
MI UNIVERSITY OF SOUTHERN CALIFORNIA / LTl I INFORMATION SCIENCES INSTITUTE
4676 Admiralty Way Marina del Rey, CA 90292

Tera-node Network Technology (TASK 1)

RSVPTNT - ReSerVation Protocol
FINAL REPORT

Defense Advanced Research Projects Agency (DoD)
Computer Systems Technology Office
Under Contract #DABT63-95-C-0095
Issued by Directorate of Contracting

Fort Huachuca, AZ

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

20000320 024 Page 1

REPORT DOCUMENTATION PAGE FORM APPROVED

OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimated or any
other aspect of this collection of information, including suggestions for reducing this burden to Washington Headq uarters Services, Directorate for Information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, VA 22202 -4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704 -0188),
Washington, DC 20503

1. AGENCY USE ONLY 2. REPORT DATE

March 14, 2000
3. REPORT TYPE AND DATES COVERED

Final Report - 07/01/1995 - 06/30/1999
TITLE AND SUBTITLE

Tera-node Network Technology (TASK1)
ReSerVation Protocol (RSVPTNT)

6. AUTHORS

Robert Braden, Deborah Estrin, Steven Berson, Shai Herzog, Jeff Kann, Robert
Lindell, Mohit Talwar, and Daniel Zappala

FUNDING NUMBERS

DABT63-95-C-0095

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Directorate of Contracting
ATTN: ATZS-DKO-I
P.O. Box 12748
Fort Huachuca, AZ 85670-2748

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A. DISTRIBUTION/AVAILABILITY STATEMENT

UNCLASSIFIED/UNLIMITED

12B. DISTRIBUTION CODE

13. ABSTRACT (Maximum ZOO words)

RSVP, a setup protocol to create flow-specific reservation state in routers and hosts, is a component of the
QoS extensions to the Internet architecture known as Integrated Services. RSVP was designed to provide
robust, efficient, flexible, and extensible reservation service for multicast and unicast data flows. This report
provides an overview of the development of RSVP, including an analysis of the key design decisions for the
protocol as the protocol has evolved.

14. SUBJECT TERMS

Internet Quality of Service, resource reservation, signaling protocol,soft state,
multicasting.

15. NUMBER OF PAGES

18

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION OF
ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
289-102

The Evolution of the RSVP Protocol
Robert Braden, Deborah Estrin, Steven Berson, Shai Herzog,
Jeff Kann, Robert Lindell, Mohit Talwar, and Daniel Zappala

March 14, 2000

USC/lnformation Sciences Institute
FINAL REPORT

Contract RSVPTNT-DABT63-95-C-0095
1 July 1995-30 June 1999

ABSTRACT: RSVP, a setup protocol to create flow-specific reservation state in routers
and hosts, is a component of the QoS extensions to the Internet architecture known as
Integrated Services. RSVP was designed to provide robust, efficient, flexible, and exten-
sible reservation service for multicast and unicast data flows. This report provides an
overview of the development of RSVP, including an analysis of the key design decisions
for the protocol as the protocol has evolved.

1. Introduction
This document provides an overview of the development of RSVP {ReSerVation Protocol) Internet
protocol. RSVP was designed as a setup or "signaling" protocol for Internet resource reservations.
This document is a final technical report for the RSVP2 project at ISI under which ISI contributed
to the design, standardization, and prototyping of RSVP.

The remainder of this section briefly recapitulates the historical context and basic requirements for
RSVP. Section 2 provides an analysis of the key technical decisions as the protocol evolved since
its beginning in 1991. Section 3 discusses two high-level design issues for RSVP, and Section 4
presents conclusions.

1.1 Historical Context

The development of Integrated Services and RSVP began in 1991. To place this event in context, in
1991 commercialization of the Internet was just beginning, the World Wide Web had not yet emerged,
IP multicasting was still a research toy, and the OSI protocols still threatened to replace TCP/IP.
However, the rapid growth of CPU power in silicon was already leading workstation manufacturers
to forecast multimedia capabilities for future products. As a result, Internet researchers became
concerned about the potential impact of multimedia traffic on the Internet [ISIP92]. The continuous
flows of UDP-based multimedia traffic, which were not subject to congestion control, could prevent
TCP connections from getting their fair share of bandwidth. Conversely, network congestion could
prevent timely delivery of the real-time multimedia flows, providing poor service to multimedia
users.

Page 2

Two approaches to this problem were considered: (1) requiring that multimedia applications adapt
to network congestion, and (2) explicitly supporting quality of service (QoS) for multimedia and
other real-time traffic. The second requires that network resources be "reserved", to provide an upper
bound on end-to-end delay and protect the real-time flows from each other and from best-effort
traffic.

Adaptivity of multimedia applications to varying effective bandwidths is highly desirable in the
statistically-multiplexed Internet. There were intense arguments about whether the evolution of fiber
optics would lead to such an excess of bandwidth that congestion would never happen. However,
the majority view was that there will always be significant parts of the Internet where low bandwidth
or congestion will be outside the adaptive ranges for multimedia applications. There was furthermore
an assumption that a multimedia user would rather receive a "busy" signal than have service degrade
during a session. As a result, the decision was made to pursue both approaches: adaptive applications
and Internet QoS.

ARPA-funded research beginning in the early 1970s had demonstrated packetized speech and de-
veloped a network protocol called ST-II [STII90] for real-time data delivery. In brief, ST-II imple-
mented point-to-multipoint virtual circuits with QoS. However, there were three serious problems
with ST-II as a general solution for Internet QoS. First, ST-II was incompatible with IP, so the
adoption of ST-II would result in two parallel packet switching infrastructures. Second, ST-II used
"hard" state, while the Internet community favors "soft" state, for robustness. Finally, ST-II built
sender-oriented multicast trees, which presented serious scaling problems for a session with many
multicast receivers.

1.2 Internet Integrated Services

The Integrated Services architecture was designed as a solution to supporting multimedia and other
real-time traffic in the Internet [ISIP92, ISarch93]. The term "Integrated" refers to support for both
real-time and best-effort traffic in the same packet-switched infrastructure.

Integrated Services is based upon three fundamental assumptions.

o It is still DP

The Integrated Services architecture is incremental, i.e., it is designed as a compatible extension
of the original Internet architecture with its best-effort service.

Since reservations have a cost and many users will not want or need to pay that cost, best-
effort service must always be available in the Internet. It was expected that this cost would be
necessary only for those real-time applications that cannot adopt sufficiently well, and in those
cases where there is not sufficient over-provisioning to provide adequate service.

o Multicast delivery is fundamental.

It was believed that teleconferencing and perhaps broadcast video might become "killer ap-
plications" for the Internet, and that efficiency would demand IP multicasting to support these
applications.

o Signaling overhead is acceptable

The overhead for resource reservation setup, known as "signaling" in the world of telephony,
should be small compared to the continuous multimedia packet streams

Integrated Services required the definition of new IP service models to provide QoS, and the imple-
mentation of these models meant resource reservations in routers and hosts. High-assurance isolation
of real-time flows required fine-grained reservations, at the granularity of individual user flows, at
least at the network edges. It was recognized that this could lead to an unacceptably large amount

Page 3

of reservation state in the "center" of the network, but it was believed that aggregate reservations
would be acceptable in regions with a lot of reservation state [ISarch93].

Implementing Integrated Services required that new mechanisms be added to routers and end sys-
tems: admission control, packet classification, packet scheduling, and of course signaling to set up
the reservations.

1.3 RSVP

The RSVP protocol was designed to be the signaling protocol to set up Integrated Services reser-
vation state in hosts and routers [Zhang93]. The fundamental design of RSVP was developed by a
research collaboration during the period 1991-1993. Beginning in 1993, a further research and
development collaboration turned this proto-RSVP into a practical Internet protocol, and ISI con-
structed a prototype implementation of the evolving protocol. Since 1995, the RSVP protocol has
been further refined and standardized by a Working Group of the IETF; the result is known as Version
1 of RSVP [RSVP97], which is now a Proposed Standard for the Internet.

The basic RSVP requirements followed from its role as the state setup protocol for Integrated Service

1. RSVP is an end-to-end protocol; requests come from applications and travel through routers.

2. RSVP is designed to make reservations for fine-grained flows

3. RSVP is designed from the beginning to support multicast as well as unicast flows. As shown
in Figure 1 below, IP multicast establishes a multipoint-to-multipoint delivery tree for each
session.

More generally, RSVP was designed with these objectives: logical simplicity, robustness, scaleabil-
ity, flexibility, deployability, and extensibility. Section 2 describes how these objectives were met.

1.4 Integrated Services

RSVP is only one component of Integrated Services (although "RSVP" is often misused as a met-
aphor for Integrated Services). Other components that had to be developed included service models,
link layer mappings, an API, and policy control.

o Service Models

Research on Integrated Services led to two alternative service models, Guaranteed service
and Controlled Load service.

Guaranteed service [GuarA97] enforces a requested maximum end-to-end queueing delay
(the speed of light is not under our control). It provides a high assurance service with a
correspondingly high resource cost, which is most appropriate for real-time applications
that are unable to adapt to network congestion.

Controlled Load service [CLoad97] provides a lower level of assurance ~ a "soft" guar-
antee — at a much lower resource cost than Guaranteed requires. Controlled Load essen-
tially simulates an unloaded network, and it is suitable for adaptive applications, protecting
them from extreme congestion.

Although there are many ways to implement these services, it may be helpful to think of
Guaranteed service as using a weighted round-robin queueing discipline, while Controlled
Load may be thought of as simple priority queuing.

Page 4

o Link layer mappings

It was necessary to specify how to achieve the service models of Integrated Services over
different link layer technologies. An IETF working group developed specifications for
low-bandwidth point-to-point links (e.g., ISDN), for IEEE 802 networks, and for ATM
circuits.

1.5 Differentiated Services

Since the Integrated Services research began in 1991, the problem has shifted. The World Wide Web
has become the dominant Internet application. Multimedia flows are today only a relatively minor
problem in the global Internet, although they may be significant within some corporate intranets.
Today's major Internet problems are keeping up with explosive growth, supporting the World Wide
Web, and providing the tools needed by commercial Internet service providers (ISPs).

In particular, it is of great commercial importance to an ISP to be able to sell different qualities of
service to different customers. Integrated Services, which was designed to provide assured service
(only) for continuous flows, is not a solution to this problem. It makes no sense to ask RSVP to set
up a reservation for each transient TCP connection in a Web transaction, for example. The solution
under development for this problem is Differentiated Services.

Differentiated Services allow an ISP to sell various grades of Internet Services. It explicitly avoids
per-flow state in the network, except perhaps at the "edges". When possible, it makes resource
allocations to large flow aggregates and over long time scales, replacing reservations with provi-
sioning.

2. Overview of RSVP Design
The design of RSVP to meet the requirements of the previous section involved many technical
decisions. If any of these decisions were changed, the protocol would change in a minor or a major
way. We divide the decisions into those that seem most fundamental, in the following section, and
those that are secondary, in Section 2.2. Section 2.3 summarizes RSVP's interfaces to other system
components.

2.1 Primary RSVP Design Decisions

A. Receiver Initiation of Reservations (for scalability)

RSVP is receiver-oriented, so that it will scale to large multicast groups. As shown in
Figure 1, RSVP reservation request (Resv) messages originate from receivers of data and
travel upstream towards data senders. Note that the reservations are made at the upstream
end of each link, although the reservation requests come from downstream.

It was suggested at several stages of RSVP design that it could support sender initiation
as well as receiver initiation of reservations, since sender initiation appears simpler for
the unicast case. However, the majority view was that any simplification that might result
for unicast reservations was out-weighed by conceptual economy; there was a reluctance
to define a protocol with two ways to do accomplish the same thing.

Page 5

Sender
Hosts Routers Receiver

Hosts

Fig 1: Data Flows and RSVP Resv messages
for a multicast session.

B. Signaling distinct from routing (for deployability)

Resource reservations for a data flow must be made in each router along the path of the
flow. The path is determined by some routing protocol whose distributed algorithm deter-
mines where to forward the data packets at each hop. It would be possible to develop a
unified mechanism that encompassed both routing and reservation. However, this did not
seem practical, since there already existed a variety of routing protocols in the Internet,
and RSVP should be able to work with any of them.

The design decision was to adopt an incremental approach to combining reservation with
routing [Zappala96]. Phase 0 is for RSVP to use existing routing protocols without change.
In this initial phase, the routing protocol implementations would be modified only to allow
the RSVP daemon to query about specific routes, to steer reservations along the route of
the data flows.

The simple Phase 0 approach has two important problems. First, it may cause a reservation
request to fail on the path provided by routing, when it might have succeeded along some
alternate path. Second, if a route changes to a "better" route (but the original route still
works), there may be excessive signaling overhead and perhaps brief signaling outages as
reservations are reestablished over the new route. We say that the route over which a
reservation has been made needs to be "pinned" [Zappala96].

To provide a partial solution to these problems, we can move to Phase 1. Here we use the
current reservation-independent routing to choose a route, but allow RSVP to dynamically
request an alternate path when the first one does not have enough resources [Zappala96].
Research at ISI showed that heuristics based on local information can be used to implement
reasonably effective and scalable alternative path routing for multicast [ZappalaOO]. Such
an alternative-path routing mechanism would be combined with route pinning in Phase 1.

Page 6

The most general solution to the problem of unnecessary reservation failures would be
"QoS routing", selecting a route that is known a priori to have sufficient resources available
for the QoS requested for that packet flow. For example, one could imagine using all the
resource measures into a big link-state calculation. This approach might work within an
autonomous domain, but it is not generally scalable to the full Internet. A more feasible
but less effective approach, known as "QoR" routing, would use a static metric like total
bandwidth on each link, regardless of the current level of reservation. This provides routes
that are likely but not guaranteed to have enough resources for requests.

At bottom, the problem of combining routing with resource reservations means building
a common mechanism that encompasses both virtual circuits and connectionless packet
forwarding. We further require the mechanism to be scalable to a very large network and
to be able to find and pin the best path that will satisfy a reservation request. This general
problem is very hard, and at present there is no totally satisfactory solution.

C. Soft state (for robustness and simplicity)

RSVP builds "soft" state, i.e., reservation state that times out unless it is periodically
refreshed. A message that initially establishes a particular element of state or modifies an
existing element is called a trigger message; subsequent messages are refresh messages.
RSVP gains a great deal of simplicity by using identical messages for trigger and for
refresh. When a route changes, the next refresh message uses the new path and becomes
a trigger message for the new nodes. Thus, RSVP can automatically adapt to route changes
with no additional mechanism. To change an established element of state, an end system
can simply send a new trigger message with the modified state. This incremental state
setup mechanism provides further simplicity.

The general algorithm for processing a statefull RSVP message is as follows:

if (State element does not exist)

{ Create state element; Set timeout timer;}

else if (State in element and message don't match)

{ Update element to match message; Reset timeout timer;}

else /* Refresh message */

{ Reset timeout timer; }

To handle merging of reservations (see item F. below), RSVP must generate refresh mes-
sages independently in each node. Hence, refresh messages do not typically propagate
end-to-end, only hop-by-hop. However, a trigger message must generally be propagated
immediately (but only as far as necessary; see discussion ofmerging, below), and it may
travel as far as an end node.

Although soft state does provide automatic adaptation to route changes, it can result in a
"liveness" problem. The default refresh period is relatively long, 30 seconds, and a node
may increase this time still further to reduce refresh overhead on a congested link. This
is a long time to wait for establishing a reservation on a new route when an old route has
failed. To avoid this delay, RSVP contains a short cut mechanism called local repair. The
routing protocols operating in the node signal to RSVP when a route changes, and RSVP
then initiates refresh messages for all sessions using that route. There is a further compli-
cation that routing may not converge immediately, and therefore local repair is initiated
after a short delay in some cases [RSVP97]. Although local repair should usually provide
immediate reservations on the new path, the soft state refresh serves as a backup mecha-
nism to ensure that the correct reservation state will be achieved eventually.

Page 7

D. Transparent operation across non-RSVP routers (for deployability)

RSVP was designed to work transparently across an arbitrary "cloud" of non-RSVP rout-
ers. This is necessary to allow incremental RSVP deployment in the Internet (simultaneous
global deployment being impossible). RSVP can be useful even when parts of an end-to-
end path do not support Integrated Services, if those parts are sufficiently over-provisioned.

This apparently simple requirement of transparency had some profound consequences for
the protocol. For example, it means that multiple Path messages (see B in Section 2.2
below) for a given session cannot be packed into a single message to decrease RSVP
message overhead. Another potential problem is that the inability to protect RSVP message
traffic from congestion through a non-Integrated Services cloud may cause delays in set-
ting up RSVP state or intermittent loss of reservations. This setup delay problem is being
mitigated by the addition of reliable RSVP message delivery [BergerOO].

E. Support shared and distinct reservations (for flexibility)

A general RSVP session may have both multiple senders and multiple receivers, as shown
in Figure 1. The rules that a router should use for mixing the input from different senders
depends upon the application. For example, an audio stream is generally treated as a single
shared channel, since the receiver cannot distinguish people talking at once. For each audio
session, each node should contain a single reservation that is sharedby all the audio senders
that converge at that node.

On the other hand, there is no "silence" in video streams, and a receiver can display multiple
pictures simultaneously on a computer screen. Each sender's video stream in a node there-
fore needs to be isolated from other streams. In other words, a separate or distinct reser-
vation is needed for each video sender that merges at a node.

A basic RSVP requirement was to provide efficient support for both audio and video
streams, so RSVP must support both shared and distinct reservations.

F. Heterogeneous reservations (for flexibility)

The decision was made that RSVP should support heterogeneous reservation requests,
that is, different requests from different receivers. This decision led to considerable pro-
tocol complexity, and it is a design decision that may be changed in the future.

Suppose that the receivers Rl and R2 in Figure 1 send reservation request messages for
different flowspecs, i.e., different QoS values, say Ql and Q2. In practice, Integrated
Services flowspecs are complex multi-dimensional vectors [RSVPuse97]. Router C must
send a single reservation request upstream that is sufficient to encompass both requests,
i.e., its flowspec must be the "max(Ql, Q2)". This max function is defined very precisely
in the Integrated Services specifications [GuarS97, CLoad97]. The process of combining
Ql and Q2 in this way is called merging the reservation requests. Such merging is a
fundamental aspect of RSVP.

One of the service models defined by Integrated Services allows a receiver to specify the
maximum allowable queuing delay for the traffic [GuarS97]. Suppose that two receivers
specify the same delay bound; this may result in different reservation flowspecs at some
upstream merge point, due to different intervening paths. Therefore, RSVP must be able
to merge heterogeneous requests to support the high-assurance Guaranteed service. In this
service model, no packets are dropped at the merge point even though the "largest" flow-
spec is sent upstream.

Page 8

2.2 Secondary RSVP Design Decisions

A. Soft-state refreshes for reliability

RSVP originally adopted the simplest mechanism for ensuring reliable delivery of its
signaling messages: periodic refreshes for soft state supply any missing messages. Since
there were no ACKs in the protocol, this mechanism provides only statistical reliability.
This was considered sufficient because the protocol assumed that RSVP messages, like
routing messages, would be given preferential QoS, so they would almost never be lost.

It has turned out in practice that this design decision was incorrect. It is not always possible
to provide enhanced QoS for RSVP messages, due to non-RSVP clouds or to a shortage
of CPU time on some routers. Furthermore, loss of an RSVP Resv message delays state
establishment for one refresh period, which is likely to be of the order of 30 seconds or
more. The result can be a serious failure of "liveness" for the protocol. Therefore, the
RSVP Working Group of the IETF is currently standardizing a complex RSVP enhance-
ment that includes reliable delivery of RSVP protocol messages, with explicit acknowl-
edgments [BergerOO].

Once reliable delivery is available, soft state refreshes are not logically necessary. It would
be possible to modify RSVP to allow some nodes to use hard state, others soft state
[JTW99]. This is a trade-off between refresh overhead and robustness. So far this sugges-
tion has not been adopted in the IETF, and soft state still rules in RSVP.

B. Path messages

Some routing protocols (in particular, unicast routing protocols) do not calculate the pre-
vious hop for a route, only the next hop. Therefore, RSVP cannot generally query such a
routing daemon for the previous data hop, in order to route a Resv message upstream
towards the sender(s) of a data flow. To solve this problem, RSVP sends Path messages
downstream, following the path of the data, for each flow. These Path messages are used
to build a trail of path state for routing Resv messages upstream. Thus, in Figure 1 the
arrows marked "data" could also be labeled "Path."

It was found that Path messages have several other uses besides routing Resv messages.
Path messages carry information on the traffic profile as well as cumulative path informa-
tion such as MTU, total propagation delay, and scheduling parameters [RSVPuse97]. Path
messages also support the Guaranteed service model, to provide the effect of a two-pass
reservation scheme [GuarS97].

C. Channel Switching

As we previously discussed, RSVP can support distinct reservations for each sender's
flow, e.g, a video stream, all the way to the receivers. The user on the receiver may want
to display all of the video images on a composite screen, or the user may select only a
subset for display. However, it would wasteful to provide QoS for video streams across
the network and then discard the streams at the receiver. RSVP was therefore designed to
move the selection of sender streams to receive QoS as far as possible upstream towards
the sender. To accomplish this, a Resv message specifies what senders should obtain the
QoS indicated by the flowspec. In general, then, an elementary reservation request is a
pair (Q, F), where Q is a flowspec specifying a QoS vector and F is & filter spec defining
the packet subflow that is to benefit from the reservation. The filter spec is a parameter to
the packet classifier, while the flowspec controls the corresponding packet scheduler
queue. The receiver can change the F in the reservation request, to select a different sender.
This may be likened to switching channels on a TV set.

Page 9

In principle, RSVP filter specs could specify any combination of fields in any sequence
of protocol headers. Early RSVP designs allowed a general mask-and-match definition
for filters, but this was later simplified to a few specific filter formats. The basic filter spec
format contains the source and destination IP address and the source and destination UDP/
TCP port. Another format uses a IPv6 destination and source addresses and perhaps an
IPv6 flow id. Finally, there are formats for using the SPI field of IP Security (IPSEC)
headers in place of ports, when the ports themselves are obscured by end-to-end encryp-
tion.

All filter spec formats specify the IP address of the sender host, so we can think of the
filter spec as selecting a particular sender. For audio flows, a shared reservation is used by
all upstream flows; in this case, the elementary reservation has the form (Q, *), i.e., the
sender selection is wild-carded.

These considerations show a few examples of the rich possibilities for reservation rules,
especially for multicast flows. RSVP summarizes these rules in a parameter carried in
Resv messages and called the reservation style.

The current version of RSVP includes three different reservation styles.

o Wildcard Filter (WF) style: reservation is shared by all upstream senders,

symbolized by: WF(Q, *)

o Fixed Filter (FF) style: distinct reservations for k particular senders,

symbolized by: FF((Ql, Fl), (Q2, F2),... (Qk, Fk))

o Shared Explicit (SE) style: one reservation shared among k particular senders,

symbolized by: SE(Q, Fl,... Fk)

Other more complex styles have been suggested [RSVP93].

D. Loop Prevention

The WF style seemed like a clever idea, providing a single shared reservation for all
senders. It seemed to scale well; the Resv message size and the amount of classifier state
for a WF message are independent of the number of senders [RSVP93].

Unfortunately, the research effort on RSVP revealed a serious flow in the WF style: it is
subject to a subtle kind of self-refreshing loop. If the network topology contains a loop,
certain combinations of senders and receivers can set up a circular refresh loop in which
the reservation state persists even if when receivers stop requesting reservations
[SCOPE96].

To avoid this problem, it was necessary to add a mechanism called a SCOPE list to a WF-
style Resv message. The SCOPE list, which is in fact an explicit list of upstream senders,
can be used to break the self-refresh loop [RSVP97, SCOPE96]. The SCOPE list causes
the size of a WF-style Resv message to grow linearly with the number of senders, which
voids one of the advantages of WF. However, a WF-style reservation still requires constant
classifier state.

There was a discussion of dropping the WF style, avoiding the need for the SCOPE list,
to simplify the RSVP protocol. The effect of a WF style reservation request can be achieved
by an SE-style request that lists all senders (Path messages inform each receiver of the
addresses of all senders). However, the WF style and its SCOPE list were retained because
they result in constant-size classifier state.

Page 10

E. Response to Admission Failures

Even though merging of heterogeneous requests is useful and perhaps necessary for some
potential users of RSVP, it does raise a very serious and difficult fundamental problem:
merging of reservations allows accidental or deliberate denial-of-service attacks on a re-
ceiver. For example, R2 in Figure 1 can request such a large reservation that the merged
reservation forwarded by router A will certainly fail in router B. The result will be to deny
reservations to Rl and R3 from sender S2. We call R2's action a killer reservation.

The RSVP protocol specification includes a complex mechanism to prevent killer reser-
vations [RSVP97]. In brief, the effect of this mechanism would be to insert blockade state
in router A that causes reservations from R2 to be omitted from the merge. Such blockade
state periodically times out to adapt to a change in the requests.

A more general consideration of the killer reservation problem [Talwar99] reveals that
there is a range of possible policies for making reservations when one or more nodes have
inadequate resources for all the requests being merged. In the absence of merging, the
policy is relatively simple: when admission control fails, the reservation is left in place
downstream from the failure point but a Resv request is not propagated upstream from the
failure point. With merging, the policies, and the mechanisms to enforce them, become
much more complex.

Three policies that have been investigated are as follows [Talwar99].

o Global Best-Fit Policy

Under this policy, the single greatest reservation that can succeed in every node along
the path(s) of the fiow(s) is installed and maintained at every node. This policy is realized
by the blockade state mechanism that is in the current RSVP specification.

o Local Best-Fit Policy

Under this policy, each node establishes the greatest of all downstream requests that
can be accommodated, regardless of what reservation requests succeed at other nodes.
This may result in reservations that vary from one node to the next along the path. An
algorithm to realize this policy has been proposed [Talwar99].

o Plain Greedy Policy

This is similar to the Local Best Fit policy, except that if a node cannot accommodate
the greatest downstream request, it installs the largest reservation it can provide.

The algorithms to realize these policies (including the blockade algorithm in use) typically
rely on a transient period during which Resv messages travel upstream and the resulting
ResvErr (admission control error) messages travel down, iterating until all nodes stabilize
in the final state. The sequence of iterations can be long and complex [Talwar99].

F. Policy Control

Since resource reservations provide a subset of the user community with privileged service,
there must be some technical, economic, or social mechanism to protect this privilege.
That is, Integrated Services and RSVP require mechanisms for access control and account-
ing. We invented the neutral term "policy" for these two functions. A reservation request
must generally pass both admission control, which ensures there are enough resources,
and policy control, which ensures that the requestor is authorized to reserve these resourc-
es.

Unfortunately, policy control raises difficult problems of efficiency and functionality. The
policy control mechanism must be general enough to implement a very wide range of

Page 11

possible policies, and it must be reasonably efficient and also secure. It may require bulky
information such as cryptographic certificates.

The decision was made to carry policy control information "in-band" within the RSVP
Resv and Path messages, rather than in a separate and parallel protocol. RSVP therefore
carries policy information within Policy Data objects that are largely opaque to RSVP.
However, the policy algorithms turned out to be entwined with the reservation algorithms
of RSVP to a much larger extent than we expected [PolicyOO]. For example, there must
be merging rules for policy data in Resv messages, although these rules are quite different
from flowspec merging rules.

Since there was great uncertainty about the kinds of policies that would be needed, we
decided to separate policy control from the rest of the RSVP reservation machinery. A
short-term engineering decision was made that turned out to have profound consequences:
we decided to "off-load" the policy control decision into a separate machine, linked to the
router(s) running RSVP with a simple request/response protocol. It was expected that this
would be a relatively short-term measure, and that policy control would eventually be
folded back into the RSVP implementations. However, the policy control server quickly
took on a life of its own in a separate IETF working group, and the simple request/response
protocol became the COPS (Common Open Policy Service) [COPS00] protocol.

G. Extensibility

RSVP was designed to ease future extensions. Features to be added will require new
protocol fields. For this reason, most logical elements of RSVP control messages are
embedded in (type, length, value) encodings called "objects". The type is further subdi-
vided into a generic type or "class" and a class-specific subtype or "C-type". This approach
has provided great flexibility during protocol design and development.

H. Confirmations

If a reservation request fails, an RSVP error message is returned to the receiver(s) that
initiated the request. However, the original protocol design had no positive confirmation
message to indicate to the application that a reservation request was successful. Fully
reliable confirmation would require global synchronization that is incompatible with RS-
VP's distributed soft state. There is also a problem defining confirmation semantics for
the most general the multipoint-to-multipoint communication pattern that RSVP supports.
However, a simple confirmation facility [RSVP97] was added to RSVP, upon request from
application software vendors.

2.3 RSVP Interfaces
A central design problem for Integrated Services was how to modularize the components [ISarch93].
An important aspect of the design and specification of RSVP is to specify (but not over-specify)
each of its major interfaces to other network software components. Figure 2 illustrates these inter-
faces within a node that is both an end system and a router.

o Interface to Routing

As indicated in Section 2.1, an RSVP daemon must have an interface to query the local
unicast and multicast routing daemons for routes. ISI defined and prototyped a Phase 0
route query interface that is general enough to handle a range of multicast routing schemes
[RSRR98].

Page 12

Application

API

Application

RSVP Messages

Routing

Route
jeries

RSVP
RSVP Messages

Policy
Control

Packet
Classifier

Data packets
Packet

Scheduler

Figure 1: Illustration of RSVP Interfaces

o Interface to Traffic Control

"Traffic control" refers to the set of components in the packet forwarding path that imple-
ments the requested QoS. Traffic control includes admission control, packet classification,
and packet scheduling. RSVP's job is to deliver parameters to traffic control at each node
along the path of a data flow.

A generic RSVP interface to integrated services traffic control is defined in [RSVPspec96]
and [RSVPuse96]. Details of RSVP's traffic control interface will be specific to the oper-
ating system and platform as well as the particular link layer technology in use.

The QoS parameters in a Resv message are bundled into a flowspec object, whose complex
internal encoding and semantics [RSVPuse97] are largely opaque to RSVP. RSVP needs
only very narrowly specified operations on flowspecs, most importantly the merging al-
gorithm. Adding a new service model should require only minimal and clearly-defined
modifications to an RSVP implementation.

o Interface to Link Layer protocol

The "natural" protocol model for RSVP is based upon simple point-to-point links. How-
ever, RSVP must also handle both broadcast media and switched virtual-circuit media

Page 13

(most particularly, ATM) at the link layer. The ATM case was the most complex [ATM98].
Requesting an RSVP reservation across an ATM cloud must result in opening a virtual
circuit at the ATM layer, with an ATM QoS mapped appropriately from the RSVP flyspeck.

Note that running RSVP over IP over ATM creates a clash of fundamental models. RSVP
is already trying to impose (loose) connection semantics onto a datagram (connectionless)
network service; running IP over ATM means carrying that datagram service over a con-
nection-oriented infrastructure. Hence, the RSVP/ATM design problem effectively in-
volves connections over datagrams over connections, with QoS at two different layers and
following different service models. As always, multicast makes the entire problem much
harder [ATM98].

Handling this variety of link layer models resulted in modularity issues in our prototype
implementation, which were never satisfactorily solved.

o Interface to Policy Server

As noted earlier, RSVP must implement the COPS protocol for communicating with a
policy server [COPS00].

o Interface to Applications: API

Finally, applications need a standard interface to request resource reservations. ISI and
Sun Microsystems originally developed the RAPI (RSVP API) interface [RAPI98], which
is also contained in generic form in the RSVP protocol specification [RSVP97J.RAPI
has since been standardized by Open Group. RAPI allows an application to specify res-
ervation requests in parallel with the API for sending data, e.g., a socket interface. The
application is expected to be able to coordinate the two interfaces.

Later, Microsoft developed an alternative API for RSVP in Winsock2; this API incorpo-
rates reservation requests into the data socket calls.

3. Major RSVP Design Issues
We now turn to a discussion of two global design issues for RSVP: overhead and generality.

3.1 RSVP Overhead

The major components in RSVP overhead are the per-packet and per-byte cost of transmitting RSVP
messages, the CPU time for processing RSVP messages, and the memory required for RSVP state.

Minimal RSVP Resv messages are of the order of 150 bytes in length for IPv4, or 220 bytes for
IPv6 (including IP header, an MD5 Integrity object and one sender). Specifying more senders
increases the size. For IPv4, a 1500 byte Resv message can specify 340 senders for a WF style
reservation or 28 senders for an FF style reservation.

In principle, individual RSVP messages can grow very large if policy data objects are very large
(e.g., because large cryptographic certificates are required) or if there is a very large list of senders.
The current RSVP specification [RSVP97] supports only IP fragmentation, limiting an RSVP mes-
sage to 64KB. Unless policy data objects are very large, this limit should support every reasonable
scenario of RSVP usage. For example, for IPv4 a WF style reservation could specify up to 16000
senders, or an FF style reservation could specify up to 1360 senders.

o RSVP Message Cost

Transmission of RSVP control messages requires some link bandwidth.Sending a mini-
mal RESV refresh message each 30 seconds uses approximately 40 bits per second (60
bps for IPv6) per link per session. If we use the current engineering design point of 10,000

Page 14

RSVP sessions, there will be 333 refresh messages or 400K bits per second per link. A
minimal Path message will be slightly smaller but will generate the same order of mag-
nitude of traffic.

In some circumstance, at least, this volume of messages may be a significant load. These
numbers help motivate a package of RSVP optimizations that is currently being standard-
ized [BergerOO]. This package includes the ability to send a short message identifier in
lieu of an entire Path or Resv refresh message, reducing the refresh message traffic by a
factor of roughly 30. Since they were added after the bulk of RSVP protocol design and
since they have complex interactions with many existing RSVP features, these optimiza-
tions have some complex and undesirable interaction with other RSVP design features.
For example, freedom from packet loss is gained at the loss of automatic accommodation
to route changes.

o RSVP Processing Cost

The bottleneck resource is probably the router CPU for processing the messages, rather
than the network bandwidth for transmitting them. The optimization package [BergerOO]
should significantly reduce message processing cost.

o RSVP Memory Cost

RSVP requires additional memory in hosts and routers for: (1) RSVP path and reservation
state, (2) the resulting traffic control state in classifier, packet scheduler, and admission
control.

RSVP path and reservation state increases linearly with the number of sessions. Based
upon ISFs prototype implementation of RSVP, a rough estimate of RSVP state memory
is 600 bytes per unicast session. A corresponding estimate for a multicast session is 120
+180*S + 260*Ni bytes per session, where S is the number of senders and Ni is the number
of outgoing interfaces on which reservations have been made.

No such simple rule can be given for traffic control state, although it should increase no
worst than linearly, and perhaps only logarithmically, with the number of sessions.

During the original Integrated Services research effort, state storage was not expected to
become a major scaling problem, because the expected application was multimedia that
would include video. In that case, the required aggregate bandwidth would limit the num-
ber of sessions and therefore the amount of state. For example, suppose there are one
thousand multimedia conferences, each using 1 Mbps for a video flow; this creates a gigabit
of data traffic but requires of the order of only 1 MB of RSVP state storage. However,
recently the primary application of RSVP and Integrated Services has been shifting to
Internet telephony. Suppose each call requires 30Kbps; then it takes roughly 30,000 ses-
sions to fill the same gigabit pipe, and this implies of the order of 30MB of RSVP state
space. Experts differ on whether 30MB of memory on a large router is excessive.

In summary, the processing and bandwidth required for RSVP will be brought into feasible ranges
by a package of protocol optimizations that is nearing standardization. The solution to the state space
problem is discussed in the next section.

3.2 QoS Flow Aggregation

A familiar indictment of RSVP has been that "it doesn't scale." In a sense, it scales perfectly, in fact:
the overhead is strictly proportional to the number of flows. However, the linear factors matter.

This scaling problem was recognized during the early Integrated Services research, which planned
to solve it by aggregating reserved flows in the middle of the network [ISarch93]. In regions where
there are many Integrated Services flows, statistical aggregation can be relied upon to provide the

Page 15

desired end-to-end service. In these regions, individual flows can be mapped into a small fixed
number of service classes. Differentiated Services provides a natural tool for this purpose.

The general plan that is emerging for full Internet-scale deployment of Integrated Services therefore
has the following components:

o RSVP will be used end-to-end, making fine-grained reservations for Integrated Services at the
edges of the network.

o Differentiated Services will be used in the middle of the network.

o The border routers to the Differentiated Services region will maintain full RSVP state. The
ingress routers will aggregate the reserved flows into the appropriate Differentiated Services
classes, and the egress routers will dis-aggregate the traffic back into individual RSVP flows.

o RSVP messages will pass transparently through the center of the network.

Multicast makes some of the details of this approach are much harder. For multicast, it seems
necessary to maintain limited partial state within the center of the network, to handle heterogeneity
[Aggr98].

3.3 A General Internet Signaling Protocol

The design of RSVP attempted to ease future extensions. An RSVP message has the general form:

RSVP message = {header} {typed "object"}*

As explained earlier, each RSVP "object" is a (type, length, value) encoding of some protocol data
item. This approach has provided great flexibility during protocol design and development. During
RSVP development, many changes and enhancements involved the definition of new C-types and/
or new generic types.

Besides this syntactic issue, protocol extensions raise another problem: RSVP extensions should be
backwards compatible with existing implementations. That is, when a RSVP implementation re-
ceives a object (or even a message type) that it does not recognize, it should still take the correct
default action. This turned out to be a hard problem, and the present RSVP design [RSVP97] has
only a partial solution.

Many of the design details of RSVP are quite specific to its original planned usage, making resource
reservations for Integrated Services. However, it is possible to look at RSVP in less detail and see
a generic soft-state signaling protocol for the Internet. Several other RSVP working groups have
adopted or adapted RSVP for their own signaling needs.

o The RSVP general design has been adapted to do layer-2 signaling in the Subnet Bandwidth
Manager, for mapping Integrated Services into IEEE 802 networks.

o RSVP is being extended for use in setting up label-switch paths for Multiprotocol Label Switch-
ing (MPLS), which is effectively layer 2.5.

o There is discussion of using RSVP for configuring virtual private networks (VPNs).

o There has been discussion of using RSVP for setting up explicit routes.

RSVP is appealing for these new applications because of the syntactic ease of defining new object
classes, and because the general soft-state model is widely applicable. However, the number of
RSVP object types is rapidly increasing, and it is very unclear how to define interoperable subsets
of the many functions that are being assumed by RSVP.

Page 16

A worthwhile future research topic would be to explore dividing the current RSVP into two layers:
a generic soft-state setup protocol and a layer that contains the semantics for a specific signaling
application. Then the original RSVP would consist of a generic layer and a layer that is specific to
Internet Integrated Services.

4. Conclusions
We have shown that RSVP met its general goals — logical simplicity, robustness, scaleability, flex-
ibility, adoptability, and extensibility - to a large degree, but not entirely. Although the basic soft-
state model provides considerable simplicity, the RSVP design accreted many "features" before it
was complete. Such features include SCOPE lists, blockade state, (necessarily) both IPv4 and IPv6
support, IPSEC support, reliable delivery, refresh overhead reduction, and handling some arcane
cases of IP multicast.

ISI personnel supported by this project edited the primary RSVP specification document [RSVP97],
co-chaired the RSVP Working Group [AS97], and collaborated with other groups to make research
contributions on RSVP's routing interface [RSRR98, Zappala96, ZappalaOO], the ATM interface
[ATM98], policy control [PolicyOO], WF-style looping [Scope96], the killer reservation problem
[Talwar99], the API [RAPI98], and aggregation [Aggr98]. ISI also produced a widely-used reference
implementation of RSVP.

5. References
[Aggr98] Berson, S. and S. Vincent, Aggregation of Internet Integrated Services State. IETF Work
in Progress, August 1998. Available from http://www.isi.edu/rsvp/pub.html. An earlier version of
this paper was presented at rWQoS '98.

[AS97] Mankin, A., Baker, F., Braden, B., Bradner, S., O'Dell, M., Romanow, A., Weinrib, A., and
L. Zhang, Resource ReSerVation Protocol (RSVP) — Version I Applicability Statement. RFC 2208,
September 1977.

[ATM98] Crowley, E., Berger, L., Baker, F., Borden, M., and J. Krawczyk, A Framework for Inte-
grated Services and RSVP over ATM. RFC 2382, August 1988.

[BergerOO] Berger, L., Gan, D., Swallow, G., Pan, P., and Franco Tommasi, RSVP Refresh Overhead
Reduction Extensions. IETF Work in Progress, January 2000.

[CLoad97] Wroclawski, J., Specification of the Controlled-Load Network Element Service. RFC
2211, September 1997.

[COPS00] Boyle, J., Cohen, R., Durham, D., Herzog, S., Rajan, R., and S.Sastry, The COPS (Com-
mon Open Policy Service) Protocol. RFC 2748, January 2000.

[CryptoOO] Baker, F., Lindell, R., and M. Talwar, RSVP Cryptographic Authentication. RFC 2747,
January 2000.

[Design96] Braden, R., Estrin, D., Berson, S., Herzog, S., and D. Zappala, The Design of the RSVP
Protocol. Final Technical Report for DARPA Contract DABT63-91-C-0001, June 1996.

[DiagOO] Terzis, A., Braden, B., Vincent, S., and L. Zhang, RSVP Diagnostics Messages. RFC 2745,
January 2000.

[GuarS97] Shenker, S., Partridge, C, and R. Guerin, Specification of Guaranteed Quality of Service.
RFC 2212, September 1997.

Page 17

[IPSEC97] Berger, L. and T. O'Malley, RSVP Extensions for IPSEC Data Flows. RFC 2207, Sep-
tember 1977.

[ISIP92] Clark, D., Shenker, S., and L. Zhang, Supporting Real-Time Applications in an Integrated
Services Packet Network: Architecture and Mechanisms. Proc. SIGCOMM '92, Baltimore, MD,
August 1992.

[ISarch93] Braden, R., Clark, D., and S. Shenker, Integrated Services in the Internet Architecture,
an Overview. RFC1633, October 1993.

[PolicyOO] Boyle, J., Cohen, R., Durham, D., Herzog, S., Rajan, R., and S.Sastry, COPS Usage for
RSVP. RFC 2749, January 2000.

[RAPI98] Braden, R. and D. Hoffman, RAPI - An RSVP Application Programming Interface. IETF
Work in Progress, August 1998. Available from: http://www.isi.edu/rsvp/pubs.html.

[RSRR98] Zappala, D. and J. Kann, A Routing Interface for RSVP. IETF Work in Progress, June
1998. Available from: http://www.isi.edu/rsvp/pubs.html.

[RSVP97] Braden, R. (Ed.), Zhang, L., Berson, S., Herzog, S., and S. Jamin, Resource ReSerVation
Protocol -- Version 1 Functional Specification. RFC 2205, September 1997.

[RSVPuse97] Wroclawski, J., The Use of RSVP with IETF Integrated Services. RFC 2210, Septem-
ber 1997.

[Scope96] Zappala, D., RSVP LOOP Prevention for Wildcard Reservations. ISI internal document,
February 1996. Available from http://www.isi.edu/rsvp/pub.html.

[ST-II90] Topolcic, C, Experimental Internet Stream Protocol - Version 2 (ST-II). RFC 1190,
October 1990.

[Talwar99] Talwar, M., RSVP Killer Reservations. IETF Work in Progress, January 1999. Available
from http://www.isi.edu/rsvp/pub.html.

[Wroclawski99] Wroclawski, J., Private Communication. March 1999.

[Zappala96] Zappala, D., Braden, B., Estrin, D., and S. Shenker, Interdomain Multicast Routing
Support for Integrated Services Networks, White Paper, December 1996. IETF Work in Progress,
March 1997. Available from http://www.isi.edu/rsvp/pub.html.

[ZappalaOO] Zappala, D., Alternate Path Routing for Multicast. To appear in IEEE Infocomm 2000,
March 2000.

[Zhang93] Zhang, L., Deering, S., Estrin, D., Shenker, S., and D. Zappala, RSVP: A New Resource
ReSerVation Protocol., IEEE Network, September 1993.

Page 18

