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ABSTRACT 

The finite element absolute nodal coordinate formulation is used in this investigation to 

study the centrifugal stiffening effects on rotating two-dimensional beams. It is demon- 

strated that the geometric stiffening effects can be automatically accounted for in the above 

mentioned finite element formulation by using an expression for the elastic forces obtained 

with a general continuum mechanics approach. The Hill equation that governs the vibration 

of the rotating beam is obtained in terms of a set of generalized coordinates that describe 

the beam displacements and slopes. Under the assumption of small deformation, the Hill 

equation is linearized, and the complete solution is obtained and used to demonstrate an- 

alytically that such a solution does not exhibit instabilities as the angular velocity of the 

beam increases. The results obtained using this finite element procedure are compared with 
the results reported in the literature. 



1    INTRODUCTION 

The dynamic behavior of rotating beams has been the subject of interest in many engineering 

applications such as helicopter blades, flexible robot arms, turbine blades and turbo-engine 

blades. In many of these applications, flexible beams are rotating at high angular velocities, 

and as a result the effects of the inertia centrifugal and Coriolis forces becomes significant. 

Furthermore, the centrifugal forces lead to a higher bending stiffness of the beam as compared 

to the case of a non-rotating beam. The rotation of the beam produces a geometric stiffening 

effect that is referred to in the literature as the centrifugal stiffening. Extensive research has 

been conducted in the past in order to properly account for this effect. 

In the field of flexible multibody dynamics, the most widely used approach is the floating 

frame of reference formulation. In this formulation, a reference coordinate system is assigned 

to each body in the system. The motion of this coordinate system (also called shadow frame) 

describes the gross motion of the body. Small deformations are measured with respect to this 

body coordinate system, and the total motion of the body is determined as the sum of the 

gross motion and the small deformation. The floating frame of reference formulation has been 

proved to be efficient in the analysis of large displacement/small deformation problems. For 

these problems and until recently, linear strain-displacement relationships were considered 

sufficient for the description of the small deformation. Kane et al [11] showed that under the 

described conditions, the results obtained using the floating frame of reference formulation 

incorrectly exhibit instability that is not present in the physical model. Simo and Vu-Quoc 

[18] demonstrated that, in the case of a rotating beam, linear theories predict inadmissible 

destabilization effects, even for extremely stiff beams. They showed that a second-order 

theory solves the problem. While the cause for this instability has not been completely 

explained, several methods have been proposed to successfully solve the problem [3, 4, 6, 11, 

18, 19]. 

In general, it is believed that the instability of the elastically linear models is due to 



the neglect of the coupling between the longitudinal and transverse displacements, so that 

the bending deformation of the beam does not cause any variation in the longitudinal dis- 

placement [11]. Wu and Haug [21] presented a solution based on substructuring the flexible 

bodies, and used bracket joints to impose the nonlinear connectivity conditions between the 

substructures. El-Absy and Shabana [6] showed that including the effect of longitudinal 

displacement caused by bending in the expression of the inertia forces leads to a consis- 

tent model that automatically accounts for the stiffening effect. Wallrapp and Schwertassek 

[14, 19] showed that it is possible to neglect the longitudinal displacements, which are indeed 

very small, and introduce the stiffening effect as a pre-stressed reference condition. 

In addition to these important investigations that are essentially focused on multibody 

dynamics problems, many other authors examined the frequencies and vibration modes of 

centrifugally stiffened beams [8, 9, 12, 13, 20, 23, 24] . In many cases, the beam is modelled as 

a continuum and the equations of motion are solved using different techniques. For example, 

Schilhansl [13] used the method of successive approximation, while Wright et al [20] used 

the method of Frobenius to solve for the exact frequencies and mode shapes. The assumed 

mode method, however, remains the most widely used approach [8, 9, 23, 24], despite the 

fact that the finite element method has been considered by several authors as demonstrated 

by the work of Putter and Manor [12]. 

In this paper the problem of centrifugal stiffening will be addressed using a new finite 

element formulation for flexible multibody dynamics. The absolute nodal coordinate for- 

mulation, which was recently introduced [16], will be used in this investigation. This is a 

non-incremental finite element procedure, that employs global coordinates as nodal degrees 

of freedom. Furthermore, two slopes instead of one angle are used to describe the rotation 

of the cross section of an Euler-Bernoulli beam element. This choice of the coordinates 

leads to isoparametric elements. The use of the absolute nodal coordinate formulation in the 

analysis of flexible multibody systems has been demonstrated in several previous piiblica- 
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tions■ [5, 7, 22]. The equivalence between this formulation and the floating frame of reference 

formulation was also demonstrated [1, 17]. In the first presentation of this method, the 

expression of the elastic forces was obtained using a linear strain-displacement relationship, 

and for this reason centrifugal stiffening effects were not accounted for. More recently, a 

continuum mechanics approach was proposed to calculate the elastic forces [2]. It is the pur- 

pose of this paper to demonstrate that this new method automatically takes into account the 

stiffening effects. The absolute nodal coordinate formulation will then be used to calculate 

the natural frequencies and mode shapes of a rotating beam. Several numerical examples 

are provided, and the results are compared with the results reported by different authors. 

The natural freqiiencies for different configurations of a rotating beam are also reported in 

this paper. 

2    FORMULATION OF THE INERTIA AND ELASTIC FORCES 

In the non-incremental absolute nodal coordinate formulation [16], the nodal coordinates of 

the elements are defined in a fixed inertial coordinate system, and consequently no coordinate 

transformation is required, the mass matrix is constant and the Coriolis and centrifugal 

forces are identically equal to zero. In the absolute nodal coordinate formulation of non- 

shear deformable elements, no infinitesimal or finite rotations are used as nodal coordinates 

and no assumption on the magnitude of the element rotations is made. 

In this investigation, two dimensional Euler-Bernoulli beam elements are considered. 

Each element is assumed to be slender, so that its configuration can be uniquely described 

by the geometrical configination of the neutral axis. The global position vector r of an 

arbitrary point P on the neutral axis is defined in terms of the nodal coordinates and the 



element shape function, as 

r = 
r2 

Se, (1) 

where S is the global shape function which has a complete set of rigid body modes, and e is 

the vector of element nodal coordinates: 

e = ei   e2   e3   e4   e5   e6   e7   e8 (2) 

This vector of absolute nodal coordinates includes the global displacements 

ei = ri\x=o ,    e2 = r2|x=0 ,    e5 - n\x=l,    e6 = r2\x==l, 

and the global slopes of the element nodes, that are defined as 

(3) 

e3 dx 
e4 

x=0 

dr2 

dx e7 = 
x=0 

dri 
dx x=l 

dr2 

dx (4) 
x=l 

Here x is the coordinate of an arbitrary point on the element in the undeformed configuration, 

and I is the original length of the beam element. The two end points of the element are 

denoted as A and B, where x — 0 at point A, and x = I at B, as shown in Fig. 1. A cubic 

polynomial is employed to describe both components of the displacements. Therefore, the 

global shape function S can be written as 

si    0    s2l    0    s3    0    S4I    0 

0    si    0    s2l    0    s3    0    s4Z 
(5) 

where the functions s; = Sj(£) are defined as 

Sl = i-3£2 + 2£3, s2 = e-2e2+e3, 53 = 3^-2^, s4 = e-e, (6) 

and ^ = x/Z. It can be shown that the preceding shape function contains a complete set 

of rigid body modes that can describe arbitrary rigid body translational and rotational 

displacements. 



The kinetic energy of a beam element can be defined as 

T=lfv^rdV, (7) 

where p and V are, respectively, the density and the volume of the beam in the current 

configuration. Using Euler-Bernoulli beam assumptions, it is possible to write Eq. 7 as 

T = ieTMe, (8) 

where the explicit form of the mass matrix M is given in the appendix. 

Following Eider-Bernoulli beam theory, the strain energy can be written as 

U = \ I [EAef + ElK2]dx, (9) 
2 Jo 

where ei represents the longitudinal deformation, and K is the curvature of the beam. From 

the expression of the strain energy, the vector Qk of the elastic forces can be obtained as 

Qfc = (dU/de)T. This vector can then be written as the product of a stiffness matrix K 

and the vector of nodal coordinates, as Qfc = Ke. Different approaches can be followed in 

order to further develop the expression of the strain energy U and express it in terms of 

the generalized coordinates. From this expression the stiffness matrix K can be defined. In 

[16], a local element coordinate system is introduced to define the beam deformation. This 

approach results in a highly nonlinear expression for the elastic forces. It is shown that 

different local element coordinate systems lead to the same results [1], and more important 

for the subject of this paper is the fact that the stiffness matrix K, obtained by introducing 

a local element coordinate system and a linear strain-displacement relationship, leads to the 

instability problem when the angular velocity of the beam reaches a critical value. 

Using a nonlinear continuum mechanics approach, a different expression for the stiffness 

matrix K can be obtained [2]. The stiffness matrix can be written as 

K = K, + Kt, (10) 



where K/ is the nonlinear stiffness matrix due to the longitudinal deformation of the beam, 

while Kt is the stiffness matrix due to the transverse deformation. The complete expressions 

for these stiffness matrices are given in the appendix of this paper. 

The vector Q, which contains the generalized external forces, including the gravity force, 

can be defined using the virtual work as 

SW = QT(5e, (11) 

and using the previous expressions of the kinetic energy, strain energy, and the virtual work, 

the dynamic equations of the finite element can be obtained in a matrix form as follows: 

Me + Ke = Q. (12) 

The solution of this matrix equation, which is obtained using the absolute nodal coordinate 

formulation, is compared in the following section with other methods that account for the 

effect of the geometric centrifugal stiffening. 

3    OTHER METHODS 

Several other methods that account for the effect of the geometric centrifugal stiffening 

were proposed. Among these methods are the ones proposed by Wallrapp and Schwertassek 

[14, 19] and Wu and Haug [21]. Wallrapp and Schwertassek [19] showed that it is possible 

to neglect the small longitudinal displacements and introduce the geometric centrifugal stiff- 

ening effect as a pre-stressed reference condition. Wu and Haug [21] divided the structure 

into smaller substructures which are rigidly connected using algebraic constraint equations. 

These algebraic equations can be augmented to the differential equations of motion using 

the technique of Lagrange multipliers, or can be used to eliminate dependent variables. 

In this section, some of the results obtained using the absolute nodal coordinate for- 

mulation are compared with the two above mentioned methods, using two of the examples 



reported in Refs. 19 and 21. Both examples consider the problem of a rotating beam. In Ref. 

19 the beam is eccentrically suspended (eccentricity = 1 m), while in Ref. 21 the beam is 

rotating about an axis passing through one of its ends. The data for these two examples are 

presented in Table 1. The rotation of the beams is specified, and the equation that defines 

the angle of rotation of the beam is assumed in the following form: 

,2 n 
e(t) = ' T 

t<T 
(13) 

S + (£)   (cos^-l) 

tt (t - T/2) t > T 

Equation 13 represents a spin-up maneuver starting at time t = 0 and ending at time 

t = T = 15 sec; at this ending time a constant angular velocity Q is reached. The steady- 

state value Q of the angular velocity is equal to 6 rad/s in the example of Ref. 19, and 

to 2 and 4 rad/s in the examples of Ref. 21. In the comparative study presented in this 

section, two absolute nodal coordinate formulation models are used. In the first model, a 

linear strain-displacement relationship is used, and the expression of the elastic forces is 

derived using a local element coordinate system [16]. This model will be referred to in this 

investigation as Model 0. The second model, denoted as Model A (which corresponds to 

Model III of Ref. 2), is based on a continuum mechanics approach, and employs a nonlinear 

strain-displacement relationship. No local element coordinate system is used in formulating 

the elastic forces. Yet, the expression of the elastic forces obtained for Model A is much 

simpler than the expression of the elastic forces of Model 0 as previously demonstrated [2]. 

Figures 2 and 3 show the tip deflection and the free-end rotation, respectively, of the 

eccentrically suspended beam investigated by Wallrapp and Schwertassek [19]. The results 

of Model A are almost identical to the results of Case 6 of Ref. 19, which, for this reason, 

are not shown. Figures 4 and 5 show the tip deflection of the rotating beam subject to a 

spin-up maneuver with steady-state angular velocities of 2 rad/s and 4 rad/s, respectively. 

This is the example presented in Ref. 21. The results of the absolute nodal coordinate 

formulation are compared to the results presented in Ref. 21 using a 6 substructure beam. 



It is important to point out that all the results of the absolute nodal coordinate formulation 

in Figs. 2-5 are obtained using only two elements, and for the case of Model A the degree 

of accuracy is very high. Increasing the number of elements, the results of Model 0 improve 

significantly, as this is conceptually equivalent to further substructuring the beam. However, 

as previously demonstrated [1], there always exists a critical value of the angular velocity 

beyond which the rotating beam exhibits instability when Model 0 is used. This critical 

value depends on the number of elements used to discretize the beam. Figures 6 and 7 show 

the effect of the number of elements on the stability of the beam when Model 0 is used. In 

these figures, the beam dimensions and material properties are the same as used by Wu and 

Haug [21]. For the models used in Fig. 6 the steady-state angular velocity is equal to 10 

rad/s, and the one-element mesh leads to instability using Model 0. Increasing the number 

of elements to ten, the results of Model 0 and Model A are almost identical. In Fig. 7, the 

constant value of the angular velocity Q is increased to 40 rad/s. As demonstrated by the 

results presented in this figure, two elements are not sufficient when Model 0 is used, while 

the solution obtained using Model A remains stable. 

It appears from these preliminary numerical results that the elastic force model obtained 

using a continuum mechanics approach (Model A) aixtomatically accounts for the centrifugal 

stiffening effect. It is important, however, to provide an analytical proof of this fact. Due to 

the high non-linearity of the problem, a general proof is difficult to obtain. For this reason, 

we will limit our analysis to the important case of small deformation. This case is important 

for the following two reasons: 1) it covers a vast class of engineering applications; and 2) the 

neglect of stiffening effects leads to incorrect results regardless of the amount of deformation, 

as previously pointed out by Simo and Vu-Quoc [18], who showed that the solution exhibits 

instability even for extremely stiff beams, which undergo only very small deformations. It 

is, therefore, the purpose of the next section to demonstrate that the formulation based 

on Model A accounts for the centrifugal stiffening effect. Consequently, such a formulation 

8 



does not lead to any instability, regardless of the value of the angular velocity of the beam 

element. Several numerical examples are presented in Section 7 in order to compare the 

results of the absolute nodal coordinate formulation with those obtained by other authors. 

4 ROTATION OF A CANTILEVER BEAM 

In this section, the elastic force Model A, equivalent to Model III introduced in [2] for 

studying small deformation problems, is used to analyze the stability of the motion of a 

rotating cantilever beam. The study model is shown in Fig. 8, and consists of a cantilever 

beam rigidly connected to a rigid hub. A tip mass mt is attached to the free end of the 

beam. The rigid hub is assumed to rotate at a constant angular velocity Q. 

First, the case in which the beam is represented using only one finite element is considered. 

In this case, the configuration of the beam is specified using the eight nodal coordinates 

e = 
-|T 

(14) ei   e2   e3   e4   e5   e6   e7   e8 

and the total length L of the beam is equal to the length I of the element. The equations of 

motion for the rotating beam and the tip mass have the matrix form 

(M + Mt)e + Ke = Qr, (15) 

where M is the mass matrix of the beam, Mt is the mass matrix associated with the tip mass, 

K is the stiffness matrix which can be written using the sum K; + K4 as previously discussed, 

and Qr is the vector of the generalized forces that include the constraint forces due to the 

rigid joint between the beam and the hub. These rigid-joint constraints define a constraint 

force whose components are Px and Py, and a constraint moment T. Using the absolute 

coordinates, the virtual work of this force and moment is 6Wr = Px6ei+Py6e2+rö9 = QjF<5e, 

where the virtual variation of 9 is [16]: 

se = ^-ep-. (16) 
e' + el K    J 



Hence, the expression of Qr is given by 

Qr = *X -*   ? 
-e4 

V     ei+e ?T   -g-zT   0   0   0   0 (17) 

where Px, Py and Y are unknown reaction components. In this analysis, the rotation of the 

hub is specified, and its motion is not the subject of our investigation. As a result of the 

hub rotation, e\ — i? cos fit, e^ = R sin fit and 9 = fit, where fi is a constant. 

At this point, a new set of coordinates g; is introduced. This new set completely defines 

the configuration of the beam and is given by 

iT 

9l     ?2     23    QA     Q5 (18) 

where 

Qi 
drji 
dx ?2 = Vl x=l ' 93 = V2\x=i 94 

x=0 

dm 
dx 9s 

dr]2 

dx 
(19) 

x=l 

and where rji ,7]2 are the coordinates of an arbitrary point on the beam defined with respect to 

a beam coordinate system rigidly attached to point A. Note that this local beam coordinate 

system has a constant angular velocity fi, as shown in Fig. 9. Note also that in Eq. 18, only 

five coordinates are required due to the constraints that define the rigid joint between the 

beam and the hub. 

The relationship between the absolute nodal coordinates e and the new set of coordinates 

q is given by 

e = Bq + er, (20) 

10 



where B is the matrix 

0 0 0 0 0 

0 0 0 0 0 

cos fit 0 0 0 0 

B = 
sin fit 0 0 0 0 

0 cos fit — sin fit 0 0 

0 sin fit cos fit 0 0 

0 0 0 cos fit — sin fit 

0 0 0 sin fit cos fit 

and er is the vector 

er = R cos tit sin fit 0   0   cos i fit   sin fit   0   C 

(21) 

(22) 

Because of the structure of the matrix B and the vector er, differentiation with respect 

to time leads to B = —fi2B and er = —fi2er. As a result, the vector of absolute nodal 

accelerations can be written as 

e = Bq + 2Bq - fi2Bq - fi2er. (23) 

Using Eqs.   20 and 23, Eq.   15 can be written in terms of the independent coordinates <& 

only. Substituting Eqs. 20 and 23 into Eq. 15 and pre-multiplying by BT resiilts in 

Mq + Cq + (K - fi2M)q = Fm. (24) 

Note that BTQr = 0, which is a direct consequence of expressing the dynamic relationships 

in terms of the degrees of freedom. Using the definition of the mass and stiffness matrices 

given in the appendix, the matrices M and C that appear in Eq. 24 can be written more 

11 



explicitly as 

M = BT(M + Mt)B 

C = 2BT(M + Mt)B = 2ft 

ml2 

105 
13m/ 
420 0 ml2 

140 0 

*W+™t 0 11m/ 
210 0 

W+mt 0 11m/ 
210 

sym ml2 

105 0 

ml2 

105 

0 0 13ml 
420 0 ml2 

140 

0 0 -^-^ 0 11m/ 
210 

13m/ 
420 

l-W+mt 0 11m/ 
210 0 

0 0 11m/ 
210 0 ml2 

105 

ml2 

140 
llml 
210 0 ml2 

105 0 

(25) 

(26) 

Note that the matrix C is skew-symmetric. Using Eq. 10 and the definition of K; given by 

Eq. A-5 in the appendix of this paper, the stiffness matrix K of Eq. 24 can be written as 

K = K; + Kt = EAK-A + S'JV/KM + £ßKg + Kt, (27) 

where 

KA = BTKAB 
EA 
210/ 

12Z2    18/ 

-36 

sym 

0 

0 

-36 

-2/2 

-3/ 

0 

-2l2 

KM = B KWB 
EA 
21Ö7 

0 

0 

-3/ 

0 

-2l2 

ISl2   -36/     0     -3/2      0 

324      0     -36/      0 

324      0      -36/ 

sym 18/2       0 

18/2 

(28) 

(29) 

12 



Kß = B KgB 
EA 

~~2~Wl 

2/2    -3/ 0 -2/2 0 

-36 0 18/ 0 

-36 0 18/ 

sym 12/2 0 

12/2 

Kt = BTK£B = EL 

Al2    -6/    0    2/2      0 

12     0    -6/     0 

12     0     -6/    • (31) 

sym Al2      0 

4/2 

The matrices K^, KM, KB and Kt and the strains eA, eM and eB are defined in the appendix. 

The vector Fm in the right-hand side of Eq. 24 absorbs the terms depending on er, and is 

defined as 

(30) 

WBL{M + Mt)er = n2R ml 
12 f + mt   0   -g   0 (32) 

This vector does not depend of the stiffness matrix since the product Ker is identically equal 

to zero. 

From Eq. 24 it is clear that, for large values of the angular velocity O, the matrix Q2M 

could become the source of the instability, unless the elements of the matrix K also increase. 

On the other hand, the matrix K is a linear function of the longitudinal strains eA, £M and 

£B, which play a key role in this problem. It is important to point out that the relationship 

between eA, £M and eB and the independent coordinates qt is highly nonlinear (see Eq. 

A-4 in the appendix). Consequently, the stiffness matrix K is a nonlinear function of the 

coordinates. The equation of motion (Eq. 24) is a Hill equation. In the following section a 

solution of this equation that holds in the case of small deformation is obtained. 

13 



5    SOLUTION OF THE EQUATION OF MOTION 

In this section, Eq. 24 is solved by means of a linearization that holds as long as the 

deformation remains small. As a result of this linearization, the Hill equation is reduced 

to a differential equation with constant coefficients, whose solution is expressed as the sum 

of a constant term qo (particular solution) and a time dependent term qg (complementary 

function). 

Particular Solution Note that the right-hand side of Eq. 24 is constant, and, there- 

fore, we seek a solution of the type q = q0 =const., that corresponds to the static equilibrium 

of the beam in the rotating coordinate system. In this case, Eq. 24 becomes 

[K(qo)-fi2M]qo = Fm. (33) 

It is convenient to write the vector q0 as the sum of two vectors, 

qo = qr-6 + q,5o, (34) 

where qr& represents the rigid-body (undeformed) configuration of the beam, and q§o contains 

the deformation terms. This representation is convenient as the elements of q^o are very 

small. In fact, using Eq. A-8 given in the appendix, it is possible to write: 

qrb 

iT 

1   I   0   1   0 q<5o £AO   IS MO   0   EBO   0 
T 

(35) 

where the subscript 0 means that the quantities are not time dependent. 

The equation that governs the static equilibrium in the rotating coordinate system can 

then be written as 

K(qrft + qso) = ^2M(qr6 + qg0) + Fm. (36) 

In this eqtiation, for the stated assumptions, the vector q^o is negligible with respect to the 

vector qrfe. Furthermore, it is possible to show that the following equation holds: 

Kqrb = IQoqfio, (37) 

14 



where 

K so K^qrft     yK MQrb    0    K-B<\rb    0 (38) 

This matrix is constant and can be explicitly written as 

Al2    -31   0   -2l2   0 

—        EA 
Kso=m 

36     0 

sym 

0      0 

Al2 

3/    0 

0 

0 

0 

(39) 

The final equation simply becomes 

K50q5o = ^2Mqr6 + Fm. (40) 

This equation leads to a solution q^o from which it is possible to calculate the corresponding 

strains EAO-, £MO and sBo as 

mO2 2R + I     mttt2 

£AO 

£MO 

+ 
EA     2      '   EA 
mQ2 3R + 21     mtn

2 

(R + l), 

EA      6 
mtQ

2 

+ 
EA 

(R + l), 

EA 
(R + l). 

(41) 

(42) 

(43) 

These values correspond to the exact analytical solution, according to which the strain 

distribution is parabolic, and it has a maximum at the left end, as shown in Fig. 10. This 

result is a good test for the force model introduced in Section 2, as for this small deformation 

problem the solution is equal to the correct analytical solution. 

General Solution   The result of the previous analysis can be conveniently reported as 

qo (44) e^o + 1   1(
£

MO + 1)   0   £ß0 + 1   0 

where the strains eAQ, EMO and eB0 are given by Eqs.  41-43.  Then, the complete solution 

defined by the vector q can be written as 

q = q0 + q6, 

15 

(45) 



where qo is constant, while q§ = contains the small dynamic 0.16    Q.2S    0.2,5    ?4<5    056 

terms. A similar decomposition applies for the strains EA-, £M and £#, and consequently for 

the matrix K as well. It is possible to show that, under the assumption of small deformations, 

the following relationships hold: 

£A   =   £AO + £AS,     £AS = Q.u, (46) 

£M    =    £iW0 + £M6)     £MS = 02s/l, (47) 

£B   =   £BO + £BS,    £B6 = q<i6, (48) 

and the matrix K becomes 

K = K0 + K6, (49) 

where Ko is the matrix that is obtained from Eq. 27 using EAO, SMO and EBO, and Kg is the 

matrix obtained using EAS, £MS and EBS- 

With these substitutions, the equation of motion (Eq. 24) becomes 

Mq5 + Cq6 + (K0 - ft2M)q0 + K6q0 + (K0 - fi2M)q(5 + Kfiq6 = Fm, (50) 

which, after eliminating the static solution and the second order term Kgq^, yields 

Mq, + Cqfi + Kfiq0 + (K0 - Q2M)qs = 0. (51) 

It can be shown that the product K^qo can be written as follows: 

K^qo = Kfioq«, (52) 

where the matrix K^0 is defined by Eq. 38. After substitutions, the final form of the equation 

of motion is given by 

Mq^ + Cq6 + Keqqs = 0, (53) 

where the equivalent stiffness matrix Keg is defined as 

Ke, = K0-fK5o-ft2M. (54) 
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Note that the stiffness matrix Keq is constant as a result of using variables defined in the 

rotating coordinate system and as a result of the linearization assumption. 

A solution for Eq. 53 of the type 

qs = Q^e Xt (55) 

results in five complex eigenvalues A; = oti+ju)i. When the real part a; of A; is not positive, 

the solution does not show any instability. In the next section, numerical results will be 

provided for different values of the angular velocity Q and different combinations of hub 

radius R and tip mass mt. However, in the remainder of this section, it is shown that for any 

value of the speed of rotation Q, the system remains stable. Consequently, the only limit on 

Q, is given by the strength of the material and/or the maximum admissible deformation. 

Substituting the values of e^o, £MO 
and £BO obtained with the static analysis, Eqs. 41-43, 

in the expression of the matrix K0, one obtains the equivalent stiffness matrix 

Keg = Kt + K<5o+fi (Km; + KmR + Km£; + Kmt^), 

where the matrices Km/, Km#, K.mti, and Kmt# are defined as 

(56) 

Km; = TTTT 
m 

4~20 

- mR 

420/ 

20Z2   -19/    0    -I2     0 

24      0    -5/     0 

24     0     -5/ 

sym 6/2       0 

6/2 

42/2     0       0     -ll2      0 

252     0     -42/      0 

252      0      -42/ 

sym 14/2       0 

14/2 

(57) 

(58) 

17 



Kmt; = 

K mtR 

56/2 —42Z 0 -14/2 0 

84 0 -42/ 0 

420 
84 0 -42/ 

sym 56/2 0 

56/2 

_56/2 -421 0 -14/2 0 

504 0 -42/ 0 
mtR 
420? 

sym 

504 0 

56/2 

-42/ 

0 

(59) 

56/2 

(60) 

Equation 56 shows how Keg can be decomposed into the sum of several matrices that are 

either positive definite or positive semi-definite. Consequently, the matrix Keg is always a 

positive definite matrix, despite the presence of the term —fi2M in Eq. 54. This demon- 

strates that, for any given value of the angular velocity f2, the nonlinear stiffness matrix 

includes stiffening effects, as K0 increases with £l2. 

From this result, it is possible to define a Liapunov function [10] V as 

V -qjMq6 + -qjKe?qfi. (61) 

This function is positive definite for all q^ ^ 0 and q^ ^ 0. It is easy to show that the time 

derivative of V is always equal to zero. Since Keg is symmetric and C is skew-symmetric, so 

that qJCq,5 = 0 for all q^, then 

V   =   qjMq5 + qjKegqd 

=    -qJCqs - qjKegq6 + qjKegqfi = 0. 

The fact that the Liapunov function is constant implies that any increase in the velocities 

|q<5| is balanced by a decrease in the value of the coordinates |qg|, and vice-versa. Hence, 

the motion is oscillatory and V is called a weak Liapunov function for the system, as the 
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particular solution is stable but not asymptotically stable. The skew-symmetric matrix C 

neither introduces nor dissipates any energy in the system. 

6 REMARKS ON THE COUPLING BETWEEN AXIAL AND BENDING 

DEFORMATIONS 

It is important to point out that the stiffness matrix ~Keq defined by Eq. 54 is constant 

as a result of linearization of the equations of motion which have been obtained using a 

nonlinear strain-displacement relationship. This is a key step in the development, since an 

early linearization of the strain-displacement relationship would not be sufficient to represent 

the stiffening effect. Both models, Model 0 and Model A, are based on the expression of 

the strain energy given by Eq. 9. The key difference is in the way the longitudinal strain 

ei is measured. Model 0 employs a local element coordinate system in which a longitudinal 

displacement ui is measured; then the longitudinal strain is defined as [16]: 

dui (Rn\ 
E> = & • (62) 

where £ is a coordinate along the axis tangent to the beam centerline. In Model A there is 

no need to introduce a local coordinate system, since the longitudinal strain is defined as 

ei = l(f-l). (63) 

Here / is the deformation gradient for longitudinal deformations [2], and its value depends 

on longitudinal displacements as well as transverse displacements. A development based 

on Eq. 63 would result in a nonlinear stiffness matrix even when local element coordinates 

are used. In this paper, in order to obtain a constant stiffness matrix, the assumption is 

made that the time dependent term q§ introduced in Section 5 is small as compared to the 

constant term q0, so that the effect of q^ on the stiffness matrix becomes negligible. This 

assumption, however, does not affect the coupling between the longitudinal and transverse 
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displacements, which does not exist when Model 0 is used [1]. Therefore, in Model A, the 

bending deformation of the beam depends on the longitudinal displacements when either a 

fixed or an element frame is used to define the element coordinates. 

7    NUMERICAL RESULTS 

In this section, the mathematical model presented in the previous section will be used to 

determine the natural frequencies and mode shapes of the system shown in Fig. 8. The 

system consists of a beam attached to a rigid hub with a mass attached to the other end. 

While in the previous section the analysis was made using only one element, the results 

presented in this section are obtained using ten elements. Hence, the equation that governs 

the vibrations of the beam is similar to Eq. 53, with the exception that it is generalized 

for the case of an arbitrary number of finite elements. All the results are presented in a 

non-dimensional form. Given the parameter 

El 
Wo==\te' (64) 

which has the units of an angular velocity, the natural frequencies u>i are expressed with the 

ratio Lüi/ujQ, while the speed of rotation f2 is expressed using the ratio 

7 = ^M). (65) 

It is possible to check the results obtained when the beam is not rotating, since the 

analytical solution for this problem exists in the literature [15]. Table 2 shows the natural 

frequencies of the beam for the first three transverse modes and for the first longitudinal mode 

for different values of the tip mass. These values are presented using the non-dimensional 

parameter 

N = mt/m, (66) 
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where m is the mass of the beam and mt is the tip mass. It is clear that there is a good 

agreement between the exact values of the natural frequencies and the values obtained using 

the computer simulations. 

Tables 3, 4 and 5 present the values of the natural frequencies for the 1st, 2nd and 3rd 

bending mode respectively, for different values of the non-dimensional angular velocity 7, 

the ratio R/L and the tip mass ratio N. The results presented are in very good agreement 

with the results previously obtained by different authors [12, 24]. It is interesting to see that 

resonance conditions may take place. For the first bending mode with N = 0 and R/L = 0, 

the angular velocity equals the natural frequency when 7 = 3.88, the same result as predicted 

by Yoo et al [24]. 

Figures 11 and 12 show the change in the mode shapes for different values of the speed 

of rotation of the beam. The results of Fig. 11 are obtained with R — 0 and mt = 0, while 

in Fig. 12 R = 21 and mt = 3m. These mode shapes are obtained using the dynamic part 

of the displacements (qfi of Eq. 45); note that for the assumption of small deformations of 

the beam, the horizontal displacement is not large in the local coordinate system 771A772. In 

fact, 7 = 50 corresponds to a very large value of the angular velocity, and in the case of a 

very flexible beam large deformations are expected. 

Finally, Figs 13 and 14 confirm that for small values of the angular velocity a linear 

approximation applies for the square of the natural frequency. The relationship is of the 

type 

u2 = ul + 0O2, (67) 

where u is the natural frequency when the angular velocity equals 0, while UJQ is the natural 

freqxiency when the angular velocity is equal to zero; </> is called Southwell coefficient. The 

results obtained with the absolute nodal coordinate formulation are in very good agreement 

with the values of the Southwell coefficients proposed by Schilhansl [13], who found the 
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following relationships for the first two bending frequencies: 

4>x   =   0.173 + 1.558 -R/L, (68) 

02   =   5.380 + 8.631 • R/L. (69) 

The approximated results presented in Figs. 13 and 14 have been obtained using these 

expressions for the Southwell coefficients. 

8    SUMMARY AND CONCLUSIONS 

It is demonstrated in this paper that the effect of the geometric centrifugal stiffening can 

be automatically accounted for in the finite element absolute nodal coordinate formulation. 

A continuum mechanics approach is used to obtain the nonlinear expression for the elastic 

forces that include coupling between the bending and the axial displacements of the rotating 

beam. Using the absolute nodal coordinate formulation and the proposed elastic force model, 

a Hill-type equation is obtained. This equation governs the dynamics of the rotating beam 

subjected to prescribed angidar velocity. With the aid of some linearization assumptions, the 

Hill equation is simplified, and a complete solution is obtained. It is shown analytically that 

the resulting solution does not exhibit any instability as the angular velocity of the beam 

increases. The results obtained in this investigation are compared with previously published 

work. This comparative study shows a very good and consistent agreement between the 

finite element solution obtained in this study and the solution previously reported by other 

authors. 
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APPENDIX 

The matrices M and Mt that appear in Eq. 15 are defined as follows [16]: 

M = m 

13      0 
35      u 0 11/ 

210 0 9 
70 0 -13/ 

420 0 

13 
35 0 11/ 

210 0 9 
70 0 -13/ 

420 

/2 

105 0 13/ 
420 0 -/2 

140 0 

/2 

105 0 13/ 
420 0 -I2 

140 

13 
35 0 

13 
35 

-11/ 
210 

0 

0 

-11/ 
210 

sym /2 

105 0 

;2 

105 

Mt = mt (A-2) 

00     0     00000 

0     0     0   0   0   0   0 

0     0   0   0   0   0 

0   0   0   0   0 

10   0   0 

1   0   0 

sym 0   0 

0 

where m is the mass of the beam element and I is its length; mt is the tip mass. 

The expression of the elastic forces is obtained using Model III presented in Ref. 2. This 

model, which is referred to as Model A in this paper, holds in the case of small deformations. 

The matrix K/ of Eq. 10 is written as sum of three matrices that depend on the three 

quantities EA, £M 
and EB defined in general as 

(A-l) 

£A = Ve3 + e4-1>    £M = y\/(e5 ~ ei)2 + (e6 - e2)
2 - 1,    EB = \Je% + e%- 1.      (A-3) 
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Using the relationship between the coordinates e; and q{ as given by Eq. 20, one obtains 

£A = \qi\-h    £M = 1^92+93-1,    £B = \lql + ql-i- (A-4) 

The terms EA and EB physically represent the longitudinal strains at A and B respectively; 

and EM represents the average longitudinal strain along the element length. Using these 

three quantities, the stiffness matrix K; can be written as 

K/ — EAK-A + £JWKM + £BKB, (A-5) 

where 

K, 

KM = 

=*      0 35         u 
-61       n         6 
70        U        35 0 I 

70 0 
-6 0     —    0 6 o / 
35 u        70        u 35 70 

6/2        A        6/ 
105       U        70 

o -I2 o 
105 

EA 611      0 
105       U 

6/ 
70 0 -I2 

105 

I -6 
35 0 70 0 

sym -6 
35 0 

-i2 

105 

-I 
70 

0 
-I2 

105 

54       o 
35         u 

121       A        -54 
70        U         35 0 121 0 70 

54 0     121     o u       70        u 
-54 o 12/ 

35 35 70 

9/2        A       -121 
105       U         70 0 -I2 

0 70 

EA ill        0 
105         U 

-121 
70 0 -I2 

70 

I 54 
35 0 -12« 

70 0 

sym 54 
35 0 

9/2 

-12/ 
70 

0 105 

9/2 

105 

(A-6) 

(A-7) 
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KR = 
EA 

35 0 -i- 

35 

sym 

l 
70 0 6 

35 0 -61 
70 0 

0 I 
70 0 6 

35 0 -61 
70 

-fl 
105 0 -I 

70 0 -z2 

105 0 
-z2 

105 0 -z 
70 0 -I2 

105 

-6 
35 0 61 

70 0 

-6 
35 0 

6Z2 

105 

61 
70 

0 
6Z2 

105 

(A-8) 

In the case of small deformations, the relationships in Eq. A-4 can be simplified, since 

gi K 94 « 1, q2 ~ I, and q3 RS q5 « 0. As a result, the following linear relationships can be 

obtained: 

£A = qi- 1,    £M = 92/J - 1»    £ß = 94 - 1. 

The stiffness matrix Kt of Eq. 10 is constant and is defined as 

Kt = — 
El 
I3 

0 61 0 -12 0 6/ 

12 0 6/ 0 -12 0 

4/2 0 -6/ 0 2l2 

4Z2 0 -61 0 

12 0 -61 

sym 12 0 

4Z2 

0 

6/ 

0 

2/2 

0 

-6/ 

0 

4Z2 

(A-9) 

(A-10) 
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Table 1. Geometric and inertia properties of the beams used in Refs. 19 and 21 

Description Symbol Ref. 19 Ref. 21 

Length (m) L 1.000E+01 8.000E+00 

Mass density (kg/m3) P 3.000E+03 2.767E+03 

Cross sectional area (m ) A 4.000E-04 7.299E-05 

Second moment of area (m ) / 1.997E-07 8.214E-09 

Mass (kg) m 1.200E+01 1.615E+00 

Modulus of elasticity (Pa) E 7.000E+10 6.895E+10 

Bending stiffness (N»m ) El 1.398E+04 5.664E+02 

Moment of inertia about one end (kg« m2)       J 4.000E+02 3.446E+01 
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Table 2. Non-dimensional frequencies'*' for the first three transverse 
modes and the first longitudinal mode using different end masses TV. 

MODE 

Non-dimensional I zrequencies co/co0 

N Exact value Simulation 

0 TRANSV-I 3.5160 3.5160 
TRANSV-II 22.0345 22.0352 
TRANSV-III 61.6972 61.7129 
LONGIT-I 339.6316 339.6347 

1 TRANSV-I 1.5573 1.5573 
TRANSV-II 16.2501 16.2504 
TRANSV-III 50.8958 50.9046 
LONGIT-I 186.0181 186.0152 

2 TRANSV-I 1.1582 1.1582 
TRANSV-II 15.8609 15.8612 
TRANSV-III 50.4476 50.4563 
LONGIT-I 141.2478 141.2455 

3 TRANSV-I 0.9628 0.9628 
TRANSV-II 15.7198 15.7200 
TRANSV-III 50.2907 50.2993 
LONGIT-I 118.3049 118.3030 

4 TRANSV-I 0.8415 0.8415 
TRANSV-II 15.6469 15.6471 
TRANSV-III 50.2108 50.2194 
LONGIT-I 103.8042 103.8024 

'''Results obtained using the absolute nodal coordinate formulation and 10 elements 
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Table 3. Non-dimensional frequencies" for the first transverse mode using different end 
masses N and different values for the ratio R/L 

First Transverse Mode: Non-dimensional Frequencies 

N      R/L y=1 7=2 y=3 7=4 7=5 7=10 7=20 7=50 
0         0 3.543 3.622 3.743 3.897 4.072 5.041 6.739 10.278 

1 3.758 4.400 5.290 6.313 7.409 13.237 25.136 59.467 
2 3.961 5.059 6.471 8.023 9.639 17.996 34.840 83.416 
3 4.154 5.639 7.464 9.421 11.433 21.722 42.360 101.933 
4 4.338 6.164 8.337 10.632 12.976 24.888 48.726 117.619 
5 4.515 6.647 9.125 11.715 14.350 27.690 54.347 131.491 

1          0 1.617 1.768 1.957 2.152 2.340 3.141 4.308 6.615 
1 1.967 2.832 3.822 4.847 5.884 11.094 21.280 48.114 
2 2.262 3.585 5.025 6.493 7.970 15.353 29.773 68.198 
3 2.521 4.201 5.985 7.792 9.606 18.658 36.333 83.911 
4 2.754 4.735 6.807 8.899 10.997 21.455 41.880 97.342 
5 2.969 5.211 7.538 9.880 12.227 23.926 46.777 109.304 

2          0 1.236 1.411 1.605 1.791 1.963 2.665 3.662 5.611 
1 1.655 2.581 3.580 4.596 5.616 10.686 20.394 44.529 
2 1.984 3.355 4.789 6.234 7.681 14.861 28.619 63.710 
3 2.263 3.977 5.742 7.517 9.291 18.093 34.972 78.913 
4 2.510 4.510 6.555 8.607 10.658 20.827 40.349 92.011 
5 2.734 4.985 7.275 9.571 11.865 23.240 45.100 103.733 

3          0 1.053 1.239 1.429 1.605 1.765 2.407 3.310 5.063 
1 1.516 2.467 3.468 4.478 5.488 10.480 19.867 42.365 
2 1.863 3.251 4.679 6.112 7.544 14.613 27.932 61.145 
3 2.152 3.875 5.630 7.388 9.144 17.809 34.170 76.177 
4 2.404 4.408 6.439 8.471 10.499 20.511 39.456 89.192 
5 2.631 4.881 7.154 9.428 11.697 22.896 44.132 100.870 

4          0 0.942 1.132 1.317 1.485 1.636 2.236 3.076 4.699 
1 1.435 2.400 3.401 4.406 5.409 10.343 19.471 40.862 
2 1.793 3.190 4.613 6.039 7.461 14.448 27.420 59.436 
3 2.087 3.814 5.562 7.311 9.054 17.619 33.578 74.409 
4 2.343 4.347 6.369 8.389 10.403 20.301 38.805 87.412 
5 2.572 4.819 7.082 9.342 11.594 22.667 43.434 99.094 

^Results obtained using the absolute nodal coordinate formulation and 10 elements 
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Table 4. Non-dimensional frequencies'*' for the second transverse mode using different end 
masses N and different values for the ratio R/L 

Second Transverse Mode: Non-dimensional Frequencies 

N      R/L 7=1 7=2 y=3 7=4 7=5 7=10 7=20 7=50 
0          0 22.159 22.527 23.127 23.941 24.949 32.113 51.318 115.751 

1 22.353 23.281 24.747 26.659 28.923 43.221 76.560 181.268 
2 22.546 24.010 26.261 29.107 32.380 51.842 94.995 228.201 
3 22.736 24.716 27.687 31.351 35.476 59.134 110.274 266.872 
4 22.925 25.401 29.038 33.433 38.304 65.570 123.620 300.537 
5 23.113 26.067 30.324 35.384 40.922 71.394 135.627 330.731 

1          0 16.727 18.081 20.128 22.672 25.555 42.275 78.611 189.220 
1 17.261 19.979 23.809 28.281 33.119 59.352 114.031 278.927 
2 17.777 21.708 26.978 32.918 39.206 72.428 140.718 345.992 
3 18.279 23.305 29.800 36.958 44.441 83.442 163.061 402.092 
4 18.768 24.796 32.367 40.584 49.102 93.140 182.661 451.324 
5 19.243 26.199 34.739 43.901 53.345 101.905 200.122 495.732 

2          0 16.695 18.968 22.220 26.062 30.252 53.190 101.246 246.177 
1 17.556 21.834 27.459 33.721 40.300 74.777 145.317 357.142 
2 18.375 24.350 31.811 39.879 48.227 91.302 178.833 441.165 
3 19.157 26.619 35.612 45.172 54.984 105.220 206.931 511.684 
4 19.907 28.701 39.028 49.885 60.972 117.478 231.638 573.680 
5 20.629 30.635 42.155 54.175 66.406 128.557 253.947 629.659 

3          0 16.903 20.015 24.284 29.169 34.384 62.200 119.638 292.310 
1 18.071 23.703 30.777 38.449 46.398 87.470 170.978 421.272 
2 19.164 26.865 36.066 45.811 55.794 106.821 210.057 519.360 
3 20.195 29.674 40.641 52.102 63.774 122.896 242.910 601.812 
4 21.173 32.226 44.728 57.686 70.834 137.494 271.815 674.352 
5 22.106 34.580 48.457 62.757 77.233 150.478 297.926 739.879 

4          0 17.172 21.058 26.214 31.986 38.067 70.028 135.548 332.164 
1 18.628 25.467 33.776 42.643 51.758 98.497 193.198 476.944 
2 19.974 29.182 39.862 51.034 62.416 120.315 237.177 587.331 
3 21.229 32.451 45.096 58.181 71.452 138.697 274.176 680.196 
4 22.410 35.403 49.757 64.513 79.438 154.892 306.741 761.927 
5 23.529 38.115 54.000 70.258 86.673 169.535 336.165 835.769 

(*) Results obtained using the absolute nodal coordinate formulation and 10 elements 
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Table 5. Non-dimensional frequencies'*' for the third transverse mode using different end 
masses N and different values for the ratio R/L 

Third Transverse Mode: Non-dimensional Frequencies 

TV      R/L 7=1 7=2 7=3 7=4 7=5 y=10 7=20 7=50 
0          0 61.849 62.256 62.928 63.856 65.027 73.985 101.479 204.458 

1 62.051 63.051 64.679 66.881 69.595 88.607 138.406 303.581 
2 62.251 63.834 66.375 69.752 73.829 100.758 166.198 375.323 
3 62.451 64.606 68.021 72.487 77.790 111.349 189.443 435.356 
4 62.650 65.367 69.620 75.104 81.520 120.850 209.841 487.473 
5 62.848 66.117 71.177 77.615 85.055 129.535 228.240 534.387 

1          0 51.460 53.093 55.705 59.165 63.331 90.742 157.650 372.655 
1 52.074 55.431 60.607 67.174 74.754 120.276 222.390 539.644 
2 52.680 57.673 65.134 74.303 84.610 143.740 271.970 665.872 
3 53.279 59.829 69.358 80.790 93.404 163.813 313.753 771.718 
4 53.871 61.908 73.333 86.779 101.418 181.644 350.563 864.708 
5 54.457 63.918 77.097 92.370 108.828 197.853 383.843 948.620 

2          0 51.435 54.264 58.671 64.325 70.919 111.275 203.124 489.886 
1 52.458 58.044 66.299 76.336 87.523 150.833 286.776 703.061 
2 53.461 61.589 73.118 86.660 101.380 181.837 350.892 865.203 
3 54.445 64.937 79.339 95.850 113.515 208.205 404.933 1001.310 
4 55.412 68.117 85.095 104.210 124.444 231.551 452.544 1121.557 
5 56.361 71.151 90.475 111.932 134.465 252.726 495.590 1229.764 

3          0 51.697 55.677 61.733 69.306 77.938 128.566 239.979 583.846 
1 53.120 60.789 71.735 84.654 98.742 176.048 338.856 834.566 
2 54.504 65.494 80.473 97.556 115.775 213.042 414.674 1026.409 
3 55.854 69.876 88.327 108.899 130.549 244.428 478.589 1186.773 
4 57.172 73.993 95.520 119.127 143.775 272.179 534.902 1328.341 
5 58.459 77.886 102.192 128.540 155.857 297.327 585.818 1456.250 

4          0 52.033 57.124 64.706 73.993 84.398 143.743 271.798 664.603 
1 53.846 63.473 76.824 92.237 108.798 197.993 383.815 947.830 
2 55.598 69.229 87.230 107.341 128.531 240.121 469.735 1164.346 
3 57.296 74.530 96.487 120.515 145.547 275.816 542.171 1346.469 
4 58.945 79.468 104.907 132.348 160.730 307.355 605.995 1506.793 
5 60.547 84.108 112.679 143.181 174.568 335.922 663.703 1651.661 

('Results obtained using the absolute nodal coordinate formulation and 10 elements 
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a) Undeformed configuration 

b) Current (deformed) configuration 

Fig. 1. Undeformed (reference) and current configurations in the absolute nodal coordinate 
formulation. 
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Fig. 2. Angular velocity and tip deflection results in the spin-up maneuver of an eccentrically 
suspended beam obtained using the absolute nodal coordinate formulation with 2 elements. 
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Fig. 3. Rotation of the free end predicted for the spin-up maneuver of an eccentrically suspended 
beam using the absolute nodal coordinate formulation and 2 elements. 
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Fig. 4. Tip deflection in the spin-up maneuver of a rotating beam (steady-state angular velocity 
2 rad/s). 
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Fig. 5. Tip deflection in the spin-up maneuver of a rotating beam (steady-state angular velocity: 

4 rad/s). 
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Fig. 6. Tip deflection in the spin-up maneuver of a rotating beam (steady-state angular velocity 
lOrad/s). 
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Fig. 7. Tip deflection in the spin-up maneuver of a rotating beam (steady-state angular velocity: 

40 rad/s). 
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Fig. 8. Rotating cantilever beam attached to a rigid hub with a tip mass. 

Tl, 

Fig. 9. Rotating coordinate system. 
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Fig. 10. Centrifugal force and longitudinal strain of the rotating cantilever beam. 
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Fig. 11. First three transverse mode shapes when i?=0 and mt=Q for different values of the non- 
dimensional angular velocity: — y=0; —y=50. 
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Fig. 12. First three transverse mode shapes when R=2L and mt=3m for different values of the 
non-dimensional angular velocity: — y=0; — y=50. 
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Fig. 13. Natural frequency of the first transverse mode for different values of R/L: 
— Simulation results; — Approximate formula. 
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Fig. 14. Natural frequency of the first transverse mode for different values of R/L: 
— Simulation results; — Approximate formula. 
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