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ABSTRACT 

The description of a beam element by only the displacement of its center line leads to some 

difficulties in the representation of the torsion and shear effects. For instance such a rep- 

resentation does not capture the rotation of the beam as a rigid body about its own axis. 

This problem was circumvented in the literature by using a local coordinate system in the 

incremental finite element method or by using the multibody floating frame of reference 

formulation. The use of such a local element coordinate system leads to a highly nonlinear 

expression for the inertia forces as the result of the large element rotation. In this inves- 

tigation, an absolute nodal coordinate formulation is presented for the large rotation and 

deformation analysis of three dimensional beam elements. This formulation leads to a con- 

stant mass matrix, and as a result, the vectors of the centrifugal and Coriolis forces are 

identically equal to zero. The formulation presented in this paper takes into account the 

effect of rotary inertia, torsion and shear effects, and ensures continuity of the slopes as well 

as the rotation of the beam cross section at the nodal points. Using the proposed formulation 

curved beams can be systematically modeled. 



1       INTRODUCTION 

In the two dimensional analysis, the center line of a beam element can be used to completely 

describe the beam kinematics according to Euler-Bernoulli beam assumptions. A vector that 

defines the location of an arbitrary point on the beam cross section in terms of the spatial 

longitudinal coordinate is sufficient for the determination of the orientation and the position 

vector of the origin of a Frenet frame [5, 12], which has one of its axes tangent to the center 

line, and the other two axes are perpendicular to the center line. The effect of the rotary 

inertia of the beam cross section can be systematically accounted for using Frenet frame 

whose orientation is completely defined by the derivatives of the displacement vector. This 

was the basis for developing the absolute nodal coordinate formulation [11, 16, 18, 20], which 

does not require the interpolation of finite rotation coordinates as it is the case in some finite 

element procedures. It was also shown that the absolute nodal coordinate formulation can 

account for the rotary inertia effect and at the same time the mass matrix remains constant 

[16, 23]. The fact that the mass matrix remains constant becomes crucial in developing an 

efficient algorithm for solving the multibody dynamic equations. Using this property, an 

optimum sparse matrix structure can be obtained using Cholesky coordinates [19, 24]. 

The problem of three dimensional beams requires more careful consideration since the 

motion of the beam, even within the Euler-Bernoulli beam assumptions, can not be com- 

pletely described by the displacement of its center line. The center line represents a spatial 

curve, as shown in Fig. 1. The location of an arbitrary point on this spatial curve in a 

coordinate system XYZ is defined by the vector r(s), where s is the arc length. While 

the vector r(s) can be used to define a Frenet frame which has three orthogonal vectors; 

tangent, normal, and binormal, such a representation fails to capture simple beam motion. 

For instance, the rotation of the beam about its cross section as a rigid body can not be 

described by the vector r since this vector remains constant throughout this simple motion. 

This problem has been avoided in the finite element and multibody literature by introducing 



a local coordinate system. In the finite element literature, convected coordinate systems are 

used for the finite element [1, 15]. The deformation of the element can be defined in the 

convected system whose orientation can be described using three independent parameters. 

In the multibody literature, the floating frame of reference formulation is used [2, 6, 9, 17]. 

In this formulation, a coordinate system is introduced for the flexible body. This coordinate 

system can be used to describe the gross body motion. The body deformation is defined in 

the body coordinate system which can capture the rotation of the beam element about its 

own axis. Another benefit of using the floating frame of reference formulation is the exact 

representation of the rigid body motion even when conventional non-isoparametric elements 

such as beams and plates are used. With this formulation, the finite element has zero strain 

under an arbitrary rigid body motion. 

It is important to point out that most of existing finite element formulations, including 

large rotation vector formulations [3, 21, 22], lead to a highly nonlinear mass matrix when 

large rotation and deformation of three dimensional beam elements are considered. It is the 

objective of this investigation to develop an absolute nodal coordinate formulation for three 

dimensional beams that undergo large rotations and deformations. It is shown that the mass 

matrix of the element is constant, and as a consequence, the centrifugal and Coriolis inertia 

forces are identically equal to zero. The effects of the rotary inertia, torsion and shear are 

automatically accounted for. The formulation of the mass matrix and the elastic forces is 

presented and the choice of the element nodal coordinates is discussed. 

2       DISPLACEMENT FIELD 

The order of the polynomial used in the assumed displacement fields in the finite element 

analysis depends on the expected shape of the element deformation. In the conventional 

finite element analysis, a linear displacement field is assumed to interpolate the longitudinal 



deformation, while a cubic polynomial is used for the transverse deflections of the beam 

element. This kind of assumed displacement field is suitable when using a beam local coor- 

dinate system as in the case of the incremental procedure or the finite element floating frame 

of reference formulation that is widely used in flexible multibody simulation. However, in 

the non-incremental absolute nodal coordinate formulation, the concept is different since the 

chosen displacement field represents both rigid and flexible body motions. This displacement 

field is defined in the global system and accounts for the coupling between the rigid body 

motion and the elastic deformation. For a three dimensional beam element, we assume a 

displacement field using the following polynomials: 

r = 

^3 

üQ + d\x + a2y + a^z + a4xy + a$xz + ^ akx fc-4 

fc=6 
n 

b0 + bix + b2y + b3z + b^xy + b5xz + ]T bkx fc-4 

fc=6 

c0 + c\x + c2y + c3z + c^xy + c5xz + £] ckx fc-4 

fc=6 

(1) 

where r is the global position vector of an arbitrary point on the beam cross section, a;, 6;, 

and Ci are the polynomial coefficients, and x,y and z are the spatial coordinates defined in 

a chosen beam coordinate system. Here x is assumed to be the spatial coordinate along 

the beam axis (0 ^ x ^ I), where / is the length of the beam element. The order of the 

polynomials in the preceding equation can be chosen depending on the magnitude of the 

deformation expected from the element. Note that the polynomials used to interpolate the 

three components of the displacements have the same order since the vector r is defined in 

the global coordinate system. Furthermore, in order to account for the rotary inertia and 

shear effects, the displacement field is assumed to depend on y and z. Since the cross section 

dimensions of the beam element are assumed to be small compared to the element length, 

the displacement field is assumed to depend only linearly on the spatial coordinates y and 



z. The preceding equation can also be written in a matrix form as follows: 

r = 

*3 

Si 0 0 

0 Si 0 

0     0     Si 

a 

b 

c 

(2) 

where a, b, and c are the vectors of the polynomial coefficients, and Si is a row vector that 

defines the space-dependent coefficients of the polynomials of Eq. (1). 

The order of the interpolating polynomials used for the assumed displacement field de- 

pends on the chosen number of the beam nodal coordinates. The choice of the nodal coor- 

dinates is as important as the choice of the displacement fields since it contributes to the 

definition of the element stiffness and inertia forces. A combination of global position and 

slope coordinates can always be chosen as nodal coordinates as will be demonstrated in 

details in later sections of this paper. 

3 DEFINITION OF BEAM CROSS SECTION 

In Euler-Bernoulli beam theory, the cross section is assumed to remain rigid and perpendic- 

ular to the center line. Therefore, the normal to the cross section is defined by the tangent 

vector dr/dx. In the assumed displacement field defined in the preceding section, the beam 

cross section does not remain perpendicular to the center line, and therefore, the cross sec- 

tion is not defined by the vector dr/dx tangent to the center line. Using this displacement 
dr dr 

field, it can be shown that for a given x, — and — are independent of y and z. It can also 
oy oz 

dr dr 
be shown that — and — are two independent vectors (not necessarily orthogonal) that 

dy dz 
define the cross section of the beam element. To this end, an arbitrary vector rs is defined in 

the cross section as shown in Fig. 2. Using the displacement field defined in the preceding 



section, it can be shown that 

a2 + xa4 a3 + xa5 

rs = rP-rp=     b2 + xfa     V+     fa + xfa     z, (3) 

c2 + xc± c3 + xc5 

where rP is the global position vector of an arbitrary point P on the cross section with 

coordinates (x,y,z), and rp is the global position vector of a corresponding point P with 

coordinates (a;, 0,0) on the center line of the beam. 

It can be shown that 

or 
dy 

dr 
dz 

a3 + xa5 

fa + xfa 

c3 + xc5 

(4) 

a-2 + xa^ 

fa + xb^ 

c2 + xc4 

The preceding two equations (Eqs. 3 and 4) show that 

dr       dr 
Ts = ydy- + Z^ 

which shows that an arbitrary vector drawn on the cross section can be expressed as a linear 
dr dr dr dr 

combination of the two vectors — and —.   The fact that — and — are independent 
dy dz dy dz 

of y and z can be used, with the help of Gram-Shmidt orthogonalization process [12], to 

determine the following two orthonormal vectors on the cross section: 

rz - hry 

|rz - hr„ 

where 

h 
(r,)Tr„ 

(ryy r, 

(5) 

(6) 

dr 
n, is a unit vector alone; r„ = —, while bs is a unit vector which is a linear combination of &   y      Qyi 

dr 
the vectors rz = — and ns. In order to complete the orthogonal triad for the cross section, 

dz 
a normal to the beam cross section can be obtained by using the cross product of the vectors 

n.s and bs as follows: 

ts = ns x bs (7) 



The vectors ts,ns   and bs constitute a right-handed orthonormal set, which completely 

defines the orientation of the beam cross section. 

4        KINEMATICS OF THE CROSS SECTION 

As described in the preceding section, the three orthogonal vectors ts,ns, and bs can be 

systematically defined in terms of the vectors ry and rz obtained using the displacement 

field introduced in Section 2. In the case of a rigid body motion of the finite element it can 

be shown that ry and rz are two orthogonal unit vectors, and as a consequence, h in Eq. (6) 

is identically equal to zero, and 

ns = Ty, and bs = rz. (8) 

Furthermore, in the case of rigid body motion of a straight beam, ts remains in the direction 

of the center line of the beam. Therefore, in the case of a general displacement that includes 

deformations, the difference between ns and r^, and bs and rz is mainly due to the beam 

deformation. In fact h in Eq. (6) can be used as a measure of this difference since h is 

identically equal to zero under an arbitrary rigid body motion. If the deformation within 

the element is small, then it is reasonable to assume that 

and in this case 

ns « r,,, and        bs « rz. 

Using this assumption, it follows from the definition of rs presented in the preceding section 

that 

|rs| Rs constant, 

which implies that the cross section remains rigid. 



It is important to point out that the assumption used in this section is also commonly- 

used in the finite element literature for beam elements that account for the effect of rotary 

inertia and torsion [14] as will be discussed in Section 9. 

5        MEASURES OF TORSION AND SHEARS 

In Euler-Bernoulli beam theory, it is assumed that the cross section of the beam remains 

perpendicular to the beam center line, and as a result, the shear deformation effect is ne- 

glected. In this case, the vector normal to the cross section coincides with the tangent to 

the center line defined by Serret-Frenet equations. 

Serret-Frenet frame is a coordinate system which defines three vectors; tangent, normal, 

and binormal to the beam center line. The normal and binormal vectors define the so called 

normal plane [12] which is normal to the center line. The normal plane of Serret-Frenet 

frame is, therefore, the beam cross section if Euler-Bernoulli beam theory is used. The 

Serret-Frenet frame is defined by three orthogonal unit vectors; t, n, and b. The unit vector 

t is tangent to the beam center line and is defined as 

t =£, (9) 
as 

where ds is the arc length of an infinitesimal segment of the center line defined as 

ds = y(vx)   rxdx, (10) 

dv 
where rx = -7r-. Thus, Eq. (9) can be written as 

ox 

t=-i£T = _^==. (11) 
\*x\ I     \T rr    rT lx I    '■x 

The unit vector n is normal to the beam center line and is defined as 

1 dt      1 dt dx ,    . 
Kds      ndx ds' 



where K defines the curvature of the deformed centerline. Equation (12) leads to 

lr. 
n =- 

hfTx 

d2T 
where rxx - —^ 

K   (rxyrx 

, and hf is a scalar quantity defined as 

(13) 

hi 
\*xx) 

T, 

(rs)   rx 

(14) 

The curvature can be written as 

K 
- hfrx 

{rx)   rx 

= 
dt 

ds 
= 

d2v 
ds2 (15) 

The unit vectors t and n define a plane, called the osculating plane, which represents the 

bending plane of the center line of the beam. However, the orientation of this plane is a 

function of the beam axial coordinate x. The third vector that completes the Serret-Frenet 

orthogonal triad is the binormal unit vector b defined as 

t x n. (16) 

The rate at which the curve twists out of its osculating plane is called the torsion r, which 

is defined as [12] 

T = 
db 
ds 

(17) 

and it represents the twisting shear deformation of the beam. However, as pointed out in the 

introduction of this paper, the Serret-Frenet description fails to capture the rotation of the 

cross section of a straight beam about its own axis since such a rotation does not contribute 

to the change of the vector r. 

As already mentioned, the plane defined by {n, b} is perpendicular to the center line 

of the beam, while the plane defined by {ns,bs} represents the cross section of the beam 

defined by the assumed displacement field presented in Section 2. In the undeformed beam 

configuration (rigid body motion), or in the case of no shear effect, the two planes are parallel. 

8 



In the case of a general displacement, the two planes are not parallel due shear deformations. 

The scalar 
tT 

T n
s 

(18) v = t ■ ts= t- (ns x bs) = det 

gives an idea about the shear deformation of the beam as shown in Fig. 3. For instance, if 

v — 1, there is no shear deformation, and if it is not equal to one, the amount of shear is 

inversely proportional tot>(—l^u^l). Figure 4 illustrates a general deformation of the 

beam by assuming arbitrary values for the polynomial coefficients. Also shown, in Fig. 4, is 

the angle 7 which is the arc cosine of v at two different points on the beam (£ = x/l). Later 

in this paper, the strain energy due to the shear effect will be discussed. 

Using the assumed displacement field of the beam presented in Section 2, the effect of 

the torsion can be easily accounted for using the two unit vectors ns and bs of the beam 

cross section. As a measure of torsion for a short beam, one can use the rotation of the cross 

section at an arbitrary point on the beam center line with respect to the reference plane at 

node A. There exists an angle ßx defined by the dot product 

cos/?x = ns -nsA,        sin/?z = ns-bSA, (19) 

where nSy4 and bSA are the two unit vectors that define the reference plane. Note that ßx 

is equal to zero in the case of rigid body motion, and as a consequence, it can be used as a 

measure for the torsion. 

6        BEAM INERTIA 

In the three dimensional analysis of the large rotation problem, both the finite element 

incremental approach and large rotation vector formulation lead to a highly nonlinear mass 

matrix.  The absolute nodal coordinate formulation on the other hand leads to a constant 

9 



mass matrix and automatically accounts for the shear and torsional effects. 

The mass matrix of the three dimensional beam element can be obtained using the 

absolute nodal coordinate formulation and the following expression of the kinetic energy': 

T = ^jpvTvdV, (20) 

v 

where r is the global position vector of an arbitrary point, and p and Fare respectively the 

mass density and volume of the beam element. The vector r is defined in Section 2 by Eq. 

(1) using the coefficients of the interpolation polynomials. These coefficients can be replaced 

by global coordinates and slopes at the nodes, as explained in later sections of this paper. 

In this case, the global position vector of the arbitrary point can be expressed in terms of a 

vector of element nodal coordinates e and the shape function S as 

r = Se, (21) 

It follows that 

f = Se. (22) 

By substituting Eq. (22) into Eq. (20), one obtains 

1 T=jtf- pS1 SdV 

iv 

which is a simple quadratic form in the velocities. Thus the element mass matrix is defined 

(23) 

as 

M=  f PSTSdV. (24) 

v 
The above integration defines a constant mass matrix which only depends on the inertia 

properties and dimensions of the beam. Using the fact that the mass matrix obtained using 

the absolute nodal coordinate formulation is constant, efficient numerical procedures can be 

used to obtain an optimum sparse matrix structure for the resulting multibody dynamic 

equations [19, 24] 

10 



The inclusion of the effect of the rotary inertia of the three dimensional formulation 

presented in this paper can be demonstrated by using Eq. (3). To this end, we write 

TP= rp + fs, (25) 

where P is an arbitrary point on the beam center line.  Using the preceding equation, the 

beam kinetic energy can be written as 

T   =   \Jp(ip + *r){ip + *s)W (26) 
v 

- <   / —iTpipdx +     P [2r Jrs + rfr J dxdydz 

i v 

The first term in the above integration is the mass matrix in the case in which the beam 

rotary inertia is neglected, while the second term accounts for the effect of the rotary inertia. 

7        ELASTIC FORCES 

If the deformation within the beam is large, the expression for the nonlinear strain-displacement 

relationship must be used to formulate the elastic forces of the beam element [4] in the non- 

incremental absolute nodal coordinate formulation. However, if the size of the element is 

chosen to be small such that the deformation within the element remains small, the linear 

strain-displacement relationship can be used in the large deformation analysis of flexible bod- 

ies using the absolute nodal coordinate formulation [20, 24]. In this section, as an example 

for formulating the elastic forces, the case of small element deformation is considered. 

In the finite element analysis, the strain energy of a beam is defined, in general, in terms 

of six components; one axial force, two bending moments, two shear forces, and one torsional 

moment [14]. However, in Euler-Bernoulli beam theory, the shear forces are not considered 

assuming that the cross section plane remains perpendicular to the beam centerline after 

11 



dx, (27) 

deformation. Thus, the strain energy in the case of small deformation can be defined as [10] 

2 I \ Gkßl + Gkßl + GIxx(?t)2 

where uX) uy, and uz are respectively the x—, y—, and z—component of the beam deflection, 

ßXj ßy> and ßz are the shear angles, k is the Timoshenko shear factor [8, 10], E and G are 

respectively the moduli of elasticity and rigidity, Ixx, Iyy, and Izz are the second moments of 

area, and A is the beam cross section area. In order to evaluate the beam strain energy, a 

local beam frame can be used. However, it is important to point out that the beam strain 

energy can be also evaluated using the inertial coordinate system directly instead of using a 

local frame by utilizing continuum mechanics theories [4, 21, 22, 23]. 

Previously, two coordinate systems were introduced in this paper; the cross section frame 

and the Serret-Frenet frame. In order to define the beam longitudinal and transverse deflec- 

tions, a vector d, shown in Fig. 5, is defined as 

ip - rA, (28) 

where Tp is the position vector of an arbitrary point P on the beam centerline, and r^ is 

the position vector of node A as shown in Fig. 5. Considering Eq. (21), Eq. (28) can be 

re-written as 

d = (S(x,0,0)-S(0,0,0))e. (29) 

As shown in Fig. 5, the vector d represents the location of a point P on the beam center 

line with respect to node A, the deflection components can be defined as follows: 

u — 

ux 

Uy 

uz 

ATd 

x 

0 

0 

(30) 

where x is the axial coordinate of point P in the undeformed state, A is a transformation 

matrix which can be expressed in terms of the unit vectors ts, ns, and hs defined at node A. 

12 



It follows from the preceding equation that 

Ux   =   tSA- d — x 

uy   =   nsA • d 

uz   =   bsA • d 

} • (31) 

Equation (31) defines the axial and transverse components of the beam deflection which are 

required for evaluating the first three terms of the strain energy. 

There are different approaches that can be used to measure the torsion and shear. Figures 

6a, b, and c show a schematic diagram for each of the three rotation angles of the beam cross 

section. Using the difference in orientation between the cross section frame and Serret-Frenet 

frame depicted in these figures, one can conclude the following: 

cos ßx   =   ns • nSA 
^ >, (32) 

sin/3x    =   ns ■ bsA J 

where ßx is the rotation of the cross section relative to a reference plane which is assumed 

to be at node A, USA and bsA are the unit vectors that define the reference plane at node A. 

It can be shown using Eq. (32) that 

2 

nsx ■ nsAY + (nsx ■ bsA)2 , (33) 'dßx \ ,_        __     ,2   ,   /_        !_     N2 
dx 

dm 
where nsx = -^. The shear angles can be defined as the rotations of the beam cross section 

about the normal and binormal vectors of Serret-Frenet frame.   Considering Fig.   6b, the 

shear angle ßy can be defined as 

ßy = sin"1 (bs • t). (34) 

Similarly, the shear angle ßz, according to Fig. 6c, is defined as 

ßz = sin"1 (-ns • t). (35) 

13 



Using Eq. (27), the definition of the longitudinal and transverse deformations, the torsion, 

and the shear angles; the strain energy of the beam can be written as 

U = JeTKe, (36) 

where e is the vector of nodal coordinates, K is the stiffness matrix. In the current analysis, 

the beam stiffness matrix is highly nonlinear in the nodal coordinates. Differentiating the 

strain energy once with respect to the nodal coordinates will lead to the beam elastic forces 

Q defined as 

In order to ensure that the proposed element meets the convergence requirements, an eigen- 

value test has to be performed on the stiffness matrix [7]. The stiffness matrix must have 

the exact number of rigid body modes (3 for 2-D and 6 for 3-D elements) despite the fact 

that the stiffness matrix is function of the nodal coordinates. In other words, the stiffness 

matrix should include exactly 6 zero eigenvalues. If the stiffness matrix has zero eigenvalues 

more than the number of the rigid body modes, this implies that the element has zero- 

energy deformation modes which do not have corresponding restoring forces represented in 

the beam strain energy. Such an element will not converge to a correct solution. Also the 

stiffness matrix should produce zero strain energy (zero elastic forces) in the case of rigid 

body motion. 

8        NODAL COORDINATES 

In the non-incremental absolute nodal coordinate formulation, the displacement field of the 

finite element is expressed in terms of a set of nodal coordinates that consists of global 

displacement and slope coordinates. The number of these coordinates depends on the order 

of the polynomials used.   The displacement field presented in Section 2 is assumed to be 

14 



linear in y and z and it can assume any order in x. For example, if cubic polynomials in 

x are used, one needs 24 nodal coordinates for the beam element. This number can be 

reduced by reducing the order of the polynomials. However, by increasing the order of the 

polynomials, more deformation modes within one element can be obtained. The use of such 

a higher order element may lead to a significant reduction in the number of finite elements 

required to model a structure. Figure 7 shows deformed shapes which can be obtained using 

one element with polynomials cubic in x. The shape in Fig. 7a is obtained using the following 

polynomial coefficients: 

a. 110   0   0   0   -0.27   0.018 bf 110   0   0   0   -0.04   -0.004 

0   10   0   0   0   -0.11   0.004 

while the shape presented in Fig. 7b is obtained using the following coefficients: 

1-3000   0.77   0.048 bi" 1-20000   -0.02   0.018 

cT- 0   10   0   0   0   -0.13   0.002 

Such deformed shapes can not be obtained with one or two elements using linear interpola- 

tion. Depending on the order of the polynomial used and the number of nodes selected for 

the element, one can choose coordinates using the following global variables: 

dr      dr      dr 
dx'     dy'     dz' 

These variables represent 12 coordinates at a given point on the center line of the element. 

One does not need to use all these coordinates at a given node. One may also choose to 

use another set of coordinates which include a linear combination of the global slopes. For 

example, the following three variables can be used 

dy      dz'      y      dz 
drx     dr3 

dx '' 
^  = dr2     drl 

dx      dy 

15 



One can show that in the case of rigid body motion flx,fly, and flz can be related to the 

known orientation parameters used in the rigid body dynamics. For example, flx, fly, and flz 

can be expressed in terms of Euler parameters, 60,61,62, and 03, in the case of rigid body 

motion as follows: 

tfx=40O0l,       fly = 40O02,       tfz= 40Q03, 

and they are related to Rodriguez parameters as follows [18]: 

,5   _j7i_      „   _    472 „   _    473 
x~l + 72'       y~l+7

2'       z"l + 72' 

where 71,72, and 73 are Rodriguez parameters and 7 = A/7I +72+73 • 

A large rotation vector can be defined as v sin 0 where v is a unit vector along the axis 

of rotation and 6 is the angle of rotation.  It can be shown that, in the case of rigid body 

motion, the set $ flX     Ay     AZ 
can be expressed in terms of the rotation vector as 

tf =2vsin0. 

9        BASIC ASSUMPTIONS 

In several finite element formulations for the large rotation and deformation analysis of 

beams, the equations of motion are developed by assuming that the beam cross section 

remains rigid [21, 22], while in reality, the beam cross section does not remain rigid when 

the beam deforms. The use of the assumption of the rigidity of the cross section introduces 

difficulties when these methods are generalized to the case of plates and shells where the 

rigidity assumption can not be used and is no longer valid. The non-incremental absolute 

nodal coordinate formulation relaxes this assumption, and therefore, it can be easily extended 

to study plate and shell problems. 

It was shown in Section 4 that the length of a vector on the cross section of the beam 

element remains constant under an arbitrary rigid body displacement. In the general case 
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of arbitrary displacements and deformation, the change in the length of this vector is small 

and is due to the deformation. It is the objective of this section to demonstrate that this 

hypothesis is commonly used in the finite element literature. To this end, we use the con- 

ventional finite element shape function used for beams and for simplicity we consider the 

case of two-dimensional beam element. Nonetheless, the main conclusions obtained using 

the simpler two dimensional beam model apply to the conventional three dimensional beam 

element used in the incremental procedure. 

In the assumed displacement field of the conventional beam element, six nodal coordinates 

are used for the two-node beam element (3 coordinates/node; two displacement coordinates, 

and one infinitesimal rotation coordinate). The element shape function of the Euler-Bernoulli 

beam element is given by 

£-1   0 0 £   0 0 

o       i_3(o2 + 2(o3 i[£-2(o2 + (03]  o 3(£)2-2(03 *[(03-(02] 
S = 

(38) 

where £ = x/l, and the vector of nodal coordinates is 

ex   e2   e3   e4   e5   e6 

where 

ei rlU=0'      62 = ?"2 i ?=o f=o e3 = 

e4   =    7M 

dr2 

dx 

dr2 

dx 

£=o 

e=i 
l£=l !       ^5        ^2|^=i )       ^6 

Therefore, the coordinates of an arbitrary point on the center line of the beam element 

defined in a convected coordinate system is 

r = Se. 

Note that this element does not account for the effect of the rotary inertia. In the literature, 

the effect of the rotary inertia is considered by modifying the assumed displacement field as 
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follows: 
-dr2/dx 

dri/dx 

Since the shape function of Eq. (38) is independent of y, the vector tangent to the center line 

Se+ y- (39) 

-dr2/dx   dri/dx is defined as dr/dx which can be used to define the normal vector n = 

that appears in the preceding equation. If the element length and the axial deformations are 

assumed to be small, then 
fir- 

1. (40) 
dx 

It follows that a vector rs on the cross section is defined in the convected coordinates system 

as 
—dr2/dx 

dri/dx 

which implies that |rs| =constant if and only if n is a unit vector. This is not, in general, 

the case since Eq. (40) is not strictly imposed. To strictly impose the condition of Eq. (40), 

one must write 

n = 
—dr2/dx 

dri/dx '(dri/dx)  + (dr2/dxj 

which will produce a shape matrix which is nonlinear in the element nodal coordinates. 

10 SUMMARY AND CONCLUSIONS 

A non-incremental absolute nodal coordinate formulation for three dimensional beam ele- 

ments is presented in this paper. The element displacement field is assumed to be linear in 

y and z coordinates of the cross section of the beam, while it can assume higher order in x. 

It can be shown that this assumed displacement field can describe exact rigid body motion, 

and as a consequence, it leads to zero strain energy under an arbitrary rigid body displace- 

ment.  The kinematics of the element cross section is thoroughly examined and compared 

18 



with the Serret-Frenet frame. It is shown that the tangent of the center line of the element 

does not remain perpendicular to the element cross section, thereby demonstrating that the 

new element can account for the shear deformation effect as well as the torsion. The shear 

and torsion angles are defined in terms of the deviation of the element cross section frame 

from the Serret-Frenet frame. The formulation of the inertia and elastic forces of the finite 

element using the absolute nodal coordinate formulation was discussed in the paper. It is 

shown that it is feasible to obtain an element that has a constant mass matrix and at the 

same time accounts for the rotary inertia, shear, and torsion effects. This property is an 

important feature of the absolute nodal coordinate formulation since most existing methods 

used for the nonlinear large rotation analysis, including the incremental methods, large ro- 

tation vector formulations, and the floating frame of reference formulation, lead to a highly 

nonlinear mass matrix when three-dimensional beams are considered. 

Global slopes or linear combination of these slopes, in addition to displacement coor- 

dinates, can be used as the element nodal coordinates. The number of the element nodal 

coordinates depends on the order of the interpolating polynomials presented in Section 2. 

The assumptions used in developing the three dimensional beam element presented in this 

paper are also discussed and it is demonstrated that these assumptions are consistent with 

the assumptions that have been used in other methods that employ the conventional three 

dimensional beam elements. Some other important features of the method proposed in this 

paper can be summarized as follows: 

1. The method, in general, relaxes the assumption of the rigidity of the cross section of 

the beam element, and therefore, it can be extended to the analysis of plates and shells. 

2. The method leads to isoparametric elements that can be easily used in the analysis of 

curved structures. 

3. The method does not require the interpolation of finite rotation coordinates.   It is 
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known that 

(a) for a given configuration and a given set of orientation coordinates, different 

sequences with different values for the orientation coordinates can be used to 

describe the same configuration. 

(b) the relationship between different sets of orientation coordinates is highly nonlin- 

ear, and therefore, a linear interpolation of one set of finite rotation coordinates 

does not imply the same order of approximation for another set. This raises some 

questions with regard to the physics used in the interpolation of the finite rotation 

coordinates. On the other hand, in the absolute nodal coordinate formulation, 

only the shape of the element is interpolated. 

4. The proposed method ensures the continuity of the slopes and the rotation of the cross 

section. As a consequence, the configuration shown in Fig. 8 which can result from the 

interpolation of rotation coordinates only, is avoided. This configuration is the result 

of imposing continuity conditions on the finite rotations, while no such conditions are 

imposed on the global slopes. 
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Fig. 1. Beam rpresented by its center line. 
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Fig. 2. Beam cross section. 
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Fig. 3. Coordinate systems. 
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Fig. 4. Rotation of the beam cross section. 
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Fig. 5. Beam deformation. 
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(a) Rotation of beam cross section about its normal. 
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Fig. 6. Definition of torsion and shear. 
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Fig. 8. Discontinuity of the slopes. 


