group, in the sense that it is responsible for allocating
the group address, and it is the only sender in the group.
Each child cache joins the group owned by its parent. Thus,
parents need not know who their children are, and children
can choose their parents freely as long as cycles are pre-
vented, and that is easily accomplished with a convention
on assigning each cache to one of a few levels - e.g., leaf
caches, intermediate caches, and top-level caches - and re-
quiring that parents always outrank their children. We do
not address the issue of hierarchy establishment and mainte-
nance; see [25] for one approach to these issues. We discuss
alternatives to the use of a hierarchy later in this section.

Heartbeats The hierarchy is kept alive by heartbeats. Each
group owner sends out a periodic heartbeat message to its

6We discuss alternatives to a hierarchy in Section 3.2.
TAn extension that allows requests to bypass the caching hierarchy,

thus reducing response latency, is described in Section 6.

associated multicast group; let r be the time period be-
tween heartbeats. The heartbeat functions as a volume lease
of length T to its children; this lease applies to all pages
sent by the cache to its children. The time period of the
lease starts when the message was generated (reflected in
its timestamp), not when it was received. Typically r will
be significantly less than T (^ = 5 in our simulations) so
that if one or a few consecutive heartbeat are lost - which
is a possibility since we are not sending them reliably - the
lease won't expire unnecessarily. Each child cache compares
the current time to the last heartbeat's timestamp (or, more
precisely, the highest timestamp among all received heart-
beats). If this time gap ever reaches T then the lease on all
pages from that server expires and all such pages are marked
as invalid.

Invalidations On top of these heartbeats we piggyback ex-
plicit invalidations. We need only invalidate pages that have
been requested (by a client or another cache) after they were
last rendered invalid; we call these read pages. Each heart-
beat message contains a list of all read pages that have been
rendered invalid at the parent cache within the last time
period T. Thus, if a read page is rendered invalid at the
parent cache at time t = 0 then by time t = T each child
cache has either received a heartbeat with an invalidation for
that page, or has expired the lease from that parent cache
(and thereby rendered the page invalid). A child cache that
had a previously valid copy of the page will mark it invalid
and propagate the invalidation if and only if the page was
previously read; otherwise it ignores the invalidation.

Attaching Servers In addition to heartbeats going down
the hierarchy, we also have a set of heartbeats traveling up
the hierarchy from servers towards the top-level cache. To
describe this, we first define how servers attach to the hierar-
chy. Each web server is attached to a cache (not necessarily
a leaf cache) in the hierarchy, which we call the server's
primary cache. Upon attaching, each server must reliably
unicast a JOIN message to its primary cache. This message
is forwarded upwards (by each cache to its parent cache) via
reliable unicast until it reaches the top-level cache. We say
that the parent cache sources a server from a child cache
if it receives that server's JOIN message from a child cache
(and has not received a LEAVE message for that server; we
define LEAVE messages below). Each cache has a listing of
those servers it sources (i.e., those servers attached below
it); we call this list the server routing table (Figure 2). If a
cache does not source a server, we say that its server routing
table entry for the server points to the parent cache. Note
that the top-level cache knows about all servers attached in
the hierarchy.

Servers send (via unreliable unicast) periodic heartbeats
to their primary cache, also piggybacking invalidations of
any read pages as we described above. Similarly, every child
cache who sources at least one server must unicast heart-
beats to its parent, along with piggybacked invalidations. A
cache can ignore invalidations for unread pages (pages that
are not in residence in the cache are automatically consid-
ered unread pages). Invalidations are thus propagated from
the server to every cache from which the page has been read.
If a cache Cl is closer to the server than cache C2 along this
propagation path, we call Cl an upstream cache (compared
with C2); otherwise, we call it a downstream cache. Each
upstream cache is said to maintain an invalidation contract
with its immediate downstream cache(s) for any page that
has been read by a downstream cache.

(S.C3)
— •»■ reaponsn

(C4

^*
Top-Level Cache

(S.C1) >- SM' xr ^ (s> cs)
/• /Z' vs*

(S. S) >>• '■\C.C5)
© (p?)

It f|*
web swver i S i client * L *

Figure 2: An example of server routing table setup. Routing
table entries are shown in parentheses next to each cache.
Each entry is in the form (S,C), where C is the next hop
cache towards server S. A "*" indicates a default entry. The
arrows show how requests flow from a client to the server,
and how responses flow in the reverse direction.

When a time period T has passed without cache Cl hear-
ing from cache C2 from whom it sources a server, cache C2
and all the servers sourced from cache C2 are removed from
cache Cl's server routing table. Cache Cl then sends a
LEAVE message to its parents and children, notifying them
that those servers are no longer sourced from cache Cl, and
therefore all of the pages from those servers should be con-
sidered invalid. (More details are described in Section 6.)
LEAVE messages are a form of invalidation, and are in-
cluded in the heartbeats (rather than being sent reliably).

Handling Requests We now describe how client requests
are handled, as illustrated in Figure 2. Clients can attach to
any cache in the hierarchy; we call this the client's primary
cache. In particular, a client can attach to its own local
cache (i.e., the browser's cache) and then use a nearby proxy
cache as a parent cache (as they typically do now). When
a client requests a page, it sends the request to its primary
cache. The primary cache, and recursively all caches the
request visits, first checks to see if the page is resident in the
cache. If it is not, then the cache forwards the request to
the next cache designated by the server routing table. When
the request is fulfilled, by either the originating server or
by some intermediary cache, the response takes the reverse
path through the caching hierarchy towards the client. The
reverse path is automatically set up because every cache
has an open HTTP connection to the the requester before
it responds.

3.2 Discussion

We list below three important properties of this scheme
(proofs can be found in [32]). As stated above we assume a
stable hierarchy, synchronized clocks, and the proper func-
tioning of caches, but make no assumptions about the reli-
ability of communication.

Property 1 // there are no invalidations in transit or wait-
ing to be sent, then if a cache C in the hierarchy has a page
P marked as invalid, then no downstream cache considers P
valid (i.e., it is either invalid or not in residence).

Property 2 When a cache C receives an invalidation for a
page P marked as invalid, it may safely discard the invalida-
tion without affecting the resulting state of all downstream
caches.

Property 3 Assume that each cache uses the same timeout
period T. Consider a server SI, a client attached to cache
C2 requesting the page, and assume that there are H cache-
hops between SI and C2. Then the maximal stateness of a
page hosted on Si delivered to the client is HT.

Property 2 follows directly from Property 1. Together they
allow us to reduce redundant invalidation traffic. Property
3 sets an upper bound of page staleness for every cache in
the hierarchy.

We believe this scheme is a scalable approach to web
cache consistency, and is essentially an application-level ver-
sion of multicast distribution of invalidations. To clarify this
analogy, consider a design which has a multicast group per
version of a page and in which requesting the page is equiv-
alent to joining the group for that version of the page; when
a version of the page is rendered invalid, invalidations are
sent to the group associated with that version, and multicast
routing makes sure the invalidation ends up at every client
and cache that has that version of the page. This is exactly
what happens in our design, except that our design has no
explicit notion of groups, and all "routing" of invalidations
is done by the caches keeping track of the read pages and
forwarding invalidations for those read pages.8 The use of
heartbeats facilitates robustness and failure detection.

Before proceeding, we elaborate on the use of caching
hierarchies in this design. Our protocol requires application
level routing to route messages among clients, servers and
caches. Cache hierarchies provide a simple way to do this,
but there are other possible cache organizations. The only
requirement is that the cache organization provides source-
independent and acyclic application-level routing of mes-
sages between servers and caches. That is, there must be a
single (application-level) path between a cache and a server,
and when superimposed, the set of paths to a server from
all caches is loop-free. A cache mesh, in addition to a cache
hierarchy, can also accomplish this goal.

We see the tradeoff between a mesh and a hierarchy as
follows. The hierarchy provides a simple mechanism to re-
duce the (application-level) routing state in caches. This
is particularly true at the leaves of the hierarchy, since a
cache only needs explicit information about servers below
it in a hierarchy. A mesh, on the other hand, eliminates
the bottleneck of a root cache at the expense of increased
state at other caches. Since a mesh organization has neither
implicit information about cache location, as is provided by
the default parent entry in a hierarchy, nor aggregable cache
address allocation as is available in IP routing [12], reducing
the routing state at caches is difficult. In addition, the lack
of aggregation implies increased processing and communica-
tion overhead to establish and maintain the routing state.
For example, information about changes in server state must
be propagated to all caches in the mesh.

Given this tradeoff, we see the choice of a hierarchy as
reasonable for the following reasons. First, it places the
largest burden on a smaller number of caches (root or other
high level caches) that are most easily engineered to meet
this load. Engineering all caches to meet the state require-
ments of a mesh is likely a more difficult problem. Sec-
ond, estimates of the load on root caches, provided in Ap-
pendix A, indicate that the load on the root caches is man-
ageable. Therefore, in this paper we describe our design in
the context of a cache hierarchy, nevertheless, it works for

Note that our analogy to application-level multicast is completely
unrelated to our use of real multicast to communicate between parent
and child caches.

both meshes and hierarchies. Moreover, hybrid approaches
are possible; for instance, leaf caches could be attached to a
general mesh topology, reducing the state requirements on
leaves and reducing traffic in the core.

Above we assumed an ideal environment for the sake
of discussion, however, our design is capable of handling
various issues related to more realistic contexts: e.g., clock
skew, finite cache, failure recovery, incremental deployment,
etc. We address these issues briefly in Section 6, and refer
the interested reader to [32] for additional details.

3.3 Adding Push to the Architecture

There is one aspect of performance that caching cannot im-
prove: the latency suffered by the first request to an un-
read page. The concept of pushing data from the server to
caches is of some interest, precisely because it reduces this
first access latency so dramatically. While pushing is not
directly related to caching, it fits within our architecture
and addresses an important web performance issue, so we
have included it in our design. We now briefly present a
simple proposal for pushing. One only wants to push pop-
ular pages that are likely to be read before they are modi-
fied again. Servers could identify pages that are sufficiently
popular that they should be pushed, or clients could request
certain pages be pushed (see [32] for designs of that flavor).
Here we present a more adaptive algorithm that chooses
which pages to push based on the request and writing pat-
tern. We call this scheme selective push.

Rather than pushing the entire page, we push only the
delta's from the previous version of the page, which are typi-
cally rather small [19]. On the way up the caching hierarchy
the updates are sent via reliable unicast. On the way down,
we use a single unreliable multicast sent to a cache's mul-
ticast group. Pushing the page does not remove the need
for sending invalidations for the previous version, since the
data could be lost in transit.

We use a heuristic to decide if a page is sufficiently pop-
ular to be pushed. We do not make a single global decision
about whether or not to push a page; instead, each cache,
and the originating server, make their own independent de-
cision about whether or not to push the page. Every cache
(and the server) keeps a counter Ap (initialized to 0) and a
push bit for each of its pages. If the bit is 1, the cache will
forward all pushed updates of the page to all of its down-
stream caches. The heuristic uses three positive constants:
6, 7, and ß. Whenever a cache receives an invalidate of
page P, it sets Ap — Ap — 7; whenever it receives a re-
quest for P, it sets Ap — Ap + ß. If Ap > 9 for some
threshold 6, the cache (or the server) sets the push bit of
the page to 1; otherwise the push bit is set to 0. In ad-
dition, we let each downstream cache notify its immediate
upstream cache when a pushed page is first read; these read
notifications are forwarded recursively until they hit a read
page. This allows caches who have pushed the page to still
get accurate readings on whether the pushed page was read
downstream before the page was invalidated.

Recent work has addressed the issue of pushing web
pages. Continuous Multimedia Push (CMP) [24] assigns a
unique multicast group to every popular page and contin-
uously multicasts pages to their groups. They found that
multicast push is preferable to caching only when pages are

'Unreliable distribution is sufficient, since pushing affects perfor-
mance and not correctness of the protocol. However, one could use
SRM [11] or other reliable multicast protocol for this distribution; we
have not done so in our simulations to reduce complexity, but it is a
very natural design choice.

very popular and change very frequently. LSAM [27] as-
signs one multicast group per "topic"; popular pages of sim-
ilar topic {e.g., SuperBowl) are multicast to a unique group
when they are created or modified. Our scheme is similar in
spirit to these approaches, but quite different in implemen-
tation. We use application-level "routing" of pushes that
is equivalent to multicast, and we adaptively decide which
pages are sufficiently popular to push.

4 Analytical Performance Evaluation

If we assume, as we will throughout this paper, that caches
are effectively infinite,10 then the behavior of our web caching
consistency protocol can be analyzed on a per-page basis; if
no meta-state or page data is deleted from a cache due to
space considerations, then the message generation behavior
(i.e., invalidations, etc.) for a given page is independent of
what happens for all other pages.11 We now analytically
evaluate the performance of our proposed protocol in a very
simple setting. We consider a single client, a single cache,
and a single server. The client sends out requests (reads)
for a particular page, and the server modifies (writes) that
page.

We compare several different web consistency approaches.
The first, omniscient TTL (OTTL), is not a realistic scheme,
but it provides a useful benchmark; in this scheme caches
magically know when a page has been modified and only
send the IMS request in those cases. The second is poll-
always (PA) which, as we discussed in Section 2, is just a
TTL approach with TTL=0. The other two are variants of
our invalidation scheme: our basic invalidation scheme with
no page pushing (BINV) and our invalidation scheme with
pages always pushed (PINV).12 To make the modeling eas-
ier, we assume there is no delay between when invalidations
are generated and their being sent out (i.e., invalidations
don't wait for the next heartbeat). Thus, all of the protocols
described here provide the same level of strong consistency;
if we ignore page modifications made after the server has re-
sponded to a request and before the response arrives at the
cache, then there are no stale pages delivered by any of these
protocols. We do not study the looser policies of adaptive
TTL or fixed TTL here because their finite timeout peri-
ods makes the analysis intractable; we evaluate them using
simulation in Section 5.

Since none of these algorithms depends on absolute time,
we care only about the patterns of reads and writes arriving
at a cache. We can characterize the behavior of these algo-
rithms by describing which messages get sent upon one of
these four events: a read following a write (WR), a read fol-
lowing a read (RR), a write following a write (WW), and a
write following a read (RW). Let FRR, FRW, FWR, FWW de-
note the average rate at which the patterns RR, RW, WR,
and WW occur, respectively. We model the reading and
writing as Poisson processes of rate r and w, respectively,
and so the frequencies of events can be computed as follows:

FRR = Fww FRW = FWR = T+w '■"■"" r+w > - "■" •"" (r+tu) '
Table 1 summarizes the bandwidth usage, server hit count,

and cache response delay of each protocol for these four
events. The relative performance in terms of server hit
counts and response time holds regardless of the read and

10See Appendix A for further discussion of this assumption.
11 The only degree of interaction is the number of pages over which

the overhead of heartbeats is shared.
12PINV can be seen as a version of -mirroring in which updated

pages are automatically mirrored at remote sites.

OTTL PA BINV PINV

RR delay: 0
bw: 0
he: 0

delay: 2 di
bw: 2b,MS
he: 1

delay: 0
bw: 0
he: 0

delay: 0
bw: 0
he: 0

RW bw: 0 bw: 0 bw: fc,nv bw:
bP+bi„v

WR delay: d\ + di
bw: bp + biMS
he: 1

delay: di + ii
bw: bp+biMS
he: 1

delay: di + d?
bw: bp + bGET
he: 1

delay: 0
bw: 0
he: 0

WW bw: 0 bw: 0 bw: 0 bw:
bp + binv

Table 1: Table of bandwidth, server hit count, and delays
for each of the four events: RR, RW, WR, WW. binv is the
cumulative size of a repeated set of invalidation messages.
bp is the average size of a page, be ET is the size of an HTTP
GET request. 6/MS is the size of an IMS request. bntf is
the size of a read notification message. d\ is one way delay
of IMS, GET, invalidation and responses. d2 is the one way
delay of transmitting a page from server to cache.

write rates. PINV completely eliminates server hits,13 and
BINV and OTTL have the same server hit count, which is
less than PA. The same ordering applies to response time:
PINV has no delays, OTTL and BINV have an intermediate
level of delay, and PA has the most delay. The bandwidth
comparison of these algorithms is less clear and, in some
cases, depends on the values of the various parameters.

For convenience, we assume biMS = binv = bntf = baET,
and let bcti denote this size. Since these are all small packets,
we do not introduce significant errors by ignoring the size
differences. Notice that OTTL uses less bandwidth than
any other scheme. PA uses less bandwidth than BINV if
and only if 2r < w; the tradeoff is between PA sending
an IMS and response on reads following reads versus BINV
sending an invalidate message on writes following reads. PA

uses less bandwidth than PINV if and only if (£)2 < —f*-.
Lastly, PINV uses less bandwidth than BINV if and only if

If one assumes the size of pages dominates the size of the
control messages then the limit of bca = 0 may provide some
insight. When bcti — 0 then all the protocols except PINV
require the same bandwidth (pages are transmitted when-
ever a modified page is first read). BINV has the same per-
formance, in terms of server hit counts and response times,
as the OTTL, our idealized benchmark. BINV has lower
response time and server hit count than PA. This perfor-
mance gap grows as the reading rate increases, since BINV's
advantage is that it need not contact the server (thereby in-
curring server hit counts and delay) when a valid page is
read; when the read rate is much lower than the write rate,
few of the requests find a valid page at the cache, but as the
read rate increases more of these requests find a valid page
at the cache. Thus, if the bandwidth of control messages can
be ignored, then the main performance criteria separating
BINV from PA are server hit counts and response times, not
bandwidth, and these performance gaps become more sig-
nificant as the reading rate increases. PINV eliminates hit
counts and delays but at the cost of increased bandwidth.

In order to make our analysis in this section tractable, we
assumed a very idealized environment and did not consider
every protocol. In the next section we will use simulations
to evaluate all of the consistency protocols in a somewhat

13Of course, this reduction in server hits comes at the cost of the
server pushing the data; however, we believe that the cost of answer-
ing a request may be higher than that of pushing a page update.

more realistic setting.

5 Simulations

In this section we use simulations, performed using the ns [2]
simulator, to evaluate the performance of our proposal, and
to compare it to several other approaches. In particular, we
investigate the performance of our basic invalidation proto-
col (BINV), along with the variants selective push (SINV)
and push-always (PINV), and compare them to poll-always
(PA), adaptive TTL (ATTL), fixed TTL (FTTL) and om-
niscient TTL (OTTL).

We evaluate these various web cache consistency pro-
tocols using two categories of metrics: user-centric metrics
and infrastructure-centric metrics. The user-centric metrics,
which quantify the user's level of satisfaction with the ser-
vice provided, are client response time14 and staleness. We
measure staleness in three ways: the maximum and aver-
age staleness taken over all pages, and the percentage of
pages which are delivered stale (stale hit rate). Most pre-
vious papers on web consistency used stale hit rate as the
only metric for staleness; we prefer to emphasize the aver-
age staleness, since staleness is not a binary property. That
is, how out-of-date a page is, not just whether or not the
page is stale, may be important. The infrastructure-centric
metrics quantify (aspects of) the burden placed on the net-
work infrastructure by these various protocols; we measure
the total network bandwidth (in byte-hops), the bandwidth
at the server, and the rate of (GET and IMS) requests at
the server.

Recall that several of these algorithms have adjustable
parameters that control their performance: the heartbeat
rate h for the invalidation-based algorithms, the TTL value
for FTTL, and the threshold for ATTL. We are not inter-
ested in measuring the tradeoff between staleness and band-
width achievable by each of these protocols. Rather, we
assume low average staleness is a performance requirement
and ask how much bandwidth and delay are incurred by the
protocols to achieve a particular level of staleness. There-
fore, we set the heartbeat rate for BINV to be 10 per minute
and then vary the parameters for FTTL and ATTL so that
they all have roughly equivalent average staleness.15 The
additional parameters required in SINV are set as follows:
7=1 (invalidation constant), ß = 2 (request constant),
6 = 8 (push threshold).

We begin our simulations with a very basic scenario, and
then later describe several additional scenarios. The results
show that our invalidation scheme can achieve the same stal-
eness as the TTL approaches with lower response time and
overhead. The advantages are most pronounced for popular
pages which do not change often.

5.1 Basic Scenario

In this scenario we consider a single two-level caching hier-
archy (5 leaf caches and a top-level cache) embedded in a
simple network topology, as shown in Figure 3. As we dis-
cussed in Section 4, if we treat the caches as infinite then
the behavior attributed to each page is independent of other
pages. Consequently, we choose the workload in our basic
scenario to have only a single page so that we can focus
more narrowly on how the performance of these consistency

14The latency between sending a request and complete receipt of
the response.

15We are not able to accomplish this in all cases. We elaborate on
this below.

Top-tovel cache

Figure 3: Network topology in the basic scenario. All links
between server/clients and leaf caches have 10Mb bandwidth
and 2ms delay. All links among caches and the dummy node
have 1.5Mb bandwidth and 50ms delay.

protocols depends on the reading and writing patterns of a
page. This single page, chosen to be 1KB in size, is read and
written according to Poisson processes with average rates r
(per-client) and w, respectively. We consider two cases: a
write-dominated (WD) page, where the read rate (per-client)
is one per 2.5 hours and the write rate is 1 per 15 minutes
(f = 10); and a read-dominated (RD) page, where the read
rate (per-client) is 1 per 2 minutes and the write rate is 1
per 10 minutes (^ = 5).

We now describe some of the simulation details. The
IMS and GET messages are 43 bytes, and each invalidation
record adds an additional 32 bytes to a heartbeat. Because
in reality the header of a heartbeat is amortized over many
pages, we ignore it in these single-page simulations. The
RD and WD simulations were run for approximately one
day and five days (simulation time), respectively, with the
initial 7 and 15 minutes taken to be a warmup period (for
the RD and WD simulations, respectively).

Tables 2 and 3 show the results for RD and WD pages,
respectively. Because of the sensitivity of the results to the
tuning parameters, exactly matching the average staleness
across protocols is difficult. When confronted with this, we
chose parameter values for ATTL and FTTL that yielded
slightly higher average staleness than our BINV benchmark
(e.g., 8.37 and 11.9 msec versus 8.06 msec in Table 2). This
gives us a lower bound on the overhead and delay incurred
for the ATTL and FTTL to match the staleness of BINV.
We first discuss the RD case, and begin by comparing BINV
to the TTL-style protocols. Compared with PA, BINV uses
26% less bandwidth, has 27 times less server hit count and
10 times faster response time. Because FTTL and ATTL
are required to maintain the same low staleness as BINV,
they both have small TTL values (ATTL threshold equals
0.0105 and FTTL time-to-live equals 9.5 seconds) and there-
fore behave like PA. Their bandwidth is slightly higher and
their response time and server hit count are much higher
than those of BINV. BINV's performance is similar to that
of OTTL, but it has slightly higher bandwidth consumption
due to its invalidation overhead. Comparing BINV to PINV,
we find, as expected, that pushing data reduces response
time and eliminates server hits while increasing bandwidth
by only about 6%. Because the read rate is so much higher
than the write rate, updated pages are eventually fetched
from the server, so pushing them out immediately for this
read-dominated workload does not incur additional band-
width overhead. SINV's performance is very close to that
of PINV.

Turning to the WD case, we see that the problem of
matching the average staleness across the tunable proto-
cols is exacerbated. This is due to the fewer number of
stale hits (in absolute terms) in a write-dominated work-

BINV ATTL
(0.0105)

FTTL
(9.5)

OTTL PA SINV PINV BINV ATTL
(0.01)

FTTL
(12)

OTTL PA SINV PINV

AS 8.06 8.37 11.9 0.00 0.00 0.34 0.09 AS 15.6 16.2 17.5 0.00 0.00 2.47 0.88
MS 4.95 17.00 8.43 0.00 0.00 1.08 0.21 MS 6.44 26.46 10.47 0.00 0.00 1.25 0.94
SR 0.38 0.15 0.27 0.00 0.00 0.06 0.05 SR 0.54 0.12 0.34 0.00 0.00 0.26 0.16
TB 6.90 8.73 8.42 5.75 9.33 7.35 7.38 TB 18.16 23.04 22.67 15.55 23.83 19.45 19.53
CR 0.06 0.53 0.48 0.05 0.61 0.04 0.04 CR 0.18 0.49 0.44 0.12 0.53 0.12 0.12
SH 123 2684 2324 124 3300 8 0 SH 124 2290 1880 126 2583 8 1
SB 158.4 694.1 617.4 147.9 824.2 153.9 153.6 SB 158.6 607.2 560.9 150.3 694.5 154.0 153.6

Table 2: Statistics of a read-dominated page in the basic
scenario. AS: average staleness (millisecond); MS: maxi-
mum staleness (second); SR: stale hit rate (%). TB: total
bandwidth (MB-Hop). CR: client response time (second).
SH: server hits. SB: server bandwidth (KB).

BINV ATTL
(0.1)

FTTL
(80)

OTTL PA SINV PINV

AS 1.22 544.4 13.1 0.00 0.00 1.22 0.00
MS 0.29 76.19 3.11 0.00 0.00 0.29 0.00
SR 0.42 0.84 0.42 0.00 0.00 0.42 0.00
TB 1.40 1.41 1.41 1.35 1.42 1.40 6.16
CR 0.41 0.60 0.61 0.46 0.62 0.41 0.26
SH 155 224 230 151 236 149 1
SB 184.7 193.7 194.9 179.1 197.2 184.8 275.4

Table 3: Statistics of a write-dominated page in the basic

load. Nonetheless, the data show that BINV's performance
advantage is now reduced. For the time-to-live value shown
in the table, FTTL has worse staleness than BINV, nearly
the same bandwidth but only about 50% longer response
time and 50% higher server hit count. ATTL has worse
average staleness while the other metrics are comparable to
FTTL. PA has performance very similar to FTTL (reflecting
the very small TTL used in FTTL). Again, PINV achieves
very low response time and server hit count, but this time
at the cost of a factor of 4 in bandwidth consumption. Note
that SINV behaves like BINV in this WD case, but behaved
more like PINV in the RD case; this was the goal of the
adaptive algorithm in SINV, to actively push pages only
when they are read-dominated.

These results are completely consistent with the theo-
retical analysis of Section 4. The major benefits of inval-
idation schemes (over TTL-based schemes) are savings of
response time and server hit count, and these benefits are
much more pronounced in the read-dominated case. Adding
push increases these advantages further, but at the cost of
significantly more bandwidth in the WD case.

In this basic scenario, and in each of the following scenar-
ios, we assume that the heartbeat rate h is greater than the
write rate w times the number of cache-hops H. This will
likely be true for the vast majority of pages, however there
are some pages, such as those containing stock quotes, that
will change faster than jj. If such pages are also popular,
our invalidation approach will deliver a significant fraction
of pages stale (since the invalidations are still in transit from
server to leaf cache); see [32] for more details. Such pages
are better delivered using multicast techniques, such as Con-
tinuous Multicast Push [24].

5.2 More Complex Topology

In the second scenario, to test the effect of having a more
complicated network topology, we took a 3-level caching hi-
erarchy (leaf, intermediate, and top-level), with a branching

Table 4: Statistics of a read-dominated page in a more com-
plex topology.

BINV ATTL
(0.01)

FTTL
(95)

OTTL PA SINV PINV

AS 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MS 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TB 6.38 6.47 6.45 6.24 6.48 6.38 26.68
CR 0.76 0.91 0.89 0.76 0.91 0.76 0.68
SH 131 192 186 130 193 131 1
SB 156.1 156.8 156.5 154.2 161.0 156.1 274.8

Table 5: Statistics of a write-dominated page in a more
complex topology.

ratio of 2 at each level, and embedded it into a 300 node
random transit-stub network topology created by the GT-
ITM [5] topology generator. The top-level cache and all.
intermediate caches are on transit nodes. All leaf caches are
in the stub network associated with the transit node where
the parent intermediate cache resides, and each intermediate
cache is in a different stub network.

Tables 4 and 5 present the results from simulations on
this topology with RD and WD pages, respectively. The
basic relative trends in the data appear unaffected by intro-
ducing a more complicated topology. For the RD page, the
TTL approaches have worse response time and server hit
counts than BINV, and the push approaches offer reduced
response time, server hit counts, and staleness without in-
curring any additional bandwidth. Compared with the RD
case, BINV's advantages are greatly reduced in the WD case.

5.3 More Complex Workload

The Poisson workload used so far is not intended to be an
accurate model of reality; rather, it is merely a simple test
case. We have augmented the simulations presented here
with simulations on a wide variety of other workloads. We
have considered compound pages, where the page contains
multiple objects (such as embedded graphics). We have also
considered reading and writing processes that are heavy-
tailed and processes that are uniformly distributed. The re-
sults from these simulations are presented in [32]. Those re-
sults were qualitatively similar to these presented here, and
space limitations prevent us from including them. However,
we do want to present data from one additional workload.

Our previous data was generated using artificial read and
write processes. To get a sense of a more realistic scenario,
we now consider a trace-driven workload consisting of the
read sequence of a single page extracted from a real trace.
We pick two pages, one popular and one unpopular, from a
5-day segment of the UCB Home-IP trace [14], and apply
the consistency algorithms to the two pages. The popular
page has 62,582 requests, and the unpopular page has 21.
No page modification data is available for these traces, so we
used a Poisson model with an average of one modification

BINV ATTL
(0.0015

FTTL
(8)

OTTL PA SINV P1NV BINV ATTL
(0.013)

FTTL
(12)

OTTL PA SINV PINV

AS 1.32 1.36 1.65 0.00 0.00 0.05 0.01 AS 9.88 12.5 12.2 0.00 0.00 0.73 0.43
MS 4.69 10.90 8.76 0.00 0.00 2.11 0.18 MS 7.15 20.77 11.42 0.00 0.00 1.81 1.38
SR 0.07 0.04 0.06 0.00 0.00 0.01 0.01 SR 0.41 0.27 0.30 0.00 0.00 0.09 0.06
TB 27.16 75.15 62.07 22.03 91.75 27.07 27.07 TB 7.16 9.19 8.88 6.01 9.92 7.56 7.58
CR 0.01 0.45 0.33 0.01 0.60 0.01 0.01 CR 0.09 0.74 0.67 0.09 0.93 0.05 0.05
SH 119 39087 25182 119 58124 2 1 SH 128 2543 2154 128 3260 8 1
SB 72.6 8342 5380 41.8 12381 64.8 64.1 SB 198.7 754.5 669.8 180.5 936.3 194.8 192.3

Table 6: Statistics of a popular page in the UCB Home-IP
trace.

Table 8: Statistics of a read-dominated page in the basic
scenario with 3% per-link loss rate.

Table 7: Statistics of an unpopular page in the UCB Home-
IP trace.

BINV ATTL
(0.2)

FTTL
(2800)

OTTL PA SINV PINV BINV ATTL
(0.03)

FTTL
(135)

OTTL PA SINV PINV

AS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 AS 34.9 544.4 333.1 0.00 0.00 34.9 1.22
MS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MS 4.40 76.19 76.19 0.00 0.00 4.40 0.29
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SR 0.84 0.84 0.84 0.00 0.00 0.84 0.42
TB 279.8 281.8 279.2 279.2 283.0 279.8 2781.5 TB 1.59 1.57 1.54 1.50 1.59 1.59 6.27
CR 0.61 0.80 0.80 0.77 0.83 0.61 0.55 CR 0.53 0.93 0.95 0.75 0.89 0.53 0.36
SH 18 19 21 17 21 18 0 SH 155 239 222 151 239 149 1
SB 42.5 43.1 43.5 42.6 43.5 42.5 217.5 SB 224.3 236.5 219.1 223.0 238.8 212.1 316.4

Table 9: Statistics of a write-dominated page in the basic
scenario with 3% per-link loss rate.

per hour (based on data in [10]). With this modification
rate, the popular page is read-dominated, and the unpopular
page is write-dominated. Tables 6 and 7 present the results
from simulations for these two pages.

These results are consistent with our previous results.
The only novelty here is the fact that for the popular page
the IMS overhead of the TTL approaches is more evident.
In order to maintain the same staleness as BINV, ATTL
required 3 times as much bandwidth as BINV, and FTTL
more than doubled bandwidth.

5.4 The Effect of Packet Losses

Up to this point, our simulations do not include any packet
losses. We now return to our basic scenario and introduce
per-link packet loss rates in order to evaluate the effect of
packet losses on the consistency protocols.

In our protocol, both invalidations and pushed updates
are sent out via unreliable multicast. When packet loss is
present, we expect that performance will degrade. Because
invalidations are piggybacked in several consecutive heart-
beats, but pushes are sent only once, we expect that inval-
idations are less vulnerable to packet loss than pushes. In
order to test these expectations, we introduced 3% per-link
losses into our basic scenario. For the network shown in
Figure 3, 3% per-link loss rate corresponds to end-to-end
loss rates between 3% and 6% (which is intended to match
the loss rates of between 2.65% and 5.28% found in [22]).
Results are shown in Tables 8 and 9; the data presented are
averages over 9 runs.

Packet loss increases the bandwidth and response time
for all the protocols. BINV's stale hit rate and average stal-
eness increase slightly, and the maximum staleness increases
significantly, because the lost invalidations need at least an-
other heartbeat interval to reach leaf caches. SINV behaves
similarly to BINV but, as expected, PINV, is more signifi-
cantly affected by packet loss; its average staleness and max-
imum staleness are increased substantially.

When loss rate grows even bigger, some caches will time
out due to consecutively lost heartbeats, and our failure re-
covery mechanism will be triggered (see Section 6). This will

impose a transient increase in response latency (because all
affected cached pages are invalidated, and an IMS will be
generated by the next request).

5.5 Related Work

There have been several recent papers comparing the effec-
tiveness of TTL and invalidation approaches: Worrell [30],
Gwertzman and Seltzer [15], and Cao and Liu [6]. Wor-
rell claimed that when FTTL has similar bandwidth con-
sumption as unicast invalidation, it has 20% stale hits, and
therefore concluded that unicast invalidation is preferable
for strong consistency. Gwertzman and Seltzer argued that
bimodal lifetime of web pages makes ATTL the preferred
choice; their trace-driven simulation showed that ATTL had
few stale hits (<5%) and took much less bandwidth than
unicast invalidation. Using real systems in trace-driven ex-
periments, Cao and Liu confirmed that ATTL had few stale
hits, but they found that'ATTL and unicast invalidation had
similar bandwidth usage. Moreover, they found that unicast
invalidation at times led to increased latency because of the
message processing overhead at the server.

Our results differ from those in previous work for a cou-
ple of reasons. Compared to simple unicast invalidation, our
invalidation protocol can avoid much of the redundant inval-
idation traffic. Thus, in most cases, it takes less or the same
bandwidth as ATTL while achieving the same level of page
staleness and resulting in much less server load and client
response time. At the same time, our work is somewhat
complementary to the previous investigations. Because we
focus on single-page workloads when evaluating this pro-
tocol, we are able to identify more precisely the effect of
different reading and writing processes on the results. In ad-
dition, we focus on average staleness, rather than the stale
hit rate, as the crucial staleness metric. Finally, because we
assume that perishable pages require very low staleness, we
focus our simulations on operating regimes with much lower
staleness measures than previous studies.

6 Additional Design Issues

We have presented the basic design of our protocol in an
ideal environment with infinite caches that never fail, a sin-
gle stable hierarchy with synchronized clocks, and with all
pages included in the architecture. In this appendix we dis-
cuss additional aspects of the design to cope with more re-
alistic settings.

Clock Skew In Section 3 we assumed that the clocks in the
caching hierarchy were perfectly synchronized. However, if
the maximal clock skew between a cache and its upstream
and downstream neighbors is bounded by e then the cache
timeout period should be T—e instead of T. We assume that
in typical cases T >• e so this modification in the protocol
will have little impact.

Finite Cache Caches are, in reality, finite. While we argue
in Appendix A that our design does not require unrealisti-
cally large amounts of state in caches, it is important that
the design can cope with situations where the cache has ex-
ceeded its capacity. First, to keep the invalidation contract
in force, a cache need only remember the meta-data (the
URL and the last-modification time) about the page, and
can freely discard the actual contents of the page. Second,
if the cache is forced to discard the meta-data itself, then
it must send an invalidation for that page to its children
and/or its parent depending on whether the page has been
read from those directions. While this may impact perfor-
mance, the correctness of the protocol is unaffected.

Failure Recovery The algorithm as described deals with
the case where a cache fail-stops. However, it does not de-
scribe how a cache can recover from a failure. We require
that caches recover in a naive state; that is, they invalidate
all pages in the cache and send a LEAVE message to their
parent and child caches. This allows all affected invalidation
contracts to be broken before the cache reattaches. We have
the following property:

Property 4 As long as caches that have failed recover in a
naive state then the three properties in Section 3.1 hold even
in the presence of failures and recoveries.

One remaining problem is how to recover the server rout-
ing entries that were evicted during a partition or lost during
a failure. There are two cases. First, if a parent cache Cl
times out a child cache C2 from whom it sourced servers, it
needs to send a JOIN-QUERY after hearing from C2 again.
Cl can piggyback the JOIN-QUERY in a heartbeat, just as
it does with invalidations. Second, if C2 times out Cl, C2
needs to send Cl a JOIN which contains its server routing
table, i.e., all of the servers from which it has heard JOINs.
In both cases, when Cl recovers its routing table, it needs
to notify its parent of its current routing table.

Direct Request Using a hierarchy (or cache mesh) to for-
ward requests to servers can introduce significant delay [1].
Because requests in our hierarchy might travel both up and
down the hierarchy, this risk of delay is higher. However,
we can extend our design so that the client's primary cache
can, upon a cache miss, go directly to the server to get
the data. When the cache receives the data, it then, after
handing the data to the client, establishes the invalidation
contract by sending a pro forma request up the hierarchy.

The pro-forma request is used merely to establish the re-
quired correct state in the hierarchy, and does not elicit a
reply of data from the caches or the server. The pro-forma
carries with it the Last-Modified time of the page returned
by the server. It stops being forwarded when it hits a cache
which has that version of the page, or meta-data for it, in
residence. If the pro-forma hits a cache (or server) that has
a more recent version of the page in residence, an invalidate
is generated and sent back down the path. If the pro-forma
hits a cache with a valid older version of the page, no action
need be taken since an invalidate is on the way. In this man-
ner, the caching hierarchy provides invalidations while the
delivery of actual web pages bypasses this hierarchy. This
alleviates some of the disadvantages of a web caching hierar-
chy, such as parent cache overloading and increased response
time [26].

Multiple Hierarchies and Multi-Homing There will obvi-
ously be multiple caching hierarchies in the Internet, al-
though we expect the number to be relatively limited (less
than, say, 100). Our design can easily be extended to handle
these multiple hierarchies by having the Top-level cache of
one hierarchy contact caches in other hierarchies. This can
be accomplished using a single multicast group comprised
of the members of all Top-level caches. Each top-level cache
multicasts its heartbeats to this group, as well as to its multi-
cast group in its own hierarchy. Whenever a top-level cache,
call it TLC1, gets a request for an unknown web server, it
queries the server about its top-level cache, call it TLC2,
and then forwards the request to TLC2 as if TLC2 were a
parent cache.

While our design requires that a server only attaches to
a single cache in a given hierarchy, we allow it to attach to
multiple hierarchies; we call this a multi-homed server. The
design works without significant modification.

Supplying Service to a Subset of Pages We do not expect
that all pages will need the level of consistency provided by
our architecture. In order to provide invalidations on a sub-
set of all web pages, we propose a new HTTP header field
that describes whether or not the page should be subject
to this consistency architecture. The simplest approach is
to have the server set this field. There are some situations
where it might be appropriate to allow a client to set this
field, thereby requesting invalidation service for the page.
Of course, the server must be willing to support this ser-
vice by participating in the sending out of heartbeats and
invalidations. There are some subtle issues in both of these
approaches which are too detailed to discuss here but are
covered in [32].

Deploying in Existing Cache Hierarchies In order to im-
plement our protocol in existing cache hierarchies, we can
enhance ICP [29], the de facto inter-cache communication
protocol, to support our consistency protocol. Four new
types of ICP messages are needed: heartbeat, JOIN, LEAVE,
request notification, and PUSH. If direct request is desired,
another message type, pro forma is needed. Because these
messages do not interact with existing ICP messages, adding
them to ICP is straightforward.

7 Conclusion

In this paper we have presented and evaluated a web cache
consistency protocol based on invalidation. Our proposal

builds on previous work in the literature, combining the
ideas of multicast invalidations with volume leases and in-
corporating them within a caching hierarchy to make the
design more scalable. Our performance evaluation suggests
that when the heartbeat rate h is larger than the writing
rate times the number of hops (wH), then the invalidation
approach is very effective in keeping pages relatively fresh.
When pages are write-dominated, then the invalidation ap-
proach offers few advantages since all the protocols, if they
are to ensure freshness, must go back to the server to get a
valid page. However, when pages are read-dominated, which
we think will be the common case for perishable pages (e.g.,
CNN and other news pages), then the invalidation approach
offers significant reductions in server hit counts and client re-
sponse time. In both cases, our invalidation scheme requires
similar or less bandwidth than the TTL-style protocols.

Our analysis focused exclusively on the technical aspects
of the protocol. However, the remaining questions, and the
barriers to deployment, may be more economic and institu-
tional in nature. Our design uses a set of relatively stable
and well-managed caching hierarchies (though it can work
with other cache organizations). Currently this does not
describe the current state of web caching, and so assuming
the existence of caching hierarchies may seem like a dubi-
ous foundation on which to build our architecture. How-
ever, the institutional trends in ISPs appear to be one of
consolidation, and in the future these large ISPs may very
well provide such a caching hierarchy as part of their ser-
vice (and the mirroring service provided by ©Home is some
evidence in this direction). Moreover, the hierarchy we en-
vision does not require central management (since parents
need not know the list of their children explicitly) nor must
it be deployed ubiquitously to be useful, so the barriers to
its realization are somewhat reduced.

In addition, the deployment of any such a web cache
consistency protocol would only be undertaken if ISPs de-
termine that there is sufficient demand for relatively fresh
versions of perishable pages. It seems clear that perishable
pages comprise only a small fraction of current web usage.
On this basis one might be tempted to dismiss the consis-
tency problem as unimportant. However, if the web is to
serve as the foundation on which much of the information
infrastructure is built, then perhaps it should be augmented
to meet the needs of this class of pages.

Clearly the whole issue of deployment, depending as it
does on such unknowables as the future usage and economics
of the web, and the nature of the ISP business, is far beyond
our ken. We only caution that the growth path of the web
caught many of us by surprise, and we should be humble in
our confidence to predict, based on its current usage and ex-
isting institutional arrangements (where we expect the case
for its deployment is weak) whether the future of the web
would be significantly aided by deploying such a consistency
architecture, and whether it is organizationally feasible. Our
goal here was merely to demonstrate that it is indeed tech-
nically feasible.

References

[1] BAENTSCH, M., BAUM, L., MOLTER, G., ROTHKUGEL, S.,
AND STURM, P. World-Wide Web caching - the applica-
tion level view of the Internet. IEEE Communications
Magazine 35, 6 (June 1997). http://www.uni-kl.de/AG-
Nehmer/Projekte/GeneSys/Papers/communic.ps.

[2] BAJAJ, S., BRESLAU, L., ESTRIN, D., FALL, K., FLOYD, S., HAL-

DAR, P., HANDLEY, M., HELMY, A., HEIDEMANN, J., HUANG, P.,
KUMAR, S., MCCANNE, S., REJAIE, R., SHARMA, P., SHENKER, S.,

VARADHAN, K., YU, H., XU, Y., AND ZAPPALA, D. Virtual Inter-
Network Testbed: Status and research agenda. Tech. Rep. 98-
678, University of Southern California, July 1998. ns web site:
http://mash.cs.berkeley.edu/ns.

[3] BAKER, M., HARTMAN, J. H., KUPFER, M. D., SHIRRIFF, K. W.,
AND OUSTERHOUT, J. Measurements of a distributed file system.
In Proceedings of the ACM Symposium on Operating Systems
Principles (Oct. 1991), pp. 198-221.

[4] BLAZE, M. A. Caching in Large-Scale Distributed File Systems.
PhD thesis, Princeton University, Jan. 1993.

[5] CALVERT, K., DOAR, M., AND ZEGURA, E. Modelling Internet
topology. IEEE Communications Magazine (June 1997).

[6] CAO, P., AND LIU, C. Maintaining strong cache consistency in the
World-Wide Web. In Proceedings of the International Confer-
ence on Distributed Computing Systems (May 1997), pp. 12-21.

[7] CATE, V. Alex - a global filesystem. In Proceedings of the 1992
USENIX File System Workshop (Ann Arbor, MI, May 1992).

[8] CHANKHUNTHOD, A., DANZIG, P., NEERDAELS, C., SCHWARTZ, M.,
AND WORRELL, K. A hierarchical Internet object cache. In
USENIX Conference Proceedings (1996), pp. 153-63.

[9] COHEN, E., KRISHNAMURTHY, B., AND REXFORD, J. Improving end-
to-end performance of the Web using server volumes and proxy
filters. In Proceedings of the ACM SIGCOMM (1998).

[10] DOUGLIS, F., FELDMANN, A., KRISHNAMURTHY, B., AND MOGUL, J.
Rate of change and other metrics: a live study of the world wide
web. Tech. Rep. 97.24.2, AT&T Labs, Dec. 1997. A shorter
version appeared in Proc. of the 1st USENIX Symposium on
Internet Technologies and Systems.

[11] FLOYD, S., JACOBSON, V., Liu, C, MCCANNE, S., AND

ZHANG, L. A reliable multicast framework for light-
weight sessions and application level framing. ACM/IEEE
Transactions on Networking 5, 6 (Dec. 1997), 784-843.
ftp://ftp.ee.lbI.gOv/papers/srmJon.ps.Z.

[12] FORD, P. S., REKHTER, Y., AND BRAUN, H.-W. Improving the
routing and addressing of IP. IEEE Network Magazine 7, 3
(May 1993), 10-15.

[13] GRAY, C, AND CHERITON, D. Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency. In Proceed-
ings of the ACM Symposium on Operating Systems Principles
(1989), pp. 202-210.

[14] GRIBBLE, S. D., AND BREWER, E. A. System design issues for In-
ternet middleware services: Deductions from a large client trace.
In Proceedings of The USENIX Symposium on Internet Tech-
nologies and Systems (Dec. 1997).

[15] GWERTZMAN, J., AND SELTZER, M. World-Wide Web cache consis-
tency. In Proceedings of the USENIX Conference Proceedings
(Copper Mountain Resort, CO, USA, Dec. 1996), pp. 141-51.

[16] INKTOMI INC. Inktomi Traffic Server, 1998.
http://www.inktomi.com/products/traffic/product.html.

[17] KUMAR, K., RADOSLAVOV, P., THALER, D., ALAETTINOGLU, C,
ESTRIN, D., AND HANDLEY, M. The MASC/BGMP archi-
tecture for inter-domain multicast routing". In Proceedings
of the ACM SIGCOMM (Vancouver, Canada, Sept. 1998).
http://catarina.usc.edu/estrin/papers/masc-bgmp-arch.ps.

[18] LAWRENCE, S., AND GILES, C. L. Searching the Web: General and
scientific information access. IEEE Communications Magazine
37, 1 (Jan. 1999), 116-121.

[19] MOGUL, J., DOUGLIS, F., AND FELDMANN, A. Potential benefits
of delta encoding and data compression for HTTP. In Pro-
ceedings of the ACM SIGCOMM (Sept. 1997), pp. 181-194.
http://www.acm.org/sigcomm/sigcomm97/papers/pl56.ps.

[20] NETCRAFT. The Netcraft Web server survey.
http://www.netcraft.com/Survey/.

[21] NUA INC. Nua Internet surveys.
http://www.nua.ie/surveys/howjnany_online/index.html.

[22] PAXSON, V. End-to-end Internet packet dynamics. In Proceedings
of the ACM SIGCOMM (1997).

[23] RODRIGUEZ, P., AND BIERSACK, E. W. Continuous multicast dis-
tribution of Web documents over the Internet. IEEE Network
Magazine (March-April 1998).

[24] RODRIGUEZ, P., BIERSACK, E. W., AND ROSS, K. W. Improving
the WWW: Caching or multicast. In Proceedings of The Third
International WWW Caching Workshop (June 1998).

[25] ROSENSTEIN, A., Li, J., AND TONG, S. Y. MASH: The multicasting
archie server hierarchy. SIGCOMM Computer Communication
Review 27, 3 (July 1997).

[26] TEWARI, R., DAHLIN, M., VIN, H., AND KAY, J. Beyond hierar-
chies: Design considerations for distributed caching on the in-
ternet. Tech. Rep. CS98-04, Department of Computer Sciences,
UT Austin, May 1998.

[27] TOUCH, J. The LSAM proxy cache - a multicast distributed vir-
tual cache. In Proceedings of The Third International WWW
Caching Workshop (June 1998).

[28] VAHDAT, A., EASTHAM, P., AND ANDERSON, T. WebFS: A global
cache coherent filesystem. Tech. rep., Dept of EECS, UC Berke-
ley, Dec. 1996.
http://www.es. berkeley.edu/" vahdat/webfs/ webfs.html.

[29] WESSELS, D., AND CLAFFY, K. ICP and the Squid web cache.
IEEE Journal of Selected Areas in Communication 16,3 (Apr.
1998).

[30] WORRELL, K. J. Invalidation in large scale network object caches.
Master's thesis, Department of Computer Science, University of
Colorado, 1994.

[31] YIN, J., ALVISI, L., DAHLIN, M., AND LIN, C. Using leases to sup-
port server-driven consistency in large-scale systems. In Pro-
ceedings of the 18th International Conference on Distributed
Computing System (May 1998).

[32] Yu, H., BRESLAU, L., AND SHENKER, S. A scalable web cache
consistency architecture. Tech. Rep. 99-708, Dept. of Comp.
Sei., Univ. of Southern Calif., June 1999.

[33] ZHANG, L., FLOYD, S., AND JACOBSON, V. Adaptive web caching.
Project proposal, Feb. 1997.
http://irl.cs.ucla.edu/AWC/proposal.ps.

A Estimation of State and Bandwidth Requirements

Our architecture requires cache state and inter-cache com-
munication in order to provide loose consistency. In this
section we provide some very crude estimates on the cache
state and inter-cache bandwidth required by our scheme.
These estimates, which should not be taken as a definitive
quantitative statement about the overhead of the protocol,
indicate that the scheme is indeed feasible.

A.l State Requirements

Our protocol introduces two additional items into the cache
state: page metadata and the server routing table. We first
estimate the amount of metadata that might be stored in
a cache. If we assume that that a top-level cache holds no
more than 320 million pages (the estimate of all publicly
indexable web pages [18]), and one meta-data record con-
tains 80 bytes (which is enough for a URL, last-modification
time, push counter and several flags), this results in about
25.6GB of metadata. This is quite small compared to mod-
ern large caches [16], and is dwarfed by the storage require-
ments needed to store the actual pages.

Next, we estimate the size of the server routing table.
The top-level cache, if there is only a single hierarchy, has a
list of every server. We assume there are roughly 4 million
web servers (Netcraft's web server survey [20]). The result-
ing size of the server routing table is on the order of 32MB,
assuming 4 bytes to store each server address and 4 bytes for
each child cache address. This again poses no challenge to
well-equipped caches. Thus, for the purposes of analyzing
our design, we can reasonably assume that caches are effec-
tively infinite (at least as far as meta-data is concerned).

A.2 Invalidation traffic

Our design generates an invalidation every time a read page
is written, and we now seek to estimate how much traffic this

produces. Let's characterize every page P by a reading rate
Tp and a writing rate wp. The number of invalidations gen-
erated by a page is bounded above by raax[rp,wp]; we will
call a page write-dominated if rp < wp and read-dominated
if rp > wp. A bound on the invalidation rate for a given
cache is Y"]D . . max£rp,u;p] where the sum is over all £—*P in cache L ' i

valid pages in the cache.
We first estimate the traffic seen at a top-level cache.

If there is significant logical locality to requests, so that
pages tend to be more frequently requested by clients close
to them in the hierarchy, then there will be many pages
that are never cached at the top-level cache. However, we
have no way of estimating the extent of this effect, and so
will assume the worst case that all pages are indeed cached
at the top-level cache. We estimate that the entire Web
has 1 billion pages, which is three times the size of pub-
licly indexable pages [18]. To estimate rp and wp, we use
numbers from the DEC proxy traces cited in [10]. This
trace covers a large population (7400 distinct clients), and
contains 505,000 requests of 204,000 distinct pages over a
period of 2 days. Most pages, roughly 80%, have only
one access in the trace, and we consider these to be write-
dominated pages. It is difficult to estimate rp from the
trace due to its limited duration. Instead, we use the av-
erage number of such pages read by each user, then extend
that rate to the web population. In the DEC trace, about
50% of the requests went to these write-dominated pages.
We can compute the read rate of such pages by each user:
0-5 * SSIgSO * 2t24i36oo = 0.0002 (request/user/second). We
now extend this to the entire web user population. It is es-
timated that the web has 151 million users as of December,
1998 [21], and we assume that 1% of these users are as active
as those in the DEC trace, and the rest are 100 times less ac-
tive. This yields a total sum of rp over all write-dominated
pages of 0.0002 * (1.51 + 149.49 * 0.01) * 106 = 601 (invali-
dation/second).

We consider the other 20% of pages read-dominated.
Prom figures in [10], we conservatively estimate their av-
erage change rate as once every 1 hour (wp = 0.00028 per
second). Without any evidence on which to base a more ed-
ucated guess, we conservatively assume that 0.1% of all Web
pages are sufficiently popular to be read-dominated. Recall
we estimate there are 1 billion web pages, so the sum of wp
over all read-dominated pages is 0.00028 * 0.001 * 109 = 280
(invalidations/second).

If we assume that each invalidation is repeated 5 times,
and 32 bytes per invalidation, this yields a total traffic level
of (280 4- 601) * 1280 = 1.1Mbps. Repeating this calculation
for the AT&T trace in [10] yields an estimate of 1.7Mbps.

We next estimate the traffic at an intermediate-level cache.
We assume that the DEC and AT&T traces are reasonable
representatives of intermediate-level caches; using their es-
timates of the number of readers and the number of pages
in residence (rather than the global numbers used in the
top-level estimates), we arrive at estimates of 75Kbps and
90Kbps for the DEC and AT&T traces, respectively.

The above estimates assume all pages are included in
the consistency architecture; we do not expect that most
pages will be considered perishable, and so the consistency
architecture will be carrying all web pages only a small frac-
tion of the total web traffic. Moreover, we completely ne-
glected any locality of reference, and made rather generous
assumptions about the number of popular pages (.1% of the
web!). Nonetheless, in spite of these rather pessimistic as-
sumptions, the overall bandwidth levels are rather reason-
able.

