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Abstract  

The front-tracking "hydrocode" FRONTIER limits finite-difference solution of the dynamic 
continuum mechanics equations to regions bounded by tracked fronts (shock waves, contact 
discontinuities, and gradient discontinuities) and uses local solutions of the Riemann problem 
to advance the positions of these fronts. This solution method places stringent requirements on 
the availability of thermodynamics information. With the addition of an appropriate reacting 
mixture model, the code can be applied to solid explosive initiation problems. The required 
thermodynamic functions are more difficult to obtain for reacting mixtures even though the 
equations of state for each of the phases present are known. We have developed a mixture model 
based on assumptions of mechanical equilibrium and thermal isolation that can be used 
independent of the choice of equations of state for the phases, and we have derived expressions 
for the necessary thermodynamic functions. 
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1. Background 

We are working to adapt FRONTIER, a front-tracking "hydrocode" developed at the State 

University of New York at Stony Brook (Glimm et al. 1981, 1985; Grove 1989, 1993), for 

application to solid explosive initiation problems. The principal elements required to treat such 

problems numerically are a continuum mechanics model (including appropriate treatment of 

boundary conditions) and a reacting mixture model. The former is represented by a system of 

dynamic partial differential equations and the latter by a system of algebraic equations (augmented, 

in some cases, by additional dynamic equations). The forms of these models depend on the 

assumptions used. 

FRONTIER is unique in that it limits finite-difference solution of the dynamic continuum 

mechanics equations to regions bounded by tracked fronts. These may include shock waves, contact 

discontinuities (i.e., material interfaces and sliplines), and gradient discontinuities (e.g., boundaries 

between simple and complex wave regions). The front-tracking method superimposes grids for these 

fronts on the computational region. For an n -dimensional computational region, the grids are of 

dimension n-l. The method uses local solutions of the Riemann problem coupled to the interior 

region solution to advance the positions of tracked shock waves and contact discontinuities. There 

results a description of the flow that retains the discontinuous character of the fronts. This solution 

method places stringent requirements on the availability of thermodynamic information. In addition 

to the incomplete equation of state for pressure required by all hydrocodes, the Riemann solvers 

require expressions for the acoustic impedance, sound speed and adiabatic exponent, and the 

Grüneisen function, as well as adiabats and Hugoniots. While these are readily developed from most 

equations of state, they are more difficult to obtain for reacting mixtures. 

In order to avoid the need to completely rework FRONTIER'S coding for solution of material 

dynamics, we are interested in mixture models that, insofar as possible, allow retention of the gas 

dynamics conservation equations for diffusionless flow. The extent to which this objective may be 

achieved depends on the physical assumptions that we wish to apply. Usually, the requirement can 

be met, although additional dynamic equations may arise. It is generally necessary to add a dynamic 

equation representing reaction progress. 
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Several modeling approaches applicable to mixtures of discrete phases have been reported in the 

literature, and some of these are reviewed and amplified here. The set of physical assumptions that 

appears to best apply to explosive initiation includes mechanical equilibrium and thermal isolation 

between reactant and product phases. While the thermal isolation condition can be implemented as 

an added dynamic equation, representing partitioning of the energy conservation equation between 

the phases, including it in the mixture model is more consistent with our desire to retain the original 

form of the conservation equations. We have developed a model along these lines that can be used 

independently of the choice of equations of state for the phases and have derived expressions for the 

necessary thermodynamie functions. 

2. Mixture and Phase Variables 

Consider a Lagrangian control volume, A V, containing a mixture of two phases having mass AM 

Phase variables are denoted by subscripts r and p (anticipating but not limited to reactants and 

products), while mixture variables are unsubscripted. The mass of the mixture is equal to the sum 

of the phase masses: 

AM = AMr+AMp. 

Dividing by AM gives 

AM, _ AMp _ 1 

AM     AM 

Mass fractions for each phase can be defined as 

AM, 
A = lim  - 

AM-0 AM 



and 

AM0 
A = lim  p- , 

H   AM-0 AM 

so that 

W1- 
In light of this simple relation, a single mass fraction variable, A, may be chosen so that 

Ar=1-A 

and 

Ap=A 

Similarly, volume fractions are defined as 

AlA 

AV-0 Al/ 

and 

Al/, p 
nP=n=   Hm      A./      • P AV-0 Al/ 

The mixture and phase specific volumes are defined as 

,.      Al/ v= lim   , 
AM-0 A/W 



AVr 
v = lim   , 

AM-0 AMr 

and 

v = lim —*- 
P   AM-0 AMp 

Thus, 

(i-A)vr=(i-n)v, 

and 

Avp=nv. 

The mixture is said to be saturated if its volume equals the sum of the phase volumes: 

AV = AVr+AVp. 

This assumption is most appropriate when one of the phases is gaseous, as is generally the case for 

detonation. Dividing by AM gives 

AV  _ A^AM,      AVp AMp 

AM      AMr AM       AMp AM 

so that 

v=C\-h)vr+\v . 

Similar considerations yield saturation conditions for the mixture and phase specific internal energies 

and specific entropies: 
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e = (1-A)er+AepI 

and 

s = (1-A)s,+ Asp. 

3. Conservation Equations 

It is assumed that the values of some of the variables required to describe the mixture are 

available from integration of continuum mechanics conservation equations. Since the material 

strengths of explosives are generally modest and the pressures associated with their initiation high, 

the equations of gas dynamics can be used: 

dt 
+ V-(pt/)=0, 

— (pi/) +V-(puu) +Vp = 0, 
dt 

and 

d (pe7-) + V-(perü)+V-(pü) = 0, 
or 

where r is time, p is the density, U is the particle velocity vector, p is the pressure, eT is the total 

specific energy, 

eT=e + -uu, 



and e is the specific internal energy. This system is generally closed by obtaining pressure as a 

function of density (or specific volume, v = 1/p) and specific internal energy from an incomplete 

equation of state: 

p = p(v,e). 

In order to apply the gas dynamics equations to a discrete mixture, an incomplete equation of 

state yielding a single pressure for the mixture is required. This pressure will, additionally, depend 

on a reaction progress variable: 

p = p(v,e,k). 

Further, the phase pressures should equal the mixture pressure. Otherwise, the momentum and 

energy conservation equations must be split between the phases. Splitting is also required if the flow 

is not diffusionless (i.e., the same particle velocity should apply to both phases). 

Where the mixture is reacting, the reaction progress must be computed, and the energy liberated 

during the reaction must be accounted for. Additional variables and equations are required for these 

purposes. However, the conservation equations in the form shown apply as long as single pressures 

and particle velocities are maintained. The reaction rate equation is 

A(pA) + V-(pAil)=pA(A,pf....), 
dt 

where the reaction rate is a known function of state and history variables obtained from one of a 

number of available models. The equation arises as a consequence of conservation of mass and must 

be integrated along with the other conservation equations. 

The chemical energy released in the reaction process must also be accounted for. This could be 

done by modifying the energy conservation equation such that 



— {peT) + V-(peTu) +V-(pu) = -pAhDk(K,p ), 
dt 

where AhD is the (negative) heat of detonation. However, this is inconsistent with our desire to 

retain the original conservation equations and it can be accomplished more simply by regarding the 

reactant phase specific internal energy as composed of a thermal component and a potential 

component equal to the absolute value of the heat of detonation: 

er= er,thermal~ ^"D- 

The reactant phase equation of state (as developed in Appendix A) applies only to the thermal 

component, 

er,thermal= er+^D> 

and the reactant phase equation of state for pressure may be expressed 

pr=pr(vr,er+AhD). 

In practice, the heat of detonation is often included in the equation of state. 

4. Mixture Equations of State 

4.1 General. Returning to our Lagrangian control volume, we may write the complete equation 

of state for the mixture: 

LE=E(AV,AS,AMr,AMp), 

where AS is the entropy. Because of the homogeneous first-order nature of such equations, dividing 

by AM gives 

.'Al/     AS     AMr    AAV 
AM AM    AM    AM    AM 



Thus, in the limit as AM vanishes, 

e = E(v,s,kr,kp) = e(v,s,k) 

Incomplete equations of state are obtained by differentiating: 

p(v,S,k) = - 'de" 

[dv)s, 

and 

T(v,s,K) = 

where T is the temperature. Additionally, 

M(y.S,A) = 

'de' 

v,K 

'to) 
dkJ v,s 

defines the normalized chemical potential. By solving the complete equation of state for the specific 

entropy, 

s = s(v,e,k), 

and substituting into the incomplete equation of state for pressure, we obtain the form required for 

solution of the gas dynamics conservation equations (i.e., with v, e, and A as the three independent 

variables): 

p = p{v,e,k). 

However, the complete equation of state is generally unavailable. Rather, incomplete equations 

of state for each phase giving pressure as a function of specific volume and internal energy are 

known: 

pr=pr(vr,e+AhD), 

and 



Pp = pp(vp,ep). 

In order to establish an equation of state for the mixture, we may combine these with the volume and 

energy saturation conditions: 

v=Q-h)vr+Xvp 

and 

e = (1-A)ef+Aep. 

This is a system of four equations in nine variables (v, e, A, vr, er, pr, vp , ep , and pp ), not 

including the pressure. Thus, two additional equations are required to produce a solution for the 

pressure as a function of three independent variables. 

4.2 Equilibrium Assumptions. The number of independent variables can be reduced by 

invoking assumptions of physical equilibrium. The most common of these, the assumption of 

mechanical equilibrium (Mader 1979; Johnson, Tang, and Forest 1985; Starkenberg 1989), is 

required to retain the simplified form of the conservation equations. It implies that the phases are 

at equal pressures and is achieved by a relatively rapid wave propagation mechanism. Thus, 

pr(vr,er+LhD)=pp(vp,ep). 

Another assumption that has been used (Mader 1979) is that of thermal equilibrium. In this case, 

the phases are at equal temperatures, presumably by virtue of significantly slower conductive 

processes, and incomplete equations of state for the phase temperatures are required: 

Tr{vr,e+AhD) = T(v   e ). 



Thus, with both mechanical and thermal equilibrium, the mixture equation of state may be 

expressed as 

vr=vr(v,e,K), 

vp=vp{v,e,\), 

er=er{v,e,K), 

ep=ep{v,e,K), 

p = p{v,e,\), 

T=T(v,e,k). 

This formulation has the desired set of independent variables. However, because thermal 

equilibrium can be achieved only through physical processes that generally act slowly compared to 

pressure equilibration and are consequently physically unrealistic in explosive initiation 

environments, alternatives to this assumption have been sought. 

4.3 Thermal Isolation. The thermal isolation condition, which represents the opposite extreme 

and appears more realistic than thermal equilibrium, was used in Lagrangian computations by 

Johnson, Tang, and Forest (1985) and in conjunction with smoothed particle hydrodynamics by 

Libersky (1993). These approaches were limited to use with a linear-r Mie-Griineisen equation of 

state for the reactant phase. Here, we shall relax this limitation and generalize the approach for use 

with any equation of state. 

If the mixture is constrained to change its state such that the phases remain thermally isolated, 

there results an isentropic process for the reactant phase. Thus, the thermal isolation condition may 

be expressed 

Pr(Vr,e+AhD) =PSMr''Vrk>erk+AhD) > 
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or 

er+AhD = eSr(vr;vrk,erk+AhD), 

or simply 

sr(vr, e+AhD) = srk= sr(^, e^LhD), 

where the isentrope functions are known and (vrk, erk) is a reference state specifying the isentrope. 

If the material has been shocked, this state is, most conveniently, that existing on the Hugoniot 

immediately after the most recent shock passage. Otherwise, the initial state may be used. In an 

Eulerian numerical computation, this state can be advected for use throughout the reactive flow field: 

JL(pvrk) + V-(pvrku)=0, 
at 

and 

±(pfl|fr) + V-(p 6*10=0 
or 

Unfortunately, where artificial viscosity is used to capture shock waves, the accurate determination 

of shocked states (and, hence, the accurate initialization of the reference state following shock 

passage) is not generally possible. The front-tracking approach, on the other hand, provides an 

opportunity to accurately initialize and advect {v^.e^). 

4.4 Other Models. Because the iterative processes associated with the foregoing approaches 

maybe time consuming (although convergence should generally be rapid), an alternative approach 

(Kerley 1992) has been used in the Sandia National Laboratory's CTH code. This is referred to as 

the "two-state" model. Here, the mixture equation of state is expressed as follows: 

p(p,T,h) = V-k)Pr(p,T)+Kpp(p,T)   , 

and 
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e(p,r,A) = (i-A)e,(p,r)*Aöp(p,r). 

Thus, each phase is assumed to have the density and temperature of the mixture, and the mixture 

pressure is a weighted average of the phase pressures and has no physical meaning. Because of the 

poor physical fidelity associated with these assumptions, we did not consider it to be a desirable 

candidate for incorporation into FRONTIER. The approach has been eliminated for the 1999 release 

ofCTH. 

In addition, Baer and Nunziato (1986) have developed a nonequilibrium model with diffusion 

for CTH based on physical assumptions. Because this model was primarily intended for porous 

materials, has exhibited difficulties (Menikoff 1996), and requires substantially more complex 

conservation equations, it was not considered for application in the front-tracking environment. 

4.5 Physical Considerations. To this point, our physical assumptions have been driven by the 

heuristic purpose of retaining the gas dynamics conservation equations. In spite of this, there 

remains a variety of circumstances under which the assumptions of diffusionless flow in mechanical 

equilibrium and thermal isolation may be regarded as physically reasonable. 

The physical justification for these assumptions begins with the notion that the process of 

explosive initiation starts at hot spots that are excited by the interaction between a passing shock 

wave and the heterogeneities in the explosive. Such hot spots have been observed experimentally 

by von Holle and Tarver (1981). They are distributed on the scale of the heterogeneities and 

represent a very small fraction of the explosive mass. There are assumed to be numerous hot spots 

in any control volume used to derive equations of motion. The hot spots, which may be idealized 

as closed regions, are assumed to react thermally and to produce "holes" bounded by closed surfaces. 

The reaction is assumed to propagate further by a surface burning mechanism akin to that observed 

for propellants in strand burner experiments, which occurs at uniform pressure. This portion of the 

reaction process is often referred to as hole burning. As reaction proceeds, the holes join, and, before 

long, discrete solid particles appear embedded in a gas phase matrix. At this point, the process is 

called grain burning. The point of transition from hole burning to grain burning depends on the 
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shape of the holes and the way in which they evolve. This description is applicable to the initiation 

of condensed energetic material by a process referred to as shock-to-detonation transition. Porous 

materials exhibit a more complex initiation process referred to as deflagration-to-detonation 

transition in which diffusion may play a role. 

The assumption of diffusionless flow is easiest to defend within the surface-burning context. 

During the early stages of reaction, the gas is entrapped within the solid phase and may not diffuse. 

During the late stages of reaction, high drag forces acting on the remaining solid resist any tendency 

toward diffusion. But, most importantly, since burning is assumed to occur at closed surfaces 

throughout the process, the net momentum of the products relative to the reactants tends to vanish. 

Mechanical equilibrium is more difficult to justify. It rests on the assumption that burning occurs 

as observed on a macroscopic scale for propellants. Assuming thermal equilibrium appears 

unjustified for the rapid processes associated with initiation of detonation. Thermal isolation lies 

at the opposite extreme and is valid when the reaction process is sufficiently rapid. 

Wackerle and Anderson (1984) have shown that simplified representations of the surface reaction 

rate and the equilibrium state may be inconsistent with the assumed reaction topology. However, 

in the context of an explosive initiation model, all of this may be moot. Such a model is completed 

by specifying a reaction rate function containing constants that are calibrated with respect to certain 

explosive sensitivity experiments. Thus, some excellent results are achieved with highly 

questionable "equilibrium" assumptions. No advantage to more complex models has yet been 

exhibited. 

5. A Discrete Mixture Equation of State 

5.1 General. The equations governing the mixture in mechanical equilibrium and thermal 

isolation are 

13 



v=(\-h)vr+Xvp, 

e = (1-A)er+Aep, 

p = pr(vr,er+AhD), 

P = PP(
vp>ep)> 

and 

P=PSr(Vr'>Vrk>eri<+AhD)> 

or 

e+AhD = eSr(vr;vrk,erk+AhD). 

This constitutes an incomplete equation of state for the mixture pressure and phase states that 

includes the reactant reference state as an independent variable: 

vp=vp(v,e,A;^,e/fc+AÄ7D), 

er= e^e.K-.v^e^+Lhu), 

ep=ep(^e,A;vrif>erff+A/7D), 

and 

p = p(v,e,k;vrk,erk+AhD). 

5.2 Mixture-Equation Solutions. Because closed form solutions to the system of equations 

describing the mixture cannot generally be found, it is necessary to obtain solutions using iterative 

approaches. It is assumed that initial estimates for the values of the unknown variables are available: 

„(0)       (0)        (0)        (0) 
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If these are known to sufficient accuracy, successively more accurate solutions, given by 

vf^W + övf, 

and 

Ak+i)--M 
= eB

w + öea
w. 

(*) 

may be obtained using Newton's method. Other methods may be used until accuracy sufficient for 

convergence of Newton's method has been achieved. Substituting these solutions into the original 

equations (eliminating the superscripts for clarity) yields the variational equations, 

(1 -X)5v \5vp= v-{-\ -A) vr-kvp, 

(1-A)öer+Aöep=e-(1-A)er-Aep, 

övr + 6e- dPc 
dv, 

öv„ 
p) 

öe=pp(vp,ep)-pr(vr,e+AhD) 

and 

Psr(Vr"'Vri<>eri<+*hD)ÖVr+ter=esr(Vr'>Vlk>elk
+MD) " (ef+A/?D) 

These equations are then solved for bvr, övp , öer and 5ep, and the solution is updated.  The 

procedure is repeated until the desired accuracy is achieved. 
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In hydrocode applications, pSr and eSr can be evaluated by calls to appropriate equation-of-state 

subroutines. The isentrope reference state, on the other hand, is an integrated variable of the flow 

and must be included in the call to the mixture-equation-of-state routine. 

5.3 Mixture Derivatives. Expressions for the derivatives of the independent state variables 

with respect to the dependent state variables are developed in Appendix B. Derivatives of the 

pressure are 

\dV)e,K I2    dVt PI 

and 

dp 

v,X I2 
,depj 

where 

/2=A/r
2+(1-X)#J 

and // and L2 are the squares of the acoustic impedances of the phases, defined as 

apj 
'm dv, = P 

dp, m dPm) 

m } 

m = r,p 

With these derivatives in hand, we may proceed to relate thermodynamic functions of the mixture 

to their phase counterparts. 

5.4 Sound Speed and Related Functions. The square of the acoustic impedance of the mixture 

may be written 
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i2 = dp' I ^_ \        / -,„ \ i2 i2 

_  V  P 

s,A v,X 

dp 
\ dv e,K I2 

It varies continuously from that of the reactants to that of the products as the mass fraction varies 

from 0 to 1, and its reciprocal is subject to a saturation condition: 

J_ = jj^ + _A_ 
i2 "    i2    + I2 

V 'p 

The square of the sound speed may be defined in terms of the square of the acoustic impedance: 

C2 = / V = 
2   2    2 v crcp 

0-K)v2c2
p+Kv2cf 

The corresponding saturation condition is 

(1-A) 
^2    / „ \ 

\°rj 

+ A 

VCP/ 

Another important function defined in terms of the square of the acoustic impedance is the 

adiabatic exponent, given by 

i2v VVrVp Y,YP 

P       (1-A)v,Yp+AvpYr      (1-n)Y„+nYr 

with the saturation condition 

^ = (1-A)^+A^ 
Y Yr        Yp 
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5.5 Grüneisen Function. The Grüneisen function of the mixture is 

r-v m 
[de) 

i2v 

v,X      lp Vp 

r'-7r'- 
The continuity of this expression for vanishing A has not been established. 

5.6 Temperature and Specific Heat. In order to determine the thermodynamic temperature 

of the mixture, we begin by differentiating the saturation condition for the entropy with respect to 

S: 

(1-A) 
ds 

v,\ 
ds 

= 1 

v,K 

Noting that the thermal isolation condition implies that Sr is a constant, we find that 

= 0, 
<aar\ 

ds 
V* 

and 

faV 
ds J v,\ 

A 

Differentiating the saturation condition for the specific volume with respect to S gives 

(1-A) 
(dv, 

ds 
+ A 

v,A 

lev, 

ds 
= 0 

/ v,K 

We may write the mechanical equilibrium condition in the form 

pr(vr,sr)=Pp(Vp,sp), 

and differentiate with respect to S to obtain 
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;2 ' dv.\ 

,ds, 

- /, 

V,k 

r T 
=   p p 

V I2 

Thus, 

ds vJ2 
\ I v,k P 

and 

^ JV,K 

1-x rDr. p p 

*    vJ2 

Finally, the temperature is determined from its definition, 

T = '§1 
v,K 

by differentiating the saturation condition for the specific internal energy, 

e(v,s,K) = {\-h)er(vr,sr) + keJvp,s). 

This shows that the mixture temperature is simply equal to the product temperature: 

T(v,e,k) = TD[vJv,e,\),eD(v,e,K)]- P1p 
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The latter can be computed if an incomplete equation of state for the products giving temperature 

as a function of specific volume and specific internal energy is available. The continuity of this 

expression for vanishing A has not been established. 

Similarly, the specific heat at constant volume of the mixture may be determined from its 

definition, 

Ov = (2°) 

by differentiating the expressions 

e(v,T,k) = C\-k)er(vr,Tr) + Xep(vp,Tp), 

v=(J\-X)vr+Xvp, 

T=Tr> 

and 

pr{vr,Tr)=pp(vp,Tp), 

Pr(Vr>Tr)=PsMr) 

with respect to T. This shows that the mixture specific heat is given by 

XI2C„ 
cv = ( r  \ 

\yP> 

/2-0-AKprp 

Similarly, the continuity of this expression for vanishing X has not been established. 

5.7 Adiabat The complete equation of state of the mixture may be expressed 

e = e(v,s,X). 
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Its differential is given by 

de = Tds- pdv + [idh, 

and the condition defining the mixture adiabat is 

de + pdv = Tds + [idk = 0. 

Thus, changes in entropy along the adiabat are associated with chemical reaction. In the absence of 

reaction, the adiabat becomes an isentrope. 

5.8 Hugoniot. We cannot use the mixture equation of state to determine a Hugoniot for the 

mixture because the reactant isentrope reference state changes across a shock wave. In this case, we 

make use of known equations of state and Hugoniots for the phases: 

p=pr(vr,er+AhD), 

P = PHr(Vr°>Pu>Vru)> 

p = pp(vp,ep), 

P = PHP(V'PU>VPU)- 

And the saturation conditions still apply: 

v=V-\)vr+Xvp, 

e = (1-A)er+Aep. 

21 



This is a system of six equations in eight variables, and the resulting Hugoniot may be expressed 

p = pH(v,h;pu,vu), 

e = eH{v,K;pu,vu), 

vr=vrH(v,K;pu,vu), 

er=erH(v,K;pu,vu), 

Vp=VpH(V>K'>Pu>Vu)> 

ep = epH(v,h;pu,vu). 

Finally, a model for the increase in mass fraction across the shock is required: 

\ = ku + AkH(v,e). 

The assumption that no reaction occurs in a shock wave, 

K -Ku. 

is consistent with a finite reaction rate. The reactant isentrope reference state for use downstream 

of the shock is given by 

Vrk=Vr' 

erk = er • 

5.9 Limiting Solutions. The determinant of coefficients for the variational equations used to 

solve the mixture equation of state is the same as that given in Appendix B for computation of the 
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derivatives of the mixture equation of state. In the case of thermal isolation, a singularity arises 

associated with the vanishing of this determinant at A = 0. In this limit, the reactant state is identical 

to the mixture state. Special considerations are, then, necessary to determine the product state. The 

set of equations obtained by differentiating the saturation and thermal isolation conditions while 

retaining the mechanical equilibrium condition is 

(1-X) 
(dv,} 

IK 
+ A 

/ v,e 
dh 

=   v - V 

v,e 

(1-X) + A 

v,e 

l3eA [ex J = ere
P> 

v,e 

and 

PSr(^;^'e* + A/7D) -Pp(Vp>ep) =0' 

PsAVr>Vrk>erk + ^hD) dk 

(de, 

dk 
v.e 

=  0 

v,e 

For vanishing A, these become 

and 

x=o 
V-VPO> 

x=o 

e ~ epo > 

Pp(VpO>epo) = Psr(V'Vrk'erk + AhD) - 

PSr(V'>Vrk>erk + *hD) 
A=0 \ /A=0 

= 0 
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This represents a system of equations in the product variables and the first derivatives of the reactant 

variables with respect to A. Substituting the expressions for these derivatives into the thermal 

isolation condition and coupling with the mechanical equilibrium condition gives the equations 

Pp(VpO>ep0) = Psr(V''Vrk<e* + AhD) • 

and 

PsAV> Vrk>erk + AhD) I*' V
Po) = eP0~ e ■ 

which can be solved for the product state when A = 0. 

In order to obtain a solution valid near A = 0, derivatives with respect to A may be used in 

conjunction with Taylor's series. To obtain first derivatives of the product variables and second 

derivatives of the reactant variables, the set of equations is differentiated again, noting that 

dv 

This gives 

(dPp} 

KdvPJ 

(1-A) 

(1-A) 

. dk   . 
ep\ ) v,e 

[d2vr\ 
UA

2
J 

+ A 

v,e { dh2} 
= 2 

[SK] 
v,e Kax j 

v,e_ 

{dk2} 
+ A 

v,e 

( a2«  > 

{ d\2j 
=  2 

'6e/ 

v,e I» J v,e_ 

'dpp 

<deP>v„ 

.2 
isr(Vr'>Vrk'erk + &hD) 

v,e v,e 
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and 

Psr(Vr'>Vrk<eri< + AhD) 
( ö20 
UA2J 

+ 

v,e 

I d2Gr) 
(dX2) 

■ 2 
=   isr(V'Vrk'erk + AhD) 

v.e v,e 

For vanishing A, these become 

(&v} 

UA
2
J,= 

- 2 
x=o 

("-"no) p0> 
V / A=0 

[a2©; 

A= 

=  2 
0 

{dp>\ f^l + "1 \d6p) KJ On 
[a J 

X=0 lsepj ^n 

dX \       1 

(e - ep0) 
(de_p) 

k=0 

-2 =  -isri^v^e^+Lh^iv-Vpo) ^ p0(v) , 
A=0 

and 

Psr(V'Vrk^rk + ^h
D) 

, dX2 
A=0 , <3A2, 

■Po^X^-V 
x=o 

Substituting the expressions for the second derivatives into the differentiated thermal isolation 

condition and coupling with the differentiated mechanical equilibrium condition gives the equations 

'aO 
V3*, A=0 vöepy 

'ae,^ 

vaA , Pb("> 
A=0 

and 

Psr(^:^'erif+AV 
'aO 

d\ 
\       /x=o 3A 

/A=0 

(v-0[PSr(v;^Ierit+A/7D)-ljDb(v)]+(e-e^) = e0(v,e) 
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Solutions for the first derivatives of the product variables are, then, 

V6A, 

e0(v,e) PoW 

A=0 ip(
vpo>epo) 

and 

Po(l') Psrf": V*-e*+Aho) ~ eo(V'e) 

A=0 ip(
vpo>epo) 

The leading terms of the Taylor's series expansions for the reactant and product variables are 

vr= v + (v-vp0)\ + 

er= e + (e-ep0)A + 

V
P 

= V> + 

(v-O - 
v5A, x=o 

(e " eD0) - Po> 

v3Ay A=0 

VÖÄ/x=o 

A + 

A2 

A2 

and 

e
P = epo + 

K3K , x=o 
A + 
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6. Method of Characteristics 

FRONTIER uses characteristic compatibility conditions to couple the Riemann solutions for front 

propagation to the interior region solution. These must be modified to account for the effect of 

reaction (Grove 1998). Using a local coordinate system (X) directed normal to the front, the 

conditions applicable along streamlines are 

dt        dx { dt dx ) 

and 

d\     - dk      [ /»   _      \ 

dt dx 

Here, h is the enthalpy defined as 

h = e + pv. 

Further, the conditions 

iP + (ö±C)i£. + pc 
dt dx 

du M + {Q±C)fL \=[{pc2-rp)(vp-vr)-r(ep-er)]pk(K,P ) 
{dt dx 

are applicable along paths for which 
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M- = ü±c. 
dt 

These equations contain a source term due to the presence of chemical reaction. In the absence of 

reaction, the compatibility equations of gas dynamics are recovered. 

7. Summary and Conclusions 

While there is still considerable controversy surrounding the validity of the assumptions of 

mechanical equilibrium and thermal isolation, they appear to represent the conditions prevalent 

during shock initiation of solid explosives with sufficient accuracy for use with a calibrated initiation 

model. Based on these assumptions, we have developed a discrete mixture equation of state for use 

with the gas dynamics conservation equations that takes advantage of the unique features offered by 

the front-tracking method. We have derived all of the additional thermodynamic expressions 

required to implement the mixture model in the front-tracking context. In addition to incomplete 

equations of state for pressure and temperature, these expressions include the sound speed and 

Grüneisen functions, the temperature and specific heat, along with adiabats and Hugoniots. We have 

recently completed implementation of this approach in FRONTIER. 
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A-1. Equations of State and Constraints 

A complete equation of state has the form 

e = e(v,s), 

such that 

P(v,s) = 
de 

\dv)s 

and 

T(v,s)* 'de' 

where e is specific internal energy, v is specific volume, s is specific entropy, p is pressure, and 

Tis temperature. The expressions for pressure and temperature each represent incomplete equations 

of state. By solving the complete equation of state for entropy and substituting into the incomplete 

equations of state, the latter are represented as functions of specific volume and internal energy. An 

incomplete equation of state giving pressure in the form, 

p = p(v,e), 

as required by the gas dynamics conservation equations can be represented by a surface in p-v-e 

space. The partial derivative of the equation-of-state pressure with respect to internal energy is, 

generally, a positive function of both specific volume and internal energy denoted by 

'dp 

^ de 
= pr{v,e)>0. 
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Any constraint (e.g., constant temperature, constant entropy, etc.) on the processes that the 

material described by that equation of state may undergo can similarly be represented by such a 

surface. The intersection of the two surfaces defines a path along which the constrained states must 

lie. Along this path, each of the variables (p, V, or e) may be represented as a function of either of 

the other two variables. For example, 

e = eR(v), 

and 

where the subscript is chosen to identify the particular constraint. 

It is possible to develop an equation of state if equations describing a constrained path and a 

transverse derivative on that path are known. For example, if the derivative of pressure with respect 

to internal energy, 

= Prtv.eflO')]. 
R 

is known on a path as a function of specific volume, an equation of state valid near the path is given 

by 

P(v,e) = pR(v) + pr[v,eR(v)] [e - eR(v)]. 

The validity of this expression is extended to points arbitrarily far from the path if the derivative is 

everywhere independent of internal energy. That is, the derivative must be a function of the specific 

volume only. In this case, the equation of state may be written 
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P(v,e) = pR(v) + pr(v) [e - eR(v)] 

Using the Grüneisen function, defined as 

r(v) = v tip) 9r(
v) v> 

the Mie-Grüneisen equation of state is written 

p(v,e)=pR(v) + ^l[e-eR(v)) 

With appropriate reference and Grüneisen functions, it represents a wide variety of commonly used 

equations of state that are linear in the specific internal energy. (A notable exception, offered by 

Davis [ 1993], is an equation of state for detonation products that is quadratic in the internal energy.) 

It is often convenient to write these linear equations of state in the form 

p(v,e)=pr{v) + pr(v)e, 

where 

Pr(v) 
_  f(v) 

is a representation of the Grüneisen function and 

Pr(v) = PR{V) ~ PAV) eR(v) 

combines the reference and Grüneisen functions. 
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Solving for the specific internal energy gives 

e{p,v) = eR{v) +  ^T^  = —z~T7\ Pvr\vi    er\v>> 

where 

r(v) pr(v) 

vr(v) 
Pr-M 

and 

er{v) = pr(v) vr{v). 

A-2. Isentropes 

When the constraint is the condition of constant entropy, the path is known as an isentrope. If 

(vk, ek) is a known state on an isentrope, then the equation 

e = e[v,s(vk,ek)] = es(v;vk,ek) 

describes the variation in specific internal energy with specific volume along the isentrope. Because 

of the fundamental thermodynamic identity, 

de= Tds-pdv, 

the pressure and internal energy have a special relation along an isentrope (afs=0): 
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des 

dv = -Ps(v'>vk>ek) = -Pty>es(v>vk>ek)l • 

This constitutes a first-order ordinary differential equation for es{v;vk,ek). In this most general 

form, it defies solution. 

As we have noted, many equations of state of practical interest are linear in the internal energy. 

In this case, the differential equation can be written 

de& 

dv 
+ pr(v)es{v,vk,ek) = -pr(v), 

and a family of solutions can be found using an integrating factor (depending only on the form of 

the Grüneisen function) given by 

fs{v) = exp /PrOO dv 

\ v° 

where V0 is an arbitrary reference volume. Defining 

9S(V) ~ 9s(
vk) = ~ffs(v) Pr(v) dv> 

the solutions, (which are independent of V0) are 

es(v,vk,ek) 9s(v) ~ 9s(
vk) + fs(vk) ek _ 9S(

V) + aSk 

f8M fsM 

Thus, each isentrope may be described using the single constant, ask: 
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as(v, e) s fs(v) e - gs(v) = fs(vk) ek - gs(vk) = as(vk, ek)* ask . 

Defining 

S f8(v) 

we may write 

es(v,vk,ek) = hs(v) + h^L[ek-h8{vk)] = hs(v) + J?*_ 

and 

as(v,e) * fs(v)[e - hs(v)] = fs(vk)[ek-hs(vk)] = as(vfc,efc) - ask . 

If the form of the isentrope is known such that fs{ v) along with gs( v) or hs(v) can be identified, 

an equation of state can be determined by differentiating. Thus, 

1     dfs 

fsW dv 

and 

PrM=_iL^=-£k.prMW. 
fs(v) dv dv 

The equation of state thus obtained is independent of the state (vk, ek), (i.e., valid on any isentrope). 

Under these conditions, the reference curve provides all the information necessary to construct the 

equation of state, including the Grüneisen function. 

We can determine the pressure on the isentrope by substituting into the equation of state or by 

differentiating es (v; vk, ek): 
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PS(V'Vk'ek)  = fsM 
' 9s(v) + ask dfs _ Ute' 
^     fs(v)      dv       dv t 

or, alternatively, 

Ps<y>vk>ek) = 
a

sk dhS 

vs(v)      dv 

where 

vs(v) = f8W 
Pr(^) 

We shall also have use for the differential equation satisfied by ps (v; vk, ek). It can be obtained 

by differentiating the isentrope pressure and substituting for the isentrope energy from the equation 

of state, giving 

dPs   pr(v)^-[v+vr{v)]Ps(v;vk,ek) = pr(v)   &v 

dv dv 

The integrating factor associated with this equation is vs( v), which, again, depends only on the form 

of the Grüneisen function. 

We can also relate the isentrope to the reference functions. Substituting for pr{v) gives 

9s(v)-9s(vk)=ffs(v)PAv)eR(v)dv-[fs(v)PR(v)dv- 

Noting that 

dfs 

dv = fs(
v) Pi-M . 
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the first term of this equation can be integrated by parts. Thus, 

OsW ~ 9S(VK) = 9R(v) - 9R(vk) + f8M eR(v) - fs(vk) eR(vk), 

where 

9R(v)-gR(vk) = -ffs{v) PRM 
def 

dv , 

\ 

dv. 

This gives 

es(v;vk,ek) - eR{v) + — eR(v) ^} 

for the isentrope energy and 

x       , x    9R(v)-9R(vk) 
+ fs^knek-eR(vk)] _ gR{v) + 

ps(v;vk,ek) - pR(v) + — = PR(v)    —- 
9R(V) +^rk 

for the isentrope pressure. 

The derivative of the isentrope pressure is the square of the acoustic impedance: 

li(v;vk>ek)*~ = f>rM 1 + 

L\ 

dvT 

~dv 

der 
Ps(v>vk>ek) ~ -j~ 

It must remain positive. 
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A-3. Sound-Speed Functions 

By differentiating the equation of state in the form 

p(v,s)=pr{v) + pr(v)e(v,s), 

the square of the acoustic impedance can be expressed as a function of state: 

i2(v,s) = - dp ' Pr(v)  _ ^ 

k vr(v)      dv t 

( Pr(">      #rl 
, vr(v)    dv , 

e(v,s) 

The square of the sound speed and the adiabatic exponent are given by 

c2{v,s) = v2i2{v,s), 

and 

/    „\      vi2(v,s) 
p{v,s) 

These may also be expressed as functions of vand e: 

l2(v,e) = 
(pr{v)      dpr)     (pr(v)      dpr) 

{ vr(v) dv vr(v)      dv 
e, 

cz(v,e) = vlr(y,e), 

and 
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,     v     vi2(v,e) 
p(y,e) 

These functions must remain positive in order to prevent imaginary sound speeds. 

A-4. Completing the Equation of State 

A complete equation of state can be determined if, in addition to the incomplete equation of state 

for pressure, an incomplete equation of state for temperature, 

T=T(v,e), 

is developed using suitable assumptions. Following Grove (1997), we solve the pressure equation 

of state for energy, giving 

e-Elf£l=pv{v)_er{vh 
Pr(y) 

so that the specific internal energy differential is 

de=vr{y)dp + p—-dv- -^-dv. 
dv dv 

Substituting into the differential of the complete equation of state, 

cte= Tds-pdv, 

and rearranging gives 

d der   , 
Tds = vAv)dp + p-^-[v+ vr(v)]dv - —^dv. 

dv dv 

Introducing a fictitious pressure, pj,v), we may write 
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Tds = 
dp       H der 

dv      dv dv 
dv 

+ [p-pjv)]---[v+vr(v)]dv+ vr(v)d[p-pjv)] 
dv 

The leading term on the right-hand side of this expression has been shown to vanish for 

PaXv)=ps(v;va,,eJ, 

where (v„, e„), is a suitable reference state. Denoting p-pjy), referred to as the stiff pressure, by 

p*, we may write 

T(p*,v)ds = p*—[v + vAv)] dv+ vr{v) dp* 
dv 

Assuming temperature in the form, 

T(p*,v) = TJp*)TD.(v), 
v\r   i    p- 

gives 

.. d 

ds = 

p*——[v+vr(v)]dv . .   , , H dv r vr{v)dp' 

Tv(p')Tp.(v) Tv{p*)TAv) 

Thus, 

.        p*-^-[v+vr(v)] 
ds dv  

{dv)P*~    Tv(p*)Tp.(v) 

and 
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ds y yr(y) 

*    Tv(p*)Tp.(v) 

Cross differentiating gives 

82S   _      1 d 
dp'dv     Tp.(v) dv 

[v+vr{v)] 
dp' (TAP*)) 

1        d (  vrM ) 
Up*) dv{Tp.(v)) 

or 

Mv) ) 

UP') 
dp' {Tv(plj 

T>-{V)*[TAv) = 1- w, 

dv 
[v+vr{v)] 

where w is a constant, and two differential equations result. The equation for Tv(p*) is 

dT„ w 

dp*    p' 
-—Upl-0, 

and a solution is 

UP*) 
K*T0, 

where R T0 is a constant. The equation for Tp*{v) is 

dv (1-w)Pr(v)+-TT-r1 
pr(v) dv t 

Tp.(v)=0, 

and a solution is 
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TD.{v) 
rj0[fs(v)]w-' „rT lv8(v)] w 

[Pr^r 
= TJ. 0    0 

fsM 

where V0T0 is a constant. Thus, 

T{p>v)- roT0(vs{v)[p-p8{v;vm,em)]) 

'«(") fir. 

and, substituting for pressure, 

T(v,e) 
' fsi

v)lPr(v) + Pr(v) e-ps(v, v., ej] ' 

^7; Pr(v) 

Here, the reference state (v„, e„), along with the exponent w, may be chosen for consistency with 

known or assumed forms of the temperature. Solving for internal energy gives 

e(T,v) = A7-Q 

fs(v) 
f 's(">  r 1 
V    ro    TOJ 

Vw 
+ es(v,v„,ej, 

and the specific heat at constant volume is 

cv(T,v) = de 
[dT)v    wf0 

R (f8(y) T ) 

V    ro    T0J 

(1 - w)lw 

This is inconsistent with results from quantum statistical mechanics, which show that Cv has no 

volume dependence and is bounded for large temperatures (Vincenti and Kruger 1967; Callen 1960). 

However, for polyatomic gases at low and very high temperatures and for solids at very high 

temperatures, Cv is nearly constant, corresponding to W - 1. In this case, 
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^v~   r       uvo' 
0 

and the temperature is given by 

P-Ps(v'>v<.>e«) 
T(p, v) = 

<v0PrM 

or 

e-es(v;v„,ej 
T(v,e)= — 

Cvo 

_ fs(v) [e - hs(v)] - fs(v„) [e. - fts(v.)] _ as(v,e) - a^ 
cvofs(v) ~     cvofs(v) 

Note that the temperature vanishes everywhere along the isentrope through (v„, ej. Properly, then, 

this isentrope should be the "cold compression curve" given by 

Pc(v) = Ps(v''v~>e~) 

or 

ec{v) = es(v;v„,ej, 

where ec(v) is the specific interatomic potential energy. As a practical alternative, as„ may be 

determined with reference to a known temperature. If 7} is the known temperature at the state 

(Vj, ey), then the expression 

aa~=a4-fs(vj)cvoTi 
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constrains the state (v„, ej. In this case, the proper behavior at cold temperatures may not be 

realized. 

The temperature on an isentrope is given by 

Ts(v,vk,ek) = Ps(v> vk>ek) ~ Ps(v'> v- > e»)      es(v' vk> ek) ~ es(v'> v~ > e») 

cvoPr(v) vo 

Specific entropy in the form, 

s(p*,v)=cvo\og 

satisfies 

ds 
p--H-[v+vr(v)] . 

dV Cvo     avs 

T(p*,v) vs(v) dv 

and 

Bs y 

(dP\ 

vr(v) C, vo 

T(p\v)       p' 

but violates the Nemst postulate. The complete equation of state is 

RT0 
e(v,s) = -exp — 

Uv)     H| 
+ ec(v) 
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A-5. Hugoniots 

We have shown that an isentrope can be used to determine an equation of state. A shock 

Hugoniot is another path in the p-V plane that is used in equations of state. Rather than describing 

a process, it represents the locus of all possible states on the downstream side of a shock wave for 

a specified upstream state. 

If U denotes the shock propagation velocity and u the component of the particle velocity normal 

to the shock wave, the equations expressing conservation of mass, momentum, and energy across 

the shock wave may be written 

Auv(U-uu) = vuA
uu, 

(U-uu)A
uu = Aupvu, 

and 

A"e + Au{p v) = {U- uu) Auu -±{Auu)2. 

Here, unsubscripted variables refer to the downstream state, and the subscript u denotes known 

conditions on the upstream side of the shock wave. The operator A" represents changes across the 

shock: 

Auq = q-qu. 

For convenience, we also define 

uAv= v-v. u 

Eliminating U - Uu between the mass and momentum conservation equations gives 

(Auu)2 = AupuAv. 
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Substituting the expressions for (U - uu ) Auu and (Auu )2 into the energy equation gives the 

Hugoniot relation: 

Aue = (pu+±Aup)uAv. 

This represents a surface in p-v-e space. The intersection of this surface with the equation-of-state 

surface is obtained by inverting the equation of state to give specific internal energy as a function 

of pressure and specific volume and substituting into the foregoing equation. Noting that the 

upstream material may be described by a different equation of state (e.g., due to chemical reaction), 

this gives 

e(p,v)-eu(pu,vu) = (pu+±Aup)uAv, 

which represents a Hugoniot in the p-V plane. In principle, this can be written 

P = PH(v'>Pu>vu)> 

or, alternatively, 

Aup = AupH(v,pu,vu). 

The Hugoniot energy is related to the Hugoniot pressure by the Hugoniot relation: 

eH(v,pu,vu) = eu(pu,vu) + ±[pu + PH{v;pu,vu)] 
uAv, 

or 

A»eH(v,pu,vu) = [pu + ±AupH(v,pu,vu)) 
uAv. 

This may be differentiated to give 
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de H 1 

dv       2 
uAv—H- -pu-pH(v;pu,vu) 

dv 
UAVJ2L -LupH{v;pu,vu) 

dv 
- Pu 

For an equation of state that is linear in internal energy, we may write 

Pf(v) + [1 - fH(v;vu)]pu 
+ 9v{v)eu{pu,vu) 

PH(V'>PWVU) 
fH(

v'>vu) 

or 

AupH(v;pu,vu) = 
Pr(v) - Pu+ Pr(v)leu(Pu>vu) + PuUW 

fH(v,vu) 

for the Hugoniot pressure. Here the Hugoniot factor is defined as 

Hugoniots are valid in compression (V ^ vu) only and may be thought of as emanating from the 

upstream state. If the Hugoniot factor vanishes, there may also be a lower limit on the specific 

volume that may be obtained by shock compression. Thus, 

v "Av 

Segletes (1991) has identified this inequality as a stability requirement for the Hugoniot-referenced 

Mie-Grüneisen equation of state. The minimum specific volume is obtained by solving the equation 

PrOU.) = v -v ■ Yu     mm 
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The Hugoniot pressure and energy become unbounded as the specific volume approaches this 

minimum. This singularity is due only to the form of the Grüneisen function. 

The Hugoniot and isentrope functions for an equation of state that is linear in internal energy are 

related by the expression 

Ps(v'> vk>ek) = PH(V'' P* VU) + PAV)tes(^: vk>ek) ~ eH(v'<Pu>v«)] • 

Differentiating gives 

dPs ~ UWu)^ + Mv) ^AUPH(V'PWVU) 'Psiv''vk'0k) + PH(V>PU^U)\ dv 
^PH 

dv 

dPr + ~r{es(v''vk>ek)- eH(v;pu,vu)] dv 

Thus, the derivative of the isentrope at the Hugoniot is 

dps 

dv 
H 

= fH(v;vu)^ + lpr(v)AupH(v;pu,vu) 

Evaluated at the upstream state, this becomes 

dps 

dv 

_ dpH 

dv 
u 

showing that the Hugoniot and isentrope are tangent as they pass through that state. 
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A-6. The Grüneisen Function 

The Grüneisen function is commonly represented in the linear form (Steinberg, Cochran, and 

Guinan 1980) 

I» = ro+Pr/> 

so that 

Pr(") = 
_i» 

v Pr, + — 
v 

The integrating factor for the isentrope energy becomes 

Uv) = exp /*<"> dv 

V   "o 

= (Wv0)
r°exp[pr(v-v0)]. 

The derivative of pr(v) is 

dv v 

and the square of the acoustic impedance may be written 

i2(v,e) = 
(       r ) 

Pr+- Pr(v^) " 
dpr + 

dv 
fPr0 + 

2I"oPr0 

/r0            " 

, r0(r0+D" 
V2 

The complete equation of state is 

e(v,s) = RT0 

i ., \ 

// 

exp 
s        v 

cvo      
vr, 

+ es{v;v00,ej, 

o I 
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where 

\s 

Pr„ 

With pro=0, the Grüneisen function is constant, and, with l~o=0, it is proportional to the specific 

volume. We shall find it useful to specialize some of the expressions derived in the foregoing 

sections to these cases. 

A-6.1 Constant Grüneisen Function. The simplest form of the Grüneisen function is the 

constant-f form (pro=0): 

PrM 
_f» 

v 

Differentiating gives 

dPr 

dv 

The isentrope energy and pressure integrating factors become 

fsw = (v/v0y°, 

and 

vs(
v) 

f8W       v(v/vo) 

Pr(") 

The square of the acoustic impedance is 

(roPr(v)    dPr) 
i2(v,e) = 

dv 
+  —-— 6 
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The Hugoniot factor and minimum specific volume are 

fH(v'vu) = 'l-rc 2v 

and 

'mm r0
+2 

The complete equation of state is 

e(v,s) = RT0 

( ., \ 

KV  J 

exp 
' s  ^ 

V cvo; 

+ es{v;v„,ej. 

A-6.2 Proportional Grüneisen Function. Another simple form of the Grüneisen function is 

the proportional form (I~0 = 0): 

v vr 

where pro is a constant and the derivative of pr (v) vanishes. The isentrope energy and pressure 

integrating factors become 

/s(v)=exp[pr(v-v0)], 

and 

vsW = 
f (v)      exp[pr(v-v0)] 

Pr(") Pr„ 

The square of the acoustic impedance is 
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i2(v,e) = Pr.PrW dv 
+ P

2
r<je, 

The Hugoniot factor and minimum specific volume are 

Uv.vu) = ^-lpro"Lv) 

and 

V    ■     =   V     -    2 Vr mm        u rn 

The complete equation of state is 

e{v,s) = RT.exp 
s       v 

vC-     \, 

+ es(v;v„,ej. 

A-7. Polytropic Gas Equation of State 

A-7.1 Incomplete Equation of State for Pressure. With a constant Grüneisen coefficient, 

f0 = Yo "1» and reference to zero pressure and internal energy, the polytropic gas equation of state 

results: 

V -1 
p(v,e)=-^-e. 

The function pr {v) may be identified as 
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Pr(") 
Yo-1 

and pr{v) vanishes. 

A-7.2 Isentrope. Thus, the integrating factor for the isentrope energy is 

fs{v) = exp 
«*-< 

= exp[(Y0-1)log(Wv0)] = (Wv0) Yo-1 

The function gs(v) vanishes. The internal energy and pressure on the isentrope are, then, given by 

w Yo-1 es(^k^k)=f-^ek=(vk!vr  ek , 
TS\V I 

and 

>s\v I vk 

Thus, on an isentrope, 

and 

^"W'V 

pv"°=Pkvl° 
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A-7.3 Sound-Speed Functions. The square of the acoustic impedance is 

f Pr(")       dpr) 

K M
v)     dv , 

e=Yo(Vl)e=Yop) 

v2 v 

the square of the sound speed is 

C2=v2/2 = Y0(Y0-1)e = Y0PV. 

and the adiabatic exponent is 

Y = — = Y0 

These are positive for positive specific internal energy. 

A-7.4 Complete Equation of State. The temperature of a polytropic gas is known to vanish 

for vanishing specific internal energy. This is consistent with a vanishing specific interatomic 

potential energy: 

ec{v) = es(v,vm,ej=0, 

which implies that 

vl°~"e =0 OO 00 

and 

Pc(v)=Ps(v'v«>eJ=° 

Thus, the stiff pressure is simply equal to the pressure, and the temperature is given by 

T= —= PI r- Y°~1 

ovo     A « 
e. 
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The integrating factor for the isentrope pressure is 

vs(v) = 
Uv)       v(v/vj°-' 

Pr(v) Y0-1 

The entropy may then be written 

S = CJOQ 

I V   -1   \ 
pv(v/vQ)"° 

,  (YO-D^T;, 
= CjOQ 

p v"° 

[Wo") 

= CjOQ 

( Yn-1 A 

where 

and 

e0=
RTo 

Po=(Yo-D-r. 

and the complete equation of state is 

e = RTn 

(  „   \Yo-1 

V 
V        / 

exp 
'vo / 

A-7.5 Hugoniot. The Hugoniot factor is 

^;^) = i-iPr^)üA^i-^-K-^). 

and the Hugoniot pressure is given by 
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x     (Yo+1)^-(Y0-1)v n 
PH(V'>Pu<Vu)=   , ° ,  °      ,       Pu- 

(Y0
+1)v -(Y0-1K 

The minimum specific volume is 

1/ . = ,   , 

A-8. Stiffened Polytropic Gas Equation of State 

mm 

A-8.1 Incomplete Equation of State for Pressure.   The polytropic gas equation of state is 

"stiffened" by the use of a constant pressure reference: 

Pfl(") = Y0A. , 

so that 

Yo-1 
p(v,e) = Y0Pc+-2— e. v 

The function pr (v) remains unchanged while 

Pr(v) = Y0P» ■ 

A-8.2 Isentrope. The integrating factor for the isentrope energy remains unchanged and 

9S(
V) = -P^0(v/vJ° . 

The internal energy and pressure along the isentrope are, then, given by 
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and 

es(v;vk,ek) = [(pm+ ek/vk)(vk/vj<°-pJ v, 

Ps^;vk,ek) = p^(\0-^)(P^ek/vk)(vk/v)" 

Thus, on an isentrope, 

(p„+e/v)vy°= (pm+ek/vk)vl° 

and 

(P " PJ v*° = (Pk- PJ vk° 

A-8.3 Sound-Speed Functions. The square of the acoustic impedance is 

i2 = 
, vr(v)      dv t 

' Pr(y)       <*>r)c_ Y,(Y0-1)[        e]   _ Y0-1 
^ vr(v)      dv)    '        v      { "    v J v 

the square of the sound speed is 

c2=v2/2 = Y0(Y0-1)(AoV+e). 

and the adiabatic exponent is 

c2_ Y0(Y0-1)(P^+e) 

P^      Y0(P=^+e) + e 
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A-8.4 Complete Equation of State. Choosing {vm, ej so that 

—      =    "Poo    . 

associates p„ with the "cold pressure": 

The resulting specific interatomic potential energy is 

ec(v) = es(v;vco,eJ = -pccv 

Thus, the stiff pressure is 

P* = P-P~, 

and the temperature may be written 

"=   P v 

R 

e + P„v 

vo 

The integrating factor, vs(v), for the isentrope pressure is unchanged and the specific entropy 

is given by 

s(p,v) = cm\og 
Yo-1 (P-PJV{V/V0) 

(Y„-1)/77"„ 
cjog 

' v A 
(P -PJv ° 

((P0-PjvJ°) 

or 

s(v,e) = c._log 
/        V -1/ ,\ 

v °   (e + p.y ) 

/°"1(e +pv ) 
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where 

eo=RT-p.v0, 

and 

Po = Y0P»+(Y0-
1) 

and the complete equation of state is 

e = RTn 

(  V   \Yo-1 
_0 

V   , 
V       / 

/  o    \ 

exp 
V Cvoj 

~ PJf- 

A-8.5 Hugoniot The Hugoniot factor and the minimum specific volume remain unchanged 

from the polytropic gas case, and the Hugoniot pressure is given by 

PH(V*PU>VU)_ = 
[(Y,+i)yw-(Y0-i)y]ptf-2Y,fl.K-y) 

(Y0
+1)^ "(Yo-1)^ 

A-9. JWL Equation of State 

A-9.1 Incomplete Equation of State for Pressure. In the case of the JWL equation of state, 

commonly applied to detonation products, we begin with a knowledge of the isentrope emanating 

from the Chapman-Jouget state, (Vj, e}). Lee and Hornig (1969) chose the form 
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(v.vj.e^hsiv)*   >     sKj' , 
1    J (V/Vj)a 

so that 

where 

and 

ps(v; v,,e,) = - —- + — -1—^—L- S      '   J dv        v     (V/Vjr 

hs{v) = e1exp(-p1v) + e2exp(-p2v) 

0 -p1exp(-p1v) + p2exp(-p2u) 
dv 

Here, 

em*BsL       m=i,2, _     'm 
'm ~  ~ 

Pm 

and p1, p2, p1, p2, and (u are constants that are determined with reference to cylinder expansion test 

pressure-volume data. By comparison with our general solution for the isentrope energy, we see that 

this corresponds to a constant Grüneisen coefficient, l~0= ü), and 

f8(v) = Wv0)°- 

Thus, 

I» _     1     dfs _ co 
PrM v       fs(v) dv       v 
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and 

dh 
Pr(v) = -—± - Pr(v) hs(v) = p. 

dv 
1-A exp(-p^)+p2 

V9 exp(-p2i/), 

where 

The JWL equation of state can be written 

p{v,e) = p. 1-^1 exp(-p1v) + p2 

v      v I 

CO 
exp(-p2v) + — e 

A-9.2 Isentrope. The general isentrope has the same form as the Chapman-Jouget isentrope: 

ek-hs(vk) 
es^;vk,ek) = hs{v) + 

(v/vk)" 

or 

dhs     oj  ek- hs(vk) 
p<z(v;vk,ek) = - —— +  Fsv     k   k'        dv        v     (v/vkr 

A-9.3 Sound-Speed Functions. Noting that 

for 
dv 

exp(-p^) + p2 2     p2 
1-^ 

V / 

exp(-p2v) , 

we can obtain an expression for the square of the sound speed: 
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c2{v,e) 

ü)(ü)+1) 
/  2     ^ 

-1 
, ü)((ü + 1) 

exp(-p1u) + e2 
(P2v)2 

K ü)((ü+1) 
exp(-p2v) + e 

The square of the acoustic impedance and the adiabatic exponent may then be determined from their 

definitions. 

A-9.4 Complete Equation of State. The temperature may be written 

T = 
[p-ps(v,v„,ej]v     e-es(v;v„,ej 

d)C„ 'vo 

where v„ and e„ are determined with reference to a known temperature. The integrating factor for 

the isentrope pressure is 

pr(v)       (Ü 

Thus, the specific entropy is 

s{p,v) = cvo\og 
' [p-Ps(v.^,eJ]v(v/v0)^ 

ü)2 c„„ Tr vo   o 

cjog 
JPo-Ps^oJ^.eJlC1 J 

or 

s(v,e) = cvo\og 
v"[e -es(v ;y.,ej] 

, v0
bi[e0-es(v0;v^,ej]j 

where 
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e0=RT0 + es(v0;v„,e„) 

and 

Po = PAvo) + u -7 ' 

and the complete equation of state is 

e(v,s) = RT0 
Kl (1) fs  ) exp — 

v c„n \      1 {    voj 

—   +es{v;v„,ej 

A-9.5 Hugoniot The Hugoniot pressure is given by 

PH(V'>PU>VU) = 

2[pr(v) + pr(v)eu}v + uuAv 

2 v - CD "Av 

and the minimum specific volume is 

V  ■ = V 
m,n   cü+2   u 

A-10. A JWL Alternative 

A-10.1 Incomplete Equation of State for Pressure. An equation of state with a constant T is 

typical of gases. Although Lee and Tarver (1980) have used this form of the JWL equation of state 

to represent solid materials, they often exhibit behavior consistent with a proportional Grüneisen 

function: 
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Pr(") = 
r(v) 

V 
■ Pr - J- . 0     vr 1 0 

where pro is a constant. An alternative form of the JWL equation of state reflecting this behavior 

may be obtained from an isentrope in the form, 

es(v;vr,er) = hs(v) 
er-hs(vr) 

exp[pro(v-vr)] ' 

so that 

ps(v;vr,er) = 
_dhs 

dv exp\prJLv-vr)] 

where hs (v) remains as in the constant- r JWL formulation and (vr, er) represents the state defining 

the reference isentrope. In this case, 

fs(v) = exp[pr<(v-v0)]. 

Thus, 

and 

pr(v) = e^p, - pro)exp(-p^) + e2(p2- pro)exp(-p2u). 

The equation of state is 

p(v,e) = e^p, - pr )exp(-p^) + e2(p2- pr )exp(-p2v) + pr e. 
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A-10.2 Isentrope. The isentrope through the state {vk, ek) is 

ek - hs{vk) 
e8{v;vk,ek) = h8(v)+      k 

exp[pr{v-vk)] 

or 

dhs      Pr0[^-/Js(^)] 
Ps^^ek)--—+   exp[pr(^}] 

A-10.3 Sound-Speed Functions. With 

-^ = p,(pr -p,)exp(-p,v) + p2(pr-p2)exp(-p2v), 
dv ° 

the square of the acoustic impedance is 

/2(^,e) = e1(p1-pro)(p1 + pro)exp(-p1v) + e2(p2-pro)(p2 + Pro)exp(-p2^) + Proe. 

The square of the sound speed and the adiabatic exponent may then be determined from their 

definitions. 

A-10.4 Complete Equation of State. The temperature may be written 

T0 "w? vvo 
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where v„ and em are determined with reference to a known temperature.   For a proportional 

Grüneisen function, the isentrope pressure integrating factor is 

"s(") 

and the specific entropy is 

S(p,v) = Cvo\OQ 

CjOQ 

fs(v)     exp[pr(v-V0)] 

' [p-ps(v;v„,eJ]exjp\pro{v-v0)]
y 

I [P -Ps(
v ;v.,ej]exp(pr/)' 

[P0-PsK^».eJ]exp(proU0) t 

or 

where 

and 

s(v,e) = cvo\og 
{ [e -es(v ;v„,ej]exp(prv)' 

[e0- es(v0;v„,ej]exp(prv0) 
0    "      / 

e0=RTQ+es(v0;v„,eJ 

Po = PrK) + Prn
eo. 

and the complete equation of state is 

e{v,s) = RT0exp 

The Hugoniot pressure is given by 

S V 

cvo     vr, 

+ es{v,vcc,ej 
o / 
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Aupr(v) + pr(pu
u*v+eu) 

L"pH(v) = - -s  
1-lpr

uAv 
2    'o 

and the minimum specific volume is 

v ■ = v - 2 vr 'mm     vu f0 

Measurement of a solid isentrope for the purpose of calibrating these equations, however, 

presents some difficulty. The equation is easier to calibrate with reference to Hugoniot data. This 

is facilitated by converting the measured shock and particle velocities to pressures and specific 

volumes using the expressions 

Va 

and 

*Av = ^-va. 
U    a 

The Hugoniot expression may then be fit to this data in order to obtain values for A, p2, Pi, and p2. 

The Grüneisen constant, pr, may also be included in the fit or may be considered known from other 

sources. In general, this procedure does not provide good fits to linear Hugoniots. 

A-ll. Hugoniot Equations of State 

A-ll.l Hugoniot Reference Functions. The ideal gas and JWL equations of state have been 

shown to have the general form of the Mie-Griineisen equation of state. However, the latter is most 

closely associated with the use of a shock Hugoniot as a reference. An experimentally determined 

Hugoniot can be used as the basis for developing an equation of state. Generally, however, p-v 
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measurements are not made. Rather, shock and particle velocities are measured in impact 

experiments and a curve fit in the form 

U=UH(Aau), 

is generated for use in lieu of the energy equation. Here, ambient conditions, denoted by the 

subscript a, give the upstream state. The limit of the shock speed as the upstream state is approached 

is equal to the ambient sound speed, Ca. Thus, 

UH(0) = ca. 

In order to be of practical use, the Hugoniot must be expressed in terms of pressure and specific 

volume, making use of conservation of mass and momentum. Substituting into the momentum 

equation gives 

U^'PH(v;p..va)'Lv) = va 
AapH(v;pa,va) 

'i aAv 

The functional form of UH(A
au) must be chosen such that this equation can be solved for 

AapH{v, pa, va). A problem arises in generalizing the equation of state to arbitrary upstream states 

when the experimental Hugoniot is used since it is not clear to what extent UH(Aau) depends on the 

upstream state beyond its known limiting value. 

For example, the simplest form of the reference Hugoniot is associated with a linear fit of shock 

velocity as a function of particle velocity using data for material shocked from the ambient state: 

U = ca+ saA
au. 

Many solid materials conform closely to this behavior. The consequent Hugoniot pressure and 

energy jumps are 

c2aAv 
AapH(v;pa,va) = 

(v-saAvy 
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and 

AaeH(v;pa,va) = Pa + 
ca

aAv aAv . 
2(va-sa

aAv)2) 

Note that the reference Hugoniot (and the consequent equation of state) are singular at 

S.-1 
v= v. MIN V 

This singularity arises out of the reference function choice and is distinct from the singularity in the 

general Hugoniot associated with the Grüneisen function, which occurs at V = vmin. It limits the 

utility of the linear Hugoniot equation of state to v> vmN, even though the material it describes can 

be compressed to smaller volumes by isentropic processes. 

The isentrope and sound-speed function expressions make reference to the derivatives of the 

Hugoniot functions. These are 

4>H Ca (Va + Sa'W   _       Va+ Sa^V **PH 

and 

dv (v-SaAvf 

dv -Pa 

ca va 
aAv 

{va-sa
aAvf 

v-sa
aAv aAv 

^aeH     1 v+saAv Ka 
—~ ~ \  a      aA   **PH aAv      2 va-sa

aAv 

A-11.2 Incomplete Equation of State for Pressure. The equation of state with reference to 

the ambient Hugoniot can be written 

p(v,eipa,va) = pH(v;pa,va) + %£[e-eH(vipa,va)] , 

or, substituting for the Hugoniot energy from the Hugoniot relation, 
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p(v,e;pa,va) = fH(v;va)pH(v;pa,va)+^-(e-ea-^pa
aAv). 

In writing these equations, we have emphasized the dependence on the choice of an upstream state. 

The ambient state is commonly used and is a good choice for describing a material that has been 

shocked from that state. More generally, materials may be multiply shocked and the Hugoniot 

reference for the most recent upstream state should be more accurate. However, because of the way 

Hugoniots are measured, such generality is seldom achieved. 

The function, pr (v), is given by 

pr(v;pa,va) = pH(v;pa,va)-pr(v)eH(v;pa,va), 

or, eliminating the Hugoniot energy, 

pr(v;pa,va) = fH(v;va)pH(v;pa,va)-pr(v)(ea+±pa
aAv). 

Differentiating gives 

dpr     dpH deH dpr 
~P~ = —- -Pr(

v)-r -eH(v;pa,va)-± , 
dv      dv dv dv 

or 

■^ = UW^ + iPrC)[Pa
+ PH(v,Pa,va)]-eH(v;pa,va)^L 

A-11.3   Isentrope.   Recalling the relationship between the isentrope and reference energy 

functions, and using the differentiated Hugoniot relation, we may write 
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es(v;vk,ek;pa,va) = 

x       9H(V,Pa>Va)-9H(vk->Pa>Va) + fs(Vk)lek-eH(Vk'>Pa>Va)] 
eH(v;Pa,va)+ —  

where 

( dpH       ) 
9H(v-,Pa,va)-gH(vk;pa,va) = -±ffs(v)\A*pH(v-,pa,va)+^*Av\ dv. 

In general, the integral must be evaluated numerically. Forest (1995) has given a method to facilitate 

the integration. A principal disadvantage of the linear Hugoniot is the absence of analytic expressions 

for the isentrope internal energy and pressure. 

A-11.4 Sound-Speed Functions and Complete Equation of State. The sound speed functions, 

temperature, and complete equation of state are determined by substitution into the appropriate 

general equations. No special insight is afforded by this exercise. 

A-11.5 Hugoniot The pressure on a Hugoniot with arbitrary upstream conditions, denoted by 

the subscript u, is given by 

PH(V''Pa>Va'>Pu>Vu) = 

 {fH(v,va)pH(v;pa,va)-[UfH(v,va)]pa+^-fH(v;vu)]pu + pr(v)(eu-ea)}. 
fH(v'>vu) 
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This Hugoniot is valid for 

VMIN< ^min ' 

where vmin depends on the form of the Grüneisen function. 
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Appendix B: 

Mixture Equations and Derivatives 
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B-l. Equations 

The equations required to treat mixtures in mechanical and thermal equilibrium are as follows: 

Conservation Equations: 

|e.+v-(pii) = o, 

— (pi/) +V-(pl#u) +Vp = 0, 

— (peT) + V-(peri/) +V-(pw) =0, 
dt 

eT= e + -uu, 
1 2 

A(pA)+V-(pAi/) = pA(AIp ). 

Mixture Equations: 

v=(1-K)v,+ Kvp, 

e = (1-A)er+AepI 

p=pr(vr,e+AhD), 

p=pp(vp,ep), 

T= Tr{vr,e+AhD), 

T=Tp(vp,ep). 
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The equations required to treat mixtures in mechanical equilibrium and thermal isolation are as 

follows: 

Conservation Equations: 

Mixture Equations: 

öp +V-(pu)=0, 
dt 

— (pi/)+V-(puu)+Vp = 0, 
dt 

— (peT) + V-(peTu)+V(pu)=0, 
dt 

eT= e + -uu, 
' 2 

i-(pA)+v(pAu)=pA(X,p ), 
dt 

^-(P^)-V-(p^£/)=0, 
dt 

l-fpeJ+V-lp^iO-O. 
or 

v={\-K)vr+Kvp, 

e = (\-h)er+hep, 

P=Pr(
Vr>er+AhD)> 

P= PP(
vp>ep)> 

P = Psr(Vr'Vrk'erk + AhD) 
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In neither case is closed-form solution of the mixture equations possible. It is necessary to solve 

the equations using an iterative approach (e.g., Newton's method). 

B-2. Derivatives 

In order to determine many thermodynamic functions of the mixture, derivatives of the 

dependent state variables with respect to v, e, and A are required. A general expression for the 

differentiated mixture equations that applies to both thermal equilibrium and thermal isolation is 

given by 

ri-A     0      A     0 

0      1-A    0     A 

a31 a32     333    a34 

a41       a42     a43    344 

*>1 Cl 

b2 
c2 

b3 0 

A. 0 

Here, the a3j and a4j coefficients differ depending on the model. For thermal equilibrium, they are 

asy \dp'\ 

*r iaeJ vr <V i3epj V 

and 

a4; - idT') fÖ7f] f37"] \dTn) 

i^J *r ^, vr l^pj ep 
{dep) vp . 
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For thermal isolation, they are 

asy -/;   o 
[top) ep 

ldpp] 
löepj VP. 

and 

a4y = [ P 
0     0 ] = [ pr   1      o     0 ] - [ pp    1      o     0 ] , 

where the square of the acoustic impedance is 

;2     ;2 
ir   =isr(Vr'>Vrk>erk) = - 

dp, Sr 

dvr 

The derivative vector, b,, and the constant vector, c,, differ depending on whether derivatives are 

taken with respect to v, e, or A. For derivatives with respect to V, they are 

bi = ldvr) ldGr) \dvp) lde>] 
{dvj 

e,X 
[dv] 

e,\ 
[evl 

e,A 
[av } 

e,\ . 

and 

C, = [ 1       0      0      0 ] 

For derivatives with respect to e, they are 

*/ = 

■ 

ldvr) ldGr) I9""} \deA 
{Ye] 

v,\ 
[de] 

v,K 
[de J 

v,\ 
[Be] 

v,\ _ 

and 

c, = [ 0      1      0      0 ] 

84 



For derivatives with respect to A, they are 

'dv; 

v,e 

(3er) 

i3M v,e 

iSVp) 
v,e 

\d6p} 
dX 

v,e 

b, =     —' —!: 

and 

c/ = [ vr V
P    

er ep    °    ° ] 

The determinant of coefficients, then, is 

D = V-X)[V-X)A3A+XA23]+X[V-X)A4,+XA,2], 

where 

a3i   a3j 
Av= ij 

a4;   a4y 

- a3iaAj  a3ja4i 

Solving for derivatives witivrespect to V gives 

(1-A)/\M+AA 34     M"23 

D 

V ÖV / ax 

A A '31 

D 

\ I e,X 

de, 

dv 
I e,X 

(1-A)A41+AA12 

D 

(1-A)A13 

D        ' 
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and 

dp (sPr) 
rdv; 

+ {OEL) (3e'l 
[dvj e,X W er 

dv \     ) e,X löeJ "r 
[övj 

(dpA   (dv,\ 

KdVPj 
dv 

V > e,k V      P / 

afp 
. dv  , 

Similarly, solving for derivatives with respect to e gives 

and 

dv. A A 24 

D 

(de, 
He 

d-AJ/U + AA '34     ""41 

v,X 

v,\ 

D 

(1-A)>442 

D 

'dec^  P 

ae 
v,A 

(1-A)A,3 + AA12 

D 

dp 
de) v,k 

[dp. (dv,\ 

de 
v,\ 

(Sp, de, 

~de 
v,\ 

(*,} 
eP 

\dVp) [de } 

+ 

VP 
[de J 

v* 
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Derivatives with respect to A are given by 

and 

■ d <r 

[dXJ 

'der\ 

BX 

idvp) [dx] 
v,e 

ldeA 
d A 

) v,e 

v,e 

v,e 

(y yp)[(1 -X)A34 + XA23] + (er ep)KA2A 

(y yp)A/\31+(y ep)[(1-A)/J34 + A>441] 
" ™~~       '     ' '    i 

D 

(vr-vp)W-VA4, + XA,2] + (er-ep)V-k)AA2 

D 

(vr-vp)0-X)A,3 + (erep)W-X)A23 + XA,2] 

D 

dp 
dx) 

1 dpr)   (dvA 

v.e v3% ax 
/ v.e \derj 

'£0 
v       / v,e 

KdePJ 
dx 

ep\ ' v,e Vp \ / v,e 
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Considerable simplification occurs in the case of thermal isolation, where 

4M " 333 a44     a34 343 " ^ 

^23 " a32 a43     333 342 : 
'< 

W 
A}1 " % a41      a31 a44 "     Pf. 

<dep)v„ 

^I2~a3ia42     a32341 'r  > 

I Sn   \ 

^24 ""     \z " a32 a44     334 342 
dPp 

\dePtv„ 

and 

^13 " ~ ^31 " a31 a43     333a41      Pp 
V
8

"P/ 

The determinant of coefficients becomes 

D,= K ■hi? + (1-X) 
I dvp J -Pp 

ldpp) 
[depj VP. 

> = -A[A/;2+(1-A)/p
2] = -A/2 
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Derivatives with respect to v, then, are 

and 

-1 dPc 
( an   ^ 

I e,\ I2 =  'Pr ~dv 
e,X 

dv 
e,A A/2 

vöepy. 

;2 

'a<^ 
3v 

/ e,X 

d-A)P, 

X/2 
[££e] 

p 
-1 (*,] 

-  Pr lePr) idpA _ t iSP") 
V 3vJ /2 

e,X         ' l3"rj [3eJ \ KJ i2 I3",] 
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Derivatives with respect to e are given by 

and 

de 
I v,K vöepy 

'3^ 

Be 
I V* 

BE 
I2 

dPo) 

V      P J v, 

Pr ~de 
v,K 

de 
v,\ 

1-A 

A/2 

3e 
v,K 

1-A 

A/2 

-1 

/2 3^ 
Pr 

3flP 

'2fV 
vöep/. 
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Finally, derivatives with respect to A become 

fde^ 

, ax", V / v,e 

EE 
I2 

(V vp) p)^:] + (ef- e_) 
vöeP/ 

Pr 

v,e /2 
(V "r> 

^ 

V
ö
'P, 

+ (ep-er) 
\dep;v. 

, 3A   , A/2 (V V (1-A)P£ 

\dePJv„ 

hi ■ 2 
+ (e,-ep)(1-A) 

vöeP/ 

^e^ 

8A 
v / v,e 

A/2 
(Vvf)(1-A)p, 'ap^ 

vaV 
+  (Sp-ßr) (1-A) + A/; 

and 

dp 
, dk > v,e I2 K-*r) 

+ (e--er) 
löepL 

91 



INTENTIONALLY LEFT BLANK. 

92 



NO. OF 
COPIES ORGANIZATION 

NO. OF 
COPIES ORGANIZATION 

DEFENSE TECHNICAL 
INFORMATION CENTER 
DTIC DDA 
8725 JOHN J KINGMAN RD 
STE0944 
FT BELVOIR VA 22060-6218 

HQDA 
DAMOFDQ 
D SCHMIDT 
400 ARMY PENTAGON 
WASHINGTON DC 20310-0460 

OSD 
OUSD(A&T)/ODDDR&E(R) 
RJTREW 
THE PENTAGON 
WASHINGTON DC 20301-7100 

1       DIRECTOR 
US ARMY RESEARCH LAB 
AMSRLDD 
2800 POWDER MILL RD 
ADELPHI MD 20783-1197 

1       DIRECTOR 
US ARMY RESEARCH LAB 
AMSRL CS AS (RECORDS MGMT) 
2800 POWDER MILL RD 
ADELPHI MD 20783-1145 

3       DIRECTOR 
US ARMY RESEARCH LAB 
AMSRL CILL 
2800 POWDER MILL RD 
ADELPHI MD 20783-1145 

DPTYCGFORRDA 
US ARMY MATERIEL CMD 
AMCRDA 
5001 EISENHOWER AVE 
ALEXANDRIA VA 22333-0001 

ABERDEEN PROVING GROUND 

DIRUSARL 
AMSRL CI LP (BLDG 305) 

INST FOR ADVNCD TCHNLGY 
THE UNIV OF TEXAS AT AUSTIN 
PO BOX 202797 
AUSTIN TX 78720-2797 

DARPA 
B KASPAR 
3701 N FAIRFAX DR 
ARLINGTON VA 22203-1714 

NAVAL SURFACE WARFARE CTR 
CODE B07 J PENNELLA 
17320 DAHLGRENRD 
BLDG 1470 RM 1101 
DAHLGREN VA 22448-5100 

US MILITARY ACADEMY 
MATH SCI CTR OF EXCELLENCE 
DEPT OF MATHEMATICAL SCI 
MADN MATH 
THAYERHALL 
WEST POINT NY 10996-1786 

93 



NO. OF 
COPIES ORGANIZATION 

16      LANL 
B W ASAY 
J BDZIL 
J C DALLMAN 
W C DAVIS 
JGROVE 
PMHOWE 
JE KENNEDY 
J D KERSHNER 
E M KOBER 
LDLEBERSKY 
RMENIKOFF 
J B RAMSAY 
SFSON 
PKTANG 
J WACKERLE 
JW WALTER 
LOS ALAMOS NM 87545 

5      LLNL 
J FORBES 
ELLEE 
MJ MURPHY 
AL NICHOLS ffl 
C M TARVER 
PO BOX 808 
LIVERMORECA 94550 

3       SNL 
MRBAER 
E S HERTEL 
RESETCHELL 
PO BOX 5800 
ALBUQUERUE NM 87185-5800 

5       NSWC 
RR BERNECKER 
RMDOHERTY 
RGUIRGUIS 
HWSANDUSKY 
G SUTHERLAND 

.    101 STRAUSS AVE 
INDIAN HEAD MD 20640-5035 

1       NAVAL EODTECHLGYDIV 
RMGOLD 
2008 STUMP NECK RD 
INDIAN HEAD MD 20640 

NO. OF 
COPIES ORGANIZATION 

3       US ARMY ARDEC 
ELBAKER 
BDFISHBURN 
VMGOLD 
PICATINNY ARSENAL NJ 
07806-5000 

1       AFRLMNME 
JG GLENN 
2306 PERIMETER RD 
EGLIN AFB FL 32542-5910 

1       POLYTECHNIC UNTV 
L STIEL 
6 METROTECH CTR 
BROOKLYN NY 11201 

1       UNIVERSITY OF ILLINOIS 
D S STEWART 
104 S WRIGHT ST 
URBANAIL 61801 

1       KERLEY PUBLISHING SVC 
GIKERLEY 
PO BOX 13835 
ALBUQUERQUE NM 87192-3835 

1       VANDERBILTUNIV 
AMMELLOR 
BOX 1592 
NASHVILLE TN 37235-1592 

1       NMINST MINING TECH 
F NORWOOD 
801 LEROY PLACE 
SOCORRO NM 87801 

1       LUNDSTROM & ASSOC 
EALUNDSTROM 
1638 N ABINGDON ST 
ARLINGTON VA 22207 

1       ENIG ASSOC INC 
M COWPERTHWATTE 
12501 PROSPERITY DR 
SILVER SPRING MD 20904-1689 

94 



NO. OF 
COPIES ORGANIZATION 

1       THE ENSIGN BICKFORD CO 
K E DUPREY 
660HOPMEADOWST 
PO BOX 483 
SIMSBURY CT 06070-0483 

ABERDEEN PROVING GROUND 

9      DIR USARL 
AMSRLWMTB 

RFREY 
J WATSON 
V BOYLE 
W LAWRENCE 
PBAKER 
R LOTTERO 
W HILLSTROM 
E MCDOUGAL 
TDORSEY 

95 



NO. OF 
COPIES ORGANIZATION 

1       AERONAUTICAL AND 
MARITIME RSRCH LAB 
SYHO 
BOX 1500 
SALSIBURYSA5108 
AUSTRALIA 

1       ORICA EXPLOSIVES 
DL KENNEDY 
GEORGE BOOTH DR 
KURRIKURRI NEW SOUTH 
WALES 2327 
AUSTRALIA 

1       DEFENSE RSRCH ESTAB 
VALCARTEER 
C BELANGER 
2459 PIE XIBLVD NORTH 
QUEBEC GOA 1R0 
CANADA 

1       DGA CENTRE DETUDES DE 
GRAMAT 
D BERGUES 
GRAMAT 46500 
FRANCE 

1 COMMISSARIAT A LENERGIE 
ATOMIQUE 
JPPLOTARD 
COURTRY 77181 
FRANCE 

2 FRENCH GERMAN RSRCH 
INSTISL 
HPAMOULARD 
M M S SAMLRANT 
5 RUE DE GENERAL CASSAGNOU 
SAINT LOUIS CEDEX 68301 
FRANCE 

2      AGENCY FOR DEFENSE DEV 
JLEE 
S Y SONG 
YUSEONG PO BOX 35 137 
TAEJON 305 600 
KOREA 

NO. OF 
COPIES ORGANIZATION 

1       INSTITUTE OF CHEMICAL PHYS 
VKLIMENKO 
KISYGINST9 
MOSCOW 197334 
RUSSIA 

1       DYNAMEC RSRCH AB 
APERSSON 
PO BOX 201 
S 151 23 SODERTALJE 
SWEDEN 

1       DEFENSE RSRCH AGCY 
MCOOK 
PJHASKTNS 
PHUBBARD 
FTHALSTEAD 
SEVENOAKS KENT TN14 7BP 
UNITED KINGDOM 

1       AWEALERMASTON 
HR JAMES 
READING BERKS RG7 4PR 
UNITED KINGDOM 

96 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden Tor this collection of Information Is estimated to average 1 hour per response, Including the time for reviewing Instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this 
collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Hlohwav. Suite 1804. Arllnoton. VA 2g202-«302. and to the Office of Manaoement and Budaet. Paperwork Reduction Prol9ct«l7<m)1881. Washlnoton. DC 20503. 

1. AGENCY USE ONLY (Leave blank) I 2. REPORT DATE | 3. REPORT TYPE AND DATES COVERED 

March 2000 Oct 97-Sep 99 
4. TITLE AND SUBTITLE 

Dynamics and Thermodynamics of Simple Two-Phase Reacting Mixtures for 
Application to Explosive Initiation Modeling 

6. AUTHOR(S) 

John Starkenberg 

5. FUNDING NUMBERS 

1L162618AH43 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
ATTN: AMSRL-WM-TB 
Aberdeen Proving Ground, MD 21005-5066 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

ARL-TR-2161 

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

The front-tracking "hydrocode" FronTier limits finite-difference solution of the dynamic continuum mechanics 
equations to regions bounded by tracked fronts (shock waves, contact discontinuities, and gradient discontinuities) and 
uses local solutions of the Riemann problem to advance the positions of these fronts. This solution method places 
stringent requirements on the availability of thermodynamics information. With the addition of an appropriate reacting 
mixture model, the code can be applied to solid explosive initiation problems. The required thermodynamic functions 
are more difficult to obtain for reacting mixtures even though the equations of state for each of the phases present are 
known. We have developed a mixture model based on assumptions of mechanical equilibrium and thermal isolation that 
can be used independent of the choice of equations of state for the phases, and we have derived expressions for the 
necessary thermodynamic functions. 

14. SUBJECT TERMS 

thermodynamics, explosive initiation modeling 

15. NUMBER OF PAGES 

95  
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 
NSN 7540-01-280-5500 

97 
Standard Form 298 (Rev. 2-69) 
Prescribed by ANSI Std. 239-18 298-102 



INTENTIONALLY LEFT BLANK. 

98 



USER EVALUATION SHEET/CHANGE OF ADDRESS 

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers 
to the items/questions below will aid us in our efforts. 

1. ARL Report Number/Author  ARL-TR-2161 (Starkenberg')     Date of Report  March 2000  

2. Date Report Received  

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will 

be used.) . 

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.). 

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs 

avoided, or efficiencies achieved, etc? If so, please elaborate.  

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, 

technical content, format, etc.)  

Organization 

CURRENT                             Name                                                             E-mail Name 
ADDRESS   

Street or P.O. Box No. 

City, State, Zip Code 

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old 

or Incorrect address below. 

Organization 

OLD                                      Name 
ADDRESS   

Street or P.O. Box No. 

City, State, Zip Code 

(Remove this sheet, fold as indicated, tape closed, and mail.) 
(DO NOT STAPLE) 



DEPARTMENT OF THE ARMY 

OFFICIAL BUSINESS 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO 0001.APG.MD 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN AMSRLWMTB 
ABERDEEN PROVING GROUND MD 21005-5066 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 


