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ABSTRACT: RSVP, a setup protocol to create flow-specific reservation state in routers 
and hosts, is a component of the QoS extensions to the Internet architecture known as 
Integrated Services. RSVP was designed to provide robust, efficient, flexible, and exten- 
sible reservation service for multicast and unicast data flows. This report provides an 
overview of the development of RSVP, including an analysis of the key design decisions 
for the protocol as the protocol has evolved. 

1. Introduction 
This document provides an overview of the development of RSVP {ReSerVation Protocol) Internet 
protocol. RSVP was designed as a setup or "signaling" protocol for Internet resource reservations. 
This document is a final technical report for the RSVP2 project at ISI under which ISI contributed 
to the design, standardization, and prototyping of RSVP. 

The remainder of this section briefly recapitulates the historical context and basic requirements for 
RSVP. Section 2 provides an analysis of the key technical decisions as the protocol evolved since 
its beginning in 1991. Section 3 discusses two high-level design issues for RSVP, and Section 4 
presents conclusions. 

1.1 Historical Context 

The development of Integrated Services and RSVP began in 1991. To place this event in context, in 
1991 commercialization of the Internet was just beginning, the World Wide Web had not yet emerged, 
IP multicasting was still a research toy, and the OSI protocols still threatened to replace TCP/IP. 
However, the rapid growth of CPU power in silicon was already leading workstation manufacturers 
to forecast multimedia capabilities for future products. As a result, Internet researchers became 
concerned about the potential impact of multimedia traffic on the Internet [ISIP92]. The continuous 
flows of UDP-based multimedia traffic, which were not subject to congestion control, could prevent 
TCP connections from getting their fair share of bandwidth. Conversely, network congestion could 
prevent timely delivery of the real-time multimedia flows, providing poor service to multimedia 
users. 
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Two approaches to this problem were considered: (1) requiring that multimedia applications adapt 
to network congestion, and (2) explicitly supporting quality of service (QoS) for multimedia and 
other real-time traffic. The second requires that network resources be "reserved", to provide an upper 
bound on end-to-end delay and protect the real-time flows from each other and from best-effort 
traffic. 

Adaptivity of multimedia applications to varying effective bandwidths is highly desirable in the 
statistically-multiplexed Internet. There were intense arguments about whether the evolution of fiber 
optics would lead to such an excess of bandwidth that congestion would never happen. However, 
the majority view was that there will always be significant parts of the Internet where low bandwidth 
or congestion will be outside the adaptive ranges for multimedia applications. There was furthermore 
an assumption that a multimedia user would rather receive a "busy" signal than have service degrade 
during a session. As a result, the decision was made to pursue both approaches: adaptive applications 
and Internet QoS. 

ARPA-funded research beginning in the early 1970s had demonstrated packetized speech and de- 
veloped a network protocol called ST-II [STII90] for real-time data delivery. In brief, ST-II imple- 
mented point-to-multipoint virtual circuits with QoS. However, there were three serious problems 
with ST-II as a general solution for Internet QoS. First, ST-II was incompatible with IP, so the 
adoption of ST-II would result in two parallel packet switching infrastructures. Second, ST-II used 
"hard" state, while the Internet community favors "soft" state, for robustness. Finally, ST-II built 
sender-oriented multicast trees, which presented serious scaling problems for a session with many 
multicast receivers. 

1.2 Internet Integrated Services 

The Integrated Services architecture was designed as a solution to supporting multimedia and other 
real-time traffic in the Internet [ISIP92, ISarch93]. The term "Integrated" refers to support for both 
real-time and best-effort traffic in the same packet-switched infrastructure. 

Integrated Services is based upon three fundamental assumptions. 

o   It is still DP 

The Integrated Services architecture is incremental, i.e., it is designed as a compatible extension 
of the original Internet architecture with its best-effort service. 

Since reservations have a cost and many users will not want or need to pay that cost, best- 
effort service must always be available in the Internet. It was expected that this cost would be 
necessary only for those real-time applications that cannot adopt sufficiently well, and in those 
cases where there is not sufficient over-provisioning to provide adequate service. 

o Multicast delivery is fundamental. 

It was believed that teleconferencing and perhaps broadcast video might become "killer ap- 
plications" for the Internet, and that efficiency would demand IP multicasting to support these 
applications. 

o   Signaling overhead is acceptable 

The overhead for resource reservation setup, known as "signaling" in the world of telephony, 
should be small compared to the continuous multimedia packet streams 

Integrated Services required the definition of new IP service models to provide QoS, and the imple- 
mentation of these models meant resource reservations in routers and hosts. High-assurance isolation 
of real-time flows required fine-grained reservations, at the granularity of individual user flows, at 
least at the network edges. It was recognized that this could lead to an unacceptably large amount 
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of reservation state in the "center" of the network, but it was believed that aggregate reservations 
would be acceptable in regions with a lot of reservation state [ISarch93]. 

Implementing Integrated Services required that new mechanisms be added to routers and end sys- 
tems: admission control, packet classification, packet scheduling, and of course signaling to set up 
the reservations. 

1.3 RSVP 

The RSVP protocol was designed to be the signaling protocol to set up Integrated Services reser- 
vation state in hosts and routers [Zhang93]. The fundamental design of RSVP was developed by a 
research collaboration during the period 1991-1993. Beginning in 1993, a further research and 
development collaboration turned this proto-RSVP into a practical Internet protocol, and ISI con- 
structed a prototype implementation of the evolving protocol. Since 1995, the RSVP protocol has 
been further refined and standardized by a Working Group of the IETF; the result is known as Version 
1 of RSVP [RSVP97], which is now a Proposed Standard for the Internet. 

The basic RSVP requirements followed from its role as the state setup protocol for Integrated Service 

1. RSVP is an end-to-end protocol; requests come from applications and travel through routers. 

2. RSVP is designed to make reservations for fine-grained flows 

3. RSVP is designed from the beginning to support multicast as well as unicast flows. As shown 
in Figure 1 below, IP multicast establishes a multipoint-to-multipoint delivery tree for each 
session. 

More generally, RSVP was designed with these objectives: logical simplicity, robustness, scaleabil- 
ity, flexibility, deployability, and extensibility. Section 2 describes how these objectives were met. 

1.4 Integrated Services 

RSVP is only one component of Integrated Services (although "RSVP" is often misused as a met- 
aphor for Integrated Services). Other components that had to be developed included service models, 
link layer mappings, an API, and policy control. 

o Service Models 

Research on Integrated Services led to two alternative service models, Guaranteed service 
and Controlled Load service. 

Guaranteed service [GuarA97] enforces a requested maximum end-to-end queueing delay 
(the speed of light is not under our control). It provides a high assurance service with a 
correspondingly high resource cost, which is most appropriate for real-time applications 
that are unable to adapt to network congestion. 

Controlled Load service [CLoad97] provides a lower level of assurance ~ a "soft" guar- 
antee — at a much lower resource cost than Guaranteed requires. Controlled Load essen- 
tially simulates an unloaded network, and it is suitable for adaptive applications, protecting 
them from extreme congestion. 

Although there are many ways to implement these services, it may be helpful to think of 
Guaranteed service as using a weighted round-robin queueing discipline, while Controlled 
Load may be thought of as simple priority queuing. 
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o Link layer mappings 

It was necessary to specify how to achieve the service models of Integrated Services over 
different link layer technologies. An IETF working group developed specifications for 
low-bandwidth point-to-point links (e.g., ISDN), for IEEE 802 networks, and for ATM 
circuits. 

1.5 Differentiated Services 

Since the Integrated Services research began in 1991, the problem has shifted. The World Wide Web 
has become the dominant Internet application. Multimedia flows are today only a relatively minor 
problem in the global Internet, although they may be significant within some corporate intranets. 
Today's major Internet problems are keeping up with explosive growth, supporting the World Wide 
Web, and providing the tools needed by commercial Internet service providers (ISPs). 

In particular, it is of great commercial importance to an ISP to be able to sell different qualities of 
service to different customers. Integrated Services, which was designed to provide assured service 
(only) for continuous flows, is not a solution to this problem. It makes no sense to ask RSVP to set 
up a reservation for each transient TCP connection in a Web transaction, for example. The solution 
under development for this problem is Differentiated Services. 

Differentiated Services allow an ISP to sell various grades of Internet Services. It explicitly avoids 
per-flow state in the network, except perhaps at the "edges". When possible, it makes resource 
allocations to large flow aggregates and over long time scales, replacing reservations with provi- 
sioning. 

2. Overview of RSVP Design 
The design of RSVP to meet the requirements of the previous section involved many technical 
decisions. If any of these decisions were changed, the protocol would change in a minor or a major 
way. We divide the decisions into those that seem most fundamental, in the following section, and 
those that are secondary, in Section 2.2. Section 2.3 summarizes RSVP's interfaces to other system 
components. 

2.1 Primary RSVP Design Decisions 

A. Receiver Initiation of Reservations (for scalability) 

RSVP is receiver-oriented, so that it will scale to large multicast groups. As shown in 
Figure 1, RSVP reservation request (Resv) messages originate from receivers of data and 
travel upstream towards data senders. Note that the reservations are made at the upstream 
end of each link, although the reservation requests come from downstream. 

It was suggested at several stages of RSVP design that it could support sender initiation 
as well as receiver initiation of reservations, since sender initiation appears simpler for 
the unicast case. However, the majority view was that any simplification that might result 
for unicast reservations was out-weighed by conceptual economy; there was a reluctance 
to define a protocol with two ways to do accomplish the same thing. 
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Sender 
Hosts Routers Receiver 

Hosts 

Fig 1: Data Flows and RSVP Resv messages 
for a multicast session. 

B. Signaling distinct from routing (for deployability) 

Resource reservations for a data flow must be made in each router along the path of the 
flow. The path is determined by some routing protocol whose distributed algorithm deter- 
mines where to forward the data packets at each hop. It would be possible to develop a 
unified mechanism that encompassed both routing and reservation. However, this did not 
seem practical, since there already existed a variety of routing protocols in the Internet, 
and RSVP should be able to work with any of them. 

The design decision was to adopt an incremental approach to combining reservation with 
routing [Zappala96]. Phase 0 is for RSVP to use existing routing protocols without change. 
In this initial phase, the routing protocol implementations would be modified only to allow 
the RSVP daemon to query about specific routes, to steer reservations along the route of 
the data flows. 

The simple Phase 0 approach has two important problems. First, it may cause a reservation 
request to fail on the path provided by routing, when it might have succeeded along some 
alternate path. Second, if a route changes to a "better" route (but the original route still 
works), there may be excessive signaling overhead and perhaps brief signaling outages as 
reservations are reestablished over the new route. We say that the route over which a 
reservation has been made needs to be "pinned" [Zappala96]. 

To provide a partial solution to these problems, we can move to Phase 1. Here we use the 
current reservation-independent routing to choose a route, but allow RSVP to dynamically 
request an alternate path when the first one does not have enough resources [Zappala96]. 
Research at ISI showed that heuristics based on local information can be used to implement 
reasonably effective and scalable alternative path routing for multicast [ZappalaOO]. Such 
an alternative-path routing mechanism would be combined with route pinning in Phase 1. 
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The most general solution to the problem of unnecessary reservation failures would be 
"QoS routing", selecting a route that is known a priori to have sufficient resources available 
for the QoS requested for that packet flow. For example, one could imagine using all the 
resource measures into a big link-state calculation. This approach might work within an 
autonomous domain, but it is not generally scalable to the full Internet. A more feasible 
but less effective approach, known as "QoR" routing, would use a static metric like total 
bandwidth on each link, regardless of the current level of reservation. This provides routes 
that are likely but not guaranteed to have enough resources for requests. 

At bottom, the problem of combining routing with resource reservations means building 
a common mechanism that encompasses both virtual circuits and connectionless packet 
forwarding. We further require the mechanism to be scalable to a very large network and 
to be able to find and pin the best path that will satisfy a reservation request. This general 
problem is very hard, and at present there is no totally satisfactory solution. 

C. Soft state (for robustness and simplicity) 

RSVP builds "soft" state, i.e., reservation state that times out unless it is periodically 
refreshed. A message that initially establishes a particular element of state or modifies an 
existing element is called a trigger message; subsequent messages are refresh messages. 
RSVP gains a great deal of simplicity by using identical messages for trigger and for 
refresh. When a route changes, the next refresh message uses the new path and becomes 
a trigger message for the new nodes. Thus, RSVP can automatically adapt to route changes 
with no additional mechanism. To change an established element of state, an end system 
can simply send a new trigger message with the modified state. This incremental state 
setup mechanism provides further simplicity. 

The general algorithm for processing a statefull RSVP message is as follows: 

if (State element does not exist) 

{ Create state element; Set timeout timer;} 

else if (State in element and message don't match) 

{ Update element to match message; Reset timeout timer;} 

else /* Refresh message */ 

{ Reset timeout timer; } 

To handle merging of reservations (see item F. below), RSVP must generate refresh mes- 
sages independently in each node. Hence, refresh messages do not typically propagate 
end-to-end, only hop-by-hop. However, a trigger message must generally be propagated 
immediately (but only as far as necessary; see discussion ofmerging, below), and it may 
travel as far as an end node. 

Although soft state does provide automatic adaptation to route changes, it can result in a 
"liveness" problem. The default refresh period is relatively long, 30 seconds, and a node 
may increase this time still further to reduce refresh overhead on a congested link. This 
is a long time to wait for establishing a reservation on a new route when an old route has 
failed. To avoid this delay, RSVP contains a short cut mechanism called local repair. The 
routing protocols operating in the node signal to RSVP when a route changes, and RSVP 
then initiates refresh messages for all sessions using that route. There is a further compli- 
cation that routing may not converge immediately, and therefore local repair is initiated 
after a short delay in some cases [RSVP97]. Although local repair should usually provide 
immediate reservations on the new path, the soft state refresh serves as a backup mecha- 
nism to ensure that the correct reservation state will be achieved eventually. 
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D. Transparent operation across non-RSVP routers (for deployability) 

RSVP was designed to work transparently across an arbitrary "cloud" of non-RSVP rout- 
ers. This is necessary to allow incremental RSVP deployment in the Internet (simultaneous 
global deployment being impossible). RSVP can be useful even when parts of an end-to- 
end path do not support Integrated Services, if those parts are sufficiently over-provisioned. 

This apparently simple requirement of transparency had some profound consequences for 
the protocol. For example, it means that multiple Path messages (see B in Section 2.2 
below) for a given session cannot be packed into a single message to decrease RSVP 
message overhead. Another potential problem is that the inability to protect RSVP message 
traffic from congestion through a non-Integrated Services cloud may cause delays in set- 
ting up RSVP state or intermittent loss of reservations. This setup delay problem is being 
mitigated by the addition of reliable RSVP message delivery [BergerOO]. 

E. Support shared and distinct reservations (for flexibility) 

A general RSVP session may have both multiple senders and multiple receivers, as shown 
in Figure 1. The rules that a router should use for mixing the input from different senders 
depends upon the application. For example, an audio stream is generally treated as a single 
shared channel, since the receiver cannot distinguish people talking at once. For each audio 
session, each node should contain a single reservation that is sharedby all the audio senders 
that converge at that node. 

On the other hand, there is no "silence" in video streams, and a receiver can display multiple 
pictures simultaneously on a computer screen. Each sender's video stream in a node there- 
fore needs to be isolated from other streams. In other words, a separate or distinct reser- 
vation is needed for each video sender that merges at a node. 

A basic RSVP requirement was to provide efficient support for both audio and video 
streams, so RSVP must support both shared and distinct reservations. 

F. Heterogeneous reservations (for flexibility) 

The decision was made that RSVP should support heterogeneous reservation requests, 
that is, different requests from different receivers. This decision led to considerable pro- 
tocol complexity, and it is a design decision that may be changed in the future. 

Suppose that the receivers Rl and R2 in Figure 1 send reservation request messages for 
different flowspecs, i.e., different QoS values, say Ql and Q2. In practice, Integrated 
Services flowspecs are complex multi-dimensional vectors [RSVPuse97]. Router C must 
send a single reservation request upstream that is sufficient to encompass both requests, 
i.e., its flowspec must be the "max(Ql, Q2)". This max function is defined very precisely 
in the Integrated Services specifications [GuarS97, CLoad97]. The process of combining 
Ql and Q2 in this way is called merging the reservation requests. Such merging is a 
fundamental aspect of RSVP. 

One of the service models defined by Integrated Services allows a receiver to specify the 
maximum allowable queuing delay for the traffic [GuarS97]. Suppose that two receivers 
specify the same delay bound; this may result in different reservation flowspecs at some 
upstream merge point, due to different intervening paths. Therefore, RSVP must be able 
to merge heterogeneous requests to support the high-assurance Guaranteed service. In this 
service model, no packets are dropped at the merge point even though the "largest" flow- 
spec is sent upstream. 

Page 8 



2.2 Secondary RSVP Design Decisions 

A. Soft-state refreshes for reliability 

RSVP originally adopted the simplest mechanism for ensuring reliable delivery of its 
signaling messages: periodic refreshes for soft state supply any missing messages. Since 
there were no ACKs in the protocol, this mechanism provides only statistical reliability. 
This was considered sufficient because the protocol assumed that RSVP messages, like 
routing messages, would be given preferential QoS, so they would almost never be lost. 

It has turned out in practice that this design decision was incorrect. It is not always possible 
to provide enhanced QoS for RSVP messages, due to non-RSVP clouds or to a shortage 
of CPU time on some routers. Furthermore, loss of an RSVP Resv message delays state 
establishment for one refresh period, which is likely to be of the order of 30 seconds or 
more. The result can be a serious failure of "liveness" for the protocol. Therefore, the 
RSVP Working Group of the IETF is currently standardizing a complex RSVP enhance- 
ment that includes reliable delivery of RSVP protocol messages, with explicit acknowl- 
edgments [BergerOO]. 

Once reliable delivery is available, soft state refreshes are not logically necessary. It would 
be possible to modify RSVP to allow some nodes to use hard state, others soft state 
[JTW99]. This is a trade-off between refresh overhead and robustness. So far this sugges- 
tion has not been adopted in the IETF, and soft state still rules in RSVP. 

B. Path messages 

Some routing protocols (in particular, unicast routing protocols) do not calculate the pre- 
vious hop for a route, only the next hop. Therefore, RSVP cannot generally query such a 
routing daemon for the previous data hop, in order to route a Resv message upstream 
towards the sender(s) of a data flow. To solve this problem, RSVP sends Path messages 
downstream, following the path of the data, for each flow. These Path messages are used 
to build a trail of path state for routing Resv messages upstream. Thus, in Figure 1 the 
arrows marked "data" could also be labeled "Path." 

It was found that Path messages have several other uses besides routing Resv messages. 
Path messages carry information on the traffic profile as well as cumulative path informa- 
tion such as MTU, total propagation delay, and scheduling parameters [RSVPuse97]. Path 
messages also support the Guaranteed service model, to provide the effect of a two-pass 
reservation scheme [GuarS97]. 

C. Channel Switching 

As we previously discussed, RSVP can support distinct reservations for each sender's 
flow, e.g, a video stream, all the way to the receivers. The user on the receiver may want 
to display all of the video images on a composite screen, or the user may select only a 
subset for display. However, it would wasteful to provide QoS for video streams across 
the network and then discard the streams at the receiver. RSVP was therefore designed to 
move the selection of sender streams to receive QoS as far as possible upstream towards 
the sender. To accomplish this, a Resv message specifies what senders should obtain the 
QoS indicated by the flowspec. In general, then, an elementary reservation request is a 
pair (Q, F), where Q is a flowspec specifying a QoS vector and F is & filter spec defining 
the packet subflow that is to benefit from the reservation. The filter spec is a parameter to 
the packet classifier, while the flowspec controls the corresponding packet scheduler 
queue. The receiver can change the F in the reservation request, to select a different sender. 
This may be likened to switching channels on a TV set. 
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In principle, RSVP filter specs could specify any combination of fields in any sequence 
of protocol headers. Early RSVP designs allowed a general mask-and-match definition 
for filters, but this was later simplified to a few specific filter formats. The basic filter spec 
format contains the source and destination IP address and the source and destination UDP/ 
TCP port. Another format uses a IPv6 destination and source addresses and perhaps an 
IPv6 flow id. Finally, there are formats for using the SPI field of IP Security (IPSEC) 
headers in place of ports, when the ports themselves are obscured by end-to-end encryp- 
tion. 

All filter spec formats specify the IP address of the sender host, so we can think of the 
filter spec as selecting a particular sender. For audio flows, a shared reservation is used by 
all upstream flows; in this case, the elementary reservation has the form (Q, *), i.e., the 
sender selection is wild-carded. 

These considerations show a few examples of the rich possibilities for reservation rules, 
especially for multicast flows. RSVP summarizes these rules in a parameter carried in 
Resv messages and called the reservation style. 

The current version of RSVP includes three different reservation styles. 

o Wildcard Filter (WF) style: reservation is shared by all upstream senders, 

symbolized by: WF(Q, *) 

o Fixed Filter (FF) style: distinct reservations for k particular senders, 

symbolized by: FF( (Ql, Fl), (Q2, F2),... (Qk, Fk)) 

o Shared Explicit (SE) style: one reservation shared among k particular senders, 

symbolized by: SE(Q, Fl,... Fk) 

Other more complex styles have been suggested [RSVP93]. 

D. Loop Prevention 

The WF style seemed like a clever idea, providing a single shared reservation for all 
senders. It seemed to scale well; the Resv message size and the amount of classifier state 
for a WF message are independent of the number of senders [RSVP93]. 

Unfortunately, the research effort on RSVP revealed a serious flow in the WF style: it is 
subject to a subtle kind of self-refreshing loop. If the network topology contains a loop, 
certain combinations of senders and receivers can set up a circular refresh loop in which 
the reservation state persists even if when receivers stop requesting reservations 
[SCOPE96]. 

To avoid this problem, it was necessary to add a mechanism called a SCOPE list to a WF- 
style Resv message. The SCOPE list, which is in fact an explicit list of upstream senders, 
can be used to break the self-refresh loop [RSVP97, SCOPE96]. The SCOPE list causes 
the size of a WF-style Resv message to grow linearly with the number of senders, which 
voids one of the advantages of WF. However, a WF-style reservation still requires constant 
classifier state. 

There was a discussion of dropping the WF style, avoiding the need for the SCOPE list, 
to simplify the RSVP protocol. The effect of a WF style reservation request can be achieved 
by an SE-style request that lists all senders (Path messages inform each receiver of the 
addresses of all senders). However, the WF style and its SCOPE list were retained because 
they result in constant-size classifier state. 
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E. Response to Admission Failures 

Even though merging of heterogeneous requests is useful and perhaps necessary for some 
potential users of RSVP, it does raise a very serious and difficult fundamental problem: 
merging of reservations allows accidental or deliberate denial-of-service attacks on a re- 
ceiver. For example, R2 in Figure 1 can request such a large reservation that the merged 
reservation forwarded by router A will certainly fail in router B. The result will be to deny 
reservations to Rl and R3 from sender S2. We call R2's action a killer reservation. 

The RSVP protocol specification includes a complex mechanism to prevent killer reser- 
vations [RSVP97]. In brief, the effect of this mechanism would be to insert blockade state 
in router A that causes reservations from R2 to be omitted from the merge. Such blockade 
state periodically times out to adapt to a change in the requests. 

A more general consideration of the killer reservation problem [Talwar99] reveals that 
there is a range of possible policies for making reservations when one or more nodes have 
inadequate resources for all the requests being merged. In the absence of merging, the 
policy is relatively simple: when admission control fails, the reservation is left in place 
downstream from the failure point but a Resv request is not propagated upstream from the 
failure point. With merging, the policies, and the mechanisms to enforce them, become 
much more complex. 

Three policies that have been investigated are as follows [Talwar99]. 

o Global Best-Fit Policy 

Under this policy, the single greatest reservation that can succeed in every node along 
the path(s) of the fiow(s) is installed and maintained at every node. This policy is realized 
by the blockade state mechanism that is in the current RSVP specification. 

o Local Best-Fit Policy 

Under this policy, each node establishes the greatest of all downstream requests that 
can be accommodated, regardless of what reservation requests succeed at other nodes. 
This may result in reservations that vary from one node to the next along the path. An 
algorithm to realize this policy has been proposed [Talwar99]. 

o Plain Greedy Policy 

This is similar to the Local Best Fit policy, except that if a node cannot accommodate 
the greatest downstream request, it installs the largest reservation it can provide. 

The algorithms to realize these policies (including the blockade algorithm in use) typically 
rely on a transient period during which Resv messages travel upstream and the resulting 
ResvErr (admission control error) messages travel down, iterating until all nodes stabilize 
in the final state. The sequence of iterations can be long and complex [Talwar99]. 

F. Policy Control 

Since resource reservations provide a subset of the user community with privileged service, 
there must be some technical, economic, or social mechanism to protect this privilege. 
That is, Integrated Services and RSVP require mechanisms for access control and account- 
ing. We invented the neutral term "policy" for these two functions. A reservation request 
must generally pass both admission control, which ensures there are enough resources, 
and policy control, which ensures that the requestor is authorized to reserve these resourc- 
es. 

Unfortunately, policy control raises difficult problems of efficiency and functionality. The 
policy control mechanism must be general enough to implement a very wide range of 
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possible policies, and it must be reasonably efficient and also secure. It may require bulky 
information such as cryptographic certificates. 

The decision was made to carry policy control information "in-band" within the RSVP 
Resv and Path messages, rather than in a separate and parallel protocol. RSVP therefore 
carries policy information within Policy Data objects that are largely opaque to RSVP. 
However, the policy algorithms turned out to be entwined with the reservation algorithms 
of RSVP to a much larger extent than we expected [PolicyOO]. For example, there must 
be merging rules for policy data in Resv messages, although these rules are quite different 
from flowspec merging rules. 

Since there was great uncertainty about the kinds of policies that would be needed, we 
decided to separate policy control from the rest of the RSVP reservation machinery. A 
short-term engineering decision was made that turned out to have profound consequences: 
we decided to "off-load" the policy control decision into a separate machine, linked to the 
router(s) running RSVP with a simple request/response protocol. It was expected that this 
would be a relatively short-term measure, and that policy control would eventually be 
folded back into the RSVP implementations. However, the policy control server quickly 
took on a life of its own in a separate IETF working group, and the simple request/response 
protocol became the COPS (Common Open Policy Service) [COPS00] protocol. 

G. Extensibility 

RSVP was designed to ease future extensions. Features to be added will require new 
protocol fields. For this reason, most logical elements of RSVP control messages are 
embedded in (type, length, value) encodings called "objects". The type is further subdi- 
vided into a generic type or "class" and a class-specific subtype or "C-type". This approach 
has provided great flexibility during protocol design and development. 

H. Confirmations 

If a reservation request fails, an RSVP error message is returned to the receiver(s) that 
initiated the request. However, the original protocol design had no positive confirmation 
message to indicate to the application that a reservation request was successful. Fully 
reliable confirmation would require global synchronization that is incompatible with RS- 
VP's distributed soft state. There is also a problem defining confirmation semantics for 
the most general the multipoint-to-multipoint communication pattern that RSVP supports. 
However, a simple confirmation facility [RSVP97] was added to RSVP, upon request from 
application software vendors. 

2.3 RSVP Interfaces 
A central design problem for Integrated Services was how to modularize the components [ISarch93]. 
An important aspect of the design and specification of RSVP is to specify (but not over-specify) 
each of its major interfaces to other network software components. Figure 2 illustrates these inter- 
faces within a node that is both an end system and a router. 

o Interface to Routing 

As indicated in Section 2.1, an RSVP daemon must have an interface to query the local 
unicast and multicast routing daemons for routes. ISI defined and prototyped a Phase 0 
route query interface that is general enough to handle a range of multicast routing schemes 
[RSRR98]. 
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Figure 1: Illustration of RSVP Interfaces 

o Interface to Traffic Control 

"Traffic control" refers to the set of components in the packet forwarding path that imple- 
ments the requested QoS. Traffic control includes admission control, packet classification, 
and packet scheduling. RSVP's job is to deliver parameters to traffic control at each node 
along the path of a data flow. 

A generic RSVP interface to integrated services traffic control is defined in [RSVPspec96] 
and [RSVPuse96]. Details of RSVP's traffic control interface will be specific to the oper- 
ating system and platform as well as the particular link layer technology in use. 

The QoS parameters in a Resv message are bundled into a flowspec object, whose complex 
internal encoding and semantics [RSVPuse97] are largely opaque to RSVP. RSVP needs 
only very narrowly specified operations on flowspecs, most importantly the merging al- 
gorithm. Adding a new service model should require only minimal and clearly-defined 
modifications to an RSVP implementation. 

o Interface to Link Layer protocol 

The "natural" protocol model for RSVP is based upon simple point-to-point links. How- 
ever, RSVP must also handle both broadcast media and switched virtual-circuit media 
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(most particularly, ATM) at the link layer. The ATM case was the most complex [ATM98]. 
Requesting an RSVP reservation across an ATM cloud must result in opening a virtual 
circuit at the ATM layer, with an ATM QoS mapped appropriately from the RSVP flyspeck. 

Note that running RSVP over IP over ATM creates a clash of fundamental models. RSVP 
is already trying to impose (loose) connection semantics onto a datagram (connectionless) 
network service; running IP over ATM means carrying that datagram service over a con- 
nection-oriented infrastructure. Hence, the RSVP/ATM design problem effectively in- 
volves connections over datagrams over connections, with QoS at two different layers and 
following different service models. As always, multicast makes the entire problem much 
harder [ATM98]. 

Handling this variety of link layer models resulted in modularity issues in our prototype 
implementation, which were never satisfactorily solved. 

o Interface to Policy Server 

As noted earlier, RSVP must implement the COPS protocol for communicating with a 
policy server [COPS00]. 

o Interface to Applications: API 

Finally, applications need a standard interface to request resource reservations. ISI and 
Sun Microsystems originally developed the RAPI (RSVP API) interface [RAPI98], which 
is also contained in generic form in the RSVP protocol specification [RSVP97J.RAPI 
has since been standardized by Open Group. RAPI allows an application to specify res- 
ervation requests in parallel with the API for sending data, e.g., a socket interface. The 
application is expected to be able to coordinate the two interfaces. 

Later, Microsoft developed an alternative API for RSVP in Winsock2; this API incorpo- 
rates reservation requests into the data socket calls. 

3. Major RSVP Design Issues 
We now turn to a discussion of two global design issues for RSVP: overhead and generality. 

3.1 RSVP Overhead 

The major components in RSVP overhead are the per-packet and per-byte cost of transmitting RSVP 
messages, the CPU time for processing RSVP messages, and the memory required for RSVP state. 

Minimal RSVP Resv messages are of the order of 150 bytes in length for IPv4, or 220 bytes for 
IPv6 (including IP header, an MD5 Integrity object and one sender). Specifying more senders 
increases the size. For IPv4, a 1500 byte Resv message can specify 340 senders for a WF style 
reservation or 28 senders for an FF style reservation. 

In principle, individual RSVP messages can grow very large if policy data objects are very large 
(e.g., because large cryptographic certificates are required) or if there is a very large list of senders. 
The current RSVP specification [RSVP97] supports only IP fragmentation, limiting an RSVP mes- 
sage to 64KB. Unless policy data objects are very large, this limit should support every reasonable 
scenario of RSVP usage. For example, for IPv4 a WF style reservation could specify up to 16000 
senders, or an FF style reservation could specify up to 1360 senders. 

o RSVP Message Cost 

Transmission of RSVP control messages requires some link bandwidth.Sending a mini- 
mal RESV refresh message each 30 seconds uses approximately 40 bits per second (60 
bps for IPv6) per link per session. If we use the current engineering design point of 10,000 
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RSVP sessions, there will be 333 refresh messages or 400K bits per second per link. A 
minimal Path message will be slightly smaller but will generate the same order of mag- 
nitude of traffic. 

In some circumstance, at least, this volume of messages may be a significant load. These 
numbers help motivate a package of RSVP optimizations that is currently being standard- 
ized [BergerOO]. This package includes the ability to send a short message identifier in 
lieu of an entire Path or Resv refresh message, reducing the refresh message traffic by a 
factor of roughly 30. Since they were added after the bulk of RSVP protocol design and 
since they have complex interactions with many existing RSVP features, these optimiza- 
tions have some complex and undesirable interaction with other RSVP design features. 
For example, freedom from packet loss is gained at the loss of automatic accommodation 
to route changes. 

o RSVP Processing Cost 

The bottleneck resource is probably the router CPU for processing the messages, rather 
than the network bandwidth for transmitting them. The optimization package [BergerOO] 
should significantly reduce message processing cost. 

o RSVP Memory Cost 

RSVP requires additional memory in hosts and routers for: (1) RSVP path and reservation 
state, (2) the resulting traffic control state in classifier, packet scheduler, and admission 
control. 

RSVP path and reservation state increases linearly with the number of sessions. Based 
upon ISFs prototype implementation of RSVP, a rough estimate of RSVP state memory 
is 600 bytes per unicast session. A corresponding estimate for a multicast session is 120 
+180*S + 260*Ni bytes per session, where S is the number of senders and Ni is the number 
of outgoing interfaces on which reservations have been made. 

No such simple rule can be given for traffic control state, although it should increase no 
worst than linearly, and perhaps only logarithmically, with the number of sessions. 

During the original Integrated Services research effort, state storage was not expected to 
become a major scaling problem, because the expected application was multimedia that 
would include video. In that case, the required aggregate bandwidth would limit the num- 
ber of sessions and therefore the amount of state. For example, suppose there are one 
thousand multimedia conferences, each using 1 Mbps for a video flow; this creates a gigabit 
of data traffic but requires of the order of only 1 MB of RSVP state storage. However, 
recently the primary application of RSVP and Integrated Services has been shifting to 
Internet telephony. Suppose each call requires 30Kbps; then it takes roughly 30,000 ses- 
sions to fill the same gigabit pipe, and this implies of the order of 30MB of RSVP state 
space. Experts differ on whether 30MB of memory on a large router is excessive. 

In summary, the processing and bandwidth required for RSVP will be brought into feasible ranges 
by a package of protocol optimizations that is nearing standardization. The solution to the state space 
problem is discussed in the next section. 

3.2 QoS Flow Aggregation 

A familiar indictment of RSVP has been that "it doesn't scale." In a sense, it scales perfectly, in fact: 
the overhead is strictly proportional to the number of flows. However, the linear factors matter. 

This scaling problem was recognized during the early Integrated Services research, which planned 
to solve it by aggregating reserved flows in the middle of the network [ISarch93]. In regions where 
there are many Integrated Services flows, statistical aggregation can be relied upon to provide the 
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desired end-to-end service. In these regions, individual flows can be mapped into a small fixed 
number of service classes. Differentiated Services provides a natural tool for this purpose. 

The general plan that is emerging for full Internet-scale deployment of Integrated Services therefore 
has the following components: 

o RSVP will be used end-to-end, making fine-grained reservations for Integrated Services at the 
edges of the network. 

o Differentiated Services will be used in the middle of the network. 

o The border routers to the Differentiated Services region will maintain full RSVP state. The 
ingress routers will aggregate the reserved flows into the appropriate Differentiated Services 
classes, and the egress routers will dis-aggregate the traffic back into individual RSVP flows. 

o RSVP messages will pass transparently through the center of the network. 

Multicast makes some of the details of this approach are much harder. For multicast, it seems 
necessary to maintain limited partial state within the center of the network, to handle heterogeneity 
[Aggr98]. 

3.3 A General Internet Signaling Protocol 

The design of RSVP attempted to ease future extensions. An RSVP message has the general form: 

RSVP message = {header} {typed "object"}* 

As explained earlier, each RSVP "object" is a (type, length, value) encoding of some protocol data 
item. This approach has provided great flexibility during protocol design and development. During 
RSVP development, many changes and enhancements involved the definition of new C-types and/ 
or new generic types. 

Besides this syntactic issue, protocol extensions raise another problem: RSVP extensions should be 
backwards compatible with existing implementations. That is, when a RSVP implementation re- 
ceives a object (or even a message type) that it does not recognize, it should still take the correct 
default action. This turned out to be a hard problem, and the present RSVP design [RSVP97] has 
only a partial solution. 

Many of the design details of RSVP are quite specific to its original planned usage, making resource 
reservations for Integrated Services. However, it is possible to look at RSVP in less detail and see 
a generic soft-state signaling protocol for the Internet. Several other RSVP working groups have 
adopted or adapted RSVP for their own signaling needs. 

o The RSVP general design has been adapted to do layer-2 signaling in the Subnet Bandwidth 
Manager, for mapping Integrated Services into IEEE 802 networks. 

o RSVP is being extended for use in setting up label-switch paths for Multiprotocol Label Switch- 
ing (MPLS), which is effectively layer 2.5. 

o There is discussion of using RSVP for configuring virtual private networks (VPNs). 

o There has been discussion of using RSVP for setting up explicit routes. 

RSVP is appealing for these new applications because of the syntactic ease of defining new object 
classes, and because the general soft-state model is widely applicable. However, the number of 
RSVP object types is rapidly increasing, and it is very unclear how to define interoperable subsets 
of the many functions that are being assumed by RSVP. 
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A worthwhile future research topic would be to explore dividing the current RSVP into two layers: 
a generic soft-state setup protocol and a layer that contains the semantics for a specific signaling 
application. Then the original RSVP would consist of a generic layer and a layer that is specific to 
Internet Integrated Services. 

4. Conclusions 
We have shown that RSVP met its general goals — logical simplicity, robustness, scaleability, flex- 
ibility, adoptability, and extensibility - to a large degree, but not entirely. Although the basic soft- 
state model provides considerable simplicity, the RSVP design accreted many "features" before it 
was complete. Such features include SCOPE lists, blockade state, (necessarily) both IPv4 and IPv6 
support, IPSEC support, reliable delivery, refresh overhead reduction, and handling some arcane 
cases of IP multicast. 

ISI personnel supported by this project edited the primary RSVP specification document [RSVP97], 
co-chaired the RSVP Working Group [AS97], and collaborated with other groups to make research 
contributions on RSVP's routing interface [RSRR98, Zappala96, ZappalaOO], the ATM interface 
[ATM98], policy control [PolicyOO], WF-style looping [Scope96], the killer reservation problem 
[Talwar99], the API [RAPI98], and aggregation [Aggr98]. ISI also produced a widely-used reference 
implementation of RSVP. 
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