
r
§CM!' AR

Center
Diego

TECHNICAL REPORT 1817
February 2000

Windows NT® Operating
System Primitives

J. Drummond

Approved for public release;
distribution is unlimited.

SSC San Diego

ll#lll
20000320 002

TECHNICAL REPORT 1817
February 2000

Windows NT® Operating
System Primitives

J. Drummond

Approved for public release;
distribution is unlimited.

SPAWAR
Systems Center

San Diego

SSC San Diego
San Diego, CA 92152-5001

Preceding Pagcfßlank

SSC SAN DIEGO
San Diego, California 92152-5001

E. L. Valdes, CAPT, USN _ . R-C. Kolb
Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

The work described in this Technical Report was performed for the Defense Advanced Research
Projects Agency (DARPA) Information Technology Office by the Advanced Concepts and Engineer-
ing Division (D41) Technology Team (D4123), SPAWAR Systems Center, San Diego (SSC San
Diego).

Released by Under authority of
G. Leonard, Head R- B. Volker, Head
Technology Team Advanced Concepts and

Engineering Division

Microsoft® Windows NT® is a registered trademark of the Microsoft Corporation.

SB

EXECUTIVE SUMMARY

OBJECTIVE

There are many papers, articles, and technical reports that analyze the Microsoft® Windows NT®
operating system (see References section). This report focuses on Microsoft® Windows NT®
operating system primitives, specifically low-level kernel primitives. This analysis was conducted
under a specifically conditioned environment to minimize variation of results, and I acknowledge the
limitations of the results as such.

METHOD

This investigation of the Microsoft® Windows NT® operating system is not a comprehensive
study. The low level kernel primitives were examined to provide some insight into Windows NT®
system characteristics and capabilities. Initially, it may seem discriminatory to examine the non-real-
time Microsoft® Windows NT® system for real-time characteristics; however, this examination will
inspect any inherent potential real-time characteristics within the Microsoft® Windows NT®
operating system and will not compare this admittedly non-real-time system with the features of a
true real-time system.

The software developed for this analysis was based upon an interpretation of the elements from the
Rhealstone benchmark (Kar, 1990). System examinations were conducted on the context switch,
pre-emption, and interrupt latency areas. The Rhealstone benchmark has been categorized as a "fine-
grained benchmark*" in that it focuses upon the examination of low level kernel primitives and,
hence, is ideal for this investigation. However, this report does not use the entire benchmark suite of
components. Elements that have not been used include semaphore shuffling measurement, the
deadlock breaking measurement, and the intertask message latency measurement. One reason for
omitting these components was that they did not apply to this investigation. Critical characteristics of
a given real-time system that can be considered as foundational elements are those that accentuate
timing and guarantee latencies and predictability as noted in Drummond (1996).

CONCLUSION

The following three sections discuss data produced by low-level analysis of the Microsoft®
Windows NT® system:

• Context Switch

• Pre-emption

• Interrupt Latency

* K. Ghosh, B. Mukherjee, and K. Schwan. 1994. " A Surevey of Real-Time Operation Systems-Draft.'
Technical Report (Feb).

Ill

These three areas of investigation exhibit a high degree of bearing on a given systems capability
and potential for real-time response. The overall discoveries and subsequent details confirm earlier
findings that the Microsoft® Windows NT® operating system is indeed capable of supporting limited
soft real-time deadlines.

IV

CONTENTS

EXECUTIVE SUMMARY iij

MICROSOFT® WINDOWS NT® OPERATING SYSTEM 1

ANALYSIS PROCEDURE 3

CONTEXT SWITCH 5

PRE-EMPTION 7

INTERRUPT LATENCY 9

REFERENCES 11

Figures
1. Microsoft® Windows NT® architecture 1
2. Context switch of threads sharing CPU resource 5
3. Thread pre-emption time 7
4. Interrupt latency time 9

MICROSOFT® WINDOWS NT® OPERATING SYSTEM

The Microsoft® Windows NT® architecture is designed to include a Hardware Abstraction Layer
(HAL) module. The design rationale for the creation of the HAL is that of increased portability
across numerous platforms. The HAL module is an essential part of making this portability possible
(Solomon, 1998). The HAL module interacts with the hardware on behalf of the kernel. This module
also allows for a partitioning between the drivers/kernel and the lower level communication engines
and between the input and output interfaces, including various interrupt controllers. User applications
sit on top of the kernel layer (figure 1).

Applications

jijijjjjjljgfjjjljjgliigijijg])
ililiiiiiiiliiiüätililiiiiiiiiiiiiiiüliääiii^^

ljj£iiiiiiiiiiiiiiiiiiiiüiiiiiiiiiiiiii&

Figure 1. Microsoft® Windows NT® architecture.

The assignment of priority to a typical thread designed to be executed within the Microsoft®
Windows NT® environment is based upon two elements. One of these elements consists of the priority
of the process or class within which the thread was created. The possible class priorities, which can
potentially be assigned, are EDLE_PRIORITY_CLASS, NORMAL_PRIORITY_CLASS,
HIGH_PRIORITY_CLASS, and REALTIME_PRIOR]TY_CLASS. The selection of a class priority
has a direct bearing upon the thread's ultimate execution priority level.

The thread priority assignment consists of the following:

THREAD. PRIORITY_LOWEST is defined as THREAD_BASE_PRIORITY_MIN;

THREAD. PRIORITY_BELOW_NORMAL is defined as THREAD_PRIORITY_LOWEST + 1;

THREAD_PRIORITY_NORMAL is defined as 0;

THREAD_PRIORITY_HIGHEST is defined as THREAD_BASE_PRIORITY_MAX:

THREAD_PRIORITY_ABOVE_NORMAL is defined as THREAD_PRIORITY_HIGHEST-l;

THREAD_PRIORITY_ERROR_RETURN is defined as MAXLONG;

THREAD_PRIORITY_TrME_CRrnCAL is defined as THREAD_BASE_PRIORITY_LOWRT;

THREAD_PRIORITY_IDLE is defined as THREAD_BASE_PRIORITY_IDLE.

1

The actual execution priority level is obtained from a combination of the threads priority level and
the priority setting of the class (Microsoft Corporation, 1998). The thread's priority level is one of
the following values:

THREAD_PRIORTTY_ABOVE_NORMAL indicates 1 point above normal priority for the
priority class;

THREAD_PRIORITY_BELOW_NORMAL indicates 1 point below normal priority for the
priority class;

THREAD_PRIORITY_HIGHEST indicates 2 points above normal priority for the priority class;

THREAD_PRIORTTY_IDLE indicates a base-priority level of 1 for EDLE_PRIOPJTY_CLASS,
NORMAL_PRIOPJTY_CLASS, or fflGH_PRIOPJTY_CLASS processes, and a base-priority level
of 16 for REALTIME_PRIORITY_CLASS processes;

THREAD_PRIOPJTY_LOWEST indicates 2 points below normal priority for the priority class;

THREAD_PRIORTTY_NORMAL indicates normal priority for the priority class;

THREAD_PRIORITY_TIME_CRrnCAL indicates a base-priority level of 15 for
IDLE_PRIORJTY_CLASS, NORMAL_PRIOPJTY_CLASS, or HIGH_PRIOPJTY_CLASS
processes, and a base-priority level of 31 for REALTIME_PRIOPJTY_CLASS processes.

The above values are defined in the winbase.h header file within the Microsoft® Development
Network environment.

The execution priority of each thread, along with any processor affinity details, are used as the
basis for the actual scheduling of the threads execution. As noted in Jones and Regehr (1998), thread
execution contains assorted complexities "The priorities are divided into three ranges: real-time
(16-31), normal (1-15), and idle (0). Priorities of threads in the normal range are boosted following
I/O completions and decreased when the thread's time quantum runs out, as is often done in time-
sharing systems. The system never adjusts the priorities of threads in the real-time range. The
scheduler essentially selects the first thread of the highest runnable priority and runs it for its
quantum, then places it at the tail of its priority list."

ANALYSIS PROCEDURE

The testbed used for these experiments is composed of several commercial off-the-shelf Intel-
based Pentium II single processor systems (400 MHz) and generic components. These systems were
connected via a simple 100 BaseT Ethernet. 3Com 100BaseT network cards and typical high-density
display systems based upon the Intel740 video accelerator inhabit the network node personal
computers. The testbed operating system was the Microsoft® Windows NT® version 4.0 build 1381 with
Service Pack 4. Standard generic drivers were used during these tests, and no modifications
were performed upon these devices. The primary and secondary storage devices, used on these systems
were 512-MB Synchronous Dynamic Random Access Memory (SDRAM) (60ns) and a 16-GB New
Technology File System (NTFS) format Small System Computer Interface (SCSI) (with parity check
enabled), respectively. The Basic Input Output System (BIOS) used by these systems was the Award
Modular BIOS version 4.51, with HAL: MPS 1.4-Advanced Programmable Interrupt Controller
(APIC) platform. The internal clock mechanism was the NT multimedia timer, which provided a
clock resolution of < 1 ms. The timer device, Stat Inc. (produced by Alpha Logic) had been used on
limited specific program execution; this device provided increased clock resolution of 90 to 250 ILLS.

The Microsoft® Development Network environment version 6.0 compiler was used to develop the
analysis programs. The programs were created from an object-oriented design approach based upon
coding in the C++ language. The compilation was performed with no optimization functionality.
These measurements were completed without considering systems caching. This may or may not
have affected the results. The various analysis tests were performed by using the thread as the basic
schedulable entity included within a given class. During the tests, the program threads were assigned
priorities ranging from lowest, normal, idle, and time critical settings. When testing, the program
class priorities were designated as idle, normal, high, and real-time. This approach examined the full
range of treatment afforded to typical program thread execution. Report results included were all
achieved with a combination of high-priority assignment to the class and a time-critical priority
assignment to the executing thread.

As previously mentioned, the basic schedulable entity used within the Microsoft® Windows NT®
environment is the thread and, as such, it presents itself as the best candidate for appraisal. All the
measurements were based upon this thread entity; thus, there may or may not have been contention
for resources such as memory or ports among the system threads and the measured threads. Report
results do not account for this possibility of variance. This potential overhead is included in all report
measurements.

CONTEXT SWITCH

The context of a processing entity consists of the entity details that can be saved on a stack and
retrieved later. The context switch event can include various transition states when an entity is
transferred from the Central Processing Unit (CPU) to the wait queue (figure 2). The measured time
of this examined event was the time at which one thread (Thread-1) was swapped from the "run"
state to the "wait" state and another thread (Thread-2) was swapped from the "wait" state to the "run"
state. The context switch was measured periodically. This measured duration indicated the time
required to save the "context" thread and place in its location the next thread. The results indicated a
time interval average of 20 |is. For these tests, two threads of equal priority were examined 1 million
times, and initial overall execution results were subtracted by the overhead of simple loop execution
(inside threads), thread startup, and "sleep" calls.

Thread-2

Time ->

Figure 2. Context switch of threads sharing CPU resource.

PRE-EMPTION

The pre-emption time measurements fundamentally examined the event of a lower priority task
replaced by a higher priority task within the CPU run cycle. The measurements were performed
periodically and indicate the procedure required for handling an Interrupt Service Routine (ISR) or
some other event. The event used here was "sleep" (with the lowest possible argument being 0 ms)
alternated with waking. The test uses two threads, each with a different priority. The lower priority
was 15 while the higher priority was 31. The program initially started processing the low-priority
thread (Thread-L), which was soon pre-empted by the higher priority thread (Thread-H), as shown in
figure 3. An ensuing "sleep" call was then performed whereby the lower priority thread (Thread-L)
regains the CPU. This sequence was repeated 1 million times. The results indicated an average time
of 30 to 40 (is. Again, the overhead time including simple loop execution (inside threads) and the
"sleep" call execution were subtracted from the overall execution time. Of course, the experiment
result also included the overhead of context switch time.

Thread-L

PR Time->

Figure 3. Thread pre-emption time.

INTERRUPT LATENCY

Interrupt latency measurements were used to investigate the execution of a software interrupt. The
measurement of this event begins when notification of an interrupt occurred and included execution
of the interrupt itself up to the beginning instruction (figure 4). However, because Microsoft®
Windows NT® does not provide a simple user interrupt capability, the interrupt latency measurement
included the time it takes to go through the interrupt handler itself. In this test, a thread was created
with a given period, P. The thread has a loop to execute a small instruction set. The time to execute
those instructions was measured. The period, P, was then increased and a new measurement was
performed. The whole process was repeated many times (e.g., 1 million times). In this measurement,
the average interrupt latency for Microsoft® Windows NT® was 10 to 15 u.s. The results showed an
increment in time based upon the periodic timer clock interrupt (i.e., interrupt latency).

Int-Hdl

Thread-1

A INT Time -»

Figure 4. Interrupt latency time.

REFERENCES

Drummond, J. 1996. "Establishing A Real-time Distributed Benchmark," IEEE 10th International
Parallel Processing Symposium. Proceedings of the 4th International Workshop on Parallel and
Distributed Real-Time Systems, April 1996, Honolulu, HI. Institute of Electrical and Electronics
Engineers.

Jones, M. B. and J. Regehr. 1998. "Issues in Using Commodity Operating Systems for Time-
Dependent Tasks: Experiences from a Study of Windows NT." Proceedings of the Eighth
International Workshop on Network and Operating Systems Support for Digital Audio and Video
(pp. 107-110). July 1998. Cambridge, U.K. Institute of Electrical and Electronic Engineers.

Kar, R. 1990. "Implementing the Rhealstone Real-Time Benchmark," Dr. Dobb's Journal (Apr).

Microsoft Corporation. 1998. Microsoft Development Network Library (Oct). Redmond, WA.

Solomon, D. 1998. Inside Windows NT. 2nd ed. Microsoft Press, Redmond, WA.

11

REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

February 2000

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

WINDOWS NT® OPERATING SYSTEM PRIMITIVES

5. FUNDING NUMBERS

PE: 0602301E
AN: DN307706
WU: CB16 6, AUTHOR(S)

J. Drammond

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SSC San Diego
San Diego, CA 92152-5001

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR1817

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency
(DARPA)
Information Technology Office
3701 North Fairfax Drive
Arlington, VA 22203

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

.13. ABSTRACT (Maximum 200 words)

This report focuses on Microsoft® Windows NT® operating system primitives, specifically low-level kernel
primitives. Low-level kernel primitives were examined to provide some insight into Windows NT" system charac-
teristics and capabilities. Context switch, pre-emption, and interrupt latency exhibited a high degree of bearing on
given systems capability and potential for real-time response. The overall discoveries and subsequent details of this
report confirm earlier findings that the Microsoft® Windows NT operating system is capable of supporting limited
soft real-time deadlines.

14. SUBJECT TERMS

Mission Area: Software Development
C++ computer programming
hardware abstraction layer module
object-oriented design

15. NUMBER OF PAGES

17
16. PRICE CODE

17. SECURITY CLASSIFICATION
1 OF REPORT

j UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAME AS REPORT

NSN 7540-01 -280-5500 Standard form 298 (FRONT)

21a. NAME OF RESPONSIBLE INDIVIDUAL

J. Drummond

21b. TELEPHONE (include Area Code)

(619)553-4131
e-mail: drummond@spawar.navy.mil

21c. OFFICE SYMBOL

D4123

NSN 7540-01-280-5500 Standard form 298 (BACK)

INITIAL DISTRIBUTION

D0012 Patent Counsel (1)
D0271 Archive/Stock (6)
D0274 Library (2)
D027 M. E. Cathcart (1)
D0271 D. Richter (1)
D41 R. B. Volker (1)
D411 M. B. Vineberg (1)
D411 R. E. Younger (1)
D4121 A. D. Sandlin (2)
D4123 J. J. Drummond (3)
D4123 G. E. Leonard (1)
D4123 M. A. Neer (1)

Defense Technical Information Center
Fort Belvoir, VA 22060-6218 (4)

SSC San Diego Liaison Office
Arlington, VA 22202^804

Center for Naval Analyses
Alexandria, VA 22302-0268

Navy Acquisition, Research and
Development Information Center

Arlington, VA 22202-3734

Government-Industry Data Exchange
Program Operations Center

Corona, CA 91718-8000

Defense Advanced Research Projects Agency/ITO
Arlington, VA 22203-1714 (2)

Dudley Knox Library
Naval Postgraduate School
Monterey, CA 93943-5101 (2)

