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Pritchard's Approximation in Array Modeling 

by 
C. L. Scandrett (Department of Mathematics) 

S. R. Baker (Department of Physics) 
Naval Postgraduate School 

Monterey, CA 

Abstract 

An investigation into the applicability and accuracy of Pritchard's approximation for 
closely packed transducer arrays is undertaken. A new, "modal" Pritchard approximation 
is developed, based upon normal modes of the acoustic medium, and is tested for arrays of 
acoustically hard spheres to ascertain its accuracy in determining the mutual acoustic radi- 
ation impedance between array elements. For ka « 1, it is found that the modal Pritchard 
approximation works quite well in approximating the mutual radiation impedance of a two 
element array, even for relatively close spacing, but for arrays of three or more scatterers in 
close proximity, the approximation may have relatively large errors. The effect of neglect- 
ing inter-element scattering is analyzed for the monopole to monopole scattering of various 
configurations of a three element array and a sixteen element double line array. 
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1    Theoretical Background 

The so-called Pritchard [9] and "generalized Pritchard" methods [2] are popular tech- 
niques used to approximate the acoustic interactions between elements in an underwater 
acoustic array. Origins of the method can be traced back to an asymptotic analysis for 
small spherical scatterers in an acoustic medium performed by Karnovsky [7], who in turn 
references (as does Pritchard in his paper) earlier work done (including baffled pistons) by 
Rayleigh in 1903 [10]. 

In Pritchard's paper, the approximation is based upon an analytical treatment of acoustic 
interactions in an array of baffled circular pistons loaded by a semi-infinite fluid medium. 
Extensions to more general arrays are possible however if the following three criteria are 
met: 

• The mutual impedance between any two elements of the array can be considered with- 
out regard to other array elements in the construction of a global impedance matrix 
for the entire array. 

• The dimensions of an array element (in our case, the sphere radius a) is small relative 
to the acoustic wavelength (ka <IC 1, where k = u/c is the wavenumber of the time 
harmonic problem and c is the acoustic wave speed). 

• The ratio of array element dimension to inter-element distances (d) is small (— <tC 1). 

While it is true that if the second and third conditions are met, so must the first, the 
method is often applied when the latter two conditions are not strictly satisfied, with very 
good results. This is most likely due to the first condition being met. In Pritchard's paper the 
first of these approximations is exactly satisfied, since his array elements are coplanar with 
the baffle. When the assigned velocity of all but one of the pistons vanishes, the remainder 
of the array becomes essentially part of the baffle, and the exact mutual radiation impedance 
between it and any of the remaining array elements can be found analytically without regard 
to the other array elements, because there is no scattering. 

The Pritchard approximation for the mutual radiation impedance between two array 
elements (for example pistons 1 and 2) can be formulated mathematically as follows. A 
series representation of the mutual acoustic radiation impedance between the two pistons to 
leading order for small ka and small a/d is: 

J\2 ~ JX22 Ü2 
sin kd     . cos kd 

+ ^ 
kd kd 

= R22h^(kd) (2), 

in which Z^ is the mutual radiation impedance on piston 1 due to a radiated pressure 
from piston 2, /ig is the zerotft order spherical Hankel function of the second kind (an eiut 

time dependence is used throughout), and i?22 is the real (resistive) part of the self 
radiation impedance of piston 2. Pritchard demonstrated that the above approximation 
is quite accurate in comparisons with exact calculations over a range of center to center 
distances between pistons in the baffled array. 
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Benthien [2] reported on extensions of Pritchard's "method" to other types of arrays. In 
particular, Benthien found excellent agreement in comparing a Pritchard approximation to 
experimental as well as numerically determined results based upon the boundary element 
technique CHIEF[13], for a three element array of flextensional transducers. In Benthien's 
methodology, the mutual radiation impedances between array elements are found by numer- 
ically determining the free field self radiation impedance of a single array element (Zseif). 
This uses the code CHIEF. The resulting matrix is then used to obtain the mutual radiation 
impedance of that array element OD a second (identical) array element by multiplying the 
self radiation resistance matrix (Rseif) by % '(kd) where d is the distance between the two 
array elements. 

A mere complicated and perhaps more accurate calculation would apply a Pritchard type 
approximation on a finite element by finite element basis rather than from array element to 
array element, but is not done for two reasons. One reason is that the calculations involved 
in finding the mutual radiation impedance between array elements for a large array would 
be greatly increased. A second reason is based upon the underlying assumption of the 
Pritchard approximation itself, namely that a <C d where a is a characteristic length of the 
array element. This implies that finite element to finite element spacing between two array 
elements whose center to center spacing is d should be very nearly d as d ± a « d. 

In the Benthien formulation, the mutual radiation impedance matrix so constructed is 
applied to the velocity degrees of freedom (one for each surface finite element facet) for each 
element of the array to produce a pressure forcing function on each of the array element 
fluid loaded surfaces. One can then solve for the unknown values of the velocities by matrix 
inversion techniques. Following Benthien, one could also normalize the matrix equations 
utilizing the in vacuo eigenvectors of the mass/stiffness finite element matrices of the array 
element prior to solving the system. 

The work of Blottman et al [3] should be mentioned. These authors determined the mu- 
tual radiation impedance between a two element array of transducers numerically wherein 
the in vacuo normal modes of the transducers were used as degrees of freedom of the sys- 
tem. In this regard, Blottman's work resembles that of Benthien's "normalization". Unlike 
the work of Benthien, it is assumed that inter-mode (cross-) coupling of the self radiation 
impedance for a single transducer is negligible (i.e. in vacuo normal modes don't couple when 
heavy fluid loading is applied). Modal mutual impedances between array elements are found 
by employing a boundary element technique (EQI/ATILA) [4] which (unlike a Pritchard ap- 
proximation) numerically accounts for scattering effects to all orders. While the work by 
Blottman et al would appear to have little to do with the Pritchard approximation, the idea 
of applying a "modal" mutual radiation impedance is of interest. In particular, this report 
considers the possibility of a modal Pritchard approximation which might improve upon the 
Pritchard approximations currently in use. 
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2    The mutual radiation impedance matrix and the 
Pritchard approximation 

Given a fluid loaded array of M elements/transducers, and that the total pressure on 
array element n is represented by Pn, its value can be formally written in terms of the mutual 
and self radiation impedances, and the prescribed normal surface velocities on each of the 
array elements (Vm for array element m), by the sum 

M 

771=1 

These pressures can in turn be used in conjunction with surface velocities to calculate pres- 
sures at arbitrary field points in the acoustic medium. 

Crucial to Pritchard's method is an accurate representation of the self radiation impedance 
of an array element since it is the basis for determination of all mutual radiation impedances 
imposed by that element on other elements in the array (it is used to find the Znm along 
that row of the global impedance matrix). If the self radiation impedance is approximated 
by the free field radiation impedance for the array element, the effect of inter-element array 
backscattering is necessarily neglected. Backscatter might however, be taken into account 
at some level. At one extreme, one could numerically find the self radiation impedance of a 
single element which accounts for all scattering between array elements, but that would be 
tantamount to solving the full array problem numerically, precluding the need for a Pritchard 
approximation altogether. (Incidentally, this is exactly what Pritchard was able to do for his 
baffled array.) A second alternative, neglects all backscattering except what is between those 
two array elements for which the mutual radiation impedance is being found. For a two body 
array, this and the former methods of finding the self radiation impedance are equivalent. A 
difficulty with this latter technique is that the self radiation impedance expression used in a 
Pritchard approximation for each array element would depend upon the geometry (distance 
and orientation) between it and each member of the array. Calculations would then have to 
be done on every combination of two element arrays possible in the full array, leading to a 
considerable amount of work for "large" arrays. 

If the free field self radiation impedance is used in the Pritchard approximation, and 
the velocity on the surface of each array element is known, the field pressure at any point 
in the acoustic medium can be found by a simple superposition of the radiated pressures 
resulting from each of the array elements. The surface pressure on the nth array element 
can be expressed as the sum of its self radiated pressure (ZnnVn) plus contributions of 
radiated pressures from all other array elements, through the mutual radiation impedance 
matrix. Pritchard's approximation essentially substitutes the contribution to the radiation 
impedance from the mth array element on the nth element by a point source with amplitude 
equal to the resistive part of the mth array element's self-radiation impedance. This can be 
written as 
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M M 

Pn =  2^>   Znrn Vm  ÄJ  Znn£reVn +        2_^       ^mm^O   \kdnrn) Vm 

where M is the number of elements in the array, and dnm is the distance between array- 
elements n and m, 

To gauge the accuracy of the Pritchard approximation, an exact form of the mutual 
radiation impedance between elements of an array is needed which is more general than the 
"flat" array considered by Pritchard in his original work. An analytical form for the mutual 
radiation impedance between two acoustically hard spheres is given by New and Eisler [5] 
which employs a Green's function analysis coupled with spherical addition formulas [8]. Self 
and mutual acoustic radiation impedances between the spheres are found and represented 
by infinite series involving spherical Bessel functions and spherical harmonics. Results are 
then given over a range of center to center distances for cases in which one or both of the 
spheres are oscillating in a monopole fashion. 

The surface radiation impedance used by New and Eisler is based upon the definition 
[14] 

Zrj = ■JJP(rj)v*(rj)dSj 

where p(r) and v(f) are, respectively, the pressure and normal velocity on the surface (s,), 
and where v(r) is further defined as v(r) = Vß(r) in which V is an amplitude applied to the 
spatially varying function ß(r). (Asterisks refer to complex conjugates.) 

It is a simple matter to find values for the self and mutual radiation impedance for the 
two element array analyzed in New and Eisler's work since the two spheres are identical. For 
this array, the total radiation impedance seen by sphere 1 is: 

V2 
Zn = Z\\ + -rrZvi 

v\ 

The scaled radiation impedance on sphere one when both spheres have identical velocities, is 
given by the sum Zn + Zi2, while Zu is found by calculating the surface radiation impedance 
of sphere one while assigning a zero velocity on sphere two. To find the mutual radiation 
impedance of sphere two on sphere one {Z\2), the difference between these two radiation 
impedances is taken {Zri\Vi=V2=1 — Zri\Vi_1V2=0). (Equivalently, Z\2 could be found by 
determining the pressure on sphere 1 when Vi = 0 and V2 = 1.) 

In reporting their results, New and Eisler make the following observation regarding the 
two sphere array and the radiation impedance on sphere 1 (Zri): 

... the contribution of the mutual term Z12 is certainly significant. However, 
the primary contribution to the deviation of Zri from the free field value is not 
scattering, but merely a consequence of the added pressure field from sphere 
number 2. One can conclude, therefore, that, in the transition region (fcoi « 
ka,2 ~ 1), the effects of scattering on the radiation impedance of one spherical 
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transducer in the presence of a second spherical transducer are barely significant, 
even for close spacings. 

This would appear to validate a "Pritchard" type approximation for an array of spheres, up 
to and including ka « 1, and small inter-array element spacings. 

In our analysis, spherical harmonic functions and the spherical addition formula are used 
to find an appropriate "modal" Pritchard approximation based upon normal modes of the 
acoustic medium. Our work explores the nature of this approximation with comparisons 
to exact solutions found by a T-matrix formalism [11], in which scattering effects between 
array elements are fully taken into account. 

3    Derivation of the Modal Pritchard Approximation 

The time harmonic radiated or scattered pressure field is represented in terms of out- 
going spherical Hankel functions applied to the set of spherical harmonics. For a single 
radiator/scatterer with a local coordinate system written with the index "j", the functional 
form of the pressure field (pj) is written 

Pifo,**fc) = £  £ ^0»(*riW(Mi) 
n=0 rn=—n 

where 

are spherical harmonic functions. 
Representation of a single outgoing spherical wave using the spherical addition formula, 

is given by [8] 

OO V 71+1/      ' 

M*ra)*W2,k) = £ £     £ 
i/=0/i=-i/p=|n_I/| 

p>|m-/n| 

a(u,p, n, //, m)jv(kr1<)hp(kr1>)^+m(012, <f>l2M(0i, fa) 

(the prime on the summation over p indicates jumps of 2 in the sum) 

(r1; 0i, 4>i) = spherical coordinates relative to system 1 

(r2,02, <j>2) = spherical coordinates relative to system 2 

(ri2) 0i2,012) = origin of system 2 relative to 1 

rx> = max{r2, r12}       rx< = min{r2, ri2} 
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and where the coefficients a(...) axe related to the Wigner 3-j symbols used in quantum 
mechanics. 

Derivation of the modal Pritchard approximation begins with a description of a two 
element array. Spheres have common radius a, and velocities specified on spheres 1 and 2 
are given by individual normal modes: 

up dr = K?£C(0i>i) 
T\=a 

v> = = C2<W>2) 

Letting 

and noting that 

i   dp 
up dr 

T2=a 

c 
the pressure from sphere 2 translated to sphere 1 coordinates (with n < ri2) is given by: 

CO *2 

v\ = E  E <t2 
*2=0 S2=— *2 

CO J/l t2+V1 

1/1=0 ^l=-fl <T\=\t2-Vl\ 

0"1>I*2—**xl 

S2— /*1 

Similarly, the pressure from sphere 1 translated to sphere 2 coordinates is 

CO tl I     CO 1/2 

ri = E E <tl  E  E **to) 
t1=0 Si=-*i I 1/2=0 P2=-V2 

tl+V2 

E'fl(^,^,ti,/X2,s1)^2(A:rf)^(ö2>2)^2-
Ai2(-ir+Sl-'i2 

0-2=1*1 -1^1 
02>\si-ßi\ 

Upon application of the boundary conditions: 

up Or   L Jlri=a 

Up Or   L Jlr2=a 

and formally applying normal modes with division by derivatives of Hankel functions applied 
at ka leads to the system of equations 
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-ipcVZ1 
OmmiOnn-i  — 'imnömmiön h'   (hn\     mTni   nni        ■™-mnvmmilJnni 

oo *2 

"m (A"; t2=o s2=-t2 

*2+"l 

' o(ni, (Ti, *2, m!, s2)V(kd)£ls(*-
mi 

ffi 

0-1 = 1*2—«l| 
.0-i>|s2-"li| 

-JpcVnT c K        _   „2 
h'n2(ka) ~^mm.2^nn2 — -™7n7i^"«7i2*nn2 

+ JL(ka) E £ A\ 
K*(ka) t% .,—,, 

:i*i 

tl+U2 

}~2 ' a(n2,<72,t1,m2,s1)ha2(kd)Qs
CT\-

m2(-l) si—m2(_\ W2+S1-TO2 

^2=1*1-T12I 
.0-2>|si-77l2| 

(The Sij terms above are Kronecker delta functions which are one when i = j and zero 
otherwise.) 

Truncating the series, letting 

T        -ipcV™1 

•D'm'n  —      • .     /.     v    Om.rn.-t 0' 77171 h'ika) 
mm\ Vmi\ 

2        -ipcVZ? 
KXka) 'mm2 Vnni 

and rewriting these equations in matrix form (e.g. A1 = [AQQ, ALn, A\0, A\X, A]_22, • • ■]T) 

I     Kl2 

K2l     I 
A1 

A2 
B1 

B2 

where the [(si, ti), (s2,t2)] entry of the K\2 matrix is 

7' (ka)     t2+h 

^i2((«i,*i),(52,*2)) = jfy-L     £' <ti^i,h,s1,s2)h,1(kd)Qs
(r\- "4 (ka)     f      , 

SlV '   <Tl = |t2-*l| 

«■l>|S2-Sll 

and the [(s2, t2), («l, *i)] entry of the K2\ is 

K21((s2,t2),(s1,tl)) = jf-4-   Y,' ^2,^,^,32,Sl)ha2(kd)n%-^(-iy^-^ 
S2^        I   <72=|*l-*2l 

0-2>|si-S2| 

Solution of the above matrix equation for the unknown amplitudes provides an "exact" 
answer to the array problem, and is equivalent to the solution found by employing the 
T-matrix formalism of Scandrett and Baker [12]. 

For tecl asymptotic forms for the ratio of the spherical Bessel functions are [1] 
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Uka) 0[(ka)*\ 
0[(ka)2n+1] 

for n = 0 or 1 
for n > 2 

as fca^O 
h'n(ka) 

Therefore the magnitude of the matrix entries K\2 and K2\ are of order (ka)3, 
approximate inverse to the matrix can be found which is accurate to order (ka)6 

and an 

/     K12 

K21     I 

-l 
I   0 
0   I 

+ 0     K12 

K2i     0 

-1 
I 

—K21 

-K12 

I 
+ 0[(ka)6} 

and an explicit calculation for the unknown scattering amplitudes is possible: 

A1 « B1 - K12B and B^-K^B1 

To obtain the radiation impedance component on the (ni,mi) mode of sphere 1 given 
that sphere 2 is radiating in the («2,^2) mode, the pressure amplitudes are substituted 
into the radiation impedance integral formula, and all terms of order (ka)6 or higher are 
neglected. One is left with the expression: 

_ -ipc 

-6, 

m 
JnAka)    TO1 

Ujn^MPäs^^^ 
fo(ka),,   .   ,,,2 , Q,oa  \fi(

ka)ru fij\-\2 

*4(fc,)[*,(fa0P + 3c"(a*u)^SO[*,(*"01 

12+ni 

a>\rri2— m\\ 

7712—^i + 0[(k)6] 

where if (4 — rci — 712) is a Heaviside function which is zero for rii + n2 > 4 and equals one 
otherwise. 

The middle term in the above expression is the sole contribution to scattering from one 
sphere to the other, and is present only when one of the spheres is radiating with a nonzero 
amplitude in the monopole mode (at least to 0[(ka)6]). The two parts of this term result 
from monopole and dipole backscatter from sphere two which affect the amplitude of the 
scattered monpole pressure amplitude on sphere one. The backscatter terms are to leading 
order (ka)5, and if neglected, one obtains an approximation for the radiation impedance to 
0[(ka)5] which completely neglects all scattering effects, and is consistent with using the 
free field radiation impedance for the self radiation impedance, as outlined in the previous 
section. 
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jTl 

—ipc 
yrrn //j^(ft.*)l'*>{£jg^ 

Ti2+ni —iH(3 — ni—Ti2)     m       v~w 
17712 —7711 

«7=1712-71! | 
<7>|77l2— 77ll | 

The first term which is multiplied by V™1 is the self radiation impedance 

hni (ka) ^«^ef^WStoM^bM 
and equals the free field radiation impedance of sphere one. The summation term multiplying 
V™2 is the mutual radiation impedance of sphere 2 on sphere 1, and can be thought of as 
an approximation to the translation of the radiated pressure from sphere 2 onto sphere 1: 

^12(n2lm2)-*(nllm1)     »     ~if>Cjjs    IWfa» 0l)l|2<kl 

-zff(3 - Wl - wa)      "2+ni, 

(AWJXWäLM £' o(ni,<r,n2,mi,m2)A«r(Ä;d)ßr"mi 

o-=|n2-n1| 
<T>\m2—m\\ 

The matrix form for the non-neglected terms in the modal Pritchard approximation to 
the mutual radiation impedance is: 

^(00) (00) ^(00)(1- -i) •2(00)(io) ^(00)(U) •Z'(00)(2-2) ■Z(00)(2-l) •^(00) (20) Z(00)(21) ■Z(00)(22) 0    • 
•Z(l-1)(00) Z(l-D(l -i) 

Z(l-l)(10) z(i-i)(ii) 0 0 0 0 0 0    • 
■Z(io)(oo) z(io)(i- -i) ^(10)(10) Z(10)(U) 0 0 0 0 0 0    •• 
^(11)(00) z(ll)(l- ■i) •Z(n)(io) z(n)(ii) 0 0 0 0 0 0    ■• 

•Z(2-2)(00) 0 0 0 0 0 0 0 0 0    ■• 
•Z(2-l)(00) 0 0 0 0 0 0 0 0 0    ■• 
£(20)(00) 0 0 0 0 0 0 0 0 0    ■• 
^(21)(00) 0 0 0 0 0 0 0 0 0    •• 
■Z(22)(00) 0 0 0 0 0 0 0 0 0    ■■ 

0 0 0 0 0 0 0 0 0 0    ■• 

It is interesting to compare the real part of the self impedance to the amplitude of the 
mutual impedance in the special case that both spheres are radiating identically (B1 = B2 

or 7ii = n2 = n and mi=m2 = m). In this case, the real part of Zn = Rn becomes 

R li 

- -Peg iin-ft^),.^—-^- 
2n+2 

[(n + l)(l)(3)..-(2n-l)]s ^WPCIL Wi'MII2^ 
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while Z\2 has the asymptotic form 

[kafn+2 

z» " [(„+i)(i)(3)-(a,-W/M K^Mfäs, 
2n 

x   #(3 — 2n)J3' a(n, a, n, m, m)ha{kd)Cßa 

When only the first term in the series for Z& (the a = 0 case which results in an ho(kd) 
term) is kept, the "standard" Pritchard approximation results. In this instance note that 
a(n, 0, n, m, m) = 1 for all n > 0 and — n <m <n. The remaining terms in the series have 
an angular dependence which affects the amplitude of Z^ as the relative angles between 
array elements vary. Such an angular dependence is not built into the standard Pritchard 
approximation - only the relative distance between elements as expressed by the factor ho(kd) 
is present. 

4    Results 

4.1    Two body interactions 

In this section several graphs will be displayed in an effort to demonstrate the modal 
Pritchard approximation given above. The first set of numerical experiments involve the 
New and Eisler problem of an array of two, identical, acoustically hard spheres separated by 
a distance d. Each sphere has radius a = 1/2, and is assigned a modal velocity in such a 
way that the mutual radiation impedance can be found. 

Besides the modal Pritchard method, there are two other approximations displayed. The 
results labelled "Pritchard's method" and "Simplified Pritchard" are found as follows. For 
the "Pritchard method", an "exact" value for Rn which includes all backscattering is used 
in the approximation, while the "simplified Pritchard" employs only the free-field values of 
the self radiation resistance term Rn, and therefore neglects backscatter. 

The first series of graphs display the monopole to monopole, axially symmetric dipole 
to dipole, and axially symmetric quadrupole to quadrupole mutual radiation impedances 
for the two spheres which are aligned with the z axis. The final graph of quadrupole to 
quadrupole is included only to show the accuracy of the modal Pritchard approximation 
even through the quadrupole term, in spite of the fact that this term is of order (ka)6 in the 
expansion for small ka of the mutual radiation impedance and therefore would be neglected 
in an application of the derived modal Pritchard approximation. 
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It would appear from the above graph that backscattering effects in the i?n determi- 
nation are negligible by comparing results of the "simplified Pritchard" and "Pritchard" 
methods. Additionally, the "modal Pritchard" seems to very closely match the "exact" 
spherical addition formula results which includes all scattering effects. The results of the 
monopole to monopole mutual radiation impedance highlight what appears to be a phase 
shift between the "modal" and "simplified" Pritchard methods. Because of their analytical 
form, a comparison between Pritchard and the exact solution can be analytically performed 
by comparing the simplified Pritchard with the modal Pritchard. The formulas for the modal 
and simplified Pritchards (scaled by 4ira2pc) as a function of the distance between spheres 
(d)is 

modal Pritchard monopole to monopole   =   ho(kd) 
-1 

simplified Pritchard monopole to monopole   =   h0(kd)TZe 

Taking the ratio of these two expressions, one has 

[kah'0(ka)] 

—iho(ka) 
h'0(ka) 

ho(kd) 
-1 

[kah'0(ka)Y j'0(ka) + iy'0{k 

h0(kd)TZe 
—iho(ka) 1 + fW3 as   ka —*■ 0 

f0(ka) - iy'0(ka) 

h'0(ka) 

One can also see from the above expression, that the amplitude of the ratio is one with 
a constant phase shift. When ka = 1, this phase shift is about 24.6 degrees, which is what 
is seen in the monopole to monopole figure above. 

For the dipole to dipole case, the relative position of the spheres introduces an angular 
dependence in the mutual radiation impedance predicted by the modal Pritchard approxi- 
mation which is not present in the simplified Pritchard approximation. As in the monopole 
to monopole case, one finds that the simplified Pritchard approximation is essentially equiv- 
alent to the Pritchard method which accounts for backscattering, but to compare with the 
exact and/or modal Pritchard approximation, the results must be magnified by a factor of 
three. To see where the factor of three comes from, one can again compare the (scaled) 
modal and simplified Pritchard approximations 

modal Pritchard dipole to dipole   = 
-1 

simplified Pritchard dipole to dipole   =   —-—He 

3 [kah[(ka)f 
—ihi(ka) 

{h0(kd)-2h2(kd)n°2(6l2,<t>i2)} 

h[(ka) 

If one assumes kd » 1, the approximation h2{kd) « -h0(kd) can be made, and with the 
fact that ^2(^12) = [1 + 3cos(20i2)]/4, the ratio of the two expressions can be written: 
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ho(kd) — 
3[1 + cos(2012)]/2 

ho(kd)1Ze 

kah'^ka)]' 
—ih\{ka) 
h[(ka) 

3[1 + cos(2fl12)] (jijka) + iy[(ka) 

2 uU*o)-n/i (*<*). 

3[1 + cos(2012)] 
+ 0[(kaf]    as    A;a -»• 0 

In addition to the phase shift embodied by the ratio of the spherical Hankel functions, one 
sees an amplitude variation with respect to the angle #i2 between the spheres (in this instance, 
the axis of the dipole aligns with the z axis from which the angle #i2 is measured). For the 
geometry considered in the graph, the angle 0X2 = 0 leading to a factor of 3 needed to bring 
the Pritchard approximation in line with the analytic solution. The amplitude and phase 
shift are unfortunately not the only differences between the solutions. For small distances 
d the approximation used for /i2(fcd) is no longer valid, and this can be readily seen in the 
graph of the dipole to dipole mutual radiation for small values of d/a. 

Below is the axially symmetric quadrupole to quadrupole mutual radiation impedances 
of the various Pritchard approximations along with the spherical addition result. The modal 
Pritchard result would actually be zero if we neglected all terms of order ka5 since quadrupole 
to quadrupole radiation is of higher order. This graph is only included to show the continued 
success of the approximation embodied by the formula derived in the previous section for -2q2. 
Note also, that the magnitude of these quadrupole impedances are an order of magnitude 
less significant than the dipole terms. 
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4.2    Three body interactions 

One might hope that the modal Pritchard method works well even for situations in which 
there are more than two elements in a given array. This would indeed be true if "third party" 
scattering were negligible. Third party is meant to imply single or multiple scattering of an 
incident pressure from one array element to another (thereby affecting the mutual radiation 
impedance between the two), by way of scattering from a third obstacle or array element. 
This is an important effect when considering closely packed arrays of transducers. If one 
considers only two element arrays in the production of mutual radiation impedances between 
array elements, such scattering effects are necessarily neglected. 

The most elementary, and perhaps most enlightening case to consider, are three element 
arrays, in which one of the elements acts solely as an acoustically hard obstacle, and is moved 
around relative to the remaining two, which are fixed. For such an array, one can anticipate 
the negligible effects of the third array element when it is far from the two active elements, 
and one can quantify the effect it has on the mutual radiation impedance when it is moved to 
the nearfield. Because the two active array elements are fixed in space, the modal Pritchard 
approximation, (and for that matter all of the Pritchard approximations), produce constant 
mutual radiation impedances between the two elements, regardless of the positioning of the 
third. Because of its accuracy in the two element array problem, only the mod5?1 Pritchard 
approximation will be compared with the spherical addition results, to see h< mportant 
third party scattering is in the determination of mutual radiation impedances. 

Z13 for hard spheres, ka=1, monopoles, scaled by 4na pc 

Spherical addition solid line 

Modal Pritchard dashed line 

0 -20 
6 8 10 12 14 16 18 
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20 22 24 
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In the first test case, the two active array elements (numbered elements 1 and 3) are 
aligned to the z axis, and are at a constant center to center distance of A/2, which for ka = 1 
implies a separation of 7r/2. The third element (element number 2) of the array starts at 
a distance of A/4 away from the axis of the array, halfway between the two active array 
elements. It then moves axially away from the two active array elements. Above, is the 
comparison of the monopole to monopole mutual radiation impedance of sphere 3 on sphere 
1. 

Notice that there is a sizeable difference in the resistance and reactance terms of the 
mutual radiation impedance when sphere number 2 is in close proximity to the radiating 
spheres. In fact, in the third graph of the above series, the relative error of the magnitude 
of the mutual radiation impedance 

Percent error equals       100 x 11Z™ 11 modal Pritchard ~ 11 ^1311 spherical addition 

I Ziz' I spherical addition 

shows relative errors as great as 15%. 
The deviations of the mutual radiation impedance amplitudes can be explained by a 

relatively simple argument. Depending upon the total distance from sphere 3 to 2 to 1, the 
scattered pressure is either in phase (when Zi3 is at a maximum), or out of phase, with the 
direct pressure from sphere 3 to sphere 1. 
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This occurs when the total scattered distance from sphere 3 to 2 to 1 is an integral multiple 
of the acoustic wavelength. This may seem counter-intuitive since the scattering sphere is 
acoustically hard, but can be explained by a simple argument involving monopole radiators 
and the spherical addition formula. Considering only the monopole terms, the sum of the 
directly incident and once scattered monopole pressures is given by the formula 

Ajo(ka) [hoikdn) - j£& M^i2)f] 

where dXz is the distance between spheres 1 and 3, d^ is the distance between spheres 1 and 
2 (and also the distance between spheres 2 and 3), and A is the amplitude of the monopole 
pressure radiated from sphere 3. The value of dx2 can be represented in terms of sphere 2's 
distance from the z axis (D) by d12 = \/(V4)2 + D2. In the figure above, the amplitude of 
the above factor for A = 1 is produced, and to a large degree explains the variation seen in 
the amplitude of the mutual radiation impedance term (Ziz) found in the previous graph. 

A second three element array is also considered, in which the active elements are the 
same as before, but in which the scattering element moves in an elliptical path around the 
two active elements in such a way that the two active elements are foci of the ellipse. In this 
case, the scattering distance from sphere 3 to 2 to 1 has the constant value 3A/2. In terms of 
the preceeding three body graph, the point which would intersect the elliptical path occurs 
when D/a « 4.44, or when the relative error in Z\z is at its maximum value (corresponding 
to the Pritchard approximation being greater than the spherical addition result). 
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Graphs of the resistamce and reactance as well as the relative error in the amplitude of Z13 
are given for angles 0 to 180 degrees. At 0 degrees, the center values for spheres 1, 2, and 3 
are respectively 0, A, and A/2, while at 180 degrees, the z values of these spheres is 0, —A/2, 
and A/2. 

In this instance the variation due to scattering is nearly uniform, with maximum devia- 
tions occuring at the poles and perpendicular to the "active" array axis. Unlike the previous 
three body case, monopole scattering alone does not explain the variation of the amplitude of 
Z13. The graph below shows the result of limiting the number of terms retained in the spher- 
ical addition formulation to monopole only, monopole and dipole only, and monopole, dipole 
and quadrupole terms. The graph illustrates that the monopole to dipole back to monopole 
scattering is the primary reason for the deviations seen in the amplitude of the Z13 term 
(the monopole-monopole-monopole and monopole-quadrupole-monopole terms are nearly 
constant throughout the range of angles). Note also that the result of keeping only through 
the quadrupole terms very nearly matches the result of keeping harmonics up through order 
6. 
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4.3    Double line array of hard spheres 

As a final example, consider a double line array of hard spheres which are spaced A/2 
apart along the lines, and which has the spacing A/4 between the two lines.  The double 



SCANDRETT & BAKER 19 

line of spheres is parallel with the z axis. A graphic of the array is shown below, with the 
numbering of the spheres starting at the bottom left, and ending with the 16th element at 
the top right. 

7l/2m 
V/T 

wavelength 

A.=H m 

Sphere radius 
0.5 meters 

Orientation of the spheres 
in the 16 element array 

In the first graph below, the source level (in dB) of the array given that each sphere is oscil- 
lating in a breathing mode with surface velocity one is shown. The spherical addition result 
is compared to the modal Pritchard calculation, and as can be seen, the modal Pritchard 
approximation does quite well, with a maximum error of about 2 dB at broadside. The fa- 
field results are scaled by the far-field amplitude of a single oscillating sphere. A second 
graph shows the magnitude of the far field pressure, scaled by a single radiating sphere. 

Source level comparison for 16 element array, hard spheres, ka=1 
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Source level comparison for 16 element array, hard spheres, ka=1 

100 ISO 200 250 
angle in plane of array from z axis 

100 150 200 250 
angle in plane of array from z axis 

It is possible for this array to compare the self and mutual radiation impedances for 
the monopole terms without too much difficulty. In the next two pictures, the self-radiation 
impedance of each of the array elements is given, using both the modal Pritchard approxima- 
tion and the full spherical addition results. Recall that the modal Pritchard result neglects 
third party scattering and backscattering. In the first graph of the self radiation impedance 
one can see that there is nearly a uniform 15% relative error in all but the spheres found 
at the extremities of the array. The reason for the variation from the modal Pritchard is 
because of backscatter not being taken into account, and that at array elements 1 and 16, 
the backscatter is less than for any of the remaning array elements. The second graph shows 
on an element by element basis, the total mutual radiation on each sphere due to radiation of 
pressure from all other array elements. Essentially, it is the sum of the off diagonal elements 
in the monopole impedance matrix of the array in any given row, e.g. for array element i, 
this value is essentially 

16 
■mutual       V""* 

Prod        —     2_/ 'xj 

since all array elements have identical (monopole excited) velocities of one. 
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5    Conclusions and recommendations 

The work reported would indicate that improvements can be made to existing methodolgy 
in array modeling. In particular, for low frequency active array calculations with close array 
spacing, it would appear that the spherical addition formula should be used to incorporate 
inter-element scattering. It would appear however, that the number of harmonics needed is 
only through the quadrupole term for accuracy up to a level of (ka)6, and so if a T-matrix 
algorithm is adopted, a total of 81 matrix elements should properly characterize the array 
problem. 

Great accuracy has been achieved by using a Pritchard approximation to model the 
mutual radiation impedance between array elements for several of the reasons delineated in 
the above report. Improvement would seem to be possible, however, by adopting a modal 
type Pritchard approximation. There are still limitations to the methodology, however, 
which should be addressed in an actual application, such as the need to model third party 
scattering. The manner in which such a modal approximation might be incorporated into a 
finite element code is as follows. 

The finite element code must be used to determine the self radiation impedance of a given 
array element. Almost any boundary element code would do, for example EQI or CHIEF, 
but it must couple to the finite element code of the array element. Given nodal values of 
the normal surface velocity (V^)(or iux. the normal surface displacement), and the free field 
self impedance radiation matrix, the nodal pressure vector (Pj) on the jth array element is 
given by 

\£j) nodal = ZjjVj 

The nodal pressure values must be converted to modal pressure amplitudes which can be used 
by the spherical addition formula for translations to other array elements. First introduce 
an intermediate matrix (^4) of spherical Hankel/spherical harmonic functions evaluated at 
the surface nodes of the jth array element (rs, 6S, and <f>s) 

As,{n,m) = hV\krs)n™(6s,<j>s) 

The size of this matrix is M x K where M is the number of surface nodes, and K is the 
number of harmonics (9 if use only harmonics through the quadrupole term). The equation 
to be solved is 

V-*  Jnodes = Ayr jmodes 

The least squares solution to this problem is found by solving the normal equations, resulting 
in 

[■i Jmodes == {A   A)     A    {■ijnodes 
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where AH is the Hermitian conjugate of A, and C is the sought after translation matrix from 
nodal pressures to modal pressures. 

Now with the modal radiated pressures, the addition formula can be used to determine 
the nodal pressures resulting from the modal radiated pressures through an application of a 
truncated spherical addition formula. The translation from array element j to array element 
i's nodal coordinates rt, 9t, and <f>t is given by 

(Pi)?**   =   { E (3)i$? E H(3 ~ Z> " l2)ji2(krt)n^(9t, <j>t) 

l2+h 

x        ]T' fl(*i. *> k> mi> m2)K(kd)Cl^-mi 

e=\h-h\ 
<T>|m2—mi| i 

where d is the distance between the ith and jth array element, and H( ) is the Heaviside 
function. Introducing the matrix G which is M x K (assuming the ith array element also 
has M surface nodes, it is given by 

K h+h 
Gt,{h,mi)= E H(3-h-l2)jl2(krt)n^(9t,<l>t)      £' a(h,(r,l2,m1,m2)ha(kd)n^-mi 

l2,m.2 <r=\h—l\\ 
<T>|7712—TTli\ 

Combining the three matrices into a modal approximation for the mutual radiation 
impedance leads to 

Zij ~ CrikOkjZjj 

which corresponds to the modal Pritchard approximation used in this report, and which 
should be compared to the standard Pritchard approximation given by 

Zij « He (Zjj) h0(kdij) 
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